
OpenShift Container Platform 4.5

Backup and restore

Backing up and restoring your OpenShift Container Platform cluster

Last Updated: 2021-07-26

OpenShift Container Platform 4.5 Backup and restore

Backing up and restoring your OpenShift Container Platform cluster

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for backing up your cluster's data and for recovering from
various disaster scenarios.

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. BACKING UP ETCD
1.1. BACKING UP ETCD DATA

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER
2.1. PREREQUISITES
2.2. IDENTIFYING AN UNHEALTHY ETCD MEMBER
2.3. DETERMINING THE STATE OF THE UNHEALTHY ETCD MEMBER
2.4. REPLACING THE UNHEALTHY ETCD MEMBER

2.4.1. Replacing an unhealthy etcd member whose machine is not running or whose node is not ready
2.4.2. Replacing an unhealthy etcd member whose etcd pod is crashlooping

CHAPTER 3. SHUTTING DOWN THE CLUSTER GRACEFULLY
3.1. PREREQUISITES
3.2. SHUTTING DOWN THE CLUSTER

CHAPTER 4. RESTARTING THE CLUSTER GRACEFULLY
4.1. PREREQUISITES
4.2. RESTARTING THE CLUSTER

CHAPTER 5. DISASTER RECOVERY
5.1. ABOUT DISASTER RECOVERY
5.2. RECOVERING FROM LOST MASTER HOSTS
5.3. RESTORING TO A PREVIOUS CLUSTER STATE

5.3.1. Restoring to a previous cluster state
5.4. RECOVERING FROM EXPIRED CONTROL PLANE CERTIFICATES

5.4.1. Recovering from expired control plane certificates

3
3

5
5
5
5
7
7

15

19
19
19

21
21
21

24
24
24
24
24
30
30

Table of Contents

1

OpenShift Container Platform 4.5 Backup and restore

2

CHAPTER 1. BACKING UP ETCD
etcd is the key-value store for OpenShift Container Platform, which persists the state of all resource
objects.

Back up your cluster’s etcd data regularly and store in a secure location ideally outside the OpenShift
Container Platform environment. Do not take an etcd backup before the first certificate rotation
completes, which occurs 24 hours after installation, otherwise the backup will contain expired
certificates. It is also recommended to take etcd backups during non-peak usage hours, as it is a
blocking action.

Be sure to take an etcd backup after you upgrade your cluster. This is important because when you
restore your cluster, you must use an etcd backup that was taken from the same z-stream release. For
example, an OpenShift Container Platform 4.5.2 cluster must use an etcd backup that was taken from
4.5.2.

IMPORTANT

Back up your cluster’s etcd data by performing a single invocation of the backup script on
a master host. Do not take a backup for each master host.

After you have an etcd backup, you can restore to a previous cluster state .

You can perform the etcd data backup process on any master host that has a running etcd instance.

1.1. BACKING UP ETCD DATA

Follow these steps to back up etcd data by creating an etcd snapshot and backing up the resources for
the static pods. This backup can be saved and used at a later time if you need to restore etcd.

IMPORTANT

Only save a backup from a single master host. Do not take a backup from each master
host in the cluster.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have checked whether the cluster-wide proxy is enabled.

TIP

You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o
yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

Procedure

1. Start a debug session for a master node:

2. Change your root directory to the host:

$ oc debug node/<node_name>

CHAPTER 1. BACKING UP ETCD

3

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-restoring-cluster-state
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#backing-up-etcd-data_backup-etcd

3. If the cluster-wide proxy is enabled, be sure that you have exported the NO_PROXY,
HTTP_PROXY, and HTTPS_PROXY environment variables.

4. Run the cluster-backup.sh script and pass in the location to save the backup to.

TIP

The cluster-backup.sh script is maintained as a component of the etcd Cluster Operator and is
a wrapper around the etcdctl snapshot save command.

Example script output

In this example, two files are created in the /home/core/assets/backup/ directory on the master
host:

snapshot_<datetimestamp>.db: This file is the etcd snapshot.

static_kuberesources_<datetimestamp>.tar.gz: This file contains the resources for the
static pods. If etcd encryption is enabled, it also contains the encryption keys for the etcd
snapshot.

NOTE

If etcd encryption is enabled, it is recommended to store this second file
separately from the etcd snapshot for security reasons. However, this file is
required in order to restore from the etcd snapshot.

Keep in mind that etcd encryption only encrypts values, not keys. This means
that resource types, namespaces, and object names are unencrypted.

sh-4.2# chroot /host

sh-4.4# /usr/local/bin/cluster-backup.sh /home/core/assets/backup

1bf371f1b5a483927cd01bb593b0e12cff406eb8d7d0acf4ab079c36a0abd3f7
etcdctl version: 3.3.18
API version: 3.3
found latest kube-apiserver-pod: /etc/kubernetes/static-pod-resources/kube-apiserver-pod-7
found latest kube-controller-manager-pod: /etc/kubernetes/static-pod-resources/kube-
controller-manager-pod-8
found latest kube-scheduler-pod: /etc/kubernetes/static-pod-resources/kube-scheduler-pod-6
found latest etcd-pod: /etc/kubernetes/static-pod-resources/etcd-pod-2
Snapshot saved at /home/core/assets/backup/snapshot_2020-03-18_220218.db
snapshot db and kube resources are successfully saved to /home/core/assets/backup

OpenShift Container Platform 4.5 Backup and restore

4

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER
This document describes the process to replace a single unhealthy etcd member.

This process depends on whether the etcd member is unhealthy because the machine is not running or
the node is not ready, or whether it is unhealthy because the etcd pod is crashlooping.

NOTE

If you have lost the majority of your master hosts, leading to etcd quorum loss, then you
must follow the disaster recovery procedure to restore to a previous cluster state instead
of this procedure.

If the control plane certificates are not valid on the member being replaced, then you
must follow the procedure to recover from expired control plane certificates instead of
this procedure.

If a master node is lost and a new one is created, the etcd cluster Operator handles
generating the new TLS certificates and adding the node as an etcd member.

2.1. PREREQUISITES

Take an etcd backup prior to replacing an unhealthy etcd member.

2.2. IDENTIFYING AN UNHEALTHY ETCD MEMBER

You can identify if your cluster has an unhealthy etcd member.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Check the status of the EtcdMembersAvailable status condition using the following command:

2. Review the output:

This example output shows that the ip-10-0-131-183.ec2.internal etcd member is unhealthy.

2.3. DETERMINING THE STATE OF THE UNHEALTHY ETCD MEMBER

The steps to replace an unhealthy etcd member depend on which of the following states your etcd
member is in:

The machine is not running or the node is not ready

The etcd pod is crashlooping

$ oc get etcd -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="EtcdMembersAvailable")]}{.message}{"\n"}'

2 of 3 members are available, ip-10-0-131-183.ec2.internal is unhealthy

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER

5

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-restoring-cluster-state
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-recovering-expired-certs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#backing-up-etcd-data_backup-etcd

1

1

This procedure determines which state your etcd member is in. This enables you to know which
procedure to follow to replace the unhealthy etcd member.

NOTE

If you are aware that the machine is not running or the node is not ready, but you expect
it to return to a healthy state soon, then you do not need to perform a procedure to
replace the etcd member. The etcd cluster Operator will automatically sync when the
machine or node returns to a healthy state.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have identified an unhealthy etcd member.

Procedure

1. Determine if the machine is not running:

Example output

This output lists the node and the status of the node’s machine. If the status is anything
other than running, then the machine is not running.

If the machine is not running, then follow the Replacing an unhealthy etcd member whose
machine is not running or whose node is not ready procedure.

2. Determine if the node is not ready.
If either of the following scenarios are true, then the node is not ready.

If the machine is running, then check whether the node is unreachable:

Example output

If the node is listed with an unreachable taint, then the node is not ready.

If the node is still reachable, then check whether the node is listed as NotReady:

$ oc get machines -A -ojsonpath='{range .items[*]}{@.status.nodeRef.name}{"\t"}
{@.status.providerStatus.instanceState}{"\n"}' | grep -v running

ip-10-0-131-183.ec2.internal stopped 1

$ oc get nodes -o jsonpath='{range .items[*]}{"\n"}{.metadata.name}{"\t"}{range
.spec.taints[*]}{.key}{" "}' | grep unreachable

ip-10-0-131-183.ec2.internal node-role.kubernetes.io/master
node.kubernetes.io/unreachable node.kubernetes.io/unreachable 1

$ oc get nodes -l node-role.kubernetes.io/master | grep "NotReady"

OpenShift Container Platform 4.5 Backup and restore

6

1

1

Example output

If the node is listed as NotReady, then the node is not ready.

If the node is not ready, then follow the Replacing an unhealthy etcd member whose machine is
not running or whose node is not ready procedure.

3. Determine if the etcd pod is crashlooping.
If the machine is running and the node is ready, then check whether the etcd pod is
crashlooping.

a. Verify that all master nodes are listed as Ready:

Example output

b. Check whether the status of an etcd pod is either Error or CrashloopBackoff:

Example output

Since this status of this pod is Error, then the etcd pod is crashlooping.

If the etcd pod is crashlooping, then follow the Replacing an unhealthy etcd member whose
etcd pod is crashlooping procedure.

2.4. REPLACING THE UNHEALTHY ETCD MEMBER

Depending on the state of your unhealthy etcd member, use one of the following procedures:

Replacing an unhealthy etcd member whose machine is not running or whose node is not ready

Replacing an unhealthy etcd member whose etcd pod is crashlooping

2.4.1. Replacing an unhealthy etcd member whose machine is not running or whose
node is not ready

This procedure details the steps to replace an etcd member that is unhealthy either because the

ip-10-0-131-183.ec2.internal NotReady master 122m v1.18.3 1

$ oc get nodes -l node-role.kubernetes.io/master

NAME STATUS ROLES AGE VERSION
ip-10-0-131-183.ec2.internal Ready master 6h13m v1.18.3
ip-10-0-164-97.ec2.internal Ready master 6h13m v1.18.3
ip-10-0-154-204.ec2.internal Ready master 6h13m v1.18.3

$ oc get pods -n openshift-etcd | grep etcd

etcd-ip-10-0-131-183.ec2.internal 2/3 Error 7 6h9m 1
etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 6h6m
etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 6h6m

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER

7

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#restore-replace-stopped-etcd-member_replacing-unhealthy-etcd-member
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#restore-replace-crashlooping-etcd-member_replacing-unhealthy-etcd-member

This procedure details the steps to replace an etcd member that is unhealthy either because the
machine is not running or because the node is not ready.

Prerequisites

You have identified the unhealthy etcd member.

You have verified that either the machine is not running or the node is not ready.

You have access to the cluster as a user with the cluster-admin role.

You have taken an etcd backup.

IMPORTANT

It is important to take an etcd backup before performing this procedure so that
your cluster can be restored if you encounter any issues.

Procedure

1. Remove the unhealthy member.

a. Choose a pod that is not on the affected node:
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

b. Connect to the running etcd container, passing in the name of a pod that is not on the
affected node:
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

c. View the member list:

Example output

$ oc get pods -n openshift-etcd | grep etcd

etcd-ip-10-0-131-183.ec2.internal 3/3 Running 0 123m
etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 123m
etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 124m

$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

OpenShift Container Platform 4.5 Backup and restore

8

1

Take note of the ID and the name of the unhealthy etcd member, because these values are
needed later in the procedure.

d. Remove the unhealthy etcd member by providing the ID to the etcdctl member remove
command:

Example output

e. View the member list again and verify that the member was removed:

Example output

You can now exit the node shell.

2. Remove the old secrets for the unhealthy etcd member that was removed.

a. List the secrets for the unhealthy etcd member that was removed.

Pass in the name of the unhealthy etcd member that you took note of earlier in this
procedure.

There is a peer, serving, and metrics secret as shown in the following output:

| 6fc1e7c9db35841d | started | ip-10-0-131-183.ec2.internal | https://10.0.131.183:2380 |
https://10.0.131.183:2379 |
| 757b6793e2408b6c | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| ca8c2990a0aa29d1 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 |
https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

sh-4.2# etcdctl member remove 6fc1e7c9db35841d

Member 6fc1e7c9db35841d removed from cluster baa565c8919b060e

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| 757b6793e2408b6c | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| ca8c2990a0aa29d1 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 |
https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

$ oc get secrets -n openshift-etcd | grep ip-10-0-131-183.ec2.internal 1

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER

9

Example output

b. Delete the secrets for the unhealthy etcd member that was removed.

i. Delete the peer secret:

ii. Delete the serving secret:

iii. Delete the metrics secret:

3. Delete and recreate the master machine. After this machine is recreated, a new revision is
forced and etcd scales up automatically.
If you are running installer-provisioned infrastructure, or you used the Machine API to create
your machines, follow these steps. Otherwise, you must create the new master using the same
method that was used to originally create it.

a. Obtain the machine for the unhealthy member.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

etcd-peer-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
etcd-serving-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
etcd-serving-metrics-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2
47m

$ oc delete secret -n openshift-etcd etcd-peer-ip-10-0-131-183.ec2.internal

$ oc delete secret -n openshift-etcd etcd-serving-ip-10-0-131-183.ec2.internal

$ oc delete secret -n openshift-etcd etcd-serving-metrics-ip-10-0-131-
183.ec2.internal

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE
NODE PROVIDERID STATE
clustername-8qw5l-master-0 Running m4.xlarge us-east-1 us-east-1a
3h37m ip-10-0-131-183.ec2.internal aws:///us-east-1a/i-0ec2782f8287dfb7e stopped
1

clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-154-204.ec2.internal aws:///us-east-1b/i-096c349b700a19631 running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-164-97.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba running
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-east-
1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-010ef6279b4662ced
running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-east-
1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c00007751b0a
running

OpenShift Container Platform 4.5 Backup and restore

10

1

1

This is the master machine for the unhealthy node, ip-10-0-131-183.ec2.internal.

b. Save the machine configuration to a file on your file system:

Specify the name of the master machine for the unhealthy node.

c. Edit the new-master-machine.yaml file that was created in the previous step to assign a
new name and remove unnecessary fields.

i. Remove the entire status section:

ii. Change the metadata.name field to a new name.
It is recommended to keep the same base name as the old machine and change the
ending number to the next available number. In this example, clustername-8qw5l-
master-0 is changed to clustername-8qw5l-master-3.

For example:

$ oc get machine clustername-8qw5l-master-0 \ 1
 -n openshift-machine-api \
 -o yaml \
 > new-master-machine.yaml

status:
 addresses:
 - address: 10.0.131.183
 type: InternalIP
 - address: ip-10-0-131-183.ec2.internal
 type: InternalDNS
 - address: ip-10-0-131-183.ec2.internal
 type: Hostname
 lastUpdated: "2020-04-20T17:44:29Z"
 nodeRef:
 kind: Node
 name: ip-10-0-131-183.ec2.internal
 uid: acca4411-af0d-4387-b73e-52b2484295ad
 phase: Running
 providerStatus:
 apiVersion: awsproviderconfig.openshift.io/v1beta1
 conditions:
 - lastProbeTime: "2020-04-20T16:53:50Z"
 lastTransitionTime: "2020-04-20T16:53:50Z"
 message: machine successfully created
 reason: MachineCreationSucceeded
 status: "True"
 type: MachineCreation
 instanceId: i-0fdb85790d76d0c3f
 instanceState: stopped
 kind: AWSMachineProviderStatus

apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER

11

1

iii. Update the metadata.selfLink field to use the new machine name from the previous
step.

iv. Remove the spec.providerID field:

v. Remove the metadata.annotations and metadata.generation fields:

vi. Remove the metadata.resourceVersion and metadata.uid fields:

d. Delete the machine of the unhealthy member:

Specify the name of the master machine for the unhealthy node.

e. Verify that the machine was deleted:

Example output

 ...
 name: clustername-8qw5l-master-3
 ...

apiVersion: machine.openshift.io/v1beta1
kind: Machine
metadata:
 ...
 selfLink: /apis/machine.openshift.io/v1beta1/namespaces/openshift-machine-
api/machines/clustername-8qw5l-master-3
 ...

 providerID: aws:///us-east-1a/i-0fdb85790d76d0c3f

 annotations:
 machine.openshift.io/instance-state: running
 ...
 generation: 2

 resourceVersion: "13291"
 uid: a282eb70-40a2-4e89-8009-d05dd420d31a

$ oc delete machine -n openshift-machine-api clustername-8qw5l-master-0 1

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE
NODE PROVIDERID STATE
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-154-204.ec2.internal aws:///us-east-1b/i-096c349b700a19631 running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-164-97.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba running
clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-east-
1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-010ef6279b4662ced
running

OpenShift Container Platform 4.5 Backup and restore

12

1

f. Create the new machine using the new-master-machine.yaml file:

g. Verify that the new machine has been created:

Example output

The new machine, clustername-8qw5l-master-3 is being created and is ready once
the phase changes from Provisioning to Running.

It might take a few minutes for the new machine to be created. The etcd cluster Operator
will automatically sync when the machine or node returns to a healthy state.

Verification

1. Verify that all etcd pods are running properly.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

Example output

clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-east-1b
3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-east-
1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c00007751b0a
running

$ oc apply -f new-master-machine.yaml

$ oc get machines -n openshift-machine-api -o wide

NAME PHASE TYPE REGION ZONE AGE
NODE PROVIDERID STATE
clustername-8qw5l-master-1 Running m4.xlarge us-east-1 us-east-1b
3h37m ip-10-0-154-204.ec2.internal aws:///us-east-1b/i-096c349b700a19631 running
clustername-8qw5l-master-2 Running m4.xlarge us-east-1 us-east-1c
3h37m ip-10-0-164-97.ec2.internal aws:///us-east-1c/i-02626f1dba9ed5bba running
clustername-8qw5l-master-3 Provisioning m4.xlarge us-east-1 us-east-1a
85s ip-10-0-133-53.ec2.internal aws:///us-east-1a/i-015b0888fe17bc2c8 running
1

clustername-8qw5l-worker-us-east-1a-wbtgd Running m4.large us-east-1 us-
east-1a 3h28m ip-10-0-129-226.ec2.internal aws:///us-east-1a/i-010ef6279b4662ced
running
clustername-8qw5l-worker-us-east-1b-lrdxb Running m4.large us-east-1 us-east-
1b 3h28m ip-10-0-144-248.ec2.internal aws:///us-east-1b/i-0cb45ac45a166173b
running
clustername-8qw5l-worker-us-east-1c-pkg26 Running m4.large us-east-1 us-
east-1c 3h28m ip-10-0-170-181.ec2.internal aws:///us-east-1c/i-06861c00007751b0a
running

$ oc get pods -n openshift-etcd | grep etcd

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER

13

1

If the output from the previous command only lists two pods, you can manually force an etcd
redeployment. In a terminal that has access to the cluster as a cluster-admin user, run the
following command:

The forceRedeploymentReason value must be unique, which is why a timestamp is
appended.

2. Verify that there are exactly three etcd members.

a. Connect to the running etcd container, passing in the name of a pod that was not on the
affected node:
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

b. View the member list:

Example output

If the output from the previous command lists more than three etcd members, you must
carefully remove the unwanted member.

etcd-ip-10-0-133-53.ec2.internal 3/3 Running 0 7m49s
etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 123m
etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 124m

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date --rfc-
3339=ns)"'"}}' --type=merge 1

$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| 5eb0d6b8ca24730c | started | ip-10-0-133-53.ec2.internal | https://10.0.133.53:2380 |
https://10.0.133.53:2379 |
| 757b6793e2408b6c | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| ca8c2990a0aa29d1 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380 |
https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

OpenShift Container Platform 4.5 Backup and restore

14

1

WARNING

Be sure to remove the correct etcd member; removing a good etcd
member might lead to quorum loss.

2.4.2. Replacing an unhealthy etcd member whose etcd pod is crashlooping

This procedure details the steps to replace an etcd member that is unhealthy because the etcd pod is
crashlooping.

Prerequisites

You have identified the unhealthy etcd member.

You have verified that the etcd pod is crashlooping.

You have access to the cluster as a user with the cluster-admin role.

You have taken an etcd backup.

IMPORTANT

It is important to take an etcd backup before performing this procedure so that
your cluster can be restored if you encounter any issues.

Procedure

1. Stop the crashlooping etcd pod.

a. Debug the node that is crashlooping.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Replace this with the name of the unhealthy node.

b. Change your root directory to the host:

c. Move the existing etcd pod file out of the kubelet manifest directory:

d. Move the etcd data directory to a different location:

$ oc debug node/ip-10-0-131-183.ec2.internal 1

sh-4.2# chroot /host

sh-4.2# mkdir /var/lib/etcd-backup

sh-4.2# mv /etc/kubernetes/manifests/etcd-pod.yaml /var/lib/etcd-backup/

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER

15

You can now exit the node shell.

2. Remove the unhealthy member.

a. Choose a pod that is not on the affected node.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

Example output

b. Connect to the running etcd container, passing in the name of a pod that is not on the
affected node.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

c. View the member list:

Example output

Take note of the ID and the name of the unhealthy etcd member, because these values are
needed later in the procedure.

d. Remove the unhealthy etcd member by providing the ID to the etcdctl member remove
command:

sh-4.2# mv /var/lib/etcd/ /tmp

$ oc get pods -n openshift-etcd | grep etcd

etcd-ip-10-0-131-183.ec2.internal 2/3 Error 7 6h9m
etcd-ip-10-0-164-97.ec2.internal 3/3 Running 0 6h6m
etcd-ip-10-0-154-204.ec2.internal 3/3 Running 0 6h6m

$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| 62bcf33650a7170a | started | ip-10-0-131-183.ec2.internal | https://10.0.131.183:2380 |
https://10.0.131.183:2379 |
| b78e2856655bc2eb | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| d022e10b498760d5 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380
| https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

sh-4.2# etcdctl member remove 62bcf33650a7170a

OpenShift Container Platform 4.5 Backup and restore

16

1

Example output

e. View the member list again and verify that the member was removed:

Example output

You can now exit the node shell.

3. Remove the old secrets for the unhealthy etcd member that was removed.

a. List the secrets for the unhealthy etcd member that was removed.

Pass in the name of the unhealthy etcd member that you took note of earlier in this
procedure.

There is a peer, serving, and metrics secret as shown in the following output:

Example output

b. Delete the secrets for the unhealthy etcd member that was removed.

i. Delete the peer secret:

ii. Delete the serving secret:

Member 62bcf33650a7170a removed from cluster ead669ce1fbfb346

sh-4.2# etcdctl member list -w table

+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| ID | STATUS | NAME | PEER ADDRS | CLIENT
ADDRS |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+
| b78e2856655bc2eb | started | ip-10-0-164-97.ec2.internal | https://10.0.164.97:2380 |
https://10.0.164.97:2379 |
| d022e10b498760d5 | started | ip-10-0-154-204.ec2.internal | https://10.0.154.204:2380
| https://10.0.154.204:2379 |
+------------------+---------+------------------------------+---------------------------+----------------
-----------+

$ oc get secrets -n openshift-etcd | grep ip-10-0-131-183.ec2.internal 1

etcd-peer-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
etcd-serving-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2 47m
etcd-serving-metrics-ip-10-0-131-183.ec2.internal kubernetes.io/tls 2
47m

$ oc delete secret -n openshift-etcd etcd-peer-ip-10-0-131-183.ec2.internal

$ oc delete secret -n openshift-etcd etcd-serving-ip-10-0-131-183.ec2.internal

CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER

17

1

iii. Delete the metrics secret:

4. Force etcd redeployment.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

The forceRedeploymentReason value must be unique, which is why a timestamp is
appended.

When the etcd cluster Operator performs a redeployment, it ensures that all master nodes have
a functioning etcd pod.

Verification

Verify that the new member is available and healthy.

a. Connect to the running etcd container again.
In a terminal that has access to the cluster as a cluster-admin user, run the following
command:

b. Verify that all members are healthy:

Example output

$ oc delete secret -n openshift-etcd etcd-serving-metrics-ip-10-0-131-
183.ec2.internal

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "single-master-recovery-
'"$(date --rfc-3339=ns)"'"}}' --type=merge 1

$ oc rsh -n openshift-etcd etcd-ip-10-0-154-204.ec2.internal

sh-4.2# etcdctl endpoint health --cluster

https://10.0.131.183:2379 is healthy: successfully committed proposal: took =
16.671434ms
https://10.0.154.204:2379 is healthy: successfully committed proposal: took =
16.698331ms
https://10.0.164.97:2379 is healthy: successfully committed proposal: took =
16.621645ms

OpenShift Container Platform 4.5 Backup and restore

18

CHAPTER 3. SHUTTING DOWN THE CLUSTER GRACEFULLY
This document describes the process to gracefully shut down your cluster. You might need to
temporarily shut down your cluster for maintenance reasons, or to save on resource costs.

3.1. PREREQUISITES

Take an etcd backup prior to shutting down the cluster.

3.2. SHUTTING DOWN THE CLUSTER

You can shut down your cluster in a graceful manner so that it can be restarted at a later date.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

You have taken an etcd backup.

IMPORTANT

It is important to take an etcd backup before performing this procedure so that
your cluster can be restored if you encounter any issues when restarting the
cluster.

Procedure

1. Shut down all of the nodes in the cluster. You can do this from your cloud provider’s web
console, or you can use the below commands:

a. Obtain the list of nodes:

b. Shut down all of the nodes:

Shutting down the nodes using one of these methods allows pods to terminate gracefully,
which reduces the chance for data corruption.

NOTE

$ nodes=$(oc get nodes -o jsonpath='{.items[*].metadata.name}')

$ for node in ${nodes[@]}
do
 echo "==== Shut down $node ===="
 ssh core@$node sudo shutdown -h 1
done

CHAPTER 3. SHUTTING DOWN THE CLUSTER GRACEFULLY

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#backing-up-etcd-data_backup-etcd

NOTE

It is not necessary to drain master nodes of the standard pods that ship with
OpenShift Container Platform prior to shutdown.

Cluster administrators are responsible for ensuring a clean restart of their
own workloads after the cluster is restarted. If you drained master nodes
prior to shutdown because of custom workloads, you must mark the master
nodes as schedulable before the cluster will be functional again after restart.

2. Shut off any cluster dependencies that are no longer needed, such as external storage or an
LDAP server. Be sure to consult your vendor’s documentation before doing so.

Additional resources

Restarting the cluster gracefully

OpenShift Container Platform 4.5 Backup and restore

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#graceful-restart-cluster

CHAPTER 4. RESTARTING THE CLUSTER GRACEFULLY
This document describes the process to restart your cluster after a graceful shutdown.

Even though the cluster is expected to be functional after the restart, the cluster might not recover due
to unexpected conditions, for example:

etcd data corruption during shutdown

Node failure due to hardware

Network connectivity issues

If your cluster fails to recover, follow the steps to restore to a previous cluster state .

4.1. PREREQUISITES

You have gracefully shut down your cluster .

4.2. RESTARTING THE CLUSTER

You can restart your cluster after it has been shut down gracefully.

Prerequisites

You have access to the cluster as a user with the cluster-admin role.

This procedure assumes that you gracefully shut down the cluster.

Procedure

1. Power on any cluster dependencies, such as external storage or an LDAP server.

2. Start all cluster machines.
Use the appropriate method for your cloud environment to start the machines, for example,
from your cloud provider’s web console.

Wait approximately 10 minutes before continuing to check the status of master nodes.

3. Verify that all master nodes are ready.

The master nodes are ready if the status is Ready, as shown in the following output:

4. If the master nodes are not ready, then check whether there are any pending certificate signing
requests (CSRs) that must be approved.

a. Get the list of current CSRs:

$ oc get nodes -l node-role.kubernetes.io/master

NAME STATUS ROLES AGE VERSION
ip-10-0-168-251.ec2.internal Ready master 75m v1.18.3
ip-10-0-170-223.ec2.internal Ready master 75m v1.18.3
ip-10-0-211-16.ec2.internal Ready master 75m v1.18.3

CHAPTER 4. RESTARTING THE CLUSTER GRACEFULLY

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-restoring-cluster-state
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#graceful-shutdown-cluster

1

1

b. Review the details of a CSR to verify that it is valid:

<csr_name> is the name of a CSR from the list of current CSRs.

c. Approve each valid CSR:

5. After the master nodes are ready, verify that all worker nodes are ready.

The worker nodes are ready if the status is Ready, as shown in the following output:

6. If the worker nodes are not ready, then check whether there are any pending certificate signing
requests (CSRs) that must be approved.

a. Get the list of current CSRs:

b. Review the details of a CSR to verify that it is valid:

<csr_name> is the name of a CSR from the list of current CSRs.

c. Approve each valid CSR:

7. Verify that the cluster started properly.

a. Check that there are no degraded cluster Operators.

Check that there are no cluster Operators with the DEGRADED condition set to True.

$ oc get csr

$ oc describe csr <csr_name> 1

$ oc adm certificate approve <csr_name>

$ oc get nodes -l node-role.kubernetes.io/worker

NAME STATUS ROLES AGE VERSION
ip-10-0-179-95.ec2.internal Ready worker 64m v1.18.3
ip-10-0-182-134.ec2.internal Ready worker 64m v1.18.3
ip-10-0-250-100.ec2.internal Ready worker 64m v1.18.3

$ oc get csr

$ oc describe csr <csr_name> 1

$ oc adm certificate approve <csr_name>

$ oc get clusteroperators

NAME VERSION AVAILABLE PROGRESSING DEGRADED
SINCE
authentication 4.5.0 True False False 59m

OpenShift Container Platform 4.5 Backup and restore

22

b. Check that all nodes are in the Ready state:

Check that the status for all nodes is Ready.

If the cluster did not start properly, you might need to restore your cluster using an etcd backup.

Additional resources

See Restoring to a previous cluster state for how to use an etcd backup to restore if your cluster
failed to recover after restarting.

cloud-credential 4.5.0 True False False 85m
cluster-autoscaler 4.5.0 True False False 73m
config-operator 4.5.0 True False False 73m
console 4.5.0 True False False 62m
csi-snapshot-controller 4.5.0 True False False 66m
dns 4.5.0 True False False 76m
etcd 4.5.0 True False False 76m
...

$ oc get nodes

NAME STATUS ROLES AGE VERSION
ip-10-0-168-251.ec2.internal Ready master 82m v1.18.3
ip-10-0-170-223.ec2.internal Ready master 82m v1.18.3
ip-10-0-179-95.ec2.internal Ready worker 70m v1.18.3
ip-10-0-182-134.ec2.internal Ready worker 70m v1.18.3
ip-10-0-211-16.ec2.internal Ready master 82m v1.18.3
ip-10-0-250-100.ec2.internal Ready worker 69m v1.18.3

CHAPTER 4. RESTARTING THE CLUSTER GRACEFULLY

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-restoring-cluster-state

CHAPTER 5. DISASTER RECOVERY

5.1. ABOUT DISASTER RECOVERY

The disaster recovery documentation provides information for administrators on how to recover from
several disaster situations that might occur with their OpenShift Container Platform cluster. As an
administrator, you might need to follow one or more of the following procedures in order to return your
cluster to a working state.

IMPORTANT

Disaster recovery requires you to have at least one healthy master host.

Restoring to a previous cluster state

This solution handles situations where you want to restore your cluster to a previous state, for
example, if an administrator deletes something critical. This also includes situations where you have
lost the majority of your master hosts, leading to etcd quorum loss and the cluster going offline. As
long as you have taken an etcd backup, you can follow this procedure to restore your cluster to a
previous state.
If applicable, you might also need to recover from expired control plane certificates .

NOTE

If you have a majority of your masters still available and have an etcd quorum, then
follow the procedure to replace a single unhealthy etcd member.

Recovering from expired control plane certificates

This solution handles situations where your control plane certificates have expired. For example, if
you shut down your cluster before the first certificate rotation, which occurs 24 hours after
installation, your certificates will not be rotated and will expire. You can follow this procedure to
recover from expired control plane certificates.

5.2. RECOVERING FROM LOST MASTER HOSTS

As of OpenShift Container Platform 4.4, follow the procedure to restore to a previous cluster state in
order to recover from lost master hosts.

NOTE

If you have a majority of your masters still available and have an etcd quorum, then follow
the procedure to replace a single unhealthy etcd member.

5.3. RESTORING TO A PREVIOUS CLUSTER STATE

To restore the cluster to a previous state, you must have previously backed up etcd data by creating a
snapshot. You will use this snapshot to restore the cluster state.

5.3.1. Restoring to a previous cluster state

You can use a saved etcd backup to restore back to a previous cluster state. You use the etcd backup to

OpenShift Container Platform 4.5 Backup and restore

24

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-restoring-cluster-state
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-recovering-expired-certs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#replacing-unhealthy-etcd-member
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-recovering-expired-certs
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#dr-restoring-cluster-state
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#replacing-unhealthy-etcd-member
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.5/html-single/backup_and_restore/#backing-up-etcd-data_backup-etcd

You can use a saved etcd backup to restore back to a previous cluster state. You use the etcd backup to
restore a single control plane host. Then the etcd cluster Operator handles scaling to the remaining
master hosts.

IMPORTANT

When you restore your cluster, you must use an etcd backup that was taken from the
same z-stream release. For example, an OpenShift Container Platform 4.5.2 cluster must
use an etcd backup that was taken from 4.5.2.

Prerequisites

Access to the cluster as a user with the cluster-admin role.

A healthy master host to use as the recovery host.

SSH access to master hosts.

A backup directory containing both the etcd snapshot and the resources for the static pods,
which were from the same backup. The file names in the directory must be in the following
formats: snapshot_<datetimestamp>.db and
static_kuberesources_<datetimestamp>.tar.gz.

Procedure

1. Select a control plane host to use as the recovery host. This is the host that you will run the
restore operation on.

2. Establish SSH connectivity to each of the control plane nodes, including the recovery host.
The Kubernetes API server becomes inaccessible after the restore process starts, so you cannot
access the control plane nodes. For this reason, it is recommended to establish SSH
connectivity to each control plane host in a separate terminal.

IMPORTANT

If you do not complete this step, you will not be able to access the master hosts
to complete the restore procedure, and you will be unable to recover your cluster
from this state.

3. Copy the etcd backup directory to the recovery control plane host.
This procedure assumes that you copied the backup directory containing the etcd snapshot
and the resources for the static pods to the /home/core/ directory of your recovery control
plane host.

4. Stop the static pods on all other control plane nodes.

NOTE

It is not required to manually stop the pods on the recovery host. The recovery
script will stop the pods on the recovery host.

a. Access a control plane host that is not the recovery host.

b. Move the existing etcd pod file out of the kubelet manifest directory:

CHAPTER 5. DISASTER RECOVERY

25

c. Verify that the etcd pods are stopped.

The output of this command should be empty. If it is not empty, wait a few minutes and
check again.

d. Move the existing Kubernetes API server pod file out of the kubelet manifest directory:

e. Verify that the Kubernetes API server pods are stopped.

The output of this command should be empty. If it is not empty, wait a few minutes and
check again.

f. Move the etcd data directory to a different location:

g. Repeat this step on each of the other master hosts that is not the recovery host.

5. Access the recovery control plane host.

6. If the cluster-wide proxy is enabled, be sure that you have exported the NO_PROXY,
HTTP_PROXY, and HTTPS_PROXY environment variables.

TIP

You can check whether the proxy is enabled by reviewing the output of oc get proxy cluster -o
yaml. The proxy is enabled if the httpProxy, httpsProxy, and noProxy fields have values set.

7. Run the restore script on the recovery control plane host and pass in the path to the etcd
backup directory:

Example script output

[core@ip-10-0-154-194 ~]$ sudo mv /etc/kubernetes/manifests/etcd-pod.yaml /tmp

[core@ip-10-0-154-194 ~]$ sudo crictl ps | grep etcd | grep -v operator

[core@ip-10-0-154-194 ~]$ sudo mv /etc/kubernetes/manifests/kube-apiserver-pod.yaml
/tmp

[core@ip-10-0-154-194 ~]$ sudo crictl ps | grep kube-apiserver | grep -v operator

[core@ip-10-0-154-194 ~]$ sudo mv /var/lib/etcd/ /tmp

[core@ip-10-0-143-125 ~]$ sudo -E /usr/local/bin/cluster-restore.sh /home/core/backup

...stopping kube-scheduler-pod.yaml

...stopping kube-controller-manager-pod.yaml

...stopping etcd-pod.yaml

...stopping kube-apiserver-pod.yaml
Waiting for container etcd to stop
.complete
Waiting for container etcdctl to stop
.............................complete
Waiting for container etcd-metrics to stop

OpenShift Container Platform 4.5 Backup and restore

26

8. Restart the kubelet service on all master hosts.

a. From the recovery host, run the following command:

b. Repeat this step on all other master hosts.

9. Verify that the single member control plane has started successfully.

a. From the recovery host, verify that the etcd container is running.

Example output

b. From the recovery host, verify that the etcd pod is running.

NOTE

If you attempt to run oc login prior to running this command and receive the
following error, wait a few moments for the authentication controllers to start
and try again.

Example output

complete
Waiting for container kube-controller-manager to stop
complete
Waiting for container kube-apiserver to stop
..complete
Waiting for container kube-scheduler to stop
complete
Moving etcd data-dir /var/lib/etcd/member to /var/lib/etcd-backup
starting restore-etcd static pod
starting kube-apiserver-pod.yaml
static-pod-resources/kube-apiserver-pod-7/kube-apiserver-pod.yaml
starting kube-controller-manager-pod.yaml
static-pod-resources/kube-controller-manager-pod-7/kube-controller-manager-pod.yaml
starting kube-scheduler-pod.yaml
static-pod-resources/kube-scheduler-pod-8/kube-scheduler-pod.yaml

[core@ip-10-0-143-125 ~]$ sudo systemctl restart kubelet.service

[core@ip-10-0-143-125 ~]$ sudo crictl ps | grep etcd | grep -v operator

3ad41b7908e32
36f86e2eeaaffe662df0d21041eb22b8198e0e58abeeae8c743c3e6e977e8009
About a minute ago Running etcd 0
7c05f8af362f0

[core@ip-10-0-143-125 ~]$ oc get pods -n openshift-etcd | grep etcd

Unable to connect to the server: EOF

NAME READY STATUS RESTARTS AGE
etcd-ip-10-0-143-125.ec2.internal 1/1 Running 1 2m47s

CHAPTER 5. DISASTER RECOVERY

27

1

1

If the status is Pending, or the output lists more than one running etcd pod, wait a few
minutes and check again.

10. Force etcd redeployment.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

The forceRedeploymentReason value must be unique, which is why a timestamp is
appended.

When the etcd cluster Operator performs a redeployment, the existing nodes are started with
new pods similar to the initial bootstrap scale up.

11. Verify all nodes are updated to the latest revision.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

Review the NodeInstallerProgressing status condition for etcd to verify that all nodes are at
the latest revision. The output shows AllNodesAtLatestRevision upon successful update:

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1 nodes
are at revision 7, this means that the update is still in progress. Wait a few minutes and try
again.

12. After etcd is redeployed, force new rollouts for the control plane. The Kubernetes API server will
reinstall itself on the other nodes because the kubelet is connected to API servers using an
internal load balancer.
In a terminal that has access to the cluster as a cluster-admin user, run the following
commands.

a. Update the kubeapiserver:

Verify all nodes are updated to the latest revision.

Review the NodeInstallerProgressing status condition to verify that all nodes are at the
latest revision. The output shows AllNodesAtLatestRevision upon successful update:

$ oc patch etcd cluster -p='{"spec": {"forceRedeploymentReason": "recovery-'"$(date --rfc-
3339=ns)"'"}}' --type=merge 1

$ oc get etcd -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 7 1

$ oc patch kubeapiserver cluster -p='{"spec": {"forceRedeploymentReason": "recovery-
'"$(date --rfc-3339=ns)"'"}}' --type=merge

$ oc get kubeapiserver -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

OpenShift Container Platform 4.5 Backup and restore

28

1

1

1

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1
nodes are at revision 7, this means that the update is still in progress. Wait a few minutes
and try again.

b. Update the kubecontrollermanager:

Verify all nodes are updated to the latest revision.

Review the NodeInstallerProgressing status condition to verify that all nodes are at the
latest revision. The output shows AllNodesAtLatestRevision upon successful update:

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1
nodes are at revision 7, this means that the update is still in progress. Wait a few minutes
and try again.

c. Update the kubescheduler:

Verify all nodes are updated to the latest revision.

Review the NodeInstallerProgressing status condition to verify that all nodes are at the
latest revision. The output shows AllNodesAtLatestRevision upon successful update:

In this example, the latest revision number is 7.

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1

AllNodesAtLatestRevision
3 nodes are at revision 7 1

$ oc patch kubecontrollermanager cluster -p='{"spec": {"forceRedeploymentReason":
"recovery-'"$(date --rfc-3339=ns)"'"}}' --type=merge

$ oc get kubecontrollermanager -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 7 1

$ oc patch kubescheduler cluster -p='{"spec": {"forceRedeploymentReason": "recovery-
'"$(date --rfc-3339=ns)"'"}}' --type=merge

$ oc get kubescheduler -o=jsonpath='{range .items[0].status.conditions[?
(@.type=="NodeInstallerProgressing")]}{.reason}{"\n"}{.message}{"\n"}'

AllNodesAtLatestRevision
3 nodes are at revision 7 1

CHAPTER 5. DISASTER RECOVERY

29

1

If the output includes multiple revision numbers, such as 2 nodes are at revision 6; 1
nodes are at revision 7, this means that the update is still in progress. Wait a few minutes
and try again.

13. Verify that all master hosts have started and joined the cluster.
In a terminal that has access to the cluster as a cluster-admin user, run the following command:

Example output

Note that it might take several minutes after completing this procedure for all services to be restored.
For example, authentication by using oc login might not immediately work until the OAuth server pods
are restarted.

5.4. RECOVERING FROM EXPIRED CONTROL PLANE CERTIFICATES

5.4.1. Recovering from expired control plane certificates

As of OpenShift Container Platform 4.4.8, the cluster can automatically recover from expired control
plane certificates. You no longer need to perform the manual steps that were required in previous
versions.

The exception is that you must manually approve the pending node-bootstrapper certificate signing
requests (CSRs) to recover kubelet certificates.

Use the following steps to approve the pending node-bootstrapper CSRs.

Procedure

1. Get the list of current CSRs:

2. Review the details of a CSR to verify that it is valid:

<csr_name> is the name of a CSR from the list of current CSRs.

3. Approve each valid node-bootstrapper CSR:

$ oc get pods -n openshift-etcd | grep etcd

etcd-ip-10-0-143-125.ec2.internal 2/2 Running 0 9h
etcd-ip-10-0-154-194.ec2.internal 2/2 Running 0 9h
etcd-ip-10-0-173-171.ec2.internal 2/2 Running 0 9h

$ oc get csr

$ oc describe csr <csr_name> 1

$ oc adm certificate approve <csr_name>

OpenShift Container Platform 4.5 Backup and restore

30

	Table of Contents
	CHAPTER 1. BACKING UP ETCD
	1.1. BACKING UP ETCD DATA

	CHAPTER 2. REPLACING AN UNHEALTHY ETCD MEMBER
	2.1. PREREQUISITES
	2.2. IDENTIFYING AN UNHEALTHY ETCD MEMBER
	2.3. DETERMINING THE STATE OF THE UNHEALTHY ETCD MEMBER
	2.4. REPLACING THE UNHEALTHY ETCD MEMBER
	2.4.1. Replacing an unhealthy etcd member whose machine is not running or whose node is not ready
	2.4.2. Replacing an unhealthy etcd member whose etcd pod is crashlooping

	CHAPTER 3. SHUTTING DOWN THE CLUSTER GRACEFULLY
	3.1. PREREQUISITES
	3.2. SHUTTING DOWN THE CLUSTER

	CHAPTER 4. RESTARTING THE CLUSTER GRACEFULLY
	4.1. PREREQUISITES
	4.2. RESTARTING THE CLUSTER

	CHAPTER 5. DISASTER RECOVERY
	5.1. ABOUT DISASTER RECOVERY
	5.2. RECOVERING FROM LOST MASTER HOSTS
	5.3. RESTORING TO A PREVIOUS CLUSTER STATE
	5.3.1. Restoring to a previous cluster state

	5.4. RECOVERING FROM EXPIRED CONTROL PLANE CERTIFICATES
	5.4.1. Recovering from expired control plane certificates

