
OpenShift Container Platform 4.5

Nodes

Configuring and managing nodes in OpenShift Container Platform

Last Updated: 2021-07-22

OpenShift Container Platform 4.5 Nodes

Configuring and managing nodes in OpenShift Container Platform

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing the nodes, Pods, and containers
in your cluster. It also provides information on configuring Pod scheduling and placement, using
jobs and DaemonSets to automate tasks, and other tasks to ensure an efficient cluster.

. .

Table of Contents

CHAPTER 1. WORKING WITH PODS
1.1. USING PODS

1.1.1. Understanding pods
1.1.2. Example pod configurations

1.2. VIEWING PODS
1.2.1. About pods
1.2.2. Viewing pods in a project
1.2.3. Viewing pod usage statistics
1.2.4. Viewing resource logs

1.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER FOR PODS
1.3.1. Configuring how pods behave after restart
1.3.2. Limiting the bandwidth available to pods
1.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up

1.3.3.1. Specifying the number of pods that must be up with pod disruption budgets
1.3.4. Preventing pod removal using critical pods

1.4. AUTOMATICALLY SCALING PODS WITH THE HORIZONTAL POD AUTOSCALER
1.4.1. Understanding horizontal pod autoscalers

1.4.1.1. Supported metrics
1.4.1.2. Scaling policies

1.4.2. Creating a horizontal pod autoscaler for CPU utilization
1.4.3. Creating a horizontal pod autoscaler object for memory utilization
1.4.4. Understanding horizontal pod autoscaler status conditions

1.4.4.1. Viewing horizontal pod autoscaler status conditions
1.4.5. Additional resources

1.5. AUTOMATICALLY ADJUST POD RESOURCE LEVELS WITH THE VERTICAL POD AUTOSCALER
1.5.1. About the Vertical Pod Autoscaler Operator
1.5.2. Installing the Vertical Pod Autoscaler Operator
1.5.3. About Using the Vertical Pod Autoscaler Operator

1.5.3.1. Automatically applying VPA recommendations
1.5.3.2. Automatically applying VPA recommendations on pod creation
1.5.3.3. Manually applying VPA recommendations
1.5.3.4. Exempting containers from applying VPA recommendations

1.5.4. Using the Vertical Pod Autoscaler Operator
1.5.5. Uninstalling the Vertical Pod Autoscaler Operator

1.6. PROVIDING SENSITIVE DATA TO PODS
1.6.1. Understanding secrets

1.6.1.1. Types of secrets
1.6.1.2. Example secret configurations
1.6.1.3. Secret data keys

1.6.2. Understanding how to create secrets
1.6.2.1. Secret creation restrictions
1.6.2.2. Creating an opaque secret

1.6.3. Understanding how to update secrets
1.6.4. About using signed certificates with secrets

1.6.4.1. Generating signed certificates for use with secrets
1.6.5. Troubleshooting secrets

1.7. USING DEVICE PLUG-INS TO ACCESS EXTERNAL RESOURCES WITH PODS
1.7.1. Understanding device plug-ins

Example device plug-ins
1.7.1.1. Methods for deploying a device plug-in

1.7.2. Understanding the Device Manager

8
8
8
8
11
11
11

12
12
14
14
15
16
16
17
18
18
19
19
22
26
30
32
34
34
34
35
36
38
39
39
40
42
44
44
44
45
46
47
48
48
48
49
49
50
52
52
52
53
53
54

Table of Contents

1

. .

1.7.3. Enabling Device Manager
1.8. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS

1.8.1. Understanding pod priority
1.8.1.1. Pod priority classes
1.8.1.2. Pod priority names

1.8.2. Understanding pod preemption
1.8.2.1. Pod preemption and other scheduler settings
1.8.2.2. Graceful termination of preempted pods

1.8.3. Configuring priority and preemption
1.9. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

1.9.1. Using node selectors to control pod placement

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)
2.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER

2.1.1. Scheduler Use Cases
2.1.1.1. Infrastructure Topological Levels
2.1.1.2. Affinity
2.1.1.3. Anti-Affinity

2.2. CONFIGURING THE DEFAULT SCHEDULER TO CONTROL POD PLACEMENT
2.2.1. Understanding default scheduling

2.2.1.1. Understanding Scheduler Policy
2.2.2. Creating a scheduler policy file
2.2.3. Modifying scheduler policies

2.2.3.1. Understanding the scheduler predicates
2.2.3.1.1. Static Predicates

2.2.3.1.1.1. Default Predicates
2.2.3.1.1.2. Other Static Predicates

2.2.3.1.2. General Predicates
Non-critical general predicates
Essential general predicates

2.2.3.2. Understanding the scheduler priorities
2.2.3.2.1. Static Priorities

2.2.3.2.1.1. Default Priorities
2.2.3.2.1.2. Other Static Priorities

2.2.3.2.2. Configurable Priorities
2.2.4. Sample Policy Configurations

2.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND ANTI-AFFINITY RULES
2.3.1. Understanding pod affinity
2.3.2. Configuring a pod affinity rule
2.3.3. Configuring a pod anti-affinity rule
2.3.4. Sample pod affinity and anti-affinity rules

2.3.4.1. Pod Affinity
2.3.4.2. Pod Anti-affinity
2.3.4.3. Pod Affinity with no Matching Labels

2.4. CONTROLLING POD PLACEMENT ON NODES USING NODE AFFINITY RULES
2.4.1. Understanding node affinity
2.4.2. Configuring a required node affinity rule
2.4.3. Configuring a preferred node affinity rule
2.4.4. Sample node affinity rules

2.4.4.1. Node affinity with matching labels
2.4.4.2. Node affinity with no matching labels

2.4.5. Additional resources
2.5. PLACING PODS ONTO OVERCOMMITED NODES

54
56
56
56
57
57
58
58
58
59
60

63
63
63
63
63
64
64
65
65
66
68
71
71
71
72
72
73
73
73
73
73
74
75
76
80
80
82
83
84
84
85
86
87
87
89
90
91
91

92
92
92

OpenShift Container Platform 4.5 Nodes

2

. .

. .

2.5.1. Understanding overcommitment
2.5.2. Understanding nodes overcommitment

2.6. CONTROLLING POD PLACEMENT USING NODE TAINTS
2.6.1. Understanding taints and tolerations

2.6.1.1. Understanding how to use toleration seconds to delay pod evictions
2.6.1.2. Understanding how to use multiple taints
2.6.1.3. Understanding pod scheduling and node conditions (taint node by condition)
2.6.1.4. Understanding evicting pods by condition (taint-based evictions)
2.6.1.5. Tolerating all taints

2.6.2. Adding taints and tolerations
2.6.2.1. Adding taints and tolerations using a machine set
2.6.2.2. Binding a user to a node using taints and tolerations
2.6.2.3. Controlling nodes with special hardware using taints and tolerations

2.6.3. Removing taints and tolerations
2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

2.7.1. About node selectors
2.7.2. Using node selectors to control pod placement
2.7.3. Creating default cluster-wide node selectors
2.7.4. Creating project-wide node selectors

2.8. RUNNING A CUSTOM SCHEDULER
2.8.1. Deploying a custom scheduler
2.8.2. Deploying pods using a custom scheduler
2.8.3. Additional resources

2.9. EVICTING PODS USING THE DESCHEDULER
2.9.1. About the descheduler
2.9.2. Descheduler strategies
2.9.3. Installing the descheduler
2.9.4. Configuring descheduler strategies
2.9.5. Configuring additional descheduler settings
2.9.6. Uninstalling the descheduler

CHAPTER 3. USING JOBS AND DAEMONSETS
3.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY WITH DAEMON SETS

3.1.1. Scheduled by default scheduler
3.1.2. Creating daemonsets

3.2. RUNNING TASKS IN PODS USING JOBS
3.2.1. Understanding jobs and cron jobs
3.2.2. Understanding how to create jobs

3.2.2.1. Understanding how to set a maximum duration for jobs
3.2.2.2. Understanding how to set a job back off policy for pod failure
3.2.2.3. Understanding how to configure a cron job to remove artifacts

3.2.3. Known limitations
3.2.4. Creating jobs
3.2.5. Creating cron jobs

CHAPTER 4. WORKING WITH NODES
4.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT CONTAINER PLATFORM CLUSTER

4.1.1. About listing all the nodes in a cluster
4.1.2. Listing pods on a node in your cluster
4.1.3. Viewing memory and CPU usage statistics on your nodes

4.2. WORKING WITH NODES
4.2.1. Understanding how to evacuate pods on nodes
4.2.2. Understanding how to update labels on nodes

93
93
94
94
97
97
98
99

100
100
102
103
103
104
105
105
109
112
114
117
118

120
122
122
123
123
124
125
126
127

129
129
129
130
132
132
134
134
134
134
135
135
136

139
139
139
143
144
145
145
146

Table of Contents

3

. .

4.2.3. Understanding how to mark nodes as unschedulable or schedulable
4.2.4. Configuring master nodes as schedulable
4.2.5. Deleting nodes

4.2.5.1. Deleting nodes from a cluster
4.2.5.2. Deleting nodes from a bare metal cluster

4.2.6. Adding kernel arguments to Nodes
4.2.7. Additional resources

4.3. MANAGING NODES
4.3.1. Modifying nodes

4.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE
4.4.1. Configuring the maximum number of pods per node

4.5. USING THE NODE TUNING OPERATOR
4.5.1. Accessing an example Node Tuning Operator specification
4.5.2. Custom tuning specification
4.5.3. Default profiles set on a cluster
4.5.4. Supported Tuned daemon plug-ins

4.6. UNDERSTANDING NODE REBOOTING
4.6.1. About rebooting nodes running critical infrastructure
4.6.2. Rebooting a node using pod anti-affinity
4.6.3. Understanding how to reboot nodes running routers

4.7. FREEING NODE RESOURCES USING GARBAGE COLLECTION
4.7.1. Understanding how terminated containers are removed though garbage collection
4.7.2. Understanding how images are removed though garbage collection
4.7.3. Configuring garbage collection for containers and images

4.8. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER
4.8.1. Understanding how to allocate resources for nodes

4.8.1.1. How OpenShift Container Platform computes allocated resources
4.8.1.2. How nodes enforce resource constraints
4.8.1.3. Understanding Eviction Thresholds
4.8.1.4. How the scheduler determines resource availability

4.8.2. Configuring allocated resources for nodes
4.9. ALLOCATING SPECIFIC CPUS FOR NODES IN A CLUSTER

4.9.1. Reserving CPUs for nodes
4.10. MACHINE CONFIG DAEMON METRICS

4.10.1. Machine Config Daemon metrics

CHAPTER 5. WORKING WITH CONTAINERS
5.1. UNDERSTANDING CONTAINERS

About containers and RHEL kernel memory
5.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS DEPLOYED

5.2.1. Understanding Init Containers
5.2.2. Creating Init Containers

5.3. USING VOLUMES TO PERSIST CONTAINER DATA
5.3.1. Understanding volumes
5.3.2. Working with volumes using the OpenShift Container Platform CLI
5.3.3. Listing volumes and volume mounts in a pod
5.3.4. Adding volumes to a pod
5.3.5. Updating volumes and volume mounts in a pod
5.3.6. Removing volumes and volume mounts from a pod
5.3.7. Configuring volumes for multiple uses in a pod

5.4. MAPPING VOLUMES USING PROJECTED VOLUMES
5.4.1. Understanding projected volumes

5.4.1.1. Example Pod specs

147
147
148
148
149
149
152
152
153
154
155
157
157
158
161

163
164
164
165
166
166
166
166
167
170
170
170
171
171
172
172
174
174
175
175

179
179
179
179
179
180
182
182
182
183
184
185
186
187
188
188
189

OpenShift Container Platform 4.5 Nodes

4

. .

5.4.1.2. Pathing Considerations
5.4.2. Configuring a Projected Volume for a Pod

5.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS
5.5.1. Expose Pod information to Containers using the Downward API
5.5.2. Understanding how to consume container values using the downward API

5.5.2.1. Consuming container values using environment variables
5.5.2.2. Consuming container values using a volume plug-in

5.5.3. Understanding how to consume container resources using the Downward API
5.5.3.1. Consuming container resources using environment variables
5.5.3.2. Consuming container resources using a volume plug-in

5.5.4. Consuming secrets using the Downward API
5.5.5. Consuming configuration maps using the Downward API
5.5.6. Referencing environment variables
5.5.7. Escaping environment variable references

5.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER PLATFORM CONTAINER
5.6.1. Understanding how to copy files

5.6.1.1. Requirements
5.6.2. Copying files to and from containers
5.6.3. Using advanced Rsync features

5.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER PLATFORM CONTAINER
5.7.1. Executing remote commands in containers
5.7.2. Protocol for initiating a remote command from a client

5.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A CONTAINER
5.8.1. Understanding port forwarding
5.8.2. Using port forwarding
5.8.3. Protocol for initiating port forwarding from a client

5.9. USING SYSCTLS IN CONTAINERS
5.9.1. About sysctls

5.9.1.1. Namespaced versus node-level sysctls
5.9.1.2. Safe versus unsafe sysctls

5.9.2. Setting sysctls for a pod
5.9.3. Enabling unsafe sysctls

CHAPTER 6. WORKING WITH CLUSTERS
6.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER

6.1.1. Understanding events
6.1.2. Viewing events using the CLI
6.1.3. List of events

6.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT CONTAINER PLATFORM NODES CAN HOLD

6.2.1. Understanding the OpenShift Container Platform cluster capacity tool
6.2.2. Running the cluster capacity tool on the command line
6.2.3. Running the cluster capacity tool as a job inside a pod

6.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES
6.3.1. About limit ranges

6.3.1.1. About component limits
6.3.1.1.1. Container limits
6.3.1.1.2. Pod limits
6.3.1.1.3. Image limits
6.3.1.1.4. Image stream limits
6.3.1.1.5. Persistent volume claim limits

6.3.2. Creating a Limit Range
6.3.3. Viewing a limit

191
191

195
195
195
196
197
198
198
199

200
201

202
203
203
203
203
204
205
205
206
206
207
207
207
208
209
209
209
210
210
211

215
215
215
215
216

224
224
225
226
229
229
230
230
231

232
233
234
234
236

Table of Contents

5

6.3.4. Deleting a Limit Range
6.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS

6.4.1. Understanding managing application memory
6.4.1.1. Managing application memory strategy

6.4.2. Understanding OpenJDK settings for OpenShift Container Platform
6.4.2.1. Understanding how to override the JVM maximum heap size
6.4.2.2. Understanding how to encourage the JVM to release unused memory to the operating system
6.4.2.3. Understanding how to ensure all JVM processes within a container are appropriately configured

6.4.3. Finding the memory request and limit from within a pod
6.4.4. Understanding OOM kill policy
6.4.5. Understanding pod eviction

6.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON OVERCOMMITTED NODES
6.5.1. Resource requests and overcommitment
6.5.2. Cluster-level overcommit using the Cluster Resource Override Operator

6.5.2.1. Installing the Cluster Resource Override Operator using the web console
6.5.2.2. Installing the Cluster Resource Override Operator using the CLI
6.5.2.3. Configuring cluster-level overcommit

6.5.3. Node-level overcommit
6.5.3.1. Understanding compute resources and containers

6.5.3.1.1. Understanding container CPU requests
6.5.3.1.2. Understanding container memory requests

6.5.3.2. Understanding overcomitment and quality of service classes
6.5.3.2.1. Understanding how to reserve memory across quality of service tiers

6.5.3.3. Understanding swap memory and QOS
6.5.3.4. Understanding nodes overcommitment
6.5.3.5. Disabling or enforcing CPU limits using CPU CFS quotas
6.5.3.6. Reserving resources for system processes
6.5.3.7. Disabling overcommitment for a node

6.5.4. Project-level limits
6.5.4.1. Disabling overcommitment for a project

6.5.5. Additional resources
6.6. ENABLING OPENSHIFT CONTAINER PLATFORM FEATURES USING FEATUREGATES

6.6.1. Understanding FeatureGates and Technology Preview features
6.6.2. Features that are affected by FeatureGates
6.6.3. Enabling Technology Preview features using FeatureGates

236
237
237
238
238
239
239

240
240
241

243
244
244
244
246
248
251

252
252
252
252
252
253
253
254
255
256
256
256
256
257
257
257
257
258

OpenShift Container Platform 4.5 Nodes

6

Table of Contents

7

CHAPTER 1. WORKING WITH PODS

1.1. USING PODS

A pod is one or more containers deployed together on one host, and the smallest compute unit that can
be defined, deployed, and managed.

1.1.1. Understanding pods

Pods are the rough equivalent of a machine instance (physical or virtual) to a Container. Each pod is
allocated its own internal IP address, therefore owning its entire port space, and containers within pods
can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their
container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code,
might be removed after exiting, or can be retained in order to enable access to the logs of their
containers.

OpenShift Container Platform treats pods as largely immutable; changes cannot be made to a pod
definition while it is running. OpenShift Container Platform implements changes by terminating an
existing pod and recreating it with modified configuration, base image(s), or both. Pods are also treated
as expendable, and do not maintain state when recreated. Therefore pods should usually be managed by
higher-level controllers, rather than directly by users.

NOTE

For the maximum number of pods per OpenShift Container Platform node host, see the
Cluster Limits.

WARNING

Bare pods that are not managed by a replication controller will be not rescheduled
upon node disruption.

1.1.2. Example pod configurations

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed.

The following is an example definition of a pod that provides a long-running service, which is actually a
part of the OpenShift Container Platform infrastructure: the integrated container image registry. It
demonstrates many features of pods, most of which are discussed in other topics and thus only briefly
mentioned here:

Pod object definition (YAML)

kind: Pod
apiVersion: v1

OpenShift Container Platform 4.5 Nodes

8

metadata:
 name: example
 namespace: default
 selfLink: /api/v1/namespaces/default/pods/example
 uid: 5cc30063-0265780783bc
 resourceVersion: '165032'
 creationTimestamp: '2019-02-13T20:31:37Z'
 labels: 1
 app: hello-openshift
 annotations:
 openshift.io/scc: anyuid
spec:
 restartPolicy: Always 2
 serviceAccountName: default
 imagePullSecrets:
 - name: default-dockercfg-5zrhb
 priority: 0
 schedulerName: default-scheduler
 terminationGracePeriodSeconds: 30
 nodeName: ip-10-0-140-16.us-east-2.compute.internal
 securityContext: 3
 seLinuxOptions:
 level: 's0:c11,c10'
 containers: 4
 - resources: {}
 terminationMessagePath: /dev/termination-log
 name: hello-openshift
 securityContext:
 capabilities:
 drop:
 - MKNOD
 procMount: Default
 ports:
 - containerPort: 8080
 protocol: TCP
 imagePullPolicy: Always
 volumeMounts: 5
 - name: default-token-wbqsl
 readOnly: true
 mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 terminationMessagePolicy: File
 image: registry.redhat.io/openshift4/ose-ogging-eventrouter:v4.3 6
 serviceAccount: default 7
 volumes: 8
 - name: default-token-wbqsl
 secret:
 secretName: default-token-wbqsl
 defaultMode: 420
 dnsPolicy: ClusterFirst
status:
 phase: Pending
 conditions:
 - type: Initialized
 status: 'True'
 lastProbeTime: null

CHAPTER 1. WORKING WITH PODS

9

1

2

3

4

5

6

7

8

Pods can be "tagged" with one or more labels, which can then be used to select and manage
groups of pods in a single operation. The labels are stored in key/value format in the metadata
hash. One label in this example is registry=default.

The pod restart policy with possible values Always, OnFailure, and Never. The default value is
Always.

OpenShift Container Platform defines a security context for containers which specifies whether
they are allowed to run as privileged containers, run as a user of their choice, and more. The default
context is very restrictive but administrators can modify this as needed.

containers specifies an array of one or more container definitions.

The container specifies where external storage volumes are mounted within the container. In this
case, there is a volume for storing access to credentials the registry needs for making requests
against the OpenShift Container Platform API.

Each container in the pod is instantiated from its own container image.

Pods making requests against the OpenShift Container Platform API is a common enough pattern
that there is a serviceAccount field for specifying which service account user the pod should
authenticate as when making the requests. This enables fine-grained access control for custom
infrastructure components.

The pod defines storage volumes that are available to its container(s) to use. In this case, it
provides an ephemeral volume for the registry storage and a secret volume containing the service

 lastTransitionTime: '2019-02-13T20:31:37Z'
 - type: Ready
 status: 'False'
 lastProbeTime: null
 lastTransitionTime: '2019-02-13T20:31:37Z'
 reason: ContainersNotReady
 message: 'containers with unready status: [hello-openshift]'
 - type: ContainersReady
 status: 'False'
 lastProbeTime: null
 lastTransitionTime: '2019-02-13T20:31:37Z'
 reason: ContainersNotReady
 message: 'containers with unready status: [hello-openshift]'
 - type: PodScheduled
 status: 'True'
 lastProbeTime: null
 lastTransitionTime: '2019-02-13T20:31:37Z'
 hostIP: 10.0.140.16
 startTime: '2019-02-13T20:31:37Z'
 containerStatuses:
 - name: hello-openshift
 state:
 waiting:
 reason: ContainerCreating
 lastState: {}
 ready: false
 restartCount: 0
 image: openshift/hello-openshift
 imageID: ''
 qosClass: BestEffort

OpenShift Container Platform 4.5 Nodes

10

provides an ephemeral volume for the registry storage and a secret volume containing the service
account credentials.

NOTE

This pod definition does not include attributes that are filled by OpenShift Container
Platform automatically after the pod is created and its lifecycle begins. The Kubernetes
pod documentation has details about the functionality and purpose of pods.

1.2. VIEWING PODS

As an administrator, you can view the pods in your cluster and to determine the health of those pods and
the cluster as a whole.

1.2.1. About pods

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed. Pods are the rough equivalent of a machine instance (physical or virtual) to a
container.

You can view a list of pods associated with a specific project or view usage statistics about pods.

1.2.2. Viewing pods in a project

You can view a list of pods associated with the current project, including the number of replica, the
current status, number or restarts and the age of the pod.

Procedure

To view the pods in a project:

1. Change to the project:

2. Run the following command:

For example:

Example output

Add the -o wide flags to view the pod IP address and the node where the pod is located.

$ oc project <project-name>

$ oc get pods

$ oc get pods -n openshift-console

NAME READY STATUS RESTARTS AGE
console-698d866b78-bnshf 1/1 Running 2 165m
console-698d866b78-m87pm 1/1 Running 2 165m

$ oc get pods -o wide

CHAPTER 1. WORKING WITH PODS

11

https://kubernetes.io/docs/concepts/workloads/pods/pod/

Example output

1.2.3. Viewing pod usage statistics

You can display usage statistics about pods, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

Prerequisites

You must have cluster-reader permission to view the usage statistics.

Metrics must be installed to view the usage statistics.

Procedure

To view the usage statistics:

1. Run the following command:

For example:

Example output

2. Run the following command to view the usage statistics for pods with labels:

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

1.2.4. Viewing resource logs

You can view the log for various resources in the OpenShift CLI (oc) and web console. Logs read from
the tail, or end, of the log.

Prerequisites

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
console-698d866b78-bnshf 1/1 Running 2 166m 10.128.0.24 ip-10-0-152-
71.ec2.internal <none>
console-698d866b78-m87pm 1/1 Running 2 166m 10.129.0.23 ip-10-0-173-
237.ec2.internal <none>

$ oc adm top pods

$ oc adm top pods -n openshift-console

NAME CPU(cores) MEMORY(bytes)
console-7f58c69899-q8c8k 0m 22Mi
console-7f58c69899-xhbgg 0m 25Mi
downloads-594fcccf94-bcxk8 3m 18Mi
downloads-594fcccf94-kv4p6 2m 15Mi

$ oc adm top pod --selector=''

OpenShift Container Platform 4.5 Nodes

12

1

Access to the OpenShift CLI (oc).

Procedure (UI)

1. In the OpenShift Container Platform console, navigate to Workloads → Pods or navigate to the
pod through the resource you want to investigate.

NOTE

Some resources, such as builds, do not have pods to query directly. In such
instances, you can locate the Logs link on the Details page for the resource.

2. Select a project from the drop-down menu.

3. Click the name of the pod you want to investigate.

4. Click Logs.

Procedure (CLI)

View the log for a specific pod:

where:

-f

Optional: Specifies that the output follows what is being written into the logs.

<pod_name>

Specifies the name of the pod.

<container_name>

Optional: Specifies the name of a container. When a pod has more than one container, you
must specify the container name.

For example:

The contents of log files are printed out.

View the log for a specific resource:

Specifies the resource type and name.

For example:

$ oc logs -f <pod_name> -c <container_name>

$ oc logs ruby-58cd97df55-mww7r

$ oc logs -f ruby-57f7f4855b-znl92 -c ruby

$ oc logs <object_type>/<resource_name> 1

$ oc logs deployment/ruby

CHAPTER 1. WORKING WITH PODS

13

The contents of log files are printed out.

1.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER
FOR PODS

As an administrator, you can create and maintain an efficient cluster for pods.

By keeping your cluster efficient, you can provide a better environment for your developers using such
tools as what a pod does when it exits, ensuring that the required number of pods is always running,
when to restart pods designed to run only once, limit the bandwidth available to pods, and how to keep
pods running during disruptions.

1.3.1. Configuring how pods behave after restart

A pod restart policy determines how OpenShift Container Platform responds when Containers in that
pod exit. The policy applies to all Containers in that pod.

The possible values are:

Always - Tries restarting a successfully exited Container on the pod continuously, with an
exponential back-off delay (10s, 20s, 40s) until the pod is restarted. The default is Always.

OnFailure - Tries restarting a failed Container on the pod with an exponential back-off delay
(10s, 20s, 40s) capped at 5 minutes.

Never - Does not try to restart exited or failed Containers on the pod. Pods immediately fail and
exit.

After the pod is bound to a node, the pod will never be bound to another node. This means that a
controller is necessary in order for a pod to survive node failure:

Condition Controller Type Restart Policy

Pods that are expected to
terminate (such as batch
computations)

Job OnFailure or Never

Pods that are expected to not
terminate (such as web servers)

Replication controller Always.

Pods that must run one-per-
machine

Daemon set Any

If a Container on a pod fails and the restart policy is set to OnFailure, the pod stays on the node and the
Container is restarted. If you do not want the Container to restart, use a restart policy of Never.

If an entire pod fails, OpenShift Container Platform starts a new pod. Developers must address the
possibility that applications might be restarted in a new pod. In particular, applications must handle
temporary files, locks, incomplete output, and so forth caused by previous runs.

NOTE

OpenShift Container Platform 4.5 Nodes

14

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Container Platform from restarting.

If the underlying cloud provider endpoints are not reliable, do not install a cluster using
cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.

For details on how OpenShift Container Platform uses restart policy with failed Containers, see the
Example States in the Kubernetes documentation.

1.3.2. Limiting the bandwidth available to pods

You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth.
Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the
configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle
data. The limits you place on a pod do not affect the bandwidth of other pods.

Procedure

To limit the bandwidth on a pod:

1. Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth and kubernetes.io/egress-bandwidth annotations. For
example, to limit both pod egress and ingress bandwidth to 10M/s:

Limited Pod Object Definition

2. Create the pod using the object definition:

1.3.3. Understanding how to use pod disruption budgets to specify the number of

{
 "kind": "Pod",
 "spec": {
 "containers": [
 {
 "image": "openshift/hello-openshift",
 "name": "hello-openshift"
 }
]
 },
 "apiVersion": "v1",
 "metadata": {
 "name": "iperf-slow",
 "annotations": {
 "kubernetes.io/ingress-bandwidth": "10M",
 "kubernetes.io/egress-bandwidth": "10M"
 }
 }
}

$ oc create -f <file_or_dir_path>

CHAPTER 1. WORKING WITH PODS

15

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states

1.3.3. Understanding how to use pod disruption budgets to specify the number of
pods that must be up

A pod disruption budget is part of the Kubernetes API, which can be managed with oc commands like
other object types. They allow the specification of safety constraints on pods during operations, such as
draining a node for maintenance.

PodDisruptionBudget is an API object that specifies the minimum number or percentage of replicas
that must be up at a time. Setting these in projects can be helpful during node maintenance (such as
scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node
failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

A label selector, which is a label query over a set of pods.

An availability level, which specifies the minimum number of pods that must be available
simultaneously, either:

minAvailable is the number of pods must always be available, even during a disruption.

maxUnavailable is the number of pods can be unavailable during a disruption.

NOTE

A maxUnavailable of 0% or 0 or a minAvailable of 100% or equal to the number of
replicas is permitted but can block nodes from being drained.

You can check for pod disruption budgets across all projects with the following:

Example output

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in
the system. Every pod above that limit can be evicted.

NOTE

Depending on your pod priority and preemption settings, lower-priority pods might be
removed despite their pod disruption budget requirements.

1.3.3.1. Specifying the number of pods that must be up with pod disruption budgets

You can use a PodDisruptionBudget object to specify the minimum number or percentage of replicas
that must be up at a time.

Procedure

To configure a pod disruption budget:

$ oc get poddisruptionbudget --all-namespaces

NAMESPACE NAME MIN-AVAILABLE SELECTOR
another-project another-pdb 4 bar=foo
test-project my-pdb 2 foo=bar

OpenShift Container Platform 4.5 Nodes

16

http://kubernetes.io/docs/admin/disruptions/

1

2

3

1

2

3

1. Create a YAML file with the an object definition similar to the following:

PodDisruptionBudget is part of the policy/v1beta1 API group.

The minimum number of pods that must be available simultaneously. This can be either an
integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined.

Or:

PodDisruptionBudget is part of the policy/v1beta1 API group.

The maximum number of pods that can be unavailable simultaneously. This can be either
an integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined.

2. Run the following command to add the object to project:

1.3.4. Preventing pod removal using critical pods

There are a number of core components that are critical to a fully functional cluster, but, run on a regular
cluster node rather than the master. A cluster might stop working properly if a critical add-on is evicted.

Pods marked as critical are not allowed to be evicted.

Procedure

apiVersion: policy/v1beta1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 minAvailable: 2 2
 selector: 3
 matchLabels:
 foo: bar

apiVersion: policy/v1beta1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 maxUnavailable: 25% 2
 selector: 3
 matchLabels:
 foo: bar

$ oc create -f </path/to/file> -n <project_name>

CHAPTER 1. WORKING WITH PODS

17

1

To make a pod critical:

1. Create a Pod spec or edit existing pods to include the system-cluster-critical priority class:

Default priority class for pods that should never be evicted from a node.

Alternatively, you can specify system-node-critical for pods that are important to the cluster
but can be removed if necessary.

2. Create the pod:

1.4. AUTOMATICALLY SCALING PODS WITH THE HORIZONTAL POD
AUTOSCALER

As a developer, you can use a horizontal pod autoscaler (HPA) to specify how OpenShift Container
Platform should automatically increase or decrease the scale of a replication controller or deployment
configuration, based on metrics collected from the pods that belong to that replication controller or
deployment configuration.

1.4.1. Understanding horizontal pod autoscalers

You can create a horizontal pod autoscaler to specify the minimum and maximum number of pods you
want to run, as well as the CPU utilization or memory utilization your pods should target.

IMPORTANT

Autoscaling for Memory Utilization is a Technology Preview feature only.

After you create a horizontal pod autoscaler, OpenShift Container Platform begins to query the CPU
and/or memory resource metrics on the pods. When these metrics are available, the horizontal pod
autoscaler computes the ratio of the current metric utilization with the desired metric utilization, and
scales up or down accordingly. The query and scaling occurs at a regular interval, but can take one to two
minutes before metrics become available.

For replication controllers, this scaling corresponds directly to the replicas of the replication controller.
For deployment configurations, scaling corresponds directly to the replica count of the deployment
configuration. Note that autoscaling applies only to the latest deployment in the Complete phase.

OpenShift Container Platform automatically accounts for resources and prevents unnecessary
autoscaling during resource spikes, such as during start up. Pods in the unready state have 0 CPU
usage when scaling up and the autoscaler ignores the pods when scaling down. Pods without known
metrics have 0% CPU usage when scaling up and 100% CPU when scaling down. This allows for more
stability during the HPA decision. To use this feature, you must configure readiness checks to determine
if a new pod is ready for use.

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured

spec:
 template:
 metadata:
 name: critical-pod
 priorityClassName: system-cluster-critical 1

$ oc create -f <file-name>.yaml

OpenShift Container Platform 4.5 Nodes

18

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics.

1.4.1.1. Supported metrics

The following metrics are supported by horizontal pod autoscalers:

Table 1.1. Metrics

Metric Description API version

CPU utilization Number of CPU cores used. Can be
used to calculate a percentage of the
pod’s requested CPU.

autoscaling/v1,
autoscaling/v2beta2

Memory utilization Amount of memory used. Can be used
to calculate a percentage of the pod’s
requested memory.

autoscaling/v2beta2

IMPORTANT

For memory-based autoscaling, memory usage must increase and decrease
proportionally to the replica count. On average:

An increase in replica count must lead to an overall decrease in memory (working
set) usage per-pod.

A decrease in replica count must lead to an overall increase in per-pod memory
usage.

Use the OpenShift Container Platform web console to check the memory behavior of
your application and ensure that your application meets these requirements before using
memory-based autoscaling.

1.4.1.2. Scaling policies

The autoscaling/v2beta2 API allows you to add scaling policies to a horizontal pod autoscaler. A scaling
policy controls how the OpenShift Container Platform horizontal pod autoscaler (HPA) scales pods.
Scaling policies allow you to restrict the rate that HPAs scale pods up or down by setting a specific
number or specific percentage to scale in a specified period of time. You can also define a stabilization
window, which uses previously computed desired states to control scaling if the metrics are fluctuating.
You can create multiple policies for the same scaling direction, and determine which policy is used,
based on the amount of change. You can also restrict the scaling by timed iterations. The HPA scales
pods during an iteration, then performs scaling, as needed, in further iterations.

Sample HPA object with a scaling policy

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory
 namespace: default
spec:
 behavior:

CHAPTER 1. WORKING WITH PODS

19

1

2

3

4

5

6

7

8

9

10

11

Specifies the direction for the scaling policy, either scaleDown or scaleUp. This example creates a
policy for scaling down.

Defines the scaling policy.

Determines if the policy scales by a specific number of pods or a percentage of pods during each
iteration. The default value is pods.

Determines the amount of scaling, either the number of pods or percentage of pods, during each
iteration. There is no default value for scaling down by number of pods.

Determines the length of a scaling iteration. The default value is 15 seconds.

The default value for scaling down by percentage is 100%.

Determines which policy to use first, if multiple policies are defined. Specify Max to use the policy
that allows the highest amount of change, Min to use the policy that allows the lowest amount of
change, or Disabled to prevent the HPA from scaling in that policy direction. The default value is
Max.

Determines the time period the HPA should look back at desired states. The default value is 0.

This example creates a policy for scaling up.

The amount of scaling up by the number of pods. The default value for scaling up the number of
pods is 4%.

The amount of scaling up by the percentage of pods. The default value for scaling up by
percentage is 100%.

Example policy for scaling down

 scaleDown: 1
 policies: 2
 - type: Pods 3
 value: 4 4
 periodSeconds: 60 5
 - type: Percent
 value: 10 6
 periodSeconds: 60
 selectPolicy: Min 7
 stabilizationWindowSeconds: 300 8
 scaleUp: 9
 policies:
 - type: Pods
 value: 5 10
 periodSeconds: 70
 - type: Percent
 value: 12 11
 periodSeconds: 80
 selectPolicy: Max
 stabilizationWindowSeconds: 0
...

OpenShift Container Platform 4.5 Nodes

20

In this example, when the number of pods is greater than 40, the percent-based policy is used for
scaling down, as that policy results in a larger change, as required by the selectPolicy.

If there are 80 pod replicas, in the first iteration the HPA reduces the pods by 8, which is 10% of the 80
pods (based on the type: Percent and value: 10 parameters), over one minute (periodSeconds: 60).
For the next iteration, the number of pods is 72. The HPA calculates that 10% of the remaining pods is
7.2, which it rounds up to 8 and scales down 8 pods. On each subsequent iteration, the number of pods
to be scaled is re-calculated based on the number of remaining pods. When the number of pods falls
below 40, the pods-based policy is applied, because the pod-based number is greater than the
percent-based number. The HPA reduces 4 pods at a time (type: Pods and value: 4), over 30 seconds
(periodSeconds: 30), until there are 20 replicas remaining (minReplicas).

The selectPolicy: Disabled parameter prevents the HPA from scaling up the pods. You can manually
scale up by adjusting the number of replicas in the replica set or deployment set, if needed.

If set, you can view the scaling policy by using the oc edit command:

Example output

apiVersion: autoscaling/v2beta2
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory
 namespace: default
spec:
...
 minReplicas: 20
...
 behavior:
 scaleDown:
 stabilizationWindowSeconds: 300
 policies:
 - type: Pods
 value: 4
 periodSeconds: 30
 - type: Percent
 value: 10
 periodSeconds: 60
 selectPolicy: Max
 scaleUp:
 selectPolicy: Disabled

$ oc edit hpa hpa-resource-metrics-memory

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 annotations:
 autoscaling.alpha.kubernetes.io/behavior:\
'{"ScaleUp":{"StabilizationWindowSeconds":0,"SelectPolicy":"Max","Policies":
[{"Type":"Pods","Value":4,"PeriodSeconds":15},{"Type":"Percent","Value":100,"PeriodSeconds":15}]},\
"ScaleDown":{"StabilizationWindowSeconds":300,"SelectPolicy":"Min","Policies":
[{"Type":"Pods","Value":4,"PeriodSeconds":60},{"Type":"Percent","Value":10,"PeriodSeconds":60}]}}'
...

CHAPTER 1. WORKING WITH PODS

21

1.4.2. Creating a horizontal pod autoscaler for CPU utilization

You can create a horizontal pod autoscaler (HPA) for an existing DeploymentConfig or
ReplicationController object that automatically scales the pods associated with that object in order to
maintain the CPU usage you specify.

The HPA increases and decreases the number of replicas between the minimum and maximum numbers
to maintain the specified CPU utilization across all pods.

When autoscaling for CPU utilization, you can use the oc autoscale command and specify the minimum
and maximum number of pods you want to run at any given time and the average CPU utilization your
pods should target. If you do not specify a minimum, the pods are given default values from the
OpenShift Container Platform server. To autoscale for a specific CPU value, create a
HorizontalPodAutoscaler object with the target CPU and pod limits.

Prerequisites

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics. You can use the oc describe PodMetrics <pod-name> command to determine if
metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory displayed under Usage.

Example output

Procedure

To create a horizontal pod autoscaler for CPU utilization:

1. Perform one of the following one of the following:

To scale based on the percent of CPU utilization, create a HorizontalPodAutoscaler object
for an existing DeploymentConfig object:

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Memory: 0
 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2019-05-23T18:47:56Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-
kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>

OpenShift Container Platform 4.5 Nodes

22

1

2

3

4

1

2

3

4

Specify the name of the DeploymentConfig object. The object must exist.

Optionally, specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Specify the target average CPU utilization over all the pods, represented as a percent
of requested CPU. If not specified or negative, a default autoscaling policy is used.

To scale based on the percent of CPU utilization, create a HorizontalPodAutoscaler object
for an existing replication controller:

Specify the name of the replication controller. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Specify the target average CPU utilization over all the pods, represented as a percent
of requested CPU. If not specified or negative, a default autoscaling policy is used.

To scale for a specific CPU value, create a YAML file similar to the following for an existing
DeploymentConfig object or replication controller:

a. Create a YAML file similar to the following:

$ oc autoscale dc/<dc-name> \ 1
 --min <number> \ 2
 --max <number> \ 3
 --cpu-percent=<percent> 4

$ oc autoscale rc/<rc-name> 1
 --min <number> \ 2
 --max <number> \ 3
 --cpu-percent=<percent> 4

apiVersion: autoscaling/v2beta2 1
kind: HorizontalPodAutoscaler
metadata:
 name: cpu-autoscale 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: v1 3
 kind: ReplicationController 4
 name: example 5
 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: cpu 9

CHAPTER 1. WORKING WITH PODS

23

1

2

3

4

5

6

7

8

9

10

11

Use the autoscaling/v2beta2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a replication controller, use v1,

For a DeploymentConfig object, use apps.openshift.io/v1.

Specify the kind of object to scale, either ReplicationController or
DeploymentConfig.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Use the metrics parameter for memory utilization.

Specify cpu for CPU utilization.

Set to AverageValue.

Set to averageValue with the targeted CPU value.

b. Create the horizontal pod autoscaler:

2. Verify that the horizontal pod autoscaler was created:

Example output

For example, the following command creates a horizontal pod autoscaler that maintains between 3 and
7 replicas of the pods that are controlled by the image-registry DeploymentConfig object in order to
maintain an average CPU utilization of 75% across all pods.

Example output

 target:
 type: AverageValue 10
 averageValue: 500m 11

$ oc create -f <file-name>.yaml

$ oc get hpa cpu-autoscale

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
cpu-autoscale ReplicationController/example 173m/500m 1 10 1 20m

$ oc autoscale dc/image-registry --min 3 --max 7 --cpu-percent=75

OpenShift Container Platform 4.5 Nodes

24

The command creates a horizontal pod autoscaler with the following definition:

Example output

The following example shows autoscaling for the image-registry DeploymentConfig object. The initial
deployment requires 3 pods. The HPA object increased that minimum to 5 and will increase the pods up
to 7 if CPU usage on the pods reaches 75%:

1. View the current state of the image-registry deployment:

Example output

2. Autoscale the image-registry DeploymentConfig object:

Example output

3. View the new state of the deployment:

deploymentconfig "image-registry" autoscaled

$ oc edit hpa frontend -n openshift-image-registry

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 creationTimestamp: "2020-02-21T20:19:28Z"
 name: image-registry
 namespace: default
 resourceVersion: "32452"
 selfLink: /apis/autoscaling/v1/namespaces/default/horizontalpodautoscalers/frontend
 uid: 1a934a22-925d-431e-813a-d00461ad7521
spec:
 maxReplicas: 7
 minReplicas: 3
 scaleTargetRef:
 apiVersion: apps.openshift.io/v1
 kind: DeploymentConfig
 name: image-registry
 targetCPUUtilizationPercentage: 75
status:
 currentReplicas: 5
 desiredReplicas: 0

$ oc get dc image-registry

NAME REVISION DESIRED CURRENT TRIGGERED BY
image-registry 1 3 3 config

$ oc autoscale dc/image-registry --min=5 --max=7 --cpu-percent=75

horizontalpodautoscaler.autoscaling/image-registry autoscaled

CHAPTER 1. WORKING WITH PODS

25

There are now 5 pods in the deployment:

Example output

1.4.3. Creating a horizontal pod autoscaler object for memory utilization

You can create a horizontal pod autoscaler (HPA) for an existing DeploymentConfig object or
ReplicationController object that automatically scales the pods associated with that object in order to
maintain the average memory utilization you specify, either a direct value or a percentage of requested
memory.

The HPA increases and decreases the number of replicas between the minimum and maximum numbers
to maintain the specified memory utilization across all pods.

For memory utilization, you can specify the minimum and maximum number of pods and the average
memory utilization your pods should target. If you do not specify a minimum, the pods are given default
values from the OpenShift Container Platform server.

IMPORTANT

Autoscaling for memory utilization is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs), might not be functionally complete, and Red Hat does not recommend to use
them for production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics. You can use the oc describe PodMetrics <pod-name> command to determine if
metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory displayed under Usage.

Example output

$ oc get dc image-registry

NAME REVISION DESIRED CURRENT TRIGGERED BY
image-registry 1 5 5 config

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-
kube-scheduler

Name: openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: scheduler

OpenShift Container Platform 4.5 Nodes

26

https://access.redhat.com/support/offerings/techpreview/

Procedure

To create a horizontal pod autoscaler for memory utilization:

1. Create a YAML file for one of the following:

To scale for a specific memory value, create a HorizontalPodAutoscaler object similar to
the following for an existing DeploymentConfig object or replication controller:

Example output

 Usage:
 Cpu: 2m
 Memory: 41056Ki
 Name: wait-for-host-port
 Usage:
 Memory: 0
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2020-02-14T22:21:14Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-
kube-scheduler-ip-10-0-129-223.compute.internal
Timestamp: 2020-02-14T22:21:14Z
Window: 5m0s
Events: <none>

apiVersion: autoscaling/v2beta2 1
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: v1 3
 kind: ReplicationController 4
 name: example 5
 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: memory 9
 target:
 type: AverageValue 10
 averageValue: 500Mi 11
 behavior: 12
 scaleDown:
 stabilizationWindowSeconds: 300
 policies:
 - type: Pods
 value: 4
 periodSeconds: 60
 - type: Percent

CHAPTER 1. WORKING WITH PODS

27

1

2

3

4

5

6

7

8

9

10

11

12

Use the autoscaling/v2beta2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a replication controller, use v1,

For a DeploymentConfig object, use apps.openshift.io/v1.

Specify the kind of object to scale, either ReplicationController or
DeploymentConfig.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Use the metrics parameter for memory utilization.

Specify memory for memory utilization.

Set the type to AverageValue.

Specify averageValue and a specific memory value.

Optional: Specify a scaling policy to control the rate of scaling up or down.

To scale for a percentage, create a HorizontalPodAutoscaler object similar to the
following:

Example output

 value: 10
 periodSeconds: 60
 selectPolicy: Max

apiVersion: autoscaling/v2beta2 1
kind: HorizontalPodAutoscaler
metadata:
 name: memory-autoscale 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps.openshift.io/v1 3
 kind: DeploymentConfig 4
 name: example 5
 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: memory 9

OpenShift Container Platform 4.5 Nodes

28

1

2

3

4

5

6

7

8

9

10

11

12

Use the autoscaling/v2beta2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a replication controller, use v1,

For a DeploymentConfig object, use apps.openshift.io/v1.

Specify the kind of object to scale, either ReplicationController or
DeploymentConfig.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Use the metrics parameter for memory utilization.

Specify memory for memory utilization.

Set to Utilization.

Specify averageUtilization and a target average memory utilization over all the pods,
represented as a percent of requested memory. The target pods must have memory
requests configured.

Optional: Specify a scaling policy to control the rate of scaling up or down.

2. Create the horizontal pod autoscaler:

For example:

Example output

 target:
 type: Utilization 10
 averageUtilization: 50 11
 behavior: 12
 scaleUp:
 stabilizationWindowSeconds: 180
 policies:
 - type: Pods
 value: 6
 periodSeconds: 120
 - type: Percent
 value: 10
 periodSeconds: 120
 selectPolicy: Max

$ oc create -f <file-name>.yaml

$ oc create -f hpa.yaml

CHAPTER 1. WORKING WITH PODS

29

3. Verify that the horizontal pod autoscaler was created:

Example output

Example output

1.4.4. Understanding horizontal pod autoscaler status conditions

You can use the status conditions set to determine whether or not the horizontal pod autoscaler (HPA)
is able to scale and whether or not it is currently restricted in any way.

The HPA status conditions are available with the v2beta1 version of the autoscaling API.

The HPA responds with the following status conditions:

The AbleToScale condition indicates whether HPA is able to fetch and update metrics, as well
as whether any backoff-related conditions could prevent scaling.

horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created

$ oc get hpa hpa-resource-metrics-memory

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
hpa-resource-metrics-memory ReplicationController/example 2441216/500Mi 1 10
1 20m

$ oc describe hpa hpa-resource-metrics-memory

Name: hpa-resource-metrics-memory
Namespace: default
Labels: <none>
Annotations: <none>
CreationTimestamp: Wed, 04 Mar 2020 16:31:37 +0530
Reference: ReplicationController/example
Metrics: (current / target)
 resource memory on pods: 2441216 / 500Mi
Min replicas: 1
Max replicas: 10
ReplicationController pods: 1 current / 1 desired
Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale recommended size matches current size
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a
replica count from memory resource
 ScalingLimited False DesiredWithinRange the desired count is within the acceptable
range
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 6m34s horizontal-pod-autoscaler New size: 1;
reason: All metrics below target

OpenShift Container Platform 4.5 Nodes

30

1

A True condition indicates scaling is allowed.

A False condition indicates scaling is not allowed for the reason specified.

The ScalingActive condition indicates whether the HPA is enabled (for example, the replica
count of the target is not zero) and is able to calculate desired metrics.

A True condition indicates metrics is working properly.

A False condition generally indicates a problem with fetching metrics.

The ScalingLimited condition indicates that the desired scale was capped by the maximum or
minimum of the horizontal pod autoscaler.

A True condition indicates that you need to raise or lower the minimum or maximum replica
count in order to scale.

A False condition indicates that the requested scaling is allowed.

Example output

The horizontal pod autoscaler status messages.

The following is an example of a pod that is unable to scale:

Example output

$ oc describe hpa cm-test

Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old
as to warrant a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully
calculate a replica count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the
acceptable range
Events:

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale False FailedGetScale the HPA controller was unable to get the target's current

CHAPTER 1. WORKING WITH PODS

31

The following is an example of a pod that could not obtain the needed metrics for scaling:

Example output

The following is an example of a pod where the requested autoscaling was less than the required
minimums:

Example output

1.4.4.1. Viewing horizontal pod autoscaler status conditions

You can view the status conditions set on a pod by the horizontal pod autoscaler (HPA).

NOTE

The horizontal pod autoscaler status conditions are available with the v2beta1 version of
the autoscaling API.

Prerequisites

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics. You can use the oc describe PodMetrics <pod-name> command to determine if
metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory displayed under Usage.

Example output

scale: no matches for kind "ReplicationController" in group "apps"
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Warning FailedGetScale 6s (x3 over 36s) horizontal-pod-autoscaler no matches for kind
"ReplicationController" in group "apps"

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True SucceededGetScale the HPA controller was able to get the target's
current scale
 ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica
count: unable to get metrics for resource cpu: no metrics returned from heapster

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

OpenShift Container Platform 4.5 Nodes

32

Procedure

To view the status conditions on a pod, use the following command with the name of the pod:

For example:

The conditions appear in the Conditions field in the output.

Example output

Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Memory: 0
 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2019-05-23T18:47:56Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-
kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>

$ oc describe hpa <pod-name>

$ oc describe hpa cm-test

Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica

CHAPTER 1. WORKING WITH PODS

33

1.4.5. Additional resources

For more information on replication controllers and deployment controllers, see Understanding
deployments and deployment configs.

1.5. AUTOMATICALLY ADJUST POD RESOURCE LEVELS WITH THE
VERTICAL POD AUTOSCALER

The OpenShift Container Platform Vertical Pod Autoscaler Operator (VPA) automatically reviews the
historic and current CPU and memory resources for containers in pods and can update the resource
limits and requests based on the usage values it learns. The VPA uses individual custom resources (CR)
to update all of the pods associated with a workload object, such as a Deployment, DeploymentConfig,
StatefulSet, Job, DaemonSet, ReplicaSet, or ReplicationController, in a project.

The VPA helps you to understand the optimal CPU and memory usage for your pods and can
automatically maintain pod resources through the pod lifecycle.

IMPORTANT

vertical pod autoscaler is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

1.5.1. About the Vertical Pod Autoscaler Operator

The Vertical Pod Autoscaler Operator (VPA) is implemented as an API resource and a custom resource
(CR). The CR determines the actions the Vertical Pod Autoscaler Operator should take with the pods
associated with a specific workload object, such as a daemon set, replication controller, and so forth, in a
project.

The VPA automatically computes historic and current CPU and memory usage for the containers in
those pods and uses this data to determine optimized resource limits and requests to ensure that these
pods are operating efficiently at all times. For example, the VPA reduces resources for pods that are
requesting more resources than they are using and increases resources for pods that are not requesting
enough.

The VPA automatically deletes any pods that are out of alignment with its recommendations one at a
time, so that your applications can continue to serve requests with no downtime. The workload objects
then re-deploy the pods with the original resource limits and requests. The VPA uses a mutating
admission webhook to update the pods with optimized resource limits and requests before the pods are
admitted to a node. If you do not want the VPA to delete pods, you can view the VPA resource limits and
requests and manually update the pods as needed.

For example, if you have a pod that uses 50% of the CPU but only requests 10%, the VPA determines

count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range

OpenShift Container Platform 4.5 Nodes

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/applications/#what-deployments-are
https://access.redhat.com/support/offerings/techpreview/

For example, if you have a pod that uses 50% of the CPU but only requests 10%, the VPA determines
that the pod is consuming more CPU than requested and deletes the pod. The workload object, such as
replica set, restarts the pods and the VPA updates the new pod with its recommended resources.

For developers, you can use the VPA to help ensure your pods stay up during periods of high demand by
scheduling pods onto nodes that have appropriate resources for each pod.

Administrators can use the VPA to better utilize cluster resources, such as preventing pods from
reserving more CPU resources than needed. The VPA monitors the resources that workloads are
actually using and adjusts the resource requirements so capacity is available to other workloads. The
VPA also maintains the ratios between limits and requests that are specified in initial container
configuration.

NOTE

If you stop running the VPA or delete a specific VPA CR in your cluster, the resource
requests for the pods already modified by the VPA do not change. Any new pods get the
resources defined in the workload object, not the previous recommendations made by the
VPA.

1.5.2. Installing the Vertical Pod Autoscaler Operator

You can use the OpenShift Container Platform web console to install the Vertical Pod Autoscaler
Operator (VPA).

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Choose VerticalPodAutoscaler from the list of available Operators, and click Install.

3. On the Install Operator page, ensure that the Operator recommended namespace option is
selected. This installs the Operator in the mandatory openshift-vertical-pod-autoscaler
namespace, which is automatically created if it does not exist.

4. Click Install.

5. Verify the installation by listing the VPA Operator components:

a. Navigate to Workloads → Pods.

b. Select the openshift-vertical-pod-autoscaler project from the drop-down menu and verify
that there are four pods running.

c. Navigate to Workloads → Deployments to verify that there are four deployments running.

6. Optional. Verify the installation in the OpenShift Container Platform CLI using the following
command:

The output shows four pods and four deplyoments:

Example output

$ oc get all -n openshift-vertical-pod-autoscaler

NAME READY STATUS RESTARTS AGE

CHAPTER 1. WORKING WITH PODS

35

1.5.3. About Using the Vertical Pod Autoscaler Operator

To use the Vertical Pod Autoscaler Operator (VPA), you create a VPA custom resource (CR) for a
workload object in your cluster. The VPA learns and applies the optimal CPU and memory resources for
the pods associated with that workload object. You can use a VPA with a deployment, stateful set, job,
daemon set, replica set, or replication controller workload object. The VPA CR must be in the same
project as the pods you want to monitor.

You use the VPA CR to associate a workload object and specify which mode the VPA operates in:

The Auto and Recreate modes automatically apply the VPA CPU and memory
recommendations throughout the pod lifetime. The VPA deletes any pods in the project that
are out of alignment with its recommendations. When redeployed by the workload object, the
VPA updates the new pods with its recommendations.

The Initial mode automatically applies VPA recommendations only at pod creation.

The Off mode only provides recommended resource limits and requests, allowing you to
manually apply the recommendations. The off mode does not update pods.

You can also use the CR to opt-out certain containers from VPA evaluation and updates.

For example, a pod has the following limits and requests:

After creating a VPA that is set to auto, the VPA learns the resource usage and deletes the pod. When
redeployed, the pod uses the new resource limits and requests:

pod/vertical-pod-autoscaler-operator-85b4569c47-2gmhc 1/1 Running 0 3m13s
pod/vpa-admission-plugin-default-67644fc87f-xq7k9 1/1 Running 0 2m56s
pod/vpa-recommender-default-7c54764b59-8gckt 1/1 Running 0 2m56s
pod/vpa-updater-default-7f6cc87858-47vw9 1/1 Running 0 2m56s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
service/vpa-webhook ClusterIP 172.30.53.206 <none> 443/TCP 2m56s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/vertical-pod-autoscaler-operator 1/1 1 1 3m13s
deployment.apps/vpa-admission-plugin-default 1/1 1 1 2m56s
deployment.apps/vpa-recommender-default 1/1 1 1 2m56s
deployment.apps/vpa-updater-default 1/1 1 1 2m56s

NAME DESIRED CURRENT READY AGE
replicaset.apps/vertical-pod-autoscaler-operator-85b4569c47 1 1 1 3m13s
replicaset.apps/vpa-admission-plugin-default-67644fc87f 1 1 1 2m56s
replicaset.apps/vpa-recommender-default-7c54764b59 1 1 1 2m56s
replicaset.apps/vpa-updater-default-7f6cc87858 1 1 1 2m56s

resources:
 limits:
 cpu: 1
 memory: 500Mi
 requests:
 cpu: 500m
 memory: 100Mi

OpenShift Container Platform 4.5 Nodes

36

You can view the VPA recommendations using the following command:

After a few minutes, the output shows the recommendations for CPU and memory requests, similar to
the following:

Example output

The output shows the recommended resources, target, the minimum recommended resources,
lowerBound, the highest recommended resources, upperBound, and the most recent resource
recommendations, uncappedTarget.

The VPA uses the lowerBound and upperBound values to determine if a pod needs to be updated. If a

resources:
 limits:
 cpu: 50m
 memory: 1250Mi
 requests:
 cpu: 25m
 memory: 262144k

$ oc get vpa <vpa-name> --output yaml

...
status:
...
 recommendation:
 containerRecommendations:
 - containerName: frontend
 lowerBound:
 cpu: 25m
 memory: 262144k
 target:
 cpu: 25m
 memory: 262144k
 uncappedTarget:
 cpu: 25m
 memory: 262144k
 upperBound:
 cpu: 262m
 memory: "274357142"
 - containerName: backend
 lowerBound:
 cpu: 12m
 memory: 131072k
 target:
 cpu: 12m
 memory: 131072k
 uncappedTarget:
 cpu: 12m
 memory: 131072k
 upperBound:
 cpu: 476m
 memory: "498558823"
...

CHAPTER 1. WORKING WITH PODS

37

1 1

2

3

The VPA uses the lowerBound and upperBound values to determine if a pod needs to be updated. If a
pod has resource requests below the lowerBound values or above the upperBound values, the VPA
terminates and recreates the pod with the target values.

1.5.3.1. Automatically applying VPA recommendations

To use the VPA to automatically update pods, create a VPA CR for a specific workload object with
updateMode set to Auto or Recreate.

When the pods are created for the workload object, the VPA constantly monitors the containers to
analyze their CPU and memory needs. The VPA deletes any pods that do not meet the VPA
recommendations for CPU and memory. When redeployed, the pods use the new resource limits and
requests based on the VPA recommendations, honoring any pod disruption budget set for your
applications. The recommendations are added to the status field of the VPA CR for reference.

NOTE

The workload object must specify a minimum of two replicas in order for the VPA to
monitor and update the pods. If the workload object specifies one replica, the VPA does
not delete the pod to prevent application downtime. You can manually delete the pod to
use the recommended resources.

Example VPA CR for the Auto mode

The type of workload object you want this VPA CR to manage.

The name of the workload object you want this VPA CR to manage.

Set the mode to Auto or Recreate:

Auto. The VPA assigns resource requests on pod creation and updates the existing pods
by terminating them when the requested resources differ significantly from the new
recommendation.

Recreate. The VPA assigns resource requests on pod creation and updates the existing
pods by terminating them when the requested resources differ significantly from the new
recommendation. This mode should be used rarely, only if you need to ensure that the
pods are restarted whenever the resource request changes.

NOTE

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Auto" 3

OpenShift Container Platform 4.5 Nodes

38

1

2

3

NOTE

There must be operating pods in the project before the VPA can determine
recommended resources and apply the recommendations to new pods.

1.5.3.2. Automatically applying VPA recommendations on pod creation

To use the VPA to apply the recommended resources only when a pod is first deployed, create a VPA
CR for a specific workload object with updateMode set to Initial.

Then, manually delete any pods associated with the workload object that you want to use the VPA
recommendations. In the Initial mode, the VPA does not delete pods and does not update the pods as it
learns new resource recommendations.

Example VPA CR for the Initial mode

The type of workload object you want this VPA CR to manage.

The name of the workload object you want this VPA CR to manage.

Set the mode to Initial. The VPA assigns resources when pods are created and does not change
the resources during the lifetime of the pod.

NOTE

There must be operating pods in the project before a VPA can determine recommended
resources and apply the recommendations to new pods.

1.5.3.3. Manually applying VPA recommendations

To use the VPA to only determine the recommended CPU and memory values, create a VPA CR for a
specific workload object with updateMode set to off.

When the pods are created for that workload object, the VPA analyzes the CPU and memory needs of
the containers and records those recommendations in the status field of the VPA CR. The VPA does not
update the pods as it determines new resource recommendations.

Example VPA CR for the Off mode

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Initial" 3

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler

CHAPTER 1. WORKING WITH PODS

39

1

2

3

The type of workload object you want this VPA CR to manage.

The name of the workload object you want this VPA CR to manage.

Set the mode to Off.

You can view the recommendations using the following command.

With the recommendations, you can edit the workload object to add CPU and memory requests, then
delete and redeploy the pods using the recommended resources.

NOTE

There must be operating pods in the project before a VPA can determine recommended
resources.

1.5.3.4. Exempting containers from applying VPA recommendations

If your workload object has multiple containers and you do not want the VPA to evaluate and act on all of
the containers, create a VPA CR for a specific workload object and add a resourcePolicy to opt-out
specific containers.

When the VPA updates the pods with recommended resources, any containers with a resourcePolicy
are not updated and the VPA does not present recommendations for those containers in the pod.

metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Off" 3

$ oc get vpa <vpa-name> --output yaml

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Auto" 3
 resourcePolicy: 4
 containerPolicies:
 - containerName: my-opt-sidecar
 mode: "Off"

OpenShift Container Platform 4.5 Nodes

40

1

2

3

4

The type of workload object you want this VPA CR to manage.

The name of the workload object you want this VPA CR to manage.

Set the mode to Auto, Recreate, or Off. The Recreate mode should be used rarely, only if you
need to ensure that the pods are restarted whenever the resource request changes.

Specify the containers you want to opt-out and set mode to Off.

For example, a pod has two containers, the same resource requests and limits:

After launching a VPA CR with the backend container set to opt-out, the VPA terminates and recreates
the pod with the recommended resources applied only to the frontend container:

...
spec:
 containers:
 name: frontend
 resources:
 limits:
 cpu: 1
 memory: 500Mi
 requests:
 cpu: 500m
 memory: 100Mi
...
 name: backend
 resources:
 limits:
 cpu: "1"
 memory: 500Mi
 requests:
 cpu: 500m
 memory: 100Mi
...

...
spec:
 containers:
 name: frontend
 resources:
 limits:
 cpu: 50m
 memory: 1250Mi
 requests:
 cpu: 25m
 memory: 262144k
...
 name: backend
 resources:
 limits:
 cpu: "1"
 memory: 500Mi
 requests:

CHAPTER 1. WORKING WITH PODS

41

1

2

3

1.5.4. Using the Vertical Pod Autoscaler Operator

You can use the Vertical Pod Autoscaler Operator (VPA) by creating a VPA custom resource (CR). The
CR indicates which pods it should analyze and determines the actions the VPA should take with those
pods.

Procedure

To create a VPA CR for a specific workload object:

1. Change to the project where the workload object you want to scale is located.

a. Create a VPA CR YAML file:

Specify the type of workload object you want this VPA to manage: Deployment,
StatefulSet, Job, DaemonSet, ReplicaSet, or ReplicationController.

Specify the name of an existing workload object you want this VPA to manage.

Specify the VPA mode:

auto to automatically apply the recommended resources on pods associated with
the controller. The VPA terminates existing pods and creates new pods with the
recommended resource limits and requests.

recreate to automatically apply the recommended resources on pods associated
with the workload object. The VPA terminates existing pods and creates new pods
with the recommended resource limits and requests. The recreate mode should
be used rarely, only if you need to ensure that the pods are restarted whenever the
resource request changes.

initial to automatically apply the recommended resources when pods associated
with the workload object are created. The VPA does not update the pods as it
learns new resource recommendations.

off to only generate resource recommendations for the pods associated with the

 cpu: 500m
 memory: 100Mi
...

apiVersion: autoscaling.k8s.io/v1
kind: VerticalPodAutoscaler
metadata:
 name: vpa-recommender
spec:
 targetRef:
 apiVersion: "apps/v1"
 kind: Deployment 1
 name: frontend 2
 updatePolicy:
 updateMode: "Auto" 3
 resourcePolicy: 4
 containerPolicies:
 - containerName: my-opt-sidecar
 mode: "Off"

OpenShift Container Platform 4.5 Nodes

42

4

off to only generate resource recommendations for the pods associated with the
workload object. The VPA does not update the pods as it learns new resource
recommendations and does not apply the recommendations to new pods.

Optional. Specify the containers you want to opt-out and set the mode to Off.

b. Create the VPA CR:

After a few moments, the VPA learns the resource usage of the containers in the pods
associated with the workload object.

You can view the VPA recommendations using the following command:

The output shows the recommendations for CPU and memory requests, similar to the
following:

Example output

$ oc create -f <file-name>.yaml

$ oc get vpa <vpa-name> --output yaml

...
status:

...

 recommendation:
 containerRecommendations:
 - containerName: frontend
 lowerBound: 1
 cpu: 25m
 memory: 262144k
 target: 2
 cpu: 25m
 memory: 262144k
 uncappedTarget: 3
 cpu: 25m
 memory: 262144k
 upperBound: 4
 cpu: 262m
 memory: "274357142"
 - containerName: backend
 lowerBound:
 cpu: 12m
 memory: 131072k
 target:
 cpu: 12m
 memory: 131072k
 uncappedTarget:
 cpu: 12m
 memory: 131072k
 upperBound:
 cpu: 476m

CHAPTER 1. WORKING WITH PODS

43

1

2

3

4

lowerBound is the minimum recommended resource levels.

target is the recommended resource levels.

upperBound is the highest recommended resource levels.

uncappedTarget is the most recent resource recommendations.

1.5.5. Uninstalling the Vertical Pod Autoscaler Operator

You can remove the Vertical Pod Autoscaler Operator (VPA) from your OpenShift Container Platform
cluster. After uninstalling, the resource requests for the pods already modified by an existing VPA CR do
not change. Any new pods get the resources defined in the workload object, not the previous
recommendations made by the Vertical Pod Autoscaler Operator.

NOTE

You can remove a specific VPA using the oc delete vpa <vpa-name> command. The
same actions apply for resource requests as uninstalling the vertical pod autoscaler.

Prerequisites

The Vertical Pod Autoscaler Operator must be installed.

Procedure

1. In the OpenShift Container Platform web console, click Operators → Installed Operators.

2. Switch to the openshift-vertical-pod-autoscaler project.

3. Find the VerticalPodAutoscaler Operator and click the Options menu. Select Uninstall
Operator.

4. In the dialog box, click Uninstall.

1.6. PROVIDING SENSITIVE DATA TO PODS

Some applications need sensitive information, such as passwords and user names, that you do not want
developers to have.

As an administrator, you can use Secret objects to provide this information without exposing that
information in clear text.

1.6.1. Understanding secrets

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, private source repository credentials, and so on.
Secrets decouple sensitive content from the pods. You can mount secrets into containers using a
volume plug-in or the system can use secrets to perform actions on behalf of a pod.

 memory: "498558823"

...

OpenShift Container Platform 4.5 Nodes

44

1

2

3

4

5

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

YAML Secret object definition

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry will then be moved to the
data map automatically. This field is write-only; the value will only be returned via the data field.

The value associated with keys in the stringData map is made up of plain text strings.

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod’s service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume).

1.6.1.1. Types of secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: dmFsdWUtMQ0K 3
 password: dmFsdWUtMg0KDQo=
stringData: 4
 hostname: myapp.mydomain.com 5

CHAPTER 1. WORKING WITH PODS

45

https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/design/identifiers.md

1

2

3

4

kubernetes.io/service-account-token. Uses a service account token.

kubernetes.io/basic-auth. Use with Basic Authentication.

kubernetes.io/ssh-auth. Use with SSH Key Authentication.

kubernetes.io/tls. Use with TLS certificate authorities.

Specify type: Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

For examples of different secret types, see the code samples in Using Secrets.

1.6.1.2. Example secret configurations

The following are sample secret configuration files.

YAML Secret object that creates four files

File contains decoded values.

File contains decoded values.

File contains the provided string.

File contains the provided data.

YAML of a pod populating files in a volume with secret data

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: dmFsdWUtMQ0K 1
 password: dmFsdWUtMQ0KDQo= 2
stringData:
 hostname: myapp.mydomain.com 3
 secret.properties: |- 4
 property1=valueA
 property2=valueB

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod

OpenShift Container Platform 4.5 Nodes

46

YAML of a pod populating environment variables with secret data

YAML of a build config populating environment variables with secret data

1.6.1.3. Secret data keys

Secret keys must be in a DNS subdomain.

spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

apiVersion: v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username

CHAPTER 1. WORKING WITH PODS

47

1.6.2. Understanding how to create secrets

As an administrator you must create a secret before developers can create the pods that depend on
that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod’s service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume).

1.6.2.1. Secret creation restrictions

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

To populate environment variables for containers.

As files in a volume mounted on one or more of its containers.

By kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism. Image pull
secrets use service accounts for the automatic injection of the secret into all pods in a namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to a Secret object. Therefore, a secret needs to be created before any pods that depend on it.
The most effective way to ensure this is to have it get injected automatically through the use of a service
account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that could
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

1.6.2.2. Creating an opaque secret

As an administrator, you can create a opaque secret, which allows for unstructured key:value pairs that
can contain arbitrary values.

Procedure

1. Create a Secret object in a YAML file on master.
For example:

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque 1

OpenShift Container Platform 4.5 Nodes

48

1 Specifies an opaque secret.

2. Use the following command to create a Secret object:

3. To use the secret in a pod:

a. Update the service account for the pod where you want to use the secret to allow the
reference to the secret.

b. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume).

1.6.3. Understanding how to update secrets

When you modify the value of a secret, the value (used by an already running pod) will not dynamically
change. To change a secret, you must delete the original pod and create a new pod (perhaps with an
identical PodSpec).

Updating a secret follows the same workflow as deploying a new Container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, the version of the secret that is used for the pod is not
defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods will report this information, so that a
controller could restart ones using a old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

1.6.4. About using signed certificates with secrets

To secure communication to your service, you can configure OpenShift Container Platform to generate
a signed serving certificate/key pair that you can add into a secret in a project.

A service serving certificate secret is intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Service Pod spec configured for a service serving certificates secret.

data:
 username: dXNlci1uYW1l
 password: cGFzc3dvcmQ=

$ oc create -f <filename>

apiVersion: v1
 kind: Service
 metadata:
 name: registry

CHAPTER 1. WORKING WITH PODS

49

1 Specify the name for the certificate

Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by
using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is
automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

1.6.4.1. Generating signed certificates for use with secrets

To use a signed serving certificate/key pair with a pod, create or edit the service to add the
service.alpha.openshift.io/serving-cert-secret-name annotation, then add the secret to the pod.

Procedure

To create a service serving certificate secret :

1. Edit the Pod spec for your service.

2. Add the service.alpha.openshift.io/serving-cert-secret-name annotation with the name you
want to use for your secret.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively.

3. Create the service:

4. View the secret to make sure it was created:

a. View a list of all secrets:

Example output

 annotations:
 service.alpha.openshift.io/serving-cert-secret-name: registry-cert 1
....

kind: Service
apiVersion: v1
metadata:
 name: my-service
 annotations:
 service.alpha.openshift.io/serving-cert-secret-name: my-cert 1
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

$ oc create -f <file-name>.yaml

$ oc get secrets

OpenShift Container Platform 4.5 Nodes

50

b. View details on your secret:

Example output

5. Edit your Pod spec with that secret.

When it is available, your pod will run. The certificate will be good for the internal service DNS
name, <service.name>.<service.namespace>.svc.

The certificate/key pair is automatically replaced when it gets close to expiration. View the
expiration date in the service.alpha.openshift.io/expiry annotation on the secret, which is in
RFC3339 format.

NOTE

NAME TYPE DATA AGE
my-cert kubernetes.io/tls 2 9m

$ oc describe secret my-cert

Name: my-cert
Namespace: openshift-console
Labels: <none>
Annotations: service.alpha.openshift.io/expiry: 2023-03-08T23:22:40Z
 service.alpha.openshift.io/originating-service-name: my-service
 service.alpha.openshift.io/originating-service-uid: 640f0ec3-afc2-4380-bf31-
a8c784846a11
 service.beta.openshift.io/expiry: 2023-03-08T23:22:40Z

Type: kubernetes.io/tls

Data
====
tls.key: 1679 bytes
tls.crt: 2595 bytes

apiVersion: v1
kind: Pod
metadata:
 name: my-service-pod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 volumes:
 - name: foo
 secret:
 secretName: my-cert
 items:
 - key: username
 path: my-group/my-username
 mode: 511

CHAPTER 1. WORKING WITH PODS

51

NOTE

In most cases, the service DNS name <service.name>.
<service.namespace>.svc is not externally routable. The primary use of
<service.name>.<service.namespace>.svc is for intracluster or intraservice
communication, and with re-encrypt routes.

1.6.5. Troubleshooting secrets

If a service certificate generation fails with (service’s service.alpha.openshift.io/serving-cert-
generation-error annotation contains):

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on the
service service.alpha.openshift.io/serving-cert-generation-error,
service.alpha.openshift.io/serving-cert-generation-error-num:

1. Delete the secret:

2. Clear the annotations:

NOTE

The command removing annotation has a - after the annotation name to be removed.

1.7. USING DEVICE PLUG-INS TO ACCESS EXTERNAL RESOURCES
WITH PODS

Device plug-ins allow you to use a particular device type (GPU, InfiniBand, or other similar computing
resources that require vendor-specific initialization and setup) in your OpenShift Container Platform
pod without needing to write custom code.

1.7.1. Understanding device plug-ins

The device plug-in provides a consistent and portable solution to consume hardware devices across
clusters. The device plug-in provides support for these devices through an extension mechanism, which
makes these devices available to Containers, provides health checks of these devices, and securely
shares them.

IMPORTANT

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

$ oc delete secret <secret_name>

$ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-
error-

$ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-
error-num-

OpenShift Container Platform 4.5 Nodes

52

IMPORTANT

OpenShift Container Platform supports the device plug-in API, but the device plug-in
Containers are supported by individual vendors.

A device plug-in is a gRPC service running on the nodes (external to the kubelet) that is responsible for
managing specific hardware resources. Any device plug-in must support following remote procedure
calls (RPCs):

Example device plug-ins

Nvidia GPU device plug-in for COS-based operating system

Nvidia official GPU device plug-in

Solarflare device plug-in

KubeVirt device plug-ins: vfio and kvm

NOTE

For easy device plug-in reference implementation, there is a stub device plug-in in the
Device Manager code:
vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.

1.7.1.1. Methods for deploying a device plug-in

Daemon sets are the recommended approach for device plug-in deployments.

Upon start, the device plug-in will try to create a UNIX domain socket at
/var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.

Since device plug-ins must manage hardware resources, access to the host file system, as well

service DevicePlugin {
 // GetDevicePluginOptions returns options to be communicated with Device
 // Manager
 rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}

 // ListAndWatch returns a stream of List of Devices
 // Whenever a Device state change or a Device disappears, ListAndWatch
 // returns the new list
 rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

 // Allocate is called during container creation so that the Device
 // Plug-in can run device specific operations and instruct Kubelet
 // of the steps to make the Device available in the container
 rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

 // PreStartcontainer is called, if indicated by Device Plug-in during
 // registration phase, before each container start. Device plug-in
 // can run device specific operations such as reseting the device
 // before making devices available to the container
 rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {}
}

CHAPTER 1. WORKING WITH PODS

53

https://github.com/GoogleCloudPlatform/Container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/vikaschoudhary16/sfc-device-plugin
https://github.com/kubevirt/kubernetes-device-plugins

Since device plug-ins must manage hardware resources, access to the host file system, as well
as socket creation, they must be run in a privileged security context.

More specific details regarding deployment steps can be found with each device plug-in
implementation.

1.7.2. Understanding the Device Manager

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plug-ins known as device plug-ins.

You can advertise specialized hardware without requiring any upstream code changes.

IMPORTANT

OpenShift Container Platform supports the device plug-in API, but the device plug-in
Containers are supported by individual vendors.

Device Manager advertises devices as Extended Resources. User pods can consume devices,
advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting
any other Extended Resource.

Upon start, the device plug-in registers itself with Device Manager invoking Register on the
/var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-
plugins/<plugin>.sock for serving Device Manager requests.

Device Manager, while processing a new registration request, invokes ListAndWatch remote procedure
call (RPC) at the device plug-in service. In response, Device Manager gets a list of Device objects from
the plug-in over a gRPC stream. Device Manager will keep watching on the stream for new updates from
the plug-in. On the plug-in side, the plug-in will also keep the stream open and whenever there is a
change in the state of any of the devices, a new device list is sent to the Device Manager over the same
streaming connection.

While handling a new pod admission request, Kubelet passes requested Extended Resources to the
Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding
plug-in exists or not. If the plug-in exists and there are free allocatable devices as well as per local
cache, Allocate RPC is invoked at that particular device plug-in.

Additionally, device plug-ins can also perform several other device-specific operations, such as driver
installation, device initialization, and device resets. These functionalities vary from implementation to
implementation.

1.7.3. Enabling Device Manager

Enable Device Manager to implement a device plug-in to advertise specialized hardware without any
upstream code changes.

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plug-ins known as device plug-ins.

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config:

OpenShift Container Platform 4.5 Nodes

54

1 1

1

2

3

For example:

Example output

Label required for the Device Manager.

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a Device Manager CR

Assign a name to CR.

Enter the label from the Machine Config Pool.

Set DevicePlugins to 'true`.

2. Create the Device Manager:

Example output

3. Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-
plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the
Device Manager gRPC server listens for new plug-in registrations. This sock file is created when
the Kubelet is started only if Device Manager is enabled.

oc describe machineconfig <name>

oc describe machineconfig 00-worker

Name: 00-worker
Namespace:
Labels: machineconfiguration.openshift.io/role=worker 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: devicemgr 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 machineconfiguration.openshift.io: devicemgr 2
 kubeletConfig:
 feature-gates:
 - DevicePlugins=true 3

$ oc create -f devicemgr.yaml

kubeletconfig.machineconfiguration.openshift.io/devicemgr created

CHAPTER 1. WORKING WITH PODS

55

1.8. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS

You can enable pod priority and preemption in your cluster. pod priority indicates the importance of a
pod relative to other pods and queues the pods based on that priority. pod preemption allows the
cluster to evict, or preempt, lower-priority pods so that higher-priority pods can be scheduled if there is
no available space on a suitable node pod priority also affects the scheduling order of pods and out-of-
resource eviction ordering on the node.

To use priority and preemption, you create priority classes that define the relative weight of your pods.
Then, reference a priority class in the pod specification to apply that weight for scheduling.

1.8.1. Understanding pod priority

When you use the Pod Priority and Preemption feature, the scheduler orders pending pods by their
priority, and a pending pod is placed ahead of other pending pods with lower priority in the scheduling
queue. As a result, the higher priority pod might be scheduled sooner than pods with lower priority if its
scheduling requirements are met. If a pod cannot be scheduled, scheduler continues to schedule other
lower priority pods.

1.8.1.1. Pod priority classes

You can assign pods a priority class, which is a non-namespaced object that defines a mapping from a
name to the integer value of the priority. The higher the value, the higher the priority.

A priority class object can take any 32-bit integer value smaller than or equal to 1000000000 (one
billion). Reserve numbers larger than one billion for critical pods that should not be preempted or
evicted. By default, OpenShift Container Platform has two reserved priority classes for critical system
pods to have guaranteed scheduling.

Example output

system-node-critical - This priority class has a value of 2000001000 and is used for all pods
that should never be evicted from a node. Examples of pods that have this priority class are
sdn-ovs, sdn, and so forth. A number of critical components include the system-node-critical
priority class by default, for example:

master-api

master-controller

master-etcd

sdn

sdn-ovs

sync

system-cluster-critical - This priority class has a value of 2000000000 (two billion) and is

$ oc get priorityclasses

NAME VALUE GLOBAL-DEFAULT AGE
cluster-logging 1000000 false 29s
system-cluster-critical 2000000000 false 72m
system-node-critical 2000001000 false 72m

OpenShift Container Platform 4.5 Nodes

56

system-cluster-critical - This priority class has a value of 2000000000 (two billion) and is
used with pods that are important for the cluster. Pods with this priority class can be evicted
from a node in certain circumstances. For example, pods configured with the system-node-
critical priority class can take priority. However, this priority class does ensure guaranteed
scheduling. Examples of pods that can have this priority class are fluentd, add-on components
like descheduler, and so forth. A number of critical components include the system-cluster-
critical priority class by default, for example:

fluentd

metrics-server

descheduler

cluster-logging - This priority is used by Fluentd to make sure Fluentd pods are scheduled to
nodes over other apps.

NOTE

If you upgrade your existing cluster, the priority of your existing pods is effectively zero.
However, existing pods with the scheduler.alpha.kubernetes.io/critical-pod annotation
are automatically converted to system-cluster-critical class. Fluentd cluster logging
pods with the annotation are converted to the cluster-logging priority class.

1.8.1.2. Pod priority names

After you have one or more priority classes, you can create pods that specify a priority class name in a
Pod spec. The priority admission controller uses the priority class name field to populate the integer
value of the priority. If the named priority class is not found, the pod is rejected.

1.8.2. Understanding pod preemption

When a developer creates a pod, the pod goes into a queue. If the developer configured the pod for pod
priority or preemption, the scheduler picks a pod from the queue and tries to schedule the pod on a
node. If the scheduler cannot find space on an appropriate node that satisfies all the specified
requirements of the pod, preemption logic is triggered for the pending pod.

When the scheduler preempts one or more pods on a node, the nominatedNodeName field of higher-
priority Pod spec is set to the name of the node, along with the nodename field. The scheduler uses the
nominatedNodeName field to keep track of the resources reserved for pods and also provides
information to the user about preemptions in the clusters.

After the scheduler preempts a lower-priority pod, the scheduler honors the graceful termination period
of the pod. If another node becomes available while scheduler is waiting for the lower-priority pod to
terminate, the scheduler can schedule the higher-priority pod on that node. As a result, the
nominatedNodeName field and nodeName field of the Pod spec might be different.

Also, if the scheduler preempts pods on a node and is waiting for termination, and a pod with a higher-
priority pod than the pending pod needs to be scheduled, the scheduler can schedule the higher-priority
pod instead. In such a case, the scheduler clears the nominatedNodeName of the pending pod, making
the pod eligible for another node.

Preemption does not necessarily remove all lower-priority pods from a node. The scheduler can
schedule a pending pod by removing a portion of the lower-priority pods.

The scheduler considers a node for pod preemption only if the pending pod can be scheduled on the

CHAPTER 1. WORKING WITH PODS

57

1

2

3

The scheduler considers a node for pod preemption only if the pending pod can be scheduled on the
node.

1.8.2.1. Pod preemption and other scheduler settings

If you enable pod priority and preemption, consider your other scheduler settings:

Pod priority and pod disruption budget

A pod disruption budget specifies the minimum number or percentage of replicas that must be up at
a time. If you specify pod disruption budgets, OpenShift Container Platform respects them when
preempting pods at a best effort level. The scheduler attempts to preempt pods without violating
the pod disruption budget. If no such pods are found, lower-priority pods might be preempted
despite their pod disruption budget requirements.

Pod priority and pod affinity

Pod affinity requires a new pod to be scheduled on the same node as other pods with the same label.

If a pending pod has inter-pod affinity with one or more of the lower-priority pods on a node, the
scheduler cannot preempt the lower-priority pods without violating the affinity requirements. In this
case, the scheduler looks for another node to schedule the pending pod. However, there is no guarantee
that the scheduler can find an appropriate node and pending pod might not be scheduled.

To prevent this situation, carefully configure pod affinity with equal-priority pods.

1.8.2.2. Graceful termination of preempted pods

When preempting a pod, the scheduler waits for the pod graceful termination period to expire, allowing
the pod to finish working and exit. If the pod does not exit after the period, the scheduler kills the pod.
This graceful termination period creates a time gap between the point that the scheduler preempts the
pod and the time when the pending pod can be scheduled on the node.

To minimize this gap, configure a small graceful termination period for lower-priority pods.

1.8.3. Configuring priority and preemption

You apply pod priority and preemption by creating a priority class object and associating pods to the
priority using the priorityClassName in your Pod specs.

Sample priority class object

The name of the priority class object.

The priority value of the object.

Optional field that indicates whether this priority class should be used for pods without a priority
class name specified. This field is false by default. Only one priority class with globalDefault set to
true can exist in the cluster. If there is no priority class with globalDefault:true, the priority of pods

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
 name: high-priority 1
value: 1000000 2
globalDefault: false 3
description: "This priority class should be used for XYZ service pods only." 4

OpenShift Container Platform 4.5 Nodes

58

4

1

with no priority class name is zero. Adding a priority class with globalDefault:true affects only pods
created after the priority class is added and does not change the priorities of existing pods.

Optional arbitrary text string that describes which pods developers should use with this priority
class.

Procedure

To configure your cluster to use priority and preemption:

1. Create one or more priority classes:

a. Specify a name and value for the priority.

b. Optionally specify the globalDefault field in the priority class and a description.

2. Create a Pod spec or edit existing pods to include the name of a priority class, similar to the
following:

Sample Pod spec with priority class name

Specify the priority class to use with this pod.

3. Create the pod:

You can add the priority name directly to the pod configuration or to a pod template.

1.9. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes
and selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the indicated key-value pairs as the label
on the node.

If you are using node affinity and node selectors in the same pod configuration, see the important
considerations below.

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 priorityClassName: high-priority 1

$ oc create -f <file-name>.yaml

CHAPTER 1. WORKING WITH PODS

59

1.9.1. Using node selectors to control pod placement

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching
labels.

You add labels to a node, a machine set, or a machine config. Adding the label to the machine set
ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or
machine config do not persist if the node or machine goes down.

To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such
as a ReplicaSet object, DaemonSet object, StatefulSet object, Deployment object, or
DeploymentConfig object. Any existing pods under that controlling object are recreated on a node with
a matching label. If you are creating a new pod, you can add the node selector directly to the Pod spec.

NOTE

You cannot add a node selector directly to an existing scheduled pod.

Prerequisites

To add a node selector to existing pods, determine the controlling object for that pod. For example, the
router-default-66d5cf9464-m2g75 pod is controlled by the router-default-66d5cf9464 replica set:

$ oc describe pod router-default-66d5cf9464-7pwkc

Name: router-default-66d5cf9464-7pwkc
Namespace: openshift-ingress

....

Controlled By: ReplicaSet/router-default-66d5cf9464

The web console lists the controlling object under ownerReferences in the pod YAML:

 ownerReferences:
 - apiVersion: apps/v1
 kind: ReplicaSet
 name: router-default-66d5cf9464
 uid: d81dd094-da26-11e9-a48a-128e7edf0312
 controller: true
 blockOwnerDeletion: true

Procedure

1. Add labels to a node by using a machine set or editing the node directly:

Use a MachineSet object to add labels to nodes managed by the machine set when a node
is created:

a. Run the following command to add labels to a MachineSet object:

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

OpenShift Container Platform 4.5 Nodes

60

For example:

$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

Example MachineSet object

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

b. Verify that the labels are added to the node:

Example output

2. Add the matching node selector a pod:

To add a node selector to existing and future pods, add a node selector to the controlling

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet

....

spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:
 region: east
 type: user-node
....

$ oc label nodes <name> <key>=<value>

$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ip-10-0-142-25.ec2.internal Ready worker 17m v1.18.3+002a51f

CHAPTER 1. WORKING WITH PODS

61

1

To add a node selector to existing and future pods, add a node selector to the controlling
object for the pods:

Example ReplicaSet object with labels

Add the node selector.

To add a node selector to a specific, new pod, add the selector to the Pod object directly:

Example Pod object with a node selector

NOTE

You cannot add a node selector directly to an existing scheduled pod.

kind: ReplicaSet

....

spec:

....

 template:
 metadata:
 creationTimestamp: null
 labels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 pod-template-hash: 66d5cf9464
 spec:
 nodeSelector:
 beta.kubernetes.io/os: linux
 node-role.kubernetes.io/worker: ''
 type: user-node 1

apiVersion: v1
kind: Pod

....

spec:
 nodeSelector:
 region: east
 type: user-node

OpenShift Container Platform 4.5 Nodes

62

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES
(SCHEDULING)

2.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER

Pod scheduling is an internal process that determines placement of new pods onto nodes within the
cluster.

The scheduler code has a clean separation that watches new pods as they get created and identifies the
most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the
master API.

Default pod scheduling

OpenShift Container Platform comes with a default scheduler that serves the needs of most users.
The default scheduler uses both inherent and customization tools to determine the best fit for a pod.

Advanced pod scheduling

In situations where you might want more control over where new pods are placed, the OpenShift
Container Platform advanced scheduling features allow you to configure a pod so that the pod is
required or has a preference to run on a particular node or alongside a specific pod by.

Using pod affinity and anti-affinity rules.

Controlling pod placement with pod affinity.

Controlling pod placement with node affinity.

Placing pods on overcomitted nodes.

Controlling pod placement with node selectors.

Controlling pod placement with taints and tolerations .

2.1.1. Scheduler Use Cases

One of the important use cases for scheduling within OpenShift Container Platform is to support
flexible affinity and anti-affinity policies.

2.1.1.1. Infrastructure Topological Levels

Administrators can define multiple topological levels for their infrastructure (nodes) by specifying labels
on nodes. For example: region=r1, zone=z1, rack=s1.

These label names have no particular meaning and administrators are free to name their infrastructure
levels anything, such as city/building/room. Also, administrators can define any number of levels for their
infrastructure topology, with three levels usually being adequate (such as: regions → zones → racks).
Administrators can specify affinity and anti-affinity rules at each of these levels in any combination.

2.1.1.2. Affinity

Administrators should be able to configure the scheduler to specify affinity at any topological level, or
even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same
service are scheduled onto nodes that belong to the same level. This handles any latency requirements

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-default
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-pod-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-node-affinity-about_nodes-scheduler-node-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-overcommit
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-taints-tolerations

of applications by allowing administrators to ensure that peer pods do not end up being too
geographically separated. If no node is available within the same affinity group to host the pod, then the
pod is not scheduled.

If you need greater control over where the pods are scheduled, see Controlling pod placement on nodes
using node affinity rules and Placing pods relative to other pods using affinity and anti-affinity rules .

These advanced scheduling features allow administrators to specify which node a pod can be scheduled
on and to force or reject scheduling relative to other pods.

2.1.1.3. Anti-Affinity

Administrators should be able to configure the scheduler to specify anti-affinity at any topological level,
or even at multiple levels. Anti-affinity (or 'spread') at a particular level indicates that all pods that
belong to the same service are spread across nodes that belong to that level. This ensures that the
application is well spread for high availability purposes. The scheduler tries to balance the service pods
across all applicable nodes as evenly as possible.

If you need greater control over where the pods are scheduled, see Controlling pod placement on nodes
using node affinity rules and Placing pods relative to other pods using affinity and anti-affinity rules .

These advanced scheduling features allow administrators to specify which node a pod can be scheduled
on and to force or reject scheduling relative to other pods.

2.2. CONFIGURING THE DEFAULT SCHEDULER TO CONTROL POD
PLACEMENT

The default OpenShift Container Platform pod scheduler is responsible for determining placement of
new pods onto nodes within the cluster. It reads data from the pod and tries to find a node that is a
good fit based on configured policies. It is completely independent and exists as a standalone/pluggable
solution. It does not modify the pod and just creates a binding for the pod that ties the pod to the
particular node.

A selection of predicates and priorities defines the policy for the scheduler. See Modifying scheduler
policy for a list of predicates and priorities.

Sample default scheduler object

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: 2019-05-20T15:39:01Z
 generation: 1
 name: cluster
 resourceVersion: "1491"
 selfLink: /apis/config.openshift.io/v1/schedulers/cluster
 uid: 6435dd99-7b15-11e9-bd48-0aec821b8e34
spec:
 policy: 1
 name: scheduler-policy
 defaultNodeSelector: type=user-node,region=east 2

OpenShift Container Platform 4.5 Nodes

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-node-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-pod-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-node-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-pod-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-default-modifying_nodes-scheduler-default

1

2

You can specify the name of a custom scheduler policy file.

Optional: Specify a default node selector to restrict pod placement to specific nodes. The default
node selector is applied to the pods created in all namespaces. Pods can be scheduled on nodes
with labels that match the default node selector and any existing pod node selectors. Namespaces
having project-wide node selectors are not impacted even if this field is set.

2.2.1. Understanding default scheduling

The existing generic scheduler is the default platform-provided scheduler engine that selects a node to
host the pod in a three-step operation:

Filters the Nodes

The available nodes are filtered based on the constraints or requirements specified. This is done by
running each node through the list of filter functions called predicates.

Prioritize the Filtered List of Nodes

This is achieved by passing each node through a series of priority_ functions that assign it a score
between 0 - 10, with 0 indicating a bad fit and 10 indicating a good fit to host the pod. The scheduler
configuration can also take in a simple weight (positive numeric value) for each priority function. The
node score provided by each priority function is multiplied by the weight (default weight for most
priorities is 1) and then combined by adding the scores for each node provided by all the priorities.
This weight attribute can be used by administrators to give higher importance to some priorities.

Select the Best Fit Node

The nodes are sorted based on their scores and the node with the highest score is selected to host
the pod. If multiple nodes have the same high score, then one of them is selected at random.

2.2.1.1. Understanding Scheduler Policy

The selection of the predicate and priorities defines the policy for the scheduler.

The scheduler configuration file is a JSON file, which must be named policy.cfg, that specifies the
predicates and priorities the scheduler will consider.

In the absence of the scheduler policy file, the default scheduler behavior is used.

IMPORTANT

The predicates and priorities defined in the scheduler configuration file completely
override the default scheduler policy. If any of the default predicates and priorities are
required, you must explicitly specify the functions in the policy configuration.

Sample scheduler config map

apiVersion: v1
data:
 policy.cfg: |
 {
 "kind" : "Policy",
 "apiVersion" : "v1",
 "predicates" : [
 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "GeneralPredicates"}, 1

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

65

1 The GeneralPredicates predicate represents the PodFitsResources, HostName,
PodFitsHostPorts, and MatchNodeSelector predicates. Because you are not allowed to configure
the same predicate multiple times, the GeneralPredicates predicate cannot be used alongside any
of the four represented predicates.

2.2.2. Creating a scheduler policy file

You can change the default scheduling behavior by creating a JSON file with the desired predicates and
priorities. You then generate a config map from the JSON file and point the cluster Scheduler object to
use the config map.

Procedure

To configure the scheduler policy:

1. Create a JSON file named policy.cfg with the desired predicates and priorities.

Sample scheduler JSON file

 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "MaxCSIVolumeCountPred"},
 {"name" : "CheckVolumeBinding"},
 {"name" : "MaxEBSVolumeCount"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "CheckNodeUnschedulable"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "PodToleratesNodeTaints"}
],
 "priorities" : [
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1},
 {"name" : "NodePreferAvoidPodsPriority", "weight" : 1},
 {"name" : "NodeAffinityPriority", "weight" : 1},
 {"name" : "TaintTolerationPriority", "weight" : 1},
 {"name" : "ImageLocalityPriority", "weight" : 1},
 {"name" : "SelectorSpreadPriority", "weight" : 1},
 {"name" : "InterPodAffinityPriority", "weight" : 1},
 {"name" : "EqualPriority", "weight" : 1}
]
 }
kind: ConfigMap
metadata:
 creationTimestamp: "2019-09-17T08:42:33Z"
 name: scheduler-policy
 namespace: openshift-config
 resourceVersion: "59500"
 selfLink: /api/v1/namespaces/openshift-config/configmaps/scheduler-policy
 uid: 17ee8865-d927-11e9-b213-02d1e1709840`

{
"kind" : "Policy",
"apiVersion" : "v1",
"predicates" : [1

OpenShift Container Platform 4.5 Nodes

66

1

2

1

1

Add the predicates as needed.

Add the priorities as needed.

2. Create a config map based on the scheduler JSON file:

Enter a name for the config map.

For example:

Example output

3. Edit the Scheduler Operator custom resource to add the config map:

Specify the name of the config map.

 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "GeneralPredicates"},
 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "MaxCSIVolumeCountPred"},
 {"name" : "CheckVolumeBinding"},
 {"name" : "MaxEBSVolumeCount"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "CheckNodeUnschedulable"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "PodToleratesNodeTaints"}
],
"priorities" : [2
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1},
 {"name" : "NodePreferAvoidPodsPriority", "weight" : 1},
 {"name" : "NodeAffinityPriority", "weight" : 1},
 {"name" : "TaintTolerationPriority", "weight" : 1},
 {"name" : "ImageLocalityPriority", "weight" : 1},
 {"name" : "SelectorSpreadPriority", "weight" : 1},
 {"name" : "InterPodAffinityPriority", "weight" : 1},
 {"name" : "EqualPriority", "weight" : 1}
]
}

$ oc create configmap -n openshift-config --from-file=policy.cfg <configmap-name> 1

$ oc create configmap -n openshift-config --from-file=policy.cfg scheduler-policy

configmap/scheduler-policy created

$ oc patch Scheduler cluster --type='merge' -p '{"spec":{"policy":{"name":"<configmap-
name>"}}}' --type=merge 1

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

67

For example:

After making the change to the Scheduler config resource, wait for the openshift-kube-
apiserver pods to redeploy. This can take several minutes. Until the pods redeploy, new
scheduler does not take effect.

4. Verify the scheduler policy is configured by viewing the log of a scheduler pod in the openshift-
kube-scheduler namespace. The following command checks for the predicates and priorities
that are being registered by the scheduler:

For example:

Example output

2.2.3. Modifying scheduler policies

You change scheduling behavior by creating or editing your scheduler policy config map in the
openshift-config project. Add and remove predicates and priorities to the config map to create a
scheduler policy.

Procedure

To modify the current custom scheduling, use one of the following methods:

Edit the scheduler policy config map:

For example:

Example output

$ oc patch Scheduler cluster --type='merge' -p '{"spec":{"policy":{"name":"scheduler-
policy"}}}' --type=merge

$ oc logs <scheduler-pod> | grep predicates

$ oc logs openshift-kube-scheduler-ip-10-0-141-29.ec2.internal | grep predicates

Creating scheduler with fit predicates 'map[MaxGCEPDVolumeCount:{}
MaxAzureDiskVolumeCount:{} CheckNodeUnschedulable:{} NoDiskConflict:{}
NoVolumeZoneConflict:{} GeneralPredicates:{} MaxCSIVolumeCountPred:{}
CheckVolumeBinding:{} MaxEBSVolumeCount:{} MatchInterPodAffinity:{}
PodToleratesNodeTaints:{}]' and priority functions 'map[InterPodAffinityPriority:{}
LeastRequestedPriority:{} ServiceSpreadingPriority:{} ImageLocalityPriority:{}
SelectorSpreadPriority:{} EqualPriority:{} BalancedResourceAllocation:{}
NodePreferAvoidPodsPriority:{} NodeAffinityPriority:{} TaintTolerationPriority:{}]'

$ oc edit configmap <configmap-name> -n openshift-config

$ oc edit configmap scheduler-policy -n openshift-config

apiVersion: v1
data:
 policy.cfg: |

OpenShift Container Platform 4.5 Nodes

68

1

2

Add or remove predicates as needed.

Add, remove, or change the weight of predicates as needed.

It can take a few minutes for the scheduler to restart the pods with the updated policy.

Change the policies and predicates being used:

1. Remove the scheduler policy config map:

For example:

2. Edit the policy.cfg file to add and remove policies and predicates as needed.

 {
 "kind" : "Policy",
 "apiVersion" : "v1",
 "predicates" : [1
 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "GeneralPredicates"},
 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "MaxCSIVolumeCountPred"},
 {"name" : "CheckVolumeBinding"},
 {"name" : "MaxEBSVolumeCount"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "CheckNodeUnschedulable"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "PodToleratesNodeTaints"}
],
 "priorities" : [2
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1},
 {"name" : "NodePreferAvoidPodsPriority", "weight" : 1},
 {"name" : "NodeAffinityPriority", "weight" : 1},
 {"name" : "TaintTolerationPriority", "weight" : 1},
 {"name" : "ImageLocalityPriority", "weight" : 1},
 {"name" : "SelectorSpreadPriority", "weight" : 1},
 {"name" : "InterPodAffinityPriority", "weight" : 1},
 {"name" : "EqualPriority", "weight" : 1}
]
 }
kind: ConfigMap
metadata:
 creationTimestamp: "2019-09-17T17:44:19Z"
 name: scheduler-policy
 namespace: openshift-config
 resourceVersion: "15370"
 selfLink: /api/v1/namespaces/openshift-config/configmaps/scheduler-policy

$ oc delete configmap -n openshift-config <name>

$ oc delete configmap -n openshift-config scheduler-policy

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

69

1

For example:

Example output

3. Re-create the scheduler policy config map based on the scheduler JSON file:

Enter a name for the config map.

For example:

Example output

$ vi policy.cfg

apiVersion: v1
data:
 policy.cfg: |
 {
 "kind" : "Policy",
 "apiVersion" : "v1",
 "predicates" : [
 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "GeneralPredicates"},
 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "MaxCSIVolumeCountPred"},
 {"name" : "CheckVolumeBinding"},
 {"name" : "MaxEBSVolumeCount"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "CheckNodeUnschedulable"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "PodToleratesNodeTaints"}
],
 "priorities" : [
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1},
 {"name" : "NodePreferAvoidPodsPriority", "weight" : 1},
 {"name" : "NodeAffinityPriority", "weight" : 1},
 {"name" : "TaintTolerationPriority", "weight" : 1},
 {"name" : "ImageLocalityPriority", "weight" : 1},
 {"name" : "SelectorSpreadPriority", "weight" : 1},
 {"name" : "InterPodAffinityPriority", "weight" : 1},
 {"name" : "EqualPriority", "weight" : 1}
]
 }

$ oc create configmap -n openshift-config --from-file=policy.cfg <configmap-name> 1

$ oc create configmap -n openshift-config --from-file=policy.cfg scheduler-policy

configmap/scheduler-policy created

OpenShift Container Platform 4.5 Nodes

70

2.2.3.1. Understanding the scheduler predicates

Predicates are rules that filter out unqualified nodes.

There are several predicates provided by default in OpenShift Container Platform. Some of these
predicates can be customized by providing certain parameters. Multiple predicates can be combined to
provide additional filtering of nodes.

2.2.3.1.1. Static Predicates

These predicates do not take any configuration parameters or inputs from the user. These are specified
in the scheduler configuration using their exact name.

2.2.3.1.1.1. Default Predicates

The default scheduler policy includes the following predicates:

The NoVolumeZoneConflict predicate checks that the volumes a pod requests are available in the
zone.

The MaxEBSVolumeCount predicate checks the maximum number of volumes that can be attached to
an AWS instance.

The MaxAzureDiskVolumeCount predicate checks the maximum number of Azure Disk Volumes.

The PodToleratesNodeTaints predicate checks if a pod can tolerate the node taints.

The CheckNodeUnschedulable predicate checks if a pod can be scheduled on a node with
Unschedulable spec.

The CheckVolumeBinding predicate evaluates if a pod can fit based on the volumes, it requests, for
both bound and unbound PVCs.

For PVCs that are bound, the predicate checks that the corresponding PV’s node affinity is
satisfied by the given node.

For PVCs that are unbound, the predicate searched for available PVs that can satisfy the PVC
requirements and that the PV node affinity is satisfied by the given node.

The predicate returns true if all bound PVCs have compatible PVs with the node, and if all unbound
PVCs can be matched with an available and node-compatible PV.

{"name" : "NoVolumeZoneConflict"}

{"name" : "MaxEBSVolumeCount"}

{"name" : "MaxAzureDiskVolumeCount"}

{"name" : "PodToleratesNodeTaints"}

{"name" : "CheckNodeUnschedulable"}

{"name" : "CheckVolumeBinding"}

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

71

The NoDiskConflict predicate checks if the volume requested by a pod is available.

The MaxGCEPDVolumeCount predicate checks the maximum number of Google Compute Engine
(GCE) Persistent Disks (PD).

The MaxCSIVolumeCount predicate determines how many Container Storage Interface (CSI) volumes
should be attached to a node and whether that number exceeds a configured limit.

The MatchInterPodAffinity predicate checks if the pod affinity/anti-affinity rules permit the pod.

2.2.3.1.1.2. Other Static Predicates

OpenShift Container Platform also supports the following predicates:

NOTE

The CheckNode-* predicates cannot be used if the Taint Nodes By Condition feature is
enabled. The Taint Nodes By Condition feature is enabled by default.

The CheckNodeCondition predicate checks if a pod can be scheduled on a node reporting out of disk,
network unavailable, or not ready conditions.

The CheckNodeLabelPresence predicate checks if all of the specified labels exist on a node, regardless
of their value.

The checkServiceAffinity predicate checks that ServiceAffinity labels are homogeneous for pods that
are scheduled on a node.

The PodToleratesNodeNoExecuteTaints predicate checks if a pod tolerations can tolerate a node
NoExecute taints.

2.2.3.1.2. General Predicates

The following general predicates check whether non-critical predicates and essential predicates pass.

{"name" : "NoDiskConflict"}

{"name" : "MaxGCEPDVolumeCount"}

{"name" : "MaxCSIVolumeCount"}

{"name" : "MatchInterPodAffinity"}

{"name" : "CheckNodeCondition"}

{"name" : "CheckNodeLabelPresence"}

{"name" : "checkServiceAffinity"}

{"name" : "PodToleratesNodeNoExecuteTaints"}

OpenShift Container Platform 4.5 Nodes

72

The following general predicates check whether non-critical predicates and essential predicates pass.
Non-critical predicates are the predicates that only non-critical pods must pass and essential predicates
are the predicates that all pods must pass.

The default scheduler policy includes the general predicates.

Non-critical general predicates
The PodFitsResources predicate determines a fit based on resource availability (CPU, memory, GPU,
and so forth). The nodes can declare their resource capacities and then pods can specify what
resources they require. Fit is based on requested, rather than used resources.

Essential general predicates
The PodFitsHostPorts predicate determines if a node has free ports for the requested pod ports
(absence of port conflicts).

The HostName predicate determines fit based on the presence of the Host parameter and a string
match with the name of the host.

The MatchNodeSelector predicate determines fit based on node selector (nodeSelector) queries
defined in the pod.

2.2.3.2. Understanding the scheduler priorities

Priorities are rules that rank nodes according to preferences.

A custom set of priorities can be specified to configure the scheduler. There are several priorities
provided by default in OpenShift Container Platform. Other priorities can be customized by providing
certain parameters. Multiple priorities can be combined and different weights can be given to each in
order to impact the prioritization.

2.2.3.2.1. Static Priorities

Static priorities do not take any configuration parameters from the user, except weight. A weight is
required to be specified and cannot be 0 or negative.

These are specified in the scheduler policy config map in the openshift-config project.

2.2.3.2.1.1. Default Priorities

The default scheduler policy includes the following priorities. Each of the priority function has a weight
of 1 except NodePreferAvoidPodsPriority, which has a weight of 10000.

The NodeAffinityPriority priority prioritizes nodes according to node affinity scheduling preferences

{"name" : "PodFitsResources"}

{"name" : "PodFitsHostPorts"}

{"name" : "HostName"}

{"name" : "MatchNodeSelector"}

{"name" : "NodeAffinityPriority", "weight" : 1}

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

73

The TaintTolerationPriority priority prioritizes nodes that have a fewer number of intolerable taints on
them for a pod. An intolerable taint is one which has key PreferNoSchedule.

The ImageLocalityPriority priority prioritizes nodes that already have requested pod container’s
images.

The SelectorSpreadPriority priority looks for services, replication controllers (RC), replication sets
(RS), and stateful sets that match the pod, then finds existing pods that match those selectors. The
scheduler favors nodes that have fewer existing matching pods. Then, it schedules the pod on a node
with the smallest number of pods that match those selectors as the pod being scheduled.

The InterPodAffinityPriority priority computes a sum by iterating through the elements of
weightedPodAffinityTerm and adding weight to the sum if the corresponding PodAffinityTerm is
satisfied for that node. The node(s) with the highest sum are the most preferred.

The LeastRequestedPriority priority favors nodes with fewer requested resources. It calculates the
percentage of memory and CPU requested by pods scheduled on the node, and prioritizes nodes that
have the highest available/remaining capacity.

The BalancedResourceAllocation priority favors nodes with balanced resource usage rate. It
calculates the difference between the consumed CPU and memory as a fraction of capacity, and
prioritizes the nodes based on how close the two metrics are to each other. This should always be used
together with LeastRequestedPriority.

The NodePreferAvoidPodsPriority priority ignores pods that are owned by a controller other than a
replication controller.

2.2.3.2.1.2. Other Static Priorities

OpenShift Container Platform also supports the following priorities:

The EqualPriority priority gives an equal weight of 1 to all nodes, if no priority configurations are
provided. We recommend using this priority only for testing environments.

The MostRequestedPriority priority prioritizes nodes with most requested resources. It calculates the

{"name" : "TaintTolerationPriority", "weight" : 1}

{"name" : "ImageLocalityPriority", "weight" : 1}

{"name" : "SelectorSpreadPriority", "weight" : 1}

{"name" : "InterPodAffinityPriority", "weight" : 1}

{"name" : "LeastRequestedPriority", "weight" : 1}

{"name" : "BalancedResourceAllocation", "weight" : 1}

{"name" : "NodePreferAvoidPodsPriority", "weight" : 10000}

{"name" : "EqualPriority", "weight" : 1}

OpenShift Container Platform 4.5 Nodes

74

1

2

3

The MostRequestedPriority priority prioritizes nodes with most requested resources. It calculates the
percentage of memory and CPU requested by pods scheduled on the node, and prioritizes based on the
maximum of the average of the fraction of requested to capacity.

The ServiceSpreadingPriority priority spreads pods by minimizing the number of pods belonging to the
same service onto the same machine.

2.2.3.2.2. Configurable Priorities

You can configure these priorities in the scheduler policy config map, in the openshift-config
namespace, to add labels to affect how the priorities work.

The type of the priority function is identified by the argument that they take. Since these are
configurable, multiple priorities of the same type (but different configuration parameters) can be
combined as long as their user-defined names are different.

For information on using these priorities, see Modifying Scheduler Policy.

The ServiceAntiAffinity priority takes a label and ensures a good spread of the pods belonging to the
same service across the group of nodes based on the label values. It gives the same score to all nodes
that have the same value for the specified label. It gives a higher score to nodes within a group with the
least concentration of pods.

Specify a name for the priority.

Specify a weight. Enter a non-zero positive value.

Specify a label to match.

For example:

{"name" : "MostRequestedPriority", "weight" : 1}

{"name" : "ServiceSpreadingPriority", "weight" : 1}

{
"kind": "Policy",
"apiVersion": "v1",

"priorities":[
 {
 "name":"<name>", 1
 "weight" : 1 2
 "argument":{
 "serviceAntiAffinity":{
 "label": "<label>" 3
 }
 }
 }
]
}

{

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

75

1

2

3

4

NOTE

In some situations using the ServiceAntiAffinity parameter based on custom labels does
not spread pod as expected. See this Red Hat Solution .

The labelPreference parameter gives priority based on the specified label. If the label is present on a
node, that node is given priority. If no label is specified, priority is given to nodes that do not have a label.
If multiple priorities with the labelPreference parameter are set, all of the priorities must have the same
weight.

Specify a name for the priority.

Specify a weight. Enter a non-zero positive value.

Specify a label to match.

Specify whether the label is required, either true or false.

2.2.4. Sample Policy Configurations

The configuration below specifies the default scheduler configuration, if it were to be specified using the

"kind": "Policy",
"apiVersion": "v1",
"priorities": [
 {
 "name":"RackSpread",
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": {
 "label": "rack"
 }
 }
 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"priorities":[
 {
 "name":"<name>", 1
 "weight" : 1 2
 "argument":{
 "labelPreference":{
 "label": "<label>", 3
 "presence": true 4
 }
 }
 }
]
}

OpenShift Container Platform 4.5 Nodes

76

https://access.redhat.com/solutions/3432401

1

2

3

4

5

6

The configuration below specifies the default scheduler configuration, if it were to be specified using the
scheduler policy file.

The name for the predicate.

The type of predicate.

The labels for the predicate.

The name for the priority.

The type of priority.

The labels for the priority.

In all of the sample configurations below, the list of predicates and priority functions is truncated to
include only the ones that pertain to the use case specified. In practice, a complete/meaningful
scheduler policy should include most, if not all, of the default predicates and priorities listed above.

The following example defines three topological levels, region (affinity) → zone (affinity) → rack (anti-
affinity):

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "RegionZoneAffinity", 1
 "argument": {
 "serviceAffinity": { 2
 "labels": ["region, zone"] 3
 }
 }
 }
],
"priorities": [
 {
 "name":"RackSpread", 4
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": { 5
 "label": "rack" 6
 }
 }
 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "RegionZoneAffinity",

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

77

The following example defines three topological levels, city (affinity) → building (anti-affinity) → room
(anti-affinity):

 "argument": {
 "serviceAffinity": {
 "labels": ["region, zone"]
 }
 }
 }
],
"priorities": [
 {
 "name":"RackSpread",
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": {
 "label": "rack"
 }
 }
 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "CityAffinity",
 "argument": {
 "serviceAffinity": {
 "label": "city"
 }
 }
 }
],
"priorities": [
 {
 "name":"BuildingSpread",
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": {
 "label": "building"
 }
 }
 },
 {
 "name":"RoomSpread",
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": {
 "label": "room"
 }
 }

OpenShift Container Platform 4.5 Nodes

78

The following example defines a policy to only use nodes with the 'region' label defined and prefer
nodes with the 'zone' label defined:

The following example combines both static and configurable predicates and also priorities:

 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "RequireRegion",
 "argument": {
 "labelPreference": {
 "labels": ["region"],
 "presence": true
 }
 }
 }
],
"priorities": [
 {
 "name":"ZonePreferred",
 "weight" : 1,
 "argument": {
 "labelPreference": {
 "label": "zone",
 "presence": true
 }
 }
 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "RegionAffinity",
 "argument": {
 "serviceAffinity": {
 "labels": ["region"]
 }
 }
 },
 {
 "name": "RequireRegion",
 "argument": {
 "labelsPresence": {
 "labels": ["region"],
 "presence": true

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

79

2.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND
ANTI-AFFINITY RULES

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled. Anti-affinity
is a property of pods that prevents a pod from being scheduled on a node.

In OpenShift Container Platform pod affinity and pod anti-affinity allow you to constrain which nodes
your pod is eligible to be scheduled on based on the key/value labels on other pods.

2.3.1. Understanding pod affinity

Pod affinity and pod anti-affinity allow you to constrain which nodes your pod is eligible to be scheduled
on based on the key/value labels on other pods.

Pod affinity can tell the scheduler to locate a new pod on the same node as other pods if the
label selector on the new pod matches the label on the current pod.

 }
 }
 },
 {
 "name": "BuildingNodesAvoid",
 "argument": {
 "labelsPresence": {
 "label": "building",
 "presence": false
 }
 }
 },
 {"name" : "PodFitsPorts"},
 {"name" : "MatchNodeSelector"}
],
"priorities": [
 {
 "name": "ZoneSpread",
 "weight" : 2,
 "argument": {
 "serviceAntiAffinity":{
 "label": "zone"
 }
 }
 },
 {
 "name":"ZonePreferred",
 "weight" : 1,
 "argument": {
 "labelPreference":{
 "label": "zone",
 "presence": true
 }
 }
 },
 {"name" : "ServiceSpreadingPriority", "weight" : 1}
]
}

OpenShift Container Platform 4.5 Nodes

80

Pod anti-affinity can prevent the scheduler from locating a new pod on the same node as pods
with the same labels if the label selector on the new pod matches the label on the current pod.

For example, using affinity rules, you could spread or pack pods within a service or relative to pods in
other services. Anti-affinity rules allow you to prevent pods of a particular service from scheduling on the
same nodes as pods of another service that are known to interfere with the performance of the pods of
the first service. Or, you could spread the pods of a service across nodes or availability zones to reduce
correlated failures.

There are two types of pod affinity rules: required and preferred.

Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if
the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.

NOTE

Depending on your pod priority and preemption settings, the scheduler might not be able
to find an appropriate node for a pod without violating affinity requirements. If so, a pod
might not be scheduled.

To prevent this situation, carefully configure pod affinity with equal-priority pods.

You configure pod affinity/anti-affinity through the Pod spec files. You can specify a required rule, a
preferred rule, or both. If you specify both, the node must first meet the required rule, then attempts to
meet the preferred rule.

The following example shows a Pod spec configured for pod affinity and anti-affinity.

In this example, the pod affinity rule indicates that the pod can schedule onto a node only if that node
has at least one already-running pod with a label that has the key security and value S1. The pod anti-
affinity rule says that the pod prefers to not schedule onto a node if that node is already running a pod
with label having key security and value S2.

Sample Pod config file with pod affinity

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-affinity
spec:
 affinity:
 podAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 - labelSelector:
 matchExpressions:
 - key: security 3
 operator: In 4
 values:
 - S1 5
 topologyKey: failure-domain.beta.kubernetes.io/zone
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

81

1

2

3 5

4

1

2

3

4

5

Stanza to configure pod affinity.

Defines a required rule.

The key and value (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn,
Exists, or DoesNotExist.

Sample Pod config file with pod anti-affinity

Stanza to configure pod anti-affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with the highest weight is preferred.

Description of the pod label that determines when the anti-affinity rule applies. Specify a key and
value for the label.

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn,
Exists, or DoesNotExist.

NOTE

If labels on a node change at runtime such that the affinity rules on a pod are no longer
met, the pod continues to run on the node.

2.3.2. Configuring a pod affinity rule

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-antiaffinity
spec:
 affinity:
 podAntiAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security 4
 operator: In 5
 values:
 - S2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod

OpenShift Container Platform 4.5 Nodes

82

The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod
that uses affinity to allow scheduling with that pod.

Procedure

1. Create a pod with a specific label in the Pod spec:

2. When creating other pods, edit the Pod spec as follows:

a. Use the podAffinity stanza to configure the
requiredDuringSchedulingIgnoredDuringExecution parameter or
preferredDuringSchedulingIgnoredDuringExecution parameter:

b. Specify the key and value that must be met. If you want the new pod to be scheduled with
the other pod, use the same key and value parameters as the label on the first pod.

c. Specify an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For example,
use the operator In to require the label to be in the node.

d. Specify a topologyKey, which is a prepopulated Kubernetes label that the system uses to
denote such a topology domain.

3. Create the pod.

2.3.3. Configuring a pod anti-affinity rule

The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod
that uses an anti-affinity preferred rule to attempt to prevent scheduling with that pod.

Procedure

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: security-s1
 labels:
 security: S1
spec:
 containers:
 - name: security-s1
 image: docker.io/ocpqe/hello-pod

 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S1
 topologyKey: failure-domain.beta.kubernetes.io/zone

$ oc create -f <pod-spec>.yaml

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

83

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

1. Create a pod with a specific label in the Pod spec:

2. When creating other pods, edit the Pod spec to set the following parameters:

3. Use the podAntiAffinity stanza to configure the
requiredDuringSchedulingIgnoredDuringExecution parameter or
preferredDuringSchedulingIgnoredDuringExecution parameter:

a. Specify a weight for the node, 1-100. The node that with highest weight is preferred.

b. Specify the key and values that must be met. If you want the new pod to not be scheduled
with the other pod, use the same key and value parameters as the label on the first pod.

c. For a preferred rule, specify a weight, 1-100.

d. Specify an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For example,
use the operator In to require the label to be in the node.

4. Specify a topologyKey, which is a prepopulated Kubernetes label that the system uses to
denote such a topology domain.

5. Create the pod.

2.3.4. Sample pod affinity and anti-affinity rules

The following examples demonstrate pod affinity and pod anti-affinity.

2.3.4.1. Pod Affinity

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: security-s2
 labels:
 security: S2
spec:
 containers:
 - name: security-s2
 image: docker.io/ocpqe/hello-pod

 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S2
 topologyKey: kubernetes.io/hostname

$ oc create -f <pod-spec>.yaml

OpenShift Container Platform 4.5 Nodes

84

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

The following example demonstrates pod affinity for pods with matching labels and label selectors.

The pod team4 has the label team:4.

The pod team4a has the label selector team:4 under podAffinity.

The team4a pod is scheduled on the same node as the team4 pod.

2.3.4.2. Pod Anti-affinity

The following example demonstrates pod anti-affinity for pods with matching labels and label selectors.

The pod pod-s1 has the label security:s1.

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: team4
 labels:
 team: "4"
spec:
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

$ cat pod-team4a.yaml
apiVersion: v1
kind: Pod
metadata:
 name: team4a
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: team
 operator: In
 values:
 - "4"
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod

cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
 labels:
 security: s1
spec:

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

85

The pod pod-s2 has the label selector security:s1 under podAntiAffinity.

The pod pod-s2 cannot be scheduled on the same node as pod-s1.

2.3.4.3. Pod Affinity with no Matching Labels

The following example demonstrates pod affinity for pods without matching labels and label selectors.

The pod pod-s1 has the label security:s1.

The pod pod-s2 has the label selector security:s2.

 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

cat pod-s2.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
spec:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s1
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-antiaffinity
 image: docker.io/ocpqe/hello-pod

$ cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
 labels:
 security: s1
spec:
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

$ cat pod-s2.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
spec:
 affinity:

OpenShift Container Platform 4.5 Nodes

86

The pod pod-s2 is not scheduled unless there is a node with a pod that has the security:s2
label. If there is no other pod with that label, the new pod remains in a pending state:

Example output

2.4. CONTROLLING POD PLACEMENT ON NODES USING NODE
AFFINITY RULES

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled.

In OpenShift Container Platform node affinity is a set of rules used by the scheduler to determine where
a pod can be placed. The rules are defined using custom labels on the nodes and label selectors
specified in pods.

2.4.1. Understanding node affinity

Node affinity allows a pod to specify an affinity towards a group of nodes it can be placed on. The node
does not have control over the placement.

For example, you could configure a pod to only run on a node with a specific CPU or in a specific
availability zone.

There are two types of node affinity rules: required and preferred.

Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if
the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.

NOTE

If labels on a node change at runtime that results in an node affinity rule on a pod no
longer being met, the pod continues to run on the node.

You configure node affinity through the Pod spec file. You can specify a required rule, a preferred rule,
or both. If you specify both, the node must first meet the required rule, then attempts to meet the
preferred rule.

The following example is a Pod spec with a rule that requires the pod be placed on a node with a label
whose key is e2e-az-NorthSouth and whose value is either e2e-az-North or e2e-az-South:

 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod

NAME READY STATUS RESTARTS AGE IP NODE
pod-s2 0/1 Pending 0 32s <none>

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

87

1

2

3 5 6

4

Example pod configuration file with a node affinity required rule

The stanza to configure node affinity.

Defines a required rule.

The key/value pair (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the node and the set of values in
the matchExpression parameters in the Pod spec. This value can be In, NotIn, Exists, or
DoesNotExist, Lt, or Gt.

The following example is a node specification with a preferred rule that a node with a label whose key is
e2e-az-EastWest and whose value is either e2e-az-East or e2e-az-West is preferred for the pod:

Example pod configuration file with a node affinity preferred rule

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-NorthSouth 3
 operator: In 4
 values:
 - e2e-az-North 5
 - e2e-az-South 6
 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 affinity:
 nodeAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 1 3
 preference:
 matchExpressions:
 - key: e2e-az-EastWest 4
 operator: In 5
 values:
 - e2e-az-East 6
 - e2e-az-West 7

OpenShift Container Platform 4.5 Nodes

88

1

2

3

4 6 7

5

The stanza to configure node affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with highest weight is preferred.

The key/value pair (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the node and the set of values in
the matchExpression parameters in the Pod spec. This value can be In, NotIn, Exists, or
DoesNotExist, Lt, or Gt.

There is no explicit node anti-affinity concept, but using the NotIn or DoesNotExist operator replicates
that behavior.

NOTE

If you are using node affinity and node selectors in the same pod configuration, note the
following:

If you configure both nodeSelector and nodeAffinity, both conditions must be
satisfied for the pod to be scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types,
then the pod can be scheduled onto a node if one of the nodeSelectorTerms is
satisfied.

If you specify multiple matchExpressions associated with nodeSelectorTerms,
then the pod can be scheduled onto a node only if all matchExpressions are
satisfied.

2.4.2. Configuring a required node affinity rule

Required rules must be met before a pod can be scheduled on a node.

Procedure

The following steps demonstrate a simple configuration that creates a node and a pod that the
scheduler is required to place on the node.

1. Add a label to a node using the oc label node command:

2. In the Pod spec, use the nodeAffinity stanza to configure the
requiredDuringSchedulingIgnoredDuringExecution parameter:

a. Specify the key and values that must be met. If you want the new pod to be scheduled on
the node you edited, use the same key and value parameters as the label in the node.

b. Specify an operator. The operator can be In, NotIn, Exists, DoesNotExist, Lt, or Gt. For

 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod

$ oc label node node1 e2e-az-name=e2e-az1

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

89

b. Specify an operator. The operator can be In, NotIn, Exists, DoesNotExist, Lt, or Gt. For
example, use the operator In to require the label to be in the node:

Example output

3. Create the pod:

2.4.3. Configuring a preferred node affinity rule

Preferred rules specify that, if the rule is met, the scheduler tries to enforce the rules, but does not
guarantee enforcement.

Procedure

The following steps demonstrate a simple configuration that creates a node and a pod that the
scheduler tries to place on the node.

1. Add a label to a node using the oc label node command:

2. In the Pod spec, use the nodeAffinity stanza to configure the
preferredDuringSchedulingIgnoredDuringExecution parameter:

a. Specify a weight for the node, as a number 1-100. The node with highest weight is preferred.

b. Specify the key and values that must be met. If you want the new pod to be scheduled on
the node you edited, use the same key and value parameters as the label in the node:

c. Specify an operator. The operator can be In, NotIn, Exists, DoesNotExist, Lt, or Gt. For

spec:
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-name
 operator: In
 values:
 - e2e-az1
 - e2e-az2

$ oc create -f e2e-az2.yaml

$ oc label node node1 e2e-az-name=e2e-az3

spec:
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: e2e-az-name
 operator: In
 values:
 - e2e-az3

OpenShift Container Platform 4.5 Nodes

90

c. Specify an operator. The operator can be In, NotIn, Exists, DoesNotExist, Lt, or Gt. For
example, use the Operator In to require the label to be in the node.

3. Create the pod.

2.4.4. Sample node affinity rules

The following examples demonstrate node affinity.

2.4.4.1. Node affinity with matching labels

The following example demonstrates node affinity for a node and pod with matching labels:

The Node1 node has the label zone:us:

The pod-s1 pod has the zone and us key/value pair under a required node affinity rule:

Example output

The pod-s1 pod can be scheduled on Node1:

Example output

$ oc create -f e2e-az3.yaml

$ oc label node node1 zone=us

$ cat pod-s1.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us

$ oc get pod -o wide

NAME READY STATUS RESTARTS AGE IP NODE
pod-s1 1/1 Running 0 4m IP1 node1

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

91

2.4.4.2. Node affinity with no matching labels

The following example demonstrates node affinity for a node and pod without matching labels:

The Node1 node has the label zone:emea:

The pod-s1 pod has the zone and us key/value pair under a required node affinity rule:

Example output

The pod-s1 pod cannot be scheduled on Node1:

Example output

2.4.5. Additional resources

For information about changing node labels, see Understanding how to update labels on nodes .

2.5. PLACING PODS ONTO OVERCOMMITED NODES

In an overcommited state, the sum of the container compute resource requests and limits exceeds the

$ oc label node node1 zone=emea

$ cat pod-s1.yaml

apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us

$ oc describe pod pod-s1

...

Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
 --------- -------- ----- ---- ------------- -------- ------
 1m 33s 8 default-scheduler Warning FailedScheduling No nodes are
available that match all of the following predicates:: MatchNodeSelector (1).

OpenShift Container Platform 4.5 Nodes

92

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working

In an overcommited state, the sum of the container compute resource requests and limits exceeds the
resources available on the system. Overcommitment might be desirable in development environments
where a trade-off of guaranteed performance for capacity is acceptable.

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

2.5.1. Understanding overcommitment

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

OpenShift Container Platform administrators can control the level of overcommit and manage container
density on nodes by configuring masters to override the ratio between request and limit set on
developer containers. In conjunction with a per-project LimitRange object specifying limits and
defaults, this adjusts the container limit and request to achieve the desired level of overcommit.

NOTE

That these overrides have no effect if no limits have been set on containers. Create a
LimitRange object with default limits, per individual project, or in the project template, in
order to ensure that the overrides apply.

After these overrides, the container limits and requests must still be validated by any LimitRange object
in the project. It is possible, for example, for developers to specify a limit close to the minimum limit, and
have the request then be overridden below the minimum limit, causing the pod to be forbidden. This
unfortunate user experience should be addressed with future work, but for now, configure this capability
and LimitRange objects with caution.

2.5.2. Understanding nodes overcommitment

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit
memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating
system setting.

OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by
setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call oom_killer in an
Out of Memory (OOM) condition, which kills processes based on priority

You can view the current setting by running the following commands on your nodes:

Example output

$ sysctl -a |grep commit

vm.overcommit_memory = 1

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

93

Example output

NOTE

The above flags should already be set on nodes, and no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

2.6. CONTROLLING POD PLACEMENT USING NODE TAINTS

Taints and tolerations allow the node to control which pods should (or should not) be scheduled on
them.

2.6.1. Understanding taints and tolerations

A taint allows a node to refuse a pod to be scheduled unless that pod has a matching toleration.

You apply taints to a node through the Node specification (NodeSpec) and apply tolerations to a pod
through the Pod specification (PodSpec). When you apply a taint a node, the scheduler cannot place a
pod on that node unless the pod can tolerate the taint.

Example taint in a node specification

Example toleration in a Pod spec

$ sysctl -a |grep panic

vm.panic_on_oom = 0

spec:
....
 template:
....
 spec:
 taints:
 - effect: NoExecute
 key: key1
 value: value1
....

spec:
....
 template:
....
 spec
 tolerations:

OpenShift Container Platform 4.5 Nodes

94

Taints and tolerations consist of a key, value, and effect.

Table 2.1. Taint and toleration components

Parameter Description

key The key is any string, up to 253 characters. The key must begin with a letter or
number, and may contain letters, numbers, hyphens, dots, and underscores.

value The value is any string, up to 63 characters. The value must begin with a letter
or number, and may contain letters, numbers, hyphens, dots, and underscores.

effect The effect is one of the following:

NoSchedule [1]
New pods that do not match the taint
are not scheduled onto that node.

Existing pods on the node remain.

PreferNoSchedule
New pods that do not match the taint
might be scheduled onto that node,
but the scheduler tries not to.

Existing pods on the node remain.

NoExecute
New pods that do not match the taint
cannot be scheduled onto that node.

Existing pods on the node that do not
have a matching toleration are
removed.

operator
Equal The key/value/effect parameters must

match. This is the default.

Exists The key/effect parameters must match. You
must leave a blank value parameter, which
matches any.

1. If you add a NoSchedule taint to a master node, the node must have the node-
role.kubernetes.io/master=:NoSchedule taint, which is added by default.

 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
 tolerationSeconds: 3600
....

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

95

For example:

A toleration matches a taint:

If the operator parameter is set to Equal:

the key parameters are the same;

the value parameters are the same;

the effect parameters are the same.

If the operator parameter is set to Exists:

the key parameters are the same;

the effect parameters are the same.

The following taints are built into OpenShift Container Platform:

node.kubernetes.io/not-ready: The node is not ready. This corresponds to the node condition
Ready=False.

node.kubernetes.io/unreachable: The node is unreachable from the node controller. This
corresponds to the node condition Ready=Unknown.

node.kubernetes.io/out-of-disk: The node has insufficient free space on the node for adding
new pods. This corresponds to the node condition OutOfDisk=True.

node.kubernetes.io/memory-pressure: The node has memory pressure issues. This
corresponds to the node condition MemoryPressure=True.

node.kubernetes.io/disk-pressure: The node has disk pressure issues. This corresponds to the
node condition DiskPressure=True.

node.kubernetes.io/network-unavailable: The node network is unavailable.

node.kubernetes.io/unschedulable: The node is unschedulable.

node.cloudprovider.kubernetes.io/uninitialized: When the node controller is started with an
external cloud provider, this taint is set on a node to mark it as unusable. After a controller from
the cloud-controller-manager initializes this node, the kubelet removes this taint.

apiVersion: v1
kind: Node
metadata:
 annotations:
 machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-v8jxv-master-0
 machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
...
spec:
 taints:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
...

OpenShift Container Platform 4.5 Nodes

96

2.6.1.1. Understanding how to use toleration seconds to delay pod evictions

You can specify how long a pod can remain bound to a node before being evicted by specifying the
tolerationSeconds parameter in the Pod specification or MachineSet object. If a taint with the
NoExecute effect is added to a node, a pod that does tolerate the taint, which has the
tolerationSeconds parameter, the pod is not evicted until that time period expires.

Example output

Here, if this pod is running but does not have a matching toleration, the pod stays bound to the node for
3,600 seconds and then be evicted. If the taint is removed before that time, the pod is not evicted.

2.6.1.2. Understanding how to use multiple taints

You can put multiple taints on the same node and multiple tolerations on the same pod. OpenShift
Container Platform processes multiple taints and tolerations as follows:

1. Process the taints for which the pod has a matching toleration.

2. The remaining unmatched taints have the indicated effects on the pod:

If there is at least one unmatched taint with effect NoSchedule, OpenShift Container
Platform cannot schedule a pod onto that node.

If there is no unmatched taint with effect NoSchedule but there is at least one unmatched
taint with effect PreferNoSchedule, OpenShift Container Platform tries to not schedule
the pod onto the node.

If there is at least one unmatched taint with effect NoExecute, OpenShift Container
Platform evicts the pod from the node if it is already running on the node, or the pod is not
scheduled onto the node if it is not yet running on the node.

Pods that do not tolerate the taint are evicted immediately.

Pods that tolerate the taint without specifying tolerationSeconds in their Pod
specification remain bound forever.

Pods that tolerate the taint with a specified tolerationSeconds remain bound for the
specified amount of time.

For example:

Add the following taints to the node:

spec:
....
 template:
....
 spec
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
 tolerationSeconds: 3600

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

97

The pod has the following tolerations:

In this case, the pod cannot be scheduled onto the node, because there is no toleration matching the
third taint. The pod continues running if it is already running on the node when the taint is added,
because the third taint is the only one of the three that is not tolerated by the pod.

2.6.1.3. Understanding pod scheduling and node conditions (taint node by condition)

The Taint Nodes By Condition feature, which is enabled by default, automatically taints nodes that
report conditions such as memory pressure and disk pressure. If a node reports a condition, a taint is
added until the condition clears. The taints have the NoSchedule effect, which means no pod can be
scheduled on the node unless the pod has a matching toleration.

The scheduler checks for these taints on nodes before scheduling pods. If the taint is present, the pod is
scheduled on a different node. Because the scheduler checks for taints and not the actual node
conditions, you configure the scheduler to ignore some of these node conditions by adding appropriate
pod tolerations.

To ensure backward compatibility, the daemon set controller automatically adds the following
tolerations to all daemons:

node.kubernetes.io/memory-pressure

node.kubernetes.io/disk-pressure

node.kubernetes.io/out-of-disk (only for critical pods)

node.kubernetes.io/unschedulable (1.10 or later)

node.kubernetes.io/network-unavailable (host network only)

You can also add arbitrary tolerations to daemon sets.

$ oc adm taint nodes node1 key1=value1:NoSchedule

$ oc adm taint nodes node1 key1=value1:NoExecute

$ oc adm taint nodes node1 key2=value2:NoSchedule

spec:
....
 template:
....
 spec
 tolerations:
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
 - key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"

OpenShift Container Platform 4.5 Nodes

98

1

2.6.1.4. Understanding evicting pods by condition (taint-based evictions)

The Taint-Based Evictions feature, which is enabled by default, evicts pods from a node that
experiences specific conditions, such as not-ready and unreachable. When a node experiences one of
these conditions, OpenShift Container Platform automatically adds taints to the node, and starts
evicting and rescheduling the pods on different nodes.

Taint Based Evictions have a NoExecute effect, where any pod that does not tolerate the taint is
evicted immediately and any pod that does tolerate the taint will never be evicted, unless the pod uses
the tolerationSeconds parameter.

The tolerationSeconds parameter allows you to specify how long a pod stays bound to a node that has
a node condition. If the condition still exists after the tolerationSeconds period, the taint remains on
the node and the pods with a matching toleration are evicted. If the condition clears before the
tolerationSeconds period, pods with matching tolerations are not removed.

If you use the tolerationSeconds parameter with no value, pods are never evicted because of the not
ready and unreachable node conditions.

NOTE

OpenShift Container Platform evicts pods in a rate-limited way to prevent massive pod
evictions in scenarios such as the master becoming partitioned from the nodes.

OpenShift Container Platform automatically adds a toleration for node.kubernetes.io/not-ready and
node.kubernetes.io/unreachable with tolerationSeconds=300, unless the Pod configuration specifies
either toleration.

These tolerations ensure that the default pod behavior is to remain bound for five minutes after
one of these node conditions problems is detected.

You can configure these tolerations as needed. For example, if you have an application with a lot of local
state, you might want to keep the pods bound to node for a longer time in the event of network
partition, allowing for the partition to recover and avoiding pod eviction.

Pods spawned by a daemon set are created with NoExecute tolerations for the following taints with no
tolerationSeconds:

node.kubernetes.io/unreachable

spec:
....
 template:
....
 spec
 tolerations:
 - key: node.kubernetes.io/not-ready
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 300 1
 - key: node.kubernetes.io/unreachable
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 300

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

99

1

2

node.kubernetes.io/not-ready

As a result, daemon set pods are never evicted because of these node conditions.

2.6.1.5. Tolerating all taints

You can configure a pod to tolerate all taints by adding an operator: "Exists" toleration with no key and
value parameters. Pods with this toleration are not removed from a node that has taints.

Pod spec for tolerating all taints

2.6.2. Adding taints and tolerations

You add tolerations to pods and taints to nodes to allow the node to control which pods should or
should not be scheduled on them. For existing pods and nodes, you should add the toleration to the pod
first, then add the taint to the node to avoid pods being removed from the node before you can add the
toleration.

Procedure

1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

Sample pod configuration file with an Equal operator

The toleration parameters, as described in the Taint and toleration components table.

The tolerationSeconds parameter specifies how long a pod can remain bound to a node
before being evicted.

For example:

Sample pod configuration file with an Exists operator

spec:
....
 template:
....
 spec
 tolerations:
 - operator: "Exists"

spec:
....
 template:
....
 spec:
 tolerations:
 - key: "key1" 1
 value: "value1"
 operator: "Equal"
 effect: "NoExecute"
 tolerationSeconds: 3600 2

OpenShift Container Platform 4.5 Nodes

100

1 The Exists operator does not take a value.

This example places a taint on node1 that has key key1, value value1, and taint effect
NoExecute.

2. Add a taint to a node by using the following command with the parameters described in the
Taint and toleration components table:

For example:

This command places a taint on node1 that has key key1, value value1, and effect NoExecute.

NOTE

If you add a NoSchedule taint to a master node, the node must have the node-
role.kubernetes.io/master=:NoSchedule taint, which is added by default.

For example:

The tolerations on the Pod match the taint on the node. A pod with either toleration can be
scheduled onto node1.

spec:
....
 template:
....
 spec:
 tolerations:
 - key: "key1"
 operator: "Exists" 1
 effect: "NoExecute"
 tolerationSeconds: 3600

$ oc adm taint nodes <node_name> <key>=<value>:<effect>

$ oc adm taint nodes node1 key1=value1:NoExecute

apiVersion: v1
kind: Node
metadata:
 annotations:
 machine.openshift.io/machine: openshift-machine-api/ci-ln-62s7gtb-f76d1-
v8jxv-master-0
 machineconfiguration.openshift.io/currentConfig: rendered-master-
cdc1ab7da414629332cc4c3926e6e59c
...
spec:
 taints:
 - effect: NoSchedule
 key: node-role.kubernetes.io/master
...

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

101

1

2

2.6.2.1. Adding taints and tolerations using a machine set

You can add taints to nodes using a machine set. All nodes associated with the MachineSet object are
updated with the taint. Tolerations respond to taints added by a machine set in the same manner as
taints added directly to the nodes.

Procedure

1. Add a toleration to a pod by editing the Pod spec to include a tolerations stanza:

Sample pod configuration file with Equal operator

The toleration parameters, as described in the Taint and toleration components table.

The tolerationSeconds parameter specifies how long a pod is bound to a node before
being evicted.

For example:

Sample pod configuration file with Exists operator

2. Add the taint to the MachineSet object:

a. Edit the MachineSet YAML for the nodes you want to taint or you can create a new
MachineSet object:

b. Add the taint to the spec.template.spec section:

Example taint in a node specification

spec:
....
 template:
....
 spec:
 tolerations:
 - key: "key1" 1
 value: "value1"
 operator: "Equal"
 effect: "NoExecute"
 tolerationSeconds: 3600 2

spec:
....
 template:
....
 spec:
 tolerations:
 - key: "key1"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3600

$ oc edit machineset <machineset>

OpenShift Container Platform 4.5 Nodes

102

This example places a taint that has the key key1, value value1, and taint effect NoExecute
on the nodes.

c. Scale down the machine set to 0:

Wait for the machines to be removed.

d. Scale up the machine set as needed:

Wait for the machines to start. The taint is added to the nodes associated with the
MachineSet object.

2.6.2.2. Binding a user to a node using taints and tolerations

If you want to dedicate a set of nodes for exclusive use by a particular set of users, add a toleration to
their pods. Then, add a corresponding taint to those nodes. The pods with the tolerations are allowed to
use the tainted nodes, or any other nodes in the cluster.

If you want ensure the pods are scheduled to only those tainted nodes, also add a label to the same set
of nodes and add a node affinity to the pods so that the pods can only be scheduled onto nodes with
that label.

Procedure

To configure a node so that users can use only that node:

1. Add a corresponding taint to those nodes:
For example:

2. Add a toleration to the pods by writing a custom admission controller.

2.6.2.3. Controlling nodes with special hardware using taints and tolerations

In a cluster where a small subset of nodes have specialized hardware, you can use taints and tolerations
to keep pods that do not need the specialized hardware off of those nodes, leaving the nodes for pods
that do need the specialized hardware. You can also require pods that need specialized hardware to use
specific nodes.

spec:
....
 template:
....
 spec:
 taints:
 - effect: NoExecute
 key: key1
 value: value1
....

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc adm taint nodes node1 dedicated=groupName:NoSchedule

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

103

You can achieve this by adding a toleration to pods that need the special hardware and tainting the
nodes that have the specialized hardware.

Procedure

To ensure nodes with specialized hardware are reserved for specific pods:

1. Add a toleration to pods that need the special hardware.
For example:

2. Taint the nodes that have the specialized hardware using one of the following commands:

Or:

2.6.3. Removing taints and tolerations

You can remove taints from nodes and tolerations from pods as needed. You should add the toleration
to the pod first, then add the taint to the node to avoid pods being removed from the node before you
can add the toleration.

Procedure

To remove taints and tolerations:

1. To remove a taint from a node:

For example:

Example output

2. To remove a toleration from a pod, edit the Pod spec to remove the toleration:

spec:
....
 template:
....
 spec:
 tolerations:
 - key: "disktype"
 value: "ssd"
 operator: "Equal"
 effect: "NoSchedule"
 tolerationSeconds: 3600

$ oc adm taint nodes <node-name> disktype=ssd:NoSchedule

$ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule

$ oc adm taint nodes <node-name> <key>-

$ oc adm taint nodes ip-10-0-132-248.ec2.internal key1-

node/ip-10-0-132-248.ec2.internal untainted

OpenShift Container Platform 4.5 Nodes

104

2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

A node selector specifies a map of key/value pairs that are defined using custom labels on nodes and
selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the same key/value node selector as the
label on the node.

2.7.1. About node selectors

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching
labels.

You can use a node selector to place specific pods on specific nodes, cluster-wide node selectors to
place new pods on specific nodes anywhere in the cluster, and project node selectors to place new pods
in a project on specific nodes.

For example, as a cluster administrator, you can create an infrastructure where application developers
can deploy pods only onto the nodes closest to their geographical location by including a node selector
in every pod they create. In this example, the cluster consists of five data centers spread across two
regions. In the U.S., label the nodes as us-east, us-central, or us-west. In the Asia-Pacific region
(APAC), label the nodes as apac-east or apac-west. The developers can add a node selector to the
pods they create to ensure the pods get scheduled on those nodes.

A pod is not scheduled if the Pod object contains a node selector, but no node has a matching label.

IMPORTANT

If you are using node selectors and node affinity in the same pod configuration, the
following rules control pod placement onto nodes:

If you configure both nodeSelector and nodeAffinity, both conditions must be
satisfied for the pod to be scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types,
then the pod can be scheduled onto a node if one of the nodeSelectorTerms is
satisfied.

If you specify multiple matchExpressions associated with nodeSelectorTerms,
then the pod can be scheduled onto a node only if all matchExpressions are
satisfied.

spec:
....
 template:
....
 spec:
 tolerations:
 - key: "key2"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3600

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

105

1

1

Node selectors on specific pods and nodes

You can control which node a specific pod is scheduled on by using node selectors and labels.
To use node selectors and labels, first label the node to avoid pods being descheduled, then add the
node selector to the pod.

NOTE

You cannot add a node selector directly to an existing scheduled pod. You must label
the object that controls the pod, such as deployment config.

For example, the following Node object has the region: east label:

Sample Node object with a label

Label to match the pod node selector.

A pod has the type: user-node,region: east node selector:

Sample Pod object with node selectors

Node selectors to match the node label.

kind: Node
apiVersion: v1
metadata:
 name: ip-10-0-131-14.ec2.internal
 selfLink: /api/v1/nodes/ip-10-0-131-14.ec2.internal
 uid: 7bc2580a-8b8e-11e9-8e01-021ab4174c74
 resourceVersion: '478704'
 creationTimestamp: '2019-06-10T14:46:08Z'
 labels:
 beta.kubernetes.io/os: linux
 failure-domain.beta.kubernetes.io/zone: us-east-1a
 node.openshift.io/os_version: '4.5'
 node-role.kubernetes.io/worker: ''
 failure-domain.beta.kubernetes.io/region: us-east-1
 node.openshift.io/os_id: rhcos
 beta.kubernetes.io/instance-type: m4.large
 kubernetes.io/hostname: ip-10-0-131-14
 beta.kubernetes.io/arch: amd64
 region: east 1

apiVersion: v1
kind: Pod

....

spec:
 nodeSelector: 1
 region: east
 type: user-node

OpenShift Container Platform 4.5 Nodes

106

When you create the pod using the example pod spec, it can be scheduled on the example node.

Default cluster-wide node selectors

With default cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container
Platform adds the default node selectors to the pod and schedules the pod on nodes with matching
labels.
For example, the following Scheduler object has the default cluster-wide region=east and
type=user-node node selectors:

Example Scheduler Operator Custom Resource

A node in that cluster has the type=user-node,region=east labels:

Example Node object

Example Pod object with a node selector

When you create the pod using the example pod spec in the example cluster, the pod is created with
the cluster-wide node selector and is scheduled on the labeled node:

Example pod list with the pod on the labeled node

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
...

spec:
 defaultNodeSelector: type=user-node,region=east
...

apiVersion: v1
kind: Node
metadata:
 name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
...
 labels:
 region: east
 type: user-node
...

apiVersion: v1
kind: Pod
...

spec:
 nodeSelector:
 region: east
...

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

107

NOTE

If the project where you create the pod has a project node selector, that selector
takes preference over a cluster-wide node selector. Your pod is not created or
scheduled if the pod does not have the project node selector.

Project node selectors

With project node selectors, when you create a pod in this project, OpenShift Container Platform
adds the node selectors to the pod and schedules the pods on a node with matching labels. If there is
a cluster-wide default node selector, a project node selector takes preference.
For example, the following project has the region=east node selector:

Example Namespace object

The following node has the type=user-node,region=east labels:

Example Node object

When you create the pod using the example pod spec in this example project, the pod is created with
the project node selectors and is scheduled on the labeled node:

Example Pod object

pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
<none> <none>

apiVersion: v1
kind: Namespace
metadata:
 name: east-region
 annotations:
 openshift.io/node-selector: "region=east"
...

apiVersion: v1
kind: Node
metadata:
 name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
...
 labels:
 region: east
 type: user-node
...

apiVersion: v1
kind: Pod
metadata:
 namespace: east-region
...
spec:
 nodeSelector:

OpenShift Container Platform 4.5 Nodes

108

Example pod list with the pod on the labeled node

A pod in the project is not created or scheduled if the pod contains different node selectors. For
example, if you deploy the following pod into the example project, it is not be created:

Example Pod object with an invalid node selector

2.7.2. Using node selectors to control pod placement

You can use node selectors on pods and labels on nodes to control where the pod is scheduled. With
node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching
labels.

You add labels to a node, a machine set, or a machine config. Adding the label to the machine set
ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or
machine config do not persist if the node or machine goes down.

To add node selectors to an existing pod, add a node selector to the controlling object for that pod, such
as a ReplicaSet object, DaemonSet object, StatefulSet object, Deployment object, or
DeploymentConfig object. Any existing pods under that controlling object are recreated on a node with
a matching label. If you are creating a new pod, you can add the node selector directly to the Pod spec.

NOTE

You cannot add a node selector directly to an existing scheduled pod.

Prerequisites

To add a node selector to existing pods, determine the controlling object for that pod. For example, the
router-default-66d5cf9464-m2g75 pod is controlled by the router-default-66d5cf9464 replica set:

$ oc describe pod router-default-66d5cf9464-7pwkc

Name: router-default-66d5cf9464-7pwkc

 region: east
 type: user-node
...

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
<none> <none>

apiVersion: v1
kind: Pod
...

spec:
 nodeSelector:
 region: west

....

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

109

Namespace: openshift-ingress

....

Controlled By: ReplicaSet/router-default-66d5cf9464

The web console lists the controlling object under ownerReferences in the pod YAML:

 ownerReferences:
 - apiVersion: apps/v1
 kind: ReplicaSet
 name: router-default-66d5cf9464
 uid: d81dd094-da26-11e9-a48a-128e7edf0312
 controller: true
 blockOwnerDeletion: true

Procedure

1. Add labels to a node by using a machine set or editing the node directly:

Use a MachineSet object to add labels to nodes managed by the machine set when a node
is created:

a. Run the following command to add labels to a MachineSet object:

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

For example:

$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

Example MachineSet object

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet

....

spec:
...
 template:
 metadata:
...
 spec:

OpenShift Container Platform 4.5 Nodes

110

1

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

b. Verify that the labels are added to the node:

Example output

2. Add the matching node selector a pod:

To add a node selector to existing and future pods, add a node selector to the controlling
object for the pods:

Example ReplicaSet object with labels

Add the node selector.

 metadata:
 labels:
 region: east
 type: user-node
....

$ oc label nodes <name> <key>=<value>

$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ip-10-0-142-25.ec2.internal Ready worker 17m v1.18.3+002a51f

kind: ReplicaSet

....

spec:

....

 template:
 metadata:
 creationTimestamp: null
 labels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 pod-template-hash: 66d5cf9464
 spec:
 nodeSelector:
 beta.kubernetes.io/os: linux
 node-role.kubernetes.io/worker: ''
 type: user-node 1

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

111

To add a node selector to a specific, new pod, add the selector to the Pod object directly:

Example Pod object with a node selector

NOTE

You cannot add a node selector directly to an existing scheduled pod.

2.7.3. Creating default cluster-wide node selectors

You can use default cluster-wide node selectors on pods together with labels on nodes to constrain all
pods created in a cluster to specific nodes.

With cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform
adds the default node selectors to the pod and schedules the pod on nodes with matching labels.

You configure cluster-wide node selectors by editing the Scheduler Operator custom resource (CR).
You add labels to a node, a machine set, or a machine config. Adding the label to the machine set
ensures that if the node or machine goes down, new nodes have the label. Labels added to a node or
machine config do not persist if the node or machine goes down.

NOTE

You can add additional key/value pairs to a pod. But you cannot add a different value for
a default key.

Procedure

To add a default cluster-wide node selector:

1. Edit the Scheduler Operator CR to add the default cluster-wide node selectors:

Example Scheduler Operator CR with a node selector

apiVersion: v1
kind: Pod

....

spec:
 nodeSelector:
 region: east
 type: user-node

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
...

spec:
 defaultNodeSelector: type=user-node,region=east 1

OpenShift Container Platform 4.5 Nodes

112

1

1

Add a node selector with the appropriate <key>:<value> pairs.

After making this change, wait for the pods in the openshift-kube-apiserver project to
redeploy. This can take several minutes. The default cluster-wide node selector does not take
effect until the pods redeploy.

2. Add labels to a node by using a machine set or editing the node directly:

Use a machine set to add labels to nodes managed by the machine set when a node is
created:

a. Run the following command to add labels to a MachineSet object:

Add a <key>/<value> pair for each label.

For example:

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

Example output

c. Redeploy the nodes associated with that machine set by scaling down to 0 and scaling

 mastersSchedulable: false
 policy:
 name: ""

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api 1

$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

$ oc edit MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
...
spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:
 region: east
 type: user-node

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

113

c. Redeploy the nodes associated with that machine set by scaling down to 0 and scaling
up the nodes:
For example:

d. When the nodes are ready and available, verify that the label is added to the nodes by
using the oc get command:

For example:

Example output

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

b. Verify that the labels are added to the node using the oc get command:

For example:

Example output

2.7.4. Creating project-wide node selectors

You can use node selectors in a project together with labels on nodes to constrain all pods created in

$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc get nodes -l <key>=<value>

$ oc get nodes -l type=user-node

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.18.3+002a51f

$ oc label nodes <name> <key>=<value>

$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 type=user-node
region=east

$ oc get nodes -l <key>=<value>,<key>=<value>

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.18.3+002a51f

OpenShift Container Platform 4.5 Nodes

114

You can use node selectors in a project together with labels on nodes to constrain all pods created in
that project to the labeled nodes.

When you create a pod in this project, OpenShift Container Platform adds the node selectors to the
pods in the project and schedules the pods on a node with matching labels in the project. If there is a
cluster-wide default node selector, a project node selector takes preference.

You add node selectors to a project by editing the Namespace object to add the openshift.io/node-
selector parameter. You add labels to a node, a machine set, or a machine config. Adding the label to
the machine set ensures that if the node or machine goes down, new nodes have the label. Labels added
to a node or machine config do not persist if the node or machine goes down.

A pod is not scheduled if the Pod object contains a node selector, but no project has a matching node
selector. When you create a pod from that spec, you receive an error similar to the following message:

Example error message

NOTE

You can add additional key/value pairs to a pod. But you cannot add a different value for
a project key.

Procedure

To add a default project node selector:

1. Create a project or edit an existing project to add the openshift.io/node-selector parameter:

$ oc edit project <name>

Error from server (Forbidden): error when creating "pod.yaml": pods "pod-4" is forbidden: pod node
label selector conflicts with its project node label selector

apiVersion: project.openshift.io/v1
kind: Project
metadata:
 annotations:
 openshift.io/node-selector: "type=user-node,region=east" 1
 openshift.io/description: ""
 openshift.io/display-name: ""
 openshift.io/requester: kube:admin
 openshift.io/sa.scc.mcs: s0:c30,c5
 openshift.io/sa.scc.supplemental-groups: 1000880000/10000
 openshift.io/sa.scc.uid-range: 1000880000/10000
 creationTimestamp: "2021-05-10T12:35:04Z"
 labels:
 kubernetes.io/metadata.name: demo
 name: demo
 resourceVersion: "145537"
 uid: 3f8786e3-1fcb-42e3-a0e3-e2ac54d15001
spec:
 finalizers:
 - kubernetes

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

115

1 Add the openshift.io/node-selector with the appropriate <key>:<value> pairs.

2. Add labels to a node by using a machine set or editing the node directly:

Use a MachineSet object to add labels to nodes managed by the machine set when a node
is created:

a. Run the following command to add labels to a MachineSet object:

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

For example:

$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

b. Verify that the labels are added to the MachineSet object by using the oc edit
command:
For example:

Example output

c. Redeploy the nodes associated with that machine set:
For example:

d. When the nodes are ready and available, verify that the label is added to the nodes by

$ oc edit MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
...
spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:
 region: east
 type: user-node

$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

OpenShift Container Platform 4.5 Nodes

116

d. When the nodes are ready and available, verify that the label is added to the nodes by
using the oc get command:

For example:

Example output

Add labels directly to a node:

a. Edit the Node object to add labels:

For example, to label a node:

b. Verify that the labels are added to the Node object using the oc get command:

For example:

Example output

2.8. RUNNING A CUSTOM SCHEDULER

You can run multiple custom schedulers alongside the default scheduler and configure which scheduler
to use for each pod.

IMPORTANT

It is supported to use a custom scheduler with OpenShift Container Platform, but Red
Hat does not directly support the functionality of the custom scheduler.

For information on how to configure the default scheduler, see Configuring the default
scheduler to control pod placement.

To schedule a given pod using a specific scheduler, specify the name of the scheduler in that Pod

$ oc label MachineSet abc612-msrtw-worker-us-east-1c type=user-node region=east

$ oc get nodes -l type=user-node

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.18.3+002a51f

$ oc label <resource> <name> <key>=<value>

$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-c-tgq49 type=user-node
region=east

$ oc get nodes -l <key>=<value>

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.18.3+002a51f

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

117

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-default

To schedule a given pod using a specific scheduler, specify the name of the scheduler in that Pod
specification.

2.8.1. Deploying a custom scheduler

To include a custom scheduler in your cluster, include the image for a custom scheduler in a deployment.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have a scheduler binary.

NOTE

Information on how to create a scheduler binary is outside the scope of this
document. For an example, see Configure Multiple Schedulers in the Kubernetes
documentation. Note that the actual functionality of your custom scheduler is not
supported by Red Hat.

You have created an image containing the scheduler binary and pushed it to a registry.

Procedure

1. Create a file that contains the deployment resources for the custom scheduler:

Example custom-scheduler.yaml file

apiVersion: v1
kind: ServiceAccount
metadata:
 name: custom-scheduler
 namespace: kube-system 1

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: custom-scheduler-as-kube-scheduler
subjects:
- kind: ServiceAccount
 name: custom-scheduler
 namespace: kube-system 2
roleRef:
 kind: ClusterRole
 name: system:kube-scheduler
 apiGroup: rbac.authorization.k8s.io

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 component: scheduler
 tier: control-plane
 name: custom-scheduler

OpenShift Container Platform 4.5 Nodes

118

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-custom-scheduler-deploying-pods_nodes-custom-scheduler
https://kubernetes.io/docs/tasks/administer-cluster/configure-multiple-schedulers

1 2 3

4

5

This procedure uses the kube-system namespace, but you can use the namespace of
your choosing.

The command for your custom scheduler might require different arguments. For example,
you can pass configuration as a mounted volume using the --config argument.

Specify the container image that you created for the custom scheduler.

2. Create the deployment resources in the cluster:

 namespace: kube-system 3
spec:
 selector:
 matchLabels:
 component: scheduler
 tier: control-plane
 replicas: 1
 template:
 metadata:
 labels:
 component: scheduler
 tier: control-plane
 version: second
 spec:
 serviceAccountName: custom-scheduler
 containers:
 - command:
 - /usr/local/bin/kube-scheduler
 - --address=0.0.0.0
 - --leader-elect=false
 - --scheduler-name=custom-scheduler 4
 image: "<namespace>/<image_name>:<tag>" 5
 livenessProbe:
 httpGet:
 path: /healthz
 port: 10251
 initialDelaySeconds: 15
 name: kube-second-scheduler
 readinessProbe:
 httpGet:
 path: /healthz
 port: 10251
 resources:
 requests:
 cpu: '0.1'
 securityContext:
 privileged: false
 volumeMounts: []
 hostNetwork: false
 hostPID: false
 volumes: []

$ oc create -f custom-scheduler.yaml

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

119

Verification

Verify that the scheduler pod is running:

The custom scheduler pod is listed as Running:

2.8.2. Deploying pods using a custom scheduler

After the custom scheduler is deployed in your cluster, you can configure pods to use that scheduler
instead of the default scheduler.

NOTE

Each scheduler has a separate view of resources in a cluster. For that reason, each
scheduler should operate over its own set of nodes.

If two or more schedulers operate on the same node, they might intervene with each
other and schedule more pods on the same node than there are available resources for.
Pods might get rejected due to insufficient resources in this case.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

The custom scheduler has been deployed in the cluster.

Procedure

1. If your cluster uses role-based access control (RBAC), add the custom scheduler name to the
system:kube-scheduler cluster role.

a. Edit the system:kube-scheduler cluster role:

b. Add the name of the custom scheduler to the resourceNames lists for the leases and
endpoints resources:

$ oc get pods -n kube-system

NAME READY STATUS RESTARTS AGE
custom-scheduler-6cd7c4b8bc-854zb 1/1 Running 0 2m

$ oc edit clusterrole system:kube-scheduler

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 annotations:
 rbac.authorization.kubernetes.io/autoupdate: "true"
 creationTimestamp: "2021-07-07T10:19:14Z"
 labels:
 kubernetes.io/bootstrapping: rbac-defaults
 name: system:kube-scheduler
 resourceVersion: "125"
 uid: 53896c70-b332-420a-b2a4-f72c822313f2

OpenShift Container Platform 4.5 Nodes

120

1 2 This example uses custom-scheduler as the custom scheduler name.

2. Create a Pod configuration and specify the name of the custom scheduler in the
schedulerName parameter:

Example custom-scheduler-example.yaml file

rules:
...
- apiGroups:
 - coordination.k8s.io
 resources:
 - leases
 verbs:
 - create
- apiGroups:
 - coordination.k8s.io
 resourceNames:
 - kube-scheduler
 - custom-scheduler 1
 resources:
 - leases
 verbs:
 - get
 - update
- apiGroups:
 - ""
 resources:
 - endpoints
 verbs:
 - create
- apiGroups:
 - ""
 resourceNames:
 - kube-scheduler
 - custom-scheduler 2
 resources:
 - endpoints
 verbs:
 - get
 - update
...

apiVersion: v1
kind: Pod
metadata:
 name: custom-scheduler-example
 labels:
 name: custom-scheduler-example
spec:
 schedulerName: custom-scheduler 1
 containers:
 - name: pod-with-second-annotation-container
 image: docker.io/ocpqe/hello-pod

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

121

1 The name of the custom scheduler to use, which is custom-scheduler in this example.
When no scheduler name is supplied, the pod is automatically scheduled using the default
scheduler.

3. Create the pod:

Verification

1. Enter the following command to check that the pod was created:

The custom-scheduler-example pod is listed in the output:

2. Enter the following command to check that the custom scheduler has scheduled the pod:

The scheduler, custom-scheduler, is listed as shown in the following truncated output:

2.8.3. Additional resources

Learning container best practices

2.9. EVICTING PODS USING THE DESCHEDULER

While the scheduler is used to determine the most suitable node to host a new pod, the descheduler can
be used to evict a running pod so that the pod can be rescheduled onto a more suitable node.

IMPORTANT

The descheduler is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

$ oc create -f custom-scheduler-example.yaml

$ oc get pod custom-scheduler-example

NAME READY STATUS RESTARTS AGE
custom-scheduler-example 1/1 Running 0 4m

$ oc describe pod custom-scheduler-example

Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal Scheduled <unknown> custom-scheduler Successfully
assigned default/custom-scheduler-example to <node_name>

OpenShift Container Platform 4.5 Nodes

122

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/images/#images-create-guidelines_create-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-about
https://access.redhat.com/support/offerings/techpreview/

2.9.1. About the descheduler

You can use the descheduler to evict pods based on specific strategies so that the pods can be
rescheduled onto more appropriate nodes.

You can benefit from descheduling running pods in situations such as the following:

Nodes are underutilized or overutilized.

Pod and node affinity requirements, such as taints or labels, have changed and the original
scheduling decisions are no longer appropriate for certain nodes.

Node failure requires pods to be moved.

New nodes are added to clusters.

Pods have been restarted too many times.

IMPORTANT

The descheduler does not schedule replacement of evicted pods. The scheduler
automatically performs this task for the evicted pods.

When the descheduler decides to evict pods from a node, it employs the following general mechanism:

Critical pods with priorityClassName set to system-cluster-critical or system-node-critical
are never evicted.

Static, mirrored, or stand-alone pods that are not part of a replication controller, replica set,
deployment, or job are never evicted because these pods will not be recreated.

Pods associated with daemon sets are never evicted.

Pods with local storage are never evicted.

Best effort pods are evicted before burstable and guaranteed pods.

All types of pods with the descheduler.alpha.kubernetes.io/evict annotation are evicted. This
annotation is used to override checks that prevent eviction, and the user can select which pod is
evicted. Users should know how and if the pod will be recreated.

Pods subject to pod disruption budget (PDB) are not evicted if descheduling violates its pod
disruption budget (PDB). The pods are evicted by using eviction subresource to handle PDB.

2.9.2. Descheduler strategies

The following descheduler strategies are available:

Low node utilization

The LowNodeUtilization strategy finds nodes that are underutilized and evicts pods, if possible,
from other nodes in the hope that recreation of evicted pods will be scheduled on these
underutilized nodes.
The underutilization of nodes is determined by several configurable threshold parameters: CPU,
memory, and number of pods. If a node’s usage is below the configured thresholds for all parameters
(CPU, memory, and number of pods), then the node is considered to be underutilized.

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

123

You can also set a target threshold for CPU, memory, and number of pods. If a node’s usage is above
the configured target thresholds for any of the parameters, then the node’s pods might be
considered for eviction.

Additionally, you can use the NumberOfNodes parameter to set the strategy to activate only when
the number of underutilized nodes is above the configured value. This can be helpful in large clusters
where a few nodes might be underutilized frequently or for a short period of time.

Duplicate pods

The RemoveDuplicates strategy ensures that there is only one pod associated with a replica set,
replication controller, deployment, or job running on same node. If there are more, then those
duplicate pods are evicted for better spreading of pods in a cluster.
This situation could occur after a node failure, when a pod is moved to another node, leading to more
than one pod associated with a replica set, replication controller, deployment, or job on that node.
After the failed node is ready again, this strategy evicts the duplicate pod.

Violation of inter-pod anti-affinity

The RemovePodsViolatingInterPodAntiAffinity strategy ensures that pods violating inter-pod
anti-affinity are removed from nodes.
This situation could occur when anti-affinity rules are created for pods that are already running on
the same node.

Violation of node affinity

The RemovePodsViolatingNodeAffinity strategy ensures that pods violating node affinity are
removed from nodes.
This situation could occur if a node no longer satisfies a pod’s affinity rule. If another node is available
that satisfies the affinity rule, then the pod is evicted.

Violation of node taints

The RemovePodsViolatingNodeTaints strategy ensures that pods violating NoSchedule taints on
nodes are removed.
This situation could occur if a pod is set to tolerate a taint key=value:NoSchedule and is running on
a tainted node. If the node’s taint is updated or removed, the taint is no longer satisfied by the pod’s
tolerations and the pod is evicted.

Too many restarts

The RemovePodsHavingTooManyRestarts strategy ensures that pods that have been restarted
too many times are removed from nodes.
This situation could occur if a pod is scheduled on a node that is unable to start it. For example, if the
node is having network issues and is unable to mount a networked persistent volume, then the pod
should be evicted so that it can be scheduled on another node. Another example is if the pod is
crashlooping.

This strategy has two configurable parameters: PodRestartThreshold and IncludingInitContainers.
If a pod is restarted more than the configured PodRestartThreshold value, then the pod is evicted.
You can use the IncludingInitContainers parameter to specify whether restarts for Init Containers
should be calculated into the PodRestartThreshold value.

2.9.3. Installing the descheduler

The descheduler is not available by default. To enable the descheduler, you must install the Kube

OpenShift Container Platform 4.5 Nodes

124

The descheduler is not available by default. To enable the descheduler, you must install the Kube
Descheduler Operator from OperatorHub. After the Kube Descheduler Operator is installed, you can
then configure the eviction strategies.

Prerequisites

Cluster administrator privileges.

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Create the required namespace for the Kube Descheduler Operator.

a. Navigate to Administration → Namespaces and click Create Namespace.

b. Enter openshift-kube-descheduler-operator in the Name field and click Create.

3. Install the Kube Descheduler Operator.

a. Navigate to Operators → OperatorHub.

b. Type Kube Descheduler Operator into the filter box.

c. Select the Kube Descheduler Operator and click Install.

d. On the Install Operator page, select A specific namespace on the cluster. Select
openshift-kube-descheduler-operator from the drop-down menu.

e. Adjust the values for the Update Channel and Approval Strategy to the desired values.

f. Click Install.

4. Create a descheduler instance.

a. From the Operators → Installed Operators page, click the Kube Descheduler Operator.

b. Select the Kube Descheduler tab and click Create KubeDescheduler.

c. Edit the settings as necessary and click Create.

You can now configure the strategies for the descheduler. There are no strategies enabled by default.

2.9.4. Configuring descheduler strategies

You can configure which strategies the descheduler uses to evict pods.

Prerequisites

Cluster administrator privileges.

Procedure

1. Edit the KubeDescheduler object:

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

125

1

2

3

2. Specify one or more strategies in the spec.strategies section.

The LowNodeUtilization strategy provides additional parameters, such as CPUThreshold
and MemoryThreshold, that you can optionally configure.

The RemoveDuplicates, RemovePodsViolatingInterPodAntiAffinity,
RemovePodsViolatingNodeAffinity, and RemovePodsViolatingNodeTaints strategies
do not have any additional parameters to configure.

The RemovePodsHavingTooManyRestarts strategy requires the PodRestartThreshold
parameter to be set. It also provides the optional IncludingInitContainers parameter.

You can enable multiple strategies and the order that the strategies are specified in is not
important.

3. Save the file to apply the changes.

2.9.5. Configuring additional descheduler settings

$ oc edit kubedeschedulers.operator.openshift.io cluster -n openshift-kube-descheduler-
operator

apiVersion: operator.openshift.io/v1beta1
kind: KubeDescheduler
metadata:
 name: cluster
 namespace: openshift-kube-descheduler-operator
spec:
 deschedulingIntervalSeconds: 3600
 strategies:
 - name: "LowNodeUtilization" 1
 params:
 - name: "CPUThreshold"
 value: "10"
 - name: "MemoryThreshold"
 value: "20"
 - name: "PodsThreshold"
 value: "30"
 - name: "MemoryTargetThreshold"
 value: "40"
 - name: "CPUTargetThreshold"
 value: "50"
 - name: "PodsTargetThreshold"
 value: "60"
 - name: "NumberOfNodes"
 value: "3"
 - name: "RemoveDuplicates" 2
 - name: "RemovePodsHavingTooManyRestarts" 3
 params:
 - name: "PodRestartThreshold"
 value: "10"
 - name: "IncludingInitContainers"
 value: "false"

OpenShift Container Platform 4.5 Nodes

126

1

2

3

You can configure additional settings for the descheduler, such as how frequently it runs.

Prerequisites

Cluster administrator privileges.

Procedure

1. Edit the KubeDescheduler object:

2. Configure additional settings as necessary:

Set number of seconds between descheduler runs. A value of 0 in this field runs the
descheduler once and exits.

Set one or more flags to append to the descheduler pod. This flag must be in the format
ready to pass to the binary.

Set the descheduler container image to deploy.

3. Save the file to apply the changes.

2.9.6. Uninstalling the descheduler

You can remove the descheduler from your cluster by removing the descheduler instance and
uninstalling the Kube Descheduler Operator. This procedure also cleans up the KubeDescheduler CRD
and openshift-kube-descheduler-operator namespace.

Prerequisites

Cluster administrator privileges.

Access to the OpenShift Container Platform web console.

Procedure

1. Log in to the OpenShift Container Platform web console.

$ oc edit kubedeschedulers.operator.openshift.io cluster -n openshift-kube-descheduler-
operator

apiVersion: operator.openshift.io/v1beta1
kind: KubeDescheduler
metadata:
 name: cluster
 namespace: openshift-kube-descheduler-operator
spec:
 deschedulingIntervalSeconds: 3600 1
 flags:
 - --dry-run 2
 image: quay.io/openshift/origin-descheduler:4.5 3
...

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

127

2. Delete the descheduler instance.

a. From the Operators → Installed Operators page, click Kube Descheduler Operator.

b. Select the Kube Descheduler tab.

c. Click the Options menu next to the cluster entry and select Delete
KubeDescheduler.

d. In the confirmation dialog, click Delete.

3. Uninstall the Kube Descheduler Operator.

a. Navigate to Operators → Installed Operators,

b. Click the Options menu next to the Kube Descheduler Operator entry and select
Uninstall Operator.

c. In the confirmation dialog, click Uninstall.

4. Delete the openshift-kube-descheduler-operator namespace.

a. Navigate to Administration → Namespaces.

b. Enter openshift-kube-descheduler-operator into the filter box.

c. Click the Options menu next to the openshift-kube-descheduler-operator entry
and select Delete Namespace.

d. In the confirmation dialog, enter openshift-kube-descheduler-operator and click Delete.

5. Delete the KubeDescheduler CRD.

a. Navigate to Administration → Custom Resource Definitions.

b. Enter KubeDescheduler into the filter box.

c. Click the Options menu next to the KubeDescheduler entry and select Delete
CustomResourceDefinition.

d. In the confirmation dialog, click Delete.

OpenShift Container Platform 4.5 Nodes

128

CHAPTER 3. USING JOBS AND DAEMONSETS

3.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY
WITH DAEMON SETS

As an administrator, you can create and use daemon sets to run replicas of a pod on specific or all nodes
in an OpenShift Container Platform cluster.

A daemon set ensures that all (or some) nodes run a copy of a pod. As nodes are added to the cluster,
pods are added to the cluster. As nodes are removed from the cluster, those pods are removed through
garbage collection. Deleting a daemon set will clean up the pods it created.

You can use daemon sets to create shared storage, run a logging pod on every node in your cluster, or
deploy a monitoring agent on every node.

For security reasons, only cluster administrators can create daemon sets.

For more information on daemon sets, see the Kubernetes documentation.

IMPORTANT

Daemon set scheduling is incompatible with project’s default node selector. If you fail to
disable it, the daemon set gets restricted by merging with the default node selector. This
results in frequent pod recreates on the nodes that got unselected by the merged node
selector, which in turn puts unwanted load on the cluster.

3.1.1. Scheduled by default scheduler

A daemon set ensures that all eligible nodes run a copy of a pod. Normally, the node that a pod runs on
is selected by the Kubernetes scheduler. However, previously daemon set pods are created and
scheduled by the daemon set controller. That introduces the following issues:

Inconsistent pod behavior: Normal pods waiting to be scheduled are created and in Pending
state, but daemon set pods are not created in Pending state. This is confusing to the user.

Pod preemption is handled by default scheduler. When preemption is enabled, the daemon set
controller will make scheduling decisions without considering pod priority and preemption.

The ScheduleDaemonSetPods feature, enabled by default in OpenShift Container Platform, lets you to
schedule daemon sets using the default scheduler instead of the daemon set controller, by adding the
NodeAffinity term to the daemon set pods, instead of the spec.nodeName term. The default scheduler
is then used to bind the pod to the target host. If node affinity of the daemon set pod already exists, it is
replaced. The daemon set controller only performs these operations when creating or modifying
daemon set pods, and no changes are made to the spec.template of the daemon set.

In addition, a node.kubernetes.io/unschedulable:NoSchedule toleration is added automatically to

nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchFields:
 - key: metadata.name
 operator: In
 values:
 - target-host-name

CHAPTER 3. USING JOBS AND DAEMONSETS

129

http://kubernetes.io/docs/admin/daemons/

In addition, a node.kubernetes.io/unschedulable:NoSchedule toleration is added automatically to
daemon set pods. The default scheduler ignores unschedulable Nodes when scheduling daemon set
pods.

3.1.2. Creating daemonsets

When creating daemon sets, the nodeSelector field is used to indicate the nodes on which the daemon
set should deploy replicas.

Prerequisites

Before you start using daemon sets, disable the default project-wide node selector in your
namespace, by setting the namespace annotation openshift.io/node-selector to an empty
string:

If you are creating a new project, overwrite the default node selector:

Procedure

To create a daemon set:

1. Define the daemon set yaml file:

$ oc patch namespace myproject -p \
 '{"metadata": {"annotations": {"openshift.io/node-selector": ""}}}'

`oc adm new-project <name> --node-selector=""`.

apiVersion: apps/v1
kind: DaemonSet
metadata:
 name: hello-daemonset
spec:
 selector:
 matchLabels:
 name: hello-daemonset 1
 template:
 metadata:
 labels:
 name: hello-daemonset 2
 spec:
 nodeSelector: 3
 role: worker
 containers:
 - image: openshift/hello-openshift
 imagePullPolicy: Always
 name: registry
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 serviceAccount: default
 terminationGracePeriodSeconds: 10

OpenShift Container Platform 4.5 Nodes

130

1

2

3

The label selector that determines which pods belong to the daemon set.

The pod template’s label selector. Must match the label selector above.

The node selector that determines on which nodes pod replicas should be deployed. A
matching label must be present on the node.

2. Create the daemon set object:

3. To verify that the pods were created, and that each node has a pod replica:

a. Find the daemonset pods:

Example output

b. View the pods to verify the pod has been placed onto the node:

Example output

Example output

IMPORTANT

If you update a daemon set pod template, the existing pod replicas are not
affected.

If you delete a daemon set and then create a new daemon set with a different
template but the same label selector, it recognizes any existing pod replicas as
having matching labels and thus does not update them or create new replicas
despite a mismatch in the pod template.

If you change node labels, the daemon set adds pods to nodes that match the
new labels and deletes pods from nodes that do not match the new labels.

To update a daemon set, force new pod replicas to be created by deleting the old replicas
or nodes.

$ oc create -f daemonset.yaml

$ oc get pods

hello-daemonset-cx6md 1/1 Running 0 2m
hello-daemonset-e3md9 1/1 Running 0 2m

$ oc describe pod/hello-daemonset-cx6md|grep Node

Node: openshift-node01.hostname.com/10.14.20.134

$ oc describe pod/hello-daemonset-e3md9|grep Node

Node: openshift-node02.hostname.com/10.14.20.137

CHAPTER 3. USING JOBS AND DAEMONSETS

131

3.2. RUNNING TASKS IN PODS USING JOBS

A job executes a task in your OpenShift Container Platform cluster.

A job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a job will clean up any pod replicas it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

Sample Job specification

1. The pod replicas a job should run in parallel.

2. Successful pod completions are needed to mark a job completed.

3. The maximum duration the job can run.

4. The number of retries for a job.

5. The template for the pod the controller creates.

6. The restart policy of the pod.

See the Kubernetes documentation for more information about jobs.

3.2.1. Understanding jobs and cron jobs

A job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a job cleans up any pods it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

There are two possible resource types that allow creating run-once objects in OpenShift Container
Platform:

Job

A regular job is a run-once object that creates a task and ensures the job finishes.

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 activeDeadlineSeconds: 1800 3
 backoffLimit: 6 4
 template: 5
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 6

OpenShift Container Platform 4.5 Nodes

132

http://kubernetes.io/docs/user-guide/jobs/

There are three main types of task suitable to run as a job:

Non-parallel jobs:

A job that starts only one pod, unless the pod fails.

The job is complete as soon as its pod terminates successfully.

Parallel jobs with a fixed completion count:

a job that starts multiple pods.

The job represents the overall task and is complete when there is one successful pod for
each value in the range 1 to the completions value.

Parallel jobs with a work queue:

A job with multiple parallel worker processes in a given pod.

OpenShift Container Platform coordinates pods to determine what each should work on or
use an external queue service.

Each pod is independently capable of determining whether or not all peer pods are
complete and that the entire job is done.

When any pod from the job terminates with success, no new pods are created.

When at least one pod has terminated with success and all pods are terminated, the job is
successfully completed.

When any pod has exited with success, no other pod should be doing any work for this task
or writing any output. Pods should all be in the process of exiting.

For more information about how to make use of the different types of job, see Job Patterns in the
Kubernetes documentation.

Cron job

A job can be scheduled to run multiple times, using a cron job.

A cron job builds on a regular job by allowing you to specify how the job should be run. Cron jobs are part
of the Kubernetes API, which can be managed with oc commands like other object types.

Cron jobs are useful for creating periodic and recurring tasks, like running backups or sending emails.
Cron jobs can also schedule individual tasks for a specific time, such as if you want to schedule a job for a
low activity period. A cron job creates a Job object based on the timezone configured on the control
plane node that runs the cronjob controller.

WARNING

A cron job creates a Job object approximately once per execution time of its
schedule, but there are circumstances in which it fails to create a job or two jobs
might be created. Therefore, jobs must be idempotent and you must configure
history limits.

CHAPTER 3. USING JOBS AND DAEMONSETS

133

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/#job-patterns
http://kubernetes.io/docs/user-guide/cron-jobs

3.2.2. Understanding how to create jobs

Both resource types require a job configuration that consists of the following key parts:

A pod template, which describes the pod that OpenShift Container Platform creates.

The parallelism parameter, which specifies how many pods running in parallel at any point in
time should execute a job.

For non-parallel jobs, leave unset. When unset, defaults to 1.

The completions parameter, specifying how many successful pod completions are needed to
finish a job.

For non-parallel jobs, leave unset. When unset, defaults to 1.

For parallel jobs with a fixed completion count, specify a value.

For parallel jobs with a work queue, leave unset. When unset defaults to the parallelism
value.

3.2.2.1. Understanding how to set a maximum duration for jobs

When defining a job, you can define its maximum duration by setting the activeDeadlineSeconds field.
It is specified in seconds and is not set by default. When not set, there is no maximum duration enforced.

The maximum duration is counted from the time when a first pod gets scheduled in the system, and
defines how long a job can be active. It tracks overall time of an execution. After reaching the specified
timeout, the job is terminated by OpenShift Container Platform.

3.2.2.2. Understanding how to set a job back off policy for pod failure

A job can be considered failed, after a set amount of retries due to a logical error in configuration or
other similar reasons. Failed pods associated with the job are recreated by the controller with an
exponential back off delay (10s, 20s, 40s …) capped at six minutes. The limit is reset if no new failed
pods appear between controller checks.

Use the spec.backoffLimit parameter to set the number of retries for a job.

3.2.2.3. Understanding how to configure a cron job to remove artifacts

Cron jobs can leave behind artifact resources such as jobs or pods. As a user it is important to configure
history limits so that old jobs and their pods are properly cleaned. There are two fields within cron job’s
spec responsible for that:

.spec.successfulJobsHistoryLimit. The number of successful finished jobs to retain (defaults
to 3).

.spec.failedJobsHistoryLimit. The number of failed finished jobs to retain (defaults to 1).

TIP

OpenShift Container Platform 4.5 Nodes

134

TIP

Delete cron jobs that you no longer need:

Doing this prevents them from generating unnecessary artifacts.

You can suspend further executions by setting the spec.suspend to true. All subsequent
executions are suspended until you reset to false.

3.2.3. Known limitations

The job specification restart policy only applies to the pods, and not the job controller. However, the job
controller is hard-coded to keep retrying jobs to completion.

As such, restartPolicy: Never or --restart=Never results in the same behavior as restartPolicy:
OnFailure or --restart=OnFailure. That is, when a job fails it is restarted automatically until it succeeds
(or is manually discarded). The policy only sets which subsystem performs the restart.

With the Never policy, the job controller performs the restart. With each attempt, the job controller
increments the number of failures in the job status and create new pods. This means that with each
failed attempt, the number of pods increases.

With the OnFailure policy, kubelet performs the restart. Each attempt does not increment the number
of failures in the job status. In addition, kubelet will retry failed jobs starting pods on the same nodes.

3.2.4. Creating jobs

You create a job in OpenShift Container Platform by creating a job object.

Procedure

To create a job:

1. Create a YAML file similar to the following:

$ oc delete cronjob/<cron_job_name>

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 activeDeadlineSeconds: 1800 3
 backoffLimit: 6 4
 template: 5
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 6

CHAPTER 3. USING JOBS AND DAEMONSETS

135

1. Optionally, specify how many pod replicas a job should run in parallel; defaults to 1.

For non-parallel jobs, leave unset. When unset, defaults to 1.

2. Optionally, specify how many successful pod completions are needed to mark a job
completed.

For non-parallel jobs, leave unset. When unset, defaults to 1.

For parallel jobs with a fixed completion count, specify the number of completions.

For parallel jobs with a work queue, leave unset. When unset defaults to the parallelism
value.

3. Optionally, specify the maximum duration the job can run.

4. Optionally, specify the number of retries for a job. This field defaults to six.

5. Specify the template for the pod the controller creates.

6. Specify the restart policy of the pod:

Never. Do not restart the job.

OnFailure. Restart the job only if it fails.

Always. Always restart the job.
For details on how OpenShift Container Platform uses restart policy with failed
containers, see the Example States in the Kubernetes documentation.

2. Create the job:

NOTE

You can also create and launch a job from a single command using oc create job. The
following command creates and launches a job similar to the one specified in the previous
example:

3.2.5. Creating cron jobs

You create a cron job in OpenShift Container Platform by creating a job object.

Procedure

To create a cron job:

1. Create a YAML file similar to the following:

$ oc create -f <file-name>.yaml

$ oc create job pi --image=perl -- perl -Mbignum=bpi -wle 'print bpi(2000)'

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: pi

OpenShift Container Platform 4.5 Nodes

136

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states

1 1 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 6

7

8

9

Schedule for the job specified in cron format. In this example, the job will run every
minute.

An optional concurrency policy, specifying how to treat concurrent jobs within a cron
job. Only one of the following concurrent policies may be specified. If not specified, this

defaults to allowing concurrent executions.

Allow allows cron jobs to run concurrently.

Forbid forbids concurrent runs, skipping the next run if the previous has not finished
yet.

Replace cancels the currently running job and replaces it with a new one.

An optional deadline (in seconds) for starting the job if it misses its scheduled time for
any reason. Missed jobs executions will be counted as failed ones. If not specified, there

is no deadline.

An optional flag allowing the suspension of a cron job. If set to true, all subsequent
executions will be suspended.

The number of successful finished jobs to retain (defaults to 3).

The number of failed finished jobs to retain (defaults to 1).

Job template. This is similar to the job example.

Sets a label for jobs spawned by this cron job.

The restart policy of the pod. This does not apply to the job controller.

NOTE

spec:
 schedule: "*/1 * * * *" 1
 concurrencyPolicy: "Replace" 2
 startingDeadlineSeconds: 200 3
 suspend: true 4
 successfulJobsHistoryLimit: 3 5
 failedJobsHistoryLimit: 1 6
 jobTemplate: 7
 spec:
 template:
 metadata:
 labels: 8
 parent: "cronjobpi"
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 9

CHAPTER 3. USING JOBS AND DAEMONSETS

137

https://en.wikipedia.org/wiki/Cron

NOTE

The .spec.successfulJobsHistoryLimit and
.spec.failedJobsHistoryLimit fields are optional. These fields specify how
many completed and failed jobs should be kept. By default, they are set to 3
and 1 respectively. Setting a limit to 0 corresponds to keeping none of the
corresponding kind of jobs after they finish.

2. Create the cron job:

NOTE

You can also create and launch a cron job from a single command using oc create
cronjob. The following command creates and launches a cron job similar to the one
specified in the previous example:

With oc create cronjob, the --schedule option accepts schedules in cron format.

$ oc create -f <file-name>.yaml

$ oc create cronjob pi --image=perl --schedule='*/1 * * * *' -- perl -Mbignum=bpi -wle
'print bpi(2000)'

OpenShift Container Platform 4.5 Nodes

138

https://en.wikipedia.org/wiki/Cron

CHAPTER 4. WORKING WITH NODES

4.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT
CONTAINER PLATFORM CLUSTER

You can list all the nodes in your cluster to obtain information such as status, age, memory usage, and
details about the nodes.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

4.1.1. About listing all the nodes in a cluster

You can get detailed information on the nodes in the cluster.

The following command lists all nodes:

The following example is a cluster with healthy nodes:

Example output

The following example is a cluster with one unhealthy node:

Example output

The conditions that trigger a NotReady status are shown later in this section.

The -o wide option provides additional information on nodes.

Example output

$ oc get nodes

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.18.3
node1.example.com Ready worker 7h v1.18.3
node2.example.com Ready worker 7h v1.18.3

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.20.0
node1.example.com NotReady,SchedulingDisabled worker 7h v1.20.0
node2.example.com Ready worker 7h v1.20.0

$ oc get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP

CHAPTER 4. WORKING WITH NODES

139

The following command lists information about a single node:

For example:

Example output

The following command provides more detailed information about a specific node, including the
reason for the current condition:

For example:

Example output

OS-IMAGE KERNEL-VERSION CONTAINER-
RUNTIME
master.example.com Ready master 171m v1.20.0+39c0afe 10.0.129.108 <none>
Red Hat Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-
240.15.1.el8_3.x86_64 cri-o://1.21.0-30.rhaos4.8.gitf2f339d.el8-dev
node1.example.com Ready worker 72m v1.20.0+39c0afe 10.0.129.222 <none>
Red Hat Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-
240.15.1.el8_3.x86_64 cri-o://1.21.0-30.rhaos4.8.gitf2f339d.el8-dev
node2.example.com Ready worker 164m v1.20.0+39c0afe 10.0.142.150 <none>
Red Hat Enterprise Linux CoreOS 48.83.202103210901-0 (Ootpa) 4.18.0-
240.15.1.el8_3.x86_64 cri-o://1.21.0-30.rhaos4.8.gitf2f339d.el8-dev

$ oc get node <node>

$ oc get node node1.example.com

NAME STATUS ROLES AGE VERSION
node1.example.com Ready worker 7h v1.20.0

$ oc describe node <node>

$ oc describe node node1.example.com

Name: node1.example.com 1
Roles: worker 2
Labels: beta.kubernetes.io/arch=amd64 3
 beta.kubernetes.io/instance-type=m4.large
 beta.kubernetes.io/os=linux
 failure-domain.beta.kubernetes.io/region=us-east-2
 failure-domain.beta.kubernetes.io/zone=us-east-2a
 kubernetes.io/hostname=ip-10-0-140-16
 node-role.kubernetes.io/worker=
Annotations: cluster.k8s.io/machine: openshift-machine-api/ahardin-worker-us-east-2a-
q5dzc 4
 machineconfiguration.openshift.io/currentConfig: worker-
309c228e8b3a92e2235edd544c62fea8
 machineconfiguration.openshift.io/desiredConfig: worker-
309c228e8b3a92e2235edd544c62fea8
 machineconfiguration.openshift.io/state: Done
 volumes.kubernetes.io/controller-managed-attach-detach: true

OpenShift Container Platform 4.5 Nodes

140

CreationTimestamp: Wed, 13 Feb 2019 11:05:57 -0500
Taints: <none> 5
Unschedulable: false
Conditions: 6
 Type Status LastHeartbeatTime LastTransitionTime Reason
Message
 ---- ------ ----------------- ------------------ ------ -------
 OutOfDisk False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientDisk kubelet has sufficient disk space available
 MemoryPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientMemory kubelet has sufficient memory available
 DiskPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasNoDiskPressure kubelet has no disk pressure
 PIDPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientPID kubelet has sufficient PID available
 Ready True Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:07:09 -0500
KubeletReady kubelet is posting ready status
Addresses: 7
 InternalIP: 10.0.140.16
 InternalDNS: ip-10-0-140-16.us-east-2.compute.internal
 Hostname: ip-10-0-140-16.us-east-2.compute.internal
Capacity: 8
 attachable-volumes-aws-ebs: 39
 cpu: 2
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8172516Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7558116Ki
 pods: 250
System Info: 9
 Machine ID: 63787c9534c24fde9a0cde35c13f1f66
 System UUID: EC22BF97-A006-4A58-6AF8-0A38DEEA122A
 Boot ID: f24ad37d-2594-46b4-8830-7f7555918325
 Kernel Version: 3.10.0-957.5.1.el7.x86_64
 OS Image: Red Hat Enterprise Linux CoreOS 410.8.20190520.0 (Ootpa)
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: cri-o://1.16.0-0.6.dev.rhaos4.3.git9ad059b.el8-rc2
 Kubelet Version: v1.18.3
 Kube-Proxy Version: v1.18.3
PodCIDR: 10.128.4.0/24
ProviderID: aws:///us-east-2a/i-04e87b31dc6b3e171
Non-terminated Pods: (13 in total) 10
 Namespace Name CPU Requests CPU Limits
Memory Requests Memory Limits
 --------- ---- ------------ ---------- --------------- -------

 openshift-cluster-node-tuning-operator tuned-hdl5q 0 (0%) 0 (0%) 0
(0%) 0 (0%)

CHAPTER 4. WORKING WITH NODES

141

1

2

3

4

The name of the node.

The role of the node, either master or worker.

The labels applied to the node.

The annotations applied to the node.

 openshift-dns dns-default-l69zr 0 (0%) 0 (0%) 0 (0%)
0 (0%)
 openshift-image-registry node-ca-9hmcg 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-ingress router-default-76455c45c-c5ptv 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-machine-config-operator machine-config-daemon-cvqw9 20m (1%) 0
(0%) 50Mi (0%) 0 (0%)
 openshift-marketplace community-operators-f67fh 0 (0%) 0 (0%)
0 (0%) 0 (0%)
 openshift-monitoring alertmanager-main-0 50m (3%) 50m (3%)
210Mi (2%) 10Mi (0%)
 openshift-monitoring grafana-78765ddcc7-hnjmm 100m (6%) 200m
(13%) 100Mi (1%) 200Mi (2%)
 openshift-monitoring node-exporter-l7q8d 10m (0%) 20m (1%)
20Mi (0%) 40Mi (0%)
 openshift-monitoring prometheus-adapter-75d769c874-hvb85 0 (0%) 0
(0%) 0 (0%) 0 (0%)
 openshift-multus multus-kw8w5 0 (0%) 0 (0%) 0 (0%)
0 (0%)
 openshift-sdn ovs-t4dsn 100m (6%) 0 (0%) 300Mi
(4%) 0 (0%)
 openshift-sdn sdn-g79hg 100m (6%) 0 (0%) 200Mi
(2%) 0 (0%)
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 380m (25%) 270m (18%)
 memory 880Mi (11%) 250Mi (3%)
 attachable-volumes-aws-ebs 0 0
Events: 11
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal NodeHasSufficientPID 6d (x5 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientPID
 Normal NodeAllocatableEnforced 6d kubelet, m01.example.com Updated Node
Allocatable limit across pods
 Normal NodeHasSufficientMemory 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientMemory
 Normal NodeHasNoDiskPressure 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasNoDiskPressure
 Normal NodeHasSufficientDisk 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientDisk
 Normal NodeHasSufficientPID 6d kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientPID
 Normal Starting 6d kubelet, m01.example.com Starting kubelet.
 ...

OpenShift Container Platform 4.5 Nodes

142

5

6

7

8

9

10

11

The taints applied to the node.

The node conditions and status. The conditions stanza lists the Ready, PIDPressure,
PIDPressure, MemoryPressure, DiskPressure and OutOfDisk status. These condition
are described later in this section.

The IP address and host name of the node.

The pod resources and allocatable resources.

Information about the node host.

The pods on the node.

The events reported by the node.

Among the information shown for nodes, the following node conditions appear in the output of the
commands shown in this section:

Table 4.1. Node Conditions

Condition Description

Ready If true, the node is healthy and ready to accept pods. If false, the node is not
healthy and is not accepting pods. If unknown, the node controller has not
received a heartbeat from the node for the node-monitor-grace-period
(the default is 40 seconds).

DiskPressure If true, the disk capacity is low.

MemoryPressure If true, the node memory is low.

PIDPressure If true, there are too many processes on the node.

OutOfDisk If true, the node has insufficient free space on the node for adding new pods.

NetworkUnavailable If true, the network for the node is not correctly configured.

NotReady If true, one of the underlying components, such as the container runtime or
network, is experiencing issues or is not yet configured.

SchedulingDisabled Pods cannot be scheduled for placement on the node.

4.1.2. Listing pods on a node in your cluster

You can list all the pods on a specific node.

Procedure

To list all or selected pods on one or more nodes:

CHAPTER 4. WORKING WITH NODES

143

For example:

To list all or selected pods on selected nodes:

Or:

To list all pods on a specific node, including terminated pods:

4.1.3. Viewing memory and CPU usage statistics on your nodes

You can display usage statistics about nodes, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

Prerequisites

You must have cluster-reader permission to view the usage statistics.

Metrics must be installed to view the usage statistics.

Procedure

To view the usage statistics:

Example output

To view the usage statistics for nodes with labels:

$ oc describe node <node1> <node2>

$ oc describe node ip-10-0-128-218.ec2.internal

$ oc describe --selector=<node_selector>

$ oc describe node --selector=kubernetes.io/os

$ oc describe -l=<pod_selector>

$ oc describe node -l node-role.kubernetes.io/worker

$ oc get pod --all-namespaces --field-selector=spec.nodeName=<nodename>

$ oc adm top nodes

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-10-0-12-143.ec2.compute.internal 1503m 100% 4533Mi 61%
ip-10-0-132-16.ec2.compute.internal 76m 5% 1391Mi 18%
ip-10-0-140-137.ec2.compute.internal 398m 26% 2473Mi 33%
ip-10-0-142-44.ec2.compute.internal 656m 43% 6119Mi 82%
ip-10-0-146-165.ec2.compute.internal 188m 12% 3367Mi 45%
ip-10-0-19-62.ec2.compute.internal 896m 59% 5754Mi 77%
ip-10-0-44-193.ec2.compute.internal 632m 42% 5349Mi 72%

OpenShift Container Platform 4.5 Nodes

144

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

4.2. WORKING WITH NODES

As an administrator, you can perform a number of tasks to make your clusters more efficient.

4.2.1. Understanding how to evacuate pods on nodes

Evacuating pods allows you to migrate all or selected pods from a given node or nodes.

You can only evacuate pods backed by a replication controller. The replication controller creates new
pods on other nodes and removes the existing pods from the specified node(s).

Bare pods, meaning those not backed by a replication controller, are unaffected by default. You can
evacuate a subset of pods by specifying a pod-selector. Pod selectors are based on labels, so all the
pods with the specified label will be evacuated.

Procedure

1. Mark the nodes unschedulable before performing the pod evacuation.

a. Mark the node as unschedulable:

Example output

b. Check that the node status is NotReady,SchedulingDisabled:

Example output

2. Evacuate the pods using one of the following methods:

Evacuate all or selected pods on one or more nodes:

Force the deletion of bare pods using the --force option. When set to true, deletion
continues even if there are pods not managed by a replication controller, replica set, job,
daemon set, or stateful set:

Set a period of time in seconds for each Pod to terminate gracefully, use --grace-period. If

$ oc adm top node --selector=''

$ oc adm cordon <node1>

node/<node1> cordoned

$ oc get node <node1>

NAME STATUS ROLES AGE VERSION
<node1> NotReady,SchedulingDisabled worker 1d v1.18.3

$ oc adm drain <node1> <node2> [--pod-selector=<pod_selector>]

$ oc adm drain <node1> <node2> --force=true

CHAPTER 4. WORKING WITH NODES

145

Set a period of time in seconds for each Pod to terminate gracefully, use --grace-period. If
negative, the default value specified in the Pod will be used:

Ignore pods managed by daemon sets using the --ignore-daemonsets flag set to true:

Set the length of time to wait before giving up using the --timeout flag. A value of 0 sets an
infinite length of time:

Delete pods even if there are pods using emptyDir using the --delete-local-data flag set to
true. Local data is deleted when the node is drained:

List objects that will be migrated without actually performing the evacuation, using the --
dry-run option set to true:

Instead of specifying specific node names (for example, <node1> <node2>), you can use
the --selector=<node_selector> option to evacuate pods on selected nodes.

3. Mark the node as schedulable when done.

4.2.2. Understanding how to update labels on nodes

You can update any label on a node.

Node labels are not persisted after a node is deleted even if the node is backed up by a Machine.

NOTE

Any change to a MachineSet object is not applied to existing machines owned by the
machine set. For example, labels edited or added to an existing MachineSet object are
not propagated to existing machines and nodes associated with the machine set.

The following command adds or updates labels on a node:

For example:

The following command updates all pods in the namespace:

$ oc adm drain <node1> <node2> --grace-period=-1

$ oc adm drain <node1> <node2> --ignore-daemonsets=true

$ oc adm drain <node1> <node2> --timeout=5s

$ oc adm drain <node1> <node2> --delete-local-data=true

$ oc adm drain <node1> <node2> --dry-run=true

$ oc adm uncordon <node1>

$ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

$ oc label nodes webconsole-7f7f6 unhealthy=true

OpenShift Container Platform 4.5 Nodes

146

For example:

4.2.3. Understanding how to mark nodes as unschedulable or schedulable

By default, healthy nodes with a Ready status are marked as schedulable, meaning that new pods are
allowed for placement on the node. Manually marking a node as unschedulable blocks any new pods
from being scheduled on the node. Existing pods on the node are not affected.

The following command marks a node or nodes as unschedulable:

Example output

For example:

Example output

The following command marks a currently unschedulable node or nodes as schedulable:

Alternatively, instead of specifying specific node names (for example, <node>), you can use the
--selector=<node_selector> option to mark selected nodes as schedulable or unschedulable.

4.2.4. Configuring master nodes as schedulable

You can configure master nodes to be schedulable, meaning that new pods are allowed for placement
on the master nodes. By default, master nodes are not schedulable.

You can set the masters to be schedulable, but must retain the worker nodes.

NOTE

You can deploy OpenShift Container Platform with no worker nodes on a bare metal
cluster. In this case, the master nodes are marked schedulable by default.

You can allow or disallow master nodes to be schedulable by configuring the mastersSchedulable field.

$ oc label pods --all <key_1>=<value_1>

$ oc label pods --all status=unhealthy

$ oc adm cordon <node>

$ oc adm cordon node1.example.com

node/node1.example.com cordoned

NAME LABELS STATUS
node1.example.com kubernetes.io/hostname=node1.example.com
Ready,SchedulingDisabled

$ oc adm uncordon <node1>

CHAPTER 4. WORKING WITH NODES

147

1

Procedure

1. Edit the schedulers.config.openshift.io resource.

2. Configure the mastersSchedulable field.

Set to true to allow master nodes to be schedulable, or false to disallow master nodes to
be schedulable.

3. Save the file to apply the changes.

4.2.5. Deleting nodes

4.2.5.1. Deleting nodes from a cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible
to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest pods.

Procedure

To delete a node from the OpenShift Container Platform cluster, edit the appropriate MachineSet
object:

NOTE

If you are running cluster on bare metal, you cannot delete a node by editing MachineSet
objects. Machine sets are only available when a cluster is integrated with a cloud provider.
Instead you must unschedule and drain the node before manually deleting it.

1. View the machine sets that are in the cluster:

The machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

$ oc edit schedulers.config.openshift.io cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 creationTimestamp: "2019-09-10T03:04:05Z"
 generation: 1
 name: cluster
 resourceVersion: "433"
 selfLink: /apis/config.openshift.io/v1/schedulers/cluster
 uid: a636d30a-d377-11e9-88d4-0a60097bee62
spec:
 mastersSchedulable: false 1
 policy:
 name: ""
status: {}

$ oc get machinesets -n openshift-machine-api

OpenShift Container Platform 4.5 Nodes

148

2. Scale the machine set:

For more information on scaling your cluster using a machine set, see Manually scaling a machine set .

4.2.5.2. Deleting nodes from a bare metal cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node are not deleted. Any bare pods not backed by a replication controller become inaccessible
to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest pods.

Procedure

Delete a node from an OpenShift Container Platform cluster running on bare metal by completing the
following steps:

1. Mark the node as unschedulable:

2. Drain all pods on your node:

3. Delete your node from the cluster:

Although the node object is now deleted from the cluster, it can still rejoin the cluster after reboot or if
the kubelet service is restarted. To permanently delete the node and all its data, you must decommission
the node.

4.2.6. Adding kernel arguments to Nodes

In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This
should only be done with caution and clear understanding of the implications of the arguments you set.

WARNING

Improper use of kernel arguments can result in your systems becoming unbootable.

Examples of kernel arguments you could set include:

enforcing=0: Configures Security Enhanced Linux (SELinux) to run in permissive mode. In
permissive mode, the system acts as if SELinux is enforcing the loaded security policy, including
labeling objects and emitting access denial entries in the logs, but it does not actually deny any

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc adm cordon <node_name>

$ oc adm drain <node_name> --force=true

$ oc delete node <node_name>

CHAPTER 4. WORKING WITH NODES

149

https://access.redhat.com/solutions/84663

operations. While not recommended for production systems, permissive mode can be helpful for
debugging.

nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple
logical threads for each CPU. You could consider nosmt in multi-tenant environments to reduce
risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over
performance.

See Kernel.org kernel parameters for a list and descriptions of kernel arguments.

In the following procedure, you create a MachineConfig object that identifies:

A set of machines to which you want to add the kernel argument. In this case, machines with a
worker role.

Kernel arguments that are appended to the end of the existing kernel arguments.

A label that indicates where in the list of machine configs the change is applied.

Prerequisites

Have administrative privilege to a working OpenShift Container Platform cluster.

Procedure

1. List existing MachineConfig objects for your OpenShift Container Platform cluster to
determine how to label your machine config:

Example output

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION CREATED
00-master 577c2d527b09cd7a481a162c50592139caa15e20
2.2.0 30m
00-worker 577c2d527b09cd7a481a162c50592139caa15e20
2.2.0 30m
01-master-container-runtime
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
01-master-kubelet
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
01-worker-container-runtime
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
01-worker-kubelet
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
99-master-1131169f-dae9-11e9-b5dd-12a845e8ffd8-registries
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
99-master-ssh 2.2.0 30m
99-worker-114e8ac7-dae9-11e9-b5dd-12a845e8ffd8-registries
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
99-worker-ssh 2.2.0 30m
rendered-master-b3729e5f6124ca3678188071343115d0

OpenShift Container Platform 4.5 Nodes

150

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

1

2

3

2. Create a MachineConfig object file that identifies the kernel argument (for example, 05-
worker-kernelarg-selinuxpermissive.yaml)

Applies the new kernel argument only to worker nodes.

Named to identify where it fits among the machine configs (05) and what it does (adds a
kernel argument to configure SELinux permissive mode).

Identifies the exact kernel argument as enforcing=0.

3. Create the new machine config:

4. Check the machine configs to see that the new one was added:

Example output

577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
rendered-worker-18ff9506c718be1e8bd0a066850065b7
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker 1
 name: 05-worker-kernelarg-selinuxpermissive 2
spec:
 config:
 ignition:
 version: 2.2.0
 kernelArguments:
 - enforcing=0 3

$ oc create -f 05-worker-kernelarg-selinuxpermissive.yaml

$ oc get MachineConfig

NAME GENERATEDBYCONTROLLER
IGNITIONVERSION CREATED
00-master 577c2d527b09cd7a481a162c50592139caa15e20
2.2.0 31m
00-worker 577c2d527b09cd7a481a162c50592139caa15e20
2.2.0 31m
01-master-container-runtime
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
01-master-kubelet
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
01-worker-container-runtime
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
01-worker-kubelet
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m

05-worker-kernelarg-selinuxpermissive 3.1.0

CHAPTER 4. WORKING WITH NODES

151

5. Check the nodes:

Example output

You can see that scheduling on each worker node is disabled as the change is being applied.

6. Check that the kernel argument worked by going to one of the worker nodes and listing the
kernel command line arguments (in /proc/cmdline on the host):

Example output

You should see the enforcing=0 argument added to the other kernel arguments.

4.2.7. Additional resources

For more information on scaling your cluster using a MachineSet, see Manually scaling a MachineSet .

4.3. MANAGING NODES

105s

99-master-1131169f-dae9-11e9-b5dd-12a845e8ffd8-registries
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
99-master-ssh 2.2.0 30m
99-worker-114e8ac7-dae9-11e9-b5dd-12a845e8ffd8-registries
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
99-worker-ssh 2.2.0 31m
rendered-master-b3729e5f6124ca3678188071343115d0
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
rendered-worker-18ff9506c718be1e8bd0a066850065b7
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-136-161.ec2.internal Ready worker 28m v1.18.3
ip-10-0-136-243.ec2.internal Ready master 34m v1.18.3
ip-10-0-141-105.ec2.internal Ready,SchedulingDisabled worker 28m v1.18.3
ip-10-0-142-249.ec2.internal Ready master 34m v1.18.3
ip-10-0-153-11.ec2.internal Ready worker 28m v1.18.3
ip-10-0-153-150.ec2.internal Ready master 34m v1.18.3

$ oc debug node/ip-10-0-141-105.ec2.internal

Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.2# cat /host/proc/cmdline
BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 enforcing=0

sh-4.2# exit

OpenShift Container Platform 4.5 Nodes

152

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/machine_management/#machineset-manually-scaling-manually-scaling-machineset

OpenShift Container Platform uses a KubeletConfig custom resource (CR) to manage the configuration
of nodes. By creating an instance of a KubeletConfig object, a managed machine config is created to
override setting on the node.

NOTE

Logging in to remote machines for the purpose of changing their configuration is not
supported.

4.3.1. Modifying nodes

To make configuration changes to a cluster, or machine pool, you must create a custom resource
definition (CRD), or KubeletConfig object. OpenShift Container Platform uses the Machine Config
Controller to watch for changes introduced through the CRD to apply the changes to the cluster.

Procedure

1. Obtain the label associated with the static CRD, Machine Config Pool, for the type of node you
want to configure. Perform one of the following steps:

a. Check current labels of the desired machine config pool.
For example:

Example output

b. Add a custom label to the desired machine config pool.
For example:

2. Create a kubeletconfig custom resource (CR) for your configuration change.
For example:

Sample configuration for a custom-config CR

$ oc get machineconfigpool --show-labels

NAME CONFIG UPDATED UPDATING DEGRADED
LABELS
master rendered-master-e05b81f5ca4db1d249a1bf32f9ec24fd True False
False operator.machineconfiguration.openshift.io/required-for-upgrade=
worker rendered-worker-f50e78e1bc06d8e82327763145bfcf62 True False
False

$ oc label machineconfigpool worker custom-kubelet=enabled

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-config 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: enabled 2
 kubeletConfig: 3

CHAPTER 4. WORKING WITH NODES

153

1

2

3

Assign a name to CR.

Specify the label to apply the configuration change, this is the label you added to the
machine config pool.

Specify the new value(s) you want to change.

3. Create the CR object.

For example:

Most KubeletConfig Options can be set by the user. The following options are not allowed to be
overwritten:

CgroupDriver

ClusterDNS

ClusterDomain

RuntimeRequestTimeout

StaticPodPath

4.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE

In OpenShift Container Platform, you can configure the number of pods that can run on a node based
on the number of processor cores on the node, a hard limit or both. If you use both options, the lower of
the two limits the number of pods on a node.

Exceeding these values can result in:

Increased CPU utilization by OpenShift Container Platform.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the IP address pool.

Resource overcommitting, leading to poor user application performance.

NOTE

 podsPerCore: 10
 maxPods: 250
 systemReserved:
 cpu: 2000m
 memory: 1Gi

$ oc create -f <file-name>

$ oc create -f master-kube-config.yaml

OpenShift Container Platform 4.5 Nodes

154

https://github.com/kubernetes/kubelet/blob/master/config/v1beta1/types.go

1

NOTE

A pod that is holding a single container actually uses two containers. The second
container sets up networking prior to the actual container starting. As a result, a node
running 10 pods actually has 20 containers running.

The podsPerCore parameter limits the number of pods the node can run based on the number of
processor cores on the node. For example, if podsPerCore is set to 10 on a node with 4 processor
cores, the maximum number of pods allowed on the node is 40.

The maxPods parameter limits the number of pods the node can run to a fixed value, regardless of the
properties of the node.

4.4.1. Configuring the maximum number of pods per node

Two parameters control the maximum number of pods that can be scheduled to a node: podsPerCore
and maxPods. If you use both options, the lower of the two limits the number of pods on a node.

For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of
pods allowed on the node will be 40.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

Procedure

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: small-pods 1

$ oc label machineconfigpool worker custom-kubelet=small-pods

CHAPTER 4. WORKING WITH NODES

155

1

2

3

4

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a max-pods CR

Assign a name to CR.

Specify the label to apply the configuration change.

Specify the number of pods the node can run based on the number of processor cores on
the node.

Specify the number of pods the node can run to a fixed value, regardless of the properties
of the node.

NOTE

Setting podsPerCore to 0 disables this limit.

In the above example, the default value for podsPerCore is 10 and the default value for
maxPods is 250. This means that unless the node has 25 cores or more, by default,
podsPerCore will be the limiting factor.

2. List the MachineConfigPool CRDs to see if the change is applied. The UPDATING column
reports True if the change is picked up by the Machine Config Controller:

Example output

Once the change is complete, the UPDATED column reports True.

Example output

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: small-pods 2
 kubeletConfig:
 podsPerCore: 10 3
 maxPods: 250 4

$ oc get machineconfigpools

NAME CONFIG UPDATED UPDATING DEGRADED
master master-9cc2c72f205e103bb534 False False False
worker worker-8cecd1236b33ee3f8a5e False True False

$ oc get machineconfigpools

OpenShift Container Platform 4.5 Nodes

156

4.5. USING THE NODE TUNING OPERATOR

Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

The Node Tuning Operator helps you manage node-level tuning by orchestrating the Tuned daemon.
The majority of high-performance applications require some level of kernel tuning. The Node Tuning
Operator provides a unified management interface to users of node-level sysctls and more flexibility to
add custom tuning specified by user needs.

The Operator manages the containerized Tuned daemon for OpenShift Container Platform as a
Kubernetes daemon set. It ensures the custom tuning specification is passed to all containerized Tuned
daemons running in the cluster in the format that the daemons understand. The daemons run on all
nodes in the cluster, one per node.

Node-level settings applied by the containerized Tuned daemon are rolled back on an event that
triggers a profile change or when the containerized Tuned daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

4.5.1. Accessing an example Node Tuning Operator specification

Use this process to access an example Node Tuning Operator specification.

Procedure

1. Run:

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or pod labels and profile priorities.

NAME CONFIG UPDATED UPDATING DEGRADED
master master-9cc2c72f205e103bb534 False True False
worker worker-8cecd1236b33ee3f8a5e True False False

$ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator

CHAPTER 4. WORKING WITH NODES

157

WARNING

While in certain situations the support for pod labels can be a convenient way of
automatically delivering required tuning, this practice is discouraged and strongly
advised against, especially in large-scale clusters. The default Tuned CR ships
without pod label matching. If a custom profile is created with pod label matching,
then the functionality will be enabled at that time. The pod label functionality might
be deprecated in future versions of the Node Tuning Operator.

4.5.2. Custom tuning specification

The custom resource (CR) for the Operator has two major sections. The first section, profile:, is a list of
Tuned profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the Operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized Tuned daemons are updated.

Profile data

The profile: section lists Tuned profiles and their names.

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR. The recommend: section
is a list of items to recommend the profiles based on a selection criteria.

profile:
- name: tuned_profile_1
 data: |
 # Tuned profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other Tuned daemon plug-ins supported by the containerized Tuned

...

- name: tuned_profile_n
 data: |
 # Tuned profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

recommend:
<recommend-item-1>
...

OpenShift Container Platform 4.5 Nodes

158

1

2

3

4

5

6

1

2

3

4

The individual items of the list:

Optional.

A dictionary of key/value MachineConfig labels. The keys must be unique.

If omitted, profile match is assumed unless a profile with a higher priority matches first or
machineConfigLabels is set.

An optional list.

Profile ordering priority. Lower numbers mean higher priority (0 is the highest priority).

A Tuned profile to apply on a match. For example tuned_profile_1.

<match> is an optional list recursively defined as follows:

Node or pod label name.

Optional node or pod label value. If omitted, the presence of <label_name> is enough to match.

Optional object type (node or pod). If omitted, node is assumed.

An optional <match> list.

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> list matches, the entire <match> list evaluates to true. Therefore, the list acts as logical
OR operator.

If machineConfigLabels is defined, machine config pool based matching is turned on for the given
recommend: list item. <mcLabels> specifies the labels for a machine config. The machine config is
created automatically to apply host settings, such as kernel boot parameters, for the profile
<tuned_profile_name>. This involves finding all machine config pools with machine config selector
matching <mcLabels> and setting the profile <tuned_profile_name> on all nodes that match the
machine config pools' node selectors.

The list items match and machineConfigLabels are connected by the logical OR operator. The match

<recommend-item-n>

- machineConfigLabels: 1
 <mcLabels> 2
 match: 3
 <match> 4
 priority: <priority> 5
 profile: <tuned_profile_name> 6

- label: <label_name> 1
 value: <label_value> 2
 type: <label_type> 3
 <match> 4

CHAPTER 4. WORKING WITH NODES

159

The list items match and machineConfigLabels are connected by the logical OR operator. The match
item is evaluated first in a short-circuit manner. Therefore, if it evaluates to true, the
machineConfigLabels item is not considered.

IMPORTANT

When using machine config pool based matching, it is advised to group nodes with the
same hardware configuration into the same machine config pool. Not following this
practice might result in Tuned operands calculating conflicting kernel parameters for two
or more nodes sharing the same machine config pool.

Example: node or pod label based matching

The CR above is translated for the containerized Tuned daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized Tuned daemon running on a given node looks to see if
there is a pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized Tuned
pod runs on a node with labels node-role.kubernetes.io/master or node-role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es
- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

OpenShift Container Platform 4.5 Nodes

160

Example: machine config pool based matching

To minimize node reboots, label the target nodes with a label the machine config pool’s node selector
will match, then create the Tuned CR above and finally create the custom machine config pool itself.

4.5.3. Default profiles set on a cluster

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: openshift-node-custom
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - data: |
 [main]
 summary=Custom OpenShift node profile with an additional kernel parameter
 include=openshift-node
 [bootloader]
 cmdline_openshift_node_custom=+skew_tick=1
 name: openshift-node-custom

 recommend:
 - machineConfigLabels:
 machineconfiguration.openshift.io/role: "worker-custom"
 priority: 20
 profile: openshift-node-custom

CHAPTER 4. WORKING WITH NODES

161

The following are the default profiles set on a cluster.

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - name: "openshift"
 data: |
 [main]
 summary=Optimize systems running OpenShift (parent profile)
 include=${f:virt_check:virtual-guest:throughput-performance}

 [selinux]
 avc_cache_threshold=8192

 [net]
 nf_conntrack_hashsize=131072

 [sysctl]
 net.ipv4.ip_forward=1
 kernel.pid_max=>4194304
 net.netfilter.nf_conntrack_max=1048576
 net.ipv4.conf.all.arp_announce=2
 net.ipv4.neigh.default.gc_thresh1=8192
 net.ipv4.neigh.default.gc_thresh2=32768
 net.ipv4.neigh.default.gc_thresh3=65536
 net.ipv6.neigh.default.gc_thresh1=8192
 net.ipv6.neigh.default.gc_thresh2=32768
 net.ipv6.neigh.default.gc_thresh3=65536
 vm.max_map_count=262144

 [sysfs]
 /sys/module/nvme_core/parameters/io_timeout=4294967295
 /sys/module/nvme_core/parameters/max_retries=10

 - name: "openshift-control-plane"
 data: |
 [main]
 summary=Optimize systems running OpenShift control plane
 include=openshift

 [sysctl]
 # ktune sysctl settings, maximizing i/o throughput
 #
 # Minimal preemption granularity for CPU-bound tasks:
 # (default: 1 msec# (1 + ilog(ncpus)), units: nanoseconds)
 kernel.sched_min_granularity_ns=10000000
 # The total time the scheduler will consider a migrated process
 # "cache hot" and thus less likely to be re-migrated
 # (system default is 500000, i.e. 0.5 ms)
 kernel.sched_migration_cost_ns=5000000
 # SCHED_OTHER wake-up granularity.
 #

OpenShift Container Platform 4.5 Nodes

162

4.5.4. Supported Tuned daemon plug-ins

Excluding the [main] section, the following Tuned plug-ins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

net

scheduler

scsi_host

selinux

sysctl

sysfs

usb

 # Preemption granularity when tasks wake up. Lower the value to
 # improve wake-up latency and throughput for latency critical tasks.
 kernel.sched_wakeup_granularity_ns=4000000

 - name: "openshift-node"
 data: |
 [main]
 summary=Optimize systems running OpenShift nodes
 include=openshift

 [sysctl]
 net.ipv4.tcp_fastopen=3
 fs.inotify.max_user_watches=65536
 fs.inotify.max_user_instances=8192

 recommend:
 - profile: "openshift-control-plane"
 priority: 30
 match:
 - label: "node-role.kubernetes.io/master"
 - label: "node-role.kubernetes.io/infra"

 - profile: "openshift-node"
 priority: 40

CHAPTER 4. WORKING WITH NODES

163

video

vm

There is some dynamic tuning functionality provided by some of these plug-ins that is not supported.
The following Tuned plug-ins are currently not supported:

bootloader

script

systemd

See Available Tuned Plug-ins and Getting Started with Tuned for more information.

4.6. UNDERSTANDING NODE REBOOTING

To reboot a node without causing an outage for applications running on the platform, it is important to
first evacuate the pods. For pods that are made highly available by the routing tier, nothing else needs to
be done. For other pods needing storage, typically databases, it is critical to ensure that they can remain
in operation with one pod temporarily going offline. While implementing resiliency for stateful pods is
different for each application, in all cases it is important to configure the scheduler to use node anti-
affinity to ensure that the pods are properly spread across available nodes.

Another challenge is how to handle nodes that are running critical infrastructure such as the router or
the registry. The same node evacuation process applies, though it is important to understand certain
edge cases.

4.6.1. About rebooting nodes running critical infrastructure

When rebooting nodes that host critical OpenShift Container Platform infrastructure components, such
as router pods, registry pods, and monitoring pods, ensure that there are at least three nodes available
to run these components.

The following scenario demonstrates how service interruptions can occur with applications running on
OpenShift Container Platform when only two nodes are available:

Node A is marked unschedulable and all pods are evacuated.

The registry pod running on that node is now redeployed on node B. Node B is now running
both registry pods.

Node B is now marked unschedulable and is evacuated.

The service exposing the two pod endpoints on node B loses all endpoints, for a brief period of
time, until they are redeployed to node A.

When using three nodes for infrastructure components, this process does not result in a service
disruption. However, due to pod scheduling, the last node that is evacuated and brought back into
rotation does not have a registry pod. One of the other nodes has two registry pods. To schedule the
third registry pod on the last node, use pod anti-affinity to prevent the scheduler from locating two
registry pods on the same node.

Additional information

For more information on pod anti-affinity, see Placing pods relative to other pods using affinity

OpenShift Container Platform 4.5 Nodes

164

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

1

2

3

4

5

For more information on pod anti-affinity, see Placing pods relative to other pods using affinity
and anti-affinity rules.

4.6.2. Rebooting a node using pod anti-affinity

Pod anti-affinity is slightly different than node anti-affinity. Node anti-affinity can be violated if there
are no other suitable locations to deploy a pod. Pod anti-affinity can be set to either required or
preferred.

With this in place, if only two infrastructure nodes are available and one is rebooted, the container image
registry pod is prevented from running on the other node. oc get pods reports the pod as unready until
a suitable node is available. Once a node is available and all pods are back in ready state, the next node
can be restarted.

Procedure

To reboot a node using pod anti-affinity:

1. Edit the node specification to configure pod anti-affinity:

Stanza to configure pod anti-affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with the highest weight is preferred.

Description of the pod label that determines when the anti-affinity rule applies. Specify a
key and value for the label.

The operator represents the relationship between the label on the existing pod and the set
of values in the matchExpression parameters in the specification for the new pod. Can be
In, NotIn, Exists, or DoesNotExist.

This example assumes the container image registry pod has a label of registry=default. Pod
anti-affinity can use any Kubernetes match expression.

2. Enable the MatchInterPodAffinity scheduler predicate in the scheduling policy file.

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-antiaffinity
spec:
 affinity:
 podAntiAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: registry 4
 operator: In 5
 values:
 - default
 topologyKey: kubernetes.io/hostname

CHAPTER 4. WORKING WITH NODES

165

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-pod-affinity

4.6.3. Understanding how to reboot nodes running routers

In most cases, a pod running an OpenShift Container Platform router exposes a host port.

The PodFitsPorts scheduler predicate ensures that no router pods using the same port can run on the
same node, and pod anti-affinity is achieved. If the routers are relying on IP failover for high availability,
there is nothing else that is needed.

For router pods relying on an external service such as AWS Elastic Load Balancing for high availability, it
is that service’s responsibility to react to router pod restarts.

In rare cases, a router pod may not have a host port configured. In those cases, it is important to follow
the recommended restart process for infrastructure nodes.

4.7. FREEING NODE RESOURCES USING GARBAGE COLLECTION

As an administrator, you can use OpenShift Container Platform to ensure that your nodes are running
efficiently by freeing up resources through garbage collection.

The OpenShift Container Platform node performs two types of garbage collection:

Container garbage collection: Removes terminated containers.

Image garbage collection: Removes images not referenced by any running pods.

4.7.1. Understanding how terminated containers are removed though garbage
collection

Container garbage collection can be performed using eviction thresholds.

When eviction thresholds are set for garbage collection, the node tries to keep any container for any
pod accessible from the API. If the pod has been deleted, the containers will be as well. Containers are
preserved as long the pod is not deleted and the eviction threshold is not reached. If the node is under
disk pressure, it will remove containers and their logs will no longer be accessible using oc logs.

eviction-soft - A soft eviction threshold pairs an eviction threshold with a required
administrator-specified grace period.

eviction-hard - A hard eviction threshold has no grace period, and if observed, OpenShift
Container Platform takes immediate action.

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace
period, the corresponding node would constantly oscillate between true and false. As a consequence,
the scheduler could make poor scheduling decisions.

To protect against this oscillation, use the eviction-pressure-transition-period flag to control how long
OpenShift Container Platform must wait before transitioning out of a pressure condition. OpenShift
Container Platform will not set an eviction threshold as being met for the specified pressure condition
for the period specified before toggling the condition back to false.

4.7.2. Understanding how images are removed though garbage collection

Image garbage collection relies on disk usage as reported by cAdvisor on the node to decide which
images to remove from the node.

The policy for image garbage collection is based on two conditions:

OpenShift Container Platform 4.5 Nodes

166

The percent of disk usage (expressed as an integer) which triggers image garbage collection.
The default is 85.

The percent of disk usage (expressed as an integer) to which image garbage collection
attempts to free. Default is 80.

For image garbage collection, you can modify any of the following variables using a custom resource.

Table 4.2. Variables for configuring image garbage collection

Setting Description

imageMinimumGCA
ge

The minimum age for an unused image before the image is removed by garbage
collection. The default is 2m.

imageGCHighThresh
oldPercent

The percent of disk usage, expressed as an integer, which triggers image garbage
collection. The default is 85.

imageGCLowThresh
oldPercent

The percent of disk usage, expressed as an integer, to which image garbage
collection attempts to free. The default is 80.

Two lists of images are retrieved in each garbage collector run:

1. A list of images currently running in at least one pod.

2. A list of images available on a host.

As new containers are run, new images appear. All images are marked with a time stamp. If the image is
running (the first list above) or is newly detected (the second list above), it is marked with the current
time. The remaining images are already marked from the previous spins. All images are then sorted by
the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

4.7.3. Configuring garbage collection for containers and images

As an administrator, you can configure how OpenShift Container Platform performs garbage collection
by creating a kubeletConfig object for each machine config pool.

NOTE

OpenShift Container Platform supports only one kubeletConfig object for each machine
config pool.

You can configure any combination of the following:

soft eviction for containers

hard eviction for containers

eviction for images

For soft container eviction you can also configure a grace period before eviction.

CHAPTER 4. WORKING WITH NODES

167

1

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under Labels.

b. If the label is not present, add a key/value pair:

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a container garbage collection CR:

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

Name: worker
Namespace:
Labels: custom-kubelet=small-pods 1

$ oc label machineconfigpool worker custom-kubelet=small-pods

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: worker-kubeconfig 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: small-pods 2
 kubeletConfig:
 evictionSoft: 3
 memory.available: "500Mi" 4
 nodefs.available: "10%"
 nodefs.inodesFree: "5%"
 imagefs.available: "15%"
 imagefs.inodesFree: "10%"
 evictionSoftGracePeriod: 5
 memory.available: "1m30s"
 nodefs.available: "1m30s"
 nodefs.inodesFree: "1m30s"
 imagefs.available: "1m30s"
 imagefs.inodesFree: "1m30s"

OpenShift Container Platform 4.5 Nodes

168

1

2

3

4

5

6

7

8

9

Name for the object.

Selector label.

Type of eviction: EvictionSoft and EvictionHard.

Eviction thresholds based on a specific eviction trigger signal.

Grace periods for the soft eviction. This parameter does not apply to eviction-hard.

The duration to wait before transitioning out of an eviction pressure condition

The minimum age for an unused image before the image is removed by garbage collection.

The percent of disk usage (expressed as an integer) which triggers image garbage
collection.

The percent of disk usage (expressed as an integer) to which image garbage collection
attempts to free.

2. Create the object:

For example:

Example output

3. Verify that garbage collection is active. The Machine Config Pool you specified in the custom
resource appears with UPDATING as 'true` until the change is fully implemented:

Example output

 evictionHard:
 memory.available: "200Mi"
 nodefs.available: "5%"
 nodefs.inodesFree: "4%"
 imagefs.available: "10%"
 imagefs.inodesFree: "5%"
 evictionPressureTransitionPeriod: 0s 6
 imageMinimumGCAge: 5m 7
 imageGCHighThresholdPercent: 80 8
 imageGCLowThresholdPercent: 75 9

$ oc create -f <file-name>.yaml

$ oc create -f gc-container.yaml

kubeletconfig.machineconfiguration.openshift.io/gc-container created

$ oc get machineconfigpool

NAME CONFIG UPDATED UPDATING
master rendered-master-546383f80705bd5aeaba93 True False
worker rendered-worker-b4c51bb33ccaae6fc4a6a5 False True

CHAPTER 4. WORKING WITH NODES

169

4.8. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

To provide more reliable scheduling and minimize node resource overcommitment, reserve a portion of
the CPU and memory resources for use by the underlying node components, such as kubelet and kube-
proxy, and the remaining system components, such as sshd and NetworkManager. By specifying the
resources to reserve, you provide the scheduler with more information about the remaining CPU and
memory resources that a node has available for use by pods.

4.8.1. Understanding how to allocate resources for nodes

CPU and memory resources reserved for node components in OpenShift Container Platform are based
on two node settings:

Setting Description

kube-reserved This setting is not used with OpenShift Container Platform. Add the CPU
and memory resources that you planned to reserve to the system-
reserved setting.

system-reserved This setting identifies the resources to reserve for the node components
and system components. The default settings depend on the OpenShift
Container Platform and Machine Config Operator versions. Confirm the
default systemReserved parameter on the machine-config-
operator repository.

If a flag is not set, the defaults are used. If none of the flags are set, the allocated resource is set to the
node’s capacity as it was before the introduction of allocatable resources.

NOTE

Any CPUs specifically reserved using the reservedSystemCPUs parameter are not
available for allocation using kube-reserved or system-reserved.

4.8.1.1. How OpenShift Container Platform computes allocated resources

An allocated amount of a resource is computed based on the following formula:

[Allocatable] = [Node Capacity] - [system-reserved] - [Hard-Eviction-Thresholds]

NOTE

The withholding of Hard-Eviction-Thresholds from Allocatable improves system
reliability because the value for Allocatable is enforced for pods at the node level.

If Allocatable is negative, it is set to 0.

Each node reports the system resources that are used by the container runtime and kubelet. To simplify
configuring the system-reserved parameter, view the resource use for the node by using the node
summary API. The node summary is available at /api/v1/nodes/<node>/proxy/stats/summary.

OpenShift Container Platform 4.5 Nodes

170

4.8.1.2. How nodes enforce resource constraints

The node is able to limit the total amount of resources that pods can consume based on the configured
allocatable value. This feature significantly improves the reliability of the node by preventing pods from
using CPU and memory resources that are needed by system services such as the container runtime
and node agent. To improve node reliability, administrators should reserve resources based on a target
for resource use.

The node enforces resource constraints by using a new cgroup hierarchy that enforces quality of
service. All pods are launched in a dedicated cgroup hierarchy that is separate from system daemons.

Administrators should treat system daemons similar to pods that have a guaranteed quality of service.
System daemons can burst within their bounding control groups and this behavior must be managed as
part of cluster deployments. Reserve CPU and memory resources for system daemons by specifying
the amount of CPU and memory resources in system-reserved.

Enforcing system-reserved limits can prevent critical system services from receiving CPU and memory
resources. As a result, a critical system service can be ended by the out-of-memory killer. The
recommendation is to enforce system-reserved only if you have profiled the nodes exhaustively to
determine precise estimates and you are confident that critical system services can recover if any
process in that group is ended by the out-of-memory killer.

4.8.1.3. Understanding Eviction Thresholds

If a node is under memory pressure, it can impact the entire node and all pods running on the node. For
example, a system daemon that uses more than its reserved amount of memory can trigger an out-of-
memory event. To avoid or reduce the probability of system out-of-memory events, the node provides
out-of-resource handling.

You can reserve some memory using the --eviction-hard flag. The node attempts to evict pods
whenever memory availability on the node drops below the absolute value or percentage. If system
daemons do not exist on a node, pods are limited to the memory capacity - eviction-hard. For this
reason, resources set aside as a buffer for eviction before reaching out of memory conditions are not
available for pods.

The following is an example to illustrate the impact of node allocatable for memory:

Node capacity is 32Gi

--system-reserved is 3Gi

--eviction-hard is set to 100Mi.

For this node, the effective node allocatable value is 28.9Gi. If the node and system components use all
their reservation, the memory available for pods is 28.9Gi, and kubelet evicts pods when it exceeds this
threshold.

If you enforce node allocatable, 28.9Gi, with top-level cgroups, then pods can never exceed 28.9Gi.
Evictions are not performed unless system daemons consume more than 3.1Gi of memory.

If system daemons do not use up all their reservation, with the above example, pods would face memcg
OOM kills from their bounding cgroup before node evictions kick in. To better enforce QoS under this
situation, the node applies the hard eviction thresholds to the top-level cgroup for all pods to be Node
Allocatable + Eviction Hard Thresholds.

If system daemons do not use up all their reservation, the node will evict pods whenever they consume

CHAPTER 4. WORKING WITH NODES

171

If system daemons do not use up all their reservation, the node will evict pods whenever they consume
more than 28.9Gi of memory. If eviction does not occur in time, a pod will be OOM killed if pods
consume 29Gi of memory.

4.8.1.4. How the scheduler determines resource availability

The scheduler uses the value of node.Status.Allocatable instead of node.Status.Capacity to decide if
a node will become a candidate for pod scheduling.

By default, the node will report its machine capacity as fully schedulable by the cluster.

4.8.2. Configuring allocated resources for nodes

OpenShift Container Platform supports the CPU and memory resource types for allocation. The
ephemeral-resource resource type is supported as well. For the cpu type, the resource quantity is
specified in units of cores, such as 200m, 0.5, or 1. For memory and ephemeral-storage, it is specified
in units of bytes, such as 200Ki, 50Mi, or 5Gi.

As an administrator, you can set these using a custom resource (CR) through a set of
<resource_type>=<resource_quantity> pairs (e.g., cpu=200m,memory=512Mi).

Prerequisites

1. To help you determine values for the system-reserved setting, you can introspect the resource
use for a node by using the node summary API. Enter the following command for your node:

For example, to access the resources from cluster.node22 node, you can enter:

Example output

$ oc get --raw /api/v1/nodes/<node>/proxy/stats/summary

$ oc get --raw /api/v1/nodes/cluster.node22/proxy/stats/summary

{
 "node": {
 "nodeName": "cluster.node22",
 "systemContainers": [
 {
 "cpu": {
 "usageCoreNanoSeconds": 929684480915,
 "usageNanoCores": 190998084
 },
 "memory": {
 "rssBytes": 176726016,
 "usageBytes": 1397895168,
 "workingSetBytes": 1050509312
 },
 "name": "kubelet"
 },
 {
 "cpu": {
 "usageCoreNanoSeconds": 128521955903,
 "usageNanoCores": 5928600
 },

OpenShift Container Platform 4.5 Nodes

172

1

2. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the Machine Config Pool:

For example:

Example output

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a resource allocation CR

 "memory": {
 "rssBytes": 35958784,
 "usageBytes": 129671168,
 "workingSetBytes": 102416384
 },
 "name": "runtime"
 }
]
 }
}

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: small-pods 1

$ oc label machineconfigpool worker custom-kubelet=small-pods

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-allocatable 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: small-pods 2

CHAPTER 4. WORKING WITH NODES

173

1

2

1

Assign a name to CR.

Specify the label from the Machine Config Pool.

4.9. ALLOCATING SPECIFIC CPUS FOR NODES IN A CLUSTER

When using the static CPU Manager policy, you can reserve specific CPUs for use by specific nodes in
your cluster. For example, on a system with 24 CPUs, you could reserve CPUs numbered 0 - 3 for the
control plane allowing the compute nodes to use CPUs 4 - 23.

4.9.1. Reserving CPUs for nodes

To explicitly define a list of CPUs that are reserved for specific nodes, create a KubeletConfig custom
resource (CR) to define the reservedSystemCPUs parameter. This list supersedes the CPUs that
might be reserved using the systemReserved and kubeReserved parameters.

Procedure

1. Obtain the label associated with the machine config pool (MCP) for the type of node you want
to configure:

For example:

Example output

Get the MCP label.

2. Create a YAML file for the KubeletConfig CR:

 kubeletConfig:
 systemReserved:
 cpu: 1000m
 memory: 1Gi

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

Name: worker
Namespace:
Labels: machineconfiguration.openshift.io/mco-built-in=
 pools.operator.machineconfiguration.openshift.io/worker= 1
Annotations: <none>
API Version: machineconfiguration.openshift.io/v1
Kind: MachineConfigPool
...

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-reserved-cpus 1

OpenShift Container Platform 4.5 Nodes

174

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/scalability_and_performance/#using-cpu-manager-1

1

2

3

Specify a name for the CR.

Specify the core IDs of the CPUs you want to reserve for the nodes associated with the
MCP.

Specify the label from the MCP.

3. Create the CR object:

Additional resources

For more information on the systemReserved and kubeReserved parameters, see Allocating
resources for nodes in an OpenShift Container Platform cluster.

4.10. MACHINE CONFIG DAEMON METRICS

The Machine Config Daemon is a part of the Machine Config Operator. It runs on every node in the
cluster. The Machine Config Daemon manages configuration changes and updates on each of the
nodes.

4.10.1. Machine Config Daemon metrics

Beginning with OpenShift Container Platform 4.3, the Machine Config Daemon provides a set of
metrics. These metrics can be accessed using the Prometheus Cluster Monitoring stack.

The following table describes this set of metrics.

NOTE

Metrics marked with * in the Name and Description columns represent serious errors
that might cause performance problems. Such problems might prevent updates and
upgrades from proceeding.

NOTE

While some entries contain commands for getting specific logs, the most comprehensive
set of logs is available using the oc adm must-gather command.

Table 4.3. MCO metrics

spec:
 kubeletConfig:
 reservedSystemCPUs: "0,1,2,3" 2
 machineConfigPoolSelector:
 matchLabels:
 pools.operator.machineconfiguration.openshift.io/worker: "" 3

$ oc create -f <file_name>.yaml

CHAPTER 4. WORKING WITH NODES

175

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-nodes-resources-configuring-about_nodes-nodes-resources-configuring

Name Format Description Notes

mcd_host_os_a
nd_version

[]string{"os",
"version"}

Shows the OS that MCD is
running on, such as RHCOS or
RHEL. In case of RHCOS, the
version is provided.

ssh_accessed counter Shows the number of successful
SSH authentications into the
node.

The non-zero value shows that
someone might have made
manual changes to the node.
Such changes might cause
irreconcilable errors due to the
differences between the state on
the disk and the state defined in
the machine configuration.

mcd_drain* {"drain_time",
"err"}

Logs errors received during failed
drain. *

While drains might need multiple
tries to succeed, terminal failed
drains prevent updates from
proceeding. The drain_time
metric, which shows how much
time the drain took, might help
with troubleshooting.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

OpenShift Container Platform 4.5 Nodes

176

mcd_pivot_err* []string{"pivot_
target", "err"}

Logs errors encountered during
pivot. *

Pivot errors might prevent OS
upgrades from proceeding.

For further investigation, run this
command to access the node and
see all its logs:

$ oc debug node/<node> — 
chroot /host journalctl -u
pivot.service

Alternatively, you can run this
command to only see the logs
from the machine-config-
daemon container:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_state []string{"state",
"reason"}

State of Machine Config Daemon
for the indicated node. Possible
states are "Done", "Working", and
"Degraded". In case of
"Degraded", the reason is
included.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_kubelet_st
ate*

[]string{"err"} Logs kubelet health failures. * This is expected to be empty,
with failure count of 0. If failure
count exceeds 2, the error
indicating threshold is exceeded.
This indicates a possible issue
with the health of the kubelet.

For further investigation, run this
command to access the node and
see all its logs:

$ oc debug node/<node> — 
chroot /host journalctl -u
kubelet

Name Format Description Notes

CHAPTER 4. WORKING WITH NODES

177

mcd_reboot_er
r*

[]string{"messa
ge", "err"}

Logs the failed reboots and the
corresponding errors. *

This is expected to be empty,
which indicates a successful
reboot.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_update_st
ate

[]string{"config
", "err"}

Logs success or failure of
configuration updates and the
corresponding errors.

The expected value is rendered-
master/rendered-worker-
XXXX. If the update fails, an error
is present.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

Name Format Description Notes

Additional resources

See the documentation on the Prometheus Cluster Monitoring stack .

See the documentation on gathering data about your cluster .

OpenShift Container Platform 4.5 Nodes

178

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/monitoring/#about-cluster-monitoring-1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/support/#gathering-data-about-your-cluster

CHAPTER 5. WORKING WITH CONTAINERS

5.1. UNDERSTANDING CONTAINERS

The basic units of OpenShift Container Platform applications are called containers. Linux container
technologies are lightweight mechanisms for isolating running processes so that they are limited to
interacting with only their designated resources.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service (often
called a "micro-service"), such as a web server or a database, though containers can be used for arbitrary
workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. OpenShift
Container Platform and Kubernetes add the ability to orchestrate containers across multi-host
installations.

About containers and RHEL kernel memory
Due to Red Hat Enterprise Linux (RHEL) behavior, a container on a node with high CPU usage might
seem to consume more memory than expected. The higher memory consumption could be caused by
the kmem_cache in the RHEL kernel. The RHEL kernel creates a kmem_cache for each cgroup. For
added performance, the kmem_cache contains a cpu_cache, and a node cache for any NUMA nodes.
These caches all consume kernel memory.

The amount of memory stored in those caches is proportional to the number of CPUs that the system
uses. As a result, a higher number of CPUs results in a greater amount of kernel memory being held in
these caches. Higher amounts of kernel memory in these caches can cause OpenShift Container
Platform containers to exceed the configured memory limits, resulting in the container being killed.

To avoid losing containers due to kernel memory issues, ensure that the containers request sufficient
memory. You can use the following formula to estimate the amount of memory consumed by the
kmem_cache, where nproc is the number of processing units available that are reported by the nproc
command. The lower limit of container requests should be this value plus the container memory
requirements:

5.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS
DEPLOYED

OpenShift Container Platform provides init containers, which are specialized containers that run before
application containers and can contain utilities or setup scripts not present in an app image.

5.2.1. Understanding Init Containers

You can use an Init Container resource to perform tasks before the rest of a pod is deployed.

A pod can have Init Containers in addition to application containers. Init containers allow you to
reorganize setup scripts and binding code.

An Init Container can:

Contain and run utilities that are not desirable to include in the app Container image for security
reasons.

$(nproc) X 1/2 MiB

CHAPTER 5. WORKING WITH CONTAINERS

179

https://access.redhat.com/articles/1353593

Contain utilities or custom code for setup that is not present in an app image. For example,
there is no requirement to make an image FROM another image just to use a tool like sed, awk,
python, or dig during setup.

Use Linux namespaces so that they have different filesystem views from app containers, such as
access to secrets that application containers are not able to access.

Each Init Container must complete successfully before the next one is started. So, Init Containers
provide an easy way to block or delay the startup of app containers until some set of preconditions are
met.

For example, the following are some ways you can use Init Containers:

Wait for a service to be created with a shell command like:

Register this Pod with a remote server from the downward API with a command like:

Wait for some time before starting the app Container with a command like sleep 60.

Clone a git repository into a volume.

Place values into a configuration file and run a template tool to dynamically generate a
configuration file for the main app Container. For example, place the POD_IP value in a
configuration and generate the main app configuration file using Jinja.

See the Kubernetes documentation for more information.

5.2.2. Creating Init Containers

The following example outlines a simple Pod which has two Init Containers. The first waits for myservice
and the second waits for mydb. Once both containers complete, the pod begins.

Procedure

1. Create a YAML file for the Init Container:

for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; done; exit 1

$ curl -X POST
http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d
‘instance=$()&ip=$()’

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo The app is running! && sleep 3600']
 initContainers:
 - name: init-myservice

OpenShift Container Platform 4.5 Nodes

180

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

2. Create a YAML file for the myservice service.

3. Create a YAML file for the mydb service.

4. Run the following command to create the myapp-pod:

Example output

5. View the status of the pod:

Example output

Note that the pod status indicates it is waiting

6. Run the following commands to create the services:

 image: busybox
 command: ['sh', '-c', 'until nslookup myservice; do echo waiting for myservice; sleep 2;
done;']
 - name: init-mydb
 image: busybox
 command: ['sh', '-c', 'until nslookup mydb; do echo waiting for mydb; sleep 2; done;']

kind: Service
apiVersion: v1
metadata:
 name: myservice
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

kind: Service
apiVersion: v1
metadata:
 name: mydb
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9377

$ oc create -f myapp.yaml

pod/myapp-pod created

$ oc get pods

NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:0/2 0 5s

$ oc create -f mydb.yaml

CHAPTER 5. WORKING WITH CONTAINERS

181

7. View the status of the pod:

Example output

5.3. USING VOLUMES TO PERSIST CONTAINER DATA

Files in a container are ephemeral. As such, when a container crashes or stops, the data is lost. You can
use volumes to persist the data used by the containers in a pod. A volume is directory, accessible to the
Containers in a pod, where data is stored for the life of the pod.

5.3.1. Understanding volumes

Volumes are mounted file systems available to pods and their containers which may be backed by a
number of host-local or network attached storage endpoints. Containers are not persistent by default;
on restart, their contents are cleared.

To ensure that the file system on the volume contains no errors and, if errors are present, to repair them
when possible, OpenShift Container Platform invokes the fsck utility prior to the mount utility. This
occurs when either adding a volume or updating an existing volume.

The simplest volume type is emptyDir, which is a temporary directory on a single machine.
Administrators may also allow you to request a persistent volume that is automatically attached to your
pods.

NOTE

emptyDir volume storage may be restricted by a quota based on the pod’s FSGroup, if
the FSGroup parameter is enabled by your cluster administrator.

5.3.2. Working with volumes using the OpenShift Container Platform CLI

You can use the CLI command oc set volume to add and remove volumes and volume mounts for any
object that has a pod template like replication controllers or deployment configs. You can also list
volumes in pods or any object that has a pod template.

The oc set volume command uses the following general syntax:

Object selection

Specify one of the following for the object_selection parameter in the oc set volume command:

Table 5.1. Object Selection

$ oc create -f myservice.yaml

$ oc get pods

NAME READY STATUS RESTARTS AGE
myapp-pod 1/1 Running 0 2m

$ oc set volume <object_selection> <operation> <mandatory_parameters> <options>

OpenShift Container Platform 4.5 Nodes

182

Syntax Description Example

<object_type> <name> Selects <name> of type
<object_type>.

deploymentConfig registry

<object_type>/<name> Selects <name> of type
<object_type>.

deploymentConfig/registry

<object_type>--
selector=<object_label_selec
tor>

Selects resources of type
<object_type> that matched
the given label selector.

deploymentConfig--
selector="name=registry"

<object_type> --all Selects all resources of type
<object_type>.

deploymentConfig --all

-f or --filename=<file_name> File name, directory, or URL to file
to use to edit the resource.

-f registry-deployment-
config.json

Operation

Specify --add or --remove for the operation parameter in the oc set volume command.

Mandatory parameters

Any mandatory parameters are specific to the selected operation and are discussed in later sections.

Options

Any options are specific to the selected operation and are discussed in later sections.

5.3.3. Listing volumes and volume mounts in a pod

You can list volumes and volume mounts in pods or pod templates:

Procedure

To list volumes:

List volume supported options:

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

For example:

To list all volumes for pod p1:

$ oc set volume <object_type>/<name> [options]

CHAPTER 5. WORKING WITH CONTAINERS

183

To list volume v1 defined on all deployment configs:

5.3.4. Adding volumes to a pod

You can add volumes and volume mounts to a pod.

Procedure

To add a volume, a volume mount, or both to pod templates:

Table 5.2. Supported Options for Adding Volumes

Option Description Default

--name Name of the volume. Automatically generated, if not
specified.

-t, --type Name of the volume source.
Supported values: emptyDir,
hostPath, secret, configmap,
persistentVolumeClaim or
projected.

emptyDir

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

-m, --mount-path Mount path inside the selected
containers.

--path Host path. Mandatory parameter
for --type=hostPath.

--secret-name Name of the secret. Mandatory
parameter for --type=secret.

--configmap-name Name of the configmap.
Mandatory parameter for --
type=configmap.

--claim-name Name of the persistent volume
claim. Mandatory parameter for --
type=persistentVolumeClaim
.

$ oc set volume pod/p1

$ oc set volume dc --all --name=v1

$ oc set volume <object_type>/<name> --add [options]

OpenShift Container Platform 4.5 Nodes

184

--source Details of volume source as a
JSON string. Recommended if
the desired volume source is not
supported by --type.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Option Description Default

For example:

To add a new volume source emptyDir to the registry DeploymentConfig object:

To add volume v1 with secret secret1 for replication controller r1 and mount inside the
containers at /data:

To add existing persistent volume v1 with claim name pvc1 to deployment configuration dc.json
on disk, mount the volume on container c1 at /data, and update the DeploymentConfig object
on the server:

To add a volume v1 based on Git repository https://github.com/namespace1/project1 with
revision 5125c45f9f563 for all replication controllers:

5.3.5. Updating volumes and volume mounts in a pod

You can modify the volumes and volume mounts in a pod.

Procedure

Updating existing volumes using the --overwrite option:

$ oc set volume dc/registry --add

$ oc set volume rc/r1 --add --name=v1 --type=secret --secret-name='secret1' --mount-
path=/data

$ oc set volume -f dc.json --add --name=v1 --type=persistentVolumeClaim \
 --claim-name=pvc1 --mount-path=/data --containers=c1

$ oc set volume rc --all --add --name=v1 \
 --source='{"gitRepo": {
 "repository": "https://github.com/namespace1/project1",
 "revision": "5125c45f9f563"
 }}'

CHAPTER 5. WORKING WITH CONTAINERS

185

For example:

To replace existing volume v1 for replication controller r1 with existing persistent volume claim
pvc1:

To change the DeploymentConfig object d1 mount point to /opt for volume v1:

5.3.6. Removing volumes and volume mounts from a pod

You can remove a volume or volume mount from a pod.

Procedure

To remove a volume from pod templates:

Table 5.3. Supported options for removing volumes

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

--confirm Indicate that you want to remove
multiple volumes at once.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

For example:

To remove a volume v1 from the DeploymentConfig object d1:

To unmount volume v1 from container c1 for the DeploymentConfig object d1 and remove the

$ oc set volume <object_type>/<name> --add --overwrite [options]

$ oc set volume rc/r1 --add --overwrite --name=v1 --type=persistentVolumeClaim --claim-
name=pvc1

$ oc set volume dc/d1 --add --overwrite --name=v1 --mount-path=/opt

$ oc set volume <object_type>/<name> --remove [options]

$ oc set volume dc/d1 --remove --name=v1

OpenShift Container Platform 4.5 Nodes

186

To unmount volume v1 from container c1 for the DeploymentConfig object d1 and remove the
volume v1 if it is not referenced by any containers on d1:

To remove all volumes for replication controller r1:

5.3.7. Configuring volumes for multiple uses in a pod

You can configure a volume to allows you to share one volume for multiple uses in a single pod using the
volumeMounts.subPath property to specify a subPath value inside a volume instead of the volume’s
root.

Procedure

1. View the list of files in the volume, run the oc rsh command:

Example output

2. Specify the subPath:

Example Pod spec with subPath parameter

$ oc set volume dc/d1 --remove --name=v1 --containers=c1

$ oc set volume rc/r1 --remove --confirm

$ oc rsh <pod>

sh-4.2$ ls /path/to/volume/subpath/mount
example_file1 example_file2 example_file3

apiVersion: v1
kind: Pod
metadata:
 name: my-site
spec:
 containers:
 - name: mysql
 image: mysql
 volumeMounts:
 - mountPath: /var/lib/mysql
 name: site-data
 subPath: mysql 1
 - name: php
 image: php
 volumeMounts:
 - mountPath: /var/www/html
 name: site-data
 subPath: html 2
 volumes:
 - name: site-data
 persistentVolumeClaim:
 claimName: my-site-data

CHAPTER 5. WORKING WITH CONTAINERS

187

1

2

Databases are stored in the mysql folder.

HTML content is stored in the html folder.

5.4. MAPPING VOLUMES USING PROJECTED VOLUMES

A projected volume maps several existing volume sources into the same directory.

The following types of volume sources can be projected:

Secrets

Config Maps

Downward API

NOTE

All sources are required to be in the same namespace as the pod.

5.4.1. Understanding projected volumes

Projected volumes can map any combination of these volume sources into a single directory, allowing
the user to:

automatically populate a single volume with the keys from multiple secrets, config maps, and
with downward API information, so that I can synthesize a single directory with various sources
of information;

populate a single volume with the keys from multiple secrets, config maps, and with downward
API information, explicitly specifying paths for each item, so that I can have full control over the
contents of that volume.

The following general scenarios show how you can use projected volumes.

Config map, secrets, Downward API.

Projected volumes allow you to deploy containers with configuration data that includes passwords.
An application using these resources could be deploying Red Hat OpenStack Platform (RHOSP) on
Kubernetes. The configuration data might have to be assembled differently depending on if the
services are going to be used for production or for testing. If a pod is labeled with production or
testing, the downward API selector metadata.labels can be used to produce the correct RHOSP
configs.

Config map + secrets.

Projected volumes allow you to deploy containers involving configuration data and passwords. For
example, you might execute a config map with some sensitive encrypted tasks that are decrypted
using a vault password file.

ConfigMap + Downward API.

Projected volumes allow you to generate a config including the pod name (available via the
metadata.name selector). This application can then pass the pod name along with requests in order
to easily determine the source without using IP tracking.

Secrets + Downward API.

Projected volumes allow you to use a secret as a public key to encrypt the namespace of the pod

OpenShift Container Platform 4.5 Nodes

188

1

2

3

Projected volumes allow you to use a secret as a public key to encrypt the namespace of the pod
(available via the metadata.namespace selector). This example allows the Operator to use the
application to deliver the namespace information securely without using an encrypted transport.

5.4.1.1. Example Pod specs

The following are examples of Pod specs for creating projected volumes.

Pod with a secret, a Downward API, and a config map

Add a volumeMounts section for each container that needs the secret.

Specify a path to an unused directory where the secret will appear.

Set readOnly to true.

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts: 1
 - name: all-in-one
 mountPath: "/projected-volume" 2
 readOnly: true 3
 volumes: 4
 - name: all-in-one 5
 projected:
 defaultMode: 0400 6
 sources:
 - secret:
 name: mysecret 7
 items:
 - key: username
 path: my-group/my-username 8
 - downwardAPI: 9
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: container-test
 resource: limits.cpu
 - configMap: 10
 name: myconfigmap
 items:
 - key: config
 path: my-group/my-config
 mode: 0777 11

CHAPTER 5. WORKING WITH CONTAINERS

189

4

5

6

7

8

9

10

11

Add a volumes block to list each projected volume source.

Specify any name for the volume.

Set the execute permission on the files.

Add a secret. Enter the name of the secret object. Each secret you want to use must be listed.

Specify the path to the secrets file under the mountPath. Here, the secrets file is in /projected-
volume/my-group/my-username.

Add a Downward API source.

Add a ConfigMap source.

Set the mode for the specific projection

NOTE

If there are multiple containers in the pod, each container needs a volumeMounts
section, but only one volumes section is needed.

Pod with multiple secrets with a non-default permission mode set

NOTE

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 defaultMode: 0755
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/my-username
 - secret:
 name: mysecret2
 items:
 - key: password
 path: my-group/my-password
 mode: 511

OpenShift Container Platform 4.5 Nodes

190

NOTE

The defaultMode can only be specified at the projected level and not for each volume
source. However, as illustrated above, you can explicitly set the mode for each individual
projection.

5.4.1.2. Pathing Considerations

Collisions Between Keys when Configured Paths are Identical

If you configure any keys with the same path, the pod spec will not be accepted as valid. In the
following example, the specified path for mysecret and myconfigmap are the same:

Consider the following situations related to the volume file paths.

Collisions Between Keys without Configured Paths

The only run-time validation that can occur is when all the paths are known at pod creation, similar to
the above scenario. Otherwise, when a conflict occurs the most recent specified resource will
overwrite anything preceding it (this is true for resources that are updated after pod creation as
well).

Collisions when One Path is Explicit and the Other is Automatically Projected

In the event that there is a collision due to a user specified path matching data that is automatically
projected, the latter resource will overwrite anything preceding it as before

5.4.2. Configuring a Projected Volume for a Pod

When creating projected volumes, consider the volume file path situations described in Understanding

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/data
 - configMap:
 name: myconfigmap
 items:
 - key: config
 path: my-group/data

CHAPTER 5. WORKING WITH CONTAINERS

191

When creating projected volumes, consider the volume file path situations described in Understanding
projected volumes.

The following example shows how to use a projected volume to mount an existing secret volume source.
The steps can be used to create a user name and password secrets from local files. You then create a
pod that runs one container, using a projected volume to mount the secrets into the same shared
directory.

Procedure

To use a projected volume to mount an existing secret volume source.

1. Create files containing the secrets, entering the following, replacing the password and user
information as appropriate:

The user and pass values can be any valid string that is base64 encoded.

The following example shows admin in base64:

Example output

The following example shows the password 1f2d1e2e67df in base64:.

Example output

2. Use the following command to create the secrets:

For example:

Example output

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=

$ echo -n "admin" | base64

YWRtaW4=

$ echo -n "1f2d1e2e67df" | base64

MWYyZDFlMmU2N2Rm

$ oc create -f <secrets-filename>

$ oc create -f secret.yaml

secret "mysecret" created

OpenShift Container Platform 4.5 Nodes

192

3. You can check that the secret was created using the following commands:

For example:

Example output

For example:

4. Create a pod configuration file similar to the following that includes a volumes section:

$ oc get secret <secret-name>

$ oc get secret mysecret

NAME TYPE DATA AGE
mysecret Opaque 2 17h

$ oc get secret <secret-name> -o yaml

$ oc get secret mysecret -o yaml

apiVersion: v1
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=
kind: Secret
metadata:
 creationTimestamp: 2017-05-30T20:21:38Z
 name: mysecret
 namespace: default
 resourceVersion: "2107"
 selfLink: /api/v1/namespaces/default/secrets/mysecret
 uid: 959e0424-4575-11e7-9f97-fa163e4bd54c
type: Opaque

apiVersion: v1
kind: Pod
metadata:
 name: test-projected-volume
spec:
 containers:
 - name: test-projected-volume
 image: busybox
 args:
 - sleep
 - "86400"
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:

CHAPTER 5. WORKING WITH CONTAINERS

193

1 2 The name of the secret you created.

5. Create the pod from the configuration file:

For example:

Example output

6. Verify that the pod container is running, and then watch for changes to the pod:

For example:

The output should appear similar to the following:

Example output

7. In another terminal, use the oc exec command to open a shell to the running container:

For example:

8. In your shell, verify that the projected-volumes directory contains your projected sources:

Example output

 sources:
 - secret: 1
 name: user
 - secret: 2
 name: pass

$ oc create -f <your_yaml_file>.yaml

$ oc create -f secret-pod.yaml

pod "test-projected-volume" created

$ oc get pod <name>

$ oc get pod test-projected-volume

NAME READY STATUS RESTARTS AGE
test-projected-volume 1/1 Running 0 14s

$ oc exec -it <pod> <command>

$ oc exec -it test-projected-volume -- /bin/sh

/ # ls

OpenShift Container Platform 4.5 Nodes

194

5.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS

The Downward API is a mechanism that allows containers to consume information about API objects
without coupling to OpenShift Container Platform. Such information includes the pod’s name,
namespace, and resource values. Containers can consume information from the downward API using
environment variables or a volume plug-in.

5.5.1. Expose Pod information to Containers using the Downward API

The Downward API contains such information as the pod’s name, project, and resource values.
Containers can consume information from the downward API using environment variables or a volume
plug-in.

Fields within the pod are selected using the FieldRef API type. FieldRef has two fields:

Field Description

fieldPath The path of the field to select, relative to the pod.

apiVersion The API version to interpret the fieldPath selector
within.

Currently, the valid selectors in the v1 API include:

Selector Description

metadata.name The pod’s name. This is supported in both
environment variables and volumes.

metadata.namespace The pod’s namespace.This is supported in both
environment variables and volumes.

metadata.labels The pod’s labels. This is only supported in volumes
and not in environment variables.

metadata.annotations The pod’s annotations. This is only supported in
volumes and not in environment variables.

status.podIP The pod’s IP. This is only supported in environment
variables and not volumes.

The apiVersion field, if not specified, defaults to the API version of the enclosing pod template.

5.5.2. Understanding how to consume container values using the downward API

You containers can consume API values using environment variables or a volume plug-in. Depending on

bin home root tmp
dev proc run usr
etc projected-volume sys var

CHAPTER 5. WORKING WITH CONTAINERS

195

You containers can consume API values using environment variables or a volume plug-in. Depending on
the method you choose, containers can consume:

Pod name

Pod project/namespace

Pod annotations

Pod labels

Annotations and labels are available using only a volume plug-in.

5.5.2.1. Consuming container values using environment variables

When using a container’s environment variables, use the EnvVar type’s valueFrom field (of type
EnvVarSource) to specify that the variable’s value should come from a FieldRef source instead of the
literal value specified by the value field.

Only constant attributes of the pod can be consumed this way, as environment variables cannot be
updated once a process is started in a way that allows the process to be notified that the value of a
variable has changed. The fields supported using environment variables are:

Pod name

Pod project/namespace

Procedure

To use environment variables

1. Create a pod.yaml file:

2. Create the pod from the pod.yaml file:

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 restartPolicy: Never

$ oc create -f pod.yaml

OpenShift Container Platform 4.5 Nodes

196

3. Check the container’s logs for the MY_POD_NAME and MY_POD_NAMESPACE values:

5.5.2.2. Consuming container values using a volume plug-in

You containers can consume API values using a volume plug-in.

Containers can consume:

Pod name

Pod project/namespace

Pod annotations

Pod labels

Procedure

To use the volume plug-in:

1. Create a volume-pod.yaml file:

$ oc logs -p dapi-env-test-pod

kind: Pod
apiVersion: v1
metadata:
 labels:
 zone: us-east-coast
 cluster: downward-api-test-cluster1
 rack: rack-123
 name: dapi-volume-test-pod
 annotations:
 annotation1: "345"
 annotation2: "456"
spec:
 containers:
 - name: volume-test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c", "cat /tmp/etc/pod_labels /tmp/etc/pod_annotations"]
 volumeMounts:
 - name: podinfo
 mountPath: /tmp/etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 defaultMode: 420
 items:
 - fieldRef:
 fieldPath: metadata.name
 path: pod_name
 - fieldRef:
 fieldPath: metadata.namespace
 path: pod_namespace
 - fieldRef:

CHAPTER 5. WORKING WITH CONTAINERS

197

2. Create the pod from the volume-pod.yaml file:

3. Check the container’s logs and verify the presence of the configured fields:

Example output

5.5.3. Understanding how to consume container resources using the Downward API

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits so that image and application authors can correctly create an image for specific
environments.

You can do this using environment variable or a volume plug-in.

5.5.3.1. Consuming container resources using environment variables

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits using environment variables.

Procedure

To use environment variables:

1. When creating a pod configuration, specify environment variables that correspond to the
contents of the resources field in the spec.container field:

 fieldPath: metadata.labels
 path: pod_labels
 - fieldRef:
 fieldPath: metadata.annotations
 path: pod_annotations
 restartPolicy: Never

$ oc create -f volume-pod.yaml

$ oc logs -p dapi-volume-test-pod

cluster=downward-api-test-cluster1
rack=rack-123
zone=us-east-coast
annotation1=345
annotation2=456
kubernetes.io/config.source=api

....
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["/bin/sh", "-c", "env"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"

OpenShift Container Platform 4.5 Nodes

198

If the resource limits are not included in the container configuration, the downward API defaults
to the node’s CPU and memory allocatable values.

2. Create the pod from the pod.yaml file:

5.5.3.2. Consuming container resources using a volume plug-in

When creating pods, you can use the Downward API to inject information about computing resource
requests and limits using a volume plug-in.

Procedure

To use the Volume Plug-in:

1. When creating a pod configuration, use the spec.volumes.downwardAPI.items field to
describe the desired resources that correspond to the spec.resources field:

 limits:
 memory: "64Mi"
 cpu: "250m"
 env:
 - name: MY_CPU_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.cpu
 - name: MY_CPU_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.cpu
 - name: MY_MEM_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.memory
 - name: MY_MEM_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.memory
....

$ oc create -f pod.yaml

....
spec:
 containers:
 - name: client-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["sh", "-c", "while true; do echo; if [[-e /etc/cpu_limit]]; then cat /etc/cpu_limit;
fi; if [[-e /etc/cpu_request]]; then cat /etc/cpu_request; fi; if [[-e /etc/mem_limit]]; then cat
/etc/mem_limit; fi; if [[-e /etc/mem_request]]; then cat /etc/mem_request; fi; sleep 5; done"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"

CHAPTER 5. WORKING WITH CONTAINERS

199

If the resource limits are not included in the container configuration, the Downward API defaults
to the node’s CPU and memory allocatable values.

2. Create the pod from the volume-pod.yaml file:

5.5.4. Consuming secrets using the Downward API

When creating pods, you can use the downward API to inject secrets so image and application authors
can create an image for specific environments.

Procedure

1. Create a secret.yaml file:

2. Create a Secret object from the secret.yaml file:

 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.cpu
 - path: "cpu_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.cpu
 - path: "mem_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.memory
 - path: "mem_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.memory
....

$ oc create -f volume-pod.yaml

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
data:
 password: cGFzc3dvcmQ=
 username: ZGV2ZWxvcGVy
type: kubernetes.io/basic-auth

$ oc create -f secret.yaml

OpenShift Container Platform 4.5 Nodes

200

3. Create a pod.yaml file that references the username field from the above Secret object:

4. Create the pod from the pod.yaml file:

5. Check the container’s logs for the MY_SECRET_USERNAME value:

5.5.5. Consuming configuration maps using the Downward API

When creating pods, you can use the Downward API to inject configuration map values so image and
application authors can create an image for specific environments.

Procedure

1. Create a configmap.yaml file:

2. Create a ConfigMap object from the configmap.yaml file:

3. Create a pod.yaml file that references the above ConfigMap object:

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_SECRET_USERNAME
 valueFrom:
 secretKeyRef:
 name: mysecret
 key: username
 restartPolicy: Never

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: ConfigMap
metadata:
 name: myconfigmap
data:
 mykey: myvalue

$ oc create -f configmap.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod

CHAPTER 5. WORKING WITH CONTAINERS

201

4. Create the pod from the pod.yaml file:

5. Check the container’s logs for the MY_CONFIGMAP_VALUE value:

5.5.6. Referencing environment variables

When creating pods, you can reference the value of a previously defined environment variable by using
the $() syntax. If the environment variable reference can not be resolved, the value will be left as the
provided string.

Procedure

1. Create a pod.yaml file that references an existing environment variable:

2. Create the pod from the pod.yaml file:

3. Check the container’s logs for the MY_ENV_VAR_REF_ENV value:

spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_CONFIGMAP_VALUE
 valueFrom:
 configMapKeyRef:
 name: myconfigmap
 key: mykey
 restartPolicy: Always

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_EXISTING_ENV
 value: my_value
 - name: MY_ENV_VAR_REF_ENV
 value: $(MY_EXISTING_ENV)
 restartPolicy: Never

$ oc create -f pod.yaml

OpenShift Container Platform 4.5 Nodes

202

5.5.7. Escaping environment variable references

When creating a pod, you can escape an environment variable reference by using a double dollar sign.
The value will then be set to a single dollar sign version of the provided value.

Procedure

1. Create a pod.yaml file that references an existing environment variable:

2. Create the pod from the pod.yaml file:

3. Check the container’s logs for the MY_NEW_ENV value:

5.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER
PLATFORM CONTAINER

You can use the CLI to copy local files to or from a remote directory in a container using the rsync
command.

5.6.1. Understanding how to copy files

The oc rsync command, or remote sync, is a useful tool for copying database archives to and from your
pods for backup and restore purposes. You can also use oc rsync to copy source code changes into a
running pod for development debugging, when the running pod supports hot reload of source files.

5.6.1.1. Requirements

Specifying the Copy Source

The source argument of the oc rsync command must point to either a local directory or a pod

$ oc logs -p dapi-env-test-pod

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_NEW_ENV
 value: $$(SOME_OTHER_ENV)
 restartPolicy: Never

$ oc create -f pod.yaml

$ oc logs -p dapi-env-test-pod

$ oc rsync <source> <destination> [-c <container>]

CHAPTER 5. WORKING WITH CONTAINERS

203

The source argument of the oc rsync command must point to either a local directory or a pod
directory. Individual files are not supported.

When specifying a pod directory the directory name must be prefixed with the pod name:

If the directory name ends in a path separator (/), only the contents of the directory are copied to the
destination. Otherwise, the directory and its contents are copied to the destination.

Specifying the Copy Destination

The destination argument of the oc rsync command must point to a directory. If the directory does
not exist, but rsync is used for copy, the directory is created for you.

Deleting Files at the Destination

The --delete flag may be used to delete any files in the remote directory that are not in the local
directory.

Continuous Syncing on File Change

Using the --watch option causes the command to monitor the source path for any file system
changes, and synchronizes changes when they occur. With this argument, the command runs forever.

Synchronization occurs after short quiet periods to ensure a rapidly changing file system does not result
in continuous synchronization calls.

When using the --watch option, the behavior is effectively the same as manually invoking oc rsync
repeatedly, including any arguments normally passed to oc rsync. Therefore, you can control the
behavior via the same flags used with manual invocations of oc rsync, such as --delete.

5.6.2. Copying files to and from containers

Support for copying local files to or from a container is built into the CLI.

Prerequisites

When working with oc rsync, note the following:

rsync must be installed

The oc rsync command uses the local rsync tool if present on the client machine and the remote
container.

If rsync is not found locally or in the remote container, a tar archive is created locally and sent to the
container where the tar utility is used to extract the files. If tar is not available in the remote container,
the copy will fail.

The tar copy method does not provide the same functionality as oc rsync. For example, oc rsync
creates the destination directory if it does not exist and only sends files that are different between the
source and the destination.

NOTE

In Windows, the cwRsync client should be installed and added to the PATH for use with
the oc rsync command.

Procedure

<pod name>:<dir>

OpenShift Container Platform 4.5 Nodes

204

To copy a local directory to a pod directory:

For example:

Example output

To copy a pod directory to a local directory:

Example output

5.6.3. Using advanced Rsync features

The oc rsync command exposes fewer command line options than standard rsync. In the case that you
want to use a standard rsync command line option that is not available in oc rsync, for example the --
exclude-from=FILE option, it might be possible to use standard rsync 's --rsh (-e) option or
RSYNC_RSH environment variable as a workaround, as follows:

or:

Export the RSYNC_RSH variable:

Then, run the rsync command:

Both of the above examples configure standard rsync to use oc rsh as its remote shell program to
enable it to connect to the remote pod, and are an alternative to running oc rsync.

5.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER
PLATFORM CONTAINER

You can use the CLI to execute remote commands in an OpenShift Container Platform container.

$ oc rsync <local-dir> <pod-name>:/<remote-dir>

$ oc rsync /home/user/source devpod1234:/src

WARNING: cannot use rsync: rsync not available in container
status.txt

$ oc rsync devpod1234:/src /home/user/source

$ oc rsync devpod1234:/src/status.txt /home/user/
WARNING: cannot use rsync: rsync not available in container
status.txt

$ rsync --rsh='oc rsh' --exclude-from=FILE SRC POD:DEST

$ export RSYNC_RSH='oc rsh'

$ rsync --exclude-from=FILE SRC POD:DEST

CHAPTER 5. WORKING WITH CONTAINERS

205

5.7.1. Executing remote commands in containers

Support for remote container command execution is built into the CLI.

Procedure

To run a command in a container:

For example:

Example output

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers except when the command is executed by a cluster-admin user.

5.7.2. Protocol for initiating a remote command from a client

Clients initiate the execution of a remote command in a container by issuing a request to the Kubernetes
API server:

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the project of the target pod.

<pod> is the name of the target pod.

<container> is the name of the target container.

<command> is the desired command to be executed.

For example:

Additionally, the client can add parameters to the request to indicate if:

the client should send input to the remote container’s command (stdin).

the client’s terminal is a TTY.

the remote container’s command should send output from stdout to the client.

$ oc exec <pod> [-c <container>] <command> [<arg_1> ... <arg_n>]

$ oc exec mypod date

Thu Apr 9 02:21:53 UTC 2015

/proxy/nodes/<node_name>/exec/<namespace>/<pod>/<container>?command=<command>

/proxy/nodes/node123.openshift.com/exec/myns/mypod/mycontainer?command=date

OpenShift Container Platform 4.5 Nodes

206

https://access.redhat.com/errata/RHSA-2015:1650

the remote container’s command should send output from stderr to the client.

After sending an exec request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates one stream each for stdin, stdout, and stderr. To distinguish among the streams, the
client sets the streamType header on the stream to one of stdin, stdout, or stderr.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the remote command execution request.

5.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A
CONTAINER

OpenShift Container Platform supports port forwarding to pods.

5.8.1. Understanding port forwarding

You can use the CLI to forward one or more local ports to a pod. This allows you to listen on a given or
random port locally, and have data forwarded to and from given ports in the pod.

Support for port forwarding is built into the CLI:

The CLI listens on each local port specified by the user, forwarding using the protocol described below.

Ports may be specified using the following formats:

5000 The client listens on port 5000 locally and forwards to 5000 in the pod.

6000:5000 The client listens on port 6000 locally and forwards to 5000 in the pod.

:5000 or
0:5000

The client selects a free local port and forwards to 5000 in the pod.

OpenShift Container Platform handles port-forward requests from clients. Upon receiving a request,
OpenShift Container Platform upgrades the response and waits for the client to create port-forwarding
streams. When OpenShift Container Platform receives a new stream, it copies data between the stream
and the pod’s port.

Architecturally, there are options for forwarding to a pod’s port. The supported OpenShift Container
Platform implementation invokes nsenter directly on the node host to enter the pod’s network
namespace, then invokes socat to copy data between the stream and the pod’s port. However, a
custom implementation could include running a helper pod that then runs nsenter and socat, so that
those binaries are not required to be installed on the host.

5.8.2. Using port forwarding

You can use the CLI to port-forward one or more local ports to a pod.

Procedure

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

CHAPTER 5. WORKING WITH CONTAINERS

207

Use the following command to listen on the specified port in a pod:

For example:

Use the following command to listen on ports 5000 and 6000 locally and forward data to and
from ports 5000 and 6000 in the pod:

Example output

Use the following command to listen on port 8888 locally and forward to 5000 in the pod:

Example output

Use the following command to listen on a free port locally and forward to 5000 in the pod:

Example output

Or:

5.8.3. Protocol for initiating port forwarding from a client

Clients initiate port forwarding to a pod by issuing a request to the Kubernetes API server:

/proxy/nodes/<node_name>/portForward/<namespace>/<pod>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

$ oc port-forward <pod> 5000 6000

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000
Forwarding from 127.0.0.1:6000 -> 6000
Forwarding from [::1]:6000 -> 6000

$ oc port-forward <pod> 8888:5000

Forwarding from 127.0.0.1:8888 -> 5000
Forwarding from [::1]:8888 -> 5000

$ oc port-forward <pod> :5000

Forwarding from 127.0.0.1:42390 -> 5000
Forwarding from [::1]:42390 -> 5000

$ oc port-forward <pod> 0:5000

OpenShift Container Platform 4.5 Nodes

208

<pod> is the name of the target pod.

For example:

/proxy/nodes/node123.openshift.com/portForward/myns/mypod

After sending a port forward request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates a stream with the port header containing the target port in the pod. All data written to
the stream is delivered via the kubelet to the target pod and port. Similarly, all data sent from the pod
for that forwarded connection is delivered back to the same stream in the client.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the port forwarding request.

5.9. USING SYSCTLS IN CONTAINERS

Sysctl settings are exposed via Kubernetes, allowing users to modify certain kernel parameters at
runtime for namespaces within a container. Only sysctls that are namespaced can be set independently
on pods. If a sysctl is not namespaced, called node-level, it cannot be set within OpenShift Container
Platform. Moreover, only those sysctls considered safe are whitelisted by default; you can manually
enable other unsafe sysctls on the node to be available to the user.

5.9.1. About sysctls

In Linux, the sysctl interface allows an administrator to modify kernel parameters at runtime. Parameters
are available via the /proc/sys/ virtual process file system. The parameters cover various subsystems,
such as:

kernel (common prefix: kernel.)

networking (common prefix: net.)

virtual memory (common prefix: vm.)

MDADM (common prefix: dev.)

More subsystems are described in Kernel documentation. To get a list of all parameters, run:

5.9.1.1. Namespaced versus node-level sysctls

A number of sysctls are namespaced in the Linux kernels. This means that you can set them
independently for each pod on a node. Being namespaced is a requirement for sysctls to be accessible in
a pod context within Kubernetes.

The following sysctls are known to be namespaced:

kernel.shm*

kernel.msg*

kernel.sem

$ sudo sysctl -a

CHAPTER 5. WORKING WITH CONTAINERS

209

http://www.chromium.org/spdy
https://www.kernel.org/doc/Documentation/sysctl/README

fs.mqueue.*

Additionally, most of the sysctls in the net.* group are known to be namespaced. Their namespace
adoption differs based on the kernel version and distributor.

Sysctls that are not namespaced are called node-level and must be set manually by the cluster
administrator, either by means of the underlying Linux distribution of the nodes, such as by modifying
the /etc/sysctls.conf file, or by using a daemon set with privileged containers.

NOTE

Consider marking nodes with special sysctls as tainted. Only schedule pods onto them
that need those sysctl settings. Use the taints and toleration feature to mark the nodes.

5.9.1.2. Safe versus unsafe sysctls

Sysctls are grouped into safe and unsafe sysctls.

For a sysctl to be considered safe, it must use proper namespacing and must be properly isolated
between pods on the same node. This means that if you set a sysctl for one pod it must not:

Influence any other pod on the node

Harm the node’s health

Gain CPU or memory resources outside of the resource limits of a pod

OpenShift Container Platform supports, or whitelists, the following sysctls in the safe set:

kernel.shm_rmid_forced

net.ipv4.ip_local_port_range

net.ipv4.tcp_syncookies

All safe sysctls are enabled by default. You can use a sysctl in a pod by modifying the Pod spec.

Any sysctl not whitelisted by OpenShift Container Platform is considered unsafe for OpenShift
Container Platform. Note that being namespaced alone is not sufficient for the sysctl to be considered
safe.

All unsafe sysctls are disabled by default, and the cluster administrator must manually enable them on a
per-node basis. Pods with disabled unsafe sysctls are scheduled but do not launch.

Example output

5.9.2. Setting sysctls for a pod

You can set sysctls on pods using the pod’s securityContext. The securityContext applies to all
containers in the same pod.

$ oc get pod

NAME READY STATUS RESTARTS AGE
hello-pod 0/1 SysctlForbidden 0 14s

OpenShift Container Platform 4.5 Nodes

210

Safe sysctls are allowed by default. A pod with unsafe sysctls fails to launch on any node unless the
cluster administrator explicitly enables unsafe sysctls for that node. As with node-level sysctls, use the
taints and toleration feature or labels on nodes to schedule those pods onto the right nodes.

The following example uses the pod securityContext to set a safe sysctl kernel.shm_rmid_forced and
two unsafe sysctls, net.core.somaxconn and kernel.msgmax. There is no distinction between safe and
unsafe sysctls in the specification.

WARNING

To avoid destabilizing your operating system, modify sysctl parameters only after
you understand their effects.

Procedure

To use safe and unsafe sysctls:

1. Modify the YAML file that defines the pod and add the securityContext spec, as shown in the
following example:

2. Create the pod:

If the unsafe sysctls are not allowed for the node, the pod is scheduled, but does not deploy:

Example output

5.9.3. Enabling unsafe sysctls

apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example
spec:
 securityContext:
 sysctls:
 - name: kernel.shm_rmid_forced
 value: "0"
 - name: net.core.somaxconn
 value: "1024"
 - name: kernel.msgmax
 value: "65536"
 ...

$ oc apply -f <file-name>.yaml

$ oc get pod

NAME READY STATUS RESTARTS AGE
hello-pod 0/1 SysctlForbidden 0 14s

CHAPTER 5. WORKING WITH CONTAINERS

211

1

A cluster administrator can allow certain unsafe sysctls for very special situations such as high
performance or real-time application tuning.

If you want to use unsafe sysctls, a cluster administrator must enable them individually for a specific type
of node. The sysctls must be namespaced.

You can further control which sysctls can be set in pods by specifying lists of sysctls or sysctl patterns in
the forbiddenSysctls and allowedUnsafeSysctls fields of the Security Context Constraints.

The forbiddenSysctls option excludes specific sysctls.

The allowedUnsafeSysctls option controls specific needs such as high performance or real-
time application tuning.

WARNING

Due to their nature of being unsafe, the use of unsafe sysctls is at-your-own-risk
and can lead to severe problems, such as improper behavior of containers, resource
shortage, or breaking a node.

Procedure

1. Add a label to the machine config pool where the containers where containers with the unsafe
sysctls will run:

Add a key: pair label.

2. Create a KubeletConfig custom resource (CR):

$ oc edit machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: sysctl 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-kubelet
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: sysctl 1
 kubeletConfig:

OpenShift Container Platform 4.5 Nodes

212

1

2

Specify the label from the machine config pool.

List the unsafe sysctls you want to allow.

3. Create the object:

A new MachineConfig object named in the 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet
format is created.

4. Wait for the cluster to reboot usng the machineconfigpool object status fields:
For example:

A message similar to the following appears when the cluster is ready:

5. When the cluster is ready, check for the merged KubeletConfig object in the new
MachineConfig object:

 allowedUnsafeSysctls: 2
 - "kernel.msg*"
 - "net.core.somaxconn"

$ oc apply -f set-sysctl-worker.yaml

status:
 conditions:
 - lastTransitionTime: '2019-08-11T15:32:00Z'
 message: >-
 All nodes are updating to
 rendered-worker-ccbfb5d2838d65013ab36300b7b3dc13
 reason: ''
 status: 'True'
 type: Updating

 - lastTransitionTime: '2019-08-11T16:00:00Z'
 message: >-
 All nodes are updated with
 rendered-worker-ccbfb5d2838d65013ab36300b7b3dc13
 reason: ''
 status: 'True'
 type: Updated

$ oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep
ownerReference -A7

 "ownerReferences": [
 {
 "apiVersion": "machineconfiguration.openshift.io/v1",
 "blockOwnerDeletion": true,
 "controller": true,
 "kind": "KubeletConfig",
 "name": "custom-kubelet",
 "uid": "3f64a766-bae8-11e9-abe8-0a1a2a4813f2"

CHAPTER 5. WORKING WITH CONTAINERS

213

You can now add unsafe sysctls to pods as needed.

OpenShift Container Platform 4.5 Nodes

214

1

CHAPTER 6. WORKING WITH CLUSTERS

6.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

Events in OpenShift Container Platform are modeled based on events that happen to API objects in an
OpenShift Container Platform cluster.

6.1.1. Understanding events

Events allow OpenShift Container Platform to record information about real-world events in a resource-
agnostic manner. They also allow developers and administrators to consume information about system
components in a unified way.

6.1.2. Viewing events using the CLI

You can get a list of events in a given project using the CLI.

Procedure

To view events in a project use the following command:

The name of the project.

For example:

Example output

To view events in your project from the OpenShift Container Platform console.

1. Launch the OpenShift Container Platform console.

$ oc get events [-n <project>] 1

$ oc get events -n openshift-config

LAST SEEN TYPE REASON OBJECT MESSAGE
97m Normal Scheduled pod/dapi-env-test-pod Successfully assigned
openshift-config/dapi-env-test-pod to ip-10-0-171-202.ec2.internal
97m Normal Pulling pod/dapi-env-test-pod pulling image
"gcr.io/google_containers/busybox"
97m Normal Pulled pod/dapi-env-test-pod Successfully pulled image
"gcr.io/google_containers/busybox"
97m Normal Created pod/dapi-env-test-pod Created container
9m5s Warning FailedCreatePodSandBox pod/dapi-volume-test-pod Failed create
pod sandbox: rpc error: code = Unknown desc = failed to create pod network sandbox
k8s_dapi-volume-test-pod_openshift-config_6bc60c1f-452e-11e9-9140-
0eec59c23068_0(748c7a40db3d08c07fb4f9eba774bd5effe5f0d5090a242432a73eee66ba9e22
): Multus: Err adding pod to network "openshift-sdn": cannot set "openshift-sdn" ifname to
"eth0": no netns: failed to Statfs "/proc/33366/ns/net": no such file or directory
8m31s Normal Scheduled pod/dapi-volume-test-pod Successfully assigned
openshift-config/dapi-volume-test-pod to ip-10-0-171-202.ec2.internal

CHAPTER 6. WORKING WITH CLUSTERS

215

2. Click Home → Events and select your project.

3. Move to resource that you want to see events. For example: Home → Projects → <project-
name> → <resource-name>.
Many objects, such as pods and deployments, have their own Events tab as well, which
shows events related to that object.

6.1.3. List of events

This section describes the events of OpenShift Container Platform.

Table 6.1. Configuration events

Name Description

FailedValidation Failed pod configuration validation.

Table 6.2. Container events

Name Description

BackOff Back-off restarting failed the container.

Created Container created.

Failed Pull/Create/Start failed.

Killing Killing the container.

Started Container started.

Preempting Preempting other pods.

ExceededGrace
Period

Container runtime did not stop the pod within specified grace period.

Table 6.3. Health events

Name Description

Unhealthy Container is unhealthy.

Table 6.4. Image events

Name Description

BackOff Back off Ctr Start, image pull.

OpenShift Container Platform 4.5 Nodes

216

ErrImageNeverP
ull

The image’s NeverPull Policy is violated.

Failed Failed to pull the image.

InspectFailed Failed to inspect the image.

Pulled Successfully pulled the image or the container image is already present on the machine.

Pulling Pulling the image.

Name Description

Table 6.5. Image Manager events

Name Description

FreeDiskSpaceF
ailed

Free disk space failed.

InvalidDiskCapa
city

Invalid disk capacity.

Table 6.6. Node events

Name Description

FailedMount Volume mount failed.

HostNetworkNo
tSupported

Host network not supported.

HostPortConflic
t

Host/port conflict.

InsufficientFree
CPU

Insufficient free CPU.

InsufficientFree
Memory

Insufficient free memory.

KubeletSetupFa
iled

Kubelet setup failed.

NilShaper Undefined shaper.

CHAPTER 6. WORKING WITH CLUSTERS

217

NodeNotReady Node is not ready.

NodeNotSched
ulable

Node is not schedulable.

NodeReady Node is ready.

NodeSchedulab
le

Node is schedulable.

NodeSelectorMi
smatching

Node selector mismatch.

OutOfDisk Out of disk.

Rebooted Node rebooted.

Starting Starting kubelet.

FailedAttachVol
ume

Failed to attach volume.

FailedDetachVol
ume

Failed to detach volume.

VolumeResizeF
ailed

Failed to expand/reduce volume.

VolumeResizeS
uccessful

Successfully expanded/reduced volume.

FileSystemResi
zeFailed

Failed to expand/reduce file system.

FileSystemResi
zeSuccessful

Successfully expanded/reduced file system.

FailedUnMount Failed to unmount volume.

FailedMapVolu
me

Failed to map a volume.

FailedUnmapDe
vice

Failed unmaped device.

Name Description

OpenShift Container Platform 4.5 Nodes

218

AlreadyMounte
dVolume

Volume is already mounted.

SuccessfulDeta
chVolume

Volume is successfully detached.

SuccessfulMou
ntVolume

Volume is successfully mounted.

SuccessfulUnM
ountVolume

Volume is successfully unmounted.

ContainerGCFai
led

Container garbage collection failed.

ImageGCFailed Image garbage collection failed.

FailedNodeAllo
catableEnforce
ment

Failed to enforce System Reserved Cgroup limit.

NodeAllocatabl
eEnforced

Enforced System Reserved Cgroup limit.

UnsupportedMo
untOption

Unsupported mount option.

SandboxChang
ed

Pod sandbox changed.

FailedCreatePo
dSandBox

Failed to create pod sandbox.

FailedPodSand
BoxStatus

Failed pod sandbox status.

Name Description

Table 6.7. Pod worker events

Name Description

FailedSync Pod sync failed.

Table 6.8. System Events

CHAPTER 6. WORKING WITH CLUSTERS

219

Name Description

SystemOOM There is an OOM (out of memory) situation on the cluster.

Table 6.9. Pod events

Name Description

FailedKillPod Failed to stop a pod.

FailedCreatePo
dContainer

Failed to create a pod container.

Failed Failed to make pod data directories.

NetworkNotRea
dy

Network is not ready.

FailedCreate Error creating: <error-msg>.

SuccessfulCrea
te

Created pod: <pod-name>.

FailedDelete Error deleting: <error-msg>.

SuccessfulDelet
e

Deleted pod: <pod-id>.

Table 6.10. Horizontal Pod AutoScaler events

Name Description

SelectorRequired Selector is required.

InvalidSelector Could not convert selector into a corresponding internal selector object.

FailedGetObject
Metric

HPA was unable to compute the replica count.

InvalidMetricSo
urceType

Unknown metric source type.

ValidMetricFoun
d

HPA was able to successfully calculate a replica count.

FailedConvertH
PA

Failed to convert the given HPA.

OpenShift Container Platform 4.5 Nodes

220

FailedGetScale HPA controller was unable to get the target’s current scale.

SucceededGetS
cale

HPA controller was able to get the target’s current scale.

FailedCompute
MetricsReplicas

Failed to compute desired number of replicas based on listed metrics.

FailedRescale New size: <size>; reason: <msg>; error: <error-msg>.

SuccessfulResc
ale

New size: <size>; reason: <msg>.

FailedUpdateSt
atus

Failed to update status.

Name Description

Table 6.11. Network events (openshift-sdn)

Name Description

Starting Starting OpenShift-SDN.

NetworkFailed The pod’s network interface has been lost and the pod will be stopped.

Table 6.12. Network events (kube-proxy)

Name Description

NeedPods The service-port <serviceName>:<port> needs pods.

Table 6.13. Volume events

Name Description

FailedBinding There are no persistent volumes available and no storage class is set.

VolumeMismatc
h

Volume size or class is different from what is requested in claim.

VolumeFailedRe
cycle

Error creating recycler pod.

CHAPTER 6. WORKING WITH CLUSTERS

221

VolumeRecycle
d

Occurs when volume is recycled.

RecyclerPod Occurs when pod is recycled.

VolumeDelete Occurs when volume is deleted.

VolumeFailedDe
lete

Error when deleting the volume.

ExternalProvisi
oning

Occurs when volume for the claim is provisioned either manually or via external
software.

ProvisioningFail
ed

Failed to provision volume.

ProvisioningCle
anupFailed

Error cleaning provisioned volume.

ProvisioningSu
cceeded

Occurs when the volume is provisioned successfully.

WaitForFirstCo
nsumer

Delay binding until pod scheduling.

Name Description

Table 6.14. Lifecycle hooks

Name Description

FailedPostStart
Hook

Handler failed for pod start.

FailedPreStopH
ook

Handler failed for pre-stop.

UnfinishedPreSt
opHook

Pre-stop hook unfinished.

Table 6.15. Deployments

Name Description

DeploymentCan
cellationFailed

Failed to cancel deployment.

OpenShift Container Platform 4.5 Nodes

222

DeploymentCan
celled

Canceled deployment.

DeploymentCre
ated

Created new replication controller.

IngressIPRange
Full

No available Ingress IP to allocate to service.

Name Description

Table 6.16. Scheduler events

Name Description

FailedSchedulin
g

Failed to schedule pod: <pod-namespace>/<pod-name>. This event is raised for
multiple reasons, for example: AssumePodVolumes failed, Binding rejected etc.

Preempted By <preemptor-namespace>/<preemptor-name> on node <node-name>.

Scheduled Successfully assigned <pod-name> to <node-name>.

Table 6.17. Daemon set events

Name Description

SelectingAll This daemon set is selecting all pods. A non-empty selector is required.

FailedPlacemen
t

Failed to place pod on <node-name>.

FailedDaemonP
od

Found failed daemon pod <pod-name> on node <node-name>, will try to kill it.

Table 6.18. LoadBalancer service events

Name Description

CreatingLoadBa
lancerFailed

Error creating load balancer.

DeletingLoadBa
lancer

Deleting load balancer.

EnsuringLoadB
alancer

Ensuring load balancer.

CHAPTER 6. WORKING WITH CLUSTERS

223

EnsuredLoadBa
lancer

Ensured load balancer.

UnAvailableLoa
dBalancer

There are no available nodes for LoadBalancer service.

LoadBalancerS
ourceRanges

Lists the new LoadBalancerSourceRanges. For example, <old-source-range>
→ <new-source-range>.

LoadbalancerIP Lists the new IP address. For example, <old-ip> → <new-ip>.

ExternalIP Lists external IP address. For example, Added: <external-ip>.

UID Lists the new UID. For example, <old-service-uid> → <new-service-uid>.

ExternalTrafficP
olicy

Lists the new ExternalTrafficPolicy. For example, <old-policy> → <new-policy>.

HealthCheckNo
dePort

Lists the new HealthCheckNodePort. For example, <old-node-port> → new-
node-port>.

UpdatedLoadBa
lancer

Updated load balancer with new hosts.

LoadBalancerU
pdateFailed

Error updating load balancer with new hosts.

DeletingLoadBa
lancer

Deleting load balancer.

DeletingLoadBa
lancerFailed

Error deleting load balancer.

DeletedLoadBal
ancer

Deleted load balancer.

Name Description

6.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT
CONTAINER PLATFORM NODES CAN HOLD

As a cluster administrator, you can use the cluster capacity tool to view the number of pods that can be
scheduled to increase the current resources before they become exhausted, and to ensure any future
pods can be scheduled. This capacity comes from an individual node host in a cluster, and includes CPU,
memory, disk space, and others.

6.2.1. Understanding the OpenShift Container Platform cluster capacity tool

The cluster capacity tool simulates a sequence of scheduling decisions to determine how many

OpenShift Container Platform 4.5 Nodes

224

The cluster capacity tool simulates a sequence of scheduling decisions to determine how many
instances of an input pod can be scheduled on the cluster before it is exhausted of resources to provide
a more accurate estimation.

NOTE

The remaining allocatable capacity is a rough estimation, because it does not count all of
the resources being distributed among nodes. It analyzes only the remaining resources
and estimates the available capacity that is still consumable in terms of a number of
instances of a pod with given requirements that can be scheduled in a cluster.

Also, pods might only have scheduling support on particular sets of nodes based on its
selection and affinity criteria. As a result, the estimation of which remaining pods a cluster
can schedule can be difficult.

You can run the cluster capacity analysis tool as a stand-alone utility from the command line, or as a job
in a pod inside an OpenShift Container Platform cluster. Running it as job inside of a pod enables you to
run it multiple times without intervention.

6.2.2. Running the cluster capacity tool on the command line

You can run the OpenShift Container Platform cluster capacity tool from the command line to estimate
the number of pods that can be scheduled onto your cluster.

Prerequisites

Download and install the cluster-capacity tool.

Create a sample Pod spec file, which the tool uses for estimating resource usage. The podspec
specifies its resource requirements as limits or requests. The cluster capacity tool takes the
pod’s resource requirements into account for its estimation analysis.
An example of the Pod spec input is:

Procedure

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi

CHAPTER 6. WORKING WITH CLUSTERS

225

https://github.com/kubernetes-incubator/cluster-capacity

1

2

To use the tool on the command line:

1. Run the following command:

Specify the path to your Kubernetes configuration file.

Specify the path to the sample Pod spec file

You can also add the --verbose option to output a detailed description of how many pods can
be scheduled on each node in the cluster:

Example output

In the above example, the number of estimated pods that can be scheduled onto the cluster is
52.

6.2.3. Running the cluster capacity tool as a job inside a pod

Running the cluster capacity tool as a job inside of a pod has the advantage of being able to be run
multiple times without needing user intervention. Running the cluster capacity tool as a job involves
using a ConfigMap object.

Prerequisites

Download and install the cluster capacity tool.

Procedure

To run the cluster capacity tool:

1. Create the cluster role:

$./cluster-capacity --kubeconfig <path-to-kubeconfig> \ 1
 --podspec <path-to-pod-spec> 2

$./cluster-capacity --kubeconfig <path-to-kubeconfig> \
 --podspec <path-to-pod-spec> --verbose

small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 52 instance(s) of the pod small-pod.

Termination reason: Unschedulable: No nodes are available that match all of the
following predicates:: Insufficient cpu (2).

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 26 instance(s)
 - 192.168.124.120: 26 instance(s)

$ cat << EOF| oc create -f -

OpenShift Container Platform 4.5 Nodes

226

https://github.com/kubernetes-incubator/cluster-capacity

Example output

2. Create the service account:

3. Add the role to the service account:

4. Define and create the Pod spec:

5. The cluster capacity analysis is mounted in a volume using a ConfigMap object named cluster-
capacity-configmap to mount input pod spec file pod.yaml into a volume test-volume at the
path /test-pod.
If you haven’t created a ConfigMap object, create one before creating the job:

$ oc create configmap cluster-capacity-configmap \
 --from-file=pod.yaml=pod.yaml

6. Create the job using the below example of a job specification file:

kind: ClusterRole
apiVersion: v1
metadata:
 name: cluster-capacity-role
rules:
- apiGroups: [""]
 resources: ["pods", "nodes", "persistentvolumeclaims", "persistentvolumes", "services"]
 verbs: ["get", "watch", "list"]
EOF

$ oc create sa cluster-capacity-sa

$ oc adm policy add-cluster-role-to-user cluster-capacity-role \
 system:serviceaccount:default:cluster-capacity-sa

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi

CHAPTER 6. WORKING WITH CLUSTERS

227

1 A required environment variable letting the cluster capacity tool know that it is running
inside a cluster as a pod.
The pod.yaml key of the ConfigMap object is the same as the Pod spec file name, though
it is not required. By doing this, the input pod spec file can be accessed inside the pod as
/test-pod/pod.yaml.

7. Run the cluster capacity image as a job in a pod:

8. Check the job logs to find the number of pods that can be scheduled in the cluster:

Example output

apiVersion: batch/v1
kind: Job
metadata:
 name: cluster-capacity-job
spec:
 parallelism: 1
 completions: 1
 template:
 metadata:
 name: cluster-capacity-pod
 spec:
 containers:
 - name: cluster-capacity
 image: openshift/origin-cluster-capacity
 imagePullPolicy: "Always"
 volumeMounts:
 - mountPath: /test-pod
 name: test-volume
 env:
 - name: CC_INCLUSTER 1
 value: "true"
 command:
 - "/bin/sh"
 - "-ec"
 - |
 /bin/cluster-capacity --podspec=/test-pod/pod.yaml --verbose
 restartPolicy: "Never"
 serviceAccountName: cluster-capacity-sa
 volumes:
 - name: test-volume
 configMap:
 name: cluster-capacity-configmap

$ oc create -f cluster-capacity-job.yaml

$ oc logs jobs/cluster-capacity-job

small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

OpenShift Container Platform 4.5 Nodes

228

6.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES

By default, containers run with unbounded compute resources on an OpenShift Container Platform
cluster. With limit ranges, you can restrict resource consumption for specific objects in a project:

pods and containers: You can set minimum and maximum requirements for CPU and memory
for pods and their containers.

Image streams: You can set limits on the number of images and tags in an ImageStream object.

Images: You can limit the size of images that can be pushed to an internal registry.

Persistent volume claims (PVC): You can restrict the size of the PVCs that can be requested.

If a pod does not meet the constraints imposed by the limit range, the pod cannot be created in the
namespace.

6.3.1. About limit ranges

A limit range, defined by a LimitRange object, restricts resource consumption in a project. In the project
you can set specific resource limits for a pod, container, image, image stream, or persistent volume claim
(PVC).

All requests to create and modify resources are evaluated against each LimitRange object in the
project. If the resource violates any of the enumerated constraints, the resource is rejected.

The following shows a limit range object for all components: pod, container, image, image stream, or
PVC. You can configure limits for any or all of these components in the same object. You create a
different limit range object for each project where you want to control resources.

Sample limit range object for a container

The cluster can schedule 52 instance(s) of the pod small-pod.

Termination reason: Unschedulable: No nodes are available that match all of the
following predicates:: Insufficient cpu (2).

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 26 instance(s)
 - 192.168.124.120: 26 instance(s)

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: "Container"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"

CHAPTER 6. WORKING WITH CLUSTERS

229

6.3.1.1. About component limits

The following examples show limit range parameters for each component. The examples are broken out
for clarity. You can create a single LimitRange object for any or all components as necessary.

6.3.1.1.1. Container limits

A limit range allows you to specify the minimum and maximum CPU and memory that each container in a
pod can request for a specific project. If a container is created in the project, the container CPU and
memory requests in the Pod spec must comply with the values set in the LimitRange object. If not, the
pod does not get created.

The container CPU or memory request and limit must be greater than or equal to the min
resource constraint for containers that are specified in the LimitRange object.

The container CPU or memory request must be less than or equal to the max resource
constraint for containers that are specified in the LimitRange object.
If the LimitRange object defines a max CPU, you do not need to define a CPU request value in
the Pod spec. But you must specify a CPU limit value that satisfies the maximum CPU
constraint specified in the limit range.

The ratio of the container limits to requests must be less than or equal to the
maxLimitRequestRatio value for containers that is specified in the LimitRange object.
If the LimitRange object defines a maxLimitRequestRatio constraint, any new containers must
have both a request and a limit value. OpenShift Container Platform calculates the limit-to-
request ratio by dividing the limit by the request. This value should be a non-negative integer
greater than 1.

For example, if a container has cpu: 500 in the limit value, and cpu: 100 in the request value,
the limit-to-request ratio for cpu is 5. This ratio must be less than or equal to the
maxLimitRequestRatio.

If the Pod spec does not specify a container resource memory or limit, the default or defaultRequest
CPU and memory values for containers specified in the limit range object are assigned to the container.

Container LimitRange object definition

 default:
 cpu: "300m"
 memory: "200Mi"
 defaultRequest:
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio:
 cpu: "10"

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Container"
 max:
 cpu: "2" 2

OpenShift Container Platform 4.5 Nodes

230

1

2

3

4

5

6

7

8

9

10

The name of the LimitRange object.

The maximum amount of CPU that a single container in a pod can request.

The maximum amount of memory that a single container in a pod can request.

The minimum amount of CPU that a single container in a pod can request.

The minimum amount of memory that a single container in a pod can request.

The default amount of CPU that a container can use if not specified in the Pod spec.

The default amount of memory that a container can use if not specified in the Pod spec.

The default amount of CPU that a container can request if not specified in the Pod spec.

The default amount of memory that a container can request if not specified in the Pod spec.

The maximum limit-to-request ratio for a container.

6.3.1.1.2. Pod limits

A limit range allows you to specify the minimum and maximum CPU and memory limits for all containers
across a pod in a given project. To create a container in the project, the container CPU and memory
requests in the Pod spec must comply with the values set in the LimitRange object. If not, the pod does
not get created.

If the Pod spec does not specify a container resource memory or limit, the default or defaultRequest
CPU and memory values for containers specified in the limit range object are assigned to the container.

Across all containers in a pod, the following must hold true:

The container CPU or memory request and limit must be greater than or equal to the min
resource constraints for pods that are specified in the LimitRange object.

The container CPU or memory request and limit must be less than or equal to the max resource
constraints for pods that are specified in the LimitRange object.

The ratio of the container limits to requests must be less than or equal to the
maxLimitRequestRatio constraint specified in the LimitRange object.

Pod LimitRange object definition

 memory: "1Gi" 3
 min:
 cpu: "100m" 4
 memory: "4Mi" 5
 default:
 cpu: "300m" 6
 memory: "200Mi" 7
 defaultRequest:
 cpu: "200m" 8
 memory: "100Mi" 9
 maxLimitRequestRatio:
 cpu: "10" 10

CHAPTER 6. WORKING WITH CLUSTERS

231

1

2

3

4

5

6

1

2

The name of the limit range object.

The maximum amount of CPU that a pod can request across all containers.

The maximum amount of memory that a pod can request across all containers.

The minimum amount of CPU that a pod can request across all containers.

The minimum amount of memory that a pod can request across all containers.

The maximum limit-to-request ratio for a container.

6.3.1.1.3. Image limits

A LimitRange object allows you to specify the maximum size of an image that can be pushed to an
internal registry.

When pushing images to an internal registry, the following must hold true:

The size of the image must be less than or equal to the max size for images that is specified in
the LimitRange object.

Image LimitRange object definition

The name of the LimitRange object.

The maximum size of an image that can be pushed to an internal registry.

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:
 cpu: "2" 2
 memory: "1Gi" 3
 min:
 cpu: "200m" 4
 memory: "6Mi" 5
 maxLimitRequestRatio:
 cpu: "10" 6

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: openshift.io/Image
 max:
 storage: 1Gi 2

OpenShift Container Platform 4.5 Nodes

232

1

2

3

NOTE

To prevent blobs that exceed the limit from being uploaded to the registry, the registry
must be configured to enforce quotas.

WARNING

The image size is not always available in the manifest of an uploaded image. This is
especially the case for images built with Docker 1.10 or higher and pushed to a v2
registry. If such an image is pulled with an older Docker daemon, the image manifest
is converted by the registry to schema v1 lacking all the size information. No storage
limit set on images prevent it from being uploaded.

The issue is being addressed.

6.3.1.1.4. Image stream limits

A LimitRange object allows you to specify limits for image streams.

For each image stream, the following must hold true:

The number of image tags in an ImageStream specification must be less than or equal to the
openshift.io/image-tags constraint in the LimitRange object.

The number of unique references to images in an ImageStream specification must be less than
or equal to the openshift.io/images constraint in the limit range object.

Imagestream LimitRange object definition

The name of the LimitRange object.

The maximum number of unique image tags in the imagestream.spec.tags parameter in
imagestream spec.

The maximum number of unique image references in the imagestream.status.tags parameter in
the imagestream spec.

The openshift.io/image-tags resource represents unique image references. Possible references are an
ImageStreamTag, an ImageStreamImage and a DockerImage. Tags can be created using the oc tag

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: openshift.io/ImageStream
 max:
 openshift.io/image-tags: 20 2
 openshift.io/images: 30 3

CHAPTER 6. WORKING WITH CLUSTERS

233

https://github.com/openshift/origin/issues/7706

1

2

3

and oc import-image commands. No distinction is made between internal and external references.
However, each unique reference tagged in an ImageStream specification is counted just once. It does
not restrict pushes to an internal container image registry in any way, but is useful for tag restriction.

The openshift.io/images resource represents unique image names recorded in image stream status. It
allows for restriction of a number of images that can be pushed to the internal registry. Internal and
external references are not distinguished.

6.3.1.1.5. Persistent volume claim limits

A LimitRange object allows you to restrict the storage requested in a persistent volume claim (PVC).

Across all persistent volume claims in a project, the following must hold true:

The resource request in a persistent volume claim (PVC) must be greater than or equal the min
constraint for PVCs that is specified in the LimitRange object.

The resource request in a persistent volume claim (PVC) must be less than or equal the max
constraint for PVCs that is specified in the LimitRange object.

PVC LimitRange object definition

The name of the LimitRange object.

The minimum amount of storage that can be requested in a persistent volume claim.

The maximum amount of storage that can be requested in a persistent volume claim.

6.3.2. Creating a Limit Range

To apply a limit range to a project:

1. Create a LimitRange object with your required specifications:

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "PersistentVolumeClaim"
 min:
 storage: "2Gi" 2
 max:
 storage: "50Gi" 3

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Pod" 2
 max:

OpenShift Container Platform 4.5 Nodes

234

1

2

3

4

5

6

7

8

Specify a name for the LimitRange object.

To set limits for a pod, specify the minimum and maximum CPU and memory requests as
needed.

To set limits for a container, specify the minimum and maximum CPU and memory
requests as needed.

Optional. For a container, specify the default amount of CPU or memory that a container
can use, if not specified in the Pod spec.

Optional. For a container, specify the default amount of CPU or memory that a container
can request, if not specified in the Pod spec.

Optional. For a container, specify the maximum limit-to-request ratio that can be specified
in the Pod spec.

To set limits for an Image object, set the maximum size of an image that can be pushed to
an internal registry.

To set limits for an image stream, set the maximum number of image tags and references
that can be in the ImageStream object file, as needed.

 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "200m"
 memory: "6Mi"
 - type: "Container" 3
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"
 default: 4
 cpu: "300m"
 memory: "200Mi"
 defaultRequest: 5
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio: 6
 cpu: "10"
 - type: openshift.io/Image 7
 max:
 storage: 1Gi
 - type: openshift.io/ImageStream 8
 max:
 openshift.io/image-tags: 20
 openshift.io/images: 30
 - type: "PersistentVolumeClaim" 9
 min:
 storage: "2Gi"
 max:
 storage: "50Gi"

CHAPTER 6. WORKING WITH CLUSTERS

235

9

1

To set limits for a persistent volume claim, set the minimum and maximum amount of
storage that can be requested.

2. Create the object:

$ oc create -f <limit_range_file> -n <project> 1

Specify the name of the YAML file you created and the project where you want the limits
to apply.

6.3.3. Viewing a limit

You can view any limits defined in a project by navigating in the web console to the project’s Quota
page.

You can also use the CLI to view limit range details:

1. Get the list of LimitRange object defined in the project. For example, for a project called
demoproject:

$ oc get limits -n demoproject

NAME CREATED AT
resource-limits 2020-07-15T17:14:23Z

2. Describe the LimitRange object you are interested in, for example the resource-limits limit
range:

$ oc describe limits resource-limits -n demoproject

Name: resource-limits
Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Pod cpu 200m 2 - - -
Pod memory 6Mi 1Gi - - -
Container cpu 100m 2 200m 300m 10
Container memory 4Mi 1Gi 100Mi 200Mi -
openshift.io/Image storage - 1Gi - - -
openshift.io/ImageStream openshift.io/image - 12 - - -
openshift.io/ImageStream openshift.io/image-tags - 10 - - -
PersistentVolumeClaim storage - 50Gi - - -

6.3.4. Deleting a Limit Range

To remove any active LimitRange object to no longer enforce the limits in a project:

1. Run the following command:

$ oc delete limits <limit_name>

OpenShift Container Platform 4.5 Nodes

236

6.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER
MEMORY AND RISK REQUIREMENTS

As a cluster administrator, you can help your clusters operate efficiently through managing application
memory by:

Determining the memory and risk requirements of a containerized application component and
configuring the container memory parameters to suit those requirements.

Configuring containerized application runtimes (for example, OpenJDK) to adhere optimally to
the configured container memory parameters.

Diagnosing and resolving memory-related error conditions associated with running in a
container.

6.4.1. Understanding managing application memory

It is recommended to fully read the overview of how OpenShift Container Platform manages Compute
Resources before proceeding.

For each kind of resource (memory, CPU, storage), OpenShift Container Platform allows optional
request and limit values to be placed on each container in a pod.

Note the following about memory requests and memory limits:

Memory request

The memory request value, if specified, influences the OpenShift Container Platform
scheduler. The scheduler considers the memory request when scheduling a container to a
node, then fences off the requested memory on the chosen node for the use of the
container.

If a node’s memory is exhausted, OpenShift Container Platform prioritizes evicting its
containers whose memory usage most exceeds their memory request. In serious cases of
memory exhaustion, the node OOM killer may select and kill a process in a container based
on a similar metric.

The cluster administrator can assign quota or assign default values for the memory request
value.

The cluster administrator can override the memory request values that a developer
specifies, in order to manage cluster overcommit.

Memory limit

The memory limit value, if specified, provides a hard limit on the memory that can be
allocated across all the processes in a container.

If the memory allocated by all of the processes in a container exceeds the memory limit, the
node Out of Memory (OOM) killer will immediately select and kill a process in the container.

If both memory request and limit are specified, the memory limit value must be greater than
or equal to the memory request.

The cluster administrator can assign quota or assign default values for the memory limit
value.

The minimum memory limit is 12 MB. If a container fails to start due to a Cannot allocate

CHAPTER 6. WORKING WITH CLUSTERS

237

The minimum memory limit is 12 MB. If a container fails to start due to a Cannot allocate
memory pod event, the memory limit is too low. Either increase or remove the memory
limit. Removing the limit allows pods to consume unbounded node resources.

6.4.1.1. Managing application memory strategy

The steps for sizing application memory on OpenShift Container Platform are as follows:

1. Determine expected container memory usage
Determine expected mean and peak container memory usage, empirically if necessary (for
example, by separate load testing). Remember to consider all the processes that may
potentially run in parallel in the container: for example, does the main application spawn any
ancillary scripts?

2. Determine risk appetite
Determine risk appetite for eviction. If the risk appetite is low, the container should request
memory according to the expected peak usage plus a percentage safety margin. If the risk
appetite is higher, it may be more appropriate to request memory according to the expected
mean usage.

3. Set container memory request
Set container memory request based on the above. The more accurately the request represents
the application memory usage, the better. If the request is too high, cluster and quota usage will
be inefficient. If the request is too low, the chances of application eviction increase.

4. Set container memory limit, if required
Set container memory limit, if required. Setting a limit has the effect of immediately killing a
container process if the combined memory usage of all processes in the container exceeds the
limit, and is therefore a mixed blessing. On the one hand, it may make unanticipated excess
memory usage obvious early ("fail fast"); on the other hand it also terminates processes
abruptly.

Note that some OpenShift Container Platform clusters may require a limit value to be set; some
may override the request based on the limit; and some application images rely on a limit value
being set as this is easier to detect than a request value.

If the memory limit is set, it should not be set to less than the expected peak container memory
usage plus a percentage safety margin.

5. Ensure application is tuned
Ensure application is tuned with respect to configured request and limit values, if appropriate.
This step is particularly relevant to applications which pool memory, such as the JVM. The rest of
this page discusses this.

6.4.2. Understanding OpenJDK settings for OpenShift Container Platform

The default OpenJDK settings do not work well with containerized environments. As a result, some
additional Java memory settings must always be provided whenever running the OpenJDK in a
container.

The JVM memory layout is complex, version dependent, and describing it in detail is beyond the scope
of this documentation. However, as a starting point for running OpenJDK in a container, at least the
following three memory-related tasks are key:

1. Overriding the JVM maximum heap size.

OpenShift Container Platform 4.5 Nodes

238

2. Encouraging the JVM to release unused memory to the operating system, if appropriate.

3. Ensuring all JVM processes within a container are appropriately configured.

Optimally tuning JVM workloads for running in a container is beyond the scope of this documentation,
and may involve setting multiple additional JVM options.

6.4.2.1. Understanding how to override the JVM maximum heap size

For many Java workloads, the JVM heap is the largest single consumer of memory. Currently, the
OpenJDK defaults to allowing up to 1/4 (1/-XX:MaxRAMFraction) of the compute node’s memory to be
used for the heap, regardless of whether the OpenJDK is running in a container or not. It is therefore
essential to override this behavior, especially if a container memory limit is also set.

There are at least two ways the above can be achieved:

1. If the container memory limit is set and the experimental options are supported by the JVM, set
-XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap.

NOTE

The UseCGroupMemoryLimitForHeap option has been removed in JDK 11. Use -
XX:+UseContainerSupport instead.

This sets -XX:MaxRAM to the container memory limit, and the maximum heap size (-
XX:MaxHeapSize / -Xmx) to 1/ -XX:MaxRAMFraction (1/4 by default).

2. Directly override one of -XX:MaxRAM, -XX:MaxHeapSize or -Xmx.
This option involves hard-coding a value, but has the advantage of allowing a safety margin to
be calculated.

6.4.2.2. Understanding how to encourage the JVM to release unused memory to the
operating system

By default, the OpenJDK does not aggressively return unused memory to the operating system. This
may be appropriate for many containerized Java workloads, but notable exceptions include workloads
where additional active processes co-exist with a JVM within a container, whether those additional
processes are native, additional JVMs, or a combination of the two.

The OpenShift Container Platform Jenkins maven slave image uses the following JVM arguments to
encourage the JVM to release unused memory to the operating system:

These arguments are intended to return heap memory to the operating system whenever allocated
memory exceeds 110% of in-use memory (-XX:MaxHeapFreeRatio), spending up to 20% of CPU time in
the garbage collector (-XX:GCTimeRatio). At no time will the application heap allocation be less than
the initial heap allocation (overridden by -XX:InitialHeapSize / -Xms). Detailed additional information is
available Tuning Java’s footprint in OpenShift (Part 1) , Tuning Java’s footprint in OpenShift (Part 2) ,
and at OpenJDK and Containers.

6.4.2.3. Understanding how to ensure all JVM processes within a container are

-XX:+UseParallelGC
-XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4
-XX:AdaptiveSizePolicyWeight=90.

CHAPTER 6. WORKING WITH CLUSTERS

239

https://developers.redhat.com/blog/2014/07/15/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-1/
https://developers.redhat.com/blog/2014/07/22/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-2/
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/

6.4.2.3. Understanding how to ensure all JVM processes within a container are
appropriately configured

In the case that multiple JVMs run in the same container, it is essential to ensure that they are all
configured appropriately. For many workloads it will be necessary to grant each JVM a percentage
memory budget, leaving a perhaps substantial additional safety margin.

Many Java tools use different environment variables (JAVA_OPTS, GRADLE_OPTS, MAVEN_OPTS,
and so on) to configure their JVMs and it can be challenging to ensure that the right settings are being
passed to the right JVM.

The JAVA_TOOL_OPTIONS environment variable is always respected by the OpenJDK, and values
specified in JAVA_TOOL_OPTIONS will be overridden by other options specified on the JVM
command line. By default, to ensure that these options are used by default for all JVM workloads run in
the slave image, the OpenShift Container Platform Jenkins maven slave image sets:

NOTE

The UseCGroupMemoryLimitForHeap option has been removed in JDK 11. Use -
XX:+UseContainerSupport instead.

This does not guarantee that additional options are not required, but is intended to be a helpful starting
point.

6.4.3. Finding the memory request and limit from within a pod

An application wishing to dynamically discover its memory request and limit from within a pod should use
the Downward API.

Procedure

1. Configure the pod to add the MEMORY_REQUEST and MEMORY_LIMIT stanzas:

JAVA_TOOL_OPTIONS="-XX:+UnlockExperimentalVMOptions
-XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true"

apiVersion: v1
kind: Pod
metadata:
 name: test
spec:
 containers:
 - name: test
 image: fedora:latest
 command:
 - sleep
 - "3600"
 env:
 - name: MEMORY_REQUEST 1
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: requests.memory
 - name: MEMORY_LIMIT 2

OpenShift Container Platform 4.5 Nodes

240

1

2

Add this stanza to discover the application memory request value.

Add this stanza to discover the application memory limit value.

2. Create the pod:

3. Access the pod using a remote shell:

4. Check that the requested values were applied:

Example output

NOTE

The memory limit value can also be read from inside the container by the
/sys/fs/cgroup/memory/memory.limit_in_bytes file.

6.4.4. Understanding OOM kill policy

OpenShift Container Platform can kill a process in a container if the total memory usage of all the
processes in the container exceeds the memory limit, or in serious cases of node memory exhaustion.

When a process is Out of Memory (OOM) killed, this might result in the container exiting immediately. If
the container PID 1 process receives the SIGKILL, the container will exit immediately. Otherwise, the
container behavior is dependent on the behavior of the other processes.

For example, a container process exited with code 137, indicating it received a SIGKILL signal.

If the container does not exit immediately, an OOM kill is detectable as follows:

1. Access the pod using a remote shell:

 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: limits.memory
 resources:
 requests:
 memory: 384Mi
 limits:
 memory: 512Mi

$ oc create -f <file-name>.yaml

$ oc rsh test

$ env | grep MEMORY | sort

MEMORY_LIMIT=536870912
MEMORY_REQUEST=402653184

oc rsh test

CHAPTER 6. WORKING WITH CLUSTERS

241

2. Run the following command to see the current OOM kill count in
/sys/fs/cgroup/memory/memory.oom_control:

3. Run the following command to provoke an OOM kill:

Example output

4. Run the following command to view the exit status of the sed command:

Example output

The 137 code indicates the container process exited with code 137, indicating it received a
SIGKILL signal.

5. Run the following command to see that the OOM kill counter in
/sys/fs/cgroup/memory/memory.oom_control incremented:

If one or more processes in a pod are OOM killed, when the pod subsequently exits, whether
immediately or not, it will have phase Failed and reason OOMKilled. An OOM-killed pod might
be restarted depending on the value of restartPolicy. If not restarted, controllers such as the
replication controller will notice the pod’s failed status and create a new pod to replace the old
one.

Use the follwing command to get the pod status:

Example output

If the pod has not restarted, run the following command to view the pod:

Example output

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control
oom_kill 0

$ sed -e '' </dev/zero

Killed

$ echo $?

137

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control
oom_kill 1

$ oc get pod test

NAME READY STATUS RESTARTS AGE
test 0/1 OOMKilled 0 1m

$ oc get pod test -o yaml

OpenShift Container Platform 4.5 Nodes

242

If restarted, run the following command to view the pod:

Example output

6.4.5. Understanding pod eviction

OpenShift Container Platform may evict a pod from its node when the node’s memory is exhausted.
Depending on the extent of memory exhaustion, the eviction may or may not be graceful. Graceful
eviction implies the main process (PID 1) of each container receiving a SIGTERM signal, then some time
later a SIGKILL signal if the process has not exited already. Non-graceful eviction implies the main
process of each container immediately receiving a SIGKILL signal.

An evicted pod has phase Failed and reason Evicted. It will not be restarted, regardless of the value of
restartPolicy. However, controllers such as the replication controller will notice the pod’s failed status
and create a new pod to replace the old one.

Example output

...
status:
 containerStatuses:
 - name: test
 ready: false
 restartCount: 0
 state:
 terminated:
 exitCode: 137
 reason: OOMKilled
 phase: Failed

$ oc get pod test -o yaml

...
status:
 containerStatuses:
 - name: test
 ready: true
 restartCount: 1
 lastState:
 terminated:
 exitCode: 137
 reason: OOMKilled
 state:
 running:
 phase: Running

$ oc get pod test

NAME READY STATUS RESTARTS AGE
test 0/1 Evicted 0 1m

$ oc get pod test -o yaml

CHAPTER 6. WORKING WITH CLUSTERS

243

Example output

6.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON
OVERCOMMITTED NODES

In an overcommitted state, the sum of the container compute resource requests and limits exceeds the
resources available on the system. For example, you might want to use overcommitment in development
environments where a trade-off of guaranteed performance for capacity is acceptable.

Containers can specify compute resource requests and limits. Requests are used for scheduling your
container and provide a minimum service guarantee. Limits constrain the amount of compute resource
that can be consumed on your node.

The scheduler attempts to optimize the compute resource use across all nodes in your cluster. It places
pods onto specific nodes, taking the pods' compute resource requests and nodes' available capacity
into consideration.

OpenShift Container Platform administrators can control the level of overcommit and manage container
density on nodes. You can configure cluster-level overcommit using the ClusterResourceOverride
Operator to override the ratio between requests and limits set on developer containers. In conjunction
with node overcommit and project memory and CPU limits and defaults , you can adjust the resource
limit and request to achieve the desired level of overcommit.

NOTE

In OpenShift Container Platform, you must enable cluster-level overcommit. Node
overcommitment is enabled by default. See Disabling overcommitment for a node .

6.5.1. Resource requests and overcommitment

For each compute resource, a container may specify a resource request and limit. Scheduling decisions
are made based on the request to ensure that a node has enough capacity available to meet the
requested value. If a container specifies limits, but omits requests, the requests are defaulted to the
limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no
request or limit, the container is scheduled to a node with no resource guarantees. In practice, the
container is able to consume as much of the specified resource as is available with the lowest local
priority. In low resource situations, containers that specify no resource requests are given the lowest
quality of service.

Scheduling is based on resources requested, while quota and hard limits refer to resource limits, which
can be set higher than requested resources. The difference between request and limit determines the
level of overcommit; for instance, if a container is given a memory request of 1Gi and a memory limit of
2Gi, it is scheduled based on the 1Gi request being available on the node, but could use up to 2Gi; so it is
200% overcommitted.

6.5.2. Cluster-level overcommit using the Cluster Resource Override Operator

...
status:
 message: 'Pod The node was low on resource: [MemoryPressure].'
 phase: Failed
 reason: Evicted

OpenShift Container Platform 4.5 Nodes

244

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/applications/#deployments-setting-resources_deployment-operations

1

2

3

4

The Cluster Resource Override Operator is an admission webhook that allows you to control the level of
overcommit and manage container density across all the nodes in your cluster. The Operator controls
how nodes in specific projects can exceed defined memory and CPU limits.

You must install the Cluster Resource Override Operator using the OpenShift Container Platform
console or CLI as shown in the following sections. During the installation, you create a
ClusterResourceOverride custom resource (CR), where you set the level of overcommit, as shown in
the following example:

The name must be cluster.

Optional. If a container memory limit has been specified or defaulted, the memory request is
overridden to this percentage of the limit, between 1-100. The default is 50.

Optional. If a container CPU limit has been specified or defaulted, the CPU request is overridden to
this percentage of the limit, between 1-100. The default is 25.

Optional. If a container memory limit has been specified or defaulted, the CPU limit is overridden to
a percentage of the memory limit, if specified. Scaling 1Gi of RAM at 100 percent is equal to 1 CPU
core. This is processed prior to overriding the CPU request (if configured). The default is 200.

NOTE

The Cluster Resource Override Operator overrides have no effect if limits have not been
set on containers. Create a LimitRange object with default limits per individual project or
configure limits in Pod specs for the overrides to apply.

When configured, overrides can be enabled per-project by applying the following label to the
Namespace object for each project:

The Operator watches for the ClusterResourceOverride CR and ensures that the
ClusterResourceOverride admission webhook is installed into the same namespace as the operator.

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
- name: cluster 1
spec:
 memoryRequestToLimitPercent: 50 2
 cpuRequestToLimitPercent: 25 3
 limitCPUToMemoryPercent: 200 4

apiVersion: v1
kind: Namespace
metadata:

....

 labels:
 clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true"

....

CHAPTER 6. WORKING WITH CLUSTERS

245

1

6.5.2.1. Installing the Cluster Resource Override Operator using the web console

You can use the OpenShift Container Platform web console to install the Cluster Resource Override
Operator to help control overcommit in your cluster.

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the OpenShift Container Platform web console:

1. In the OpenShift Container Platform web console, navigate to Home → Projects

a. Click Create Project.

b. Specify clusterresourceoverride-operator as the name of the project.

c. Click Create.

2. Navigate to Operators → OperatorHub.

a. Choose ClusterResourceOverride Operator from the list of available Operators and click
Install.

b. On the Install Operator page, make sure A specific Namespace on the cluster is selected
for Installation Mode.

c. Make sure clusterresourceoverride-operator is selected for Installed Namespace.

d. Select an Update Channel and Approval Strategy.

e. Click Install.

3. On the Installed Operators page, click ClusterResourceOverride.

a. On the ClusterResourceOverride Operator details page, click Create Instance.

b. On the Create ClusterResourceOverride page, edit the YAML template to set the
overcommit values as needed:

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster 1
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50 2
 cpuRequestToLimitPercent: 25 3
 limitCPUToMemoryPercent: 200 4

The name must be cluster.

Optional. Specify the percentage to override the container memory limit, if used,

OpenShift Container Platform 4.5 Nodes

246

2

3

4

Optional. Specify the percentage to override the container memory limit, if used,
between 1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between
1-100. The default is 25.

Optional. Specify the percentage to override the container memory limit, if used.
Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to
overriding the CPU request, if configured. The default is 200.

c. Click Create.

4. Check the current state of the admission webhook by checking the status of the cluster custom
resource:

a. On the ClusterResourceOverride Operator page, click cluster.

b. On the ClusterResourceOverride Details age, click YAML. The
mutatingWebhookConfigurationRef section appears when the webhook is called.

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","met
adata":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":
{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLi
mitPercent":50}}}}
 creationTimestamp: "2019-12-18T22:35:02Z"
 generation: 1
 name: cluster
 resourceVersion: "127622"
 selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
 uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
spec:
 podResourceOverride:
 spec:
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200
 memoryRequestToLimitPercent: 50
status:

....

 mutatingWebhookConfigurationRef: 1
 apiVersion: admissionregistration.k8s.io/v1beta1
 kind: MutatingWebhookConfiguration
 name: clusterresourceoverrides.admission.autoscaling.openshift.io
 resourceVersion: "127621"
 uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3

....

CHAPTER 6. WORKING WITH CLUSTERS

247

1 Reference to the ClusterResourceOverride admission webhook.

6.5.2.2. Installing the Cluster Resource Override Operator using the CLI

You can use the OpenShift Container Platform CLI to install the Cluster Resource Override Operator to
help control overcommit in your cluster.

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

To install the Cluster Resource Override Operator using the CLI:

1. Create a namespace for the Cluster Resource Override Operator:

a. Create a Namespace object YAML file (for example, cro-namespace.yaml) for the Cluster
Resource Override Operator:

b. Create the namespace:

For example:

2. Create an Operator group:

a. Create an OperatorGroup object YAML file (for example, cro-og.yaml) for the Cluster
Resource Override Operator:

b. Create the Operator Group:

For example:

apiVersion: v1
kind: Namespace
metadata:
 name: clusterresourceoverride-operator

$ oc create -f <file-name>.yaml

$ oc create -f cro-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: clusterresourceoverride-operator
 namespace: clusterresourceoverride-operator
spec:
 targetNamespaces:
 - clusterresourceoverride-operator

$ oc create -f <file-name>.yaml

OpenShift Container Platform 4.5 Nodes

248

1

2

3

3. Create a subscription:

a. Create a Subscription object YAML file (for example, cro-sub.yaml) for the Cluster
Resource Override Operator:

b. Create the subscription:

For example:

4. Create a ClusterResourceOverride custom resource (CR) object in the
clusterresourceoverride-operator namespace:

a. Change to the clusterresourceoverride-operator namespace.

b. Create a ClusterResourceOverride object YAML file (for example, cro-cr.yaml) for the
Cluster Resource Override Operator:

The name must be cluster.

Optional. Specify the percentage to override the container memory limit, if used,
between 1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between
1-100. The default is 25.

$ oc create -f cro-og.yaml

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: clusterresourceoverride
 namespace: clusterresourceoverride-operator
spec:
 channel: "4.5"
 name: clusterresourceoverride
 source: redhat-operators
 sourceNamespace: openshift-marketplace

$ oc create -f <file-name>.yaml

$ oc create -f cro-sub.yaml

$ oc project clusterresourceoverride-operator

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 name: cluster 1
spec:
 podResourceOverride:
 spec:
 memoryRequestToLimitPercent: 50 2
 cpuRequestToLimitPercent: 25 3
 limitCPUToMemoryPercent: 200 4

CHAPTER 6. WORKING WITH CLUSTERS

249

4 Optional. Specify the percentage to override the container memory limit, if used.
Scaling 1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to

c. Create the ClusterResourceOverride object:

For example:

5. Verify the current state of the admission webhook by checking the status of the cluster custom
resource.

The mutatingWebhookConfigurationRef section appears when the webhook is called.

Example output

$ oc create -f <file-name>.yaml

$ oc create -f cro-cr.yaml

$ oc get clusterresourceoverride cluster -n clusterresourceoverride-operator -o yaml

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
 annotations:
 kubectl.kubernetes.io/last-applied-configuration: |

{"apiVersion":"operator.autoscaling.openshift.io/v1","kind":"ClusterResourceOverride","metadat
a":{"annotations":{},"name":"cluster"},"spec":{"podResourceOverride":{"spec":
{"cpuRequestToLimitPercent":25,"limitCPUToMemoryPercent":200,"memoryRequestToLimitPe
rcent":50}}}}
 creationTimestamp: "2019-12-18T22:35:02Z"
 generation: 1
 name: cluster
 resourceVersion: "127622"
 selfLink: /apis/operator.autoscaling.openshift.io/v1/clusterresourceoverrides/cluster
 uid: 978fc959-1717-4bd1-97d0-ae00ee111e8d
spec:
 podResourceOverride:
 spec:
 cpuRequestToLimitPercent: 25
 limitCPUToMemoryPercent: 200
 memoryRequestToLimitPercent: 50
status:

....

 mutatingWebhookConfigurationRef: 1
 apiVersion: admissionregistration.k8s.io/v1beta1
 kind: MutatingWebhookConfiguration
 name: clusterresourceoverrides.admission.autoscaling.openshift.io
 resourceVersion: "127621"
 uid: 98b3b8ae-d5ce-462b-8ab5-a729ea8f38f3

....

OpenShift Container Platform 4.5 Nodes

250

1

1

2

3

Reference to the ClusterResourceOverride admission webhook.

6.5.2.3. Configuring cluster-level overcommit

The Cluster Resource Override Operator requires a ClusterResourceOverride custom resource (CR)
and a label for each project where you want the Operator to control overcommit.

Prerequisites

The Cluster Resource Override Operator has no effect if limits have not been set on containers.
You must specify default limits for a project using a LimitRange object or configure limits in
Pod specs for the overrides to apply.

Procedure

To modify cluster-level overcommit:

1. Edit the ClusterResourceOverride CR:

Optional. Specify the percentage to override the container memory limit, if used, between
1-100. The default is 50.

Optional. Specify the percentage to override the container CPU limit, if used, between 1-
100. The default is 25.

Optional. Specify the percentage to override the container memory limit, if used. Scaling
1Gi of RAM at 100 percent is equal to 1 CPU core. This is processed prior to overriding the
CPU request, if configured. The default is 200.

2. Ensure the following label has been added to the Namespace object for each project where you
want the Cluster Resource Override Operator to control overcommit:

apiVersion: operator.autoscaling.openshift.io/v1
kind: ClusterResourceOverride
metadata:
- name: cluster
spec:
 memoryRequestToLimitPercent: 50 1
 cpuRequestToLimitPercent: 25 2
 limitCPUToMemoryPercent: 200 3

apiVersion: v1
kind: Namespace
metadata:

....

 labels:
 clusterresourceoverrides.admission.autoscaling.openshift.io/enabled: "true" 1

....

CHAPTER 6. WORKING WITH CLUSTERS

251

1 Add this label to each project.

6.5.3. Node-level overcommit

You can use various ways to control overcommit on specific nodes, such as quality of service (QOS)
guarantees, CPU limits, or reserve resources. You can also disable overcommit for specific nodes and
specific projects.

6.5.3.1. Understanding compute resources and containers

The node-enforced behavior for compute resources is specific to the resource type.

6.5.3.1.1. Understanding container CPU requests

A container is guaranteed the amount of CPU it requests and is additionally able to consume excess
CPU available on the node, up to any limit specified by the container. If multiple containers are
attempting to use excess CPU, CPU time is distributed based on the amount of CPU requested by each
container.

For example, if one container requested 500m of CPU time and another container requested 250m of
CPU time, then any extra CPU time available on the node is distributed among the containers in a 2:1
ratio. If a container specified a limit, it will be throttled not to use more CPU than the specified limit. CPU
requests are enforced using the CFS shares support in the Linux kernel. By default, CPU limits are
enforced using the CFS quota support in the Linux kernel over a 100ms measuring interval, though this
can be disabled.

6.5.3.1.2. Understanding container memory requests

A container is guaranteed the amount of memory it requests. A container can use more memory than
requested, but once it exceeds its requested amount, it could be terminated in a low memory situation
on the node. If a container uses less memory than requested, it will not be terminated unless system
tasks or daemons need more memory than was accounted for in the node’s resource reservation. If a
container specifies a limit on memory, it is immediately terminated if it exceeds the limit amount.

6.5.3.2. Understanding overcomitment and quality of service classes

A node is overcommitted when it has a pod scheduled that makes no request, or when the sum of limits
across all pods on that node exceeds available machine capacity.

In an overcommitted environment, it is possible that the pods on the node will attempt to use more
compute resource than is available at any given point in time. When this occurs, the node must give
priority to one pod over another. The facility used to make this decision is referred to as a Quality of
Service (QoS) Class.

For each compute resource, a container is divided into one of three QoS classes with decreasing order
of priority:

Table 6.19. Quality of Service Classes

Priority Class Name Description

1 (highest) Guarantee
d

If limits and optionally requests are set (not equal to 0) for all resources and
they are equal, then the container is classified as Guaranteed.

OpenShift Container Platform 4.5 Nodes

252

2 Burstable If requests and optionally limits are set (not equal to 0) for all resources, and
they are not equal, then the container is classified as Burstable.

3 (lowest) BestEffort If requests and limits are not set for any of the resources, then the container is
classified as BestEffort.

Priority Class Name Description

Memory is an incompressible resource, so in low memory situations, containers that have the lowest
priority are terminated first:

Guaranteed containers are considered top priority, and are guaranteed to only be terminated if
they exceed their limits, or if the system is under memory pressure and there are no lower
priority containers that can be evicted.

Burstable containers under system memory pressure are more likely to be terminated once
they exceed their requests and no other BestEffort containers exist.

BestEffort containers are treated with the lowest priority. Processes in these containers are
first to be terminated if the system runs out of memory.

6.5.3.2.1. Understanding how to reserve memory across quality of service tiers

You can use the qos-reserved parameter to specify a percentage of memory to be reserved by a pod in
a particular QoS level. This feature attempts to reserve requested resources to exclude pods from
lower OoS classes from using resources requested by pods in higher QoS classes.

OpenShift Container Platform uses the qos-reserved parameter as follows:

A value of qos-reserved=memory=100% will prevent the Burstable and BestEffort QOS
classes from consuming memory that was requested by a higher QoS class. This increases the
risk of inducing OOM on BestEffort and Burstable workloads in favor of increasing memory
resource guarantees for Guaranteed and Burstable workloads.

A value of qos-reserved=memory=50% will allow the Burstable and BestEffort QOS classes to
consume half of the memory requested by a higher QoS class.

A value of qos-reserved=memory=0% will allow a Burstable and BestEffort QoS classes to
consume up to the full node allocatable amount if available, but increases the risk that a
Guaranteed workload will not have access to requested memory. This condition effectively
disables this feature.

6.5.3.3. Understanding swap memory and QOS

You can disable swap by default on your nodes in order to preserve quality of service (QOS) guarantees.
Otherwise, physical resources on a node can oversubscribe, affecting the resource guarantees the
Kubernetes scheduler makes during pod placement.

For example, if two guaranteed pods have reached their memory limit, each container could start using
swap memory. Eventually, if there is not enough swap space, processes in the pods can be terminated
due to the system being oversubscribed.

Failing to disable swap results in nodes not recognizing that they are experiencing MemoryPressure,

CHAPTER 6. WORKING WITH CLUSTERS

253

resulting in pods not receiving the memory they made in their scheduling request. As a result, additional
pods are placed on the node to further increase memory pressure, ultimately increasing your risk of
experiencing a system out of memory (OOM) event.

IMPORTANT

If swap is enabled, any out-of-resource handling eviction thresholds for available memory
will not work as expected. Take advantage of out-of-resource handling to allow pods to
be evicted from a node when it is under memory pressure, and rescheduled on an
alternative node that has no such pressure.

6.5.3.4. Understanding nodes overcommitment

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit
memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating
system setting.

OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by
setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call oom_killer in an
Out of Memory (OOM) condition, which kills processes based on priority

You can view the current setting by running the following commands on your nodes:

Example output

Example output

NOTE

The above flags should already be set on nodes, and no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

$ sysctl -a |grep commit

vm.overcommit_memory = 1

$ sysctl -a |grep panic

vm.panic_on_oom = 0

OpenShift Container Platform 4.5 Nodes

254

1

6.5.3.5. Disabling or enforcing CPU limits using CPU CFS quotas

Nodes by default enforce specified CPU limits using the Completely Fair Scheduler (CFS) quota
support in the Linux kernel.

If you disable CPU limit enforcement, it is important to understand the impact on your node:

If a container has a CPU request, the request continues to be enforced by CFS shares in the
Linux kernel.

If a container does not have a CPU request, but does have a CPU limit, the CPU request
defaults to the specified CPU limit, and is enforced by CFS shares in the Linux kernel.

If a container has both a CPU request and limit, the CPU request is enforced by CFS shares in
the Linux kernel, and the CPU limit has no impact on the node.

Prerequisites

1. Obtain the label associated with the static MachineConfigPool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the machine config pool:

For example:

Example output

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

Procedure

1. Create a custom resource (CR) for your configuration change.

Sample configuration for a disabling CPU limits

$ oc describe machineconfigpool <name>

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: small-pods 1

$ oc label machineconfigpool worker custom-kubelet=small-pods

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig

CHAPTER 6. WORKING WITH CLUSTERS

255

1

2

3

Assign a name to CR.

Specify the label to apply the configuration change.

Set the cpuCfsQuota parameter to false.

6.5.3.6. Reserving resources for system processes

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by system daemons that are required to run on your node for
your cluster to function. In particular, it is recommended that you reserve resources for incompressible
resources such as memory.

Procedure

To explicitly reserve resources for non-pod processes, allocate node resources by specifying resources
available for scheduling. For more details, see Allocating Resources for Nodes.

6.5.3.7. Disabling overcommitment for a node

When enabled, overcommitment can be disabled on each node.

Procedure

To disable overcommitment in a node run the following command on that node:

6.5.4. Project-level limits

To help control overcommit, you can set per-project resource limit ranges, specifying memory and CPU
limits and defaults for a project that overcommit cannot exceed.

For information on project-level resource limits, see Additional Resources.

Alternatively, you can disable overcommitment for specific projects.

6.5.4.1. Disabling overcommitment for a project

When enabled, overcommitment can be disabled per-project. For example, you can allow infrastructure
components to be configured independently of overcommitment.

Procedure

metadata:
 name: disable-cpu-units 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: small-pods 2
 kubeletConfig:
 cpuCfsQuota: 3
 - "false"

$ sysctl -w vm.overcommit_memory=0

OpenShift Container Platform 4.5 Nodes

256

To disable overcommitment in a project:

1. Edit the project object file

2. Add the following annotation:

3. Create the project object:

6.5.5. Additional resources

For information setting per-project resource limits, see Setting deployment resources.

For more information about explicitly reserving resources for non-pod processes, see Allocating
resources for nodes.

6.6. ENABLING OPENSHIFT CONTAINER PLATFORM FEATURES
USING FEATUREGATES

As an administrator, you can turn on features that are Technology Preview features.

6.6.1. Understanding FeatureGates and Technology Preview features

You can use the FeatureGate custom resource to enable Technology Preview features throughout your
cluster. This allows you, for example, to enable Technology Preview features on test clusters where you
can fully test them while ensuring they are disabled on production clusters.

IMPORTANT

After turning Technology Preview features on using feature gates, they cannot be turned
off and cluster upgrades are prevented.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

This allows you, for example, to ensure that Technology Preview features are off for production clusters
while leaving the features on for test clusters where you can fully test them.

6.6.2. Features that are affected by FeatureGates

The following features are affected by FeatureGates:

FeatureGate Description Default

RotateKubeletServerCertifica
te

Enables the rotation of the server
TLS certificate on the cluster.

True

quota.openshift.io/cluster-resource-override-enabled: "false"

$ oc create -f <file-name>.yaml

CHAPTER 6. WORKING WITH CLUSTERS

257

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/applications/#deployments-setting-resources_deployment-operations
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-nodes-resources-configuring-setting_nodes-nodes-resources-configuring
https://access.redhat.com/support/offerings/techpreview/

SupportPodPidsLimit Enables support for limiting the
number of processes (PIDs)
running in a pod.

True

MachineHealthCheck Enables automatically repairing
unhealthy machines in a machine
pool.

True

LocalStorageCapacityIsolati
on

Enable the consumption of local
ephemeral storage and also the
sizeLimit property of an
emptyDir volume.

False

FeatureGate Description Default

You can enable these features by editing the Feature Gate Custom Resource. Turning on these features
cannot be undone and prevents the ability to upgrade your cluster.

6.6.3. Enabling Technology Preview features using FeatureGates

You can turn Technology Preview features on and off for all nodes in the cluster by editing the
FeatureGates Custom Resource, named cluster, in the openshift-config project.

The following Technology Preview features are enabled by feature gates:

RotateKubeletServerCertificate

SupportPodPidsLimit

IMPORTANT

Turning on Technology Preview features using the FeatureGate custom resource cannot
be undone and prevents upgrades.

Procedure

To turn on the Technology Preview features for the entire cluster:

1. Create the FeatureGates instance:

a. Switch to the Administration → Custom Resource Definitions page.

b. On the Custom Resource Definitions page, click FeatureGate.

c. On the Custom Resource Definitions page, click the Actions Menu and select View
Instances.

d. On the Feature Gates page, click Create Feature Gates.

e. Replace the code with following sample:

OpenShift Container Platform 4.5 Nodes

258

1

f. Click Create.

2. To turn on the Technology Preview features, change the spec parameter to:

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
spec:
 featureSet: TechPreviewNoUpgrade 1

Add featureSet: TechPreviewNoUpgrade to enable the Technology Preview features
that are affected by FeatureGates.

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
spec: {}

CHAPTER 6. WORKING WITH CLUSTERS

259

	Table of Contents
	CHAPTER 1. WORKING WITH PODS
	1.1. USING PODS
	1.1.1. Understanding pods
	1.1.2. Example pod configurations

	1.2. VIEWING PODS
	1.2.1. About pods
	1.2.2. Viewing pods in a project
	1.2.3. Viewing pod usage statistics
	1.2.4. Viewing resource logs

	1.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER FOR PODS
	1.3.1. Configuring how pods behave after restart
	1.3.2. Limiting the bandwidth available to pods
	1.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up
	1.3.3.1. Specifying the number of pods that must be up with pod disruption budgets

	1.3.4. Preventing pod removal using critical pods

	1.4. AUTOMATICALLY SCALING PODS WITH THE HORIZONTAL POD AUTOSCALER
	1.4.1. Understanding horizontal pod autoscalers
	1.4.1.1. Supported metrics
	1.4.1.2. Scaling policies

	1.4.2. Creating a horizontal pod autoscaler for CPU utilization
	1.4.3. Creating a horizontal pod autoscaler object for memory utilization
	1.4.4. Understanding horizontal pod autoscaler status conditions
	1.4.4.1. Viewing horizontal pod autoscaler status conditions

	1.4.5. Additional resources

	1.5. AUTOMATICALLY ADJUST POD RESOURCE LEVELS WITH THE VERTICAL POD AUTOSCALER
	1.5.1. About the Vertical Pod Autoscaler Operator
	1.5.2. Installing the Vertical Pod Autoscaler Operator
	1.5.3. About Using the Vertical Pod Autoscaler Operator
	1.5.3.1. Automatically applying VPA recommendations
	1.5.3.2. Automatically applying VPA recommendations on pod creation
	1.5.3.3. Manually applying VPA recommendations
	1.5.3.4. Exempting containers from applying VPA recommendations

	1.5.4. Using the Vertical Pod Autoscaler Operator
	1.5.5. Uninstalling the Vertical Pod Autoscaler Operator

	1.6. PROVIDING SENSITIVE DATA TO PODS
	1.6.1. Understanding secrets
	1.6.1.1. Types of secrets
	1.6.1.2. Example secret configurations
	1.6.1.3. Secret data keys

	1.6.2. Understanding how to create secrets
	1.6.2.1. Secret creation restrictions
	1.6.2.2. Creating an opaque secret

	1.6.3. Understanding how to update secrets
	1.6.4. About using signed certificates with secrets
	1.6.4.1. Generating signed certificates for use with secrets

	1.6.5. Troubleshooting secrets

	1.7. USING DEVICE PLUG-INS TO ACCESS EXTERNAL RESOURCES WITH PODS
	1.7.1. Understanding device plug-ins
	Example device plug-ins
	1.7.1.1. Methods for deploying a device plug-in

	1.7.2. Understanding the Device Manager
	1.7.3. Enabling Device Manager

	1.8. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS
	1.8.1. Understanding pod priority
	1.8.1.1. Pod priority classes
	1.8.1.2. Pod priority names

	1.8.2. Understanding pod preemption
	1.8.2.1. Pod preemption and other scheduler settings
	1.8.2.2. Graceful termination of preempted pods

	1.8.3. Configuring priority and preemption

	1.9. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
	1.9.1. Using node selectors to control pod placement

	CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)
	2.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER
	2.1.1. Scheduler Use Cases
	2.1.1.1. Infrastructure Topological Levels
	2.1.1.2. Affinity
	2.1.1.3. Anti-Affinity

	2.2. CONFIGURING THE DEFAULT SCHEDULER TO CONTROL POD PLACEMENT
	2.2.1. Understanding default scheduling
	2.2.1.1. Understanding Scheduler Policy

	2.2.2. Creating a scheduler policy file
	2.2.3. Modifying scheduler policies
	2.2.3.1. Understanding the scheduler predicates
	2.2.3.2. Understanding the scheduler priorities

	2.2.4. Sample Policy Configurations

	2.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND ANTI-AFFINITY RULES
	2.3.1. Understanding pod affinity
	2.3.2. Configuring a pod affinity rule
	2.3.3. Configuring a pod anti-affinity rule
	2.3.4. Sample pod affinity and anti-affinity rules
	2.3.4.1. Pod Affinity
	2.3.4.2. Pod Anti-affinity
	2.3.4.3. Pod Affinity with no Matching Labels

	2.4. CONTROLLING POD PLACEMENT ON NODES USING NODE AFFINITY RULES
	2.4.1. Understanding node affinity
	2.4.2. Configuring a required node affinity rule
	2.4.3. Configuring a preferred node affinity rule
	2.4.4. Sample node affinity rules
	2.4.4.1. Node affinity with matching labels
	2.4.4.2. Node affinity with no matching labels

	2.4.5. Additional resources

	2.5. PLACING PODS ONTO OVERCOMMITED NODES
	2.5.1. Understanding overcommitment
	2.5.2. Understanding nodes overcommitment

	2.6. CONTROLLING POD PLACEMENT USING NODE TAINTS
	2.6.1. Understanding taints and tolerations
	2.6.1.1. Understanding how to use toleration seconds to delay pod evictions
	2.6.1.2. Understanding how to use multiple taints
	2.6.1.3. Understanding pod scheduling and node conditions (taint node by condition)
	2.6.1.4. Understanding evicting pods by condition (taint-based evictions)
	2.6.1.5. Tolerating all taints

	2.6.2. Adding taints and tolerations
	2.6.2.1. Adding taints and tolerations using a machine set
	2.6.2.2. Binding a user to a node using taints and tolerations
	2.6.2.3. Controlling nodes with special hardware using taints and tolerations

	2.6.3. Removing taints and tolerations

	2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
	2.7.1. About node selectors
	2.7.2. Using node selectors to control pod placement
	2.7.3. Creating default cluster-wide node selectors
	2.7.4. Creating project-wide node selectors

	2.8. RUNNING A CUSTOM SCHEDULER
	2.8.1. Deploying a custom scheduler
	2.8.2. Deploying pods using a custom scheduler
	2.8.3. Additional resources

	2.9. EVICTING PODS USING THE DESCHEDULER
	2.9.1. About the descheduler
	2.9.2. Descheduler strategies
	2.9.3. Installing the descheduler
	2.9.4. Configuring descheduler strategies
	2.9.5. Configuring additional descheduler settings
	2.9.6. Uninstalling the descheduler

	CHAPTER 3. USING JOBS AND DAEMONSETS
	3.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY WITH DAEMON SETS
	3.1.1. Scheduled by default scheduler
	3.1.2. Creating daemonsets

	3.2. RUNNING TASKS IN PODS USING JOBS
	3.2.1. Understanding jobs and cron jobs
	3.2.2. Understanding how to create jobs
	3.2.2.1. Understanding how to set a maximum duration for jobs
	3.2.2.2. Understanding how to set a job back off policy for pod failure
	3.2.2.3. Understanding how to configure a cron job to remove artifacts

	3.2.3. Known limitations
	3.2.4. Creating jobs
	3.2.5. Creating cron jobs

	CHAPTER 4. WORKING WITH NODES
	4.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT CONTAINER PLATFORM CLUSTER
	4.1.1. About listing all the nodes in a cluster
	4.1.2. Listing pods on a node in your cluster
	4.1.3. Viewing memory and CPU usage statistics on your nodes

	4.2. WORKING WITH NODES
	4.2.1. Understanding how to evacuate pods on nodes
	4.2.2. Understanding how to update labels on nodes
	4.2.3. Understanding how to mark nodes as unschedulable or schedulable
	4.2.4. Configuring master nodes as schedulable
	4.2.5. Deleting nodes
	4.2.5.1. Deleting nodes from a cluster
	4.2.5.2. Deleting nodes from a bare metal cluster

	4.2.6. Adding kernel arguments to Nodes
	4.2.7. Additional resources

	4.3. MANAGING NODES
	4.3.1. Modifying nodes

	4.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE
	4.4.1. Configuring the maximum number of pods per node

	4.5. USING THE NODE TUNING OPERATOR
	4.5.1. Accessing an example Node Tuning Operator specification
	4.5.2. Custom tuning specification
	4.5.3. Default profiles set on a cluster
	4.5.4. Supported Tuned daemon plug-ins

	4.6. UNDERSTANDING NODE REBOOTING
	4.6.1. About rebooting nodes running critical infrastructure
	4.6.2. Rebooting a node using pod anti-affinity
	4.6.3. Understanding how to reboot nodes running routers

	4.7. FREEING NODE RESOURCES USING GARBAGE COLLECTION
	4.7.1. Understanding how terminated containers are removed though garbage collection
	4.7.2. Understanding how images are removed though garbage collection
	4.7.3. Configuring garbage collection for containers and images

	4.8. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	4.8.1. Understanding how to allocate resources for nodes
	4.8.1.1. How OpenShift Container Platform computes allocated resources
	4.8.1.2. How nodes enforce resource constraints
	4.8.1.3. Understanding Eviction Thresholds
	4.8.1.4. How the scheduler determines resource availability

	4.8.2. Configuring allocated resources for nodes

	4.9. ALLOCATING SPECIFIC CPUS FOR NODES IN A CLUSTER
	4.9.1. Reserving CPUs for nodes

	4.10. MACHINE CONFIG DAEMON METRICS
	4.10.1. Machine Config Daemon metrics

	CHAPTER 5. WORKING WITH CONTAINERS
	5.1. UNDERSTANDING CONTAINERS
	About containers and RHEL kernel memory

	5.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS DEPLOYED
	5.2.1. Understanding Init Containers
	5.2.2. Creating Init Containers

	5.3. USING VOLUMES TO PERSIST CONTAINER DATA
	5.3.1. Understanding volumes
	5.3.2. Working with volumes using the OpenShift Container Platform CLI
	5.3.3. Listing volumes and volume mounts in a pod
	5.3.4. Adding volumes to a pod
	5.3.5. Updating volumes and volume mounts in a pod
	5.3.6. Removing volumes and volume mounts from a pod
	5.3.7. Configuring volumes for multiple uses in a pod

	5.4. MAPPING VOLUMES USING PROJECTED VOLUMES
	5.4.1. Understanding projected volumes
	5.4.1.1. Example Pod specs
	5.4.1.2. Pathing Considerations

	5.4.2. Configuring a Projected Volume for a Pod

	5.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS
	5.5.1. Expose Pod information to Containers using the Downward API
	5.5.2. Understanding how to consume container values using the downward API
	5.5.2.1. Consuming container values using environment variables
	5.5.2.2. Consuming container values using a volume plug-in

	5.5.3. Understanding how to consume container resources using the Downward API
	5.5.3.1. Consuming container resources using environment variables
	5.5.3.2. Consuming container resources using a volume plug-in

	5.5.4. Consuming secrets using the Downward API
	5.5.5. Consuming configuration maps using the Downward API
	5.5.6. Referencing environment variables
	5.5.7. Escaping environment variable references

	5.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER PLATFORM CONTAINER
	5.6.1. Understanding how to copy files
	5.6.1.1. Requirements

	5.6.2. Copying files to and from containers
	5.6.3. Using advanced Rsync features

	5.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER PLATFORM CONTAINER
	5.7.1. Executing remote commands in containers
	5.7.2. Protocol for initiating a remote command from a client

	5.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A CONTAINER
	5.8.1. Understanding port forwarding
	5.8.2. Using port forwarding
	5.8.3. Protocol for initiating port forwarding from a client

	5.9. USING SYSCTLS IN CONTAINERS
	5.9.1. About sysctls
	5.9.1.1. Namespaced versus node-level sysctls
	5.9.1.2. Safe versus unsafe sysctls

	5.9.2. Setting sysctls for a pod
	5.9.3. Enabling unsafe sysctls

	CHAPTER 6. WORKING WITH CLUSTERS
	6.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	6.1.1. Understanding events
	6.1.2. Viewing events using the CLI
	6.1.3. List of events

	6.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT CONTAINER PLATFORM NODES CAN HOLD
	6.2.1. Understanding the OpenShift Container Platform cluster capacity tool
	6.2.2. Running the cluster capacity tool on the command line
	6.2.3. Running the cluster capacity tool as a job inside a pod

	6.3. RESTRICT RESOURCE CONSUMPTION WITH LIMIT RANGES
	6.3.1. About limit ranges
	6.3.1.1. About component limits

	6.3.2. Creating a Limit Range
	6.3.3. Viewing a limit
	6.3.4. Deleting a Limit Range

	6.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS
	6.4.1. Understanding managing application memory
	6.4.1.1. Managing application memory strategy

	6.4.2. Understanding OpenJDK settings for OpenShift Container Platform
	6.4.2.1. Understanding how to override the JVM maximum heap size
	6.4.2.2. Understanding how to encourage the JVM to release unused memory to the operating system
	6.4.2.3. Understanding how to ensure all JVM processes within a container are appropriately configured

	6.4.3. Finding the memory request and limit from within a pod
	6.4.4. Understanding OOM kill policy
	6.4.5. Understanding pod eviction

	6.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON OVERCOMMITTED NODES
	6.5.1. Resource requests and overcommitment
	6.5.2. Cluster-level overcommit using the Cluster Resource Override Operator
	6.5.2.1. Installing the Cluster Resource Override Operator using the web console
	6.5.2.2. Installing the Cluster Resource Override Operator using the CLI
	6.5.2.3. Configuring cluster-level overcommit

	6.5.3. Node-level overcommit
	6.5.3.1. Understanding compute resources and containers
	6.5.3.2. Understanding overcomitment and quality of service classes
	6.5.3.3. Understanding swap memory and QOS
	6.5.3.4. Understanding nodes overcommitment
	6.5.3.5. Disabling or enforcing CPU limits using CPU CFS quotas
	6.5.3.6. Reserving resources for system processes
	6.5.3.7. Disabling overcommitment for a node

	6.5.4. Project-level limits
	6.5.4.1. Disabling overcommitment for a project

	6.5.5. Additional resources

	6.6. ENABLING OPENSHIFT CONTAINER PLATFORM FEATURES USING FEATUREGATES
	6.6.1. Understanding FeatureGates and Technology Preview features
	6.6.2. Features that are affected by FeatureGates
	6.6.3. Enabling Technology Preview features using FeatureGates

