
OpenShift Container Platform 4.3

Nodes

Configuring and managing nodes in OpenShift Container Platform

Last Updated: 2020-10-22

OpenShift Container Platform 4.3 Nodes

Configuring and managing nodes in OpenShift Container Platform

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing the nodes, Pods, and containers
in your cluster. It also provides information on configuring Pod scheduling and placement, using
jobs and DaemonSets to automate tasks, and other tasks to ensure an efficient cluster.

. .

Table of Contents

CHAPTER 1. WORKING WITH PODS
1.1. USING PODS

1.1.1. Understanding pods
1.1.2. Example pod configurations

1.2. VIEWING PODS
1.2.1. About pods
1.2.2. Viewing pods in a project
1.2.3. Viewing pod usage statistics

1.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER FOR PODS
1.3.1. Configuring how pods behave after restart
1.3.2. Limiting the bandwidth available to pods
1.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up

1.3.3.1. Specifying the number of pods that must be up with pod disruption budgets
1.3.4. Preventing pod removal using critical pods

1.4. AUTOMATICALLY SCALING PODS
1.4.1. Understanding horizontal pod autoscalers

1.4.1.1. Supported metrics
1.4.2. Creating a horizontal pod autoscaler for CPU utilization
1.4.3. Creating a horizontal pod autoscaler object for memory utilization
1.4.4. Understanding horizontal pod autoscaler status conditions

1.4.4.1. Viewing horizontal pod autoscaler status conditions
1.4.5. Additional resources

1.5. PROVIDING SENSITIVE DATA TO PODS
1.5.1. Understanding secrets

1.5.1.1. Types of secrets
1.5.1.2. Example secret configurations
1.5.1.3. Secret data keys

1.5.2. Understanding how to create secrets
1.5.2.1. Secret creation restrictions
1.5.2.2. Creating an opaque secret

1.5.3. Understanding how to update secrets
1.5.4. About using signed certificates with secrets

1.5.4.1. Generating signed certificates for use with secrets
1.5.5. Troubleshooting secrets

1.6. USING DEVICE PLUG-INS TO ACCESS EXTERNAL RESOURCES WITH PODS
1.6.1. Understanding device plug-ins

Example device plug-ins
1.6.1.1. Methods for deploying a device plug-in

1.6.2. Understanding the Device Manager
1.6.3. Enabling Device Manager

1.7. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS
1.7.1. Understanding pod priority

1.7.1.1. Pod priority classes
1.7.1.2. Pod priority names

1.7.2. Understanding pod preemption
1.7.2.1. Pod preemption and other scheduler settings
1.7.2.2. Graceful termination of preempted pods

1.7.3. Configuring priority and preemption
1.7.4. Disabling priority and preemption

1.8. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
1.8.1. Using node selectors to control pod placement

8
8
8
8
11
11
11

12
12
12
13
14
15
16
16
17
17
18
21
25
27
28
28
29
30
30
32
32
32
32
33
33
34
36
36
36
37
37
38
38
39
40
40
41
41
41

42
42
43
44
44

Table of Contents

1

. .CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)
2.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER

2.1.1. Scheduler Use Cases
2.1.1.1. Infrastructure Topological Levels
2.1.1.2. Affinity
2.1.1.3. Anti-Affinity

2.2. CONFIGURING THE DEFAULT SCHEDULER TO CONTROL POD PLACEMENT
2.2.1. Understanding default scheduling

2.2.1.1. Understanding Scheduler Policy
2.2.2. Creating a scheduler policy file
2.2.3. Modifying scheduler policies

2.2.3.1. Understanding the scheduler predicates
2.2.3.1.1. Static Predicates

2.2.3.1.1.1. Default Predicates
2.2.3.1.1.2. Other Static Predicates

2.2.3.1.2. General Predicates
Non-critical general predicates
Essential general predicates

2.2.3.2. Understanding the scheduler priorities
2.2.3.2.1. Static Priorities

2.2.3.2.1.1. Default Priorities
2.2.3.2.1.2. Other Static Priorities

2.2.3.2.2. Configurable Priorities
2.2.4. Sample Policy Configurations

2.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND ANTI-AFFINITY RULES
2.3.1. Understanding pod affinity
2.3.2. Configuring a pod affinity rule
2.3.3. Configuring a pod anti-affinity rule
2.3.4. Sample pod affinity and anti-affinity rules

2.3.4.1. Pod Affinity
2.3.4.2. Pod Anti-affinity
2.3.4.3. Pod Affinity with no Matching Labels

2.4. CONTROLLING POD PLACEMENT ON NODES USING NODE AFFINITY RULES
2.4.1. Understanding node affinity
2.4.2. Configuring a required node affinity rule
2.4.3. Configuring a Preferred Node Affinity Rule
2.4.4. Sample node affinity rules

2.4.4.1. Node Affinity with Matching Labels
2.4.4.2. Node Affinity with No Matching Labels

2.4.5. Additional resources
2.5. PLACING PODS ONTO OVERCOMMITED NODES

2.5.1. Understanding overcommitment
2.5.2. Understanding nodes overcommitment

2.6. CONTROLLING POD PLACEMENT USING NODE TAINTS
2.6.1. Understanding taints and tolerations

2.6.1.1. Understanding how to use toleration seconds to delay pod evictions
2.6.1.2. Understanding how to use multiple taints
2.6.1.3. Preventing pod eviction for node problems
2.6.1.4. Understanding pod scheduling and node conditions (Taint Node by Condition)
2.6.1.5. Understanding evicting pods by condition (Taint-Based Evictions)

2.6.2. Adding taints and tolerations
2.6.2.1. Dedicating a Node for a User using taints and tolerations
2.6.2.2. Binding a user to a Node using taints and tolerations

48
48
48
48
48
49
49
50
50
51

54
56
56
56
57
58
58
58
58
58
59
59
60
61

65
65
67
68
69
69
70
71
72
72
74
75
76
76
76
77
77
77
78
78
79
80
81

82
82
82
83
84
85

OpenShift Container Platform 4.3 Nodes

2

. .

. .

2.6.2.3. Controlling Nodes with special hardware using taints and tolerations
2.6.3. Removing taints and tolerations

2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
2.7.1. Using node selectors to control pod placement
2.7.2. Creating default cluster-wide node selectors
2.7.3. Creating project-wide node selectors

CHAPTER 3. USING JOBS AND DAEMONSETS
3.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY WITH DAEMONSETS

3.1.1. Scheduled by default scheduler
3.1.2. Creating daemonsets

3.2. RUNNING TASKS IN PODS USING JOBS
3.2.1. Understanding Jobs and CronJobs
3.2.2. Understanding how to create Jobs

3.2.2.1. Understanding how to set a maximum duration for Jobs
3.2.2.2. Understanding how to set a Job back off policy for pod failure
3.2.2.3. Understanding how to configure a CronJob to remove artifacts

3.2.3. Known limitations
3.2.4. Creating jobs
3.2.5. Creating CronJobs

CHAPTER 4. WORKING WITH NODES
4.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT CONTAINER PLATFORM CLUSTER

4.1.1. About listing all the nodes in a cluster
4.1.2. Listing pods on a node in your cluster
4.1.3. Viewing memory and CPU usage statistics on your nodes

4.2. WORKING WITH NODES
4.2.1. Understanding how to evacuate pods on nodes
4.2.2. Understanding how to update labels on nodes
4.2.3. Understanding how to mark nodes as unschedulable or schedulable
4.2.4. Configuring master nodes as schedulable
4.2.5. Deleting nodes

4.2.5.1. Deleting nodes from a cluster
4.2.5.2. Deleting nodes from a bare metal cluster

4.2.6. Adding kernel arguments to Nodes
4.2.7. Additional resources

4.3. MANAGING NODES
4.3.1. Modifying Nodes

4.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE
4.4.1. Configuring the maximum number of Pods per Node

4.5. USING THE NODE TUNING OPERATOR
4.5.1. About the Node Tuning Operator
4.5.2. Accessing an example Node Tuning Operator specification
4.5.3. Custom tuning specification
4.5.4. Default profiles set on a cluster
4.5.5. Supported Tuned daemon plug-ins

4.6. UNDERSTANDING NODE REBOOTING
4.6.1. Understanding infrastructure node rebooting
4.6.2. Rebooting a node using pod anti-affinity
4.6.3. Understanding how to reboot nodes running routers

4.7. FREEING NODE RESOURCES USING GARBAGE COLLECTION
4.7.1. Understanding how terminated containers are removed though garbage collection
4.7.2. Understanding how images are removed though garbage collection

85
85
86
86
89
93

98
98
98
98

100
101
102
103
103
103
103
104
105

107
107
107
110
111
111
111

113
113
114
114
114
115
116
118
118
119

120
121
122
122
123
123
125
127
128
128
129
130
130
130
131

Table of Contents

3

. .

4.7.3. Configuring garbage collection for containers and images
4.8. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER

4.8.1. Understanding how to allocate resources for nodes
4.8.1.1. How OpenShift Container Platform computes allocated resources
4.8.1.2. How nodes enforce resource constraints
4.8.1.3. Understanding Eviction Thresholds
4.8.1.4. How the scheduler determines resource availability

4.8.2. Configuring allocated resources for nodes
4.9. VIEWING NODE AUDIT LOGS

4.9.1. About the API audit log
4.9.2. Viewing the audit log

4.10. MACHINE CONFIG DAEMON METRICS
4.10.1. Machine Config Daemon metrics

CHAPTER 5. WORKING WITH CONTAINERS
5.1. UNDERSTANDING CONTAINERS
5.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS DEPLOYED

5.2.1. Understanding Init Containers
5.2.2. Creating Init Containers

5.3. USING VOLUMES TO PERSIST CONTAINER DATA
5.3.1. Understanding volumes
5.3.2. Working with volumes using the OpenShift Container Platform CLI
5.3.3. Listing volumes and volume mounts in a pod
5.3.4. Adding volumes to a pod
5.3.5. Updating volumes and volume mounts in a pod
5.3.6. Removing volumes and volume mounts from a pod
5.3.7. Configuring volumes for multiple uses in a pod

5.4. MAPPING VOLUMES USING PROJECTED VOLUMES
5.4.1. Understanding projected volumes

5.4.1.1. Example Pod Specifications
5.4.1.2. Pathing Considerations

5.4.2. Configuring a Projected Volume for a Pod
5.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS

5.5.1. Expose Pod information to Containers using the Downward API
5.5.2. Understanding how to consume container values using the downward API

5.5.2.1. Consuming container values using environment variables
5.5.2.2. Consuming container values using a volume plug-in

5.5.3. Understanding how to consume container resources using the downward API
5.5.3.1. Consuming container resources using environment variables
5.5.3.2. Consuming container resources using a volume plug-in

5.5.4. Consuming secrets using the downward API
5.5.5. Consuming configuration maps using the downward API
5.5.6. Referencing environment variables
5.5.7. Escaping environment variable references

5.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER PLATFORM CONTAINER
5.6.1. Understanding how to copy files

5.6.1.1. Requirements
5.6.2. Copying files to and from containers
5.6.3. Using advanced Rsync features

5.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER PLATFORM CONTAINER
5.7.1. Executing remote commands in containers
5.7.2. Protocol for initiating a remote command from a client

5.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A CONTAINER

131
134
134
134
135
135
136
136
138
138
140
141

142

145
145
145
145
146
147
147
148
149
149
151
151
152
153
153
154
156
157
159
159
160
160
161

163
163
164
165
166
167
167
168
168
168
169
170
170
170
170
171

OpenShift Container Platform 4.3 Nodes

4

. .

5.8.1. Understanding port forwarding
5.8.2. Using port forwarding
5.8.3. Protocol for initiating port forwarding from a client

5.9. USING SYSCTLS IN CONTAINERS
5.9.1. About sysctls

5.9.1.1. Namespaced versus node-level sysctls
5.9.1.2. Safe versus unsafe sysctls

5.9.2. Setting sysctls for a pod
5.9.3. Enabling unsafe sysctls

CHAPTER 6. WORKING WITH CLUSTERS
6.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER

6.1.1. Understanding events
6.1.2. Viewing events using the CLI
6.1.3. List of events

6.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT CONTAINER PLATFORM NODES CAN HOLD

6.2.1. Understanding the OpenShift Container Platform cluster capacity tool
6.2.2. Running the cluster capacity tool on the command line
6.2.3. Running the cluster capacity tool as a job inside a pod

6.3. SETTING LIMIT RANGES
6.3.1. About limit ranges

6.3.1.1. About component limits
6.3.1.1.1. Container limits
6.3.1.1.2. Pod limits
6.3.1.1.3. Image limits
6.3.1.1.4. Image stream limits
6.3.1.1.5. Persistent volume claim limits

6.3.2. Creating a Limit Range
6.3.3. Viewing a limit
6.3.4. Deleting a Limit Range

6.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS
6.4.1. Understanding managing application memory

6.4.1.1. Managing application memory strategy
6.4.2. Understanding OpenJDK settings for OpenShift Container Platform

6.4.2.1. Understanding how to override the JVM maximum heap size
6.4.2.2. Understanding how to encourage the JVM to release unused memory to the operating system
6.4.2.3. Understanding how to ensure all JVM processes within a container are appropriately configured

6.4.3. Finding the memory request and limit from within a pod
6.4.4. Understanding OOM kill policy
6.4.5. Understanding pod eviction

6.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON OVERCOMMITED NODES
6.5.1. Understanding overcommitment
6.5.2. Understanding resource requests and overcommitment

6.5.2.1. Configuring Buffer Chunk Limiting for Fluentd
6.5.3. Understanding compute resources and containers

6.5.3.1. Understanding container CPU requests
6.5.3.2. Understanding container memory requests

6.5.4. Understanding overcomitment and quality of service classes
6.5.4.1. Understanding how to reserve memory across quality of service tiers

6.5.5. Understanding swap memory and QOS
6.5.6. Understanding nodes overcommitment

171
172
173
173
173
174
174
175
176

179
179
179
179
180

188
188
189
190
192
193
193
193
195
196
196
197
198
199

200
200
200
201

202
202
203

203
203
204
206
206
206
207
207
209
209
209
209
210
211
211

Table of Contents

5

6.5.6.1. Disabling or enforcing CPU limits using CPU CFS quotas
6.5.6.2. Reserving resources for system processes

6.5.7. Disabling overcommitment for a node
6.5.8. Disabling overcommitment for a project

6.6. ENABLING OPENSHIFT CONTAINER PLATFORM FEATURES USING FEATUREGATES
6.6.1. Understanding FeatureGates and Technology Preview features
6.6.2. Features that are affected by FeatureGates
6.6.3. Enabling Technology Preview features using FeatureGates

212
213
213
213
214
214
214
215

OpenShift Container Platform 4.3 Nodes

6

Table of Contents

7

CHAPTER 1. WORKING WITH PODS

1.1. USING PODS

A pod is one or more containers deployed together on one host, and the smallest compute unit that can
be defined, deployed, and managed.

1.1.1. Understanding pods

Pods are the rough equivalent of a machine instance (physical or virtual) to a Container. Each pod is
allocated its own internal IP address, therefore owning its entire port space, and Containers within pods
can share their local storage and networking.

Pods have a lifecycle; they are defined, then they are assigned to run on a node, then they run until their
Container(s) exit or they are removed for some other reason. Pods, depending on policy and exit code,
might be removed after exiting, or can be retained in order to enable access to the logs of their
Containers.

OpenShift Container Platform treats pods as largely immutable; changes cannot be made to a pod
definition while it is running. OpenShift Container Platform implements changes by terminating an
existing pod and recreating it with modified configuration, base image(s), or both. Pods are also treated
as expendable, and do not maintain state when recreated. Therefore pods should usually be managed by
higher-level controllers, rather than directly by users.

NOTE

For the maximum number of pods per OpenShift Container Platform node host, see the
Cluster Limits.

WARNING

Bare pods that are not managed by a replication controller will be not rescheduled
upon node disruption.

1.1.2. Example pod configurations

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed.

The following is an example definition of a pod that provides a long-running service, which is actually a
part of the OpenShift Container Platform infrastructure: the integrated container image registry. It
demonstrates many features of pods, most of which are discussed in other topics and thus only briefly
mentioned here:

Pod object definition (YAML)



kind: Pod
apiVersion: v1

OpenShift Container Platform 4.3 Nodes

8

metadata:
 name: example
 namespace: default
 selfLink: /api/v1/namespaces/default/pods/example
 uid: 5cc30063-0265780783bc
 resourceVersion: '165032'
 creationTimestamp: '2019-02-13T20:31:37Z'
 labels: 1
 app: hello-openshift
 annotations:
 openshift.io/scc: anyuid
spec:
 restartPolicy: Always 2
 serviceAccountName: default
 imagePullSecrets:
 - name: default-dockercfg-5zrhb
 priority: 0
 schedulerName: default-scheduler
 terminationGracePeriodSeconds: 30
 nodeName: ip-10-0-140-16.us-east-2.compute.internal
 securityContext: 3
 seLinuxOptions:
 level: 's0:c11,c10'
 containers: 4
 - resources: {}
 terminationMessagePath: /dev/termination-log
 name: hello-openshift
 securityContext:
 capabilities:
 drop:
 - MKNOD
 procMount: Default
 ports:
 - containerPort: 8080
 protocol: TCP
 imagePullPolicy: Always
 volumeMounts: 5
 - name: default-token-wbqsl
 readOnly: true
 mountPath: /var/run/secrets/kubernetes.io/serviceaccount
 terminationMessagePolicy: File
 image: registry.redhat.io/openshift4/ose-ogging-eventrouter:v4.3 6
 serviceAccount: default 7
 volumes: 8
 - name: default-token-wbqsl
 secret:
 secretName: default-token-wbqsl
 defaultMode: 420
 dnsPolicy: ClusterFirst
status:
 phase: Pending
 conditions:
 - type: Initialized
 status: 'True'
 lastProbeTime: null

CHAPTER 1. WORKING WITH PODS

9

1

2

3

4

5

6

7

8

Pods can be "tagged" with one or more labels, which can then be used to select and manage
groups of pods in a single operation. The labels are stored in key/value format in the metadata
hash. One label in this example is registry=default.

The pod restart policy with possible values Always, OnFailure, and Never. The default value is
Always.

OpenShift Container Platform defines a security context for containers which specifies whether
they are allowed to run as privileged containers, run as a user of their choice, and more. The default
context is very restrictive but administrators can modify this as needed.

containers specifies an array of one or more container definitions.

The container specifies where external storage volumes are mounted within the container. In this
case, there is a volume for storing access to credentials the registry needs for making requests
against the OpenShift Container Platform API.

Each container in the pod is instantiated from its own container image.

Pods making requests against the OpenShift Container Platform API is a common enough pattern
that there is a serviceAccount field for specifying which service account user the pod should
authenticate as when making the requests. This enables fine-grained access control for custom
infrastructure components.

The pod defines storage volumes that are available to its container(s) to use. In this case, it
provides an ephemeral volume for the registry storage and a secret volume containing the service

 lastTransitionTime: '2019-02-13T20:31:37Z'
 - type: Ready
 status: 'False'
 lastProbeTime: null
 lastTransitionTime: '2019-02-13T20:31:37Z'
 reason: ContainersNotReady
 message: 'containers with unready status: [hello-openshift]'
 - type: ContainersReady
 status: 'False'
 lastProbeTime: null
 lastTransitionTime: '2019-02-13T20:31:37Z'
 reason: ContainersNotReady
 message: 'containers with unready status: [hello-openshift]'
 - type: PodScheduled
 status: 'True'
 lastProbeTime: null
 lastTransitionTime: '2019-02-13T20:31:37Z'
 hostIP: 10.0.140.16
 startTime: '2019-02-13T20:31:37Z'
 containerStatuses:
 - name: hello-openshift
 state:
 waiting:
 reason: ContainerCreating
 lastState: {}
 ready: false
 restartCount: 0
 image: openshift/hello-openshift
 imageID: ''
 qosClass: BestEffort

OpenShift Container Platform 4.3 Nodes

10

provides an ephemeral volume for the registry storage and a secret volume containing the service
account credentials.

NOTE

This pod definition does not include attributes that are filled by OpenShift Container
Platform automatically after the pod is created and its lifecycle begins. The Kubernetes
pod documentation has details about the functionality and purpose of pods.

1.2. VIEWING PODS

As an administrator, you can view the pods in your cluster and to determine the health of those pods and
the cluster as a whole.

1.2.1. About pods

OpenShift Container Platform leverages the Kubernetes concept of a pod, which is one or more
containers deployed together on one host, and the smallest compute unit that can be defined,
deployed, and managed. Pods are the rough equivalent of a machine instance (physical or virtual) to a
container.

You can view a list of pods associated with a specific project or view usage statistics about pods.

1.2.2. Viewing pods in a project

You can view a list of pods associated with the current project, including the number of replica, the
current status, number or restarts and the age of the pod.

Procedure

To view the pods in a project:

1. Change to the project:

$ oc project <project-name>

2. Run the following command:

$ oc get pods

For example:

$ oc get pods -n openshift-console
NAME READY STATUS RESTARTS AGE
console-698d866b78-bnshf 1/1 Running 2 165m
console-698d866b78-m87pm 1/1 Running 2 165m

Add the -o wide flags to view the pod IP address and the node where the pod is located.

$ oc get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE
console-698d866b78-bnshf 1/1 Running 2 166m 10.128.0.24 ip-10-0-152-

CHAPTER 1. WORKING WITH PODS

11

https://kubernetes.io/docs/concepts/workloads/pods/pod/

71.ec2.internal <none>
console-698d866b78-m87pm 1/1 Running 2 166m 10.129.0.23 ip-10-0-173-
237.ec2.internal <none>

1.2.3. Viewing pod usage statistics

You can display usage statistics about pods, which provide the runtime environments for Containers.
These usage statistics include CPU, memory, and storage consumption.

Prerequisites

You must have cluster-reader permission to view the usage statistics.

Metrics must be installed to view the usage statistics.

Procedure

To view the usage statistics:

1. Run the following command:

$ oc adm top pods

For example:

$ oc adm top pods -n openshift-console
NAME CPU(cores) MEMORY(bytes)
console-7f58c69899-q8c8k 0m 22Mi
console-7f58c69899-xhbgg 0m 25Mi
downloads-594fcccf94-bcxk8 3m 18Mi
downloads-594fcccf94-kv4p6 2m 15Mi

2. Run the following command to view the usage statistics for pods with labels:

$ oc adm top pod --selector=''

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

1.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER
FOR PODS

As an administrator, you can create and maintain an efficient cluster for pods.

By keeping your cluster efficient, you can provide a better environment for your developers using such
tools as what a pod does when it exits, ensuring that the required number of pods is always running,
when to restart pods designed to run only once, limit the bandwidth available to pods, and how to keep
pods running during disruptions.

1.3.1. Configuring how pods behave after restart

A pod restart policy determines how OpenShift Container Platform responds when Containers in that
pod exit. The policy applies to all Containers in that pod.

The possible values are:

OpenShift Container Platform 4.3 Nodes

12

Always - Tries restarting a successfully exited Container on the pod continuously, with an
exponential back-off delay (10s, 20s, 40s) until the pod is restarted. The default is Always.

OnFailure - Tries restarting a failed Container on the pod with an exponential back-off delay
(10s, 20s, 40s) capped at 5 minutes.

Never - Does not try to restart exited or failed Containers on the pod. Pods immediately fail and
exit.

After the pod is bound to a node, the pod will never be bound to another node. This means that a
controller is necessary in order for a pod to survive node failure:

Condition Controller Type Restart Policy

Pods that are expected to
terminate (such as batch
computations)

Job OnFailure or Never

Pods that are expected to not
terminate (such as web servers)

Replication Controller Always.

Pods that must run one-per-
machine

Daemonset Any

If a Container on a pod fails and the restart policy is set to OnFailure, the pod stays on the node and the
Container is restarted. If you do not want the Container to restart, use a restart policy of Never.

If an entire pod fails, OpenShift Container Platform starts a new pod. Developers must address the
possibility that applications might be restarted in a new pod. In particular, applications must handle
temporary files, locks, incomplete output, and so forth caused by previous runs.

NOTE

Kubernetes architecture expects reliable endpoints from cloud providers. When a cloud
provider is down, the kubelet prevents OpenShift Container Platform from restarting.

If the underlying cloud provider endpoints are not reliable, do not install a cluster using
cloud provider integration. Install the cluster as if it was in a no-cloud environment. It is
not recommended to toggle cloud provider integration on or off in an installed cluster.

For details on how OpenShift Container Platform uses restart policy with failed Containers, see the
Example States in the Kubernetes documentation.

1.3.2. Limiting the bandwidth available to pods

You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth.
Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the
configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle
data. The limits you place on a pod do not affect the bandwidth of other pods.

Procedure

To limit the bandwidth on a pod:

CHAPTER 1. WORKING WITH PODS

13

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states

1. Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth and kubernetes.io/egress-bandwidth annotations. For
example, to limit both pod egress and ingress bandwidth to 10M/s:

Limited Pod Object Definition

2. Create the pod using the object definition:

$ oc create -f <file_or_dir_path>

1.3.3. Understanding how to use pod disruption budgets to specify the number of
pods that must be up

A pod disruption budget is part of the Kubernetes API, which can be managed with oc commands like
other object types. They allow the specification of safety constraints on pods during operations, such as
draining a node for maintenance.

PodDisruptionBudget is an API object that specifies the minimum number or percentage of replicas
that must be up at a time. Setting these in projects can be helpful during node maintenance (such as
scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node
failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

A label selector, which is a label query over a set of pods.

An availability level, which specifies the minimum number of pods that must be available
simultaneously, either:

minAvailable is the number of pods must always be available, even during a disruption.

maxUnavailable is the number of Pods can be unavailable during a disruption.

NOTE

{
 "kind": "Pod",
 "spec": {
 "containers": [
 {
 "image": "openshift/hello-openshift",
 "name": "hello-openshift"
 }
]
 },
 "apiVersion": "v1",
 "metadata": {
 "name": "iperf-slow",
 "annotations": {
 "kubernetes.io/ingress-bandwidth": "10M",
 "kubernetes.io/egress-bandwidth": "10M"
 }
 }
}

OpenShift Container Platform 4.3 Nodes

14

http://kubernetes.io/docs/admin/disruptions/

1

2

3

NOTE

A maxUnavailable of 0% or 0 or a minAvailable of 100% or equal to the number of
replicas, is permitted, but can block nodes from being drained.

You can check for pod disruption budgets across all projects with the following:

$ oc get poddisruptionbudget --all-namespaces

NAMESPACE NAME MIN-AVAILABLE SELECTOR
another-project another-pdb 4 bar=foo
test-project my-pdb 2 foo=bar

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in
the system. Every pod above that limit can be evicted.

NOTE

Depending on your pod priority and preemption settings, lower-priority pods might be
removed despite their pod disruption budget requirements.

1.3.3.1. Specifying the number of pods that must be up with pod disruption budgets

You can use a PodDisruptionBudget object to specify the minimum number or percentage of replicas
that must be up at a time.

Procedure

To configure a pod disruption budget:

1. Create a YAML file with the an object definition similar to the following:

PodDisruptionBudget is part of the policy/v1beta1 API group.

The minimum number of pods that must be available simultaneously. This can be either an
integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined.

Or:

apiVersion: policy/v1beta1 1
kind: PodDisruptionBudget
metadata:
 name: my-pdb
spec:
 minAvailable: 2 2
 selector: 3
 matchLabels:
 foo: bar

apiVersion: policy/v1beta1 1
kind: PodDisruptionBudget

CHAPTER 1. WORKING WITH PODS

15

1

2

3

1

PodDisruptionBudget is part of the policy/v1beta1 API group.

The maximum number of pods that can be unavailable simultaneously. This can be either
an integer or a string specifying a percentage, for example, 20%.

A label query over a set of resources. The result of matchLabels and matchExpressions
are logically conjoined.

2. Run the following command to add the object to project:

$ oc create -f </path/to/file> -n <project_name>

1.3.4. Preventing pod removal using critical pods

There are a number of core components that are critical to a fully functional cluster, but, run on a regular
cluster node rather than the master. A cluster might stop working properly if a critical add-on is evicted.

Pods marked as critical are not allowed to be evicted.

Procedure

To make a pod critical:

1. Create a pod specification or edit existing pods to include the system-cluster-critical priority
class:

Default priority class for pods that should never be evicted from a node.

Alternatively, you can specify system-node-critical for pods that are important to the cluster but can
be removed if necessary.

1. Create the pod:

$ oc create -f <file-name>.yaml

1.4. AUTOMATICALLY SCALING PODS

As a developer, you can use a horizontal pod autoscaler (HPA) to specify how OpenShift Container

metadata:
 name: my-pdb
spec:
 maxUnavailable: 25% 2
 selector: 3
 matchLabels:
 foo: bar

spec:
 template:
 metadata:
 name: critical-pod
 priorityClassName: system-cluster-critical 1

OpenShift Container Platform 4.3 Nodes

16

Platform should automatically increase or decrease the scale of a replication controller or deployment
configuration, based on metrics collected from the pods that belong to that replication controller or
deployment configuration.

1.4.1. Understanding horizontal pod autoscalers

You can create a horizontal pod autoscaler to specify the minimum and maximum number of pods you
want to run, as well as the CPU utilization or memory utilization your pods should target.

IMPORTANT

Autoscaling for Memory Utilization is a Technology Preview feature only.

After you create a horizontal pod autoscaler, OpenShift Container Platform begins to query the CPU
and/or memory resource metrics on the pods. When these metrics are available, the horizontal pod
autoscaler computes the ratio of the current metric utilization with the desired metric utilization, and
scales up or down accordingly. The query and scaling occurs at a regular interval, but can take one to two
minutes before metrics become available.

For replication controllers, this scaling corresponds directly to the replicas of the replication controller.
For deployment configurations, scaling corresponds directly to the replica count of the deployment
configuration. Note that autoscaling applies only to the latest deployment in the Complete phase.

OpenShift Container Platform automatically accounts for resources and prevents unnecessary
autoscaling during resource spikes, such as during start up. Pods in the unready state have 0 CPU
usage when scaling up and the autoscaler ignores the pods when scaling down. Pods without known
metrics have 0% CPU usage when scaling up and 100% CPU when scaling down. This allows for more
stability during the HPA decision. To use this feature, you must configure readiness checks to determine
if a new pod is ready for use.

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics.

1.4.1.1. Supported metrics

The following metrics are supported by horizontal pod autoscalers:

Table 1.1. Metrics

Metric Description API version

CPU utilization Number of CPU cores used. Can be
used to calculate a percentage of the
pod’s requested CPU.

autoscaling/v1,
autoscaling/v2beta2

Memory utilization Amount of memory used. Can be used
to calculate a percentage of the pod’s
requested memory.

autoscaling/v2beta2

IMPORTANT

CHAPTER 1. WORKING WITH PODS

17

IMPORTANT

For memory-based autoscaling, memory usage must increase and decrease
proportionally to the replica count. On average:

An increase in replica count must lead to an overall decrease in memory (working
set) usage per-pod.

A decrease in replica count must lead to an overall increase in per-pod memory
usage.

Use the OpenShift Container Platform web console to check the memory behavior of
your application and ensure that your application meets these requirements before using
memory-based autoscaling.

1.4.2. Creating a horizontal pod autoscaler for CPU utilization

You can create a horizontal pod autoscaler (HPA) for an existing DeploymentConfig or
ReplicationController object that automatically scales the Pods associated with that object in order to
maintain the CPU usage you specify.

The HPA increases and decreases the number of replicas between the minimum and maximum numbers
to maintain the specified CPU utilization across all Pods.

When autoscaling for CPU utilization, you can use the oc autoscale command and specify the minimum
and maximum number of Pods you want to run at any given time and the average CPU utilization your
Pods should target. If you do not specify a minimum, the Pods are given default values from the
OpenShift Container Platform server. To autoscale for a specific CPU value, create a
HorizontalPodAutoscaler object with the target CPU and Pod limits.

Prerequisites

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics. You can use the oc describe PodMetrics <pod-name> command to determine if
metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory displayed under Usage.

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Memory: 0
 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2019-05-23T18:47:56Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-

OpenShift Container Platform 4.3 Nodes

18

1

2

3

4

1

2

3

4

Procedure

To create a horizontal pod autoscaler for CPU utilization:

1. Perform one of the following one of the following:

To scale based on the percent of CPU utilization, create a HorizontalPodAutoscaler object
for an existing DeploymentConfig:

$ oc autoscale dc/<dc-name> \ 1
 --min <number> \ 2
 --max <number> \ 3
 --cpu-percent=<percent> 4

Specify the name of the DeploymentConfig. The object must exist.

Optionally, specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Specify the target average CPU utilization over all the Pods, represented as a percent
of requested CPU. If not specified or negative, a default autoscaling policy is used.

To scale based on the percent of CPU utilization, create a HorizontalPodAutoscaler object
for an existing ReplicationController:

$ oc autoscale rc/<rc-name> 1
 --min <number> \ 2
 --max <number> \ 3
 --cpu-percent=<percent> 4

Specify the name of the ReplicationController. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Specify the target average CPU utilization over all the Pods, represented as a percent
of requested CPU. If not specified or negative, a default autoscaling policy is used.

To scale for a specific CPU value, create a YAML file similar to the following for an existing
DeploymentConfig or ReplicationController:

a. Create a YAML file similar to the following:

kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>

apiVersion: autoscaling/v2beta2 1
kind: HorizontalPodAutoscaler
metadata:

CHAPTER 1. WORKING WITH PODS

19

1

2

3

4

5

6

7

8

9

10

11

Use the autoscaling/v2beta2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a ReplicationController, use v1,

For a DeploymentConfig, use apps.openshift.io/v1.

Specify the kind of object to scale, either ReplicationController or
DeploymentConfig.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Use the metrics parameter for memory utilization.

Specify cpu for CPU utilization.

Set to Utilization.

Set the type to averageValue.

b. Create the horizontal pod autoscaler:

$ oc create -f <file-name>.yaml

2. Verify that the horizontal pod autoscaler was created:

$ oc get hpa cpu-autoscale

NAME REFERENCE TARGETS MINPODS MAXPODS

 name: cpu-autoscale 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: v1 3
 kind: ReplicationController 4
 name: example 5
 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: cpu 9
 target:
 type: Utilization 10
 averageValue: 500m 11

OpenShift Container Platform 4.3 Nodes

20

REPLICAS AGE
cpu-autoscale ReplicationController/example 173m/500m 1 10 1 20m

For example, the following command creates a horizontal pod autoscaler that maintains between 3 and
7 replicas of the Pods that are controlled by the image-registry DeploymentConfig in order to maintain
an average CPU utilization of 75% across all Pods.

$ oc autoscale dc/image-registry --min 3 --max 7 --cpu-percent=75
deploymentconfig "image-registry" autoscaled

The command creates a horizontal pod autoscaler with the following definition:

$ oc edit hpa frontend -n openshift-image-registry

The following example shows autoscaling for the image-registry DeploymentConfig. The initial
deployment requires 3 Pods. The HPA object increased that minimum to 5 and will increase the Pods up
to 7 if CPU usage on the Pods reaches 75%:

$ oc get dc image-registry
NAME REVISION DESIRED CURRENT TRIGGERED BY
image-registry 1 3 3 config

$ oc autoscale dc/image-registry --min=5 --max=7 --cpu-percent=75
horizontalpodautoscaler.autoscaling/image-registry autoscaled

$ oc get dc image-registry
NAME REVISION DESIRED CURRENT TRIGGERED BY
image-registry 1 5 5 config

1.4.3. Creating a horizontal pod autoscaler object for memory utilization

You can create a horizontal pod autoscaler (HPA) for an existing DeploymentConfig or
ReplicationController object that automatically scales the Pods associated with that object in order to

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 creationTimestamp: "2020-02-21T20:19:28Z"
 name: image-registry
 namespace: default
 resourceVersion: "32452"
 selfLink: /apis/autoscaling/v1/namespaces/default/horizontalpodautoscalers/frontend
 uid: 1a934a22-925d-431e-813a-d00461ad7521
spec:
 maxReplicas: 7
 minReplicas: 3
 scaleTargetRef:
 apiVersion: apps.openshift.io/v1
 kind: DeploymentConfig
 name: image-registry
 targetCPUUtilizationPercentage: 75
status:
 currentReplicas: 5
 desiredReplicas: 0

CHAPTER 1. WORKING WITH PODS

21

maintain the average memory utilization you specify, either a direct value or a percentage of requested
memory.

The HPA increases and decreases the number of replicas between the minimum and maximum numbers
to maintain the specified memory utilization across all Pods.

For memory utilization, you can specify the minimum and maximum number of Pods and the average
memory utilization your Pods should target. If you do not specify a minimum, the Pods are given default
values from the OpenShift Container Platform server.

IMPORTANT

Autoscaling for memory utilization is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs), might not be functionally complete, and Red Hat does not recommend to use
them for production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

Prerequisites

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics. You can use the oc describe PodMetrics <pod-name> command to determine if
metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory displayed under Usage.

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-129-223.compute.internal -n openshift-
kube-scheduler

Procedure

Name: openshift-kube-scheduler-ip-10-0-129-223.compute.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: scheduler
 Usage:
 Cpu: 2m
 Memory: 41056Ki
 Name: wait-for-host-port
 Usage:
 Memory: 0
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2020-02-14T22:21:14Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-
kube-scheduler-ip-10-0-129-223.compute.internal
Timestamp: 2020-02-14T22:21:14Z
Window: 5m0s
Events: <none>

OpenShift Container Platform 4.3 Nodes

22

https://access.redhat.com/support/offerings/techpreview/

1

2

3

4

5

6

7

8

9

10

11

To create a horizontal pod autoscaler for memory utilization:

1. Create a YAML file for one of the following:

To scale for a specific memory value, create a HorizontalPodAutoscaler object similar to
the following for an existing DeploymentConfig or ReplicationController:

Use the autoscaling/v2beta2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a ReplicationController, use v1,

For a DeploymentConfig, use apps.openshift.io/v1.

Specify the kind of object to scale, either ReplicationController or
DeploymentConfig.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Use the metrics parameter for memory utilization.

Specify memory for memory utilization.

Set the type to AverageValue.

Specify averageValue and a specific memory value.

To scale for a percentage, create a HorizontalPodAutoscaler object similar to the

apiVersion: autoscaling/v2beta2 1
kind: HorizontalPodAutoscaler
metadata:
 name: hpa-resource-metrics-memory 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: v1 3
 kind: ReplicationController 4
 name: example 5
 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: memory 9
 target:
 type: AverageValue 10
 averageValue: 500Mi 11

CHAPTER 1. WORKING WITH PODS

23

1

2

3

4

5

6

7

8

9

10

11

To scale for a percentage, create a HorizontalPodAutoscaler object similar to the
following:

Use the autoscaling/v2beta2 API.

Specify a name for this horizontal pod autoscaler object.

Specify the API version of the object to scale:

For a ReplicationController, use v1,

For a DeploymentConfig, use apps.openshift.io/v1.

Specify the kind of object to scale, either ReplicationController or
DeploymentConfig.

Specify the name of the object to scale. The object must exist.

Specify the minimum number of replicas when scaling down.

Specify the maximum number of replicas when scaling up.

Use the metrics parameter for memory utilization.

Specify memory for memory utilization.

Set to Utilization.

Specify averageUtilization and a target average memory utilization over all the Pods,
represented as a percent of requested memory. The target pods must have memory
requests configured.

2. Create the horizontal pod autoscaler:

apiVersion: autoscaling/v2beta2 1
kind: HorizontalPodAutoscaler
metadata:
 name: memory-autoscale 2
 namespace: default
spec:
 scaleTargetRef:
 apiVersion: apps.openshift.io/v1 3
 kind: DeploymentConfig 4
 name: example 5
 minReplicas: 1 6
 maxReplicas: 10 7
 metrics: 8
 - type: Resource
 resource:
 name: memory 9
 target:
 type: Utilization 10
 averageUtilization: 50 11

OpenShift Container Platform 4.3 Nodes

24

$ oc create -f <file-name>.yaml

For example:

$ oc create -f hpa.yaml

horizontalpodautoscaler.autoscaling/hpa-resource-metrics-memory created

3. Verify that the horizontal pod autoscaler was created:

$ oc get hpa hpa-resource-metrics-memory

NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
hpa-resource-metrics-memory ReplicationController/example 2441216/500Mi 1 10
1 20m

$ oc describe hpa hpa-resource-metrics-memory
Name: hpa-resource-metrics-memory
Namespace: default
Labels: <none>
Annotations: <none>
CreationTimestamp: Wed, 04 Mar 2020 16:31:37 +0530
Reference: ReplicationController/example
Metrics: (current / target)
 resource memory on pods: 2441216 / 500Mi
Min replicas: 1
Max replicas: 10
ReplicationController pods: 1 current / 1 desired
Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale recommended size matches current size
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a
replica count from memory resource
 ScalingLimited False DesiredWithinRange the desired count is within the acceptable
range
Events:
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal SuccessfulRescale 6m34s horizontal-pod-autoscaler New size: 1;
reason: All metrics below target

1.4.4. Understanding horizontal pod autoscaler status conditions

You can use the status conditions set to determine whether or not the horizontal pod autoscaler (HPA)
is able to scale and whether or not it is currently restricted in any way.

The HPA status conditions are available with the v2beta1 version of the autoscaling API.

The HPA responds with the following status conditions:

The AbleToScale condition indicates whether HPA is able to fetch and update metrics, as well
as whether any backoff-related conditions could prevent scaling.

CHAPTER 1. WORKING WITH PODS

25

1

A True condition indicates scaling is allowed.

A False condition indicates scaling is not allowed for the reason specified.

The ScalingActive condition indicates whether the HPA is enabled (for example, the replica
count of the target is not zero) and is able to calculate desired metrics.

A True condition indicates metrics is working properly.

A False condition generally indicates a problem with fetching metrics.

The ScalingLimited condition indicates that the desired scale was capped by the maximum or
minimum of the horizontal pod autoscaler.

A True condition indicates that you need to raise or lower the minimum or maximum replica
count in order to scale.

A False condition indicates that the requested scaling is allowed.

$ oc describe hpa cm-test
Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old
as to warrant a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully
calculate a replica count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the
acceptable range
Events:

The horizontal pod autoscaler status messages.

The following is an example of a pod that is unable to scale:

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale False FailedGetScale the HPA controller was unable to get the target's current
scale: no matches for kind "ReplicationController" in group "apps"
Events:
 Type Reason Age From Message

OpenShift Container Platform 4.3 Nodes

26

 ---- ------ ---- ---- -------
 Warning FailedGetScale 6s (x3 over 36s) horizontal-pod-autoscaler no matches for kind
"ReplicationController" in group "apps"

The following is an example of a pod that could not obtain the needed metrics for scaling:

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True SucceededGetScale the HPA controller was able to get the target's
current scale
 ScalingActive False FailedGetResourceMetric the HPA was unable to compute the replica
count: unable to get metrics for resource cpu: no metrics returned from heapster

The following is an example of a pod where the requested autoscaling was less than the required
minimums:

Conditions:
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range

1.4.4.1. Viewing horizontal pod autoscaler status conditions

You can view the status conditions set on a pod by the horizontal pod autoscaler (HPA).

NOTE

The horizontal pod autoscaler status conditions are available with the v2beta1 version of
the autoscaling API.

Prerequisites

In order to use horizontal pod autoscalers, your cluster administrator must have properly configured
cluster metrics. You can use the oc describe PodMetrics <pod-name> command to determine if
metrics are configured. If metrics are configured, the output appears similar to the following, with Cpu
and Memory displayed under Usage.

$ oc describe PodMetrics openshift-kube-scheduler-ip-10-0-135-131.ec2.internal

Name: openshift-kube-scheduler-ip-10-0-135-131.ec2.internal
Namespace: openshift-kube-scheduler
Labels: <none>
Annotations: <none>
API Version: metrics.k8s.io/v1beta1
Containers:
 Name: wait-for-host-port
 Usage:
 Memory: 0

CHAPTER 1. WORKING WITH PODS

27

 Name: scheduler
 Usage:
 Cpu: 8m
 Memory: 45440Ki
Kind: PodMetrics
Metadata:
 Creation Timestamp: 2019-05-23T18:47:56Z
 Self Link: /apis/metrics.k8s.io/v1beta1/namespaces/openshift-kube-scheduler/pods/openshift-
kube-scheduler-ip-10-0-135-131.ec2.internal
Timestamp: 2019-05-23T18:47:56Z
Window: 1m0s
Events: <none>

Procedure

To view the status conditions on a pod, use the following command with the name of the pod:

$ oc describe hpa <pod-name>

For example:

$ oc describe hpa cm-test

The conditions appear in the Conditions field in the output.

Name: cm-test
Namespace: prom
Labels: <none>
Annotations: <none>
CreationTimestamp: Fri, 16 Jun 2017 18:09:22 +0000
Reference: ReplicationController/cm-test
Metrics: (current / target)
 "http_requests" on pods: 66m / 500m
Min replicas: 1
Max replicas: 4
ReplicationController pods: 1 current / 1 desired
Conditions: 1
 Type Status Reason Message
 ---- ------ ------ -------
 AbleToScale True ReadyForNewScale the last scale time was sufficiently old as to warrant
a new scale
 ScalingActive True ValidMetricFound the HPA was able to successfully calculate a replica
count from pods metric http_request
 ScalingLimited False DesiredWithinRange the desired replica count is within the acceptable
range

1.4.5. Additional resources

For more information on replication controllers and deployment controllers, see Understanding
Deployments and DeploymentConfigs.

1.5. PROVIDING SENSITIVE DATA TO PODS

Some applications need sensitive information, such as passwords and user names, that you do not want

OpenShift Container Platform 4.3 Nodes

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/applications/#what-deployments-are

1 1

2

3

4

5

Some applications need sensitive information, such as passwords and user names, that you do not want
developers to have.

As an administrator, you can use Secret objects to provide this information without exposing that
information in clear text.

1.5.1. Understanding secrets

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, private source repository credentials, and so on.
Secrets decouple sensitive content from the pods. You can mount secrets into Containers using a
volume plug-in or the system can use secrets to perform actions on behalf of a pod.

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

YAML Secret Object Definition

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry will then be moved to the
data map automatically. This field is write-only; the value will only be returned via the data field.

The value associated with keys in the stringData map is made up of plain text strings.

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod’s service account to allow the reference to the secret.

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1
data: 2
 username: dmFsdWUtMQ0K 3
 password: dmFsdWUtMg0KDQo=
stringData: 4
 hostname: myapp.mydomain.com 5

CHAPTER 1. WORKING WITH PODS

29

https://github.com/kubernetes/kubernetes/blob/v1.0.0/docs/design/identifiers.md

1

2

Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume).

1.5.1.1. Types of secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/service-account-token. Uses a service account token.

kubernetes.io/basic-auth. Use with Basic Authentication.

kubernetes.io/ssh-auth. Use with SSH Key Authentication.

kubernetes.io/tls. Use with TLS certificate authorities.

Specify type: Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

For examples of different secret types, see the code samples in Using Secrets.

1.5.1.2. Example secret configurations

The following are sample secret configuration files.

YAML Secret That Will Create Four Files

File contains decoded values.

File contains decoded values.

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: dmFsdWUtMQ0K 1
 password: dmFsdWUtMQ0KDQo= 2
stringData:
 hostname: myapp.mydomain.com 3
 secret.properties: |- 4
 property1=valueA
 property2=valueB

OpenShift Container Platform 4.3 Nodes

30

3

4

File contains the provided string.

File contains the provided data.

YAML of a Pod Populating Files in a Volume with Secret Data

YAML of a Pod Populating Environment Variables with Secret Data

YAML of a Build Config Populating Environment Variables with Secret Data

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

apiVersion: v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:

CHAPTER 1. WORKING WITH PODS

31

1.5.1.3. Secret data keys

Secret keys must be in a DNS subdomain.

1.5.2. Understanding how to create secrets

As an administrator you must create a secret before developers can create the pods that depend on
that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod’s service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file (using a secret
volume).

1.5.2.1. Secret creation restrictions

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

To populate environment variables for Containers.

As files in a volume mounted on one or more of its Containers.

By kubelet when pulling images for the pod.

Volume type secrets write data into the Container as a file using the volume mechanism. Image pull
secrets use service accounts for the automatic injection of the secret into all pods in a namespaces.

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to an object of type Secret. Therefore, a secret needs to be created before any pods that
depend on it. The most effective way to ensure this is to have it get injected automatically through the
use of a service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that could
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

1.5.2.2. Creating an opaque secret

As an administrator, you can create a opaque secret, which allows for unstructured key:value pairs that
can contain arbitrary values.

 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username

OpenShift Container Platform 4.3 Nodes

32

1

Procedure

1. Create a secret object in a YAML file on master.
For example:

Specifies an opaque secret.

2. Use the following command to create a secret object:

$ oc create -f <filename>

Then:

1. Update the service account for the pod where you want to use the secret to allow the reference
to the secret.

2. Create the pod, which consumes the secret as an environment variable or as a file (using a
secret volume).

1.5.3. Understanding how to update secrets

When you modify the value of a secret, the value (used by an already running pod) will not dynamically
change. To change a secret, you must delete the original pod and create a new pod (perhaps with an
identical PodSpec).

Updating a secret follows the same workflow as deploying a new Container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, then the version of the secret will be used for the pod
will not be defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods will report this information, so that a
controller could restart ones using a old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

1.5.4. About using signed certificates with secrets

To secure communication to your service, you can configure OpenShift Container Platform to generate
a signed serving certificate/key pair that you can add into a secret in a project.

A service serving certificate secret is intended to support complex middleware applications that need

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque 1
data:
 username: dXNlci1uYW1l
 password: cGFzc3dvcmQ=

CHAPTER 1. WORKING WITH PODS

33

1

A service serving certificate secret is intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Service pod specification configured for a service serving certificates secret.

Specify the name for the certificate

Other pods can trust cluster-created certificates (which are only signed for internal DNS names), by
using the CA bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt file that is
automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

1.5.4.1. Generating signed certificates for use with secrets

To use a signed serving certificate/key pair with a pod, create or edit the service to add the
service.alpha.openshift.io/serving-cert-secret-name annotation, then add the secret to the pod.

Procedure

To create a service serving certificate secret :

1. Edit the pod specification for your service.

2. Add the service.alpha.openshift.io/serving-cert-secret-name annotation with the name you
want to use for your secret.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively.

3. Create the service:

apiVersion: v1
 kind: Service
 metadata:
 name: registry
 annotations:
 service.alpha.openshift.io/serving-cert-secret-name: registry-cert 1
....

kind: Service
apiVersion: v1
metadata:
 name: my-service
 annotations:
 service.alpha.openshift.io/serving-cert-secret-name: my-cert 1
spec:
 selector:
 app: MyApp
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

OpenShift Container Platform 4.3 Nodes

34

$ oc create -f <file-name>.yaml

4. View the secret to make sure it was created:

$ oc get secrets

NAME TYPE DATA AGE
my-cert kubernetes.io/tls 2 9m

$ oc describe secret my-service-pod
Name: my-service-pod
Namespace: openshift-console
Labels: <none>
Annotations: kubernetes.io/service-account.name: builder
 kubernetes.io/service-account.uid: ab-11e9-988a-0eb4e1b4a396

Type: kubernetes.io/service-account-token

Data

ca.crt: 5802 bytes
namespace: 17 bytes
token:
eyJhbGciOiJSUzI1NiIsImtpZCI6IiJ9.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Ii
wia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJvcGVuc2hpZnQtY29uc
29sZSIsImt1YmVyb
cnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51aWQiOiJhYmE4Y2UyZC00MzVlLTExZTkt
OTg4YS0wZWI0ZTFiNGEz
OTYiLCJzdWIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6b3BlbnNoaWZ

5. Edit your pod specification with that secret.

When it is available, your pod will run. The certificate will be good for the internal service DNS
name, <service.name>.<service.namespace>.svc.

apiVersion: v1
kind: Pod
metadata:
 name: my-service-pod
spec:
 containers:
 - name: mypod
 image: redis
 volumeMounts:
 - name: foo
 mountPath: "/etc/foo"
 volumes:
 - name: foo
 secret:
 secretName: my-cert
 items:
 - key: username
 path: my-group/my-username
 mode: 511

CHAPTER 1. WORKING WITH PODS

35

The certificate/key pair is automatically replaced when it gets close to expiration. View the
expiration date in the service.alpha.openshift.io/expiry annotation on the secret, which is in
RFC3339 format.

NOTE

In most cases, the service DNS name <service.name>.
<service.namespace>.svc is not externally routable. The primary use of
<service.name>.<service.namespace>.svc is for intracluster or intraservice
communication, and with re-encrypt routes.

1.5.5. Troubleshooting secrets

If a service certificate generation fails with (service’s service.alpha.openshift.io/serving-cert-
generation-error annotation contains):

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not
match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

The service that generated the certificate no longer exists, or has a different serviceUID. You must
force certificates regeneration by removing the old secret, and clearing the following annotations on the
service service.alpha.openshift.io/serving-cert-generation-error,
service.alpha.openshift.io/serving-cert-generation-error-num:

$ oc delete secret <secret_name>
$ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-error-
$ oc annotate service <service_name> service.alpha.openshift.io/serving-cert-generation-error-num-

NOTE

The command removing annotation has a - after the annotation name to be removed.

1.6. USING DEVICE PLUG-INS TO ACCESS EXTERNAL RESOURCES
WITH PODS

Device plug-ins allow you to use a particular device type (GPU, InfiniBand, or other similar computing
resources that require vendor-specific initialization and setup) in your OpenShift Container Platform
pod without needing to write custom code.

1.6.1. Understanding device plug-ins

The device plug-in provides a consistent and portable solution to consume hardware devices across
clusters. The device plug-in provides support for these devices through an extension mechanism, which
makes these devices available to Containers, provides health checks of these devices, and securely
shares them.

IMPORTANT

OpenShift Container Platform supports the device plug-in API, but the device plug-in
Containers are supported by individual vendors.

A device plug-in is a gRPC service running on the nodes (external to the kubelet) that is responsible for

OpenShift Container Platform 4.3 Nodes

36

A device plug-in is a gRPC service running on the nodes (external to the kubelet) that is responsible for
managing specific hardware resources. Any device plug-in must support following remote procedure
calls (RPCs):

Example device plug-ins

Nvidia GPU device plug-in for COS-based operating system

Nvidia official GPU device plug-in

Solarflare device plug-in

KubeVirt device plug-ins: vfio and kvm

NOTE

For easy device plug-in reference implementation, there is a stub device plug-in in the
Device Manager code:
vendor/k8s.io/kubernetes/pkg/kubelet/cm/deviceplugin/device_plugin_stub.go.

1.6.1.1. Methods for deploying a device plug-in

Daemonsets are the recommended approach for device plug-in deployments.

Upon start, the device plug-in will try to create a UNIX domain socket at
/var/lib/kubelet/device-plugin/ on the node to serve RPCs from Device Manager.

Since device plug-ins must manage hardware resources, access to the host file system, as well
as socket creation, they must be run in a privileged security context.

More specific details regarding deployment steps can be found with each device plug-in
implementation.

service DevicePlugin {
 // GetDevicePluginOptions returns options to be communicated with Device
 // Manager
 rpc GetDevicePluginOptions(Empty) returns (DevicePluginOptions) {}

 // ListAndWatch returns a stream of List of Devices
 // Whenever a Device state change or a Device disappears, ListAndWatch
 // returns the new list
 rpc ListAndWatch(Empty) returns (stream ListAndWatchResponse) {}

 // Allocate is called during container creation so that the Device
 // Plug-in can run device specific operations and instruct Kubelet
 // of the steps to make the Device available in the container
 rpc Allocate(AllocateRequest) returns (AllocateResponse) {}

 // PreStartcontainer is called, if indicated by Device Plug-in during
 // registration phase, before each container start. Device plug-in
 // can run device specific operations such as reseting the device
 // before making devices available to the container
 rpc PreStartcontainer(PreStartcontainerRequest) returns (PreStartcontainerResponse) {}
}

CHAPTER 1. WORKING WITH PODS

37

https://github.com/GoogleCloudPlatform/Container-engine-accelerators/tree/master/cmd/nvidia_gpu
https://github.com/NVIDIA/k8s-device-plugin
https://github.com/vikaschoudhary16/sfc-device-plugin
https://github.com/kubevirt/kubernetes-device-plugins

1.6.2. Understanding the Device Manager

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plug-ins known as device plug-ins.

You can advertise specialized hardware without requiring any upstream code changes.

IMPORTANT

OpenShift Container Platform supports the device plug-in API, but the device plug-in
Containers are supported by individual vendors.

Device Manager advertises devices as Extended Resources. User pods can consume devices,
advertised by Device Manager, using the same Limit/Request mechanism, which is used for requesting
any other Extended Resource.

Upon start, the device plug-in registers itself with Device Manager invoking Register on the
/var/lib/kubelet/device-plugins/kubelet.sock and starts a gRPC service at /var/lib/kubelet/device-
plugins/<plugin>.sock for serving Device Manager requests.

Device Manager, while processing a new registration request, invokes ListAndWatch remote procedure
call (RPC) at the device plug-in service. In response, Device Manager gets a list of Device objects from
the plug-in over a gRPC stream. Device Manager will keep watching on the stream for new updates from
the plug-in. On the plug-in side, the plug-in will also keep the stream open and whenever there is a
change in the state of any of the devices, a new device list is sent to the Device Manager over the same
streaming connection.

While handling a new pod admission request, Kubelet passes requested Extended Resources to the
Device Manager for device allocation. Device Manager checks in its database to verify if a corresponding
plug-in exists or not. If the plug-in exists and there are free allocatable devices as well as per local
cache, Allocate RPC is invoked at that particular device plug-in.

Additionally, device plug-ins can also perform several other device-specific operations, such as driver
installation, device initialization, and device resets. These functionalities vary from implementation to
implementation.

1.6.3. Enabling Device Manager

Enable Device Manager to implement a device plug-in to advertise specialized hardware without any
upstream code changes.

Device Manager provides a mechanism for advertising specialized node hardware resources with the
help of plug-ins known as device plug-ins.

1. Obtain the label associated with the static Machine Config Pool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the Machine Config:

oc describe machineconfig <name>

For example:

oc describe machineconfig 00-worker

OpenShift Container Platform 4.3 Nodes

38

1 1

1

2

3

Label required for the device manager.

Procedure

1. Create a Custom Resource (CR) for your configuration change.

Sample configuration for a Device Manager CR

Assign a name to CR.

Enter the label from the Machine Config Pool.

Set DevicePlugins to 'true`.

2. Create the device manager:

$ oc create -f devicemgr.yaml

kube
letconfig.machineconfiguration.openshift.io/devicemgr created

3. Ensure that Device Manager was actually enabled by confirming that /var/lib/kubelet/device-
plugins/kubelet.sock is created on the node. This is the UNIX domain socket on which the
Device Manager gRPC server listens for new plug-in registrations. This sock file is created when
the Kubelet is started only if Device Manager is enabled.

1.7. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS

You can enable pod priority and preemption in your cluster. Pod priority indicates the importance of a
pod relative to other pods and queues the pods based on that priority. Pod preemption allows the
cluster to evict, or preempt, lower-priority pods so that higher-priority pods can be scheduled if there is
no available space on a suitable node Pod priority also affects the scheduling order of pods and out-of-
resource eviction ordering on the node.

To use priority and preemption, you create priority classes that define the relative weight of your pods.

oc describe machineconfig 00-worker
Name: 00-worker
Namespace:
Labels: machineconfiguration.openshift.io/role=worker 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: devicemgr 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 machineconfiguration.openshift.io: devicemgr 2
 kubeletConfig:
 feature-gates:
 - DevicePlugins=true 3

CHAPTER 1. WORKING WITH PODS

39

To use priority and preemption, you create priority classes that define the relative weight of your pods.
Then, reference a priority class in the pod specification to apply that weight for scheduling.

Preemption is controlled by the disablePreemption parameter in the scheduler configuration file, which
is set to false by default.

1.7.1. Understanding pod priority

When you use the Pod Priority and Preemption feature, the scheduler orders pending pods by their
priority, and a pending pod is placed ahead of other pending pods with lower priority in the scheduling
queue. As a result, the higher priority pod might be scheduled sooner than pods with lower priority if its
scheduling requirements are met. If a pod cannot be scheduled, scheduler continues to schedule other
lower priority pods.

1.7.1.1. Pod priority classes

You can assign pods a priority class, which is a non-namespaced object that defines a mapping from a
name to the integer value of the priority. The higher the value, the higher the priority.

A priority class object can take any 32-bit integer value smaller than or equal to 1000000000 (one
billion). Reserve numbers larger than one billion for critical pods that should not be preempted or
evicted. By default, OpenShift Container Platform has two reserved priority classes for critical system
pods to have guaranteed scheduling.

$ oc get priorityclasses
NAME CREATED AT
cluster-logging 2019-03-13T14:45:12Z
system-cluster-critical 2019-03-13T14:01:10Z
system-node-critical 2019-03-13T14:01:10Z

system-node-critical - This priority class has a value of 2000001000 and is used for all pods
that should never be evicted from a node. Examples of pods that have this priority class are
sdn-ovs, sdn, and so forth. A number of critical components include the system-node-critical
priority class by default, for example:

master-api

master-controller

master-etcd

sdn

sdn-ovs

sync

system-cluster-critical - This priority class has a value of 2000000000 (two billion) and is
used with pods that are important for the cluster. Pods with this priority class can be evicted
from a node in certain circumstances. For example, pods configured with the system-node-
critical priority class can take priority. However, this priority class does ensure guaranteed
scheduling. Examples of pods that can have this priority class are fluentd, add-on components
like descheduler, and so forth. A number of critical components include the system-cluster-
critical priority class by default, for example:

fluentd

OpenShift Container Platform 4.3 Nodes

40

metrics-server

descheduler

cluster-logging - This priority is used by Fluentd to make sure Fluentd pods are scheduled to
nodes over other apps.

NOTE

If you upgrade your existing cluster, the priority of your existing pods is effectively zero.
However, existing pods with the scheduler.alpha.kubernetes.io/critical-pod annotation
are automatically converted to system-cluster-critical class. Fluentd cluster logging
pods with the annotation are converted to the cluster-logging priority class.

1.7.1.2. Pod priority names

After you have one or more priority classes, you can create pods that specify a priority class name in a
pod specification. The priority admission controller uses the priority class name field to populate the
integer value of the priority. If the named priority class is not found, the pod is rejected.

1.7.2. Understanding pod preemption

When a developer creates a pod, the pod goes into a queue. If the developer configured the pod for pod
priority or preemption, the scheduler picks a pod from the queue and tries to schedule the pod on a
node. If the scheduler cannot find space on an appropriate node that satisfies all the specified
requirements of the pod, preemption logic is triggered for the pending pod.

When the scheduler preempts one or more pods on a node, the nominatedNodeName field of higher-
priority pod specification is set to the name of the node, along with the nodename field. The scheduler
uses the nominatedNodeName field to keep track of the resources reserved for pods and also provides
information to the user about preemptions in the clusters.

After the scheduler preempts a lower-priority pod, the scheduler honors the graceful termination period
of the pod. If another node becomes available while scheduler is waiting for the lower-priority pod to
terminate, the scheduler can schedule the higher-priority pod on that node. As a result, the
nominatedNodeName field and nodeName field of the pod specification might be different.

Also, if the scheduler preempts pods on a node and is waiting for termination, and a pod with a higher-
priority pod than the pending pod needs to be scheduled, the scheduler can schedule the higher-priority
pod instead. In such a case, the scheduler clears the nominatedNodeName of the pending pod, making
the pod eligible for another node.

Preemption does not necessarily remove all lower-priority pods from a node. The scheduler can
schedule a pending pod by removing a portion of the lower-priority pods.

The scheduler considers a node for pod preemption only if the pending pod can be scheduled on the
node.

1.7.2.1. Pod preemption and other scheduler settings

If you enable pod priority and preemption, consider your other scheduler settings:

Pod priority and pod disruption budget

A pod disruption budget specifies the minimum number or percentage of replicas that must be up at
a time. If you specify pod disruption budgets, OpenShift Container Platform respects them when

CHAPTER 1. WORKING WITH PODS

41

1

2

3

4

preempting pods at a best effort level. The scheduler attempts to preempt pods without violating
the pod disruption budget. If no such pods are found, lower-priority pods might be preempted
despite their pod disruption budget requirements.

Pod priority and pod affinity

Pod affinity requires a new pod to be scheduled on the same node as other pods with the same label.

If a pending pod has inter-pod affinity with one or more of the lower-priority pods on a node, the
scheduler cannot preempt the lower-priority pods without violating the affinity requirements. In this
case, the scheduler looks for another node to schedule the pending pod. However, there is no guarantee
that the scheduler can find an appropriate node and pending pod might not be scheduled.

To prevent this situation, carefully configure pod affinity with equal-priority pods.

1.7.2.2. Graceful termination of preempted pods

When preempting a pod, the scheduler waits for the pod graceful termination period to expire, allowing
the pod to finish working and exit. If the pod does not exit after the period, the scheduler kills the pod.
This graceful termination period creates a time gap between the point that the scheduler preempts the
pod and the time when the pending pod can be scheduled on the node.

To minimize this gap, configure a small graceful termination period for lower-priority pods.

1.7.3. Configuring priority and preemption

You apply pod priority and preemption by creating a priority class object and associating pods to the
priority using the priorityClassName in your pod specifications.

Sample priority class object

The name of the priority class object.

The priority value of the object.

Optional field that indicates whether this priority class should be used for pods without a priority
class name specified. This field is false by default. Only one priority class with globalDefault set to
true can exist in the cluster. If there is no priority class with globalDefault:true, the priority of pods
with no priority class name is zero. Adding a priority class with globalDefault:true affects only pods
created after the priority class is added and does not change the priorities of existing pods.

Optional arbitrary text string that describes which pods developers should use with this priority
class.

Procedure

To configure your cluster to use priority and preemption:

apiVersion: scheduling.k8s.io/v1beta1
kind: PriorityClass
metadata:
 name: high-priority 1
value: 1000000 2
globalDefault: false 3
description: "This priority class should be used for XYZ service pods only." 4

OpenShift Container Platform 4.3 Nodes

42

1

1. Create one or more priority classes:

a. Specify a name and value for the priority.

b. Optionally specify the globalDefault field in the priority class and a description.

2. Create a pod specification or edit existing pods to include the name of a priority class, similar to
the following:

Sample pod specification with priority class name

Specify the priority class to use with this pod.

3. Create the pod:

$ oc create -f <file-name>.yaml

You can add the priority name directly to the pod configuration or to a pod template.

1.7.4. Disabling priority and preemption

You can disable the pod priority and preemption feature.

After the feature is disabled, the existing pods keep their priority fields, but preemption is disabled, and
priority fields are ignored. If the feature is disabled, you cannot set a priority class name in new pods.

IMPORTANT

Critical pods rely on scheduler preemption to be scheduled when a cluster is under
resource pressure. For this reason, Red Hat recommends not disabling preemption.
DaemonSet pods are scheduled by the DaemonSet controller and not affected by
disabling preemption.

Procedure

To disable the preemption for the cluster:

1. Edit the Scheduler Operator Custom Resource to add the disablePreemption: true parameter:

oc edit scheduler cluster

apiVersion: v1
kind: Pod
metadata:
 name: nginx
 labels:
 env: test
spec:
 containers:
 - name: nginx
 image: nginx
 imagePullPolicy: IfNotPresent
 priorityClassName: high-priority 1

CHAPTER 1. WORKING WITH PODS

43

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 creationTimestamp: '2019-03-12T01:45:02Z'
 generation: 1
 name: example
 resourceVersion: '1882034'
 selfLink: /apis/config.openshift.io/v1/schedulers/example
 uid: 743701e9-4468-11e9-bd34-02a7fe1bf828
spec:
 disablePreemption: true

1.8. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes
and selectors specified in pods.

For the pod to be eligible to run on a node, the pod must have the indicated key-value pairs as the label
on the node.

If you are using node affinity and node selectors in the same pod configuration, see the important
considerations below.

1.8.1. Using node selectors to control pod placement

You can use node selector labels on pods to control where the pod is scheduled.

With node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching
labels.

To add node selectors to an existing pod, add a node selector to the controlling object for that node,
such as a ReplicaSet, Daemonset, or StatefulSet. Any existing pods under that controlling object are
recreated on a node with a matching label. If you are creating a new pod, you can add the node selector
directly to the pod spec.

You can add labels to a node or MachineConfig, but the labels will not persist if the node or machine
goes down. Adding the label to the MachineSet ensures that new nodes or machines will have the label.

NOTE

You cannot add a node selector directly to an existing scheduled pod.

Prerequisite

To add a node selector to existing pods, determine the controlling object for that pod. For example, the
router-default-66d5cf9464-m2g75 pod is controlled by the router-default-66d5cf9464 ReplicaSet:

$ oc describe pod router-default-66d5cf9464-7pwkc

Name: router-default-66d5cf9464-7pwkc
Namespace: openshift-ingress

OpenShift Container Platform 4.3 Nodes

44

....

Controlled By: ReplicaSet/router-default-66d5cf9464

The web console lists the controlling object under ownerReferences in the pod YAML:

 ownerReferences:
 - apiVersion: apps/v1
 kind: ReplicaSet
 name: router-default-66d5cf9464
 uid: d81dd094-da26-11e9-a48a-128e7edf0312
 controller: true
 blockOwnerDeletion: true

Procedure

1. Add labels to a node by using a MachineSet or editing the node directly:

Use a MachineSet to add labels to nodes managed by the MachineSet when a node is
created:

a. Run the following command to add a node selector to a MachineSet:

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

For example:

$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

b. Verify that the label is added to the MachineSet by using the oc edit command:
For example:

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

Example MachineSet object

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet

....

spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:

CHAPTER 1. WORKING WITH PODS

45

1

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

b. Verify that the label is added to the node:

Example output

2. Add the matching node selector a pod:

To add a node selector to existing and future pods, add a node selector to the controlling
object for the pods:

Example ReplicaSet object

Add the node selector.

To add a node selector to a specific pod, add the selector to the Pod object directly:

 region: east
 type: user-node
....

$ oc label nodes <name> <key>=<value>

$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ip-10-0-142-25.ec2.internal Ready worker 17m v1.18.3+002a51f

kind: ReplicaSet

....

spec:

....

 template:
 metadata:
 creationTimestamp: null
 labels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 pod-template-hash: 66d5cf9464
 spec:
 nodeSelector:
 beta.kubernetes.io/os: linux
 node-role.kubernetes.io/worker: ''
 type: user-node 1

OpenShift Container Platform 4.3 Nodes

46

Example Pod object

For example:

Example Pod object with a node selector

apiVersion: v1
kind: Pod

...

spec:
 nodeSelector:
 <key>: <value>

...

apiVersion: v1
kind: Pod

....

spec:
 nodeSelector:
 region: east
 type: user-node

CHAPTER 1. WORKING WITH PODS

47

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES
(SCHEDULING)

2.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER

Pod scheduling is an internal process that determines placement of new pods onto nodes within the
cluster.

The scheduler code has a clean separation that watches new pods as they get created and identifies the
most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the
master API.

Default pod scheduling

OpenShift Container Platform comes with a default scheduler that serves the needs of most users.
The default scheduler uses both inherent and customization tools to determine the best fit for a pod.

Advanced pod scheduling

In situations where you might want more control over where new pods are placed, the OpenShift
Container Platform advanced scheduling features allow you to configure a pod so that the pod is
required or has a preference to run on a particular node or alongside a specific pod by.

Using pod affinity and anti-affinity rules.

Controlling pod placement with pod affinity.

Controlling pod placement with node affinity.

Placing pods on overcomitted nodes.

Controlling pod placement with node selectors.

Controlling pod placement with taints and tolerations .

2.1.1. Scheduler Use Cases

One of the important use cases for scheduling within OpenShift Container Platform is to support
flexible affinity and anti-affinity policies.

2.1.1.1. Infrastructure Topological Levels

Administrators can define multiple topological levels for their infrastructure (nodes) by specifying labels
on nodes. For example: region=r1, zone=z1, rack=s1.

These label names have no particular meaning and administrators are free to name their infrastructure
levels anything, such as city/building/room. Also, administrators can define any number of levels for their
infrastructure topology, with three levels usually being adequate (such as: regions → zones → racks).
Administrators can specify affinity and anti-affinity rules at each of these levels in any combination.

2.1.1.2. Affinity

Administrators should be able to configure the scheduler to specify affinity at any topological level, or
even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same
service are scheduled onto nodes that belong to the same level. This handles any latency requirements

OpenShift Container Platform 4.3 Nodes

48

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-default
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-pod-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-pod-affinity-about_nodes-scheduler-pod-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-node-affinity-about_nodes-scheduler-node-affinity
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-overcommit
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-node-selectors
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-taints-tolerations

of applications by allowing administrators to ensure that peer pods do not end up being too
geographically separated. If no node is available within the same affinity group to host the pod, then the
pod is not scheduled.

If you need greater control over where the pods are scheduled, see Using Node Affinity and Using Pod
Affinity and Anti-affinity.

These advanced scheduling features allow administrators to specify which node a pod can be scheduled
on and to force or reject scheduling relative to other pods.

2.1.1.3. Anti-Affinity

Administrators should be able to configure the scheduler to specify anti-affinity at any topological level,
or even at multiple levels. Anti-affinity (or 'spread') at a particular level indicates that all pods that
belong to the same service are spread across nodes that belong to that level. This ensures that the
application is well spread for high availability purposes. The scheduler tries to balance the service pods
across all applicable nodes as evenly as possible.

If you need greater control over where the pods are scheduled, see Using Node Affinity and Using Pod
Affinity and Anti-affinity.

These advanced scheduling features allow administrators to specify which node a pod can be scheduled
on and to force or reject scheduling relative to other pods.

2.2. CONFIGURING THE DEFAULT SCHEDULER TO CONTROL POD
PLACEMENT

The default OpenShift Container Platform pod scheduler is responsible for determining placement of
new pods onto nodes within the cluster. It reads data from the pod and tries to find a node that is a
good fit based on configured policies. It is completely independent and exists as a standalone/pluggable
solution. It does not modify the pod and just creates a binding for the pod that ties the pod to the
particular node.

A selection of predicates and priorities defines the policy for the scheduler. See Modifying scheduler
policy for a list of predicates and priorities.

Sample default scheduler object

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 annotations:
 release.openshift.io/create-only: "true"
 creationTimestamp: 2019-05-20T15:39:01Z
 generation: 1
 name: cluster
 resourceVersion: "1491"
 selfLink: /apis/config.openshift.io/v1/schedulers/cluster
 uid: 6435dd99-7b15-11e9-bd48-0aec821b8e34
spec:
 policy: 1
 name: scheduler-policy
 defaultNodeSelector: type=user-node,region=east 2

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-scheduler-default-modifying_nodes-scheduler-default

1

2

You can specify the name of a custom scheduler policy file.

Optionally, specify a default node selector to restrict pod placement to specific nodes.

2.2.1. Understanding default scheduling

The existing generic scheduler is the default platform-provided scheduler engine that selects a node to
host the pod in a three-step operation:

Filters the Nodes

The available nodes are filtered based on the constraints or requirements specified. This is done by
running each node through the list of filter functions called predicates.

Prioritize the Filtered List of Nodes

This is achieved by passing each node through a series of priority_ functions that assign it a score
between 0 - 10, with 0 indicating a bad fit and 10 indicating a good fit to host the pod. The scheduler
configuration can also take in a simple weight (positive numeric value) for each priority function. The
node score provided by each priority function is multiplied by the weight (default weight for most
priorities is 1) and then combined by adding the scores for each node provided by all the priorities.
This weight attribute can be used by administrators to give higher importance to some priorities.

Select the Best Fit Node

The nodes are sorted based on their scores and the node with the highest score is selected to host
the pod. If multiple nodes have the same high score, then one of them is selected at random.

2.2.1.1. Understanding Scheduler Policy

The selection of the predicate and priorities defines the policy for the scheduler.

The scheduler configuration file is a JSON file, which must be named policy.cfg, that specifies the
predicates and priorities the scheduler will consider.

In the absence of the scheduler policy file, the default scheduler behavior is used.

IMPORTANT

The predicates and priorities defined in the scheduler configuration file completely
override the default scheduler policy. If any of the default predicates and priorities are
required, you must explicitly specify the functions in the policy configuration.

Sample scheduler ConfigMap

apiVersion: v1
data:
 policy.cfg: |
 {
 "kind" : "Policy",
 "apiVersion" : "v1",
 "predicates" : [
 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "GeneralPredicates"},
 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "MaxCSIVolumeCountPred"},
 {"name" : "CheckVolumeBinding"},

OpenShift Container Platform 4.3 Nodes

50

2.2.2. Creating a scheduler policy file

You can control change the default scheduling behavior by creating a JSON file with using the with the
desired predicates and priorities. You then generate a ConfigMap from the JSON file and point the
cluster Scheduler object to use the ConfigMap.

Procedure

To configure the scheduler policy:

1. Create the a JSON file named policy.cfg with the desired predicates and priorities.

Sample scheduler JSON file

 {"name" : "MaxEBSVolumeCount"},
 {"name" : "PodFitsResources"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "CheckNodeUnschedulable"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "MatchNodeSelector"},
 {"name" : "HostName"},
 {"name" : "PodToleratesNodeTaints"}
],
 "priorities" : [
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1},
 {"name" : "NodePreferAvoidPodsPriority", "weight" : 1},
 {"name" : "NodeAffinityPriority", "weight" : 1},
 {"name" : "TaintTolerationPriority", "weight" : 1},
 {"name" : "ImageLocalityPriority", "weight" : 1},
 {"name" : "SelectorSpreadPriority", "weight" : 1},
 {"name" : "InterPodAffinityPriority", "weight" : 1},
 {"name" : "EqualPriority", "weight" : 1}
]
 }
kind: ConfigMap
metadata:
 creationTimestamp: "2019-09-17T08:42:33Z"
 name: scheduler-policy
 namespace: openshift-config
 resourceVersion: "59500"
 selfLink: /api/v1/namespaces/openshift-config/configmaps/scheduler-policy
 uid: 17ee8865-d927-11e9-b213-02d1e1709840`

{
"kind" : "Policy",
"apiVersion" : "v1",
"predicates" : [1
 {"name" : "PodFitsHostPorts"},
 {"name" : "PodFitsResources"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "MatchNodeSelector"},
 {"name" : "MaxEBSVolumeCount"},

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

51

1

2

1

Add the predicates as needed.

Add the priorities as needed.

2. Create a ConfigMap based on the scheduler JSON file:

$ oc create configmap -n openshift-config --from-file=policy.cfg <configmap-name> 1

Enter a name for the ConfigMap.

For example:

$ oc create configmap -n openshift-config --from-file=policy.cfg scheduler-policy

configmap/scheduler-policy created

 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "checkServiceAffinity"},
 {"name" : "PodToleratesNodeNoExecuteTaints"},
 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "PodToleratesNodeTaints"},
 {"name" : "HostName"}
],
"priorities" : [2
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1},
 {"name" : "EqualPriority", "weight" : 1}
]
}

apiVersion: v1
data:
 policy.cfg: |
 {
 "kind" : "Policy",
 "apiVersion" : "v1",
 "predicates" : [
 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "GeneralPredicates"},
 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "MaxCSIVolumeCountPred"},
 {"name" : "CheckVolumeBinding"},
 {"name" : "MaxEBSVolumeCount"},
 {"name" : "PodFitsResources"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "CheckNodeUnschedulable"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "MatchNodeSelector"},
 {"name" : "HostName"},
 {"name" : "PodToleratesNodeTaints"}

OpenShift Container Platform 4.3 Nodes

52

1

3. Edit the Scheduler Operator Custom Resource to add the ConfigMap:

$ oc patch Scheduler cluster --type='merge' -p '{"spec":{"policy":{"name":"<configmap-
name>"}}}' --type=merge 1

Specify the name of the ConfigMap.

For example:

$ oc patch Scheduler cluster --type='merge' -p '{"spec":{"policy":{"name":"scheduler-
policy"}}}' --type=merge

After making the change to the Scheduler config resource, wait for the opensift-kube-
apiserver pods to redeploy. This can take several minutes. Until the pods redeploy, new
scheduler does not take effect.

4. Verify the scheduler policy is configured by viewing the log of a scheduler pod in the openshift-
kube-scheduler namespace. The following command checks for the predoicates and priorites
that are being registered by the scheduler:

$ oc logs <scheduler-pod> | grep predicates

For example:

$ oc logs openshift-kube-scheduler-ip-10-0-141-29.ec2.internal | grep predicates

Creating scheduler with fit predicates 'map[MaxGCEPDVolumeCount:{}
MaxAzureDiskVolumeCount:{} CheckNodeUnschedulable:{} NoDiskConflict:{}
NoVolumeZoneConflict:{} MatchNodeSelector:{} GeneralPredicates:{}
MaxCSIVolumeCountPred:{} CheckVolumeBinding:{} MaxEBSVolumeCount:{}
PodFitsResources:{} MatchInterPodAffinity:{} HostName:{} PodToleratesNodeTaints:{}]' and

],
 "priorities" : [
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1},
 {"name" : "NodePreferAvoidPodsPriority", "weight" : 1},
 {"name" : "NodeAffinityPriority", "weight" : 1},
 {"name" : "TaintTolerationPriority", "weight" : 1},
 {"name" : "ImageLocalityPriority", "weight" : 1},
 {"name" : "SelectorSpreadPriority", "weight" : 1},
 {"name" : "InterPodAffinityPriority", "weight" : 1},
 {"name" : "EqualPriority", "weight" : 1}
]
 }
kind: ConfigMap
metadata:
 creationTimestamp: "2019-09-17T08:42:33Z"
 name: scheduler-policy
 namespace: openshift-config
 resourceVersion: "59500"
 selfLink: /api/v1/namespaces/openshift-config/configmaps/scheduler-policy
 uid: 17ee8865-d927-11e9-b213-02d1e1709840`

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

53

priority functions 'map[InterPodAffinityPriority:{} LeastRequestedPriority:{}
ServiceSpreadingPriority:{} ImageLocalityPriority:{} SelectorSpreadPriority:{} EqualPriority:{}
BalancedResourceAllocation:{} NodePreferAvoidPodsPriority:{} NodeAffinityPriority:{}
TaintTolerationPriority:{}]'

2.2.3. Modifying scheduler policies

You change scheduling behavior by creating or editing your scheduler policy ConfigMap in the
openshift-config project. Add and remove predicates and priorities to the ConfigMap to create a
scheduler policy.

Procedure

To modify the current custom scheduling, use one of the following methods:

Edit the scheduler policy ConfigMap:

$ oc edit configmap <configmap-name> -n openshift-config

For example:

$ oc edit configmap scheduler-policy -n openshift-config

apiVersion: v1
data:
 policy.cfg: |
 {
 "kind" : "Policy",
 "apiVersion" : "v1",
 "predicates" : [1
 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "GeneralPredicates"},
 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "MaxCSIVolumeCountPred"},
 {"name" : "CheckVolumeBinding"},
 {"name" : "MaxEBSVolumeCount"},
 {"name" : "PodFitsResources"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "CheckNodeUnschedulable"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "MatchNodeSelector"},
 {"name" : "HostName"},
 {"name" : "PodToleratesNodeTaints"}
],
 "priorities" : [2
 {"name" : "LeastRequestedPriority", "weight" : 1},
 {"name" : "BalancedResourceAllocation", "weight" : 1},
 {"name" : "ServiceSpreadingPriority", "weight" : 1},
 {"name" : "NodePreferAvoidPodsPriority", "weight" : 1},
 {"name" : "NodeAffinityPriority", "weight" : 1},
 {"name" : "TaintTolerationPriority", "weight" : 1},
 {"name" : "ImageLocalityPriority", "weight" : 1},
 {"name" : "SelectorSpreadPriority", "weight" : 1},
 {"name" : "InterPodAffinityPriority", "weight" : 1},

OpenShift Container Platform 4.3 Nodes

54

1

2

 {"name" : "EqualPriority", "weight" : 1}
]
 }
kind: ConfigMap
metadata:
 creationTimestamp: "2019-09-17T17:44:19Z"
 name: scheduler-policy
 namespace: openshift-config
 resourceVersion: "15370"
 selfLink: /api/v1/namespaces/openshift-config/configmaps/scheduler-policy

Add or remove predicates as needed.

Add, remove, or change the weight of predicates as needed.

It can take a few minutes for the scheduler to restart the pods with the updated policy.

Change the policies and predicates being used:

1. Remove the scheduler policy CongifMap:

$ oc delete configmap -n openshift-config <name>

For example:

$ oc delete configmap -n openshift-config scheduler-policy

2. Edit the policy.cfg file to add and remove policies and predicates as needed.
For example:

$ vi policy.cfg

apiVersion: v1
data:
 policy.cfg: |
 {
 "kind" : "Policy",
 "apiVersion" : "v1",
 "predicates" : [
 {"name" : "PodFitsHostPorts"},
 {"name" : "PodFitsResources"},
 {"name" : "NoDiskConflict"},
 {"name" : "NoVolumeZoneConflict"},
 {"name" : "MatchNodeSelector"},
 {"name" : "MaxEBSVolumeCount"},
 {"name" : "MaxAzureDiskVolumeCount"},
 {"name" : "CheckVolumeBinding"},
 {"name" : "CheckServiceAffinity"},
 {"name" : "PodToleratesNodeNoExecuteTaints"},
 {"name" : "MaxGCEPDVolumeCount"},
 {"name" : "MatchInterPodAffinity"},
 {"name" : "PodToleratesNodeTaints"},
 {"name" : "HostName"}
],

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

55

1

3. Re-create the scheduler policy ConfigMap based on the scheduler JSON file:

$ oc create configmap -n openshift-config --from-file=policy.cfg <configmap-name> 1

Enter a name for the ConfigMap.

For example:

$ oc create configmap -n openshift-config --from-file=policy.cfg scheduler-policy

configmap/scheduler-policy created

2.2.3.1. Understanding the scheduler predicates

Predicates are rules that filter out unqualified nodes.

There are several predicates provided by default in OpenShift Container Platform. Some of these
predicates can be customized by providing certain parameters. Multiple predicates can be combined to
provide additional filtering of nodes.

2.2.3.1.1. Static Predicates

These predicates do not take any configuration parameters or inputs from the user. These are specified
in the scheduler configuration using their exact name.

2.2.3.1.1.1. Default Predicates

The default scheduler policy includes the following predicates:

NoVolumeZoneConflict checks that the volumes a pod requests are available in the zone.

{"name" : "NoVolumeZoneConflict"}

MaxEBSVolumeCount checks the maximum number of volumes that can be attached to an AWS
instance.

{"name" : "MaxEBSVolumeCount"}

MaxAzureDiskVolumeCount checks the maximum number of Azure Disk Volumes.

{"name" : "MaxAzureDiskVolumeCount"}

PodToleratesNodeTaints checks if a pod can tolerate the node taints.

 "priorities" : [
 {"name" : "LeastRequestedPriority", "weight" : 2},
 {"name" : "BalancedResourceAllocation", "weight" : 2},
 {"name" : "ServiceSpreadingPriority", "weight" : 2},
 {"name" : "EqualPriority", "weight" : 2}
]
 }

OpenShift Container Platform 4.3 Nodes

56

{"name" : "PodToleratesNodeTaints"}

CheckNodeUnschedulable checks if a pod can be scheduled on a node with Unschedulable spec.

{"name" : "CheckNodeUnschedulable"}

CheckVolumeBinding evaluates if a pod can fit based on the volumes, it requests, for both bound and
unbound PVCs. * For PVCs that are bound, the predicate checks that the corresponding PV’s node
affinity is satisfied by the given node. * For PVCs that are unbound, the predicate searched for available
PVs that can satisfy the PVC requirements and that the PV node affinity is satisfied by the given node.

The predicate returns true if all bound PVCs have compatible PVs with the node, and if all unbound
PVCs can be matched with an available and node-compatible PV.

{"name" : "CheckVolumeBinding"}

NoDiskConflict checks if the volume requested by a pod is available.

{"name" : "NoDiskConflict"}

MaxGCEPDVolumeCount checks the maximum number of Google Compute Engine (GCE) Persistent
Disks (PD).

{"name" : "MaxGCEPDVolumeCount"}

MaxCSIVolumeCountPred

MatchInterPodAffinity checks if the pod affinity/anti-affinity rules permit the pod.

{"name" : "MatchInterPodAffinity"}

2.2.3.1.1.2. Other Static Predicates

OpenShift Container Platform also supports the following predicates:

NOTE

The CheckNode-* predicates cannot be used if the Taint Nodes By Condition feature is
enabled. The Taint Nodes By Condition feature is enabled by default.

CheckNodeCondition checks if a pod can be scheduled on a node reporting out of disk, network
unavailable, or not ready conditions.

{"name" : "CheckNodeCondition"}

CheckNodeLabelPresence checks if all of the specified labels exist on a node, regardless of their value.

{"name" : "CheckNodeLabelPresence"}

checkServiceAffinity checks that ServiceAffinity labels are homogeneous for pods that are scheduled
on a node.

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

57

{"name" : "checkServiceAffinity"}

PodToleratesNodeNoExecuteTaints checks if a pod tolerations can tolerate a node NoExecute taints.

{"name" : "PodToleratesNodeNoExecuteTaints"}

2.2.3.1.2. General Predicates

The following general predicates check whether non-critical predicates and essential predicates pass.
Non-critical predicates are the predicates that only non-critical pods must pass and essential predicates
are the predicates that all pods must pass.

The default scheduler policy includes the general predicates.

Non-critical general predicates
PodFitsResources determines a fit based on resource availability (CPU, memory, GPU, and so forth).
The nodes can declare their resource capacities and then pods can specify what resources they require.
Fit is based on requested, rather than used resources.

{"name" : "PodFitsResources"}

Essential general predicates
PodFitsHostPorts determines if a node has free ports for the requested pod ports (absence of port
conflicts).

{"name" : "PodFitsHostPorts"}

HostName determines fit based on the presence of the Host parameter and a string match with the
name of the host.

{"name" : "HostName"}

MatchNodeSelector determines fit based on node selector (nodeSelector) queries defined in the pod.

{"name" : "MatchNodeSelector"}

2.2.3.2. Understanding the scheduler priorities

Priorities are rules that rank nodes according to preferences.

A custom set of priorities can be specified to configure the scheduler. There are several priorities
provided by default in OpenShift Container Platform. Other priorities can be customized by providing
certain parameters. Multiple priorities can be combined and different weights can be given to each in
order to impact the prioritization.

2.2.3.2.1. Static Priorities

Static priorities do not take any configuration parameters from the user, except weight. A weight is
required to be specified and cannot be 0 or negative.

These are specified in the scheduler policy Configmap in the openshift-config project.

OpenShift Container Platform 4.3 Nodes

58

2.2.3.2.1.1. Default Priorities

The default scheduler policy includes the following priorities. Each of the priority function has a weight
of 1 except NodePreferAvoidPodsPriority, which has a weight of 10000.

NodeAffinityPriority prioritizes nodes according to node affinity scheduling preferences

{"name" : "NodeAffinityPriority", "weight" : 1}

TaintTolerationPriority prioritizes nodes that have a fewer number of intolerable taints on them for a
pod. An intolerable taint is one which has key PreferNoSchedule.

{"name" : "TaintTolerationPriority", "weight" : 1}

ImageLocalityPriority prioritizes nodes that already have requested pod container’s images.

{"name" : "ImageLocalityPriority", "weight" : 1}

SelectorSpreadPriority looks for services, replication controllers (RC), replication sets (RS), and
stateful sets that match the pod, then finds existing pods that match those selectors. The scheduler
favors nodes that have fewer existing matching pods. Then, it schedules the pod on a node with the
smallest number of pods that match those selectors as the pod being scheduled.

{"name" : "SelectorSpreadPriority", "weight" : 1}

InterPodAffinityPriority computes a sum by iterating through the elements of
weightedPodAffinityTerm and adding weight to the sum if the corresponding PodAffinityTerm is
satisfied for that node. The node(s) with the highest sum are the most preferred.

{"name" : "InterPodAffinityPriority", "weight" : 1}

LeastRequestedPriority favors nodes with fewer requested resources. It calculates the percentage of
memory and CPU requested by pods scheduled on the node, and prioritizes nodes that have the
highest available/remaining capacity.

{"name" : "LeastRequestedPriority", "weight" : 1}

BalancedResourceAllocation favors nodes with balanced resource usage rate. It calculates the
difference between the consumed CPU and memory as a fraction of capacity, and prioritizes the nodes
based on how close the two metrics are to each other. This should always be used together with
LeastRequestedPriority.

{"name" : "BalancedResourceAllocation", "weight" : 1}

NodePreferAvoidPodsPriority ignores pods that are owned by a controller other than a replication
controller.

{"name" : "NodePreferAvoidPodsPriority", "weight" : 10000}

2.2.3.2.1.2. Other Static Priorities

OpenShift Container Platform also supports the following priorities:

EqualPriority gives an equal weight of 1 to all nodes, if no priority configurations are provided. We

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

59

1

2

3

EqualPriority gives an equal weight of 1 to all nodes, if no priority configurations are provided. We
recommend using this priority only for testing environments.

{"name" : "EqualPriority", "weight" : 1}

MostRequestedPriority prioritizes nodes with most requested resources. It calculates the percentage
of memory and CPU requested by pods scheduled on the node, and prioritizes based on the maximum
of the average of the fraction of requested to capacity.

{"name" : "MostRequestedPriority", "weight" : 1}

ServiceSpreadingPriority spreads pods by minimizing the number of pods belonging to the same
service onto the same machine.

{"name" : "ServiceSpreadingPriority", "weight" : 1}

2.2.3.2.2. Configurable Priorities

You can configure these priorities in the scheduler policy Configmap, in the openshift-config project, to
add labels to affect how the priorities.

The type of the priority function is identified by the argument that they take. Since these are
configurable, multiple priorities of the same type (but different configuration parameters) can be
combined as long as their user-defined names are different.

For information on using these priorities, see Modifying Scheduler Policy.

ServiceAntiAffinity takes a label and ensures a good spread of the pods belonging to the same service
across the group of nodes based on the label values. It gives the same score to all nodes that have the
same value for the specified label. It gives a higher score to nodes within a group with the least
concentration of pods.

Specify a name for the priority.

Specify a weight. Enter a non-zero positive value.

Specify a label to match.

{
"kind": "Policy",
"apiVersion": "v1",

"priorities":[
 {
 "name":"<name>", 1
 "weight" : 1 2
 "argument":{
 "serviceAntiAffinity":{
 "label": "<label>" 3
 }
 }
 }
]
}

OpenShift Container Platform 4.3 Nodes

60

1

2

3

4

For example:

NOTE

In some situations using ServiceAntiAffinity based on custom labels does not spread pod
as expected. See this Red Hat Solution .

*The labelPreference parameter gives priority based on the specified label. If the label is present on a
node, that node is given priority. If no label is specified, priority is given to nodes that do not have a label.

Specify a name for the priority.

Specify a weight. Enter a non-zero positive value.

Specify a label to match.

Specify whether the label is required, either true or false.

2.2.4. Sample Policy Configurations

{
"kind": "Policy",
"apiVersion": "v1",
"priorities": [
 {
 "name":"RackSpread",
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": {
 "label": "rack"
 }
 }
 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"priorities":[
 {
 "name":"<name>", 1
 "weight" : 1 2
 "argument":{
 "labelPreference":{
 "label": "<label>", 3
 "presence": true 4
 }
 }
 }
]
}

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

61

https://access.redhat.com/solutions/3432401

1

2

3

4

5

6

The configuration below specifies the default scheduler configuration, if it were to be specified using the
scheduler policy file.

The name for the predicate.

The type of predicate.

The labels for the predicate.

The name for the priority.

The type of priority.

The labels for the priority.

In all of the sample configurations below, the list of predicates and priority functions is truncated to
include only the ones that pertain to the use case specified. In practice, a complete/meaningful
scheduler policy should include most, if not all, of the default predicates and priorities listed above.

The following example defines three topological levels, region (affinity) → zone (affinity) → rack (anti-
affinity):

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "RegionZoneAffinity", 1
 "argument": {
 "serviceAffinity": { 2
 "labels": ["region, zone"] 3
 }
 }
 }
],
"priorities": [
 {
 "name":"RackSpread", 4
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": { 5
 "label": "rack" 6
 }
 }
 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "RegionZoneAffinity",

OpenShift Container Platform 4.3 Nodes

62

The following example defines three topological levels, city (affinity) → building (anti-affinity) → room
(anti-affinity):

 "argument": {
 "serviceAffinity": {
 "labels": ["region, zone"]
 }
 }
 }
],
"priorities": [
 {
 "name":"RackSpread",
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": {
 "label": "rack"
 }
 }
 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "CityAffinity",
 "argument": {
 "serviceAffinity": {
 "label": "city"
 }
 }
 }
],
"priorities": [
 {
 "name":"BuildingSpread",
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": {
 "label": "building"
 }
 }
 },
 {
 "name":"RoomSpread",
 "weight" : 1,
 "argument": {
 "serviceAntiAffinity": {
 "label": "room"
 }
 }

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

63

The following example defines a policy to only use nodes with the 'region' label defined and prefer
nodes with the 'zone' label defined:

The following example combines both static and configurable predicates and also priorities:

 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "RequireRegion",
 "argument": {
 "labelPreference": {
 "labels": ["region"],
 "presence": true
 }
 }
 }
],
"priorities": [
 {
 "name":"ZonePreferred",
 "weight" : 1,
 "argument": {
 "labelPreference": {
 "label": "zone",
 "presence": true
 }
 }
 }
]
}

{
"kind": "Policy",
"apiVersion": "v1",
"predicates": [
 {
 "name": "RegionAffinity",
 "argument": {
 "serviceAffinity": {
 "labels": ["region"]
 }
 }
 },
 {
 "name": "RequireRegion",
 "argument": {
 "labelsPresence": {
 "labels": ["region"],
 "presence": true

OpenShift Container Platform 4.3 Nodes

64

2.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND
ANTI-AFFINITY RULES

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled. Anti-affinity
is a property of pods that prevents a pod from being scheduled on a node.

In OpenShift Container Platform pod affinity and pod anti-affinity allow you to constrain which nodes
your pod is eligible to be scheduled on based on the key/value labels on other pods.

2.3.1. Understanding pod affinity

Pod affinity and pod anti-affinity allow you to constrain which nodes your pod is eligible to be scheduled
on based on the key/value labels on other pods.

Pod affinity can tell the scheduler to locate a new pod on the same node as other pods if the
label selector on the new pod matches the label on the current pod.

 }
 }
 },
 {
 "name": "BuildingNodesAvoid",
 "argument": {
 "labelsPresence": {
 "label": "building",
 "presence": false
 }
 }
 },
 {"name" : "PodFitsPorts"},
 {"name" : "MatchNodeSelector"}
],
"priorities": [
 {
 "name": "ZoneSpread",
 "weight" : 2,
 "argument": {
 "serviceAntiAffinity":{
 "label": "zone"
 }
 }
 },
 {
 "name":"ZonePreferred",
 "weight" : 1,
 "argument": {
 "labelPreference":{
 "label": "zone",
 "presence": true
 }
 }
 },
 {"name" : "ServiceSpreadingPriority", "weight" : 1}
]
}

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

65

Pod anti-affinity can prevent the scheduler from locating a new pod on the same node as pods
with the same labels if the label selector on the new pod matches the label on the current pod.

For example, using affinity rules, you could spread or pack pods within a service or relative to pods in
other services. Anti-affinity rules allow you to prevent pods of a particular service from scheduling on the
same nodes as pods of another service that are known to interfere with the performance of the pods of
the first service. Or, you could spread the pods of a service across nodes or availability zones to reduce
correlated failures.

There are two types of pod affinity rules: required and preferred.

Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if
the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.

NOTE

Depending on your pod priority and preemption settings, the scheduler might not be able
to find an appropriate node for a pod without violating affinity requirements. If so, a pod
might not be scheduled.

To prevent this situation, carefully configure pod affinity with equal-priority pods.

You configure pod affinity/anti-affinity through the pod specification files. You can specify a required
rule, a preferred rule, or both. If you specify both, the node must first meet the required rule, then
attempts to meet the preferred rule.

The following example shows a pod specification configured for pod affinity and anti-affinity.

In this example, the pod affinity rule indicates that the pod can schedule onto a node only if that node
has at least one already-running pod with a label that has the key security and value S1. The pod anti-
affinity rule says that the pod prefers to not schedule onto a node if that node is already running a pod
with label having key security and value S2.

Sample pod config file with pod affinity

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-affinity
spec:
 affinity:
 podAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 - labelSelector:
 matchExpressions:
 - key: security 3
 operator: In 4
 values:
 - S1 5
 topologyKey: failure-domain.beta.kubernetes.io/zone
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod

OpenShift Container Platform 4.3 Nodes

66

1

2

3 5

4

1

2

3

4

5

Stanza to configure pod affinity.

Defines a required rule.

The key and value (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn,
Exists, or DoesNotExist.

Sample pod config file with pod anti-affinity

Stanza to configure pod anti-affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with the highest weight is preferred.

Description of the pod label that determines when the anti-affinity rule applies. Specify a key and
value for the label.

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, NotIn,
Exists, or DoesNotExist.

NOTE

If labels on a node change at runtime such that the affinity rules on a pod are no longer
met, the pod continues to run on the node.

2.3.2. Configuring a pod affinity rule

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-antiaffinity
spec:
 affinity:
 podAntiAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security 4
 operator: In 5
 values:
 - S2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: with-pod-affinity
 image: docker.io/ocpqe/hello-pod

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

67

The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod
that uses affinity to allow scheduling with that pod.

Procedure

1. Create a pod with a specific label in the pod specification:

2. When creating other pods, edit the pod specification as follows:

a. Use the podAntiAffinity stanza to configure the
requiredDuringSchedulingIgnoredDuringExecution parameter or
preferredDuringSchedulingIgnoredDuringExecution parameter:

b. Specify the key and value that must be met. If you want the new pod to be scheduled with
the other pod, use the same key and value parameters as the label on the first pod.

c. Specify an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For example,
use the operator In to require the label to be in the node.

d. Specify a topologyKey, which is a prepopulated Kubernetes label that the system uses to
denote such a topology domain.

3. Create the pod.

$ oc create -f <pod-spec>.yaml

2.3.3. Configuring a pod anti-affinity rule

The following steps demonstrate a simple two-pod configuration that creates pod with a label and a pod
that uses an anti-affinity preferred rule to attempt to prevent scheduling with that pod.

Procedure

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: security-s1
 labels:
 security: S1
spec:
 containers:
 - name: security-s1
 image: docker.io/ocpqe/hello-pod

 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S1
 topologyKey: failure-domain.beta.kubernetes.io/zone

OpenShift Container Platform 4.3 Nodes

68

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

1. Create a pod with a specific label in the pod specification:

2. When creating other pods, edit the pod specification to set the following parameters:

3. Use the podAntiAffinity stanza to configure the
requiredDuringSchedulingIgnoredDuringExecution parameter or
preferredDuringSchedulingIgnoredDuringExecution parameter:

a. Specify a weight for the node, 1-100. The node that with highest weight is preferred.

b. Specify the key and values that must be met. If you want the new pod to not be scheduled
with the other pod, use the same key and value parameters as the label on the first pod.

c. For a preferred rule, specify a weight, 1-100.

d. Specify an operator. The operator can be In, NotIn, Exists, or DoesNotExist. For example,
use the operator In to require the label to be in the node.

4. Specify a topologyKey, which is a prepopulated Kubernetes label that the system uses to
denote such a topology domain.

5. Create the pod.

$ oc create -f <pod-spec>.yaml

2.3.4. Sample pod affinity and anti-affinity rules

The following examples demonstrate pod affinity and pod anti-affinity.

2.3.4.1. Pod Affinity

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: security-s2
 labels:
 security: S2
spec:
 containers:
 - name: security-s2
 image: docker.io/ocpqe/hello-pod

 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 100
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - S2
 topologyKey: kubernetes.io/hostname

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

69

https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#interlude-built-in-node-labels

The following example demonstrates pod affinity for pods with matching labels and label selectors.

The pod team4 has the label team:4.

The pod team4a has the label selector team:4 under podAffinity.

The team4a pod is scheduled on the same node as the team4 pod.

2.3.4.2. Pod Anti-affinity

The following example demonstrates pod anti-affinity for pods with matching labels and label selectors.

The pod pod-s1 has the label security:s1.

$ cat team4.yaml
apiVersion: v1
kind: Pod
metadata:
 name: team4
 labels:
 team: "4"
spec:
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

$ cat pod-team4a.yaml
apiVersion: v1
kind: Pod
metadata:
 name: team4a
spec:
 affinity:
 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: team
 operator: In
 values:
 - "4"
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod

cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
 labels:
 security: s1
spec:

OpenShift Container Platform 4.3 Nodes

70

The pod pod-s2 has the label selector security:s1 under podAntiAffinity.

The pod pod-s2 cannot be scheduled on the same node as pod-s1.

2.3.4.3. Pod Affinity with no Matching Labels

The following example demonstrates pod affinity for pods without matching labels and label selectors.

The pod pod-s1 has the label security:s1.

The pod pod-s2 has the label selector security:s2.

 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

cat pod-s2.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
spec:
 affinity:
 podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s1
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-antiaffinity
 image: docker.io/ocpqe/hello-pod

$ cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
 labels:
 security: s1
spec:
 containers:
 - name: ocp
 image: docker.io/ocpqe/hello-pod

$ cat pod-s2.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s2
spec:
 affinity:

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

71

The pod pod-s2 is not scheduled unless there is a node with a pod that has the security:s2
label. If there is no other pod with that label, the new pod remains in a pending state:

NAME READY STATUS RESTARTS AGE IP NODE
pod-s2 0/1 Pending 0 32s <none>

2.4. CONTROLLING POD PLACEMENT ON NODES USING NODE
AFFINITY RULES

Affinity is a property of pods that controls the nodes on which they prefer to be scheduled.

In OpenShift Container Platformnode affinity is a set of rules used by the scheduler to determine where
a pod can be placed. The rules are defined using custom labels on the nodes and label selectors
specified in pods.

2.4.1. Understanding node affinity

Node affinity allows a pod to specify an affinity towards a group of nodes it can be placed on. The node
does not have control over the placement.

For example, you could configure a pod to only run on a node with a specific CPU or in a specific
availability zone.

There are two types of node affinity rules: required and preferred.

Required rules must be met before a pod can be scheduled on a node. Preferred rules specify that, if
the rule is met, the scheduler tries to enforce the rules, but does not guarantee enforcement.

NOTE

If labels on a node change at runtime that results in an node affinity rule on a pod no
longer being met, the pod continues to run on the node.

You configure node affinity through the pod specification file. You can specify a required rule, a
preferred rule, or both. If you specify both, the node must first meet the required rule, then attempts to
meet the preferred rule.

The following example is a pod specification with a rule that requires the pod be placed on a node with a
label whose key is e2e-az-NorthSouth and whose value is either e2e-az-North or e2e-az-South:

Sample pod configuration file with a node affinity required rule

 podAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: security
 operator: In
 values:
 - s2
 topologyKey: kubernetes.io/hostname
 containers:
 - name: pod-affinity
 image: docker.io/ocpqe/hello-pod

OpenShift Container Platform 4.3 Nodes

72

1

2

3 5 6

4

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 affinity:
 nodeAffinity: 1
 requiredDuringSchedulingIgnoredDuringExecution: 2
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-NorthSouth 3
 operator: In 4
 values:
 - e2e-az-North 5
 - e2e-az-South 6
 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod

The stanza to configure node affinity.

Defines a required rule.

The key/value pair (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the node and the set of values in
the matchExpression parameters in the pod specification. This value can be In, NotIn, Exists, or
DoesNotExist, Lt, or Gt.

The following example is a node specification with a preferred rule that a node with a label whose key is
e2e-az-EastWest and whose value is either e2e-az-East or e2e-az-West is preferred for the pod:

Sample pod configuration file with a node affinity preferred rule

apiVersion: v1
kind: Pod
metadata:
 name: with-node-affinity
spec:
 affinity:
 nodeAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 1 3
 preference:
 matchExpressions:
 - key: e2e-az-EastWest 4
 operator: In 5
 values:
 - e2e-az-East 6
 - e2e-az-West 7
 containers:
 - name: with-node-affinity
 image: docker.io/ocpqe/hello-pod

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

73

1

2

3

4 6 7

5

The stanza to configure node affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with highest weight is preferred.

The key/value pair (label) that must be matched to apply the rule.

The operator represents the relationship between the label on the node and the set of values in
the matchExpression parameters in the pod specification. This value can be In, NotIn, Exists, or
DoesNotExist, Lt, or Gt.

There is no explicit node anti-affinity concept, but using the NotIn or DoesNotExist operator replicates
that behavior.

NOTE

If you are using node affinity and node selectors in the same pod configuration, note the
following:

If you configure both nodeSelector and nodeAffinity, both conditions must be
satisfied for the pod to be scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types,
then the pod can be scheduled onto a node if one of the nodeSelectorTerms is
satisfied.

If you specify multiple matchExpressions associated with nodeSelectorTerms,
then the pod can be scheduled onto a node only if all matchExpressions are
satisfied.

2.4.2. Configuring a required node affinity rule

Required rules must be met before a pod can be scheduled on a node.

Procedure

The following steps demonstrate a simple configuration that creates a node and a pod that the
scheduler is required to place on the node.

1. Add a label to a node using the oc label node command:

$ oc label node node1 e2e-az-name=e2e-az1

2. In the pod specification, use the nodeAffinity stanza to configure the
requiredDuringSchedulingIgnoredDuringExecution parameter:

a. Specify the key and values that must be met. If you want the new pod to be scheduled on
the node you edited, use the same key and value parameters as the label in the node.

b. Specify an operator. The operator can be In, NotIn, Exists, DoesNotExist, Lt, or Gt. For
example, use the operator In to require the label to be in the node:

spec:
 affinity:

OpenShift Container Platform 4.3 Nodes

74

 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: e2e-az-name
 operator: In
 values:
 - e2e-az1
 - e2e-az2

3. Create the pod:

$ oc create -f e2e-az2.yaml

2.4.3. Configuring a Preferred Node Affinity Rule

Preferred rules specify that, if the rule is met, the scheduler tries to enforce the rules, but does not
guarantee enforcement.

Procedure

The following steps demonstrate a simple configuration that creates a node and a pod that the
scheduler tries to place on the node.

1. Add a label to a node using the oc label node command:

$ oc label node node1 e2e-az-name=e2e-az3

2. In the pod specification, use the nodeAffinity stanza to configure the
preferredDuringSchedulingIgnoredDuringExecution parameter:

a. Specify a weight for the node, as a number 1-100. The node with highest weight is preferred.

b. Specify the key and values that must be met. If you want the new pod to be scheduled on
the node you edited, use the same key and value parameters as the label in the node:

spec:
 affinity:
 nodeAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - weight: 1
 preference:
 matchExpressions:
 - key: e2e-az-name
 operator: In
 values:
 - e2e-az3

3. Specify an operator. The operator can be In, NotIn, Exists, DoesNotExist, Lt, or Gt. For
example, use the operator In to require the label to be in the node.

4. Create the pod.

$ oc create -f e2e-az3.yaml

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

75

2.4.4. Sample node affinity rules

The following examples demonstrate node affinity.

2.4.4.1. Node Affinity with Matching Labels

The following example demonstrates node affinity for a node and pod with matching labels:

The Node1 node has the label zone:us:

$ oc label node node1 zone=us

The pod pod-s1 has the zone and us key/value pair under a required node affinity rule:

$ cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s1
spec:
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us

The pod pod-s1 can be scheduled on Node1:

$ oc get pod -o wide
NAME READY STATUS RESTARTS AGE IP NODE
pod-s1 1/1 Running 0 4m IP1 node1

2.4.4.2. Node Affinity with No Matching Labels

The following example demonstrates node affinity for a node and pod without matching labels:

The Node1 node has the label zone:emea:

$ oc label node node1 zone=emea

The pod pod-s1 has the zone and us key/value pair under a required node affinity rule:

$ cat pod-s1.yaml
apiVersion: v1
kind: Pod
metadata:
 name: pod-s1

OpenShift Container Platform 4.3 Nodes

76

spec:
 containers:
 - image: "docker.io/ocpqe/hello-pod"
 name: hello-pod
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: "zone"
 operator: In
 values:
 - us

The pod pod-s1 cannot be scheduled on Node1:

$ oc describe pod pod-s1
<---snip--->
Events:
 FirstSeen LastSeen Count From SubObjectPath Type Reason
 --------- -------- ----- ---- ------------- -------- ------
 1m 33s 8 default-scheduler Warning FailedScheduling No nodes are
available that match all of the following predicates:: MatchNodeSelector (1).

2.4.5. Additional resources

For information about changing node labels, see Understanding how to update labels on nodes .

2.5. PLACING PODS ONTO OVERCOMMITED NODES

In an overcommited state, the sum of the container compute resource requests and limits exceeds the
resources available on the system. Overcommitment might be desirable in development environments
where a trade-off of guaranteed performance for capacity is acceptable.

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

2.5.1. Understanding overcommitment

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

OpenShift Container Platform administrators can control the level of overcommit and manage container
density on nodes by configuring masters to override the ratio between request and limit set on
developer containers. In conjunction with a per-project LimitRange specifying limits and defaults, this
adjusts the container limit and request to achieve the desired level of overcommit.

NOTE

That these overrides have no effect if no limits have been set on containers. Create a
LimitRange object with default limits (per individual project, or in the project template) in
order to ensure that the overrides apply.

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

77

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/nodes/#nodes-nodes-working-updating_nodes-nodes-working

After these overrides, the container limits and requests must still be validated by any LimitRange objects
in the project. It is possible, for example, for developers to specify a limit close to the minimum limit, and
have the request then be overridden below the minimum limit, causing the pod to be forbidden. This
unfortunate user experience should be addressed with future work, but for now, configure this capability
and LimitRanges with caution.

2.5.2. Understanding nodes overcommitment

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit
memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating
system setting.

OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by
setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call oom_killer in an
Out of Memory (OOM) condition, which kills processes based on priority

You can view the current setting by running the following commands on your nodes:

$ sysctl -a |grep commit

vm.overcommit_memory = 1

$ sysctl -a |grep panic
vm.panic_on_oom = 0

NOTE

The above flags should already be set on nodes, and no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

2.6. CONTROLLING POD PLACEMENT USING NODE TAINTS

Taints and tolerations allow the Node to control which Pods should (or should not) be scheduled on
them.

OpenShift Container Platform 4.3 Nodes

78

2.6.1. Understanding taints and tolerations

A taint allows a node to refuse Pod to be scheduled unless that Pod has a matching toleration.

You apply taints to a node through the node specification (NodeSpec) and apply tolerations to a Pod
through the Pod specification (PodSpec). A taint on a node instructs the node to repel all Pods that do
not tolerate the taint.

Taints and tolerations consist of a key, value, and effect. An operator allows you to leave one of these
parameters empty.

Table 2.1. Taint and toleration components

Parameter Description

key The key is any string, up to 253 characters. The key must begin with a letter or
number, and may contain letters, numbers, hyphens, dots, and underscores.

value The value is any string, up to 63 characters. The value must begin with a letter
or number, and may contain letters, numbers, hyphens, dots, and underscores.

effect The effect is one of the following:

NoSchedule
New Pods that do not match the taint
are not scheduled onto that node.

Existing Pods on the node remain.

PreferNoSchedule
New Pods that do not match the taint
might be scheduled onto that node,
but the scheduler tries not to.

Existing Pods on the node remain.

NoExecute
New Pods that do not match the taint
cannot be scheduled onto that node.

Existing Pods on the node that do not
have a matching toleration are
removed.

operator
Equal The key/value/effect parameters must

match. This is the default.

Exists The key/effect parameters must match. You
must leave a blank value parameter, which
matches any.

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

79

A toleration matches a taint:

If the operator parameter is set to Equal:

the key parameters are the same;

the value parameters are the same;

the effect parameters are the same.

If the operator parameter is set to Exists:

the key parameters are the same;

the effect parameters are the same.

The following taints are built into kubernetes:

node.kubernetes.io/not-ready: The node is not ready. This corresponds to the node condition
Ready=False.

node.kubernetes.io/unreachable: The node is unreachable from the node controller. This
corresponds to the node condition Ready=Unknown.

node.kubernetes.io/out-of-disk: The node has insufficient free space on the node for adding
new Pods. This corresponds to the node condition OutOfDisk=True.

node.kubernetes.io/memory-pressure: The node has memory pressure issues. This
corresponds to the node condition MemoryPressure=True.

node.kubernetes.io/disk-pressure: The node has disk pressure issues. This corresponds to the
node condition DiskPressure=True.

node.kubernetes.io/network-unavailable: The node network is unavailable.

node.kubernetes.io/unschedulable: The node is unschedulable.

node.cloudprovider.kubernetes.io/uninitialized: When the node controller is started with an
external cloud provider, this taint is set on a node to mark it as unusable. After a controller from
the cloud-controller-manager initializes this node, the kubelet removes this taint.

2.6.1.1. Understanding how to use toleration seconds to delay pod evictions

You can specify how long a Pod can remain bound to a node before being evicted by specifying the
tolerationSeconds parameter in the Pod specification. If a taint with the NoExecute effect is added to
a node, any Pods that do not tolerate the taint are evicted immediately (Pods that do tolerate the taint
are not evicted). However, if a Pod that to be evicted has the tolerationSeconds parameter, the Pod is
not evicted until that time period expires.

For example:

tolerations:
- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"
 tolerationSeconds: 3600

OpenShift Container Platform 4.3 Nodes

80

Here, if this Pod is running but does not have a matching taint, the Pod stays bound to the node for
3,600 seconds and then be evicted. If the taint is removed before that time, the Pod is not evicted.

2.6.1.2. Understanding how to use multiple taints

You can put multiple taints on the same node and multiple tolerations on the same Pod. OpenShift
Container Platform processes multiple taints and tolerations as follows:

1. Process the taints for which the Pod has a matching toleration.

2. The remaining unmatched taints have the indicated effects on the Pod:

If there is at least one unmatched taint with effect NoSchedule, OpenShift Container
Platform cannot schedule a Pod onto that node.

If there is no unmatched taint with effect NoSchedule but there is at least one unmatched
taint with effect PreferNoSchedule, OpenShift Container Platform tries to not schedule
the Pod onto the node.

If there is at least one unmatched taint with effect NoExecute, OpenShift Container
Platform evicts the Pod from the node (if it is already running on the node), or the Pod is
not scheduled onto the node (if it is not yet running on the node).

Pods that do not tolerate the taint are evicted immediately.

Pods that tolerate the taint without specifying tolerationSeconds in their toleration
specification remain bound forever.

Pods that tolerate the taint with a specified tolerationSeconds remain bound for the
specified amount of time.

For example:

The node has the following taints:

$ oc adm taint nodes node1 key1=value1:NoSchedule
$ oc adm taint nodes node1 key1=value1:NoExecute
$ oc adm taint nodes node1 key2=value2:NoSchedule

The Pod has the following tolerations:

In this case, the Pod cannot be scheduled onto the node, because there is no toleration matching the
third taint. The Pod continues running if it is already running on the node when the taint is added,
because the third taint is the only one of the three that is not tolerated by the Pod.

tolerations:
- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoSchedule"
- key: "key1"
 operator: "Equal"
 value: "value1"
 effect: "NoExecute"

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

81

2.6.1.3. Preventing pod eviction for node problems

The Taint-Based Evictions feature, enabled by default, adds a taint with the NoExecute effect to nodes
that are not ready or are unreachable. This allows you to specify how long a Pod should remain bound to
a node that becomes unreachable or not ready, rather than using the default of five minutes. For
example, you might want to allow a Pod on an unreachable node if the workload is safe to remain
running while a networking issue resolves.

If a node enters a not ready state, the node controller adds the node.kubernetes.io/not-
ready:NoExecute taint to the node. If a node enters an unreachable state, the the node controller adds
the node.kubernetes.io/unreachable:NoExecute taint to the node.

The NoExecute taint affects Pods that are already running on the node as follows:

Pods that do not tolerate the taint are evicted immediately.

Pods that tolerate the taint without specifying tolerationSeconds in their toleration
specification remain bound forever.

Pods that tolerate the taint with a specified tolerationSeconds remain bound for the specified
amount of time.

2.6.1.4. Understanding pod scheduling and node conditions (Taint Node by Condition)

OpenShift Container Platform automatically taints nodes that report conditions such as memory
pressure and disk pressure. If a node reports a condition, a taint is added until the condition clears. The
taints have the NoSchedule effect, which means no Pod can be scheduled on the node, unless the Pod
has a matching toleration. This feature, Taint Nodes By Condition, is enabled by default.

The scheduler checks for these taints on nodes before scheduling Pods. If the taint is present, the Pod is
scheduled on a different node. Because the scheduler checks for taints and not the actual Node
conditions, you configure the scheduler to ignore some of these node conditions by adding appropriate
Pod tolerations.

The DaemonSet controller automatically adds the following tolerations to all daemons, to ensure
backward compatibility:

node.kubernetes.io/memory-pressure

node.kubernetes.io/disk-pressure

node.kubernetes.io/out-of-disk (only for critical Pods)

node.kubernetes.io/unschedulable (1.10 or later)

node.kubernetes.io/network-unavailable (host network only)

You can also add arbitrary tolerations to DaemonSets.

2.6.1.5. Understanding evicting pods by condition (Taint-Based Evictions)

The Taint-Based Evictions feature, enabled by default, evicts Pods from a node that experiences
specific conditions, such as not-ready and unreachable. When a node experiences one of these
conditions, OpenShift Container Platform automatically adds taints to the node, and starts evicting and
rescheduling the Pods on different nodes.

Taint Based Evictions has a NoExecute effect, where any Pod that does not tolerate the taint will be

OpenShift Container Platform 4.3 Nodes

82

Taint Based Evictions has a NoExecute effect, where any Pod that does not tolerate the taint will be
evicted immediately and any Pod that does tolerate the taint will never be evicted.

NOTE

OpenShift Container Platform evicts Pods in a rate-limited way to prevent massive Pod
evictions in scenarios such as the master becoming partitioned from the nodes.

This feature, in combination with tolerationSeconds, allows you to specify how long a Pod should stay
bound to a node that has a node condition. If the condition still exists after the tolerationSections
period, the taint remains on the node and the Pods are evicted in a rate-limited manner. If the condition
clears before the tolerationSeconds period, Pods are not removed.

OpenShift Container Platform automatically adds a toleration for node.kubernetes.io/not-ready and
node.kubernetes.io/unreachable with tolerationSeconds=300, unless the Pod configuration specifies
either toleration.

These tolerations ensure that the default Pod behavior is to remain bound for 5 minutes after one of
these node conditions problems is detected.

You can configure these tolerations as needed. For example, if you have an application with a lot of local
state you might want to keep the Pods bound to node for a longer time in the event of network
partition, allowing for the partition to recover and avoiding Pod eviction.

DaemonSet Pods are created with NoExecute tolerations for the following taints with no
tolerationSeconds:

node.kubernetes.io/unreachable

node.kubernetes.io/not-ready

This ensures that DaemonSet Pods are never evicted due to these node conditions, even if the
DefaultTolerationSeconds admission controller is disabled.

2.6.2. Adding taints and tolerations

You add taints to nodes and tolerations to pods allow the node to control which pods should (or should
not) be scheduled on them.

Procedure

1. Use the following command using the parameters described in the taint and toleration
components table:

spec
 tolerations:
 - key: node.kubernetes.io/not-ready
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 300
 - key: node.kubernetes.io/unreachable
 operator: Exists
 effect: NoExecute
 tolerationSeconds: 300

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

83

1 2 3 4

5

$ oc adm taint nodes <node-name> <key>=<value>:<effect>

For example:

$ oc adm taint nodes node1 key1=value1:NoExecute

This example places a taint on node1 that has key key1, value value1, and taint effect
NoExecute.

2. Add a toleration to a pod by editing the pod specification to include a tolerations section:

Sample pod configuration file with Equal operator

The toleration parameters, as described in the taint and toleration components
table.

The tolerationSeconds parameter specifies how long a pod can remain bound to a node
before being evicted.

For example:

Sample pod configuration file with Exists operator

Both of these tolerations match the taint created by the oc adm taint command above. A pod
with either toleration would be able to schedule onto node1.

2.6.2.1. Dedicating a Node for a User using taints and tolerations

You can specify a set of nodes for exclusive use by a particular set of users.

Procedure

To specify dedicated nodes:

1. Add a taint to those nodes:
For example:

$ oc adm taint nodes node1 dedicated=groupName:NoSchedule

tolerations:
- key: "key1" 1
 operator: "Equal" 2
 value: "value1" 3
 effect: "NoExecute" 4
 tolerationSeconds: 3600 5

tolerations:
- key: "key1"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3600

OpenShift Container Platform 4.3 Nodes

84

2. Add a corresponding toleration to the pods by writing a custom admission controller.
Only the pods with the tolerations are allowed to use the dedicated nodes.

2.6.2.2. Binding a user to a Node using taints and tolerations

You can configure a node so that particular users can use only the dedicated nodes.

Procedure

To configure a node so that users can use only that node:

1. Add a taint to those nodes:
For example:

$ oc adm taint nodes node1 dedicated=groupName:NoSchedule

2. Add a corresponding toleration to the pods by writing a custom admission controller.
The admission controller should add a node affinity to require that the pods can only schedule
onto nodes labeled with the key:value label (dedicated=groupName).

3. Add a label similar to the taint (such as the key:value label) to the dedicated nodes.

2.6.2.3. Controlling Nodes with special hardware using taints and tolerations

In a cluster where a small subset of nodes have specialized hardware (for example GPUs), you can use
taints and tolerations to keep pods that do not need the specialized hardware off of those nodes,
leaving the nodes for pods that do need the specialized hardware. You can also require pods that need
specialized hardware to use specific nodes.

Procedure

To ensure pods are blocked from the specialized hardware:

1. Taint the nodes that have the specialized hardware using one of the following commands:

$ oc adm taint nodes <node-name> disktype=ssd:NoSchedule
$ oc adm taint nodes <node-name> disktype=ssd:PreferNoSchedule

2. Adding a corresponding toleration to pods that use the special hardware using an admission
controller.

For example, the admission controller could use some characteristic(s) of the pod to determine that the
pod should be allowed to use the special nodes by adding a toleration.

To ensure pods can only use the specialized hardware, you need some additional mechanism. For
example, you could label the nodes that have the special hardware and use node affinity on the pods
that need the hardware.

2.6.3. Removing taints and tolerations

You can remove taints from nodes and tolerations from pods as needed.

Procedure

To remove taints and tolerations:

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

85

1. To remove a taint from a node:

$ oc adm taint nodes <node-name> <key>-

For example:

$ oc adm taint nodes ip-10-0-132-248.ec2.internal key1-

node/ip-10-0-132-248.ec2.internal untainted

2. To remove a toleration from a pod, edit the pod specification to remove the toleration:

tolerations:
- key: "key2"
 operator: "Exists"
 effect: "NoExecute"
 tolerationSeconds: 3600

2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS

A node selector specifies a map of key-value pairs. The rules are defined using custom labels on nodes
and selectors specified in pods. You can use specific node selectors to place specific pods on specific
nodes, project node selectors to place new pods in a project on specific nodes in that project, or default
cluster-wide node selectors to place new pods on specific nodes anywhere in the cluster.

For the pod to be eligible to run on a node, the pod must have the same key-value node selector as the
label on the node.

IMPORTANT

If you are using node selectors and node affinity in the same pod configuration, the
following rules control pod placement onto nodes:

If you configure both nodeSelector and nodeAffinity, both conditions must be
satisfied for the pod to be scheduled onto a candidate node.

If you specify multiple nodeSelectorTerms associated with nodeAffinity types,
then the pod can be scheduled onto a node if one of the nodeSelectorTerms is
satisfied.

If you specify multiple matchExpressions associated with nodeSelectorTerms,
then the pod can be scheduled onto a node only if all matchExpressions are
satisfied.

2.7.1. Using node selectors to control pod placement

You can use node selector labels on pods to control where the pod is scheduled.

With node selectors, OpenShift Container Platform schedules the pods on nodes that contain matching
labels.

To add node selectors to an existing pod, add a node selector to the controlling object for that node,
such as a ReplicaSet, Daemonset, or StatefulSet. Any existing pods under that controlling object are
recreated on a node with a matching label. If you are creating a new pod, you can add the node selector

OpenShift Container Platform 4.3 Nodes

86

directly to the pod spec.

You can add labels to a node or MachineConfig, but the labels will not persist if the node or machine
goes down. Adding the label to the MachineSet ensures that new nodes or machines will have the label.

NOTE

You cannot add a node selector directly to an existing scheduled pod.

Prerequisite

To add a node selector to existing pods, determine the controlling object for that pod. For example, the
router-default-66d5cf9464-m2g75 pod is controlled by the router-default-66d5cf9464 ReplicaSet:

$ oc describe pod router-default-66d5cf9464-7pwkc

Name: router-default-66d5cf9464-7pwkc
Namespace: openshift-ingress

....

Controlled By: ReplicaSet/router-default-66d5cf9464

The web console lists the controlling object under ownerReferences in the pod YAML:

 ownerReferences:
 - apiVersion: apps/v1
 kind: ReplicaSet
 name: router-default-66d5cf9464
 uid: d81dd094-da26-11e9-a48a-128e7edf0312
 controller: true
 blockOwnerDeletion: true

Procedure

1. Add labels to a node by using a MachineSet or editing the node directly:

Use a MachineSet to add labels to nodes managed by the MachineSet when a node is
created:

a. Run the following command to add a node selector to a MachineSet:

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

For example:

$ oc patch MachineSet abc612-msrtw-worker-us-east-1c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

b. Verify that the label is added to the MachineSet by using the oc edit command:
For example:

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

87

$ oc edit MachineSet abc612-msrtw-worker-us-east-1c -n openshift-machine-api

Example MachineSet object

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

b. Verify that the label is added to the node:

Example output

2. Add the matching node selector a pod:

To add a node selector to existing and future pods, add a node selector to the controlling
object for the pods:

Example ReplicaSet object

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet

....

spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:
 region: east
 type: user-node
....

$ oc label nodes <name> <key>=<value>

$ oc label nodes ip-10-0-142-25.ec2.internal type=user-node region=east

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ip-10-0-142-25.ec2.internal Ready worker 17m v1.18.3+002a51f

kind: ReplicaSet

....

spec:

OpenShift Container Platform 4.3 Nodes

88

1 Add the node selector.

To add a node selector to a specific pod, add the selector to the Pod object directly:

Example Pod object

For example:

Example Pod object with a node selector

2.7.2. Creating default cluster-wide node selectors

You can use default cluster-wide node selectors on pods together with labels on nodes to constrain all
pods created in a cluster to specific nodes.

With cluster-wide node selectors, when you create a pod in that cluster, OpenShift Container Platform
adds the default node selectors to the pod and schedules the pod on nodes with matching labels.

You configure cluster-wide node selectors by creating a Scheduler Operator custom resource (CR).

....

 template:
 metadata:
 creationTimestamp: null
 labels:
 ingresscontroller.operator.openshift.io/deployment-ingresscontroller: default
 pod-template-hash: 66d5cf9464
 spec:
 nodeSelector:
 beta.kubernetes.io/os: linux
 node-role.kubernetes.io/worker: ''
 type: user-node 1

apiVersion: v1
kind: Pod

...

spec:
 nodeSelector:
 <key>: <value>

...

apiVersion: v1
kind: Pod

....

spec:
 nodeSelector:
 region: east
 type: user-node

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

89

You configure cluster-wide node selectors by creating a Scheduler Operator custom resource (CR).
You add labels to a node by editing a Node object, a MachineSet, or a MachineConfig. Adding the label
to the MachineSet ensures that if the node or machine goes down, new nodes have the label. Labels
added to a node or MachineConfig do not persist if the node or machine goes down.

For example, the the Scheduler configures the cluster-wide region=east node selector:

Example Scheduler Operator Custom Resource

A node in that cluster has the type=user-node,region=east labels:

Example Node object

If you create a pod in that cluster, the pod is created with the cluster-wide node selector and is
scheduled on the labeled node:

Example Pod object

Example pod list with the pod on the labeled node

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
...

spec:
 defaultNodeSelector: type=user-node,region=east 1
...

apiVersion: v1
kind: Node
metadata:
 name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
...
 labels:
 region: east
 type: user-node
...

apiVersion: v1
kind: Pod
...

spec:
 nodeSelector:
 region: east
...

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 <none>
<none>

OpenShift Container Platform 4.3 Nodes

90

1 1

NOTE

If the project where you create the pod has a project node selector, that selector takes
preference over a cluster-wide node selector. Your pod is not created or scheduled if the
node selector in the Pod spec does not use the project node selector.

A pod is not created or scheduled if the Pod object contains a node selector that is not the cluster-wide
node selector or not a project node selector. For example, if you deploy the following pod into the
example project, it will not be created:

Example Pod output with an invalid node selector

When you create a pod from that spec, you receive an error similar to the following message:

Example error message

NOTE

You can add additional key/value pairs to a pod. But you cannot add a different value for
a default project key.

Procedure

To add a default cluster-wide node selector:

1. Edit the Scheduler Operator custom resource to add the cluster node selectors:

$ oc edit scheduler cluster

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 name: cluster
...

spec:
 defaultNodeSelector: type=user-node,region=east 1
 mastersSchedulable: false
 policy:
 name: ""

Add a node selector with the appropriate <key>:<value> pairs.

apiVersion: v1
kind: Pod
....

spec:
 nodeSelector:
 region: west

Error from server (Forbidden): error when creating "pod.yaml": pods "pod-4" is forbidden: pod node
label selector conflicts with its project node label selector

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

91

1

After making this change, wait for the pods in the openshift-kube-apiserver project to
redeploy. This can take several minutes. The default cluster node selector does not take effect
until the pods redeploy.

2. Add labels to a node by using a MachineSet or editing the node directly:

Use a MachineSet to add labels to nodes managed by the MachineSet when a node is
created:

a. Run the following command to add a node selector to a MachineSet:

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api 1

Add a <key>/<value> pair for each node selector.

For example:

$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

b. Verify that the label is added to the MachineSet by using the oc edit command:
For example:

$ oc edit MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api

Example output

c. Redeploy the nodes associated with that MachineSet by scaling down to 0 and scaling
up the nodes:
For example:

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
...
spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:
 region: east
 type: user-node

$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

OpenShift Container Platform 4.3 Nodes

92

d. When the node is ready and available, verify that the label is added to the node by using
the oc get command:

For example:

Example output

Add labels directly to a node:

a. Edit the Node object for the node:

For example, to label a node:

b. Verify that the label is added to the node using the oc get command:

For example:

Example output

2.7.3. Creating project-wide node selectors

You can use node selectors in a project together with labels on nodes to constrain all pods created in
that project to the labeled nodes.

When you create a pod in this project, OpenShift Container Platform adds the node selectors to the
pods in the project and schedules the pods on a node with matching labels in the project. If there is a
cluster-wide default node selector, a project node selector takes preference.

You add labels to a project by editing the Namespace object to add the openshift.io/node-selector
parameter, which contains the label definitions. You add labels to a node by editing the Node object, a

$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc get nodes -l <key>=<value>

$ oc get nodes -l type=user-node

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.18.3+002a51f

$ oc label nodes <name> <key>=<value>

$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 type=user-node
region=east

$ oc get nodes -l <key>=<value>,<key>=<value>

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.18.3+002a51f

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

93

MachineSet, or a MachineConfig. Adding the label to the MachineSet ensures that if the node or
machine goes down, new nodes have the label. Labels added to a node or MachineConfig do not persist
if the node or machine goes down.

NOTE

You can add additional key/value pairs to a pod. But you cannot add a different value for
a default project key.

For example, the following project has the region=east node selector:

Example Namespace object

The following node has the type=user-node,region=east labels:

Example Node object

If you create a pod in this example project, the pod is created with the project node selector and is
scheduled on the labeled node:

Example Pod object

Example pod list with the pod on the labeled node

apiVersion: v1
kind: Namespace
metadata:
 annotations:
 openshift.io/node-selector: "region=east"
...

apiVersion: v1
kind: Node
metadata:
 name: ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4
...
 labels:
 region: east
 type: user-node
...

apiVersion: v1
kind: Pod
metadata:
...
spec:
 nodeSelector:
 region: east
 type: user-node
...

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES

OpenShift Container Platform 4.3 Nodes

94

A pod in the project is not created or scheduled if the pod contains different node selectors. For
example, if you deploy the following pod into the example project, it will not be created:

Example Pod object with an invalid node selector

When you create the pod, you receive an error similar to the following message:

Example error message

Procedure

To add a default project node selector:

1. Create a project or edit an existing project to add the openshift.io/node-selector parameter:

$ oc edit project <name>

pod-s1 1/1 Running 0 20s 10.131.2.6 ci-ln-qg1il3k-f76d1-hlmhl-worker-b-df2s4 <none>
<none>

apiVersion: v1
kind: Pod
...

spec:
 nodeSelector:
 region: west

....

Error from server (Forbidden): error when creating "pod.yaml": pods "pod-4" is forbidden: pod node
label selector conflicts with its project node label selector

apiVersion: v1
kind: Project
metadata:
 annotations:
 openshift.io/node-selector: "type=user-node,region=east" 1
 openshift.io/sa.scc.mcs: s0:c17,c14
 openshift.io/sa.scc.supplemental-groups: 1000300000/10000
 openshift.io/sa.scc.uid-range: 1000300000/10000
 creationTimestamp: 2019-06-10T14:39:45Z
 labels:
 openshift.io/run-level: "0"
 name: demo
 resourceVersion: "401885"
 selfLink: /api/v1/namespaces/openshift-kube-apiserver
 uid: 96ecc54b-8b8d-11e9-9f54-0a9ae641edd0
spec:
 finalizers:
 - kubernetes
status:
 phase: Active

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

95

1 Add the openshift.io/node-selector with the appropriate <key>:<value> pairs.

2. Add labels to a node by using a MachineSet or editing the node directly:

Use a MachineSet to add labels to nodes managed by the MachineSet when a node is
created:

a. Run the following command to add a node selector to a MachineSet:

$ oc patch MachineSet <name> --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"<key>"="
<value>","<key>"="<value>"}}]' -n openshift-machine-api

For example:

$ oc patch MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c --type='json' -
p='[{"op":"add","path":"/spec/template/spec/metadata/labels", "value":{"type":"user-
node","region":"east"}}]' -n openshift-machine-api

b. Verify that the label is added to the MachineSet by using the oc edit command:
For example:

Example output

c. Redeploy the nodes associated with that MachineSet:
For example:

d. Verify that the label is added to the node, when the node is ready and available, using
the oc get command:

$ oc edit MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-machine-api

apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
...
spec:
...
 template:
 metadata:
...
 spec:
 metadata:
 labels:
 region: east
 type: user-node

$ oc scale --replicas=0 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

$ oc scale --replicas=1 MachineSet ci-ln-l8nry52-f76d1-hl7m7-worker-c -n openshift-
machine-api

OpenShift Container Platform 4.3 Nodes

96

For example:

Example output

Add labels directly to a node:

a. Edit the Node object to add labels:

For example, to label a node:

b. Verify that the label is added to the node using the oc get command:

For example:

Example output

$ oc label MachineSet abc612-msrtw-worker-us-east-1c type=user-node region=east

$ oc get nodes -l type=user-node

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-c-vmqzp Ready worker 61s v1.18.3+002a51f

$ oc label <resource> <name> <key>=<value>

$ oc label nodes ci-ln-l8nry52-f76d1-hl7m7-worker-c-tgq49 type=user-node
region=east

$ oc get nodes -l <key>=<value>

$ oc get nodes -l type=user-node,region=east

NAME STATUS ROLES AGE VERSION
ci-ln-l8nry52-f76d1-hl7m7-worker-b-tgq49 Ready worker 17m v1.18.3+002a51f

CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)

97

CHAPTER 3. USING JOBS AND DAEMONSETS

3.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY
WITH DAEMONSETS

As an administrator, you can create and use DaemonSets to run replicas of a pod on specific or all nodes
in an OpenShift Container Platform cluster.

A DaemonSet ensures that all (or some) nodes run a copy of a pod. As nodes are added to the cluster,
pods are added to the cluster. As nodes are removed from the cluster, those pods are removed through
garbage collection. Deleting a DaemonSet will clean up the Pods it created.

You can use daemonsets to create shared storage, run a logging pod on every node in your cluster, or
deploy a monitoring agent on every node.

For security reasons, only cluster administrators can create daemonsets.

For more information on daemonsets, see the Kubernetes documentation.

IMPORTANT

Daemonset scheduling is incompatible with project’s default node selector. If you fail to
disable it, the daemonset gets restricted by merging with the default node selector. This
results in frequent pod recreates on the nodes that got unselected by the merged node
selector, which in turn puts unwanted load on the cluster.

3.1.1. Scheduled by default scheduler

A DaemonSet ensures that all eligible nodes run a copy of a Pod. Normally, the node that a Pod runs on
is selected by the Kubernetes scheduler. However, previously daemonSet pods are created and
scheduled by the DaemonSet controller. That introduces the following issues:

Inconsistent Pod behavior: Normal Pods waiting to be scheduled are created and in Pending
state, but DaemonSet pods are not created in Pending state. This is confusing to the user.

Pod preemption is handled by default scheduler. When preemption is enabled, the DaemonSet
controller will make scheduling decisions without considering pod priority and preemption.

ScheduleDaemonSetPods is enabled by default in OpenShift Container Platform which lets you to
schedule DaemonSets using the default scheduler instead of the DaemonSet controller, by adding the
NodeAffinity term to the DaemonSet pods, instead of the .spec.nodeName term. The default scheduler
is then used to bind the pod to the target host. If node affinity of the DaemonSet pod already exists, it is
replaced. The DaemonSet controller only performs these operations when creating or modifying
DaemonSet pods, and no changes are made to the spec.template of the DaemonSet.

nodeAffinity: requiredDuringSchedulingIgnoredDuringExecution: nodeSelectorTerms: - matchFields: -
key: metadata.name operator: In values: - target-host-name

In addition, node.kubernetes.io/unschedulable:NoSchedule toleration is added automatically to
DaemonSet Pods. The default scheduler ignores unschedulable Nodes when scheduling DaemonSet
Pods.

3.1.2. Creating daemonsets

When creating daemonsets, the nodeSelector field is used to indicate the nodes on which the

OpenShift Container Platform 4.3 Nodes

98

http://kubernetes.io/docs/admin/daemons/

1

2

3

When creating daemonsets, the nodeSelector field is used to indicate the nodes on which the
daemonset should deploy replicas.

Prerequisites

Before you start using daemonsets, disable the default project-wide node selector in your
namespace, by setting the namespace annotation openshift.io/node-selector to an empty
string:

$ oc patch namespace myproject -p \
 '{"metadata": {"annotations": {"openshift.io/node-selector": ""}}}'

If you are creating a new project, overwrite the default node selector using oc adm new-project
<name> --node-selector="".

Procedure

To create a daemonset:

1. Define the daemonset yaml file:

The label selector that determines which pods belong to the daemonset.

The pod template’s label selector. Must match the label selector above.

The node selector that determines on which nodes pod replicas should be deployed. A
matching label must be present on the node.

apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
 name: hello-daemonset
spec:
 selector:
 matchLabels:
 name: hello-daemonset 1
 template:
 metadata:
 labels:
 name: hello-daemonset 2
 spec:
 nodeSelector: 3
 role: worker
 containers:
 - image: openshift/hello-openshift
 imagePullPolicy: Always
 name: registry
 ports:
 - containerPort: 80
 protocol: TCP
 resources: {}
 terminationMessagePath: /dev/termination-log
 serviceAccount: default
 terminationGracePeriodSeconds: 10

CHAPTER 3. USING JOBS AND DAEMONSETS

99

2. Create the daemonset object:

$ oc create -f daemonset.yaml

3. To verify that the pods were created, and that each node has a pod replica:

a. Find the daemonset pods:

$ oc get pods
hello-daemonset-cx6md 1/1 Running 0 2m
hello-daemonset-e3md9 1/1 Running 0 2m

b. View the pods to verify the pod has been placed onto the node:

$ oc describe pod/hello-daemonset-cx6md|grep Node
Node: openshift-node01.hostname.com/10.14.20.134
$ oc describe pod/hello-daemonset-e3md9|grep Node
Node: openshift-node02.hostname.com/10.14.20.137

IMPORTANT

If you update a daemonset’s pod template, the existing pod replicas are not
affected.

If you delete a daemonSet and then create a new daemonset with a different
template but the same label selector, it recognizes any existing pod replicas as
having matching labels and thus does not update them or create new replicas
despite a mismatch in the pod template.

If you change node labels, the daemonset adds pods to nodes that match the
new labels and deletes pods from nodes that do not match the new labels.

To update a daemonset, force new pod replicas to be created by deleting the old replicas
or nodes.

3.2. RUNNING TASKS IN PODS USING JOBS

A job executes a task in your OpenShift Container Platform cluster.

A job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a job will clean up any pod replicas it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

Sample Job specification

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 activeDeadlineSeconds: 1800 3
 backoffLimit: 6 4

OpenShift Container Platform 4.3 Nodes

100

1. The pod replicas a job should run in parallel.

2. Successful pod completions are needed to mark a job completed.

3. The maximum duration the job can run.

4. The number of retries for a job.

5. The template for the pod the controller creates.

6. The restart policy of the pod.

See the Kubernetes documentation for more information about jobs.

3.2.1. Understanding Jobs and CronJobs

A Job tracks the overall progress of a task and updates its status with information about active,
succeeded, and failed pods. Deleting a Job will clean up any pods it created. Jobs are part of the
Kubernetes API, which can be managed with oc commands like other object types.

There are two possible resource types that allow creating run-once objects in OpenShift Container
Platform:

Job

A regular Job is a run-once object that creates a task and ensures the Job finishes.

There are three main types of task suitable to run as a Job:

Non-parallel Jobs:

A Job that starts only one Pod, unless the Pod fails.

The Job is complete as soon as its Pod terminates successfully.

Parallel Jobs with a fixed completion count:

a Job that starts multiple pods.

The Job represents the overall task and is complete when there is one successful Pod for
each value in the range 1 to the completions value.

Parallel Jobs with a work queue:

A Job with multiple parallel worker processes in a given pod.

OpenShift Container Platform coordinates pods to determine what each should work on or
use an external queue service.

 template: 5
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 6

CHAPTER 3. USING JOBS AND DAEMONSETS

101

http://kubernetes.io/docs/user-guide/jobs/

Each Pod is independently capable of determining whether or not all peer pods are
complete and that the entire Job is done.

When any Pod from the Job terminates with success, no new Pods are created.

When at least one Pod has terminated with success and all Pods are terminated, the Job is
successfully completed.

When any Pod has exited with success, no other Pod should be doing any work for this task
or writing any output. Pods should all be in the process of exiting.

For more information about how to make use of the different types of Job, see Job Patterns in the
Kubernetes documentation.

CronJob

A Job can be scheduled to run multiple times, using a CronJob.

A CronJob builds on a regular Job by allowing you to specify how the Job should be run. CronJobs are
part of the Kubernetes API, which can be managed with oc commands like other object types.

CronJobs are useful for creating periodic and recurring tasks, like running backups or sending emails.
CronJobs can also schedule individual tasks for a specific time, such as if you want to schedule a Job for
a low activity period.

WARNING

A CronJob creates a Job object approximately once per execution time of its
schedule, but there are circumstances in which it fails to create a Job or two Jobs
might be created. Therefore, Jobs must be idempotent and you must configure
history limits.

3.2.2. Understanding how to create Jobs

Both resource types require a Job configuration that consists of the following key parts:

A pod template, which describes the pod that OpenShift Container Platform creates.

The parallelism parameter, which specifies how many pods running in parallel at any point in
time should execute a Job.

For non-parallel Jobs, leave unset. When unset, defaults to 1.

The completions parameter, specifying how many successful pod completions are needed to
finish a Job.

For non-parallel Jobs, leave unset. When unset, defaults to 1.

For parallel Jobs with a fixed completion count, specify a value.

For parallel Jobs with a work queue, leave unset. When unset defaults to the parallelism
value.



OpenShift Container Platform 4.3 Nodes

102

https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/#job-patterns
http://kubernetes.io/docs/user-guide/cron-jobs

3.2.2.1. Understanding how to set a maximum duration for Jobs

When defining a Job, you can define its maximum duration by setting the activeDeadlineSeconds field.
It is specified in seconds and is not set by default. When not set, there is no maximum duration enforced.

The maximum duration is counted from the time when a first pod gets scheduled in the system, and
defines how long a Job can be active. It tracks overall time of an execution. After reaching the specified
timeout, the Job is terminated by OpenShift Container Platform.

3.2.2.2. Understanding how to set a Job back off policy for pod failure

A Job can be considered failed, after a set amount of retries due to a logical error in configuration or
other similar reasons. Failed Pods associated with the Job are recreated by the controller with an
exponential back off delay (10s, 20s, 40s …) capped at six minutes. The limit is reset if no new failed
pods appear between controller checks.

Use the spec.backoffLimit parameter to set the number of retries for a Job.

3.2.2.3. Understanding how to configure a CronJob to remove artifacts

CronJobs can leave behind artifact resources such as Jobs or pods. As a user it is important to
configure history limits so that old Jobs and their pods are properly cleaned. There are two fields within
CronJob’s spec responsible for that:

.spec.successfulJobsHistoryLimit. The number of successful finished Jobs to retain (defaults
to 3).

.spec.failedJobsHistoryLimit. The number of failed finished Jobs to retain (defaults to 1).

TIP

Delete CronJobs that you no longer need:

$ oc delete cronjob/<cron_job_name>

Doing this prevents them from generating unnecessary artifacts.

You can suspend further executions by setting the spec.suspend to true. All subsequent
executions are suspended until you reset to false.

3.2.3. Known limitations

The Job specification restart policy only applies to the pods, and not the job controller. However, the job
controller is hard-coded to keep retrying Jobs to completion.

As such, restartPolicy: Never or --restart=Never results in the same behavior as restartPolicy:
OnFailure or --restart=OnFailure. That is, when a Job fails it is restarted automatically until it succeeds
(or is manually discarded). The policy only sets which subsystem performs the restart.

With the Never policy, the job controller performs the restart. With each attempt, the job controller
increments the number of failures in the Job status and create new pods. This means that with each
failed attempt, the number of pods increases.

With the OnFailure policy, kubelet performs the restart. Each attempt does not increment the number
of failures in the Job status. In addition, kubelet will retry failed Jobs starting pods on the same nodes.

CHAPTER 3. USING JOBS AND DAEMONSETS

103

3.2.4. Creating jobs

You create a job in OpenShift Container Platform by creating a job object.

Procedure

To create a job:

1. Create a YAML file similar to the following:

1. Optionally, specify how many pod replicas a job should run in parallel; defaults to 1.

For non-parallel jobs, leave unset. When unset, defaults to 1.

2. Optionally, specify how many successful pod completions are needed to mark a job
completed.

For non-parallel jobs, leave unset. When unset, defaults to 1.

For parallel jobs with a fixed completion count, specify the number of completions.

For parallel jobs with a work queue, leave unset. When unset defaults to the parallelism
value.

3. Optionally, specify the maximum duration the job can run.

4. Optionally, specify the number of retries for a job. This field defaults to six.

5. Specify the template for the pod the controller creates.

6. Specify the restart policy of the pod:

Never. Do not restart the job.

OnFailure. Restart the job only if it fails.

Always. Always restart the job.

apiVersion: batch/v1
kind: Job
metadata:
 name: pi
spec:
 parallelism: 1 1
 completions: 1 2
 activeDeadlineSeconds: 1800 3
 backoffLimit: 6 4
 template: 5
 metadata:
 name: pi
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 6

OpenShift Container Platform 4.3 Nodes

104

1 1 1

2 2 2

For details on how OpenShift Container Platform uses restart policy with failed containers, see the
Example States in the Kubernetes documentation.

1. Create the job:

$ oc create -f <file-name>.yaml

NOTE

You can also create and launch a job from a single command using oc run. The following
command creates and launches the same job as specified in the previous example:

$ oc run pi --image=perl --replicas=1 --restart=OnFailure \
 --command -- perl -Mbignum=bpi -wle 'print bpi(2000)'

3.2.5. Creating CronJobs

You create a CronJob in OpenShift Container Platform by creating a job object.

Procedure

To create a CronJob:

1. Create a YAML file similar to the following:

Schedule for the job specified in cron format. In this example, the job will run every
minute.

An optional concurrency policy, specifying how to treat concurrent jobs within a CronJob.

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: pi
spec:
 schedule: "*/1 * * * *" 1
 concurrencyPolicy: "Replace" 2
 startingDeadlineSeconds: 200 3
 suspend: true 4
 successfulJobsHistoryLimit: 3 5
 failedJobsHistoryLimit: 1 6
 jobTemplate: 7
 spec:
 template:
 metadata:
 labels: 8
 parent: "cronjobpi"
 spec:
 containers:
 - name: pi
 image: perl
 command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(2000)"]
 restartPolicy: OnFailure 9

CHAPTER 3. USING JOBS AND DAEMONSETS

105

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#example-states
https://en.wikipedia.org/wiki/Cron

3 3 3

4 4 4

5 5 5

6 6 6

7

8

9

An optional concurrency policy, specifying how to treat concurrent jobs within a CronJob.
Only one of the following concurrent policies may be specified. If not specified, this
defaults to allowing concurrent executions.

Allow allows CronJobs to run concurrently.

Forbid forbids concurrent runs, skipping the next run if the previous has not finished
yet.

Replace cancels the currently running job and replaces it with a new one.

An optional deadline (in seconds) for starting the job if it misses its scheduled time for
any reason. Missed jobs executions will be counted as failed ones. If not specified, there

is no deadline.

An optional flag allowing the suspension of a CronJob. If set to true, all subsequent
executions will be suspended.

The number of successful finished jobs to retain (defaults to 3).

The number of failed finished jobs to retain (defaults to 1).

Job template. This is similar to the job example.

Sets a label for jobs spawned by this CronJob.

The restart policy of the pod. This does not apply to the job controller.

NOTE

The .spec.successfulJobsHistoryLimit and
.spec.failedJobsHistoryLimit fields are optional. These fields specify how
many completed and failed jobs should be kept. By default, they are set to 3
and 1 respectively. Setting a limit to 0 corresponds to keeping none of the
corresponding kind of jobs after they finish.

2. Create the CronJob:

$ oc create -f <file-name>.yaml

NOTE

You can also create and launch a CronJob from a single command using oc run. The
following command creates and launches the same CronJob as specified in the previous
example:

$ oc run pi --image=perl --schedule='*/1 * * * *' \
 --restart=OnFailure --labels parent="cronjobpi" \
 --command -- perl -Mbignum=bpi -wle 'print bpi(2000)'

With oc run, the --schedule option accepts schedules in cron format.

When creating a CronJob, oc run only supports the Never or OnFailure restart policies
(--restart).

OpenShift Container Platform 4.3 Nodes

106

https://en.wikipedia.org/wiki/Cron

CHAPTER 4. WORKING WITH NODES

4.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT
CONTAINER PLATFORM CLUSTER

You can list all the nodes in your cluster to obtain information such as status, age, memory usage, and
details about the nodes.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

4.1.1. About listing all the nodes in a cluster

You can get detailed information on the nodes in the cluster.

The following command lists all nodes:

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.16.2
node1.example.com Ready worker 7h v1.16.2
node2.example.com Ready worker 7h v1.16.2

The -wide option provides additional information on all nodes.

$ oc get nodes -o wide

The following command lists information about a single node:

$ oc get node <node>

The STATUS column in the output of these commands can show nodes with the following
conditions:

Table 4.1. Node Conditions

Condition Description

Ready The node reports its own readiness to the apiserver by returning True.

NotReady One of the underlying components, such as the container runtime or
network, is experiencing issues or is not yet configured.

SchedulingDisabled Pods cannot be scheduled for placement on the node.

The following command provides more detailed information about a specific node, including the
reason for the current condition:

$ oc describe node <node>

CHAPTER 4. WORKING WITH NODES

107

For example:

$ oc describe node node1.example.com

Name: node1.example.com 1
Roles: worker 2
Labels: beta.kubernetes.io/arch=amd64 3
 beta.kubernetes.io/instance-type=m4.large
 beta.kubernetes.io/os=linux
 failure-domain.beta.kubernetes.io/region=us-east-2
 failure-domain.beta.kubernetes.io/zone=us-east-2a
 kubernetes.io/hostname=ip-10-0-140-16
 node-role.kubernetes.io/worker=
Annotations: cluster.k8s.io/machine: openshift-machine-api/ahardin-worker-us-east-2a-
q5dzc 4
 machineconfiguration.openshift.io/currentConfig: worker-
309c228e8b3a92e2235edd544c62fea8
 machineconfiguration.openshift.io/desiredConfig: worker-
309c228e8b3a92e2235edd544c62fea8
 machineconfiguration.openshift.io/state: Done
 volumes.kubernetes.io/controller-managed-attach-detach: true
CreationTimestamp: Wed, 13 Feb 2019 11:05:57 -0500
Taints: <none> 5
Unschedulable: false
Conditions: 6
 Type Status LastHeartbeatTime LastTransitionTime Reason
Message
 ---- ------ ----------------- ------------------ ------ -------
 OutOfDisk False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientDisk kubelet has sufficient disk space available
 MemoryPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57
-0500 KubeletHasSufficientMemory kubelet has sufficient memory available
 DiskPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasNoDiskPressure kubelet has no disk pressure
 PIDPressure False Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:05:57 -
0500 KubeletHasSufficientPID kubelet has sufficient PID available
 Ready True Wed, 13 Feb 2019 15:09:42 -0500 Wed, 13 Feb 2019 11:07:09 -0500
KubeletReady kubelet is posting ready status
Addresses: 7
 InternalIP: 10.0.140.16
 InternalDNS: ip-10-0-140-16.us-east-2.compute.internal
 Hostname: ip-10-0-140-16.us-east-2.compute.internal
Capacity: 8
 attachable-volumes-aws-ebs: 39
 cpu: 2
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 8172516Ki
 pods: 250
Allocatable:
 attachable-volumes-aws-ebs: 39
 cpu: 1500m
 hugepages-1Gi: 0
 hugepages-2Mi: 0
 memory: 7558116Ki

OpenShift Container Platform 4.3 Nodes

108

 pods: 250
System Info: 9
 Machine ID: 63787c9534c24fde9a0cde35c13f1f66
 System UUID: EC22BF97-A006-4A58-6AF8-0A38DEEA122A
 Boot ID: f24ad37d-2594-46b4-8830-7f7555918325
 Kernel Version: 3.10.0-957.5.1.el7.x86_64
 OS Image: Red Hat Enterprise Linux CoreOS 410.8.20190520.0 (Ootpa)
 Operating System: linux
 Architecture: amd64
 Container Runtime Version: cri-o://1.16.0-0.6.dev.rhaos4.3.git9ad059b.el8-rc2
 Kubelet Version: v1.16.2
 Kube-Proxy Version: v1.16.2
PodCIDR: 10.128.4.0/24
ProviderID: aws:///us-east-2a/i-04e87b31dc6b3e171
Non-terminated Pods: (13 in total) 10
 Namespace Name CPU Requests CPU Limits
Memory Requests Memory Limits
 --------- ---- ------------ ---------- --------------- -------

 openshift-cluster-node-tuning-operator tuned-hdl5q 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-dns dns-default-l69zr 0 (0%) 0 (0%) 0 (0%)
0 (0%)
 openshift-image-registry node-ca-9hmcg 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-ingress router-default-76455c45c-c5ptv 0 (0%) 0 (0%) 0
(0%) 0 (0%)
 openshift-machine-config-operator machine-config-daemon-cvqw9 20m (1%) 0
(0%) 50Mi (0%) 0 (0%)
 openshift-marketplace community-operators-f67fh 0 (0%) 0 (0%)
0 (0%) 0 (0%)
 openshift-monitoring alertmanager-main-0 50m (3%) 50m (3%)
210Mi (2%) 10Mi (0%)
 openshift-monitoring grafana-78765ddcc7-hnjmm 100m (6%) 200m
(13%) 100Mi (1%) 200Mi (2%)
 openshift-monitoring node-exporter-l7q8d 10m (0%) 20m (1%)
20Mi (0%) 40Mi (0%)
 openshift-monitoring prometheus-adapter-75d769c874-hvb85 0 (0%) 0
(0%) 0 (0%) 0 (0%)
 openshift-multus multus-kw8w5 0 (0%) 0 (0%) 0 (0%)
0 (0%)
 openshift-sdn ovs-t4dsn 100m (6%) 0 (0%) 300Mi
(4%) 0 (0%)
 openshift-sdn sdn-g79hg 100m (6%) 0 (0%) 200Mi
(2%) 0 (0%)
Allocated resources:
 (Total limits may be over 100 percent, i.e., overcommitted.)
 Resource Requests Limits
 -------- -------- ------
 cpu 380m (25%) 270m (18%)
 memory 880Mi (11%) 250Mi (3%)
 attachable-volumes-aws-ebs 0 0
Events: 11
 Type Reason Age From Message
 ---- ------ ---- ---- -------
 Normal NodeHasSufficientPID 6d (x5 over 6d) kubelet, m01.example.com Node

CHAPTER 4. WORKING WITH NODES

109

1

2

3

4

5

6

7

8

9

10

11

m01.example.com status is now: NodeHasSufficientPID
 Normal NodeAllocatableEnforced 6d kubelet, m01.example.com Updated Node
Allocatable limit across pods
 Normal NodeHasSufficientMemory 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientMemory
 Normal NodeHasNoDiskPressure 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasNoDiskPressure
 Normal NodeHasSufficientDisk 6d (x6 over 6d) kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientDisk
 Normal NodeHasSufficientPID 6d kubelet, m01.example.com Node
m01.example.com status is now: NodeHasSufficientPID
 Normal Starting 6d kubelet, m01.example.com Starting kubelet.
 ...

The name of the node.

The role of the node, either master or worker.

The labels applied to the node.

The annotations applied to the node.

The taints applied to the node.

Node conditions.

The IP address and host name of the node.

The pod resources and allocatable resources.

Information about the node host.

The pods on the node.

The events reported by the node.

4.1.2. Listing pods on a node in your cluster

You can list all the pods on a specific node.

Procedure

To list all or selected pods on one or more nodes:

$ oc describe node <node1> <node2>

For example:

$ oc describe node ip-10-0-128-218.ec2.internal

To list all or selected pods on selected nodes:

$ oc describe --selector=<node_selector>
$ oc describe -l=<pod_selector>

OpenShift Container Platform 4.3 Nodes

110

For example:

$ oc describe node --selector=beta.kubernetes.io/os
$ oc describe node -l node-role.kubernetes.io/worker

4.1.3. Viewing memory and CPU usage statistics on your nodes

You can display usage statistics about nodes, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

Prerequisites

You must have cluster-reader permission to view the usage statistics.

Metrics must be installed to view the usage statistics.

Procedure

To view the usage statistics:

$ oc adm top nodes

NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%
ip-10-0-12-143.ec2.compute.internal 1503m 100% 4533Mi 61%
ip-10-0-132-16.ec2.compute.internal 76m 5% 1391Mi 18%
ip-10-0-140-137.ec2.compute.internal 398m 26% 2473Mi 33%
ip-10-0-142-44.ec2.compute.internal 656m 43% 6119Mi 82%
ip-10-0-146-165.ec2.compute.internal 188m 12% 3367Mi 45%
ip-10-0-19-62.ec2.compute.internal 896m 59% 5754Mi 77%
ip-10-0-44-193.ec2.compute.internal 632m 42% 5349Mi 72%

To view the usage statistics for nodes with labels:

$ oc adm top node --selector=''

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

4.2. WORKING WITH NODES

As an administrator, you can perform a number of tasks to make your clusters more efficient.

4.2.1. Understanding how to evacuate pods on nodes

Evacuating pods allows you to migrate all or selected pods from a given node or nodes.

You can only evacuate pods backed by a replication controller. The replication controller creates new
pods on other nodes and removes the existing pods from the specified node(s).

Bare pods, meaning those not backed by a replication controller, are unaffected by default. You can
evacuate a subset of pods by specifying a pod-selector. Pod selectors are based on labels, so all the
pods with the specified label will be evacuated.

NOTE

CHAPTER 4. WORKING WITH NODES

111

NOTE

Nodes must first be marked unschedulable to perform pod evacuation.

$ oc adm cordon <node1>
node/<node1> cordoned

$ oc get node <node1>
NAME STATUS ROLES AGE VERSION
<node1> NotReady,SchedulingDisabled worker 1d v1.16.2

Use oc adm uncordon to mark the node as schedulable when done.

$ oc adm uncordon <node1>

The following command evacuates all or selected pods on one or more nodes:

$ oc adm drain <node1> <node2> [--pod-selector=<pod_selector>]

The following command forces deletion of bare pods using the --force option. When set to true,
deletion continues even if there are pods not managed by a replication controller, ReplicaSet,
job, daemonset, or StatefulSet:

$ oc adm drain <node1> <node2> --force=true

The following command sets a period of time in seconds for each pod to terminate gracefully,
use --grace-period. If negative, the default value specified in the pod will be used:

$ oc adm drain <node1> <node2> --grace-period=-1

The following command ignores DaemonSet-managed pods using the --ignore-daemonsets
flag set to true:

$ oc adm drain <node1> <node2> --ignore-daemonsets=true

The following command sets the length of time to wait before giving up using the --timeout
flag. A value of 0 sets an infinite length of time:

$ oc adm drain <node1> <node2> --timeout=5s

The following command deletes pods even if there are pods using emptyDir using the --delete-
local-data flag set to true. Local data is deleted when the node is drained:

$ oc adm drain <node1> <node2> --delete-local-data=true

The following command lists objects that will be migrated without actually performing the
evacuation, using the --dry-run option set to true:

$ oc adm drain <node1> <node2> --dry-run=true

Instead of specifying specific node names (for example, <node1> <node2>), you can use the --
selector=<node_selector> option to evacuate pods on selected nodes.

OpenShift Container Platform 4.3 Nodes

112

4.2.2. Understanding how to update labels on nodes

You can update any label on a node.

Node labels are not persisted after a node is deleted even if the node is backed up by a Machine.

NOTE

Any change to a MachineSet is not applied to existing machines owned by the
MachineSet. For example, labels edited or added to an existing MachineSet are not
propagated to existing machines and Nodes associated with the MachineSet.

The following command adds or updates labels on a node:

$ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

For example:

$ oc label nodes webconsole-7f7f6 unhealthy=true

The following command updates all pods in the namespace:

$ oc label pods --all <key_1>=<value_1>

For example:

$ oc label pods --all status=unhealthy

4.2.3. Understanding how to mark nodes as unschedulable or schedulable

By default, healthy nodes with a Ready status are marked as schedulable, meaning that new pods are
allowed for placement on the node. Manually marking a node as unschedulable blocks any new pods
from being scheduled on the node. Existing pods on the node are not affected.

The following command marks a node or nodes as unschedulable:

$ oc adm cordon <node>

For example:

$ oc adm cordon node1.example.com
node/node1.example.com cordoned

NAME LABELS STATUS
node1.example.com kubernetes.io/hostname=node1.example.com
Ready,SchedulingDisabled

The following command marks a currently unschedulable node or nodes as schedulable:

$ oc adm uncordon <node1>

Alternatively, instead of specifying specific node names (for example, <node>), you can use the

CHAPTER 4. WORKING WITH NODES

113

1

Alternatively, instead of specifying specific node names (for example, <node>), you can use the
--selector=<node_selector> option to mark selected nodes as schedulable or unschedulable.

4.2.4. Configuring master nodes as schedulable

As of OpenShift Container Platform 4.2, you can configure master nodes to be schedulable, meaning
that new Pods are allowed for placement on the master nodes. By default, master nodes are not
schedulable. However, if your cluster does not contain any worker nodes, then master nodes are marked
schedulable by default.

IMPORTANT

In version 4.3, the ability to create a cluster that does not have worker nodes is available
to only clusters that are deployed on bare metal as a technology preview. For all other
cluster types, you can set the masters to be schedulable but must retain worker nodes.

You can allow or disallow master nodes to be schedulable by configuring the mastersSchedulable field.

Procedure

1. Edit the schedulers.config.openshift.io resource.

$ oc edit schedulers.config.openshift.io cluster

2. Configure the mastersSchedulable field.

Set to true to allow master nodes to be schedulable, or false to disallow master nodes to
be schedulable.

3. Save the file to apply the changes.

4.2.5. Deleting nodes

4.2.5.1. Deleting nodes from a cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the Pods that exist
on the node are not deleted. Any bare Pods not backed by a replication controller become inaccessible

apiVersion: config.openshift.io/v1
kind: Scheduler
metadata:
 creationTimestamp: "2019-09-10T03:04:05Z"
 generation: 1
 name: cluster
 resourceVersion: "433"
 selfLink: /apis/config.openshift.io/v1/schedulers/cluster
 uid: a636d30a-d377-11e9-88d4-0a60097bee62
spec:
 mastersSchedulable: false 1
 policy:
 name: ""
status: {}

OpenShift Container Platform 4.3 Nodes

114

to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest Pods.

Procedure

To delete a node from the OpenShift Container Platform cluster, edit the appropriate MachineSet:

NOTE

If you are running cluster on bare metal, you cannot delete a node by editing
MachineSets. MachineSets are only available when a cluster is integrated with a cloud
provider. Instead you must unschedule and drain the node before manually deleting it.

1. View the MachineSets that are in the cluster:

$ oc get machinesets -n openshift-machine-api

The MachineSets are listed in the form of <clusterid>-worker-<aws-region-az>.

2. Scale the MachineSet:

$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api

For more information on scaling your cluster using a MachineSet, see Manually scaling a MachineSet.

4.2.5.2. Deleting nodes from a bare metal cluster

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the Pods that exist
on the node are not deleted. Any bare Pods not backed by a replication controller become inaccessible
to OpenShift Container Platform. Pods backed by replication controllers are rescheduled to other
available nodes. You must delete local manifest Pods.

Procedure

Delete a node from an OpenShift Container Platform cluster running on bare metal by completing the
following steps:

1. Mark the node as unschedulable:

$ oc adm cordon <node_name>

2. Drain all Pods on your node:

$ oc adm drain <node_name> --force=true

3. Delete your node from the cluster:

$ oc delete node <node_name>

Although the node object is now deleted from the cluster, it can still rejoin the cluster after reboot or if
the kubelet service is restarted. To permanently delete the node and all its data, you must decommission
the node.

CHAPTER 4. WORKING WITH NODES

115

https://access.redhat.com/solutions/84663

4.2.6. Adding kernel arguments to Nodes

In some special cases, you might want to add kernel arguments to a set of nodes in your cluster. This
should only be done with caution and clear understanding of the implications of the arguments you set.

WARNING

Improper use of kernel arguments can result in your systems becoming unbootable.

Examples of kernel arguments you could set include:

selinux=0: Disables Security Enhanced Linux (SELinux). While not recommended for
production, disabling SELinux can improve performance by 2% - 3%.

nosmt: Disables symmetric multithreading (SMT) in the kernel. Multithreading allows multiple
logical threads for each CPU. You could consider nosmt in multi-tenant environments to reduce
risks from potential cross-thread attacks. By disabling SMT, you essentially choose security over
performance.

See Kernel.org kernel parameters for a list and descriptions of kernel arguments.

In the following procedure, you create a MachineConfig that identifies:

A set of machines to which you want to add the kernel argument. In this case, machines with a
worker role.

Kernel arguments that are appended to the end of the existing kernel arguments.

A label that indicates where in the list of MachineConfigs the change is applied.

Prerequisites

Have administrative privilege to a working OpenShift Container Platform cluster.

Procedure

1. List existing MachineConfigs for your OpenShift Container Platform cluster to determine how
to label your MachineConfig:

$ oc get MachineConfig
NAME GENERATEDBYCONTROLLER
IGNITIONVERSION CREATED
00-master 577c2d527b09cd7a481a162c50592139caa15e20
2.2.0 30m
00-worker 577c2d527b09cd7a481a162c50592139caa15e20
2.2.0 30m
01-master-container-runtime
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
01-master-kubelet
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
01-worker-container-runtime



OpenShift Container Platform 4.3 Nodes

116

https://www.kernel.org/doc/Documentation/admin-guide/kernel-parameters.txt

1

2

3

577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
01-worker-kubelet
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
99-master-1131169f-dae9-11e9-b5dd-12a845e8ffd8-registries
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
99-master-ssh 2.2.0 30m
99-worker-114e8ac7-dae9-11e9-b5dd-12a845e8ffd8-registries
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
99-worker-ssh 2.2.0 30m
rendered-master-b3729e5f6124ca3678188071343115d0
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m
rendered-worker-18ff9506c718be1e8bd0a066850065b7
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 30m

2. Create a MachineConfig file that identifies the kernel argument (for example, 05-worker-
kernelarg-selinuxoff.yaml)

Applies the new kernel argument only to worker nodes.

Named to identify where it fits among the MachineConfigs (05) and what it does (adds a
kernel argument to turn off SELinux).

Identifies the exact kernel argument as selinux=0.

3. Create the new MachineConfig:

$ oc create -f 05-worker-kernelarg-selinuxoff.yaml

4. Check the MachineConfigs to see that the new one was added:

$ oc get MachineConfig
NAME GENERATEDBYCONTROLLER
IGNITIONVERSION CREATED
00-master 577c2d527b09cd7a481a162c50592139caa15e20
2.2.0 31m
00-worker 577c2d527b09cd7a481a162c50592139caa15e20
2.2.0 31m
01-master-container-runtime
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
01-master-kubelet
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker 1
 name: 05-worker-kernelarg-selinuxoff 2
spec:
 config:
 ignition:
 version: 2.2.0
 kernelArguments:
 - selinux=0 3

CHAPTER 4. WORKING WITH NODES

117

01-worker-container-runtime
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
01-worker-kubelet
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m

05-worker-kernelarg-selinuxoff 2.2.0
105s

99-master-1131169f-dae9-11e9-b5dd-12a845e8ffd8-registries
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
99-master-ssh 2.2.0 30m
99-worker-114e8ac7-dae9-11e9-b5dd-12a845e8ffd8-registries
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
99-worker-ssh 2.2.0 31m
rendered-master-b3729e5f6124ca3678188071343115d0
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m
rendered-worker-18ff9506c718be1e8bd0a066850065b7
577c2d527b09cd7a481a162c50592139caa15e20 2.2.0 31m

5. Check the nodes:

$ oc get nodes
NAME STATUS ROLES AGE VERSION
ip-10-0-136-161.ec2.internal Ready worker 28m v1.16.2
ip-10-0-136-243.ec2.internal Ready master 34m v1.16.2
ip-10-0-141-105.ec2.internal Ready,SchedulingDisabled worker 28m v1.16.2
ip-10-0-142-249.ec2.internal Ready master 34m v1.16.2
ip-10-0-153-11.ec2.internal Ready worker 28m v1.16.2
ip-10-0-153-150.ec2.internal Ready master 34m v1.16.2

You can see that scheduling on each worker node is disabled as the change is being applied.

6. Check that the kernel argument worked by going to one of the worker nodes and listing the
kernel command line arguments (in /proc/cmdline on the host):

$ oc debug node/ip-10-0-141-105.ec2.internal
Starting pod/ip-10-0-141-105ec2internal-debug ...
To use host binaries, run `chroot /host`

sh-4.3# cat /host/proc/cmdline
BOOT_IMAGE=/ostree/rhcos-... console=tty0 console=ttyS0,115200n8
rootflags=defaults,prjquota rw root=UUID=fd0... ostree=/ostree/boot.0/rhcos/16...
coreos.oem.id=qemu coreos.oem.id=ec2 ignition.platform.id=ec2 selinux=0

sh-4.3# exit

You should see the selinux=0 argument added to the other kernel arguments.

4.2.7. Additional resources

For more information on scaling your cluster using a MachineSet, see Manually scaling a MachineSet .

4.3. MANAGING NODES

OpenShift Container Platform uses a KubeletConfig Custom Resource to manage the configuration of

OpenShift Container Platform 4.3 Nodes

118

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/machine_management/#machineset-manually-scaling-manually-scaling-machineset

OpenShift Container Platform uses a KubeletConfig Custom Resource to manage the configuration of
nodes. By creating an instance of a KubeletConfig, a managed MachineConfig is created to override
setting on the node.

NOTE

Logging in to remote machines for the purpose of changing their configuration is not
supported.

4.3.1. Modifying Nodes

To make configuration changes to a cluster, or MachinePool, you must create a Custom Resource
Definition, or KubeletConfig instance. OpenShift Container Platform uses the Machine Config
Controller to watch for changes introduced through the CRD applies the changes to the cluster.

Procedure

1. Obtain the label associated with the static CRD, Machine Config Pool, for the type of node you
want to configure. Perform one of the following steps:

a. Check current labels of the desired machineconfigpool.
For example:

$ oc get machineconfigpool --show-labels
NAME CONFIG UPDATED UPDATING DEGRADED
LABELS
master rendered-master-e05b81f5ca4db1d249a1bf32f9ec24fd True False
False operator.machineconfiguration.openshift.io/required-for-upgrade=
worker rendered-worker-f50e78e1bc06d8e82327763145bfcf62 True False
False

b. Add a custom label to the desired machineconfigpool.
For example:

$ oc label machineconfigpool worker custom-kubelet=enabled

2. Create a KubeletConfig Custom Resource (CR) for your configuration change.
For example:

Sample configuration for a custom-config CR

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-config 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: enabled 2
 kubeletConfig: 3
 podsPerCore: 10
 maxPods: 250
 systemReserved:

CHAPTER 4. WORKING WITH NODES

119

1

2

3

 cpu: 1000m
 memory: 500Mi
 kubeReserved:
 cpu: 1000m
 memory: 500Mi

Assign a name to CR.

Specify the label to apply the configuration change, this is the label you added to the
machineconfigpool.

Specify the new value(s) you want to change.

3. Create the CR object.

$ oc create -f <file-name>

For example:

$ oc create -f master-kube-config.yaml

Most KubeletConfig Options may be set by the user. The following options are not allowed to be
overwritten:

CgroupDriver

ClusterDNS

ClusterDomain

RuntimeRequestTimeout

StaticPodPath

4.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE

In OpenShift Container Platform, you can configure the number of pods that can run on a node based
on the number of processor cores on the node, a hard limit or both. If you use both options, the lower of
the two limits the number of pods on a node.

Exceeding these values can result in:

Increased CPU utilization by OpenShift Container Platform.

Slow pod scheduling.

Potential out-of-memory scenarios, depending on the amount of memory in the node.

Exhausting the IP address pool.

Resource overcommitting, leading to poor user application performance.

NOTE

OpenShift Container Platform 4.3 Nodes

120

https://github.com/kubernetes/kubernetes/blob/release-1.11/pkg/kubelet/apis/kubeletconfig/v1beta1/types.go#L45

1

NOTE

A pod that is holding a single container actually uses two containers. The second
container sets up networking prior to the actual container starting. As a result, a node
running 10 pods actually has 20 containers running.

The podsPerCore parameter limits the number of pods the node can run based on the number of
processor cores on the node. For example, if podsPerCore is set to 10 on a node with 4 processor
cores, the maximum number of pods allowed on the node is 40.

The maxPods parameter limits the number of pods the node can run to a fixed value, regardless of the
properties of the node.

4.4.1. Configuring the maximum number of Pods per Node

Two parameters control the maximum number of pods that can be scheduled to a node: podsPerCore
and maxPods. If you use both options, the lower of the two limits the number of pods on a node.

For example, if podsPerCore is set to 10 on a node with 4 processor cores, the maximum number of
pods allowed on the node will be 40.

Prerequisite

1. Obtain the label associated with the static Machine Config Pool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the Machine Config Pool:

$ oc describe machineconfigpool <name>

For example:

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: small-pods 1

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a Custom Resource (CR) for your configuration change.

Sample configuration for a max-pods CR

CHAPTER 4. WORKING WITH NODES

121

1

2

3

4

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-max-pods 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: small-pods 2
 kubeletConfig:
 podsPerCore: 10 3
 maxPods: 250 4

Assign a name to CR.

Specify the label to apply the configuration change.

Specify the number of pods the node can run based on the number of processor cores on
the node.

Specify the number of pods the node can run to a fixed value, regardless of the properties
of the node.

NOTE

Setting podsPerCore to 0 disables this limit.

In the above example, the default value for podsPerCore is 10 and the default value for
maxPods is 250. This means that unless the node has 25 cores or more, by default,
podsPerCore will be the limiting factor.

2. List the Machine Config Pool CRDs to see if the change is applied. The UPDATING column
reports True if the change is picked up by the Machine Config Controller:

$ oc get machineconfigpools
NAME CONFIG UPDATED UPDATING DEGRADED
master master-9cc2c72f205e103bb534 False False False
worker worker-8cecd1236b33ee3f8a5e False True False

Once the change is complete, the UPDATED column reports True.

$ oc get machineconfigpools
NAME CONFIG UPDATED UPDATING DEGRADED
master master-9cc2c72f205e103bb534 False True False
worker worker-8cecd1236b33ee3f8a5e True False False

4.5. USING THE NODE TUNING OPERATOR

Learn about the Node Tuning Operator and how you can use it to manage node-level tuning by
orchestrating the tuned daemon.

4.5.1. About the Node Tuning Operator

The Node Tuning Operator helps you manage node-level tuning by orchestrating the Tuned daemon.

OpenShift Container Platform 4.3 Nodes

122

The Node Tuning Operator helps you manage node-level tuning by orchestrating the Tuned daemon.
The majority of high-performance applications require some level of kernel tuning. The Node Tuning
Operator provides a unified management interface to users of node-level sysctls and more flexibility to
add custom tuning specified by user needs. The Operator manages the containerized Tuned daemon
for OpenShift Container Platform as a Kubernetes DaemonSet. It ensures the custom tuning
specification is passed to all containerized Tuned daemons running in the cluster in the format that the
daemons understand. The daemons run on all nodes in the cluster, one per node.

Node-level settings applied by the containerized Tuned daemon are rolled back on an event that
triggers a profile change or when the containerized Tuned daemon is terminated gracefully by receiving
and handling a termination signal.

The Node Tuning Operator is part of a standard OpenShift Container Platform installation in version 4.1
and later.

4.5.2. Accessing an example Node Tuning Operator specification

Use this process to access an example Node Tuning Operator specification.

Procedure

1. Run:

$ oc get Tuned/default -o yaml -n openshift-cluster-node-tuning-operator

The default CR is meant for delivering standard node-level tuning for the OpenShift Container Platform
platform and it can only be modified to set the Operator Management state. Any other custom changes
to the default CR will be overwritten by the Operator. For custom tuning, create your own Tuned CRs.
Newly created CRs will be combined with the default CR and custom tuning applied to OpenShift
Container Platform nodes based on node or Pod labels and profile priorities.

4.5.3. Custom tuning specification

The custom resource (CR) for the operator has two major sections. The first section, profile:, is a list of
Tuned profiles and their names. The second, recommend:, defines the profile selection logic.

Multiple custom tuning specifications can co-exist as multiple CRs in the operator’s namespace. The
existence of new CRs or the deletion of old CRs is detected by the Operator. All existing custom tuning
specifications are merged and appropriate objects for the containerized Tuned daemons are updated.

Profile data

The profile: section lists Tuned profiles and their names.

profile:
- name: tuned_profile_1
 data: |
 # Tuned profile specification
 [main]
 summary=Description of tuned_profile_1 profile

 [sysctl]
 net.ipv4.ip_forward=1
 # ... other sysctl's or other Tuned daemon plug-ins supported by the containerized Tuned

CHAPTER 4. WORKING WITH NODES

123

...

- name: tuned_profile_n
 data: |
 # Tuned profile specification
 [main]
 summary=Description of tuned_profile_n profile

 # tuned_profile_n profile settings

Recommended profiles

The profile: selection logic is defined by the recommend: section of the CR:

recommend:
- match: # optional; if omitted, profile match is assumed unless a profile with a
higher matches first
 <match> # an optional array
 priority: <priority> # profile ordering priority, lower numbers mean higher priority (0 is the
highest priority)
 profile: <tuned_profile_name> # e.g. tuned_profile_1

...

- match:
 <match>
 priority: <priority>
 profile: <tuned_profile_name> # e.g. tuned_profile_n

If <match> is omitted, a profile match (for example, true) is assumed.

<match> is an optional array recursively defined as follows:

- label: <label_name> # node or Pod label name
 value: <label_value> # optional node or Pod label value; if omitted, the presence of <label_name>
is enough to match
 type: <label_type> # optional node or Pod type (`node` or `pod`); if omitted, `node` is assumed
 <match> # an optional <match> array

If <match> is not omitted, all nested <match> sections must also evaluate to true. Otherwise, false is
assumed and the profile with the respective <match> section will not be applied or recommended.
Therefore, the nesting (child <match> sections) works as logical AND operator. Conversely, if any item
of the <match> array matches, the entire <match> array evaluates to true. Therefore, the array acts as
logical OR operator.

Example

- match:
 - label: tuned.openshift.io/elasticsearch
 match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 type: pod
 priority: 10
 profile: openshift-control-plane-es

OpenShift Container Platform 4.3 Nodes

124

- match:
 - label: node-role.kubernetes.io/master
 - label: node-role.kubernetes.io/infra
 priority: 20
 profile: openshift-control-plane
- priority: 30
 profile: openshift-node

The CR above is translated for the containerized Tuned daemon into its recommend.conf file based on
the profile priorities. The profile with the highest priority (10) is openshift-control-plane-es and,
therefore, it is considered first. The containerized Tuned daemon running on a given node looks to see if
there is a Pod running on the same node with the tuned.openshift.io/elasticsearch label set. If not, the
entire <match> section evaluates as false. If there is such a Pod with the label, in order for the <match>
section to evaluate to true, the node label also needs to be node-role.kubernetes.io/master or node-
role.kubernetes.io/infra.

If the labels for the profile with priority 10 matched, openshift-control-plane-es profile is applied and
no other profile is considered. If the node/Pod label combination did not match, the second highest
priority profile (openshift-control-plane) is considered. This profile is applied if the containerized Tuned
Pod runs on a node with labels node-role.kubernetes.io/master or node-role.kubernetes.io/infra.

Finally, the profile openshift-node has the lowest priority of 30. It lacks the <match> section and,
therefore, will always match. It acts as a profile catch-all to set openshift-node profile, if no other profile
with higher priority matches on a given node.

4.5.4. Default profiles set on a cluster

The following are the default profiles set on a cluster.

CHAPTER 4. WORKING WITH NODES

125

apiVersion: tuned.openshift.io/v1alpha1
kind: Tuned
metadata:
 name: default
 namespace: openshift-cluster-node-tuning-operator
spec:
 profile:
 - name: "openshift"
 data: |
 [main]
 summary=Optimize systems running OpenShift (parent profile)
 include=${f:virt_check:virtual-guest:throughput-performance}
 [selinux]
 avc_cache_threshold=8192
 [net]
 nf_conntrack_hashsize=131072
 [sysctl]
 net.ipv4.ip_forward=1
 kernel.pid_max=>131072
 net.netfilter.nf_conntrack_max=1048576
 net.ipv4.neigh.default.gc_thresh1=8192
 net.ipv4.neigh.default.gc_thresh2=32768
 net.ipv4.neigh.default.gc_thresh3=65536
 net.ipv6.neigh.default.gc_thresh1=8192
 net.ipv6.neigh.default.gc_thresh2=32768
 net.ipv6.neigh.default.gc_thresh3=65536
 [sysfs]
 /sys/module/nvme_core/parameters/io_timeout=4294967295
 /sys/module/nvme_core/parameters/max_retries=10
 - name: "openshift-control-plane"
 data: |
 [main]
 summary=Optimize systems running OpenShift control plane
 include=openshift
 [sysctl]
 # ktune sysctl settings, maximizing i/o throughput
 #
 # Minimal preemption granularity for CPU-bound tasks:
 # (default: 1 msec# (1 + ilog(ncpus)), units: nanoseconds)
 kernel.sched_min_granularity_ns=10000000
 # The total time the scheduler will consider a migrated process
 # "cache hot" and thus less likely to be re-migrated
 # (system default is 500000, i.e. 0.5 ms)
 kernel.sched_migration_cost_ns=5000000
 # SCHED_OTHER wake-up granularity.
 #
 # Preemption granularity when tasks wake up. Lower the value to
 # improve wake-up latency and throughput for latency critical tasks.
 kernel.sched_wakeup_granularity_ns=4000000
 - name: "openshift-node"
 data: |
 [main]
 summary=Optimize systems running OpenShift nodes
 include=openshift
 [sysctl]
 net.ipv4.tcp_fastopen=3

OpenShift Container Platform 4.3 Nodes

126

 fs.inotify.max_user_watches=65536
 - name: "openshift-control-plane-es"
 data: |
 [main]
 summary=Optimize systems running ES on OpenShift control-plane
 include=openshift-control-plane
 [sysctl]
 vm.max_map_count=262144
 - name: "openshift-node-es"
 data: |
 [main]
 summary=Optimize systems running ES on OpenShift nodes
 include=openshift-node
 [sysctl]
 vm.max_map_count=262144
 recommend:
 - profile: "openshift-control-plane-es"
 priority: 10
 match:
 - label: "tuned.openshift.io/elasticsearch"
 type: "pod"
 match:
 - label: "node-role.kubernetes.io/master"
 - label: "node-role.kubernetes.io/infra"

 - profile: "openshift-node-es"
 priority: 20
 match:
 - label: "tuned.openshift.io/elasticsearch"
 type: "pod"

 - profile: "openshift-control-plane"
 priority: 30
 match:
 - label: "node-role.kubernetes.io/master"
 - label: "node-role.kubernetes.io/infra"

 - profile: "openshift-node"
priority: 40

4.5.5. Supported Tuned daemon plug-ins

Excluding the [main] section, the following Tuned plug-ins are supported when using custom profiles
defined in the profile: section of the Tuned CR:

audio

cpu

disk

eeepc_she

modules

mounts

CHAPTER 4. WORKING WITH NODES

127

net

scheduler

scsi_host

selinux

sysctl

sysfs

usb

video

vm

There is some dynamic tuning functionality provided by some of these plug-ins that is not supported.
The following Tuned plug-ins are currently not supported:

bootloader

script

systemd

See Available Tuned Plug-ins and Getting Started with Tuned for more information.

4.6. UNDERSTANDING NODE REBOOTING

To reboot a node without causing an outage for applications running on the platform, it is important to
first evacuate the pods. For pods that are made highly available by the routing tier, nothing else needs to
be done. For other pods needing storage, typically databases, it is critical to ensure that they can remain
in operation with one pod temporarily going offline. While implementing resiliency for stateful pods is
different for each application, in all cases it is important to configure the scheduler to use node anti-
affinity to ensure that the pods are properly spread across available nodes.

Another challenge is how to handle nodes that are running critical infrastructure such as the router or
the registry. The same node evacuation process applies, though it is important to understand certain
edge cases.

4.6.1. Understanding infrastructure node rebooting

Infrastructure nodes are nodes that are labeled to run pieces of the OpenShift Container Platform
environment. Currently, the easiest way to manage node reboots is to ensure that there are at least
three nodes available to run infrastructure. The nodes to run the infrastructure are called master nodes.

The scenario below demonstrates a common mistake that can lead to service interruptions for the
applications running on OpenShift Container Platform when only two nodes are available.

Node A is marked unschedulable and all pods are evacuated.

The registry pod running on that node is now redeployed on node B. This means node B is now
running both registry pods.

OpenShift Container Platform 4.3 Nodes

128

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/customizing-tuned-profiles_monitoring-and-managing-system-status-and-performance#available-tuned-plug-ins_customizing-tuned-profiles
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/monitoring_and_managing_system_status_and_performance/getting-started-with-tuned_monitoring-and-managing-system-status-and-performance

1

2

3

4

5

Node B is now marked unschedulable and is evacuated.

The service exposing the two pod endpoints on node B, for a brief period of time, loses all
endpoints until they are redeployed to node A.

The same process using three master nodes for infrastructure does not result in a service disruption.
However, due to pod scheduling, the last node that is evacuated and brought back in to rotation is left
running zero registries. The other two nodes will run two and one registries respectively. The best
solution is to rely on pod anti-affinity.

4.6.2. Rebooting a node using pod anti-affinity

Pod anti-affinity is slightly different than node anti-affinity. Node anti-affinity can be violated if there
are no other suitable locations to deploy a pod. Pod anti-affinity can be set to either required or
preferred.

With this in place, if only two infrastructure nodes are available and one is rebooted, the container image
registry pod is prevented from running on the other node. oc get pods reports the pod as unready until
a suitable node is available. Once a node is available and all pods are back in ready state, the next node
can be restarted.

Procedure

To reboot a node using pod anti-affinity:

1. Edit the node specification to configure pod anti-affinity:

Stanza to configure pod anti-affinity.

Defines a preferred rule.

Specifies a weight for a preferred rule. The node with the highest weight is preferred.

Description of the pod label that determines when the anti-affinity rule applies. Specify a
key and value for the label.

The operator represents the relationship between the label on the existing pod and the set

apiVersion: v1
kind: Pod
metadata:
 name: with-pod-antiaffinity
spec:
 affinity:
 podAntiAffinity: 1
 preferredDuringSchedulingIgnoredDuringExecution: 2
 - weight: 100 3
 podAffinityTerm:
 labelSelector:
 matchExpressions:
 - key: registry 4
 operator: In 5
 values:
 - default
 topologyKey: kubernetes.io/hostname

CHAPTER 4. WORKING WITH NODES

129

The operator represents the relationship between the label on the existing pod and the set
of values in the matchExpression parameters in the specification for the new pod. Can be

This example assumes the container image registry pod has a label of registry=default. Pod
anti-affinity can use any Kubernetes match expression.

2. Enable the MatchInterPodAffinity scheduler predicate in the scheduling policy file.

4.6.3. Understanding how to reboot nodes running routers

In most cases, a pod running an OpenShift Container Platform router exposes a host port.

The PodFitsPorts scheduler predicate ensures that no router pods using the same port can run on the
same node, and pod anti-affinity is achieved. If the routers are relying on IP failover for high availability,
there is nothing else that is needed.

For router pods relying on an external service such as AWS Elastic Load Balancing for high availability, it
is that service’s responsibility to react to router pod restarts.

In rare cases, a router pod may not have a host port configured. In those cases, it is important to follow
the recommended restart process for infrastructure nodes.

4.7. FREEING NODE RESOURCES USING GARBAGE COLLECTION

As an administrator, you can use OpenShift Container Platform to ensure that your nodes are running
efficiently by freeing up resources through garbage collection.

The OpenShift Container Platform node performs two types of garbage collection:

Container garbage collection: Removes terminated containers.

Image garbage collection: Removes images not referenced by any running pods.

4.7.1. Understanding how terminated containers are removed though garbage
collection

Container garbage collection can be performed using eviction thresholds.

When eviction thresholds are set for garbage collection, the node tries to keep any container for any
pod accessible from the API. If the pod has been deleted, the containers will be as well. Containers are
preserved as long the pod is not deleted and the eviction threshold is not reached. If the node is under
disk pressure, it will remove containers and their logs will no longer be accessible using oc logs.

eviction-soft - A soft eviction threshold pairs an eviction threshold with a required
administrator-specified grace period.

eviction-hard - A hard eviction threshold has no grace period, and if observed, OpenShift
Container Platform takes immediate action.

If a node is oscillating above and below a soft eviction threshold, but not exceeding its associated grace
period, the corresponding node would constantly oscillate between true and false. As a consequence,
the scheduler could make poor scheduling decisions.

To protect against this oscillation, use the eviction-pressure-transition-period flag to control how long
OpenShift Container Platform must wait before transitioning out of a pressure condition. OpenShift

OpenShift Container Platform 4.3 Nodes

130

Container Platform will not set an eviction threshold as being met for the specified pressure condition
for the period specified before toggling the condition back to false.

4.7.2. Understanding how images are removed though garbage collection

Image garbage collection relies on disk usage as reported by cAdvisor on the node to decide which
images to remove from the node.

The policy for image garbage collection is based on two conditions:

The percent of disk usage (expressed as an integer) which triggers image garbage collection.
The default is 85.

The percent of disk usage (expressed as an integer) to which image garbage collection
attempts to free. Default is 80.

For image garbage collection, you can modify any of the following variables using a Custom Resource.

Table 4.2. Variables for configuring image garbage collection

Setting Description

imageMinimumGCA
ge

The minimum age for an unused image before the image is removed by garbage
collection. The default is 2m.

imageGCHighThresh
oldPercent

The percent of disk usage, expressed as an integer, which triggers image garbage
collection. The default is 85.

imageGCLowThresh
oldPercent

The percent of disk usage, expressed as an integer, to which image garbage
collection attempts to free. The default is 80.

Two lists of images are retrieved in each garbage collector run:

1. A list of images currently running in at least one pod.

2. A list of images available on a host.

As new containers are run, new images appear. All images are marked with a time stamp. If the image is
running (the first list above) or is newly detected (the second list above), it is marked with the current
time. The remaining images are already marked from the previous spins. All images are then sorted by
the time stamp.

Once the collection starts, the oldest images get deleted first until the stopping criterion is met.

4.7.3. Configuring garbage collection for containers and images

As an administrator, you can configure how OpenShift Container Platform performs garbage collection
by creating a kubeletConfig object for each Machine Config Pool.

NOTE

OpenShift Container Platform supports only one kubeletConfig object for each Machine
Config Pool.

CHAPTER 4. WORKING WITH NODES

131

1

You can configure any combination of the following:

soft eviction for containers

hard eviction for containers

eviction for images

For soft container eviction you can also configure a grace period before eviction.

Prerequisites

1. Obtain the label associated with the static Machine Config Pool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the Machine Config Pool:

$ oc describe machineconfigpool <name>

For example:

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a Custom Resource (CR) for your configuration change.

Sample configuration for a container garbage collection CR:

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: small-pods 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: worker-kubeconfig 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: small-pods 2
 kubeletConfig:
 evictionSoft: 3

OpenShift Container Platform 4.3 Nodes

132

1

2

3

4

5

6

7

8

9

Name for the object.

Selector label.

Type of eviction: EvictionSoft and EvictionHard.

Eviction thresholds based on a specific eviction trigger signal.

Grace periods for the soft eviction. This parameter does not apply to eviction-hard.

The duration to wait before transitioning out of an eviction pressure condition

The minimum age for an unused image before the image is removed by garbage collection.

The percent of disk usage (expressed as an integer) which triggers image garbage
collection.

The percent of disk usage (expressed as an integer) to which image garbage collection
attempts to free.

2. Create the object:

$ oc create -f <file-name>.yaml

For example:

oc create -f gc-container.yaml

kubeletconfig.machineconfiguration.openshift.io/gc-container created

3. Verify that garbage collection is active. The Machine Config Pool you specified in the custom
resource appears with UPDATING as 'true` until the change is fully implemented:

 memory.available: "500Mi" 4
 nodefs.available: "10%"
 nodefs.inodesFree: "5%"
 imagefs.available: "15%"
 imagefs.inodesFree: "10%"
 evictionSoftGracePeriod: 5
 memory.available: "1m30s"
 nodefs.available: "1m30s"
 nodefs.inodesFree: "1m30s"
 imagefs.available: "1m30s"
 imagefs.inodesFree: "1m30s"
 evictionHard:
 memory.available: "200Mi"
 nodefs.available: "5%"
 nodefs.inodesFree: "4%"
 imagefs.available: "10%"
 imagefs.inodesFree: "5%"
 evictionPressureTransitionPeriod: 0s 6
 imageMinimumGCAge: 5m 7
 imageGCHighThresholdPercent: 80 8
 imageGCLowThresholdPercent: 75 9

CHAPTER 4. WORKING WITH NODES

133

$ oc get machineconfigpool

NAME CONFIG UPDATED UPDATING
master rendered-master-546383f80705bd5aeaba93 True False
worker rendered-worker-b4c51bb33ccaae6fc4a6a5 False True

4.8. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by all underlying node components (such as kubelet, kube-
proxy) and the remaining system components (such as sshd, NetworkManager) on the host. Once
specified, the scheduler has more information about the resources (e.g., memory, CPU) a node has
allocated for pods.

4.8.1. Understanding how to allocate resources for nodes

CPU and memory resources reserved for node components in OpenShift Container Platform are based
on two node settings:

Setting Description

kube-reserved Resources reserved for node components. Default is none.

system-reserved Resources reserved for the remaining system components. Default is
none.

If a flag is not set, it defaults to 0. If none of the flags are set, the allocated resource is set to the node’s
capacity as it was before the introduction of allocatable resources.

4.8.1.1. How OpenShift Container Platform computes allocated resources

An allocated amount of a resource is computed based on the following formula:

[Allocatable] = [Node Capacity] - [kube-reserved] - [system-reserved] - [Hard-Eviction-Thresholds]

NOTE

The withholding of Hard-Eviction-Thresholds from allocatable is a change in behavior to
improve system reliability now that allocatable is enforced for end-user pods at the node
level. The experimental-allocatable-ignore-eviction setting is available to preserve
legacy behavior, but it will be deprecated in a future release.

If [Allocatable] is negative, it is set to 0.

Each node reports system resources utilized by the container runtime and kubelet. To better aid your
ability to configure --system-reserved and --kube-reserved, you can introspect corresponding node’s
resource usage using the node summary API, which is accessible at
/api/v1/nodes/<node>/proxy/stats/summary.

OpenShift Container Platform 4.3 Nodes

134

4.8.1.2. How nodes enforce resource constraints

The node is able to limit the total amount of resources that pods may consume based on the configured
allocatable value. This feature significantly improves the reliability of the node by preventing pods from
starving system services (for example: container runtime, node agent, etc.) for resources. It is strongly
encouraged that administrators reserve resources based on the desired node utilization target in order
to improve node reliability.

The node enforces resource constraints using a new cgroup hierarchy that enforces quality of service.
All pods are launched in a dedicated cgroup hierarchy separate from system daemons.

Optionally, the node can be made to enforce kube-reserved and system-reserved by specifying those
tokens in the enforce-node-allocatable flag. If specified, the corresponding --kube-reserved-cgroup or
--system-reserved-cgroup needs to be provided. In future releases, the node and container runtime will
be packaged in a common cgroup separate from system.slice. Until that time, we do not recommend
users change the default value of enforce-node-allocatable flag.

Administrators should treat system daemons similar to Guaranteed pods. System daemons can burst
within their bounding control groups and this behavior needs to be managed as part of cluster
deployments. Enforcing system-reserved limits can lead to critical system services being CPU starved or
OOM killed on the node. The recommendation is to enforce system-reserved only if operators have
profiled their nodes exhaustively to determine precise estimates and are confident in their ability to
recover if any process in that group is OOM killed.

As a result, we strongly recommended that users only enforce node allocatable for pods by default, and
set aside appropriate reservations for system daemons to maintain overall node reliability.

4.8.1.3. Understanding Eviction Thresholds

If a node is under memory pressure, it can impact the entire node and all pods running on it. If a system
daemon is using more than its reserved amount of memory, an OOM event may occur that can impact
the entire node and all pods running on it. To avoid (or reduce the probability of) system OOMs the
node provides out-of-resource handling.

You can reserve some memory using the --eviction-hard flag. The node attempts to evict pods
whenever memory availability on the node drops below the absolute value or percentage. If system
daemons do not exist on a node, pods are limited to the memory capacity - eviction-hard. For this
reason, resources set aside as a buffer for eviction before reaching out of memory conditions are not
available for pods.

The following is an example to illustrate the impact of node allocatable for memory:

Node capacity is 32Gi

--kube-reserved is 2Gi

--system-reserved is 1Gi

--eviction-hard is set to 100Mi.

For this node, the effective node allocatable value is 28.9Gi. If the node and system components use up
all their reservation, the memory available for pods is 28.9Gi, and kubelet will evict pods when it exceeds
this usage.

If you enforce node allocatable (28.9Gi) via top level cgroups, then pods can never exceed 28.9Gi.
Evictions would not be performed unless system daemons are consuming more than 3.1Gi of memory.

CHAPTER 4. WORKING WITH NODES

135

If system daemons do not use up all their reservation, with the above example, pods would face memcg
OOM kills from their bounding cgroup before node evictions kick in. To better enforce QoS under this
situation, the node applies the hard eviction thresholds to the top-level cgroup for all pods to be Node
Allocatable + Eviction Hard Thresholds.

If system daemons do not use up all their reservation, the node will evict pods whenever they consume
more than 28.9Gi of memory. If eviction does not occur in time, a pod will be OOM killed if pods
consume 29Gi of memory.

4.8.1.4. How the scheduler determines resource availability

The scheduler uses the value of node.Status.Allocatable instead of node.Status.Capacity to decide if
a node will become a candidate for pod scheduling.

By default, the node will report its machine capacity as fully schedulable by the cluster.

4.8.2. Configuring allocated resources for nodes

OpenShift Container Platform supports the CPU and memory resource types for allocation. If your
administrator enabled the ephemeral storage technology preview, the ephemeral-resource resource
type is supported as well. For the cpu type, the resource quantity is specified in units of cores, such as
200m, 0.5, or 1. For memory and ephemeral-storage, it is specified in units of bytes, such as 200Ki,
50Mi, or 5Gi.

As an administrator, you can set these using a Custom Resource (CR) through a set of
<resource_type>=<resource_quantity> pairs (e.g., cpu=200m,memory=512Mi).

Prerequisites

1. To help you determine setting for --system-reserved and --kube-reserved you can introspect
the corresponding node’s resource usage using the node summary API, which is accessible at
/api/v1/nodes/<node>/proxy/stats/summary. Enter the following command for your node:

$ oc get --raw /api/v1/nodes/<node>/proxy/stats/summary

For example, to access the resources from cluster.node22 node, you can enter:

$ oc get --raw /api/v1/nodes/cluster.node22/proxy/stats/summary
{
 "node": {
 "nodeName": "cluster.node22",
 "systemContainers": [
 {
 "cpu": {
 "usageCoreNanoSeconds": 929684480915,
 "usageNanoCores": 190998084
 },
 "memory": {
 "rssBytes": 176726016,
 "usageBytes": 1397895168,
 "workingSetBytes": 1050509312
 },
 "name": "kubelet"
 },
 {

OpenShift Container Platform 4.3 Nodes

136

1

 "cpu": {
 "usageCoreNanoSeconds": 128521955903,
 "usageNanoCores": 5928600
 },
 "memory": {
 "rssBytes": 35958784,
 "usageBytes": 129671168,
 "workingSetBytes": 102416384
 },
 "name": "runtime"
 }
]
 }
}

2. Obtain the label associated with the static Machine Config Pool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the Machine Config Pool:

$ oc describe machineconfigpool <name>

For example:

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a Custom Resource (CR) for your configuration change.

Sample configuration for a resource allocation CR

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: small-pods 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: set-allocatable 1
spec:
 machineConfigPoolSelector:
 matchLabels:

CHAPTER 4. WORKING WITH NODES

137

4.9. VIEWING NODE AUDIT LOGS

Audit provides a security-relevant chronological set of records documenting the sequence of activities
that have affected the system by individual users, administrators, or other components of the system.

4.9.1. About the API audit log

Audit works at the API server level, logging all requests coming to the server. Each audit log contains the
following information:

Table 4.3. Audit log fields

Field Description

level The audit level at which the event was generated.

auditID A unique audit ID, generated for each request.

stage The stage of the request handling when this event instance was
generated.

requestURI The request URI as sent by the client to a server.

verb The Kubernetes verb associated with the request. For non-resource
requests, this is the lowercase HTTP method.

user The authenticated user information.

impersonatedUser Optional. The impersonated user information, if the request is
impersonating another user.

sourceIPs Optional. The source IPs, from where the request originated and any
intermediate proxies.

userAgent Optional. The user agent string reported by the client. Note that the user
agent is provided by the client, and must not be trusted.

objectRef Optional. The object reference this request is targeted at. This does not
apply for List-type requests, or non-resource requests.

 custom-kubelet: small-pods 2
 kubeletConfig:
 systemReserved:
 cpu: 500m
 memory: 512Mi
 kubeReserved:
 cpu: 500m
 memory: 512Mi

OpenShift Container Platform 4.3 Nodes

138

responseStatus Optional. The response status, populated even when the
ResponseObject is not a Status type. For successful responses, this
will only include the code. For non-status type error responses, this will
be auto-populated with the error message.

requestObject Optional. The API object from the request, in JSON format. The
RequestObject is recorded as is in the request (possibly re-encoded
as JSON), prior to version conversion, defaulting, admission or merging.
It is an external versioned object type, and might not be a valid object on
its own. This is omitted for non-resource requests and is only logged at
request level and higher.

responseObject Optional. The API object returned in the response, in JSON format. The
ResponseObject is recorded after conversion to the external type,
and serialized as JSON. This is omitted for non-resource requests and is
only logged at response level.

requestReceivedTimestamp The time that the request reached the API server.

stageTimestamp The time that the request reached the current audit stage.

annotations Optional. An unstructured key value map stored with an audit event that
may be set by plugins invoked in the request serving chain, including
authentication, authorization and admission plugins. Note that these
annotations are for the audit event, and do not correspond to the
metadata.annotations of the submitted object. Keys should uniquely
identify the informing component to avoid name collisions, for example
podsecuritypolicy.admission.k8s.io/policy. Values should be
short. Annotations are included in the metadata level.

Field Description

Example output for the Kubernetes API server:

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-4130-8192-
c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-kube-
controller-manager/configmaps/cert-recovery-controller-lock?timeout=35s","verb":"update","user":
{"username":"system:serviceaccount:openshift-kube-controller-manager:localhost-recovery-
client","uid":"dd4997e3-d565-4e37-80f8-7fc122ccd785","groups":
["system:serviceaccounts","system:serviceaccounts:openshift-kube-controller-
manager","system:authenticated"]},"sourceIPs":["::1"],"userAgent":"cluster-kube-controller-manager-
operator/v0.0.0 (linux/amd64) kubernetes/$Format","objectRef":
{"resource":"configmaps","namespace":"openshift-kube-controller-manager","name":"cert-recovery-
controller-lock","uid":"5c57190b-6993-425d-8101-
8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":{"metadata":
{},"code":200},"requestReceivedTimestamp":"2020-04-
02T08:27:20.200962Z","stageTimestamp":"2020-04-02T08:27:20.206710Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of ClusterRole
\"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-kube-controller-manager\""}}

CHAPTER 4. WORKING WITH NODES

139

4.9.2. Viewing the audit log

You can view logs for the OpenShift Container Platform API server or the Kubernetes API server for
each master node.

Procedure

To view the audit log:

1. View the OpenShift Container Platform API server logs

a. If necessary, get the node name of the log you want to view:

$ oc adm node-logs --role=master --path=openshift-apiserver/

ip-10-0-140-97.ec2.internal audit-2019-04-09T00-12-19.834.log
ip-10-0-140-97.ec2.internal audit-2019-04-09T11-13-00.469.log
ip-10-0-140-97.ec2.internal audit.log
ip-10-0-153-35.ec2.internal audit-2019-04-09T00-11-49.835.log
ip-10-0-153-35.ec2.internal audit-2019-04-09T11-08-30.469.log
ip-10-0-153-35.ec2.internal audit.log
ip-10-0-170-165.ec2.internal audit-2019-04-09T00-13-00.128.log
ip-10-0-170-165.ec2.internal audit-2019-04-09T11-10-04.082.log
ip-10-0-170-165.ec2.internal audit.log

b. View the OpenShift Container Platform API server log for a specific master node and
timestamp or view all the logs for that master:

$ oc adm node-logs <node-name> --path=openshift-apiserver/<log-name>

For example:

$ oc adm node-logs ip-10-0-140-97.ec2.internal --path=openshift-apiserver/audit-2019-
04-08T13-09-01.227.log
$ oc adm node-logs ip-10-0-140-97.ec2.internal --path=openshift-apiserver/audit.log

The output appears similar to the following:

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-
4130-8192-
c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-
kube-controller-manager/configmaps/cert-recovery-controller-lock?
timeout=35s","verb":"update","user":{"username":"system:serviceaccount:openshift-kube-
controller-manager:localhost-recovery-client","uid":"dd4997e3-d565-4e37-80f8-
7fc122ccd785","groups":["system:serviceaccounts","system:serviceaccounts:openshift-
kube-controller-manager","system:authenticated"]},"sourceIPs":
["::1"],"userAgent":"cluster-kube-controller-manager-operator/v0.0.0 (linux/amd64)
kubernetes/$Format","objectRef":{"resource":"configmaps","namespace":"openshift-kube-
controller-manager","name":"cert-recovery-controller-lock","uid":"5c57190b-6993-425d-
8101-8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":
{"metadata":{},"code":200},"requestReceivedTimestamp":"2020-04-
02T08:27:20.200962Z","stageTimestamp":"2020-04-
02T08:27:20.206710Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by

OpenShift Container Platform 4.3 Nodes

140

ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of
ClusterRole \"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-
kube-controller-manager\""}}

2. View the Kubernetes API server logs:

a. If necessary, get the node name of the log you want to view:

$ oc adm node-logs --role=master --path=kube-apiserver/

ip-10-0-140-97.ec2.internal audit-2019-04-09T14-07-27.129.log
ip-10-0-140-97.ec2.internal audit-2019-04-09T19-18-32.542.log
ip-10-0-140-97.ec2.internal audit.log
ip-10-0-153-35.ec2.internal audit-2019-04-09T19-24-22.620.log
ip-10-0-153-35.ec2.internal audit-2019-04-09T19-51-30.905.log
ip-10-0-153-35.ec2.internal audit.log
ip-10-0-170-165.ec2.internal audit-2019-04-09T18-37-07.511.log
ip-10-0-170-165.ec2.internal audit-2019-04-09T19-21-14.371.log
ip-10-0-170-165.ec2.internal audit.log

b. View the Kubernetes API server log for a specific master node and timestamp or view all the
logs for that master:

$ oc adm node-logs <node-name> --path=kube-apiserver/<log-name>

For example:

$ oc adm node-logs ip-10-0-140-97.ec2.internal --path=kube-apiserver/audit-2019-04-
09T14-07-27.129.log
$ oc adm node-logs ip-10-0-170-165.ec2.internal --path=kube-apiserver/audit.log

The output appears similar to the following:

{"kind":"Event","apiVersion":"audit.k8s.io/v1","level":"Metadata","auditID":"ad209ce1-fec7-
4130-8192-
c4cc63f1d8cd","stage":"ResponseComplete","requestURI":"/api/v1/namespaces/openshift-
kube-controller-manager/configmaps/cert-recovery-controller-lock?
timeout=35s","verb":"update","user":{"username":"system:serviceaccount:openshift-kube-
controller-manager:localhost-recovery-client","uid":"dd4997e3-d565-4e37-80f8-
7fc122ccd785","groups":["system:serviceaccounts","system:serviceaccounts:openshift-
kube-controller-manager","system:authenticated"]},"sourceIPs":
["::1"],"userAgent":"cluster-kube-controller-manager-operator/v0.0.0 (linux/amd64)
kubernetes/$Format","objectRef":{"resource":"configmaps","namespace":"openshift-kube-
controller-manager","name":"cert-recovery-controller-lock","uid":"5c57190b-6993-425d-
8101-8337e48c7548","apiVersion":"v1","resourceVersion":"574307"},"responseStatus":
{"metadata":{},"code":200},"requestReceivedTimestamp":"2020-04-
02T08:27:20.200962Z","stageTimestamp":"2020-04-
02T08:27:20.206710Z","annotations":
{"authorization.k8s.io/decision":"allow","authorization.k8s.io/reason":"RBAC: allowed by
ClusterRoleBinding \"system:openshift:operator:kube-controller-manager-recovery\" of
ClusterRole \"cluster-admin\" to ServiceAccount \"localhost-recovery-client/openshift-
kube-controller-manager\""}}

4.10. MACHINE CONFIG DAEMON METRICS

CHAPTER 4. WORKING WITH NODES

141

The Machine Config Daemon is a part of the Machine Config Operator. It runs on every node in the
cluster. Machine Config Daemon’s purpose is managing configuration changes and updates on each of
the nodes.

4.10.1. Machine Config Daemon metrics

Beginning OpenShift Container Platform 4.3, the Machine Config Daemon provides a set of metrics.
These metrics can be accessed using the Prometheus Cluster Monitoring stack.

The following table describes this set of metrics.

NOTE

Metrics marked with * in the Name and Description columns represent serious errors
that might cause performance problems. Such problems might prevent updates and
upgrades from proceeding.

NOTE

While some entries contain commands for getting specific logs, the most comprehensive
set of logs is available using the oc adm must-gather command.

Table 4.4. MCO metrics

Name Format Description Notes

mcd_host_os_a
nd_version

[]string{"os",
"version"}

Shows the OS that MCD is
running on, such as RHCOS or
RHEL. In case of RHCOS, the
version is provided.

ssh_accessed counter Shows the number of successful
SSH authentications into the
node.

The non-zero value shows that
someone might have made
manual changes to the node.
Such changes might cause
irreconcilable errors due to the
differences between the state on
the disk and the state defined in
the machine configuration.

OpenShift Container Platform 4.3 Nodes

142

mcd_drain* {"drain_time",
"err"}

Logs errors received during failed
drain. *

While drains might need multiple
tries to succeed, terminal failed
drains prevent updates from
proceeding. The drain_time
metric, which shows how much
time the drain took, might help
with troubleshooting.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_pivot_err* []string{"pivot_
target", "err"}

Logs errors encountered during
pivot. *

Pivot errors might prevent OS
upgrades from proceeding.

For further investigation, run this
command to access the node and
see all its logs:

$ oc debug node/<node> — 
chroot /host journalctl -u
pivot.service

Alternatively, you can run this
command to only see the logs
from the machine-config-
daemon container:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_state []string{"state",
"reason"}

State of Machine Config Daemon
for the indicated node. Possible
states are "Done", "Working", and
"Degraded". In case of
"Degraded", the reason is
included.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

Name Format Description Notes

CHAPTER 4. WORKING WITH NODES

143

mcd_kubelet_st
ate*

[]string{"err"} Logs kubelet health failures. * This is expected to be empty,
with failure count of 0. If failure
count exceeds 2, the error
indicating threshold is exceeded.
This indicates a possible issue
with the health of the kubelet.

For further investigation, run this
command to access the node and
see all its logs:

$ oc debug node/<node> — 
chroot /host journalctl -u
kubelet

mcd_reboot_er
r*

[]string{"messa
ge", "err"}

Logs the failed reboots and the
corresponding errors. *

This is expected to be empty,
which indicates a successful
reboot.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

mcd_update_st
ate

[]string{"config
", "err"}

Logs success or failure of
configuration updates and the
corresponding errors.

The expected value is rendered-
master/rendered-worker-
XXXX. If the update fails, an error
is present.

For further investigation, see the
logs by running:

$ oc logs -f -n openshift-
machine-config-operator
machine-config-daemon-
<hash> -c machine-config-
daemon

Name Format Description Notes

Additional resources

See the documentation on the Prometheus Cluster Monitoring stack .

See the documentation on gathering data about your cluster .

OpenShift Container Platform 4.3 Nodes

144

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/monitoring/#about-cluster-monitoring-1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/support/#gathering-data-about-your-cluster

CHAPTER 5. WORKING WITH CONTAINERS

5.1. UNDERSTANDING CONTAINERS

The basic units of OpenShift Container Platform applications are called containers. Linux container
technologies are lightweight mechanisms for isolating running processes so that they are limited to
interacting with only their designated resources.

Many application instances can be running in containers on a single host without visibility into each
others' processes, files, network, and so on. Typically, each container provides a single service (often
called a "micro-service"), such as a web server or a database, though containers can be used for arbitrary
workloads.

The Linux kernel has been incorporating capabilities for container technologies for years. OpenShift
Container Platform and Kubernetes add the ability to orchestrate containers across multi-host
installations.

5.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS
DEPLOYED

OpenShift Container Platform provides Init Containers, which are specialized containers that run before
application containers and can contain utilities or setup scripts not present in an app image.

5.2.1. Understanding Init Containers

You can use an Init Container resource to perform tasks before the rest of a pod is deployed.

A pod can have Init Containers in addition to application containers. Init containers allow you to
reorganize setup scripts and binding code.

An Init Container can:

Contain and run utilities that are not desirable to include in the app Container image for security
reasons.

Contain utilities or custom code for setup that is not present in an app image. For example,
there is no requirement to make an image FROM another image just to use a tool like sed, awk,
python, or dig during setup.

Use Linux namespaces so that they have different filesystem views from app containers, such as
access to Secrets that application containers are not able to access.

Each Init Container must complete successfully before the next one is started. So, Init Containers
provide an easy way to block or delay the startup of app containers until some set of preconditions are
met.

For example, the following are some ways you can use Init Containers:

Wait for a service to be created with a shell command like:

for i in {1..100}; do sleep 1; if dig myservice; then exit 0; fi; done; exit 1

Register this Pod with a remote server from the downward API with a command like:

CHAPTER 5. WORKING WITH CONTAINERS

145

https://access.redhat.com/articles/1353593

$ curl -X POST
http://$MANAGEMENT_SERVICE_HOST:$MANAGEMENT_SERVICE_PORT/register -d
‘instance=$()&ip=$()’

Wait for some time before starting the app Container with a command like sleep 60.

Clone a git repository into a volume.

Place values into a configuration file and run a template tool to dynamically generate a
configuration file for the main app Container. For example, place the POD_IP value in a
configuration and generate the main app configuration file using Jinja.

See the Kubernetes documentation for more information.

5.2.2. Creating Init Containers

The following example outlines a simple Pod which has two Init Containers. The first waits for myservice
and the second waits for mydb. Once both containers complete, the Pod begins.

Procedure

1. Create a YAML file for the Init Container:

2. Create a YAML file for the myservice service.

apiVersion: v1
kind: Pod
metadata:
 name: myapp-pod
 labels:
 app: myapp
spec:
 containers:
 - name: myapp-container
 image: busybox
 command: ['sh', '-c', 'echo The app is running! && sleep 3600']
 initContainers:
 - name: init-myservice
 image: busybox
 command: ['sh', '-c', 'until nslookup myservice; do echo waiting for myservice; sleep 2;
done;']
 - name: init-mydb
 image: busybox
 command: ['sh', '-c', 'until nslookup mydb; do echo waiting for mydb; sleep 2; done;']

kind: Service
apiVersion: v1
metadata:
 name: myservice
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9376

OpenShift Container Platform 4.3 Nodes

146

https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

3. Create a YAML file for the mydb service.

4. Run the following command to create the myapp-pod:

$ oc create -f myapp.yaml

pod/myapp-pod created

5. View the status of the pod:

$ oc get pods
NAME READY STATUS RESTARTS AGE
myapp-pod 0/1 Init:0/2 0 5s

Note that the pod status indicates it is waiting

6. Run the following commands to create the services:

$ oc create -f mydb.yaml
$ oc create -f myservice.yaml

7. View the status of the pod:

$ oc get pods
NAME READY STATUS RESTARTS AGE
myapp-pod 1/1 Running 0 2m

5.3. USING VOLUMES TO PERSIST CONTAINER DATA

Files in a container are ephemeral. As such, when a container crashes or stops, the data is lost. You can
use volumes to persist the data used by the containers in a pod. A volume is directory, accessible to the
Containers in a Pod, where data is stored for the life of the pod.

5.3.1. Understanding volumes

Volumes are mounted file systems available to pods and their containers which may be backed by a
number of host-local or network attached storage endpoints. Containers are not persistent by default;
on restart, their contents are cleared.

To ensure that the file system on the volume contains no errors and, if errors are present, to repair them
when possible, OpenShift Container Platform invokes the fsck utility prior to the mount utility. This
occurs when either adding a volume or updating an existing volume.

The simplest volume type is emptyDir, which is a temporary directory on a single machine.

kind: Service
apiVersion: v1
metadata:
 name: mydb
spec:
 ports:
 - protocol: TCP
 port: 80
 targetPort: 9377

CHAPTER 5. WORKING WITH CONTAINERS

147

The simplest volume type is emptyDir, which is a temporary directory on a single machine.
Administrators may also allow you to request a persistent volume that is automatically attached to your
pods.

NOTE

emptyDir volume storage may be restricted by a quota based on the pod’s FSGroup, if
the FSGroup parameter is enabled by your cluster administrator.

5.3.2. Working with volumes using the OpenShift Container Platform CLI

You can use the CLI command oc set volume to add and remove volumes and volume mounts for any
object that has a pod template like replication controllers or DeploymentConfigs. You can also list
volumes in pods or any object that has a pod template.

The oc set volume command uses the following general syntax:

$ oc set volume <object_selection> <operation> <mandatory_parameters> <options>

Object selection

Specify one of the following for object_seletion in the oc set volume command:

Table 5.1. Object Selection

Syntax Description Example

<object_type> <name> Selects <name> of type
<object_type>.

deploymentConfig registry

<object_type>/<name> Selects <name> of type
<object_type>.

deploymentConfig/registry

<object_type>--
selector=<object_label_selec
tor>

Selects resources of type
<object_type> that matched
the given label selector.

deploymentConfig--
selector="name=registry"

<object_type> --all Selects all resources of type
<object_type>.

deploymentConfig --all

-f or --filename=<file_name> File name, directory, or URL to file
to use to edit the resource.

-f registry-deployment-
config.json

Operation

Specify --add, --remove, or --list for operation in the oc set volume command.

Mandatory parameters

Any <mandatory_parameters> are specific to the selected operation and are discussed in later
sections.

Options

Any <options> are specific to the selected operation and are discussed in later sections.

OpenShift Container Platform 4.3 Nodes

148

5.3.3. Listing volumes and volume mounts in a pod

You can list volumes and volume mounts in pods or pod templates:

Procedure

To list volumes:

$ oc set volume <object_type>/<name> --list [options]

List volume supported options:

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

For example:

To list all volumes for pod p1:

$ oc set volume pod/p1 --list

To list volume v1 defined on all DeploymentConfigs:

$ oc set volume dc --all --name=v1

5.3.4. Adding volumes to a pod

You can add volumes and volume mounts to a pod.

Procedure

To add a volume, a volume mount, or both to pod templates:

$ oc set volume <object_type>/<name> --add [options]

Table 5.2. Supported Options for Adding Volumes

Option Description Default

--name Name of the volume. Automatically generated, if not
specified.

CHAPTER 5. WORKING WITH CONTAINERS

149

-t, --type Name of the volume source.
Supported values: emptyDir,
hostPath, secret, configmap,
persistentVolumeClaim or
projected.

emptyDir

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

-m, --mount-path Mount path inside the selected
containers.

--path Host path. Mandatory parameter
for --type=hostPath.

--secret-name Name of the secret. Mandatory
parameter for --type=secret.

--configmap-name Name of the configmap.
Mandatory parameter for --
type=configmap.

--claim-name Name of the persistent volume
claim. Mandatory parameter for --
type=persistentVolumeClaim
.

--source Details of volume source as a
JSON string. Recommended if
the desired volume source is not
supported by --type.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

Option Description Default

For example:

To add a new volume source emptyDir to DeploymentConfig registry:

$ oc set volume dc/registry --add

To add volume v1 with secret secret1 for replication controller r1 and mount inside the
containers at /data:

OpenShift Container Platform 4.3 Nodes

150

$ oc set volume rc/r1 --add --name=v1 --type=secret --secret-name='secret1' --mount-
path=/data

To add existing persistent volume v1 with claim name pvc1 to deployment configuration dc.json
on disk, mount the volume on container c1 at /data, and update the DeploymentConfig on the
server:

$ oc set volume -f dc.json --add --name=v1 --type=persistentVolumeClaim \
 --claim-name=pvc1 --mount-path=/data --containers=c1

To add a volume v1 based on Git repository https://github.com/namespace1/project1 with
revision 5125c45f9f563 for all replication controllers:

$ oc set volume rc --all --add --name=v1 \
 --source='{"gitRepo": {
 "repository": "https://github.com/namespace1/project1",
 "revision": "5125c45f9f563"
 }}'

5.3.5. Updating volumes and volume mounts in a pod

You can modify the volumes and volume mounts in a pod.

Procedure

Updating existing volumes using the --overwrite option:

$ oc set volume <object_type>/<name> --add --overwrite [options]

For example:

To replace existing volume v1 for replication controller r1 with existing persistent volume claim
pvc1:

$ oc set volume rc/r1 --add --overwrite --name=v1 --type=persistentVolumeClaim --claim-
name=pvc1

To change DeploymentConfig d1 mount point to /opt for volume v1:

$ oc set volume dc/d1 --add --overwrite --name=v1 --mount-path=/opt

5.3.6. Removing volumes and volume mounts from a pod

You can remove a volume or volume mount from a pod.

Procedure

To remove a volume from pod templates:

$ oc set volume <object_type>/<name> --remove [options]

Table 5.3. Supported Options for Removing Volumes

CHAPTER 5. WORKING WITH CONTAINERS

151

Option Description Default

--name Name of the volume.

-c, --containers Select containers by name. It can
also take wildcard '*' that matches
any character.

'*'

--confirm Indicate that you want to remove
multiple volumes at once.

-o, --output Display the modified objects
instead of updating them on the
server. Supported values: json,
yaml.

--output-version Output the modified objects with
the given version.

api-version

For example:

To remove a volume v1 from DeploymentConfig d1:

$ oc set volume dc/d1 --remove --name=v1

To unmount volume v1 from container c1 for DeploymentConfig d1 and remove the volume v1 if
it is not referenced by any containers on d1:

$ oc set volume dc/d1 --remove --name=v1 --containers=c1

To remove all volumes for replication controller r1:

$ oc set volume rc/r1 --remove --confirm

5.3.7. Configuring volumes for multiple uses in a pod

You can configure a volume to allows you to share one volume for multiple uses in a single pod using the
volumeMounts.subPath property to specify a subPath inside a volume instead of the volume’s root.

Procedure

1. View the list of files in the volume, run the oc rsh command:

$ oc rsh <pod>
sh-4.3$ ls /path/to/volume/subpath/mount
example_file1 example_file2 example_file3

2. Specify the subPath:

Example subPath Usage

OpenShift Container Platform 4.3 Nodes

152

1 1

2 2

apiVersion: v1
kind: Pod
metadata:
 name: my-site
spec:
 containers:
 - name: mysql
 image: mysql
 volumeMounts:
 - mountPath: /var/lib/mysql
 name: site-data
 subPath: mysql 1
 - name: php
 image: php
 volumeMounts:
 - mountPath: /var/www/html
 name: site-data
 subPath: html 2
 volumes:
 - name: site-data
 persistentVolumeClaim:
 claimName: my-site-data

Databases are stored in the mysql folder.

HTML content is stored in the html folder.

5.4. MAPPING VOLUMES USING PROJECTED VOLUMES

A projected volume maps several existing volume sources into the same directory.

The following types of volume sources can be projected:

Secrets

Config Maps

Downward API

NOTE

All sources are required to be in the same namespace as the pod.

5.4.1. Understanding projected volumes

Projected volumes can map any combination of these volume sources into a single directory, allowing
the user to:

automatically populate a single volume with the keys from multiple secrets, configmaps, and
with downward API information, so that I can synthesize a single directory with various sources
of information;

populate a single volume with the keys from multiple secrets, configmaps, and with downward

CHAPTER 5. WORKING WITH CONTAINERS

153

populate a single volume with the keys from multiple secrets, configmaps, and with downward
API information, explicitly specifying paths for each item, so that I can have full control over the
contents of that volume.

The following general scenarios show how you can use projected volumes.

ConfigMap, Secrets, Downward API.

Projected volumes allow you to deploy containers with configuration data that includes passwords.
An application using these resources could be deploying Red Hat OpenStack Platform (RHOSP) on
Kubernetes. The configuration data might have to be assembled differently depending on if the
services are going to be used for production or for testing. If a pod is labeled with production or
testing, the downward API selector metadata.labels can be used to produce the correct RHOSP
configs.

ConfigMap + Secrets.

Projected volumes allow you to deploy containers involving configuration data and passwords. For
example, you might execute a configmap with some sensitive encrypted tasks that are decrypted
using a vault password file.

ConfigMap + Downward API.

Projected volumes allow you to generate a config including the pod name (available via the
metadata.name selector). This application can then pass the pod name along with requests in order
to easily determine the source without using IP tracking.

Secrets + Downward API.

Projected volumes allow you to use a secret as a public key to encrypt the namespace of the pod
(available via the metadata.namespace selector). This example allows the operator to use the
application to deliver the namespace information securely without using an encrypted transport.

5.4.1.1. Example Pod Specifications

The following are examples of pod specifications for creating projected volumes.

Pod with a secret, a downward API, and a configmap

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts: 1
 - name: all-in-one
 mountPath: "/projected-volume" 2
 readOnly: true 3
 volumes: 4
 - name: all-in-one 5
 projected:
 defaultMode: 0400 6
 sources:
 - secret:
 name: mysecret 7
 items:

OpenShift Container Platform 4.3 Nodes

154

1

2

3

4

5

6

7

8

9

10

11

Add a volumeMounts section for each container that needs the secret.

Specify a path to an unused directory where the secret will appear.

Set readOnly to true.

Add a volumes block to list each projected volume source.

Specify any name for the volume.

Set the execute permission on the files.

Add a secret. Enter the name of the secret object. Each secret you want to use must be listed.

Specify the path to the secrets file under the mountPath. Here, the secrets file is in /projected-
volume/my-group/my-config.

Add a Downward API source.

Add a ConfigMap source.

Set the mode for the specific projection

NOTE

If there are multiple containers in the pod, each container needs a volumeMounts
section, but only one volumes section is needed.

Pod with multiple secrets with a non-default permission mode set

 - key: username
 path: my-group/my-username 8
 - downwardAPI: 9
 items:
 - path: "labels"
 fieldRef:
 fieldPath: metadata.labels
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: container-test
 resource: limits.cpu
 - configMap: 10
 name: myconfigmap
 items:
 - key: config
 path: my-group/my-config
 mode: 0777 11

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:

CHAPTER 5. WORKING WITH CONTAINERS

155

NOTE

The defaultMode can only be specified at the projected level and not for each volume
source. However, as illustrated above, you can explicitly set the mode for each individual
projection.

5.4.1.2. Pathing Considerations

Collisions Between Keys when Configured Paths are Identical

If you configure any keys with the same path, the pod spec will not be accepted as valid. In the
following example, the specified path for mysecret and myconfigmap are the same:

 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 defaultMode: 0755
 sources:
 - secret:
 name: mysecret
 items:
 - key: username
 path: my-group/my-username
 - secret:
 name: mysecret2
 items:
 - key: password
 path: my-group/my-password
 mode: 511

apiVersion: v1
kind: Pod
metadata:
 name: volume-test
spec:
 containers:
 - name: container-test
 image: busybox
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one
 projected:
 sources:
 - secret:
 name: mysecret
 items:
 - key: username

OpenShift Container Platform 4.3 Nodes

156

Consider the following situations related to the volume file paths.

Collisions Between Keys without Configured Paths

The only run-time validation that can occur is when all the paths are known at pod creation, similar to
the above scenario. Otherwise, when a conflict occurs the most recent specified resource will
overwrite anything preceding it (this is true for resources that are updated after pod creation as
well).

Collisions when One Path is Explicit and the Other is Automatically Projected

In the event that there is a collision due to a user specified path matching data that is automatically
projected, the latter resource will overwrite anything preceding it as before

5.4.2. Configuring a Projected Volume for a Pod

When creating projected volumes, consider the volume file path situations described in Understanding
projected volumes.

The following example shows how to use a projected volume to mount an existing Secret volume source.
The steps can be used to create a user name and password Secrets from local files. You then create a
pod that runs one container, using a projected volume to mount the Secrets into the same shared
directory.

Procedure

To use a projected volume to mount an existing Secret volume source.

1. Create files containing the secrets, entering the following, replacing the password and user
information as appropriate:

The user and pass values can be any valid string that is base64 encoded. The examples used
here are base64 encoded values user: admin, pass:1f2d1e2e67df.

$ echo -n "admin" | base64
YWRtaW4=
$ echo -n "1f2d1e2e67df" | base64
MWYyZDFlMmU2N2Rm

2. Use the following command to create the secrets:

 path: my-group/data
 - configMap:
 name: myconfigmap
 items:
 - key: config
 path: my-group/data

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=

CHAPTER 5. WORKING WITH CONTAINERS

157

$ oc create -f <secrets-filename>

For example:

$ oc create -f secret.yaml
secret "mysecret" created

3. You can check that the secret was created using the following commands:

$ oc get secret <secret-name>
$ oc get secret <secret-name> -o yaml

For example:

$ oc get secret mysecret
NAME TYPE DATA AGE
mysecret Opaque 2 17h

$ oc get secret mysecret -o yaml

4. Create a pod configuration file similar to the following that includes a volumes section:

apiVersion: v1
data:
 pass: MWYyZDFlMmU2N2Rm
 user: YWRtaW4=
kind: Secret
metadata:
 creationTimestamp: 2017-05-30T20:21:38Z
 name: mysecret
 namespace: default
 resourceVersion: "2107"
 selfLink: /api/v1/namespaces/default/secrets/mysecret
 uid: 959e0424-4575-11e7-9f97-fa163e4bd54c
type: Opaque

apiVersion: v1
kind: Pod
metadata:
 name: test-projected-volume
spec:
 containers:
 - name: test-projected-volume
 image: busybox
 args:
 - sleep
 - "86400"
 volumeMounts:
 - name: all-in-one
 mountPath: "/projected-volume"
 readOnly: true
 volumes:
 - name: all-in-one

OpenShift Container Platform 4.3 Nodes

158

1 2 The name of the secret you created.

5. Create the pod from the configuration file:

$ oc create -f <your_yaml_file>.yaml

For example:

$ oc create -f secret-pod.yaml
pod "test-projected-volume" created

6. Verify that the pod container is running, and then watch for changes to the Pod:

$ oc get pod <name>

The output should appear similar to the following:

$ oc get pod test-projected-volume
NAME READY STATUS RESTARTS AGE
test-projected-volume 1/1 Running 0 14s

7. In another terminal, use the oc exec command to open a shell to the running container:

$ oc exec -it <pod> <command>

For example:

$ oc exec -it test-projected-volume -- /bin/sh

8. In your shell, verify that the projected-volumes directory contains your projected sources:

/ # ls
bin home root tmp
dev proc run usr
etc projected-volume sys var

5.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS

The Downward API is a mechanism that allows containers to consume information about API objects
without coupling to OpenShift Container Platform. Such information includes the pod’s name,
namespace, and resource values. Containers can consume information from the downward API using
environment variables or a volume plug-in.

5.5.1. Expose Pod information to Containers using the Downward API

 projected:
 sources:
 - secret: 1
 name: user
 - secret: 2
 name: pass

CHAPTER 5. WORKING WITH CONTAINERS

159

The Downward API contains such information as the pod’s name, project, and resource values.
Containers can consume information from the downward API using environment variables or a volume
plug-in.

Fields within the pod are selected using the FieldRef API type. FieldRef has two fields:

Field Description

fieldPath The path of the field to select, relative to the pod.

apiVersion The API version to interpret the fieldPath selector
within.

Currently, the valid selectors in the v1 API include:

Selector Description

metadata.name The pod’s name. This is supported in both
environment variables and volumes.

metadata.namespace The pod’s namespace.This is supported in both
environment variables and volumes.

metadata.labels The pod’s labels. This is only supported in volumes
and not in environment variables.

metadata.annotations The pod’s annotations. This is only supported in
volumes and not in environment variables.

status.podIP The pod’s IP. This is only supported in environment
variables and not volumes.

The apiVersion field, if not specified, defaults to the API version of the enclosing pod template.

5.5.2. Understanding how to consume container values using the downward API

You containers can consume API values using environment variables or a volume plug-in. Depending on
the method you choose, containers can consume:

Pod name

Pod project/namespace

Pod annotations

Pod labels

Annotations and labels are available using only a volume plug-in.

5.5.2.1. Consuming container values using environment variables

OpenShift Container Platform 4.3 Nodes

160

When using a container’s environment variables, use the EnvVar type’s valueFrom field (of type
EnvVarSource) to specify that the variable’s value should come from a FieldRef source instead of the
literal value specified by the value field.

Only constant attributes of the pod can be consumed this way, as environment variables cannot be
updated once a process is started in a way that allows the process to be notified that the value of a
variable has changed. The fields supported using environment variables are:

Pod name

Pod project/namespace

Procedure

To use environment variables

1. Create a pod.yaml file:

2. Create the pod from the pod.yaml file:

$ oc create -f pod.yaml

3. Check the container’s logs for the MY_POD_NAME and MY_POD_NAMESPACE values:

$ oc logs -p dapi-env-test-pod

5.5.2.2. Consuming container values using a volume plug-in

You containers can consume API values using a volume plug-in.

Containers can consume:

Pod name

Pod project/namespace

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: MY_POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace
 restartPolicy: Never

CHAPTER 5. WORKING WITH CONTAINERS

161

Pod annotations

Pod labels

Procedure

To use the volume plug-in:

1. Create a volume-pod.yaml file:

2. Create the pod from the volume-pod.yaml file:

$ oc create -f volume-pod.yaml

3. Check the container’s logs and verify the presence of the configured fields:

$ oc logs -p dapi-volume-test-pod

kind: Pod
apiVersion: v1
metadata:
 labels:
 zone: us-east-coast
 cluster: downward-api-test-cluster1
 rack: rack-123
 name: dapi-volume-test-pod
 annotations:
 annotation1: "345"
 annotation2: "456"
spec:
 containers:
 - name: volume-test-container
 image: gcr.io/google_containers/busybox
 command: ["sh", "-c", "cat /tmp/etc/pod_labels /tmp/etc/pod_annotations"]
 volumeMounts:
 - name: podinfo
 mountPath: /tmp/etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 defaultMode: 420
 items:
 - fieldRef:
 fieldPath: metadata.name
 path: pod_name
 - fieldRef:
 fieldPath: metadata.namespace
 path: pod_namespace
 - fieldRef:
 fieldPath: metadata.labels
 path: pod_labels
 - fieldRef:
 fieldPath: metadata.annotations
 path: pod_annotations
 restartPolicy: Never

OpenShift Container Platform 4.3 Nodes

162

cluster=downward-api-test-cluster1
rack=rack-123
zone=us-east-coast
annotation1=345
annotation2=456
kubernetes.io/config.source=api

5.5.3. Understanding how to consume container resources using the downward API

When creating pods, you can use the downward API to inject information about computing resource
requests and limits so that image and application authors can correctly create an image for specific
environments.

You can do this using environment variable or a volume plug-in.

5.5.3.1. Consuming container resources using environment variables

When creating pods, you can use the downward API to inject information about computing resource
requests and limits using environment variables.

Procedure

To use environment variables:

1. When creating a pod configuration, specify environment variables that correspond to the
contents of the resources field in the spec.container field:

....
spec:
 containers:
 - name: test-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["/bin/sh", "-c", "env"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 env:
 - name: MY_CPU_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.cpu
 - name: MY_CPU_LIMIT
 valueFrom:
 resourceFieldRef:
 resource: limits.cpu
 - name: MY_MEM_REQUEST
 valueFrom:
 resourceFieldRef:
 resource: requests.memory
 - name: MY_MEM_LIMIT
 valueFrom:

CHAPTER 5. WORKING WITH CONTAINERS

163

If the resource limits are not included in the container configuration, the downward API defaults
to the node’s CPU and memory allocatable values.

2. Create the pod from the pod.yaml file:

$ oc create -f pod.yaml

5.5.3.2. Consuming container resources using a volume plug-in

When creating pods, you can use the downward API to inject information about computing resource
requests and limits using a volume plug-in.

Procedure

To use the Volume Plug-in:

1. When creating a pod configuration, use the spec.volumes.downwardAPI.items field to
describe the desired resources that correspond to the spec.resources field:

 resourceFieldRef:
 resource: limits.memory
....

....
spec:
 containers:
 - name: client-container
 image: gcr.io/google_containers/busybox:1.24
 command: ["sh", "-c", "while true; do echo; if [[-e /etc/cpu_limit]]; then cat /etc/cpu_limit;
fi; if [[-e /etc/cpu_request]]; then cat /etc/cpu_request; fi; if [[-e /etc/mem_limit]]; then cat
/etc/mem_limit; fi; if [[-e /etc/mem_request]]; then cat /etc/mem_request; fi; sleep 5; done"]
 resources:
 requests:
 memory: "32Mi"
 cpu: "125m"
 limits:
 memory: "64Mi"
 cpu: "250m"
 volumeMounts:
 - name: podinfo
 mountPath: /etc
 readOnly: false
 volumes:
 - name: podinfo
 downwardAPI:
 items:
 - path: "cpu_limit"
 resourceFieldRef:
 containerName: client-container
 resource: limits.cpu
 - path: "cpu_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.cpu
 - path: "mem_limit"
 resourceFieldRef:

OpenShift Container Platform 4.3 Nodes

164

If the resource limits are not included in the container configuration, the downward API defaults
to the node’s CPU and memory allocatable values.

2. Create the pod from the volume-pod.yaml file:

$ oc create -f volume-pod.yaml

5.5.4. Consuming secrets using the downward API

When creating pods, you can use the downward API to inject Secrets so image and application authors
can create an image for specific environments.

Procedure

1. Create a secret.yaml file:

2. Create a Secret from the secret.yaml file:

$ oc create -f secret.yaml

3. Create a pod.yaml file that references the username field from the above Secret:

 containerName: client-container
 resource: limits.memory
 - path: "mem_request"
 resourceFieldRef:
 containerName: client-container
 resource: requests.memory
....

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
data:
 password: cGFzc3dvcmQ=
 username: ZGV2ZWxvcGVy
type: kubernetes.io/basic-auth

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_SECRET_USERNAME
 valueFrom:
 secretKeyRef:

CHAPTER 5. WORKING WITH CONTAINERS

165

4. Create the pod from the pod.yaml file:

$ oc create -f pod.yaml

5. Check the container’s logs for the MY_SECRET_USERNAME value:

$ oc logs -p dapi-env-test-pod

5.5.5. Consuming configuration maps using the downward API

When creating pods, you can use the downward API to inject configuration map values so image and
application authors can create an image for specific environments.

Procedure

1. Create a configmap.yaml file:

2. Create a ConfigMap from the configmap.yaml file:

$ oc create -f configmap.yaml

3. Create a pod.yaml file that references the above ConfigMap:

4. Create the pod from the pod.yaml file:

 name: mysecret
 key: username
 restartPolicy: Never

apiVersion: v1
kind: ConfigMap
metadata:
 name: myconfigmap
data:
 mykey: myvalue

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_CONFIGMAP_VALUE
 valueFrom:
 configMapKeyRef:
 name: myconfigmap
 key: mykey
 restartPolicy: Always

OpenShift Container Platform 4.3 Nodes

166

$ oc create -f pod.yaml

5. Check the container’s logs for the MY_CONFIGMAP_VALUE value:

$ oc logs -p dapi-env-test-pod

5.5.6. Referencing environment variables

When creating pods, you can reference the value of a previously defined environment variable by using
the $() syntax. If the environment variable reference can not be resolved, the value will be left as the
provided string.

Procedure

1. Create a pod.yaml file that references an existing environment variable:

2. Create the pod from the pod.yaml file:

$ oc create -f pod.yaml

3. Check the container’s logs for the MY_ENV_VAR_REF_ENV value:

$ oc logs -p dapi-env-test-pod

5.5.7. Escaping environment variable references

When creating a pod, you can escape an environment variable reference by using a double dollar sign.
The value will then be set to a single dollar sign version of the provided value.

Procedure

1. Create a pod.yaml file that references an existing environment variable:

apiVersion: v1
kind: Pod
metadata:
 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_EXISTING_ENV
 value: my_value
 - name: MY_ENV_VAR_REF_ENV
 value: $(MY_EXISTING_ENV)
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:

CHAPTER 5. WORKING WITH CONTAINERS

167

2. Create the pod from the pod.yaml file:

$ oc create -f pod.yaml

3. Check the container’s logs for the MY_NEW_ENV value:

$ oc logs -p dapi-env-test-pod

5.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER
PLATFORM CONTAINER

You can use the CLI to copy local files to or from a remote directory in a container using the rsync
command.

5.6.1. Understanding how to copy files

The oc rsync command, or remote sync, is a useful tool for copying database archives to and from your
pods for backup and restore purposes. You can also use oc rsync to copy source code changes into a
running pod for development debugging, when the running pod supports hot reload of source files.

$ oc rsync <source> <destination> [-c <container>]

5.6.1.1. Requirements

Specifying the Copy Source

The source argument of the oc rsync command must point to either a local directory or a pod
directory. Individual files are not supported.

When specifying a pod directory the directory name must be prefixed with the pod name:

<pod name>:<dir>

If the directory name ends in a path separator (/), only the contents of the directory are copied to the
destination. Otherwise, the directory and its contents are copied to the destination.

Specifying the Copy Destination

The destination argument of the oc rsync command must point to a directory. If the directory does
not exist, but rsync is used for copy, the directory is created for you.

Deleting Files at the Destination

The --delete flag may be used to delete any files in the remote directory that are not in the local

 name: dapi-env-test-pod
spec:
 containers:
 - name: env-test-container
 image: gcr.io/google_containers/busybox
 command: ["/bin/sh", "-c", "env"]
 env:
 - name: MY_NEW_ENV
 value: $$(SOME_OTHER_ENV)
 restartPolicy: Never

OpenShift Container Platform 4.3 Nodes

168

The --delete flag may be used to delete any files in the remote directory that are not in the local
directory.

Continuous Syncing on File Change

Using the --watch option causes the command to monitor the source path for any file system
changes, and synchronizes changes when they occur. With this argument, the command runs forever.

Synchronization occurs after short quiet periods to ensure a rapidly changing file system does not result
in continuous synchronization calls.

When using the --watch option, the behavior is effectively the same as manually invoking oc rsync
repeatedly, including any arguments normally passed to oc rsync. Therefore, you can control the
behavior via the same flags used with manual invocations of oc rsync, such as --delete.

5.6.2. Copying files to and from containers

Support for copying local files to or from a container is built into the CLI.

Prerequisites

When working with oc rsync, note the following:

rsync must be installed

The oc rsync command uses the local rsync tool if present on the client machine and the remote
container.

If rsync is not found locally or in the remote container, a tar archive is created locally and sent to the
container where the tar utility is used to extract the files. If tar is not available in the remote container,
the copy will fail.

The tar copy method does not provide the same functionality as oc rsync. For example, oc rsync
creates the destination directory if it does not exist and only sends files that are different between the
source and the destination.

NOTE

In Windows, the cwRsync client should be installed and added to the PATH for use with
the oc rsync command.

Procedure

To copy a local directory to a pod directory:

oc rsync <local-dir> <pod-name>:/<remote-dir>

For example:

$ oc rsync /home/user/source devpod1234:/src

WARNING: cannot use rsync: rsync not available in container
status.txt

To copy a pod directory to a local directory:

$ oc rsync devpod1234:/src /home/user/source

CHAPTER 5. WORKING WITH CONTAINERS

169

oc rsync devpod1234:/src/status.txt /home/user/
WARNING: cannot use rsync: rsync not available in container
status.txt

5.6.3. Using advanced Rsync features

The oc rsync command exposes fewer command line options than standard rsync. In the case that you
wish to use a standard rsync command line option which is not available in oc rsync (for example the --
exclude-from=FILE option), it may be possible to use standard rsync 's --rsh (-e) option or
RSYNC_RSH environment variable as a workaround, as follows:

$ rsync --rsh='oc rsh' --exclude-from=FILE SRC POD:DEST

or:

$ export RSYNC_RSH='oc rsh'
$ rsync --exclude-from=FILE SRC POD:DEST

Both of the above examples configure standard rsync to use oc rsh as its remote shell program to
enable it to connect to the remote pod, and are an alternative to running oc rsync.

5.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER
PLATFORM CONTAINER

You can use the CLI to execute remote commands in an OpenShift Container Platform container.

5.7.1. Executing remote commands in containers

Support for remote container command execution is built into the CLI.

Procedure

To run a command in a container:

$ oc exec <pod> [-c <container>] <command> [<arg_1> ... <arg_n>]

For example:

$ oc exec mypod date
Thu Apr 9 02:21:53 UTC 2015

IMPORTANT

For security purposes, the oc exec command does not work when accessing privileged
containers except when the command is executed by a cluster-admin user.

5.7.2. Protocol for initiating a remote command from a client

Clients initiate the execution of a remote command in a container by issuing a request to the Kubernetes
API server:

OpenShift Container Platform 4.3 Nodes

170

https://access.redhat.com/errata/RHSA-2015:1650

/proxy/nodes/<node_name>/exec/<namespace>/<pod>/<container>?command=<command>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the project of the target pod.

<pod> is the name of the target pod.

<container> is the name of the target container.

<command> is the desired command to be executed.

For example:

/proxy/nodes/node123.openshift.com/exec/myns/mypod/mycontainer?command=date

Additionally, the client can add parameters to the request to indicate if:

the client should send input to the remote container’s command (stdin).

the client’s terminal is a TTY.

the remote container’s command should send output from stdout to the client.

the remote container’s command should send output from stderr to the client.

After sending an exec request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates one stream each for stdin, stdout, and stderr. To distinguish among the streams, the
client sets the streamType header on the stream to one of stdin, stdout, or stderr.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the remote command execution request.

5.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A
CONTAINER

OpenShift Container Platform supports port forwarding to pods.

5.8.1. Understanding port forwarding

You can use the CLI to forward one or more local ports to a pod. This allows you to listen on a given or
random port locally, and have data forwarded to and from given ports in the pod.

Support for port forwarding is built into the CLI:

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

The CLI listens on each local port specified by the user, forwarding via the protocol described below.

Ports may be specified using the following formats:

CHAPTER 5. WORKING WITH CONTAINERS

171

5000 The client listens on port 5000 locally and forwards to 5000 in the pod.

6000:5000 The client listens on port 6000 locally and forwards to 5000 in the pod.

:5000 or
0:5000

The client selects a free local port and forwards to 5000 in the pod.

OpenShift Container Platform handles port-forward requests from clients. Upon receiving a request,
OpenShift Container Platform upgrades the response and waits for the client to create port-forwarding
streams. When OpenShift Container Platform receives a new stream, it copies data between the stream
and the pod’s port.

Architecturally, there are options for forwarding to a pod’s port. The supported OpenShift Container
Platform implementation invokes nsenter directly on the node host to enter the pod’s network
namespace, then invokes socat to copy data between the stream and the pod’s port. However, a
custom implementation could include running a helper pod that then runs nsenter and socat, so that
those binaries are not required to be installed on the host.

5.8.2. Using port forwarding

You can use the CLI to port-forward one or more local ports to a pod.

Procedure

Use the following command to listen on the specified port in a pod:

$ oc port-forward <pod> [<local_port>:]<remote_port> [...[<local_port_n>:]<remote_port_n>]

For example:

Use the following command to listen on ports 5000 and 6000 locally and forward data to and
from ports 5000 and 6000 in the pod:

$ oc port-forward <pod> 5000 6000

Forwarding from 127.0.0.1:5000 -> 5000
Forwarding from [::1]:5000 -> 5000
Forwarding from 127.0.0.1:6000 -> 6000
Forwarding from [::1]:6000 -> 6000

Use the following command to listen on port 8888 locally and forward to 5000 in the pod:

$ oc port-forward <pod> 8888:5000

Forwarding from 127.0.0.1:8888 -> 5000
Forwarding from [::1]:8888 -> 5000

Use the following command to listen on a free port locally and forward to 5000 in the pod:

$ oc port-forward <pod> :5000

Forwarding from 127.0.0.1:42390 -> 5000

OpenShift Container Platform 4.3 Nodes

172

Forwarding from [::1]:42390 -> 5000

Or:

$ oc port-forward <pod> 0:5000

5.8.3. Protocol for initiating port forwarding from a client

Clients initiate port forwarding to a pod by issuing a request to the Kubernetes API server:

/proxy/nodes/<node_name>/portForward/<namespace>/<pod>

In the above URL:

<node_name> is the FQDN of the node.

<namespace> is the namespace of the target pod.

<pod> is the name of the target pod.

For example:

/proxy/nodes/node123.openshift.com/portForward/myns/mypod

After sending a port forward request to the API server, the client upgrades the connection to one that
supports multiplexed streams; the current implementation uses SPDY.

The client creates a stream with the port header containing the target port in the pod. All data written to
the stream is delivered via the Kubelet to the target pod and port. Similarly, all data sent from the pod
for that forwarded connection is delivered back to the same stream in the client.

The client closes all streams, the upgraded connection, and the underlying connection when it is finished
with the port forwarding request.

5.9. USING SYSCTLS IN CONTAINERS

Sysctl settings are exposed via Kubernetes, allowing users to modify certain kernel parameters at
runtime for namespaces within a container. Only sysctls that are namespaced can be set independently
on pods. If a sysctl is not namespaced, called node-level, it cannot be set within OpenShift Container
Platform. Moreover, only those sysctls considered safe are whitelisted by default; you can manually
enable other unsafe sysctls on the node to be available to the user.

5.9.1. About sysctls

In Linux, the sysctl interface allows an administrator to modify kernel parameters at runtime. Parameters
are available via the /proc/sys/ virtual process file system. The parameters cover various subsystems,
such as:

kernel (common prefix: kernel.)

networking (common prefix: net.)

virtual memory (common prefix: vm.)

CHAPTER 5. WORKING WITH CONTAINERS

173

http://www.chromium.org/spdy

MDADM (common prefix: dev.)

More subsystems are described in Kernel documentation. To get a list of all parameters, run:

$ sudo sysctl -a

5.9.1.1. Namespaced versus node-level sysctls

A number of sysctls are namespaced in the Linux kernels. This means that you can set them
independently for each pod on a node. Being namespaced is a requirement for sysctls to be accessible in
a pod context within Kubernetes.

The following sysctls are known to be namespaced:

kernel.shm*

kernel.msg*

kernel.sem

fs.mqueue.*

Additionally, most of the sysctls in the net.* group are known to be namespaced. Their namespace
adoption differs based on the kernel version and distributor.

Sysctls that are not namespaced are called node-level and must be set manually by the cluster
administrator, either by means of the underlying Linux distribution of the nodes, such as by modifying
the /etc/sysctls.conf file, or by using a DaemonSet with privileged containers.

NOTE

Consider marking nodes with special sysctls as tainted. Only schedule pods onto them
that need those sysctl settings. Use the taints and toleration feature to mark the nodes.

5.9.1.2. Safe versus unsafe sysctls

Sysctls are grouped into safe and unsafe sysctls.

For a sysctl to be considered safe, it must use proper namespacing and must be properly isolated
between pods on the same node. This means that if you set a sysctl for one pod it must not:

Influence any other pod on the node

Harm the node’s health

Gain CPU or memory resources outside of the resource limits of a pod

OpenShift Container Platform supports, or whitelists, the following sysctls in the safe set:

kernel.shm_rmid_forced

net.ipv4.ip_local_port_range

net.ipv4.tcp_syncookies

All safe sysctls are enabled by default. You can use a sysctl in a pod by modifying the pod specification.

Any sysctl not whitelisted by OpenShift Container Platform is considered unsafe for OpenShift

OpenShift Container Platform 4.3 Nodes

174

https://www.kernel.org/doc/Documentation/sysctl/README

Any sysctl not whitelisted by OpenShift Container Platform is considered unsafe for OpenShift
Container Platform. Note that being namespaced alone is not sufficient for the sysctl to be considered
safe.

All unsafe sysctls are disabled by default, and the cluster administrator must manually enable them on a
per-node basis. Pods with disabled unsafe sysctls are scheduled but do not launch.

$ oc get pod

NAME READY STATUS RESTARTS AGE
hello-pod 0/1 SysctlForbidden 0 14s

5.9.2. Setting sysctls for a pod

You can set sysctls on pods using the pod’s securityContext. The securityContext applies to all
containers in the same pod.

Safe sysctls are allowed by default. A pod with unsafe sysctls fails to launch on any node unless the
cluster administrator explicitly enables unsafe sysctls for that node. As with node-level sysctls, use the
taints and toleration feature or labels on nodes to schedule those pods onto the right nodes.

The following example uses the pod securityContext to set a safe sysctl kernel.shm_rmid_forced and
two unsafe sysctls, net.ipv4.route.min_pmtu and kernel.msgmax. There is no distinction between safe
and unsafe sysctls in the specification.

WARNING

To avoid destabilizing your operating system, modify sysctl parameters only after
you understand their effects.

Procedure

To use safe and unsafe sysctls:

1. Modify the YAML file that defines the pod and add the securityContext spec, as shown in the
following example:



apiVersion: v1
kind: Pod
metadata:
 name: sysctl-example
spec:
 securityContext:
 sysctls:
 - name: kernel.shm_rmid_forced
 value: "0"
 - name: net.ipv4.route.min_pmtu
 value: "552"

CHAPTER 5. WORKING WITH CONTAINERS

175

1

2. Create the pod:

$ oc apply -f <file-name>.yaml

If the unsafe sysctls are not allowed for the node, the pod is scheduled, but does not deploy:

$ oc get pod

NAME READY STATUS RESTARTS AGE
hello-pod 0/1 SysctlForbidden 0 14s

5.9.3. Enabling unsafe sysctls

A cluster administrator can allow certain unsafe sysctls for very special situations such as high-
performance or real-time application tuning.

If you want to use unsafe sysctls, a cluster administrator must enable them individually for a specific type
of node. The sysctls must be namespaced.

WARNING

Due to their nature of being unsafe, the use of unsafe sysctls is at-your-own-risk
and can lead to severe problems, such as improper behavior of containers, resource
shortage, or breaking a node.

Procedure

1. Add a label to the MachineConfigPool where the containers where containers with the unsafe
sysctls will run:

$ oc edit machineconfigpool worker

Add a key: pair label.

2. Create a KubeletConfig Custom Resource (CR):

 - name: kernel.msgmax
 value: "65536"
 ...



apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: sysctl 1

OpenShift Container Platform 4.3 Nodes

176

1

2

Specify the label from the MachineConfigPool.

List the unsafe sysctls you want to allow.

3. Create the object:

$ oc apply -f set-sysctl-worker.yaml

A new MachineConfig named in the 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet format
is created.

4. Wait for the cluster to reboot usng the machineconfigpool object status fields:
For example:

A message similar to the following appears when the cluster is ready:

5. When the cluster is ready, check for the merged KubeletConfig in the new MachineConfig:

$ oc get machineconfig 99-worker-XXXXXX-XXXXX-XXXX-XXXXX-kubelet -o json | grep
ownerReference -A7

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:
 name: custom-kubelet
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: sysctl 1
 kubeletConfig:
 allowedUnsafeSysctls: 2
 - "kernel.msg*"
 - "net.ipv4.route.min_pmtu"

status:
 conditions:
 - lastTransitionTime: '2019-08-11T15:32:00Z'
 message: >-
 All nodes are updating to
 rendered-worker-ccbfb5d2838d65013ab36300b7b3dc13
 reason: ''
 status: 'True'
 type: Updating

 - lastTransitionTime: '2019-08-11T16:00:00Z'
 message: >-
 All nodes are updated with
 rendered-worker-ccbfb5d2838d65013ab36300b7b3dc13
 reason: ''
 status: 'True'
 type: Updated

 "ownerReferences": [

CHAPTER 5. WORKING WITH CONTAINERS

177

You can now add unsafe sysctls to pods as needed.

 {
 "apiVersion": "machineconfiguration.openshift.io/v1",
 "blockOwnerDeletion": true,
 "controller": true,
 "kind": "KubeletConfig",
 "name": "custom-kubelet",
 "uid": "3f64a766-bae8-11e9-abe8-0a1a2a4813f2"

OpenShift Container Platform 4.3 Nodes

178

1

CHAPTER 6. WORKING WITH CLUSTERS

6.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT
CONTAINER PLATFORM CLUSTER

Events in OpenShift Container Platform are modeled based on events that happen to API objects in an
OpenShift Container Platform cluster.

6.1.1. Understanding events

Events allow OpenShift Container Platform to record information about real-world events in a resource-
agnostic manner. They also allow developers and administrators to consume information about system
components in a unified way.

6.1.2. Viewing events using the CLI

You can get a list of events in a given project using the CLI.

Procedure

To view events in a project use the following command:

$ oc get events [-n <project>] 1

The name of the project.

For example:

$ oc get events -n openshift-config

LAST SEEN TYPE REASON OBJECT MESSAGE
97m Normal Scheduled pod/dapi-env-test-pod Successfully assigned
openshift-config/dapi-env-test-pod to ip-10-0-171-202.ec2.internal
97m Normal Pulling pod/dapi-env-test-pod pulling image
"gcr.io/google_containers/busybox"
97m Normal Pulled pod/dapi-env-test-pod Successfully pulled image
"gcr.io/google_containers/busybox"
97m Normal Created pod/dapi-env-test-pod Created container
9m5s Warning FailedCreatePodSandBox pod/dapi-volume-test-pod Failed create
pod sandbox: rpc error: code = Unknown desc = failed to create pod network sandbox
k8s_dapi-volume-test-pod_openshift-config_6bc60c1f-452e-11e9-9140-
0eec59c23068_0(748c7a40db3d08c07fb4f9eba774bd5effe5f0d5090a242432a73eee66ba9e22
): Multus: Err adding pod to network "openshift-sdn": cannot set "openshift-sdn" ifname to
"eth0": no netns: failed to Statfs "/proc/33366/ns/net": no such file or directory
8m31s Normal Scheduled pod/dapi-volume-test-pod Successfully assigned
openshift-config/dapi-volume-test-pod to ip-10-0-171-202.ec2.internal

To view events in your project from the OpenShift Container Platform console.

1. Launch the OpenShift Container Platform console.

2. Click Home → Events and select your project.

3. Move to resource that you want to see events. For example: Home → Projects → <project-

CHAPTER 6. WORKING WITH CLUSTERS

179

3. Move to resource that you want to see events. For example: Home → Projects → <project-
name> → <resource-name>.
Many objects, such as pods and deployments, have their own Events tab as well, which
shows events related to that object.

6.1.3. List of events

This section describes the events of OpenShift Container Platform.

Table 6.1. Configuration Events

Name Description

FailedValidation Failed pod configuration validation.

Table 6.2. Container Events

Name Description

BackOff Back-off restarting failed the container.

Created Container created.

Failed Pull/Create/Start failed.

Killing Killing the container.

Started Container started.

Preempting Preempting other pods.

ExceededGrace
Period

Container runtime did not stop the pod within specified grace period.

Table 6.3. Health Events

Name Description

Unhealthy Container is unhealthy.

Table 6.4. Image Events

Name Description

BackOff Back off Ctr Start, image pull.

ErrImageNeverP
ull

The image’s NeverPull Policy is violated.

OpenShift Container Platform 4.3 Nodes

180

Failed Failed to pull the image.

InspectFailed Failed to inspect the image.

Pulled Successfully pulled the image or the container image is already present on the machine.

Pulling Pulling the image.

Name Description

Table 6.5. Image Manager Events

Name Description

FreeDiskSpaceF
ailed

Free disk space failed.

InvalidDiskCapa
city

Invalid disk capacity.

Table 6.6. Node Events

Name Description

FailedMount Volume mount failed.

HostNetworkNo
tSupported

Host network not supported.

HostPortConflic
t

Host/port conflict.

InsufficientFree
CPU

Insufficient free CPU.

InsufficientFree
Memory

Insufficient free memory.

KubeletSetupFa
iled

Kubelet setup failed.

NilShaper Undefined shaper.

NodeNotReady Node is not ready.

NodeNotSched
ulable

Node is not schedulable.

CHAPTER 6. WORKING WITH CLUSTERS

181

NodeReady Node is ready.

NodeSchedulab
le

Node is schedulable.

NodeSelectorMi
smatching

Node selector mismatch.

OutOfDisk Out of disk.

Rebooted Node rebooted.

Starting Starting kubelet.

FailedAttachVol
ume

Failed to attach volume.

FailedDetachVol
ume

Failed to detach volume.

VolumeResizeF
ailed

Failed to expand/reduce volume.

VolumeResizeS
uccessful

Successfully expanded/reduced volume.

FileSystemResi
zeFailed

Failed to expand/reduce file system.

FileSystemResi
zeSuccessful

Successfully expanded/reduced file system.

FailedUnMount Failed to unmount volume.

FailedMapVolu
me

Failed to map a volume.

FailedUnmapDe
vice

Failed unmaped device.

AlreadyMounte
dVolume

Volume is already mounted.

SuccessfulDeta
chVolume

Volume is successfully detached.

Name Description

OpenShift Container Platform 4.3 Nodes

182

SuccessfulMou
ntVolume

Volume is successfully mounted.

SuccessfulUnM
ountVolume

Volume is successfully unmounted.

ContainerGCFai
led

Container garbage collection failed.

ImageGCFailed Image garbage collection failed.

FailedNodeAllo
catableEnforce
ment

Failed to enforce System Reserved Cgroup limit.

NodeAllocatabl
eEnforced

Enforced System Reserved Cgroup limit.

UnsupportedMo
untOption

Unsupported mount option.

SandboxChang
ed

Pod sandbox changed.

FailedCreatePo
dSandBox

Failed to create pod sandbox.

FailedPodSand
BoxStatus

Failed pod sandbox status.

Name Description

Table 6.7. Pod Worker Events

Name Description

FailedSync Pod sync failed.

Table 6.8. System Events

Name Description

SystemOOM There is an OOM (out of memory) situation on the cluster.

Table 6.9. Pod Events

CHAPTER 6. WORKING WITH CLUSTERS

183

Name Description

FailedKillPod Failed to stop a pod.

FailedCreatePo
dContainer

Failed to create a pod contianer.

Failed Failed to make pod data directories.

NetworkNotRea
dy

Network is not ready.

FailedCreate Error creating: <error-msg>.

SuccessfulCrea
te

Created pod: <pod-name>.

FailedDelete Error deleting: <error-msg>.

SuccessfulDelet
e

Deleted pod: <pod-id>.

Table 6.10. Horizontal Pod AutoScaler Events

Name Description

SelectorRequired Selector is required.

InvalidSelector Could not convert selector into a corresponding internal selector object.

FailedGetObject
Metric

HPA was unable to compute the replica count.

InvalidMetricSo
urceType

Unknown metric source type.

ValidMetricFoun
d

HPA was able to successfully calculate a replica count.

FailedConvertH
PA

Failed to convert the given HPA.

FailedGetScale HPA controller was unable to get the target’s current scale.

SucceededGetS
cale

HPA controller was able to get the target’s current scale.

OpenShift Container Platform 4.3 Nodes

184

FailedCompute
MetricsReplicas

Failed to compute desired number of replicas based on listed metrics.

FailedRescale New size: <size>; reason: <msg>; error: <error-msg>.

SuccessfulResc
ale

New size: <size>; reason: <msg>.

FailedUpdateSt
atus

Failed to update status.

Name Description

Table 6.11. Network Events (openshift-sdn)

Name Description

Starting Starting OpenShift-SDN.

NetworkFailed The pod’s network interface has been lost and the pod will be stopped.

Table 6.12. Network Events (kube-proxy)

Name Description

NeedPods The service-port <serviceName>:<port> needs pods.

Table 6.13. Volume Events

Name Description

FailedBinding There are no persistent volumes available and no storage class is set.

VolumeMismatc
h

Volume size or class is different from what is requested in claim.

VolumeFailedRe
cycle

Error creating recycler pod.

VolumeRecycle
d

Occurs when volume is recycled.

RecyclerPod Occurs when pod is recycled.

VolumeDelete Occurs when volume is deleted.

CHAPTER 6. WORKING WITH CLUSTERS

185

VolumeFailedDe
lete

Error when deleting the volume.

ExternalProvisi
oning

Occurs when volume for the claim is provisioned either manually or via external
software.

ProvisioningFail
ed

Failed to provision volume.

ProvisioningCle
anupFailed

Error cleaning provisioned volume.

ProvisioningSu
cceeded

Occurs when the volume is provisioned successfully.

WaitForFirstCo
nsumer

Delay binding until pod scheduling.

Name Description

Table 6.14. Lifecycle hooks

Name Description

FailedPostStart
Hook

Handler failed for pod start.

FailedPreStopH
ook

Handler failed for pre-stop.

UnfinishedPreSt
opHook

Pre-stop hook unfinished.

Table 6.15. Deployments

Name Description

DeploymentCan
cellationFailed

Failed to cancel deployment.

DeploymentCan
celled

Cancelled deployment.

DeploymentCre
ated

Created new replication controller.

IngressIPRange
Full

No available Ingress IP to allocate to service.

OpenShift Container Platform 4.3 Nodes

186

Table 6.16. Scheduler Events

Name Description

FailedSchedulin
g

Failed to schedule pod: <pod-namespace>/<pod-name>. This event is raised for
multiple reasons, for example: AssumePodVolumes failed, Binding rejected etc.

Preempted By <preemptor-namespace>/<preemptor-name> on node <node-name>.

Scheduled Successfully assigned <pod-name> to <node-name>.

Table 6.17. DaemonSet Events

Name Description

SelectingAll This daemon set is selecting all pods. A non-empty selector is required.

FailedPlacemen
t

Failed to place pod on <node-name>.

FailedDaemonP
od

Found failed daemon pod <pod-name> on node <node-name>, will try to kill it.

Table 6.18. LoadBalancer Service Events

Name Description

CreatingLoadBa
lancerFailed

Error creating load balancer.

DeletingLoadBa
lancer

Deleting load balancer.

EnsuringLoadB
alancer

Ensuring load balancer.

EnsuredLoadBa
lancer

Ensured load balancer.

UnAvailableLoa
dBalancer

There are no available nodes for LoadBalancer service.

LoadBalancerS
ourceRanges

Lists the new LoadBalancerSourceRanges. For example, <old-source-range>
→ <new-source-range>.

LoadbalancerIP Lists the new IP address. For example, <old-ip> → <new-ip>.

ExternalIP Lists external IP address. For example, Added: <external-ip>.

CHAPTER 6. WORKING WITH CLUSTERS

187

UID Lists the new UID. For example, <old-service-uid> → <new-service-uid>.

ExternalTrafficP
olicy

Lists the new ExternalTrafficPolicy. For example, <old-policy> → <new-policy>.

HealthCheckNo
dePort

Lists the new HealthCheckNodePort. For example, <old-node-port> → new-
node-port>.

UpdatedLoadBa
lancer

Updated load balancer with new hosts.

LoadBalancerU
pdateFailed

Error updating load balancer with new hosts.

DeletingLoadBa
lancer

Deleting load balancer.

DeletingLoadBa
lancerFailed

Error deleting load balancer.

DeletedLoadBal
ancer

Deleted load balancer.

Name Description

6.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT
CONTAINER PLATFORM NODES CAN HOLD

As a cluster administrator, you can use the cluster capacity tool to view the number of pods that can be
scheduled to increase the current resources before they become exhausted, and to ensure any future
pods can be scheduled. This capacity comes from an individual node host in a cluster, and includes CPU,
memory, disk space, and others.

6.2.1. Understanding the OpenShift Container Platform cluster capacity tool

The cluster capacity tool simulates a sequence of scheduling decisions to determine how many
instances of an input pod can be scheduled on the cluster before it is exhausted of resources to provide
a more accurate estimation.

NOTE

The remaining allocatable capacity is a rough estimation, because it does not count all of
the resources being distributed among nodes. It analyzes only the remaining resources
and estimates the available capacity that is still consumable in terms of a number of
instances of a pod with given requirements that can be scheduled in a cluster.

Also, pods might only have scheduling support on particular sets of nodes based on its
selection and affinity criteria. As a result, the estimation of which remaining pods a cluster
can schedule can be difficult.

You can run the cluster capacity analysis tool as a stand-alone utility from the command line, or as a job

OpenShift Container Platform 4.3 Nodes

188

1

2

You can run the cluster capacity analysis tool as a stand-alone utility from the command line, or as a job
in a pod inside an OpenShift Container Platform cluster. Running it as job inside of a pod enables you to
run it multiple times without intervention.

6.2.2. Running the cluster capacity tool on the command line

You can run the OpenShift Container Platform cluster capacity tool from the command line to estimate
the number of pods that can be scheduled onto your cluster.

Prerequisites

Download and install the cluster-capacity tool.

Create a sample pod specification file, which the tool uses for estimating resource usage. The
podspec specifies its resource requirements as limits or requests. The cluster capacity tool
takes the pod’s resource requirements into account for its estimation analysis.
An example of the pod specification input is:

Procedure

To run the tool on the command line:

1. Run the following command:

$./cluster-capacity --kubeconfig <path-to-kubeconfig> \ 1
 --podspec <path-to-pod-spec> 2

Specify the path to your Kubernetes configuration file.

Specify the path to the sample pod specification file

You can also add the --verbose option to output a detailed description of how many pods can
be scheduled on each node in the cluster:

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi

CHAPTER 6. WORKING WITH CLUSTERS

189

https://github.com/kubernetes-incubator/cluster-capacity

$./cluster-capacity --kubeconfig <path-to-kubeconfig> \
 --podspec <path-to-pod-spec> --verbose

2. View the output, which looks similar to the following:

small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 52 instance(s) of the pod small-pod.

Termination reason: Unschedulable: No nodes are available that match all of the
following predicates:: Insufficient cpu (2).

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 26 instance(s)
 - 192.168.124.120: 26 instance(s)

In the above example, the number of estimated pods that can be scheduled onto the cluster is
52.

6.2.3. Running the cluster capacity tool as a job inside a pod

Running the cluster capacity tool as a job inside of a pod has the advantage of being able to be run
multiple times without needing user intervention. Running the cluster capacity tool as a job involves
using a ConfigMap.

Prerequisites

Download and install the cluster-capacity tool.

Procedure

To run the cluster capacity tool:

1. Create the cluster role:

$ cat << EOF| oc create -f -
kind: ClusterRole
apiVersion: v1
metadata:
 name: cluster-capacity-role
rules:
- apiGroups: [""]
 resources: ["pods", "nodes", "persistentvolumeclaims", "persistentvolumes", "services"]
 verbs: ["get", "watch", "list"]
EOF

2. Create the service account:

$ oc create sa cluster-capacity-sa

3. Add the role to the service account:

OpenShift Container Platform 4.3 Nodes

190

https://github.com/kubernetes-incubator/cluster-capacity

$ oc adm policy add-cluster-role-to-user cluster-capacity-role \
 system:serviceaccount:default:cluster-capacity-sa

4. Define and create the pod specification:

5. The cluster capacity analysis is mounted in a volume using a ConfigMap named cluster-
capacity-configmap to mount input pod spec file pod.yaml into a volume test-volume at the
path /test-pod.
If you haven’t created a ConfigMap, create one before creating the job:

$ oc create configmap cluster-capacity-configmap \
 --from-file=pod.yaml=pod.yaml

6. Create the job using the below example of a job specification file:

apiVersion: v1
kind: Pod
metadata:
 name: small-pod
 labels:
 app: guestbook
 tier: frontend
spec:
 containers:
 - name: php-redis
 image: gcr.io/google-samples/gb-frontend:v4
 imagePullPolicy: Always
 resources:
 limits:
 cpu: 150m
 memory: 100Mi
 requests:
 cpu: 150m
 memory: 100Mi

apiVersion: batch/v1
kind: Job
metadata:
 name: cluster-capacity-job
spec:
 parallelism: 1
 completions: 1
 template:
 metadata:
 name: cluster-capacity-pod
 spec:
 containers:
 - name: cluster-capacity
 image: openshift/origin-cluster-capacity
 imagePullPolicy: "Always"
 volumeMounts:
 - mountPath: /test-pod
 name: test-volume
 env:

CHAPTER 6. WORKING WITH CLUSTERS

191

1 A required environment variable letting the cluster capacity tool know that it is running
inside a cluster as a pod.
The pod.yaml key of the ConfigMap is the same as the pod specification file name,
though it is not required. By doing this, the input pod spec file can be accessed inside the
pod as /test-pod/pod.yaml.

7. Run the cluster capacity image as a job in a pod:

$ oc create -f cluster-capacity-job.yaml

8. Check the job logs to find the number of pods that can be scheduled in the cluster:

$ oc logs jobs/cluster-capacity-job
small-pod pod requirements:
 - CPU: 150m
 - Memory: 100Mi

The cluster can schedule 52 instance(s) of the pod small-pod.

Termination reason: Unschedulable: No nodes are available that match all of the
following predicates:: Insufficient cpu (2).

Pod distribution among nodes:
small-pod
 - 192.168.124.214: 26 instance(s)
 - 192.168.124.120: 26 instance(s)

6.3. SETTING LIMIT RANGES

By default, containers run with unbounded compute resources on an OpenShift Container Platform
cluster. With limit ranges, you can restrict resource consumption for specific objects in a project:

Pods and containers: You can set minimum and maximum requirements for CPU and memory
for Pods and their containers.

Image streams: You can set limits on the number of images and tags in an ImageStream object.

Images: You can limit the size of images that can be pushed to an internal registry.

Persistent volume claims (PVC): You can restrict the size of the PVCs that can be requested.

 - name: CC_INCLUSTER 1
 value: "true"
 command:
 - "/bin/sh"
 - "-ec"
 - |
 /bin/cluster-capacity --podspec=/test-pod/pod.yaml --verbose
 restartPolicy: "Never"
 serviceAccountName: cluster-capacity-sa
 volumes:
 - name: test-volume
 configMap:
 name: cluster-capacity-configmap

OpenShift Container Platform 4.3 Nodes

192

If a Pod does not meet the constraints imposed by the limit range, the Pod cannot be created in the
namespace.

6.3.1. About limit ranges

A limit range, defined by a LimitRange object, restricts resource consumption in a project. In the project
you can set specific resource limits for a Pod, container, image, image stream, or persistent volume claim
(PVC).

All requests to create and modify resources are evaluated against each LimitRange object in the project.
If the resource violates any of the enumerated constraints, the resource is rejected.

The following shows a limit range object for all components: Pod, container, image, image stream, or
PVC. You can configure limits for any or all of these components in the same object. You create a
different limit range object for each project where you want to control resources.

Sample limit range object for a container

6.3.1.1. About component limits

The following examples show limit range parameters for each component. The examples are broken out
for clarity. You can create a single limit range object for any or all components as necessary.

6.3.1.1.1. Container limits

A limit range allows you to specify the minimum and maximum CPU and memory that each container in a
Pod can request for a specific project. If a container is created in the project, the container CPU and
memory requests in the Pod spec must comply with the values set in the limit range object. If not, the
Pod does not get created.

The container CPU or memory request and limit must be greater than or equal to the min
resource constraint for containers that are specified in the limit range object.

The container CPU or memory request must be less than or equal to the max resource

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits"
spec:
 limits:
 - type: "Container"
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"
 default:
 cpu: "300m"
 memory: "200Mi"
 defaultRequest:
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio:
 cpu: "10"

CHAPTER 6. WORKING WITH CLUSTERS

193

1

2

3

4

5

The container CPU or memory request must be less than or equal to the max resource
constraint for containers that are specified in the limit range object.
If the limit range defines a max CPU, you do not need to define a CPU request value in the Pod
spec. But you must specify a CPU limit value that satisfies the maximum CPU constraint
specified in the limit range.

The ratio of the container limits to requests must be less than or equal to the
maxLimitRequestRatio value for containers that is specified in the limit range object.
If the limit range defines a maxLimitRequestRatio constraint, any new containers must have
both a request and a limit value. OpenShift Container Platform calculates the limit-to-request
ratio by dividing the limit by the request. This value should be a non-negative integer greater
than 1.

For example, if a container has cpu: 500 in the limit value, and cpu: 100 in the request value,
the limit-to-request ratio for cpu is 5. This ratio must be less than or equal to the
maxLimitRequestRatio.

If the Pod spec does not specify a container resource memory or limit, the default or defaultRequest
CPU and memory values for containers specified in the limit range object are assigned to the container.

Container LimitRange object definition

The name of the LimitRange object.

The maximum amount of CPU that a single container in a Pod can request.

The maximum amount of memory that a single container in a Pod can request.

The minimum amount of CPU that a single container in a Pod can request. Not setting a min value
or setting 0 is unlimited, allowing the Pod to consume more than the max CPU value.

The minimum amount of memory that a single container in a Pod can request. Not setting a min
value or setting 0 is unlimited, allowing the Pod to consume more than the max memory value.

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Container"
 max:
 cpu: "2" 2
 memory: "1Gi" 3
 min:
 cpu: "100m" 4
 memory: "4Mi" 5
 default:
 cpu: "300m" 6
 memory: "200Mi" 7
 defaultRequest:
 cpu: "200m" 8
 memory: "100Mi" 9
 maxLimitRequestRatio:
 cpu: "10" 10

OpenShift Container Platform 4.3 Nodes

194

6

7

8

9

10

1

2

3

4

The default amount of CPU that a container can use if not specified in the Pod spec.

The default amount of memory that a container can use if not specified in the Pod spec.

The default amount of CPU that a container can request if not specified in the Pod spec.

The default amount of memory that a container can request if not specified in the Pod spec.

The maximum limit-to-request ratio for a container.

6.3.1.1.2. Pod limits

A limit range allows you to specify the minimum and maximum CPU and memory limits for all containers
across a Pod in a given project. To create a container in the project, the container CPU and memory
requests in the Pod spec must comply with the values set in the limit range object. If not, the Pod does
not get created.

Across all containers in a Pod, the following must hold true:

The container CPU or memory request and limit must be greater than or equal to the min
resource constraints for Pods that are specified in the limit range object.

The container CPU or memory request and limit must be less than or equal to the max resource
constraints for Pods that are specified in the limit range object.

The ratio of the container limits to requests must be less than or equal to the
maxLimitRequestRatio constraint specified in the limit range object.

Pod LimitRange object definition

The name of the limit range object.

The maximum amount of CPU that a Pod can request across all containers.

The maximum amount of memory that a Pod can request across all containers.

The minimum amount of CPU that a Pod can request across all containers. Not setting a min value
or setting 0 is unlimited, allowing the Pod to consume more than the max CPU value.

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Pod"
 max:
 cpu: "2" 2
 memory: "1Gi" 3
 min:
 cpu: "200m" 4
 memory: "6Mi" 5
 maxLimitRequestRatio:
 cpu: "10" 6

CHAPTER 6. WORKING WITH CLUSTERS

195

5

6

1

2

The minimum amount of memory that a Pod can request across all containers. Not setting a min
value or setting 0 is unlimited, allowing the Pod to consume more than the max memory value.

The maximum limit-to-request ratio for a container.

6.3.1.1.3. Image limits

A limit range allows you to specify the maximum size of an image that can be pushed to an internal
registry.

When pushing images to an internal registry, the following must hold true:

The size of the image must be less than or equal to the max size for images that is specified in
the limit range object.

Image LimitRange object definition

The name of the limit range object.

The maximum size of an image that can be pushed to an internal registry.

NOTE

To prevent blobs that exceed the limit from being uploaded to the registry, the registry
must be configured to enforce quotas.

WARNING

The image size is not always available in the manifest of an uploaded image. This is
especially the case for images built with Docker 1.10 or higher and pushed to a v2
registry. If such an image is pulled with an older Docker daemon, the image manifest
is converted by the registry to schema v1 lacking all the size information. No storage
limit set on images prevent it from being uploaded.

The issue is being addressed.

6.3.1.1.4. Image stream limits

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: openshift.io/Image
 max:
 storage: 1Gi 2



OpenShift Container Platform 4.3 Nodes

196

https://github.com/openshift/origin/issues/7706

1

2

3

A limit range allows you to specify limits for image streams.

For each image stream, the following must hold true:

The number of image tags in an imagestream specification must be less than or equal to the
openshift.io/image-tags constraint in the limit range object.

The number of unique references to images in an imagestream specification must be less than
or equal to the openshift.io/images constraint in the limit range object.

Imagestream LimitRange object definition

The name of the limit range object.

The maximum number of unique image tags in the imagestream.spec.tags parameter in
imagestream spec.

The maximum number of unique image references in the imagestream.status.tags parameter in
the imagestream spec.

The openshift.io/image-tags resource represents unique image references. Possible references are an
ImageStreamTag, an ImageStreamImage and a DockerImage. Tags can be created using the oc tag
and oc import-image commands. No distinction is made between internal and external references.
However, each unique reference tagged in an imagestream specification is counted just once. It does
not restrict pushes to an internal container image registry in any way, but is useful for tag restriction.

The openshift.io/images resource represents unique image names recorded in imagestream status. It
allows for restriction of a number of images that can be pushed to the internal registry. Internal and
external references are not distinguished.

6.3.1.1.5. Persistent volume claim limits

A limit range allows you to restrict the storage requested in a persistent volume claim (PVC).

Across all persistent volume claims in a project, the following must hold true:

The resource request in a persistent volume claim (PVC) must be greater than or equal the min
constraint for PVCs that is specified in the limit range object.

The resource request in a persistent volume claim (PVC) must be less than or equal the max
constraint for PVCs that is specified in the limit range object.

PVC LimitRange object definition

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: openshift.io/ImageStream
 max:
 openshift.io/image-tags: 20 2
 openshift.io/images: 30 3

CHAPTER 6. WORKING WITH CLUSTERS

197

1

2

3

The name of the limit range object.

The minimum amount of storage that can be requested in a persistent volume claim.

The maximum amount of storage that can be requested in a persistent volume claim.

6.3.2. Creating a Limit Range

To apply a limit range to a project:

1. Create a limit range object with your required specifications:

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "PersistentVolumeClaim"
 min:
 storage: "2Gi" 2
 max:
 storage: "50Gi" 3

apiVersion: "v1"
kind: "LimitRange"
metadata:
 name: "resource-limits" 1
spec:
 limits:
 - type: "Pod" 2
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "200m"
 memory: "6Mi"
 - type: "Container" 3
 max:
 cpu: "2"
 memory: "1Gi"
 min:
 cpu: "100m"
 memory: "4Mi"
 default: 4
 cpu: "300m"
 memory: "200Mi"
 defaultRequest: 5
 cpu: "200m"
 memory: "100Mi"
 maxLimitRequestRatio: 6
 cpu: "10"
 - type: openshift.io/Image 7

OpenShift Container Platform 4.3 Nodes

198

1

2

3

4

5

6

7

8

9

1

Specify a name for the LimitRange object.

To set limits for a pod, specify the minimum and maximum CPU and memory requests as
needed.

To set limits for a container, specify the minimum and maximum CPU and memory
requests as needed.

Optional. For a container, specify the default amount of CPU or memory that a container
can use, if not specified in the Pod spec.

Optional. For a container, specify the default amount of CPU or memory that a container
can request, if not specified in the Pod spec.

Optional. For a container, specify the maximum limit-to-request ratio that can be specified
in the Pod spec.

To set limits for an Image object, set the maximum size of an image that can be pushed to
an internal registry.

To set limits for an image stream, set the maximum number of image tags and references
that can be in the imagestream object file, as needed.

To set limits for a persistent volume claim, set the minimum and maximum amount of
storage that can be requested.

2. Create the object:

$ oc create -f <limit_range_file> -n <project> 1

Specify the name of the YAML file you created and the project where you want the limits
to apply.

6.3.3. Viewing a limit

You can view any limits defined in a project by navigating in the web console to the project’s Quota
page.

You can also use the CLI to view limit range details:

1. Get the list of limit ranges defined in the project. For example, for a project called demoproject:

 max:
 storage: 1Gi
 - type: openshift.io/ImageStream 8
 max:
 openshift.io/image-tags: 20
 openshift.io/images: 30
 - type: "PersistentVolumeClaim" 9
 min:
 storage: "2Gi"
 max:
 storage: "50Gi"

CHAPTER 6. WORKING WITH CLUSTERS

199

$ oc get limits -n demoproject

NAME CREATED AT
resource-limits 2020-07-15T17:14:23Z

2. Describe the limit range you are interested in, for example the resource-limits limit range:

$ oc describe limits resource-limits -n demoproject

Name: resource-limits
Namespace: demoproject
Type Resource Min Max Default Request Default Limit Max
Limit/Request Ratio
---- -------- --- --- --------------- ------------- -----------------------
Pod cpu 200m 2 - - -
Pod memory 6Mi 1Gi - - -
Container cpu 100m 2 200m 300m 10
Container memory 4Mi 1Gi 100Mi 200Mi -
openshift.io/Image storage - 1Gi - - -
openshift.io/ImageStream openshift.io/image - 12 - - -
openshift.io/ImageStream openshift.io/image-tags - 10 - - -
PersistentVolumeClaim storage - 50Gi - - -

6.3.4. Deleting a Limit Range

To remove any active limit range to no longer enforce the limits in a project:

1. Run the following command:

$ oc delete limits <limit_name>

6.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER
MEMORY AND RISK REQUIREMENTS

As a cluster administrator, you can help your clusters operate efficiently through managing application
memory by:

Determining the memory and risk requirements of a containerized application component and
configuring the container memory parameters to suit those requirements.

Configuring containerized application runtimes (for example, OpenJDK) to adhere optimally to
the configured container memory parameters.

Diagnosing and resolving memory-related error conditions associated with running in a
container.

6.4.1. Understanding managing application memory

It is recommended to read fully the overview of how OpenShift Container Platform manages Compute
Resources before proceeding.

For each kind of resource (memory, CPU, storage), OpenShift Container Platform allows optional

OpenShift Container Platform 4.3 Nodes

200

For each kind of resource (memory, CPU, storage), OpenShift Container Platform allows optional
request and limit values to be placed on each container in a pod.

Note the following about memory requests and memory limits:

Memory request

The memory request value, if specified, influences the OpenShift Container Platform
scheduler. The scheduler considers the memory request when scheduling a container to a
node, then fences off the requested memory on the chosen node for the use of the
container.

If a node’s memory is exhausted, OpenShift Container Platform prioritizes evicting its
containers whose memory usage most exceeds their memory request. In serious cases of
memory exhaustion, the node OOM killer may select and kill a process in a container based
on a similar metric.

The cluster administrator can assign quota or assign default values for the memory request
value.

The cluster administrator may override the memory request values that a developer
specifies, in order to manage cluster overcommit.

Memory limit

The memory limit value, if specified, provides a hard limit on the memory that can be
allocated across all the processes in a container.

If the memory allocated by all of the processes in a container exceeds the memory limit, the
node OOM killer will immediately select and kill a process in the container.

If both memory request and limit are specified, the memory limit value must be greater than
or equal to the memory request.

The cluster administrator can assign quota or assign default values for the memory limit
value.

6.4.1.1. Managing application memory strategy

The steps for sizing application memory on OpenShift Container Platform are as follows:

1. Determine expected container memory usage
Determine expected mean and peak container memory usage, empirically if necessary (for
example, by separate load testing). Remember to consider all the processes that may
potentially run in parallel in the container: for example, does the main application spawn any
ancillary scripts?

2. Determine risk appetite
Determine risk appetite for eviction. If the risk appetite is low, the container should request
memory according to the expected peak usage plus a percentage safety margin. If the risk
appetite is higher, it may be more appropriate to request memory according to the expected
mean usage.

3. Set container memory request
Set container memory request based on the above. The more accurately the request represents
the application memory usage, the better. If the request is too high, cluster and quota usage will
be inefficient. If the request is too low, the chances of application eviction increase.

CHAPTER 6. WORKING WITH CLUSTERS

201

4. Set container memory limit, if required
Set container memory limit, if required. Setting a limit has the effect of immediately killing a
container process if the combined memory usage of all processes in the container exceeds the
limit, and is therefore a mixed blessing. On the one hand, it may make unanticipated excess
memory usage obvious early ("fail fast"); on the other hand it also terminates processes
abruptly.

Note that some OpenShift Container Platform clusters may require a limit value to be set; some
may override the request based on the limit; and some application images rely on a limit value
being set as this is easier to detect than a request value.

If the memory limit is set, it should not be set to less than the expected peak container memory
usage plus a percentage safety margin.

5. Ensure application is tuned
Ensure application is tuned with respect to configured request and limit values, if appropriate.
This step is particularly relevant to applications which pool memory, such as the JVM. The rest of
this page discusses this.

6.4.2. Understanding OpenJDK settings for OpenShift Container Platform

The default OpenJDK settings do not work well with containerized environments. As a result, some
additional Java memory settings must always be provided whenever running the OpenJDK in a
container.

The JVM memory layout is complex, version dependent, and describing it in detail is beyond the scope
of this documentation. However, as a starting point for running OpenJDK in a container, at least the
following three memory-related tasks are key:

1. Overriding the JVM maximum heap size.

2. Encouraging the JVM to release unused memory to the operating system, if appropriate.

3. Ensuring all JVM processes within a container are appropriately configured.

Optimally tuning JVM workloads for running in a container is beyond the scope of this documentation,
and may involve setting multiple additional JVM options.

6.4.2.1. Understanding how to override the JVM maximum heap size

For many Java workloads, the JVM heap is the largest single consumer of memory. Currently, the
OpenJDK defaults to allowing up to 1/4 (1/-XX:MaxRAMFraction) of the compute node’s memory to be
used for the heap, regardless of whether the OpenJDK is running in a container or not. It is therefore
essential to override this behavior, especially if a container memory limit is also set.

There are at least two ways the above can be achieved:

1. If the container memory limit is set and the experimental options are supported by the JVM, set
-XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap.
This sets -XX:MaxRAM to the container memory limit, and the maximum heap size (-
XX:MaxHeapSize / -Xmx) to 1/ -XX:MaxRAMFraction (1/4 by default).

2. Directly override one of -XX:MaxRAM, -XX:MaxHeapSize or -Xmx.
This option involves hard-coding a value, but has the advantage of allowing a safety margin to
be calculated.

6.4.2.2. Understanding how to encourage the JVM to release unused memory to the

OpenShift Container Platform 4.3 Nodes

202

6.4.2.2. Understanding how to encourage the JVM to release unused memory to the
operating system

By default, the OpenJDK does not aggressively return unused memory to the operating system. This
may be appropriate for many containerized Java workloads, but notable exceptions include workloads
where additional active processes co-exist with a JVM within a container, whether those additional
processes are native, additional JVMs, or a combination of the two.

The OpenShift Container Platform Jenkins maven slave image uses the following JVM arguments to
encourage the JVM to release unused memory to the operating system:

-XX:+UseParallelGC
-XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4
-XX:AdaptiveSizePolicyWeight=90.

These arguments are intended to return heap memory to the operating system whenever allocated
memory exceeds 110% of in-use memory (-XX:MaxHeapFreeRatio), spending up to 20% of CPU time in
the garbage collector (-XX:GCTimeRatio). At no time will the application heap allocation be less than
the initial heap allocation (overridden by -XX:InitialHeapSize / -Xms). Detailed additional information is
available Tuning Java’s footprint in OpenShift (Part 1) , Tuning Java’s footprint in OpenShift (Part 2) ,
and at OpenJDK and Containers.

6.4.2.3. Understanding how to ensure all JVM processes within a container are
appropriately configured

In the case that multiple JVMs run in the same container, it is essential to ensure that they are all
configured appropriately. For many workloads it will be necessary to grant each JVM a percentage
memory budget, leaving a perhaps substantial additional safety margin.

Many Java tools use different environment variables (JAVA_OPTS, GRADLE_OPTS, MAVEN_OPTS,
and so on) to configure their JVMs and it can be challenging to ensure that the right settings are being
passed to the right JVM.

The JAVA_TOOL_OPTIONS environment variable is always respected by the OpenJDK, and values
specified in JAVA_TOOL_OPTIONS will be overridden by other options specified on the JVM
command line. By default, to ensure that these options are used by default for all JVM workloads run in
the slave image, the OpenShift Container Platform Jenkins maven slave image sets:

JAVA_TOOL_OPTIONS="-XX:+UnlockExperimentalVMOptions
-XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true"

This does not guarantee that additional options are not required, but is intended to be a helpful starting
point.

6.4.3. Finding the memory request and limit from within a pod

An application wishing to dynamically discover its memory request and limit from within a pod should use
the Downward API.

Procedure

1. Configure the pod to add the MEMORY_REQUEST and MEMORY_LIMIT stanzas:

apiVersion: v1

CHAPTER 6. WORKING WITH CLUSTERS

203

https://developers.redhat.com/blog/2014/07/15/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-1/
https://developers.redhat.com/blog/2014/07/22/dude-wheres-my-paas-memory-tuning-javas-footprint-in-openshift-part-2/
https://developers.redhat.com/blog/2017/04/04/openjdk-and-containers/

1

2

Add this stanza to discover the application memory request value.

Add this stanza to discover the application memory limit value.

1. Create the pod:

$ oc create -f <file-name>.yaml

2. Access the pod using a remote shell:

$ oc rsh test

3. Check that the requested values were applied:

$ env | grep MEMORY | sort
MEMORY_LIMIT=536870912
MEMORY_REQUEST=402653184

NOTE

The memory limit value can also be read from inside the container by the
/sys/fs/cgroup/memory/memory.limit_in_bytes file.

6.4.4. Understanding OOM kill policy

OpenShift Container Platform may kill a process in a container if the total memory usage of all the

kind: Pod
metadata:
 name: test
spec:
 containers:
 - name: test
 image: fedora:latest
 command:
 - sleep
 - "3600"
 env:
 - name: MEMORY_REQUEST 1
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: requests.memory
 - name: MEMORY_LIMIT 2
 valueFrom:
 resourceFieldRef:
 containerName: test
 resource: limits.memory
 resources:
 requests:
 memory: 384Mi
 limits:
 memory: 512Mi

OpenShift Container Platform 4.3 Nodes

204

OpenShift Container Platform may kill a process in a container if the total memory usage of all the
processes in the container exceeds the memory limit, or in serious cases of node memory exhaustion.

When a process is OOM killed, this may or may not result in the container exiting immediately. If the
container PID 1 process receives the SIGKILL, the container will exit immediately. Otherwise, the
container behavior is dependent on the behavior of the other processes.

For example, a container process exited with code 137, indicating it received a SIGKILL signal.

If the container does not exit immediately, an OOM kill is detectable as follows:

1. Access the pod using a remote shell:

oc rsh test

2. The oom_kill counter in /sys/fs/cgroup/memory/memory.oom_control is incremented

$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control
oom_kill 0
$ sed -e '' </dev/zero # provoke an OOM kill
Killed
$ echo $?
137
$ grep '^oom_kill ' /sys/fs/cgroup/memory/memory.oom_control
oom_kill 1

If one or more processes in a pod are OOM killed, when the pod subsequently exits, whether
immediately or not, it will have phase Failed and reason OOMKilled. An OOM killed pod may be
restarted depending on the value of restartPolicy. If not restarted, controllers such as the
ReplicationController will notice the pod’s failed status and create a new pod to replace the old one.

If not restarted, the pod status is as follows:

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 0/1 OOMKilled 0 1m

$ oc get pod test -o yaml
...
status:
 containerStatuses:
 - name: test
 ready: false
 restartCount: 0
 state:
 terminated:
 exitCode: 137
 reason: OOMKilled
 phase: Failed

If restarted, its status is as follows:

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 1/1 Running 1 1m

CHAPTER 6. WORKING WITH CLUSTERS

205

$ oc get pod test -o yaml
...
status:
 containerStatuses:
 - name: test
 ready: true
 restartCount: 1
 lastState:
 terminated:
 exitCode: 137
 reason: OOMKilled
 state:
 running:
 phase: Running

6.4.5. Understanding pod eviction

OpenShift Container Platform may evict a pod from its node when the node’s memory is exhausted.
Depending on the extent of memory exhaustion, the eviction may or may not be graceful. Graceful
eviction implies the main process (PID 1) of each container receiving a SIGTERM signal, then some time
later a SIGKILL signal if the process has not exited already. Non-graceful eviction implies the main
process of each container immediately receiving a SIGKILL signal.

An evicted pod will have phase Failed and reason Evicted. It will not be restarted, regardless of the
value of restartPolicy. However, controllers such as the ReplicationController will notice the pod’s failed
status and create a new pod to replace the old one.

$ oc get pod test
NAME READY STATUS RESTARTS AGE
test 0/1 Evicted 0 1m

$ oc get pod test -o yaml
...
status:
 message: 'Pod The node was low on resource: [MemoryPressure].'
 phase: Failed
 reason: Evicted

6.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON
OVERCOMMITED NODES

In an overcommited state, the sum of the container compute resource requests and limits exceeds the
resources available on the system. Overcommitment might be desirable in development environments
where a tradeoff of guaranteed performance for capacity is acceptable.

NOTE

In OpenShift Container Platform overcommittment is enabled by default. See Disabling
overcommitment for a node.

6.5.1. Understanding overcommitment

Requests and limits enable administrators to allow and manage the overcommitment of resources on a

OpenShift Container Platform 4.3 Nodes

206

Requests and limits enable administrators to allow and manage the overcommitment of resources on a
node. The scheduler uses requests for scheduling your container and providing a minimum service
guarantee. Limits constrain the amount of compute resource that may be consumed on your node.

OpenShift Container Platform administrators can control the level of overcommit and manage container
density on nodes by configuring masters to override the ratio between request and limit set on
developer containers. In conjunction with a per-project LimitRange specifying limits and defaults, this
adjusts the container limit and request to achieve the desired level of overcommit.

NOTE

That these overrides have no effect if no limits have been set on containers. Create a
LimitRange object with default limits (per individual project, or in the project template) in
order to ensure that the overrides apply.

After these overrides, the container limits and requests must still be validated by any LimitRange objects
in the project. It is possible, for example, for developers to specify a limit close to the minimum limit, and
have the request then be overridden below the minimum limit, causing the pod to be forbidden. This
unfortunate user experience should be addressed with future work, but for now, configure this capability
and LimitRanges with caution.

6.5.2. Understanding resource requests and overcommitment

For each compute resource, a container may specify a resource request and limit. Scheduling decisions
are made based on the request to ensure that a node has enough capacity available to meet the
requested value. If a container specifies limits, but omits requests, the requests are defaulted to the
limits. A container is not able to exceed the specified limit on the node.

The enforcement of limits is dependent upon the compute resource type. If a container makes no
request or limit, the container is scheduled to a node with no resource guarantees. In practice, the
container is able to consume as much of the specified resource as is available with the lowest local
priority. In low resource situations, containers that specify no resource requests are given the lowest
quality of service.

Scheduling is based on resources requested, while quota and hard limits refer to resource limits, which
can be set higher than requested resources. The difference between request and limit determines the
level of overcommit; for instance, if a container is given a memory request of 1Gi and a memory limit of
2Gi, it is scheduled based on the 1Gi request being available on the node, but could use up to 2Gi; so it is
200% overcommitted.

6.5.2.1. Configuring Buffer Chunk Limiting for Fluentd

If the Fluentd log collector is unable to keep up with a high number of logs, Fluentd performs file
buffering to reduce memory usage and prevent data loss.

Fluentd file buffering stores records in chunks. Chunks are stored in buffers.

You can tune file buffering in your cluster by editing environment variables in the Fluentd Daemonset:

NOTE

To modify the FILE_BUFFER_LIMIT or BUFFER_SIZE_LIMIT parameters in the Fluentd
Daemonset, you must set cluster logging to the unmanaged state. Operators in an
unmanaged state are unsupported and the cluster administrator assumes full control of
the individual component configurations and upgrades.

CHAPTER 6. WORKING WITH CLUSTERS

207

1

2

BUFFER_SIZE_LIMIT. This parameter determines the maximum size of each chunk file before
Fluentd creates a new chunk. The default is 8M. This parameter sets the Fluentd
chunk_limit_size variable.
A high BUFFER_SIZE_LIMIT can collect more records per chunk file. However, bigger records
take longer to be sent to the logstore.

FILE_BUFFER_LIMIT. This parameter determines the file buffer size per logging output. This
value is only a request based on the available space on the node where a Fluentd pod is
scheduled. OpenShift Container Platform does not allow Fluentd to exceed the node capacity.
The default is 256Mi.
A high FILE_BUFFER_LIMIT could translate to a higher BUFFER_QUEUE_LIMIT based the
number of outputs. However, if the node’s space is under pressure, Fluentd can fail.

By default, the number_of_outputs is 1 if all the logs are sent to a single resource, and is
incremented by 1 for each additional resource. You might have multiple outputs if you use the
Log Forwarding API, the Fluentd Forward protocol, or syslog protocol to forward logs to
external locations.

The permanent volume size must be larger than FILE_BUFFER_LIMIT multiplied by the number
of outputs.

BUFFER_QUEUE_LIMIT. This parameter is the maximum number of buffer chunks allowed. The
BUFFER_QUEUE_LIMIT parameter is not directly tunable. OpenShift Container Platform
calculates this value based on the number of logging outputs, the chunk size, and the filesystem
space available. The default is 32 chunks. To change the BUFFER_QUEUE_LIMIT, you must
change the value of FILE_BUFFER_LIMIT. The BUFFER_QUEUE_LIMIT parameter sets the
Fluentd queue_limit_length parameter.
OpenShift Container Platform calculates the BUFFER_QUEUE_LIMIT as
(FILE_BUFFER_LIMIT / (number_of_outputs * BUFFER_SIZE_LIMIT)).

Using the default set of values, the value of BUFFER_QUEUE_LIMIT is 32:

FILE_BUFFER_LIMIT = 256Mi

number_of_outputs = 1

BUFFER_SIZE_LIMIT = 8Mi

OpenShift Container Platform uses the Fluentd file buffer plug-in to configure how the chunks are
stored. You can see the location of the buffer file using the following command:

$ oc get cm fluentd -o json | jq -r '.data."fluent.conf"'

<buffer>
 @type file 1
 path '/var/lib/flunetd/retry-elasticseach' 2

The Fluentd file buffer plugin. Do not change this value.

The path where buffer chunks are stored.

Prerequisite

Set cluster logging to the unmanaged state. Operators in an unmanaged state are unsupported

OpenShift Container Platform 4.3 Nodes

208

https://docs.fluentd.org/buffer/file

1

2

Set cluster logging to the unmanaged state. Operators in an unmanaged state are unsupported
and the cluster administrator assumes full control of the individual component configurations
and upgrades.

Procedure

To configure Buffer Chunk Limiting:

1. Edit either of the following parameters in the fluentd Daemonset.

Specify the Fluentd file buffer size per output.

Specify the maximum size of each Fluentd buffer chunk.

6.5.3. Understanding compute resources and containers

The node-enforced behavior for compute resources is specific to the resource type.

6.5.3.1. Understanding container CPU requests

A container is guaranteed the amount of CPU it requests and is additionally able to consume excess
CPU available on the node, up to any limit specified by the container. If multiple containers are
attempting to use excess CPU, CPU time is distributed based on the amount of CPU requested by each
container.

For example, if one container requested 500m of CPU time and another container requested 250m of
CPU time, then any extra CPU time available on the node is distributed among the containers in a 2:1
ratio. If a container specified a limit, it will be throttled not to use more CPU than the specified limit. CPU
requests are enforced using the CFS shares support in the Linux kernel. By default, CPU limits are
enforced using the CFS quota support in the Linux kernel over a 100ms measuring interval, though this
can be disabled.

6.5.3.2. Understanding container memory requests

A container is guaranteed the amount of memory it requests. A container can use more memory than
requested, but once it exceeds its requested amount, it could be terminated in a low memory situation
on the node. If a container uses less memory than requested, it will not be terminated unless system
tasks or daemons need more memory than was accounted for in the node’s resource reservation. If a
container specifies a limit on memory, it is immediately terminated if it exceeds the limit amount.

6.5.4. Understanding overcomitment and quality of service classes

A node is overcommitted when it has a pod scheduled that makes no request, or when the sum of limits
across all pods on that node exceeds available machine capacity.

spec:
 template:
 spec:
 containers:
 env:
 - name: FILE_BUFFER_LIMIT 1
 value: "256"
 - name: BUFFER_SIZE_LIMIT 2
 value: 8Mi

CHAPTER 6. WORKING WITH CLUSTERS

209

In an overcommitted environment, it is possible that the pods on the node will attempt to use more
compute resource than is available at any given point in time. When this occurs, the node must give
priority to one pod over another. The facility used to make this decision is referred to as a Quality of
Service (QoS) Class.

For each compute resource, a container is divided into one of three QoS classes with decreasing order
of priority:

Table 6.19. Quality of Service Classes

Priority Class Name Description

1 (highest) Guarantee
d

If limits and optionally requests are set (not equal to 0) for all resources and
they are equal, then the container is classified as Guaranteed.

2 Burstable If requests and optionally limits are set (not equal to 0) for all resources, and
they are not equal, then the container is classified as Burstable.

3 (lowest) BestEffort If requests and limits are not set for any of the resources, then the container is
classified as BestEffort.

Memory is an incompressible resource, so in low memory situations, containers that have the lowest
priority are terminated first:

Guaranteed containers are considered top priority, and are guaranteed to only be terminated if
they exceed their limits, or if the system is under memory pressure and there are no lower
priority containers that can be evicted.

Burstable containers under system memory pressure are more likely to be terminated once
they exceed their requests and no other BestEffort containers exist.

BestEffort containers are treated with the lowest priority. Processes in these containers are
first to be terminated if the system runs out of memory.

6.5.4.1. Understanding how to reserve memory across quality of service tiers

You can use the qos-reserved parameter to specify a percentage of memory to be reserved by a pod in
a particular QoS level. This feature attempts to reserve requested resources to exclude pods from
lower OoS classes from using resources requested by pods in higher QoS classes.

OpenShift Container Platform uses the qos-reserved parameter as follows:

A value of qos-reserved=memory=100% will prevent the Burstable and BestEffort QOS
classes from consuming memory that was requested by a higher QoS class. This increases the
risk of inducing OOM on BestEffort and Burstable workloads in favor of increasing memory
resource guarantees for Guaranteed and Burstable workloads.

A value of qos-reserved=memory=50% will allow the Burstable and BestEffort QOS classes to
consume half of the memory requested by a higher QoS class.

A value of qos-reserved=memory=0% will allow a Burstable and BestEffort QoS classes to
consume up to the full node allocatable amount if available, but increases the risk that a
Guaranteed workload will not have access to requested memory. This condition effectively
disables this feature.

OpenShift Container Platform 4.3 Nodes

210

6.5.5. Understanding swap memory and QOS

You can disable swap by default on your nodes in order to preserve quality of service (QOS) guarantees.
Otherwise, physical resources on a node can oversubscribe, affecting the resource guarantees the
Kubernetes scheduler makes during pod placement.

For example, if two guaranteed pods have reached their memory limit, each container could start using
swap memory. Eventually, if there is not enough swap space, processes in the pods can be terminated
due to the system being oversubscribed.

Failing to disable swap results in nodes not recognizing that they are experiencing MemoryPressure,
resulting in pods not receiving the memory they made in their scheduling request. As a result, additional
pods are placed on the node to further increase memory pressure, ultimately increasing your risk of
experiencing a system out of memory (OOM) event.

IMPORTANT

If swap is enabled, any out-of-resource handling eviction thresholds for available memory
will not work as expected. Take advantage of out-of-resource handling to allow pods to
be evicted from a node when it is under memory pressure, and rescheduled on an
alternative node that has no such pressure.

6.5.6. Understanding nodes overcommitment

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

In an overcommitted environment, it is important to properly configure your node to provide best
system behavior.

When the node starts, it ensures that the kernel tunable flags for memory management are set properly.
The kernel should never fail memory allocations unless it runs out of physical memory.

To ensure this behavior, OpenShift Container Platform configures the kernel to always overcommit
memory by setting the vm.overcommit_memory parameter to 1, overriding the default operating
system setting.

OpenShift Container Platform also configures the kernel not to panic when it runs out of memory by
setting the vm.panic_on_oom parameter to 0. A setting of 0 instructs the kernel to call oom_killer in an
Out of Memory (OOM) condition, which kills processes based on priority

You can view the current setting by running the following commands on your nodes:

$ sysctl -a |grep commit

vm.overcommit_memory = 1

$ sysctl -a |grep panic
vm.panic_on_oom = 0

NOTE

CHAPTER 6. WORKING WITH CLUSTERS

211

1

NOTE

The above flags should already be set on nodes, and no further action is required.

You can also perform the following configurations for each node:

Disable or enforce CPU limits using CPU CFS quotas

Reserve resources for system processes

Reserve memory across quality of service tiers

6.5.6.1. Disabling or enforcing CPU limits using CPU CFS quotas

Nodes by default enforce specified CPU limits using the Completely Fair Scheduler (CFS) quota
support in the Linux kernel.

Prerequisites

1. Obtain the label associated with the static Machine Config Pool CRD for the type of node you
want to configure. Perform one of the following steps:

a. View the Machine Config Pool:

$ oc describe machineconfigpool <name>

For example:

If a label has been added it appears under labels.

b. If the label is not present, add a key/value pair:

$ oc label machineconfigpool worker custom-kubelet=small-pods

Procedure

1. Create a Custom Resource (CR) for your configuration change.

Sample configuration for a disabling CPU limits

$ oc describe machineconfigpool worker

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfigPool
metadata:
 creationTimestamp: 2019-02-08T14:52:39Z
 generation: 1
 labels:
 custom-kubelet: small-pods 1

apiVersion: machineconfiguration.openshift.io/v1
kind: KubeletConfig
metadata:

OpenShift Container Platform 4.3 Nodes

212

1

2

3

Assign a name to CR.

Specify the label to apply the configuration change.

Set the cpu-cfs-quota parameter to false.

If CPU limit enforcement is disabled, it is important to understand the impact that will have on your
node:

If a container makes a request for CPU, it will continue to be enforced by CFS shares in the Linux
kernel.

If a container makes no explicit request for CPU, but it does specify a limit, the request will
default to the specified limit, and be enforced by CFS shares in the Linux kernel.

If a container specifies both a request and a limit for CPU, the request will be enforced by CFS
shares in the Linux kernel, and the limit will have no impact on the node.

6.5.6.2. Reserving resources for system processes

To provide more reliable scheduling and minimize node resource overcommitment, each node can
reserve a portion of its resources for use by system daemons that are required to run on your node for
your cluster to function (sshd, etc.). In particular, it is recommended that you reserve resources for
incompressible resources such as memory.

Procedure

To explicitly reserve resources for non-pod processes, allocate node resources by specifying resources
available for scheduling. For more details, see Allocating Resources for Nodes.

6.5.7. Disabling overcommitment for a node

When enabled, overcommitment can be disabled on each node.

Procedure

To disable overcommitment in a node run the following command on that node:

$ sysctl -w vm.overcommit_memory=0

6.5.8. Disabling overcommitment for a project

When enabled, overcommitment can be disabled per-project. For example, you can allow infrastructure
components to be configured independently of overcommitment.

 name: disable-cpu-units 1
spec:
 machineConfigPoolSelector:
 matchLabels:
 custom-kubelet: small-pods 2
 kubeletConfig:
 cpu-cfs-quota: 3
 - "false"

CHAPTER 6. WORKING WITH CLUSTERS

213

Procedure

To disable overcommitment in a project:

1. Edit the project object file

2. Add the following annotation:

quota.openshift.io/cluster-resource-override-enabled: "false"

3. Create the project object:

$ oc create -f <file-name>.yaml

6.6. ENABLING OPENSHIFT CONTAINER PLATFORM FEATURES
USING FEATUREGATES

As an administrator, you can turn on features that are Technology Preview features.

6.6.1. Understanding FeatureGates and Technology Preview features

You can use the FeatureGates Custom Resource to toggle on and off Technology Preview features
throughout your cluster.

This allows you, for example, to ensure that Technology Preview features are off for production clusters
while leaving the features on for test clusters where you can fully test them.

6.6.2. Features that are affected by FeatureGates

The following features are affected by FeatureGates:

FeatureGate Description Default

RotateKubeletServerCertifica
te

Enables the rotation of the server
TLS certificate on the cluster.

True

SupportPodPidsLimit Enables support for limiting the
number of processes (PIDs)
running in a Pod.

True

MachineHealthCheck Enables automatically repairing
unhealthy machines in a machine
pool.

True

LocalStorageCapacityIsolati
on

Enable the consumption of local
ephemeral storage and also the
sizeLimit property of an
emptyDir volume.

False

You can enable these features by editing the Feature Gate Custom Resource. Turning on these features
cannot be undone and prevents the ability to upgrade your cluster.

OpenShift Container Platform 4.3 Nodes

214

1

6.6.3. Enabling Technology Preview features using FeatureGates

You can turn Technology Preview features on and off for all nodes in the cluster by editing the
FeatureGates Custom Resource, named cluster, in the openshift-config project.

The following Technology Preview features are enabled by feature gates:

RotateKubeletServerCertificate

SupportPodPidsLimit

IMPORTANT

Turning on Technology Preview features cannot be undone and prevents upgrades.

Procedure

To turn on the Technology Preview features for the entire cluster:

1. Create the FeatureGates instance:

a. Switch to the Administration → Custom Resource Definitions page.

b. On the Custom Resource Definitions page, click FeatureGate.

c. On the Custom Resource Definitions page, click the Actions Menu and select View
Instances.

d. On the Feature Gates page, click Create Feature Gates.

e. Replace the code with following sample:

f. Click Create.

2. To turn on the Technology Preview features, change the spec parameter to:

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
spec:
 featureSet: TechPreviewNoUpgrade 1

Add featureSet: TechPreviewNoUpgrade to enable the Technology Preview features
that are affected by FeatureGates.

NOTE

apiVersion: config.openshift.io/v1
kind: FeatureGate
metadata:
 name: cluster
spec: {}

CHAPTER 6. WORKING WITH CLUSTERS

215

NOTE

Turning on Technology Preview features cannot be undone and prevents
upgrades.

OpenShift Container Platform 4.3 Nodes

216

	Table of Contents
	CHAPTER 1. WORKING WITH PODS
	1.1. USING PODS
	1.1.1. Understanding pods
	1.1.2. Example pod configurations

	1.2. VIEWING PODS
	1.2.1. About pods
	1.2.2. Viewing pods in a project
	1.2.3. Viewing pod usage statistics

	1.3. CONFIGURING AN OPENSHIFT CONTAINER PLATFORM CLUSTER FOR PODS
	1.3.1. Configuring how pods behave after restart
	1.3.2. Limiting the bandwidth available to pods
	1.3.3. Understanding how to use pod disruption budgets to specify the number of pods that must be up
	1.3.3.1. Specifying the number of pods that must be up with pod disruption budgets

	1.3.4. Preventing pod removal using critical pods

	1.4. AUTOMATICALLY SCALING PODS
	1.4.1. Understanding horizontal pod autoscalers
	1.4.1.1. Supported metrics

	1.4.2. Creating a horizontal pod autoscaler for CPU utilization
	1.4.3. Creating a horizontal pod autoscaler object for memory utilization
	1.4.4. Understanding horizontal pod autoscaler status conditions
	1.4.4.1. Viewing horizontal pod autoscaler status conditions

	1.4.5. Additional resources

	1.5. PROVIDING SENSITIVE DATA TO PODS
	1.5.1. Understanding secrets
	1.5.1.1. Types of secrets
	1.5.1.2. Example secret configurations
	1.5.1.3. Secret data keys

	1.5.2. Understanding how to create secrets
	1.5.2.1. Secret creation restrictions
	1.5.2.2. Creating an opaque secret

	1.5.3. Understanding how to update secrets
	1.5.4. About using signed certificates with secrets
	1.5.4.1. Generating signed certificates for use with secrets

	1.5.5. Troubleshooting secrets

	1.6. USING DEVICE PLUG-INS TO ACCESS EXTERNAL RESOURCES WITH PODS
	1.6.1. Understanding device plug-ins
	Example device plug-ins
	1.6.1.1. Methods for deploying a device plug-in

	1.6.2. Understanding the Device Manager
	1.6.3. Enabling Device Manager

	1.7. INCLUDING POD PRIORITY IN POD SCHEDULING DECISIONS
	1.7.1. Understanding pod priority
	1.7.1.1. Pod priority classes
	1.7.1.2. Pod priority names

	1.7.2. Understanding pod preemption
	1.7.2.1. Pod preemption and other scheduler settings
	1.7.2.2. Graceful termination of preempted pods

	1.7.3. Configuring priority and preemption
	1.7.4. Disabling priority and preemption

	1.8. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
	1.8.1. Using node selectors to control pod placement

	CHAPTER 2. CONTROLLING POD PLACEMENT ONTO NODES (SCHEDULING)
	2.1. CONTROLLING POD PLACEMENT USING THE SCHEDULER
	2.1.1. Scheduler Use Cases
	2.1.1.1. Infrastructure Topological Levels
	2.1.1.2. Affinity
	2.1.1.3. Anti-Affinity

	2.2. CONFIGURING THE DEFAULT SCHEDULER TO CONTROL POD PLACEMENT
	2.2.1. Understanding default scheduling
	2.2.1.1. Understanding Scheduler Policy

	2.2.2. Creating a scheduler policy file
	2.2.3. Modifying scheduler policies
	2.2.3.1. Understanding the scheduler predicates
	2.2.3.2. Understanding the scheduler priorities

	2.2.4. Sample Policy Configurations

	2.3. PLACING PODS RELATIVE TO OTHER PODS USING AFFINITY AND ANTI-AFFINITY RULES
	2.3.1. Understanding pod affinity
	2.3.2. Configuring a pod affinity rule
	2.3.3. Configuring a pod anti-affinity rule
	2.3.4. Sample pod affinity and anti-affinity rules
	2.3.4.1. Pod Affinity
	2.3.4.2. Pod Anti-affinity
	2.3.4.3. Pod Affinity with no Matching Labels

	2.4. CONTROLLING POD PLACEMENT ON NODES USING NODE AFFINITY RULES
	2.4.1. Understanding node affinity
	2.4.2. Configuring a required node affinity rule
	2.4.3. Configuring a Preferred Node Affinity Rule
	2.4.4. Sample node affinity rules
	2.4.4.1. Node Affinity with Matching Labels
	2.4.4.2. Node Affinity with No Matching Labels

	2.4.5. Additional resources

	2.5. PLACING PODS ONTO OVERCOMMITED NODES
	2.5.1. Understanding overcommitment
	2.5.2. Understanding nodes overcommitment

	2.6. CONTROLLING POD PLACEMENT USING NODE TAINTS
	2.6.1. Understanding taints and tolerations
	2.6.1.1. Understanding how to use toleration seconds to delay pod evictions
	2.6.1.2. Understanding how to use multiple taints
	2.6.1.3. Preventing pod eviction for node problems
	2.6.1.4. Understanding pod scheduling and node conditions (Taint Node by Condition)
	2.6.1.5. Understanding evicting pods by condition (Taint-Based Evictions)

	2.6.2. Adding taints and tolerations
	2.6.2.1. Dedicating a Node for a User using taints and tolerations
	2.6.2.2. Binding a user to a Node using taints and tolerations
	2.6.2.3. Controlling Nodes with special hardware using taints and tolerations

	2.6.3. Removing taints and tolerations

	2.7. PLACING PODS ON SPECIFIC NODES USING NODE SELECTORS
	2.7.1. Using node selectors to control pod placement
	2.7.2. Creating default cluster-wide node selectors
	2.7.3. Creating project-wide node selectors

	CHAPTER 3. USING JOBS AND DAEMONSETS
	3.1. RUNNING BACKGROUND TASKS ON NODES AUTOMATICALLY WITH DAEMONSETS
	3.1.1. Scheduled by default scheduler
	3.1.2. Creating daemonsets

	3.2. RUNNING TASKS IN PODS USING JOBS
	3.2.1. Understanding Jobs and CronJobs
	3.2.2. Understanding how to create Jobs
	3.2.2.1. Understanding how to set a maximum duration for Jobs
	3.2.2.2. Understanding how to set a Job back off policy for pod failure
	3.2.2.3. Understanding how to configure a CronJob to remove artifacts

	3.2.3. Known limitations
	3.2.4. Creating jobs
	3.2.5. Creating CronJobs

	CHAPTER 4. WORKING WITH NODES
	4.1. VIEWING AND LISTING THE NODES IN YOUR OPENSHIFT CONTAINER PLATFORM CLUSTER
	4.1.1. About listing all the nodes in a cluster
	4.1.2. Listing pods on a node in your cluster
	4.1.3. Viewing memory and CPU usage statistics on your nodes

	4.2. WORKING WITH NODES
	4.2.1. Understanding how to evacuate pods on nodes
	4.2.2. Understanding how to update labels on nodes
	4.2.3. Understanding how to mark nodes as unschedulable or schedulable
	4.2.4. Configuring master nodes as schedulable
	4.2.5. Deleting nodes
	4.2.5.1. Deleting nodes from a cluster
	4.2.5.2. Deleting nodes from a bare metal cluster

	4.2.6. Adding kernel arguments to Nodes
	4.2.7. Additional resources

	4.3. MANAGING NODES
	4.3.1. Modifying Nodes

	4.4. MANAGING THE MAXIMUM NUMBER OF PODS PER NODE
	4.4.1. Configuring the maximum number of Pods per Node

	4.5. USING THE NODE TUNING OPERATOR
	4.5.1. About the Node Tuning Operator
	4.5.2. Accessing an example Node Tuning Operator specification
	4.5.3. Custom tuning specification
	4.5.4. Default profiles set on a cluster
	4.5.5. Supported Tuned daemon plug-ins

	4.6. UNDERSTANDING NODE REBOOTING
	4.6.1. Understanding infrastructure node rebooting
	4.6.2. Rebooting a node using pod anti-affinity
	4.6.3. Understanding how to reboot nodes running routers

	4.7. FREEING NODE RESOURCES USING GARBAGE COLLECTION
	4.7.1. Understanding how terminated containers are removed though garbage collection
	4.7.2. Understanding how images are removed though garbage collection
	4.7.3. Configuring garbage collection for containers and images

	4.8. ALLOCATING RESOURCES FOR NODES IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	4.8.1. Understanding how to allocate resources for nodes
	4.8.1.1. How OpenShift Container Platform computes allocated resources
	4.8.1.2. How nodes enforce resource constraints
	4.8.1.3. Understanding Eviction Thresholds
	4.8.1.4. How the scheduler determines resource availability

	4.8.2. Configuring allocated resources for nodes

	4.9. VIEWING NODE AUDIT LOGS
	4.9.1. About the API audit log
	4.9.2. Viewing the audit log

	4.10. MACHINE CONFIG DAEMON METRICS
	4.10.1. Machine Config Daemon metrics

	CHAPTER 5. WORKING WITH CONTAINERS
	5.1. UNDERSTANDING CONTAINERS
	5.2. USING INIT CONTAINERS TO PERFORM TASKS BEFORE A POD IS DEPLOYED
	5.2.1. Understanding Init Containers
	5.2.2. Creating Init Containers

	5.3. USING VOLUMES TO PERSIST CONTAINER DATA
	5.3.1. Understanding volumes
	5.3.2. Working with volumes using the OpenShift Container Platform CLI
	5.3.3. Listing volumes and volume mounts in a pod
	5.3.4. Adding volumes to a pod
	5.3.5. Updating volumes and volume mounts in a pod
	5.3.6. Removing volumes and volume mounts from a pod
	5.3.7. Configuring volumes for multiple uses in a pod

	5.4. MAPPING VOLUMES USING PROJECTED VOLUMES
	5.4.1. Understanding projected volumes
	5.4.1.1. Example Pod Specifications
	5.4.1.2. Pathing Considerations

	5.4.2. Configuring a Projected Volume for a Pod

	5.5. ALLOWING CONTAINERS TO CONSUME API OBJECTS
	5.5.1. Expose Pod information to Containers using the Downward API
	5.5.2. Understanding how to consume container values using the downward API
	5.5.2.1. Consuming container values using environment variables
	5.5.2.2. Consuming container values using a volume plug-in

	5.5.3. Understanding how to consume container resources using the downward API
	5.5.3.1. Consuming container resources using environment variables
	5.5.3.2. Consuming container resources using a volume plug-in

	5.5.4. Consuming secrets using the downward API
	5.5.5. Consuming configuration maps using the downward API
	5.5.6. Referencing environment variables
	5.5.7. Escaping environment variable references

	5.6. COPYING FILES TO OR FROM AN OPENSHIFT CONTAINER PLATFORM CONTAINER
	5.6.1. Understanding how to copy files
	5.6.1.1. Requirements

	5.6.2. Copying files to and from containers
	5.6.3. Using advanced Rsync features

	5.7. EXECUTING REMOTE COMMANDS IN AN OPENSHIFT CONTAINER PLATFORM CONTAINER
	5.7.1. Executing remote commands in containers
	5.7.2. Protocol for initiating a remote command from a client

	5.8. USING PORT FORWARDING TO ACCESS APPLICATIONS IN A CONTAINER
	5.8.1. Understanding port forwarding
	5.8.2. Using port forwarding
	5.8.3. Protocol for initiating port forwarding from a client

	5.9. USING SYSCTLS IN CONTAINERS
	5.9.1. About sysctls
	5.9.1.1. Namespaced versus node-level sysctls
	5.9.1.2. Safe versus unsafe sysctls

	5.9.2. Setting sysctls for a pod
	5.9.3. Enabling unsafe sysctls

	CHAPTER 6. WORKING WITH CLUSTERS
	6.1. VIEWING SYSTEM EVENT INFORMATION IN AN OPENSHIFT CONTAINER PLATFORM CLUSTER
	6.1.1. Understanding events
	6.1.2. Viewing events using the CLI
	6.1.3. List of events

	6.2. ESTIMATING THE NUMBER OF PODS YOUR OPENSHIFT CONTAINER PLATFORM NODES CAN HOLD
	6.2.1. Understanding the OpenShift Container Platform cluster capacity tool
	6.2.2. Running the cluster capacity tool on the command line
	6.2.3. Running the cluster capacity tool as a job inside a pod

	6.3. SETTING LIMIT RANGES
	6.3.1. About limit ranges
	6.3.1.1. About component limits

	6.3.2. Creating a Limit Range
	6.3.3. Viewing a limit
	6.3.4. Deleting a Limit Range

	6.4. CONFIGURING CLUSTER MEMORY TO MEET CONTAINER MEMORY AND RISK REQUIREMENTS
	6.4.1. Understanding managing application memory
	6.4.1.1. Managing application memory strategy

	6.4.2. Understanding OpenJDK settings for OpenShift Container Platform
	6.4.2.1. Understanding how to override the JVM maximum heap size
	6.4.2.2. Understanding how to encourage the JVM to release unused memory to the operating system
	6.4.2.3. Understanding how to ensure all JVM processes within a container are appropriately configured

	6.4.3. Finding the memory request and limit from within a pod
	6.4.4. Understanding OOM kill policy
	6.4.5. Understanding pod eviction

	6.5. CONFIGURING YOUR CLUSTER TO PLACE PODS ON OVERCOMMITED NODES
	6.5.1. Understanding overcommitment
	6.5.2. Understanding resource requests and overcommitment
	6.5.2.1. Configuring Buffer Chunk Limiting for Fluentd

	6.5.3. Understanding compute resources and containers
	6.5.3.1. Understanding container CPU requests
	6.5.3.2. Understanding container memory requests

	6.5.4. Understanding overcomitment and quality of service classes
	6.5.4.1. Understanding how to reserve memory across quality of service tiers

	6.5.5. Understanding swap memory and QOS
	6.5.6. Understanding nodes overcommitment
	6.5.6.1. Disabling or enforcing CPU limits using CPU CFS quotas
	6.5.6.2. Reserving resources for system processes

	6.5.7. Disabling overcommitment for a node
	6.5.8. Disabling overcommitment for a project

	6.6. ENABLING OPENSHIFT CONTAINER PLATFORM FEATURES USING FEATUREGATES
	6.6.1. Understanding FeatureGates and Technology Preview features
	6.6.2. Features that are affected by FeatureGates
	6.6.3. Enabling Technology Preview features using FeatureGates

