& RedHat

OpenShift Container Platform 4.15

Edge computing

Configure and deploy OpenShift Container Platform clusters at the network edge

Last Updated: 2024-05-24

OpenShift Container Platform 4.15 Edge computing

Configure and deploy OpenShift Container Platform clusters at the network edge

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to configure and deploy OpenShift Container Platform clusters using
GitOps ZTP to provision and manage sites at the far edge of the network.

Table of Contents

Table of Contents

CHAPTER 1. CHALLENGES OF THE NETWORK FAREDGE ...ttt it iiiieeennnnns 7
1.1. OVERCOMING THE CHALLENGES OF THE NETWORK FAR EDGE 7
1.2. USING GITOPS ZTP TO PROVISION CLUSTERS AT THE NETWORK FAR EDGE 8
1.3. INSTALLING MANAGED CLUSTERS WITH SITECONFIG RESOURCES AND RHACM 9
1.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES 10

CHAPTER 2. PREPARING THEHUB CLUSTER FOR ZTP ... ittt it ittt etenneeeeannnns 13
2.1. TELCO RAN DU 4.15 VALIDATED SOFTWARE COMPONENTS 13
2.2. RECOMMENDED HUB CLUSTER SPECIFICATIONS AND MANAGED CLUSTER LIMITS FOR GITOPS ZTP

14

2.3.INSTALLING GITOPS ZTP IN A DISCONNECTED ENVIRONMENT 15
2.4. ADDING RHCOS ISO AND ROOTFS IMAGES TO THE DISCONNECTED MIRROR HOST 16
2.5. ENABLING THE ASSISTED SERVICE 17
2.6. CONFIGURING THE HUB CLUSTER TO USE A DISCONNECTED MIRROR REGISTRY 18
2.7. CONFIGURING THE HUB CLUSTER TO USE UNAUTHENTICATED REGISTRIES 21
2.8. CONFIGURING THE HUB CLUSTER WITH ARGOCD 22
2.9. PREPARING THE GITOPS ZTP SITE CONFIGURATION REPOSITORY 23
2.9.1. Preparing the GitOps ZTP site configuration repository for version independence 25

CHAPTER 3. UPDATING GITOPS ZT P .ottt ittt eete ettt aeeeaeeeaneeeaneenaneeannesaneenn 28
3.1. OVERVIEW OF THE GITOPS ZTP UPDATE PROCESS 28
3.2. PREPARING FOR THE UPGRADE 28
3.3. LABELING THE EXISTING CLUSTERS 29
3.4. STOPPING THE EXISTING GITOPS ZTP APPLICATIONS 29
3.5.REQUIRED CHANGES TO THE GIT REPOSITORY 30
3.6.INSTALLING THE NEW GITOPS ZTP APPLICATIONS 32
3.7.ROLLING OUT THE GITOPS ZTP CONFIGURATION CHANGES 32

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES 33
4.1. GITOPS ZTP AND TOPOLOGY AWARE LIFECYCLE MANAGER 33
4.2. OVERVIEW OF DEPLOYING MANAGED CLUSTERS WITH GITOPS ZTP 34

Overview of the managed site installation process 35
4.3. CREATING THE MANAGED BARE-METAL HOST SECRETS 35
4.4. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR INSTALLATIONS USING GITOPS ZTP 36
4.5. DEPLOYING A MANAGED CLUSTER WITH SITECONFIG AND GITOPS ZTP 38

4.5.1. Single-node OpenShift SiteConfig CR installation reference 43
4.6. MONITORING MANAGED CLUSTER INSTALLATION PROGRESS 46
4.7. TROUBLESHOOTING GITOPS ZTP BY VALIDATING THE INSTALLATION CRS 46
4.8. TROUBLESHOOTING GITOPS ZTP VIRTUAL MEDIA BOOTING ON SUPERMICRO SERVERS 47
4.9. REMOVING A MANAGED CLUSTER SITE FROM THE GITOPS ZTP PIPELINE 48
4.10. REMOVING OBSOLETE CONTENT FROM THE GITOPS ZTP PIPELINE 48
411. TEARING DOWN THE GITOPS ZTP PIPELINE 49

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE

RESOUR CES . i i i i i e e i e i s 50
5.1. ABOUT THE POLICYGENTEMPLATE CRD 50
5.2. RECOMMENDATIONS WHEN CUSTOMIZING POLICYGENTEMPLATE CRS 53
5.3. POLICYGENTEMPLATE CRS FOR RAN DEPLOYMENTS 54
5.4. CUSTOMIZING A MANAGED CLUSTER WITH POLICYGENTEMPLATE CRS 55
5.5. MONITORING MANAGED CLUSTER POLICY DEPLOYMENT PROGRESS 57
5.6. VALIDATING THE GENERATION OF CONFIGURATION POLICY CRS 58

5.7. RESTARTING POLICY RECONCILIATION 60

OpenShift Container Platform 4.15 Edge computing

5.8. CHANGING APPLIED MANAGED CLUSTER CRS USING POLICIES
5.9. INDICATION OF DONE FOR GITOPS ZTP INSTALLATIONS

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTERWITHZTP
6.1. GENERATING GITOPS ZTP INSTALLATION AND CONFIGURATION CRS MANUALLY
6.2. CREATING THE MANAGED BARE-METAL HOST SECRETS

69

6.3. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR MANUAL INSTALLATIONS USING GITOPS

ZTP

6.4. INSTALLING A SINGLE MANAGED CLUSTER

6.5. MONITORING THE MANAGED CLUSTER INSTALLATION STATUS
6.6. TROUBLESHOOTING THE MANAGED CLUSTER

6.7. RHACM GENERATED CLUSTER INSTALLATION CRS REFERENCE

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU
APPLICATION WORKLOADS . i i e e it et it i e

7.1. RUNNING LOW LATENCY APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM
7.2. RECOMMENDED CLUSTER HOST REQUIREMENTS FOR VDU APPLICATION WORKLOADS
7.3. CONFIGURING HOST FIRMWARE FOR LOW LATENCY AND HIGH PERFORMANCE
7.4. CONNECTIVITY PREREQUISITES FOR MANAGED CLUSTER NETWORKS
7.5. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT WITH GITOPS ZTP
7.6. RECOMMENDED CLUSTER INSTALL MANIFESTS

7.6.1. Workload partitioning

7.6.2. Reduced platform management footprint

7.6.3.SCTP

7.6.4. Accelerated container startup

7.6.5. Setting rcu_normal

7.6.6. Automatic kernel crash dumps with kdump

7.6.7. Disable automatic CRI-O cache wipe

7.6.8. Configuring crun as the default container runtime
7.7. RECOMMENDED POSTINSTALLATION CLUSTER CONFIGURATIONS

7.7.1. Operators

7.7.2. Operator subscriptions

7.7.3. Cluster logging and log forwarding

7.7.4. Performance profile

7.7.5. Configuring cluster time synchronization

77.6.PTP

7.7.7. Extended Tuned profile

7.7.8.SR-IOV

7.7.9. Console Operator

7.7.10. Alertmanager

7.7.11. Operator Lifecycle Manager

7.7.12. LVM Storage

7.7.13. Network diagnostics

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION
WORKL O ADS o i i i i e e e e i

8.1. RECOMMENDED FIRMWARE CONFIGURATION FOR VDU CLUSTER HOSTS
8.2. RECOMMENDED CLUSTER CONFIGURATIONS TO RUN VDU APPLICATIONS
8.2.1. Recommended cluster MachineConfig CRs for single-node OpenShift clusters
8.2.2. Recommended cluster Operators
8.2.3. Recommended cluster kernel configuration
8.2.4. Checking the realtime kernel version
8.3. CHECKING THAT THE RECOMMENDED CLUSTER CONFIGURATIONS ARE APPLIED

70
72
73
74
75

77
77
77
78
79
80
80
81
82
84
85
88
91
93
94
95
95
98
100
100
102
104
13
14
n7
n7
n7
18
19

120
122
122
123
123
124
125

Table of Contents

CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES 135
9.1. CUSTOMIZING EXTRA INSTALLATION MANIFESTS IN THE GITOPS ZTP PIPELINE 135
9.2. FILTERING CUSTOM RESOURCES USING SITECONFIG FILTERS 136
9.3. DELETING ANODE BY USING THE SITECONFIG CR 138

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE

RESOUR CES . i i i i e i e e i i i e 140
10.1. DEPLOYING ADDITIONAL CHANGES TO CLUSTERS 140
10.2. USING POLICYGENTEMPLATE CRS TO OVERRIDE SOURCE CRS CONTENT 140
10.3. ADDING CUSTOM CONTENT TO THE GITOPS ZTP PIPELINE 143

10.4. CONFIGURING POLICY COMPLIANCE EVALUATION TIMEOUTS FOR POLICYGENTEMPLATE CRS 145
10.5. SIGNALLING GITOPS ZTP CLUSTER DEPLOYMENT COMPLETION WITH VALIDATOR INFORM

POLICIES 147
10.6. CONFIGURING POWER STATES USING POLICYGENTEMPLATES CRS 148
10.6.1. Configuring performance mode using PolicyGenTemplate CRs 149
10.6.2. Configuring high-performance mode using PolicyGenTemplate CRs 149
10.6.3. Configuring power saving mode using PolicyGenTemplate CRs 150
10.6.4. Maximizing power savings 151
10.7. CONFIGURING LVM STORAGE USING POLICYGENTEMPLATE CRS 152
10.8. CONFIGURING PTP EVENTS WITH POLICYGENTEMPLATE CRS 154
10.8.1. Configuring PTP events that use HTTP transport 154
10.8.2. Configuring PTP events that use AMQP transport 156
10.9. CONFIGURING BARE-METAL EVENTS WITH POLICYGENTEMPLATE CRS 158
10.9.1. Configuring bare-metal events that use HTTP transport 158
10.9.2. Configuring bare-metal events that use AMQP transport 159
10.10. CONFIGURING THE IMAGE REGISTRY OPERATOR FOR LOCAL CACHING OF IMAGES 161
10.10.1. Configuring disk partitioning with SiteConfig 161
10.10.2. Configuring the image registry using PolicyGenTemplate CRs 162
10.11. USING HUB TEMPLATES IN POLICYGENTEMPLATE CRS 165
10.11.1. Example hub templates 166
10.11.2. Specifying group and site configuration in group PolicyGenTemplate CRs with hub templates 167
10.11.3. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs 171

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER 173

11.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER CONFIGURATION 173
11.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE LIFECYCLE MANAGER 173
11.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE WEB CONSOLE 174
11.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE CLI 174
11.5. ABOUT THE CLUSTERGROUPUPGRADE CR 176
11.5.1. Selecting clusters 177
11.5.2. Validating 179
11.5.3. Pre-caching 179
11.5.4. Creating a backup 180
11.5.5. Updating clusters 180
11.5.6. Update status 182
11.5.7. Blocking ClusterGroupUpgrade CRs 185
11.6. UPDATE POLICIES ON MANAGED CLUSTERS 192
11.6.1. Configuring Operator subscriptions for managed clusters that you install with TALM 193
11.6.2. Applying update policies to managed clusters 194
11.7. CREATING A BACKUP OF CLUSTER RESOURCES BEFORE UPGRADE 201
11.7.1. Creating a ClusterGroupUpgrade CR with backup 201
11.7.2. Recovering a cluster after a failed upgrade 204
11.8. USING THE CONTAINER IMAGE PRE-CACHE FEATURE 206

OpenShift Container Platform 4.15 Edge computing

11.8.1. Using the container image pre-cache filter
11.8.2. Creating a ClusterGroupUpgrade CR with pre-caching
11.9. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE MANAGER
11.9.1. General troubleshooting
11.9.2. Cannot modify the ClusterUpgradeGroup CR
11.9.3. Managed policies
Checking managed policies on the system
Checking remediationAction mode
Checking policy compliance state
11.9.4. Clusters
Checking if managed clusters are present
Checking if managed clusters are available
Checking clusterLabelSelector
Checking if canary clusters are present
Checking the pre-caching status on spoke clusters
11.9.5. Remediation Strategy
Checking if remediationStrategy is present in the ClusterGroupUpgrade CR
Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR
11.9.6. Topology Aware Lifecycle Manager
Checking condition message and status in the ClusterGroupUpgrade CR
Checking corresponding copied policies
Checking if status.remediationPlan was computed
Errors in the TALM manager container

Clusters are not compliant to some policies after a ClusterGroupUpgrade CR has completed
Auto-created ClusterGroupUpgrade CR in the GitOps ZTP workflow has no managed policies

Pre-caching has failed

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE

TOPOLOGY AWARE LIFECYCLEMANAGER ... o

12.1. UPDATING CLUSTERS IN A DISCONNECTED ENVIRONMENT
12.1.1. Setting up the environment
12.1.2. Performing a platform update
12.1.3. Performing an Operator update

12.1.3.1. Troubleshooting missed Operator updates due to out-of-date policy compliance states

12.1.4. Performing a platform and an Operator update together
12.1.5. Removing Performance Addon Operator subscriptions from deployed clusters
12.1.6. Pre-caching user-specified images with TALM on single-node OpenShift clusters
12.1.6.1. Creating the custom resources for pre-caching
12.2. ABOUT THE AUTO-CREATED CLUSTERGROUPUPGRADE CR FOR GITOPS ZTP

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP ..

13.1. APPLYING PROFILES TO THE WORKER NODE
13.2. (OPTIONAL) ENSURING PTP AND SR-IOV DAEMON SELECTOR COMPATIBILITY
13.3. PTP AND SR-IOV NODE SELECTOR COMPATIBILITY

13.4. USING POLICYGENTEMPLATE CRS TO APPLY WORKER NODE POLICIES TO WORKER NODES
13.5. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS
14.1. GETTING THE FACTORY-PRECACHING-CLI TOOL
14.2. BOOTING FROM A LIVE OPERATING SYSTEM IMAGE
14.3. PARTITIONING THE DISK
14.3.1. Creating the partition
14.3.2. Mounting the partition
14.4. DOWNLOADING THE IMAGES

207
208
210
21
21
212
212
212
213
213
213
214
214
215
216
216
216
216
216
216
217
217
217
218
218
218

220
220
222
225
230

231
234
235
237
240

243
243
244
245
245
248

251
251
252
253
254
256
256

14.4.1. Downloading with parallel workers

14.4.2. Preparing to download the OpenShift Container Platform images

14.4.3. Downloading the OpenShift Container Platform images

14.4.4. Downloading the Operator images

14.4.5. Pre-caching custom images in disconnected environments
14.5. PRE-CACHING IMAGES IN GITOPS ZTP

14.5.1. Understanding the clusters.ignitionConfigOverride field

14.5.2. Understanding the nodes.installerArgs field

14.5.3. Understanding the nodes.ignitionConfigOverride field
14.6. TROUBLESHOOTING

14.6.1. Rendered catalog is invalid

Table of Contents

257
257
258

261
262
265
268
269
269
270
270

OpenShift Container Platform 4.15 Edge computing

CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE

CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE

Edge computing presents complex challenges when managing many sites in geographically displaced
locations. Use GitOps Zero Touch Provisioning (ZTP) to provision and manage sites at the far edge of
the network.

1.1. OVERCOMING THE CHALLENGES OF THE NETWORK FAR EDGE

Today, service providers want to deploy their infrastructure at the edge of the network. This presents
significant challenges:

® How do you handle deployments of many edge sites in parallel?
® What happens when you need to deploy sites in disconnected environments?
e How do you manage the lifecycle of large fleets of clusters?

GitOps Zero Touch Provisioning (ZTP) and GitOps meets these challenges by allowing you to provision
remote edge sites at scale with declarative site definitions and configurations for bare-metal
equipment. Template or overlay configurations install OpenShift Container Platform features that are
required for CNF workloads. The full lifecycle of installation and upgrades is handled through the
GitOps ZTP pipeline.

GitOps ZTP uses GitOps for infrastructure deployments. With GitOps, you use declarative YAML files
and other defined patterns stored in Git repositories. Red Hat Advanced Cluster Management (RHACM)
uses your Git repositories to drive the deployment of your infrastructure.

GitOps provides traceability, role-based access control (RBAC), and a single source of truth for the
desired state of each site. Scalability issues are addressed by Git methodologies and event driven
operations through webhooks.

You start the GitOps ZTP workflow by creating declarative site definition and configuration custom
resources (CRs) that the GitOps ZTP pipeline delivers to the edge nodes.

The following diagram shows how GitOps ZTP works within the far edge framework.

OpenShift Container Platform 4.15 Edge computing

GitOps
Hub cluster
Network | ‘ | |
far edge \ l l l i
Site 1 Site 2 Site 3 Site N
Three-node cluster Standard cluster
Single-node Node 1 Control plane Single-node
OpenShift node x3 OpenShift

(o0
Compute

node xN Standard cluster

@

Three-node cluster

Node 2

Node 3

1.2. USING GITOPS ZTP TO PROVISION CLUSTERS AT THE NETWORK
FAR EDGE

Red Hat Advanced Cluster Management (RHACM) manages clusters in a hub-and-spoke architecture,
where a single hub cluster manages many spoke clusters. Hub clusters running RHACM provision and
deploy the managed clusters by using GitOps Zero Touch Provisioning (ZTP) and the assisted service
that is deployed when you install RHACM.

The assisted service handles provisioning of OpenShift Container Platform on single node clusters,
three-node clusters, or standard clusters running on bare metal.

A high-level overview of using GitOps ZTP to provision and maintain bare-metal hosts with OpenShift
Container Platform is as follows:

® A hub cluster running RHACM manages an OpenShift image registry that mirrors the OpenShift
Container Platform release images. RHACM uses the OpenShift image registry to provision the
managed clusters.

® You manage the bare-metal hosts in a YAML format inventory file, versioned in a Git repository.

® You make the hosts ready for provisioning as managed clusters, and use RHACM and the
assisted service to install the bare-metal hosts on site.

Installing and deploying the clusters is a two-stage process, involving an initial installation phase, and a
subsequent configuration and deployment phase. The following diagram illustrates this workflow:

GitOps

SiteConfig CRs
(Site installation data)

CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE

PolicyGenTemplate CRs
(cluster profile)

W

Hub cluster
Red Hat
GitOps Operator
Advanced | |
Cluster +
Management

Topology Aware
Lifecycle Manager

v

Assisted service Policy-based
governance
PTP or GNSS
clock source
Install Deploy

IPv4 or IPv6
single or dual stack networking

Network | |
N ¢ ¢

Spoke cluster1

Spoke cluster 2 Spoke cluster N

Single-node OpenShift
and 1worker node

v v

DU worker node (xN)

Single-node

Supervisor node OpenShift DU

DU worker node (x1)

T T

1.3. INSTALLING MANAGED CLUSTERS WITH SITECONFIG
RESOURCES AND RHACM

GitOps Zero Touch Provisioning (ZTP) uses SiteConfig custom resources (CRs) in a Git repository to
manage the processes that install OpenShift Container Platform clusters. The SiteConfig CR contains
cluster-specific parameters required for installation. It has options for applying select configuration CRs
during installation including user defined extra manifests.

The GitOps ZTP plugin processes SiteConfig CRs to generate a collection of CRs on the hub cluster.
This triggers the assisted service in Red Hat Advanced Cluster Management (RHACM) to install
OpenShift Container Platform on the bare-metal host. You can find installation status and error
messages in these CRs on the hub cluster.

You can provision single clusters manually or in batches with GitOps ZTP:

Provisioning a single cluster

OpenShift Container Platform 4.15 Edge computing

Create a single SiteConfig CR and related installation and configuration CRs for the cluster, and
apply them in the hub cluster to begin cluster provisioning. This is a good way to test your CRs before
deploying on a larger scale.

Provisioning many clusters

Install managed clusters in batches of up to 400 by defining SiteConfig and related CRs in a Git
repository. ArgoCD uses the SiteConfig CRs to deploy the sites. The RHACM policy generator
creates the manifests and applies them to the hub cluster. This starts the cluster provisioning
process.

1.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND
POLICYGENTEMPLATE RESOURCES

GitOps Zero Touch Provisioning (ZTP) uses Red Hat Advanced Cluster Management (RHACM) to
configure clusters by using a policy-based governance approach to applying the configuration.

The policy generator or PolicyGen is a plugin for the GitOps Operator that enables the creation of
RHACM policies from a concise template. The tool can combine multiple CRs into a single policy, and
you can generate multiple policies that apply to various subsets of clusters in your fleet.

NOTE

For scalability and to reduce the complexity of managing configurations across the fleet
of clusters, use configuration CRs with as much commonality as possible.

® Where possible, apply configuration CRs using a fleet-wide common policy.

® The next preference is to create logical groupings of clusters to manage as much
of the remaining configurations as possible under a group policy.

® When a configuration is unique to an individual site, use RHACM templating on
the hub cluster to inject the site-specific data into a common or group policy.
Alternatively, apply an individual site policy for the site.

The following diagram shows how the policy generator interacts with GitOps and RHACM in the
configuration phase of cluster deployment.

10

CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE

A

Site planner
GitOps .
Common policy Group policy Group policy Site policy
template template 1 template 2 templates
i i
E i
\4 v
Hub cluster
Policy generator
i ‘ i i i
] I 1]
1 I 1 1
1 I 1 1
Site Common Group Site Group Site
policy 1 policy policy 1 policy 2 policy 2 policy N

Network

far edge \

Spoke cluster 2

L

Spoke cluster 1 Spoke cluster N

For large fleets of clusters, it is typical for there to be a high-level of consistency in the configuration of
those clusters.

The following recommended structuring of policies combines configuration CRs to meet several goals:
® Describe common configurations once and apply to the fleet.
® Minimize the number of maintained and managed policies.
® Support flexibility in common configurations for cluster variants.

Table 1.1. Recommended PolicyGenTemplate policy categories

Policy Description

category

Common A policy that exists in the common category is applied to all clusters in the fleet. Use
common PolicyGenTemplate CRs to apply common installation settings across all

cluster types.

Groups A policy that exists in the groups category is applied to a group of clusters in the fleet. Use
group PolicyGenTemplate CRs to manage specific aspects of single-node, three-node,
and standard cluster installations. Cluster groups can also follow geographic region,

hardware variant, etc.

Sites A policy that exists in the sites category is applied to a specific cluster site. Any cluster can
have its own specific policies maintained.

Additional resources

1

OpenShift Container Platform 4.15 Edge computing

® For more information about extracting the reference SiteConfig and PolicyGenTemplate CRs
from the ztp-site-generate container image, see Preparing the ZTP Git repository.

12

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTF

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

To use RHACM in a disconnected environment, create a mirror registry that mirrors the OpenShift
Container Platform release images and Operator Lifecycle Manager (OLM) catalog that contains the
required Operator images. OLM manages, installs, and upgrades Operators and their dependencies in
the cluster. You can also use a disconnected mirror host to serve the RHCOS ISO and RootFS disk
images that are used to provision the bare-metal hosts.

2.1. TELCO RAN DU 4.15 VALIDATED SOFTWARE COMPONENTS

The Red Hat telco RAN DU 4.15 solution has been validated using the following Red Hat software
products for OpenShift Container Platform managed clusters and hub clusters.

Table 2.1. Telco RAN DU managed cluster validated software components

Component Software version

Managed cluster version 415
Cluster Logging Operator 5.8
Local Storage Operator 415
PTP Operator 415
SRIOV Operator 415
Node Tuning Operator 415
Logging Operator 415
SRIOV-FEC Operator 2.8

Table 2.2. Hub cluster validated software components

Component Software version

Hub cluster version 415
GitOps ZTP plugin 415
Red Hat Advanced Cluster Management (RHACM) 2.9,2.10
Red Hat OpenShift GitOps (Rl
Topology Aware Lifecycle Manager (TALM) 415

OpenShift Container Platform 4.15 Edge computing

2.2. RECOMMENDED HUB CLUSTER SPECIFICATIONS AND MANAGED
CLUSTER LIMITS FOR GITOPS ZTP

With GitOps Zero Touch Provisioning (ZTP), you can manage thousands of clusters in geographically
dispersed regions and networks. The Red Hat Performance and Scale lab successfully created and
managed 3500 virtual single-node OpenShift clusters with a reduced DU profile from a single Red Hat
Advanced Cluster Management (RHACM) hub cluster in a lab environment.

In real-world situations, the scaling limits for the number of clusters that you can manage will vary
depending on various factors affecting the hub cluster. For example:

Hub cluster resources

Available hub cluster host resources (CPU, memory, storage) are an important factor in determining
how many clusters the hub cluster can manage. The more resources allocated to the hub cluster, the
more managed clusters it can accommodate.

Hub cluster storage

The hub cluster host storage IOPS rating and whether the hub cluster hosts use NVMe storage can
affect hub cluster performance and the number of clusters it can manage.

Network bandwidth and latency

Slow or high-latency network connections between the hub cluster and managed clusters can impact
how the hub cluster manages multiple clusters.

Managed cluster size and complexity

The size and complexity of the managed clusters also affects the capacity of the hub cluster. Larger
managed clusters with more nodes, namespaces, and resources require additional processing and
management resources. Similarly, clusters with complex configurations such as the RAN DU profile or
diverse workloads can require more resources from the hub cluster.

Number of managed policies

The number of policies managed by the hub cluster scaled over the number of managed clusters
bound to those policies is an important factor that determines how many clusters can be managed.

Monitoring and management workloads

RHACM continuously monitors and manages the managed clusters. The number and complexity of
monitoring and management workloads running on the hub cluster can affect its capacity. Intensive
monitoring or frequent reconciliation operations can require additional resources, potentially limiting
the number of manageable clusters.

RHACM version and configuration

Different versions of RHACM can have varying performance characteristics and resource
requirements. Additionally, the configuration settings of RHACM, such as the number of concurrent
reconciliations or the frequency of health checks, can affect the managed cluster capacity of the hub
cluster.

Use the following representative configuration and network specifications to develop your own Hub
cluster and network specifications.

IMPORTANT

The following guidelines are based on internal lab benchmark testing only and do not
represent complete bare-metal host specifications.

Table 2.3. Representative three-node hub cluster machine specifications

14

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTF

Requirement Description

OpensShift Container Platform version 4.13

RHACM version 2.7

Topology Aware Lifecycle Manager (TALM) version 4.13

Server hardware 3 x Dell PowerEdge R650 rack servers
NVMe hard disks

e 50 GB disk for /var/lib/etcd

e 2.9 TBdisk for /var/lib/containers

SSD hard disks - . L
® 1SSD splitinto 15 200GB thin-provisioned
logical volumes provisioned as PV CRs
® 1SSD serving as an extra large PV resource
Number of applied DU profile policies 5

IMPORTANT

The following network specifications are representative of a typical real-world RAN
network and were applied to the scale lab environment during testing.

Table 2.4. Simulated lab environment network specifications

Specification Description

Round-trip time (RTT) latency 50 ms
Packet loss 0.02% packet loss
Network bandwidth limit 20 Mbps

Additional resources

® Creating and managing single-node OpenShift clusters with RHACM

2.3.INSTALLING GITOPS ZTP IN A DISCONNECTED ENVIRONMENT

Use Red Hat Advanced Cluster Management (RHACM), Red Hat OpenShift GitOps, and Topology
Aware Lifecycle Manager (TALM) on the hub cluster in the disconnected environment to manage the
deployment of multiple managed clusters.

15

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html/install/installing#single-node

OpenShift Container Platform 4.15 Edge computing

Prerequisites
® You have installed the OpenShift Container Platform CLI (o¢).
® You have logged in as a user with cluster-admin privileges.

® You have configured a disconnected mirror registry for use in the cluster.

NOTE

The disconnected mirror registry that you create must contain a version of TALM
backup and pre-cache images that matches the version of TALM running in the
hub cluster. The spoke cluster must be able to resolve these images in the
disconnected mirror registry.

Procedure

® [nstall RHACM in the hub cluster. See Installing RHACM in a disconnected environment .

® |nstall GitOps and TALM in the hub cluster.

Additional resources

® |[nstalling OpenShift GitOps
® |nstalling TALM

® Mirroring an Operator catalog

2.4. ADDING RHCOS ISO AND ROOTFS IMAGES TO THE
DISCONNECTED MIRROR HOST

Before you begin installing clusters in the disconnected environment with Red Hat Advanced Cluster
Management (RHACM), you must first host Red Hat Enterprise Linux CoreOS (RHCOS) images for it to
use. Use a disconnected mirror to host the RHCOS images.

Prerequisites

® Deploy and configure an HTTP server to host the RHCOS image resources on the network. You
must be able to access the HTTP server from your computer, and from the machines that you
create.

IMPORTANT

The RHCOS images might not change with every release of OpenShift Container
Platform. You must download images with the highest version that is less than or equal to
the version that you install. Use the image versions that match your OpenShift Container
Platform version if they are available. You require ISO and RootFS images to install
RHCOS on the hosts. RHCOS QCOW?2 images are not supported for this installation

type.

Procedure

1. Log in to the mirror host.

16

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/install/installing#install-on-disconnected-networks
https://docs.openshift.com/gitops/latest/installing_gitops/installing-openshift-gitops.html#installing-openshift-gitops
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#olm-mirror-catalog_olm-restricted-networks

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTF

2. Obtain the RHCOS ISO and RootFS images from mirror.openshift.com, for example:

a. Export the required image names and OpenShift Container Platform version as
environment variables:

I $ export ISO_IMAGE_NAME=<iso_image_name> @)
I $ export ROOTFS_IMAGE_NAME=<rootfs_image_name>)

I $ export OCP_VERSION=<ocp_version> ﬂ

ﬂ ISO image name, for example, rhcos-4.15.1-x86_64-live.x86_64.iso
ﬂ RootFS image name, for example, rhcos-4.15.1-x86_64-live-rootfs.x86_64.img

ﬂ OpenShift Container Platform version, for example, 4.15.1

b. Download the required images:

$ sudo wget https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.15/${OCP_VERSION}/${ISO_IMAGE_NAME} -O
Ivar/www/html/${ISO_IMAGE_NAME}

$ sudo wget https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.15/${OCP_VERSION}/${ROOTFS_IMAGE_NAME} -O
Ivar/www/html/${ROOTFS_IMAGE_NAME}

Verification steps

e Verify that the images downloaded successfully and are being served on the disconnected
mirror host, for example:

I $ wget http://$(hostname)/${ISO_IMAGE_NAME}
Example output

Saving to: rhcos-4.15.1-x86_64-live.x86_64.iso
rhcos-4.15.1-x86_64-live.x86_64.iso- 11%[====>] 10.01M 4.71MB/s

Additional resources

® Creating a mirror registry

® Mirroring images for a disconnected installation

2.5. ENABLING THE ASSISTED SERVICE

Red Hat Advanced Cluster Management (RHACM) uses the assisted service to deploy OpenShift
Container Platform clusters. The assisted service is deployed automatically when you enable the
MultiClusterHub Operator on Red Hat Advanced Cluster Management (RHACM). After that, you need

17

https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-mirroring-creating-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-mirroring-installation-images

OpenShift Container Platform 4.15 Edge computing

to configure the Provisioning resource to watch all namespaces and to update the
AgentServiceConfig custom resource (CR) with references to the ISO and RootFS images that are
hosted on the mirror registry HTTP server.

Prerequisites
® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have RHACM with MultiClusterHub enabled.

Procedure

1. Enable the Provisioning resource to watch all namespaces and configure mirrors for
disconnected environments. For more information, see Enabling the central infrastructure
management service.

2. Update the AgentServiceConfig CR by running the following command:

I $ oc edit AgentServiceConfig

3. Add the following entry to the items.spec.oslmages field in the CR:

- cpuArchitecture: x86_64
openshiftVersion: "4.15"
rootFSUrl: https://<host>/<path>/rhcos-live-rootfs.x86_64.img
url: https://<mirror-registry>/<path>/rhcos-live.x86_64.iso

where:

<host>
Is the fully qualified domain name (FQDN) for the target mirror registry HTTP server.
<path>

Is the path to the image on the target mirror registry.

Save and quit the editor to apply the changes.

2.6. CONFIGURING THE HUB CLUSTER TO USE A DISCONNECTED
MIRROR REGISTRY

You can configure the hub cluster to use a disconnected mirror registry for a disconnected environment.

Prerequisites

® You have a disconnected hub cluster installation with Red Hat Advanced Cluster Management
(RHACM) 2.9 installed.

® You have hosted the rootfs and iso images on an HTTP server. See the Additional resources
section for guidance about Mirroring the OpenShift Container Platform image repository .

18

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#enable-cim

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTF

' WARNING
A If you enable TLS for the HTTP server, you must confirm the root certificate is

Procedure

signed by an authority trusted by the client and verify the trusted certificate chain
between your OpenShift Container Platform hub and managed clusters and the
HTTP server. Using a server configured with an untrusted certificate prevents the
images from being downloaded to the image creation service. Using untrusted
HTTPS servers is not supported.

1. Create a ConfigMap containing the mirror registry config:

-

apiVersion: vi
kind: ConfigMap
metadata:
name: assisted-installer-mirror-config
namespace: multicluster-engine
labels:
app: assisted-service
data:
ca-bundle.crt: | g

registries.conf: | 9
unqualified-search-registries = ["registry.access.redhat.com”, "docker.io"]

[[registry]]
prefix =

location = "quay.io/example-repository" ﬂ
mirror-by-digest-only = true

[[reqistry.mirror]]
location = "mirror1.registry.corp.com:5000/example-repository" 6

The ConfigMap namespace must be set to multicluster-engine.
The mirror registry’s certificate that is used when creating the mirror registry.

The configuration file for the mirror registry. The mirror registry configuration adds mirror
information to the /etc/containers/registries.conf file in the discovery image. The mirror
information is stored in the imageContentSources section of the install-config.yaml file
when the information is passed to the installation program. The Assisted Service pod that
runs on the hub cluster fetches the container images from the configured mirror registry.

The URL of the mirror registry. You must use the URL from the imageContentSources
section by running the oc adm release mirror command when you configure the mirror
registry. For more information, see the Mirroring the OpenShift Container Platform image
repository section.

19

OpenShift Container Platform 4.15 Edge computing

a The registries defined in the registries.conf file must be scoped by repository, not by
registry. In this example, both the quay.io/example-repository and the

This updates mirrorRegistryRef in the AgentServiceConfig custom resource, as shown below:

Example output

apiVersion: agent-install.openshift.io/vibetai
kind: AgentServiceConfig
metadata:
name: agent
namespace: multicluster-engine ﬂ
spec:
databaseStorage:
volumeName: <db_pv_name>
accessModes:
- ReadWriteOnce
resources:
requests:
storage: <db_storage_size>
filesystemStorage:
volumeName: <fs_pv_name>
accessModes:
- ReadWriteOnce
resources:
requests:
storage: <fs_storage_size>
mirrorRegistryRef:
name: assisted-installer-mirror-config g
oslmages:
- openshiftVersion: <ocp_version>

url: <iso_url> e

Set the AgentServiceConfig namespace to multicluster-engine to match the
ConfigMap namespace

Set mirrorRegistryRef.name to match the definition specified in the related ConfigMap
CR

o o

Set the URL for the ISO hosted on the httpd server

IMPORTANT

A valid NTP server is required during cluster installation. Ensure that a suitable NTP
server is available and can be reached from the installed clusters through the
disconnected network.

Additional resources

® Mirroring the OpenShift Container Platform image repository

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-mirror-repository_installing-mirroring-installation-images

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTF

2.7. CONFIGURING THE HUB CLUSTER TO USE UNAUTHENTICATED
REGISTRIES

You can configure the hub cluster to use unauthenticated registries. Unauthenticated registries does
not require authentication to access and download images.

Prerequisites

® You have installed and configured a hub cluster and installed Red Hat Advanced Cluster
Management (RHACM) on the hub cluster.

® You have installed the OpenShift Container Platform CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have configured an unauthenticated registry for use with the hub cluster.

Procedure

1. Update the AgentServiceConfig custom resource (CR) by running the following command:

I $ oc edit AgentServiceConfig agent

2. Add the unauthenticatedRegistries field in the CR:

apiVersion: agent-install.openshift.io/vibetai
kind: AgentServiceConfig
metadata:
name: agent
spec:
unauthenticatedRegistries:
- example.registry.com
- example.registry2.com

Unauthenticated registries are listed under spec.unauthenticatedRegistries in the
AgentServiceConfig resource. Any registry on this list is not required to have an entry in the
pull secret used for the spoke cluster installation. assisted-service validates the pull secret by
making sure it contains the authentication information for every image registry used for
installation.

NOTE

Mirror registries are automatically added to the ignore list and do not need to be added
under spec.unauthenticatedRegistries. Specifying the
PUBLIC_CONTAINER_REGISTRIES environment variable in the ConfigMap overrides
the default values with the specified value. The PUBLIC_CONTAINER_REGISTRIES
defaults are quay.io and registry.svc.ci.openshift.org.

Verification

Verify that you can access the newly added registry from the hub cluster by running the following
commands:

1. Open a debug shell prompt to the hub cluster:

21

https://quay.io
https://registry.svc.ci.openshift.org

OpenShift Container Platform 4.15 Edge computing

I $ oc debug node/<node_name>

2. Test access to the unauthenticated registry by running the following command:

I sh-4.4# podman login -u kubeadmin -p $(oc whoami -t) <unauthenticated_registry>

where:

<unauthenticated_registry>

Is the new registry, for example, unauthenticated-image-registry.openshift-image-
registry.svc:5000.

Example output

I Login Succeeded!

2.8. CONFIGURING THE HUB CLUSTER WITH ARGOCD

You can configure the hub cluster with a set of ArgoCD applications that generate the required
installation and policy custom resources (CRs) for each site with GitOps Zero Touch Provisioning (ZTP).

NOTE

Red Hat Advanced Cluster Management (RHACM) uses SiteConfig CRs to generate the
Day 1 managed cluster installation CRs for ArgoCD. Each ArgoCD application can manage
a maximum of 300 SiteConfig CRs.

Prerequisites

® You have a OpenShift Container Platform hub cluster with Red Hat Advanced Cluster

Management (RHACM) and Red Hat OpenShift GitOps installed.

You have extracted the reference deployment from the GitOps ZTP plugin container as
described in the "Preparing the GitOps ZTP site configuration repository” section. Extracting
the reference deployment creates the out/argocd/deployment directory referenced in the
following procedure.

Procedure

22

1. Prepare the ArgoCD pipeline configuration:

a. Create a Git repository with the directory structure similar to the example directory. For
more information, see "Preparing the GitOps ZTP site configuration repository".

b. Configure access to the repository using the ArgoCD Ul. Under Settings configure the
following:

® Repositories - Add the connection information. The URL must end in .git, for example,
https://repo.example.com/repo.git and credentials.

e Certificates - Add the public certificate for the repository, if needed.

c. Modify the two ArgoCD applications, out/argocd/deployment/clusters-app.yaml and
out/argocd/deployment/policies-app.yaml, based on your Git repository:

https://repo.example.com/repo.git

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTF

e Update the URL to point to the Git repository. The URL ends with .git, for example,
https://repo.example.com/repo.git.

® The targetRevision indicates which Git repository branch to monitor.
e path specifies the path to the SiteConfig and PolicyGenTemplate CRs, respectively.

2. Toinstall the GitOps ZTP plugin, patch the ArgoCD instance in the hub cluster by using the
patch file that you previously extracted into the out/argocd/deployment/ directory. Run the
following command:

$ oc patch argocd openshift-gitops \
-n openshift-gitops --type=merge \
--patch-file out/argocd/deployment/argocd-openshift-gitops-patch.json

3. InRHACM 2.7 and later, the multicluster engine enables the cluster-proxy-addon feature by
default. Apply the following patch to disable the cluster-proxy-addon feature and remove the
relevant hub cluster and managed pods that are responsible for this add-on. Run the following
command:

$ oc patch multiclusterengines.multicluster.openshift.io multiclusterengine --type=merge --
patch-file out/argocd/deployment/disable-cluster-proxy-addon.json

4. Apply the pipeline configuration to your hub cluster by running the following command:

I $ oc apply -k out/argocd/deployment

2.9. PREPARING THE GITOPS ZTP SITE CONFIGURATION
REPOSITORY

Before you can use the GitOps Zero Touch Provisioning (ZTP) pipeline, you need to prepare the Git
repository to host the site configuration data.

Prerequisites

® You have configured the hub cluster GitOps applications for generating the required installation
and policy custom resources (CRs).

® You have deployed the managed clusters using GitOps ZTP.

Procedure

1. Create a directory structure with separate paths for the SiteConfig and PolicyGenTemplate
CRs.

NOTE
Keep SiteConfig and PolicyGenTemplate CRs in separate directories. Both the

SiteConfig and PolicyGenTemplate directories must contain a
kustomization.yaml file that explicitly includes the files in that directory.

2. Export the argocd directory from the ztp-site-generate container image using the following
commands:

23

https://repo.example.com/repo.git

OpenShift Container Platform 4.15 Edge computing

I $ podman pull registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.15

I $ mkdir -p ./out

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.15 extract /home/ztp --tar | tar x -C ./out

3. Check that the out directory contains the following subdirectories:

e out/extra-manifest contains the source CR files that SiteConfig uses to generate extra
manifest configMap.

® out/source-crs contains the source CR files that PolicyGenTemplate uses to generate the
Red Hat Advanced Cluster Management (RHACM) policies.

e out/argocd/deployment contains patches and YAML files to apply on the hub cluster for
use in the next step of this procedure.

e out/argocd/example contains the examples for SiteConfig and PolicyGenTemplate files
that represent the recommended configuration.

4. Copy the out/source-crs folder and contents to the PolicyGentemplate directory.

5. The out/extra-manifests directory contains the reference manifests for a RAN DU cluster. Copy
the out/extra-manifests directory into the SiteConfig folder. This directory should contain CRs
from the ztp-site-generate container only. Do not add user-provided CRs here. If you want to
work with user-provided CRs you must create another directory for that content. For example:

example/

— policygentemplates
—— kustomization.yaml
source-crs/

L— siteconfig
—— extra-manifests
—— kustomization.yaml

6. Commit the directory structure and the kustomization.yaml files and push to your Git
repository. The initial push to Git should include the kustomization.yaml files.

You can use the directory structure under out/argocd/example as a reference for the structure and
content of your Git repository. That structure includes SiteConfig and PolicyGenTemplate reference
CRs for single-node, three-node, and standard clusters. Remove references to cluster types that you are
not using.
For all cluster types, you must:

® Add the source-crs subdirectory to the policygentemplate directory.

® Add the extra-manifests directory to the siteconfig directory.

The following example describes a set of CRs for a network of single-node clusters:

example/

— policygentemplates
| — common-ranGen.yaml

24

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTF

—— example-sno-site.yaml
—— group-du-sno-ranGen.yaml
—— group-du-sno-validator-ranGen.yaml
—— kustomization.yaml
—— source-crs/
—— ns.yaml|
L— siteconfig
— example-sno.yaml
[— extra-manifests/ @)
— custom-manifests/ @)
—— KlusterletAddonConfigOverride.yaml
—— kustomization.yaml

ﬂ Contains reference manifests from the ztp-container.

9 Contains custom manifests.

2.9.1. Preparing the GitOps ZTP site configuration repository for version
independence

You can use GitOps ZTP to manage source custom resources (CRs) for managed clusters that are
running different versions of OpenShift Container Platform. This means that the version of OpenShift
Container Platform running on the hub cluster can be independent of the version running on the
managed clusters.

Procedure

1. Create a directory structure with separate paths for the SiteConfig and PolicyGenTemplate
CRs.

2. Within the PolicyGenTemplate directory, create a directory for each OpenShift Container
Platform version you want to make available. For each version, create the following resources:

e kustomization.yaml file that explicitly includes the files in that directory

® source-crs directory to contain reference CR configuration files from the ztp-site-
generate container
If you want to work with user-provided CRs, you must create a separate directory for them.

3. In the /siteconfig directory, create a subdirectory for each OpenShift Container Platform
version you want to make available. For each version, create at least one directory for reference
CRs to be copied from the container. There is no restriction on the naming of directories or on
the number of reference directories. If you want to work with custom manifests, you must create
a separate directory for them.

The following example describes a structure using user-provided manifests and CRs for
different versions of OpenShift Container Platform:

— policygentemplates

| — kustomization.yam! @)

| —version_4.13@)

| | F— common-ranGen.yaml

| | F— group-du-sno-ranGen.yaml

| | F— group-du-sno-validator-ranGen.yaml
| | F— nhelix56-v413.yaml

25

OpenShift Container Platform 4.15 Edge computing

26

| | | kustomization.yam! @)
| | F—nsyaml

| | L— source-crs/

| | L reference-crs/ @

| | “— custom-crs/ @

| L—version_4.14 @

| — common-ranGen.yaml

| — group-du-sno-ranGen.yaml

| — group-du-sno-validator-ranGen.yaml|
| — helix56-v414.yaml

|

|

|

|

|

— kustomization.yam! @)
F— ns.yaml
L— source-crs/
L reference-crs/ {I)
L— custom-crs/ {P)

L siteconfig

—— kustomization.yaml
—— version_4.13

| — helix56-v413.yaml

| — kustomization.yaml
|

|

[— extra-manifest/ {B)

L— custom-manifest/
L— version_4.14
—— helix57-v414.yaml
—— kustomization.yaml

[— extra-manifest/)

L— custom-manifest/ @

ﬂ Create a top-level kustomization YAML file.
%Create the version-specific directories within the custom /policygentemplates directory.
wCreate a kustomization.yaml file for each version.

reate a source-crs directory for each version to contain reference CRs from the ztp-
site-generate container.

reate the reference-crs directory for policy CRs that are extracted from the ZTP
container.

Wptional: Create a custom-crs directory for user-provided CRs.

reate a directory within the custom /siteconfig directory to contain extra manifests from
the ztp-site-generate container.

Wreate a folder to hold user-provided manifests.

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTF

NOTE

In the previous example, each version subdirectory in the custom /siteconfig
directory contains two further subdirectories, one containing the reference
manifests copied from the container, the other for custom manifests that you
provide. The names assigned to those directories are examples. If you use user-
provided CRs, the last directory listed under extraManifests.searchPaths in the
SiteConfig CR must be the directory containing user-provided CRs.

4. Edit the SiteConfig CR to include the search paths of any directories you have created. The
first directory that is listed under extraManifests.searchPaths must be the directory containing
the reference manifests. Consider the order in which the directories are listed. In cases where
directories contain files with the same name, the file in the final directory takes precedence.

Example SiteConfig CR

extraManifests:
searchPaths:
- extra-manifest/ ﬂ
- custom-manifest/ g

ﬂ The directory containing the reference manifests must be listed first under
extraManifests.searchPaths.

9 If you are using user-provided CRs, the last directory listed under

extraManifests.searchPaths in the SiteConfig CR must be the directory containing those
user-provided CRs.

5. Edit the top-level kustomization.yaml file to control which OpenShift Container Platform
versions are active. The following is an example of a kustomization.yaml file at the top level:

resources:
- version_4.13 0
#- version_4.14 9

ﬂ Activate version 4.13.

9 Use comments to deactivate a version.

27

OpenShift Container Platform 4.15 Edge computing

CHAPTER 3. UPDATING GITOPS ZTP

You can update the GitOps Zero Touch Provisioning (ZTP) infrastructure independently from the hub
cluster, Red Hat Advanced Cluster Management (RHACM), and the managed OpenShift Container
Platform clusters.

NOTE

You can update the Red Hat OpenShift GitOps Operator when new versions become
available. When updating the GitOps ZTP plugin, review the updated files in the
reference configuration and ensure that the changes meet your requirements.

3.1. OVERVIEW OF THE GITOPS ZTP UPDATE PROCESS
You can update GitOps Zero Touch Provisioning (ZTP) for a fully operational hub cluster running an

earlier version of the GitOps ZTP infrastructure. The update process avoids impact on managed
clusters.

NOTE

Any changes to policy settings, including adding recommended content, results in
updated polices that must be rolled out to the managed clusters and reconciled.

At a high level, the strategy for updating the GitOps ZTP infrastructure is as follows:
1. Label all existing clusters with the ztp-done label.
2. Stop the ArgoCD applications.
3. Install the new GitOps ZTP tools.
4. Update required content and optional changes in the Git repository.

5. Update and restart the application configuration.

3.2. PREPARING FOR THE UPGRADE

Use the following procedure to prepare your site for the GitOps Zero Touch Provisioning (ZTP)
upgrade.

Procedure

1. Get the latest version of the GitOps ZTP container that has the custom resources (CRs) used to
configure Red Hat OpenShift GitOps for use with GitOps ZTP.

2. Extract the argocd/deployment directory by using the following commands:

I $ mkdir -p ./update

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.15 extract /home/ztp --tar | tar x -C ./update

The /update directory contains the following subdirectories:

28

CHAPTER 3. UPDATING GITOPS ZTP

e update/extra-manifest: contains the source CR files that the SiteConfig CR uses to
generate the extra manifest configMap.

e update/source-crs: contains the source CR files that the PolicyGenTemplate CR uses to
generate the Red Hat Advanced Cluster Management (RHACM) policies.

e update/argocd/deployment: contains patches and YAML files to apply on the hub cluster
for use in the next step of this procedure.

e update/argocd/example: contains example SiteConfig and PolicyGenTemplate files that
represent the recommended configuration.

3. Update the clusters-app.yaml and policies-app.yaml files to reflect the name of your
applications and the URL, branch, and path for your Git repository.
If the upgrade includes changes that results in obsolete policies, the obsolete policies should be
removed prior to performing the upgrade.

4. Diff the changes between the configuration and deployment source CRs in the /update folder
and Git repo where you manage your fleet site CRs. Apply and push the required changes to
your site repository.

IMPORTANT

When you update GitOps ZTP to the latest version, you must apply the changes
from the update/argocd/deployment directory to your site repository. Do not
use older versions of the argocd/deployment/ files.

3.3. LABELING THE EXISTING CLUSTERS

To ensure that existing clusters remain untouched by the tool updates, label all existing managed
clusters with the ztp-done label.

NOTE

This procedure only applies when updating clusters that were not provisioned with
Topology Aware Lifecycle Manager (TALM). Clusters that you provision with TALM are
automatically labeled with ztp-done.

Procedure

1. Find a label selector that lists the managed clusters that were deployed with GitOps Zero Touch
Provisioning (ZTP), such as local-cluster!=true:

I $ oc get managedcluster -I 'local-cluster!=true'

2. Ensure that the resulting list contains all the managed clusters that were deployed with GitOps
ZTP, and then use that selector to add the ztp-done label:

I $ oc label managedcluster - 'local-cluster!=true' ztp-done=

3.4. STOPPING THE EXISTING GITOPS ZTP APPLICATIONS

29

OpenShift Container Platform 4.15 Edge computing

Removing the existing applications ensures that any changes to existing content in the Git repository
are not rolled out until the new version of the tools is available.

Use the application files from the deployment directory. If you used custom names for the applications,
update the names in these files first.

Procedure

1. Perform a non-cascaded delete on the clusters application to leave all generated resources in
place:

I $ oc delete -f update/argocd/deployment/clusters-app.yaml

2. Perform a cascaded delete on the policies application to remove all previous policies:

$ oc patch -f policies-app.yaml -p '{"metadata": {"finalizers": ["resources-
finalizer.argocd.argoproj.io"]}}' --type merge

I $ oc delete -f update/argocd/deployment/policies-app.yaml

3.5. REQUIRED CHANGES TO THE GIT REPOSITORY

When upgrading the ztp-site-generate container from an earlier release of GitOps Zero Touch
Provisioning (ZTP) to 4.10 or later, there are additional requirements for the contents of the Git
repository. Existing content in the repository must be updated to reflect these changes.

® Make required changes to PolicyGenTemplate files:
All PolicyGenTemplate files must be created in a Namespace prefixed with ztp. This ensures
that the GitOps ZTP application is able to manage the policy CRs generated by GitOps ZTP
without conflicting with the way Red Hat Advanced Cluster Management (RHACM) manages
the policies internally.

® Add the kustomization.yaml file to the repository:
All SiteConfig and PolicyGenTemplate CRs must be included in a kustomization.yaml file
under their respective directory trees. For example:

— policygentemplates
site1-ns.yaml

—— site1.yaml

—— site2-ns.yaml|

—— site2.yaml

—— common-ns.yaml

—— common-ranGen.yaml|

—— group-du-sno-ranGen-ns.yaml
—— group-du-sno-ranGen.yaml
—— kustomization.yaml

L siteconfig

—— site1.yaml

— site2.yaml

—— kustomization.yaml

30

CHAPTER 3. UPDATING GITOPS ZTP

NOTE

The files listed in the generator sections must contain either SiteConfig or
PolicyGenTemplate CRs only. If your existing YAML files contain other CRs, for
example, Namespace, these other CRs must be pulled out into separate files and
listed in the resources section.

The PolicyGenTemplate kustomization file must contain all PolicyGenTemplate YAML files in
the generator section and Namespace CRs in the resources section. For example:

apiVersion: kustomize.config.k8s.io/vibetai
kind: Kustomization

generators:

- common-ranGen.yam|

- group-du-sno-ranGen.yaml
- site1.yaml

- site2.yaml

resources:
- common-ns.yam|

- group-du-sno-ranGen-ns.yaml|
- site1-ns.yaml

- site2-ns.yaml

The SiteConfig kustomization file must contain all SiteConfig YAML files in the generator
section and any other CRs in the resources:

apiVersion: kustomize.config.k8s.io/vibetai
kind: Kustomization

generators:
- site1.yaml
- site2.yaml|

® Remove the pre-sync.yaml and post-sync.yaml files.
In OpenShift Container Platform 4.10 and later, the pre-sync.yaml and post-sync.yaml files
are no longer required. The update/deployment/kustomization.yaml CR manages the policies
deployment on the hub cluster.

NOTE

There is a set of pre-sync.yaml and post-sync.yaml files under both the
SiteConfig and PolicyGenTemplate trees.

® Review and incorporate recommended changes
Each release may include additional recommended changes to the configuration applied to
deployed clusters. Typically these changes result in lower CPU use by the OpenShift platform,
additional features, or improved tuning of the platform.

Review the reference SiteConfig and PolicyGenTemplate CRs applicable to the types of

cluster in your network. These examples can be found in the argocd/example directory
extracted from the GitOps ZTP container.

31

OpenShift Container Platform 4.15 Edge computing

3.6. INSTALLING THE NEW GITOPS ZTP APPLICATIONS

Using the extracted argocd/deployment directory, and after ensuring that the applications point to
your site Git repository, apply the full contents of the deployment directory. Applying the full contents
of the directory ensures that all necessary resources for the applications are correctly configured.

Procedure

1. Toinstall the GitOps ZTP plugin, patch the ArgoCD instance in the hub cluster by using the
patch file that you previously extracted into the out/argocd/deployment/ directory. Run the
following command:

$ oc patch argocd openshift-gitops \
-n openshift-gitops --type=merge \
--patch-file out/argocd/deployment/argocd-openshift-gitops-patch.json

2. In RHACM 2.7 and later, the multicluster engine enables the cluster-proxy-addon feature by
default. Apply the following patch to disable the cluster-proxy-addon feature and remove the
relevant hub cluster and managed pods that are responsible for this add-on. Run the following
command:

$ oc patch multiclusterengines.multicluster.openshift.io multiclusterengine --type=merge --
patch-file out/argocd/deployment/disable-cluster-proxy-addon.json

3. Apply the pipeline configuration to your hub cluster by running the following command:

I $ oc apply -k out/argocd/deployment

3.7.ROLLING OUT THE GITOPS ZTP CONFIGURATION CHANGES

If any configuration changes were included in the upgrade due to implementing recommended changes,
the upgrade process results in a set of policy CRs on the hub cluster in the Non-Compliant state. With
the GitOps Zero Touch Provisioning (ZTP) version 4.10 and later ztp-site-generate container, these
policies are set to inform mode and are not pushed to the managed clusters without an additional step
by the user. This ensures that potentially disruptive changes to the clusters can be managed in terms of
when the changes are made, for example, during a maintenance window, and how many clusters are
updated concurrently.

To roll out the changes, create one or more ClusterGroupUpgrade CRs as detailed in the TALM
documentation. The CR must contain the list of Non-Compliant policies that you want to push out to
the managed clusters as well as a list or selector of which clusters should be included in the update.

Additional resources

® Forinformation about the Topology Aware Lifecycle Manager (TALM), see About the Topology
Aware Lifecycle Manager configuration.

e Forinformation about creating ClusterGroupUpgrade CRs, see About the auto-created
ClusterGroupUpgrade CR for ZTP.

32

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH
RHACM AND SITECONFIG RESOURCES

You can provision OpenShift Container Platform clusters at scale with Red Hat Advanced Cluster
Management (RHACM) using the assisted service and the GitOps plugin policy generator with core-
reduction technology enabled. The GitOps Zero Touch Provisioning (ZTP) pipeline performs the cluster
installations. GitOps ZTP can be used in a disconnected environment.

4.1. GITOPS ZTP AND TOPOLOGY AWARE LIFECYCLE MANAGER

GitOps Zero Touch Provisioning (ZTP) generates installation and configuration CRs from manifests
stored in Git. These artifacts are applied to a centralized hub cluster where Red Hat Advanced Cluster
Management (RHACM), the assisted service, and the Topology Aware Lifecycle Manager (TALM) use
the CRs to install and configure the managed cluster. The configuration phase of the GitOps ZTP
pipeline uses the TALM to orchestrate the application of the configuration CRs to the cluster. There are
several key integration points between GitOps ZTP and the TALM.

Inform policies

By default, GitOps ZTP creates all policies with a remediation action of inform. These policies cause
RHACM to report on compliance status of clusters relevant to the policies but does not apply the
desired configuration. During the GitOps ZTP process, after OpenShift installation, the TALM steps
through the created inform policies and enforces them on the target managed cluster(s). This
applies the configuration to the managed cluster. Outside of the GitOps ZTP phase of the cluster
lifecycle, this allows you to change policies without the risk of immediately rolling those changes out
to affected managed clusters. You can control the timing and the set of remediated clusters by using
TALM.

Automatic creation of ClusterGroupUpgrade CRs

To automate the initial configuration of newly deployed clusters, TALM monitors the state of all
ManagedCluster CRs on the hub cluster. Any ManagedCluster CR that does not have a ztp-done
label applied, including newly created ManagedCluster CRs, causes the TALM to automatically
create a ClusterGroupUpgrade CR with the following characteristics:

® The ClusterGroupUpgrade CR is created and enabled in the ztp-install namespace.
® ClusterGroupUpgrade CR has the same name as the ManagedCluster CR.
® The cluster selector includes only the cluster associated with that ManagedCluster CR.

® The set of managed policies includes all policies that RHACM has bound to the cluster at the
time the ClusterGroupUpgrade is created.

® Pre-cachingis disabled.
® Timeout set to 4 hours (240 minutes).

The automatic creation of an enabled ClusterGroupUpgrade ensures that initial zero-touch
deployment of clusters proceeds without the need for user intervention. Additionally, the automatic
creation of a ClusterGroupUpgrade CR for any ManagedCluster without the ztp-done label allows
a failed GitOps ZTP installation to be restarted by simply deleting the ClusterGroupUpgrade CR for
the cluster.

Waves

Each policy generated from a PolicyGenTemplate CR includes a ztp-deploy-wave annotation. This
annotation is based on the same annotation from each CR which is included in that policy. The wave

33

OpenShift Container Platform 4.15 Edge computing

annotation is used to order the policies in the auto-generated ClusterGroupUpgrade CR. The wave
annotation is not used other than for the auto-generated ClusterGroupUpgrade CR.

NOTE

All CRs in the same policy must have the same setting for the ztp-deploy-wave
annotation. The default value of this annotation for each CR can be overridden in the
PolicyGenTemplate. The wave annotation in the source CR is used for determining
and setting the policy wave annotation. This annotation is removed from each built CR
which is included in the generated policy at runtime.

P

The TALM applies the configuration policies in the order specified by the wave annotations. The
TALM waits for each policy to be compliant before moving to the next policy. It is important to
ensure that the wave annotation for each CR takes into account any prerequisites for those CRs to
be applied to the cluster. For example, an Operator must be installed before or concurrently with the
configuration for the Operator. Similarly, the CatalogSource for an Operator must be installed in a
wave before or concurrently with the Operator Subscription. The default wave value for each CR
takes these prerequisites into account.

Multiple CRs and policies can share the same wave number. Having fewer policies can result in faster
deployments and lower CPU usage. It is a best practice to group many CRs into relatively few waves.

To check the default wave value in each source CR, run the following command against the out/source-
crs directory that is extracted from the ztp-site-generate container image:

$ grep -r "ztp-deploy-wave" out/source-crs

Phase labels

The ClusterGroupUpgrade CR is automatically created and includes directives to annotate the
ManagedCluster CR with labels at the start and end of the GitOps ZTP process.

When GitOps ZTP configuration postinstallation commences, the ManagedCluster has the ztp-
running label applied. When all policies are remediated to the cluster and are fully compliant, these
directives cause the TALM to remove the ztp-running label and apply the ztp-done label.

For deployments that make use of the informDuValidator policy, the ztp-done label is applied when
the cluster is fully ready for deployment of applications. This includes all reconciliation and resulting
effects of the GitOps ZTP applied configuration CRs. The ztp-done label affects automatic
ClusterGroupUpgrade CR creation by TALM. Do not manipulate this label after the initial GitOps
ZTP installation of the cluster.

Linked CRs

The automatically created ClusterGroupUpgrade CR has the owner reference set as the
ManagedCluster from which it was derived. This reference ensures that deleting the
ManagedCluster CR causes the instance of the ClusterGroupUpgrade to be deleted along with any
supporting resources.

4.2. OVERVIEW OF DEPLOYING MANAGED CLUSTERS WITH GITOPS
ZTP

Red Hat Advanced Cluster Management (RHACM) uses GitOps Zero Touch Provisioning (ZTP) to
deploy single-node OpenShift Container Platform clusters, three-node clusters, and standard clusters.
You manage site configuration data as OpenShift Container Platform custom resources (CRs) in a Git

34

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

repository. GitOps ZTP uses a declarative GitOps approach for a develop once, deploy anywhere model
to deploy the managed clusters.

The deployment of the clusters includes:
® |nstalling the host operating system (RHCOS) on a blank server
® Deploying OpenShift Container Platform
® Creating cluster policies and site subscriptions
® Making the necessary network configurations to the server operating system

® Deploying profile Operators and performing any needed software-related configuration, such
as performance profile, PTP, and SR-IOV

Overview of the managed site installation process
After you apply the managed site custom resources (CRs) on the hub cluster, the following actions
happen automatically:

1. A Discovery image ISO file is generated and booted on the target host.

2. When the ISO file successfully boots on the target host it reports the host hardware information
to RHACM.

3. After all hosts are discovered, OpenShift Container Platform is installed.

4. When OpenShift Container Platform finishes installing, the hub installs the klusterlet service on
the target cluster.

5. The requested add-on services are installed on the target cluster.

The Discovery image ISO process is complete when the Agent CR for the managed cluster is created on
the hub cluster.

IMPORTANT

The target bare-metal host must meet the networking, firmware, and hardware
requirements listed in Recommended single-node OpenShift cluster configuration for
vDU application workloads.

4.3. CREATING THE MANAGED BARE-METAL HOST SECRETS
Add the required Secret custom resources (CRs) for the managed bare-metal host to the hub cluster.
You need a secret for the GitOps Zero Touch Provisioning (ZTP) pipeline to access the Baseboard

Management Controller (BMC) and a secret for the assisted installer service to pull cluster installation
images from the registry.

NOTE

The secrets are referenced from the SiteConfig CR by name. The namespace must
match the SiteConfig namespace.

Procedure

35

OpenShift Container Platform 4.15 Edge computing

1. Create a YAML secret file containing credentials for the host Baseboard Management
Controller (BMC) and a pull secret required for installing OpenShift and all add-on cluster
Operators:

a. Save the following YAML as the file example-sno-secret.yami:

apiVersion: vi
kind: Secret
metadata:
name: example-sno-bmc-secret
namespace: example-sno ﬂ
data:
password: <base64 password>
username: <base64 username>
type: Opaque
apiVersion: vi
kind: Secret
metadata:
name: pull-secret
namespace: example-sno 6
data:
.dockerconfigjson: <pull_secret> ﬂ
type: kubernetes.io/dockerconfigjson

Must match the namespace configured in the related SiteConfig CR
Base64-encoded values for password and username
Must match the namespace configured in the related SiteConfig CR

Base64-encoded pull secret

0009

2. Add the relative path to example-sno-secret.yaml to the kustomization.yaml file that you use
to install the cluster.

4.4. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR
INSTALLATIONS USING GITOPS ZTP

The GitOps Zero Touch Provisioning (ZTP) workflow uses the Discovery ISO as part of the OpenShift
Container Platform installation process on managed bare-metal hosts. You can edit the InfraEnv
resource to specify kernel arguments for the Discovery ISO. This is useful for cluster installations with
specific environmental requirements. For example, configure the rd.net.timeout.carrier kernel
argument for the Discovery ISO to facilitate static networking for the cluster or to receive a DHCP
address before downloading the root file system during installation.

NOTE

In OpenShift Container Platform 4.15, you can only add kernel arguments. You can not
replace or delete kernel arguments.

Prerequisites

36

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Create the InfraEnv CR and edit the spec.kernelArguments specification to configure kernel
arguments.

a. Save the following YAML in an InfraEnv-example.yaml file:

NOTE

The InfraEnv CR in this example uses template syntax such as {{
.Cluster.ClusterName }} that is populated based on values in the
SiteConfig CR. The SiteConfig CR automatically populates values for these
templates during deployment. Do not edit the templates manually.

apiVersion: agent-install.openshift.io/vibetai
kind: InfraEnv
metadata:
annotations:
argocd.argoproj.io/sync-wave: "1"
name: "{{ .Cluster.ClusterName }}"
namespace: "{{ .Cluster.ClusterName }}"
spec:
clusterRef:
name: "{{ .Cluster.ClusterName }}"
namespace: "{{ .Cluster.ClusterName }}"
kernelArguments:
- operation: append
value: audit=0
- operation: append
value: trace=1
sshAuthorizedKey: "{{ .Site.SshPublicKey }}"
proxy: "{{ .Cluster.ProxySettings }}"
pullSecretRef:
name: "{{ .Site.PullSecretRef.Name }}"
ignitionConfigOverride: "{{ .Cluster.IgnitionConfigOverride }}"
nmStateConfigLabelSelector:
matchLabels:
nmstate-label: "{{ .Cluster.ClusterName }}"
additionalNTPSources: "{{ .Cluster.AdditionaINTPSources }}"

ﬂ Specify the append operation to add a kernel argument.

Specify the kernel argument you want to configure. This example configures the audit
kernel argument and the trace kernel argument.

2. Commit the InfraEnv-example.yaml CR to the same location in your Git repository that has
the SiteConfig CR and push your changes. The following example shows a sample Git
repository structure:

I ~/example-ztp/install

37

OpenShift Container Platform 4.15 Edge computing

L— site-install
— siteconfig-example.yaml|
— InfraEnv-example.yaml

3. Edit the spec.clusters.crTemplates specification in the SiteConfig CR to reference the
InfraEnv-example.yaml CR in your Git repository:

clusters:
crTemplates:
InfraEnv: "InfraEnv-example.yaml|"

When you are ready to deploy your cluster by committing and pushing the SiteConfig CR, the
build pipeline uses the custom InfraEnv-example CR in your Git repository to configure the
infrastructure environment, including the custom kernel arguments.

Verification

To verify that the kernel arguments are applied, after the Discovery image verifies that OpenShift
Container Platform is ready for installation, you can SSH to the target host before the installation
process begins. At that point, you can view the kernel arguments for the Discovery ISO in the
/proc/cmdline file.

1. Begin an SSH session with the target host:
I $ ssh -i /path/to/privatekey core@<host_name>

2. View the system'’s kernel arguments by using the following command:

I $ cat /proc/cmdline

4.5. DEPLOYING A MANAGED CLUSTER WITH SITECONFIG AND
GITOPS ZTP

Use the following procedure to create a SiteConfig custom resource (CR) and related files and initiate
the GitOps Zero Touch Provisioning (ZTP) cluster deployment.

Prerequisites
® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.
® You configured the hub cluster for generating the required installation and policy CRs.
® You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and you must configure it as a source

repository for the ArgoCD application. See "Preparing the GitOps ZTP site configuration
repository" for more information.

38

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

NOTE

When you create the source repository, ensure that you patch the ArgoCD
application with the argocd/deployment/argocd-openshift-gitops-patch.json
patch-file that you extract from the ztp-site-generate container. See
"Configuring the hub cluster with ArgoCD".

® To be ready for provisioning managed clusters, you require the following for each bare-metal
host:

Network connectivity

Your network requires DNS. Managed cluster hosts should be reachable from the hub
cluster. Ensure that Layer 3 connectivity exists between the hub cluster and the managed
cluster host.

Baseboard Management Controller (BMC) details

GitOps ZTP uses BMC username and password details to connect to the BMC during cluster
installation. The GitOps ZTP plugin manages the ManagedCluster CRs on the hub cluster
based on the SiteConfig CR in your site Git repo. You create individual BMCSecret CRs for
each host manually.

Procedure

1. Create the required managed cluster secrets on the hub cluster. These resources must be in a
namespace with a name matching the cluster name. For example, in
out/argocd/example/siteconfig/example-sno.yaml, the cluster name and namespace is
example-sno.

a. Export the cluster namespace by running the following command:

I $ export CLUSTERNS=example-sno
b. Create the namespace:

I $ oc create namespace $CLUSTERNS

2. Create pull secret and BMC Secret CRs for the managed cluster. The pull secret must contain
all the credentials necessary for installing OpenShift Container Platform and all required
Operators. See "Creating the managed bare-metal host secrets" for more information.

NOTE

The secrets are referenced from the SiteConfig custom resource (CR) by name.
The namespace must match the SiteConfig namespace.

3. Create a SiteConfig CR for your cluster in your local clone of the Git repository:

a. Choose the appropriate example for your CR from the out/argocd/example/siteconfig/
folder. The folder includes example files for single node, three-node, and standard clusters:

e example-sno.yaml
e example-3node.yaml

e example-standard.yaml

39

OpenShift Container Platform 4.15 Edge computing

b. Change the cluster and host details in the example file to match the type of cluster you
want. For example:

Example single-node OpenShift SiteConfig CR

example-node 1-bmh-secret & assisted-deployment-pull-secret need to be created
under same namespace example-sno
apiVersion: ran.openshift.io/v2
kind: SiteConfig
metadata:
name: "example-sno"
namespace: "example-sno”
spec:
baseDomain: "example.com”
pullSecretRef:
name: "assisted-deployment-pull-secret”
clusterimageSetNameRef: "openshift-4.10"
sshPublicKey: "ssh-rsa AAAA..."
clusters:
- clusterName: "example-sno"
networkType: "OVNKubernetes"
installConfigOverrides is a generic way of passing install-config
parameters through the siteConfig. The 'capabilities’ field configures
the composable openshift feature. In this ‘capabilities’ setting, we
remove all but the marketplace component from the optional set of
components.
Notes:
- OperatorLifecycleManager is needed for 4.15 and later
- NodeTuning is needed for 4.13 and later, not for 4.12 and earlier
installConfigOverrides: "{\"capabilities\":{\"baselineCapabilitySet\": \"None\",
\"additionalEnabledCapabilities\": [\"OperatorLifecycleManager\", \"NodeTuning\"] }}"
It is strongly recommended to include crun manifests as part of the additional
install-time manifests for 4.13+.
The crun manifests can be obtained from source-crs/optional-extra-manifest/ and
added to the git repo ie.sno-extra-manifest.
extraManifestPath: sno-extra-manifest
clusterLabels:
These example cluster labels correspond to the bindingRules in the
PolicyGenTemplate examples
du-profile: "latest"
These example cluster labels correspond to the bindingRules in the
PolicyGenTemplate examples in ../policygentemplates:
../policygentemplates/common-ranGen.yaml will apply to all clusters with
‘common: true'
common: true
../policygentemplates/group-du-sno-ranGen.yaml will apply to all clusters with
‘group-du-sno: "
group-du-sno:
../policygentemplates/example-sno-site.yaml will apply to all clusters with 'sites:
"example-sno™
Normally this should match or contain the cluster name so it only applies to a
single cluster
sites: "example-sno"
clusterNetwork:
- cidr: 1001:1::/48

40

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

hostPrefix: 64
machineNetwork:
- cidr: 1111:2222:3333:4444::/64
serviceNetwork:
-1001:2::/112
additionalNTPSources:
- 1111:2222:3333:4444.::2
Initiates the cluster for workload partitioning. Setting specific reserved/isolated
CPUSets is done via Policy Template
please see Workload Partitioning Feature for a complete guide.
cpuPartitioningMode: AllNodes
Optionally; This can be used to override the KlusterletAddonConfig that is created
for this cluster:
#crTemplates:
KlusterletAddonConfig: "KlusterletAddonConfigOverride.yaml”
nodes:
- hostName: "example-node1.example.com"
role: "master”
Optionally; This can be used to configure desired BIOS setting on a host:
#biosConfigRef:
filePath: "example-hw.profile"”
bmcAddress: "idrac-
virtualmedia+https://[1111:2222:3333:4444::bbbb:1]/redfish/v1/Systems/System.Embedded
T
bmcCredentialsName:
name: "example-node1-bmh-secret"
bootMACAddress: "AA:BB:CC:DD:EE:11"
Use UEFISecureBoot to enable secure boot
bootMode: "UEFI"
rootDeviceHints:
wwn: "0x11111000000asd123"
example of diskPartition below is used for image registry (check
ImageRegistry.md for more details), but it's not limited to this use case
diskPartition:
- device: /dev/disk/by-id/wwn-0x11111000000asd123 # match
rootDeviceHints
partitions:
- mount_point: /var/imageregistry
size: 102500
start: 344844

nodeNetwork:
interfaces:
- name: enof
macAddress: "AA:BB:CC:DD:EE:11"
config:
interfaces:
- name: enof
type: ethernet
state: up
ipv4:
enabled: false
ipv6:
enabled: true
address:
For SNO sites with static IP addresses, the node-specific,

41

OpenShift Container Platform 4.15 Edge computing

APl and Ingress IPs should all be the same and configured on
the interface
-ip: 1111:2222:3333:4444::aaaa:1
prefix-length: 64
dns-resolver:
config:
search:
- example.com
server:
- 1111:2222:3333:4444::2
routes:
config:
- destination: ::/0
next-hop-interface: eno1
next-hop-address: 1111:2222:3333:4444::1
table-id: 254

NOTE

For more information about BMC addressing, see the "Additional resources"
section.

c. You caninspect the default set of extra-manifest MachineConfig CRs in
out/argocd/extra-manifest. It is automatically applied to the cluster when it is installed.

d. Optional: To provision additional install-time manifests on the provisioned cluster, create a
directory in your Git repository, for example, sho-extra-manifest/, and add your custom
manifest CRs to this directory. If your SiteConfig.yaml refers to this directory in the
extraManifestPath field, any CRs in this referenced directory are appended to the default
set of extra manifests.

ENABLING THE CRUN OCI CONTAINER RUNTIME

For optimal cluster performance, enable crun for master and worker nodes in
single-node OpenShift, single-node OpenShift with additional worker nodes,
three-node OpenShift, and standard clusters.

Enable crun in a ContainerRuntimeConfig CR as an additional Day O install-
time manifest to avoid the cluster having to reboot.

The enable-crun-master.yaml and enable-crun-worker.yaml CR files are in
the out/source-crs/optional-extra-manifest/ folder that you can extract
from the ztp-site-generate container. For more information, see
"Customizing extra installation manifests in the GitOps ZTP pipeline".

4. Add the SiteConfig CR to the kustomization.yaml file in the generators section, similar to the
example shown in out/argocd/example/siteconfig/kustomization.yaml.

5. Commit the SiteConfig CR and associated kustomization.yaml changes in your Git repository
and push the changes.
The ArgoCD pipeline detects the changes and begins the managed cluster deployment.

Verification

42

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

e Verify that the custom roles and labels are applied after the node is deployed:

I $ oc describe node example-node.example.com

Example output

Name: example-node.example.com

Roles: control-plane,example-label,master,worker

Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=linux
custom-label/parameteri=true
kubernetes.io/arch=amd64
kubernetes.io/hostname=cnfdf03.telco5gran.eng.rdu2.redhat.com
kubernetes.io/os=linux
node-role.kubernetes.io/control-plane=
node-role.kubernetes.io/example-label= ﬂ
node-role.kubernetes.io/master=
node-role.kubernetes.io/worker=
node.openshift.io/os_id=rhcos

ﬂ The custom label is applied to the node.

Additional resources

® Single-node OpenShift SiteConfig CR installation reference

4.5.1. Single-node OpenShift SiteConfig CR installation reference

Table 4.1. SiteConfig CR installation options for single-node OpenShift clusters

SiteConfig CR field Description

spec.cpuPartitioning
Mode

metadata.name

spec.clusterimageSe
tNameRef

Configure workload partitioning by setting the value for cpuPartitioningMode
to AlINodes. To complete the configuration, specify theisolated and reserved
CPUs in the PerformanceProfile CR.

4 NOTE

Configuring workload partitioning by using the
cpuPartitioningMode field in the SiteConfig CR is a Tech
A Preview feature in OpenShift Container Platform 4.13.

L

Set hame to assisted-deployment-pull-secret and create the assisted-
deployment-pull-secret CR in the same namespace as the SiteConfig CR.

Configure the image set available on the hub cluster for all the clusters in the site.
To see the list of supported versions on your hub cluster, run oc get
clusterimagesets.

43

OpenShift Container Platform 4.15 Edge computing

SiteConfig CR field Description

installConfigOverrid
es

spec.clusters.cluster

ImageSetNameRef

spec.clusters.cluster

Labels

spec.clusters.crTem
plates.KlusterletAdd
onConfig

spec.clusters.nodes.

hostName

spec.clusters.nodes.

nodelLabels

spec.clusters.nodes.

automatedCleaning
Mode

spec.clusters.nodes.

bmcAddress

Set the installConfigOverrides field to enable or disable optional components
prior to cluster installation.

IMPORTANT

Use the reference configuration as specified in the example
SiteConfig CR. Adding additional components back into the
system might require additional reserved CPU capacity.

Specifies the cluster image set used to deploy an individual cluster. If defined, it
overrides the spec.clusterimageSetNameRef at site level.

Configure cluster labels to correspond to the bindingRules field in the
PolicyGenTemplate CRs that you define. For example,
policygentemplates/common-ranGen.yaml applies to all clusters with
common: true set, policygentemplates/group-du-sno-ranGen.yaml
applies to all clusters with group-du-sno: "" set.

Optional. Set KlusterletAddonConfig to
KlusterletAddonConfigOverride.yaml to override the default
“KlusterletAddonConfig that is created for the cluster.

For single-node deployments, define a single host. For three-node deployments,
define three hosts. For standard deployments, define three hosts with role:
master and two or more hosts defined withrole: worker.

Specify custom roles for your nodes in your managed clusters. These are
additional roles are not used by any OpenShift Container Platform components,
only by the user. When you add a custom role, it can be associated with a custom
machine config pool that references a specific configuration for that role. Adding
custom labels or roles during installation makes the deployment process more
effective and prevents the need for additional reboots after the installation is
complete.

Optional. Uncomment and set the value to metadata to enable the removal of
the disk’s partitioning table only, without fully wiping the disk. The default value is
disabled.

BMC address that you use to access the host. Applies to all cluster types. GitOps
ZTP supports iPXE and virtual media booting by using Redfish or IPMI protocols.
To use iPXE booting, you must use RHACM 2.8 or later. For more information
about BMC addressing, see the "Additional resources” section.

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

SiteConfig CR field Description

spec.clusters.nodes.

bmcAddress

spec.clusters.nodes.

bmcCredentialsNam
e

spec.clusters.nodes.

bootMode

spec.clusters.nodes.

rootDeviceHints

spec.clusters.nodes.

diskPartition

spec.clusters.nodes.

ignitionConfigOverri
de

spec.clusters.nodes.

cpuset

spec.clusters.nodes.

nodeNetwork

spec.clusters.nodes.
nodeNetwork.config.

interfaces.ipv6

Additional resources

BMC address that you use to access the host. Applies to all cluster types. GitOps
ZTP supports iPXE and virtual media booting by using Redfish or IPMI protocols.
To use iPXE booting, you must use RHACM 2.8 or later. For more information
about BMC addressing, see the "Additional resources" section.

NOTE

L

In far edge Telco use cases, only virtual media is supported for
use with GitOps ZTP.

Configure the bmh-secret CR that you separately create with the host BMC
credentials. When creating the bmh-secret CR, use the same namespace as the
SiteConfig CR that provisions the host.

Set the boot mode for the host to UEFI. The default value is UEFI. Use
UEFISecureBoot to enable secure boot on the host.

Specifies the device for deployment. Identifiers that are stable across reboots are
recommended, for example, wwn: <disk_wwn> ordeviceName:
/dev/disk/by-path/<device_path>. For a detailed list of stable identifiers, see
the "About root device hints section”.

Optional. The provided example diskPartition is used to configure additional
disk partitions.

Optional. Use this field to assign partitions for persistent storage. Adjust disk ID
and size to the specific hardware.

Configure cpuset to match value that you set in the cluster
PerformanceProfile CR spec.cpu.reserved field for workload partitioning.

Configure the network settings for the node.

Configure the IPv6 address for the host. For single-node OpenShift clusters with
static IP addresses, the node-specific APl and Ingress IPs should be the same.

® Customizing extra installation manifests in the GitOps ZTP pipeline

® Preparing the GitOps ZTP site configuration repository

® Configuring the hub cluster with ArgoCD

45

OpenShift Container Platform 4.15 Edge computing

® Signalling ZTP cluster deployment completion with validator inform policies
® Creating the managed bare-metal host secrets
® BMC addressing

® About root device hints

4.6. MONITORING MANAGED CLUSTER INSTALLATION PROGRESS

The ArgoCD pipeline uses the SiteConfig CR to generate the cluster configuration CRs and syncs it
with the hub cluster. You can monitor the progress of the synchronization in the ArgoCD dashboard.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

When the synchronization is complete, the installation generally proceeds as follows:
1. The Assisted Service Operator installs OpenShift Container Platform on the cluster. You can

monitor the progress of cluster installation from the RHACM dashboard or from the command
line by running the following commands:

a. Export the cluster name:

I $ export CLUSTER=<clusterName>
b. Query the AgentClusterlnstall CR for the managed cluster:

$ oc get agentclusterinstall -n $CLUSTER $CLUSTER -o jsonpath='{.status.conditions[?
(@.type=="Completed")]}' | jq

c. Get the installation events for the cluster:

$ curl -sk $(oc get agentclusterinstall -n $CLUSTER $CLUSTER -o
jsonpath="{.status.debuginfo.eventsURL}") |jq ".[-2,-1]

4.7. TROUBLESHOOTING GITOPS ZTP BY VALIDATING THE
INSTALLATION CRS

The ArgoCD pipeline uses the SiteConfig and PolicyGenTemplate custom resources (CRs) to
generate the cluster configuration CRs and Red Hat Advanced Cluster Management (RHACM) policies.
Use the following steps to troubleshoot issues that might occur during this process.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#bmc-addressing_ipi-install-installation-workflow
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#root-device-hints_preparing-to-install-with-agent-based-installer

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

Procedure

1. Check that the installation CRs were created by using the following command:
I $ oc get AgentClusterlnstall -n <cluster_name>

If no object is returned, use the following steps to troubleshoot the ArgoCD pipeline flow from
SiteConfig files to the installation CRs.

2. Verify that the ManagedCluster CR was generated using the SiteConfig CR on the hub cluster:

I $ oc get managedcluster

3. If the ManagedCluster is missing, check if the clusters application failed to synchronize the
files from the Git repository to the hub cluster:

I $ oc describe -n openshift-gitops application clusters

a. Check for the Status.Conditions field to view the error logs for the managed cluster. For
example, setting an invalid value for extraManifestPath: in the SiteConfig CR raises the
following error:

Status:
Conditions:
Last Transition Time: 2021-11-26T17:21:39Z
Message: rpc error: code = Unknown desc = "kustomize build

/tmp/https___git.com/ran-sites/siteconfigs/ --enable-alpha-plugins’ failed exit status 1:
2021/11/26 17:21:40 Error could not create extra-manifest ranSite1.extra-manifest3 stat
extra-manifest3: no such file or directory 2021/11/26 17:21:40 Error: could not build the
entire SiteConfig defined by /tmp/kust-plugin-config-913473579: stat extra-manifest3: no
such file or directory Error: failure in plugin configured via /tmp/kust-plugin-config-
913473579; exit status 1: exit status 1

Type: ComparisonError

b. Check the Status.Sync field. If there are log errors, the Status.Sync field could indicate an
Unknown error:

Status:
Sync:
Compared To:
Destination:
Namespace: clusters-sub
Server: https://kubernetes.default.svc

Source:
Path: sites-config
Repo URL: https://git.com/ran-sites/siteconfigs/.git
Target Revision: master
Status: Unknown

4.8. TROUBLESHOOTING GITOPS ZTP VIRTUAL MEDIA BOOTING ON
SUPERMICRO SERVERS

SuperMicro X1l servers do not support virtual media installations when the image is served using the
https protocol. As a result, single-node OpenShift deployments for this environment fail to boot on the

47

OpenShift Container Platform 4.15 Edge computing

target node. To avoid this issue, log in to the hub cluster and disable Transport Layer Security (TLS) in
the Provisioning resource. This ensures the image is not served with TLS even though the image
address uses the https scheme.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Disable TLS in the Provisioning resource by running the following command:

$ oc patch provisioning provisioning-configuration --type merge -p {"spec":
{"disableVirtualMediaTLS": true}}’

2. Continue the steps to deploy your single-node OpenShift cluster.

4.9. REMOVING A MANAGED CLUSTER SITE FROM THE GITOPS ZTP
PIPELINE

You can remove a managed site and the associated installation and configuration policy CRs from the
GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Remove asite and the associated CRs by removing the associated SiteConfig and
PolicyGenTemplate files from the kustomization.yaml file.
When you run the GitOps ZTP pipeline again, the generated CRs are removed.

2. Optional: If you want to permanently remove a site, you should also remove the SiteConfig and
site-specific PolicyGenTemplate files from the Git repository.

3. Optional: If you want to remove a site temporarily, for example when redeploying a site, you can
leave the SiteConfig and site-specific PolicyGenTemplate CRs in the Git repository.

Additional resources

® Forinformation about removing a cluster, see Removing a cluster from management.

4.10. REMOVING OBSOLETE CONTENT FROM THE GITOPS ZTP
PIPELINE

If a change to the PolicyGenTemplate configuration results in obsolete policies, for example, if you
rename policies, use the following procedure to remove the obsolete policies.

48

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#remove-managed-cluster

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Remove the affected PolicyGenTemplate files from the Git repository, commit and push to
the remote repository.

2. Wait for the changes to synchronize through the application and the affected policies to be
removed from the hub cluster.

3. Add the updated PolicyGenTemplate files back to the Git repository, and then commit and
push to the remote repository.

NOTE

Removing GitOps Zero Touch Provisioning (ZTP) policies from the Git
repository, and as a result also removing them from the hub cluster, does not
affect the configuration of the managed cluster. The policy and CRs managed by
that policy remains in place on the managed cluster.

4. Optional: As an alternative, after making changes to PolicyGenTemplate CRs that result in
obsolete policies, you can remove these policies from the hub cluster manually. You can delete
policies from the RHACM console using the Governance tab or by running the following
command:

I $ oc delete policy -n <namespace> <policy_name>

4.11. TEARING DOWN THE GITOPS ZTP PIPELINE

You can remove the ArgoCD pipeline and all generated GitOps Zero Touch Provisioning (ZTP) artifacts.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Detach all clusters from Red Hat Advanced Cluster Management (RHACM) on the hub cluster.

2. Delete the kustomization.yaml file in the deployment directory using the following command:
I $ oc delete -k out/argocd/deployment

3. Commit and push your changes to the site repository.

49

OpenShift Container Platform 4.15 Edge computing

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH
POLICIES AND POLICYGENTEMPLATE RESOURCES

Applied policy custom resources (CRs) configure the managed clusters that you provision. You can
customize how Red Hat Advanced Cluster Management (RHACM) uses PolicyGenTemplate CRs to
generate the applied policy CRs.

5.1. ABOUT THE POLICYGENTEMPLATE CRD

The PolicyGenTemplate custom resource definition (CRD) tells the PolicyGen policy generator what
custom resources (CRs) to include in the cluster configuration, how to combine the CRs into the
generated policies, and what items in those CRs need to be updated with overlay content.

The following example shows a PolicyGenTemplate CR (common-du-ranGen.yaml) extracted from
the ztp-site-generate reference container. The common-du-ranGen.yaml file defines two Red Hat
Advanced Cluster Management (RHACM) policies. The polices manage a collection of configuration
CRs, one for each unique value of policyName in the CR. common-du-ranGen.yaml creates a single
placement binding and a placement rule to bind the policies to clusters based on the labels listed in the
bindingRules section.

Example PolicyGenTemplate CR - common-du-ranGen.yaml|

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:

name: "common”

namespace: "ztp-common"
spec:

bindingRules:

common: "true"

sourceFiles: g

- fileName: SriovSubscription.yaml
policyName: "subscriptions-policy"

- fileName: SriovSubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: SriovSubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: SriovOperatorStatus.yaml
policyName: "subscriptions-policy"

- fileName: PtpSubscription.yaml
policyName: "subscriptions-policy"

- fileName: PtpSubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: PtpSubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: PtpOperatorStatus.yaml
policyName: "subscriptions-policy"

- fileName: ClusterLogNS.yaml
policyName: "subscriptions-policy"

- fileName: ClusterLogOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: ClusterLogSubscription.yaml
policyName: "subscriptions-policy"

50

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

- fileName: ClusterLogOperatorStatus.yaml
policyName: "subscriptions-policy"
- fileName: StorageNS.yaml
policyName: "subscriptions-policy"
- fileName: StorageOperGroup.yaml
policyName: "subscriptions-policy"
- fileName: StorageSubscription.yaml
policyName: "subscriptions-policy"
- fileName: StorageOperatorStatus.yaml|
policyName: "subscriptions-policy"
- fileName: ReduceMonitoringFootprint.yaml
policyName: "config-policy”
- fileName: OperatorHub.yaml
policyName: "config-policy”
- fileName: DefaultCatsrc.yaml
policyName: "config-policy” 6
metadata:
name: redhat-operators
spec:
displayName: disconnected-redhat-operators
image: registry.example.com:5000/disconnected-redhat-operators/disconnected-redhat-
operator-index:v4.9
- fileName: DisconnectedICSP.yaml|
policyName: "config-policy”
spec:
repositoryDigestMirrors:
- mirrors:
- registry.example.com:5000
source: registry.redhat.io

common: "true" applies the policies to all clusters with this label.
Files listed under sourceFiles create the Operator policies for installed clusters.
OperatorHub.yaml configures the OperatorHub for the disconnected registry.

DefaultCatsrc.yaml configures the catalog source for the disconnected registry.

0009

policyName: "config-policy" configures Operator subscriptions. The OperatorHub CR disables
the default and this CR replaces redhat-operators with a CatalogSource CR that points to the
disconnected registry.

A PolicyGenTemplate CR can be constructed with any number of included CRs. Apply the following
example CRin the hub cluster to generate a policy containing a single CR:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:

name: "group-du-sno"

namespace: "ztp-group"”
spec:

bindingRules:

group-du-sno: "
mcp: "master”
sourceFiles:

51

OpenShift Container Platform 4.15 Edge computing

- fileName: PtpConfigSlave.yaml|
policyName: "config-policy”
metadata:
name: "du-ptp-slave”
spec:
profile:
- name: "slave"
interface: "ens5f0"
ptp4lOpts: "-2 -s --summary_interval -4"
phc2sysOpts: "-a -r -n 24"

Using the source file PtpConfigSlave.yaml as an example, the file defines a PtpConfig CR. The
generated policy for the PtpConfigSlave example is named group-du-sno-config-policy. The
PtpConfig CR defined in the generated group-du-sno-config-policy is named du-ptp-slave. The spec
defined in PtpConfigSlave.yaml is placed under du-ptp-slave along with the other spec items defined
under the source file.

The following example shows the group-du-sno-config-policy CR:

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
name: group-du-ptp-config-policy
namespace: groups-sub
annotations:
policy.open-cluster-management.io/categories: CM Configuration Management
policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
policy.open-cluster-management.io/standards: NIST SP 800-53
spec:
remediationAction: inform
disabled: false
policy-templates:
- objectDefinition:
apiVersion: policy.open-cluster-management.io/v1
kind: ConfigurationPolicy
metadata:
name: group-du-ptp-config-policy-config
spec:
remediationAction: inform
severity: low
namespaceselector:
exclude:
- kube-*
include:
object-templates:
- complianceType: musthave
objectDefinition:
apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: du-ptp-slave
namespace: openshift-ptp
spec:
recommend:
- match:

52

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

- nodelLabel: node-role.kubernetes.io/worker-du
priority: 4
profile: slave
profile:
- interface: ens5f0
name: slave
phc2sysOpts: -a -r -n 24
ptp4IConf: |
[global]
#
Default Data Set
#
twoStepFlag 1
slaveOnly 0
priority1 128
priority2 128
domainNumber 24

5.2. RECOMMENDATIONS WHEN CUSTOMIZING
POLICYGENTEMPLATE CRS

Consider the following best practices when customizing site configuration PolicyGenTemplate custom
resources (CRs):

® Use as few policies as are necessary. Using fewer policies requires less resources. Each additional
policy creates overhead for the hub cluster and the deployed managed cluster. CRs are
combined into policies based on the policyName field in the PolicyGenTemplate CR. CRs in
the same PolicyGenTemplate which have the same value for policyName are managed under a
single policy.

® |n disconnected environments, use a single catalog source for all Operators by configuring the
registry as a single index containing all Operators. Each additional CatalogSource CR on the
managed clusters increases CPU usage.

® MachineConfig CRs should be included as extraManifests in the SiteConfig CR so that they
are applied during installation. This can reduce the overall time taken until the cluster is ready to
deploy applications.

e PolicyGenTemplates should override the channel field to explicitly identify the desired version.

This ensures that changes in the source CR during upgrades does not update the generated
subscription.

Additional resources

® Forrecommendations about scaling clusters with RHACM, see Performance and scalability.

53

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html/install/installing#performance-and-scalability

OpenShift Container Platform 4.15 Edge computing

NOTE

When managing large numbers of spoke clusters on the hub cluster, minimize the number
of policies to reduce resource consumption.

Grouping multiple configuration CRs into a single or limited number of policies is one way
to reduce the overall number of policies on the hub cluster. When using the common,
group, and site hierarchy of policies for managing site configuration, it is especially
important to combine site-specific configuration into a single policy.

5.3. POLICYGENTEMPLATE CRS FOR RAN DEPLOYMENTS

Use PolicyGenTemplate (PGT) custom resources (CRs) to customize the configuration applied to the
cluster by using the GitOps Zero Touch Provisioning (ZTP) pipeline. The PGT CR allows you to generate
one or more policies to manage the set of configuration CRs on your fleet of clusters. The PGT
identifies the set of managed CRs, bundles them into policies, builds the policy wrapping around those
CRs, and associates the policies with clusters by using label binding rules.

The reference configuration, obtained from the GitOps ZTP container, is designed to provide a set of
critical features and node tuning settings that ensure the cluster can support the stringent performance
and resource utilization constraints typical of RAN (Radio Access Network) Distributed Unit (DU)
applications. Changes or omissions from the baseline configuration can affect feature availability,
performance, and resource utilization. Use the reference PolicyGenTemplate CRs as the basis to
create a hierarchy of configuration files tailored to your specific site requirements.

The baseline PolicyGenTemplate CRs that are defined for RAN DU cluster configuration can be
extracted from the GitOps ZTP ztp-site-generate container. See "Preparing the GitOps ZTP site
configuration repository” for further details.

The PolicyGenTemplate CRs can be found in the ./out/argocd/example/policygentemplates folder.
The reference architecture has common, group, and site-specific configuration CRs. Each
PolicyGenTemplate CR refers to other CRs that can be found in the ./out/source-crs folder.

The PolicyGenTemplate CRs relevant to RAN cluster configuration are described below. Variants are
provided for the group PolicyGenTemplate CRs to account for differences in single-node, three-node
compact, and standard cluster configurations. Similarly, site-specific configuration variants are provided
for single-node clusters and multi-node (compact or standard) clusters. Use the group and site-specific
configuration variants that are relevant for your deployment.

Table 5.1. PolicyGenTemplate CRs for RAN deployments

PolicyGenTemplate CR Description

example-multinode-site.yaml Contains a set of CRs that get applied to multi-node
clusters. These CRs configure SR-IOV features
typical for RAN installations.

example-sno-site.yaml Contains a set of CRs that get applied to single-
node OpenShift clusters. These CRs configure SR-
IOV features typical for RAN installations.

54

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

PolicyGenTemplate CR Description

common-ranGen.yaml

group-du-3node-ranGen.yaml

group-du-sno-ranGen.yaml

group-du-standard-ranGen.yaml

group-du-3node-validator-ranGen.yaml

group-du-standard-validator-ranGen.yaml

group-du-sno-validator-ranGen.yaml

Additional resources

Contains a set of common RAN CRs that get applied
to all clusters. These CRs subscribe to a set of
operators providing cluster features typical for RAN
as well as baseline cluster tuning.

Contains the RAN policies for three-node clusters
only.

Contains the RAN policies for single-node clusters
only.

Contains the RAN policies for standard three
control-plane clusters.

PolicyGenTemplate CR used to generate the
various policies required for three-node clusters.

PolicyGenTemplate CR used to generate the
various policies required for standard clusters.

PolicyGenTemplate CR used to generate the
various policies required for single-node OpenShift
clusters.

® Preparing the GitOps ZTP site configuration repository

5.4. CUSTOMIZING A MANAGED CLUSTER WITH

POLICYGENTEMPLATE CRS

Use the following procedure to customize the policies that get applied to the managed cluster that you
provision using the GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You configured the hub cluster for generating the required installation and policy CRs.

® You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the

Argo CD application.

Procedure

1. Create a PolicyGenTemplate CR for site-specific configuration CRs.

55

OpenShift Container Platform 4.15 Edge computing

56

a. Choose the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, example-sno-site.yaml or
example-multinode-site.yaml.

b. Change the bindingRules field in the example file to match the site-specific label included

in the SiteConfig CR. In the example SiteConfig file, the site-specific label is sites:
example-sno.

NOTE
Ensure that the labels defined in your PolicyGenTemplate bindingRules

field correspond to the labels that are defined in the related managed
clusters SiteConfig CR.

c. Change the content in the example file to match the desired configuration.

2. Optional: Create a PolicyGenTemplate CR for any common configuration CRs that apply to

the entire fleet of clusters.

a. Select the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, common-ranGen.yaml.

b. Change the content in the example file to match the desired configuration.

. Optional: Create a PolicyGenTemplate CR for any group configuration CRs that apply to the

certain groups of clusters in the fleet.

Ensure that the content of the overlaid spec files matches your desired end state. As a
reference, the out/source-crs directory contains the full list of source-crs available to be
included and overlaid by your PolicyGenTemplate templates.

NOTE

Depending on the specific requirements of your clusters, you might need more
than a single group policy per cluster type, especially considering that the
example group policies each have a single PerformancePolicy.yaml file that can
only be shared across a set of clusters if those clusters consist of identical
hardware configurations.

a. Select the appropriate example for your CR from the
out/argocd/example/policygentemplates folder, for example, group-du-sno-
ranGen.yaml.

b. Change the content in the example file to match the desired configuration.

. Optional. Create a validator inform policy PolicyGenTemplate CR to signal when the GitOps

ZTP installation and configuration of the deployed cluster is complete. For more information,
see "Creating a validator inform policy".

. Define all the policy namespaces in a YAML file similar to the example

out/argocd/example/policygentemplates/ns.yamil file.

IMPORTANT

Do not include the Namespace CR in the same file with the PolicyGenTemplate
CR.

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

6. Add the PolicyGenTemplate CRs and Namespace CR to the kustomization.yaml file in the
generators section, similar to the example shown in
out/argocd/example/policygentemplates/kustomization.yaml.

7. Commit the PolicyGenTemplate CRs, Namespace CR, and associated kustomization.yaml
file in your Git repository and push the changes.

The ArgoCD pipeline detects the changes and begins the managed cluster deployment. You
can push the changes to the SiteConfig CR and the PolicyGenTemplate CR simultaneously.

Additional resources

® Signalling ZTP cluster deployment completion with validator inform policies

5.5. MONITORING MANAGED CLUSTER POLICY DEPLOYMENT
PROGRESS

The ArgoCD pipeline uses PolicyGenTemplate CRs in Git to generate the RHACM policies and then
sync them to the hub cluster. You can monitor the progress of the managed cluster policy
synchronization after the assisted service installs OpenShift Container Platform on the managed cluster.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. The Topology Aware Lifecycle Manager (TALM) applies the configuration policies that are
bound to the cluster.
After the cluster installation is complete and the cluster becomes Ready, a
ClusterGroupUpgrade CR corresponding to this cluster, with a list of ordered policies defined
by the ran.openshift.io/ztp-deploy-wave annotations, is automatically created by the TALM.
The cluster's policies are applied in the order listed in ClusterGroupUpgrade CR.

You can monitor the high-level progress of configuration policy reconciliation by using the
following commands:

I $ export CLUSTER=<clusterName>

I $ oc get clustergroupupgrades -n ztp-install $CLUSTER -o jsonpath='{.status.conditions[-1:]}'
| ja

Example output

"lastTransitionTime": "2022-11-09T07:28:09Z",
"message": "Remediating non-compliant policies",
"reason": "InProgress",

"status": "True",

"type": "Progressing"”

57

OpenShift Container Platform 4.15 Edge computing

2. You can monitor the detailed cluster policy compliance status by using the RHACM dashboard
or the command line.

a. To check policy compliance by using o¢, run the following command:

I $ oc get policies -n $CLUSTER

Example output

NAME REMEDIATION ACTION COMPLIANCE STATE
AGE

ztp-common.common-config-policy inform Compliant

3h42m

ztp-common.common-subscriptions-policy inform NonCompliant
3h42m

ztp-group.group-du-sno-config-policy inform NonCompliant

3h42m

ztp-group.group-du-sno-validator-du-policy inform NonCompliant
3h42m

ztp-install.example 1-common-config-policy-pjz9s enforce Compliant

167m

ztp-install.example1-common-subscriptions-policy-zzd9k enforce NonCompliant
164m

ztp-site.example1-config-policy inform NonCompliant 3h42m
ztp-site.example1-perf-policy inform NonCompliant 3h42m

b. To check policy status from the RHACM web console, perform the following actions:

i. Click Governance - Find policies.
ii. Click on a cluster policy to check it's status.

When all of the cluster policies become compliant, GitOps ZTP installation and configuration for the
cluster is complete. The ztp-done label is added to the cluster.

In the reference configuration, the final policy that becomes compliant is the one defined in the *-du-

validator-policy policy. This policy, when compliant on a cluster, ensures that all cluster configuration,
Operator installation, and Operator configuration is complete.

5.6. VALIDATING THE GENERATION OF CONFIGURATION POLICY
CRS

Policy custom resources (CRs) are generated in the same namespace as the PolicyGenTemplate from
which they are created. The same troubleshooting flow applies to all policy CRs generated from a
PolicyGenTemplate regardless of whether they are ztp-common, ztp-group, or ztp-site based, as
shown using the following commands:

I $ export NS=<namespace>
I $ oc get policy -n $NS

The expected set of policy-wrapped CRs should be displayed.

If the policies failed synchronization, use the following troubleshooting steps.

58

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES
Procedure
1. To display detailed information about the policies, run the following command:
I $ oc describe -n openshift-gitops application policies

2. Check for Status: Conditions: to show the error logs. For example, setting an invalid
sourceFile - fileName: generates the error shown below:

Status:
Conditions:
Last Transition Time: 2021-11-26T17:21:39Z
Message: rpc error: code = Unknown desc = "kustomize build

/tmp/https____git.com/ran-sites/policies/ --enable-alpha-plugins failed exit status 1:
2021/11/26 17:21:40 Error could not find test.yaml under source-crs/: no such file or directory
Error: failure in plugin configured via /tmp/kust-plugin-config-52463179; exit status 1: exit
status 1

Type: ComparisonError

3. Check for Status: Sync:. If there are log errors at Status: Conditions:, the Status: Sync:
shows Unknown or Error:

Status:
Sync:
Compared To:
Destination:
Namespace: policies-sub
Server: https://kubernetes.default.svc

Source:
Path: policies
Repo URL: https://git.com/ran-sites/policies/.qgit
Target Revision: master
Status: Error

4. When Red Hat Advanced Cluster Management (RHACM) recognizes that policies apply to a
ManagedCluster object, the policy CR objects are applied to the cluster namespace. Check to
see if the policies were copied to the cluster namespace:

I $ oc get policy -n $CLUSTER

Example output:

NAME REMEDIATION ACTION COMPLIANCE STATE AGE
ztp-common.common-config-policy inform Compliant 13d
ztp-common.common-subscriptions-policy inform Compliant 13d
ztp-group.group-du-sno-config-policy inform Compliant 13d
Ztp-group.group-du-sno-validator-du-policy inform Compliant 13d
ztp-site.example-sno-config-policy inform Compliant 13d

RHACM copies all applicable policies into the cluster namespace. The copied policy names have
the format: <policyGenTemplate.Namespace>.<policyGenTemplate.Name>-<policyName>.

59

OpenShift Container Platform 4.15 Edge computing

5. Check the placement rule Tor any policies not copled to the cluster namespace. | he
matchSelector in the PlacementRule for those policies should match labels on the
ManagedCluster object:

I $ oc get placementrule -n $NS

6. Note the PlacementRule name appropriate for the missing policy, common, group, or site,
using the following command:

I $ oc get placementrule -n $NS <placementRuleName> -o yaml

® The status-decisions should include your cluster name.

® The key-value pair of the matchSelector in the spec must match the labels on your
managed cluster.

7. Check the labels on the ManagedCluster object using the following command:

I $ oc get ManagedCluster $CLUSTER -o jsonpath='{.metadata.labels}' | jq

8. Check to see which policies are compliant using the following command:
I $ oc get policy -n $CLUSTER

If the Namespace, OperatorGroup, and Subscription policies are compliant but the Operator
configuration policies are not, it is likely that the Operators did not install on the managed
cluster. This causes the Operator configuration policies to fail to apply because the CRD is not
yet applied to the spoke.

5.7.RESTARTING POLICY RECONCILIATION

You can restart policy reconciliation when unexpected compliance issues occur, for example, when the
ClusterGroupUpgrade custom resource (CR) has timed out.

Procedure

1. A ClusterGroupUpgrade CR is generated in the namespace ztp-install by the Topology Aware
Lifecycle Manager after the managed cluster becomes Ready:

I $ export CLUSTER=<clusterName>

I $ oc get clustergroupupgrades -n ztp-install $CLUSTER

2. If there are unexpected issues and the policies fail to become complaint within the configured
timeout (the default is 4 hours), the status of the ClusterGroupUpgrade CR shows
UpgradeTimedOut:

$ oc get clustergroupupgrades -n ztp-install $CLUSTER -o jsonpath='{.status.conditions[?
(@.type=="Ready")]}'
3. A ClusterGroupUpgrade CR in the UpgradeTimedOut state automatically restarts its policy

reconciliation every hour. If you have changed your policies, you can start a retry immediately by
deleting the existing ClusterGroupUpgrade CR. This triggers the automatic creation of a new

60

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

ClusterGroupUpgrade CR that begins reconciling the policies immediately:

I $ oc delete clustergroupupgrades -n ztp-install SCLUSTER

Note that when the ClusterGroupUpgrade CR completes with status UpgradeCompleted and the
managed cluster has the label ztp-done applied, you can make additional configuration changes using
PolicyGenTemplate. Deleting the existing ClusterGroupUpgrade CR will not make the TALM generate
anew CR.

At this point, GitOps ZTP has completed its interaction with the cluster and any further interactions
should be treated as an update and a new ClusterGroupUpgrade CR created for remediation of the
policies.

Additional resources

e Forinformation about using Topology Aware Lifecycle Manager (TALM) to construct your own
ClusterGroupUpgrade CR, see About the ClusterGroupUpgrade CR.

5.8. CHANGING APPLIED MANAGED CLUSTER CRS USING POLICIES

You can remove content from a custom resource (CR) that is deployed in a managed cluster through a
policy.

By default, all Policy CRs created from a PolicyGenTemplate CR have the complianceType field set
to musthave. A musthave policy without the removed content is still compliant because the CR on the
managed cluster has all the specified content. With this configuration, when you remove content from a
CR, TALM removes the content from the policy but the content is not removed from the CR on the
managed cluster.

With the complianceType field to mustonlyhave, the policy ensures that the CR on the cluster is an
exact match of what is specified in the policy.

Prerequisites
® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.
® You have deployed a managed cluster from a hub cluster running RHACM.

® You have installed Topology Aware Lifecycle Manager on the hub cluster.

Procedure

1. Remove the content that you no longer need from the affected CRs. In this example, the
disableDrain: false line was removed from the SriovOperatorConfig CR.

Example CR

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:

61

OpenShift Container Platform 4.15 Edge computing

configDaemonNodeSelector:
"node-role.kubernetes.io/$mcp": "

disableDrain: true

enablelnjector: true

enableOperatorWebhook: true

2. Change the complianceType of the affected policies to mustonlyhave in the group-du-sno-
ranGen.yaml file.

Example YAML

#...

- fileName: SriovOperatorConfig.yaml
policyName: "config-policy”
complianceType: mustonlyhave

#...

3. Create a ClusterGroupUpdates CR and specify the clusters that must receive the CR changes::

Example ClusterGroupUpdates CR

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-remove
namespace: default
spec:
managedPolicies:
- ztp-group.group-du-sno-config-policy
enable: false
clusters:
- spoke1
- spoke2
remediationStrategy:
maxConcurrency: 2
timeout: 240
batchTimeoutAction:

4. Create the ClusterGroupUpgrade CR by running the following command:

I $ oc create -f cgu-remove.yaml

5. When you are ready to apply the changes, for example, during an appropriate maintenance
window, change the value of the spec.enable field to true by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-remove \
--patch '{"spec":{"enable":true}}' --type=merge

Verification

1. Check the status of the policies by running the following command:

I $ oc get <kind> <changed_cr_name>

62

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

Example output

NAMESPACE NAME REMEDIATION ACTION
COMPLIANCE STATE AGE

default cgu-ztp-group.group-du-sno-config-policy enforce 17m
default ztp-group.group-du-sno-config-policy inform NonCompliant
15h

When the COMPLIANCE STATE of the policy is Compliant, it means that the CR is updated
and the unwanted content is removed.

2. Check that the policies are removed from the targeted clusters by running the following
command on the managed clusters:

I $ oc get <kind> <changed_cr_name>

If there are no results, the CR is removed from the managed cluster.

5.9.INDICATION OF DONE FOR GITOPS ZTP INSTALLATIONS

GitOps Zero Touch Provisioning (ZTP) simplifies the process of checking the GitOps ZTP installation
status for a cluster. The GitOps ZTP status moves through three phases: cluster installation, cluster
configuration, and GitOps ZTP done.

Cluster installation phase

The cluster installation phase is shown by the ManagedClusterJoined and
ManagedClusterAvailable conditions in the ManagedCluster CR . If the ManagedCluster CR does
not have these conditions, or the condition is set to False, the cluster is still in the installation phase.
Additional details about installation are available from the AgentClusterinstall and
ClusterDeployment CRs. For more information, see "Troubleshooting GitOps ZTP".

Cluster configuration phase

The cluster configuration phase is shown by a ztp-running label applied the ManagedCluster CR for
the cluster.

GitOps ZTP done

Cluster installation and configuration is complete in the GitOps ZTP done phase. This is shown by the
removal of the ztp-running label and addition of the ztp-done label to the ManagedCluster CR.

The ztp-done label shows that the configuration has been applied and the baseline DU configuration
has completed cluster tuning.

The transition to the GitOps ZTP done state is conditional on the compliant state of a Red Hat
Advanced Cluster Management (RHACM) validator inform policy. This policy captures the existing
criteria for a completed installation and validates that it moves to a compliant state only when GitOps
ZTP provisioning of the managed cluster is complete.

The validator inform policy ensures the configuration of the cluster is fully applied and Operators
have completed their initialization. The policy validates the following:

e The target MachineConfigPool contains the expected entries and has finished updating. All
nodes are available and not degraded.

® The SR-IOV Operator has completed initialization as indicated by at least one
SriovNetworkNodeState with syncStatus: Succeeded.

® The PTP Operator daemon set exists.

63

OpenShift Container Platform 4.15 Edge computing

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE
OPENSHIFT CLUSTER WITH ZTP

You can deploy a managed single-node OpenShift cluster by using Red Hat Advanced Cluster
Management (RHACM) and the assisted service.

NOTE

If you are creating multiple managed clusters, use the SiteConfig method described in
Deploying far edge sites with ZTP .

IMPORTANT

The target bare-metal host must meet the networking, firmware, and hardware
requirements listed in Recommended cluster configuration for vDU application
workloads.

6.1. GENERATING GITOPS ZTP INSTALLATION AND CONFIGURATION
CRS MANUALLY

Use the generator entrypoint for the ztp-site-generate container to generate the site installation and
configuration custom resource (CRs) for a cluster based on SiteConfig and PolicyGenTemplate CRs.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Create an output folder by running the following command:
I $ mkdir -p ./out

2. Export the argocd directory from the ztp-site-generate container image:

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.15 extract /home/ztp --tar | tar x -C ./out

The ./Jout directory has the reference PolicyGenTemplate and SiteConfig CRs in the

out/argocd/example/ folder.

Example output

out
L— argocd
L— example
— policygentemplates
—— common-ranGen.yaml
| |— example-sno-site.yaml
| — group-du-sno-ranGen.yaml

64

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTF

| — group-du-sno-validator-ranGen.yaml
| |— kustomization.yaml

| L—ns.yaml

L siteconfig

—— example-sno.yaml|

—— KlusterletAddonConfigOverride.yaml
—— kustomization.yaml

. Create an output folder for the site installation CRs:
I $ mkdir -p /site-install

. Modify the example SiteConfig CR for the cluster type that you want to install. Copy example-
sno.yaml to site-1-sno.yaml and modify the CR to match the details of the site and bare-
metal host that you want to install, for example:

example-node 1-bmh-secret & assisted-deployment-pull-secret need to be created under
same namespace example-sno
apiVersion: ran.openshift.io/v2
kind: SiteConfig
metadata:
name: "example-sno"
namespace: "example-sno”
spec:
baseDomain: "example.com”
pullSecretRef:
name: "assisted-deployment-pull-secret”
clusterlmageSetNameRef: "openshift-4.10"
sshPublicKey: "ssh-rsa AAAA..."
clusters:
- clusterName: "example-sno"
networkType: "OVNKubernetes"
installConfigOverrides is a generic way of passing install-config
parameters through the siteConfig. The 'capabilities’ field configures
the composable openshift feature. In this ‘capabilities’ setting, we
remove all but the marketplace component from the optional set of
components.
Notes:
- OperatorLifecycleManager is needed for 4.15 and later
- NodeTuning is needed for 4.13 and later, not for 4.12 and earlier
installConfigOverrides: "{\"capabilities\":{\"baselineCapabilitySet\": \"None\",
\"additionalEnabledCapabilities\": [\"OperatorLifecycleManager\", \"NodeTuning\"] }}"
It is strongly recommended to include crun manifests as part of the additional install-
time manifests for 4.13+.
The crun manifests can be obtained from source-crs/optional-extra-manifest/ and
added to the git repo ie.sno-extra-manifest.
extraManifestPath: sno-extra-manifest
clusterLabels:
These example cluster labels correspond to the bindingRules in the
PolicyGenTemplate examples
du-profile: "latest"
These example cluster labels correspond to the bindingRules in the
PolicyGenTemplate examples in ../policygentemplates:
../policygentemplates/common-ranGen.yaml will apply to all clusters with ‘common:

65

OpenShift Container Platform 4.15 Edge computing

true’
common: true
../policygentemplates/group-du-sno-ranGen.yaml will apply to all clusters with ‘group-
adu-sno: "
group-du-sno:
../policygentemplates/example-sno-site.yaml will apply to all clusters with 'sites:
"example-sno™
Normally this should match or contain the cluster name so it only applies to a single
cluster
sites: "example-sno"
clusterNetwork:
- cidr: 1001:1::/48
hostPrefix: 64
machineNetwork:
- cidr: 1111:2222:3333:4444::/64
serviceNetwork:
-1001:2::/112
additionalNTPSources:
- 1111:2222:3333:4444.::2
Initiates the cluster for workload partitioning. Setting specific reserved/isolated CPUSets
is done via Policy Template
please see Workload Partitioning Feature for a complete guide.
cpuPartitioningMode: AllNodes
Optionally; This can be used to override the KlusterletAddonConfig that is created for
this cluster:
#crTemplates:
KlusterletAddonConfig: "KlusterletAddonConfigOverride.yaml”
nodes:
- hostName: "example-node1.example.com”
role: "master”
Optionally; This can be used to configure desired BIOS setting on a host:
#biosConfigRef:
filePath: "example-hw.profile”
bmcAddress: "idrac-
virtualmedia+https://[1111:2222:3333:4444::bbbb:1]/redfish/v1/Systems/System.Embedded.1"

bmcCredentialsName:
name: "example-node1-bmh-secret"
bootMACAddress: "AA:BB:CC:DD:EE:11"
Use UEFISecureBoot to enable secure boot
bootMode: "UEFI"
rootDeviceHints:
wwn: "0x11111000000asd123"
example of diskPartition below is used for image registry (check ImageRegistry.md
for more details), but it's not limited to this use case
diskPartition:
- device: /dev/disk/by-id/wwn-0x11111000000asd123 # match rootDeviceHints
partitions:
- mount_point: /var/imageregistry
size: 102500
start: 344844

TR R W R R

nodeNetwork:
interfaces:
- name: enof
macAddress: "AA:BB:CC:DD:EE:11"

66

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTF

config:
interfaces:
- name: enof
type: ethernet
state: up
ipv4:
enabled: false
ipv6:
enabled: true
address:
For SNO sites with static IP addresses, the node-specific,
APl and Ingress IPs should all be the same and configured on
the interface
- ip: 1111:2222:3333:4444::aaaa:1
prefix-length: 64
dns-resolver:
config:
search:
- example.com
server:
- 1111:2222:3333:4444::2
routes:
config:
- destination: ::/0
next-hop-interface: eno1
next-hop-address: 1111:2222:3333:4444::1
table-id: 254

NOTE

Once you have extracted reference CR configuration files from the out/extra-
manifest directory of the ztp-site-generate container, you can use
extraManifests.searchPaths to include the path to the git directory containing
those files. This allows the GitOps ZTP pipeline to apply those CR files during
cluster installation. If you configure a searchPaths directory, the GitOps ZTP
pipeline does not fetch manifests from the ztp-site-generate container during
site installation.

5. Generate the Day O installation CRs by processing the modified SiteConfig CR site-1-
snho.yaml by running the following command:

$ podman run -it --rm -v “pwd’/out/argocd/example/siteconfig:/resources:Z -v “pwd’/site-
install:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.15 generator install
site-1-sno.yaml /output

Example output

site-install

L site-1-sno

— site-1_agentclusterinstall_example-sno.yaml

— site-1-sno_baremetalhost_example-nodei.example.com.yaml
— site-1-sno_clusterdeployment_example-sno.yaml

— site-1-sno_configmap_example-sno.yaml

—— site-1-sno_infraenv_example-sno.yaml

67

OpenShift Container Platform 4.15 Edge computing

—— site-1-sno_klusterletaddonconfig_example-sno.yaml

—— site-1-sno_machineconfig_02-master-workload-partitioning.yami
—— site-1-sno_machineconfig_predefined-extra-manifests-master.yaml
—— site-1-sno_machineconfig_predefined-extra-manifests-worker.yaml
—— site-1-sno_managedcluster_example-sno.yaml

—— site-1-sno_namespace_example-sno.yaml

—— site-1-sno_nmstateconfig_example-node1.example.com.yaml

6. Optional: Generate just the Day O MachineConfig installation CRs for a particular cluster type
by processing the reference SiteConfig CR with the -E option. For example, run the following
commands:

a. Create an output folder for the MachineConfig CRs:

I $ mkdir -p ./site-machineconfig

b. Generate the MachineConfig installation CRs:

$ podman run -it --rm -v “pwd’/out/argocd/example/siteconfig:/resources:Z -v “pwd’/site-
machineconfig:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.15
generator install -E site-1-sno.yaml /output

Example output

site-machineconfig

L site-1-sno

—— site-1-sno_machineconfig_02-master-workload-partitioning.yami
—— site-1-sno_machineconfig_predefined-extra-manifests-master.yaml
—— site-1-sno_machineconfig_predefined-extra-manifests-worker.yaml

7. Generate and export the Day 2 configuration CRs using the reference PolicyGenTemplate
CRs from the previous step. Run the following commands:

a. Create an output folder for the Day 2 CRs:
I $ mkdir -p ./ref
b. Generate and export the Day 2 configuration CRs:
$ podman run -it --rm -v “pwd’/out/argocd/example/policygentemplates:/resources:Z -v
“pwd /ref:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.15 generator

config -N . /output

The command generates example group and site-specific PolicyGenTemplate CRs for
single-node OpenShift, three-node clusters, and standard clusters in the ./ref folder.

Example output

ref
L— customResource
—— common
—— example-multinode-site
—— example-sno
—— group-du-3node

68

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTF

— group-du-3node-validator

| L— Multiple-validatorCRs

—— group-du-sno

—— group-du-sno-validator

—— group-du-standard

—— group-du-standard-validator
L— Multiple-validatorCRs

8. Use the generated CRs as the basis for the CRs that you use to install the cluster. You apply the
installation CRs to the hub cluster as described in "Installing a single managed cluster”. The
configuration CRs can be applied to the cluster after cluster installation is complete.

Verification

e Verify that the custom roles and labels are applied after the node is deployed:

I $ oc describe node example-node.example.com
Example output

Name: example-node.example.com

Roles: control-plane,example-label,master,worker

Labels: beta.kubernetes.io/arch=amd64
beta.kubernetes.io/os=linux
custom-label/parameteri=true
kubernetes.io/arch=amd64
kubernetes.io/hostname=cnfdf03.telco5gran.eng.rdu2.redhat.com
kubernetes.io/os=linux
node-role.kubernetes.io/control-plane=
node-role.kubernetes.io/example-label= ﬂ
node-role.kubernetes.io/master=
node-role.kubernetes.io/worker=
node.openshift.io/os_id=rhcos

ﬂ The custom label is applied to the node.

Additional resources

® Workload partitioning
® BMC addressing
® About root device hints

® Single-node OpenShift SiteConfig CR installation reference

6.2. CREATING THE MANAGED BARE-METAL HOST SECRETS

Add the required Secret custom resources (CRs) for the managed bare-metal host to the hub cluster.
You need a secret for the GitOps Zero Touch Provisioning (ZTP) pipeline to access the Baseboard
Management Controller (BMC) and a secret for the assisted installer service to pull cluster installation
images from the registry.

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#bmc-addressing_ipi-install-installation-workflow
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#root-device-hints_preparing-to-install-with-agent-based-installer

OpenShift Container Platform 4.15 Edge computing

NOTE

The secrets are referenced from the SiteConfig CR by name. The namespace must
match the SiteConfig namespace.

Procedure

1. Create a YAML secret file containing credentials for the host Baseboard Management
Controller (BMC) and a pull secret required for installing OpenShift and all add-on cluster
Operators:

a. Save the following YAML as the file example-sno-secret.yami:

apiVersion: vi
kind: Secret
metadata:
name: example-sno-bmc-secret
namespace: example-sno ﬂ
data:
password: <base64 password>
username: <base64 username>
type: Opaque
apiVersion: vi
kind: Secret
metadata:
name: pull-secret
namespace: example-sno 6
data:
.dockerconfigjson: <pull_secret> ﬂ
type: kubernetes.io/dockerconfigjson

Must match the namespace configured in the related SiteConfig CR
Base64-encoded values for password and username

Must match the namespace configured in the related SiteConfig CR

- -

Base64-encoded pull secret

2. Add the relative path to example-sno-secret.yaml to the kustomization.yaml file that you use
to install the cluster.

6.3. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR
MANUAL INSTALLATIONS USING GITOPS ZTP

The GitOps Zero Touch Provisioning (ZTP) workflow uses the Discovery ISO as part of the OpenShift
Container Platform installation process on managed bare-metal hosts. You can edit the InfraEnv
resource to specify kernel arguments for the Discovery ISO. This is useful for cluster installations with
specific environmental requirements. For example, configure the rd.net.timeout.carrier kernel
argument for the Discovery ISO to facilitate static networking for the cluster or to receive a DHCP
address before downloading the root file system during installation.

70

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTF

NOTE

In OpenShift Container Platform 4.15, you can only add kernel arguments. You can not
replace or delete kernel arguments.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have manually generated the installation and configuration custom resources (CRs).

Procedure

1. Edit the spec.kernelArguments specification in the InfraEnv CR to configure kernel
arguments:

apiVersion: agent-install.openshift.io/vibetai
kind: InfraEnv
metadata:
name: <cluster_name>
namespace: <cluster_name>
spec:
kernelArguments:
- operation: append
value: audit=0
- operation: append
value: trace=1
clusterRef:
name: <cluster_name>
namespace: <cluster_name>
pullSecretRef:
name: pull-secret

Specify the append operation to add a kernel argument.

®9

Specify the kernel argument you want to configure. This example configures the audit kernel
argument and the trace kernel argument.

NOTE

The SiteConfig CR generates the InfraEnv resource as part of the day-0 installation
CRs.
Verification

To verify that the kernel arguments are applied, after the Discovery image verifies that OpenShift
Container Platform is ready for installation, you can SSH to the target host before the installation
process begins. At that point, you can view the kernel arguments for the Discovery ISO in the
/proc/cmdline file.

1. Begin an SSH session with the target host:

71

OpenShift Container Platform 4.15 Edge computing

I $ ssh -i /path/to/privatekey core@<host_name>
2. View the system'’s kernel arguments by using the following command:

I $ cat /proc/cmdline

6.4.INSTALLING A SINGLE MANAGED CLUSTER

You can manually deploy a single managed cluster using the assisted service and Red Hat Advanced
Cluster Management (RHACM).

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created the baseboard management controller (BMC) Secret and the image pull-
secret Secret custom resources (CRs). See "Creating the managed bare-metal host secrets”
for details.

® Your target bare-metal host meets the networking and hardware requirements for managed
clusters.

Procedure

1. Create a ClusterlmageSet for each specific cluster version to be deployed, for example
clusterimageSet-4.15.yaml. A ClusterimageSet has the following format:

apiVersion: hive.openshift.io/v1
kind: ClusterlmageSet
metadata:
name: openshift-4.15.0 0
spec:
releaselmage: quay.io/openshift-release-dev/ocp-release:4.15.0-x86_64 9

The descriptive version that you want to deploy.

Specifies the releaselmage to deploy and determines the operating system image
version. The discovery ISO is based on the image version as set by releaselmage, or the
latest version if the exact version is unavailable.

1]
2]

2. Apply the clusterimageSet CR:
I $ oc apply -f clusterimageSet-4.15.yaml
3. Create the Namespace CR in the cluster-namespace.yaml file:
apiVersion: vi

kind: Namespace
metadata:

72

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTF

name: <cluster_name> ﬂ
labels:
name: <cluster_name> 9

wThe name of the managed cluster to provision.

4. Apply the Namespace CR by running the following command:

I $ oc apply -f cluster-namespace.yaml

5. Apply the generated day-O CRs that you extracted from the ztp-site-generate container and
customized to meet your requirements:

I $ oc apply -R ./site-install/site-sno-1

Additional resources

® Connectivity prerequisites for managed cluster networks
® Deploying LVM Storage on single-node OpenShift clusters

® Configuring LVM Storage using PolicyGenTemplate CRs

6.5. MONITORING THE MANAGED CLUSTER INSTALLATION STATUS

Ensure that cluster provisioning was successful by checking the cluster status.

Prerequisites

® All of the custom resources have been configured and provisioned, and the Agent custom
resource is created on the hub for the managed cluster.

Procedure

1. Check the status of the managed cluster:
I $ oc get managedcluster

True indicates the managed cluster is ready.

2. Check the agent status:

I $ oc get agent -n <cluster_name>

3. Use the describe command to provide an in-depth description of the agent’s condition.
Statuses to be aware of include BackendError, InputError, ValidationsFailing,
InstallationFailed, and AgentlsConnected. These statuses are relevant to the Agent and
AgentClusterinstall custom resources.

I $ oc describe agent -n <cluster_name>

4. Check the cluster provisioning status:

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#lvms-preface-sno-ran_logical-volume-manager-storage

OpenShift Container Platform 4.15 Edge computing

I $ oc get agentclusterinstall -n <cluster_name>

. Use the describe command to provide an in-depth description of the cluster provisioning

status:

I $ oc describe agentclusterinstall -n <cluster_name>

. Check the status of the managed cluster’s add-on services:

I $ oc get managedclusteraddon -n <cluster_name>

. Retrieve the authentication information of the kubeconfig file for the managed cluster:

$ oc get secret -n <cluster_name> <cluster_name>-admin-kubeconfig -0 jsonpath=
{.data.kubeconfig} | base64 -d > <directory>/<cluster_namex>-kubeconfig

6.6. TROUBLESHOOTING THE MANAGED CLUSTER

Use this procedure to diagnose any installation issues that might occur with the managed cluster.

Procedure

74

1. Check the status of the managed cluster:

I $ oc get managedcluster

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE
SNO-cluster true True True 2d19h

If the status in the AVAILABLE column is True, the managed cluster is being managed by the
hub.

If the status in the AVAILABLE column is Unknown, the managed cluster is not being managed
by the hub. Use the following steps to continue checking to get more information.

. Check the AgentClusterinstall install status:

I $ oc get clusterdeployment -n <cluster_name>

Example output

NAME PLATFORM REGION CLUSTERTYPE INSTALLED INFRAID
VERSION POWERSTATE AGE

Sno0026 agent-baremetal false Initialized
2d14h

If the status in the INSTALLED column is false, the installation was unsuccessful.

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTF

3. If the installation failed, enter the following command to review the status of the
AgentClusterinstall resource:

I $ oc describe agentclusterinstall -n <cluster_name> <cluster_name>

4. Resolve the errors and reset the cluster:

a. Remove the cluster’'s managed cluster resource:

I $ oc delete managedcluster <cluster_name>

b. Remove the cluster’s namespace:
I $ oc delete namespace <cluster_name>

This deletes all of the namespace-scoped custom resources created for this cluster. You
must wait for the ManagedCluster CR deletion to complete before proceeding.

c. Recreate the custom resources for the managed cluster.

6.7. RHACM GENERATED CLUSTER INSTALLATION CRS REFERENCE

Red Hat Advanced Cluster Management (RHACM) supports deploying OpenShift Container Platform
on single-node clusters, three-node clusters, and standard clusters with a specific set of installation
custom resources (CRs) that you generate using SiteConfig CRs for each site.

NOTE

Every managed cluster has its own namespace, and all of the installation CRs except for
ManagedCluster and ClusterimageSet are under that namespace. ManagedCluster
and ClusterlmageSet are cluster-scoped, not namespace-scoped. The namespace and
the CR names match the cluster name.

The following table lists the installation CRs that are automatically applied by the RHACM assisted
service when it installs clusters using the SiteConfig CRs that you configure.

Table 6.1. Cluster installation CRs generated by RHACM

CR Description Usage

BareMetal Contains the connection information for the Provides access to the BMC to load and start

Host Baseboard Management Controller (BMC) the discovery image on the target server by
of the target bare-metal host. using the Redfish protocol.

InfraEnv Contains information for installing OpenShift ~ Used with ClusterDeployment to
Container Platform on the target bare-metal generate the discovery ISO for the managed
host. cluster.

75

OpenShift Container Platform 4.15 Edge computing

CR Description

AgentClus Specifies details of the managed cluster

terinstall configuration such as networking and the
number of control plane nodes. Displays the
cluster kubeconfig and credentials when
the installation is complete.

ClusterDe References the AgentClusterinstall CR to

ployment use.

NMStateC Provides network configuration information

onfig such as MAC address to IP mapping, DNS
server, default route, and other network
settings.

Agent Contains hardware information about the
target bare-metal host.

Managed When a cluster is managed by the hub, it

Cluster must be imported and known. This
Kubernetes object provides that interface.

Klusterlet Contains the list of services provided by the

AddonCo hub to be deployed to the

nfig ManagedCluster resource.

Namespac Logical space for ManagedCluster

e resources existing on the hub. Unique per
site.

Secret Two CRs are created: BMC Secret and
Image Pull Secret.

Clusterim Contains OpenShift Container Platform

ageSet image information such as the repository and

image name.

(VEETC[)

Specifies the managed cluster configuration
information and provides status during the
installation of the cluster.

Used with InfraEnv to generate the
discovery ISO for the managed cluster.

Sets up a static IP address for the managed
cluster’s Kube APl server.

Created automatically on the hub when the
target machine’s discovery image boots.

The hub uses this resource to manage and
show the status of managed clusters.

Tells the hub which addon services to deploy
to the ManagedCluster resource.

Propagates resources to the
ManagedCluster.

e BMC Secret authenticates into
the target bare-metal host using its
username and password.

e Image Pull Secret contains
authentication information for the
OpenShift Container Platform
image installed on the target bare-
metal host.

Passed into resources to provide OpenShift
Container Platform images.

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT
CLUSTER CONFIGURATION FOR VDU APPLICATION
WORKLOADS

Use the following reference information to understand the single-node OpenShift configurations
required to deploy virtual distributed unit (vDU) applications in the cluster. Configurations include
cluster optimizations for high performance workloads, enabling workload partitioning, and minimizing
the number of reboots required postinstallation.

Additional resources

® To deploy a single cluster by hand, see Manually installing a single-node OpenShift cluster with
GitOps ZTP.

® To deploy a fleet of clusters using GitOps Zero Touch Provisioning (ZTP), see Deploying far
edge sites with GitOps ZTP.

7.1. RUNNING LOW LATENCY APPLICATIONS ON OPENSHIFT
CONTAINER PLATFORM

OpenShift Container Platform enables low latency processing for applications running on commercial
off-the-shelf (COTS) hardware by using several technologies and specialized hardware devices:

Real-time kernel for RHCOS

Ensures workloads are handled with a high degree of process determinism.
CPU isolation

Avoids CPU scheduling delays and ensures CPU capacity is available consistently.
NUMA-aware topology management

Aligns memory and huge pages with CPU and PClI devices to pin guaranteed container memory and
huge pages to the non-uniform memory access (NUMA) node. Pod resources for all Quality of
Service (QoS) classes stay on the same NUMA node. This decreases latency and improves
performance of the node.

Huge pages memory management

Using huge page sizes improves system performance by reducing the amount of system resources
required to access page tables.

Precision timing synchronization using PTP

Allows synchronization between nodes in the network with sub-microsecond accuracy.

7.2. RECOMMENDED CLUSTER HOST REQUIREMENTS FOR VDU
APPLICATION WORKLOADS

Running vDU application workloads requires a bare-metal host with sufficient resources to run
OpenShift Container Platform services and production workloads.

Table 7.1. Minimum resource requirements

77

OpenShift Container Platform 4.15 Edge computing

Profile vCPU Memory Storage

Minimum 4 to 8 vCPU cores 32GB of RAM 120GB

NOTE
One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate

the corresponding ratio:

® (threads per core x cores) x sockets = vCPUs

IMPORTANT

The server must have a Baseboard Management Controller (BMC) when booting with
virtual media.

7.3. CONFIGURING HOST FIRMWARE FOR LOW LATENCY AND HIGH
PERFORMANCE

Bare-metal hosts require the firmware to be configured before the host can be provisioned. The
firmware configuration is dependent on the specific hardware and the particular requirements of your
installation.

Procedure

1. Set the UEFI/BIOS Boot Modeto UEFI.
2. Inthe host boot sequence order, set Hard drive first

3. Apply the specific firmware configuration for your hardware. The following table describes a
representative firmware configuration for an Intel Xeon Skylake or Intel Cascade Lake server,
based on the Intel FlexRAN 4G and 5G baseband PHY reference design.

IMPORTANT

The exact firmware configuration depends on your specific hardware and
network requirements. The following sample configuration is for illustrative
purposes only.

Table 7.2. Sample firmware configuration for an Intel Xeon Skylake or Cascade Lake server

Firmware setting Configuration

CPU Power and Performance Policy Performance
Uncore Frequency Scaling Disabled
Performance P-limit Disabled

78

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

Firmware setting Configuration

Enhanced Intel SpeedStep © Tech Enabled
Intel Configurable TDP Enabled
Configurable TDP Level Level 2
Intel® Turbo Boost Technology Enabled
Energy Efficient Turbo Disabled
Hardware P-States Disabled
Package C-State CO/Cl state
CIE Disabled
Processor C6 Disabled
NOTE

Enable global SR-IOV and VT-d settings in the firmware for the host. These settings are
relevant to bare-metal environments.

7.4. CONNECTIVITY PREREQUISITES FOR MANAGED CLUSTER
NETWORKS

Before you can install and provision a managed cluster with the GitOps Zero Touch Provisioning (ZTP)
pipeline, the managed cluster host must meet the following networking prerequisites:

® There must be bi-directional connectivity between the GitOps ZTP container in the hub cluster
and the Baseboard Management Controller (BMC) of the target bare-metal host.

® The managed cluster must be able to resolve and reach the APl hostname of the hub hostname
and *.apps hostname. Here is an example of the APl hostname of the hub and *.apps
hostname:

o api.hub-cluster.internal.domain.com
o console-openshift-console.apps.hub-cluster.internal.domain.com
® The hub cluster must be able to resolve and reach the APl and *.apps hostname of the

managed cluster. Here is an example of the APl hostname of the managed cluster and *.apps
hostname:

o api.sno-managed-cluster-1.internal.domain.com

o console-openshift-console.apps.sno-managed-cluster-1.internal.domain.com

79

OpenShift Container Platform 4.15 Edge computing

7.5. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT WITH
GITOPS ZTP

Workload partitioning configures OpenShift Container Platform services, cluster management
workloads, and infrastructure pods to run on a reserved number of host CPUs.

To configure workload partitioning with GitOps Zero Touch Provisioning (ZTP), you configure a
cpuPartitioningMode field in the SiteConfig custom resource (CR) that you use to install the cluster
and you apply a PerformanceProfile CR that configures the isolated and reserved CPUs on the host.

Configuring the SiteConfig CR enables workload partitioning at cluster installation time and applying
the PerformanceProfile CR configures the specific allocation of CPUs to reserved and isolated sets.
Both of these steps happen at different points during cluster provisioning.

NOTE

Configuring workload partitioning by using the cpuPartitioningMode field in the
SiteConfig CRis a Tech Preview feature in OpenShift Container Platform 4.13.

Alternatively, you can specify cluster management CPU resources with the cpuset field
of the SiteConfig custom resource (CR) and the reserved field of the group
PolicyGenTemplate CR. The GitOps ZTP pipeline uses these values to populate the
required fields in the workload partitioning MachineConfig CR (cpuset) and the
PerformanceProfile CR (reserved) that configure the single-node OpenShift cluster.
This method is a General Availability feature in OpenShift Container Platform 4.14.

The workload partitioning configuration pins the OpenShift Container Platform infrastructure pods to
the reserved CPU set. Platform services such as systemd, CRI-O, and kubelet run on the reserved CPU
set. The isolated CPU sets are exclusively allocated to your container workloads. Isolating CPUs

ensures that the workload has guaranteed access to the specified CPUs without contention from other
applications running on the same node. All CPUs that are not isolated should be reserved.

IMPORTANT

Ensure that reserved and isolated CPU sets do not overlap with each other.

Additional resources

® Forthe recommended single-node OpenShift workload partitioning configuration, see
Workload partitioning.

7.6. RECOMMENDED CLUSTER INSTALL MANIFESTS

The ZTP pipeline applies the following custom resources (CRs) during cluster installation. These
configuration CRs ensure that the cluster meets the feature and performance requirements necessary
for running a vDU application.

NOTE

When using the GitOps ZTP plugin and SiteConfig CRs for cluster deployment, the
following MachineConfig CRs are included by default.

80

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

Use the SiteConfig extraManifests filter to alter the CRs that are included by default. For more
information, see Advanced managed cluster configuration with SiteConfig CRs.

7.6.1. Workload partitioning

Single-node OpenShift clusters that run DU workloads require workload partitioning. This limits the
cores allowed to run platform services, maximizing the CPU core for application payloads.

NOTE

Workload partitioning can be enabled during cluster installation only. You cannot disable
workload partitioning postinstallation. You can however change the set of CPUs assigned
to the isolated and reserved sets through the PerformanceProfile CR. Changes to CPU
settings cause the node to reboot.

UPGRADING FROM OPENSHIFT CONTAINER PLATFORM 4.12 TO 4.13+

When transitioning to using cpuPartitioningMode for enabling workload partitioning,
remove the workload partitioning MachineConfig CRs from the /extra-manifest folder
that you use to provision the cluster.

Recommended SiteConfig CR configuration for workload partitioning

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
name: "<site_name>"
namespace: "<site_name>"
spec:
baseDomain: "example.com"
cpuPartitioningMode: AlINodes ﬂ

Set the cpuPartitioningMode field to AlINodes to configure workload partitioning for all nodes in
the cluster.

Verification

Check that the applications and cluster system CPU pinning is correct. Run the following commands:

1. Open aremote shell prompt to the managed cluster:
I $ oc debug node/example-sno-1

2. Check that the OpenShift infrastructure applications CPU pinning is correct:
I sh-4.4# pgrep ovn | while read i; do taskset -cp $i; done
Example output

pid 8481's current affinity list: 0-1,52-53
pid 8726's current affinity list: 0-1,52-53
pid 9088's current affinity list: 0-1,52-53

81

OpenShift Container Platform 4.15 Edge computing

pid 9945's current affinity list: 0-1,52-53

pid 10387's current affinity list: 0-1,52-53
pid 12123's current affinity list: 0-1,52-53
pid 13313's current affinity list: 0-1,52-53

3. Check that the system applications CPU pinning is correct:
I sh-4.4# pgrep systemd | while read i; do taskset -cp $i; done
Example output
pid 1's current affinity list: 0-1,52-53
pid 938's current affinity list: 0-1,52-53

pid 962's current affinity list: 0-1,52-53
pid 1197's current affinity list: 0-1,52-53

7.6.2. Reduced platform management footprint

To reduce the overall management footprint of the platform, a MachineConfig custom resource (CR) is
required that places all Kubernetes-specific mount points in a new namespace separate from the host
operating system. The following base64-encoded example MachineConfig CR illustrates this
configuration.

Recommended container mount namespace configuration (01-container-mount-ns-and-
kubelet-conf-master.yaml)

82

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: container-mount-namespace-and-kubelet-conf-master
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;baseb4,lyEvYmluL2Jhc2gKCmRIYnVnKCkgewoglGVjaG8gJEAgPiYyCnOKCnVzYWdIKCkgewoglGVj
aG8gVXNhz2U61CQoYmFzZW5hbWUgJDApIFVOSVQgW2VudmZpbGUgW3Zhcm5hbWVdXQoglGV
jaG8KICBIY2hvIEV4dHJhY3QgdGhlIGNvbnRIbnRzIGIMIHR0ZSBmaXJzdCBFeGVjU3RhcnQgc3Rhbn
phlGZyb20gdGhlIGdpdmVulHN5c3RIbWQgdW5pdCBhbmQgecmVO0dXJulGIOIHRVIHNOZG91dAogIGVj
aG8KICBIY2hvICJJZiAnZW52ZmlIsZScgaXMgcHJvdmIkZWQsIHB1dCBpdCBpbiB0aGVyZSBpbnNOZW
FKLCBhcyBhbiBlbnZpcm9ubWVudCB2Y XJpYWJsZSBuYW1IZCAndmFybmFtZSciCiAgZWNobyAiRGV
mYXVsdCAndmFybmFtZScgaXMgRVhFQ1NUQVJUIGIMIG5vdCBzcGVjaWZpZWQICiAgZXhpdCAxC
nOKCIVOSVQ9JDEKRUSWRKIMRTOkMgpWQVJOQU1FPSQzCmimIFtbIC16ICRVTKIUIHX8ICRVTKIUI
DO9ICILWhIbHAIiIHx8ICRVTKIUID09ICItaClgXV07IHRoZW4KICB1c2FnZQpmaQpkZWJ1ZyAiRXhOcm
FidGluZyBFeGVjU3RhcnQgZnJvbSAKVU5JVCIKRKIMRTOKKHNSc3RIbWNObCBjYXQgJFVOSVQgfCB
0ZWFKIC1ulDEpCkZJTEU9JHtGSUxFI1wjlHOKaWYgW1sglISAtZiAKRKIMRSBdAXTsgdGhlbgoglGRIYnV
nICJGYWIsZWQgdG8gZmluZCByb2901GZpbGUgZm9yIHVuaXQgJFVOSVQgKCRGSUXFKSIKICBIle
GIOCmMZpCmRIYNVnICJTZXJ2aWNIIGRIZmluaXRpb24gaXMgaW4gJEZJTEUICKVYRUNTVEFSVDOk
KHNIZCAtbiAtZSAnL15FeGVjU3RhcnQ9LipcXCQvLCIbXIxcXSQvIHsgcy9eRXhIY1NOYXJOPS8vOyBw

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

IHONIC111ICcvXkV4ZWNTdGFydDOuKIteXFxdJC8geyBzL15FeGVjU3RhcnQ9Ly87IHAgfScgJEZJTEUp
CgppZiBbWyAkRU5WRKIMRSBdXTsgdGhlbgoglFZBUk5BTUU9JHIWQVJOQU1FOi1FWEVDU1RBUI
R9CiAgZWNobyAiJHIWQVJOQU1FfTOkeOVYRUNTVEFSVHO0IID4gJEVOVKZJTEUKZWxzZQoglGVja
G8gJEVYRUNTVEFSVApmaQo=
mode: 493
path: /usr/local/bin/extractExecStart
- contents:
source: data:text/plain;charset=utf-
8;baseb4,lyEvYmluL2Jhc2gKbnNIbnRIciAtLW1vdW50PS9ydW4vY29udGFpbmVyLW1vdW50LW5hbW\
zcGFjZS9tbnQgliRAlgo=
mode: 493
path: /usr/local/bin/nsenterCmns
systemd:
units:
- contents: |
[Unit]
Description=Manages a mount namespace that both kubelet and crio can use to share their
container-specific mounts

[Service]
Type=oneshot
RemainAfterExit=yes
RuntimeDirectory=container-mount-namespace
Environment=RUNTIME_DIRECTORY=%t/container-mount-namespace
Environment=BIND_POINT=%t/container-mount-namespace/mnt
ExecStartPre=bash -c "findmnt ${RUNTIME_DIRECTORY?} || mount --make-unbindable --
bind ${RUNTIME_DIRECTORY} ${RUNTIME_DIRECTORY}"
ExecStartPre=touch ${BIND_POINT}
ExecStart=unshare --mount=${BIND_POINT} --propagation slave mount --make-rshared /
ExecStop=umount -R ${RUNTIME_DIRECTORY}
name: container-mount-namespace.service
- dropins:
- contents: |
[Unit]
Wants=container-mount-namespace.service
After=container-mount-namespace.service

[Service]
ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env
ORIG_EXECSTART
EnvironmentFile=-/%t/%N-execstart.env
ExecStart=
ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
${ORIG_EXECSTART}"
name: 90-container-mount-namespace.conf
name: crio.service
- dropins:
- contents: |
[Unit]
Wants=container-mount-namespace.service
After=container-mount-namespace.service

[Service]

ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env
ORIG_EXECSTART

EnvironmentFile=-/%t/%N-execstart.env

83

OpenShift Container Platform 4.15 Edge computing

ExecStart=
ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
${ORIG_EXECSTART} --housekeeping-interval=30s"
name: 90-container-mount-namespace.conf
- contents: |

[Service]
Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"
Environment="OPENSHIFT_EVICTION_MONITORING_PERIOD_DURATION=30s"

name: 30-kubelet-interval-tuning.conf

name: kubelet.service

7.6.3.SCTP

Stream Control Transmission Protocol (SCTP) is a key protocol used in RAN applications. This
MachineConfig object adds the SCTP kernel module to the node to enable this protocol.

Recommended control plane node SCTP configuration (03-sctp-machine-config-
master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: load-sctp-module-master
spec:
config:
ignition:
version: 2.2.0
storage:
files:
- contents:
source: data:,
verification: {}
filesystem: root
mode: 420
path: /etc/modprobe.d/sctp-blacklist.conf
- contents:
source: data:text/plain;charset=utf-8,sctp
filesystem: root
mode: 420
path: /etc/modules-load.d/sctp-load.conf

Recommended worker node SCTP configuration (03-sctp-machine-config-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: load-sctp-module-worker
spec:
config:
ignition:

84

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

version: 2.2.0
storage:
files:
- contents:
source: data:,
verification: {}
filesystem: root
mode: 420
path: /etc/modprobe.d/sctp-blacklist.conf
- contents:
source: data:text/plain;charset=utf-8,sctp
filesystem: root
mode: 420
path: /etc/modules-load.d/sctp-load.conf

7.6.4. Accelerated container startup

The following MachineConfig CR configures core OpenShift processes and containers to use all
available CPU cores during system startup and shutdown. This accelerates the system recovery during
initial boot and reboots.

Recommended accelerated container startup configuration (04-accelerated-container-
startup-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 04-accelerated-container-startup-master
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,lyEvYmluL2Jhc2gKIwojlFRIbXBvemFyaWx5IHJIc2VOIHRoZSBjb3JIIHNS5c3RIbSBwem9jZXNz
ZXMncyBDUFUgYWZmaW5pdHkgdG8gYmUgdW5yZXNOcmljdGVKkIHRVIGFjY2VsZXJhdGUgc3Rhcen
R1cCBhbmQgc2h1dGRvd24KIwojlIFRoZSBkZWZhdWx0cyBiZWxvdyBjYW4gYmUgb3ZicnJpZGRIbiB22
WEgZW52aXJvbm1lbnQgdmFyaWFibGVzCiMKCiMgVGhIIGRIZmF1bHQgc2V0IGIMIGNyaXRpY2Fsl|
HByb2NIc3NIcyB3aG9zZSBhZmZpbml0eSBzaG91bGQgYmUgdGVicG9yY XJpbHkgdW5ib3VuZDoKQ
1JJVEIDQUXfUFJPQOVTUOVTPSR7Q1JJVEIDQUxfUFJPQOVTUOVTOI0iY3JpbyBrdWJIbGVOIE5IdHd
vemtNYW5hZ2VylGNvbm1vbiBkYnVzInOKCiMgRGVmYXVsdCB3YWI0OIHRpbWUgaXMgNjAwcyA9IDE
wbToKTUFYSU1VTVIXQUIUX1RJTUUIJHINQVhJTVVNX1dBSVRFVEINRTotNjAwWfQoKIyBEZWZhd
Wx0IHNOZWFkeS1zdGF0ZSB0aHJlc2hvbGQgPSAyJQojIEFsbG93ZWQgdmFsdWVzOgojICAOICALIG
Fic29sdXRIIHBvZCBjb3VudCAoKy8tKQojlCA0JSAtIHBIcmNIbnQgY2hhbmdIlCgrLy0pCiMglC0xIC0gZG
IzZYWJsZSB0aGUgc3RIYWR5LXNOYXRIIGNoZWNrCINURUFEWVIOTVEFURVOUSFJFUOhPTEQ9JHt
TVEVBRFIfU1RBVEVfVEhSRVNITOXEOiOyJXOKCiMgRGVmYXVsdCBzdGVhZHkic3RhdGUgd2luZG9
3ID0gNjBzCiMgSWYgdGhlIHJ1bm5pbmcgcGIkIGNvAWS50IHNOY XIzIHdpdGhpbiB0aGUgZ212ZW4gdG
hyZXNob2xklGZvciB0aGlzIHRpbWUKIyBwZXJpb2QsIHJIdHVybiBDUFUgdXRpbGl6YXRpb24gdG8gb
m9ybWFsIGJIZm9yZSB0aGUgbWF4aW11bSB3YWIOIHRpbWUgaGFzCiMgZXhwaXJlcwpTVEVBRFIf
U1RBVEVfVOIORE9XPSR7U1RFQURZX1NUQVRFX1dJTkRPVzotNjB9CgojlIERIZmF1bHQgc3RIYW
R5LXNOYXRIIGFsbG93cyBhbnkgcG9kIGNvdW50IHRVIGJIICJzdGVhZHkgc3RhdGUICiMgSW5jcmVhe

85

OpenShift Container Platform 4.15 Edge computing

86

2luZyB0aGlzIHdpbGwgc2tpcCBhbnkgc3RIYWRSLXNOYXRIGNoZWNrcyB1bnRpbCB0aGUgY291bnQ
gecmlzZXMgYWJvdmUKIyB0aGlzIG51bWJIciBObyBhdm9pZCBmYWxzZSBwb3NpdGl2ZXMgaWYgdGhl
cmUgYXJIIHNvbWUgcGVyaW9kcyB3aGVyZSB0aGUKIyBjb3VudCBkb2VzbidOIGIuY3JIYXNIIGJ1dCB3
ZSBrbm93IHdIIGNhbid0IGJIIGFOIHNOZWFkeS1zdGF0ZSB5ZXQuCINURUFEWVOTVEFURVIONSUSJ
TVVNPSR7U1RFQURZX1NUQVRFX01JTKINVUOGLTB9CgojlyMjlyMjlyMjlyMjlyMijlyMjlyMjlyMjlyMjly Mj
yMjlyMjlyMjlyMijlyMjlyMjlyMjlyMjCgpLVUJFTEVUXONQVVOTVEFURTOvdmFyL2xpYi9rdWJIbGVOL2Nw
dVItYW5hZ2VyX3NOYXRICKZVTExfQ1BVX1NUQVRFPS9zeXMvZnMvY2dyb3VwL2NwdXNIdC9jcHVz
ZXQuY3B1cwpLVUJFTEVUXONPTKY9L2VOYy9rdWdlcm5ldGVzL2t1YmVsZXQuY29uZgp1bndic3Rya
WNOZWRDcHVzZXQoKSB7CiAgbG9jYWwgY3B1cwoglGImIFtbIC1IICRLVUJFTEVUXONQVVITVEF
URSBdXTsgdGhlbgoglCAgY3B1czOkKGpxIC1ylICcuZGVmYXVsdENwdVNIdCcgPCRLVUJFTEVUXON
QVVITVEFURSKKICAgIGImIFtbIC1ulClke2NwdXN9liAmJiAtZSAke0tVQkVMRVRfQO9ORN0gXVO7IH
RoZW4KICAgICAgecmVzZXJ2ZWRfY3B1czOkKGpxIC1ylCcucmVzZXJ2ZWRTeXNOZW1DUFVzJyA8L2
VOYy9rdWdJlcm5ldGVzL2t1 YmVsZXQuY29uZikKICAgICAgaWYgW1sgLW4gliR7cmVzZXJ2ZWRfY3B1¢
30ilF1dOyB0aGVuCiAgICAgICAglyBVc2UgdGFza3NIdCBObyBtZXJnZSB0aGUgdHdAvIGNwdXNIdHMK
ICAgQICAQGICBjcHVzPSQodGFza3NIdCAtYyAiJHtyZXNIcnZIZF9jcHVzfSwke2NwdXN9liBnecmVwIC1plE
NwdXNfYWxsb3dIZF9saXN0ICOwcm9jL3NIbGYvc3RhdHVzIHwgY XdrlCd7cHJpbnQgJDJ9JykKICAQIC
AgZmkKICAgIGZpCiAgZmkKICBpZiBbWyAteiAkY3B1cyBdXTsgdGhlbgoglCAglyBmYWxsIGJhY2sgdG
8gdXNpbmcgYWxsIGNwdXMgaWYgdGhllGt1YmVsZXQgc3RhdGUgaXMgbm90IGNvbmZpZ3VyZWQ
geWVOCIiAgICBbWyAtZSAKRIVMTFIDUFVfU1RBVEUgXVO0gfHwgecmVOdXJulDEKICAgIGNwdXM9JC
g8JEZVTEXxfQ1BVX1NUQVRFKQoglGZpCiAgZWNobyAkY3B1cwp9CgpyZXNOcmljdGVkQ3B1c2VOK
CkgewoglGZvciBhcmcgaW4gJCg8L3Byb2MvY21kbGluZSk7IGRvVCIAgICBpZiBbWyAKY XJnID1+IF5zeX
NOZW1kLmNwdV9hZmZpbml0eTOgXV07IHRoZW4KICAgICAgZWNobyAke2FyZyMqPX0KICAgICAgc
mV0OdXJulDAKICAgQIGZpCiAgZG9uZQoglHJIdHVybiAxCnOKCndlc2VOQWZmaW5pdHkoKSB7CiAgbhG
9jYWwgY3B1c2VOPSIKMSIKICBsb2NhbCBmYWIsY291bnQ9MAo0gIGxvY2FsIHN1Y2NIc3Njb3VudDOw
CiAgbG9InZ2VyICJSZWNvdmVyeTogU2V0dGluZyBDUFUgYWZmaW5pdHkgZm9yIGNyaXRpY2FsIH
Byb2NIc3NIcyBcliRDUKIUSUNBTFIQUKIDRVNTRVNCcIiBObyAkY3B1c2V0IgoglGZvciBwem9jlGlulCRD
UkKIUSUNBTF9QUkIDRVNTRVM7IGRvCiAgICBsb2NhbCBwaWRzPSIkKHBncmVwICRwem9jKSIKIC
AglGZvciBwaWQgaW4gJHBpZHM7IGRVCiAgICAgIGxvY2FsIHRhc2tzZXRPAXRwdXQKICAgICAgdG
Fza3NIdE91dHB1dD0iJChOYXNrc2V0IC1hcGMgliRjcHVzZXQilCRwaWQgMj4mMSkiCiAgICAgIGImIFt
bICQ/IC1uZSAwIF1dOyB0aGVuCiAgICAgICAgZWNobyAiRVJST1161CROYXNrc2V0OT3V0cHV0IgogIC
AgICAgICgoZmFpbGNvdW50KyspKQogICAgICBIbHNICIAgICAgICAgKChzdWNjZXNzY291bnQrKykp
CiAgICAQIGZpCiAgICBkb25ICiAgZG9uZQoKICBsb2dnZXIgllJlY292ZXJ50iBSZS1hZmZpbmVkICRzd
WNjZXNzY291bnQgcGlkcyBzdWNjZXNzZnVsbHkiCiAgaWYgW1sgJGZhaWxjb3VudCAtZ3QgMCBdIXT
sgdGhlbgoglCAgbG9nZ2VyICJSZWNvdmVyeTogRmFpbGVKIHRVIHJILWFmMZmIuZSAkZmFpbGNvdW
50IHByb2NIc3NIcylIKICAgIHJIdHVybiAxCiAgZmkKfQoKc2VOVW5yZXNOcmljdGVKKCkgewoglGxvZ2dici
AiUmVjb3ZIlcnk6IFNIdHRpbmcgY3JpdGliY Wwgc3lzdGViIHByb2NIc3NIcyBObyBoYXZIIHVucmVzdHJpY
RIZCBDUFUgYWN;jZXNzlgoglHJIc2VOQWZmaW5pdHkgliQodW5yZXN0cmljdGVkQ3B1c2VOKSIKfQo
Kc2VOUmVzdHJpY3RIZCgplHsKICBsb2dnZXIglldY292ZXJ50iBSZXNIdHRpbmcgY3JpdGljYWwgc3lzc
GVtIHByb2NIc3NIcyBiYWNrIHRvIG5vem1hbGx5IHJIc3RyaWNOZWQgYWNjZXNzlgogIHJIc2VOQWZm
aW5pdHkgliQocmVzdHJpY3RIZENwdXNIdCkiCnOKCmN1cndlbnRBZmZpbml0eSgplHsKICBsb2NhbC
BwaWQO9liQxlgogIHRhc2tzZXQgLXBjICRwaWQgfCBhd2sgLUYnOiAnICd7cHJpbnQgJDJ9Jwp9Cgp3a
XRoaW40KSB7CiAgbG9jYWwgbGFzdDOkMSBjdXJyZW50PSQyIHRocmVzaG9sZD0kMwoglGxvY2Fsl|
GRIbHRhPTAgcGNoYW5nZQoglGRIbHRhPSQoKCBjdXJyZW501C0gbGFzdCApKQoglGImIFtbICRjd
XJyZW50IC1IcSAKbGFzdCBdXTsgdGhlbgoglCAgcGNoYW5nZTOwWCiAgZWxpZiBbWyAkbGFzdCAtZX
EgMCBdXTsgdGhlbgoglCAgcGNoYW5nZTOXMDAwWMDAwCiIAgZWxzZQoglCAgcGNoYW5nZTOKKCg
gKCAKZGVsdGEgKiAXMDApIC8gbGFzdCApKQoglGZpCiAgZWNobyAtbiAibGFzdDokbGFzdCBjdXJy
ZW500iRjdXJyZW50IGRIbHRhOIRkZWx0YSBwY2hhbmdIOiR7cGNoYW5nZX0IOiAiCiAgbG9jYWwgY
WJzb2x1dGUgbGltaXQKICBjYXNIICR0aHJlc2hvbGQgaW4KICAgIColKQoglCAgICBhYnNvbHVOZTOk
e3BjaGFuZ2Ujly19ICMgYWJzb2x1dGUgdmFsdWUKICAgICAgbGltaXQ9JHt0aHJIc2hvbGQIJSVICiAg!
CAgIDs7CiAgICAgKQogICAgICBhYnNvbHVO0ZTOke2RIbHRhlyMtfSAjIGFic29sdXRIIHZhbHVICiAgICAg
IGxpbWIOPSR0aHJIc2hvbGQKICAgICAgOzsKICBIc2FjCiAgaWYgW1sgJGFic29sdXRIIC1sZSAkbGltaX
QgXV07IHRoZW4KICAgIGVjaG8gIndpdGhpbiAoKy8tKSR0aHJIc2hvbGQIiCiAgICByZXR1cm4gMAogl|
GVsc2UKICAgIGVjaG8gim91dHNpZGUgKCsvLSkkdGhyZXNob2xklgoglCAgcmV0dXJulDEKICBmaQ
p9CgpzdGVhZHIzdGF0ZSgplHsKICBsb2NhbCBsYXNOPSQxIGN1cndlbnQ9JDIKICBpZiBbWyAkbGFz
dCAtbHQgJFNURUFEWV9TVEFURVINSUSJTVVNIF1dOyB0aGVuCiAgICBIY2hvICJsYXNOOiIRsYXN
0IGN1cnJlbnQ6JGN1cndibnQgV2FpdGluZyB0ObyByZWFjaCAkU1RFQURZX1NUQVRFX01JTKINVUOg

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

YmVmb3JIIGNoZWNraW5nIGZvciBzdGVhZHktc3RhdGUICiAgICByZXR1cm4gMQoglGZpCiAgd2l0aGl
ulCRsYXNOICRjdXJyZW50ICRTVEVBRFIfU1RBVEVfVEhSRVNITOXECNOKCndhaXRGb3JSZWFkeSg
pIHsKICBsb2dnZXIgllJIY292ZXJ50iBXYWI0aW5nICR7TUFYSU1VTVIXQUIUX1RJTUVOcyBmb3lgdG
hllGluaXRpYWxpemF0aW9ulHRvIGNvbXBsZXRIlgoglGxvY2FsIGxhc3RTeXNOZW1kQ3B1c2VOPSIkK
GN1cndlbnRBZmZpbml0eSAXKSIKICBsb2NhbCBsYXNORGVzaXJIZENwdXNIdD0iJCh1bnJic3RyaWN
0ZWRDcHVzZXQplgoglGxvY2FsIHQIMCBzPTEwWCiIAgbG9)YWwgbGFzdENjb3VudDOwIGNjb3VudD0
WIHNOZWFkeVNOYXRIVGItZTOwCiAgd2hpbGUgW1sgJHQgLWx0ICRNQVhJTVVNX1dBSVRfVEINRS
BdXTsgZG8KICAgIHNsZWVwICRzCiAgICAoKHQgKz0gcykpCiAgICAjIFJILWNoZWNrIHRoZSBjdXJyZ
W50IGFmMZmIuaXR5IG9MIHN5c3RIbWQsIGlulGNhc2Ugc29tZSBvdGhiciBwem9jZXNzIGhhecyBjaGFuZ
2VKIGIOCiAgICBsb2NhbCBzeXN0ZW1kQ3B1c2VOPSIKKGN1cndlbnRBZmZpbml0eSAXKSIKICAgICMg
UmUtY2hlY2sgdGhlIHVucmVzdHJpY3RIZCBDcHVzZXQsIGFzIHRoZSBhbGxvd2VKIHNIdCBvZiB1bndl
c2VydmVkIGNvemVzIG1heSBjaGFuZ2UgYXMgcG9kcyBhcmUgYXNzaWduZWQgdG8gY29yZXMKICA
glGxvY2FsIGRIc2lyZWRDcHVzZXQ91iQodW5yZXN0cmljdGVKkQ3B1c2VOKSIKICAgIGImIFtbICRzeXNO
ZW1kQ3B1c2VOICE9ICRsYXNOU3IzdGVtZENwdXNIdCB8fCAkbGFzdERIc2lyZWRDcHVzZXQgIT0gJ
GRIc2lyZWRDcHVzZXQgXV07IHRoZW4KICAgICAgcmVzZXRBZmZpbml0eSAiIJGRIc2lyZWRDcHVzZ
XQIiCiAgICAglIGxhc3RTeXN0ZW1kQ3B1c2VOPSIKKGN1cnJlbonRBZmZpbml0eSAXKSIKICAgICAgbGF
zdERIc2lyZWRDcHVzZXQ9liRkZXNpcmVkQ3B1c2V0IlgoglCAgZmkKCiAgICAJIERIAGVjdCBzdGVhZHk
tc3RhdGUgcG9kIGNvdW50CiAgICBjY291bnQ9JChjcmljdGwgcHMgfCB3YyAtbCkKICAgIGImIHNOZW
FkeXNOYXRIICRsYXNOQ2NvdW50ICRjY291bnQ7IHR0ZW4KICAgICAgKChzdGVhZHITdGF0ZVRpb
WUgKz0gcykpCiAgICAgIGVjaG8glINOZWFkeS1zdGF0ZSBmb3lgJHtzdGVhZHITdGF0ZVRpbWV9cy8
ke TNURUFEWV9TVEFURV9XSUSET1d9cylKICAgICAgaWYgW1sgJHNOZWFkeVNOYXRIVGItZSAtZ2
UgJFNURUFEWV9TVEFURV9XSU5ET1cgXV07IHRoZW4KICAgICAgICBsb2dnZXIgllJlY292ZXJ50iB
TdGVhZHkic3RhdGUgKCsvLSAKkU1RFQURZX1NUQVRFX1RIUKVTSEOMRCkgZm9yICR7U1RFQU
RZX1NUQVRFX1dJTkRPV31z0iBEb25IlgoglCAgICAgIHJIdHVYybiAWCiAgICAgIGZpCiAgICBIbHNICiAg
ICAgIGImIFtbICRzdGVhZHITdGF0ZVRpbWUgLWdOIDAgXV07IHRoZW4KICAgICAQICBIY2hvICJSZX
NIdHRpbmcgc3RIYWRSLXNOYXRIIHRpbWVylgogICAgICAgIHNOZWFkeVNOY XRIVGItZTOWCiAgICAgI
GZpCiAgICBmaQoglCAgbGFzdENjb3VudDOKY2NvdW50CiAgZG9uZQoglGxvZ2dIciAiUmVjb3ZIcnkel
FJIY292ZXJ5IENVvbXBsZXRIIFRpbWVvdXQiCnOKCm1haW4o0KSB7CiAgaWYglSB1bnJlc3RyaWNOZW
RDcHVzZXQgPiYvZGV2L251bGw7IHRoZW4KICAgIGxvZ2dIciAiUmVjb3Zlcnk6IESvIHVucmVzdHJpY3
RIZCBDcHVzZXQgY291bGQgYmMUgZGV0ZWNO0ZWQICiAgICByZXR1cm4gMQoglGZpCgoglGImICE
gcmVzdHJpY3RIZENwdAXNIdCA+Ji9kZXYvbnVsbDsgdGhlbgoglCAgbGOnZ2VyICJSZWNvdmVyeTogT
m8gcmVzdHJpY3RIZCBDcHVzZXQgaGFzIGJIZW4gY29uZmIndXJIZC4glFdIIGFyZSBhbHJIYWR5IHJ1
bm5pbmcgdW5yZXN0OcmljdGVkLIIKICAgIHJIdHVybiAwCiAgZmkKCiAglyBFbnN1cmUgd2UgemVzZXQg
dGhIIENQVSBhZmZpbml0eSB3aGVulHdIIGV4aXQgdGhpcyBzY3JpcHQ9Zm9yIGFueSByZWFzb24KI
CAjIFRoaXMgd2F51GVpdGhlciBhZnRIciBOaGUgdGltZXIgZXhwaXJlcyBvciBhZnRIciBOaGUgcHJvY2Vzc
yBpcyBpbnRIcnJ1cHRIZAogICMgdmlhIF5DIG9yIFNJR1RFUKOsIHdIIHJIdHVybiB0aGluZ3MgYmFjayB0
byB0aGUgd2F5IHRoZXkgc2hvdWxkIGJILgogIHRyYXAgc2VOUmVzdHJpY3RIZCBFWEIUCgoglGxvZ2
diciAiUmVjb3ZIcnk6IFJIY292ZXJ51E1vZGUgU3RhcnRpbmciCiAgc2VOVW5yZXNOcmljdGVKCiAgd2Fpd
EZvclJIYWR5CnOKCmImIFtbIClke0JBUOhfUO9VUKNFWzBdfSIgPSAiIJHswiSIgXV07IHRoZW4KICBtYW
lulClke0B9IgoglGV4aXQgJD8KZmkK
mode: 493
path: /usr/local/bin/accelerated-container-startup.sh
systemd:
units:
- contents: |
[Unit]
Description=Unlocks more CPUs for critical system processes during container startup

[Service]
Type=simple
ExecStart=/usr/local/bin/accelerated-container-startup.sh

Maximum wait time is 600s = 10m:
Environment=MAXIMUM_WAIT_TIME=600

Steady-state threshold = 2%

87

OpenShift Container Platform 4.15 Edge computing

Allowed values:

4 - absolute pod count (+/-)

4% - percent change (+/-)

-1 - disable the steady-state check

Note: '%' must be escaped as '%%' in systemd unit files
Environment=STEADY_STATE_THRESHOLD=2%%

Steady-state window = 120s

If the running pod count stays within the given threshold for this time

period, return CPU utilization to normal before the maximum wait time has
expires

Environment=STEADY_STATE_WINDOW=120

Steady-state minimum = 40

Increasing this will skip any steady-state checks until the count rises above
this number to avoid false positives if there are some periods where the

count doesn't increase but we know we can't be at steady-state yet.
Environment=STEADY_STATE_MINIMUM=40

[Install]
WantedBy=multi-user.target

enabled: true

name: accelerated-container-startup.service

- contents: |

[Unit]
Description=Unlocks more CPUs for critical system processes during container shutdown
DefaultDependencies=no

[Service]
Type=simple
ExecStart=/usr/local/bin/accelerated-container-startup.sh

Maximum wait time is 600s = 10m:
Environment=MAXIMUM_WAIT_TIME=600

Steady-state threshold

Allowed values:

4 - absolute pod count (+/-)

4% - percent change (+/-)

-1 - disable the steady-state check

Note: '%' must be escaped as '%%' in systemd unit files
Environment=STEADY_STATE_THRESHOLD=-1

Steady-state window = 60s

If the running pod count stays within the given threshold for this time

period, return CPU utilization to normal before the maximum wait time has
expires

Environment=STEADY_STATE_WINDOW=60

[Install]
WantedBy=shutdown.target reboot.target halt.target

enabled: true
name: accelerated-container-shutdown.service

7.6.5. Setting rcu_normal

88

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

The following MachineConfig CR configures the system to set rcu_normal to 1 after the system has
finished startup. This improves kernel latency for vDU applications.

Recommended configuration for disabling rcu_expedited after the node has finished
startup (08-set-rcu-normal-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 08-set-rcu-normal-master
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,lyEvYmluL2Jhc2gKIwojlERpc2FibGUgcmN1X2V4cGVkaXRIZCBhZnRiciBub2RIIGhhcyBmaWw
5pc2hlZCBib290aW5nCiMKIlyBUaGUgZGVmYXVsdHMgYmVsb3cgY2FulGJIIG92ZXJyaWRKZW4gdml
hIGVudmlyb25tZW50IHZhcmihY mxlcwojCgojlERIZmF1bHQgd2FpdCB0aW11IGIzZIDYwMHMgPSAXMG
06Ck1BWEINVU1fVOFJVFOUSU1FPSR7TUFYSU1VTVIXQUIUX1RJTUUBLTYWMHOKCIMgRGVmY
XVsdCBzdGVhZHkic3RhdGUgdGhyZXNob2xkIDOgMiUKIyBBbGxvd2VkIHZhbHVIczoKlyAgNCAgLSBh
YnNvbHV0ZSBwb2QgY291bnQgKCsvLSkKIyAgNCUgLSBwWZXJjZW50IGNoYW5nZSAoKy8tKQojICAt
MSAtIGRpc2FibGUgdGhIIHNOZWFkeS1zdGF0ZSBjaGVjawpTVEVBRFIfU1RBVEVfVEhSRVNITOXEP
SR7U1RFQURZX1NUQVRFX1RIUKVTSE9MRDotMiV9CgojlERIZmF1bHQgc3RIYWRS5LXNOYXRIIHA
pbmRvdyA9IDYwcwojlEImIHRoZSBydW5uaW5snIHBvZCBjb3VudCBzdGF5cyB3aXRoaW4gdGhllGdpd
mVulHRocmVzaG9sZCBmb3lgdGhpcyB0aW11CiMgcGVyaW9kLCByZXR1cm4gQ1BVIHV0aWxpemFO0
aW9ulHRvIG5vem1hbCBiZWZvemUgdGhllG1heGltdW0gd2FpdCB0aW 111GhhcwojlGV4cGlyZXMKU1
RFQURZX1NUQVRFX1dJTkRPVzOke 1 NURUFEWVOTVEFURVOXSUSET1c6LTYwfQoKIyBEZWZhd
Wx0IHNOZWFkeS1zdGF0ZSBhbGxvd3MgYW55IHBvZCBjb3VudCB0byBiZSAic3RIYWRS5IHNOYXRIIgo
JIEIUY3JIYXNpbmcgdGhpcyB3aWxsIHNraXAgYW55IHNOZWFkeS1zdGF0ZSBjaGVja3MgdW50aWwgd
GhlIGNvdW50IHJpc2VzIGFib3ZICiMgdGhpcyBudW1iZXlgdG8gYXZvaWQgZmFsc2UgcG9zaXRpdmV
zIGImIHRoZXJIIGFyZSBzb21lIHBlcmlvZHMgd2hlcmUgdGhICiMgY291bnQgZG9lc24ndCBpbmNyZWF
zZSBidXQgd2Uga25vdyB3ZSBjYW4ndCBiZSBhdCBzdGVhZHkic3RhdGUgeWVOLgpTVEVBRFIfU1RB
VEVfTUIOSU1VTTOke1NURUFEWV9TVEFURVINSUSJTVVNOIOwfQoKIyMjlyMjlyMjlyMijlyMjlyMjly Mjl
yMjlyMjlyMjlyMjlyMjlyMjlyMjlyMjlyMjlyMjlyMjlwoKd2l0aGluKCkgewoglGxvY2FsIGxhc3Q9JDEgY3Vycm
udDOkMiB0OaHJIc2hvbGQ9JDMKICBsb2NhbCBkZWx0YTOwIHBjaGFuZ2UKICBKkZWx0YTOKkKCggY3Vy
cmVudCAtIGxhc3QgKSKKICBpZiBbWyAkY3VycmVudCAtZXEgJGxhc3QgXV07IHRoZW4KICAgIHBjaC
FuZ2U9MAogIGVsaWYgW1sgJGxhc3QgLWVxIDAgXV07IHRoZW4KICAgIHBjaGFuZ2U9MTAwWMDA
wMAoglGVsc2UKICAgIHBjaGFuZz2U9JCgolCggliRkZWx0Y SIgKiAXMDApIC8gbGFzdCApKQoglGZpCi
AgZWNobyAtbiAibGFzdDokbGFzdCBjdXJyZW500iRjdXJyZW50IGRIbHRhOIRKZWx0Y SBwY2hhbmdl
OiR7cGNoYW5nZX0IOiAiCiIAgbG9jYWwgYWJzb2x1dGUgbGltaXQKICBjYXNIICR0aHJIc2hvbGQgaW4
KICAgIColKQogICAgICBhYnNvbHV0ZT0ke3BjaGFuZ2Ujly19ICMgYWJzb2x1dGUgdmFsdWUKICAgI
CAgbGltaXQ9JHt0aHJIc2hvbGQIJSVICIiAgICAgIDs7CiAgICAgKQogICAgICBhYnNvbHV0ZT0ke2RIbH
RhlyMtfSAjIGFic29sdXRIIHZhbHVICIAgICAgIGxpbWIOPSR0aHJIc2hvbGQKICAgICAgOzsKICBIc2FjCiA
gaWYgW1sgJGFic29sdXRIIC1sZSAkbGltaXQgXV07IHRoZW4KICAgIGVjaG8gIndpdGhpbiAoKy8tKSR
0aHJlc2hvbGQICIAgICByZXR1cm4gMAoglGVsc2UKICAgIGVjaG8gim91dHNpZGUgKCsvLSkkdGhyZ
XNob2xklgoglCAgemV0OdXJulDEKICBmaQp9CgpzdGVhZHIzdGF0ZSgplHsKICBsb2NhbCBsYXNOPS
QxIGN1¢cndlbnQ9JDIKICBpZiBbWyAkbGFzdCAtbHQgJFNURUFEWVIOTVEFURVINSUSJTVVNIF1dO
yB0aGVuCiAgICBIY2hvICJsYXNOOIRsYXNOIGN1cndlbnQ6JGN1cndlbnQgV2FpdGluZyBObyByZWFja
CAKU1RFQURZX1NUQVRFX01JTKINVUOgYmVmb3JIIGNoZWNraW5nIGZvciBzdGVhZHktc3RhdGUi
CiAgICByZXR1cm4gMQoglGZpCiAgd210aGlulClkbGFzdClgliRjdXJyZW50IiAiJFNURUFEWVOTVEFU
RVOUSFJFUOhPTEQICnOKCndhaXRGb3JSZWFkeSgplHsKICBsb2dnZXIglldlY292ZXJ50iBXYWI0aW

89

OpenShift Container Platform 4.15 Edge computing

90

5nICR7TUFYSU1VTVIXQUIUX1RJTUV9cyBmb3IgdGhllGluaXRpYWxpemF0aW9ulHRvIGNvbXBsZX
RIlgoglGxvY2FsIHQIMCBzPTEwWCiAgbG9jYWwgbGFzdENjb3VudDOwIGNjb3VudDOwWIHNOZWFkeVN
0YXRIVGItZTOwWCiAgd2hpbGUgW1sgJHQgLWXx0ICRNQVhJTVVNX1dBSVRfVEINRSBdXTsgZG8KIC
AgIHNsZWVwICRzCiAgICAoKHQgKz0gcykpCiAgICAJIERIAGVjdCBzdGVhZHkic3RhdGUgcG9kIGNvd
W50CiAgICBjY291bnQ9JChjcmljdGwgcHMgM[j4vZGV2L251bGwgfCB3YyAtbCkKICAgIGImIFtbICRjY2
91bnQgLWdOIDAgXV0gJiYgc3RIYWR5¢c3RhdGUgliRsYXNOQ2NvdW50IiAiJGNjo3VudCl7IHRoZW4KI
CAgICAgKChzdGVhZHITdGF0ZVRpbWUgKz0gcykpCiAgICAgIGVjaG8glINOZWFkeS1zdGF0ZSBmb3
IgJHtzdGVhZHITdGF0ZVRpbWV9cy8ke INURUFEWVIOTVEFURVIOXSUSET1d9cyIKICAgICAgaWYgW
1sgJHNOZWFkeVNOYXRIVGItZSAtZ2UgJFNURUFEWVOTVEFURVOXSUSET1cgXV07IHRoZWA4KICA
glCAgICBsb2dnzXlglldY292ZXJ50iBTdGVhZHktcBRhdGUgKCsvLSAKU1RFQURZX1NUQVRFX1RI
UkVTSE9MRCkgZm9yICR7U1RFQURZX1NUQVRFX1dJTkRPV31zOiBEb25llgogICAgICAgIHJIdHVY
biAwCiAgICAgIGZpCiAgICBIbHNICiIAgICAgIGImIFtbICRzdGVhZHITdGF0ZVRpbWUgLWAOIDAgXV07
IHRoZW4KICAgICAgQICBIY2hvICJSZXNIdHRpbmcge3RIYWRSLXNOY XRIIHRpbWVylgoglCAgICAgIHN
0ZWFkeVNOYXRIVGIZTOwWCiIAgICAgIGZpCiAgICBmaQoglCAgbGFzdENjb3VudDOkY2NvdW50CiAgZ
G9uZQoglGxvZ2diciAiUmVjb3Zlcnk6IFJIY292ZXJ5IENvbXBsZXRIIFRpbWVvdXQiCnOKCnNIdFJjdU5vc
m1hbCgplHsKICBIY2hvICJTZXR0aW5nIHJjdV9ub3JtYWwgdG8gMSIKICBIY2hvIDEgPiAvc3izL2tlcm5lt
C9yY3Vibm9ybWFsCnOKCm1haW4oKSB7CiAgd2FpdEZvclJIYWR5CIAgZWNobyAiV2FpdGluZyBmb3l
gc3RIYWRSIHNOYXRIIHRvb2s61CQoY XdrICd7cHJpbnQgaW50KCQxLzM2MDApImgiLCBpbnQoKCQ
xJTM2MDApLzYwKSJtliwgaW50KCQxJTYwWKSJzInOnICOwem9jL3VwdGItZSkiCiAgc2VOUmN1Tm9yb
WFsCnOKCmImIFtblClke0JBUOhfUO9VUKNFWzBdfSIgPSAiIJHswfSIgXV07IHRoZW4KICBtYWIulClke0
B9lgoglGV4aXQgJD8KZmkK
mode: 493
path: /usr/local/bin/set-rcu-normal.sh
systemd:
units:
- contents: |
[Unit]
Description=Disable rcu_expedited after node has finished booting by setting rcu_normal to 1

[Service]
Type=simple
ExecStart=/usr/local/bin/set-rcu-normal.sh

Maximum wait time is 600s = 10m:
Environment=MAXIMUM_WAIT_TIME=600

Steady-state threshold = 2%

Allowed values:

4 - absolute pod count (+/-)

4% - percent change (+/-)

-1 - disable the steady-state check

Note: '%' must be escaped as '%%' in systemd unit files
Environment=STEADY_STATE_THRESHOLD=2%%

Steady-state window = 120s

If the running pod count stays within the given threshold for this time

period, return CPU utilization to normal before the maximum wait time has
expires

Environment=STEADY_STATE_WINDOW=120

Steady-state minimum = 40

Increasing this will skip any steady-state checks until the count rises above
this number to avoid false positives if there are some periods where the

count doesn't increase but we know we can't be at steady-state yet.
Environment=STEADY_STATE_MINIMUM=40

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

[Install]
WantedBy=multi-user.target
enabled: true
name: set-rcu-normal.service

7.6.6. Automatic kernel crash dumps with kdump

kdump is a Linux kernel feature that creates a kernel crash dump when the kernel crashes. kdump is
enabled with the following MachineConfig CRs.

Recommended MachineConfig CR to remove ice driver from control plane kdump logs (05-
kdump-config-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 05-kdump-config-master
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kdump-remove-ice-module.service
contents: |
[Unit]
Description=Remove ice module when doing kdump
Before=kdump.service
[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=/usr/local/bin/kdump-remove-ice-module.sh
[Install]
WantedBy=multi-user.target
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,lyEvdXNyL2JpbidlbnYgYmFzaAoKlyBUaGlzIHNjcmlwdCByZW1vdmVzIHRoZSBpY2UgbW9k
dWxlIGZyb20ga2R1bXAgdG8gcHJIdmVudCBrZHVicCBmYWIsdXJlcyBvbiBjZXJOYWIulHNIcnZlcnMuCi
MgVGhpcyBpcyBhIHRIbXBvemFyeSB3b3JrYXJvdW5kIGZvciBSSEVMUEXBTi0OxMzgyMzYgYW5kIGNh
iBiZSByZW1vdmVkIHdoZW4gdGhhdCBpc3N1ZSBpcwojlGZpeGVkLgoKc2V0IC14CgpTRUQ9I91c3Iv
YmIuL3NIZCIKR1JFUDOIL3Vzci9iaW4vZ3JIcCIKCiMgb3ZlcndpZGUgZm9yIHRIc3RpbmcgcHVycG9zZX
MKSORVTVBfQ090R]j0iJHsxOi0vZXRjL3N5c2NvbmZpZy9rZHVicHOICIJFTUIWRV9JQOVIUTRSPSJtb
2R1bGVfYmxhY2tsaXNOPWIjZSIKCiMgZXhpdCBpZiBmaWxIIGRvZXNuJ3QgZXhpc3QKWyAhIC1mIC
R7SORVTVBfQO90ORN0gXSAMJiBleGIOIDAKCiMgZXhpdCBpZiBmaWxIIGFscmVhZHkgdXBkYXRIZAok
e0dSRVB9IC1GcSAke1JFTUIWRVIJQOVIUTRSISAkeOtEVUTQXONPTKZIICYmIGV4aXQgMAoKIlyB
UYXJInZXQgbGluZSBsb29rcyBzb211dGhpbmcgbGIrZSB0aGlzOgojIEtEVU1QXONPTU1BTKRMSUSFX
OFQUEVORDO0iaXJxcG9sbCBucl9jcHVzPTEgLi4ulGhlc3RfZGlIzYWJsZSIKlyBVc2Ugc2VKIHRvIG1hdG
NolGV2ZXJ5dGhpbmcgYmV0d2VIbiBOaGUgcXVvdGVzIGFuZCBhcHBIbmQgdGhIIFJFTU9WRVIJQO
VfU1RSIHRVIGIOCiIR7UOVEfSAtaSAncy9eSORVTVBfQOINTUFORExJTkVIQVBQRUSEPSJbXiJdKi8m

o1

OpenShift Container Platform 4.15 Edge computing

ICcke1JFTU9QWRVOJQOVIU1RSfScvdyAkeOtEVU1QXONPTKZ9IHX8IGV4aXQgMAo=
mode: 448
path: /usr/local/bin/kdump-remove-ice-module.sh

Recommended control plane node kdump configuration (06-kdump-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 06-kdump-enable-master
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kdump.service
kernelArguments:
- crashkernel=512M

Recommended MachineConfig CR to remove ice driver from worker node kdump logs (05-
kdump-config-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 05-kdump-config-worker
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kdump-remove-ice-module.service
contents: |
[Unit]
Description=Remove ice module when doing kdump
Before=kdump.service
[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=/usr/local/bin/kdump-remove-ice-module.sh
[Install]
WantedBy=multi-user.target
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,lyEvdXNyL2JpbidlbnYgYmFzaAoKlyBUaGlzIHNjcmlwdCByZW1vdmVzIHRoZSBpY2UgbW9k

92

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

dWxIIGZyb20ga2R 1bXAgdG8gcHJIdmVudCBrZHVicCBmYWIsdXJlcyBvbiBjZXJOYWIulHNIcnZlcnMuCi
MgVGhpcyBpcyBhIHRIbXBvemFyeSB3b3JrYXJvdW5kIGZvciBSSEVMUEXBTiIOxMzgyMzYgYWS5KIGNh
iBiZSByZW1vdmVklIHdoZW4gdGhhdCBpc3N1ZSBpcwojlGZpeGVkLgoKc2V0IC14CgpTRUQ9II91c3Iv
YmIuL3NIZCIKR1JFUDOIL3Vzci9iaW4vZ3JIcCIKCiMgb3ZlcndpZGUgZm9yIHRIc3RpbmcgcHVycG9zZX
MKSORVTVBfQ090R]j0iJHsxOi0vZXRjL3N5c2NvbmZpZy9rZHVicHOICIJFTU9WRV9JQOVIU1RSPSJtb
2R1bGVfYmxhY2tsaXNOPWIZSIKCiMgZXhpdCBpZiBmaWxIIGRvZXNud3QgZXhpc3QKWyAhIC1mIC
R7SORVTVBfQ090ORN0gXSAMJiBleGIOIDAKCiMgZXhpdCBpZiBmaWxIIGFscmVhZHkgdXBkY XRIZAok
e0dSRVB9IC1GcSAke1JFTUIWRVIJQOVIUTRSISAkeOtEVU1QXONPTKZ9ICYmIGV4aXQgMAoKIlyB
UYXJnZXQgbGluZSBsb29rcyBzb211dGhpbmcgbGlrZSB0aGlzOgojIEtEVU1QXONPTU1BTKRMSUSFX
O0FQUEVORDO0iaXJxcG9sbCBucl9jcHVzPTEgLi4ulGhlc3RfZGIzZYWJsZSIKlyBVc2Ugc2VKIHRVIG1hdG
NolGV2ZXJ5dGhpbmecgYmV0d2VIbiB0aGUgcXVvdGVzIGFuZCBhcHBIbmQgdGhIIFJFTU9WRV9JQO
VfU1RSIHRVIGIOCiIR7UOVEfSAtaSAncy9eSORVTVBfQOINTUFORExJTkVIQVBQRUSEPSJbXiJdKi8m
ICcke1JFTU9QWRVOJQOVIU1RSfScvdyAkeOtEVU1QXONPTKZ9IHX8IGV4aXQgMAo=

mode: 448

path: /usr/local/bin/kdump-remove-ice-module.sh

Recommended kdump worker node configuration (06-kdump-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 06-kdump-enable-worker
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- enabled: true
name: kdump.service
kernelArguments:
- crashkernel=512M

7.6.7. Disable automatic CRI-O cache wipe

After an uncontrolled host shutdown or cluster reboot, CRI-O automatically deletes the entire CRI-O
cache, causing all images to be pulled from the registry when the node reboots. This can result in
unacceptably slow recovery times or recovery failures. To prevent this from happening in single-node
OpenShift clusters that you install with GitOps ZTP, disable the CRI-O delete cache feature during
cluster installation.

Recommended MachineConfig CR to disable CRI-O cache wipe on control plane nodes (99-
crio-disable-wipe-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 99-crio-disable-wipe-master
spec:
config:

93

OpenShift Container Platform 4.15 Edge computing

ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,W2NyaW9dCmNsZWFuX3NodXRkb3duX2ZpbGUgPSAilgo=
mode: 420
path: /etc/crio/crio.conf.d/99-crio-disable-wipe.toml

Recommended MachineConfig CR to disable CRI-O cache wipe on worker nodes (99-crio-
disable-wipe-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-crio-disable-wipe-worker
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,W2NyaW9dCmNsZWFuX3NodXRkb3duX2ZpbGUgPSAilgo=
mode: 420
path: /etc/crio/crio.conf.d/99-crio-disable-wipe.toml

7.6.8. Configuring crun as the default container runtime

The following ContainerRuntimeConfig custom resources (CRs) configure crun as the default OCI
container runtime for control plane and worker nodes. The crun container runtime is fast and lightweight
and has a low memory footprint.

IMPORTANT

For optimal performance, enable crun for control plane and worker nodes in single-node
OpenShift, three-node OpenShift, and standard clusters. To avoid the cluster rebooting
when the CRis applied, apply the change as a GitOps ZTP additional Day O install-time
manifest.

Recommended ContainerRuntimeConfig CR for control plane nodes (enable-crun-
master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
name: enable-crun-master
spec:
machineConfigPoolSelector:

94

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

matchLabels:
pools.operator.machineconfiguration.openshift.io/master: "
containerRuntimeConfig:
defaultRuntime: crun

Recommended ContainerRuntimeConfig CR for worker nodes (enable-crun-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
name: enable-crun-worker
spec:
machineConfigPoolSelector:
matchLabels:
pools.operator.machineconfiguration.openshift.io/worker: "
containerRuntimeConfig:
defaultRuntime: crun

7.7. RECOMMENDED POSTINSTALLATION CLUSTER
CONFIGURATIONS

When the cluster installation is complete, the ZTP pipeline applies the following custom resources (CRs)
that are required to run DU workloads.

NOTE

In GitOps ZTP v4.10 and earlier, you configure UEF| secure boot with a MachineConfig
CR. This is no longer required in GitOps ZTP v4.11 and later. In v4.11, you configure UEFI
secure boot for single-node OpenShift clusters by updating the
spec.clusters.nodes.bootMode field in the SiteConfig CR that you use to install the
cluster. For more information, see Deploying a managed cluster with SiteConfig and
GitOps ZTP.

7.7.1. Operators
Single-node OpenShift clusters that run DU workloads require the following Operators to be installed:
® | ocal Storage Operator
® | ogging Operator
® PTP Operator
® SR-|IOV Network Operator
You also need to configure a custom CatalogSource CR, disable the default OperatorHub
configuration, and configure an ImageContentSourcePolicy mirror registry that is accessible from the

clusters that you install.

Recommended Storage Operator namespace and Operator group configuration
(StorageNS.yaml, StorageOperGroup.yaml)

95

OpenShift Container Platform 4.15 Edge computing

apiVersion: vi
kind: Namespace
metadata:
name: openshift-local-storage
annotations:
workload.openshift.io/allowed: management
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: openshift-local-storage
namespace: openshift-local-storage
annotations: {}
spec:
targetNamespaces:
- openshift-local-storage

Recommended Cluster Logging Operator namespace and Operator group configuration
(ClusterLogNS.yaml, ClusterLogOperGroup.yaml)

apiVersion: vi
kind: Namespace
metadata:
name: openshift-logging
annotations:
workload.openshift.io/allowed: management
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: cluster-logging
namespace: openshift-logging
annotations: {}
spec:
targetNamespaces:
- openshift-logging

Recommended PTP Operator namespace and Operator group configuration
(PtpSubscriptionNS.yaml, PtpSubscriptionOperGroup.yaml)

apiVersion: vi
kind: Namespace
metadata:
name: openshift-ptp
annotations:
workload.openshift.io/allowed: management
labels:
openshift.io/cluster-monitoring: "true"
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: ptp-operators

96

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

namespace: openshift-ptp
annotations: {}
spec:
targetNamespaces:
- openshift-ptp

Recommended SR-IOV Operator namespace and Operator group configuration
(SriovSubscriptionNS.yaml, SriovSubscriptionOperGroup.yaml)

apiVersion: vi
kind: Namespace
metadata:
name: openshift-sriov-network-operator
annotations:
workload.openshift.io/allowed: management
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: sriov-network-operators
namespace: openshift-sriov-network-operator
annotations: {}
spec:
targetNamespaces:
- openshift-sriov-network-operator

Recommended CatalogSource configuration (DefaultCatsrc.yaml)

apiVersion: operators.coreos.com/vialphait
kind: CatalogSource
metadata:
name: default-cat-source
namespace: openshift-marketplace
annotations:
target.workload.openshift.io/management: '{"effect": "PreferredDuringScheduling"}'
spec:
displayName: default-cat-source
image: $imageUrl
publisher: Red Hat
sourceType: grpc
updateStrategy:
registryPoll:
interval: 1h
status:
connectionState:
lastObservedState: READY

Recommended ImageContentSourcePolicy configuration (DisconnectedICSP.yaml)

apiVersion: operator.openshift.io/vialphai
kind: ImageContentSourcePolicy
metadata:

name: disconnected-internal-icsp

97

OpenShift Container Platform 4.15 Edge computing

annotations: {}
spec:
repositoryDigestMirrors:
- $mirrors

Recommended OperatorHub configuration (OperatorHub.yaml)

apiVersion: config.openshift.io/v1
kind: OperatorHub
metadata:
name: cluster
annotations: {}
spec:
disableAllDefaultSources: true

7.7.2. Operator subscriptions

Single-node OpenShift clusters that run DU workloads require the following Subscription CRs. The
subscription provides the location to download the following Operators:

® | ocal Storage Operator

® | ogging Operator

® PTP Operator

® SR-|OV Network Operator
® SRIOV-FEC Operator

For each Operator subscription, specify the channel to get the Operator from. The recommended
channel is stable.

You can specify Manual or Automatic updates. In Automatic mode, the Operator automatically
updates to the latest versions in the channel as they become available in the registry. In Manual mode,
new Operator versions are installed only when they are explicitly approved.

TIP

Use Manual mode for subscriptions. This allows you to control the timing of Operator updates to fit
within scheduled maintenance windows.

Recommended Local Storage Operator subscription (StorageSubscription.yaml)

apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: local-storage-operator
namespace: openshift-local-storage
annotations: {}
spec:
channel: "stable"
name: local-storage-operator
source: redhat-operators-disconnected

98

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

sourceNamespace: openshift-marketplace
installPlanApproval: Manual

status:
state: AtLatestKnown

Recommended SR-IOV Operator subscription (SriovSubscription.yaml)

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: sriov-network-operator-subscription
namespace: openshift-sriov-network-operator
annotations: {}
spec:
channel: "stable"
name: sriov-network-operator
source: redhat-operators-disconnected
sourceNamespace: openshift-marketplace
installPlanApproval: Manual
status:
state: AtLatestKnown

Recommended PTP Operator subscription (PtpSubscription.yaml)

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: ptp-operator-subscription
namespace: openshift-ptp
annotations: {}
spec:
channel: "stable"
name: ptp-operator
source: redhat-operators-disconnected
sourceNamespace: openshift-marketplace
installPlanApproval: Manual
status:
state: AtLatestKnown

Recommended Cluster Logging Operator subscription (ClusterLogSubscription.yaml)

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: cluster-logging
namespace: openshift-logging
annotations: {}
spec:
channel: "stable"
name: cluster-logging
source: redhat-operators-disconnected
sourceNamespace: openshift-marketplace

99

OpenShift Container Platform 4.15 Edge computing

installPlanApproval: Manual
status:
state: AtLatestKnown

7.7.3. Cluster logging and log forwarding

Single-node OpenShift clusters that run DU workloads require logging and log forwarding for
debugging. The following ClusterLogging and ClusterLogForwarder custom resources (CRs) are
required.

Recommended cluster logging configuration (ClusterLogging.yaml)

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
name: instance
namespace: openshift-logging
annotations: {}
spec:
managementState: "Managed"
collection:
logs:
type: "vector"

Recommended log forwarding configuration (ClusterLogForwarder.yaml)

apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance
namespace: openshift-logging
annotations: {}
spec:
outputs: $outputs
pipelines: $pipelines

Set the spec.outputs.url field to the URL of the Kafka server where the logs are forwarded to.

7.7.4. Performance profile

Single-node OpenShift clusters that run DU workloads require a Node Tuning Operator performance
profile to use real-time host capabilities and services.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for

OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

The following example PerformanceProfile CR illustrates the required single-node OpenShift cluster
configuration.

100

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

Recommended performance profile configuration (PerformanceProfile.yaml)

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
if you change this name make sure the 'include’ line in TunedPerformancePatch.yaml
matches this name: include=openshift-node-performance-${PerformanceProfile.metadata.name}
Also in file 'validatorCRs/informDuValidator.yaml':
name: 50-performance-${PerformanceProfile.metadata.name}
name: openshift-node-performance-profile
annotations:
ran.openshift.io/reference-configuration: "ran-du.redhat.com"
spec:
additionalKernelArgs:
- "rcupdate.rcu_normal_after_boot=0"
- "efi=runtime"
- "vfio_pci.enable_sriov=1"
- "vfio_pci.disable_idle_d3=1"
- "module_blacklist=irdma"
cpu:
isolated: $isolated
reserved: $reserved
hugepages:
defaultHugepagesSize: $defaultHugepagesSize
pages:
- size: $size
count: $count
node: $node
machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/$mcp: ™"
nodeSelector:
node-role.kubernetes.io/$mcp: "
numa:
topologyPolicy: "restricted"
To use the standard (non-realtime) kernel, set enabled to false
realTimeKernel:
enabled: true
workloadHints:
WorkloadHints defines the set of upper level flags for different type of workloads.
See https.//github.com/openshift/cluster-node-tuning-
operator/blob/master/docs/performanceprofile/performance_profile.md#workloadhints
for detailed descriptions of each item.
The configuration below is set for a low latency, performance mode.
realTime: true
highPowerConsumption: false
perPodPowerManagement: false

Table 7.3. PerformanceProfile CR options for single-node OpenShift clusters

PerformanceProfile CR field Description

101

OpenShift Container Platform 4.15 Edge computing

PerformanceProfile CR field Description

metadata.name

spec.additionalKernelArgs

spec.cpu.isolated

spec.cpu.reserved

spec.hugepages.pages

spec.realTimeKernel

spec.workloadHints

Ensure that name matches the following fields set in
related GitOps ZTP custom resources (CRs):

e include=openshift-node-
performance-
${PerformanceProfile.metadata.name
}in TunedPerformancePatch.yaml

e name: 50-performance-
${PerformanceProfile.metadata.name

}in

validatorCRs/informDuValidator.yaml

"efizruntime" Configures UEF| secure boot for the
cluster host.

Set the isolated CPUs. Ensure all of the Hyper-
Threading pairs match.

IMPORTANT

The reserved and isolated CPU pools
must not overlap and together must
span all available cores. CPU cores
that are not accounted for cause an
undefined behaviour in the system.

Set the reserved CPUs. When workload partitioning
is enabled, system processes, kernel threads, and
system container threads are restricted to these
CPUs. All CPUs that are not isolated should be
reserved.

® Set the number of huge pages (count)
® Set the huge pages size (Size).

o Set hode to the NUMA node where the
hugepages are allocated (node)

Set enabled to true to use the realtime kernel.

Use workloadHints to define the set of top level
flags for different type of workloads. The example
configuration configures the cluster for low latency
and high performance.

7.7.5. Configuring cluster time synchronization

102

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

Run a one-time system time synchronization job for control plane or worker nodes.

Recommended one time time-sync for control plane nodes (99-sync-time-once-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 99-sync-time-once-master
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- contents: |
[Unit]
Description=Sync time once
After=network.service
[Service]
Type=oneshot
TimeoutStartSec=300
ExecCondition=/bin/bash -c 'systemctl is-enabled chronyd.service --quiet && exit 1 || exit 0'
ExecStart=/usr/sbin/chronyd -n -f /etc/chrony.conf -q
RemainAfterExit=yes
[Install]
WantedBy=multi-user.target
enabled: true
name: sync-time-once.service

Recommended one time time-sync for worker nodes (99-sync-time-once-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-sync-time-once-worker
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- contents: |
[Unit]
Description=Sync time once
After=network.service
[Service]
Type=oneshot
TimeoutStartSec=300
ExecCondition=/bin/bash -c 'systemctl is-enabled chronyd.service --quiet && exit 1 || exit 0'
ExecStart=/usr/sbin/chronyd -n -f /etc/chrony.conf -q
RemainAfterExit=yes

103

OpenShift Container Platform 4.15 Edge computing

[Install]
WantedBy=multi-user.target
enabled: true
name: sync-time-once.service

7.7.6.PTP

Single-node OpenShift clusters use Precision Time Protocol (PTP) for network time synchronization.
The following example PtpConfig CRs illustrate the required PTP configurations for ordinary clocks,
boundary clocks, and grandmaster clocks. The exact configuration you apply will depend on the node
hardware and specific use case.

Recommended PTP ordinary clock configuration (PtpConfigSlave.yaml)

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: slave
namespace: openshift-ptp
annotations: {}
spec:
profile:
- name: "slave"
The interface name is hardware-specific
interface: $interface
ptp4lOpts: "-2 -s"
phc2sysOpts: "-a -r -n 24"
ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10
ptpSettings:
logReduce: "true"
ptp4IConf: |
[global]
#
Default Data Set
#
twoStepFlag 1
slaveOnly 1
priority1 128
priority2 128
domainNumber 24
#utc_offset 37
clockClass 255
clockAccuracy OXFE
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0
dscp_general 0
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
#
Port Data Set
#
logAnnouncelnterval -3

104

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

logSynclinterval -4
logMinDelayReqInterval -4
logMinPdelayReqlnterval -4
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset_interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info 0

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval 0
kernel_leap 1
check_fup_sync 0

clock class_threshold 7

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
max_frequency 900000000
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1

udp6_scope 0x0E

105

OpenShift Container Platform 4.15 Edge computing

uds_address /var/run/ptp4l
#
Default interface options
#
clock_type OC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0
#
Clock description
#
productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;
timeSource 0xAO
recommend:
- profile: "slave"
priority: 4
match:
- nodeLabel: "node-role.kubernetes.io/$mcp"

Recommended boundary clock configuration (PtpConfigBoundary.yaml)

apiVersion: ptp.openshift.io/v1

kind: PtpConfig

metadata:
name: boundary
namespace: openshift-ptp
annotations: {}

spec:
profile:
- name: "boundary"
ptp4lOpts: "-2"

phc2sysOpts: "-a -r -n 24"
ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10
ptpSettings:

logReduce: "true"
ptp4IConf: |

The interface name is hardware-specific

[$iface_slave]

masterOnly 0

[$iface_master 1]

masterOnly 1

[$iface_master 2]

masterOnly 1

[$iface_master_ 3]

masterOnly 1

106

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

[global]

#

Default Data Set

#

twoStepFlag 1

slaveOnly 0

priority1 128

priority2 128
domainNumber 24
#utc_offset 37

clockClass 248
clockAccuracy OXFE
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0

dscp_general 0
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
#

Port Data Set

#

logAnnouncelnterval -3
logSynclinterval -4
logMinDelayReqlnterval -4
logMinPdelayReqlnterval -4
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset_interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info 0
hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0
summary_interval 0
kernel_leap 1
check_fup_sync 0

clock class_threshold 135
#

Servo Options

107

OpenShift Container Platform 4.15 Edge computing

#
pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
max_frequency 900000000
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0
#
Transport options
#
transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1
udp6_scope 0x0E
uds_address /var/run/ptp4l
#
Default interface options
#
clock_type BC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0
#
Clock description
#
productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;
timeSource 0xAO
recommend:
- profile: "boundary"
priority: 4
match:
- nodeLabel: "node-role.kubernetes.io/$mcp"

Recommended PTP Westport Channel €810 grandmaster clock configuration
(PtpConfigGmWpc.yaml)

I apiVersion: ptp.openshift.io/v1

108

kind: PtpConfig
metadata:

name: grandmaster

namespace: openshift-ptp

annotations: {}
spec:

profile:

- name: "grandmaster”
ptp4lOpts: "-2 --summary_interval -4"

phc2sysOpts: -r -u 0 -m -O -37 -N 8 -R 16 -s $iface_master -n 24

ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10
ptpSettings:
logReduce: "true"
plugins:
e810:
enableDefaultConfig: false
settings:
LocalMaxHoldoverOffSet: 1500
LocalHoldoverTimeout: 14400
MaxInSpecOffset: 100
pins: $¢810_pins

- args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1

"$iface_master":
"U.FL2":"02"
"UFL1":"01"
"SMA2":"0 2"
"SMA1":"0 1"
ubIxCmds:

_"_p"

-"29.20"

- "-Z"

- "CFG-HW-ANT_CFG_VOLTCTRL,1"

reportOutput: false
- args: #ubxtool -P 29.20 -e GPS
-"p"
-"29.20"
- "-e"
-"GPS"
reportOutput: false
- args: #ubxtool -P 29.20 -d Galileo
-"p"
-"29.20"
-ng"
- "Galileo"
reportOutput: false

- args: #ubxtool -P 29.20 -d GLONASS

-"p"
-"29.20"
g
- "GLONASS"
reportOutput: false
- args: #ubxtool -P 29.20 -d BeiDou
-"p"
-"29.20"
g

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

109

OpenShift Container Platform 4.15 Edge computing

- "BeiDou"
reportOutput: false
- args: #ubxtool -P 29.20 -d SBAS
-"p"
-"29.20"
-"g"
- "SBAS"
reportOutput: false
- args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000
-"p"
-"29.20"
-t
-"-w
-"g"
-"-v
-
- "-e"
- "SURVEYIN,600,50000"
reportOutput: true
- args: #ubxtool -P 29.20 -p MON-HW
-"p"
-"29.20"
- "-p"
- "MON-HW"
reportOutput: true
ts2phcOpts: " "
ts2phcConf: |
[nmea]
ts2phc.master 1
[global]
use_syslog 0
verbose 1
logging_level 7
ts2phc.pulsewidth 100000000
#cat /dev/GNSS to find available serial port
#example value of gnss_serialport is /dev/ttyGNSS_1700_0
ts2phc.nmea_serialport $gnss_serialport
leapfile /usr/share/zoneinfo/leap-seconds.list
[$iface_master]
ts2phc.extts_polarity rising
ts2phc.extts_correction 0
ptp4IConf: |
[$iface_master]
masterOnly 1
[$iface_master 1]
masterOnly 1
[$iface_master 2]
masterOnly 1
[$iface_master_ 3]
masterOnly 1
[global]
#
Default Data Set
#
twoStepFlag 1
priority1 128

110

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

priority2 128

domainNumber 24
#utc_offset 37

clockClass 6

clockAccuracy 0x27
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0

dscp_general 0
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
#

Port Data Set

#

logAnnouncelnterval -3
logSynclinterval -4
logMinDelayReqlnterval -4
logMinPdelayReqlInterval 0
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset_interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info 0

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval -4
kernel_leap 1
check_fup_sync 0
clock_class_threshold 7

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0

m

OpenShift Container Platform 4.15 Edge computing

pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
clock_servo pi
sanity_freqg_limit 200000000
ntpshm_segment 0
#
Transport options
#
transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1
udp6_scope 0x0E
uds_address /var/run/ptp4l
#
Default interface options
#
clock_type BC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0
#
Clock description
#
productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;
timeSource 0x20

recommend:

- profile: "grandmaster”
priority: 4
match:

- nodeLabel: "node-role.kubernetes.io/$mcp"

The following optional PtpOperatorConfig CR configures PTP events reporting for the node.

Recommended PTP events configuration (PtpOperatorConfigForEvent.yaml)

apiVersion: ptp.openshift.io/v1
kind: PtpOperatorConfig
metadata:
name: default
namespace: openshift-ptp
annotations: {}
spec:
daemonNodeSelector:
node-role.kubernetes.io/$mcp: ™"

12

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

ptpEventConfig:
enableEventPublisher: true
transportHost: "http://ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043"

7.7.7. Extended Tuned profile

Single-node OpenShift clusters that run DU workloads require additional performance tuning
configurations necessary for high-performance workloads. The following example Tuned CR extends
the Tuned profile:

Recommended extended Tuned profile configuration (TunedPerformancePatch.yaml)

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
name: performance-patch
namespace: openshift-cluster-node-tuning-operator
annotations: {}
spec:
profile:
- name: performance-patch
Please note:
- The 'include' line must match the associated PerformanceProfile name, following below
pattern
include=openshift-node-performance-${PerformanceProfile.metadata.name}
- When using the standard (non-realtime) kernel, remove the kernel.timer_migration override
from
the [sysctl] section and remove the entire section if it is empty.
data: |
[main]
summary=Configuration changes profile inherited from performance created tuned
include=openshift-node-performance-openshift-node-performance-profile
[sysctl]
kernel.timer_migration=1
[scheduler]
group.ice-ptp=0:f:10:*:ice-ptp.*
group.ice-gnss=0:f:10:*:ice-gnss.*
[service]
service.stalld=start,enable
service.chronyd=stop,disable
recommend:
- machineConfigLabels:
machineconfiguration.openshift.io/role: "$mcp"
priority: 19
profile: performance-patch

Table 7.4. Tuned CR options for single-node OpenShift clusters

Tuned CR field Description

13

OpenShift Container Platform 4.15 Edge computing

Tuned CR field Description

spec.profile.data . . .
o The include line that you setin

spec.profile.data must match the
associated PerformanceProfile CR name.
For example, include=openshift-node-
performance-
${PerformanceProfile.metadata.name

}

o When using the non-realtime kernel,
remove the timer_migration override
line from the [sysctl] section.

7.7.8. SR-IOV

Single root I/O virtualization (SR-IOV) is commonly used to enable fronthaul and midhaul networks. The
following YAML example configures SR-IOV for a single-node OpenShift cluster.

NOTE

The configuration of the SriovNetwork CR will vary depending on your specific network
and infrastructure requirements.

Recommended SriovOperatorConfig CR configuration (SriovOperatorConfig.yaml)

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:

name: default

namespace: openshift-sriov-network-operator

annotations: {}
spec:

configDaemonNodeSelector:

"node-role.kubernetes.io/$mcp": "

Injector and OperatorWebhook pods can be disabled (set to "false") below

to reduce the number of management pods. It is recommended to start with the

webhook and injector pods enabled, and only disable them after verifying the

correctness of user manifests.

If the injector is disabled, containers using sr-iov resources must explicitly assign
them in the "requests’/"limits" section of the container spec, for example:
containers:

- name: my-sriov-workload-container
resources:
limits:
openshift.io/<resource_name>: "1"
requests:
openshift.io/<resource_name>: "1"
enablelnjector: true
enableOperatorWebhook: true
logLevel: 0

#
#
#
#
#
#
#
#

14

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

Table 7.5. SriovOperatorConfig CR options for single-node OpenShift clusters

SriovOperatorConfig CR field

Description

spec.enablelnjector

spec.enableOperatorWebhook

Disable Injector pods to reduce the number of
management pods. Start with the Injector pods
enabled, and only disable them after verifying the
user manifests. If the injector is disabled, containers
that use SR-IOV resources must explicitly assign
them in the requests and limits section of the
container spec.

For example:

containers:
- name: my-sriov-workload-container
resources:
limits:
openshift.io/<resource_name>: "1"
requests:
openshift.io/<resource_name>: "1"

Disable OperatorWebhook pods to reduce the
number of management pods. Start with the
OperatorWebhook pods enabled, and only disable
them after verifying the user manifests.

Recommended SriovNetwork configuration (SriovNetwork.yaml)

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:

name: "

namespace: openshift-sriov-network-operator

annotations: {}
spec:
resourceName:

"nn

networkNamespace: openshift-sriov-network-operator

nn

vian:
spoofChk: "
ipam: "

linkState: "
maxTxRate:
minTxRate:
vlanQoS: "
trust: "

capabilities:

nm

nn

nn

Table 7.6. SriovNetwork CR options for single-node OpenShift clusters

115

OpenShift Container Platform 4.15 Edge computing

SriovNetwork CR field Description

spec.vlan Configure vlan with the VLAN for the midhaul
network.

Recommended SriovNetworkNodePolicy CR configuration (SriovNetworkNodePolicy.yaml)

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: $name
namespace: openshift-sriov-network-operator
annotations: {}
spec:
The attributes for Mellanox/Intel based NICs as below.
deviceType: netdevice/vfio-pci
isRdma: true/false
deviceType: $deviceType
isRdma: $isRdma
nicSelector:
The exact physical function name must match the hardware used
pfNames: [$pfNames]
nodeSelector:
node-role.kubernetes.io/$mcp: ™"
numVfs: $numVfs
priority: $priority
resourceName: $resourceName

Table 7.7. SriovNetworkPolicy CR options for single-node OpenShift clusters

SriovNetworkNodePolicy CR field Description

spec.deviceType Configure deviceType as vfio-pci or netdevice.
For Mellanox NICs, set deviceType: netdevice,
and isRdma: true. For Intel based NICs, set
deviceType: vfio-pci and isRdma: false.

spec.nicSelector.pfNames Specifies the interface connected to the fronthaul
network.

spec.numVis Specifies the number of VFs for the fronthaul
network.

spec.nicSelector.pfNames The exact name of physical function must match the
hardware.

Recommended SR-IOV kernel configurations (07-sriov-related-kernel-args-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig

16

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 07-sriov-related-kernel-args-master
spec:
config:
ignition:
version: 3.2.0
kernelArguments:
- intel_iommu=on
- iommu=pt

7.7.9. Console Operator

Use the cluster capabilities feature to prevent the Console Operator from being installed. When the
node is centrally managed it is not needed. Removing the Operator provides additional space and
capacity for application workloads.

To disable the Console Operator during the installation of the managed cluster, set the following in the
spec.clusters.0.installConfigOverrides field of the SiteConfig custom resource (CR):

I installConfigOverrides: "{\"capabilities\":{\"baselineCapabilitySet\": \"None\" }}"

7.7.10. Alertmanager

Single-node OpenShift clusters that run DU workloads require reduced CPU resources consumed by
the OpenShift Container Platform monitoring components. The following ConfigMap custom resource
(CR) disables Alertmanager.

Recommended cluster monitoring configuration (ReduceMonitoringFootprint.yaml)

apiVersion: vi
kind: ConfigMap
metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring
annotations: {}
data:
config.yaml: |
alertmanagerMain:
enabled: false
telemeterClient:
enabled: false
prometheusK8s:
retention: 24h

7.7.11. Operator Lifecycle Manager

Single-node OpenShift clusters that run distributed unit workloads require consistent access to CPU
resources. Operator Lifecycle Manager (OLM) collects performance data from Operators at regular
intervals, resulting in an increase in CPU utilisation. The following ConfigMap custom resource (CR)

disables the collection of Operator performance data by OLM.

17

OpenShift Container Platform 4.15 Edge computing

Recommended cluster OLM configuration (ReduceOLMFootprint.yaml)

apiVersion: vi
kind: ConfigMap
metadata:

name: collect-profiles-config

namespace: openshift-operator-lifecycle-manager
data:

pprof-config.yaml: |

disabled: True

7.7.12. LVM Storage

You can dynamically provision local storage on single-node OpenShift clusters with Logical Volume
Manager (LVM) Storage.

NOTE

The recommended storage solution for single-node OpenShift is the Local Storage
Operator. Alternatively, you can use LVM Storage but it requires additional CPU
resources to be allocated.

The following YAML example configures the storage of the node to be available to OpenShift Container
Platform applications.

Recommended LVMCluster configuration (StorageLVMCluster.yaml)

apiVersion: lvm.topolvm.io/vialpha1
kind: LVMCluster
metadata:
name: odf-lvmcluster
namespace: openshift-storage
spec:
storage:
deviceClasses:
- name: vg1
deviceSelector:
paths:
- /usr/disk/by-path/pci-0000:11:00.0-nvme-1
thinPoolConfig:
name: thin-pool-1
overprovisionRatio: 10
sizePercent: 90

Table 7.8. LVMCluster CR options for single-node OpenShift clusters

LVMCluster CR field Description

deviceSelector.paths Configure the disks used for LVM storage. If no disks
are specified, the LVM Storage uses all the unused
disks in the specified thin pool.

18

ECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

7.7.13. Network diagnostics

Single-node OpenShift clusters that run DU workloads require less inter-pod network connectivity
checks to reduce the additional load created by these pods. The following custom resource (CR)
disables these checks.

Recommended network diagnostics configuration (DisableSnoNetworkDiag.yaml)

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
annotations: {}
spec:
disableNetworkDiagnostics: true

Additional resources

® Deploying far edge sites using ZTP

19

OpenShift Container Platform 4.15 Edge computing

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT
CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

Before you can deploy virtual distributed unit (vDU) applications, you need to tune and configure the
cluster host firmware and various other cluster configuration settings. Use the following information to
validate the cluster configuration to support vDU workloads.

Additional resources

® Workload partitioning in single-node OpenShift with GitOps ZTP

® Reference configuration for deploying vDUs on single-node OpenShift

8.1. RECOMMENDED FIRMWARE CONFIGURATION FOR VDU CLUSTER
HOSTS

Use the following table as the basis to configure the cluster host firmware for vDU applications running
on OpenShift Container Platform 4.15.

NOTE

The following table is a general recommendation for vDU cluster host firmware
configuration. Exact firmware settings will depend on your requirements and specific
hardware platform. Automatic setting of firmware is not handled by the zero touch
provisioning pipeline.

Table 8.1. Recommended cluster host firmware settings

Firmware setting Configuration Description
HyperTransport Enabled HyperTransport (HT) bus is a bus technology developed by
(HT) AMD. HT provides a high-speed link between the components in

the host memory and other system peripherals.

UEFI Enabled Enable booting from UEFI for the vDU host.

CPU Power and Performance Set CPU Power and Performance Policy to optimize the system

Performance for performance over energy efficiency.

Policy

Uncore Frequency Disabled Disable Uncore Frequency Scaling to prevent the voltage and

Scaling frequency of non-core parts of the CPU from being set
independently.

Uncore Frequency Maximum Sets the non-core parts of the CPU such as cache and memory

controller to their maximum possible frequency of operation.

Performance P- Disabled Disable Performance P-limit to prevent the Uncore frequency
limit coordination of processors.

120

ZHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

Firmware setting Configuration Description
Enhanced Intel® Enabled Enable Enhanced Intel SpeedStep to allow the system to
SpeedStep Tech dynamically adjust processor voltage and core frequency that

decreases power consumption and heat production in the host.

Intel® Turbo Boost Enabled Enable Turbo Boost Technology for Intel-based CPUs to

Technology automatically allow processor cores to run faster than the rated
operating frequency if they are operating below power, current,
and temperature specification limits.

Intel Configurable Enabled Enables Thermal Design Power (TDP) for the CPU.

TDP

Configurable TDP Level 2 TDP level sets the CPU power consumption required for a
Level particular performance rating. TDP level 2 sets the CPU to the

most stable performance level at the cost of power
consumption.

Energy Efficient Disabled Disable Energy Efficient Turbo to prevent the processor from

Turbo using an energy-efficiency based policy.

Hardware P-States ~ Enabled or Enable OS-controlled P-States to allow power saving
Disabled configurations. Disable P-states (performance states) to

optimize the operating system and CPU for performance over
power consumption.

Package C-State CO/Cl state Use CO or Clstates to set the processor to a fully active state
(CO) or to stop CPU internal clocks running in software (CT1).

CIE Disabled CPU Enhanced Halt (CIE) is a power saving feature in Intel
chips. Disabling CIE prevents the operating system from sending
a halt command to the CPU when inactive.

Processor C6 Disabled C6 power-saving is a CPU feature that automatically disables
idle CPU cores and cache. Disabling C6 improves system
performance.

Sub-NUMA Disabled Sub-NUMA clustering divides the processor cores, cache, and

Clustering memory into multiple NUMA domains. Disabling this option can

increase performance for latency-sensitive workloads.

NOTE

Enable global SR-IOV and VT-d settings in the firmware for the host. These settings are
relevant to bare-metal environments.

-

121

OpenShift Container Platform 4.15 Edge computing

NOTE

Enable both C-states and OS-controlled P-States to allow per pod power management.

8.2. RECOMMENDED CLUSTER CONFIGURATIONS TO RUN VDU

APPLICATIONS

Clusters running virtualized distributed unit (vDU) applications require a highly tuned and optimized
configuration. The following information describes the various elements that you require to support vDU
workloads in OpenShift Container Platform 4.15 clusters.

8.2.1. Recommended cluster MachineConfig CRs for single-node OpenShift clusters

Check that the MachineConfig custom resources (CRs) that you extract from the ztp-site-generate
container are applied in the cluster. The CRs can be found in the extracted out/source-crs/extra-

manifest/ folder.

The following MachineConfig CRs from the ztp-site-generate container configure the cluster host:

Table 8.2. Recommended GitOps ZTP MachineConfig CRs

MachineConfig CR Description

01-container-mount-ns-and-kubelet-conf-
master.yaml

01-container-mount-ns-and-kubelet-conf-
worker.yaml

03-sctp-machine-config-master.yaml

03-sctp-machine-config-worker.yaml

05-kdump-config-master.yaml
05-kdump-config-worker.yaml
06-kdump-master.yaml

06-kdump-worker.yaml

07-sriov-related-kernel-args-master.yaml

08-set-rcu-normal-master.yaml

08-set-rcu-normal-worker.yaml

99-crio-disable-wipe-master.yaml

99-crio-disable-wipe-worker.yaml

122

Configures the container mount namespace and
kubelet configuration.

Loads the SCTP kernel module. These
MachineConfig CRs are optional and can be
omitted if you do not require this kernel module.

Configures kdump crash reporting for the cluster.

Configures SR-IOV kernel arguments in the cluster.

Disables rcu_expedited mode after the cluster has
rebooted.

Disables the automatic CRI-O cache wipe following
cluster reboot.

ZHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

MachineConfig CR Description

99-sync-time-once-master.yaml Configures the one-time check and adjustment of

the system clock by the Chrony service.
99-sync-time-once-worker.yaml

enable-crun-master.yaml Enables the crun OCI container runtime.

enable-crun-worker.yaml

extra-manifest/enable-cgroups-v1.yaml Enables cgroups v1 during cluster installation and

when generating RHACM cluster policies.
source-crs/extra-manifest/enable-cgroups-

vi.yaml

NOTE

In OpenShift Container Platform 4.14 and later, you configure workload partitioning with
the cpuPartitioningMode field in the SiteConfig CR.

Additional resources

® Workload partitioning in single-node OpenShift with GitOps ZTP

® Extracting source CRs from the ztp-site-generate container

8.2.2. Recommended cluster Operators

The following Operators are required for clusters running virtualized distributed unit (vDU) applications
and are a part of the baseline reference configuration:

® Node Tuning Operator (NTO). NTO packages functionality that was previously delivered with
the Performance Addon Operator, which is now a part of NTO.

® PTP Operator
® SR-IOV Network Operator
® Red Hat OpenShift Logging Operator

® | ocal Storage Operator

8.2.3. Recommended cluster kernel configuration

Always use the latest supported real-time kernel version in your cluster. Ensure that you apply the
following configurations in the cluster:

1. Ensure that the following additionalKernelArgs are set in the cluster performance profile:
spec:

additionalKernelArgs:
- "rcupdate.rcu_normal_after_boot=0"

123

OpenShift Container Platform 4.15 Edge computing

- "efi=runtime"
- "module_blacklist=irdma"
2. Ensure that the performance-patch profile in the Tuned CR configures the correct CPU
isolation set that matches the isolated CPU set in the related PerformanceProfile CR, for
example:

spec:
profile:
- name: performance-patch
The 'include' line must match the associated PerformanceProfile name, for example:
include=openshift-node-performance-${PerformanceProfile.metadata.name}
When using the standard (non-realtime) kernel, remove the kernel.timer_migration
override from the [sysctl] section
data: |
[main]
summary=Configuration changes profile inherited from performance created tuned
include=openshift-node-performance-openshift-node-performance-profile
[sysctl]
kernel.timer_migration=1
[scheduler]
group.ice-ptp=0:f:10:*:ice-ptp.*
group.ice-gnss=0:f:10:*:ice-gnss.*
[service]
service.stalld=start,enable
service.chronyd=stop,disable

8.2.4. Checking the realtime kernel version

Always use the latest version of the realtime kernel in your OpenShift Container Platform clusters. If you
are unsure about the kernel version that is in use in the cluster, you can compare the current realtime
kernel version to the release version with the following procedure.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You are logged in as a user with cluster-admin privileges.

® You have installed podman.

Procedure

1. Run the following command to get the cluster version:

I $ OCP_VERSION=$(oc get clusterversion version -0 jsonpath='{.status.desired.version}
{ll\n"}l)

2. Get the release image SHA number:

$ DTK_IMAGE=$(oc adm release info --image-for=driver-toolkit quay.io/openshift-release-
dev/ocp-release:30OCP_VERSION-x86_64)

124

ZHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

3. Run the release image container and extract the kernel version that is packaged with cluster’s
current release:

I $ podman run --rm $DTK_IMAGE rpm -ga | grep 'kernel-rt-core-' | sed 's#kernel-rt-core-##'
Example output
I 4.18.0-305.49.1.rt7.121.el8_4.x86_64

This is the default realtime kernel version that ships with the release.

NOTE

The realtime kernel is denoted by the string .rt in the kernel version.

Verification

Check that the kernel version listed for the cluster’s current release matches actual realtime kernel that
is running in the cluster. Run the following commands to check the running realtime kernel version:

1. Open aremote shell connection to the cluster node:
I $ oc debug node/<node_name>
2. Check the realtime kernel version:

I sh-4.4# uname -r
Example output

I 4.18.0-305.49.1.rt7.121.el8_4.x86_64

8.3. CHECKING THAT THE RECOMMENDED CLUSTER
CONFIGURATIONS ARE APPLIED

You can check that clusters are running the correct configuration. The following procedure describes
how to check the various configurations that you require to deploy a DU application in OpenShift
Container Platform 4.15 clusters.

Prerequisites

® You have deployed a cluster and tuned it for vDU workloads.
® You have installed the OpenShift CLI (oc).

® You have logged in as a user with cluster-admin privileges.

Procedure

1. Check that the default OperatorHub sources are disabled. Run the following command:

I $ oc get operatorhub cluster -o yaml

125

OpenShift Container Platform 4.15 Edge computing

Example output

spec:
disableAllDefaultSources: true

2. Check that all required CatalogSource resources are annotated for workload partitioning
(PreferredDuringScheduling) by running the following command:

$ oc get catalogsource -A -0 jsonpath='{range .items[*]}{.metadata.name}{" -- "}
{.metadata.annotations.target\.workload\.openshift\.io/management}{"\n"Hend}'

Example output

certified-operators -- {"effect": "PreferredDuringScheduling"}
community-operators -- {"effect": "PreferredDuringScheduling"}
ran-operators

redhat-marketplace -- {"effect": "PreferredDuringScheduling"}
redhat-operators -- {"effect": "PreferredDuringScheduling"}

CatalogSource resources that are not annotated are also returned. In this example, the
ran-operators CatalogSource resource is not annotated and does not have the
PreferredDuringScheduling annotation.

NOTE

In a properly configured vDU cluster, only a single annotated catalog source is
listed.

3. Check that all applicable OpenShift Container Platform Operator namespaces are annotated
for workload partitioning. This includes all Operators installed with core OpenShift Container
Platform and the set of additional Operators included in the reference DU tuning configuration.
Run the following command:

$ oc get namespaces -A -0 jsonpath='{range .items[*]}{.metadata.name}{" -- "}
{.metadata.annotations.workload\.openshift\.io/allowed}{"\n"}{end}'

Example output

default --

openshift-apiserver -- management
openshift-apiserver-operator -- management
openshift-authentication -- management
openshift-authentication-operator -- management

IMPORTANT

Additional Operators must not be annotated for workload partitioning. In the
output from the previous command, additional Operators should be listed
without any value on the right side of the -- separator.

4. Check that the ClusterLogging configuration is correct. Run the following commands:

126

ZHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

a. Validate that the appropriate input and output logs are configured:

I $ oc get -n openshift-logging ClusterLogForwarder instance -o yaml
Example output

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
creationTimestamp: "2022-07-19T21:51:41Z2"
generation: 1
name: instance
namespace: openshift-logging
resourceVersion: "1030342"
uid: 8c1a842d-80c5-447a-9150-40350bdf40f0
spec:
inputs:
- infrastructure: {}
name: infra-logs
outputs:
- name: kafka-open
type: kafka
url: tcp://10.46.55.190:9092/test
pipelines:
- inputRefs:
- audit
name: audit-logs
outputRefs:
- kafka-open
- inputRefs:
- infrastructure
name: infrastructure-logs
outputRefs:
- kafka-open

b. Check that the curation schedule is appropriate for your application:
I $ oc get -n openshift-logging clusterloggings.logging.openshift.io instance -o yaml
Example output

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
creationTimestamp: "2022-07-07T18:22:56Z2"
generation: 1
name: instance
namespace: openshift-logging
resourceVersion: "235796"
uid: ef67b9b8-0e65-4a10-88ff-ec06922ea796
spec:
collection:
logs:

127

OpenShift Container Platform 4.15 Edge computing

fluentd: {}
type: fluentd
curation:
curator:
schedule: 303 * * *
type: curator
managementState: Managed

5. Check that the web console is disabled (managementState: Removed) by running the
following command:

I $ oc get consoles.operator.openshift.io cluster -o jsonpath="{ .spec.managementState }"
Example output
I Removed

6. Check that chronyd is disabled on the cluster node by running the following commands:

I $ oc debug node/<node_name>

Check the status of chronyd on the node:

I sh-4.44# chroot /host

I sh-4.4# systemctl status chronyd
Example output

e chronyd.service - NTP client/server
Loaded: loaded (/usr/lib/systemd/system/chronyd.service; disabled; vendor preset:
enabled)
Active: inactive (dead)
Docs: man:chronyd(8)
man:chrony.conf(5)

7. Check that the PTP interface is successfully synchronized to the primary clock using a remote
shell connection to the linuxptp-daemon container and the PTP Management Client (pmc¢)
tool:

a. Set the $PTP_POD_NAME variable with the name of the linuxptp-daemon pod by running
the following command:

I $ PTP_POD_NAME=$(oc get pods -n openshift-ptp -l app=linuxptp-daemon -o name)

b. Run the following command to check the sync status of the PTP device:

$ oc -n openshift-ptp rsh -c¢ linuxptp-daemon-container ${PTP_POD_NAME} pmc -u -f
/var/run/ptp4l.0.config -b 0 '"GET PORT_DATA_SET'

Example output

128

ZHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

sending: GET PORT_DATA_SET
3cecef.fffe.7a7020-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET

portldentity 3cecef.fffe.7a7020-1
portState SLAVE
logMinDelayReqInterval -4
peerMeanPathDelay 0
logAnnouncelnterval 1
announceReceiptTimeout 3

logSynclinterval 0
delayMechanism 1
logMinPdelayReqlInterval 0
versionNumber 2
3cecef.fffe.7a7020-2 seqg 0 RESPONSE MANAGEMENT PORT_DATA_SET
portldentity 3cecef.fffe.7a7020-2
portState LISTENING

logMinDelayReqlnterval 0
peerMeanPathDelay 0
logAnnouncelnterval 1
announceReceiptTimeout 3

logSynclinterval 0
delayMechanism 1
logMinPdelayReqlInterval 0
versionNumber 2

c. Run the following pmec command to check the PTP clock status:

$ oc -n openshift-ptp rsh -c¢ linuxptp-daemon-container ${PTP_POD_NAME} pmc -u -f
/var/run/ptp4l.0.config -b 0 'GET TIME_STATUS_NP"

Example output

sending: GET TIME_STATUS_NP
3cecef.fffe.7a7020-0 seq 0 RESPONSE MANAGEMENT TIME_STATUS_NP

master_offset 10
ingress_time 1657275432697400530
cumulativeScaledRateOffset +0.000000000
scaledLastGmPhaseChange 0
gmTimeBaselndicator 0
lastGmPhaseChange 0x0000'0000000000000000.0000
gmPresent true 9
gmldentity 3c2c30.fff.670e00

ﬂ master_offset should be between -100 and 100 ns.

Indicates that the PTP clock is synchronized to a master, and the local clock is not the
grandmaster clock.

d. Check that the expected master offset value corresponding to the value in
/var/run/ptp4l.0.config is found in the linuxptp-daemon-container log:

I $ oc logs $PTP_POD_NAME -n openshift-ptp -c linuxptp-daemon-container

Example output

129

OpenShift Container Platform 4.15 Edge computing

phc2sys[56020.341]: [ptp4l.1.config] CLOCK_REALTIME phc offset -1731092 s2 freq -
1546242 delay 497

ptp41[56020.390]: [ptp4l.1.config] master offset -2 82 freq -5863 path delay 541
ptp41[56020.390]: [ptp4l.0.config] master offset -8 s2 freq -10699 path delay 533

8. Check that the SR-IOV configuration is correct by running the following commands:

a. Check that the disableDrain value in the SriovOperatorConfig resource is set to true:

$ oc get sriovoperatorconfig -n openshift-sriov-network-operator default -o jsonpath="
{.spec.disableDrain}{'\n'}"

Example output

I true

b. Check that the SriovNetworkNodeState sync status is Succeeded by running the
following command:

$ oc get SriovNetworkNodeStates -n openshift-sriov-network-operator -0 jsonpath="
{.items[*].status.syncStatus}{"\n"}"

Example output
I Succeeded

c. Verify that the expected number and configuration of virtual functions (Vfs) under each
interface configured for SR-IOV is present and correct in the .status.interfaces field. For
example:

I $ oc get SriovNetworkNodeStates -n openshift-sriov-network-operator -o yami
Example output

apiVersion: vi

items:

- apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState

status:
interfaces:

- Vfs:

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.0
vendor: "8086"
vilD: 0

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.1
vendor: "8086"
vflD: 1

130

ZHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.2
vendor: "8086"
vilD: 2

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.3
vendor: "8086"
vflD: 3

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.4
vendor: "8086"
vilD: 4

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.5
vendor: "8086"
vflD: 5

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.6
vendor: "8086"
vflD: 6

- devicelD: 154c
driver: vfio-pci
pciAddress: 0000:3b:0a.7
vendor: "8086"
vilD: 7

9. Check that the cluster performance profile is correct. The cpu and hugepages sections will
vary depending on your hardware configuration. Run the following command:

I $ oc get PerformanceProfile openshift-node-performance-profile -o yaml
Example output

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
creationTimestamp: "2022-07-19T21:51:312"
finalizers:
- foreground-deletion
generation: 1
name: openshift-node-performance-profile
resourceVersion: "33558"
uid: 217958c0-9122-4c62-9d4d-fdc27¢c31118¢c
spec:
additionalKernelArgs:
- idle=poll
- rcupdate.rcu_normal_after_boot=0
- efi=runtime
cpu:
isolated: 2-51,54-103

131

OpenShift Container Platform 4.15 Edge computing

reserved: 0-1,52-53
hugepages:
defaultHugepagesSize: 1G
pages:
- count: 32
size: 1G
machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/master: "™
net:
userLevelNetworking: true
nodeSelector:
node-role.kubernetes.io/master:
numa:
topologyPolicy: restricted
realTimeKernel:
enabled: true
status:
conditions:
- lastHeartbeatTime: "2022-07-19T21:51:31Z"
lastTransitionTime: "2022-07-19T21:51:31Z"
status: "True"
type: Available
- lastHeartbeatTime: "2022-07-19T21:51:31Z"
lastTransitionTime: "2022-07-19T21:51:31Z"
status: "True"
type: Upgradeable
- lastHeartbeatTime: "2022-07-19T21:51:31Z"
lastTransitionTime: "2022-07-19T21:51:31Z"
status: "False"
type: Progressing
- lastHeartbeatTime: "2022-07-19T21:51:31Z"
lastTransitionTime: "2022-07-19T21:51:31Z"
status: "False"
type: Degraded
runtimeClass: performance-openshift-node-performance-profile
tuned: openshift-cluster-node-tuning-operator/openshift-node-performance-openshift-node-
performance-profile

NOTE

CPU settings are dependent on the number of cores available on the server and
should align with workload partitioning settings. hugepages configuration is
server and application dependent.

10. Check that the PerformanceProfile was successfully applied to the cluster by running the
following command:

$ oc get performanceprofile openshift-node-performance-profile -o jsonpath="{range
.status.conditions[*]}{ @.type H' -- 'H@.status}{"\n"{end}"

Example output

Available -- True
Upgradeable -- True

132

ZHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

Progressing -- False
Degraded -- False

11. Check the Tuned performance patch settings by running the following command:

$ oc get tuneds.tuned.openshift.io -n openshift-cluster-node-tuning-operator performance-
patch -o yaml

Example output

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
creationTimestamp: "2022-07-18T10:33:52Z2"
generation: 1
name: performance-patch
namespace: openshift-cluster-node-tuning-operator
resourceVersion: "34024"
uid: f9799811-f744-4179-bf00-32d4436c08fd
spec:
profile:
- data: |
[main]
summary=Configuration changes profile inherited from performance created tuned
include=openshift-node-performance-openshift-node-performance-profile
[bootloader]
cmdline_crash=nohz_full=2-23,26-47 §})
[sysctl]
kernel.timer_migration=1
[scheduler]
group.ice-ptp=0:f:10:*:ice-ptp.*
[service]
service.stalld=start,enable
service.chronyd=stop,disable
name: performance-patch
recommend:
- machineConfigLabels:
machineconfiguration.openshift.io/role: master
priority: 19
profile: performance-patch

ﬂ The cpu list in emdline=nohz_full= will vary based on your hardware configuration.

12. Check that cluster networking diagnostics are disabled by running the following command:

$ oc get networks.operator.openshift.io cluster -o
jsonpath='{.spec.disableNetworkDiagnostics}'

Example output

I true

133

OpenShift Container Platform 4.15 Edge computing

13. Check that the Kubelet housekeeping interval is tuned to slower rate. This is set in the
containerMountNS machine config. Run the following command:

$ oc describe machineconfig container-mount-namespace-and-kubelet-conf-master | grep
OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION

Example output
I Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"

14. Check that Grafana and alertManagerMain are disabled and that the Prometheus retention
period is set to 24h by running the following command:

$ oc get configmap cluster-monitoring-config -n openshift-monitoring -o jsonpath="{
.data.config\.yaml }"

Example output

grafana:
enabled: false
alertmanagerMain:
enabled: false
prometheusK8s:
retention: 24h

a. Use the following commands to verify that Grafana and alertManagerMain routes are not
found in the cluster:

I $ oc get route -n openshift-monitoring alertmanager-main

I $ oc get route -n openshift-monitoring grafana

Both queries should return Error from server (NotFound) messages.
15. Check that there is a minimum of 4 CPUs allocated as reserved for each of the

PerformanceProfile, Tuned performance-patch, workload partitioning, and kernel command
line arguments by running the following command:

I $ oc get performanceprofile -o jsonpath="{ .items[0].spec.cpu.reserved }"

Example output

I 0-3

—

NOTE

Depending on your workload requirements, you might require additional reserved
CPUs to be allocated.

134

CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES

CHAPTER 9. ADVANCED MANAGED CLUSTER
CONFIGURATION WITH SITECONFIG RESOURCES

You can use SiteConfig custom resources (CRs) to deploy custom functionality and configurations in
your managed clusters at installation time.

9.1. CUSTOMIZING EXTRA INSTALLATION MANIFESTS IN THE GITOPS
ZTP PIPELINE

You can define a set of extra manifests for inclusion in the installation phase of the GitOps Zero Touch
Provisioning (ZTP) pipeline. These manifests are linked to the SiteConfig custom resources (CRs) and
are applied to the cluster during installation. Including MachineConfig CRs at install time makes the
installation process more efficient.

Prerequisites

e Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for the Argo CD
application.

Procedure

1. Create a set of extra manifest CRs that the GitOps ZTP pipeline uses to customize the cluster
installs.

2. Inyour custom /siteconfig directory, create a subdirectory /custom-manifest for your extra
manifests. The following example illustrates a sample /siteconfig with /custom-manifest folder:

siteconfig
— site1-sno-du.yaml
— site2-standard-du.yaml
—— extra-manifest/
—— custom-manifest
L— 01-example-machine-config.yaml

/ NOTE

The subdirectory names /custom-manifest and /extra-manifest used
throughout are example names only. There is no requirement to use these names
and no restriction on how you name these subdirectories. In this example /extra-
manifest refers to the Git subdirectory that stores the contents of /extra-
manifest from the ztp-site-generate container.

3. Add your custom extra manifest CRs to the siteconfig/custom-manifest directory.

4. Inyour SiteConfig CR, enter the directory name in the extraManifests.searchPaths field, for
example:

clusters:

- clusterName: "example-sno”
networkType: "OVNKubernetes"
extraManifests:

135

OpenShift Container Platform 4.15 Edge computing

searchPaths:
- extra-manifest/ ﬂ
- custom-manifest/ 9

ﬂ Folder for manifests copied from the ztp-site-generate container.
9 Folder for custom manifests.
5. Save the SiteConfig, /extra-manifest, and /custom-manifest CRs, and push them to the site
configuration repo.

During cluster provisioning, the GitOps ZTP pipeline appends the CRs in the /custom-manifest
directory to the default set of extra manifests stored in extra-manifest/.

NOTE
As of version 4.14 extraManifestPath is subject to a deprecation warning.

While extraManifestPath is still supported, we recommend that you use
extraManifests.searchPaths. If you define extraManifests.searchPaths in the
SiteConfig file, the GitOps ZTP pipeline does not fetch manifests from the ztp-site-
generate container during site installation.

If you define both extraManifestPath and extraManifests.searchPaths in the
Siteconfig CR, the setting defined for extraManifests.searchPaths takes precedence.

It is strongly recommended that you extract the contents of /extra-manifest from the
ztp-site-generate container and push it to the GIT repository.

9.2. FILTERING CUSTOM RESOURCES USING SITECONFIG FILTERS

By using filters, you can easily customize SiteConfig custom resources (CRs) to include or exclude
other CRs for use in the installation phase of the GitOps Zero Touch Provisioning (ZTP) pipeline.

You can specify an inclusionDefault value of include or exclude for the SiteConfig CR, along with a
list of the specific extraManifest RAN CRs that you want to include or exclude. Setting
inclusionDefault to include makes the GitOps ZTP pipeline apply all the files in /source-crs/extra-
manifest during installation. Setting inclusionDefault to exclude does the opposite.

You can exclude individual CRs from the /source-crs/extra-manifest folder that are otherwise included
by default. The following example configures a custom single-node OpenShift SiteConfig CR to
exclude the /source-crs/extra-manifest/03-sctp-machine-config-worker.yaml CR at installation time.

Some additional optional filtering scenarios are also described.

Prerequisites
® You configured the hub cluster for generating the required installation and policy CRs.
® You created a Git repository where you manage your custom site configuration data. The

repository must be accessible from the hub cluster and be defined as a source repository for the
Argo CD application.

Procedure

136

CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES

1. To prevent the GitOps ZTP pipeline from applying the 03-sctp-machine-config-worker.yaml
CR file, apply the following YAML in the SiteConfig CR:

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
name: "site1-sno-du"
namespace: "site1-sno-du”
spec:
baseDomain: "example.com"
pullSecretRef:
name: "assisted-deployment-pull-secret”
clusterimageSetNameRef: "openshift-4.15"
sshPublicKey: "<ssh_public_key>"
clusters:
- clusterName: "site1-sno-du"
extraManifests:
filter:
exclude:
- 03-sctp-machine-config-worker.yaml

The GitOps ZTP pipeline skips the 03-sctp-machine-config-worker.yaml CR during
installation. All other CRs in /source-crs/extra-manifest are applied.

2. Save the SiteConfig CR and push the changes to the site configuration repository.
The GitOps ZTP pipeline monitors and adjusts what CRs it applies based on the SiteConfig
filter instructions.

3. Optional: To prevent the GitOps ZTP pipeline from applying all the /source-crs/extra-manifest
CRs during cluster installation, apply the following YAML in the SiteConfig CR:

- clusterName: "site1-sno-du”
extraManifests:
filter:
inclusionDefault: exclude

4. Optional: To exclude all the /source-crs/extra-manifest RAN CRs and instead include a custom
CR file during installation, edit the custom SiteConfig CR to set the custom manifests folder
and the include file, for example:

clusters:
- clusterName: "site1-sno-du"
extraManifestPath: "<custom_manifest_folder>"
extraManifests:
filter:
inclusionDefault: exclude 9
include:
- custom-sctp-machine-config-worker.yaml

Replace <custom_manifest_folders> with the name of the folder that contains the custom
installation CRs, for example, user-custom-manifest/.

® o

Set inclusionDefault to exclude to prevent the GitOps ZTP pipeline from applying the
files in /source-crs/extra-manifest during installation.

137

OpenShift Container Platform 4.15 Edge computing

The following example illustrates the custom folder structure:

siteconfig
—— site1-sno-du.yaml
—— user-custom-manifest
L custom-sctp-machine-config-worker.yaml

9.3. DELETING A NODE BY USING THE SITECONFIG CR

By using a SiteConfig custom resource (CR), you can delete and reprovision a node. This method is
more efficient than manually deleting the node.

Prerequisites
® You have configured the hub cluster to generate the required installation and policy CRs.

® You have created a Git repository in which you can manage your custom site configuration data.
The repository must be accessible from the hub cluster and be defined as the source repository
for the Argo CD application.

Procedure

1. Update the SiteConfig CR to include the bmac.agent-install.openshift.io/remove-agent-and-
node-on-delete=true annotation:

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
name: "cnfdf20"
namespace: "cnfdf20"
spec:
Clusters:
nodes:
- hostname: node6
role: "worker"
crAnnotations:
add:
BareMetalHost:
bmac.agent-install.openshift.io/remove-agent-and-node-on-delete: true
#...

2. Suppress the generation of the BareMetalHost CR by updating the SiteConfig CR to include
the crSuppression.BareMetalHost annotation:

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:

name: "cnfdf20"

namespace: "cnfdf20"
spec:

clusters:

- nodes:

- hostName: node6
role: "worker"

138

CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES

crSuppression:
- BareMetalHost
#...

3. Push the changes to the Git repository and wait for deprovisioning to start. The status of the
BareMetalHost CR should change to deprovisioning. Wait for the BareMetalHost to finish
deprovisioning, and be fully deleted.

Verification

1. Verify that the BareMetalHost and Agent CRs for the worker node have been deleted from the
hub cluster by running the following commands:

I $ oc get bmh -n <cluster-ns>

I $ oc get agent -n <cluster-ns>

2. Verify that the node record has been deleted from the spoke cluster by running the following
command:

I $ oc get nodes

NOTE

If you are working with secrets, deleting a secret too early can cause an issue
because ArgoCD needs the secret to complete resynchronization after deletion.
Delete the secret only after the node cleanup, when the current ArgoCD
synchronization is complete.

Next Steps

To reprovision a node, delete the changes previously added to the SiteConfig, push the changes to the
Git repository, and wait for the synchronization to complete. This regenerates the BareMetalHost CR of
the worker node and triggers the re-install of the node.

139

OpenShift Container Platform 4.15 Edge computing

CHAPTER 10. ADVANCED MANAGED CLUSTER
CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

You can use PolicyGenTemplate CRs to deploy custom functionality in your managed clusters.

10.1. DEPLOYING ADDITIONAL CHANGES TO CLUSTERS

If you require cluster configuration changes outside of the base GitOps Zero Touch Provisioning (ZTP)
pipeline configuration, there are three options:

Apply the additional configuration after the GitOps ZTP pipeline is complete

When the GitOps ZTP pipeline deployment is complete, the deployed cluster is ready for application
workloads. At this point, you can install additional Operators and apply configurations specific to your
requirements. Ensure that additional configurations do not negatively affect the performance of the
platform or allocated CPU budget.

Add content to the GitOps ZTP library

The base source custom resources (CRs) that you deploy with the GitOps ZTP pipeline can be
augmented with custom content as required.

Create extra manifests for the cluster installation

Extra manifests are applied during installation and make the installation process more efficient.

IMPORTANT

Providing additional source CRs or modifying existing source CRs can significantly impact
the performance or CPU profile of OpenShift Container Platform.

Additional resources

® Customizing extra installation manifests in the GitOps ZTP pipeline

10.2. USING POLICYGENTEMPLATE CRS TO OVERRIDE SOURCE CRS
CONTENT

PolicyGenTemplate custom resources (CRs) allow you to overlay additional configuration details on
top of the base source CRs provided with the GitOps plugin in the ztp-site-generate container. You can
think of PolicyGenTemplate CRs as a logical merge or patch to the base CR. Use PolicyGenTemplate
CRs to update a single field of the base CR, or overlay the entire contents of the base CR. You can
update values and insert fields that are not in the base CR.

The following example procedure describes how to update fields in the generated PerformanceProfile
CR for the reference configuration based on the PolicyGenTemplate CR in the group-du-sno-
ranGen.yaml file. Use the procedure as a basis for modifying other parts of the PolicyGenTemplate
based on your requirements.

Prerequisites

e Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for Argo CD.

Procedure

140

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

1. Review the baseline source CR for existing content. You can review the source CRs listed in the
reference PolicyGenTemplate CRs by extracting them from the GitOps Zero Touch
Provisioning (ZTP) container.

a. Create an/out folder:
I $ mkdir -p ./out

b. Extract the source CRs:

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.15.1 extract /home/ztp --tar | tar x -C ./out

2. Review the baseline PerformanceProfile CR in ./out/source-crs/PerformanceProfile.yamil:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: $name
annotations:
ran.openshift.io/ztp-deploy-wave: "10"
spec:
additionalKernelArgs:
- "idle=poll"
- "rcupdate.rcu_normal_after_boot=0"
cpu:
isolated: $isolated
reserved: $reserved
hugepages:
defaultHugepagesSize: $defaultHugepagesSize
pages:
- size: $size
count: $count
node: $node
machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/$mcp: "
net:
userLevelNetworking: true
nodeSelector:
node-role.kubernetes.io/$mcp: "
numa:
topologyPolicy: "restricted"
realTimeKernel:
enabled: true

NOTE

Any fields in the source CR which contain $... are removed from the generated
CRif they are not provided in the PolicyGenTemplate CR.

3. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file. The following example PolicyGenTemplate CR stanza supplies
appropriate CPU specifications, sets the hugepages configuration, and adds a new field that
sets globallyDisablelrqLoadBalancing to false.

141

OpenShift Container Platform 4.15 Edge computing

- fileName: PerformanceProfile.yaml
policyName: "config-policy"
metadata:
name: openshift-node-performance-profile
spec:
cpu:
These must be tailored for the specific hardware platform
isolated: "2-19,22-39"
reserved: "0-1,20-21"
hugepages:
defaultHugepagesSize: 1G
pages:
- size: 1G
count: 10
globallyDisablelrgLoadBalancing: false

4. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being

monitored by the GitOps ZTP argo CD application.

Example output

The GitOps ZTP application generates an RHACM policy that contains the generated
PerformanceProfile CR. The contents of that CR are derived by merging the metadata and spec
contents from the PerformanceProfile entry in the PolicyGenTemplate onto the source CR. The

resulting CR has the following content:

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
name: openshift-node-performance-profile
spec:
additionalKernelArgs:
- idle=poll
- rcupdate.rcu_normal_after_boot=0
cpu:
isolated: 2-19,22-39
reserved: 0-1,20-21
globallyDisablelrgLoadBalancing: false
hugepages:
defaultHugepagesSize: 1G
pages:
- count: 10
size: 1G
machineConfigPoolSelector:
pools.operator.machineconfiguration.openshift.io/master: "
net:
userLevelNetworking: true
nodeSelector:
node-role.kubernetes.io/master: ™"
numa:
topologyPolicy: restricted
realTimeKernel:
enabled: true

142

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

NOTE

In the /source-crs folder that you extract from the ztp-site-generate container, the $
syntax is not used for template substitution as implied by the syntax. Rather, if the
policyGen tool sees the $ prefix for a string and you do not specify a value for that field
in the related PolicyGenTemplate CR, the field is omitted from the output CR entirely.

An exception to this is the $mep variable in /source-crs YAML files that is substituted
with the specified value for mep from the PolicyGenTemplate CR. For example, in
example/policygentemplates/group-du-standard-ranGen.yaml, the value for mep is
worker:

spec:
bindingRules:
group-du-standard: "
mcp: "worker"

The policyGen tool replace instances of $mcp with worker in the output CRs.

10.3. ADDING CUSTOM CONTENT TO THE GITOPS ZTP PIPELINE

Perform the following procedure to add new content to the GitOps ZTP pipeline.

Procedure

1. Create a subdirectory named source-crs in the directory that contains the kustomization.yaml
file for the PolicyGenTemplate custom resource (CR).

2. Add your user-provided CRs to the source-crs subdirectory, as shown in the following example:

example
L— policygentemplates

—— dev.yaml

—— kustomization.yaml

—— mec-edge-snoi.yaml

—— sno.yaml

L— source-crs

—— PaoCatalogSource.yaml
—— PaoSubscription.yaml
—— custom-crs

| —— apiserver-config.yaml
| —— disable-nic-lldp.yaml
L elasticsearch

—— ElasticsearchNS.yaml
—— ElasticsearchOperatorGroup.yaml

The source-crs subdirectory must be in the same directory as the kustomization.yaml
file.

3. Update the required PolicyGenTemplate CRs to include references to the content you added

in the source-crs/custom-crs and source-crs/elasticsearch directories. For example:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate

143

OpenShift Container Platform 4.15 Edge computing

metadata:
name: "group-dev"
namespace: "ztp-clusters"
spec:
bindingRules:
dev: "true"
mcp: "master”
sourceFiles:
These policies/CRs come from the internal container Image
#Cluster Logging
- fileName: ClusterLogNS.yaml
remediationAction: inform
policyName: "group-dev-cluster-log-ns"
- fileName: ClusterLogOperGroup.yaml
remediationAction: inform
policyName: "group-dev-cluster-log-operator-group”
- fileName: ClusterLogSubscription.yaml
remediationAction: inform
policyName: "group-dev-cluster-log-sub”
#Local Storage Operator
- fileName: StorageNS.yaml
remediationAction: inform
policyName: "group-dev-Iso-ns"
- fileName: StorageOperGroup.yaml
remediationAction: inform
policyName: "group-dev-Iso-operator-group”
- fileName: StorageSubscription.yaml
remediationAction: inform
policyName: "group-dev-lso-sub”
#These are custom local polices that come from the source-crs directory in the git repo
Performance Addon Operator
- fileName: PaoSubscriptionNS.yaml
remediationAction: inform
policyName: "group-dev-pao-ns"
- fileName: PaoSubscriptionCatalogSource.yaml
remediationAction: inform
policyName: "group-dev-pao-cat-source”
spec:
image: <image_URL_here>
- fileName: PaoSubscription.yaml
remediationAction: inform
policyName: "group-dev-pao-sub”
#Elasticsearch Operator
- fileName: elasticsearch/ElasticsearchNS.yaml ﬂ
remediationAction: inform
policyName: "group-dev-elasticsearch-ns"
- fileName: elasticsearch/ElasticsearchOperatorGroup.yaml
remediationAction: inform
policyName: "group-dev-elasticsearch-operator-group”
#Custom Resources
- fileName: custom-crs/apiserver-config.yaml 9
remediationAction: inform
policyName: "group-dev-apiserver-config"
- fileName: custom-crs/disable-nic-lldp.yaml
remediationAction: inform
policyName: "group-dev-disable-nic-lldp"

144

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

wSet fileName to include the relative path to the file from the /source-crs parent directory.

4. Commit the PolicyGenTemplate change in Git, and then push to the Git repository that is
monitored by the GitOps ZTP Argo CD policies application.

5. Update the ClusterGroupUpgrade CR to include the changed PolicyGenTemplate and save it
as cgu-test.yaml. The following example shows a generated cgu-test.yaml file.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: custom-source-cr
namespace: ztp-clusters
spec:
managedPolicies:
- group-dev-config-policy
enable: true
clusters:
- cluster1
remediationStrategy:
maxConcurrency: 2
timeout: 240

6. Apply the updated ClusterGroupUpgrade CR by running the following command:
I $ oc apply -f cgu-test.yaml

Verification

® Check that the updates have succeeded by running the following command:
I $ oc getcgu -A

Example output

NAMESPACE NAME AGE STATE DETAILS

ztp-clusters custom-source-cr 6s InProgress Remediating non-compliant policies
ztp-install cluster 19h Completed All clusters are compliant with all the managed
policies

10.4. CONFIGURING POLICY COMPLIANCE EVALUATION TIMEOUTS
FOR POLICYGENTEMPLATE CRS

Use Red Hat Advanced Cluster Management (RHACM) installed on a hub cluster to monitor and report
on whether your managed clusters are compliant with applied policies. RHACM uses policy templates to
apply predefined policy controllers and policies. Policy controllers are Kubernetes custom resource
definition (CRD) instances.

You can override the default policy evaluation intervals with PolicyGenTemplate custom resources

(CRs). You configure duration settings that define how long a ConfigurationPolicy CR can be in a state
of policy compliance or non-compliance before RHACM re-evaluates the applied cluster policies.

145

OpenShift Container Platform 4.15 Edge computing

The GitOps Zero Touch Provisioning (ZTP) policy generator generates ConfigurationPolicy CR policies
with pre-defined policy evaluation intervals. The default value for the noncompliant state is 10 seconds.
The default value for the compliant state is 10 minutes. To disable the evaluation interval, set the value
to never.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

1. To configure the evaluation interval for all policies in a PolicyGenTemplate CR, add
evaluationinterval to the spec field, and then set the appropriate compliant and
noncompliant values. For example:

spec:
evaluationinterval:
compliant: 30m
noncompliant: 20s

2. To configure the evaluation interval for the spec.sourceFiles object in a PolicyGenTemplate
CR, add evaluationinterval to the sourceFiles field, for example:

spec:
sourceFiles:

- fileName: SriovSubscription.yaml
policyName: "sriov-sub-policy"
evaluationinterval:

compliant: never
noncompliant: 10s

3. Commit the PolicyGenTemplate CRs files in the Git repository and push your changes.

Verification

Check that the managed spoke cluster policies are monitored at the expected intervals.
1. Login as a user with cluster-admin privileges on the managed cluster.

2. Get the pods that are running in the open-cluster-management-agent-addon namespace. Run
the following command:

I $ oc get pods -n open-cluster-management-agent-addon

Example output

NAME READY STATUS RESTARTS AGE
config-policy-controller-8580894c68-v4xdb 1/1 Running 22 (5d8h ago) 10d

146

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

3. Check the applied policies are being evaluated at the expected interval in the logs for the
config-policy-controller pod:

I $ oc logs -n open-cluster-management-agent-addon config-policy-controller-8580894c68-
vaxdb

Example output

2022-05-10T15:10:25.280Z info configuration-policy-controller
controllers/configurationpolicy _controller.go:166 Skipping the policy evaluation due to the
policy not reaching the evaluation interval {"policy": "compute-1-config-policy-config"}
2022-05-10T15:10:25.280Z info configuration-policy-controller
controllers/configurationpolicy _controller.go:166 Skipping the policy evaluation due to the
policy not reaching the evaluation interval {"policy": "compute-1-common-compute-1-catalog-
policy-config"}

10.5. SIGNALLING GITOPS ZTP CLUSTER DEPLOYMENT
COMPLETION WITH VALIDATOR INFORM POLICIES

Create a validator inform policy that signals when the GitOps Zero Touch Provisioning (ZTP) installation
and configuration of the deployed cluster is complete. This policy can be used for deployments of
single-node OpenShift clusters, three-node clusters, and standard clusters.

Procedure

1. Create a standalone PolicyGenTemplate custom resource (CR) that contains the source file
validatorCRs/informDuValidator.yaml. You only need one standalone PolicyGenTemplate
CR for each cluster type. For example, this CR applies a validator inform policy for single-node
OpenShift clusters:

Example single-node cluster validator inform policy CR (group-du-sno-validator-
ranGen.yaml)

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "group-du-sno-validator" 0
namespace: "ztp-group"
spec:
bindingRules:
group-du-sno:
bindingExcludedRules:
ztp-done: ™" ﬂ
mcp: "master”
sourceFiles:
- fileName: validatorCRs/informDuValidator.yaml
remediationAction: inform G

policyName: "du-policy" ﬂ

The name of PolicyGenTemplates object. This name is also used as part of the names for
the placementBinding, placementRule, and policy that are created in the requested
hamespace.

147

OpenShift Container Platform 4.15 Edge computing

This value should match the namespace used in the group PolicyGenTemplates.
The group-du-* label defined in bindingRules must exist in the SiteConfig files.

The label defined in bindingExcludedRules must be “ztp-done: ™. The ztp-done label is
used in coordination with the Topology Aware Lifecycle Manager.

mcp defines the MachineConfigPool object that is used in the source file
validatorCRs/informDuValidator.yaml. It should be master for single node and three-
node cluster deployments and worker for standard cluster deployments.

Optional. The default value is inform.

This value is used as part of the name for the generated RHACM policy. The generated
validator policy for the single node example is group-du-sno-validator-du-policy.

O ©® 00600

2. Commit the PolicyGenTemplate CR file in your Git repository and push the changes.

Additional resources

® Upgrading GitOps ZTP

10.6. CONFIGURING POWER STATES USING POLICYGENTEMPLATES
CRS

For low latency and high-performance edge deployments, it is necessary to disable or limit C-states and
P-states. With this configuration, the CPU runs at a constant frequency, which is typically the maximum
turbo frequency. This ensures that the CPU is always running at its maximum speed, which results in
high performance and low latency. This leads to the best latency for workloads. However, this also leads
to the highest power consumption, which might not be necessary for all workloads.
Workloads can be classified as critical or non-critical, with critical workloads requiring disabled C-state
and P-state settings for high performance and low latency, while non-critical workloads use C-state and
P-state settings for power savings at the expense of some latency and performance. You can configure
the following three power states using GitOps Zero Touch Provisioning (ZTP):

e High-performance mode provides ultra low latency at the highest power consumption.

e Performance mode provides low latency at a relatively high power consumption.

® Power saving balances reduced power consumption with increased latency.

The default configuration is for a low latency, performance mode.

PolicyGenTemplate custom resources (CRs) allow you to overlay additional configuration details onto
the base source CRs provided with the GitOps plugin in the ztp-site-generate container.

Configure the power states by updating the workloadHints fields in the generated PerformanceProfile
CR for the reference configuration, based on the PolicyGenTemplate CR in the group-du-sno-
ranGen.yaml.

The following common prerequisites apply to configuring all three power states.

Prerequisites

148

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

® You have created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for
Argo CD.

® You have followed the procedure described in "Preparing the GitOps ZTP site configuration
repository"”.

Additional resources

® Configuring node power consumption and realtime processing with workload hints

10.6.1. Configuring performance mode using PolicyGenTemplate CRs

Follow this example to set performance mode by updating the workloadHints fields in the generated
PerformanceProfile CR for the reference configuration, based on the PolicyGenTemplate CR in the
group-du-sno-ranGen.yaml.

Performance mode provides low latency at a relatively high power consumption.

Prerequisites

® You have configured the BIOS with performance related settings by following the guidance in
"Configuring host firmware for low latency and high performance”.

Procedure

1. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file in out/argocd/example/policygentemplates as follows to set
performance mode.

- fileName: PerformanceProfile.yaml
policyName: "config-policy”
metadata:

[.-.]
spec:
[.-.]
workloadHints:
realTime: true
highPowerConsumption: false
perPodPowerManagement: false

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP Argo CD application.

10.6.2. Configuring high-performance mode using PolicyGenTemplate CRs

Follow this example to set high performance mode by updating the workloadHints fields in the
generated PerformanceProfile CR for the reference configuration, based on the PolicyGenTemplate
CRin the group-du-sno-ranGen.yaml.

High performance mode provides ultra low latency at the highest power consumption.

Prerequisites

149

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#configuring-workload-hints_cnf-low-latency-perf-profile

OpenShift Container Platform 4.15 Edge computing

® You have configured the BIOS with performance related settings by following the guidance in
"Configuring host firmware for low latency and high performance”.

Procedure

1. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file in out/argocd/example/policygentemplates as follows to set high-
performance mode.

- fileName: PerformanceProfile.yaml
policyName: "config-policy”
metadata:

[.-.]
spec:
[.-.]
workloadHints:
realTime: true
highPowerConsumption: true
perPodPowerManagement: false

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP Argo CD application.

10.6.3. Configuring power saving mode using PolicyGenTemplate CRs

Follow this example to set power saving mode by updating the workloadHints fields in the generated
PerformanceProfile CR for the reference configuration, based on the PolicyGenTemplate CR in the
group-du-sno-ranGen.yaml.

The power saving mode balances reduced power consumption with increased latency.

Prerequisites

® You enabled C-states and OS-controlled P-states in the BIOS.

Procedure

1. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file in out/argocd/example/policygentemplates as follows to
configure power saving mode. It is recommended to configure the CPU governor for the power
saving mode through the additional kernel arguments object.

- fileName: PerformanceProfile.yaml
policyName: "config-policy”
metadata:

[.-.]
spec:
[.-.]
workloadHints:
realTime: true
highPowerConsumption: false
perPodPowerManagement: true

[...]

150

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

additionalKernelArgs:
-]
- "cpufreq.default_governor=schedutil" ﬂ

The schedutil governor is recommended, however, other governors that can be used
include ondemand and powersave.

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP Argo CD application.

Verification

1. Select a worker node in your deployed cluster from the list of nodes identified by using the
following command:

I $ oc get nodes
2. Login to the node by using the following command:
I $ oc debug node/<node-name>

Replace <node-name> with the name of the node you want to verify the power state on.
3. Set /host as the root directory within the debug shell. The debug pod mounts the host's root file

system in /host within the pod. By changing the root directory to /host, you can run binaries
contained in the host's executable paths as shown in the following example:

I # chroot /host

4. Run the following command to verify the applied power state:

I # cat /proc/cmdline

Expected output

® For power saving mode the intel_pstate=passive.

Additional resources

® Configuring power saving for nodes that run colocated high and low priority workloads
® Configuring host firmware for low latency and high performance

® Preparing the GitOps ZTP site configuration repository

10.6.4. Maximizing power savings

Limiting the maximum CPU frequency is recommended to achieve maximum power savings. Enabling C-
states on the non-critical workload CPUs without restricting the maximum CPU frequency negates
much of the power savings by boosting the frequency of the critical CPUs.

Maximize power savings by updating the sysfs plugin fields, setting an appropriate value for
max_perf_pctin the TunedPerformancePatch CR for the reference configuration. This example based

151

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#cnf-configuring-power-saving-for-nodes_cnf-low-latency-perf-profile

OpenShift Container Platform 4.15 Edge computing

on the group-du-sno-ranGen.yaml describes the procedure to follow to restrict the maximum CPU
frequency.

Prerequisites

® You have configured power savings mode as described in "Using PolicyGenTemplate CRs to
configure power savings mode".

Procedure

1. Update the PolicyGenTemplate entry for TunedPerformancePatch in the group-du-sno-
ranGen.yaml reference file in out/argocd/example/policygentemplates. To maximize power
savings, add max_perf_pct as shown in the following example:

- fileName: TunedPerformancePatch.yaml
policyName: "config-policy”
spec:
profile:
- name: performance-patch
data: |

[...]
[sysfs]
/sys/devices/system/cpu/intel_pstate/max_perf_pct=<x> ﬂ

ﬂ The max_perf_pct controls the maximum frequency the cpufreq driver is allowed to set as
a percentage of the maximum supported CPU frequency. This value applies to all CPUs.
You can check the maximum supported frequency in
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq. As a starting point, you can
use a percentage that caps all CPUs at the All Cores Turbo frequency. The All Cores
Turbo frequency is the frequency that all cores will run at when the cores are all fully
occupied.

NOTE

To maximize power savings, set a lower value. Setting a lower value for
max_perf_pct limits the maximum CPU frequency, thereby reducing power
consumption, but also potentially impacting performance. Experiment with
different values and monitor the system'’s performance and power consumption
to find the optimal setting for your use-case.

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP Argo CD application.

10.7. CONFIGURING LVM STORAGE USING POLICYGENTEMPLATE
CRS

You can configure Logical Volume Manager (LVM) Storage for managed clusters that you deploy with
GitOps Zero Touch Provisioning (ZTP).

152

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

NOTE

You use LVM Storage to persist event subscriptions when you use PTP events or bare-
metal hardware events with HTTP transport.

Use the Local Storage Operator for persistent storage that uses local volumes in
distributed units.

Prerequisites

® Install the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

e Create a Git repository where you manage your custom site configuration data.

Procedure

1. To configure LVM Storage for new managed clusters, add the following YAML to
spec.sourceFiles in the common-ranGen.yaml file:

- fileName: StorageLVMOSubscriptionNS.yaml
policyName: subscription-policies
- fileName: StorageLVMOSubscriptionOperGroup.yaml
policyName: subscription-policies
- fileName: StorageLVMOSubscription.yaml
spec:
name: lvms-operator
channel: stable-4.15
policyName: subscription-policies

NOTE

The Storage LVMO subscription is deprecated. In future releases of OpenShift
Container Platform, the storage LVMO subscription will not be available. Instead,
you must use the Storage LVMS subscription.

In OpenShift Container Platform 4.15, you can use the Storage LVMS
subscription instead of the LVMO subscription. The LVMS subscription does not
require manual overrides in the common-ranGen.yaml file. Add the following
YAML to spec.sourceFiles in the common-ranGen.yaml file to use the Storage
LVMS subscription:

- fileName: StorageLVMSubscriptionNS.yaml
policyName: subscription-policies

- fileName: StorageLVMSubscriptionOperGroup.yaml|
policyName: subscription-policies

- fileName: StorageLVMSubscription.yaml
policyName: subscription-policies

2. Add the LVMCluster CR to spec.sourceFiles in your specific group or individual site
configuration file. For example, in the group-du-sno-ranGen.yaml file, add the following:

I - fleName: StorageLVMCluster.yaml

153

OpenShift Container Platform 4.15 Edge computing

policyName: "lvms-config" ﬂ
spec:
storage:
deviceClasses:
- name: vgi
thinPoolConfig:
name: thin-pool-1
sizePercent: 90
overprovisionRatio: 10

This example configuration creates a volume group (vg1) with all the available devices,
except the disk where OpenShift Container Platform is installed. A thin-pool logical volume
is also created.

3. Merge any other required changes and files with your custom site repository.

4. Commit the PolicyGenTemplate changes in Git, and then push the changes to your site
configuration repository to deploy LVM Storage to new sites using GitOps ZTP.

10.8. CONFIGURING PTP EVENTS WITH POLICYGENTEMPLATE CRS

You can use the GitOps ZTP pipeline to configure PTP events that use HTTP or AMQP transport.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

10.8.1. Configuring PTP events that use HTTP transport

You can configure PTP events that use HTTP transport on managed clusters that you deploy with the
GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites
® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

1. Apply the following PolicyGenTemplate changes to group-du-3node-ranGen.yaml, group-
du-sno-ranGen.yaml, or group-du-standard-ranGen.yaml files according to your
requirements:

a. In.sourceFiles, add the PtpOperatorConfig CR file that configures the transport host:

- fileName: PtpOperatorConfigForEvent.yaml
policyName: "config-policy"

154

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

spec:
daemonNodeSelector: {}
ptpEventConfig:
enableEventPublisher: true
transportHost: http://ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043

NOTE

In OpenShift Container Platform 4.13 or later, you do not need to set the
transportHost field in the PtpOperatorConfig resource when you use HTTP
transport with PTP events.

b. Configure the linuxptp and phc2sys for the PTP clock type and interface. For example,
add the following stanza into .sourceFiles:

- fileName: PtpConfigSlave.yaml 0
policyName: "config-policy"
metadata:
name: "du-ptp-slave"
spec:
profile:
- name: "slave"
interface: "ens5f1" 9
ptp4lOpts: "-2 -s --summary_interval -4" e
phc2sysOpts: "-a -r-m -n 24 -N 8 -R 16" ﬂ
ptpClockThreshold: @)
holdOverTimeout: 30 #secs
maxOffsetThreshold: 100 #nano secs
minOffsetThreshold: -100 #nano secs

Can be one of PtpConfigMaster.yaml, PtpConfigSlave.yaml, or
PtpConfigSlaveCvl.yaml depending on your requirements. PtpConfigSlaveCvl.yaml
configures linuxptp services for an Intel E810 Columbiaville NIC. For configurations
based on group-du-sno-ranGen.yaml or group-du-3node-ranGen.yaml, use
PtpConfigSlave.yaml.

Device specific interface name.

You must append the --summary_interval -4 value to ptp4lOpts in
.spec.sourceFiles.spec.profile to enable PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

® 0 00O

Optional. If the ptpClockThreshold stanza is not present, default values are used for
the ptpClockThreshold fields. The stanza shows default ptpClockThreshold values.
The ptpClockThreshold values configure how long after the PTP master clock is
disconnected before PTP events are triggered. holdOverTimeout is the time value in
seconds before the PTP clock event state changes to FREERUN when the PTP
master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the values for
CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys
offset value is outside this range, the PTP clock state is set to FREERUN. When the

155

OpenShift Container Platform 4.15 Edge computing

offset value is within this range, the PTP clock state is set to LOCKED.

2. Merge any other required changes and files with your custom site repository.

3. Push the changes to your site configuration repository to deploy PTP fast events to new sites
using GitOps ZTP.
Additional resources

® Using PolicyGenTemplate CRs to override source CRs content

10.8.2. Configuring PTP events that use AMQP transport

You can configure PTP events that use AMQP transport on managed clusters that you deploy with the
GitOps Zero Touch Provisioning (ZTP) pipeline.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

1. Add the following YAML into .spec.sourceFiles in the common-ranGen.yaml file to configure
the AMQP Operator:

#AMQ interconnect operator for fast events

- fileName: AmqSubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: AmqSubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: AmqSubscription.yaml
policyName: "subscriptions-policy"

2. Apply the following PolicyGenTemplate changes to group-du-3node-ranGen.yaml, group-
du-sno-ranGen.yaml, or group-du-standard-ranGen.yaml files according to your
requirements:

a. In.sourceFiles, add the PtpOperatorConfig CR file that configures the AMQ transport
host to the config-policy:

- fileName: PtpOperatorConfigForEvent.yaml
policyName: "config-policy"

156

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

spec:
daemonNodeSelector: {}
ptpEventConfig:
enableEventPublisher: true
transportHost: "amqp://amg-router.amq-router.svc.cluster.local”

b. Configure the linuxptp and phc2sys for the PTP clock type and interface. For example,
add the following stanza into .sourceFiles:

- fileName: PtpConfigSlave.yaml 0
policyName: "config-policy"
metadata:
name: "du-ptp-slave"
spec:
profile:
- name: "slave"
interface: "ens5f1" 9
ptp4lOpts: "-2 -s --summary_interval -4" e
phc2sysOpts: "-a -r-m -n 24 -N 8 -R 16" ﬂ
ptpClockThreshold: @)
holdOverTimeout: 30 #secs
maxOffsetThreshold: 100 #nano secs
minOffsetThreshold: -100 #nano secs

Can be one PtpConfigMaster.yaml, PtpConfigSlave.yaml, or
PtpConfigSlaveCvl.yaml depending on your requirements. PtpConfigSlaveCvl.yaml
configures linuxptp services for an Intel E810 Columbiaville NIC. For configurations
based on group-du-sno-ranGen.yaml or group-du-3node-ranGen.yaml, use
PtpConfigSlave.yaml.

Device specific interface name.

You must append the --summary_interval -4 value to ptp4lOpts in
.spec.sourceFiles.spec.profile to enable PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

® 0 00

Optional. If the ptpClockThreshold stanza is not present, default values are used for
the ptpClockThreshold fields. The stanza shows default ptpClockThreshold values.
The ptpClockThreshold values configure how long after the PTP master clock is
disconnected before PTP events are triggered. holdOverTimeout is the time value in
seconds before the PTP clock event state changes to FREERUN when the PTP
master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the values for
CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys
offset value is outside this range, the PTP clock state is set to FREERUN. When the
offset value is within this range, the PTP clock state is set to LOCKED.

3. Apply the following PolicyGenTemplate changes to your specific site YAML files, for example,
example-sno-site.yaml:

a. In.sourceFiles, add the Interconnect CR file that configures the AMQ router to the
config-policy:

157

OpenShift Container Platform 4.15 Edge computing

- fleName: Amglnstance.yaml
policyName: "config-policy”

4. Merge any other required changes and files with your custom site repository.

5. Push the changes to your site configuration repository to deploy PTP fast events to new sites
using GitOps ZTP.

Additional resources

® |nstalling the AMQ messaging bus

® For more information about container image registries, see OpenShift image registry overview.

10.9. CONFIGURING BARE-METAL EVENTS WITH
POLICYGENTEMPLATE CRS

You can use the GitOps ZTP pipeline to configure bare-metal events that use HTTP or AMQP
transport.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

10.9.1. Configuring bare-metal events that use HTTP transport

You can configure bare-metal events that use HTTP transport on managed clusters that you deploy
with the GitOps Zero Touch Provisioning (ZTP) pipeline.
Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

1. Configure the Bare Metal Event Relay Operator by adding the following YAML to
spec.sourceFiles in the common-ranGen.yaml file:

Bare Metal Event Relay operator

- fileName: BareMetalEventRelaySubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: BareMetalEventRelaySubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: BareMetalEventRelaySubscription.yaml
policyName: "subscriptions-policy"

158

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#cnf-installing-amq-interconnect-messaging-bus_using-ptp-events
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/registry/#registry-overview
https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

2. Add the HardwareEvent CR to spec.sourceFiles in your specific group configuration file, for
example, in the group-du-sno-ranGen.yaml file:

- fleName: HardwareEvent.yaml ﬂ
policyName: "config-policy”
spec:
nodeSelector: {}
transportHost: "http://hw-event-publisher-service.openshift-bare-metal-
events.svc.cluster.local:9043"
logLevel: "info"

ﬂ Each baseboard management controller (BMC) requires a single HardwareEvent CR only.

NOTE

In OpenShift Container Platform 4.13 or later, you do not need to set the
transportHost field in the HardwareEvent custom resource (CR) when you use
HTTP transport with bare-metal events.

3. Merge any other required changes and files with your custom site repository.

4. Push the changes to your site configuration repository to deploy bare-metal events to new sites
with GitOps ZTP.

5. Create the Redfish Secret by running the following command:

$ oc -n openshift-bare-metal-events create secret generic redfish-basic-auth \
--from-literal=username=<bmc_username> --from-literal=password=<bmc_password> \
--from-literal=hostaddr="<bmc_host_ip_addr>"

Additional resources

® |nstalling the Bare Metal Event Relay using the CLI

® Creating the bare-metal event and Secret CRs

10.9.2. Configuring bare-metal events that use AMQP transport

You can configure bare-metal events that use AMQP transport on managed clusters that you deploy
with the GitOps Zero Touch Provisioning (ZTP) pipeline.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

® You have installed the OpenShift CLI (oc).

159

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#nw-rfhe-installing-operator-cli_using-rfhe
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#nw-rfhe-creating-hardware-event_using-rfhe
https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect

OpenShift Container Platform 4.15 Edge computing

® You have logged in as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data.

Procedure

1. To configure the AMQ Interconnect Operator and the Bare Metal Event Relay Operator, add
the following YAML to spec.sourceFiles in the common-ranGen.yaml file:

AMQ interconnect operator for fast events

- fileName: AmqSubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: AmqSubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: AmqSubscription.yaml
policyName: "subscriptions-policy"

Bare Metal Event Rely operator

- fileName: BareMetalEventRelaySubscriptionNS.yaml
policyName: "subscriptions-policy"

- fileName: BareMetalEventRelaySubscriptionOperGroup.yaml
policyName: "subscriptions-policy"

- fileName: BareMetalEventRelaySubscription.yaml
policyName: "subscriptions-policy"

2. Add the Interconnect CR to .spec.sourceFiles in the site configuration file, for example, the
example-sno-site.yaml file:
- fleName: Amglnstance.yaml
policyName: "config-policy”

3. Add the HardwareEvent CR to spec.sourceFiles in your specific group configuration file, for
example, in the group-du-sno-ranGen.yaml file:

- fileName: HardwareEvent.yaml
policyName: "config-policy"
spec:
nodeSelector: {}
transportHost: "amqp://<amq_interconnect_names.
<amq_interconnect_namespace>.svc.cluster.local" 0
logLevel: "info"

ﬂ The transportHost URL is composed of the existing AMQ Interconnect CR name and
namespace. For example, in transportHost: "amqp://amq-router.amg-
router.svc.cluster.local”, the AMQ Interconnect hame and namespace are both set to
amg-router.

NOTE

Each baseboard management controller (BMC) requires a single HardwareEvent
resource only.

160

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

4. Commit the PolicyGenTemplate change in Git, and then push the changes to your site
configuration repository to deploy bare-metal events monitoring to new sites using GitOps
ZTP.

5. Create the Redfish Secret by running the following command:

$ oc -n openshift-bare-metal-events create secret generic redfish-basic-auth \
--from-literal=username=<bmc_username> --from-literal=password=<bmc_password> \
--from-literal=hostaddr="<bmc_host_ip_addr>"

10.10. CONFIGURING THE IMAGE REGISTRY OPERATOR FOR LOCAL
CACHING OF IMAGES

OpenShift Container Platform manages image caching using a local registry. In edge computing use
cases, clusters are often subject to bandwidth restrictions when communicating with centralized image
registries, which might result in long image download times.

Long download times are unavoidable during initial deployment. Over time, there is a risk that CRI-O will
erase the /var/lib/containers/storage directory in the case of an unexpected shutdown. To address
long image download times, you can create a local image registry on remote managed clusters using
GitOps Zero Touch Provisioning (ZTP). This is useful in Edge computing scenarios where clusters are
deployed at the far edge of the network.

Before you can set up the local image registry with GitOps ZTP, you need to configure disk partitioning
in the SiteConfig CR that you use to install the remote managed cluster. After installation, you
configure the local image registry using a PolicyGenTemplate CR. Then, the GitOps ZTP pipeline
creates Persistent Volume (PV) and Persistent Volume Claim (PVC) CRs and patches the
imageregistry configuration.

NOTE

The local image registry can only be used for user application images and cannot be used
for the OpenShift Container Platform or Operator Lifecycle Manager operator images.

Additional resources

® OpenShift Container Platform registry overview.

10.10.1. Configuring disk partitioning with SiteConfig

Configure disk partitioning for a managed cluster using a SiteConfig CR and GitOps Zero Touch
Provisioning (ZTP). The disk partition details in the SiteConfig CR must match the underlying disk.

NOTE
Use persistent naming for devices to avoid device names such as /dev/sda and /dev/sdb

being switched at every reboot. You can use rootDeviceHints to choose the bootable
device and then use same device for further partitioning.

.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have logged in to the hub cluster as a user with cluster-admin privileges.

161

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/registry/#registry-overview

OpenShift Container Platform 4.15 Edge computing

® You have created a Git repository where you manage your custom site configuration data for
use with GitOps Zero Touch Provisioning (ZTP).

Procedure

1. Add the following YAML that describes the host disk partitioning to the SiteConfig CR that you
use to install the managed cluster:

nodes:
rootDeviceHints:
wwn: "0x62cea7f05c98c2002708a0a22ff480ea"
diskPartition:
- device: /dev/disk/by-id/wwn-0x62cea7f05c98c2002708a0a22ff480ea ﬂ
partitions:
- mount_point: /var/imageregistry
size: 102500
start: 344844 @)

ﬂ This setting depends on the hardware. The setting can be a serial number or device name.
The value must match the value set for rootDeviceHints.

9 The minimum value for size is 102500 MiB.
9 The minimum value for start is 25000 MiB. The total value of size and start must not
exceed the disk size, or the installation will fail.
2. Save the SiteConfig CR and push it to the site configuration repo.

The GitOps ZTP pipeline provisions the cluster using the SiteConfig CR and configures the disk
partition.

10.10.2. Configuring the image registry using PolicyGenTemplate CRs

Use PolicyGenTemplate (PGT) CRs to apply the CRs required to configure the image registry and
patch the imageregistry configuration.

Prerequisites
® You have configured a disk partition in the managed cluster.
® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data for
use with GitOps Zero Touch Provisioning (ZTP).

Procedure

1. Configure the storage class, persistent volume claim, persistent volume, and image registry
configuration in the appropriate PolicyGenTemplate CR. For example, to configure an
individual site, add the following YAML to the file example-sno-site.yaml:

I sourceFiles:

162

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

storage class
- fileName: StorageClass.yaml
policyName: "sc-for-image-registry"
metadata:
name: image-registry-sc
annotations:
ran.openshift.io/ztp-deploy-wave: "100" ﬂ
persistent volume claim
- fleName: StoragePVC.yaml|
policyName: "pvc-for-image-registry"
metadata:
name: image-registry-pvc
namespace: openshift-image-registry
annotations:
ran.openshift.io/ztp-deploy-wave: "100"
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 100Gi
storageClassName: image-registry-sc
volumeMode: Filesystem
persistent volume
- fileName: ImageRegistryPV.yaml g
policyName: "pv-for-image-registry"
metadata:
annotations:
ran.openshift.io/ztp-deploy-wave: "100"
- fleName: ImageRegistryConfig.yaml
policyName: "config-for-image-registry"
complianceType: musthave
metadata:
annotations:
ran.openshift.io/ztp-deploy-wave: "100"
spec:
storage:
pvc:
claim: "image-registry-pvc"

ﬂ Set the appropriate value for ztp-deploy-wave depending on whether you are configuring
image registries at the site, common, or group level. ztp-deploy-wave: "100" is suitable
for development or testing because it allows you to group the referenced source files
together.

g In ImageRegistryPV.yaml, ensure that the spec.local.path field is set to
/var/imageregistry to match the value set for the mount_point field in the SiteConfig CR.

IMPORTANT

Do not set complianceType: mustonlyhave for the - fileName:
ImageRegistryConfig.yaml configuration. This can cause the registry pod
deployment to fail.

163

OpenShift Container Platform 4.15 Edge computing

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP ArgoCD application.

Verification

Use the following steps to troubleshoot errors with the local image registry on the managed clusters:

e Verify successful login to the registry while logged in to the managed cluster. Run the following
commands:

a. Export the managed cluster name:

I $ cluster=<managed_cluster_name>
b. Get the managed cluster kubeconfig details:

$ oc get secret -n $cluster $cluster-admin-password -o jsonpath="'{.data.password}' |
base64 -d > kubeadmin-password-$cluster

c. Download and export the cluster kubeconfig:

$ oc get secret -n $cluster $cluster-admin-kubeconfig -o jsonpath="{.data.kubeconfig}' |
base64 -d > kubeconfig-$cluster && export KUBECONFIG=./kubeconfig-$cluster

d. Verify access to the image registry from the managed cluster. See "Accessing the registry".

® Check that the Config CRD in the imageregistry.operator.openshift.io group instance is not
reporting errors. Run the following command while logged in to the managed cluster:

I $ oc get image.config.openshift.io cluster -o yaml
Example output

apiVersion: config.openshift.io/v1
kind: Image
metadata:
annotations:
include.release.openshift.io/ibm-cloud-managed: "true"
include.release.openshift.io/self-managed-high-availability: "true"
include.release.openshift.io/single-node-developer: "true"
release.openshift.io/create-only: "true"
creationTimestamp: "2021-10-08T19:02:39Z2"
generation: 5
name: cluster
resourceVersion: "688678648"
uid: 0406521b-39c0-4cda-ba75-873697da75a4
spec:
additionalTrustedCA:
name: acm-ice

® Check that the PersistentVolumeClaim on the managed cluster is populated with data. Run
the following command while logged in to the managed cluster:

I $ oc get pv image-registry-sc

164

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

® Check that the registry* pod is running and is located under the openshift-image-registry
namespace.

I $ oc get pods -n openshift-image-registry | grep registry*
Example output

cluster-image-registry-operator-68f5c9¢c589-42cfg 1/1 Running 0 8d
image-registry-5f8987879-6nx6h 1/1 Running O 8d

® Check that the disk partition on the managed cluster is correct:

a. Open a debug shell to the managed cluster:

I $ oc debug node/sno-1.example.com

b. Run Isblk to check the host disk partitions:

sh-4.4# Isblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0446.6G 0 disk

|-sdal 8:1 0 1M 0 part

|-sda2 8:2 0 127M 0 part

|-sda3 8:3 0 384M 0 part /boot

|-sda4 8:4 0336.3G 0 part /sysroot

“-sda5 8:5 0100.1G 0 part /var/imageregistry ﬂ
sdb 8:16 0446.6G 0 disk

srO 11:0 1 104M Orom

ﬂ /var/imageregistry indicates that the disk is correctly partitioned.

Additional resources

® Accessing the registry

10.11. USING HUB TEMPLATES IN POLICYGENTEMPLATE CRS

Topology Aware Lifecycle Manager supports partial Red Hat Advanced Cluster Management (RHACM)
hub cluster template functions in configuration policies used with GitOps Zero Touch Provisioning
(ZTP).

Hub-side cluster templates allow you to define configuration policies that can be dynamically
customized to the target clusters. This reduces the need to create separate policies for many clusters
with similiar configurations but with different values.

IMPORTANT

Policy templates are restricted to the same namespace as the namespace where the
policy is defined. This means that you must create the objects referenced in the hub
template in the same namespace where the policy is created.

The following supported hub template functions are available for use in GitOps ZTP with TALM:

165

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/registry/#accessing-the-registry

OpenShift Container Platform 4.15 Edge computing

e fromConfigmap returns the value of the provided data key in the named ConfigMap resource.

NOTE
There is a 1 MiB size limit for ConfigMap CRs. The effective size for ConfigMap
CRs is further limited by the last-applied-configuration annotation. To avoid the

last-applied-configuration limitation, add the following annotation to the
template ConfigMap:

I argocd.argoproj.io/sync-options: Replace=true

base64enc returns the base64-encoded value of the input string
base64dec returns the decoded value of the base64-encoded input string
indent returns the input string with added indent spaces

autoindent returns the input string with added indent spaces based on the spacing used in the
parent template

tolnt casts and returns the integer value of the input value

toBool converts the input string into a boolean value, and returns the boolean

Various Open source community functions are also available for use with GitOps ZTP.

Additional resources

RHACM support for hub cluster templates in configuration policies

10.11.1. Example hub templates

The following code examples are valid hub templates. Each of these templates return values from the
ConfigMap CR with the name test-config in the default namespace.

® Returns the value with the key common-key:

166

I {{hub fromConfigMap "default" "test-config" "common-key" hub}}

Returns a string by using the concatenated value of the .ManagedClusterName field and the
string -name:

I {{hub fromConfigMap "default" "test-config" (printf "%s-name" .ManagedClusterName) hub}}

Casts and returns a boolean value from the concatenated value of the .ManagedClusterName
field and the string -name:

{{hub fromConfigMap "default" "test-config" (printf "%s-name" .ManagedClusterName) |
toBool hub}}

Casts and returns an integer value from the concatenated value of the .ManagedClusterName
field and the string -name:

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#fromConfigmap-func
https://kubernetes.io/docs/concepts/configuration/configmap/#motivation
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#base64enc-func
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#base64dec-func
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#indent-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#autoindent-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#toInt-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#toBool-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#open-source-community-functions
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html-single/governance/index#hub-templates

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

I {{hub (printf "%s-name" .ManagedClusterName) | fromConfigMap "default" "test-config" | tolnt
hub}}

10.11.2. Specifying group and site configuration in group PolicyGenTemplate CRs
with hub templates

You can manage the configuration of fleets of clusters with ConfigMap CRs by using hub templates to
populate the group and site values in the generated policies that get applied to the managed clusters.
Using hub templates in site PolicyGenTemplate (PGT) CRs means that you do not need to create a
PolicyGenTemplate CR for each site.

You can group the clusters in a fleet in various categories, depending on the use case, for example
hardware type or region. Each cluster should have a label corresponding to the group or groups that the
cluster is in. If you manage the configuration values for each group in different ConfigMap CRs, then you
require only one group PolicyGenTemplate CR to apply the changes to all the clusters in the group by
using hub templates.

The following example shows you how to use three ConfigMap CRs and one group
PolicyGenTemplate CR to apply both site and group configuration to clusters grouped by hardware
type and region.

NOTE

When you use the fromConfigmap function, the printf variable is only available for the
template resource data key fields. You cannot use it with name and namespace fields.

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
GitOps ZTP ArgoCD application.

Procedure
1. Create three ConfigMap CRs that contain the group and site configuration:

a. Create a ConfigMap CR named group-hardware-types-configmap to hold the hardware-
specific configuration. For example:

apiVersion: vi
kind: ConfigMap
metadata:
name: group-hardware-types-configmap
namespace: ztp-group
annotations:
argocd.argoproj.io/sync-options: Replace=true ﬂ
data:
SriovNetworkNodePolicy.yam!
hardware-type-1-sriov-node-policy-pfNames-1: "[\"ens5f0\"]"
hardware-type-1-sriov-node-policy-pfNames-2: "[\"ens7f0\"]"

167

OpenShift Container Platform 4.15 Edge computing

PerformanceProfile.yaml
hardware-type-1-cpu-isolated: "2-31,34-63"
hardware-type-1-cpu-reserved: "0-1,32-33"
hardware-type-1-hugepages-default: "1G"
hardware-type-1-hugepages-size: "1G"
hardware-type-1-hugepages-count: "32"

The argocd.argoproj.io/sync-options annotation is required only if the ConfigMap is
larger than 1 MiB in size.

b. Create a ConfigMap CR named group-zones-configmap to hold the regional
configuration. For example:

apiVersion: vi
kind: ConfigMap
metadata:

name: group-zones-configmap

namespace: ztp-group
data:

ClusterLogForwarder.yam!

zone-1-cluster-log-fwd-outputs: "[{\"type\":\"katka\", \"name\":\"kaftka-open\",
\"url\":\"tcp://10.46.55.190:9092/test\"}]"

zone-1-cluster-log-fwd-pipelines: "[{\"inputRefs\":[\"audit\", \"infrastructure\"], \"labels\":
{\"label1\": \"test1\", \"label2\": \"test2\", \"label3\": \"test3\", \"label4\": \"test4\"}, \"name\":
\"all-to-default\", \"outputRefs\": [\"kafka-open\"]}]"

c. Create a ConfigMap CR named site-data-configmap to hold the site-specific
configuration. For example:

apiVersion: vi

kind: ConfigMap

metadata:
name: site-data-configmap
namespace: ztp-group

data:
SriovNetwork.yaml
du-sno-1-zone-1-sriov-network-vlan-1: "140"
du-sno-1-zone-1-sriov-network-vlan-2: "150"

NOTE

Each ConfigMap CR must be in the same namespace as the policy to be
generated from the group PolicyGenTemplate CR.

2. Commit the ConfigMap CRs in Git, and then push to the Git repository being monitored by the
Argo CD application.

3. Apply the hardware type and region labels to the clusters. The following command applies to a

single cluster named du-sno-1-zone-1 and the labels chosen are "hardware-type": "hardware-
type-1" and "group-du-sno-zone': "zone-1""

168

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

$ oc patch managedclusters.cluster.open-cluster-management.io/du-sno-1-zone-1 --type
merge -p '{"metadata":{"labels":{"hardware-type": "hardware-type-1", "group-du-sno-zone":
"zone-1"}}}'

4. Create a group PolicyGenTemplate CR that uses hub templates to obtain the required data
from the ConfigMap objects. This example PolicyGenTemplate CR configures logging, VLAN
IDs, NICs and Performance Profile for the clusters that match the labels listed under
spec.bindingRules:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: group-du-sno-pgt
namespace: ztp-group
spec:
bindingRules:
These policies will correspond to all clusters with these labels
group-du-sno-zone: "zone-1"
hardware-type: "hardware-type-1"
mcp: "master”
sourceFiles:
- fleName: ClusterLogForwarder.yaml # wave 10
policyName: "group-du-sno-cfg-policy"
spec:
outputs: '{{hub fromConfigMap "" "group-zones-configmap" (printf "%s-cluster-log-fwd-
outputs” (index .ManagedClusterLabels "group-du-sno-zone")) | toLiteral hub}}'
pipelines: {{hub fromConfigMap "" "group-zones-configmap" (printf "%s-cluster-log-fwd-
pipelines" (index .ManagedClusterLabels "group-du-sno-zone")) | toLiteral hub}}'

- fileName: PerformanceProfile.yaml # wave 10
policyName: "group-du-sno-cfg-policy"
metadata:
name: openshift-node-performance-profile
spec:
additionalKernelArgs:
- rcupdate.rcu_normal_after_boot=0
- vfio_pci.enable_sriov=1
- vfio_pci.disable_idle_d3=1
- efi=runtime
cpu:
isolated: {{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-cpu-
isolated" (index .ManagedClusterLabels "hardware-type")) hub}}'
reserved: '{{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-cpu-
reserved" (index .ManagedClusterLabels "hardware-type")) hub}}'
hugepages:
defaultHugepagesSize: '{{hub fromConfigMap "" "group-hardware-types-configmap"
(printf "%s-hugepages-default” (index .ManagedClusterLabels "hardware-type")) hub}}'
pages:
- size: {{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-
hugepages-size" (index .ManagedClusterLabels "hardware-type")) hub}}
count: '{{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-
hugepages-count” (index .ManagedClusterLabels "hardware-type")) | tolnt hub}}'
realTimeKernel:
enabled: true

169

OpenShift Container Platform 4.15 Edge computing

- fileName: SriovNetwork.yaml| # wave 100

policyName: "group-du-sno-sriov-policy"

metadata:
name: sriov-nw-du-fh

spec:
resourceName: du_fh
vlan: '{{hub fromConfigMap " "site-data-configmap" (printf "%s-sriov-network-vlian-1"

.ManagedClusterName) | tolnt hub}}'

- fileName: SriovNetworkNodePolicy.yaml # wave 100
policyName: "group-du-sno-sriov-policy"
metadata:
name: sriov-nnp-du-fh
spec:
deviceType: netdevice
isRdma: false
nicSelector:
pfNames: {{hub fromConfigMap " "group-hardware-types-configmap" (printf "%s-
sriov-node-policy-pfNames-1" (index .ManagedClusterLabels "hardware-type")) | toLiteral
hub}}'
numVfs: 8
priority: 10
resourceName: du_fh

- fileName: SriovNetwork.yaml # wave 100

policyName: "group-du-sno-sriov-policy"

metadata:
name: sriov-nw-du-mh

spec:
resourceName: du_mh
vlan: '{{hub fromConfigMap "" "site-data-configmap" (printf "%s-sriov-network-vlan-2"

.ManagedClusterName) | tolnt hub}}'

- fileName: SriovNetworkNodePolicy.yaml # wave 100
policyName: "group-du-sno-sriov-policy"
metadata:
name: sriov-nw-du-fh
spec:
deviceType: netdevice
isRdma: false
nicSelector:
pfNames: {{hub fromConfigMap " "group-hardware-types-configmap" (printf "%s-
sriov-node-policy-pfNames-2" (index .ManagedClusterLabels "hardware-type")) | toLiteral
hub}}'
numVfs: 8
priority: 10
resourceName: du_fh

NOTE

To retrieve site-specific configuration values, use the .ManagedClusterName
field. This is a template context value set to the name of the target managed
cluster.

To retrieve group-specific configuration, use the .ManagedClusterLabels field.
This is a template context value set to the value of the managed cluster’s labels.

170

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

5. Commit the site PolicyGenTemplate CR in Git and push to the Git repository that is monitored
by the ArgoCD application.

NOTE

Subsequent changes to the referenced ConfigMap CR are not automatically
synced to the applied policies. You need to manually sync the new ConfigMap
changes to update existing PolicyGenTemplate CRs. See "Syncing new
ConfigMap changes to existing PolicyGenTemplate CRs".

You can use the same PolicyGenTemplate CR for multiple clusters. If there is a
configuration change, then the only modifications you need to make are to the
ConfigMap objects that hold the configuration for each cluster and the labels of
the managed clusters.

10.11.3. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs

Prerequisites

® You have installed the OpenShift CLI (oc).
® You have logged in to the hub cluster as a user with cluster-admin privileges.

® You have created a PolicyGenTemplate CR that pulls information from a ConfigMap CR using
hub cluster templates.

Procedure

1. Update the contents of your ConfigMap CR, and apply the changes in the hub cluster.

2. To sync the contents of the updated ConfigMap CR to the deployed policy, do either of the
following:

a. Option 1: Delete the existing policy. ArgoCD uses the PolicyGenTemplate CR to
immediately recreate the deleted policy. For example, run the following command:

I $ oc delete policy <policy_name> -n <policy_namespace>

b. Option 2: Apply a special annotation policy.open-cluster-management.io/trigger-update
to the policy with a different value every time when you update the ConfigMap. For
example:

$ oc annotate policy <policy_name> -n <policy_namespace> policy.open-cluster-

NOTE

You must apply the updated policy for the changes to take effect. For more
information, see Special annotation for reprocessing.

3. Optional: If it exists, delete the ClusterGroupUpdate CR that contains the policy. For example:

I $ oc delete clustergroupupgrade <cgu_name> -n <cgu_namespace>

171

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#special-annotation-processing

OpenShift Container Platform 4.15 Edge computing

a. Create a new ClusterGroupUpdate CR that includes the policy to apply with the updated
ConfigMap changes. For example, add the following YAML to the file cgr-example.yaml:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: <cgr_name>
namespace: <policy_namespace>
spec:
managedPolicies:
- <managed_policy>
enable: true
clusters:
- <managed_cluster_1>
- <managed_cluster_2>
remediationStrategy:
maxConcurrency: 2
timeout: 240

b. Apply the updated policy:

I $ oc apply -f cgr-example.yaml

172

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

CHAPTER 1. UPDATING MANAGED CLUSTERS WITH THE
TOPOLOGY AWARE LIFECYCLE MANAGER

You can use the Topology Aware Lifecycle Manager (TALM) to manage the software lifecycle of
multiple clusters. TALM uses Red Hat Advanced Cluster Management (RHACM) policies to perform
changes on the target clusters.

11.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER
CONFIGURATION

The Topology Aware Lifecycle Manager (TALM) manages the deployment of Red Hat Advanced Cluster
Management (RHACM) policies for one or more OpenShift Container Platform clusters. Using TALM in
a large network of clusters allows the phased rollout of policies to the clusters in limited batches. This
helps to minimize possible service disruptions when updating. With TALM, you can control the following
actions:

® The timing of the update

® The number of RHACM-managed clusters

® The subset of managed clusters to apply the policies to

® The update order of the clusters

® The set of policies remediated to the cluster

® The order of policies remediated to the cluster

® The assignment of a canary cluster

For single-node OpenShift, the Topology Aware Lifecycle Manager (TALM) offers the following
features:

® Create a backup of a deployment before an upgrade
® Pre-caching images for clusters with limited bandwidth

TALM supports the orchestration of the OpenShift Container Platform y-stream and z-stream updates,
and day-two operations on y-streams and z-streams.

11.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE
LIFECYCLE MANAGER

The Topology Aware Lifecycle Manager (TALM) uses RHACM policies for cluster updates.

TALM can be used to manage the rollout of any policy CR where the remediationAction field is set to
inform. Supported use cases include the following:

® Manual user creation of policy CRs

® Automatically generated policies from the PolicyGenTemplate custom resource definition
(CRD)

173

OpenShift Container Platform 4.15 Edge computing

For policies that update an Operator subscription with manual approval, TALM provides additional
functionality that approves the installation of the updated Operator.

For more information about managed policies, see Policy Overview in the RHACM documentation.

For more information about the PolicyGenTemplate CRD, see the "About the PolicyGenTemplate
CRD" section in "Configuring managed clusters with policies and PolicyGenTemplate resources".

11.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY
USING THE WEB CONSOLE

You can use the OpenShift Container Platform web console to install the Topology Aware Lifecycle
Manager.

Prerequisites

® |[nstall the latest version of the RHACM Operator.
® Set up a hub cluster with disconnected regitry.

® | ogin as a user with cluster-admin privileges.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators - OperatorHub.

2. Search for the Topology Aware Lifecycle Manager from the list of available Operators, and
then click Install.

3. Keep the default selection of Installation mode ["All namespaces on the cluster (default)"] and
Installed Namespace ("openshift-operators") to ensure that the Operator is installed properly.

4. Click Install.

Verification

To confirm that the installation is successful:
1. Navigate to the Operators — Installed Operators page.

2. Check that the Operator is installed in the All Namespaces namespace and its status is
Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators = Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads — Pods page and check the logs in any containers in the cluster-
group-upgrades-controller-manager pod that are reporting issues.

11.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY
USING THE CLI

You can use the OpenShift CLI (o¢) to install the Topology Aware Lifecycle Manager (TALM).

174

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html-single/governance/index#policy-overview

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

Prerequisites

® |nstall the OpenShift CLI (oc).
® |nstall the latest version of the RHACM Operator.
® Set up a hub cluster with disconnected registry.

® | ogin as a user with cluster-admin privileges.

Procedure
1. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, talm-subscription.yaml:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: openshift-topology-aware-lifecycle-manager-subscription
namespace: openshift-operators
spec:
channel: "stable"
name: topology-aware-lifecycle-manager
source: redhat-operators
sourceNamespace: openshift-marketplace

b. Create the Subscription CR by running the following command:
I $ oc create -f talm-subscription.yaml
Verification
1. Verify that the installation succeeded by inspecting the CSV resource:

I $ oc get csv -n openshift-operators

Example output

NAME DISPLAY VERSION
REPLACES PHASE

topology-aware-lifecycle-manager.4.15.x Topology Aware Lifecycle Manager 4.15.x
Succeeded

2. Verify that the TALM is up and running:

I $ oc get deploy -n openshift-operators

Example output

NAMESPACE NAME READY UP-TO-
DATE AVAILABLE AGE

openshift-operators cluster-group-upgrades-controller-manager 11
1 1 14s

175

OpenShift Container Platform 4.15 Edge computing

11.5. ABOUT THE CLUSTERGROUPUPGRADE CR
The Topology Aware Lifecycle Manager (TALM) builds the remediation plan from the
ClusterGroupUpgrade CR for a group of clusters. You can define the following specifications in a
ClusterGroupUpgrade CR:

® Clustersin the group

® Blocking ClusterGroupUpgrade CRs

® Applicable list of managed policies

® Number of concurrent updates

® Applicable canary updates

® Actions to perform before and after the update

® Update timing
You can control the start time of an update using the enable field in the ClusterGroupUpgrade CR. For
example, if you have a scheduled maintenance window of four hours, you can prepare a

ClusterGroupUpgrade CR with the enable field set to false.

You can set the timeout by configuring the spec.remediationStrategy.timeout setting as follows:

spec
remediationStrategy:
maxConcurrency: 1
timeout: 240

You can use the batchTimeoutAction to determine what happens if an update fails for a cluster. You
can specify continue to skip the failing cluster and continue to upgrade other clusters, or abort to stop
policy remediation for all clusters. Once the timeout elapses, TALM removes all enforce policies to
ensure that no further updates are made to clusters.

To apply the changes, you set the enabled field to true.
For more information see the "Applying update policies to managed clusters” section.

As TALM works through remediation of the policies to the specified clusters, the
ClusterGroupUpgrade CR can report true or false statuses for a number of conditions.

NOTE

After TALM completes a cluster update, the cluster does not update again under the
control of the same ClusterGroupUpgrade CR. You must create a new
ClusterGroupUpgrade CR in the following cases:

® When you need to update the cluster again

® When the cluster changes to non-compliant with the inform policy after being
updated

176

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

11.5.1. Selecting clusters

TALM builds a remediation plan and selects clusters based on the following fields:

e The clusterLabelSelector field specifies the labels of the clusters that you want to update. This
consists of a list of the standard label selectors from k8s.io/apimachinery/pkg/apis/meta/v1.
Each selector in the list uses either label value pairs or label expressions. Matches from each
selector are added to the final list of clusters along with the matches from the clusterSelector
field and the cluster field.

® The clusters field specifies a list of clusters to update.
® The canaries field specifies the clusters for canary updates.
e The maxConcurrency field specifies the number of clusters to update in a batch.

e The actions field specifies beforeEnable actions that TALM takes as it begins the update
process, and afterCompletion actions that TALM takes as it completes policy remediation for
each cluster.

You can use the clusters, clusterLabelSelector, and clusterSelector fields together to create a
combined list of clusters.

The remediation plan starts with the clusters listed in the canaries field. Each canary cluster forms a
single-cluster batch.

Sample ClusterGroupUpgrade CR with the enabled field set to false

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
creationTimestamp: '2022-11-18T16:27:15Z'
finalizers:
- ran.openshift.io/cleanup-finalizer
generation: 1
name: talm-cgu
namespace: talm-namespace
resourceVersion: '40451823'
uid: cca245a5-4bca-45fa-89c0-aabaf81a596¢
Spec:
actions:
afterCompletion: ﬂ
addClusterLabels:
upgrade-done: "
deleteClusterLabels:
upgrade-running: "
deleteObjects: true
beforeEnable: g
addClusterLabels:
upgrade-running:
backup: false
clusters:
- spoke1
enable: false
managedPolicies: 9
- talm-policy

177

OpenShift Container Platform 4.15 Edge computing

preCaching: false
remediationStrategy:
canaries:

- spoke1
maxConcurrency: 2 6
timeout: 240

clusterLabelSelectors: Q
- matchExpressions:
- key: label1
operator: In
values:

- valuela

- valuelb

batchTimeoutAction: @

status: §)

computedMaxConcurrency: 2
conditions:

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: All selected clusters are valid
reason: ClusterSelectionCompleted
status: 'True'
type: ClustersSelected @

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: Completed validation
reason: ValidationCompleted
status: 'True'
type: Validated @

- lastTransitionTime: '2022-11-18T16:37:16Z'
message: Not enabled
reason: NotEnabled
status: 'False'
type: Progressing

managedPoliciesForUpgrade:

- name: talm-policy
namespace: talm-namespace

managedPoliciesNs:

talm-policy: talm-namespace

remediationPlan:

- - spoke1

- - spoke2
- spoke3

status:

Specifies the action that TALM takes when it completes policy remediation for each cluster.
Specifies the action that TALM takes as it begins the update process.

Defines the list of clusters to update.

The enable field is set to false.

Lists the user-defined set of policies to remediate.

Q90009

Defines the specifics of the cluster updates.

178

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

Defines the clusters for canary updates.

@9

Defines the maximum number of concurrent updates in a batch. The number of remediation
batches is the number of canary clusters, plus the number of clusters, except the canary clusters,
divided by the maxConcurrency value. The clusters that are already compliant with all the
managed policies are excluded from the remediation plan.

Displays the parameters for selecting clusters.

Controls what happens if a batch times out. Possible values are abort or continue. If unspecified,
the default is continue.

Displays information about the status of the updates.
The ClustersSelected condition shows that all selected clusters are valid.

The Validated condition shows that all selected clusters have been validated.

0090 00

¢

NOTE

Any failures during the update of a canary cluster stops the update process.

When the remediation plan is successfully created, you can you set the enable field to true and TALM
starts to update the non-compliant clusters with the specified managed policies.

NOTE

You can only make changes to the spec fields if the enable field of the
ClusterGroupUpgrade CRis set to false.

11.5.2. Validating

TALM checks that all specified managed policies are available and correct, and uses the Validated
condition to report the status and reasons as follows:

e true
Validation is completed.

e false
Policies are missing or invalid, or an invalid platform image has been specified.

11.5.3. Pre-caching

Clusters might have limited bandwidth to access the container image registry, which can cause a
timeout before the updates are completed. On single-node OpenShift clusters, you can use pre-
caching to avoid this. The container image pre-caching starts when you create a ClusterGroupUpgrade
CR with the preCaching field set to true. TALM compares the available disk space with the estimated
OpenShift Container Platform image size to ensure that there is enough space. If a cluster has
insufficient space, TALM cancels pre-caching for that cluster and does not remediate policies on it.

TALM uses the PrecacheSpecValid condition to report status information as follows:
e true

The pre-caching spec is valid and consistent.

179

OpenShift Container Platform 4.15 Edge computing
e false
The pre-caching spec is incomplete.
TALM uses the PrecachingSucceeded condition to report status information as follows:

e true
TALM has concluded the pre-caching process. If pre-caching fails for any cluster, the update
fails for that cluster but proceeds for all other clusters. A message informs you if pre-caching
has failed for any clusters.

e false
Pre-caching is still in progress for one or more clusters or has failed for all clusters.

For more information see the "Using the container image pre-cache feature" section.

11.5.4. Creating a backup

For single-node OpenShift, TALM can create a backup of a deployment before an update. If the update
fails, you can recover the previous version and restore a cluster to a working state without requiring a
reprovision of applications. To use the backup feature you first create a ClusterGroupUpgrade CR with
the backup field set to true. To ensure that the contents of the backup are up to date, the backup is not
taken until you set the enable field in the ClusterGroupUpgrade CR to true.

TALM uses the BackupSucceeded condition to report the status and reasons as follows:

e t{rue
Backup is completed for all clusters or the backup run has completed but failed for one or more
clusters. If backup fails for any cluster, the update fails for that cluster but proceeds for all other
clusters.

o false
Backup is still in progress for one or more clusters or has failed for all clusters.

For more information, see the "Creating a backup of cluster resources before upgrade" section.

11.5.5. Updating clusters

TALM enforces the policies following the remediation plan. Enforcing the policies for subsequent
batches starts immediately after all the clusters of the current batch are compliant with all the managed
policies. If the batch times out, TALM moves on to the next batch. The timeout value of a batch is the
spec.timeout field divided by the number of batches in the remediation plan.

TALM uses the Progressing condition to report the status and reasons as follows:

e true
TALM is remediating non-compliant policies.

e false
The update is not in progress. Possible reasons for this are:

o All clusters are compliant with all the managed policies.
o The update has timed out as policy remediation took too long.

o Blocking CRs are missing from the system or have not yet completed.

180

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

o The ClusterGroupUpgrade CR is not enabled.

o Backup is still in progress.

NOTE

The managed policies apply in the order that they are listed in the managedPolicies field
in the ClusterGroupUpgrade CR. One managed policy is applied to the specified
clusters at a time. When a cluster complies with the current policy, the next managed
policy is applied to it.

Sample ClusterGroupUpgrade CR in the Progressing state

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
creationTimestamp: '2022-11-18T16:27:15Z'
finalizers:
- ran.openshift.io/cleanup-finalizer
generation: 1
name: talm-cgu
namespace: talm-namespace
resourceVersion: '40451823'
uid: cca245a5-4bca-45fa-89c0-aabaf81a596¢
Spec:
actions:
afterCompletion:
deleteObjects: true
beforeEnable: {}
backup: false
clusters:
- spoke1
enable: true
managedPolicies:
- talm-policy
preCaching: true
remediationStrategy:
canaries:
- spoke1
maxConcurrency: 2
timeout: 240
clusterLabelSelectors:
- matchExpressions:
- key: label1
operator: In
values:
- valuela
- valuelb
batchTimeoutAction:
status:
clusters:
- hame: spoke1
state: complete
computedMaxConcurrency: 2
conditions:

181

OpenShift Container Platform 4.15 Edge computing

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: All selected clusters are valid
reason: ClusterSelectionCompleted
status: 'True'
type: ClustersSelected

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: Completed validation
reason: ValidationCompleted
status: 'True'
type: Validated

- lastTransitionTime: '2022-11-18T16:37:16Z'
message: Remediating non-compliant policies
reason: InProgress
status: 'True'
type: Progressing ﬂ

managedPoliciesForUpgrade:

- name: talm-policy
namespace: talm-namespace

managedPoliciesNs:

talm-policy: talm-namespace

remediationPlan:

- - spoke1

- - spoke2
- spoke3

status:

currentBatch: 2

currentBatchRemediationProgress:
spoke2:

state: Completed
spoke3:

policylndex: 0

state: InProgress

currentBatchStartedAt: '2022-11-18T16:27:16Z'

startedAt: '2022-11-18T16:27:15Z'

ﬂ The Progressing fields show that TALM is in the process of remediating policies.

11.5.6. Update status

TALM uses the Succeeded condition to report the status and reasons as follows:

e true
All clusters are compliant with the specified managed policies.

e false
Policy remediation failed as there were no clusters available for remediation, or because policy
remediation took too long for one of the following reasons:

o The current batch contains canary updates and the cluster in the batch does not comply
with all the managed policies within the batch timeout.

o Clusters did not comply with the managed policies within the timeout value specified in the
remediationStrategy field.

Sample ClusterGroupUpgrade CR in the Succeeded state

182

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-upgrade-complete
namespace: default
spec:
clusters:
- spoke1
- spoke4
enable: true
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
remediationStrategy:
maxConcurrency: 1
timeout: 240

status:)

clusters:

- name: spoke1
state: complete

- name: spoke4
state: complete

conditions:

- message: All selected clusters are valid
reason: ClusterSelectionCompleted
status: "True"
type: ClustersSelected

- message: Completed validation
reason: ValidationCompleted
status: "True"
type: Validated

- message: All clusters are compliant with all the managed policies
reason: Completed
status: "False"
type: Progressing g

- message: All clusters are compliant with all the managed policies
reason: Completed
status: "True"
type: Succeeded 6

managedPoliciesForUpgrade:

- name: policy1-common-cluster-version-policy
namespace: default

- name: policy2-common-pao-sub-policy
namespace: default

remediationPlan:

- - spoke1

- - spoke4

status:
completedAt: '2022-11-18T16:27:16Z'
startedAt: '2022-11-18T16:27:15Z'

In the Progressing fields, the status is false as the update has completed; clusters are compliant
with all the managed policies.

9 The Succeeded fields show that the validations completed successfully.

183

OpenShift Container Platform 4.15 Edge computing

ﬂ The status field includes a list of clusters and their respective statuses. The status of a cluster can
be complete or timedout.

Sample ClusterGroupUpgrade CR in the timedout state

apiVersion: ran.openshift.io/vialphai

kind: ClusterGroupUpgrade

metadata:
creationTimestamp: '2022-11-18T16:27:15Z'
finalizers:

- ran.openshift.io/cleanup-finalizer

generation: 1

name: talm-cgu

namespace: talm-namespace

resourceVersion: '40451823'

uid: cca245a5-4bca-45fa-89c0-aabaf81a596¢
spec:

actions:

afterCompletion:
deleteObjects: true

beforeEnable: {}

backup: false
clusters:

- spoke1

- spoke2
enable: true
managedPolicies:

- talm-policy
preCaching: false
remediationStrategy:

maxConcurrency: 2

timeout: 240

status:
clusters:

- name: spoke1
state: complete

- currentPolicy: ﬂ

name: talm-policy
status: NonCompliant
name: spoke2
state: timedout
computedMaxConcurrency: 2
conditions:

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: All selected clusters are valid
reason: ClusterSelectionCompleted
status: 'True'
type: ClustersSelected

- lastTransitionTime: '2022-11-18T16:27:15Z'
message: Completed validation
reason: ValidationCompleted
status: 'True'
type: Validated

- lastTransitionTime: '2022-11-18T16:37:16Z'
message: Policy remediation took too long

184

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

reason: TimedOut
status: 'False'
type: Progressing
- lastTransitionTime: '2022-11-18T16:37:16Z'
message: Policy remediation took too long
reason: TimedOut
status: 'False'
type: Succeeded g
managedPoliciesForUpgrade:
- name: talm-policy
namespace: talm-namespace
managedPoliciesNs:
talm-policy: talm-namespace
remediationPlan:
- - spoke1
- spoke2
status:
startedAt: '2022-11-18T16:27:15Z'
completedAt: '2022-11-18T20:27:15Z'

ﬂ If a cluster’s state is timedout, the currentPolicy field shows the name of the policy and the policy
status.

9 The status for succeeded is false and the message indicates that policy remediation took too
long.

11.5.7. Blocking ClusterGroupUpgrade CRs

You can create multiple ClusterGroupUpgrade CRs and control their order of application.

For example, if you create ClusterGroupUpgrade CR C that blocks the start of ClusterGroupUpgrade
CR A, then ClusterGroupUpgrade CR A cannot start until the status of ClusterGroupUpgrade CR C
becomes UpgradeComplete.

One ClusterGroupUpgrade CR can have multiple blocking CRs. In this case, all the blocking CRs must
complete before the upgrade for the current CR can start.

Prerequisites

® Install the Topology Aware Lifecycle Manager (TALM).
® Provision one or more managed clusters.
® | ogin as a user with cluster-admin privileges.

® Create RHACM policies in the hub cluster.

Procedure

1. Save the content of the ClusterGroupUpgrade CRs in the cgu-a.yaml, cgu-b.yaml, and cgu-
c.yaml files.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade

185

OpenShift Container Platform 4.15 Edge computing

metadata:
name: cgu-a
namespace: default
spec:
blockingCRs: @)
- name: cgu-c
namespace: default
clusters:
- spoke1
- spoke2
- spoke3
enable: false
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
remediationStrategy:
canaries:
- spoke1
maxConcurrency: 2
timeout: 240
status:
conditions:
- message: The ClusterGroupUpgrade CR is not enabled
reason: UpgradeNotStarted
status: "False"
type: Ready
copiedPolicies:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy2-common-pao-sub-policy
namespace: default
- name: policy3-common-ptp-sub-policy
namespace: default
placementBindings:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
placementRules:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
remediationPlan:
- - spoke1
- - spoke2

ﬂ Defines the blocking CRs. The cgu-a update cannot start until egu-cis complete.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

186

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

name: cgu-b
namespace: default
spec:
blockingCRs: @)
- name: cgu-a
namespace: default
clusters:
- spoke4
- spoke5
enable: false
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
- policy4-common-sriov-sub-policy
remediationStrategy:
maxConcurrency: 1
timeout: 240
status:
conditions:
- message: The ClusterGroupUpgrade CR is not enabled
reason: UpgradeNotStarted
status: "False"
type: Ready
copiedPolicies:
- cgu-b-policy1-common-cluster-version-policy
- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy
- cgu-b-policy4-common-sriov-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy2-common-pao-sub-policy
namespace: default
- name: policy3-common-ptp-sub-policy
namespace: default
- name: policy4-common-sriov-sub-policy
namespace: default
placementBindings:
- cgu-b-policy1-common-cluster-version-policy
- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy
- cgu-b-policy4-common-sriov-sub-policy
placementRules:
- cgu-b-policy1-common-cluster-version-policy
- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy
- cgu-b-policy4-common-sriov-sub-policy
remediationPlan:
- - spoke4
- - spokeb
status: {}

ﬂ The cgu-b update cannot start until cgu-ais complete.

187

OpenShift Container Platform 4.15 Edge computing

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-c
namespace: default
spec: ﬂ
clusters:
- spoke6
enable: false
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
- policy4-common-sriov-sub-policy
remediationStrategy:
maxConcurrency: 1
timeout: 240
status:
conditions:
- message: The ClusterGroupUpgrade CR is not enabled
reason: UpgradeNotStarted
status: "False"
type: Ready
copiedPolicies:
- cgu-c-policy1-common-cluster-version-policy
- cgu-c-policy4-common-sriov-sub-policy
managedPoliciesCompliantBeforeUpgrade:
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy4-common-sriov-sub-policy
namespace: default
placementBindings:
- cgu-c-policy1-common-cluster-version-policy
- cgu-c-policy4-common-sriov-sub-policy
placementRules:
- cgu-c-policy1-common-cluster-version-policy
- cgu-c-policy4-common-sriov-sub-policy
remediationPlan:
- - spoke6
status: {}

The cgu-c update does not have any blocking CRs. TALM starts the cgu-c update when
the enable field is set to true.

2. Create the ClusterGroupUpgrade CRs by running the following command for each relevant
CR:

I $ oc apply -f <name>.yaml

3. Start the update process by running the following command for each relevant CR:

188

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/<name> \
--type merge -p '{"spec":{"enable":true}}'

The following examples show ClusterGroupUpgrade CRs where the enable field is set to true:

Example for cgu-a with blocking CRs

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-a
namespace: default
spec:
blockingCRs:
- name: cgu-c
namespace: default
clusters:
- spoke1
- spoke2
- spoke3
enable: true
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
remediationStrategy:
canaries:
- spoke1
maxConcurrency: 2
timeout: 240
status:
conditions:
- message: 'The ClusterGroupUpgrade CR is blocked by other CRs that have not yet
completed: [cgu-c]'
reason: UpgradeCannotStart
status: "False"
type: Ready
copiedPolicies:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy2-common-pao-sub-policy
namespace: default
- name: policy3-common-ptp-sub-policy
namespace: default
placementBindings:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy
- cgu-a-policy3-common-ptp-sub-policy
placementRules:
- cgu-a-policy1-common-cluster-version-policy
- cgu-a-policy2-common-pao-sub-policy

189

OpenShift Container Platform 4.15 Edge computing

- cgu-a-policy3-common-ptp-sub-policy
remediationPlan:

- - spoke1

- - spoke2

status: {}

ﬂ Shows the list of blocking CRs.

Example for cgu-b with blocking CRs

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-b
namespace: default
spec:
blockingCRs:
- name: cgu-a
namespace: default
clusters:
- spoke4
- spoke5
enable: true
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
- policy4-common-sriov-sub-policy
remediationStrategy:
maxConcurrency: 1
timeout: 240
status:
conditions:
- message: 'The ClusterGroupUpgrade CR is blocked by other CRs that have not yet
completed: [cgu-a]'
reason: UpgradeCannotStart
status: "False"
type: Ready
copiedPolicies:
- cgu-b-policy1-common-cluster-version-policy
- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy
- cgu-b-policy4-common-sriov-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy2-common-pao-sub-policy
namespace: default
- name: policy3-common-ptp-sub-policy
namespace: default
- name: policy4-common-sriov-sub-policy
namespace: default
placementBindings:
- cgu-b-policy1-common-cluster-version-policy

190

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy

- cgu-b-policy4-common-sriov-sub-policy
placementRules:

- cgu-b-policy1-common-cluster-version-policy
- cgu-b-policy2-common-pao-sub-policy
- cgu-b-policy3-common-ptp-sub-policy

- cgu-b-policy4-common-sriov-sub-policy
remediationPlan:

- - spoke4

- - spokeb

status: {}

ﬂ Shows the list of blocking CRs.

Example for cgu-c with blocking CRs

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-c
namespace: default
spec:
clusters:
- spoke6
enable: true
managedPolicies:
- policy1-common-cluster-version-policy
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
- policy4-common-sriov-sub-policy
remediationStrategy:
maxConcurrency: 1
timeout: 240
status:
conditions:
- message: The ClusterGroupUpgrade CR has upgrade policies that are still non compliant

reason: UpgradeNotCompleted
status: "False"
type: Ready
copiedPolicies:
- cgu-c-policy1-common-cluster-version-policy
- cgu-c-policy4-common-sriov-sub-policy
managedPoliciesCompliantBeforeUpgrade:
- policy2-common-pao-sub-policy
- policy3-common-ptp-sub-policy
managedPoliciesForUpgrade:
- name: policy1-common-cluster-version-policy
namespace: default
- name: policy4-common-sriov-sub-policy
namespace: default
placementBindings:
- cgu-c-policy1-common-cluster-version-policy

191

OpenShift Container Platform 4.15 Edge computing

- cgu-c-policy4-common-sriov-sub-policy
placementRules:
- cgu-c-policy1-common-cluster-version-policy
- cgu-c-policy4-common-sriov-sub-policy
remediationPlan:
- - spoke6
status:

currentBatch: 1

remediationPlanForBatch:

spoke6: 0

ﬂ The cgu-c update does not have any blocking CRs.

11.6. UPDATE POLICIES ON MANAGED CLUSTERS

The Topology Aware Lifecycle Manager (TALM) remediates a set of inform policies for the clusters
specified in the ClusterGroupUpgrade CR. TALM remediates inform policies by making enforce copies
of the managed RHACM policies. Each copied policy has its own corresponding RHACM placement rule
and RHACM placement binding.

One by one, TALM adds each cluster from the current batch to the placement rule that corresponds
with the applicable managed policy. If a cluster is already compliant with a policy, TALM skips applying
that policy on the compliant cluster. TALM then moves on to applying the next policy to the non-
compliant cluster. After TALM completes the updates in a batch, all clusters are removed from the
placement rules associated with the copied policies. Then, the update of the next batch starts.

If a spoke cluster does not report any compliant state to RHACM, the managed policies on the hub
cluster can be missing status information that TALM needs. TALM handles these cases in the following
ways:

e |f a policy's status.compliant field is missing, TALM ignores the policy and adds a log entry.
Then, TALM continues looking at the policy’s status.status field.

e |f a policy's status.status is missing, TALM produces an error.

e |f a cluster's compliance status is missing in the policy’s status.status field, TALM considers
that cluster to be non-compliant with that policy.

The ClusterGroupUpgrade CR's batchTimeoutAction determines what happens if an upgrade fails for
a cluster. You can specify continue to skip the failing cluster and continue to upgrade other clusters, or
specify abort to stop the policy remediation for all clusters. Once the timeout elapses, TALM removes all
enforce policies to ensure that no further updates are made to clusters.

Example upgrade policy

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:

name: ocp-4.4.15.4

namespace: platform-upgrade
spec:

disabled: false

policy-templates:

- objectDefinition:

apiVersion: policy.open-cluster-management.io/v1

192

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

kind: ConfigurationPolicy
metadata:
name: upgrade
spec:
namespaceselector:
exclude:
- kube-*
include:
object-templates:
- complianceType: musthave
objectDefinition:
apiVersion: config.openshift.io/v1
kind: ClusterVersion
metadata:
name: version
spec:
channel: stable-4.15
desiredUpdate:
version: 4.4.15.4
upstream: https://api.openshift.com/api/upgrades_info/vi/graph
status:
history:
- state: Completed
version: 4.4.15.4
remediationAction: inform
severity: low
remediationAction: inform

For more information about RHACM policies, see Policy overview.

Additional resources

For more information about the PolicyGenTemplate CRD, see About the PolicyGenTemplate CRD.

11.6.1. Configuring Operator subscriptions for managed clusters that you install with
TALM

Topology Aware Lifecycle Manager (TALM) can only approve the install plan for an Operator if the
Subscription custom resource (CR) of the Operator contains the status.state.AtLatestKnown field.

Procedure

1. Add the status.state.AtLatestKnown field to the Subscription CR of the Operator:

Example Subscription CR

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: cluster-logging
namespace: openshift-logging
annotations:
ran.openshift.io/ztp-deploy-wave: "2"
spec:

193

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html-single/governance/index#policy-overview

OpenShift Container Platform 4.15 Edge computing

channel: "stable"
name: cluster-logging
source: redhat-operators
sourceNamespace: openshift-marketplace
installPlanApproval: Manual

status:
state: AtLatestKnown ﬂ

The status.state: AtLatestKnown field is used for the latest Operator version available
from the Operator catalog.

NOTE

When a new version of the Operator is available in the registry, the associated
policy becomes non-compliant.

2. Apply the changed Subscription policy to your managed clusters with a ClusterGroupUpgrade
CR.

11.6.2. Applying update policies to managed clusters

You can update your managed clusters by applying your policies.

Prerequisites
e |nstall the Topology Aware Lifecycle Manager (TALM).
® Provision one or more managed clusters.
® | ogin as a user with cluster-admin privileges.

® Create RHACM policies in the hub cluster.

Procedure

1. Save the contents of the ClusterGroupUpgrade CR in the cgu-1.yaml file.

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-1
namespace: default
spec:
managedPolicies: ﬂ
- policy1-common-cluster-version-policy
- policy2-common-nto-sub-policy
- policy3-common-ptp-sub-policy
- policy4-common-sriov-sub-policy
enable: false
clusters: g
- spoke1
- spoke2
- spoke5

194

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

- spoke6

remediationStrategy:
maxConcurrency: 2
timeout: 240 ﬂ

batchTimeoutAction: 6

ﬂ The name of the policies to apply.
9 The list of clusters to update.

9 The maxConcurrency field signifies the number of clusters updated at the same time.

Q The update timeout in minutes.

Controls what happens if a batch times out. Possible values are abort or continue. If
unspecified, the default is continue.

2. Create the ClusterGroupUpgrade CR by running the following command:
I $ oc create -f cgu-1.yaml

a. Check if the ClusterGroupUpgrade CR was created in the hub cluster by running the
following command:

I $ oc get cgu --all-namespaces
Example output

NAMESPACE NAME AGE STATE DETAILS
default cgu-1 8m55 NotEnabled Not Enabled

b. Check the status of the update by running the following command:
I $ oc get cgu -n default cgu-1 -ojsonpath="{.status}' | jq
Example output

{
"computedMaxConcurrency": 2,
"conditions": [
{
"lastTransitionTime": "2022-02-25T15:34:07Z",
"message": "Not enabled", ﬂ
"reason”: "NotEnabled",
"status": "False",
"type": "Progressing"
}

1,

"copiedPolicies": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy”,
"cgu-policy4-common-sriov-sub-policy”

195

OpenShift Container Platform 4.15 Edge computing

],

"managedPoliciesContent": {

"policy1-common-cluster-version-policy": "null",

"policy2-common-nto-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"node-tuning-
operator\" \"namespace\":\"openshift-cluster-node-tuning-operator\"}]",

"policy3-common-ptp-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"ptp-operator-
subscription\"\"namespace\":\"openshift-ptp\"}]",

"policy4-common-sriov-sub-policy": "[{\"kind\":\"Subscription\" \"name\":\"sriov-network-
operator-subscription\",\"namespace\":\"openshift-sriov-network-operator\"}]"

b

"managedPoliciesForUpgrade”:
{
"name": "policy1-common-cluster-version-policy",
"namespace": "default”
b
{
"name": "policy2-common-nto-sub-policy",
"namespace": "default”
b
{
"name": "policy3-common-ptp-sub-policy",
"namespace": "default”
b
{
"name": "policy4-common-sriov-sub-policy",
"namespace": "default”
}
1,

"managedPoliciesNs": {

"policy 1-common-cluster-version-policy": "default”,
"policy2-common-nto-sub-policy": "default",
"policy3-common-ptp-sub-policy": "default",
"policy4-common-sriov-sub-policy": "default”

b

"placementBindings": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy”,
"cgu-policy4-common-sriov-sub-policy”

1,

"placementRules": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy",
"cgu-policy4-common-sriov-sub-policy”

1,

"precaching": {

"spec": {}

b

"remediationPlan": |
[

"spoke1",
"spoke2"
1,
[

"spoke5",

196

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

"spoke6"

]
],

"status": {}

}

Q The spec.enable field in the ClusterGroupUpgrade CR is set to false.

c. Check the status of the policies by running the following command:

I $ oc get policies -A

Example output

NAMESPACE NAME REMEDIATION ACTION
COMPLIANCE STATE AGE

default cgu-policy1-common-cluster-version-policy enforce

17m @)

default cgu-policy2-common-nto-sub-policy enforce

17m

default cgu-policy3-common-ptp-sub-policy enforce

17m

default cgu-policy4-common-sriov-sub-policy enforce

17m

default policy1-common-cluster-version-policy inform NonCompliant
15h

default policy2-common-nto-sub-policy inform NonCompliant
15h

default policy3-common-ptp-sub-policy inform NonCompliant
18m

default policy4-common-sriov-sub-policy inform NonCompliant
18m

The spec.remediationAction field of policies currently applied on the clusters is set to
enforce. The managed policies in inform mode from the ClusterGroupUpgrade CR
remain in inform mode during the update.

3. Change the value of the spec.enable field to true by running the following command:

--patch '{"spec":{"enable":true}}' --type=merge

I $ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-1\

Verification

1. Check the status of the update again by running the following command:

I $ oc get cgu -n default cgu-1 -ojsonpath="{.status}' | jq

Example output

I (

197

OpenShift Container Platform 4.15 Edge computing

"computedMaxConcurrency": 2,
"conditions": [
{
"lastTransitionTime": "2022-02-25T15:33:07Z",
"message": "All selected clusters are valid",
"reason": "ClusterSelectionCompleted"”,
"status": "True",
"type": "ClustersSelected"”,
"lastTransitionTime": "2022-02-25T15:33:07Z",
"message": "Completed validation”,
"reason": "ValidationCompleted",
"status": "True",
"type": "Validated",
"lastTransitionTime": "2022-02-25T15:34:07Z",
"message": "Remediating non-compliant policies",
"reason": "InProgress",
"status": "True",
"type": "Progressing"”
}
1,
"copiedPolicies": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy”,
"cgu-policy4-common-sriov-sub-policy”
1,
"managedPoliciesContent": {
"policy1-common-cluster-version-policy": "null",
"policy2-common-nto-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"node-tuning-
operator\",\"namespace\":\"openshift-cluster-node-tuning-operator\"}]",
"policy3-common-ptp-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"ptp-operator-
subscription\"\"namespace\":\"openshift-ptp\"}]",
"policy4-common-sriov-sub-policy": "[{\"kind\":\"Subscription\" \"name\":\"sriov-network-
operator-subscription\",\"namespace\":\"openshift-sriov-network-operator\"}]"

b

"managedPoliciesForUpgrade”:
{
"name": "policy1-common-cluster-version-policy",
"namespace": "default”

b

{
"name": "policy2-common-nto-sub-policy",
"namespace”: "default”

b

{
"name": "policy3-common-ptp-sub-policy",
"namespace": "default”

b

{
"name": "policy4-common-sriov-sub-policy",
"namespace": "default”

}

1,

"managedPoliciesNs": {
"policy 1-common-cluster-version-policy": "default”,
"policy2-common-nto-sub-policy": "default",

198

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

"policy3-common-ptp-sub-policy": "default",
"policy4-common-sriov-sub-policy": "default”

b

"placementBindings": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy”,
"cgu-policy4-common-sriov-sub-policy”

1,

"placementRules": [
"cgu-policy1-common-cluster-version-policy",
"cgu-policy2-common-nto-sub-policy",
"cgu-policy3-common-ptp-sub-policy",
"cgu-policy4-common-sriov-sub-policy”

1,

"precaching": {

"spec": {}
b
"remediationPlan": [
[
"spoke1",
"spoke2"
1,
[
"spokeb",
"spoke6"
]
1,
"status": {
"currentBatch": 1,
"currentBatchStartedAt": "2022-02-25T15:54:16Z",
"remediationPlanForBatch": {
"spoke1™: 0,
"spoke2": 1
b
"startedAt": "2022-02-25T15:54:16Z"

Reflects the update progress of the current batch. Run this command again to receive
updated information about the progress.

2. If the policies include Operator subscriptions, you can check the installation progress directly on
the single-node cluster.

a. Export the KUBECONFIG file of the single-node cluster you want to check the installation
progress for by running the following command:

I $ export KUBECONFIG=<cluster_kubeconfig_absolute_path>

b. Check all the subscriptions present on the single-node cluster and look for the one in the
policy you are trying to install through the ClusterGroupUpgrade CR by running the
following command:

I $ oc get subs -A | grep -i <subscription_name>

199

OpenShift Container Platform 4.15 Edge computing

200

Example output for cluster-logging policy

NAMESPACE NAME PACKAGE SOURCE
CHANNEL
openshift-logging cluster-logging cluster-logging redhat-

operators stable

3. If one of the managed policies includes a ClusterVersion CR, check the status of platform
updates in the current batch by running the following command against the spoke cluster:

I $ oc get clusterversion

Example output

NAME VERSION AVAILABLE PROGRESSING SINCE STATUS
version 4.4.15.5 True True 43s Working towards 4.4.15.7: 71 of 735 done
(9% complete)

4. Check the Operator subscription by running the following command:
I $ oc get subs -n <operator-namespace> <operator-subscription> -ojsonpath="{.status}"

5. Check the install plans present on the single-node cluster that is associated with the desired
subscription by running the following command:

I $ oc get installplan -n <subscription_namespace>

Example output for cluster-logging Operator

NAMESPACE NAME Csv APPROVAL
APPROVED
openshift-logging install-6khtw cluster-logging.5.3.3-4 Manual true

The install plans have their Approval field set to Manual and their Approved field changes

from false to true after TALM approves the install plan.

NOTE

When TALM is remediating a policy containing a subscription, it automatically
approves any install plans attached to that subscription. Where multiple install
plans are needed to get the operator to the latest known version, TALM might
approve multiple install plans, upgrading through one or more intermediate
versions to get to the final version.

6. Check if the cluster service version for the Operator of the policy that the
ClusterGroupUpgrade is installing reached the Succeeded phase by running the following
command:

I $oc get csv -n <operator_namespace>

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

Example output for OpenShift Logging Operator

NAME DISPLAY VERSION REPLACES PHASE
cluster-logging.5.4.2 Red Hat OpenShift Logging 5.4.2 Succeeded

11.7. CREATING A BACKUP OF CLUSTER RESOURCES BEFORE
UPGRADE

For single-node OpenShift, the Topology Aware Lifecycle Manager (TALM) can create a backup of a
deployment before an upgrade. If the upgrade fails, you can recover the previous version and restore a
cluster to a working state without requiring a reprovision of applications.

To use the backup feature you first create a ClusterGroupUpgrade CR with the backup field set to
true. To ensure that the contents of the backup are up to date, the backup is not taken until you set the
enable field in the ClusterGroupUpgrade CR to true.

TALM uses the BackupSucceeded condition to report the status and reasons as follows:

e t{rue
Backup is completed for all clusters or the backup run has completed but failed for one or more
clusters. If backup fails for any cluster, the update does not proceed for that cluster.

e false
Backup is still in progress for one or more clusters or has failed for all clusters. The backup
process running in the spoke clusters can have the following statuses:

o PreparingToStart
The first reconciliation pass is in progress. The TALM deletes any spoke backup namespace
and hub view resources that have been created in a failed upgrade attempt.

o Starting
The backup prerequisites and backup job are being created.

o Active
The backup is in progress.

o Succeeded
The backup succeeded.

o BackupTimeout
Artifact backup is partially done.

o UnrecoverableError
The backup has ended with a non-zero exit code.

NOTE

If the backup of a cluster fails and enters the BackupTimeout or UnrecoverableError
state, the cluster update does not proceed for that cluster. Updates to other clusters are
not affected and continue.

11.7.1. Creating a ClusterGroupUpgrade CR with backup

201

OpenShift Container Platform 4.15 Edge computing

You can create a backup of a deployment before an upgrade on single-node OpenShift clusters. If the
upgrade fails you can use the upgrade-recovery.sh script generated by Topology Aware Lifecycle
Manager (TALM) to return the system to its preupgrade state. The backup consists of the following
items:

Cluster backup

A snapshot of eted and static pod manifests.
Content backup

Backups of folders, for example, /etc, /ust/local, /var/lib/kubelet.
Changed files backup

Any files managed by machine-config that have been changed.
Deployment

A pinned ostree deployment.
Images (Optional)

Any container images that are in use.

Prerequisites
e |nstall the Topology Aware Lifecycle Manager (TALM).
® Provision one or more managed clusters.
® | ogin as a user with cluster-admin privileges.

® |[nstall Red Hat Advanced Cluster Management (RHACM).

NOTE

It is highly recommended that you create a recovery partition. The following is an example
SiteConfig custom resource (CR) for a recovery partition of 50 GB:

nodes:
- hostName: "node-1.example.com"
role: "master”
rootDeviceHints:
hctl: "0:2:0:0"
deviceName: /dev/disk/by-id/scsi-36005080400105e210000900000490000

#Disk /dev/disk/by-id/scsi-3600508b400105e210000900000490000:
#893.3 GiB, 959119884288 bytes, 1873281024 sectors
diskPartition:
- device: /dev/disk/by-id/scsi-3600508b400105€210000900000490000
partitions:
- mount_point: /var/recovery
size: 51200
start: 800000

Procedure

1. Save the contents of the ClusterGroupUpgrade CR with the backup and enable fields set to
true in the clustergroupupgrades-group-du.yaml file:

202

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: du-upgrade-4918
namespace: ztp-group-du-sno
spec:
preCaching: true
backup: true
clusters:
- cnfdb1
- cnfdb2
enable: true
managedPolicies:
- du-upgrade-platform-upgrade
remediationStrategy:
maxConcurrency: 2
timeout: 240

2. To start the update, apply the ClusterGroupUpgrade CR by running the following command:

I $ oc apply -f clustergroupupgrades-group-du.yaml

Verification

® Check the status of the upgrade in the hub cluster by running the following command:
I $ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath="{.status}'

Example output

"backup": {
"clusters": [
"cnfdb2",
"cnfdb1"”
1,
"status": {
"cnfdb1": "Succeeded",
"cnfdb2": "Failed")

}
3
"computedMaxConcurrency": 1,
"conditions": [
{
"lastTransitionTime": "2022-04-05T10:37:19Z",
"message": "Backup failed for 1 cluster”, g
"reason": "PartiallyDone", 6
"status": "True",
"type": "Succeeded"
}

1,

"precaching": {

203

OpenShift Container Platform 4.15 Edge computing

"spec": {}

b

"status": {}

ﬂ Backup has failed for one cluster.
9 The message confirms that the backup failed for one cluster.
9 The backup was partially successful.

Q The backup process has finished.

1.7.2. Recovering a cluster after a failed upgrade

If an upgrade of a cluster fails, you can manually log in to the cluster and use the backup to return the
cluster to its preupgrade state. There are two stages:

Rollback

If the attempted upgrade included a change to the platform OS deployment, you must roll back to
the previous version before running the recovery script.

IMPORTANT

A rollback is only applicable to upgrades from TALM and single-node OpenShift. This
process does not apply to rollbacks from any other upgrade type.

Recovery

The recovery shuts down containers and uses files from the backup partition to relaunch containers
and restore clusters.

Prerequisites
® |nstall the Topology Aware Lifecycle Manager (TALM).
® Provision one or more managed clusters.
® [nstall Red Hat Advanced Cluster Management (RHACM).
® | ogin as a user with cluster-admin privileges.

® Run an upgrade that is configured for backup.

Procedure

1. Delete the previously created ClusterGroupUpgrade custom resource (CR) by running the
following command:

I $ oc delete cgu/du-upgrade-4918 -n ztp-group-du-sno

2. Login to the cluster that you want to recover.

3. Check the status of the platform OS deployment by running the following command:

204

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

I $ ostree admin status
Example outputs

[root@lab-test-spoke2-node-0 core]# ostree admin status
* rhcos c038a8f08458bbed83a77ece033ad3c55597e3f64edad66eal2fdal8cbdceafd.0
Version: 49.84.202202230006-0

Pinned: yes ﬂ
origin refspec:

c038a8f08458bbed83a77ece033ad3c55597e3f64edad66eal2fdal8cbdceaf9

ﬂ The current deployment is pinned. A platform OS deployment rollback is not necessary.

[root@lab-test-spoke2-node-0 corel# ostree admin status
* rhcos f750ff26f2d5550930ccbe17af61af47daafc8018cd9944f2a3a6269af26b0fa.0

Version: 410.84.202204050541-0

origin refspec: f750ff26f2d5550930ccbe17af61af47daafc8018cd9944f2a3a6269af26b0fa
rhcos ad8f159f9dc4ea7e773fd9604c9a16be0fe9b266ae800ac8470f63abc39b52ca.0
(rollback) 0

Version: 410.84.202203290245-0

Pinned: yes 9

origin refspec:
ad8f159f9dc4ea7e773fd9604c9a16be0fe9b266ae800ac8470f63abc39b52ca

ﬂ This platform OS deployment is marked for rollback.

9 The previous deployment is pinned and can be rolled back.

. To trigger a rollback of the platform OS deployment, run the following command:

I $ rom-ostree rollback -r

. The first phase of the recovery shuts down containers and restores files from the backup
partition to the targeted directories. To begin the recovery, run the following command:

I $ /var/recovery/upgrade-recovery.sh
. When prompted, reboot the cluster by running the following command:

I $ systemctl reboot

. After the reboot, restart the recovery by running the following command:

I $ /var/recovery/upgrade-recovery.sh --resume

NOTE

If the recovery utility fails, you can retry with the --restart option:

I $ /var/recovery/upgrade-recovery.sh --restart

205

OpenShift Container Platform 4.15 Edge computing

Verification

® To check the status of the recovery run the following command:

I $ oc get clusterversion,nodes,clusteroperator

Example output

NAME VERSION AVAILABLE PROGRESSING SINCE
STATUS
clusterversion.config.openshift.io/version 4.4.15.23 True False 86d Cluster

version is 4.4.15.23 ﬂ

NAME STATUS ROLES AGE VERSION
node/lab-test-spoke1-node-0 Ready master,worker 86d v1.22.3+b93fd359

NAME VERSION AVAILABLE
PROGRESSING DEGRADED SINCE MESSAGE
clusteroperator.config.openshift.io/authentication 441523 True

False False 2d7h

clusteroperator.config.openshift.io/baremetal 4.415.23 True False
False 86d

ﬂ The cluster version is available and has the correct version.
9 The node status is Ready.

9 The ClusterOperator object’s availability is True.

11.8. USING THE CONTAINER IMAGE PRE-CACHE FEATURE

Single-node OpenShift clusters might have limited bandwidth to access the container image registry,
which can cause a timeout before the updates are completed.

NOTE

The time of the update is not set by TALM. You can apply the ClusterGroupUpgrade CR
at the beginning of the update by manual application or by external automation.

The container image pre-caching starts when the preCaching field is set to true in the
ClusterGroupUpgrade CR.

TALM uses the PrecacheSpecValid condition to report status information as follows:

206

e true
The pre-caching spec is valid and consistent.

e false
The pre-caching spec is incomplete.

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

TALM uses the PrecachingSucceeded condition to report status information as follows:

e true
TALM has concluded the pre-caching process. If pre-caching fails for any cluster, the update
fails for that cluster but proceeds for all other clusters. A message informs you if pre-caching
has failed for any clusters.

e false
Pre-caching is still in progress for one or more clusters or has failed for all clusters.

After a successful pre-caching process, you can start remediating policies. The remediation actions start
when the enable field is set to true. If there is a pre-caching failure on a cluster, the upgrade fails for
that cluster. The upgrade process continues for all other clusters that have a successful pre-cache.

The pre-caching process can be in the following statuses:

e NotStarted
This is the initial state all clusters are automatically assigned to on the first reconciliation pass of
the ClusterGroupUpgrade CR. In this state, TALM deletes any pre-caching namespace and
hub view resources of spoke clusters that remain from previous incomplete updates. TALM
then creates a new ManagedClusterView resource for the spoke pre-caching namespace to
verify its deletion in the PrecachePreparing state.

® PreparingToStart
Cleaning up any remaining resources from previous incomplete updates is in progress.

e Starting
Pre-caching job prerequisites and the job are created.

e Active
The jobisin "Active” state.

e Succeeded
The pre-cache job succeeded.

® PrecacheTimeout
The artifact pre-caching is partially done.

e UnrecoverableError
The job ends with a non-zero exit code.

11.8.1. Using the container image pre-cache filter

The pre-cache feature typically downloads more images than a cluster needs for an update. You can
control which pre-cache images are downloaded to a cluster. This decreases download time, and saves
bandwidth and storage.

You can see a list of all images to be downloaded using the following command:

I $ oc adm release info <ocp-version>

The following ConfigMap example shows how you can exclude images using the
excludePrecachePatterns field.

I apiVersion: v1

207

OpenShift Container Platform 4.15 Edge computing

kind: ConfigMap
metadata:
name: cluster-group-upgrade-overrides
data:
excludePrecachePatterns: |
azure ﬂ
aws
vsphere
alibaba

ﬂ TALM excludes all images with names that include any of the patterns listed here.

11.8.2. Creating a ClusterGroupUpgrade CR with pre-caching

For single-node OpenShift, the pre-cache feature allows the required container images to be present
on the spoke cluster before the update starts.

NOTE

For pre-caching, TALM uses the spec.remediationStrategy.timeout value from the
ClusterGroupUpgrade CR. You must set a timeout value that allows sufficient time for
the pre-caching job to complete. When you enable the ClusterGroupUpgrade CR after
pre-caching has completed, you can change the timeout value to a duration that is
appropriate for the update.

Prerequisites

e |nstall the Topology Aware Lifecycle Manager (TALM).
® Provision one or more managed clusters.

® | ogin as a user with cluster-admin privileges.

Procedure

1. Save the contents of the ClusterGroupUpgrade CR with the preCaching field set to true in
the clustergroupupgrades-group-du.yaml file:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: du-upgrade-4918
namespace: ztp-group-du-sno
spec:
preCaching: true ﬂ
clusters:
- cnfdb1
- cnfdb2
enable: false
managedPolicies:
- du-upgrade-platform-upgrade
remediationStrategy:
maxConcurrency: 2
timeout: 240

208

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

The preCaching field is set to true, which enables TALM to pull the container images
before starting the update.

2. When you want to start pre-caching, apply the ClusterGroupUpgrade CR by running the
following command:

I $ oc apply -f clustergroupupgrades-group-du.yaml

Verification

1. Check if the ClusterGroupUpgrade CR exists in the hub cluster by running the following
command:

I $ oc getcgu -A
Example output

NAMESPACE NAME AGE STATE DETAILS
ztp-group-du-sno du-upgrade-4918 10s InProgress Precaching is required and not done

ﬂ The CRis created.

2. Check the status of the pre-caching task by running the following command:
I $ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath="{.status}'
Example output

{
"conditions": [
{
"lastTransitionTime": "2022-01-27T19:07:24Z",
"message": "Precaching is required and not done",
"reason": "InProgress",
"status": "False",
"type": "PrecachingSucceeded"

"lastTransitionTime": "2022-01-27T19:07:34Z",
"message": "Pre-caching spec is valid and consistent”,
"reason": "PrecacheSpeclsWellFormed",
"status": "True",
"type": "PrecacheSpecValid"
}
1,
"precaching": {
"clusters": [

"cnfdb1” @)

"cnfdb2"
1

209

OpenShift Container Platform 4.15 Edge computing

"spec": {
"platformlmage": "image.example.io"},
"status": {
"cnfdb1": "Active"
"cnfdb2": "Succeeded"}
}
}

ﬂ Displays the list of identified clusters.

3. Check the status of the pre-caching job by running the following command on the spoke
cluster:

I $ oc get jobs,pods -n openshift-talo-pre-cache

Example output

NAME COMPLETIONS DURATION AGE
job.batch/pre-cache 0/1 3m10s 3m10s
NAME READY STATUS RESTARTS AGE

pod/pre-cache--1-9bmlir 1/1 Running 0 3m10s

4. Check the status of the ClusterGroupUpgrade CR by running the following command:

I $ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath="{.status}'
Example output

"conditions": [
{
"lastTransitionTime": "2022-01-27T19:30:41Z",
"message": "The ClusterGroupUpgrade CR has all clusters compliant with all the
managed policies",
"reason": "UpgradeCompleted",
"status": "True",
"type": "Ready"
b

{
"lastTransitionTime": "2022-01-27T19:28:57Z",

"message": "Precaching is completed",
"reason": "PrecachingCompleted"”,
"status": "True",

"type": "PrecachingSucceeded" 0

}

ﬂ The pre-cache tasks are done.

11.9. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE
MANAGER

210

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

The Topology Aware Lifecycle Manager (TALM) is an OpenShift Container Platform Operator that
remediates RHACM policies. When issues occur, use the oc adm must-gather command to gather
details and logs and to take steps in debugging the issues.
For more information about related topics, see the following documentation:

® Red Hat Advanced Cluster Management for Kubernetes 2.4 Support Matrix

® Red Hat Advanced Cluster Management Troubleshooting

® The "Troubleshooting Operator issues” section

11.9.1. General troubleshooting

You can determine the cause of the problem by reviewing the following questions:

® |s the configuration that you are applying supported?

o Are the RHACM and the OpenShift Container Platform versions compatible?
o Are the TALM and RHACM versions compatible?

® Which of the following components is causing the problem?

o Section 11.9.3, “Managed policies”
o Section 11.9.4, “Clusters”
o Section 11.9.5, “Remediation Strategy”
o Section 11.9.6, “Topology Aware Lifecycle Manager”
To ensure that the ClusterGroupUpgrade configuration is functional, you can do the following:
1. Create the ClusterGroupUpgrade CR with the spec.enable field set to false.
2. Wait for the status to be updated and go through the troubleshooting questions.

3. If everything looks as expected, set the spec.enable field to true in the ClusterGroupUpgrade
CR.

' WARNING
A After you set the spec.enable field to true in the ClusterUpgradeGroup CR, the

update procedure starts and you cannot edit the CR’s spec fields anymore.

11.9.2. Cannot modify the ClusterUpgradeGroup CR

Issue
You cannot edit the ClusterUpgradeGroup CR after enabling the update.

Resolution

21

https://access.redhat.com/articles/6218901
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.0/html/troubleshooting/troubleshooting

OpenShift Container Platform 4.15 Edge computing

Restart the procedure by performing the following steps:

1. Remove the old ClusterGroupUpgrade CR by running the following command:

$ oc delete cgu -n <ClusterGroupUpgradeCR_namespace>
<ClusterGroupUpgradeCR_name>

2. Check and fix the existing issues with the managed clusters and policies.
a. Ensure that all the clusters are managed clusters and available.

b. Ensure that all the policies exist and have the spec.remediationAction field set to
inform.

3. Create a new ClusterGroupUpgrade CR with the correct configurations.

I $ oc apply -f <ClusterGroupUpgradeCR_YAML>

11.9.3. Managed policies
Checking managed policies on the system

Issue
You want to check if you have the correct managed policies on the system.

Resolution

Run the following command:

I $ oc get cgu lab-upgrade -ojsonpath="{.spec.managedPolicies}'
Example output

["group-du-sno-validator-du-validator-policy”, "policy2-common-nto-sub-policy”, "policy3-common-
ptp-sub-policy"]

Checking remediationAction mode

Issue

You want to check if the remediationAction field is set to inform in the spec of the managed
policies.

Resolution

Run the following command:

I $ oc get policies --all-namespaces

Example output

NAMESPACE NAME REMEDIATION ACTION COMPLIANCE
STATE AGE

default policy1-common-cluster-version-policy inform NonCompliant
5d21h

212

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

default policy2-common-nto-sub-policy inform Compliant 5d21h
default policy3-common-ptp-sub-policy inform NonCompliant 5d21h
default policy4-common-sriov-sub-policy inform NonCompliant 5d21h

Checking policy compliance state

Issue
You want to check the compliance state of policies.

Resolution

Run the following command:

I $ oc get policies --all-namespaces

Example output

NAMESPACE NAME REMEDIATION ACTION COMPLIANCE
STATE AGE

default policy1-common-cluster-version-policy inform NonCompliant

5d21h

default policy2-common-nto-sub-policy inform Compliant 5d21h
default policy3-common-ptp-sub-policy inform NonCompliant 5d21h
default policy4-common-sriov-sub-policy inform NonCompliant 5d21h

11.9.4. Clusters
Checking if managed clusters are present

Issue
You want to check if the clusters in the ClusterGroupUpgrade CR are managed clusters.

Resolution

Run the following command:

I $ oc get managedclusters

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE

local-cluster true https://api.hub.example.com:6443 True Unknown 13d

spoke1 true https://api.spoke1.example.com:6443 True True 13d

spoke3 true https://api.spoke3.example.com:6443 True True 27h

1. Alternatively, check the TALM manager logs:

a. Getthe name of the TALM manager by running the following command:
I $ oc get pod -n openshift-operators

Example output

213

OpenShift Container Platform 4.15 Edge computing

NAME READY STATUS RESTARTS AGE
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp 2/2 Running 0
45m

b. Check the TALM manager logs by running the following command:

$ oc logs -n openshift-operators \
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp -c manager

Example output

ERROR controller-runtime.manager.controller.clustergroupupgrade Reconciler error
{"reconciler group": "ran.openshift.io", "reconciler kind": "ClusterGroupUpgrade",
"name": "lab-upgrade”, "namespace": "default”", "error": "Cluster spoke5555 is not a
ManagedCluster"} ﬂ

sigs.k8s.io/controller-runtime/pkg/internal/controller.
(*Controller).processNextWorkltem

ﬂ The error message shows that the cluster is not a managed cluster.

Checking if managed clusters are available

Issue
You want to check if the managed clusters specified in the ClusterGroupUpgrade CR are available.
Resolution

Run the following command:

I $ oc get managedclusters

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE

local-cluster true https://api.hub.testlab.com:6443 True Unknown 13d

spoke1 true https://api.spokei.testlab.com:6443 True True 13d

spoke3 true https://api.spoke3.testlab.com:6443 True True 27h

wThe value of the AVAILABLE field is True for the managed clusters.

Checking clusterLabelSelector

Issue

You want to check if the clusterLabelSelector field specified in the ClusterGroupUpgrade CR
matches at least one of the managed clusters.

Resolution

Run the following command:

I $ oc get managedcluster --selector=upgrade=true ﬂ

214

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

ﬂ The label for the clusters you want to update is upgrade:true.

Example output

NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED
AVAILABLE AGE
spoke1 true https://api.spoke1.testlab.com:6443 True True 13d
spoke3 true https://api.spoke3d.testlab.com:6443 True True 27h
Checking if canary clusters are present
Issue
You want to check if the canary clusters are present in the list of clusters.
Example ClusterGroupUpgrade CR
spec:
remediationStrategy:
canaries:
- spoke3
maxConcurrency: 2
timeout: 240
clusterLabelSelectors:
- matchLabels:
upgrade: true
Resolution
Run the following commands:
I $ oc get cgu lab-upgrade -ojsonpath="{.spec.clusters}'
Example output
I ['spokel", "spoke3"]
1. Check if the canary clusters are present in the list of clusters that match
clusterLabelSelector labels by running the following command:
I $ oc get managedcluster --selector=upgrade=true
Example output
NAME HUB ACCEPTED MANAGED CLUSTER URLS JOINED AVAILABLE
AGE
spoke1 true https://api.spoke1.testlab.com:6443 True True 13d
spoke3 true https://api.spoke3d.testlab.com:6443 True True 27h

215

OpenShift Container Platform 4.15 Edge computing

NOTE

A cluster can be present in spec.clusters and also be matched by the
spec.clusterLabelSelector label.

Checking the pre-caching status on spoke clusters

1. Check the status of pre-caching by running the following command on the spoke cluster:

I $ oc get jobs,pods -n openshift-talo-pre-cache

11.9.5. Remediation Strategy
Checking if remediationStrategy is present in the ClusterGroupUpgrade CR

Issue
You want to check if the remediationStrategy is present in the ClusterGroupUpgrade CR.
Resolution

Run the following command:

I $ oc get cgu lab-upgrade -ojsonpath="{.spec.remediationStrategy}'
Example output

I {"maxConcurrency":2, "timeout":240}

Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

Issue
You want to check if the maxConcurrency is specified in the ClusterGroupUpgrade CR.
Resolution

Run the following command:

I $ oc get cgu lab-upgrade -ojsonpath="{.spec.remediationStrategy.maxConcurrency}'

Example output
| -

11.9.6. Topology Aware Lifecycle Manager
Checking condition message and status in the ClusterGroupUpgrade CR

Issue
You want to check the value of the status.conditions field in the ClusterGroupUpgrade CR.
Resolution

Run the following command:

216

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

I $ oc get cgu lab-upgrade -ojsonpath="{.status.conditions}'

Example output

{"lastTransitionTime":"2022-02-17T22:25:28Z", "message":"Missing managed policies:[policyList]",
"reason":"NotAllIManagedPoliciesExist", "status":"False", "type":"Validated"}

Checking corresponding copied policies
Issue

You want to check if every policy from status.managedPoliciesForUpgrade has a corresponding
policy in status.copiedPolicies.

Resolution

Run the following command:
I $ oc get cgu lab-upgrade -oyaml
Example output

status:

copiedPolicies:

- lab-upgrade-policy3-common-ptp-sub-policy

managedPoliciesForUpgrade:

- name: policy3-common-ptp-sub-policy
namespace: default

Checking if status.remediationPlan was computed

Issue

You want to check if status.remediationPlan is computed.
Resolution

Run the following command:

I $ oc get cgu lab-upgrade -ojsonpath='{.status.remediationPlan}'

Example output

I [["spoke2", "spoke3"]

Errors in the TALM manager container

Issue

You want to check the logs of the manager container of TALM.
Resolution

Run the following command:

217

OpenShift Container Platform 4.15 Edge computing

$ oc logs -n openshift-operators \
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp -c manager

Example output

ERROR controller-runtime.manager.controller.clustergroupupgrade Reconciler error {"reconciler
group": "ran.openshift.io”, "reconciler kind": "ClusterGroupUpgrade", "name": "lab-upgrade”,
"namespace": "default", "error": "Cluster spoke5555 is not a ManagedCluster"} 0
sigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNextWorkltem

ﬂ Displays the error.

Clusters are not compliant to some policies after aClusterGroupUpgrade CR has completed

Issue
The policy compliance status that TALM uses to decide if remediation is needed has not yet fully
updated for all clusters. This may be because:

® The CGU was run too soon after a policy was created or updated.

® The remediation of a policy affects the compliance of subsequent policies in the
ClusterGroupUpgrade CR.

Resolution

Create and apply a new ClusterGroupUpdate CR with the same specification.

Auto-created ClusterGroupUpgrade CR in the GitOps ZTP workflow has no managed policies

Issue

If there are no policies for the managed cluster when the cluster becomes Ready, a
ClusterGroupUpgrade CR with no policies is auto-created. Upon completion of the
ClusterGroupUpgrade CR, the managed cluster is labeled as ztp-done. If the PolicyGenTemplate
CRs were not pushed to the Git repository within the required time after SiteConfig resources were
pushed, this might result in no policies being available for the target cluster when the cluster became
Ready.

Resolution

Verify that the policies you want to apply are available on the hub cluster, then create a
ClusterGroupUpgrade CR with the required policies.

You can either manually create the ClusterGroupUpgrade CR or trigger auto-creation again. To trigger
auto-creation of the ClusterGroupUpgrade CR, remove the ztp-done label from the cluster and delete
the empty ClusterGroupUpgrade CR that was previously created in the zip-install namespace.

Pre-caching has failed

Issue

Pre-caching might fail for one of the following reasons:

® There is not enough free space on the node.

® Foradisconnected environment, the pre-cache image has not been properly mirrored.

218

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

® There was an issue when creating the pod.

Resolution

1. To check if pre-caching has failed due to insufficient space, check the log of the pre-caching
pod in the node.

a. Find the name of the pod using the following command:
I $ oc get pods -n openshift-talo-pre-cache

b. Check the logs to see if the error is related to insufficient space using the following
command:

I $ oc logs -n openshift-talo-pre-cache <pod name>

2. If there is no log, check the pod status using the following command:

I $ oc describe pod -n openshift-talo-pre-cache <pod name>

3. If the pod does not exist, check the job status to see why it could not create a pod using the
following command:

I $ oc describe job -n openshift-talo-pre-cache pre-cache

Additional resources

e Forinformation about troubleshooting, see OpenShift Container Platform Troubleshooting
Operator Issues.

® For more information about using Topology Aware Lifecycle Manager in the ZTP workflow, see
Updating managed policies with Topology Aware Lifecycle Manager .

® For more information about the PolicyGenTemplate CRD, see About the PolicyGenTemplate
CRD

219

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/#troubleshooting-operator-issues

OpenShift Container Platform 4.15 Edge computing

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A
DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY
AWARE LIFECYCLE MANAGER

You can use the Topology Aware Lifecycle Manager (TALM) to manage the software lifecycle of
OpenShift Container Platform managed clusters. TALM uses Red Hat Advanced Cluster Management
(RHACM) policies to perform changes on the target clusters.

Additional resources

® For more information about the Topology Aware Lifecycle Manager, see About the Topology
Aware Lifecycle Manager.

12.1. UPDATING CLUSTERS IN A DISCONNECTED ENVIRONMENT

You can upgrade managed clusters and Operators for managed clusters that you have deployed using
GitOps Zero Touch Provisioning (ZTP) and Topology Aware Lifecycle Manager (TALM).

12.1.1. Setting up the environment

TALM can perform both platform and Operator updates.

You must mirror both the platform image and Operator images that you want to update to in your mirror
registry before you can use TALM to update your disconnected clusters. Complete the following steps
to mirror the images:

® For platform updates, you must perform the following steps:

1. Mirror the desired OpenShift Container Platform image repository. Ensure that the desired
platform image is mirrored by following the "Mirroring the OpenShift Container Platform
image repository" procedure linked in the Additional Resources. Save the contents of the
imageContentSources section in the imageContentSources.yaml file:

Example output

imageContentSources:

- mirrors:
- mirror-ocp-registry.ibmcloud.io.cpak:5000/openshift-release-dev/openshift4
source: quay.io/openshift-release-dev/ocp-release

- mirrors:
- mirror-ocp-registry.ibmcloud.io.cpak:5000/openshift-release-dev/openshift4
source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

2. Save the image signature of the desired platform image that was mirrored. You must add
the image signature to the PolicyGenTemplate CR for platform updates. To get the image
signature, perform the following steps:

a. Specify the desired OpenShift Container Platform tag by running the following
command:

I $ OCP_RELEASE_NUMBER=<release_ version>

b. Specify the architecture of the cluster by running the following command:

220

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

I $ ARCHITECTURE=<cluster_architecture>)

Specify the architecture of the cluster, such as x86_64, aarch64, s390x, or
ppc64le.

c. Get the release image digest from Quay by running the following command

$ DIGEST="$(oc adm release info quay.io/openshift-release-dev/ocp-
release:${OCP_RELEASE_NUMBER}-${ARCHITECTURE]} | sed -n 's/Pull From:

-*@//pl)ll
d. Set the digest algorithm by running the following command:

I $ DIGEST_ALGO="${DIGEST%%:*}"

e. Set the digest signature by running the following command:

I $ DIGEST_ENCODED="${DIGEST#":}"

f. Get the image signature from the mirror.openshift.com website by running the following
command:

$ SIGNATURE_BASE64=$(curl -s "https://mirror.openshift.com/pub/openshift-
v4/signatures/openshift/release/${DIGEST_ALGO}=${DIGEST_ENCODED}/signature
-1" | base64 -w0 && echo)

g. Save the image signature to the checksum-<OCP_RELEASE_NUMBER>.yaml file by
running the following commands:

$ cat >checksum-${OCP_RELEASE_NUMBER}.yam| <<EOF
${DIGEST_ALGO}-${DIGEST_ENCODED}: ${SIGNATURE_BASEG64}
EOF

3. Prepare the update graph. You have two options to prepare the update graph:

a. Use the OpenShift Update Service.

For more information about how to set up the graph on the hub cluster, see Deploy the
operator for OpenShift Update Service and Build the graph data init container.

b. Make a local copy of the upstream graph. Host the update graph on an http or https
server in the disconnected environment that has access to the managed cluster. To
download the update graph, use the following command:

$ curl -s https://api.openshift.com/api/upgrades_info/vi/graph?channel=stable-4.15 -
o ~/upgrade-graph_stable-4.15

® For Operator updates, you must perform the following task:

o Mirror the Operator catalogs. Ensure that the desired operator images are mirrored by
following the procedure in the "Mirroring Operator catalogs for use with disconnected
clusters" section.

AAddAitinnal recnlirrac

221

https://mirror.openshift.com/pub/openshift-v4/signatures/openshift/release/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/clusters/managing-your-clusters#deploy-the-operator-for-cincinnati
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/clusters/managing-your-clusters#build-the-graph-data-init-container

OpenShift Container Platform 4.15 Edge computing

FAMMILIVIIUL T UV UL e o

For more information about how to update GitOps Zero Touch Provisioning (ZTP), see
Upgrading GitOps ZTP..

For more information about how to mirror an OpenShift Container Platform image repository,
see Mirroring the OpenShift Container Platform image repository .

For more information about how to mirror Operator catalogs for disconnected clusters, see
Mirroring Operator catalogs for use with disconnected clusters.

For more information about how to prepare the disconnected environment and mirroring the
desired image repository, see Preparing the disconnected environment.

For more information about update channels and releases, see Understanding update channels
and releases.

12.1.2. Performing a platform update

You can perform a platform update with the TALM.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Update GitOps Zero Touch Provisioning (ZTP) to the latest version.
Provision one or more managed clusters with GitOps ZTP.

Mirror the desired image repository.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

222

1.

Create a PolicyGenTemplate CR for the platform update:

a. Save the following contents of the PolicyGenTemplate CR in the du-upgrade.yaml file.

Example of PolicyGenTemplate for platform update

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "du-upgrade"
namespace: "ztp-group-du-sno"
spec:
bindingRules:
group-du-sno:
mcp: "master”
remediationAction: inform
sourceFiles:
- fleName: ImageSignature.yaml| ﬂ
policyName: "platform-upgrade-prep"
binaryData:

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-mirror-repository_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#olm-mirror-catalog_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#understanding-update-channels-releases

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

1]
2]
©
4]

${DIGEST_ALGO}-${DIGEST_ENCODED}: ${SIGNATURE_BASE64} g
- fileName: DisconnectedICSP.yaml
policyName: "platform-upgrade-prep"
metadata:
name: disconnected-internal-icsp-for-ocp
spec:
repositoryDigestMirrors: 6
- mirrors:
- quay-intern.example.com/ocp4/openshift-release-dev
source: quay.io/openshift-release-dev/ocp-release
- mirrors:
- quay-intern.example.com/ocp4/openshift-release-dev
source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
- fileName: ClusterVersion.yaml
policyName: "platform-upgrade”
metadata:
name: version
spec:
channel: "stable-4.15"
upstream: http://upgrade.example.com/images/upgrade-graph_stable-4.15
desiredUpdate:
version: 4.15.4
status:
history:
- version: 4.15.4
state: "Completed"”

The ConfigMap CR contains the signature of the desired release image to update to.

Shows the image signature of the desired OpenShift Container Platform release. Get
the signature from the checksum-${OCP_RELEASE_NUMBER}.yaml file you saved
when following the procedures in the "Setting up the environment” section.

Shows the mirror repository that contains the desired OpenShift Container Platform
image. Get the mirrors from the imageContentSources.yaml file that you saved when
following the procedures in the "Setting up the environment" section.

Shows the ClusterVersion CR to trigger the update. The channel, upstream, and
desiredVersion fields are all required for image pre-caching.

The PolicyGenTemplate CR generates two policies:

e The du-upgrade-platform-upgrade-prep policy does the preparation work for the

platform update. It creates the ConfigMap CR for the desired release image signature,
creates the image content source of the mirrored release image repository, and
updates the cluster version with the desired update channel and the update graph
reachable by the managed cluster in the disconnected environment.

e The du-upgrade-platform-upgrade policy is used to perform platform upgrade.

b. Add the du-upgrade.yaml file contents to the kustomization.yaml file located in the
GitOps ZTP Git repository for the PolicyGenTemplate CRs and push the changes to the
Git repository.

ArgoCD pulls the changes from the Git repository and generates the policies on the hub
cluster.

223

OpenShift Container Platform 4.15 Edge computing

c. Check the created policies by running the following command:
I $ oc get policies -A | grep platform-upgrade

2. Create the ClusterGroupUpdate CR for the platform update with the spec.enable field set to
false.

a. Save the content of the platform update ClusterGroupUpdate CR with the du-upgrade-
platform-upgrade-prep and the du-upgrade-platform-upgrade policies and the target
clusters to the cgu-platform-upgrade.yml file, as shown in the following example:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-platform-upgrade
namespace: default
spec:
managedPolicies:
- du-upgrade-platform-upgrade-prep
- du-upgrade-platform-upgrade
preCaching: false
clusters:
- spoke1
remediationStrategy:
maxConcurrency: 1
enable: false

b. Apply the ClusterGroupUpdate CR to the hub cluster by running the following command:
I $ oc apply -f cgu-platform-upgrade.yml

3. Optional: Pre-cache the images for the platform update.

a. Enable pre-caching in the ClusterGroupUpdate CR by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-platform-
upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

b. Monitor the update process and wait for the pre-caching to complete. Check the status of
pre-caching by running the following command on the hub cluster:

I $ oc get cgu cgu-platform-upgrade -o jsonpath='{.status.precaching.status}'

4. Start the platform update:

a. Enable the egu-platform-upgrade policy and disable pre-caching by running the following
command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-platform-

upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

224

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

I $ oc get policies --all-namespaces

Additional resources

® For more information about mirroring the images in a disconnected environment, see Preparing
the disconnected environment.

12.1.3. Performing an Operator update

You can perform an Operator update with the TALM.

Prerequisites

e |nstall the Topology Aware Lifecycle Manager (TALM).

Update GitOps Zero Touch Provisioning (ZTP) to the latest version.
® Provision one or more managed clusters with GitOps ZTP.

® Mirror the desired index image, bundle images, and all Operator images referenced in the
bundle images.

® | ogin as a user with cluster-admin privileges.

® Create RHACM policies in the hub cluster.

Procedure
1. Update the PolicyGenTemplate CR for the Operator update.

a. Update the du-upgrade PolicyGenTemplate CR with the following additional contents in
the du-upgrade.yaml file:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "du-upgrade"
namespace: "ztp-group-du-sno"
spec:
bindingRules:
group-du-sno: "
mcp: "master”
remediationAction: inform
sourceFiles:
- fileName: DefaultCatsrc.yaml
remediationAction: inform
policyName: "operator-catsrc-policy"
metadata:
name: redhat-operators
spec:
displayName: Red Hat Operators Catalog
image: registry.example.com:5000/olm/redhat-operators:v4.15 ﬂ

225

OpenShift Container Platform 4.15 Edge computing

226

® o

©

updateStrategy: 9
registryPoll:
interval: 1h
status:
connectionState:
lastObservedState: READY 6

The index image URL contains the desired Operator images. If the index images are
always pushed to the same image name and tag, this change is not needed.

Set how frequently the Operator Lifecycle Manager (OLM) polls the index image for
new Operator versions with the registryPoll.interval field. This change is not needed
if a new index image tag is always pushed for y-stream and z-stream Operator
updates. The registryPoll.interval field can be set to a shorter interval to expedite the
update, however shorter intervals increase computational load. To counteract this, you
can restore registryPoll.interval to the default value once the update is complete.

Last observed state of the catalog connection. The READY value ensures that the
CatalogSource policy is ready, indicating that the index pod is pulled and is running.
This way, TALM upgrades the Operators based on up-to-date policy compliance
states.

b. This update generates one policy, du-upgrade-operator-catsrc-policy, to update the

redhat-operators catalog source with the new index images that contain the desired
Operators images.

NOTE

If you want to use the image pre-caching for Operators and there are
Operators from a different catalog source other than redhat-operators, you
must perform the following tasks:

® Prepare a separate catalog source policy with the new index image or
registry poll interval update for the different catalog source.

® Prepare a separate subscription policy for the desired Operators that are
from the different catalog source.

For example, the desired SRIOV-FEC Operator is available in the certified-operators
catalog source. To update the catalog source and the Operator subscription, add the
following contents to generate two policies, du-upgrade-fec-catsrc-policy and du-
upgrade-subscriptions-fec-policy:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:

name: "du-upgrade"
namespace: "ztp-group-du-sno"

spec:

bindingRules:

group-du-sno:
mcp: "master”
remediationAction: inform
sourceFiles:

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

- fileName: DefaultCatsrc.yaml
remediationAction: inform
policyName: "fec-catsrc-policy"
metadata:
name: certified-operators
spec:
displayName: Intel SRIOV-FEC Operator
image: registry.example.com:5000/olm/far-edge-sriov-fec:v4.10
updateStrategy:
registryPoll:
interval: 10m
- fileName: AcceleratorsSubscription.yaml
policyName: "subscriptions-fec-policy"”
spec:
channel: "stable"
source: certified-operators

c. Remove the specified subscriptions channels in the common PolicyGenTemplate CR, if
they exist. The default subscriptions channels from the GitOps ZTP image are used for the
update.

NOTE

The default channel for the Operators applied through GitOps ZTP 4.15 is
stable, except for the performance-addon-operator. As of OpenShift
Container Platform 4.11, the performance-addon-operator functionality was
moved to the node-tuning-operator. For the 4.10 release, the default
channel for PAO is v4.10. You can also specify the default channels in the
common PolicyGenTemplate CR.

d. Push the PolicyGenTemplate CRs updates to the GitOps ZTP Git repository.
ArgoCD pulls the changes from the Git repository and generates the policies on the hub
cluster.

e. Check the created policies by running the following command:
I $ oc get policies -A | grep -E "catsrc-policy|subscription”

2. Apply the required catalog source updates before starting the Operator update.

a. Save the content of the ClusterGroupUpgrade CR named operator-upgrade-prep with
the catalog source policies and the target managed clusters to the cgu-operator-upgrade-
prep.yml file:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

name: cgu-operator-upgrade-prep

namespace: default
spec:

clusters:

- spoke1

enable: true

managedPolicies:

227

OpenShift Container Platform 4.15 Edge computing

228

- du-upgrade-operator-catsrc-policy
remediationStrategy:
maxConcurrency: 1

b. Apply the policy to the hub cluster by running the following command:

I $ oc apply -f cgu-operator-upgrade-prep.ymi

c. Monitor the update process. Upon completion, ensure that the policy is compliant by
running the following command:

I $ oc get policies -A | grep -E "catsrc-policy”

3. Create the ClusterGroupUpgrade CR for the Operator update with the spec.enable field set

to false.

a. Save the content of the Operator update ClusterGroupUpgrade CR with the du-upgrade-
operator-catsrc-policy policy and the subscription policies created from the common
PolicyGenTemplate and the target clusters to the cgu-operator-upgrade.yml file, as
shown in the following example:

® o

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:

name: cgu-operator-upgrade
namespace: default

spec:

managedPolicies:
- du-upgrade-operator-catsrc-policy ﬂ
- common-subscriptions-policy
preCaching: false
clusters:
- spoke1
remediationStrategy:
maxConcurrency: 1
enable: false

The policy is needed by the image pre-caching feature to retrieve the operator images
from the catalog source.

The policy contains Operator subscriptions. If you have followed the structure and
content of the reference PolicyGenTemplates, all Operator subscriptions are
grouped into the common-subscriptions-policy policy.

NOTE

One ClusterGroupUpgrade CR can only pre-cache the images of the
desired Operators defined in the subscription policy from one catalog source
included in the ClusterGroupUpgrade CR. If the desired Operators are from
different catalog sources, such as in the example of the SRIOV-FEC
Operator, another ClusterGroupUpgrade CR must be created with du-
upgrade-fec-catsrc-policy and du-upgrade-subscriptions-fec-policy
policies for the SRIOV-FEC Operator images pre-caching and update.

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

b. Apply the ClusterGroupUpgrade CR to the hub cluster by running the following command:
I $ oc apply -f cgu-operator-upgrade.yml

4. Optional: Pre-cache the images for the Operator update.

a. Before starting image pre-caching, verify the subscription policy is NonCompliant at this
point by running the following command:

I $ oc get policy common-subscriptions-policy -n <policy_namespace>

Example output

NAME REMEDIATION ACTION COMPLIANCE STATE AGE
common-subscriptions-policy inform NonCompliant 27d

b. Enable pre-caching in the ClusterGroupUpgrade CR by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-operator-
upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

c. Monitor the process and wait for the pre-caching to complete. Check the status of pre-
caching by running the following command on the managed cluster:

I $ oc get cgu cgu-operator-upgrade -o jsonpath='{.status.precaching.status}'

d. Check if the pre-caching is completed before starting the update by running the following
command:

I $ oc get cgu -n default cgu-operator-upgrade -ojsonpath="{.status.conditions}' | jq

Example output

"lastTransitionTime": "2022-03-08T20:49:08.000Z",
"message": "The ClusterGroupUpgrade CR is not enabled”,
"reason": "UpgradeNotStarted",

"status": "False",

"type": "Ready"

"lastTransitionTime": "2022-03-08T20:55:30.000Z",
"message": "Precaching is completed",

"reason": "PrecachingCompleted"”,

"status": "True",

"type": "PrecachingDone"

5. Start the Operator update.

229

OpenShift Container Platform 4.15 Edge computing

a. Enable the cgu-operator-upgrade ClusterGroupUpgrade CR and disable pre-caching to
start the Operator update by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-operator-
upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

I $ oc get policies --all-namespaces

Additional resources

® For more information about updating GitOps ZTP, see Upgrading GitOps ZTP..

® Troubleshooting missed Operator updates due to out-of-date policy compliance states .

12.1.3.1. Troubleshooting missed Operator updates due to out-of-date policy compliance
states

In some scenarios, Topology Aware Lifecycle Manager (TALM) might miss Operator updates due to an
out-of-date policy compliance state.

After a catalog source update, it takes time for the Operator Lifecycle Manager (OLM) to update the
subscription status. The status of the subscription policy might continue to show as compliant while
TALM decides whether remediation is needed. As a result, the Operator specified in the subscription
policy does not get upgraded.

To avoid this scenario, add another catalog source configuration to the PolicyGenTemplate and specify
this configuration in the subscription for any Operators that require an update.

Procedure

1. Add a catalog source configuration in the PolicyGenTemplate resource:

- fileName: DefaultCatsrc.yaml
remediationAction: inform
policyName: "operator-catsrc-policy"
metadata:
name: redhat-operators
spec:
displayName: Red Hat Operators Catalog
image: registry.example.com:5000/olm/redhat-operators:v{product-version}
updateStrategy:
registryPoll:
interval: 1h
status:
connectionState:
lastObservedState: READY
- fileName: DefaultCatsrc.yaml
remediationAction: inform
policyName: "operator-catsrc-policy"
metadata:

230

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

name: redhat-operators-v2 ﬂ
spec:
displayName: Red Hat Operators Catalog v2 9
image: registry.example.com:5000/olredhat-operators:<version> G
updateStrategy:
registryPoll:
interval: 1h
status:
connectionState:
lastObservedState: READY

ﬂ Update the name for the new configuration.
9 Update the display name for the new configuration.

9 Update the index image URL. This fileName.spec.image field overrides any configuration
in the DefaultCatsrc.yaml file.

2. Update the Subscription resource to point to the new configuration for Operators that require
an update:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: operator-subscription
namespace: operator-namspace
#...
spec:
source: redhat-operators-v2 ﬂ
#...

Enter the name of the additional catalog source configuration that you defined in the

PolicyGenTemplate resource.

12.1.4. Performing a platform and an Operator update together

You can perform a platform and an Operator update at the same time.

Prerequisites

e |nstall the Topology Aware Lifecycle Manager (TALM).

Update GitOps Zero Touch Provisioning (ZTP) to the latest version.
® Provision one or more managed clusters with GitOps ZTP.

® | ogin as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

231

OpenShift Container Platform 4.15 Edge computing

1. Create the PolicyGenTemplate CR for the updates by following the steps described in the
"Performing a platform update" and "Performing an Operator update" sections.

2. Apply the prep work for the platform and the Operator update.

a. Save the content of the ClusterGroupUpgrade CR with the policies for platform update
preparation work, catalog source updates, and target clusters to the cgu-platform-
operator-upgrade-prep.yml file, for example:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-platform-operator-upgrade-prep
namespace: default
spec:
managedPolicies:
- du-upgrade-platform-upgrade-prep
- du-upgrade-operator-catsrc-policy
clusterSelector:
- group-du-sno
remediationStrategy:
maxConcurrency: 10
enable: true

b. Apply the cgu-platform-operator-upgrade-prep.yml file to the hub cluster by running the
following command:

I $ oc apply -f cgu-platform-operator-upgrade-prep.ymil

c. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

I $ oc get policies --all-namespaces

3. Create the ClusterGroupUpdate CR for the platform and the Operator update with the
spec.enable field set to false.

a. Save the contents of the platform and Operator update ClusterGroupUpdate CR with the
policies and the target clusters to the cgu-platform-operator-upgrade.yml file, as shown in
the following example:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu-du-upgrade
namespace: default
spec:
managedPolicies:
- du-upgrade-platform-upgrade ﬂ
- du-upgrade-operator-catsrc-policy
- common-subscriptions-policy
preCaching: true
clusterSelector:
- group-du-sno

232

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

remediationStrategy:
maxConcurrency: 1
enable: false

ﬂ This is the platform update policy.

9 This is the policy containing the catalog source information for the Operators to be
updated. It is needed for the pre-caching feature to determine which Operator images
to download to the managed cluster.

9 This is the policy to update the Operators.

b. Apply the cgu-platform-operator-upgrade.yml file to the hub cluster by running the
following command:

I $ oc apply -f cgu-platform-operator-upgrade.yml

4. Optional: Pre-cache the images for the platform and the Operator update.

a. Enable pre-caching in the ClusterGroupUpgrade CR by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-du-upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

b. Monitor the update process and wait for the pre-caching to complete. Check the status of
pre-caching by running the following command on the managed cluster:

I $ oc get jobs,pods -n openshift-talm-pre-cache

c. Check if the pre-caching is completed before starting the update by running the following
command:

I $ oc get cgu cgu-du-upgrade -ojsonpath="{.status.conditions}'

5. Start the platform and Operator update.

a. Enable the cgu-du-upgrade ClusterGroupUpgrade CR to start the platform and the
Operator update by running the following command:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-du-upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

I $ oc get policies --all-namespaces

233

OpenShift Container Platform 4.15 Edge computing

NOTE

The CRs for the platform and Operator updates can be created from the
beginning by configuring the setting to spec.enable: true. In this case, the
update starts immediately after pre-caching completes and there is no need
to manually enable the CR.

Both pre-caching and the update create extra resources, such as policies,
placement bindings, placement rules, managed cluster actions, and managed
cluster view, to help complete the procedures. Setting the
afterCompletion.deleteObjects field to true deletes all these resources
after the updates complete.

12.1.5. Removing Performance Addon Operator subscriptions from deployed clusters

In earlier versions of OpenShift Container Platform, the Performance Addon Operator provided
automatic, low latency performance tuning for applications. In OpenShift Container Platform 4.11 or
later, these functions are part of the Node Tuning Operator.

Do not install the Performance Addon Operator on clusters running OpenShift Container Platform 4.11
or later. If you upgrade to OpenShift Container Platform 4.11 or later, the Node Tuning Operator
automatically removes the Performance Addon Operator.

NOTE
You need to remove any policies that create Performance Addon Operator subscriptions

to prevent a re-installation of the Operator.

The reference DU profile includes the Performance Addon Operator in the PolicyGenTemplate CR
common-ranGen.yaml. To remove the subscription from deployed managed clusters, you must update
common-ranGen.yaml.

NOTE

If you install Performance Addon Operator 4.10.3-5 or later on OpenShift Container
Platform 4.1 or later, the Performance Addon Operator detects the cluster version and
automatically hibernates to avoid interfering with the Node Tuning Operator functions.
However, to ensure best performance, remove the Performance Addon Operator from
your OpenShift Container Platform 4.11 clusters.

Prerequisites

e Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for ArgoCD.

e Update to OpenShift Container Platform 4.11 or later.

® | ogin as a user with cluster-admin privileges.

Procedure

1. Change the complianceType to mustnothave for the Performance Addon Operator
namespace, Operator group, and subscription in the common-ranGen.yaml file.

234

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

- fileName: PaoSubscriptionNS.yaml
policyName: "subscriptions-policy"
complianceType: mustnothave

- fileName: PaoSubscriptionOperGroup.yaml|
policyName: "subscriptions-policy"
complianceType: mustnothave

- fileName: PaoSubscription.yaml
policyName: "subscriptions-policy"
complianceType: mustnothave

2. Merge the changes with your custom site repository and wait for the ArgoCD application to
synchronize the change to the hub cluster. The status of the common-subscriptions-policy
policy changes to Non-Compliant.

3. Apply the change to your target clusters by using the Topology Aware Lifecycle Manager. For
more information about rolling out configuration changes, see the "Additional resources”
section.

4. Monitor the process. When the status of the common-subscriptions-policy policy for a target
cluster is Compliant, the Performance Addon Operator has been removed from the cluster. Get
the status of the common-subscriptions-policy by running the following command:

I $ oc get policy -n ztp-common common-subscriptions-policy

5. Delete the Performance Addon Operator namespace, Operator group and subscription CRs
from .spec.sourceFiles in the common-ranGen.yaml file.

6. Merge the changes with your custom site repository and wait for the ArgoCD application to
synchronize the change to the hub cluster. The policy remains compliant.

12.1.6. Pre-caching user-specified images with TALM on single-node OpenShift
clusters

You can pre-cache application-specific workload images on single-node OpenShift clusters before
upgrading your applications.

You can specify the configuration options for the pre-caching jobs using the following custom resources
(CR):

® PreCachingConfig CR

e ClusterGroupUpgrade CR

NOTE

All fields in the PreCachingConfig CR are optional.

Example PreCachingConfig CR

apiVersion: ran.openshift.io/vialphai
kind: PreCachingConfig
metadata:

name: exampleconfig

namespace: exampleconfig-ns

235

OpenShift Container Platform 4.15 Edge computing

spec:
overrides:
platformimage: quay.io/openshift-release-dev/ocp-
release@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d3808fc925ada29c559a47e2¢e1ef
operatorsindexes:
- registry.example.com:5000/custom-redhat-operators:1.0.0
operatorsPackagesAndChannels:
- local-storage-operator: stable
- ptp-operator: stable
- sriov-network-operator: stable
spaceRequired: 30 Gi 9
excludePrecachePatterns: G
- aws
- vsphere
additionallmages: @)
quay.io/exampleconfig/application1@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d3808fc925
ada29c559a47e2e1ef
quay.io/exampleconfig/application2@sha256:3d5800123dee7cd4727d3fe238a97e2d2976d3808fc925
ada29c559a47adfaef
quay.io/exampleconfig/applicationN@sha256:4fe1334adfafadsf987123adfffdaf1243340adfafdedga099
1234afdadfsa09

By default, TALM automatically populates the platformimage, operatorsindexes, and the
operatorsPackagesAndChannels fields from the policies of the managed clusters. You can
specify values to override the default TALM-derived values for these fields.

Specifies the minimum required disk space on the cluster. If unspecified, TALM defines a default
value for OpenShift Container Platform images. The disk space field must include an integer value
and the storage unit. For example: 40 GiB, 200 MB, 1 TiB.

g Specifies the images to exclude from pre-caching based on image name matching.
Q Specifies the list of additional images to pre-cache.

Example ClusterGroupUpgrade CR with PreCachingConfig CR reference

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu
spec:
preCaching: true ﬂ
preCachingConfigRef:
name: exampleconfig 9
namespace: exampleconfig-ns 6

ﬂ The preCaching field set to true enables the pre-caching job.
Q The preCachingConfigRef.name field specifies the PreCachingConfig CR that you want to use.

9 The preCachingConfigRef.namespace specifies the namespace of the PreCachingConfig CR

236

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

that you want to use.

12.1.6.1. Creating the custom resources for pre-caching

You must create the PreCachingConfig CR before or concurrently with the ClusterGroupUpgrade
CR.

1. Create the PreCachingConfig CR with the list of additional images you want to pre-cache.

apiVersion: ran.openshift.io/vialphai
kind: PreCachingConfig
metadata:

name: exampleconfig

namespace: default
spec:
[--]

spaceRequired: 30Gi 9

additionallmages:
quay.io/exampleconfig/application1@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d38
08fc925ada29c559a47e2e1 ef
quay.io/exampleconfig/application2@sha256:3d5800123dee7cd4727d3fe238a97e2d2976d38
08fc925ada29c559a4 7adfaef
quay.io/exampleconfig/applicationN@sha256:4fe1334adfafadsf987123adfffdaf1243340adfafd
edga0991234afdadfsa09

ﬂ The namespace must be accessible to the hub cluster.

It is recommended to set the minimum disk space required field to ensure that there is
sufficient storage space for the pre-cached images.

2. Create a ClusterGroupUpgrade CR with the preCaching field set to true and specify the
PreCachingConfig CR created in the previous step:

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: cgu
namespace: default
spec:
clusters:
- snof
- sno2
preCaching: true
preCachingConfigRef:
- name: exampleconfig
namespace: default
managedPolicies:
- du-upgrade-platform-upgrade
- du-upgrade-operator-catsrc-policy

237

OpenShift Container Platform 4.15 Edge computing

- common-subscriptions-policy
remediationStrategy:
timeout: 240

' WARNING
A Once you install the images on the cluster, you cannot change or delete

them.

3. When you want to start pre-caching the images, apply the ClusterGroupUpgrade CR by
running the following command:

I $ oc apply -f cgu.yaml

TALM verifies the ClusterGroupUpgrade CR.

From this point, you can continue with the TALM pre-caching workflow.

NOTE

All sites are pre-cached concurrently.

Verification

1. Check the pre-caching status on the hub cluster where the ClusterUpgradeGroup CR is
applied by running the following command:

I $ oc get cgu <cgu_name> -n <cgu_namespace> -oyaml|
Example output

precaching:
spec:
platformlmage: quay.io/openshift-release-dev/ocp-
release@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d3808fc925ada29c559a47e2e1
ef
operatorsindexes:
- registry.example.com:5000/custom-redhat-operators:1.0.0
operatorsPackagesAndChannels:
- local-storage-operator: stable
- ptp-operator: stable
- sriov-network-operator: stable
excludePrecachePatterns:
- aws
- vsphere
additionallmages:

quay.io/exampleconfig/application1@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d38
08fc925ada29c559a47e2e1ef

238

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

The pre-caching configurations are validated by checking if the managed policies exist. Valid
configurations of the ClusterGroupUpgrade and the PreCachingConfig CRs result in the

quay.io/exampleconfig/application2@sha256:3d5800123dee7cd4727d3fe238a97e2d2976d38

08fc925ada29c559a47adfaef

quay.io/exampleconfig/applicationN@sha256:4fe1334adfafadsf987123adfffdaf1243340adfafd

edga0991234afdadfsa09
spaceRequired: "30"
status:
sno1: Starting
sno2: Starting

following statuses:

Example output of valid CRs

- lastTransitionTime: "2023-01-01T00:00:01Z"
message: All selected clusters are valid
reason: ClusterSelectionCompleted
status: "True"
type: ClusterSelected

- lastTransitionTime: "2023-01-01T00:00:02Z2"
message: Completed validation
reason: ValidationCompleted
status: "True"
type: Validated

- lastTransitionTime: "2023-01-01T00:00:03Z2"
message: Precaching spec is valid and consistent
reason: PrecacheSpeclsWellFormed
status: "True"
type: PrecacheSpecValid

- lastTransitionTime: "2023-01-01T00:00:04Z2"
message: Precaching in progress for 1 clusters
reason: InProgress
status: "False"
type: PrecachingSucceeded

Example of an invalid PreCachingConfig CR

2. You can find the pre-caching job by running the following command on the managed cluster:

Type: "PrecacheSpecValid"
Status: False,
Reason: "PrecacheSpecincomplete”

Message: "Precaching spec is incomplete: failed to get PreCachingConfig resource due to
PreCachingConfig.ran.openshift.io "<pre-caching_cr_name>" not found"

$ oc get jobs -n openshift-talo-pre-cache

Example of pre-caching job in progress

NAME COMPLETIONS DURATION AGE

pre-cache 0/1 1s 1s

239

OpenShift Container Platform 4.15 Edge computing

3. You can check the status of the pod created for the pre-caching job by running the following
command:

I $ oc describe pod pre-cache -n openshift-talo-pre-cache
Example of pre-caching job in progress

Type Reason Age From Message
Normal SuccesfulCreate 19s job-controller Created pod: pre-cache-abcd1

4. You can get live updates on the status of the job by running the following command:

I $ oc logs -f pre-cache-abcd1 -n openshift-talo-pre-cache

5. To verify the pre-cache job is successfully completed, run the following command:

I $ oc describe pod pre-cache -n openshift-talo-pre-cache

Example of completed pre-cache job

Type Reason Age From Message
Normal SuccesfulCreate 5m19s job-controller Created pod: pre-cache-abcd1
Normal Completed 19s job-controller Job completed

6. To verify that the images are successfully pre-cached on the single-node OpenShift, do the
following:

a. Enterinto the node in debug mode:

I $ oc debug node/cnfdf00.example.lab

b. Change root to host:

I $ chroot /host/

c. Search for the desired images:

I $ sudo podman images | grep <operator_name>

Additional resources

® For more information about the TALM precaching workflow, see Using the container image
precache feature.

12.2. ABOUT THE AUTO-CREATED CLUSTERGROUPUPGRADE CR FOR
GITOPS ZTP

TALM has a controller called ManagedClusterForCGU that monitors the Ready state of the
ManagedCluster CRs on the hub cluster and creates the ClusterGroupUpgrade CRs for GitOps Zero
Touch Provisioning (ZTP).

240

NAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGEF

For any managed cluster in the Ready state without a ztp-done label applied, the
ManagedClusterForCGU controller automatically creates a ClusterGroupUpgrade CR in the ztp-
install namespace with its associated RHACM policies that are created during the GitOps ZTP process.
TALM then remediates the set of configuration policies that are listed in the auto-created
ClusterGroupUpgrade CR to push the configuration CRs to the managed cluster.

If there are no policies for the managed cluster at the time when the cluster becomes Ready, a
ClusterGroupUpgrade CR with no policies is created. Upon completion of the ClusterGroupUpgrade
the managed cluster is labeled as ztp-done. If there are policies that you want to apply for that managed
cluster, manually create a ClusterGroupUpgrade as a day-2 operation.

Example of an auto-created ClusterGroupUpgrade CR for GitOps ZTP

apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
generation: 1
name: spoke1
namespace: ztp-install
ownerReferences:
- apiVersion: cluster.open-cluster-management.io/v1
blockOwnerDeletion: true
controller: true
kind: ManagedCluster
name: spoke1
uid: 98fdb9b2-51ee-4ee7-8f57-a847f35b9d5
resourceVersion: "46666836"
uid: b8be9cd2-764f-4a62-87d6-6b767852c7da
spec:
actions:
afterCompletion:
addClusterLabels:
ztp-done: ™"
deleteClusterLabels:
ztp-running: "
deleteObjects: true
beforeEnable:

addClusterLabels:
ztp-running: " g
clusters:
- spoke1
enable: true

managedPolicies:
- common-spoke1-config-policy
- common-spoke1-subscriptions-policy
- group-spoke1-config-policy
- spoke1-config-policy
- group-spoke1-validator-du-policy
preCaching: false
remediationStrategy:
maxConcurrency: 1
timeout: 240

ﬂ Applied to the managed cluster when TALM completes the cluster configuration.

241

OpenShift Container Platform 4.15 Edge computing

Q Applied to the managed cluster when TALM starts deploying the configuration policies.

242

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTF

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT
CLUSTERS WITH GITOPS ZTP

You can expand single-node OpenShift clusters with GitOps Zero Touch Provisioning (ZTP). When you
add worker nodes to single-node OpenShift clusters, the original single-node OpenShift cluster retains
the control plane node role. Adding worker nodes does not require any downtime for the existing single-
node OpenShift cluster.

NOTE

Although there is no specified limit on the number of worker nodes that you can add to a
single-node OpenShift cluster, you must revaluate the reserved CPU allocation on the
control plane node for the additional worker nodes.

If you require workload partitioning on the worker node, you must deploy and remediate the managed
cluster policies on the hub cluster before installing the node. This way, the workload partitioning
MachineConfig objects are rendered and associated with the worker machine config pool before the
GitOps ZTP workflow applies the MachineConfig ignition file to the worker node.

It is recommended that you first remediate the policies, and then install the worker node. If you create
the workload partitioning manifests after installing the worker node, you must drain the node manually
and delete all the pods managed by daemon sets. When the managing daemon sets create the new
pods, the new pods undergo the workload partitioning process.

IMPORTANT

Adding worker nodes to single-node OpenShift clusters with GitOps ZTP is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Additional resources

® For more information about single-node OpenShift clusters tuned for vDU application
deployments, see Reference configuration for deploying vDUs on single-node OpenShift.

® For more information about worker nodes, see Adding worker nodes to single-node OpenShift
clusters.

® Forinformation about removing a worker node from an expanded single-node OpenShift
cluster, see Removing managed cluster nodes by using the command line interface .

13.1. APPLYING PROFILES TO THE WORKER NODE
You can configure the additional worker node with a DU profile.
You can apply a RAN distributed unit (DU) profile to the worker node cluster using the GitOps Zero

Touch Provisioning (ZTP) common, group, and site-specific PolicyGenTemplate resources. The
GitOps ZTP pipeline that is linked to the ArgoCD policies application includes the following CRs that

243

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-sno-worker-nodes
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#auto-remove-host-steps-cli

OpenShift Container Platform 4.15 Edge computing

you can find in the out/argocd/example/policygentemplates folder when you extract the ztp-site-
generate container:

e common-ranGen.yaml
e group-du-sno-ranGen.yaml
e example-sno-site.yaml
® ns.yaml
® kustomization.yaml
Configuring the DU profile on the worker node is considered an upgrade. To initiate the upgrade flow,

you must update the existing policies or create additional ones. Then, you must create a
ClusterGroupUpgrade CR to reconcile the policies in the group of clusters.

13.2. (OPTIONAL) ENSURING PTP AND SR-1I0V DAEMON SELECTOR
COMPATIBILITY

If the DU profile was deployed using the GitOps Zero Touch Provisioning (ZTP) plugin version 4.11 or
earlier, the PTP and SR-I0OV Operators might be configured to place the daemons only on nodes
labelled as master. This configuration prevents the PTP and SR-IOV daemons from operating on the
worker node. If the PTP and SR-IOV daemon node selectors are incorrectly configured on your system,
you must change the daemons before proceeding with the worker DU profile configuration.

Procedure

1. Check the daemon node selector settings of the PTP Operator on one of the spoke clusters:
I $ oc get ptpoperatorconfig/default -n openshift-ptp -ojsonpath="{.spec}' | jq
Example output for PTP Operator
I {"daemonNodeSeIector":{"node-role.kubernetes.io/master":”"}}ﬂ

If the node selector is set to master, the spoke was deployed with the version of the
GitOps ZTP plugin that requires changes.

2. Check the daemon node selector settings of the SR-IOV Operator on one of the spoke clusters:

$ oc get sriovoperatorconfig/default -n \
openshift-sriov-network-operator -ojsonpath="{.spec}' | jq
Example output for SR-IOV Operator

{"configDaemonNodeSelector":{"node-
role.kubernetes.io/worker":""},"disableDrain":false,"enablelnjector":true,"enableOperatorWebh

ook":true} 0

If the node selector is set to master, the spoke was deployed with the version of the
GitOps ZTP plugin that requires changes.

244

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTF

3. Inthe group policy, add the following complianceType and spec entries:

spec:

- fleName: PtpOperatorConfig.yaml
policyName: "config-policy"
complianceType: mustonlyhave
spec:

daemonNodeSelector:
node-role.kubernetes.io/worker: "

- fleName: SriovOperatorConfig.yaml
policyName: "config-policy"
complianceType: mustonlyhave
spec:

configDaemonNodeSelector:
node-role.kubernetes.io/worker: "

IMPORTANT

Changing the daemonNodeSelector field causes temporary PTP
synchronization loss and SR-IOV connectivity loss.

4. Commit the changes in Git, and then push to the Git repository being monitored by the GitOps
ZTP ArgoCD application.

13.3. PTP AND SR-IOV NODE SELECTOR COMPATIBILITY

The PTP configuration resources and SR-IOV network node policies use node-
role.kubernetes.io/master: """ as the node selector. If the additional worker nodes have the same NIC
configuration as the control plane node, the policies used to configure the control plane node can be
reused for the worker nodes. However, the node selector must be changed to select both node types,
for example with the "node-role.kubernetes.io/worker" label.

13.4. USING POLICYGENTEMPLATE CRS TO APPLY WORKER NODE
POLICIES TO WORKER NODES

You can create policies for worker nodes.

Procedure

1. Create the following policy template:

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
name: "example-sno-workers"
namespace: "example-sno”
spec:
bindingRules:
sites: "example-sno" 0
mcp: "worker"
sourceFiles:
- fileName: MachineConfigGeneric.yaml 6
policyName: "config-policy”

245

OpenShift Container Platform 4.15 Edge computing

metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: enable-workload-partitioning
spec:
config:
storage:
files:
- contents:
source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGItZS53b3JrbGOhZHMubWFuYWdIbWVudFOKYWNOaXZhdGivbl
9hbm5vdGF0aW9ulD0gInRhcmdldC53b3JrbGOhZC5veGVuc2hpZnQuaW8vbWFuYWdlIbWVu
dCIKYW5ub3RhdGlvbI9wecmVmaXggPSAicmVzb3VyY2VzLndvemtsb2FkLmOwZW5zaGImdC5
pbylKecmVzb3VyY2VzID0geyAiY3B1c2hhcmVzIiA9IDAsICJjcHVzZXQilD0gljAtMylgfQo=
mode: 420
overwrite: true
path: /etc/crio/crio.conf.d/01-workload-partitioning
user:
name: root
- contents:
source: data:text/plain;charset=utf-
8;baseb4,ewoglCJItYW5hZ2ViZW50ljogewogICAgImMNwdXNIdCI6ICIWLTMICiAgfQp9Cg==
mode: 420
overwrite: true
path: /etc/kubernetes/openshift-workload-pinning
user:
name: root
- fileName: PerformanceProfile.yaml
policyName: "config-policy”
metadata:
name: openshift-worker-node-performance-profile
spec:
cpu:
isolated: "4-47"
reserved: "0-3"
hugepages:
defaultHugepagesSize: 1G
pages:
-size: 1G
count: 32
realTimeKernel:
enabled: true
- fileName: TunedPerformancePatch.yaml
policyName: "config-policy”
metadata:
name: performance-patch-worker
spec:
profile:
- name: performance-patch-worker
data: |
[main]
summary=Configuration changes profile inherited from performance created tuned
include=openshift-node-performance-openshift-worker-node-performance-profile
[bootloader]
cmdline_crash=nohz_full=4-47 6
[sysctl]

246

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTF

kernel.timer_migration=1
[scheduler]
group.ice-ptp=0:f:10:*:ice-ptp.*
[service]
service.stalld=start,enable
service.chronyd=stop,disable

recommend:

- profile: performance-patch-worker

The policies are applied to all clusters with this label.
The MCP field must be set to worker.

This generic MachineConfig CR is used to configure workload partitioning on the worker
node.

o 009

The cpu.isolated and cpu.reserved fields must be configured for each particular
hardware platform.

G The cmdline_crash CPU set must match the cpu.isolated set in the PerformanceProfile
section.

A generic MachineConfig CR is used to configure workload partitioning on the worker node.
You can generate the content of crio and kubelet configuration files.

. Add the created policy template to the Git repository monitored by the ArgoCD policies
application.

. Add the policy in the kustomization.yaml file.

. Commit the changes in Git, and then push to the Git repository being monitored by the GitOps
ZTP ArgoCD application.

. To remediate the new policies to your spoke cluster, create a TALM custom resource:

$ cat <<EOF | oc apply -f -
apiVersion: ran.openshift.io/vialphai
kind: ClusterGroupUpgrade
metadata:
name: example-sno-worker-policies
namespace: default
spec:
backup: false
clusters:
- example-sno
enable: true
managedPolicies:
- group-du-sno-config-policy
- example-sno-workers-config-policy
- example-sno-config-policy
preCaching: false
remediationStrategy:
maxConcurrency: 1
EOF

247

OpenShift Container Platform 4.15 Edge computing

13.5. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT

CLUSTERS WITH GITOPS ZTP

You can add one or more worker nodes to existing single-node OpenShift clusters to increase available

CPU resources in the cluster.

Prerequisites

Procedure

248

1. If you deployed your cluster by using the example-sno.yaml SiteConfig manifest, add your new
worker node to the spec.clusters['example-sno'].nodes list:

Install and configure RHACM 2.6 or later in an OpenShift Container Platform 4.11 or later bare-
metal hub cluster

Install Topology Aware Lifecycle Manager in the hub cluster

Install Red Hat OpenShift GitOps in the hub cluster

Use the GitOps ZTP ztp-site-generate container image version 4.12 or later

Deploy a managed single-node OpenShift cluster with GitOps ZTP

Configure the Central Infrastructure Management as described in the RHACM documentation

Configure the DNS serving the cluster to resolve the internal APl endpoint api-int.
<cluster_names>.<base_domain>

nodes:

- hostName: "example-node2.example.com”
role: "worker"
bmcAddress: "idrac-

virtualmedia+https://[1111:2222:3333:4444::bbbb:1]/redfish/v1/Systems/System.Embedded.1"

bmcCredentialsName:
name: "example-node2-bmh-secret"
bootMACAddress: "AA:BB:CC:DD:EE:11"
bootMode: "UEFI"
nodeNetwork:
interfaces:
- name: enof
macAddress: "AA:BB:CC:DD:EE:11"
config:
interfaces:
- name: enol
type: ethernet
state: up
macAddress: "AA:BB:CC:DD:EE:11"
ipvé4:
enabled: false
ipv6:
enabled: true
address:
- ip: 1111:2222:3333:4444::1

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTF

prefix-length: 64
dns-resolver:

config:
search:

- example.com

server:

- 1111:2222:3333:4444::2
routes:

config:

- destination: ::/0
next-hop-interface: eno1
next-hop-address: 1111:2222:3333:4444::1
table-id: 254

2. Create a BMC authentication secret for the new host, as referenced by the
bmcCredentialsName field in the spec.nodes section of your SiteConfig file:

apiVersion: vi
data:
password: "password"
username: "username”
kind: Secret
metadata:
name: "example-node2-bmh-secret"
namespace: example-sno
type: Opaque

3. Commit the changes in Git, and then push to the Git repository that is being monitored by the
GitOps ZTP ArgoCD application.
When the ArgoCD cluster application synchronizes, two new manifests appear on the hub
cluster generated by the GitOps ZTP plugin:

o BareMetalHost

o NMStateConfig

IMPORTANT

The cpuset field should not be configured for the worker node. Workload
partitioning for worker nodes is added through management policies after
the node installation is complete.

Verification

You can monitor the installation process in several ways.

® Check if the preprovisioning images are created by running the following command:
I $ oc get ppimg -n example-sno

Example output

249

OpenShift Container Platform 4.15 Edge computing

NAMESPACE NAME READY REASON
example-sno example-sno True ImageCreated
example-sno example-node2 True ImageCreated

® Check the state of the bare-metal hosts:

I $ oc get bmh -n example-sno

Example output

NAME STATE
example-sno provisioned true
example-node2 provisioning true

69m

4ms0s @)

CONSUMER ONLINE ERROR AGE

ﬂ The provisioning state indicates that node booting from the installation media is in

progress.

® Continuously monitor the installation process:

a. Watch the agent install process by running the following command:

I $ oc get agent -n example-sno --watch
Example output

NAME

[...]
14fd821b-a35d-9cba-7978-00ddf535ff37
installation
14fd821b-a35d-9cba-7978-00ddf535ff37
14fd821b-a35d-9cba-7978-00ddf535ff37
to disk

[...]
14fd821b-a35d-9cba-7978-00ddf535ff37
control plane

[...]
14fd821b-a35d-9cba-7978-00ddf535ff37
14fd821b-a35d-9cba-7978-00ddf535ff37

example-sno
example-sno
example-sno

example-sno

example-sno
example-sno

true

true

true

true

true
true

CLUSTER APPROVED ROLE STAGE

671bc05d-5358-8940-ec12-d9ad22804faa example-sno true master

worker

worker

worker

worker

worker
worker

Done
Starting
Installing
Writing image

Waiting for

Rebooting
Done

b. When the worker node installation is finished, the worker node certificates are approved
automatically. At this point, the worker appears in the ManagedClusterinfo status. Run the

following command to see the status:

jsonpath='{range .status.nodeList[*]}{.name}{"\t"}{.conditions}{"\t"}{.labels}{"\n"Hend}'

I $ oc get managedclusterinfo/example-sno -n example-sno -0 \

Example output

example-sno [{"status":"True","type":"Ready"}] {"node-

role.kubernetes.io/master":"","node-role.kubernetes.io/worker":""}

example-node2 [{"status":"True","type":"Ready"}] {"node-role.kubernetes.io/worker":""}

250

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE
OPENSHIFT DEPLOYMENTS

In environments with limited bandwidth where you use the GitOps Zero Touch Provisioning (ZTP)
solution to deploy a large number of clusters, you want to avoid downloading all the images that are
required for bootstrapping and installing OpenShift Container Platform. The limited bandwidth at
remote single-node OpenShift sites can cause long deployment times. The factory-precaching-cli tool
allows you to pre-stage servers before shipping them to the remote site for ZTP provisioning.
The factory-precaching-cli tool does the following:

® Downloads the RHCOS rootfs image that is required by the minimal ISO to boot.

® Creates a partition from the installation disk labelled as data.

® Formats the disk in xfs.

® Creates a GUID Partition Table (GPT) data partition at the end of the disk, where the size of the
partition is configurable by the tool.

® Copies the container images required to install OpenShift Container Platform.
® Copies the container images required by ZTP to install OpenShift Container Platform.

® Optional: Copies Day-2 Operators to the partition.

IMPORTANT

The factory-precaching-cli tool is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

14.1. GETTING THE FACTORY-PRECACHING-CLI TOOL

The factory-precaching-cli tool Go binary is publicly available in the {rds-first} tools container image.
The factory-precaching-cli tool Go binary in the container image is executed on the server running an
RHCOS live image using podman. If you are working in a disconnected environment or have a private
registry, you need to copy the image there so you can download the image to the server.

Procedure

e Pull the factory-precaching-cli tool image by running the following command:

I # podman pull quay.io/openshift-kni/telco-ran-tools:latest
Verification
® To check that the tool is available, query the current version of the factory-precaching-cli tool

Go binary:

251

https://access.redhat.com/support/offerings/techpreview/
https://quay.io/openshift-kni/telco-ran-tools:latest

OpenShift Container Platform 4.15 Edge computing

I # podman run quay.io/openshift-kni/telco-ran-tools:latest -- factory-precaching-cli -v
Example output

I factory-precaching-cli version 20221018.120852+main.feecf17

14.2. BOOTING FROM A LIVE OPERATING SYSTEM IMAGE

You can use the factory-precaching-cli tool with to boot servers where only one disk is available and
external disk drive cannot be attached to the server.

' WARNING
A RHCOS requires the disk to not be in use when the disk is about to be written with

an RHCOS image.

Depending on the server hardware, you can mount the RHCOS live ISO on the blank server using one of
the following methods:

® Using the Dell RACADM tool on a Dell server.
® Using the HPONCFG tool on a HP server.

® Using the Redfish BMC API.

NOTE

It is recommended to automate the mounting procedure. To automate the procedure,
you need to pull the required images and host them on a local HTTP server.

Prerequisites
® You powered up the host.

® You have network connectivity to the host.

PROCEDURE

This example procedure uses the Redfish BMC API to mount the RHCOS live ISO.
1. Mount the RHCOS live ISO:
a. Check virtual media status:

$ curl --globoff -H "Content-Type: application/json" -H \
"Accept: application/json" -k -X GET --user ${username_password} \
https://$BMC_ADDRESS/redfish/vi/Managers/Self/VirtualMedia/1 | python -m json.tool

252

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

b. Mount the ISO file as a virtual media:

$ curl --globoff -L -w "%{http_code} %{url_effective}\\n" -ku ${username_password} -H
"Content-Type: application/json" -H "Accept: application/json" -d '{"Image":
"http://[$HTTPd_IP)/RHCOS-live.iso"}' -X POST
https://$BMC_ADDRESS/redfish/vi/Managers/Self/VirtualMedia/1/Actions/VirtualMedia.Ins
ertMedia

c. Set the boot order to boot from the virtual media once:

$ curl --globoff -L -w "%({http_code} %{url_effective}\\n" -ku ${username_password} -H
"Content-Type: application/json" -H "Accept: application/json" -d '{"Boot":{
"BootSourceOverrideEnabled": "Once", "BootSourceOverrideTarget": "Cd",
"BootSourceOverrideMode": "UEFI"}}' -X PATCH
https://$BMC_ADDRESS/redfish/v1/Systems/Self

2. Reboot and ensure that the server is booting from virtual media.

Additional resources

® For more information about the butane utility, see About Butane.

® For more information about creating a custom live RHCOS ISO, see Creating a custom live
RHCOS ISO for remote server access.

® For more information about using the Dell RACADM tool, see Integrated Dell Remote Access
Controller 9 RACADM CLI Guide.

® For more information about using the HP HPONCFG tool, see Using HPONCFG.

® For more information about using the Redfish BMC API, see Booting from an HTTP-hosted ISO
image using the Redfish API.

14.3. PARTITIONING THE DISK

To run the full pre-caching process, you have to boot from a live ISO and use the factory-precaching-cli
tool from a container image to partition and pre-cache all the artifacts required.

A live ISO or RHCOS live ISO is required because the disk must not be in use when the operating system

(RHCOS) is written to the device during the provisioning. Single-disk servers can also be enabled with
this procedure.

Prerequisites
® You have a disk that is not partitioned.
® You have access to the quay.io/openshift-kni/telco-ran-tools:latest image.

® You have enough storage to install OpenShift Container Platform and pre-cache the required
images.

Procedure

1. Verify that the disk is cleared:

253

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-special-config-butane-about_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#create-custom-live-rhcos-iso_install-sno-installing-sno-with-the-assisted-installer
https://www.dell.com/support/manuals/en-ie/poweredge-r440/idrac9_6.xx_racadm_pub/supported-racadm-interfaces?guid=guid-a5747353-fc88-4438-b617-c50ca260448e&lang=en-us
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00007610en_us
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#install-booting-from-an-iso-over-http-redfish_install-sno-installing-sno-with-the-assisted-installer

OpenShift Container Platform 4.15 Edge computing

I # Isblk
Example output

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 93.8G 0 loop /run/ephemeral

loop1 7:1 0897.3M 1 loop /sysroot

srO 11:0 1 999M 0 rom /run/media/iso

nvmeOni 259:1 0 1.5T 0disk

2. Erase any file system, RAID or partition table signatures from the device:

I # wipefs -a /dev/nvmeOn1
Example output

/dev/nvmeOn1: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/nvme0n1: 8 bytes were erased at offset 0x1749a955e00 (gpt): 45 46 49 20 50 41 52 54
/dev/nvme0n1: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa

IMPORTANT

The tool fails if the disk is not empty because it uses partition number 1 of the device for
pre-caching the artifacts.

14.3.1. Creating the partition

Once the device is ready, you create a single partition and a GPT partition table. The partition is
automatically labelled as data and created at the end of the device. Otherwise, the partition will be
overridden by the coreos-installer.

IMPORTANT

The coreos-installer requires the partition to be created at the end of the device and to

be labelled as data. Both requirements are necessary to save the partition when writing
the RHCOS image to the disk.

Prerequisites
® The container must run as privileged due to formatting host devices.
® You have to mount the /dev folder so that the process can be executed inside the container.

Procedure

In the following example, the size of the partition is 250 GiB due to allow pre-caching the DU profile for
Day 2 Operators.

1. Run the container as privileged and partition the disk:
podman run -v /dev:/dev --privileged \

--rm quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli partition \ ﬂ

254

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

5250 @

ﬂ Specifies the partitioning function of the factory-precaching-cli tool.

I -d /dev/nvmeOn1 \g

9 Defines the root directory on the disk.

9 Defines the size of the disk in GB.

2. Check the storage information:

I # Isblk
Example output

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 93.8G 0 loop /run/ephemeral

loop1 7:1 0897.3M 1 loop /sysroot

sr0 11:0 1 999M 0 rom /run/media/iso

nvmeOn1 259:1 0 1.5T 0disk

LnvmeOnip1 259:3 0 250G O part

Verification

You must verify that the following requirements are met:
® The device has a GPT partition table
® The partition uses the latest sectors of the device.
® The partition is correctly labeled as data.

Query the disk status to verify that the disk is partitioned as expected:
I # gdisk -1 /dev/nvmeOn1
Example output

GPT fdisk (gdisk) version 1.0.3

Partition table scan:
MBR: protective
BSD: not present
APM: not present
GPT: present

Found valid GPT with protective MBR; using GPT.

Disk /dev/nvmeOn1: 3125627568 sectors, 1.5 TiB

Model: Dell Express Flash PM1725b 1.6TB SFF

Sector size (logical/physical): 512/512 bytes

Disk identifier (GUID): CB5A9D44-9B3C-4174-A5C1-C64957910B61
Partition table holds up to 128 entries

Main partition table begins at sector 2 and ends at sector 33

First usable sector is 34, last usable sector is 3125627534

255

OpenShift Container Platform 4.15 Edge computing

Partitions will be aligned on 2048-sector boundaries
Total free space is 2601338846 sectors (1.2 TiB)

Number Start (sector) End (sector) Size Code Name
1 2601338880 3125627534 250.0 GiB 8300 data

14.3.2. Mounting the partition

After verifying that the disk is partitioned correctly, you can mount the device into /mnt.

IMPORTANT

It is recommended to mount the device into /mnt because that mounting point is used
during GitOps ZTP preparation.

1. Verify that the partition is formatted as xfs:

I # Isblk -f /dev/nvmeOn1

Example output

NAME FSTYPE LABEL UUID MOUNTPOINT

nvmeOn1
L—nvmeOn p1 xfs 1bee8ea4-d6cf-4339-b690-a76594794071

2. Mount the partition:

I # mount /dev/nvmeOnipi /mnt/

Verification

® Check that the partition is mounted:

I # Isblk

Example output

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 93.8G 0 loop /run/ephemeral

loop1 7:1 0897.3M 1 loop /sysroot

sr0 11:0 1 999M 0 rom /run/media/iso

nvmeOni 259:1 0 1.5T 0disk

LnvmeOnip1 259:2 0 250G 0 part /var/mnt @)

ﬂ The mount point is /var/mnt because the /mnt folder in RHCOS is a link to /var/mnt.

14.4. DOWNLOADING THE IMAGES

The factory-precaching-cli tool allows you to download the following images to your partitioned server:

256

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

® OpenShift Container Platform images
® Operatorimages that are included in the distributed unit (DU) profile for 5G RAN sites

® Operatorimages from disconnected registries

NOTE

The list of available Operator images can vary in different OpenShift Container Platform
releases.

14.4.1. Downloading with parallel workers

The factory-precaching-cli tool uses parallel workers to download multiple images simultaneously. You
can configure the number of workers with the --parallel or -p option. The default number is set to 80%
of the available CPUs to the server.

NOTE

Your login shell may be restricted to a subset of CPUs, which reduces the CPUs available
to the container. To remove this restriction, you can precede your commands with
taskset Oxffffffff, for example:

precaching-cli download --help

I # taskset Oxffffffff podman run --rm quay.io/openshift-kni/telco-ran-tools:latest factory-

14.4.2. Preparing to download the OpenShift Container Platform images

To download OpenShift Container Platform container images, you need to know the multicluster engine
version. When you use the --du-profile flag, you also need to specify the Red Hat Advanced Cluster
Management (RHACM) version running in the hub cluster that is going to provision the single-node
OpenShift.

Prerequisites

® You have RHACM and the multicluster engine Operator installed.
® You partitioned the storage device.

® You have enough space for the images on the partitioned device.
® You connected the bare-metal server to the Internet.

® You have avalid pull secret.

Procedure

1. Check the RHACM version and the multicluster engine version by running the following
commands in the hub cluster:

I $ oc get csv -A | grep -i advanced-cluster-management

Example output

257

OpenShift Container Platform 4.15 Edge computing

open-cluster-management advanced-cluster-management.v2.6.3
Advanced Cluster Management for Kubernetes 2.6.3 advanced-cluster-
management.v2.6.3 Succeeded

I $ oc get csv -A | grep -i multicluster-engine

Example output

multicluster-engine cluster-group-upgrades-operator.v0.0.3 cluster-
group-upgrades-operator 0.0.3 Pending
multicluster-engine multicluster-engine.v2.1.4 multicluster
engine for Kubernetes 214 multicluster-engine.v2.0.3

Succeeded

multicluster-engine openshift-gitops-operator.v1.5.7 Red Hat
OpenShift GitOps 1.5.7 openshift-gitops-operator.v1.5.6-
0.1664915551.p Succeeded

multicluster-engine openshift-pipelines-operator-rh.v1.6.4 Red Hat
OpenShift Pipelines 1.6.4 openshift-pipelines-operator-rh.v1.6.3
Succeeded

2. To access the container registry, copy a valid pull secret on the server to be installed:

a. Create the .docker folder:

I $ mkdir /root/.docker
b. Copy the valid pull in the config.json file to the previously created .docker/ folder:
I $ cp config.json /root/.docker/config.json ﬂ

/root/.docker/config.json is the default path where podman checks for the login
credentials for the registry.

NOTE

If you use a different registry to pull the required artifacts, you need to copy the proper
pull secret. If the local registry uses TLS, you need to include the certificates from the
registry as well.

-

14.4.3. Downloading the OpenShift Container Platform images

The factory-precaching-cli tool allows you to pre-cache all the container images required to provision a
specific OpenShift Container Platform release.

Procedure

® Pre-cache the release by running the following command:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools --\

factory-precaching-cli download \ ﬂ

14150\ @

258

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

--acm-version 2.6.3 \
--mce-version 2.1.4\
£ /mnt\ @

--img quay.io/custom/repository G

Specifies the downloading function of the factory-precaching-cli tool.
Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

QD000

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

Example output

Generated /mnt/imageset.yam|

Generating list of pre-cached artifacts...

Processing artifact [1/176]: ocp-v4.0-art-
dev@sha256_6ac2b96bf4899c01a87366fd0feae9f57b1b61878e3b5823da0c3f34f707fbf5
Processing artifact [2/176]: ocp-v4.0-art-
dev@sha256_f48b68d5960ba903a0d018a10544ae08db5802e21c2fa5615a14fc58b1c1657¢
Processing artifact [3/176]: ocp-v4.0-art-
dev@sha256_a480390e91b1c07e10091c3da2257180654f6b2a735a4ad4c3b69dbdb77bbc06

Processing artifact [4/176]: ocp-v4.0-art-

dev@sha256 eccb5d8dbd77e326dba6594ff8c2d091eefbc4d90c963a9a85b0b2f0e6155f995
Processing artifact [5/176]: ocp-v4.0-art-
dev@sha256_274b6d561558a2f54db08ea96df9892315bb773fc203b1dbcead 18d20f4c7ad1
Processing artifact [6/176]: ocp-v4.0-art-
dev@sha256_e142bf5020f5ca0d1bdda0026bf97f89b72d21a97c9cc2dc71bf85050e822bbf

Processing artifact [175/176]: ocp-v4.0-art-
dev@sha256_16cd7eda26f0fb0fc965a589e1e96ff8577e560fcd14f06b5fda1643036ed6¢8
Processing artifact [176/176]: ocp-v4.0-art-
dev@sha256_cf4d862b4a4170d4f611b39d06c31c97658e309724f9788e155999ae51e7188f

Summary:

Release: 4.15.0

Hub Version: 2.6.3

ACM Version: 2.6.3

MCE Version: 2.1.4

Include DU Profile: No

Workers: 83
Verification

® Check that all the images are compressed in the target folder of server:

259

OpenShift Container Platform 4.15 Edge computing

260

I $ls -l /mntﬂ

ﬂ It is recommended that you pre-cache the images in the /mnt folder.

Example output

-rw-r--r--. 1 root root 136352323 Oct 31 15:19 ocp-v4.0-art-
dev@sha256_edec37e7cd8b1611d0031d45e7958361c65e2005f1450471a8108f1b54316¢07.1
gz

-rw-r--r--. 1 root root 156092894 Oct 31 15:33 ocp-v4.0-art-
dev@sha256_ee51b062b9c3c9f4fe77bd5b3cc9a3b12355d040119a1434425a824f137¢c61a9.1g
z

-rw-r--r--. 1 root root 172297800 Oct 31 15:29 ocp-v4.0-art-
dev@sha256_ef23d9057c367a36e4a5¢c4877d23ee097a731e1186ed28a26¢8d21501cd82718.1
gz

-rw-r--r--. 1 root root 171539614 Oct 31 15:23 ocp-v4.0-art-
dev@sha256_f0497bb63ef6834a619d4208be9da459510df697596b891c0c633da144dbb025.
9z

-rw-r--r--. 1 root root 160399150 Oct 31 15:20 ocp-v4.0-art-
dev@sha256_f0c339da117cde44c9aae8d0bd054bceb6f19fdb191928f6912a703182330ac2.tgz

-rw-r--r--. 1 root root 175962005 Oct 31 15:17 ocp-v4.0-art-
dev@sha256_f19dd2e80fb41ef31d62bb8c08b339c50d193fdb10fc39cc15b353cbbfeb9b24.19z

-rw-r--r--. 1 root root 174942008 Oct 31 15:33 ocp-v4.0-art-
dev@sha256_f1dbb81falaa724e96dd2b296b855f52a565fbef003d08030d63590ae6454df.tgz

-rw-r--r--. 1 root root 246693315 Oct 31 15:31 ocp-v4.0-art-
dev@sha256_f44dcf2c94e4fd843cbbfob11128df2ba856cd813786e42e3dalfdfb0f6ddd01.tgz
-rw-r--r--. 1 root root 170148293 Oct 31 15:00 ocp-v4.0-art-
dev@sha256_f48b68d5960ba903a0d018a10544ae08db5802e21c2fa5615a14fc58b1c1657¢.tg
z

-rw-r--r--. 1 root root 168899617 Oct 31 15:16 ocp-v4.0-art-
dev@sha256_f5099b0989120a8d08a963601214b5c5¢ch23417a707a8624b7eb52ab788a7f75.1
gz

-rw-r--r--. 1 root root 176592362 Oct 31 15:05 ocp-v4.0-art-
dev@sha256_{68c0e6f5e17b0b0f7ab2d4c39559ea89f900751e64b97cb42311a478338d9c3.1g
z

-rw-r--r--. 1 root root 157937478 Oct 31 15:37 ocp-v4.0-art-
dev@sha256_f7ba33a6a9db9cfc4b0ab0f368569e19b9fa08f4c01a0d5f6a243d61ab781bd8.t1gz

-rw-r--r--. 1 root root 145535253 Oct 31 15:26 ocp-v4.0-art-
dev@sha256_{8f098911d670287826e9499806553f7a1dd3e2b5332abbec740008c36e84de5.t
9z

-rw-r--r--. 1 root root 158048761 Oct 31 15:40 ocp-v4.0-art-
dev@sha256_f914228ddbb99120986262168a705903a9f49724ffa958bb4bf12b2ec1d7fb47.1gz

-rw-r--r--. 1 root root 167914526 Oct 31 15:37 ocp-v4.0-art-
dev@sha256_fa3ca9401c7a9%efda0502240aeb8d3ae2d239d38890454f17fe5158b62305010.tg
z

-rw-r--r--. 1 root root 164432422 Oct 31 15:24 ocp-v4.0-art-
dev@sha256_fc4783b446c70df30b3120685254b40ce13baba2b0bf8fb1645f116cf6a392f1.tgz

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

-rw-r--r--. 1 root root 306643814 Oct 31 15:11
troubleshoot@sha256 b86b8aea29a818a9c22944fd18243fa0347c7a2bf1ad8864113ff2bb2d8
e0726.tgz

14.4.4. Downloading the Operator images

You can also pre-cache Day-2 Operators used in the 5G Radio Access Network (RAN) Distributed Unit
(DU) cluster configuration. The Day-2 Operators depend on the installed OpenShift Container Platform
version.

IMPORTANT

You need to include the RHACM hub and multicluster engine Operator versions by using
the --acm-version and --mce-version flags so the factory-precaching-cli tool can pre-
cache the appropriate containers images for RHACM and the multicluster engine
Operator.

Procedure

® Pre-cache the Operatorimages:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools:latest -- factory-precaching-cli download \

14150\ @
--acm-version 2.6.3 \
--mce-version 2.1.4\
£ /mnt\ @

--img quay.io/custom/repository G
--du-profile -s

Specifies the downloading function of the factory-precaching-cli tool.
Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

Specifies pre-caching the Operators included in the DU configuration.

SO 990009

Example output

Generated /mnt/imageset.yam|

Generating list of pre-cached artifacts...

Processing artifact [1/379]: ocp-v4.0-art-
dev@sha256_7753a8d9dd5974be8c90649aadd7c914a3d8a1f1e016774c7ac7c9422e9f9958
Processing artifact [2/379]: ose-kube-rbac-
proxy@sha256_c27a7c01e5968aff16b6bb6670423f992d1a1de1al16e7e260d12908d3322431¢

261

OpenShift Container Platform 4.15 Edge computing

Processing artifact [3/379]: ocp-v4.0-art-
dev@sha256_370e47a14c798ca3f8707a38b28cfc28114f492bb35fe1112e55d1eb51022¢99

Processing artifact [378/379]: ose-local-storage-
operator@sha256_0c81c2b79f79307305e51ce9d3837657cf9ba5866194e464b4d1b299f85034
do

Processing artifact [379/379]: multicluster-operators-channel-

rhel8@sha256 c10f6bbb84fe36e05816e873a72188018856ad6aac6cc16271a1b3966f73ceb3

Summary:

Release: 4.15.0
Hub Version: 2.6.3
ACM Version: 2.6.3
MCE Version: 2.1.4
Include DU Profile: Yes
Workers: 83

14.4.5. Pre-caching custom images in disconnected environments

The --generate-imageset argument stops the factory-precaching-cli tool after the
ImageSetConfiguration custom resource (CR) is generated. This allows you to customize the
ImageSetConfiguration CR before downloading any images. After you customized the CR, you can use
the --skip-imageset argument to download the images that you specified in the
ImageSetConfiguration CR.

You can customize the ImageSetConfiguration CR in the following ways:
® Add Operators and additional images
® Remove Operators and additional images

® Change Operator and catalog sources to local or disconnected registries

Procedure

1. Pre-cache the images:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools:latest -- factory-precaching-cli download \

14150\ @
--acm-version 2.6.3 \
--mce-version 2.1.4\
£ /mnt\ @

--img quay.io/custom/repository G
--du-profile -s \
--generate-imageset 6

Specifies the downloading function of the factory-precaching-cli tool.

®9

Defines the OpenShift Container Platform release version.

262

9 9900

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are

downloaded and pre-cached on the disk.
Specifies pre-caching the Operators included in the DU configuration.

The --generate-imageset argument generates the ImageSetConfiguration CR only,

which allows you to customize the CR.

Example output

Generated /mnt/imageset.yam|

Example ImageSetConfiguration CR

apiVersion: mirror.openshift.io/vialpha2
kind: ImageSetConfiguration
mirror:
platform:
channels:
- name: stable-4.15
minVersion: 4.15.0 0
maxVersion: 4.15.0
additionallmages:
- name: quay.io/custom/repository
operators:

- catalog: registry.redhat.io/redhat/redhat-operator-index:v4.15

packages:

- name: advanced-cluster-managementg

channels:

- name: 'release-2.6'
minVersion: 2.6.3
maxVersion: 2.6.3

- name: multicluster-engine 6
channels:

- name: 'stable-2.1'
minVersion: 2.1.4
maxVersion: 2.1.4

- name: local-storage-operator ﬂ
channels:

- name: 'stable’

- name: ptp-operator 6
channels:

- name: 'stable’

- name: sriov-network-operator G
channels:

- name: 'stable’

- name: cluster-logging ﬂ
channels:

263

OpenShift Container Platform 4.15 Edge computing

- name: 'stable’
- name: Ivms-operator@
channels:
- name: 'stable-4.15'
- name: amq7-interconnect-operator Q
channels:
-name: '"1.10.x'
- name: bare-metal-event-relay @
channels:
- name: 'stable’
- catalog: registry.redhat.io/redhat/certified-operator-index:v4.15
packages:
- name: sriov-fec m
channels:
- name: 'stable’

ﬂ The platform versions match the versions passed to the tool.

The versions of RHACM and the multicluster engine Operator match the versions passed
to the tool.

INEICIGAEIENH)ED T he CR contains all the specified DU Operators.

2. Customize the catalog resource in the CR:

apiVersion: mirror.openshift.io/vialpha2
kind: ImageSetConfiguration
mirror:
platform:
[--]
operators:
- catalog: eko4.cloud.lab.eng.bos.redhat.com:8443/redhat/certified-operator-index:v4.15
packages:
- name: sriov-fec
channels:
- name: 'stable’

When you download images by using a local or disconnected registry, you have to first add
certificates for the registries that you want to pull the content from.

3. To avoid any errors, copy the registry certificate into your server:
I # cp /tmp/eko4-ca.crt /etc/pki/ca-trust/source/anchors/.
4. Then, update the certificates trust store:
I # update-ca-trust
5. Mount the host /ete/pki folder into the factory-cliimage:
podman run -v /mnt:/mnt -v /root/.docker:/root/.docker -v /etc/pki:/etc/pki --privileged --rm

quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli download \ ﬂ

264

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

14150\ @
--acm-version 2.6.3 \
--mce-version 2.1.4\
£ /mnt\ @

--img quay.io/custom/repository G
--du-profile -s \
--skip-imageset

Specifies the downloading function of the factory-precaching-cli tool.
Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

Specifies pre-caching the Operators included in the DU configuration.

9 99006009

The --skip-imageset argument allows you to download the images that you specified in
your customized ImageSetConfiguration CR.

6. Download the images without generating a new imageSetConfiguration CR:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools:latest -- factory-precaching-cli download -r 4.15.0 \

--acm-version 2.6.3 --mce-version 2.1.4 -f /mnt\

--img quay.io/custom/repository \

--du-profile -s \

--skip-imageset

Additional resources

® To access the online Red Hat registries, see OpenShift installation customization tools.

® For more information about using the multicluster engine, see About cluster lifecycle with the
multicluster engine operator.

14.5. PRE-CACHING IMAGES IN GITOPS ZTP
The SiteConfig manifest defines how an OpenShift cluster is to be installed and configured. In the
GitOps Zero Touch Provisioning (ZTP) provisioning workflow, the factory-precaching-cli tool requires
the following additional fields in the SiteConfig manifest:

e clusters.ignitionConfigOverride

® nodes.installerArgs

® nodes.ignitionConfigOverride

265

https://console.redhat.com/openshift/downloads#tool-pull-secret
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#mce-intro

OpenShift Container Platform 4.15 Edge computing

Example SiteConfig with additional fields

266

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
name: "example-5g-lab”
namespace: "example-5g-lab”
spec:
baseDomain: "example.domain.redhat.com"
pullSecretRef:
name: "assisted-deployment-pull-secret”
clusterlmageSetNameRef: "img4.9.10-x86-64-appsub” ﬂ
sshPublicKey: "ssh-rsa ..."
clusters:
- clusterName: "sno-worker-0"
clusterlmageSetNameRef: "eko4-img4.11.5-x86-64-appsub” g
clusterLabels:
group-du-sno:
common-411:true
sites : "example-5g-lab"
vendor: "OpenShift"
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.19.32.192/26
serviceNetwork:
-172.30.0.0/16
networkType: "OVNKubernetes"
additionaINTPSources:
- clock.corp.redhat.com
ignitionConfigOverride: '{"ignition":{"version":"3.1.0"},"systemd":{"units":[{"name":"var-
mnt.mount","enabled":true,"contents":"[Unit]\nDescription=Mount partition with
artifacts\nBefore=precache-images.service\nBindsTo=precache-
images.service\nStopWhenUnneeded=true\n\n[Mount]\nWhat=/dev/disk/by-
partlabel/data\nWhere=/var/mnt\nType=xfs\nTimeoutSec=30\n\n[Install\nRequiredBy=precache-
images.service"},{"name":"precache-images.service","enabled":true,"contents":"
[Unit)\nDescription=Extracts the precached images in discovery stage\nAfter=var-
mnt.mount\nBefore=agent.service\n\n[Service]\nType=oneshot\nUser=root\nWorkingDirectory=/var/mnt'
nExecStart=bash /usr/local/bin/extract-ai.sh\n#TimeoutStopSec=30\n\n[Install\nWantedBy=multi-
user.target default.target\nWantedBy=agent.service"}]},"storage":{"files":
[{"overwrite":true,"path":"/usr/local/bin/extract-ai.sh","mode":755,"user":{"name":"root"},"contents":
{"source":"data:,%23%21%2Fbin%2Fbash%0A%0AFOLDER%3D%22%24%7BFOLDER%3A-
%24%28pwWd%29%7D%22%0A0CP_RELEASE_LIST%3D%22%24%7BOCP_RELEASE_LIST%3A-
ai-
images.txt%7D%22%0ABINARY_FOLDER%3D%2Fvar%2Fmnt%0A%0Apushd%20%24FOLDER%0
A%0Atotal_copies%3D%24%28s0rt%20-
U%20%24BINARY_FOLDER%2F%240CP_RELEASE_LIST%20%7C%20wc%20-
1%29%20%20%23%20Required%20t0%20keep%20track%200f%20the%20pull%20task%20vs%20tot
al%0Acurrent_copy%3D1%0A%0Awhile%20read%20-
r%201in€%3B%0Ad0%0A%20%20uri%3D%24%28ech0%20%22%241ine%22%20%7C%20awk%20%
27%7Bprint%241%7D%27%29%0A%20%20%23tar%3D%24%28ech0%20%22%241in€%22%20%7
C%20awk%20%27%7Bprint%242%7D %27 %29%0A%20%20podman%20image%20exists%20%24ur
i%0A%20%20if%20%5B%5B%20%24%3F %20-
€0%200%20%5D%5D%3B%20then%0A%20%20%20%20%20%20ech0%20%22Skipping%20existin

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

g%20image%20%24tar%22%0A%20%20%20%20%20%20ech0%20%22Copying%20%24%7Buri%7
D%20%5B%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20%20%20
%20%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29%0A%20%20%20%20
%20%20continue%0A%20%20fi%0A%20%20tar%3D%24%28ech0%20%22%24uri%22%20%7C%2
0%20rev%20%7C%20cut%20-d%20%22%2F %22%20-
f1%20%7C%20rev%20%7 C%20tr%20%22%3A%22%20%22_%22%29%0A%20%20tar%20zxv{%20
%24%7Btar%7D.tgz%0A%20%20if%20%5B%20%24%3F %20-
€0%200%20%5D%3B%20then%20rm%20-
f%20%24%7Btar%7D.g9z%3B%20fi%0A%20%20ech0%20%22Copying%20%24%7Buri%7D%20%5B
%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20skopeo%20copy %620
dir%3A%2F %2F %24 %28pwd%29%2F %24%7Btar%7D%20containers-
storage%3A%24%7Buri%7D%0A%20%20if%20%5B%20%24%3F %20-
€0%200%20%5D%3B%20then%20rm%20-
rf%20%24%7Btar%7D%3B%20current_copy%3D%24%28%28current_copy%620%2B%201%29%29
%3B%20fi%0Adone%20%3C%20%24%7BBINARY_FOLDER%7D%2F%24%7BOCP_RELEASE_LI
ST%7D%0A%0A%23%20workaround%20while%20https%3A%2F%2Fgithub.com%2Fopenshifi%2Fa
ssisted-service%2Fpull%2F3546%0A%23cp%20%2Fvar%2Fmnt%2Fmodified-rhcos-4.10.3-x86_64-
metal.x86_64.raw.gz%20%2Fvar%%2Ftmp%2F.%0A%0Aexit%200"}},
{"overwrite":true,"path":"/usr/local/bin/agent-fix-bz1964591","mode":755,"user":
{"name":"root"},"contents":
{"source":"data:,%23%21%2Fusr%2Fbin%2Fsh%0A%0A%23%20This%20script%20is%20a%20work
around%20for%20bugzilla%201964591%20where%20symlinks%20inside%20%2Fvar%2Flib%2Fcont
ainers%2F%20get%0A%23%20corrupted%20undery%20some%%20circumstances.%0A%23%0A%23%
20In%200rder%20t0%20let%20agent.service%20start%20correctly%20we%20are%20checking%20h
ere%20whether%20the%20requested%0A%23%20container%20image%20exists%20and%20in%20c
ase%20%22podman%20images%22%20returns%20an%20error%20we%20try%20removing%20the
%20faulty%0A%23%20image.%0A%23%0A%23%20In%20such%20a%20scenario%20agent.service
%20will%20detect%20the%20image%20is%20not%20present¥%20and%20pull%20it%20again.%20In
%20case%0A%23%20the%20image%20is%20present%20and¥%20can%20be%20detected%20correc
tly%2C%20n0%20any%20action%20is%20required.%0A%0AIMAGE%3D%24%28ech0%20%241%2
0%7C%205ed%20%275%2F%3A.%2A%2F %2F %27 %29%0Apodman%20image%20exists %20%24|
MAGE%20%7C%7C%20ech0%20%22already¥%20loaded%22%20%7C%7C%20ech0%20%22need
%20t0%20be%20pulled%22%0A%23podman%20images%20%7C%209rep%20%24IMAGE%20%7C
%7C%20podman%20rmi%20--force%20%241%20%7C%7C%20true"}1}}'
nodes:
- hostName: "snonode.sno-worker-0.example.domain.redhat.com”

role: "master”

bmcAddress: "idrac-virtualmedia+https://10.19.28.53/redfish/v1/Systems/System.Embedded.1"

bmcCredentialsName:

name: "worker0O-bmh-secret"

bootMACAddress: "e4:43:4b:bd:90:46"

bootMode: "UEFI"

rootDeviceHints:

deviceName: /dev/nvmeOn1

cpuset: "0-1,40-41"

installerArgs: '["--save-partlabel”, "data"]'

ignitionConfigOverride: '{"ignition":{"version":"3.1.0"},"systemd":{"units":[{"name":"var-
mnt.mount","enabled":true,"contents":"[Unit]\nDescription=Mount partition with
artifacts\nBefore=precache-ocp-images.service\nBindsTo=precache-ocp-
images.service\nStopWhenUnneeded=true\n\n[Mount]\nWhat=/dev/disk/by-
partlabel/data\nWhere=/var/mnt\nType=xfs\nTimeoutSec=30\n\n[Install]\nRequiredBy=precache-ocp-
images.service"},{"name":"precache-ocp-images.service","enabled":true,"contents":"
[Unit]\nDescription=Extracts the precached OCP images into containers storage\nAfter=var-
mnt.mount\nBefore=machine-config-daemon-pull.service nodeip-
configuration.service\n\n[Service]\nType=oneshot\nUser=root\nWorkingDirectory=/var/mnt\nExecStart=t
ash /ustr/local/bin/extract-ocp.sh\nTimeoutStopSec=60\n\n[Install\nWantedBy=multi-

267

OpenShift Container Platform 4.15 Edge computing

1]
2]

user.target"}]},"storage":{"files":[{"overwrite":true,"path":"/usr/local/bin/extract-
ocp.sh","mode":755,"user":{"name":"root"},"contents™:
{"source":"data:,%23%21%2Fbin%2Fbash%0A%0AFOLDER%3D%22%24%7BFOLDER%3A-
%24%28pwWd%29%7D%22%0A0CP_RELEASE_LIST%3D%22%24%7BOCP_RELEASE_LIST%3A-
ocp-
images.txt%7D%22%0ABINARY_FOLDER%3D%2Fvar%2F mnt%0A%0Apushd%20%24FOLDER%0
A%0Atotal_copies%3D%24%28s0rt%20-
U%20%24BINARY_FOLDER%2F%240CP_RELEASE_LIST%20%7C%20wc%20-
1%629%20%20%23%20Required%20t0%20keep%%20track%200f%20the%20pull%20task%20vs%20tot
al%0Acurrent_copy%3D1%0A%0Awhile%20read%20-
r%201ine%3B%0Ad0%0A%20%20uri%3D%24%28ech0%20%22%241ine%22%20%7C%20awk%20%
27%7Bprint%241%7D%27%29%0A%20%20%23tar%3D %24 %28ech0%20%22%241ine%22%20%7
C%20awk%20%27%7Bprint%242%7D %27 %29%0A%20%20podman%20image%20exists%20%24ur
i%0A%20%20if%20%5B%5B%20%24%3F%20-
€0%200%20%5D%5D%3B%20then%0A%20%20%20%20%20%20ech0%20%22Skipping%20existin
g%20image%20%24tar%22%0A%20%20%20%20%20%20ech0%20%22Copying%20%24%7Buri%7
D%20%5B%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20%20%20
%20%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29%0A%20%20%20%20
%20%20continue%0A%20%20fi%0A%20%20tar%3D%24%28ech0%20%22%24uri%22%20%7C%2
0%20rev%20%7C%20cut%20-d%20%22%2F %22%20-
f1%20%7C%20rev%20%7C%20tr%20%22%3A%22%20%22_%22%29%0A%20%20tar%20zxvi%20
%24%7Btar%7D.19z%0A%20%20if%20%5B%20%24%3F %20-
€0%200%20%5D%3B%20then%20rm%:20-
f%20%24%7Btar%7D.g9z%3B%20fi%0A%20%20ech0%20%22Copying%20%24%7Buri%7D%20%5B
%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20skopeo%20copy %620
dir%3A%2F %2F %24 %28pwd%29%2F %24%7Btar%7D%20containers-
storage%3A%24%7Buri%7D%0A%20%20if%20%5B%20%24%3F %20-
€0%200%20%5D%3B%20then%20rm%:20-
rf%20%24%7Btar%7D%3B%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29
%3B%20fi%0Adone%20%3C%20%24%7BBINARY_FOLDER%7D%2F%24%7BOCP_RELEASE_LI
ST%7D%0A%0Aexit%200"}}1}}
nodeNetwork:
config:
interfaces:
- name: ens1f0
type: ethernet
state: up
macAddress: "AA:BB:CC:11:22:33"
ipvé4:
enabled: true
dhcp: true
ipv6:
enabled: false
interfaces:
- name: "ens1f0"
macAddress: "AA:BB:CC:11:22:33"

Specifies the cluster image set used for deployment, unless you specify a different image set in the
spec.clusters.clusterimageSetNameRef field.

Specifies the cluster image set used to deploy an individual cluster. If defined, it overrides the
spec.clusterimageSetNameRef at the site level.

14.5.1. Understanding the clusters.ignitionConfigOverride field

268

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

The clusters.ignitionConfigOverride field adds a configuration in Ignition format during the GitOps
ZTP discovery stage. The configuration includes systemd services in the ISO mounted in virtual media.
This way, the scripts are part of the discovery RHCOS live ISO and they can be used to load the Assisted
Installer (Al) images.

systemd services

The systemd services are var-mnt.mount and precache-images.services. The precache-
images.service depends on the disk partition to be mounted in /var/mnt by the var-mnt.mount unit.
The service calls a script called extract-ai.sh.

extract-ai.sh

The extract-ai.sh script extracts and loads the required images from the disk partition to the local
container storage. When the script finishes successfully, you can use the images locally.

agent-fix-bz1964591

The agent-fix-bz1964591 script is a workaround for an Al issue. To prevent Al from removing the
images, which can force the agent.service to pull the images again from the registry, the agent-fix-
bz1964591 script checks if the requested container images exist.

14.5.2. Understanding the nodes.installerArgs field

The nodes.installerArgs field allows you to configure how the coreos-installer utility writes the
RHCOS live ISO to disk. You need to indicate to save the disk partition labeled as data because the
artifacts saved in the data partition are needed during the OpenShift Container Platform installation
stage.

The extra parameters are passed directly to the coreos-installer utility that writes the live RHCOS to
disk. On the next reboot, the operating system starts from the disk.

You can pass several options to the coreos-installer utility:

OPTIONS:

-u, --image-url <URL>
Manually specify the image URL

-f, --image-file <path>
Manually specify a local image file

-i, --ignition-file <path>
Embed an Ignition config from a file

-1, —-ignition-url <URL>
Embed an Ignition config from a URL

--save-partlabel <Ix>...
Save partitions with this label glob

--save-partindex <id>...
Save partitions with this number or range

--insecure-ignition
Allow Ignition URL without HTTPS or hash

14.5.3. Understanding the nodes.ignitionConfigOverride field

269

OpenShift Container Platform 4.15 Edge computing

Similarly to clusters.ignitionConfigOverride, the nodes.ignitionConfigOverride field allows the
addtion of configurations in Ignition format to the coreos-installer utility, but at the OpenShift
Container Platform installation stage. When the RHCOS is written to disk, the extra configuration
included in the GitOps ZTP discovery ISO is no longer available. During the discovery stage, the extra
configuration is stored in the memory of the live OS.

NOTE

At this stage, the number of container images extracted and loaded is bigger than in the
discovery stage. Depending on the OpenShift Container Platform release and whether
you install the Day-2 Operators, the installation time can vary.

At the installation stage, the var-mnt.mount and precache-ocp.services systemd services are used.

precache-ocp.service

The precache-ocp.service depends on the disk partition to be mounted in /var/mnt by the var-
mnt.mount unit. The precache-ocp.service service calls a script called extract-ocp.sh.

IMPORTANT

To extract all the images before the OpenShift Container Platform installation, you
must execute precache-ocp.service before executing the machine-config-daemon-
pull.service and nodeip-configuration.service services.

extract-ocp.sh

The extract-ocp.sh script extracts and loads the required images from the disk partition to the local
container storage. When the script finishes successfully, you can use the images locally.

When you upload the SiteConfig and the optional PolicyGenTemplates custom resources (CRs) to the
Git repo, which Argo CD is monitoring, you can start the GitOps ZTP workflow by syncing the CRs with
the hub cluster.

14.6. TROUBLESHOOTING

14.6.1. Rendered catalog is invalid

When you download images by using a local or disconnected registry, you might see the The rendered
catalog is invalid error. This means that you are missing certificates of the new registry you want to pull
content from.

NOTE

The factory-precaching-cli tool image is built on a UBI RHEL image. Certificate paths and
locations are the same on RHCOS.

Example error

Generating list of pre-cached artifacts...

error: unable to run command oc-mirror -c /mnt/imageset.yaml file:///tmp/fp-cli-3218002584/mirror --
ignore-history --dry-run: Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-
workspace/src/publish

270

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/v2

Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/charts

Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/release-signatures
backend is not configured in /mnt/imageset.yaml, using stateless mode

backend is not configured in /mnt/imageset.yaml, using stateless mode

No metadata detected, creating new workspace

level=info msg=trying next host error=failed to do request: Head
"https://eko4.cloud.lab.eng.bos.redhat.com:8443/v2/redhat/redhat-operator-index/manifests/v4.11":
x509: certificate signed by unknown authority host=eko4.cloud.lab.eng.bos.redhat.com:8443

The rendered catalog is invalid.

Run "oc-mirror list operators --catalog CATALOG-NAME --package PACKAGE-NAME" for more
information.

error: error rendering new refs: render reference
"eko4.cloud.lab.eng.bos.redhat.com:8443/redhat/redhat-operator-index:v4.11": error resolving name :

failed to do request: Head "https://eko4.cloud.lab.eng.bos.redhat.com:8443/v2/redhat/redhat-
operator-index/manifests/v4.11": x509: certificate signed by unknown authority

Procedure

1. Copy the registry certificate into your server:

I # cp /tmp/eko4-ca.crt /etc/pki/ca-trust/source/anchors/.

2. Update the certificates truststore:
I # update-ca-trust

3. Mount the host /etc/pki folder into the factory-cliimage:

podman run -v /mnt:/mnt -v /root/.docker:/root/.docker -v /etc/pki:/etc/pki --privileged -it --rm
quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli download -r 4.15.0 --acm-version 2.5.4 \

--mce-version 2.0.4 -f /mnt \--img quay.io/custom/repository

--du-profile -s --skip-imageset

271

	Table of Contents
	CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE
	1.1. OVERCOMING THE CHALLENGES OF THE NETWORK FAR EDGE
	1.2. USING GITOPS ZTP TO PROVISION CLUSTERS AT THE NETWORK FAR EDGE
	1.3. INSTALLING MANAGED CLUSTERS WITH SITECONFIG RESOURCES AND RHACM
	1.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

	CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP
	2.1. TELCO RAN DU 4.15 VALIDATED SOFTWARE COMPONENTS
	2.2. RECOMMENDED HUB CLUSTER SPECIFICATIONS AND MANAGED CLUSTER LIMITS FOR GITOPS ZTP
	2.3. INSTALLING GITOPS ZTP IN A DISCONNECTED ENVIRONMENT
	2.4. ADDING RHCOS ISO AND ROOTFS IMAGES TO THE DISCONNECTED MIRROR HOST
	2.5. ENABLING THE ASSISTED SERVICE
	2.6. CONFIGURING THE HUB CLUSTER TO USE A DISCONNECTED MIRROR REGISTRY
	2.7. CONFIGURING THE HUB CLUSTER TO USE UNAUTHENTICATED REGISTRIES
	2.8. CONFIGURING THE HUB CLUSTER WITH ARGOCD
	2.9. PREPARING THE GITOPS ZTP SITE CONFIGURATION REPOSITORY
	2.9.1. Preparing the GitOps ZTP site configuration repository for version independence

	CHAPTER 3. UPDATING GITOPS ZTP
	3.1. OVERVIEW OF THE GITOPS ZTP UPDATE PROCESS
	3.2. PREPARING FOR THE UPGRADE
	3.3. LABELING THE EXISTING CLUSTERS
	3.4. STOPPING THE EXISTING GITOPS ZTP APPLICATIONS
	3.5. REQUIRED CHANGES TO THE GIT REPOSITORY
	3.6. INSTALLING THE NEW GITOPS ZTP APPLICATIONS
	3.7. ROLLING OUT THE GITOPS ZTP CONFIGURATION CHANGES

	CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES
	4.1. GITOPS ZTP AND TOPOLOGY AWARE LIFECYCLE MANAGER
	4.2. OVERVIEW OF DEPLOYING MANAGED CLUSTERS WITH GITOPS ZTP
	Overview of the managed site installation process

	4.3. CREATING THE MANAGED BARE-METAL HOST SECRETS
	4.4. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR INSTALLATIONS USING GITOPS ZTP
	4.5. DEPLOYING A MANAGED CLUSTER WITH SITECONFIG AND GITOPS ZTP
	4.5.1. Single-node OpenShift SiteConfig CR installation reference

	4.6. MONITORING MANAGED CLUSTER INSTALLATION PROGRESS
	4.7. TROUBLESHOOTING GITOPS ZTP BY VALIDATING THE INSTALLATION CRS
	4.8. TROUBLESHOOTING GITOPS ZTP VIRTUAL MEDIA BOOTING ON SUPERMICRO SERVERS
	4.9. REMOVING A MANAGED CLUSTER SITE FROM THE GITOPS ZTP PIPELINE
	4.10. REMOVING OBSOLETE CONTENT FROM THE GITOPS ZTP PIPELINE
	4.11. TEARING DOWN THE GITOPS ZTP PIPELINE

	CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES
	5.1. ABOUT THE POLICYGENTEMPLATE CRD
	5.2. RECOMMENDATIONS WHEN CUSTOMIZING POLICYGENTEMPLATE CRS
	5.3. POLICYGENTEMPLATE CRS FOR RAN DEPLOYMENTS
	5.4. CUSTOMIZING A MANAGED CLUSTER WITH POLICYGENTEMPLATE CRS
	5.5. MONITORING MANAGED CLUSTER POLICY DEPLOYMENT PROGRESS
	5.6. VALIDATING THE GENERATION OF CONFIGURATION POLICY CRS
	5.7. RESTARTING POLICY RECONCILIATION
	5.8. CHANGING APPLIED MANAGED CLUSTER CRS USING POLICIES
	5.9. INDICATION OF DONE FOR GITOPS ZTP INSTALLATIONS

	CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP
	6.1. GENERATING GITOPS ZTP INSTALLATION AND CONFIGURATION CRS MANUALLY
	6.2. CREATING THE MANAGED BARE-METAL HOST SECRETS
	6.3. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR MANUAL INSTALLATIONS USING GITOPS ZTP
	6.4. INSTALLING A SINGLE MANAGED CLUSTER
	6.5. MONITORING THE MANAGED CLUSTER INSTALLATION STATUS
	6.6. TROUBLESHOOTING THE MANAGED CLUSTER
	6.7. RHACM GENERATED CLUSTER INSTALLATION CRS REFERENCE

	CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS
	7.1. RUNNING LOW LATENCY APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM
	7.2. RECOMMENDED CLUSTER HOST REQUIREMENTS FOR VDU APPLICATION WORKLOADS
	7.3. CONFIGURING HOST FIRMWARE FOR LOW LATENCY AND HIGH PERFORMANCE
	7.4. CONNECTIVITY PREREQUISITES FOR MANAGED CLUSTER NETWORKS
	7.5. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT WITH GITOPS ZTP
	7.6. RECOMMENDED CLUSTER INSTALL MANIFESTS
	7.6.1. Workload partitioning
	7.6.2. Reduced platform management footprint
	7.6.3. SCTP
	7.6.4. Accelerated container startup
	7.6.5. Setting rcu_normal
	7.6.6. Automatic kernel crash dumps with kdump
	7.6.7. Disable automatic CRI-O cache wipe
	7.6.8. Configuring crun as the default container runtime

	7.7. RECOMMENDED POSTINSTALLATION CLUSTER CONFIGURATIONS
	7.7.1. Operators
	7.7.2. Operator subscriptions
	7.7.3. Cluster logging and log forwarding
	7.7.4. Performance profile
	7.7.5. Configuring cluster time synchronization
	7.7.6. PTP
	7.7.7. Extended Tuned profile
	7.7.8. SR-IOV
	7.7.9. Console Operator
	7.7.10. Alertmanager
	7.7.11. Operator Lifecycle Manager
	7.7.12. LVM Storage
	7.7.13. Network diagnostics

	CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS
	8.1. RECOMMENDED FIRMWARE CONFIGURATION FOR VDU CLUSTER HOSTS
	8.2. RECOMMENDED CLUSTER CONFIGURATIONS TO RUN VDU APPLICATIONS
	8.2.1. Recommended cluster MachineConfig CRs for single-node OpenShift clusters
	8.2.2. Recommended cluster Operators
	8.2.3. Recommended cluster kernel configuration
	8.2.4. Checking the realtime kernel version

	8.3. CHECKING THAT THE RECOMMENDED CLUSTER CONFIGURATIONS ARE APPLIED

	CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES
	9.1. CUSTOMIZING EXTRA INSTALLATION MANIFESTS IN THE GITOPS ZTP PIPELINE
	9.2. FILTERING CUSTOM RESOURCES USING SITECONFIG FILTERS
	9.3. DELETING A NODE BY USING THE SITECONFIG CR

	CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES
	10.1. DEPLOYING ADDITIONAL CHANGES TO CLUSTERS
	10.2. USING POLICYGENTEMPLATE CRS TO OVERRIDE SOURCE CRS CONTENT
	10.3. ADDING CUSTOM CONTENT TO THE GITOPS ZTP PIPELINE
	10.4. CONFIGURING POLICY COMPLIANCE EVALUATION TIMEOUTS FOR POLICYGENTEMPLATE CRS
	10.5. SIGNALLING GITOPS ZTP CLUSTER DEPLOYMENT COMPLETION WITH VALIDATOR INFORM POLICIES
	10.6. CONFIGURING POWER STATES USING POLICYGENTEMPLATES CRS
	10.6.1. Configuring performance mode using PolicyGenTemplate CRs
	10.6.2. Configuring high-performance mode using PolicyGenTemplate CRs
	10.6.3. Configuring power saving mode using PolicyGenTemplate CRs
	10.6.4. Maximizing power savings

	10.7. CONFIGURING LVM STORAGE USING POLICYGENTEMPLATE CRS
	10.8. CONFIGURING PTP EVENTS WITH POLICYGENTEMPLATE CRS
	10.8.1. Configuring PTP events that use HTTP transport
	10.8.2. Configuring PTP events that use AMQP transport

	10.9. CONFIGURING BARE-METAL EVENTS WITH POLICYGENTEMPLATE CRS
	10.9.1. Configuring bare-metal events that use HTTP transport
	10.9.2. Configuring bare-metal events that use AMQP transport

	10.10. CONFIGURING THE IMAGE REGISTRY OPERATOR FOR LOCAL CACHING OF IMAGES
	10.10.1. Configuring disk partitioning with SiteConfig
	10.10.2. Configuring the image registry using PolicyGenTemplate CRs

	10.11. USING HUB TEMPLATES IN POLICYGENTEMPLATE CRS
	10.11.1. Example hub templates
	10.11.2. Specifying group and site configuration in group PolicyGenTemplate CRs with hub templates
	10.11.3. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs

	CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
	11.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER CONFIGURATION
	11.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE LIFECYCLE MANAGER
	11.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE WEB CONSOLE
	11.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE CLI
	11.5. ABOUT THE CLUSTERGROUPUPGRADE CR
	11.5.1. Selecting clusters
	11.5.2. Validating
	11.5.3. Pre-caching
	11.5.4. Creating a backup
	11.5.5. Updating clusters
	11.5.6. Update status
	11.5.7. Blocking ClusterGroupUpgrade CRs

	11.6. UPDATE POLICIES ON MANAGED CLUSTERS
	11.6.1. Configuring Operator subscriptions for managed clusters that you install with TALM
	11.6.2. Applying update policies to managed clusters

	11.7. CREATING A BACKUP OF CLUSTER RESOURCES BEFORE UPGRADE
	11.7.1. Creating a ClusterGroupUpgrade CR with backup
	11.7.2. Recovering a cluster after a failed upgrade

	11.8. USING THE CONTAINER IMAGE PRE-CACHE FEATURE
	11.8.1. Using the container image pre-cache filter
	11.8.2. Creating a ClusterGroupUpgrade CR with pre-caching

	11.9. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE MANAGER
	11.9.1. General troubleshooting
	11.9.2. Cannot modify the ClusterUpgradeGroup CR
	11.9.3. Managed policies
	Checking managed policies on the system
	Checking remediationAction mode
	Checking policy compliance state

	11.9.4. Clusters
	Checking if managed clusters are present
	Checking if managed clusters are available
	Checking clusterLabelSelector
	Checking if canary clusters are present
	Checking the pre-caching status on spoke clusters

	11.9.5. Remediation Strategy
	Checking if remediationStrategy is present in the ClusterGroupUpgrade CR
	Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

	11.9.6. Topology Aware Lifecycle Manager
	Checking condition message and status in the ClusterGroupUpgrade CR
	Checking corresponding copied policies
	Checking if status.remediationPlan was computed
	Errors in the TALM manager container
	Clusters are not compliant to some policies after a ClusterGroupUpgrade CR has completed
	Auto-created ClusterGroupUpgrade CR in the GitOps ZTP workflow has no managed policies
	Pre-caching has failed

	CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
	12.1. UPDATING CLUSTERS IN A DISCONNECTED ENVIRONMENT
	12.1.1. Setting up the environment
	12.1.2. Performing a platform update
	12.1.3. Performing an Operator update
	12.1.3.1. Troubleshooting missed Operator updates due to out-of-date policy compliance states

	12.1.4. Performing a platform and an Operator update together
	12.1.5. Removing Performance Addon Operator subscriptions from deployed clusters
	12.1.6. Pre-caching user-specified images with TALM on single-node OpenShift clusters
	12.1.6.1. Creating the custom resources for pre-caching

	12.2. ABOUT THE AUTO-CREATED CLUSTERGROUPUPGRADE CR FOR GITOPS ZTP

	CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP
	13.1. APPLYING PROFILES TO THE WORKER NODE
	13.2. (OPTIONAL) ENSURING PTP AND SR-IOV DAEMON SELECTOR COMPATIBILITY
	13.3. PTP AND SR-IOV NODE SELECTOR COMPATIBILITY
	13.4. USING POLICYGENTEMPLATE CRS TO APPLY WORKER NODE POLICIES TO WORKER NODES
	13.5. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP

	CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS
	14.1. GETTING THE FACTORY-PRECACHING-CLI TOOL
	14.2. BOOTING FROM A LIVE OPERATING SYSTEM IMAGE
	14.3. PARTITIONING THE DISK
	14.3.1. Creating the partition
	14.3.2. Mounting the partition

	14.4. DOWNLOADING THE IMAGES
	14.4.1. Downloading with parallel workers
	14.4.2. Preparing to download the OpenShift Container Platform images
	14.4.3. Downloading the OpenShift Container Platform images
	14.4.4. Downloading the Operator images
	14.4.5. Pre-caching custom images in disconnected environments

	14.5. PRE-CACHING IMAGES IN GITOPS ZTP
	14.5.1. Understanding the clusters.ignitionConfigOverride field
	14.5.2. Understanding the nodes.installerArgs field
	14.5.3. Understanding the nodes.ignitionConfigOverride field

	14.6. TROUBLESHOOTING
	14.6.1. Rendered catalog is invalid

