
OpenShift Container Platform 4.5

Machine management

Adding and maintaining cluster machines

Last Updated: 2021-07-26





OpenShift Container Platform 4.5 Machine management

Adding and maintaining cluster machines



Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for managing the machines that make up an OpenShift
Container Platform cluster. Some tasks make use of the enhanced automatic machine management
functions of an OpenShift Container Platform cluster and some tasks are manual. Not all tasks that
are described in this document are available in all installation types.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. CREATING MACHINE SETS
1.1. CREATING A MACHINE SET ON AWS

1.1.1. Machine API overview
1.1.2. Sample YAML for a machine set custom resource on AWS
1.1.3. Creating a machine set
1.1.4. Machine sets that deploy machines as Spot Instances
1.1.5. Creating Spot Instances by using machine sets

1.2. CREATING A MACHINE SET ON AZURE
1.2.1. Machine API overview
1.2.2. Sample YAML for a machine set custom resource on Azure
1.2.3. Creating a machine set

1.3. CREATING A MACHINE SET ON GCP
1.3.1. Machine API overview
1.3.2. Sample YAML for a machine set custom resource on GCP
1.3.3. Creating a machine set

1.4. CREATING A MACHINE SET ON OPENSTACK
1.4.1. Machine API overview
1.4.2. Sample YAML for a machine set custom resource on RHOSP
1.4.3. Creating a machine set

1.5. CREATING A MACHINE SET ON RHV
1.5.1. Machine API overview
1.5.2. Sample YAML for a machine set custom resource on RHV
1.5.3. Creating a machine set

1.6. CREATING A MACHINE SET ON VSPHERE
1.6.1. Machine API overview
1.6.2. Sample YAML for a machine set custom resource on vSphere
1.6.3. Creating a machine set

CHAPTER 2. MANUALLY SCALING A MACHINE SET
2.1. PREREQUISITES
2.2. SCALING A MACHINE SET MANUALLY
2.3. THE MACHINE SET DELETION POLICY

CHAPTER 3. MODIFYING A MACHINE SET
3.1. MODIFYING A MACHINE SET

CHAPTER 4. DELETING A MACHINE
4.1. DELETING A SPECIFIC MACHINE

CHAPTER 5. APPLYING AUTOSCALING TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
5.1. ABOUT THE CLUSTER AUTOSCALER
5.2. ABOUT THE MACHINE AUTOSCALER
5.3. CONFIGURING THE CLUSTER AUTOSCALER

5.3.1. ClusterAutoscaler resource definition
5.3.2. Deploying the cluster autoscaler

5.4. NEXT STEPS
5.5. CONFIGURING THE MACHINE AUTOSCALERS

5.5.1. MachineAutoscaler resource definition
5.5.2. Deploying the machine autoscaler

5.6. ADDITIONAL RESOURCES

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

5
5
5
6
7
9
9

10
10
11

12
14
14
15
16
18
18
19

20
22
22
23
25
26
27
27
29

32
32
32
33

34
34

36
36

37
37
38
38
39
40
40
41
41

42
42

43

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.1. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE COMPONENTS
6.2. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION ENVIRONMENTS

6.2.1. Creating machine sets for different clouds
6.2.1.1. Sample YAML for a machine set custom resource on AWS
6.2.1.2. Sample YAML for a machine set custom resource on Azure
6.2.1.3. Sample YAML for a machine set custom resource on GCP
6.2.1.4. Sample YAML for a machine set custom resource on RHOSP
6.2.1.5. Sample YAML for a machine set custom resource on RHV
6.2.1.6. Sample YAML for a machine set custom resource on vSphere

6.2.2. Creating a machine set
6.2.3. Creating an infrastructure node
6.2.4. Creating a machine config pool for infrastructure machines

6.3. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE NODES
6.3.1. Binding infrastructure node workloads using taints and tolerations

6.4. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS
6.4.1. Moving the router
6.4.2. Moving the default registry
6.4.3. Moving the monitoring solution
6.4.4. Moving the cluster logging resources

CHAPTER 7. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

7.1. ABOUT ADDING RHEL COMPUTE NODES TO A CLUSTER
7.2. SYSTEM REQUIREMENTS FOR RHEL COMPUTE NODES

7.2.1. Certificate signing requests management
7.3. PREPARING AN IMAGE FOR YOUR CLOUD

7.3.1. Listing latest available RHEL images on AWS
7.4. PREPARING THE MACHINE TO RUN THE PLAYBOOK
7.5. PREPARING A RHEL COMPUTE NODE
7.6. ATTACHING THE ROLE PERMISSIONS TO RHEL INSTANCE IN AWS
7.7. TAGGING A RHEL WORKER NODE AS OWNED OR SHARED
7.8. ADDING A RHEL COMPUTE MACHINE TO YOUR CLUSTER
7.9. APPROVING THE CERTIFICATE SIGNING REQUESTS FOR YOUR MACHINES
7.10. REQUIRED PARAMETERS FOR THE ANSIBLE HOSTS FILE

7.10.1. Optional: Removing RHCOS compute machines from a cluster

CHAPTER 8. ADDING MORE RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM
CLUSTER

8.1. ABOUT ADDING RHEL COMPUTE NODES TO A CLUSTER
8.2. SYSTEM REQUIREMENTS FOR RHEL COMPUTE NODES

8.2.1. Certificate signing requests management
8.3. PREPARING AN IMAGE FOR YOUR CLOUD

8.3.1. Listing latest available RHEL images on AWS
8.4. PREPARING A RHEL COMPUTE NODE
8.5. ATTACHING THE ROLE PERMISSIONS TO RHEL INSTANCE IN AWS
8.6. TAGGING A RHEL WORKER NODE AS OWNED OR SHARED
8.7. ADDING MORE RHEL COMPUTE MACHINES TO YOUR CLUSTER
8.8. APPROVING THE CERTIFICATE SIGNING REQUESTS FOR YOUR MACHINES
8.9. REQUIRED PARAMETERS FOR THE ANSIBLE HOSTS FILE

CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE
9.1. ADDING COMPUTE MACHINES TO AWS BY USING CLOUDFORMATION TEMPLATES

9.1.1. Prerequisites
9.1.2. Adding more compute machines to your AWS cluster by using CloudFormation templates

43
43
43
44
45
47
49
50
52
54
56
56
60
60
61

62
63
64
66

70
70
70
71
71
71
73
74
75
75
76
77
79
79

81
81
81

82
82
82
84
85
85
85
87
89

90
90
90
90

OpenShift Container Platform 4.5 Machine management

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.1.3. Approving the certificate signing requests for your machines
9.2. ADDING COMPUTE MACHINES TO VSPHERE

9.2.1. Prerequisites
9.2.2. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
9.2.3. Approving the certificate signing requests for your machines

9.3. ADDING COMPUTE MACHINES TO BARE METAL
9.3.1. Prerequisites
9.3.2. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines

9.3.2.1. Creating more RHCOS machines using an ISO image
9.3.2.2. Creating more RHCOS machines by PXE or iPXE booting

9.3.3. Approving the certificate signing requests for your machines

CHAPTER 10. DEPLOYING MACHINE HEALTH CHECKS
10.1. ABOUT MACHINE HEALTH CHECKS

10.1.1. MachineHealthChecks on Bare Metal
10.1.2. Limitations when deploying machine health checks

10.2. SAMPLE MACHINEHEALTHCHECK RESOURCE
10.2.1. Short-circuiting machine health check remediation

10.2.1.1. Setting maxUnhealthy by using an absolute value
10.2.1.2. Setting maxUnhealthy by using percentages

10.3. CREATING A MACHINEHEALTHCHECK RESOURCE

91
93
93
94
95
97
97
97
97
98

100

103
103
103
104
104
106
106
106
107

Table of Contents

3



OpenShift Container Platform 4.5 Machine management

4



CHAPTER 1. CREATING MACHINE SETS

1.1. CREATING A MACHINE SET ON AWS

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform
cluster on Amazon Web Services (AWS). For example, you might create infrastructure machine sets and
related machines so that you can move supporting workloads to the new machines.

1.1.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a Node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific
machine type and required metadata.

Machine sets

MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to
pods. If you need more machines or must scale them down, you change the replicas field on the
machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales machines in a cloud. You can set the
minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine
autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a 
ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are
made available by the ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the machine set API.
You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on.
You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online
for less important pods. You can also set the scaling policy so that you can scale up nodes but not
scale them down.

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation

CHAPTER 1. CREATING MACHINE SETS

5



program sends out machine sets across availability zones on your behalf. And then because your
compute is dynamic, and in the face of a zone failure, you always have a zone for when you must
rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.1.2. Sample YAML for a machine set custom resource on AWS

This sample YAML defines a machine set that runs in the us-east-1a Amazon Web Services (AWS) zone
and creates nodes that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
  name: <infrastructureID>-<role>-<zone> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 3
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<zone> 4
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
        machine.openshift.io/cluster-api-machine-role: <role> 6
        machine.openshift.io/cluster-api-machine-type: <role> 7
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<zone> 8
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/<role>: "" 9
      providerSpec:
        value:
          ami:
            id: ami-046fe691f52a953f9 10
          apiVersion: awsproviderconfig.openshift.io/v1beta1
          blockDevices:
            - ebs:
                iops: 0
                volumeSize: 120
                volumeType: gp2
          credentialsSecret:
            name: aws-cloud-credentials
          deviceIndex: 0
          iamInstanceProfile:
            id: <infrastructureID>-worker-profile 11
          instanceType: m4.large
          kind: AWSMachineProviderConfig
          placement:

OpenShift Container Platform 4.5 Machine management

6



1 3 5 11 12 13 14

2 4 8

6 7 9

10

Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the

infrastructure ID by running the following command:

Specify the infrastructure ID, node label, and zone.

Specify the node label to add.

Specify a valid Red Hat Enterprise Linux CoreOS (RHCOS) AMI for your AWS zone for your
OpenShift Container Platform nodes.

1.1.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the machine set custom resource (CR) sample and is
named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

a. If you are not sure about which value to set for a specific field, you can check an existing
machine set from your cluster.

            availabilityZone: us-east-1a
            region: us-east-1
          securityGroups:
            - filters:
                - name: tag:Name
                  values:
                    - <infrastructureID>-worker-sg 12
          subnet:
            filters:
              - name: tag:Name
                values:
                  - <infrastructureID>-private-us-east-1a 13
          tags:
            - name: kubernetes.io/cluster/<infrastructureID> 14
              value: owned
          userDataSecret:
            name: worker-user-data

$ oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.ami.id}{"\n"}' \
    get machineset/<infrastructureID>-worker-us-east-1a

CHAPTER 1. CREATING MACHINE SETS

7



1

2

Example output

b. Check values of a specific machine set:

Example output

The cluster ID.

A default node label.

2. Create the new MachineSet CR:

3. View the list of machine sets:

Example output

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc get machineset <machineset_name> -n \
     openshift-machine-api -o yaml

...
template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
        machine.openshift.io/cluster-api-machine-role: worker 2
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

OpenShift Container Platform 4.5 Machine management

8



When the new machine set is available, the DESIRED and CURRENT values match. If the
machine set is not available, wait a few minutes and run the command again.

Next steps

If you need machine sets in other availability zones, repeat this process to create more machine sets.

1.1.4. Machine sets that deploy machines as Spot Instances

You can save on costs by creating a machine set running on AWS that deploys machines as non-
guaranteed Spot Instances. Spot Instances use available AWS EC2 capacity and are less expensive than
On-Demand Instances. You can use Spot Instances for workloads that can tolerate interruptions, such
as batch or stateless, horizontally scalable workloads.

IMPORTANT

It is strongly recommended that control plane machines are not created on Spot
Instances due to the increased likelihood of the instance being terminated. Manual
intervention is required to replace a terminated control plane node.

AWS EC2 can terminate a Spot Instance at any time. AWS gives a two-minute warning to the user when
an interruption occurs. OpenShift Container Platform begins to remove the workloads from the
affected instances when AWS issues the termination warning.

Interruptions can occur when using Spot Instances for the following reasons:

The instance price exceeds your maximum price.

The demand for Spot Instances increases.

The supply of Spot Instances decreases.

When AWS terminates an instance, a termination handler running on the Spot Instance node deletes the
machine resource. To satisfy the machine set replicas quantity, the machine set creates a machine that
requests a Spot Instance.

1.1.5. Creating Spot Instances by using machine sets

You can launch a Spot Instance on AWS by adding spotMarketOptions to your machine set YAML file.

Procedure

Add the following line under the providerSpec field:

Optional: You can set the spotMarketOptions.maxPrice field to limit the cost of the Spot Instance. For
example, you can set maxPrice: '2.50'.

If the maxPrice is set, this value is used as the hourly maximum spot price. If it is not set, the maximum
price defaults to charge up to the On-Demand Instance price.

NOTE

providerSpec:
  value:
    spotMarketOptions: {}

CHAPTER 1. CREATING MACHINE SETS

9



NOTE

It is strongly recommended to use the default On-Demand price as the maxPrice value
and to not set the maximum price for Spot Instances.

1.2. CREATING A MACHINE SET ON AZURE

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform
cluster on Microsoft Azure. For example, you might create infrastructure machine sets and related
machines so that you can move supporting workloads to the new machines.

1.2.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a Node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific
machine type and required metadata.

Machine sets

MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to
pods. If you need more machines or must scale them down, you change the replicas field on the
machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales machines in a cloud. You can set the
minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine
autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a 
ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are
made available by the ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the machine set API.
You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on.
You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online
for less important pods. You can also set the scaling policy so that you can scale up nodes but not
scale them down.

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily

OpenShift Container Platform 4.5 Machine management

10



because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation
program sends out machine sets across availability zones on your behalf. And then because your
compute is dynamic, and in the face of a zone failure, you always have a zone for when you must
rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.2.2. Sample YAML for a machine set custom resource on Azure

This sample YAML defines a machine set that runs in the 1 Microsoft Azure zone in the centralus region
and creates nodes that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
    machine.openshift.io/cluster-api-machine-role: <role> 2
    machine.openshift.io/cluster-api-machine-type: <role> 3
  name: <infrastructureID>-<role>-<region> 4
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<region> 6
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 7
        machine.openshift.io/cluster-api-machine-role: <role> 8
        machine.openshift.io/cluster-api-machine-type: <role> 9
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-<role>-<region> 10
    spec:
      metadata:
        creationTimestamp: null
        labels:
          node-role.kubernetes.io/<role>: "" 11
      providerSpec:
        value:
          apiVersion: azureproviderconfig.openshift.io/v1beta1
          credentialsSecret:
            name: azure-cloud-credentials
            namespace: openshift-machine-api
          image:
            offer: ""
            publisher: ""
            resourceID: /resourceGroups/<infrastructureID>-
rg/providers/Microsoft.Compute/images/<infrastructureID>
            sku: ""

CHAPTER 1. CREATING MACHINE SETS

11



1 5 7 12 13 14 17

2 3 8 9 11 15 16

4 6 10

18

Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the

infrastructure ID by running the following command:

You can obtain the subnet by running the following command:

You can obtain the vnet by running the following command:

Specify the node label to add.

Specify the infrastructure ID, node label, and region.

Specify the zone within your region to place Machines on. Be sure that your region supports the
zone that you specify.

1.2.3. Creating a machine set

            version: ""
          internalLoadBalancer: ""
          kind: AzureMachineProviderSpec
          location: centralus
          managedIdentity: <infrastructureID>-identity 12
          metadata:
            creationTimestamp: null
          natRule: null
          networkResourceGroup: ""
          osDisk:
            diskSizeGB: 128
            managedDisk:
              storageAccountType: Premium_LRS
            osType: Linux
          publicIP: false
          publicLoadBalancer: ""
          resourceGroup: <infrastructureID>-rg 13
          sshPrivateKey: ""
          sshPublicKey: ""
          subnet: <infrastructureID>-<role>-subnet 14  15
          userDataSecret:
            name: worker-user-data 16
          vmSize: qeci-22538-vnet
          vnet: <infrastructureID>-vnet 17
          zone: "1" 18

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

$  oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.subnet}{"\n"}' \
    get machineset/<infrastructureID>-worker-centralus1

$  oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.vnet}{"\n"}' \
    get machineset/<infrastructureID>-worker-centralus1

OpenShift Container Platform 4.5 Machine management

12



1

2

In addition to the ones created by the installation program, you can create your own machine sets to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the machine set custom resource (CR) sample and is
named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

a. If you are not sure about which value to set for a specific field, you can check an existing
machine set from your cluster.

Example output

b. Check values of a specific machine set:

Example output

The cluster ID.

A default node label.

2. Create the new MachineSet CR:

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc get machineset <machineset_name> -n \
     openshift-machine-api -o yaml

...
template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
        machine.openshift.io/cluster-api-machine-role: worker 2
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

CHAPTER 1. CREATING MACHINE SETS

13



3. View the list of machine sets:

Example output

When the new machine set is available, the DESIRED and CURRENT values match. If the
machine set is not available, wait a few minutes and run the command again.

1.3. CREATING A MACHINE SET ON GCP

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform
cluster on Google Cloud Platform (GCP). For example, you might create infrastructure machine sets
and related machines so that you can move supporting workloads to the new machines.

1.3.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a Node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific
machine type and required metadata.

Machine sets

MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to
pods. If you need more machines or must scale them down, you change the replicas field on the
machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales machines in a cloud. You can set the

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

OpenShift Container Platform 4.5 Machine management

14



minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine
autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a 
ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are
made available by the ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the machine set API.
You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on.
You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online
for less important pods. You can also set the scaling policy so that you can scale up nodes but not
scale them down.

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation
program sends out machine sets across availability zones on your behalf. And then because your
compute is dynamic, and in the face of a zone failure, you always have a zone for when you must
rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.3.2. Sample YAML for a machine set custom resource on GCP

This sample YAML defines a machine set that runs in Google Cloud Platform (GCP) and creates nodes
that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
  name: <infrastructureID>-w-a 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 3
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-w-a 4
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
        machine.openshift.io/cluster-api-machine-role: <role> 6
        machine.openshift.io/cluster-api-machine-type: <role> 7
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-w-a 8
    spec:
      metadata:

CHAPTER 1. CREATING MACHINE SETS

15



1 2 3 4 5 8 11 12 14 16

6 7 9

10

13 15

Specify the infrastructure ID that is based on the cluster ID that you set
when you provisioned the cluster. If you have the OpenShift CLI

installed, you can obtain the infrastructure ID by running the following command:

Specify the node label to add.

Specify the path to the image that is used in current machine sets. If you have the OpenShift CLI
installed, you can obtain the path to the image by running the following command:

Specify the name of the GCP project that you use for your cluster.

1.3.3. Creating a machine set
In addition to the ones created by the installation program, you can create your own machine sets to

        labels:
          node-role.kubernetes.io/<role>: "" 9
      providerSpec:
        value:
          apiVersion: gcpprovider.openshift.io/v1beta1
          canIPForward: false
          credentialsSecret:
            name: gcp-cloud-credentials
          deletionProtection: false
          disks:
          - autoDelete: true
            boot: true
            image: <path_to_image> 10
            labels: null
            sizeGb: 128
            type: pd-ssd
          kind: GCPMachineProviderSpec
          machineType: n1-standard-4
          metadata:
            creationTimestamp: null
          networkInterfaces:
          - network: <infrastructureID>-network 11
            subnetwork: <infrastructureID>-worker-subnet 12
          projectID: <project_name> 13
          region: us-central1
          serviceAccounts:
          - email: <infrastructureID>-w@<project_name>.iam.gserviceaccount.com 14  15
            scopes:
            - https://www.googleapis.com/auth/cloud-platform
          tags:
          - <infrastructureID>-worker 16
          userDataSecret:
            name: worker-user-data
          zone: us-central1-a

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

$ oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.disks[0].image}{"\n"}' \
    get machineset/<infrastructureID>-worker-a

OpenShift Container Platform 4.5 Machine management

16



1

2

In addition to the ones created by the installation program, you can create your own machine sets to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the machine set custom resource (CR) sample and is
named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

a. If you are not sure about which value to set for a specific field, you can check an existing
machine set from your cluster.

Example output

b. Check values of a specific machine set:

Example output

The cluster ID.

A default node label.

2. Create the new MachineSet CR:

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc get machineset <machineset_name> -n \
     openshift-machine-api -o yaml

...
template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
        machine.openshift.io/cluster-api-machine-role: worker 2
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

CHAPTER 1. CREATING MACHINE SETS

17



3. View the list of machine sets:

Example output

When the new machine set is available, the DESIRED and CURRENT values match. If the
machine set is not available, wait a few minutes and run the command again.

1.4. CREATING A MACHINE SET ON OPENSTACK

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform
cluster on Red Hat OpenStack Platform (RHOSP). For example, you might create infrastructure
machine sets and related machines so that you can move supporting workloads to the new machines.

1.4.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a Node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific
machine type and required metadata.

Machine sets

MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to
pods. If you need more machines or must scale them down, you change the replicas field on the
machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales machines in a cloud. You can set the

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

OpenShift Container Platform 4.5 Machine management

18



minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine
autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a 
ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are
made available by the ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the machine set API.
You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on.
You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online
for less important pods. You can also set the scaling policy so that you can scale up nodes but not
scale them down.

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation
program sends out machine sets across availability zones on your behalf. And then because your
compute is dynamic, and in the face of a zone failure, you always have a zone for when you must
rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.4.2. Sample YAML for a machine set custom resource on RHOSP

This sample YAML defines a machine set that runs on Red Hat OpenStack Platform (RHOSP) and
creates nodes that are labeled with node-role.kubernetes.io/<role>: "".

In this sample, infrastructure_ID is the infrastructure ID label that is based on the cluster ID that you set
when you provisioned the cluster, and node_role is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 1
    machine.openshift.io/cluster-api-machine-role: <node_role> 2
    machine.openshift.io/cluster-api-machine-type: <node_role> 3
  name: <infrastructure_ID>-<node_role> 4
  namespace: openshift-machine-api
spec:
  replicas: <number_of_replicas>
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 5
      machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role> 6
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 7
        machine.openshift.io/cluster-api-machine-role: <node_role> 8
        machine.openshift.io/cluster-api-machine-type: <node_role> 9
        machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role> 10
    spec:

CHAPTER 1. CREATING MACHINE SETS

19



1 5 7

2 3 8 9 14

4 6 10

11

12

13

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned
the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by

running the following command:

Specify the node label to add.

Specify the infrastructure ID and node label.

To set a server group policy for the MachineSet, enter the value that is returned from creating a
server group. For most deployments, anti-affinity or soft-anti-affinity policies are recommended.

Required for deployments to multiple networks. If deploying to multiple networks, this list must
include the network that is used as the primarySubnet value.

Specify the RHOSP subnet that you want the endpoints of nodes to be published on. Usually, this is
the same subnet that is used as the value of machinesSubnet in the install-config.yaml file.

1.4.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

      providerSpec:
        value:
          apiVersion: openstackproviderconfig.openshift.io/v1alpha1
          cloudName: openstack
          cloudsSecret:
            name: openstack-cloud-credentials
            namespace: openshift-machine-api
          flavor: <nova_flavor>
          image: <glance_image_name_or_location>
          serverGroupID: <optional_UUID_of_server_group> 11
          kind: OpenstackProviderSpec
          networks: 12
          - filter: {}
            subnets:
            - filter:
                name: <subnet_name>
                tags: openshiftClusterID=<infrastructure_ID>
          primarySubnet: <rhosp_subnet_UUID> 13
          securityGroups:
          - filter: {}
            name: <infrastructure_ID>-worker
          serverMetadata:
            Name: <infrastructure_ID>-worker
            openshiftClusterID: <infrastructure_ID>
          tags:
          - openshiftClusterID=<infrastructure_ID>
          trunk: true
          userDataSecret:
            name: worker-user-data 14
          availabilityZone: <optional_openstack_availability_zone>

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.5 Machine management

20

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/command_line_interface_reference/server#server_group_create


1

2

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the machine set custom resource (CR) sample and is
named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

a. If you are not sure about which value to set for a specific field, you can check an existing
machine set from your cluster.

Example output

b. Check values of a specific machine set:

Example output

The cluster ID.

A default node label.

2. Create the new MachineSet CR:

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc get machineset <machineset_name> -n \
     openshift-machine-api -o yaml

...
template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
        machine.openshift.io/cluster-api-machine-role: worker 2
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

$ oc create -f <file_name>.yaml

CHAPTER 1. CREATING MACHINE SETS

21



3. View the list of machine sets:

Example output

When the new machine set is available, the DESIRED and CURRENT values match. If the
machine set is not available, wait a few minutes and run the command again.

1.5. CREATING A MACHINE SET ON RHV

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform
cluster on Red Hat Virtualization (RHV). For example, you might create infrastructure machine sets and
related machines so that you can move supporting workloads to the new machines.

1.5.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a Node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific
machine type and required metadata.

Machine sets

MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to
pods. If you need more machines or must scale them down, you change the replicas field on the
machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales machines in a cloud. You can set the
minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine
autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a 

$ oc get machineset -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

OpenShift Container Platform 4.5 Machine management

22



ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are
made available by the ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the machine set API.
You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on.
You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online
for less important pods. You can also set the scaling policy so that you can scale up nodes but not
scale them down.

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation
program sends out machine sets across availability zones on your behalf. And then because your
compute is dynamic, and in the face of a zone failure, you always have a zone for when you must
rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.5.2. Sample YAML for a machine set custom resource on RHV

This sample YAML defines a machine set that runs on RHV and creates nodes that are labeled with 
node-role.kubernetes.io/<node_role>: "".

In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
    machine.openshift.io/cluster-api-machine-role: <role> 2
    machine.openshift.io/cluster-api-machine-type: <role> 3
  name: <infrastructure_id>-<role> 4
  namespace: openshift-machine-api
spec:
  replicas: <number_of_replicas> 5
  Selector: 6
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id> 7
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 8
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id> 9
        machine.openshift.io/cluster-api-machine-role: <role> 10
        machine.openshift.io/cluster-api-machine-type: <role> 11
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 12
    spec:
      metadata:

CHAPTER 1. CREATING MACHINE SETS

23



1 7 9

2 3 10 11 13

4 8 12

5

6

14

15

16

17

18

19

20

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned
the cluster. If you have the OpenShift CLI (oc) installed, you can obtain the infrastructure ID by

running the following command:

Specify the node label to add.

Specify the infrastructure ID and node label. These two strings together cannot be longer than
35 characters.

Specify the number of machines to create.

Selector for the machines.

Specify the UUID for the RHV cluster to which this VM instance belongs.

Specify the RHV VM template to use to create the machine.

Optional: Specify the VM instance type. If you include this parameter, you do not need to specify
the hardware parameters of the VM including CPU and memory because this parameter overrides
all hardware parameters.

Optional: The CPU field contains the CPU’s configuration, including sockets, cores, and threads.

Optional: Specify the number of sockets for a VM.

Optional: Specify the number of cores per socket.

Optional: Specify the number of threads per core.

        labels:
          node-role.kubernetes.io/<role>: "" 13
      providerSpec:
        value:
          apiVersion: ovirtproviderconfig.machine.openshift.io/v1beta1
          cluster_id: <ovirt_cluster_id> 14
          template_name: <ovirt_template_name> 15
          instance_type_id: <instance_type_id> 16
          cpu: 17
            sockets: <number_of_sockets> 18
            cores: <number_of_cores> 19
            threads: <number_of_threads> 20
          memory_mb: <memory_size> 21
          os_disk: 22
            size_gb: <disk_size> 23
          network_interfaces: 24
            vnic_profile_id:  <vnic_profile_id> 25
          credentialsSecret:
            name: ovirt-credentials 26
          kind: OvirtMachineProviderSpec
          type: <workload_type> 27
          userDataSecret:
            name: worker-user-data

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.5 Machine management

24



21

22

23

24

25

26

27

Optional: Specify the size of a VM’s memory in MiB.

Optional: Root disk of the node.

Optional: Specify the size of the bootable disk in GiB.

Optional: List of the network interfaces of the VM. If you include this parameter, OpenShift
Container Platform discards all network interfaces from the template and creates new ones.

Optional: Specify the vNIC profile ID.

Specify the name of the secret that holds the RHV credentials.

Optional: Specify the workload type for which the instance is optimized. This value affects the RHV 
VM parameter. Supported values: desktop, server, high_performance.

NOTE

Because RHV uses a template when creating a VM, if you do not specify a value for an
optional parameter, RHV uses the value for that parameter that is specified in the
template.

1.5.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the machine set custom resource (CR) sample and is
named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

a. If you are not sure about which value to set for a specific field, you can check an existing
machine set from your cluster.

Example output

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m

CHAPTER 1. CREATING MACHINE SETS

25



1

2

b. Check values of a specific machine set:

Example output

The cluster ID.

A default node label.

2. Create the new MachineSet CR:

3. View the list of machine sets:

Example output

When the new machine set is available, the DESIRED and CURRENT values match. If the
machine set is not available, wait a few minutes and run the command again.

1.6. CREATING A MACHINE SET ON VSPHERE

You can create a different machine set to serve a specific purpose in your OpenShift Container Platform
cluster on VMware vSphere. For example, you might create infrastructure machine sets and related
machines so that you can move supporting workloads to the new machines.

agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc get machineset <machineset_name> -n \
     openshift-machine-api -o yaml

...
template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
        machine.openshift.io/cluster-api-machine-role: worker 2
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

OpenShift Container Platform 4.5 Machine management

26



1.6.1. Machine API overview

The Machine API is a combination of primary resources that are based on the upstream Cluster API
project and custom OpenShift Container Platform resources.

For OpenShift Container Platform 4.5 clusters, the Machine API performs all node host provisioning
management actions after the cluster installation finishes. Because of this system, OpenShift Container
Platform 4.5 offers an elastic, dynamic provisioning method on top of public or private cloud
infrastructure.

The two primary resources are:

Machines

A fundamental unit that describes the host for a Node. A machine has a providerSpec specification,
which describes the types of compute nodes that are offered for different cloud platforms. For
example, a machine type for a worker node on Amazon Web Services (AWS) might define a specific
machine type and required metadata.

Machine sets

MachineSet resources are groups of machines. Machine sets are to machines as replica sets are to
pods. If you need more machines or must scale them down, you change the replicas field on the
machine set to meet your compute need.

The following custom resources add more capabilities to your cluster:

Machine autoscaler

The MachineAutoscaler resource automatically scales machines in a cloud. You can set the
minimum and maximum scaling boundaries for nodes in a specified machine set, and the machine
autoscaler maintains that range of nodes. The MachineAutoscaler object takes effect after a 
ClusterAutoscaler object exists. Both ClusterAutoscaler and MachineAutoscaler resources are
made available by the ClusterAutoscalerOperator object.

Cluster autoscaler

This resource is based on the upstream cluster autoscaler project. In the OpenShift Container
Platform implementation, it is integrated with the Machine API by extending the machine set API.
You can set cluster-wide scaling limits for resources such as cores, nodes, memory, GPU, and so on.
You can set the priority so that the cluster prioritizes pods so that new nodes are not brought online
for less important pods. You can also set the scaling policy so that you can scale up nodes but not
scale them down.

Machine health check

The MachineHealthCheck resource detects when a machine is unhealthy, deletes it, and, on
supported platforms, makes a new machine.

In OpenShift Container Platform version 3.11, you could not roll out a multi-zone architecture easily
because the cluster did not manage machine provisioning. Beginning with OpenShift Container Platform
version 4.1, this process is easier. Each machine set is scoped to a single zone, so the installation
program sends out machine sets across availability zones on your behalf. And then because your
compute is dynamic, and in the face of a zone failure, you always have a zone for when you must
rebalance your machines. The autoscaler provides best-effort balancing over the life of a cluster.

1.6.2. Sample YAML for a machine set custom resource on vSphere

This sample YAML defines a machine set that runs on VMware vSphere and creates nodes that are
labeled with node-role.kubernetes.io/<role>: "".

In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you

CHAPTER 1. CREATING MACHINE SETS

27



In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and <role> is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  creationTimestamp: null
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-<role> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 4
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id> 5
        machine.openshift.io/cluster-api-machine-role: <role> 6
        machine.openshift.io/cluster-api-machine-type: <role> 7
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 8
    spec:
      metadata:
        creationTimestamp: null
        labels:
          node-role.kubernetes.io/<role>: "" 9
      providerSpec:
        value:
          apiVersion: vsphereprovider.openshift.io/v1beta1
          credentialsSecret:
            name: vsphere-cloud-credentials
          diskGiB: 120
          kind: VSphereMachineProviderSpec
          memoryMiB: 8192
          metadata:
            creationTimestamp: null
          network:
            devices:
            - networkName: "<vm_network_name>" 10
          numCPUs: 4
          numCoresPerSocket: 1
          snapshot: ""
          template: <vm_template_name> 11
          userDataSecret:
            name: worker-user-data
          workspace:
            datacenter: <vcenter_datacenter_name> 12
            datastore: <vcenter_datastore_name> 13

OpenShift Container Platform 4.5 Machine management

28



1 3 5

2 4 8

6 7 9

10

11

12

13

14

15

16

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned
the cluster. If you have the OpenShift CLI (oc) installed, you can obtain the infrastructure ID by

running the following command:

Specify the infrastructure ID and node label.

Specify the node label to add.

Specify the vSphere VM network to deploy the machine set to.

Specify the vSphere VM clone of the template to use, such as user-5ddjd-rhcos.

IMPORTANT

Do not specify the original VM template. The VM template must remain off and must
be cloned for new RHCOS machines. Starting the VM template configures the VM
template as a VM on the platform, which prevents it from being used as a template
that machine sets can apply configurations to.

Specify the vCenter Datacenter to deploy the machine set on.

Specify the vCenter Datastore to deploy the machine set on.

Specify the path to the vSphere VM folder in vCenter, such as /dc1/vm/user-inst-5ddjd.

Specify the vSphere resource pool for your VMs.

Specify the vCenter server IP or fully qualified domain name.

1.6.3. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Create a tag inside your vCenter instance based on the cluster API name. This tag is utilized by
the machine set to associate the OpenShift Container Platform nodes to the provisioned virtual
machines (VM). For directions on creating tags in vCenter, see the VMware documentation for
vSphere Tags and Attributes .

Have the necessary permissions to deploy VMs in your vCenter instance and have the required

            folder: <vcenter_vm_folder_path> 14
            resourcepool: <vsphere_resource_pool> 15
            server: <vcenter_server_ip> 16

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

CHAPTER 1. CREATING MACHINE SETS

29

https://docs.vmware.com/en/VMware-vSphere/6.7/com.vmware.vsphere.vcenterhost.doc/GUID-E8E854DD-AA97-4E0C-8419-CE84F93C4058.html


1

2

Have the necessary permissions to deploy VMs in your vCenter instance and have the required
access to the datastore specified.

Procedure

1. Create a new YAML file that contains the machine set custom resource (CR) sample and is
named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

a. If you are not sure about which value to set for a specific field, you can check an existing
machine set from your cluster.

Example output

b. Check values of a specific machine set:

Example output

The cluster ID.

A default node label.

2. Create the new MachineSet CR:

3. View the list of machine sets:

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc get machineset <machineset_name> -n \
     openshift-machine-api -o yaml

...
template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
        machine.openshift.io/cluster-api-machine-role: worker 2
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

OpenShift Container Platform 4.5 Machine management

30



Example output

When the new machine set is available, the DESIRED and CURRENT values match. If the
machine set is not available, wait a few minutes and run the command again.

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

CHAPTER 1. CREATING MACHINE SETS

31



CHAPTER 2. MANUALLY SCALING A MACHINE SET
You can add or remove an instance of a machine in a machine set.

NOTE

If you need to modify aspects of a machine set outside of scaling, see Modifying a
machine set.

2.1. PREREQUISITES

If you enabled the cluster-wide proxy and scale up workers not included in 
networking.machineNetwork[].cidr from the installation configuration, you must add the
workers to the Proxy object’s noProxy field to prevent connection issues.

IMPORTANT

This process is not applicable to clusters where you manually provisioned the machines
yourself. You can use the advanced machine management and scaling capabilities only in
clusters where the machine API is operational.

2.2. SCALING A MACHINE SET MANUALLY

If you must add or remove an instance of a machine in a machine set, you can manually scale the
machine set.

This guidance is relevant to fully automated, installer-provisioned infrastructure installations.
Customized, user-provisioned infrastructure installations does not have machine sets.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. View the machine sets that are in the cluster:

The machine sets are listed in the form of <clusterid>-worker-<aws-region-az>.

2. Scale the machine set:

Or:

You can scale the machine set up or down. It takes several minutes for the new machines to be
available.

$ oc get machinesets -n openshift-machine-api

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

OpenShift Container Platform 4.5 Machine management

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/machine_management/#modifying-machineset
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/networking/#nw-proxy-configure-object_config-cluster-wide-proxy


2.3. THE MACHINE SET DELETION POLICY

Random, Newest, and Oldest are the three supported deletion options. The default is Random,
meaning that random machines are chosen and deleted when scaling machine sets down. The deletion
policy can be set according to the use case by modifying the particular machine set:

Specific machines can also be prioritized for deletion by adding the annotation 
machine.openshift.io/cluster-api-delete-machine to the machine of interest, regardless of the
deletion policy.

IMPORTANT

By default, the OpenShift Container Platform router pods are deployed on workers.
Because the router is required to access some cluster resources, including the web
console, do not scale the worker machine set to 0 unless you first relocate the router
pods.

NOTE

Custom machine sets can be used for use cases requiring that services run on specific
nodes and that those services are ignored by the controller when the worker machine sets
are scaling down. This prevents service disruption.

spec:
  deletePolicy: <delete_policy>
  replicas: <desired_replica_count>

CHAPTER 2. MANUALLY SCALING A MACHINE SET

33



CHAPTER 3. MODIFYING A MACHINE SET
You can make changes to a machine set, such as adding labels, changing the instance type, or changing
block storage.

NOTE

If you need to scale a machine set without making other changes, see Manually scaling a
machine set.

3.1. MODIFYING A MACHINE SET

To make changes to a machine set, edit the MachineSet YAML. Then, remove all machines associated
with the machine set by deleting each machine or scaling down the machine set to 0 replicas. Then, scale
the replicas back to the desired number. Changes you make to a machine set do not affect existing
machines.

If you need to scale a machine set without making other changes, you do not need to delete the
machines.

NOTE

By default, the OpenShift Container Platform router pods are deployed on workers.
Because the router is required to access some cluster resources, including the web
console, do not scale the worker machine set to 0 unless you first relocate the router
pods.

Prerequisites

Install an OpenShift Container Platform cluster and the oc command line.

Log in to oc as a user with cluster-admin permission.

Procedure

1. Edit the machine set:

2. Scale down the machine set to 0:

Or:

Wait for the machines to be removed.

3. Scale up the machine set as needed:

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc scale --replicas=0 machineset <machineset> -n openshift-machine-api

$ oc edit machineset <machineset> -n openshift-machine-api

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

OpenShift Container Platform 4.5 Machine management

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/machine_management/#manually-scaling-machineset


Or:

Wait for the machines to start. The new machines contain changes you made to the machine
set.

$ oc edit machineset <machineset> -n openshift-machine-api

CHAPTER 3. MODIFYING A MACHINE SET

35



CHAPTER 4. DELETING A MACHINE
You can delete a specific machine.

4.1. DELETING A SPECIFIC MACHINE

You can delete a specific machine.

Prerequisites

Install an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log into oc as a user with cluster-admin permission.

Procedure

1. View the machines that are in the cluster and identify the one to delete:

The command output contains a list of machines in the <clusterid>-worker-<cloud_region>
format.

2. Delete the machine:

IMPORTANT

By default, the machine controller tries to drain the node that is backed by the
machine until it succeeds. In some situations, such as with a misconfigured pod
disruption budget, the drain operation might not be able to succeed in preventing
the machine from being deleted. You can skip draining the node by annotating
"machine.openshift.io/exclude-node-draining" in a specific machine. If the
machine being deleted belongs to a machine set, a new machine is immediately
created to satisfy the specified number of replicas.

$ oc get machine -n openshift-machine-api

$ oc delete machine <machine> -n openshift-machine-api

OpenShift Container Platform 4.5 Machine management

36



CHAPTER 5. APPLYING AUTOSCALING TO AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

Applying autoscaling to an OpenShift Container Platform cluster involves deploying a cluster autoscaler
and then deploying machine autoscalers for each machine type in your cluster.

IMPORTANT

You can configure the cluster autoscaler only in clusters where the machine API is
operational.

5.1. ABOUT THE CLUSTER AUTOSCALER

The cluster autoscaler adjusts the size of an OpenShift Container Platform cluster to meet its current
deployment needs. It uses declarative, Kubernetes-style arguments to provide infrastructure
management that does not rely on objects of a specific cloud provider. The cluster autoscaler has a
cluster scope, and is not associated with a particular namespace.

The cluster autoscaler increases the size of the cluster when there are pods that failed to schedule on
any of the current nodes due to insufficient resources or when another node is necessary to meet
deployment needs. The cluster autoscaler does not increase the cluster resources beyond the limits
that you specify.

IMPORTANT

Ensure that the maxNodesTotal value in the ClusterAutoscaler resource definition that
you create is large enough to account for the total possible number of machines in your
cluster. This value must encompass the number of control plane machines and the
possible number of compute machines that you might scale to.

The cluster autoscaler decreases the size of the cluster when some nodes are consistently not needed
for a significant period, such as when it has low resource use and all of its important pods can fit on other
nodes.

If the following types of pods are present on a node, the cluster autoscaler will not remove the node:

Pods with restrictive pod disruption budgets (PDBs).

Kube-system pods that do not run on the node by default.

Kube-system pods that do not have a PDB or have a PDB that is too restrictive.

Pods that are not backed by a controller object such as a deployment, replica set, or stateful set.

Pods with local storage.

Pods that cannot be moved elsewhere because of a lack of resources, incompatible node
selectors or affinity, matching anti-affinity, and so on.

Unless they also have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "true" annotation,
pods that have a "cluster-autoscaler.kubernetes.io/safe-to-evict": "false" annotation.

If you configure the cluster autoscaler, additional usage restrictions apply:

CHAPTER 5. APPLYING AUTOSCALING TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

37



Do not modify the nodes that are in autoscaled node groups directly. All nodes within the same
node group have the same capacity and labels and run the same system pods.

Specify requests for your pods.

If you have to prevent pods from being deleted too quickly, configure appropriate PDBs.

Confirm that your cloud provider quota is large enough to support the maximum node pools
that you configure.

Do not run additional node group autoscalers, especially the ones offered by your cloud
provider.

The horizontal pod autoscaler (HPA) and the cluster autoscaler modify cluster resources in different
ways. The HPA changes the deployment’s or replica set’s number of replicas based on the current CPU
load. If the load increases, the HPA creates new replicas, regardless of the amount of resources available
to the cluster. If there are not enough resources, the cluster autoscaler adds resources so that the HPA-
created pods can run. If the load decreases, the HPA stops some replicas. If this action causes some
nodes to be underutilized or completely empty, the cluster autoscaler deletes the unnecessary nodes.

The cluster autoscaler takes pod priorities into account. The Pod Priority and Preemption feature
enables scheduling pods based on priorities if the cluster does not have enough resources, but the
cluster autoscaler ensures that the cluster has resources to run all pods. To honor the intention of both
features, the cluster autoscaler includes a priority cutoff function. You can use this cutoff to schedule
"best-effort" pods, which do not cause the cluster autoscaler to increase resources but instead run only
when spare resources are available.

Pods with priority lower than the cutoff value do not cause the cluster to scale up or prevent the cluster
from scaling down. No new nodes are added to run the pods, and nodes running these pods might be
deleted to free resources.

5.2. ABOUT THE MACHINE AUTOSCALER

The machine autoscaler adjusts the number of Machines in the machine sets that you deploy in an
OpenShift Container Platform cluster. You can scale both the default worker machine set and any other
machine sets that you create. The machine autoscaler makes more Machines when the cluster runs out
of resources to support more deployments. Any changes to the values in MachineAutoscaler
resources, such as the minimum or maximum number of instances, are immediately applied to the
machine set they target.

IMPORTANT

You must deploy a machine autoscaler for the cluster autoscaler to scale your machines.
The cluster autoscaler uses the annotations on machine sets that the machine autoscaler
sets to determine the resources that it can scale. If you define a cluster autoscaler
without also defining machine autoscalers, the cluster autoscaler will never scale your
cluster.

5.3. CONFIGURING THE CLUSTER AUTOSCALER

First, deploy the cluster autoscaler to manage automatic resource scaling in your OpenShift Container
Platform cluster.

NOTE

OpenShift Container Platform 4.5 Machine management

38



1

2

3

4

5

NOTE

Because the cluster autoscaler is scoped to the entire cluster, you can make only one
cluster autoscaler for the cluster.

5.3.1. ClusterAutoscaler resource definition

This ClusterAutoscaler resource definition shows the parameters and sample values for the cluster
autoscaler.

Specify the priority that a pod must exceed to cause the cluster autoscaler to deploy additional
nodes. Enter a 32-bit integer value. The podPriorityThreshold value is compared to the value of
the PriorityClass that you assign to each pod.

Specify the maximum number of nodes to deploy. This value is the total number of machines that
are deployed in your cluster, not just the ones that the autoscaler controls. Ensure that this value is
large enough to account for all of your control plane and compute machines and the total number
of replicas that you specify in your MachineAutoscaler resources.

Specify the minimum number of cores to deploy in the cluster.

Specify the maximum number of cores to deploy in the cluster.

Specify the minimum amount of memory, in GiB, in the cluster.

apiVersion: "autoscaling.openshift.io/v1"
kind: "ClusterAutoscaler"
metadata:
  name: "default"
spec:
  podPriorityThreshold: -10 1
  resourceLimits:
    maxNodesTotal: 24 2
    cores:
      min: 8 3
      max: 128 4
    memory:
      min: 4 5
      max: 256 6
    gpus:
      - type: nvidia.com/gpu 7
        min: 0 8
        max: 16 9
      - type: amd.com/gpu 10
        min: 0 11
        max: 4 12
  scaleDown: 13
    enabled: true 14
    delayAfterAdd: 10m 15
    delayAfterDelete: 5m 16
    delayAfterFailure: 30s 17
    unneededTime: 5m 18

CHAPTER 5. APPLYING AUTOSCALING TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

39



6

7 10

8 11

9 12

13

14

15

16

17

18

1

Specify the maximum amount of memory, in GiB, in the cluster.

Optionally, specify the type of GPU node to deploy. Only nvidia.com/gpu and amd.com/gpu are
valid types.

Specify the minimum number of GPUs to deploy in the cluster.

Specify the maximum number of GPUs to deploy in the cluster.

In this section, you can specify the period to wait for each action by using any valid ParseDuration
interval, including ns, us, ms, s, m, and h.

Specify whether the cluster autoscaler can remove unnecessary nodes.

Optionally, specify the period to wait before deleting a node after a node has recently been added.
If you do not specify a value, the default value of 10m is used.

Specify the period to wait before deleting a node after a node has recently been deleted. If you do
not specify a value, the default value of 10s is used.

Specify the period to wait before deleting a node after a scale down failure occurred. If you do not
specify a value, the default value of 3m is used.

Specify the period before an unnecessary node is eligible for deletion. If you do not specify a value,
the default value of 10m is used.

NOTE

When performing a scaling operation, the cluster autoscaler remains within the ranges set
in the ClusterAutoscaler resource definition, such as the minimum and maximum
number of cores to deploy or the amount of memory in the cluster. However, the cluster
autoscaler does not correct the current values in your cluster to be within those ranges.

5.3.2. Deploying the cluster autoscaler

To deploy the cluster autoscaler, you create an instance of the ClusterAutoscaler resource.

Procedure

1. Create a YAML file for the ClusterAutoscaler resource that contains the customized resource
definition.

2. Create the resource in the cluster:

<filename> is the name of the resource file that you customized.

5.4. NEXT STEPS

After you configure the cluster autoscaler, you must configure at least one machine autoscaler.

$ oc create -f <filename>.yaml 1

OpenShift Container Platform 4.5 Machine management

40

https://golang.org/pkg/time/#ParseDuration


1

2

3

4

5

6

5.5. CONFIGURING THE MACHINE AUTOSCALERS

After you deploy the cluster autoscaler, deploy MachineAutoscaler resources that reference the
machine sets that are used to scale the cluster.

IMPORTANT

You must deploy at least one MachineAutoscaler resource after you deploy the 
ClusterAutoscaler resource.

NOTE

You must configure separate resources for each machine set. Remember that machine
sets are different in each region, so consider whether you want to enable machine scaling
in multiple regions. The machine set that you scale must have at least one machine in it.

5.5.1. MachineAutoscaler resource definition

This MachineAutoscaler resource definition shows the parameters and sample values for the machine
autoscaler.

Specify the machine autoscaler name. To make it easier to identify which machine set this machine
autoscaler scales, specify or include the name of the machine set to scale. The machine set name
takes the following form: <clusterid>-<machineset>-<aws-region-az>

Specify the minimum number machines of the specified type that must remain in the specified
zone after the cluster autoscaler initiates cluster scaling. If running in AWS, GCP, or Azure, this
value can be set to 0. For other providers, do not set this value to 0.

Specify the maximum number machines of the specified type that the cluster autoscaler can
deploy in the specified AWS zone after it initiates cluster scaling. Ensure that the maxNodesTotal
value in the ClusterAutoscaler resource definition is large enough to allow the machine autoscaler
to deploy this number of machines.

In this section, provide values that describe the existing machine set to scale.

The kind parameter value is always MachineSet.

The name value must match the name of an existing machine set, as shown in the metadata.name
parameter value.

apiVersion: "autoscaling.openshift.io/v1beta1"
kind: "MachineAutoscaler"
metadata:
  name: "worker-us-east-1a" 1
  namespace: "openshift-machine-api"
spec:
  minReplicas: 1 2
  maxReplicas: 12 3
  scaleTargetRef: 4
    apiVersion: machine.openshift.io/v1beta1
    kind: MachineSet 5
    name: worker-us-east-1a 6

CHAPTER 5. APPLYING AUTOSCALING TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

41



1

5.5.2. Deploying the machine autoscaler

To deploy the machine autoscaler, you create an instance of the MachineAutoscaler resource.

Procedure

1. Create a YAML file for the MachineAutoscaler resource that contains the customized
resource definition.

2. Create the resource in the cluster:

<filename> is the name of the resource file that you customized.

5.6. ADDITIONAL RESOURCES

For more information about pod priority, see Including pod priority in pod scheduling decisions
in OpenShift Container Platform.

$ oc create -f <filename>.yaml 1

OpenShift Container Platform 4.5 Machine management

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-pods-priority


CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS
You can create a machine set to host only infrastructure components. You apply specific Kubernetes
labels to these machines and then update the infrastructure components to run on only those machines.
These infrastructure nodes are not counted toward the total number of subscriptions that are required
to run the environment.

IMPORTANT

Unlike earlier versions of OpenShift Container Platform, you cannot move the
infrastructure components to the master machines. To move the components, you must
create a new machine set.

6.1. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE
COMPONENTS

The following infrastructure workloads do not incur OpenShift Container Platform worker subscriptions:

Kubernetes and OpenShift Container Platform control plane services that run on masters

The default router

The integrated container image registry

The cluster metrics collection, or monitoring service, including components for monitoring user-
defined projects

Cluster aggregated logging

Service brokers

Red Hat Quay

Red Hat OpenShift Container Storage

Red Hat Advanced Cluster Manager

Any node that runs any other container, pod, or component is a worker node that your subscription must
cover.

6.2. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION
ENVIRONMENTS

In a production deployment, deploy at least three machine sets to hold infrastructure components. Both
the logging aggregation solution and the service mesh deploy Elasticsearch, and Elasticsearch requires
three instances that are installed on different nodes. For high availability, deploy these nodes to
different availability zones. Since you need different machine sets for each availability zone, create at
least three machine sets.

6.2.1. Creating machine sets for different clouds

Use the sample machine set for your cloud.

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

43



6.2.1.1. Sample YAML for a machine set custom resource on AWS

This sample YAML defines a machine set that runs in the us-east-1a Amazon Web Services (AWS) zone
and creates nodes that are labeled with node-role.kubernetes.io/infra: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and infra is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
  name: <infrastructureID>-infra-<zone> 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 3
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-infra-<zone> 4
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
        machine.openshift.io/cluster-api-machine-role: infra 6
        machine.openshift.io/cluster-api-machine-type: infra 7
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-infra-<zone> 8
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/infra: "" 9
      taints: 10
        - key: node-role.kubernetes.io/infra
          effect: NoSchedule
      providerSpec:
        value:
          ami:
            id: ami-046fe691f52a953f9 11
          apiVersion: awsproviderconfig.openshift.io/v1beta1
          blockDevices:
            - ebs:
                iops: 0
                volumeSize: 120
                volumeType: gp2
          credentialsSecret:
            name: aws-cloud-credentials
          deviceIndex: 0
          iamInstanceProfile:
            id: <infrastructureID>-worker-profile 12
          instanceType: m4.large
          kind: AWSMachineProviderConfig
          placement:
            availabilityZone: us-east-1a

OpenShift Container Platform 4.5 Machine management

44



1 3 5 12 13 14 15

2 4 8

6 7 9

10

11

Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the

infrastructure ID by running the following command:

Specify the infrastructure ID, infra node label, and zone.

Specify the infra node label.

Specify a taint to prevent user workloads from being scheduled on infra nodes.

Specify a valid Red Hat Enterprise Linux CoreOS (RHCOS) AMI for your AWS zone for your
OpenShift Container Platform nodes.

Machine sets running on AWS support non-guaranteed Spot Instances. You can save on costs by using
Spot Instances at a lower price compared to On-Demand Instances on AWS. Configure Spot Instances
by adding spotMarketOptions to the MachineSet YAML file.

6.2.1.2. Sample YAML for a machine set custom resource on Azure

This sample YAML defines a machine set that runs in the 1 Microsoft Azure zone in the centralus region
and creates nodes that are labeled with node-role.kubernetes.io/infra: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and infra is the node label to add.

            region: us-east-1
          securityGroups:
            - filters:
                - name: tag:Name
                  values:
                    - <infrastructureID>-worker-sg 13
          subnet:
            filters:
              - name: tag:Name
                values:
                  - <infrastructureID>-private-us-east-1a 14
          tags:
            - name: kubernetes.io/cluster/<infrastructureID> 15
              value: owned
          userDataSecret:
            name: worker-user-data

$ oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.ami.id}{"\n"}' \
    get machineset/<infrastructureID>-worker-us-east-1a

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
    machine.openshift.io/cluster-api-machine-role: infra 2
    machine.openshift.io/cluster-api-machine-type: infra 3
  name: <infrastructureID>-infra-<region> 4

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/machine_management/#machineset-non-guaranteed-instance_creating-machineset-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/machine_management/#machineset-creating-non-guaranteed-instance_creating-machineset-aws


  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
      machine.openshift.io/cluster-api-machineset: <infrastructureID>-infra-<region> 6
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 7
        machine.openshift.io/cluster-api-machine-role: infra 8
        machine.openshift.io/cluster-api-machine-type: infra 9
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-infra-<region> 10
    spec:
      metadata:
        creationTimestamp: null
        labels:
          node-role.kubernetes.io/infra: "" 11
      taints: 12
      - key: node-role.kubernetes.io/infra
        effect: NoSchedule
      providerSpec:
        value:
          apiVersion: azureproviderconfig.openshift.io/v1beta1
          credentialsSecret:
            name: azure-cloud-credentials
            namespace: openshift-machine-api
          image:
            offer: ""
            publisher: ""
            resourceID: /resourceGroups/<infrastructureID>-
rg/providers/Microsoft.Compute/images/<infrastructureID>
            sku: ""
            version: ""
          internalLoadBalancer: ""
          kind: AzureMachineProviderSpec
          location: centralus
          managedIdentity: <infrastructureID>-identity 13
          metadata:
            creationTimestamp: null
          natRule: null
          networkResourceGroup: ""
          osDisk:
            diskSizeGB: 128
            managedDisk:
              storageAccountType: Premium_LRS
            osType: Linux
          publicIP: false
          publicLoadBalancer: ""
          resourceGroup: <infrastructureID>-rg 14
          sshPrivateKey: ""
          sshPublicKey: ""
          subnet: <infrastructureID>-<role>-subnet 15  16

OpenShift Container Platform 4.5 Machine management

46



1 5 7 13 14 15 18

2 3 8 9 11 16 17

4 6 10

12

19

Specify the infrastructure ID that is based on the cluster ID that you set when you
provisioned the cluster. If you have the OpenShift CLI installed, you can obtain the

infrastructure ID by running the following command:

You can obtain the subnet by running the following command:

You can obtain the vnet by running the following command:

Specify the infra node label.

Specify the infrastructure ID, infra node label, and region.

Specify a taint to prevent user workloads from being scheduled on infra nodes.

Specify the zone within your region to place Machines on. Be sure that your region supports the
zone that you specify.

6.2.1.3. Sample YAML for a machine set custom resource on GCP

This sample YAML defines a machine set that runs in Google Cloud Platform (GCP) and creates nodes
that are labeled with node-role.kubernetes.io/infra: "".

In this sample, <infrastructureID> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and infra is the node label to add.

          userDataSecret:
            name: worker-user-data 17
          vmSize: qeci-22538-vnet
          vnet: <infrastructureID>-vnet 18
          zone: "1" 19

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

$  oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.subnet}{"\n"}' \
    get machineset/<infrastructureID>-worker-centralus1

$  oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.vnet}{"\n"}' \
    get machineset/<infrastructureID>-worker-centralus1

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructureID> 1
  name: <infrastructureID>-w-a 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructureID> 3

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

47



1 2 3 4 5 8 12 13 15 17 Specify the infrastructure ID that is based on the cluster ID that you set
when you provisioned the cluster. If you have the OpenShift CLI

installed, you can obtain the infrastructure ID by running the following command:

      machine.openshift.io/cluster-api-machineset: <infrastructureID>-w-a 4
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructureID> 5
        machine.openshift.io/cluster-api-machine-role: infra 6
        machine.openshift.io/cluster-api-machine-type: infra 7
        machine.openshift.io/cluster-api-machineset: <infrastructureID>-w-a 8
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/infra: "" 9
      taints: 10
      - key: node-role.kubernetes.io/infra
        effect: NoSchedule
      providerSpec:
        value:
          apiVersion: gcpprovider.openshift.io/v1beta1
          canIPForward: false
          credentialsSecret:
            name: gcp-cloud-credentials
          deletionProtection: false
          disks:
          - autoDelete: true
            boot: true
            image: <path_to_image> 11
            labels: null
            sizeGb: 128
            type: pd-ssd
          kind: GCPMachineProviderSpec
          machineType: n1-standard-4
          metadata:
            creationTimestamp: null
          networkInterfaces:
          - network: <infrastructureID>-network 12
            subnetwork: <infrastructureID>-worker-subnet 13
          projectID: <project_name> 14
          region: us-central1
          serviceAccounts:
          - email: <infrastructureID>-w@<project_name>.iam.gserviceaccount.com 15  16
            scopes:
            - https://www.googleapis.com/auth/cloud-platform
          tags:
          - <infrastructureID>-worker 17
          userDataSecret:
            name: worker-user-data
          zone: us-central1-a

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.5 Machine management

48



6 7 9

10

11

14 16

Specify the infra node label.

Specify a taint to prevent user workloads from being scheduled on infra nodes.

Specify the path to the image that is used in current machine sets. If you have the OpenShift CLI
installed, you can obtain the path to the image by running the following command:

Specify the name of the GCP project that you use for your cluster.

6.2.1.4. Sample YAML for a machine set custom resource on RHOSP

This sample YAML defines a machine set that runs on Red Hat OpenStack Platform (RHOSP) and
creates nodes that are labeled with node-role.kubernetes.io/infra: "".

In this sample, infrastructure_ID is the infrastructure ID label that is based on the cluster ID that you set
when you provisioned the cluster, and infra is the node label to add.

$ oc -n openshift-machine-api \
    -o jsonpath='{.spec.template.spec.providerSpec.value.disks[0].image}{"\n"}' \
    get machineset/<infrastructureID>-worker-a

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 1
    machine.openshift.io/cluster-api-machine-role: infra 2
    machine.openshift.io/cluster-api-machine-type: infra 3
  name: <infrastructure_ID>-infra 4
  namespace: openshift-machine-api
spec:
  replicas: <number_of_replicas>
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 5
      machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-infra 6
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_ID> 7
        machine.openshift.io/cluster-api-machine-role: infra 8
        machine.openshift.io/cluster-api-machine-type: infra 9
        machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-infra 10
    spec:
    metadata:
      creationTimestamp: null
      labels:
        node-role.kubernetes.io/infra: ""
      taints: 11
      - key: node-role.kubernetes.io/infra
        effect: NoSchedule
      providerSpec:
        value:

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

49



1 5 7

2 3 8 9 15

4 6 10

11

12

13

14

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned
the cluster. If you have the OpenShift CLI installed, you can obtain the infrastructure ID by

running the following command:

Specify the infra node label.

Specify the infrastructure ID and infra node label.

Specify a taint to prevent user workloads from being scheduled on infra nodes.

To set a server group policy for the MachineSet, enter the value that is returned from creating a
server group. For most deployments, anti-affinity or soft-anti-affinity policies are recommended.

Required for deployments to multiple networks. If deploying to multiple networks, this list must
include the network that is used as the primarySubnet value.

Specify the RHOSP subnet that you want the endpoints of nodes to be published on. Usually, this is
the same subnet that is used as the value of machinesSubnet in the install-config.yaml file.

6.2.1.5. Sample YAML for a machine set custom resource on RHV

This sample YAML defines a machine set that runs on RHV and creates nodes that are labeled with 
node-role.kubernetes.io/<node_role>: "".

In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you

          apiVersion: openstackproviderconfig.openshift.io/v1alpha1
          cloudName: openstack
          cloudsSecret:
            name: openstack-cloud-credentials
            namespace: openshift-machine-api
          flavor: <nova_flavor>
          image: <glance_image_name_or_location>
          serverGroupID: <optional_UUID_of_server_group> 12
          kind: OpenstackProviderSpec
          networks: 13
          - filter: {}
            subnets:
            - filter:
                name: <subnet_name>
                tags: openshiftClusterID=<infrastructure_ID>
          primarySubnet: <rhosp_subnet_UUID> 14
          securityGroups:
          - filter: {}
            name: <infrastructure_ID>-worker
          serverMetadata:
            Name: <infrastructure_ID>-worker
            openshiftClusterID: <infrastructure_ID>
          tags:
          - openshiftClusterID=<infrastructure_ID>
          trunk: true
          userDataSecret:
            name: worker-user-data 15
          availabilityZone: <optional_openstack_availability_zone>

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.5 Machine management

50

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/16.0/html/command_line_interface_reference/server#server_group_create


In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and <role> is the node label to add.

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
    machine.openshift.io/cluster-api-machine-role: <role> 2
    machine.openshift.io/cluster-api-machine-type: <role> 3
  name: <infrastructure_id>-<role> 4
  namespace: openshift-machine-api
spec:
  replicas: <number_of_replicas> 5
  Selector: 6
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id> 7
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 8
  template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id> 9
        machine.openshift.io/cluster-api-machine-role: <role> 10
        machine.openshift.io/cluster-api-machine-type: <role> 11
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-<role> 12
    spec:
      metadata:
        labels:
          node-role.kubernetes.io/<role>: "" 13
      providerSpec:
        value:
          apiVersion: ovirtproviderconfig.machine.openshift.io/v1beta1
          cluster_id: <ovirt_cluster_id> 14
          template_name: <ovirt_template_name> 15
          instance_type_id: <instance_type_id> 16
          cpu: 17
            sockets: <number_of_sockets> 18
            cores: <number_of_cores> 19
            threads: <number_of_threads> 20
          memory_mb: <memory_size> 21
          os_disk: 22
            size_gb: <disk_size> 23
          network_interfaces: 24
            vnic_profile_id:  <vnic_profile_id> 25
          credentialsSecret:
            name: ovirt-credentials 26
          kind: OvirtMachineProviderSpec
          type: <workload_type> 27
          userDataSecret:
            name: worker-user-data

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

51



1 7 9

2 3 10 11 13

4 8 12

5

6

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned
the cluster. If you have the OpenShift CLI (oc) installed, you can obtain the infrastructure ID by

running the following command:

Specify the node label to add.

Specify the infrastructure ID and node label. These two strings together cannot be longer than
35 characters.

Specify the number of machines to create.

Selector for the machines.

Specify the UUID for the RHV cluster to which this VM instance belongs.

Specify the RHV VM template to use to create the machine.

Optional: Specify the VM instance type. If you include this parameter, you do not need to specify
the hardware parameters of the VM including CPU and memory because this parameter overrides
all hardware parameters.

Optional: The CPU field contains the CPU’s configuration, including sockets, cores, and threads.

Optional: Specify the number of sockets for a VM.

Optional: Specify the number of cores per socket.

Optional: Specify the number of threads per core.

Optional: Specify the size of a VM’s memory in MiB.

Optional: Root disk of the node.

Optional: Specify the size of the bootable disk in GiB.

Optional: List of the network interfaces of the VM. If you include this parameter, OpenShift
Container Platform discards all network interfaces from the template and creates new ones.

Optional: Specify the vNIC profile ID.

Specify the name of the secret that holds the RHV credentials.

Optional: Specify the workload type for which the instance is optimized. This value affects the RHV 
VM parameter. Supported values: desktop, server, high_performance.

NOTE

Because RHV uses a template when creating a VM, if you do not specify a value for an
optional parameter, RHV uses the value for that parameter that is specified in the
template.

6.2.1.6. Sample YAML for a machine set custom resource on vSphere

This sample YAML defines a machine set that runs on VMware vSphere and creates nodes that are

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.5 Machine management

52



This sample YAML defines a machine set that runs on VMware vSphere and creates nodes that are
labeled with node-role.kubernetes.io/infra: "".

In this sample, <infrastructure_id> is the infrastructure ID label that is based on the cluster ID that you
set when you provisioned the cluster, and infra is the node label to add.

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
  creationTimestamp: null
  labels:
    machine.openshift.io/cluster-api-cluster: <infrastructure_id> 1
  name: <infrastructure_id>-infra 2
  namespace: openshift-machine-api
spec:
  replicas: 1
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-cluster: <infrastructure_id> 3
      machine.openshift.io/cluster-api-machineset: <infrastructure_id>-infra 4
  template:
    metadata:
      creationTimestamp: null
      labels:
        machine.openshift.io/cluster-api-cluster: <infrastructure_id> 5
        machine.openshift.io/cluster-api-machine-role: infra 6
        machine.openshift.io/cluster-api-machine-type: infra 7
        machine.openshift.io/cluster-api-machineset: <infrastructure_id>-infra 8
    spec:
      metadata:
        creationTimestamp: null
        labels:
          node-role.kubernetes.io/infra: "" 9
      taints: 10
      - key: node-role.kubernetes.io/infra
        effect: NoSchedule
      providerSpec:
        value:
          apiVersion: vsphereprovider.openshift.io/v1beta1
          credentialsSecret:
            name: vsphere-cloud-credentials
          diskGiB: 120
          kind: VSphereMachineProviderSpec
          memoryMiB: 8192
          metadata:
            creationTimestamp: null
          network:
            devices:
            - networkName: "<vm_network_name>" 11
          numCPUs: 4
          numCoresPerSocket: 1
          snapshot: ""
          template: <vm_template_name> 12
          userDataSecret:

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

53



1 3 5

2 4 8

6 7 9

10

11

12

13

14

15

16

17

Specify the infrastructure ID that is based on the cluster ID that you set when you provisioned
the cluster. If you have the OpenShift CLI (oc) installed, you can obtain the infrastructure ID by

running the following command:

Specify the infrastructure ID and infra node label.

Specify the infra node label.

Specify a taint to prevent user workloads from being scheduled on infra nodes.

Specify the vSphere VM network to deploy the machine set to.

Specify the vSphere VM template to use, such as user-5ddjd-rhcos.

Specify the vCenter Datacenter to deploy the machine set on.

Specify the vCenter Datastore to deploy the machine set on.

Specify the path to the vSphere VM folder in vCenter, such as /dc1/vm/user-inst-5ddjd.

Specify the vSphere resource pool for your VMs.

Specify the vCenter server IP or fully qualified domain name.

6.2.2. Creating a machine set

In addition to the ones created by the installation program, you can create your own machine sets to
dynamically manage the machine compute resources for specific workloads of your choice.

Prerequisites

Deploy an OpenShift Container Platform cluster.

Install the OpenShift CLI (oc).

Log in to oc as a user with cluster-admin permission.

Procedure

1. Create a new YAML file that contains the machine set custom resource (CR) sample and is
named <file_name>.yaml.
Ensure that you set the <clusterID> and <role> parameter values.

a. If you are not sure about which value to set for a specific field, you can check an existing

            name: worker-user-data
          workspace:
            datacenter: <vcenter_datacenter_name> 13
            datastore: <vcenter_datastore_name> 14
            folder: <vcenter_vm_folder_path> 15
            resourcepool: <vsphere_resource_pool> 16
            server: <vcenter_server_ip> 17

$ oc get -o jsonpath='{.status.infrastructureName}{"\n"}' infrastructure cluster

OpenShift Container Platform 4.5 Machine management

54



1

2

a. If you are not sure about which value to set for a specific field, you can check an existing
machine set from your cluster.

Example output

b. Check values of a specific machine set:

Example output

The cluster ID.

A default node label.

2. Create the new MachineSet CR:

3. View the list of machine sets:

Example output

$ oc get machinesets -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc get machineset <machineset_name> -n \
     openshift-machine-api -o yaml

...
template:
    metadata:
      labels:
        machine.openshift.io/cluster-api-cluster: agl030519-vplxk 1
        machine.openshift.io/cluster-api-machine-role: worker 2
        machine.openshift.io/cluster-api-machine-type: worker
        machine.openshift.io/cluster-api-machineset: agl030519-vplxk-worker-us-east-1a

$ oc create -f <file_name>.yaml

$ oc get machineset -n openshift-machine-api

NAME                                DESIRED   CURRENT   READY   AVAILABLE   AGE
agl030519-vplxk-infra-us-east-1a    1         1         1       1           11m
agl030519-vplxk-worker-us-east-1a   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1b   1         1         1       1           55m
agl030519-vplxk-worker-us-east-1c   1         1         1       1           55m

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

55



When the new machine set is available, the DESIRED and CURRENT values match. If the
machine set is not available, wait a few minutes and run the command again.

6.2.3. Creating an infrastructure node

IMPORTANT

See Creating infrastructure machine sets for installer-provisioned infrastructure
environments or for any cluster where the master nodes are managed by the machine
API.

Requirements of the cluster dictate that infrastructure, also called infra nodes, be provisioned. The
installer only provides provisions for master and worker nodes. Worker nodes can be designated as
infrastructure nodes or application, also called app, nodes through labeling.

Procedure

1. Add a label to the worker node that you want to act as application node:

2. Add a label to the worker nodes that you want to act as infrastructure nodes:

3. Check to see if applicable nodes now have the infra role and app roles:

4. Create a default node selector so that pods without a node selector are assigned a subset of
nodes to be deployed on, for example by default deployment in worker nodes. As an example,
the defaultNodeSelector to deploy pods on worker nodes by default would look like:

5. Move infrastructure resources to the newly labeled infra nodes.

6.2.4. Creating a machine config pool for infrastructure machines

If you need infrastructure machines to have dedicated configurations, you must create an infra pool.

Procedure

1. Add a label to the node you want to assign as the infra node with a specific label:

agl030519-vplxk-worker-us-east-1d   0         0                             55m
agl030519-vplxk-worker-us-east-1e   0         0                             55m
agl030519-vplxk-worker-us-east-1f   0         0                             55m

$ oc label node <node-name> node-role.kubernetes.io/app=""

$ oc label node <node-name> node-role.kubernetes.io/infra=""

$ oc get nodes

defaultNodeSelector: node-role.kubernetes.io/app=

$ oc label node <node_name> <label>

OpenShift Container Platform 4.5 Machine management

56



1

2

2. Create a machine config pool that contains both the worker role and your custom role as
machine config selector:

Example output

Add the worker role and your custom role.

Add the label you added to the node as a nodeSelector.

NOTE

Custom machine config pools inherit machine configs from the worker pool.
Custom pools use any machine config targeted for the worker pool, but add the
ability to also deploy changes that are targeted at only the custom pool. Because
a custom pool inherits resources from the worker pool, any change to the worker
pool also affects the custom pool.

3. After you have the YAML file, you can create the machine config pool:

4. Check the machine configs to ensure that the infrastructure configuration rendered
successfully:

Example output

$ oc label node ci-ln-n8mqwr2-f76d1-xscn2-worker-c-6fmtx node-role.kubernetes.io/infra=

$ cat infra.mcp.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
  name: infra
spec:
  machineConfigSelector:
    matchExpressions:
      - {key: machineconfiguration.openshift.io/role, operator: In, values: [worker,infra]} 1
  nodeSelector:
    matchLabels:
      node-role.kubernetes.io/infra: "" 2

$ oc create -f infra.mcp.yaml

$ oc get machineconfig

NAME                                                        GENERATEDBYCONTROLLER                      
IGNITIONVERSION   CREATED
00-master                                                   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   
2.2.0             31d
00-worker                                                   365c1cfd14de5b0e3b85e0fc815b0060f36ab955   
2.2.0             31d
01-master-container-runtime                                 

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

57



You should see a new machine config, with the rendered-infra-* prefix.

5. Optional: To deploy changes to a custom pool, create a machine config that uses the custom
pool name as the label, such as infra. Note that this is not required and only shown for
instructional purposes. In this manner, you can apply any custom configurations specific to only
your infra nodes.

NOTE

After you create the new machine config pool, the MCO generates a new
rendered config for that pool, and associated nodes of that pool reboot to apply
the new configuration.

a. Create a machine config:

365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
01-master-kubelet                                           365c1cfd14de5b0e3b85e0fc815b0060f36ab955   
2.2.0             31d
01-worker-container-runtime                                 
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
01-worker-kubelet                                           365c1cfd14de5b0e3b85e0fc815b0060f36ab955   
2.2.0             31d
99-master-1ae2a1e0-a115-11e9-8f14-005056899d54-registries   
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
99-master-ssh                                                                                          2.2.0             31d
99-worker-1ae64748-a115-11e9-8f14-005056899d54-registries   
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             31d
99-worker-ssh                                                                                          2.2.0             31d
rendered-infra-4e48906dca84ee702959c71a53ee80e7             
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             19s
rendered-master-072d4b2da7f88162636902b074e9e28e            
5b6fb8349a29735e48446d435962dec4547d3090   2.2.0             31d
rendered-master-3e88ec72aed3886dec061df60d16d1af            
02c07496ba0417b3e12b78fb32baf6293d314f79   2.2.0             31d
rendered-master-419bee7de96134963a15fdf9dd473b25            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             17d
rendered-master-53f5c91c7661708adce18739cc0f40fb            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             13d
rendered-master-a6a357ec18e5bce7f5ac426fc7c5ffcd            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             7d3h
rendered-master-dc7f874ec77fc4b969674204332da037            
5b6fb8349a29735e48446d435962dec4547d3090   2.2.0             31d
rendered-worker-1a75960c52ad18ff5dfa6674eb7e533d            
5b6fb8349a29735e48446d435962dec4547d3090   2.2.0             31d
rendered-worker-2640531be11ba43c61d72e82dc634ce6            
5b6fb8349a29735e48446d435962dec4547d3090   2.2.0             31d
rendered-worker-4e48906dca84ee702959c71a53ee80e7            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             7d3h
rendered-worker-4f110718fe88e5f349987854a1147755            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             17d
rendered-worker-afc758e194d6188677eb837842d3b379            
02c07496ba0417b3e12b78fb32baf6293d314f79   2.2.0             31d
rendered-worker-daa08cc1e8f5fcdeba24de60cd955cc3            
365c1cfd14de5b0e3b85e0fc815b0060f36ab955   2.2.0             13d

OpenShift Container Platform 4.5 Machine management

58



1

Example output

Add the label you added to the node as a nodeSelector.

b. Apply the machine config to the infra-labeled nodes:

6. Confirm that your new machine config pool is available:

Example output

In this example, a worker node was changed to an infra node.

Additional resources

See Node configuration management with machine config pools  for more information on
grouping infra machines in a custom pool.

6.3. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE

$ cat infra.mc.yaml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: infra 1
  name: 51-infra
spec:
  config:
    ignition:
      version: 2.2.0
    storage:
      files:
      - contents:
          source: data:,infra
        filesystem: root
        mode: 0644
        path: /etc/infratest

$ oc create -f infra.mc.yaml

$ oc get mcp

NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   
MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   
DEGRADEDMACHINECOUNT   AGE
infra    rendered-infra-60e35c2e99f42d976e084fa94da4d0fc    True      False      False      1              
1                   1                     0                      4m20s
master   rendered-master-9360fdb895d4c131c7c4bebbae099c90   True      False      False      
3              3                   3                     0                      91m
worker   rendered-worker-60e35c2e99f42d976e084fa94da4d0fc   True      False      False      
2              2                   2                     0                      91m

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/architecture/#architecture-machine-config-pools_control-plane


6.3. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE
NODES

After creating an infrastructure machine set, the worker and infra roles are applied to new infra nodes.
Nodes with the infra role applied are not counted toward the total number of subscriptions that are
required to run the environment, even when the worker role is also applied.

However, with an infra node being assigned as a worker, there is a chance user workloads could get
inadvertently assigned to an infra node. To avoid this, you can apply a taint to the infra node and
tolerations for the pods you want to control.

6.3.1. Binding infrastructure node workloads using taints and tolerations

If you have an infra node that has the infra and worker roles assigned, you must configure the node so
that user workloads are not assigned to it.

IMPORTANT

It is recommended that you preserve the dual infra,worker label that is created for infra
nodes and use taints and tolerations to manage nodes that user workloads are scheduled
on. If you remove the worker label from the node, you must create a custom pool to
manage it. A node with a label other than master or worker is not recognized by the
MCO without a custom pool. Maintaining the worker label allows the node to be
managed by the default worker machine config pool, if no custom pools that select the
custom label exists. The infra label communicates to the cluster that it does not count
toward the total number of subscriptions.

Prerequisites

Configure additional MachineSet objects in your OpenShift Container Platform cluster.

Procedure

1. Add a taint to the infra node to prevent scheduling user workloads on it:

a. Determine if the node has the taint:

Sample output

This example shows that the node has a taint. You can proceed with adding a toleration to
your pod in the next step.

b. If you have not configured a taint to prevent scheduling user workloads on it:

$ oc describe nodes <node_name>

oc describe node ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
Name:               ci-ln-iyhx092-f76d1-nvdfm-worker-b-wln2l
Roles:              worker
 ...
Taints:             node-role.kubernetes.io/infra:NoSchedule
 ...

$ oc adm taint nodes <node_name> <key>:<effect>

OpenShift Container Platform 4.5 Machine management

60



1

2

3

For example:

This example places a taint on node1 that has key node-role.kubernetes.io/infra and taint
effect NoSchedule. Nodes with the NoSchedule effect schedule only pods that tolerate
the taint, but allow existing pods to remain scheduled on the node.

NOTE

If a descheduler is used, pods violating node taints could be evicted from the
cluster.

2. Add tolerations for the pod configurations you want to schedule on the infra node, like router,
registry, and monitoring workloads. Add the following code to the Pod object specification:

Specify the effect that you added to the node.

Specify the key that you added to the node.

Specify the Exists Operator to require a taint with the key node-role.kubernetes.io/infra
to be present on the node.

This toleration matches the taint created by the oc adm taint command. A pod with this
toleration can be scheduled onto the infra node.

NOTE

Moving pods for an Operator installed via OLM to an infra node is not always
possible. The capability to move Operator pods depends on the configuration of
each Operator.

3. Schedule the pod to the infra node using a scheduler. See the documentation for Controlling
pod placement onto nodes for details.

Additional resources

See Controlling pod placement using the scheduler  for general information on scheduling a pod
to a node.

See Moving resources to infrastructure machine sets  for instructions on scheduling pods to
infra nodes.

6.4. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS

Some of the infrastructure resources are deployed in your cluster by default. You can move them to the

$ oc adm taint nodes node1 node-role.kubernetes.io/infra:NoSchedule

tolerations:
  - effect: NoSchedule 1
    key: node-role.kubernetes.io/infra 2
    operator: Exists 3

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

61

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-scheduler-about


Some of the infrastructure resources are deployed in your cluster by default. You can move them to the
infrastructure machine sets that you created.

6.4.1. Moving the router

You can deploy the router pod to a different machine set. By default, the pod is deployed to a worker
node.

Prerequisites

Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the IngressController custom resource for the router Operator:

The command output resembles the following text:

2. Edit the ingresscontroller resource and change the nodeSelector to use the infra label:

Add the nodeSelector stanza that references the infra label to the spec section, as shown:

$ oc get ingresscontroller default -n openshift-ingress-operator -o yaml

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  creationTimestamp: 2019-04-18T12:35:39Z
  finalizers:
  - ingresscontroller.operator.openshift.io/finalizer-ingresscontroller
  generation: 1
  name: default
  namespace: openshift-ingress-operator
  resourceVersion: "11341"
  selfLink: /apis/operator.openshift.io/v1/namespaces/openshift-ingress-
operator/ingresscontrollers/default
  uid: 79509e05-61d6-11e9-bc55-02ce4781844a
spec: {}
status:
  availableReplicas: 2
  conditions:
  - lastTransitionTime: 2019-04-18T12:36:15Z
    status: "True"
    type: Available
  domain: apps.<cluster>.example.com
  endpointPublishingStrategy:
    type: LoadBalancerService
  selector: ingresscontroller.operator.openshift.io/deployment-ingresscontroller=default

$ oc edit ingresscontroller default -n openshift-ingress-operator

  spec:
    nodePlacement:
      nodeSelector:

OpenShift Container Platform 4.5 Machine management

62



1

3. Confirm that the router pod is running on the infra node.

a. View the list of router pods and note the node name of the running pod:

Example output

In this example, the running pod is on the ip-10-0-217-226.ec2.internal node.

b. View the node status of the running pod:

Specify the <node_name> that you obtained from the pod list.

Example output

Because the role list includes infra, the pod is running on the correct node.

6.4.2. Moving the default registry

You configure the registry Operator to deploy its pods to different nodes.

Prerequisites

Configure additional machine sets in your OpenShift Container Platform cluster.

Procedure

1. View the config/instance object:

Example output

        matchLabels:
          node-role.kubernetes.io/infra: ""

$ oc get pod -n openshift-ingress -o wide

NAME                              READY     STATUS        RESTARTS   AGE       IP           NODE                           
NOMINATED NODE   READINESS GATES
router-default-86798b4b5d-bdlvd   1/1      Running       0          28s       10.130.2.4   ip-10-
0-217-226.ec2.internal   <none>           <none>
router-default-955d875f4-255g8    0/1      Terminating   0          19h       10.129.2.4   ip-10-
0-148-172.ec2.internal   <none>           <none>

$ oc get node <node_name> 1

NAME                          STATUS  ROLES         AGE   VERSION
ip-10-0-217-226.ec2.internal  Ready   infra,worker  17h   v1.18.3

$ oc get configs.imageregistry.operator.openshift.io/cluster -o yaml

apiVersion: imageregistry.operator.openshift.io/v1
kind: Config
metadata:

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

63



2. Edit the config/instance object:

3. Add the following lines of text the spec section of the object:

4. Verify the registry pod has been moved to the infrastructure node.

a. Run the following command to identify the node where the registry pod is located:

b. Confirm the node has the label you specified:

Review the command output and confirm that node-role.kubernetes.io/infra is in the 
LABELS list.

6.4.3. Moving the monitoring solution

By default, the Prometheus Cluster Monitoring stack, which contains Prometheus, Grafana, and
AlertManager, is deployed to provide cluster monitoring. It is managed by the Cluster Monitoring
Operator. To move its components to different machines, you create and apply a custom config map.

Procedure

  creationTimestamp: 2019-02-05T13:52:05Z
  finalizers:
  - imageregistry.operator.openshift.io/finalizer
  generation: 1
  name: cluster
  resourceVersion: "56174"
  selfLink: /apis/imageregistry.operator.openshift.io/v1/configs/cluster
  uid: 36fd3724-294d-11e9-a524-12ffeee2931b
spec:
  httpSecret: d9a012ccd117b1e6616ceccb2c3bb66a5fed1b5e481623
  logging: 2
  managementState: Managed
  proxy: {}
  replicas: 1
  requests:
    read: {}
    write: {}
  storage:
    s3:
      bucket: image-registry-us-east-1-c92e88cad85b48ec8b312344dff03c82-392c
      region: us-east-1
status:
...

$ oc edit configs.imageregistry.operator.openshift.io/cluster

  nodeSelector:
    node-role.kubernetes.io/infra: ""

$ oc get pods -o wide -n openshift-image-registry

$ oc describe node <node_name>

OpenShift Container Platform 4.5 Machine management

64



1. Save the following ConfigMap definition as the cluster-monitoring-configmap.yaml file:

Running this config map forces the components of the monitoring stack to redeploy to
infrastructure nodes.

2. Apply the new config map:

3. Watch the monitoring pods move to the new machines:

4. If a component has not moved to the infra node, delete the pod with this component:

The component from the deleted pod is re-created on the infra node.

apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
data:
  config.yaml: |+
    alertmanagerMain:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    prometheusK8s:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    prometheusOperator:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    grafana:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    k8sPrometheusAdapter:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    kubeStateMetrics:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    telemeterClient:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    openshiftStateMetrics:
      nodeSelector:
        node-role.kubernetes.io/infra: ""
    thanosQuerier:
      nodeSelector:
        node-role.kubernetes.io/infra: ""

$ oc create -f cluster-monitoring-configmap.yaml

$ watch 'oc get pod -n openshift-monitoring -o wide'

$ oc delete pod -n openshift-monitoring <pod>

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

65



6.4.4. Moving the cluster logging resources

You can configure the Cluster Logging Operator to deploy the pods for any or all of the Cluster Logging
components, Elasticsearch, Kibana, and Curator to different nodes. You cannot move the Cluster
Logging Operator pod from its installed location.

For example, you can move the Elasticsearch pods to a separate node because of high CPU, memory,
and disk requirements.

Prerequisites

Cluster logging and Elasticsearch must be installed. These features are not installed by default.

Procedure

1. Edit the ClusterLogging custom resource (CR) in the openshift-logging project:

$ oc edit ClusterLogging instance

apiVersion: logging.openshift.io/v1
kind: ClusterLogging

...

spec:
  collection:
    logs:
      fluentd:
        resources: null
      type: fluentd
  curation:
    curator:
      nodeSelector: 1
        node-role.kubernetes.io/infra: ''
      resources: null
      schedule: 30 3 * * *
    type: curator
  logStore:
    elasticsearch:
      nodeCount: 3
      nodeSelector: 2
        node-role.kubernetes.io/infra: ''
      redundancyPolicy: SingleRedundancy
      resources:
        limits:
          cpu: 500m
          memory: 16Gi
        requests:
          cpu: 500m
          memory: 16Gi
      storage: {}
    type: elasticsearch
  managementState: Managed
  visualization:
    kibana:

OpenShift Container Platform 4.5 Machine management

66



1 2 3 Add a nodeSelector parameter with the appropriate value to the component you want to
move. You can use a nodeSelector in the format shown or use <key>: <value> pairs, based on

the value specified for the node.

Verification

To verify that a component has moved, you can use the oc get pod -o wide command.

For example:

You want to move the Kibana pod from the ip-10-0-147-79.us-east-2.compute.internal node:

Example output

You want to move the Kibana Pod to the ip-10-0-139-48.us-east-2.compute.internal node, a
dedicated infrastructure node:

Example output

Note that the node has a node-role.kubernetes.io/infra: '' label:

Example output

      nodeSelector: 3
        node-role.kubernetes.io/infra: ''
      proxy:
        resources: null
      replicas: 1
      resources: null
    type: kibana

...

$ oc get pod kibana-5b8bdf44f9-ccpq9 -o wide

NAME                      READY   STATUS    RESTARTS   AGE   IP            NODE                                        
NOMINATED NODE   READINESS GATES
kibana-5b8bdf44f9-ccpq9   2/2     Running   0          27s   10.129.2.18   ip-10-0-147-79.us-
east-2.compute.internal   <none>           <none>

$ oc get nodes

NAME                                         STATUS   ROLES          AGE   VERSION
ip-10-0-133-216.us-east-2.compute.internal   Ready    master         60m   v1.18.3
ip-10-0-139-146.us-east-2.compute.internal   Ready    master         60m   v1.18.3
ip-10-0-139-192.us-east-2.compute.internal   Ready    worker         51m   v1.18.3
ip-10-0-139-241.us-east-2.compute.internal   Ready    worker         51m   v1.18.3
ip-10-0-147-79.us-east-2.compute.internal    Ready    worker         51m   v1.18.3
ip-10-0-152-241.us-east-2.compute.internal   Ready    master         60m   v1.18.3
ip-10-0-139-48.us-east-2.compute.internal    Ready    infra          51m   v1.18.3

$ oc get node ip-10-0-139-48.us-east-2.compute.internal -o yaml

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

67



1

To move the Kibana pod, edit the ClusterLogging CR to add a node selector:

Add a node selector to match the label in the node specification.

After you save the CR, the current Kibana pod is terminated and new pod is deployed:

Example output

kind: Node
apiVersion: v1
metadata:
  name: ip-10-0-139-48.us-east-2.compute.internal
  selfLink: /api/v1/nodes/ip-10-0-139-48.us-east-2.compute.internal
  uid: 62038aa9-661f-41d7-ba93-b5f1b6ef8751
  resourceVersion: '39083'
  creationTimestamp: '2020-04-13T19:07:55Z'
  labels:
    node-role.kubernetes.io/infra: ''
...

apiVersion: logging.openshift.io/v1
kind: ClusterLogging

...

spec:

...

  visualization:
    kibana:
      nodeSelector: 1
        node-role.kubernetes.io/infra: ''
      proxy:
        resources: null
      replicas: 1
      resources: null
    type: kibana

$ oc get pods

NAME                                            READY   STATUS        RESTARTS   AGE
cluster-logging-operator-84d98649c4-zb9g7       1/1     Running       0          29m
elasticsearch-cdm-hwv01pf7-1-56588f554f-kpmlg   2/2     Running       0          28m
elasticsearch-cdm-hwv01pf7-2-84c877d75d-75wqj   2/2     Running       0          28m
elasticsearch-cdm-hwv01pf7-3-f5d95b87b-4nx78    2/2     Running       0          28m
fluentd-42dzz                                   1/1     Running       0          28m
fluentd-d74rq                                   1/1     Running       0          28m
fluentd-m5vr9                                   1/1     Running       0          28m
fluentd-nkxl7                                   1/1     Running       0          28m
fluentd-pdvqb                                   1/1     Running       0          28m
fluentd-tflh6                                   1/1     Running       0          28m
kibana-5b8bdf44f9-ccpq9                         2/2     Terminating   0          4m11s
kibana-7d85dcffc8-bfpfp                         2/2     Running       0          33s

OpenShift Container Platform 4.5 Machine management

68



The new pod is on the ip-10-0-139-48.us-east-2.compute.internal node:

Example output

After a few moments, the original Kibana pod is removed.

Example output

Additional resources

See the monitoring documentation for the general instructions on moving OpenShift Container
Platform components.

$ oc get pod kibana-7d85dcffc8-bfpfp -o wide

NAME                      READY   STATUS        RESTARTS   AGE   IP            NODE                                        
NOMINATED NODE   READINESS GATES
kibana-7d85dcffc8-bfpfp   2/2     Running       0          43s   10.131.0.22   ip-10-0-139-48.us-
east-2.compute.internal   <none>           <none>

$ oc get pods

NAME                                            READY   STATUS    RESTARTS   AGE
cluster-logging-operator-84d98649c4-zb9g7       1/1     Running   0          30m
elasticsearch-cdm-hwv01pf7-1-56588f554f-kpmlg   2/2     Running   0          29m
elasticsearch-cdm-hwv01pf7-2-84c877d75d-75wqj   2/2     Running   0          29m
elasticsearch-cdm-hwv01pf7-3-f5d95b87b-4nx78    2/2     Running   0          29m
fluentd-42dzz                                   1/1     Running   0          29m
fluentd-d74rq                                   1/1     Running   0          29m
fluentd-m5vr9                                   1/1     Running   0          29m
fluentd-nkxl7                                   1/1     Running   0          29m
fluentd-pdvqb                                   1/1     Running   0          29m
fluentd-tflh6                                   1/1     Running   0          29m
kibana-7d85dcffc8-bfpfp                         2/2     Running   0          62s

CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/monitoring/#moving-monitoring-components-to-different-nodes_configuring-the-monitoring-stack


CHAPTER 7. ADDING RHEL COMPUTE MACHINES TO AN
OPENSHIFT CONTAINER PLATFORM CLUSTER

In OpenShift Container Platform, you can add Red Hat Enterprise Linux (RHEL) compute, or worker,
machines to a user-provisioned infrastructure cluster or a installation-provisioned infrastructure cluster.
You can use RHEL as the operating system on only compute machines.

7.1. ABOUT ADDING RHEL COMPUTE NODES TO A CLUSTER

In OpenShift Container Platform 4.5, you have the option of using Red Hat Enterprise Linux (RHEL)
machines as compute machines, which are also known as worker machines, in your cluster if you use a
user-provisioned infrastructure installation. You must use Red Hat Enterprise Linux CoreOS (RHCOS)
machines for the control plane, or master, machines in your cluster.

As with all installations that use user-provisioned infrastructure, if you choose to use RHEL compute
machines in your cluster, you take responsibility for all operating system life cycle management and
maintenance, including performing system updates, applying patches, and completing all other required
tasks.

IMPORTANT

Because removing OpenShift Container Platform from a machine in the cluster requires
destroying the operating system, you must use dedicated hardware for any RHEL
machines that you add to the cluster.

IMPORTANT

Swap memory is disabled on all RHEL machines that you add to your OpenShift
Container Platform cluster. You cannot enable swap memory on these machines.

You must add any RHEL compute machines to the cluster after you initialize the control plane.

7.2. SYSTEM REQUIREMENTS FOR RHEL COMPUTE NODES

The Red Hat Enterprise Linux (RHEL) compute machine hosts, which are also known as worker machine
hosts, in your OpenShift Container Platform environment must meet the following minimum hardware
specifications and system-level requirements.

You must have an active OpenShift Container Platform subscription on your Red Hat account. If
you do not, contact your sales representative for more information.

Production environments must provide compute machines to support your expected workloads.
As a cluster administrator, you must calculate the expected workload and add about 10 percent
for overhead. For production environments, allocate enough resources so that a node host
failure does not affect your maximum capacity.

Each system must meet the following hardware requirements:

Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: RHEL 7.7-7.8 with "Minimal" installation option.

IMPORTANT

OpenShift Container Platform 4.5 Machine management

70

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/installation_guide/index


IMPORTANT

Only RHEL 7.7-7.8 is supported in OpenShift Container Platform 4.5. You
must not upgrade your compute machines to RHEL 8.

If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the
RHEL machine before you boot it. See Enabling FIPS Mode in the RHEL 7 documentation.

NetworkManager 1.0 or later.

1 vCPU.

Minimum 8 GB RAM.

Minimum 15 GB hard disk space for the file system containing /var/.

Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.

Minimum 1 GB hard disk space for the file system containing the system’s temporary
directory. The system’s temporary directory is determined according to the rules defined in
the tempfile module in Python’s standard library.

Each system must meet any additional requirements for your system provider. For example, if
you installed your cluster on VMware vSphere, your disks must be configured according to its
storage guidelines and the disk.enableUUID=true attribute must be set.

Each system must be able to access the cluster’s API endpoints by using DNS-resolvable host
names. Any network security access control that is in place must allow the system access to the
cluster’s API service endpoints.

7.2.1. Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure
that you provision, you must provide a mechanism for approving cluster certificate signing requests
(CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The 
machine-approver cannot guarantee the validity of a serving certificate that is requested by using
kubelet credentials because it cannot confirm that the correct machine issued the request. You must
determine and implement a method of verifying the validity of the kubelet serving certificate requests
and approving them.

7.3. PREPARING AN IMAGE FOR YOUR CLOUD

Amazon Machine Images (AMI) are required because various image formats cannot be used directly by
AWS. You may use the AMIs that Red Hat has provided, or you can manually import your own images.
The AMI must exist before the EC2 instance can be provisioned. You will need a valid AMI ID so that the
correct RHEL version needed for the compute machines is selected.

7.3.1. Listing latest available RHEL images on AWS

AMI IDs correspond to native boot images for AWS. Because an AMI must exist before the EC2 instance
is provisioned, you will need to know the AMI ID before configuration. The AWS Command Line
Interface (CLI) is used to list the available Red Hat Enterprise Linux (RHEL) image IDs.

Prerequisites

CHAPTER 7. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

71

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/chap-federal_standards_and_regulations#sec-Enabling-FIPS-Mode
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html
https://aws.amazon.com/cli/


1

2

3

4

5

You have installed the AWS CLI.

Procedure

Use this command to list RHEL 7.9 Amazon Machine Images (AMI):

The --owners command option shows Red Hat images based on the account ID 
309956199498.

IMPORTANT

This account ID is required to display AMI IDs for images that are provided
by Red Hat.

The --query command option sets how the images are sorted with the parameters 
'sort_by(Images, &CreationDate)[*].[CreationDate,Name,ImageId]'. In this case, the
images are sorted by the creation date, and the table is structured to show the creation
date, the name of the image, and the AMI IDs.

The --filter command option sets which version of RHEL is shown. In this example, since the
filter is set by "Name=name,Values=RHEL-7.9*", then RHEL 7.9 AMIs are shown.

The --region command option sets where the region where an AMI is stored.

The --output command option sets how the results are displayed.

NOTE

When creating a RHEL compute machine for AWS, ensure that the AMI is RHEL 7.9.

Example output

Additional resources

You may also manually import RHEL images to AWS .

$ aws ec2 describe-images --owners 309956199498 \ 1
--query 'sort_by(Images, &CreationDate)[*].[CreationDate,Name,ImageId]' \ 2
--filters "Name=name,Values=RHEL-7.9*" \ 3
--region us-east-1 \ 4
--output table 5

----------------------------------------------------------------------------------------------------------
|                                             DescribeImages                                             |
+---------------------------+----------------------------------------------------+-----------------------+
|  2020-05-13T09:50:36.000Z |  RHEL-7.9_HVM_BETA-20200422-x86_64-0-Hourly2-GP2  |  ami-
038714142142a6a64 |
|  2020-09-18T07:51:03.000Z |  RHEL-7.9_HVM_GA-20200917-x86_64-0-Hourly2-GP2    |  ami-
005b7876121b7244d |
|  2021-02-09T09:46:19.000Z |  RHEL-7.9_HVM-20210208-x86_64-0-Hourly2-GP2       |  ami-
030e754805234517e |
+---------------------------+----------------------------------------------------+-----------------------+

OpenShift Container Platform 4.5 Machine management

72

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/image_builder_guide/sect-documentation-image_builder-chapter5-section_2


7.4. PREPARING THE MACHINE TO RUN THE PLAYBOOK

Before you can add compute machines that use Red Hat Enterprise Linux as the operating system to an
OpenShift Container Platform 4.5 cluster, you must prepare a machine to run the playbook from. This
machine is not part of the cluster but must be able to access it.

Prerequisites

Install the OpenShift CLI (oc) on the machine that you run the playbook on.

Log in as a user with cluster-admin permission.

Procedure

1. Ensure that the kubeconfig file for the cluster and the installation program that you used to
install the cluster are on the machine. One way to accomplish this is to use the same machine
that you used to install the cluster.

2. Configure the machine to access all of the RHEL hosts that you plan to use as compute
machines. You can use any method that your company allows, including a bastion with an SSH
proxy or a VPN.

3. Configure a user on the machine that you run the playbook on that has SSH access to all of the
RHEL hosts.

IMPORTANT

If you use SSH key-based authentication, you must manage the key with an SSH
agent.

4. If you have not already done so, register the machine with RHSM and attach a pool with an 
OpenShift subscription to it:

a. Register the machine with RHSM:

b. Pull the latest subscription data from RHSM:

c. List the available subscriptions:

d. In the output for the previous command, find the pool ID for an OpenShift Container
Platform subscription and attach it:

5. Enable the repositories required by OpenShift Container Platform 4.5:

# subscription-manager register --username=<user_name> --password=<password>

# subscription-manager refresh

# subscription-manager list --available --matches '*OpenShift*'

# subscription-manager attach --pool=<pool_id>

# subscription-manager repos \

CHAPTER 7. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

73



6. Install the required packages, including openshift-ansible:

The openshift-ansible package provides installation program utilities and pulls in other
packages that you require to add a RHEL compute node to your cluster, such as Ansible,
playbooks, and related configuration files. The openshift-clients provides the oc CLI, and the 
jq package improves the display of JSON output on your command line.

7.5. PREPARING A RHEL COMPUTE NODE

Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform
cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active
OpenShift Container Platform subscription, and enable the required repositories.

1. On each host, register with RHSM:

2. Pull the latest subscription data from RHSM:

3. List the available subscriptions:

4. In the output for the previous command, find the pool ID for an OpenShift Container Platform
subscription and attach it:

5. Disable all yum repositories:

a. Disable all the enabled RHSM repositories:

b. List the remaining yum repositories and note their names under repo id, if any:

c. Use yum-config-manager to disable the remaining yum repositories:

Alternatively, disable all repositories:

    --enable="rhel-7-server-rpms" \
    --enable="rhel-7-server-extras-rpms" \
    --enable="rhel-7-server-ansible-2.9-rpms" \
    --enable="rhel-7-server-ose-4.5-rpms"

# yum install openshift-ansible openshift-clients jq

# subscription-manager register --username=<user_name> --password=<password>

# subscription-manager refresh

# subscription-manager list --available --matches '*OpenShift*'

# subscription-manager attach --pool=<pool_id>

# subscription-manager repos --disable="*"

# yum repolist

# yum-config-manager --disable <repo_id>

OpenShift Container Platform 4.5 Machine management

74



Note that this might take a few minutes if you have a large number of available repositories

6. Enable only the repositories required by OpenShift Container Platform 4.5:

7. Stop and disable firewalld on the host:

NOTE

You must not enable firewalld later. If you do, you cannot access OpenShift
Container Platform logs on the worker.

7.6. ATTACHING THE ROLE PERMISSIONS TO RHEL INSTANCE IN
AWS

Using the Amazon IAM console in your browser, you may select the needed roles and assign them to a
worker node.

Procedure

1. From the AWS IAM console, create your desired IAM role.

2. Attach the IAM role to the desired worker node. The following permissions are required:

sts:AssumeRole

ec2:DescribeInstances

ec2:DescribeRegions

7.7. TAGGING A RHEL WORKER NODE AS OWNED OR SHARED

A cluster uses the value of the kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag to
determine the lifetime of the resources related to the AWS cluster.

The owned tag value should be added if the resource should be destroyed as part of destroying
the cluster.

The shared tag value should be added if the resource continues to exist after the cluster has
been destroyed. This tagging denotes that the cluster uses this resource, but there is a separate
owner for the resource.

Procedure

With RHEL compute machines, the RHEL worker instance must be tagged with 

# yum-config-manager --disable \*

# subscription-manager repos \
    --enable="rhel-7-server-rpms" \
    --enable="rhel-7-server-extras-rpms" \
    --enable="rhel-7-server-ose-4.5-rpms"

# systemctl disable --now firewalld.service

CHAPTER 7. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

75

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#create-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role


1

2

3

4

With RHEL compute machines, the RHEL worker instance must be tagged with 
kubernetes.io/cluster/<clusterid>=owned or kubernetes.io/cluster/<cluster-id>=shared.

NOTE

Do not tag all existing security groups with the kubernetes.io/cluster/<name>,Value=
<clusterid> tag, or the Elastic Load Balancing (ELB) will not be able to create a load
balancer.

7.8. ADDING A RHEL COMPUTE MACHINE TO YOUR CLUSTER

You can add compute machines that use Red Hat Enterprise Linux as the operating system to an
OpenShift Container Platform 4.5 cluster.

Prerequisites

You installed the required packages and performed the necessary configuration on the machine
that you run the playbook on.

You prepared the RHEL hosts for installation.

Procedure

Perform the following steps on the machine that you prepared to run the playbook:

1. Create an Ansible inventory file that is named /<path>/inventory/hosts that defines your
compute machine hosts and required variables:

[all:vars]
ansible_user=root 1
#ansible_become=True 2

openshift_kubeconfig_path="~/.kube/config" 3

[new_workers] 4
mycluster-rhel7-0.example.com
mycluster-rhel7-1.example.com

Specify the user name that runs the Ansible tasks on the remote compute machines.

If you do not specify root for the ansible_user, you must set ansible_become to True
and assign the user sudo permissions.

Specify the path and file name of the kubeconfig file for your cluster.

List each RHEL machine to add to your cluster. You must provide the fully-qualified
domain name for each host. This name is the host name that the cluster uses to access the
machine, so set the correct public or private name to access the machine.

2. Navigate to the Ansible playbook directory:

3. Run the playbook:

$ cd /usr/share/ansible/openshift-ansible

OpenShift Container Platform 4.5 Machine management

76



1 For <path>, specify the path to the Ansible inventory file that you created.

7.9. APPROVING THE CERTIFICATE SIGNING REQUESTS FOR YOUR
MACHINES

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

$ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml 1

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.18.3
master-1  Ready     master  63m  v1.18.3
master-2  Ready     master  64m  v1.18.3
worker-0  NotReady  worker  76s  v1.18.3
worker-1  NotReady  worker  70s  v1.18.3

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

CHAPTER 7. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

77



1

1

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. Once the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

OpenShift Container Platform 4.5 Machine management

78



Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

7.10. REQUIRED PARAMETERS FOR THE ANSIBLE HOSTS FILE

You must define the following parameters in the Ansible hosts file before you add Red Hat Enterprise
Linux (RHEL) compute machines to your cluster.

Paramter Description Values

ansible_user The SSH user that allows SSH-based
authentication without requiring a
password. If you use SSH key-based
authentication, then you must manage
the key with an SSH agent.

A user name on the system. The default
value is root.

ansible_becom
e

If the values of ansible_user is not root,
you must set ansible_become to True,
and the user that you specify as the 
ansible_user must be configured for
passwordless sudo access.

True. If the value is not True, do not
specify and define this parameter.

openshift_kube
config_path

Specifies a path and file name to a local
directory that contains the kubeconfig
file for your cluster.

The path and name of the configuration
file.

7.10.1. Optional: Removing RHCOS compute machines from a cluster

After you add the Red Hat Enterprise Linux (RHEL) compute machines to your cluster, you can
optionally remove the Red Hat Enterprise Linux CoreOS (RHCOS) compute machines to free up
resources.

Prerequisites

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.20.0
master-1  Ready     master  73m  v1.20.0
master-2  Ready     master  74m  v1.20.0
worker-0  Ready     worker  11m  v1.20.0
worker-1  Ready     worker  11m  v1.20.0

CHAPTER 7. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

79

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/


1

1

1

You have added RHEL compute machines to your cluster.

Procedure

1. View the list of machines and record the node names of the RHCOS compute machines:

2. For each RHCOS compute machine, delete the node:

a. Mark the node as unschedulable by running the oc adm cordon command:

Specify the node name of one of the RHCOS compute machines.

b. Drain all the pods from the node:

Specify the node name of the RHCOS compute machine that you isolated.

c. Delete the node:

Specify the node name of the RHCOS compute machine that you drained.

3. Review the list of compute machines to ensure that only the RHEL nodes remain:

4. Remove the RHCOS machines from the load balancer for your cluster’s compute machines. You
can delete the virtual machines or reimage the physical hardware for the RHCOS compute
machines.

$ oc get nodes -o wide

$ oc adm cordon <node_name> 1

$ oc adm drain <node_name> --force --delete-local-data --ignore-daemonsets 1

$ oc delete nodes <node_name> 1

$ oc get nodes -o wide

OpenShift Container Platform 4.5 Machine management

80



CHAPTER 8. ADDING MORE RHEL COMPUTE MACHINES TO
AN OPENSHIFT CONTAINER PLATFORM CLUSTER

If your OpenShift Container Platform cluster already includes Red Hat Enterprise Linux (RHEL)
compute machines, which are also known as worker machines, you can add more RHEL compute
machines to it.

8.1. ABOUT ADDING RHEL COMPUTE NODES TO A CLUSTER

In OpenShift Container Platform 4.5, you have the option of using Red Hat Enterprise Linux (RHEL)
machines as compute machines, which are also known as worker machines, in your cluster if you use a
user-provisioned infrastructure installation. You must use Red Hat Enterprise Linux CoreOS (RHCOS)
machines for the control plane, or master, machines in your cluster.

As with all installations that use user-provisioned infrastructure, if you choose to use RHEL compute
machines in your cluster, you take responsibility for all operating system life cycle management and
maintenance, including performing system updates, applying patches, and completing all other required
tasks.

IMPORTANT

Because removing OpenShift Container Platform from a machine in the cluster requires
destroying the operating system, you must use dedicated hardware for any RHEL
machines that you add to the cluster.

IMPORTANT

Swap memory is disabled on all RHEL machines that you add to your OpenShift
Container Platform cluster. You cannot enable swap memory on these machines.

You must add any RHEL compute machines to the cluster after you initialize the control plane.

8.2. SYSTEM REQUIREMENTS FOR RHEL COMPUTE NODES

The Red Hat Enterprise Linux (RHEL) compute machine hosts, which are also known as worker machine
hosts, in your OpenShift Container Platform environment must meet the following minimum hardware
specifications and system-level requirements.

You must have an active OpenShift Container Platform subscription on your Red Hat account. If
you do not, contact your sales representative for more information.

Production environments must provide compute machines to support your expected workloads.
As a cluster administrator, you must calculate the expected workload and add about 10 percent
for overhead. For production environments, allocate enough resources so that a node host
failure does not affect your maximum capacity.

Each system must meet the following hardware requirements:

Physical or virtual system, or an instance running on a public or private IaaS.

Base OS: RHEL 7.7-7.8 with "Minimal" installation option.

IMPORTANT

CHAPTER 8. ADDING MORE RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

81

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/installation_guide/index


IMPORTANT

Only RHEL 7.7-7.8 is supported in OpenShift Container Platform 4.5. You
must not upgrade your compute machines to RHEL 8.

If you deployed OpenShift Container Platform in FIPS mode, you must enable FIPS on the
RHEL machine before you boot it. See Enabling FIPS Mode in the RHEL 7 documentation.

NetworkManager 1.0 or later.

1 vCPU.

Minimum 8 GB RAM.

Minimum 15 GB hard disk space for the file system containing /var/.

Minimum 1 GB hard disk space for the file system containing /usr/local/bin/.

Minimum 1 GB hard disk space for the file system containing the system’s temporary
directory. The system’s temporary directory is determined according to the rules defined in
the tempfile module in Python’s standard library.

Each system must meet any additional requirements for your system provider. For example, if
you installed your cluster on VMware vSphere, your disks must be configured according to its
storage guidelines and the disk.enableUUID=true attribute must be set.

Each system must be able to access the cluster’s API endpoints by using DNS-resolvable host
names. Any network security access control that is in place must allow the system access to the
cluster’s API service endpoints.

8.2.1. Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure
that you provision, you must provide a mechanism for approving cluster certificate signing requests
(CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The 
machine-approver cannot guarantee the validity of a serving certificate that is requested by using
kubelet credentials because it cannot confirm that the correct machine issued the request. You must
determine and implement a method of verifying the validity of the kubelet serving certificate requests
and approving them.

8.3. PREPARING AN IMAGE FOR YOUR CLOUD

Amazon Machine Images (AMI) are required since various image formats cannot be used directly by
AWS. You may use the AMIs that Red Hat has provided, or you can manually import your own images.
The AMI must exist before the EC2 instance can be provisioned. You must list the AMI IDs so that the
correct RHEL version needed for the compute machines is selected.

8.3.1. Listing latest available RHEL images on AWS

AMI IDs correspond to native boot images for AWS. Because an AMI must exist before the EC2 instance
is provisioned, you will need to know the AMI ID before configuration. The AWS Command Line
Interface (CLI) is used to list the available Red Hat Enterprise Linux (RHEL) image IDs.

Prerequisites

OpenShift Container Platform 4.5 Machine management

82

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/security_guide/chap-federal_standards_and_regulations#sec-Enabling-FIPS-Mode
https://vmware.github.io/vsphere-storage-for-kubernetes/documentation/index.html
https://aws.amazon.com/cli/


1

2

3

4

5

You have installed the AWS CLI.

Procedure

Use this command to list RHEL 7.9 Amazon Machine Images (AMI):

The --owners command option shows Red Hat images based on the account ID 
309956199498.

IMPORTANT

This account ID is required to display AMI IDs for images that are provided
by Red Hat.

The --query command option sets how the images are sorted with the parameters 
'sort_by(Images, &CreationDate)[*].[CreationDate,Name,ImageId]'. In this case, the
images are sorted by the creation date, and the table is structured to show the creation
date, the name of the image, and the AMI IDs.

The --filter command option sets which version of RHEL is shown. In this example, since the
filter is set by "Name=name,Values=RHEL-7.9*", then RHEL 7.9 AMIs are shown.

The --region command option sets where the region where an AMI is stored.

The --output command option sets how the results are displayed.

NOTE

When creating a RHEL compute machine for AWS, ensure that the AMI is RHEL 7.9.

Example output

Additional resources

You may also manually import RHEL images to AWS .

$ aws ec2 describe-images --owners 309956199498 \ 1
--query 'sort_by(Images, &CreationDate)[*].[CreationDate,Name,ImageId]' \ 2
--filters "Name=name,Values=RHEL-7.9*" \ 3
--region us-east-1 \ 4
--output table 5

----------------------------------------------------------------------------------------------------------
|                                             DescribeImages                                             |
+---------------------------+----------------------------------------------------+-----------------------+
|  2020-05-13T09:50:36.000Z |  RHEL-7.9_HVM_BETA-20200422-x86_64-0-Hourly2-GP2  |  ami-
038714142142a6a64 |
|  2020-09-18T07:51:03.000Z |  RHEL-7.9_HVM_GA-20200917-x86_64-0-Hourly2-GP2    |  ami-
005b7876121b7244d |
|  2021-02-09T09:46:19.000Z |  RHEL-7.9_HVM-20210208-x86_64-0-Hourly2-GP2       |  ami-
030e754805234517e |
+---------------------------+----------------------------------------------------+-----------------------+

CHAPTER 8. ADDING MORE RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

83

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/image_builder_guide/sect-documentation-image_builder-chapter5-section_2


8.4. PREPARING A RHEL COMPUTE NODE

Before you add a Red Hat Enterprise Linux (RHEL) machine to your OpenShift Container Platform
cluster, you must register each host with Red Hat Subscription Manager (RHSM), attach an active
OpenShift Container Platform subscription, and enable the required repositories.

1. On each host, register with RHSM:

2. Pull the latest subscription data from RHSM:

3. List the available subscriptions:

4. In the output for the previous command, find the pool ID for an OpenShift Container Platform
subscription and attach it:

5. Disable all yum repositories:

a. Disable all the enabled RHSM repositories:

b. List the remaining yum repositories and note their names under repo id, if any:

c. Use yum-config-manager to disable the remaining yum repositories:

Alternatively, disable all repositories:

Note that this might take a few minutes if you have a large number of available repositories

6. Enable only the repositories required by OpenShift Container Platform 4.5:

7. Stop and disable firewalld on the host:

# subscription-manager register --username=<user_name> --password=<password>

# subscription-manager refresh

# subscription-manager list --available --matches '*OpenShift*'

# subscription-manager attach --pool=<pool_id>

# subscription-manager repos --disable="*"

# yum repolist

# yum-config-manager --disable <repo_id>

# yum-config-manager --disable \*

# subscription-manager repos \
    --enable="rhel-7-server-rpms" \
    --enable="rhel-7-server-extras-rpms" \
    --enable="rhel-7-server-ose-4.5-rpms"

OpenShift Container Platform 4.5 Machine management

84



NOTE

You must not enable firewalld later. If you do, you cannot access OpenShift
Container Platform logs on the worker.

8.5. ATTACHING THE ROLE PERMISSIONS TO RHEL INSTANCE IN
AWS

Using the Amazon IAM console in your browser, you may select the needed roles and assign them to a
worker node.

Procedure

1. From the AWS IAM console, create your desired IAM role.

2. Attach the IAM role to the desired worker node. The following permissions are required:

sts:AssumeRole

ec2:DescribeInstances

ec2:DescribeRegions

8.6. TAGGING A RHEL WORKER NODE AS OWNED OR SHARED

A cluster uses the value of the kubernetes.io/cluster/<clusterid>,Value=(owned|shared) tag to
determine the lifetime of the resources related to the AWS cluster.

The owned tag value should be added if the resource should be destroyed as part of destroying
the cluster.

The shared tag value should be added if the resource continues to exist after the cluster has
been destroyed. This tagging denotes that the cluster uses this resource, but there is a separate
owner for the resource.

Procedure

With RHEL compute machines, the RHEL worker instance must be tagged with 
kubernetes.io/cluster/<clusterid>=owned or kubernetes.io/cluster/<cluster-id>=shared.

NOTE

Do not tag all existing security groups with the kubernetes.io/cluster/<name>,Value=
<clusterid> tag, or the Elastic Load Balancing (ELB) will not be able to create a load
balancer.

8.7. ADDING MORE RHEL COMPUTE MACHINES TO YOUR CLUSTER

You can add more compute machines that use Red Hat Enterprise Linux (RHEL) as the operating
system to an OpenShift Container Platform 4.5 cluster.

# systemctl disable --now firewalld.service

CHAPTER 8. ADDING MORE RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

85

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#create-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role


Prerequisites

Your OpenShift Container Platform cluster already contains RHEL compute nodes.

The hosts file that you used to add the first RHEL compute machines to your cluster is on the
machine that you use the run the playbook.

The machine that you run the playbook on must be able to access all of the RHEL hosts. You
can use any method that your company allows, including a bastion with an SSH proxy or a VPN.

The kubeconfig file for the cluster and the installation program that you used to install the
cluster are on the machine that you use the run the playbook.

You must prepare the RHEL hosts for installation.

Configure a user on the machine that you run the playbook on that has SSH access to all of the
RHEL hosts.

If you use SSH key-based authentication, you must manage the key with an SSH agent.

Install the OpenShift CLI (oc) on the machine that you run the playbook on.

Procedure

1. Open the Ansible inventory file at /<path>/inventory/hosts that defines your compute machine
hosts and required variables.

2. Rename the [new_workers] section of the file to [workers].

3. Add a [new_workers] section to the file and define the fully-qualified domain names for each
new host. The file resembles the following example:

[all:vars]
ansible_user=root
#ansible_become=True

openshift_kubeconfig_path="~/.kube/config"

[workers]
mycluster-rhel7-0.example.com
mycluster-rhel7-1.example.com

[new_workers]
mycluster-rhel7-2.example.com
mycluster-rhel7-3.example.com

In this example, the mycluster-rhel7-0.example.com and mycluster-rhel7-1.example.com
machines are in the cluster and you add the mycluster-rhel7-2.example.com and mycluster-
rhel7-3.example.com machines.

4. Navigate to the Ansible playbook directory:

5. Run the scaleup playbook:

$ cd /usr/share/ansible/openshift-ansible

OpenShift Container Platform 4.5 Machine management

86



1 For <path>, specify the path to the Ansible inventory file that you created.

8.8. APPROVING THE CERTIFICATE SIGNING REQUESTS FOR YOUR
MACHINES

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

$ ansible-playbook -i /<path>/inventory/hosts playbooks/scaleup.yml 1

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.18.3
master-1  Ready     master  63m  v1.18.3
master-2  Ready     master  64m  v1.18.3
worker-0  NotReady  worker  76s  v1.18.3
worker-1  NotReady  worker  70s  v1.18.3

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

CHAPTER 8. ADDING MORE RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

87



1

1

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. Once the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

OpenShift Container Platform 4.5 Machine management

88



Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

8.9. REQUIRED PARAMETERS FOR THE ANSIBLE HOSTS FILE

You must define the following parameters in the Ansible hosts file before you add Red Hat Enterprise
Linux (RHEL) compute machines to your cluster.

Paramter Description Values

ansible_user The SSH user that allows SSH-based
authentication without requiring a
password. If you use SSH key-based
authentication, then you must manage
the key with an SSH agent.

A user name on the system. The default
value is root.

ansible_becom
e

If the values of ansible_user is not root,
you must set ansible_become to True,
and the user that you specify as the 
ansible_user must be configured for
passwordless sudo access.

True. If the value is not True, do not
specify and define this parameter.

openshift_kube
config_path

Specifies a path and file name to a local
directory that contains the kubeconfig
file for your cluster.

The path and name of the configuration
file.

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.20.0
master-1  Ready     master  73m  v1.20.0
master-2  Ready     master  74m  v1.20.0
worker-0  Ready     worker  11m  v1.20.0
worker-1  Ready     worker  11m  v1.20.0

CHAPTER 8. ADDING MORE RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER

89

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/


CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE

9.1. ADDING COMPUTE MACHINES TO AWS BY USING
CLOUDFORMATION TEMPLATES

You can add more compute machines to your OpenShift Container Platform cluster on Amazon Web
Services (AWS) that you created by using the sample CloudFormation templates.

9.1.1. Prerequisites

You installed your cluster on AWS by using the provided AWS CloudFormation templates.

You have the JSON file and CloudFormation template that you used to create the compute
machines during cluster installation. If you do not have these files, you must recreate them by
following the instructions in the installation procedure.

9.1.2. Adding more compute machines to your AWS cluster by using CloudFormation
templates

You can add more compute machines to your OpenShift Container Platform cluster on Amazon Web
Services (AWS) that you created by using the sample CloudFormation templates.

IMPORTANT

The CloudFormation template creates a stack that represents one compute machine.
You must create a stack for each compute machine.

NOTE

If you do not use the provided CloudFormation template to create your compute nodes,
you must review the provided information and manually create the infrastructure. If your
cluster does not initialize correctly, you might have to contact Red Hat support with your
installation logs.

Prerequisites

You installed an OpenShift Container Platform cluster by using CloudFormation templates and
have access to the JSON file and CloudFormation template that you used to create the
compute machines during cluster installation.

You installed the AWS CLI.

Procedure

1. Create another compute stack.

a. Launch the template:

$ aws cloudformation create-stack --stack-name <name> \ 1
     --template-body file://<template>.yaml \ 2
     --parameters file://<parameters>.json 3

OpenShift Container Platform 4.5 Machine management

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-aws-user-infra


1

2

3

<name> is the name for the CloudFormation stack, such as cluster-workers. You
must provide the name of this stack if you remove the cluster.

<template> is the relative path to and name of the CloudFormation template YAML
file that you saved.

<parameters> is the relative path to and name of the CloudFormation parameters
JSON file.

b. Confirm that the template components exist:

2. Continue to create compute stacks until you have created enough compute machines for your
cluster.

9.1.3. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

$ aws cloudformation describe-stacks --stack-name <name>

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.18.3
master-1  Ready     master  63m  v1.18.3
master-2  Ready     master  64m  v1.18.3
worker-0  NotReady  worker  76s  v1.18.3
worker-1  NotReady  worker  70s  v1.18.3

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-

CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE

91



1

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. Once the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

OpenShift Container Platform 4.5 Machine management

92



1 <csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

9.2. ADDING COMPUTE MACHINES TO VSPHERE

You can add more compute machines to your OpenShift Container Platform cluster on VMware
vSphere.

9.2.1. Prerequisites

You installed a cluster on vSphere .

You have installation media and Red Hat Enterprise Linux CoreOS (RHCOS) images that you
used to create your cluster. If you do not have these files, you must obtain them by following the
instructions in the installation procedure.

IMPORTANT

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.20.0
master-1  Ready     master  73m  v1.20.0
master-2  Ready     master  74m  v1.20.0
worker-0  Ready     worker  11m  v1.20.0
worker-1  Ready     worker  11m  v1.20.0

CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE

93

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-vsphere


IMPORTANT

If you do not have access to the Red Hat Enterprise Linux CoreOS (RHCOS) images that
were used to create your cluster, you can add more compute machines to your OpenShift
Container Platform cluster with newer versions of Red Hat Enterprise Linux CoreOS
(RHCOS) images. For instructions, see Adding new nodes to UPI cluster fails after
upgrading to OpenShift 4.6+.

9.2.2. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in
vSphere

You can create more compute machines for your cluster that uses user-provisioned infrastructure on
VMware vSphere.

Prerequisites

Obtain the base64-encoded Ignition file for your compute machines.

You have access to the vSphere template that you created for your cluster.

Procedure

1. After the template deploys, deploy a VM for a machine in the cluster.

a. Right-click the template’s name and click Clone → Clone to Virtual Machine.

b. On the Select a name and folder tab, specify a name for the VM. You might include the
machine type in the name, such as compute-1.

c. On the Select a name and folder tab, select the name of the folder that you created for
the cluster.

d. On the Select a compute resource tab, select the name of a host in your datacenter.

e. Optional: On the Select storage tab, customize the storage options.

f. On the Select clone options, select Customize this virtual machine’s hardware.

g. On the Customize hardware tab, click VM Options → Advanced.

From the Latency Sensitivity list, select High.

Click Edit Configuration, and on the Configuration Parameters window, click Add
Configuration Params. Define the following parameter names and values:

guestinfo.ignition.config.data: Paste the contents of the base64-encoded
compute Ignition config file for this machine type.

guestinfo.ignition.config.data.encoding: Specify base64.

disk.EnableUUID: Specify TRUE.

h. In the Virtual Hardware panel of the Customize hardware tab, modify the specified values
as required. Ensure that the amount of RAM, CPU, and disk storage meets the minimum
requirements for the machine type. Also, make sure to select the correct network under
Add network adapter if there are multiple networks available.

OpenShift Container Platform 4.5 Machine management

94

https://access.redhat.com/solutions/5514051


i. Complete the configuration and power on the VM.

2. Continue to create more compute machines for your cluster.

9.2.3. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.18.3
master-1  Ready     master  63m  v1.18.3
master-2  Ready     master  64m  v1.18.3
worker-0  NotReady  worker  76s  v1.18.3
worker-1  NotReady  worker  70s  v1.18.3

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE

95



1

1

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. Once the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

OpenShift Container Platform 4.5 Machine management

96



Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

9.3. ADDING COMPUTE MACHINES TO BARE METAL

You can add more compute machines to your OpenShift Container Platform cluster on bare metal.

9.3.1. Prerequisites

You installed a cluster on bare metal .

You have installation media and Red Hat Enterprise Linux CoreOS (RHCOS) images that you
used to create your cluster. If you do not have these files, you must obtain them by following the
instructions in the installation procedure.

9.3.2. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines

Before you add more compute machines to a cluster that you installed on bare metal infrastructure, you
must create RHCOS machines for it to use. You can either use an ISO image or network PXE booting to
create the machines.

9.3.2.1. Creating more RHCOS machines using an ISO image

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using an ISO image to create the machines.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

Obtain the URL of the BIOS or UEFI RHCOS image file that you uploaded to your HTTP server
during cluster installation.

Procedure

1. Use the ISO file to install RHCOS on more compute machines. Use the same method that you

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.20.0
master-1  Ready     master  73m  v1.20.0
master-2  Ready     master  74m  v1.20.0
worker-0  Ready     worker  11m  v1.20.0
worker-1  Ready     worker  11m  v1.20.0

CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE

97

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/installing/#installing-bare-metal


1

2

3

1. Use the ISO file to install RHCOS on more compute machines. Use the same method that you
used when you created machines before you installed the cluster:

Burn the ISO image to a disk and boot it directly.

Use ISO redirection with a LOM interface.

2. After the instance boots, press the TAB or E key to edit the kernel command line.

3. Add the parameters to the kernel command line:

Specify the block device of the system to install to.

Specify the URL of the UEFI or BIOS image that you uploaded to your server.

Specify the URL of the compute Ignition config file.

4. Press Enter to complete the installation. After RHCOS installs, the system reboots. After the
system reboots, it applies the Ignition config file that you specified.

5. Continue to create more compute machines for your cluster.

9.3.2.2. Creating more RHCOS machines by PXE or iPXE booting

You can create more Red Hat Enterprise Linux CoreOS (RHCOS) compute machines for your bare
metal cluster by using PXE or iPXE booting.

Prerequisites

Obtain the URL of the Ignition config file for the compute machines for your cluster. You
uploaded this file to your HTTP server during installation.

Obtain the URLs of the RHCOS ISO image, compressed metal BIOS, kernel, and initramfs files
that you uploaded to your HTTP server during cluster installation.

You have access to the PXE booting infrastructure that you used to create the machines for
your OpenShift Container Platform cluster during installation. The machines must boot from
their local disks after RHCOS is installed on them.

If you use UEFI, you have access to the grub.conf file that you modified during OpenShift
Container Platform installation.

Procedure

1. Confirm that your PXE or iPXE installation for the RHCOS images is correct.

For PXE:

DEFAULT pxeboot
TIMEOUT 20

coreos.inst=yes
coreos.inst.install_dev=sda 1
coreos.inst.image_url=<bare_metal_image_URL> 2
coreos.inst.ignition_url=http://example.com/worker.ign 3

OpenShift Container Platform 4.5 Machine management

98



1

2

3

1

2

3

PROMPT 0
LABEL pxeboot
    KERNEL http://<HTTP_server>/rhcos-<version>-installer-kernel-<architecture> 1
    APPEND ip=dhcp rd.neednet=1 initrd=http://<HTTP_server>/rhcos-<version>-installer-
initramfs.<architecture>.img coreos.inst=yes coreos.inst.install_dev=sda 
coreos.inst.image_url=http://<HTTP_server>/rhcos-<version>-metal.
<architecture>.raw.gz coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 2  3

Specify the location of the kernel file that you uploaded to your HTTP server.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify locations of the RHCOS files that you uploaded to your HTTP server. The 
initrd parameter value is the location of the initramfs file, the coreos.inst.image_url
parameter value is the location of the compressed metal RAW image, and the 
coreos.inst.ignition_url parameter value is the location of the worker Ignition config
file.

NOTE

This configuration does not enable serial console access on machines with a
graphical console. To configure a different console, add one or more 
console= arguments to the APPEND line. For example, add console=tty0 
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise
Linux?.

For iPXE:

kernel http://<HTTP_server>/rhcos-<version>-installer-kernel-<architecture> ip=dhcp 
rd.neednet=1 initrd=http://<HTTP_server>/rhcos-<version>-installer-initramfs.
<architecture>.img coreos.inst=yes coreos.inst.install_dev=sda 
coreos.inst.image_url=http://<HTTP_server>/rhcos-<version>-metal.
<arhcitectutre>.raw.gz coreos.inst.ignition_url=http://<HTTP_server>/worker.ign 1  2
initrd http://<HTTP_server>/rhcos-<version>-installer-initramfs.<architecture>.img 3
boot

Specify locations of the RHCOS files that you uploaded to your HTTP server. The 
kernel parameter value is the location of the kernel file, the initrd parameter value is
the location of the initramfs file, the coreos.inst.image_url parameter value is the
location of the compressed metal RAW image, and the coreos.inst.ignition_url
parameter value is the location of the worker Ignition config file.

If you use multiple NICs, specify a single interface in the ip option. For example, to use
DHCP on a NIC that is named eno1, set ip=eno1:dhcp.

Specify the location of the initramfs file that you uploaded to your HTTP server.

NOTE

CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE

99

https://access.redhat.com/articles/7212


NOTE

This configuration does not enable serial console access on machines with a
graphical console. To configure a different console, add one or more 
console= arguments to the kernel line. For example, add console=tty0 
console=ttyS0 to set the first PC serial port as the primary console and the
graphical console as a secondary console. For more information, see How
does one set up a serial terminal and/or console in Red Hat Enterprise
Linux?.

2. Use the PXE or iPXE infrastructure to create the required compute machines for your cluster.

9.3.3. Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for
each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve
them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

You added machines to your cluster.

Procedure

1. Confirm that the cluster recognizes the machines:

Example output

The output lists all of the machines that you created.

2. Review the pending CSRs and ensure that you see the client requests with the Pending or 
Approved status for each machine that you added to the cluster:

Example output

In this example, two machines are joining the cluster. You might see more approved CSRs in the

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  63m  v1.18.3
master-1  Ready     master  63m  v1.18.3
master-2  Ready     master  64m  v1.18.3
worker-0  NotReady  worker  76s  v1.18.3
worker-1  NotReady  worker  70s  v1.18.3

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-8b2br   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
csr-8vnps   15m     system:serviceaccount:openshift-machine-config-operator:node-
bootstrapper   Pending
...

OpenShift Container Platform 4.5 Machine management

100

https://access.redhat.com/articles/7212


1

1

In this example, two machines are joining the cluster. You might see more approved CSRs in the
list.

3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in 
Pending status, approve the CSRs for your cluster machines:

NOTE

Because the CSRs rotate automatically, approve your CSRs within an hour of
adding the machines to the cluster. If you do not approve them within an hour, the
certificates will rotate, and more than two certificates will be present for each
node. You must approve all of these certificates. Once the client CSR is
approved, the Kubelet creates a secondary CSR for the serving certificate, which
requires manual approval. Then, subsequent serving certificate renewal requests
are automatically approved by the machine-approver if the Kubelet requests a
new certificate with identical parameters.

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

4. Now that your client requests are approved, you must review the server requests for each
machine that you added to the cluster:

Example output

5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for
your cluster machines:

To approve them individually, run the following command for each valid CSR:

<csr_name> is the name of a CSR from the list of current CSRs.

To approve all pending CSRs, run the following command:

$ oc adm certificate approve <csr_name> 1

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

$ oc get csr

NAME        AGE     REQUESTOR                                                                   CONDITION
csr-bfd72   5m26s   system:node:ip-10-0-50-126.us-east-2.compute.internal                       
Pending
csr-c57lv   5m26s   system:node:ip-10-0-95-157.us-east-2.compute.internal                       
Pending
...

$ oc adm certificate approve <csr_name> 1

CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE

101



6. After all client and server CSRs have been approved, the machines have the Ready status.
Verify this by running the following command:

Example output

NOTE

It can take a few minutes after approval of the server CSRs for the machines to
transition to the Ready status.

Additional information

For more information on CSRs, see Certificate Signing Requests .

$ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}
{{end}}{{end}}' | xargs oc adm certificate approve

$ oc get nodes

NAME      STATUS    ROLES   AGE  VERSION
master-0  Ready     master  73m  v1.20.0
master-1  Ready     master  73m  v1.20.0
master-2  Ready     master  74m  v1.20.0
worker-0  Ready     worker  11m  v1.20.0
worker-1  Ready     worker  11m  v1.20.0

OpenShift Container Platform 4.5 Machine management

102

https://kubernetes.io/docs/reference/access-authn-authz/certificate-signing-requests/


CHAPTER 10. DEPLOYING MACHINE HEALTH CHECKS
You can configure and deploy a machine health check to automatically repair damaged machines in a
machine pool.

IMPORTANT

This process is not applicable to clusters where you manually provisioned the machines
yourself. You can use the advanced machine management and scaling capabilities only in
clusters where the machine API is operational.

10.1. ABOUT MACHINE HEALTH CHECKS

You can define conditions under which machines in a cluster are considered unhealthy by using a 
MachineHealthCheck resource. Machines matching the conditions are automatically remediated.

To monitor machine health, create a MachineHealthCheck custom resource (CR) that includes a label
for the set of machines to monitor and a condition to check, such as staying in the NotReady status for
15 minutes or displaying a permanent condition in the node-problem-detector.

The controller that observes a MachineHealthCheck CR checks for the condition that you defined. If a
machine fails the health check, the machine is automatically deleted and a new one is created to take its
place. When a machine is deleted, you see a machine deleted event.

NOTE

For machines with the master role, the machine health check reports the number of
unhealthy nodes, but the machine is not deleted. For example:

Example output

To limit the disruptive impact of machine deletions, the controller drains and deletes only
one node at a time. If there are more unhealthy machines than the maxUnhealthy
threshold allows for in the targeted pool of machines, the controller stops deleting
machines and you must manually intervene.

To stop the check, remove the custom resource.

10.1.1. MachineHealthChecks on Bare Metal

Machine deletion on bare metal cluster triggers reprovisioning of a bare metal host. Usually bare metal
reprovisioning is a lengthy process, during which the cluster is missing compute resources and
applications might be interrupted. To change the default remediation process from machine deletion to
host power-cycle, annotate the MachineHealthCheck resource with the 
machine.openshift.io/remediation-strategy: external-baremetal annotation.

After you set the annotation, unhealthy machines are power-cycled by using BMC credentials.

$ oc get machinehealthcheck example -n openshift-machine-api

NAME      MAXUNHEALTHY   EXPECTEDMACHINES   CURRENTHEALTHY
example   40%            3                  1

CHAPTER 10. DEPLOYING MACHINE HEALTH CHECKS

103



10.1.2. Limitations when deploying machine health checks

There are limitations to consider before deploying a machine health check:

Only machines owned by a machine set are remediated by a machine health check.

Control plane machines are not currently supported and are not remediated if they are
unhealthy.

If the node for a machine is removed from the cluster, a machine health check considers the
machine to be unhealthy and remediates it immediately.

If the corresponding node for a machine does not join the cluster after the 
nodeStartupTimeout, the machine is remediated.

A machine is remediated immediately if the Machine resource phase is Failed.

Additional resources

For more information about the node conditions you can define in a MachineHealthCheck CR,
see About listing all the nodes in a cluster .

For more information about short-circuiting, see Short-circuiting machine health check
remediation.

10.2. SAMPLE MACHINEHEALTHCHECK RESOURCE

The MachineHealthCheck resource resembles one of the following YAML files:

MachineHealthCheck for bare metal

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
  name: example 1
  namespace: openshift-machine-api
  annotations:
    machine.openshift.io/remediation-strategy: external-baremetal 2
spec:
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-machine-role: <role> 3
      machine.openshift.io/cluster-api-machine-type: <role> 4
      machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 5
  unhealthyConditions:
  - type:    "Ready"
    timeout: "300s" 6
    status: "False"
  - type:    "Ready"
    timeout: "300s" 7
    status: "Unknown"
  maxUnhealthy: "40%" 8
  nodeStartupTimeout: "10m" 9

OpenShift Container Platform 4.5 Machine management

104

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/nodes/#nodes-nodes-viewing-listing_nodes-nodes-viewing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/machine_management/#machine-health-checks-short-circuiting_deploying-machine-health-checks


1

2

3 4

5

6 7

8

9

1

2 3

Specify the name of the machine health check to deploy.

For bare metal clusters, you must include the machine.openshift.io/remediation-strategy: 
external-baremetal annotation in the annotations section to enable power-cycle remediation.
With this remediation strategy, unhealthy hosts are rebooted instead of removed from the cluster.

Specify a label for the machine pool that you want to check.

Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-
node-us-east-1a.

Specify the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for
a workload on an unhealthy machine.

Specify the amount of unhealthy machines allowed in the targeted pool. This can be set as a
percentage or an integer.

Specify the timeout duration that a machine health check must wait for a node to join the cluster
before a machine is determined to be unhealthy.

NOTE

The matchLabels are examples only; you must map your machine groups based on your
specific needs.

MachineHealthCheck for all other installation types

Specify the name of the machine health check to deploy.

Specify a label for the machine pool that you want to check.

apiVersion: machine.openshift.io/v1beta1
kind: MachineHealthCheck
metadata:
  name: example 1
  namespace: openshift-machine-api
spec:
  selector:
    matchLabels:
      machine.openshift.io/cluster-api-machine-role: <role> 2
      machine.openshift.io/cluster-api-machine-type: <role> 3
      machine.openshift.io/cluster-api-machineset: <cluster_name>-<label>-<zone> 4
  unhealthyConditions:
  - type:    "Ready"
    timeout: "300s" 5
    status: "False"
  - type:    "Ready"
    timeout: "300s" 6
    status: "Unknown"
  maxUnhealthy: "40%" 7
  nodeStartupTimeout: "10m" 8

CHAPTER 10. DEPLOYING MACHINE HEALTH CHECKS

105



4

5 6

7

8

Specify the machine set to track in <cluster_name>-<label>-<zone> format. For example, prod-
node-us-east-1a.

Specify the timeout duration for a node condition. If a condition is met for the duration of the
timeout, the machine will be remediated. Long timeouts can result in long periods of downtime for
a workload on an unhealthy machine.

Specify the amount of unhealthy machines allowed in the targeted pool. This can be set as a
percentage or an integer.

Specify the timeout duration that a machine health check must wait for a node to join the cluster
before a machine is determined to be unhealthy.

NOTE

The matchLabels are examples only; you must map your machine groups based on your
specific needs.

10.2.1. Short-circuiting machine health check remediation

Short circuiting ensures that machine health checks remediate machines only when the cluster is
healthy. Short-circuiting is configured through the maxUnhealthy field in the MachineHealthCheck
resource.

If the user defines a value for the maxUnhealthy field, before remediating any machines, the 
MachineHealthCheck compares the value of maxUnhealthy with the number of machines within its
target pool that it has determined to be unhealthy. Remediation is not performed if the number of
unhealthy machines exceeds the maxUnhealthy limit.

IMPORTANT

If maxUnhealthy is not set, the value defaults to 100% and the machines are remediated
regardless of the state of the cluster.

The maxUnhealthy field can be set as either an integer or percentage. There are different remediation
implementations depending on the maxUnhealthy value.

10.2.1.1. Setting maxUnhealthy by using an absolute value

If maxUnhealthy is set to 2:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

These values are independent of how many machines are being checked by the machine health check.

10.2.1.2. Setting maxUnhealthy by using percentages

If maxUnhealthy is set to 40% and there are 25 machines being checked:

Remediation will be performed if 10 or fewer nodes are unhealthy

Remediation will not be performed if 11 or more nodes are unhealthy

OpenShift Container Platform 4.5 Machine management

106



If maxUnhealthy is set to 40% and there are 6 machines being checked:

Remediation will be performed if 2 or fewer nodes are unhealthy

Remediation will not be performed if 3 or more nodes are unhealthy

NOTE

The allowed number of machines is rounded down when the percentage of 
maxUnhealthy machines that are checked is not a whole number.

10.3. CREATING A MACHINEHEALTHCHECK RESOURCE

Additional resources

You can create a MachineHealthCheck resource for all MachineSets in your cluster. You should not
create a MachineHealthCheck resource that targets control plane machines.

Prerequisites

Install the oc command line interface.

Procedure

1. Create a healthcheck.yml file that contains the definition of your machine health check.

2. Apply the healthcheck.yml file to your cluster:

$ oc apply -f healthcheck.yml

CHAPTER 10. DEPLOYING MACHINE HEALTH CHECKS

107


	Table of Contents
	CHAPTER 1. CREATING MACHINE SETS
	1.1. CREATING A MACHINE SET ON AWS
	1.1.1. Machine API overview
	1.1.2. Sample YAML for a machine set custom resource on AWS
	1.1.3. Creating a machine set
	1.1.4. Machine sets that deploy machines as Spot Instances
	1.1.5. Creating Spot Instances by using machine sets

	1.2. CREATING A MACHINE SET ON AZURE
	1.2.1. Machine API overview
	1.2.2. Sample YAML for a machine set custom resource on Azure
	1.2.3. Creating a machine set

	1.3. CREATING A MACHINE SET ON GCP
	1.3.1. Machine API overview
	1.3.2. Sample YAML for a machine set custom resource on GCP
	1.3.3. Creating a machine set

	1.4. CREATING A MACHINE SET ON OPENSTACK
	1.4.1. Machine API overview
	1.4.2. Sample YAML for a machine set custom resource on RHOSP
	1.4.3. Creating a machine set

	1.5. CREATING A MACHINE SET ON RHV
	1.5.1. Machine API overview
	1.5.2. Sample YAML for a machine set custom resource on RHV
	1.5.3. Creating a machine set

	1.6. CREATING A MACHINE SET ON VSPHERE
	1.6.1. Machine API overview
	1.6.2. Sample YAML for a machine set custom resource on vSphere
	1.6.3. Creating a machine set


	CHAPTER 2. MANUALLY SCALING A MACHINE SET
	2.1. PREREQUISITES
	2.2. SCALING A MACHINE SET MANUALLY
	2.3. THE MACHINE SET DELETION POLICY

	CHAPTER 3. MODIFYING A MACHINE SET
	3.1. MODIFYING A MACHINE SET

	CHAPTER 4. DELETING A MACHINE
	4.1. DELETING A SPECIFIC MACHINE

	CHAPTER 5. APPLYING AUTOSCALING TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	5.1. ABOUT THE CLUSTER AUTOSCALER
	5.2. ABOUT THE MACHINE AUTOSCALER
	5.3. CONFIGURING THE CLUSTER AUTOSCALER
	5.3.1. ClusterAutoscaler resource definition
	5.3.2. Deploying the cluster autoscaler

	5.4. NEXT STEPS
	5.5. CONFIGURING THE MACHINE AUTOSCALERS
	5.5.1. MachineAutoscaler resource definition
	5.5.2. Deploying the machine autoscaler

	5.6. ADDITIONAL RESOURCES

	CHAPTER 6. CREATING INFRASTRUCTURE MACHINE SETS
	6.1. OPENSHIFT CONTAINER PLATFORM INFRASTRUCTURE COMPONENTS
	6.2. CREATING INFRASTRUCTURE MACHINE SETS FOR PRODUCTION ENVIRONMENTS
	6.2.1. Creating machine sets for different clouds
	6.2.1.1. Sample YAML for a machine set custom resource on AWS
	6.2.1.2. Sample YAML for a machine set custom resource on Azure
	6.2.1.3. Sample YAML for a machine set custom resource on GCP
	6.2.1.4. Sample YAML for a machine set custom resource on RHOSP
	6.2.1.5. Sample YAML for a machine set custom resource on RHV
	6.2.1.6. Sample YAML for a machine set custom resource on vSphere

	6.2.2. Creating a machine set
	6.2.3. Creating an infrastructure node
	6.2.4. Creating a machine config pool for infrastructure machines

	6.3. ASSIGNING MACHINE SET RESOURCES TO INFRASTRUCTURE NODES
	6.3.1. Binding infrastructure node workloads using taints and tolerations

	6.4. MOVING RESOURCES TO INFRASTRUCTURE MACHINE SETS
	6.4.1. Moving the router
	6.4.2. Moving the default registry
	6.4.3. Moving the monitoring solution
	6.4.4. Moving the cluster logging resources


	CHAPTER 7. ADDING RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	7.1. ABOUT ADDING RHEL COMPUTE NODES TO A CLUSTER
	7.2. SYSTEM REQUIREMENTS FOR RHEL COMPUTE NODES
	7.2.1. Certificate signing requests management

	7.3. PREPARING AN IMAGE FOR YOUR CLOUD
	7.3.1. Listing latest available RHEL images on AWS

	7.4. PREPARING THE MACHINE TO RUN THE PLAYBOOK
	7.5. PREPARING A RHEL COMPUTE NODE
	7.6. ATTACHING THE ROLE PERMISSIONS TO RHEL INSTANCE IN AWS
	7.7. TAGGING A RHEL WORKER NODE AS OWNED OR SHARED
	7.8. ADDING A RHEL COMPUTE MACHINE TO YOUR CLUSTER
	7.9. APPROVING THE CERTIFICATE SIGNING REQUESTS FOR YOUR MACHINES
	7.10. REQUIRED PARAMETERS FOR THE ANSIBLE HOSTS FILE
	7.10.1. Optional: Removing RHCOS compute machines from a cluster


	CHAPTER 8. ADDING MORE RHEL COMPUTE MACHINES TO AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	8.1. ABOUT ADDING RHEL COMPUTE NODES TO A CLUSTER
	8.2. SYSTEM REQUIREMENTS FOR RHEL COMPUTE NODES
	8.2.1. Certificate signing requests management

	8.3. PREPARING AN IMAGE FOR YOUR CLOUD
	8.3.1. Listing latest available RHEL images on AWS

	8.4. PREPARING A RHEL COMPUTE NODE
	8.5. ATTACHING THE ROLE PERMISSIONS TO RHEL INSTANCE IN AWS
	8.6. TAGGING A RHEL WORKER NODE AS OWNED OR SHARED
	8.7. ADDING MORE RHEL COMPUTE MACHINES TO YOUR CLUSTER
	8.8. APPROVING THE CERTIFICATE SIGNING REQUESTS FOR YOUR MACHINES
	8.9. REQUIRED PARAMETERS FOR THE ANSIBLE HOSTS FILE

	CHAPTER 9. USER-PROVISIONED INFRASTRUCTURE
	9.1. ADDING COMPUTE MACHINES TO AWS BY USING CLOUDFORMATION TEMPLATES
	9.1.1. Prerequisites
	9.1.2. Adding more compute machines to your AWS cluster by using CloudFormation templates
	9.1.3. Approving the certificate signing requests for your machines

	9.2. ADDING COMPUTE MACHINES TO VSPHERE
	9.2.1. Prerequisites
	9.2.2. Creating more Red Hat Enterprise Linux CoreOS (RHCOS) machines in vSphere
	9.2.3. Approving the certificate signing requests for your machines

	9.3. ADDING COMPUTE MACHINES TO BARE METAL
	9.3.1. Prerequisites
	9.3.2. Creating Red Hat Enterprise Linux CoreOS (RHCOS) machines
	9.3.2.1. Creating more RHCOS machines using an ISO image
	9.3.2.2. Creating more RHCOS machines by PXE or iPXE booting

	9.3.3. Approving the certificate signing requests for your machines


	CHAPTER 10. DEPLOYING MACHINE HEALTH CHECKS
	10.1. ABOUT MACHINE HEALTH CHECKS
	10.1.1. MachineHealthChecks on Bare Metal
	10.1.2. Limitations when deploying machine health checks

	10.2. SAMPLE MACHINEHEALTHCHECK RESOURCE
	10.2.1. Short-circuiting machine health check remediation
	10.2.1.1. Setting maxUnhealthy by using an absolute value
	10.2.1.2. Setting maxUnhealthy by using percentages


	10.3. CREATING A MACHINEHEALTHCHECK RESOURCE


