
OpenShift Container Platform 4.15

Edge computing

Configure and deploy OpenShift Container Platform clusters at the network edge

Last Updated: 2024-05-24





OpenShift Container Platform 4.15 Edge computing

Configure and deploy OpenShift Container Platform clusters at the network edge



Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to configure and deploy OpenShift Container Platform clusters using
GitOps ZTP to provision and manage sites at the far edge of the network.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE
1.1. OVERCOMING THE CHALLENGES OF THE NETWORK FAR EDGE
1.2. USING GITOPS ZTP TO PROVISION CLUSTERS AT THE NETWORK FAR EDGE
1.3. INSTALLING MANAGED CLUSTERS WITH SITECONFIG RESOURCES AND RHACM
1.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP
2.1. TELCO RAN DU 4.15 VALIDATED SOFTWARE COMPONENTS
2.2. RECOMMENDED HUB CLUSTER SPECIFICATIONS AND MANAGED CLUSTER LIMITS FOR GITOPS ZTP

2.3. INSTALLING GITOPS ZTP IN A DISCONNECTED ENVIRONMENT
2.4. ADDING RHCOS ISO AND ROOTFS IMAGES TO THE DISCONNECTED MIRROR HOST
2.5. ENABLING THE ASSISTED SERVICE
2.6. CONFIGURING THE HUB CLUSTER TO USE A DISCONNECTED MIRROR REGISTRY
2.7. CONFIGURING THE HUB CLUSTER TO USE UNAUTHENTICATED REGISTRIES
2.8. CONFIGURING THE HUB CLUSTER WITH ARGOCD
2.9. PREPARING THE GITOPS ZTP SITE CONFIGURATION REPOSITORY

2.9.1. Preparing the GitOps ZTP site configuration repository for version independence

CHAPTER 3. UPDATING GITOPS ZTP
3.1. OVERVIEW OF THE GITOPS ZTP UPDATE PROCESS
3.2. PREPARING FOR THE UPGRADE
3.3. LABELING THE EXISTING CLUSTERS
3.4. STOPPING THE EXISTING GITOPS ZTP APPLICATIONS
3.5. REQUIRED CHANGES TO THE GIT REPOSITORY
3.6. INSTALLING THE NEW GITOPS ZTP APPLICATIONS
3.7. ROLLING OUT THE GITOPS ZTP CONFIGURATION CHANGES

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES
4.1. GITOPS ZTP AND TOPOLOGY AWARE LIFECYCLE MANAGER
4.2. OVERVIEW OF DEPLOYING MANAGED CLUSTERS WITH GITOPS ZTP

Overview of the managed site installation process
4.3. CREATING THE MANAGED BARE-METAL HOST SECRETS
4.4. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR INSTALLATIONS USING GITOPS ZTP
4.5. DEPLOYING A MANAGED CLUSTER WITH SITECONFIG AND GITOPS ZTP

4.5.1. Single-node OpenShift SiteConfig CR installation reference
4.6. MONITORING MANAGED CLUSTER INSTALLATION PROGRESS
4.7. TROUBLESHOOTING GITOPS ZTP BY VALIDATING THE INSTALLATION CRS
4.8. TROUBLESHOOTING GITOPS ZTP VIRTUAL MEDIA BOOTING ON SUPERMICRO SERVERS
4.9. REMOVING A MANAGED CLUSTER SITE FROM THE GITOPS ZTP PIPELINE
4.10. REMOVING OBSOLETE CONTENT FROM THE GITOPS ZTP PIPELINE
4.11. TEARING DOWN THE GITOPS ZTP PIPELINE

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE
RESOURCES

5.1. ABOUT THE POLICYGENTEMPLATE CRD
5.2. RECOMMENDATIONS WHEN CUSTOMIZING POLICYGENTEMPLATE CRS
5.3. POLICYGENTEMPLATE CRS FOR RAN DEPLOYMENTS
5.4. CUSTOMIZING A MANAGED CLUSTER WITH POLICYGENTEMPLATE CRS
5.5. MONITORING MANAGED CLUSTER POLICY DEPLOYMENT PROGRESS
5.6. VALIDATING THE GENERATION OF CONFIGURATION POLICY CRS
5.7. RESTARTING POLICY RECONCILIATION

7
7
8
9

10

13
13

14
15
16
17
18
21
22
23
25

28
28
28
29
29
30
32
32

33
33
34
35
35
36
38
43
46
46
47
48
48
49

50
50
53
54
55
57
58
60

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.8. CHANGING APPLIED MANAGED CLUSTER CRS USING POLICIES
5.9. INDICATION OF DONE FOR GITOPS ZTP INSTALLATIONS

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP
6.1. GENERATING GITOPS ZTP INSTALLATION AND CONFIGURATION CRS MANUALLY
6.2. CREATING THE MANAGED BARE-METAL HOST SECRETS
6.3. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR MANUAL INSTALLATIONS USING GITOPS
ZTP
6.4. INSTALLING A SINGLE MANAGED CLUSTER
6.5. MONITORING THE MANAGED CLUSTER INSTALLATION STATUS
6.6. TROUBLESHOOTING THE MANAGED CLUSTER
6.7. RHACM GENERATED CLUSTER INSTALLATION CRS REFERENCE

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU
APPLICATION WORKLOADS

7.1. RUNNING LOW LATENCY APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM
7.2. RECOMMENDED CLUSTER HOST REQUIREMENTS FOR VDU APPLICATION WORKLOADS
7.3. CONFIGURING HOST FIRMWARE FOR LOW LATENCY AND HIGH PERFORMANCE
7.4. CONNECTIVITY PREREQUISITES FOR MANAGED CLUSTER NETWORKS
7.5. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT WITH GITOPS ZTP
7.6. RECOMMENDED CLUSTER INSTALL MANIFESTS

7.6.1. Workload partitioning
7.6.2. Reduced platform management footprint
7.6.3. SCTP
7.6.4. Accelerated container startup
7.6.5. Setting rcu_normal
7.6.6. Automatic kernel crash dumps with kdump
7.6.7. Disable automatic CRI-O cache wipe
7.6.8. Configuring crun as the default container runtime

7.7. RECOMMENDED POSTINSTALLATION CLUSTER CONFIGURATIONS
7.7.1. Operators
7.7.2. Operator subscriptions
7.7.3. Cluster logging and log forwarding
7.7.4. Performance profile
7.7.5. Configuring cluster time synchronization
7.7.6. PTP
7.7.7. Extended Tuned profile
7.7.8. SR-IOV
7.7.9. Console Operator
7.7.10. Alertmanager
7.7.11. Operator Lifecycle Manager
7.7.12. LVM Storage
7.7.13. Network diagnostics

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION
WORKLOADS

8.1. RECOMMENDED FIRMWARE CONFIGURATION FOR VDU CLUSTER HOSTS
8.2. RECOMMENDED CLUSTER CONFIGURATIONS TO RUN VDU APPLICATIONS

8.2.1. Recommended cluster MachineConfig CRs for single-node OpenShift clusters
8.2.2. Recommended cluster Operators
8.2.3. Recommended cluster kernel configuration
8.2.4. Checking the realtime kernel version

8.3. CHECKING THAT THE RECOMMENDED CLUSTER CONFIGURATIONS ARE APPLIED

61
63

64
64
69

70
72
73
74
75

77
77
77
78
79
80
80
81

82
84
85
88
91

93
94
95
95
98

100
100
102
104
113
114
117
117
117
118
119

120
120
122
122
123
123
124
125

OpenShift Container Platform 4.15 Edge computing

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES
9.1. CUSTOMIZING EXTRA INSTALLATION MANIFESTS IN THE GITOPS ZTP PIPELINE
9.2. FILTERING CUSTOM RESOURCES USING SITECONFIG FILTERS
9.3. DELETING A NODE BY USING THE SITECONFIG CR

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE
RESOURCES

10.1. DEPLOYING ADDITIONAL CHANGES TO CLUSTERS
10.2. USING POLICYGENTEMPLATE CRS TO OVERRIDE SOURCE CRS CONTENT
10.3. ADDING CUSTOM CONTENT TO THE GITOPS ZTP PIPELINE
10.4. CONFIGURING POLICY COMPLIANCE EVALUATION TIMEOUTS FOR POLICYGENTEMPLATE CRS
10.5. SIGNALLING GITOPS ZTP CLUSTER DEPLOYMENT COMPLETION WITH VALIDATOR INFORM
POLICIES
10.6. CONFIGURING POWER STATES USING POLICYGENTEMPLATES CRS

10.6.1. Configuring performance mode using PolicyGenTemplate CRs
10.6.2. Configuring high-performance mode using PolicyGenTemplate CRs
10.6.3. Configuring power saving mode using PolicyGenTemplate CRs
10.6.4. Maximizing power savings

10.7. CONFIGURING LVM STORAGE USING POLICYGENTEMPLATE CRS
10.8. CONFIGURING PTP EVENTS WITH POLICYGENTEMPLATE CRS

10.8.1. Configuring PTP events that use HTTP transport
10.8.2. Configuring PTP events that use AMQP transport

10.9. CONFIGURING BARE-METAL EVENTS WITH POLICYGENTEMPLATE CRS
10.9.1. Configuring bare-metal events that use HTTP transport
10.9.2. Configuring bare-metal events that use AMQP transport

10.10. CONFIGURING THE IMAGE REGISTRY OPERATOR FOR LOCAL CACHING OF IMAGES
10.10.1. Configuring disk partitioning with SiteConfig
10.10.2. Configuring the image registry using PolicyGenTemplate CRs

10.11. USING HUB TEMPLATES IN POLICYGENTEMPLATE CRS
10.11.1. Example hub templates
10.11.2. Specifying group and site configuration in group PolicyGenTemplate CRs with hub templates
10.11.3. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
11.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER CONFIGURATION
11.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE LIFECYCLE MANAGER
11.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE WEB CONSOLE
11.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE CLI
11.5. ABOUT THE CLUSTERGROUPUPGRADE CR

11.5.1. Selecting clusters
11.5.2. Validating
11.5.3. Pre-caching
11.5.4. Creating a backup
11.5.5. Updating clusters
11.5.6. Update status
11.5.7. Blocking ClusterGroupUpgrade CRs

11.6. UPDATE POLICIES ON MANAGED CLUSTERS
11.6.1. Configuring Operator subscriptions for managed clusters that you install with TALM
11.6.2. Applying update policies to managed clusters

11.7. CREATING A BACKUP OF CLUSTER RESOURCES BEFORE UPGRADE
11.7.1. Creating a ClusterGroupUpgrade CR with backup
11.7.2. Recovering a cluster after a failed upgrade

11.8. USING THE CONTAINER IMAGE PRE-CACHE FEATURE

135
135
136
138

140
140
140
143
145

147
148
149
149
150
151
152
154
154
156
158
158
159
161
161

162
165
166
167
171

173
173
173
174
174
176
177
179
179
180
180
182
185
192
193
194
201
201

204
206

Table of Contents

3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11.8.1. Using the container image pre-cache filter
11.8.2. Creating a ClusterGroupUpgrade CR with pre-caching

11.9. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE MANAGER
11.9.1. General troubleshooting
11.9.2. Cannot modify the ClusterUpgradeGroup CR
11.9.3. Managed policies

Checking managed policies on the system
Checking remediationAction mode
Checking policy compliance state

11.9.4. Clusters
Checking if managed clusters are present
Checking if managed clusters are available
Checking clusterLabelSelector
Checking if canary clusters are present
Checking the pre-caching status on spoke clusters

11.9.5. Remediation Strategy
Checking if remediationStrategy is present in the ClusterGroupUpgrade CR
Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

11.9.6. Topology Aware Lifecycle Manager
Checking condition message and status in the ClusterGroupUpgrade CR
Checking corresponding copied policies
Checking if status.remediationPlan was computed
Errors in the TALM manager container
Clusters are not compliant to some policies after a ClusterGroupUpgrade CR has completed
Auto-created ClusterGroupUpgrade CR in the GitOps ZTP workflow has no managed policies
Pre-caching has failed

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE
TOPOLOGY AWARE LIFECYCLE MANAGER

12.1. UPDATING CLUSTERS IN A DISCONNECTED ENVIRONMENT
12.1.1. Setting up the environment
12.1.2. Performing a platform update
12.1.3. Performing an Operator update

12.1.3.1. Troubleshooting missed Operator updates due to out-of-date policy compliance states
12.1.4. Performing a platform and an Operator update together
12.1.5. Removing Performance Addon Operator subscriptions from deployed clusters
12.1.6. Pre-caching user-specified images with TALM on single-node OpenShift clusters

12.1.6.1. Creating the custom resources for pre-caching
12.2. ABOUT THE AUTO-CREATED CLUSTERGROUPUPGRADE CR FOR GITOPS ZTP

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP
13.1. APPLYING PROFILES TO THE WORKER NODE
13.2. (OPTIONAL) ENSURING PTP AND SR-IOV DAEMON SELECTOR COMPATIBILITY
13.3. PTP AND SR-IOV NODE SELECTOR COMPATIBILITY
13.4. USING POLICYGENTEMPLATE CRS TO APPLY WORKER NODE POLICIES TO WORKER NODES
13.5. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS
14.1. GETTING THE FACTORY-PRECACHING-CLI TOOL
14.2. BOOTING FROM A LIVE OPERATING SYSTEM IMAGE
14.3. PARTITIONING THE DISK

14.3.1. Creating the partition
14.3.2. Mounting the partition

14.4. DOWNLOADING THE IMAGES

207
208
210
211
211
212
212
212
213
213
213
214
214
215
216
216
216
216
216
216
217
217
217
218
218
218

220
220
220
222
225
230
231

234
235
237
240

243
243
244
245
245
248

251
251

252
253
254
256
256

OpenShift Container Platform 4.15 Edge computing

4



14.4.1. Downloading with parallel workers
14.4.2. Preparing to download the OpenShift Container Platform images
14.4.3. Downloading the OpenShift Container Platform images
14.4.4. Downloading the Operator images
14.4.5. Pre-caching custom images in disconnected environments

14.5. PRE-CACHING IMAGES IN GITOPS ZTP
14.5.1. Understanding the clusters.ignitionConfigOverride field
14.5.2. Understanding the nodes.installerArgs field
14.5.3. Understanding the nodes.ignitionConfigOverride field

14.6. TROUBLESHOOTING
14.6.1. Rendered catalog is invalid

257
257
258
261
262
265
268
269
269
270
270

Table of Contents

5



OpenShift Container Platform 4.15 Edge computing

6



CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE
Edge computing presents complex challenges when managing many sites in geographically displaced
locations. Use GitOps Zero Touch Provisioning (ZTP) to provision and manage sites at the far edge of
the network.

1.1. OVERCOMING THE CHALLENGES OF THE NETWORK FAR EDGE

Today, service providers want to deploy their infrastructure at the edge of the network. This presents
significant challenges:

How do you handle deployments of many edge sites in parallel?

What happens when you need to deploy sites in disconnected environments?

How do you manage the lifecycle of large fleets of clusters?

GitOps Zero Touch Provisioning (ZTP) and GitOps meets these challenges by allowing you to provision
remote edge sites at scale with declarative site definitions and configurations for bare-metal
equipment. Template or overlay configurations install OpenShift Container Platform features that are
required for CNF workloads. The full lifecycle of installation and upgrades is handled through the
GitOps ZTP pipeline.

GitOps ZTP uses GitOps for infrastructure deployments. With GitOps, you use declarative YAML files
and other defined patterns stored in Git repositories. Red Hat Advanced Cluster Management (RHACM)
uses your Git repositories to drive the deployment of your infrastructure.

GitOps provides traceability, role-based access control (RBAC), and a single source of truth for the
desired state of each site. Scalability issues are addressed by Git methodologies and event driven
operations through webhooks.

You start the GitOps ZTP workflow by creating declarative site definition and configuration custom
resources (CRs) that the GitOps ZTP pipeline delivers to the edge nodes.

The following diagram shows how GitOps ZTP works within the far edge framework.

CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE

7



1.2. USING GITOPS ZTP TO PROVISION CLUSTERS AT THE NETWORK
FAR EDGE

Red Hat Advanced Cluster Management (RHACM) manages clusters in a hub-and-spoke architecture,
where a single hub cluster manages many spoke clusters. Hub clusters running RHACM provision and
deploy the managed clusters by using GitOps Zero Touch Provisioning (ZTP) and the assisted service
that is deployed when you install RHACM.

The assisted service handles provisioning of OpenShift Container Platform on single node clusters,
three-node clusters, or standard clusters running on bare metal.

A high-level overview of using GitOps ZTP to provision and maintain bare-metal hosts with OpenShift
Container Platform is as follows:

A hub cluster running RHACM manages an OpenShift image registry that mirrors the OpenShift
Container Platform release images. RHACM uses the OpenShift image registry to provision the
managed clusters.

You manage the bare-metal hosts in a YAML format inventory file, versioned in a Git repository.

You make the hosts ready for provisioning as managed clusters, and use RHACM and the
assisted service to install the bare-metal hosts on site.

Installing and deploying the clusters is a two-stage process, involving an initial installation phase, and a
subsequent configuration and deployment phase. The following diagram illustrates this workflow:

OpenShift Container Platform 4.15 Edge computing

8



1.3. INSTALLING MANAGED CLUSTERS WITH SITECONFIG
RESOURCES AND RHACM

GitOps Zero Touch Provisioning (ZTP) uses SiteConfig custom resources (CRs) in a Git repository to
manage the processes that install OpenShift Container Platform clusters. The SiteConfig CR contains
cluster-specific parameters required for installation. It has options for applying select configuration CRs
during installation including user defined extra manifests.

The GitOps ZTP plugin processes SiteConfig CRs to generate a collection of CRs on the hub cluster.
This triggers the assisted service in Red Hat Advanced Cluster Management (RHACM) to install
OpenShift Container Platform on the bare-metal host. You can find installation status and error
messages in these CRs on the hub cluster.

You can provision single clusters manually or in batches with GitOps ZTP:

Provisioning a single cluster

CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE

9



Create a single SiteConfig CR and related installation and configuration CRs for the cluster, and
apply them in the hub cluster to begin cluster provisioning. This is a good way to test your CRs before
deploying on a larger scale.

Provisioning many clusters

Install managed clusters in batches of up to 400 by defining SiteConfig and related CRs in a Git
repository. ArgoCD uses the SiteConfig CRs to deploy the sites. The RHACM policy generator
creates the manifests and applies them to the hub cluster. This starts the cluster provisioning
process.

1.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND
POLICYGENTEMPLATE RESOURCES

GitOps Zero Touch Provisioning (ZTP) uses Red Hat Advanced Cluster Management (RHACM) to
configure clusters by using a policy-based governance approach to applying the configuration.

The policy generator or PolicyGen is a plugin for the GitOps Operator that enables the creation of
RHACM policies from a concise template. The tool can combine multiple CRs into a single policy, and
you can generate multiple policies that apply to various subsets of clusters in your fleet.

NOTE

For scalability and to reduce the complexity of managing configurations across the fleet
of clusters, use configuration CRs with as much commonality as possible.

Where possible, apply configuration CRs using a fleet-wide common policy.

The next preference is to create logical groupings of clusters to manage as much
of the remaining configurations as possible under a group policy.

When a configuration is unique to an individual site, use RHACM templating on
the hub cluster to inject the site-specific data into a common or group policy.
Alternatively, apply an individual site policy for the site.

The following diagram shows how the policy generator interacts with GitOps and RHACM in the
configuration phase of cluster deployment.

OpenShift Container Platform 4.15 Edge computing

10



For large fleets of clusters, it is typical for there to be a high-level of consistency in the configuration of
those clusters.

The following recommended structuring of policies combines configuration CRs to meet several goals:

Describe common configurations once and apply to the fleet.

Minimize the number of maintained and managed policies.

Support flexibility in common configurations for cluster variants.

Table 1.1. Recommended PolicyGenTemplate policy categories

Policy
category

Description

Common A policy that exists in the common category is applied to all clusters in the fleet. Use
common PolicyGenTemplate CRs to apply common installation settings across all
cluster types.

Groups A policy that exists in the groups category is applied to a group of clusters in the fleet. Use
group PolicyGenTemplate CRs to manage specific aspects of single-node, three-node,
and standard cluster installations. Cluster groups can also follow geographic region,
hardware variant, etc.

Sites A policy that exists in the sites category is applied to a specific cluster site. Any cluster can
have its own specific policies maintained.

Additional resources

CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE

11



For more information about extracting the reference SiteConfig and PolicyGenTemplate CRs
from the ztp-site-generate container image, see Preparing the ZTP Git repository .

OpenShift Container Platform 4.15 Edge computing

12



CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP
To use RHACM in a disconnected environment, create a mirror registry that mirrors the OpenShift
Container Platform release images and Operator Lifecycle Manager (OLM) catalog that contains the
required Operator images. OLM manages, installs, and upgrades Operators and their dependencies in
the cluster. You can also use a disconnected mirror host to serve the RHCOS ISO and RootFS disk
images that are used to provision the bare-metal hosts.

2.1. TELCO RAN DU 4.15 VALIDATED SOFTWARE COMPONENTS

The Red Hat telco RAN DU 4.15 solution has been validated using the following Red Hat software
products for OpenShift Container Platform managed clusters and hub clusters.

Table 2.1. Telco RAN DU managed cluster validated software components

Component Software version

Managed cluster version 4.15

Cluster Logging Operator 5.8

Local Storage Operator 4.15

PTP Operator 4.15

SRIOV Operator 4.15

Node Tuning Operator 4.15

Logging Operator 4.15

SRIOV-FEC Operator 2.8

Table 2.2. Hub cluster validated software components

Component Software version

Hub cluster version 4.15

GitOps ZTP plugin 4.15

Red Hat Advanced Cluster Management (RHACM) 2.9, 2.10

Red Hat OpenShift GitOps 1.11

Topology Aware Lifecycle Manager (TALM) 4.15

2.2. RECOMMENDED HUB CLUSTER SPECIFICATIONS AND MANAGED

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

13



2.2. RECOMMENDED HUB CLUSTER SPECIFICATIONS AND MANAGED
CLUSTER LIMITS FOR GITOPS ZTP

With GitOps Zero Touch Provisioning (ZTP), you can manage thousands of clusters in geographically
dispersed regions and networks. The Red Hat Performance and Scale lab successfully created and
managed 3500 virtual single-node OpenShift clusters with a reduced DU profile from a single Red Hat
Advanced Cluster Management (RHACM) hub cluster in a lab environment.

In real-world situations, the scaling limits for the number of clusters that you can manage will vary
depending on various factors affecting the hub cluster. For example:

Hub cluster resources

Available hub cluster host resources (CPU, memory, storage) are an important factor in determining
how many clusters the hub cluster can manage. The more resources allocated to the hub cluster, the
more managed clusters it can accommodate.

Hub cluster storage

The hub cluster host storage IOPS rating and whether the hub cluster hosts use NVMe storage can
affect hub cluster performance and the number of clusters it can manage.

Network bandwidth and latency

Slow or high-latency network connections between the hub cluster and managed clusters can impact
how the hub cluster manages multiple clusters.

Managed cluster size and complexity

The size and complexity of the managed clusters also affects the capacity of the hub cluster. Larger
managed clusters with more nodes, namespaces, and resources require additional processing and
management resources. Similarly, clusters with complex configurations such as the RAN DU profile or
diverse workloads can require more resources from the hub cluster.

Number of managed policies

The number of policies managed by the hub cluster scaled over the number of managed clusters
bound to those policies is an important factor that determines how many clusters can be managed.

Monitoring and management workloads

RHACM continuously monitors and manages the managed clusters. The number and complexity of
monitoring and management workloads running on the hub cluster can affect its capacity. Intensive
monitoring or frequent reconciliation operations can require additional resources, potentially limiting
the number of manageable clusters.

RHACM version and configuration

Different versions of RHACM can have varying performance characteristics and resource
requirements. Additionally, the configuration settings of RHACM, such as the number of concurrent
reconciliations or the frequency of health checks, can affect the managed cluster capacity of the hub
cluster.

Use the following representative configuration and network specifications to develop your own Hub
cluster and network specifications.

IMPORTANT

The following guidelines are based on internal lab benchmark testing only and do not
represent complete bare-metal host specifications.

Table 2.3. Representative three-node hub cluster machine specifications

OpenShift Container Platform 4.15 Edge computing

14



Requirement Description

OpenShift Container Platform version 4.13

RHACM version 2.7

Topology Aware Lifecycle Manager (TALM) version 4.13

Server hardware 3 x Dell PowerEdge R650 rack servers

NVMe hard disks
50 GB disk for /var/lib/etcd

2.9 TB disk for /var/lib/containers

SSD hard disks
1 SSD split into 15 200GB thin-provisioned
logical volumes provisioned as PV CRs

1 SSD serving as an extra large PV resource

Number of applied DU profile policies 5

IMPORTANT

The following network specifications are representative of a typical real-world RAN
network and were applied to the scale lab environment during testing.

Table 2.4. Simulated lab environment network specifications

Specification Description

Round-trip time (RTT) latency 50 ms

Packet loss 0.02% packet loss

Network bandwidth limit 20 Mbps

Additional resources

Creating and managing single-node OpenShift clusters with RHACM

2.3. INSTALLING GITOPS ZTP IN A DISCONNECTED ENVIRONMENT

Use Red Hat Advanced Cluster Management (RHACM), Red Hat OpenShift GitOps, and Topology
Aware Lifecycle Manager (TALM) on the hub cluster in the disconnected environment to manage the
deployment of multiple managed clusters.

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

15

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.7/html/install/installing#single-node


Prerequisites

You have installed the OpenShift Container Platform CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have configured a disconnected mirror registry for use in the cluster.

NOTE

The disconnected mirror registry that you create must contain a version of TALM
backup and pre-cache images that matches the version of TALM running in the
hub cluster. The spoke cluster must be able to resolve these images in the
disconnected mirror registry.

Procedure

Install RHACM in the hub cluster. See Installing RHACM in a disconnected environment .

Install GitOps and TALM in the hub cluster.

Additional resources

Installing OpenShift GitOps

Installing TALM

Mirroring an Operator catalog

2.4. ADDING RHCOS ISO AND ROOTFS IMAGES TO THE
DISCONNECTED MIRROR HOST

Before you begin installing clusters in the disconnected environment with Red Hat Advanced Cluster
Management (RHACM), you must first host Red Hat Enterprise Linux CoreOS (RHCOS) images for it to
use. Use a disconnected mirror to host the RHCOS images.

Prerequisites

Deploy and configure an HTTP server to host the RHCOS image resources on the network. You
must be able to access the HTTP server from your computer, and from the machines that you
create.

IMPORTANT

The RHCOS images might not change with every release of OpenShift Container
Platform. You must download images with the highest version that is less than or equal to
the version that you install. Use the image versions that match your OpenShift Container
Platform version if they are available. You require ISO and RootFS images to install
RHCOS on the hosts. RHCOS QCOW2 images are not supported for this installation
type.

Procedure

1. Log in to the mirror host.

OpenShift Container Platform 4.15 Edge computing

16

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/install/installing#install-on-disconnected-networks
https://docs.openshift.com/gitops/latest/installing_gitops/installing-openshift-gitops.html#installing-openshift-gitops
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/operators/#olm-mirror-catalog_olm-restricted-networks


1

1

1

2. Obtain the RHCOS ISO and RootFS images from mirror.openshift.com, for example:

a. Export the required image names and OpenShift Container Platform version as
environment variables:

ISO image name, for example, rhcos-4.15.1-x86_64-live.x86_64.iso

RootFS image name, for example, rhcos-4.15.1-x86_64-live-rootfs.x86_64.img

OpenShift Container Platform version, for example, 4.15.1

b. Download the required images:

Verification steps

Verify that the images downloaded successfully and are being served on the disconnected
mirror host, for example:

Example output

Additional resources

Creating a mirror registry

Mirroring images for a disconnected installation

2.5. ENABLING THE ASSISTED SERVICE

Red Hat Advanced Cluster Management (RHACM) uses the assisted service to deploy OpenShift
Container Platform clusters. The assisted service is deployed automatically when you enable the
MultiClusterHub Operator on Red Hat Advanced Cluster Management (RHACM). After that, you need

$ export ISO_IMAGE_NAME=<iso_image_name> 1

$ export ROOTFS_IMAGE_NAME=<rootfs_image_name> 1

$ export OCP_VERSION=<ocp_version> 1

$ sudo wget https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.15/${OCP_VERSION}/${ISO_IMAGE_NAME} -O 
/var/www/html/${ISO_IMAGE_NAME}

$ sudo wget https://mirror.openshift.com/pub/openshift-
v4/dependencies/rhcos/4.15/${OCP_VERSION}/${ROOTFS_IMAGE_NAME} -O 
/var/www/html/${ROOTFS_IMAGE_NAME}

$ wget http://$(hostname)/${ISO_IMAGE_NAME}

Saving to: rhcos-4.15.1-x86_64-live.x86_64.iso
rhcos-4.15.1-x86_64-live.x86_64.iso-  11%[====>    ]  10.01M  4.71MB/s

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

17

https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-mirroring-creating-registry
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installing-mirroring-installation-images


to configure the Provisioning resource to watch all namespaces and to update the 
AgentServiceConfig custom resource (CR) with references to the ISO and RootFS images that are
hosted on the mirror registry HTTP server.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have RHACM with MultiClusterHub enabled.

Procedure

1. Enable the Provisioning resource to watch all namespaces and configure mirrors for
disconnected environments. For more information, see Enabling the central infrastructure
management service.

2. Update the AgentServiceConfig CR by running the following command:

3. Add the following entry to the items.spec.osImages field in the CR:

where:

<host>

Is the fully qualified domain name (FQDN) for the target mirror registry HTTP server.

<path>

Is the path to the image on the target mirror registry.

Save and quit the editor to apply the changes.

2.6. CONFIGURING THE HUB CLUSTER TO USE A DISCONNECTED
MIRROR REGISTRY

You can configure the hub cluster to use a disconnected mirror registry for a disconnected environment.

Prerequisites

You have a disconnected hub cluster installation with Red Hat Advanced Cluster Management
(RHACM) 2.9 installed.

You have hosted the rootfs and iso images on an HTTP server. See the Additional resources
section for guidance about Mirroring the OpenShift Container Platform image repository .

$ oc edit AgentServiceConfig

- cpuArchitecture: x86_64
    openshiftVersion: "4.15"
    rootFSUrl: https://<host>/<path>/rhcos-live-rootfs.x86_64.img
    url: https://<mirror-registry>/<path>/rhcos-live.x86_64.iso

OpenShift Container Platform 4.15 Edge computing

18

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#enable-cim


1

2

3

4

WARNING

If you enable TLS for the HTTP server, you must confirm the root certificate is
signed by an authority trusted by the client and verify the trusted certificate chain
between your OpenShift Container Platform hub and managed clusters and the
HTTP server. Using a server configured with an untrusted certificate prevents the
images from being downloaded to the image creation service. Using untrusted
HTTPS servers is not supported.

Procedure

1. Create a ConfigMap containing the mirror registry config:

The ConfigMap namespace must be set to multicluster-engine.

The mirror registry’s certificate that is used when creating the mirror registry.

The configuration file for the mirror registry. The mirror registry configuration adds mirror
information to the /etc/containers/registries.conf file in the discovery image. The mirror
information is stored in the imageContentSources section of the install-config.yaml file
when the information is passed to the installation program. The Assisted Service pod that
runs on the hub cluster fetches the container images from the configured mirror registry.

The URL of the mirror registry. You must use the URL from the imageContentSources
section by running the oc adm release mirror command when you configure the mirror
registry. For more information, see the Mirroring the OpenShift Container Platform image
repository section.



apiVersion: v1
kind: ConfigMap
metadata:
  name: assisted-installer-mirror-config
  namespace: multicluster-engine 1
  labels:
    app: assisted-service
data:
  ca-bundle.crt: | 2
    -----BEGIN CERTIFICATE-----
    <certificate_contents>
    -----END CERTIFICATE-----

  registries.conf: | 3
    unqualified-search-registries = ["registry.access.redhat.com", "docker.io"]

    [[registry]]
       prefix = ""
       location = "quay.io/example-repository" 4
       mirror-by-digest-only = true

       [[registry.mirror]]
       location = "mirror1.registry.corp.com:5000/example-repository" 5

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

19



5

1

2

3

The registries defined in the registries.conf file must be scoped by repository, not by
registry. In this example, both the quay.io/example-repository and the 

This updates mirrorRegistryRef in the AgentServiceConfig custom resource, as shown below:

Example output

Set the AgentServiceConfig namespace to multicluster-engine to match the 
ConfigMap namespace

Set mirrorRegistryRef.name to match the definition specified in the related ConfigMap
CR

Set the URL for the ISO hosted on the httpd server

IMPORTANT

A valid NTP server is required during cluster installation. Ensure that a suitable NTP
server is available and can be reached from the installed clusters through the
disconnected network.

Additional resources

Mirroring the OpenShift Container Platform image repository

2.7. CONFIGURING THE HUB CLUSTER TO USE UNAUTHENTICATED

apiVersion: agent-install.openshift.io/v1beta1
kind: AgentServiceConfig
metadata:
  name: agent
  namespace: multicluster-engine 1
spec:
  databaseStorage:
    volumeName: <db_pv_name>
    accessModes:
    - ReadWriteOnce
    resources:
      requests:
        storage: <db_storage_size>
  filesystemStorage:
    volumeName: <fs_pv_name>
    accessModes:
    - ReadWriteOnce
    resources:
      requests:
        storage: <fs_storage_size>
  mirrorRegistryRef:
    name: assisted-installer-mirror-config 2
  osImages:
    - openshiftVersion: <ocp_version>
      url: <iso_url> 3

OpenShift Container Platform 4.15 Edge computing

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-mirror-repository_installing-mirroring-installation-images


2.7. CONFIGURING THE HUB CLUSTER TO USE UNAUTHENTICATED
REGISTRIES

You can configure the hub cluster to use unauthenticated registries. Unauthenticated registries does
not require authentication to access and download images.

Prerequisites

You have installed and configured a hub cluster and installed Red Hat Advanced Cluster
Management (RHACM) on the hub cluster.

You have installed the OpenShift Container Platform CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have configured an unauthenticated registry for use with the hub cluster.

Procedure

1. Update the AgentServiceConfig custom resource (CR) by running the following command:

2. Add the unauthenticatedRegistries field in the CR:

Unauthenticated registries are listed under spec.unauthenticatedRegistries in the 
AgentServiceConfig resource. Any registry on this list is not required to have an entry in the
pull secret used for the spoke cluster installation. assisted-service validates the pull secret by
making sure it contains the authentication information for every image registry used for
installation.

NOTE

Mirror registries are automatically added to the ignore list and do not need to be added
under spec.unauthenticatedRegistries. Specifying the 
PUBLIC_CONTAINER_REGISTRIES environment variable in the ConfigMap overrides
the default values with the specified value. The PUBLIC_CONTAINER_REGISTRIES
defaults are quay.io and registry.svc.ci.openshift.org.

Verification

Verify that you can access the newly added registry from the hub cluster by running the following
commands:

1. Open a debug shell prompt to the hub cluster:

$ oc edit AgentServiceConfig agent

apiVersion: agent-install.openshift.io/v1beta1
kind: AgentServiceConfig
metadata:
  name: agent
spec:
  unauthenticatedRegistries:
  - example.registry.com
  - example.registry2.com
  ...

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

21

https://quay.io
https://registry.svc.ci.openshift.org


2. Test access to the unauthenticated registry by running the following command:

where:

<unauthenticated_registry>

Is the new registry, for example, unauthenticated-image-registry.openshift-image-
registry.svc:5000.

Example output

2.8. CONFIGURING THE HUB CLUSTER WITH ARGOCD

You can configure the hub cluster with a set of ArgoCD applications that generate the required
installation and policy custom resources (CRs) for each site with GitOps Zero Touch Provisioning (ZTP).

NOTE

Red Hat Advanced Cluster Management (RHACM) uses SiteConfig CRs to generate the
Day 1 managed cluster installation CRs for ArgoCD. Each ArgoCD application can manage
a maximum of 300 SiteConfig CRs.

Prerequisites

You have a OpenShift Container Platform hub cluster with Red Hat Advanced Cluster
Management (RHACM) and Red Hat OpenShift GitOps installed.

You have extracted the reference deployment from the GitOps ZTP plugin container as
described in the "Preparing the GitOps ZTP site configuration repository" section. Extracting
the reference deployment creates the out/argocd/deployment directory referenced in the
following procedure.

Procedure

1. Prepare the ArgoCD pipeline configuration:

a. Create a Git repository with the directory structure similar to the example directory. For
more information, see "Preparing the GitOps ZTP site configuration repository".

b. Configure access to the repository using the ArgoCD UI. Under Settings configure the
following:

Repositories - Add the connection information. The URL must end in .git, for example, 
https://repo.example.com/repo.git and credentials.

Certificates - Add the public certificate for the repository, if needed.

c. Modify the two ArgoCD applications, out/argocd/deployment/clusters-app.yaml and 
out/argocd/deployment/policies-app.yaml, based on your Git repository:

$ oc debug node/<node_name>

sh-4.4# podman login -u kubeadmin -p $(oc whoami -t) <unauthenticated_registry>

Login Succeeded!

OpenShift Container Platform 4.15 Edge computing

22

https://repo.example.com/repo.git


Update the URL to point to the Git repository. The URL ends with .git, for example, 
https://repo.example.com/repo.git.

The targetRevision indicates which Git repository branch to monitor.

path specifies the path to the SiteConfig and PolicyGenTemplate CRs, respectively.

2. To install the GitOps ZTP plugin, patch the ArgoCD instance in the hub cluster by using the
patch file that you previously extracted into the out/argocd/deployment/ directory. Run the
following command:

3. In RHACM 2.7 and later, the multicluster engine enables the cluster-proxy-addon feature by
default. Apply the following patch to disable the cluster-proxy-addon feature and remove the
relevant hub cluster and managed pods that are responsible for this add-on. Run the following
command:

4. Apply the pipeline configuration to your hub cluster by running the following command:

2.9. PREPARING THE GITOPS ZTP SITE CONFIGURATION
REPOSITORY

Before you can use the GitOps Zero Touch Provisioning (ZTP) pipeline, you need to prepare the Git
repository to host the site configuration data.

Prerequisites

You have configured the hub cluster GitOps applications for generating the required installation
and policy custom resources (CRs).

You have deployed the managed clusters using GitOps ZTP.

Procedure

1. Create a directory structure with separate paths for the SiteConfig and PolicyGenTemplate
CRs.

NOTE

Keep SiteConfig and PolicyGenTemplate CRs in separate directories. Both the 
SiteConfig and PolicyGenTemplate directories must contain a 
kustomization.yaml file that explicitly includes the files in that directory.

2. Export the argocd directory from the ztp-site-generate container image using the following
commands:

$ oc patch argocd openshift-gitops \
-n openshift-gitops --type=merge \
--patch-file out/argocd/deployment/argocd-openshift-gitops-patch.json

$ oc patch multiclusterengines.multicluster.openshift.io multiclusterengine --type=merge --
patch-file out/argocd/deployment/disable-cluster-proxy-addon.json

$ oc apply -k out/argocd/deployment

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

23

https://repo.example.com/repo.git


3. Check that the out directory contains the following subdirectories:

out/extra-manifest contains the source CR files that SiteConfig uses to generate extra
manifest configMap.

out/source-crs contains the source CR files that PolicyGenTemplate uses to generate the
Red Hat Advanced Cluster Management (RHACM) policies.

out/argocd/deployment contains patches and YAML files to apply on the hub cluster for
use in the next step of this procedure.

out/argocd/example contains the examples for SiteConfig and PolicyGenTemplate files
that represent the recommended configuration.

4. Copy the out/source-crs folder and contents to the PolicyGentemplate directory.

5. The out/extra-manifests directory contains the reference manifests for a RAN DU cluster. Copy
the out/extra-manifests directory into the SiteConfig folder. This directory should contain CRs
from the ztp-site-generate container only. Do not add user-provided CRs here. If you want to
work with user-provided CRs you must create another directory for that content. For example:

6. Commit the directory structure and the kustomization.yaml files and push to your Git
repository. The initial push to Git should include the kustomization.yaml files.

You can use the directory structure under out/argocd/example as a reference for the structure and
content of your Git repository. That structure includes SiteConfig and PolicyGenTemplate reference
CRs for single-node, three-node, and standard clusters. Remove references to cluster types that you are
not using.

For all cluster types, you must:

Add the source-crs subdirectory to the policygentemplate directory.

Add the extra-manifests directory to the siteconfig directory.

The following example describes a set of CRs for a network of single-node clusters:

$ podman pull registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.15

$ mkdir -p ./out

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.15 extract /home/ztp --tar | tar x -C ./out

example/
  ├── policygentemplates
  │   ├── kustomization.yaml
  │   └── source-crs/
  └── siteconfig
        ├── extra-manifests
        └── kustomization.yaml

example/
  ├── policygentemplates
  │   ├── common-ranGen.yaml

OpenShift Container Platform 4.15 Edge computing

24



1

2

Contains reference manifests from the ztp-container.

Contains custom manifests.

2.9.1. Preparing the GitOps ZTP site configuration repository for version
independence

You can use GitOps ZTP to manage source custom resources (CRs) for managed clusters that are
running different versions of OpenShift Container Platform. This means that the version of OpenShift
Container Platform running on the hub cluster can be independent of the version running on the
managed clusters.

Procedure

1. Create a directory structure with separate paths for the SiteConfig and PolicyGenTemplate
CRs.

2. Within the PolicyGenTemplate directory, create a directory for each OpenShift Container
Platform version you want to make available. For each version, create the following resources:

kustomization.yaml file that explicitly includes the files in that directory

source-crs directory to contain reference CR configuration files from the ztp-site-
generate container
If you want to work with user-provided CRs, you must create a separate directory for them.

3. In the /siteconfig directory, create a subdirectory for each OpenShift Container Platform
version you want to make available. For each version, create at least one directory for reference
CRs to be copied from the container. There is no restriction on the naming of directories or on
the number of reference directories. If you want to work with custom manifests, you must create
a separate directory for them.
The following example describes a structure using user-provided manifests and CRs for
different versions of OpenShift Container Platform:

  │   ├── example-sno-site.yaml
  │   ├── group-du-sno-ranGen.yaml
  │   ├── group-du-sno-validator-ranGen.yaml
  │   ├── kustomization.yaml
  │   ├── source-crs/
  │   └── ns.yaml
  └── siteconfig
        ├── example-sno.yaml
        ├── extra-manifests/ 1
        ├── custom-manifests/ 2
        ├── KlusterletAddonConfigOverride.yaml
        └── kustomization.yaml

├── policygentemplates
│   ├── kustomization.yaml 1
│   ├── version_4.13 2
│   │   ├── common-ranGen.yaml
│   │   ├── group-du-sno-ranGen.yaml
│   │   ├── group-du-sno-validator-ranGen.yaml
│   │   ├── helix56-v413.yaml

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

25



1

2 7

3 8

4 9

5 10

6 11

12 14

13 15

Create a top-level kustomization YAML file.

Create the version-specific directories within the custom /policygentemplates directory.

Create a kustomization.yaml file for each version.

Create a source-crs directory for each version to contain reference CRs from the ztp-
site-generate container.

Create the reference-crs directory for policy CRs that are extracted from the ZTP
container.

Optional: Create a custom-crs directory for user-provided CRs.

Create a directory within the custom /siteconfig directory to contain extra manifests from
the ztp-site-generate container.

Create a folder to hold user-provided manifests.

NOTE

│   │   ├── kustomization.yaml 3
│   │   ├── ns.yaml
│   │   └── source-crs/ 4
│   │      └── reference-crs/ 5
│   │      └── custom-crs/ 6
│   └── version_4.14 7
│       ├── common-ranGen.yaml
│       ├── group-du-sno-ranGen.yaml
│       ├── group-du-sno-validator-ranGen.yaml
│       ├── helix56-v414.yaml
│       ├── kustomization.yaml 8
│       ├── ns.yaml
│       └── source-crs/ 9
│         └── reference-crs/ 10
│         └── custom-crs/ 11
└── siteconfig
    ├── kustomization.yaml
    ├── version_4.13
    │   ├── helix56-v413.yaml
    │   ├── kustomization.yaml
    │   ├── extra-manifest/ 12
    │   └── custom-manifest/ 13
    └── version_4.14
        ├── helix57-v414.yaml
        ├── kustomization.yaml
        ├── extra-manifest/ 14
        └── custom-manifest/ 15

OpenShift Container Platform 4.15 Edge computing

26



1

2

1

2

NOTE

In the previous example, each version subdirectory in the custom /siteconfig
directory contains two further subdirectories, one containing the reference
manifests copied from the container, the other for custom manifests that you
provide. The names assigned to those directories are examples. If you use user-
provided CRs, the last directory listed under extraManifests.searchPaths in the 
SiteConfig CR must be the directory containing user-provided CRs.

4. Edit the SiteConfig CR to include the search paths of any directories you have created. The
first directory that is listed under extraManifests.searchPaths must be the directory containing
the reference manifests. Consider the order in which the directories are listed. In cases where
directories contain files with the same name, the file in the final directory takes precedence.

Example SiteConfig CR

The directory containing the reference manifests must be listed first under 
extraManifests.searchPaths.

If you are using user-provided CRs, the last directory listed under 
extraManifests.searchPaths in the SiteConfig CR must be the directory containing those
user-provided CRs.

5. Edit the top-level kustomization.yaml file to control which OpenShift Container Platform
versions are active. The following is an example of a kustomization.yaml file at the top level:

Activate version 4.13.

Use comments to deactivate a version.

extraManifests:
    searchPaths:
    - extra-manifest/ 1
    - custom-manifest/ 2

resources:
- version_4.13 1
#- version_4.14 2

CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP

27



CHAPTER 3. UPDATING GITOPS ZTP
You can update the GitOps Zero Touch Provisioning (ZTP) infrastructure independently from the hub
cluster, Red Hat Advanced Cluster Management (RHACM), and the managed OpenShift Container
Platform clusters.

NOTE

You can update the Red Hat OpenShift GitOps Operator when new versions become
available. When updating the GitOps ZTP plugin, review the updated files in the
reference configuration and ensure that the changes meet your requirements.

3.1. OVERVIEW OF THE GITOPS ZTP UPDATE PROCESS

You can update GitOps Zero Touch Provisioning (ZTP) for a fully operational hub cluster running an
earlier version of the GitOps ZTP infrastructure. The update process avoids impact on managed
clusters.

NOTE

Any changes to policy settings, including adding recommended content, results in
updated polices that must be rolled out to the managed clusters and reconciled.

At a high level, the strategy for updating the GitOps ZTP infrastructure is as follows:

1. Label all existing clusters with the ztp-done label.

2. Stop the ArgoCD applications.

3. Install the new GitOps ZTP tools.

4. Update required content and optional changes in the Git repository.

5. Update and restart the application configuration.

3.2. PREPARING FOR THE UPGRADE

Use the following procedure to prepare your site for the GitOps Zero Touch Provisioning (ZTP)
upgrade.

Procedure

1. Get the latest version of the GitOps ZTP container that has the custom resources (CRs) used to
configure Red Hat OpenShift GitOps for use with GitOps ZTP.

2. Extract the argocd/deployment directory by using the following commands:

The /update directory contains the following subdirectories:

$ mkdir -p ./update

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.15 extract /home/ztp --tar | tar x -C ./update

OpenShift Container Platform 4.15 Edge computing

28



update/extra-manifest: contains the source CR files that the SiteConfig CR uses to
generate the extra manifest configMap.

update/source-crs: contains the source CR files that the PolicyGenTemplate CR uses to
generate the Red Hat Advanced Cluster Management (RHACM) policies.

update/argocd/deployment: contains patches and YAML files to apply on the hub cluster
for use in the next step of this procedure.

update/argocd/example: contains example SiteConfig and PolicyGenTemplate files that
represent the recommended configuration.

3. Update the clusters-app.yaml and policies-app.yaml files to reflect the name of your
applications and the URL, branch, and path for your Git repository.
If the upgrade includes changes that results in obsolete policies, the obsolete policies should be
removed prior to performing the upgrade.

4. Diff the changes between the configuration and deployment source CRs in the /update folder
and Git repo where you manage your fleet site CRs. Apply and push the required changes to
your site repository.

IMPORTANT

When you update GitOps ZTP to the latest version, you must apply the changes
from the update/argocd/deployment directory to your site repository. Do not
use older versions of the argocd/deployment/ files.

3.3. LABELING THE EXISTING CLUSTERS

To ensure that existing clusters remain untouched by the tool updates, label all existing managed
clusters with the ztp-done label.

NOTE

This procedure only applies when updating clusters that were not provisioned with
Topology Aware Lifecycle Manager (TALM). Clusters that you provision with TALM are
automatically labeled with ztp-done.

Procedure

1. Find a label selector that lists the managed clusters that were deployed with GitOps Zero Touch
Provisioning (ZTP), such as local-cluster!=true:

2. Ensure that the resulting list contains all the managed clusters that were deployed with GitOps
ZTP, and then use that selector to add the ztp-done label:

3.4. STOPPING THE EXISTING GITOPS ZTP APPLICATIONS

Removing the existing applications ensures that any changes to existing content in the Git repository

$ oc get managedcluster -l 'local-cluster!=true'

$ oc label managedcluster -l 'local-cluster!=true' ztp-done=

CHAPTER 3. UPDATING GITOPS ZTP

29



Removing the existing applications ensures that any changes to existing content in the Git repository
are not rolled out until the new version of the tools is available.

Use the application files from the deployment directory. If you used custom names for the applications,
update the names in these files first.

Procedure

1. Perform a non-cascaded delete on the clusters application to leave all generated resources in
place:

2. Perform a cascaded delete on the policies application to remove all previous policies:

3.5. REQUIRED CHANGES TO THE GIT REPOSITORY

When upgrading the ztp-site-generate container from an earlier release of GitOps Zero Touch
Provisioning (ZTP) to 4.10 or later, there are additional requirements for the contents of the Git
repository. Existing content in the repository must be updated to reflect these changes.

Make required changes to PolicyGenTemplate files:
All PolicyGenTemplate files must be created in a Namespace prefixed with ztp. This ensures
that the GitOps ZTP application is able to manage the policy CRs generated by GitOps ZTP
without conflicting with the way Red Hat Advanced Cluster Management (RHACM) manages
the policies internally.

Add the kustomization.yaml file to the repository:
All SiteConfig and PolicyGenTemplate CRs must be included in a kustomization.yaml file
under their respective directory trees. For example:

NOTE

$ oc delete -f update/argocd/deployment/clusters-app.yaml

$ oc patch -f policies-app.yaml -p '{"metadata": {"finalizers": ["resources-
finalizer.argocd.argoproj.io"]}}' --type merge

$ oc delete -f update/argocd/deployment/policies-app.yaml

├── policygentemplates
│   ├── site1-ns.yaml
│   ├── site1.yaml
│   ├── site2-ns.yaml
│   ├── site2.yaml
│   ├── common-ns.yaml
│   ├── common-ranGen.yaml
│   ├── group-du-sno-ranGen-ns.yaml
│   ├── group-du-sno-ranGen.yaml
│   └── kustomization.yaml
└── siteconfig
    ├── site1.yaml
    ├── site2.yaml
    └── kustomization.yaml

OpenShift Container Platform 4.15 Edge computing

30



NOTE

The files listed in the generator sections must contain either SiteConfig or 
PolicyGenTemplate CRs only. If your existing YAML files contain other CRs, for
example, Namespace, these other CRs must be pulled out into separate files and
listed in the resources section.

The PolicyGenTemplate kustomization file must contain all PolicyGenTemplate YAML files in
the generator section and Namespace CRs in the resources section. For example:

The SiteConfig kustomization file must contain all SiteConfig YAML files in the generator
section and any other CRs in the resources:

Remove the pre-sync.yaml and post-sync.yaml files.
In OpenShift Container Platform 4.10 and later, the pre-sync.yaml and post-sync.yaml files
are no longer required. The update/deployment/kustomization.yaml CR manages the policies
deployment on the hub cluster.

NOTE

There is a set of pre-sync.yaml and post-sync.yaml files under both the 
SiteConfig and PolicyGenTemplate trees.

Review and incorporate recommended changes
Each release may include additional recommended changes to the configuration applied to
deployed clusters. Typically these changes result in lower CPU use by the OpenShift platform,
additional features, or improved tuning of the platform.

Review the reference SiteConfig and PolicyGenTemplate CRs applicable to the types of
cluster in your network. These examples can be found in the argocd/example directory
extracted from the GitOps ZTP container.

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

generators:
- common-ranGen.yaml
- group-du-sno-ranGen.yaml
- site1.yaml
- site2.yaml

resources:
- common-ns.yaml
- group-du-sno-ranGen-ns.yaml
- site1-ns.yaml
- site2-ns.yaml

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization

generators:
- site1.yaml
- site2.yaml

CHAPTER 3. UPDATING GITOPS ZTP

31



3.6. INSTALLING THE NEW GITOPS ZTP APPLICATIONS

Using the extracted argocd/deployment directory, and after ensuring that the applications point to
your site Git repository, apply the full contents of the deployment directory. Applying the full contents
of the directory ensures that all necessary resources for the applications are correctly configured.

Procedure

1. To install the GitOps ZTP plugin, patch the ArgoCD instance in the hub cluster by using the
patch file that you previously extracted into the out/argocd/deployment/ directory. Run the
following command:

2. In RHACM 2.7 and later, the multicluster engine enables the cluster-proxy-addon feature by
default. Apply the following patch to disable the cluster-proxy-addon feature and remove the
relevant hub cluster and managed pods that are responsible for this add-on. Run the following
command:

3. Apply the pipeline configuration to your hub cluster by running the following command:

3.7. ROLLING OUT THE GITOPS ZTP CONFIGURATION CHANGES

If any configuration changes were included in the upgrade due to implementing recommended changes,
the upgrade process results in a set of policy CRs on the hub cluster in the Non-Compliant state. With
the GitOps Zero Touch Provisioning (ZTP) version 4.10 and later ztp-site-generate container, these
policies are set to inform mode and are not pushed to the managed clusters without an additional step
by the user. This ensures that potentially disruptive changes to the clusters can be managed in terms of
when the changes are made, for example, during a maintenance window, and how many clusters are
updated concurrently.

To roll out the changes, create one or more ClusterGroupUpgrade CRs as detailed in the TALM
documentation. The CR must contain the list of Non-Compliant policies that you want to push out to
the managed clusters as well as a list or selector of which clusters should be included in the update.

Additional resources

For information about the Topology Aware Lifecycle Manager (TALM), see About the Topology
Aware Lifecycle Manager configuration.

For information about creating ClusterGroupUpgrade CRs, see About the auto-created
ClusterGroupUpgrade CR for ZTP.

$ oc patch argocd openshift-gitops \
-n openshift-gitops --type=merge \
--patch-file out/argocd/deployment/argocd-openshift-gitops-patch.json

$ oc patch multiclusterengines.multicluster.openshift.io multiclusterengine --type=merge --
patch-file out/argocd/deployment/disable-cluster-proxy-addon.json

$ oc apply -k out/argocd/deployment

OpenShift Container Platform 4.15 Edge computing

32



CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH
RHACM AND SITECONFIG RESOURCES

You can provision OpenShift Container Platform clusters at scale with Red Hat Advanced Cluster
Management (RHACM) using the assisted service and the GitOps plugin policy generator with core-
reduction technology enabled. The GitOps Zero Touch Provisioning (ZTP) pipeline performs the cluster
installations. GitOps ZTP can be used in a disconnected environment.

4.1. GITOPS ZTP AND TOPOLOGY AWARE LIFECYCLE MANAGER

GitOps Zero Touch Provisioning (ZTP) generates installation and configuration CRs from manifests
stored in Git. These artifacts are applied to a centralized hub cluster where Red Hat Advanced Cluster
Management (RHACM), the assisted service, and the Topology Aware Lifecycle Manager (TALM) use
the CRs to install and configure the managed cluster. The configuration phase of the GitOps ZTP
pipeline uses the TALM to orchestrate the application of the configuration CRs to the cluster. There are
several key integration points between GitOps ZTP and the TALM.

Inform policies

By default, GitOps ZTP creates all policies with a remediation action of inform. These policies cause
RHACM to report on compliance status of clusters relevant to the policies but does not apply the
desired configuration. During the GitOps ZTP process, after OpenShift installation, the TALM steps
through the created inform policies and enforces them on the target managed cluster(s). This
applies the configuration to the managed cluster. Outside of the GitOps ZTP phase of the cluster
lifecycle, this allows you to change policies without the risk of immediately rolling those changes out
to affected managed clusters. You can control the timing and the set of remediated clusters by using
TALM.

Automatic creation of ClusterGroupUpgrade CRs

To automate the initial configuration of newly deployed clusters, TALM monitors the state of all 
ManagedCluster CRs on the hub cluster. Any ManagedCluster CR that does not have a ztp-done
label applied, including newly created ManagedCluster CRs, causes the TALM to automatically
create a ClusterGroupUpgrade CR with the following characteristics:

The ClusterGroupUpgrade CR is created and enabled in the ztp-install namespace.

ClusterGroupUpgrade CR has the same name as the ManagedCluster CR.

The cluster selector includes only the cluster associated with that ManagedCluster CR.

The set of managed policies includes all policies that RHACM has bound to the cluster at the
time the ClusterGroupUpgrade is created.

Pre-caching is disabled.

Timeout set to 4 hours (240 minutes).

The automatic creation of an enabled ClusterGroupUpgrade ensures that initial zero-touch
deployment of clusters proceeds without the need for user intervention. Additionally, the automatic
creation of a ClusterGroupUpgrade CR for any ManagedCluster without the ztp-done label allows
a failed GitOps ZTP installation to be restarted by simply deleting the ClusterGroupUpgrade CR for
the cluster.

Waves

Each policy generated from a PolicyGenTemplate CR includes a ztp-deploy-wave annotation. This
annotation is based on the same annotation from each CR which is included in that policy. The wave

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

33



annotation is used to order the policies in the auto-generated ClusterGroupUpgrade CR. The wave
annotation is not used other than for the auto-generated ClusterGroupUpgrade CR.

NOTE

All CRs in the same policy must have the same setting for the ztp-deploy-wave
annotation. The default value of this annotation for each CR can be overridden in the 
PolicyGenTemplate. The wave annotation in the source CR is used for determining
and setting the policy wave annotation. This annotation is removed from each built CR
which is included in the generated policy at runtime.

The TALM applies the configuration policies in the order specified by the wave annotations. The
TALM waits for each policy to be compliant before moving to the next policy. It is important to
ensure that the wave annotation for each CR takes into account any prerequisites for those CRs to
be applied to the cluster. For example, an Operator must be installed before or concurrently with the
configuration for the Operator. Similarly, the CatalogSource for an Operator must be installed in a
wave before or concurrently with the Operator Subscription. The default wave value for each CR
takes these prerequisites into account.

Multiple CRs and policies can share the same wave number. Having fewer policies can result in faster
deployments and lower CPU usage. It is a best practice to group many CRs into relatively few waves.

To check the default wave value in each source CR, run the following command against the out/source-
crs directory that is extracted from the ztp-site-generate container image:

Phase labels

The ClusterGroupUpgrade CR is automatically created and includes directives to annotate the 
ManagedCluster CR with labels at the start and end of the GitOps ZTP process.
When GitOps ZTP configuration postinstallation commences, the ManagedCluster has the ztp-
running label applied. When all policies are remediated to the cluster and are fully compliant, these
directives cause the TALM to remove the ztp-running label and apply the ztp-done label.

For deployments that make use of the informDuValidator policy, the ztp-done label is applied when
the cluster is fully ready for deployment of applications. This includes all reconciliation and resulting
effects of the GitOps ZTP applied configuration CRs. The ztp-done label affects automatic 
ClusterGroupUpgrade CR creation by TALM. Do not manipulate this label after the initial GitOps
ZTP installation of the cluster.

Linked CRs

The automatically created ClusterGroupUpgrade CR has the owner reference set as the 
ManagedCluster from which it was derived. This reference ensures that deleting the 
ManagedCluster CR causes the instance of the ClusterGroupUpgrade to be deleted along with any
supporting resources.

4.2. OVERVIEW OF DEPLOYING MANAGED CLUSTERS WITH GITOPS
ZTP

Red Hat Advanced Cluster Management (RHACM) uses GitOps Zero Touch Provisioning (ZTP) to
deploy single-node OpenShift Container Platform clusters, three-node clusters, and standard clusters.
You manage site configuration data as OpenShift Container Platform custom resources (CRs) in a Git

$ grep -r "ztp-deploy-wave" out/source-crs

OpenShift Container Platform 4.15 Edge computing

34



repository. GitOps ZTP uses a declarative GitOps approach for a develop once, deploy anywhere model
to deploy the managed clusters.

The deployment of the clusters includes:

Installing the host operating system (RHCOS) on a blank server

Deploying OpenShift Container Platform

Creating cluster policies and site subscriptions

Making the necessary network configurations to the server operating system

Deploying profile Operators and performing any needed software-related configuration, such
as performance profile, PTP, and SR-IOV

Overview of the managed site installation process
After you apply the managed site custom resources (CRs) on the hub cluster, the following actions
happen automatically:

1. A Discovery image ISO file is generated and booted on the target host.

2. When the ISO file successfully boots on the target host it reports the host hardware information
to RHACM.

3. After all hosts are discovered, OpenShift Container Platform is installed.

4. When OpenShift Container Platform finishes installing, the hub installs the klusterlet service on
the target cluster.

5. The requested add-on services are installed on the target cluster.

The Discovery image ISO process is complete when the Agent CR for the managed cluster is created on
the hub cluster.

IMPORTANT

The target bare-metal host must meet the networking, firmware, and hardware
requirements listed in Recommended single-node OpenShift cluster configuration for
vDU application workloads.

4.3. CREATING THE MANAGED BARE-METAL HOST SECRETS

Add the required Secret custom resources (CRs) for the managed bare-metal host to the hub cluster.
You need a secret for the GitOps Zero Touch Provisioning (ZTP) pipeline to access the Baseboard
Management Controller (BMC) and a secret for the assisted installer service to pull cluster installation
images from the registry.

NOTE

The secrets are referenced from the SiteConfig CR by name. The namespace must
match the SiteConfig namespace.

Procedure

1. Create a YAML secret file containing credentials for the host Baseboard Management

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

35



1

2

3

4

1. Create a YAML secret file containing credentials for the host Baseboard Management
Controller (BMC) and a pull secret required for installing OpenShift and all add-on cluster
Operators:

a. Save the following YAML as the file example-sno-secret.yaml:

Must match the namespace configured in the related SiteConfig CR

Base64-encoded values for password and username

Must match the namespace configured in the related SiteConfig CR

Base64-encoded pull secret

2. Add the relative path to example-sno-secret.yaml to the kustomization.yaml file that you use
to install the cluster.

4.4. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR
INSTALLATIONS USING GITOPS ZTP

The GitOps Zero Touch Provisioning (ZTP) workflow uses the Discovery ISO as part of the OpenShift
Container Platform installation process on managed bare-metal hosts. You can edit the InfraEnv
resource to specify kernel arguments for the Discovery ISO. This is useful for cluster installations with
specific environmental requirements. For example, configure the rd.net.timeout.carrier kernel
argument for the Discovery ISO to facilitate static networking for the cluster or to receive a DHCP
address before downloading the root file system during installation.

NOTE

In OpenShift Container Platform 4.15, you can only add kernel arguments. You can not
replace or delete kernel arguments.

Prerequisites

apiVersion: v1
kind: Secret
metadata:
  name: example-sno-bmc-secret
  namespace: example-sno 1
data: 2
  password: <base64_password>
  username: <base64_username>
type: Opaque
---
apiVersion: v1
kind: Secret
metadata:
  name: pull-secret
  namespace: example-sno  3
data:
  .dockerconfigjson: <pull_secret> 4
type: kubernetes.io/dockerconfigjson

OpenShift Container Platform 4.15 Edge computing

36



1

2

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Create the InfraEnv CR and edit the spec.kernelArguments specification to configure kernel
arguments.

a. Save the following YAML in an InfraEnv-example.yaml file:

NOTE

The InfraEnv CR in this example uses template syntax such as {{ 
.Cluster.ClusterName }} that is populated based on values in the 
SiteConfig CR. The SiteConfig CR automatically populates values for these
templates during deployment. Do not edit the templates manually.

Specify the append operation to add a kernel argument.

Specify the kernel argument you want to configure. This example configures the audit
kernel argument and the trace kernel argument.

2. Commit the InfraEnv-example.yaml CR to the same location in your Git repository that has
the SiteConfig CR and push your changes. The following example shows a sample Git
repository structure:

apiVersion: agent-install.openshift.io/v1beta1
kind: InfraEnv
metadata:
  annotations:
    argocd.argoproj.io/sync-wave: "1"
  name: "{{ .Cluster.ClusterName }}"
  namespace: "{{ .Cluster.ClusterName }}"
spec:
  clusterRef:
    name: "{{ .Cluster.ClusterName }}"
    namespace: "{{ .Cluster.ClusterName }}"
  kernelArguments:
    - operation: append 1
      value: audit=0 2
    - operation: append
      value: trace=1
  sshAuthorizedKey: "{{ .Site.SshPublicKey }}"
  proxy: "{{ .Cluster.ProxySettings }}"
  pullSecretRef:
    name: "{{ .Site.PullSecretRef.Name }}"
  ignitionConfigOverride: "{{ .Cluster.IgnitionConfigOverride }}"
  nmStateConfigLabelSelector:
    matchLabels:
      nmstate-label: "{{ .Cluster.ClusterName }}"
  additionalNTPSources: "{{ .Cluster.AdditionalNTPSources }}"

~/example-ztp/install

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

37



3. Edit the spec.clusters.crTemplates specification in the SiteConfig CR to reference the 
InfraEnv-example.yaml CR in your Git repository:

When you are ready to deploy your cluster by committing and pushing the SiteConfig CR, the
build pipeline uses the custom InfraEnv-example CR in your Git repository to configure the
infrastructure environment, including the custom kernel arguments.

Verification

To verify that the kernel arguments are applied, after the Discovery image verifies that OpenShift
Container Platform is ready for installation, you can SSH to the target host before the installation
process begins. At that point, you can view the kernel arguments for the Discovery ISO in the 
/proc/cmdline file.

1. Begin an SSH session with the target host:

2. View the system’s kernel arguments by using the following command:

4.5. DEPLOYING A MANAGED CLUSTER WITH SITECONFIG AND
GITOPS ZTP

Use the following procedure to create a SiteConfig custom resource (CR) and related files and initiate
the GitOps Zero Touch Provisioning (ZTP) cluster deployment.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You configured the hub cluster for generating the required installation and policy CRs.

You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and you must configure it as a source
repository for the ArgoCD application. See "Preparing the GitOps ZTP site configuration
repository" for more information.

NOTE

          └── site-install
               ├── siteconfig-example.yaml
               ├── InfraEnv-example.yaml
               ...

clusters:
  crTemplates:
    InfraEnv: "InfraEnv-example.yaml"

$ ssh -i /path/to/privatekey core@<host_name>

$ cat /proc/cmdline

OpenShift Container Platform 4.15 Edge computing

38



NOTE

When you create the source repository, ensure that you patch the ArgoCD
application with the argocd/deployment/argocd-openshift-gitops-patch.json
patch-file that you extract from the ztp-site-generate container. See
"Configuring the hub cluster with ArgoCD".

To be ready for provisioning managed clusters, you require the following for each bare-metal
host:

Network connectivity

Your network requires DNS. Managed cluster hosts should be reachable from the hub
cluster. Ensure that Layer 3 connectivity exists between the hub cluster and the managed
cluster host.

Baseboard Management Controller (BMC) details

GitOps ZTP uses BMC username and password details to connect to the BMC during cluster
installation. The GitOps ZTP plugin manages the ManagedCluster CRs on the hub cluster
based on the SiteConfig CR in your site Git repo. You create individual BMCSecret CRs for
each host manually.

Procedure

1. Create the required managed cluster secrets on the hub cluster. These resources must be in a
namespace with a name matching the cluster name. For example, in 
out/argocd/example/siteconfig/example-sno.yaml, the cluster name and namespace is 
example-sno.

a. Export the cluster namespace by running the following command:

b. Create the namespace:

2. Create pull secret and BMC Secret CRs for the managed cluster. The pull secret must contain
all the credentials necessary for installing OpenShift Container Platform and all required
Operators. See "Creating the managed bare-metal host secrets" for more information.

NOTE

The secrets are referenced from the SiteConfig custom resource (CR) by name.
The namespace must match the SiteConfig namespace.

3. Create a SiteConfig CR for your cluster in your local clone of the Git repository:

a. Choose the appropriate example for your CR from the out/argocd/example/siteconfig/
folder. The folder includes example files for single node, three-node, and standard clusters:

example-sno.yaml

example-3node.yaml

example-standard.yaml

$ export CLUSTERNS=example-sno

$ oc create namespace $CLUSTERNS

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

39



b. Change the cluster and host details in the example file to match the type of cluster you
want. For example:

Example single-node OpenShift SiteConfig CR

# example-node1-bmh-secret & assisted-deployment-pull-secret need to be created 
under same namespace example-sno
---
apiVersion: ran.openshift.io/v2
kind: SiteConfig
metadata:
  name: "example-sno"
  namespace: "example-sno"
spec:
  baseDomain: "example.com"
  pullSecretRef:
    name: "assisted-deployment-pull-secret"
  clusterImageSetNameRef: "openshift-4.10"
  sshPublicKey: "ssh-rsa AAAA..."
  clusters:
    - clusterName: "example-sno"
      networkType: "OVNKubernetes"
      # installConfigOverrides is a generic way of passing install-config
      # parameters through the siteConfig.  The 'capabilities' field configures
      # the composable openshift feature.  In this 'capabilities' setting, we
      # remove all but the marketplace component from the optional set of
      # components.
      # Notes:
      # - OperatorLifecycleManager is needed for 4.15 and later
      # - NodeTuning is needed for 4.13 and later, not for 4.12 and earlier
      installConfigOverrides: "{\"capabilities\":{\"baselineCapabilitySet\": \"None\", 
\"additionalEnabledCapabilities\": [ \"OperatorLifecycleManager\", \"NodeTuning\" ] }}"
      # It is strongly recommended to include crun manifests as part of the additional 
install-time manifests for 4.13+.
      # The crun manifests can be obtained from source-crs/optional-extra-manifest/ and 
added to the git repo ie.sno-extra-manifest.
      # extraManifestPath: sno-extra-manifest
      clusterLabels:
        # These example cluster labels correspond to the bindingRules in the 
PolicyGenTemplate examples
        du-profile: "latest"
        # These example cluster labels correspond to the bindingRules in the 
PolicyGenTemplate examples in ../policygentemplates:
        # ../policygentemplates/common-ranGen.yaml will apply to all clusters with 
'common: true'
        common: true
        # ../policygentemplates/group-du-sno-ranGen.yaml will apply to all clusters with 
'group-du-sno: ""'
        group-du-sno: ""
        # ../policygentemplates/example-sno-site.yaml will apply to all clusters with 'sites: 
"example-sno"'
        # Normally this should match or contain the cluster name so it only applies to a 
single cluster
        sites: "example-sno"
      clusterNetwork:
        - cidr: 1001:1::/48

OpenShift Container Platform 4.15 Edge computing

40



          hostPrefix: 64
      machineNetwork:
        - cidr: 1111:2222:3333:4444::/64
      serviceNetwork:
        - 1001:2::/112
      additionalNTPSources:
        - 1111:2222:3333:4444::2
      # Initiates the cluster for workload partitioning. Setting specific reserved/isolated 
CPUSets is done via PolicyTemplate
      # please see Workload Partitioning Feature for a complete guide.
      cpuPartitioningMode: AllNodes
      # Optionally; This can be used to override the KlusterletAddonConfig that is created 
for this cluster:
      #crTemplates:
      #  KlusterletAddonConfig: "KlusterletAddonConfigOverride.yaml"
      nodes:
        - hostName: "example-node1.example.com"
          role: "master"
          # Optionally; This can be used to configure desired BIOS setting on a host:
          #biosConfigRef:
          #  filePath: "example-hw.profile"
          bmcAddress: "idrac-
virtualmedia+https://[1111:2222:3333:4444::bbbb:1]/redfish/v1/Systems/System.Embedded.
1"
          bmcCredentialsName:
            name: "example-node1-bmh-secret"
          bootMACAddress: "AA:BB:CC:DD:EE:11"
          # Use UEFISecureBoot to enable secure boot
          bootMode: "UEFI"
          rootDeviceHints:
            wwn: "0x11111000000asd123"
            # example of diskPartition below is used for image registry (check 
ImageRegistry.md for more details), but it's not limited to this use case
          #        diskPartition:
          #          - device: /dev/disk/by-id/wwn-0x11111000000asd123 # match 
rootDeviceHints
          #            partitions:
          #              - mount_point: /var/imageregistry
          #                size: 102500
          #                start: 344844

          nodeNetwork:
            interfaces:
              - name: eno1
                macAddress: "AA:BB:CC:DD:EE:11"
            config:
              interfaces:
                - name: eno1
                  type: ethernet
                  state: up
                  ipv4:
                    enabled: false
                  ipv6:
                    enabled: true
                    address:
                      # For SNO sites with static IP addresses, the node-specific,

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

41



NOTE

For more information about BMC addressing, see the "Additional resources"
section.

c. You can inspect the default set of extra-manifest MachineConfig CRs in 
out/argocd/extra-manifest. It is automatically applied to the cluster when it is installed.

d. Optional: To provision additional install-time manifests on the provisioned cluster, create a
directory in your Git repository, for example, sno-extra-manifest/, and add your custom
manifest CRs to this directory. If your SiteConfig.yaml refers to this directory in the 
extraManifestPath field, any CRs in this referenced directory are appended to the default
set of extra manifests.

ENABLING THE CRUN OCI CONTAINER RUNTIME

For optimal cluster performance, enable crun for master and worker nodes in
single-node OpenShift, single-node OpenShift with additional worker nodes,
three-node OpenShift, and standard clusters.

Enable crun in a ContainerRuntimeConfig CR as an additional Day 0 install-
time manifest to avoid the cluster having to reboot.

The enable-crun-master.yaml and enable-crun-worker.yaml CR files are in
the out/source-crs/optional-extra-manifest/ folder that you can extract
from the ztp-site-generate container. For more information, see
"Customizing extra installation manifests in the GitOps ZTP pipeline".

4. Add the SiteConfig CR to the kustomization.yaml file in the generators section, similar to the
example shown in out/argocd/example/siteconfig/kustomization.yaml.

5. Commit the SiteConfig CR and associated kustomization.yaml changes in your Git repository
and push the changes.
The ArgoCD pipeline detects the changes and begins the managed cluster deployment.

Verification

                      # API and Ingress IPs should all be the same and configured on
                      # the interface
                      - ip: 1111:2222:3333:4444::aaaa:1
                        prefix-length: 64
              dns-resolver:
                config:
                  search:
                    - example.com
                  server:
                    - 1111:2222:3333:4444::2
              routes:
                config:
                  - destination: ::/0
                    next-hop-interface: eno1
                    next-hop-address: 1111:2222:3333:4444::1
                    table-id: 254

OpenShift Container Platform 4.15 Edge computing

42



1

Verify that the custom roles and labels are applied after the node is deployed:

Example output

The custom label is applied to the node.

Additional resources

Single-node OpenShift SiteConfig CR installation reference

4.5.1. Single-node OpenShift SiteConfig CR installation reference

Table 4.1. SiteConfig CR installation options for single-node OpenShift clusters

SiteConfig CR field Description

spec.cpuPartitioning
Mode

Configure workload partitioning by setting the value for cpuPartitioningMode
to AllNodes. To complete the configuration, specify the isolated and reserved
CPUs in the PerformanceProfile CR.

NOTE

Configuring workload partitioning by using the 
cpuPartitioningMode field in the SiteConfig CR is a Tech
Preview feature in OpenShift Container Platform 4.13.

metadata.name Set name to assisted-deployment-pull-secret and create the assisted-
deployment-pull-secret CR in the same namespace as the SiteConfig CR.

spec.clusterImageSe
tNameRef

Configure the image set available on the hub cluster for all the clusters in the site.
To see the list of supported versions on your hub cluster, run oc get 
clusterimagesets.

$ oc describe node example-node.example.com

Name:   example-node.example.com
Roles:  control-plane,example-label,master,worker
Labels: beta.kubernetes.io/arch=amd64
        beta.kubernetes.io/os=linux
        custom-label/parameter1=true
        kubernetes.io/arch=amd64
        kubernetes.io/hostname=cnfdf03.telco5gran.eng.rdu2.redhat.com
        kubernetes.io/os=linux
        node-role.kubernetes.io/control-plane=
        node-role.kubernetes.io/example-label= 1
        node-role.kubernetes.io/master=
        node-role.kubernetes.io/worker=
        node.openshift.io/os_id=rhcos

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

43



installConfigOverrid
es

Set the installConfigOverrides field to enable or disable optional components
prior to cluster installation.

IMPORTANT

Use the reference configuration as specified in the example 
SiteConfig CR. Adding additional components back into the
system might require additional reserved CPU capacity.

spec.clusters.cluster
ImageSetNameRef

Specifies the cluster image set used to deploy an individual cluster. If defined, it
overrides the spec.clusterImageSetNameRef at site level.

spec.clusters.cluster
Labels

Configure cluster labels to correspond to the bindingRules field in the 
PolicyGenTemplate CRs that you define. For example, 
policygentemplates/common-ranGen.yaml applies to all clusters with 
common: true set, policygentemplates/group-du-sno-ranGen.yaml
applies to all clusters with group-du-sno: "" set.

spec.clusters.crTem
plates.KlusterletAdd
onConfig

Optional. Set KlusterletAddonConfig to 
KlusterletAddonConfigOverride.yaml to override the default 
`KlusterletAddonConfig that is created for the cluster.

spec.clusters.nodes.
hostName

For single-node deployments, define a single host. For three-node deployments,
define three hosts. For standard deployments, define three hosts with role: 
master and two or more hosts defined with role: worker.

spec.clusters.nodes.
nodeLabels

Specify custom roles for your nodes in your managed clusters. These are
additional roles are not used by any OpenShift Container Platform components,
only by the user. When you add a custom role, it can be associated with a custom
machine config pool that references a specific configuration for that role. Adding
custom labels or roles during installation makes the deployment process more
effective and prevents the need for additional reboots after the installation is
complete.

spec.clusters.nodes.
automatedCleaning
Mode

Optional. Uncomment and set the value to metadata to enable the removal of
the disk’s partitioning table only, without fully wiping the disk. The default value is 
disabled.

spec.clusters.nodes.
bmcAddress

BMC address that you use to access the host. Applies to all cluster types. GitOps
ZTP supports iPXE and virtual media booting by using Redfish or IPMI protocols.
To use iPXE booting, you must use RHACM 2.8 or later. For more information
about BMC addressing, see the "Additional resources" section.

SiteConfig CR field Description

OpenShift Container Platform 4.15 Edge computing

44



spec.clusters.nodes.
bmcAddress

BMC address that you use to access the host. Applies to all cluster types. GitOps
ZTP supports iPXE and virtual media booting by using Redfish or IPMI protocols.
To use iPXE booting, you must use RHACM 2.8 or later. For more information
about BMC addressing, see the "Additional resources" section.

NOTE

In far edge Telco use cases, only virtual media is supported for
use with GitOps ZTP.

spec.clusters.nodes.
bmcCredentialsNam
e

Configure the bmh-secret CR that you separately create with the host BMC
credentials. When creating the bmh-secret CR, use the same namespace as the 
SiteConfig CR that provisions the host.

spec.clusters.nodes.
bootMode

Set the boot mode for the host to UEFI. The default value is UEFI. Use 
UEFISecureBoot to enable secure boot on the host.

spec.clusters.nodes.
rootDeviceHints

Specifies the device for deployment. Identifiers that are stable across reboots are
recommended, for example, wwn: <disk_wwn> or deviceName: 
/dev/disk/by-path/<device_path>. For a detailed list of stable identifiers, see
the "About root device hints section".

spec.clusters.nodes.
diskPartition

Optional. The provided example diskPartition is used to configure additional
disk partitions.

spec.clusters.nodes.
ignitionConfigOverri
de

Optional. Use this field to assign partitions for persistent storage. Adjust disk ID
and size to the specific hardware.

spec.clusters.nodes.
cpuset

Configure cpuset to match value that you set in the cluster 
PerformanceProfile CR spec.cpu.reserved field for workload partitioning.

spec.clusters.nodes.
nodeNetwork

Configure the network settings for the node.

spec.clusters.nodes.
nodeNetwork.config.
interfaces.ipv6

Configure the IPv6 address for the host. For single-node OpenShift clusters with
static IP addresses, the node-specific API and Ingress IPs should be the same.

SiteConfig CR field Description

Additional resources

Customizing extra installation manifests in the GitOps ZTP pipeline

Preparing the GitOps ZTP site configuration repository

Configuring the hub cluster with ArgoCD

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

45



Signalling ZTP cluster deployment completion with validator inform policies

Creating the managed bare-metal host secrets

BMC addressing

About root device hints

4.6. MONITORING MANAGED CLUSTER INSTALLATION PROGRESS

The ArgoCD pipeline uses the SiteConfig CR to generate the cluster configuration CRs and syncs it
with the hub cluster. You can monitor the progress of the synchronization in the ArgoCD dashboard.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

When the synchronization is complete, the installation generally proceeds as follows:

1. The Assisted Service Operator installs OpenShift Container Platform on the cluster. You can
monitor the progress of cluster installation from the RHACM dashboard or from the command
line by running the following commands:

a. Export the cluster name:

b. Query the AgentClusterInstall CR for the managed cluster:

c. Get the installation events for the cluster:

4.7. TROUBLESHOOTING GITOPS ZTP BY VALIDATING THE
INSTALLATION CRS

The ArgoCD pipeline uses the SiteConfig and PolicyGenTemplate custom resources (CRs) to
generate the cluster configuration CRs and Red Hat Advanced Cluster Management (RHACM) policies.
Use the following steps to troubleshoot issues that might occur during this process.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

$ export CLUSTER=<clusterName>

$ oc get agentclusterinstall -n $CLUSTER $CLUSTER -o jsonpath='{.status.conditions[?
(@.type=="Completed")]}' | jq

$ curl -sk $(oc get agentclusterinstall -n $CLUSTER $CLUSTER -o 
jsonpath='{.status.debugInfo.eventsURL}')  | jq '.[-2,-1]'

OpenShift Container Platform 4.15 Edge computing

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#bmc-addressing_ipi-install-installation-workflow
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#root-device-hints_preparing-to-install-with-agent-based-installer


Procedure

1. Check that the installation CRs were created by using the following command:

If no object is returned, use the following steps to troubleshoot the ArgoCD pipeline flow from 
SiteConfig files to the installation CRs.

2. Verify that the ManagedCluster CR was generated using the SiteConfig CR on the hub cluster:

3. If the ManagedCluster is missing, check if the clusters application failed to synchronize the
files from the Git repository to the hub cluster:

a. Check for the Status.Conditions field to view the error logs for the managed cluster. For
example, setting an invalid value for extraManifestPath: in the SiteConfig CR raises the
following error:

b. Check the Status.Sync field. If there are log errors, the Status.Sync field could indicate an 
Unknown error:

4.8. TROUBLESHOOTING GITOPS ZTP VIRTUAL MEDIA BOOTING ON
SUPERMICRO SERVERS

SuperMicro X11 servers do not support virtual media installations when the image is served using the 
https protocol. As a result, single-node OpenShift deployments for this environment fail to boot on the

$ oc get AgentClusterInstall -n <cluster_name>

$ oc get managedcluster

$ oc describe -n openshift-gitops application clusters

Status:
  Conditions:
    Last Transition Time:  2021-11-26T17:21:39Z
    Message:               rpc error: code = Unknown desc = `kustomize build 
/tmp/https___git.com/ran-sites/siteconfigs/ --enable-alpha-plugins` failed exit status 1: 
2021/11/26 17:21:40 Error could not create extra-manifest ranSite1.extra-manifest3 stat 
extra-manifest3: no such file or directory 2021/11/26 17:21:40 Error: could not build the 
entire SiteConfig defined by /tmp/kust-plugin-config-913473579: stat extra-manifest3: no 
such file or directory Error: failure in plugin configured via /tmp/kust-plugin-config-
913473579; exit status 1: exit status 1
    Type:  ComparisonError

Status:
  Sync:
    Compared To:
      Destination:
        Namespace:  clusters-sub
        Server:     https://kubernetes.default.svc
      Source:
        Path:             sites-config
        Repo URL:         https://git.com/ran-sites/siteconfigs/.git
        Target Revision:  master
    Status:               Unknown

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

47



target node. To avoid this issue, log in to the hub cluster and disable Transport Layer Security (TLS) in
the Provisioning resource. This ensures the image is not served with TLS even though the image
address uses the https scheme.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Disable TLS in the Provisioning resource by running the following command:

2. Continue the steps to deploy your single-node OpenShift cluster.

4.9. REMOVING A MANAGED CLUSTER SITE FROM THE GITOPS ZTP
PIPELINE

You can remove a managed site and the associated installation and configuration policy CRs from the
GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Remove a site and the associated CRs by removing the associated SiteConfig and 
PolicyGenTemplate files from the kustomization.yaml file.
When you run the GitOps ZTP pipeline again, the generated CRs are removed.

2. Optional: If you want to permanently remove a site, you should also remove the SiteConfig and
site-specific PolicyGenTemplate files from the Git repository.

3. Optional: If you want to remove a site temporarily, for example when redeploying a site, you can
leave the SiteConfig and site-specific PolicyGenTemplate CRs in the Git repository.

Additional resources

For information about removing a cluster, see Removing a cluster from management .

4.10. REMOVING OBSOLETE CONTENT FROM THE GITOPS ZTP
PIPELINE

If a change to the PolicyGenTemplate configuration results in obsolete policies, for example, if you
rename policies, use the following procedure to remove the obsolete policies.

Prerequisites

$ oc patch provisioning provisioning-configuration --type merge -p '{"spec":
{"disableVirtualMediaTLS": true}}'

OpenShift Container Platform 4.15 Edge computing

48

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#remove-managed-cluster


Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Remove the affected PolicyGenTemplate files from the Git repository, commit and push to
the remote repository.

2. Wait for the changes to synchronize through the application and the affected policies to be
removed from the hub cluster.

3. Add the updated PolicyGenTemplate files back to the Git repository, and then commit and
push to the remote repository.

NOTE

Removing GitOps Zero Touch Provisioning (ZTP) policies from the Git
repository, and as a result also removing them from the hub cluster, does not
affect the configuration of the managed cluster. The policy and CRs managed by
that policy remains in place on the managed cluster.

4. Optional: As an alternative, after making changes to PolicyGenTemplate CRs that result in
obsolete policies, you can remove these policies from the hub cluster manually. You can delete
policies from the RHACM console using the Governance tab or by running the following
command:

4.11. TEARING DOWN THE GITOPS ZTP PIPELINE

You can remove the ArgoCD pipeline and all generated GitOps Zero Touch Provisioning (ZTP) artifacts.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Detach all clusters from Red Hat Advanced Cluster Management (RHACM) on the hub cluster.

2. Delete the kustomization.yaml file in the deployment directory using the following command:

3. Commit and push your changes to the site repository.

$ oc delete policy -n <namespace> <policy_name>

$ oc delete -k out/argocd/deployment

CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES

49



CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH
POLICIES AND POLICYGENTEMPLATE RESOURCES

Applied policy custom resources (CRs) configure the managed clusters that you provision. You can
customize how Red Hat Advanced Cluster Management (RHACM) uses PolicyGenTemplate CRs to
generate the applied policy CRs.

5.1. ABOUT THE POLICYGENTEMPLATE CRD

The PolicyGenTemplate custom resource definition (CRD) tells the PolicyGen policy generator what
custom resources (CRs) to include in the cluster configuration, how to combine the CRs into the
generated policies, and what items in those CRs need to be updated with overlay content.

The following example shows a PolicyGenTemplate CR (common-du-ranGen.yaml) extracted from
the ztp-site-generate reference container. The common-du-ranGen.yaml file defines two Red Hat
Advanced Cluster Management (RHACM) policies. The polices manage a collection of configuration
CRs, one for each unique value of policyName in the CR. common-du-ranGen.yaml creates a single
placement binding and a placement rule to bind the policies to clusters based on the labels listed in the 
bindingRules section.

Example PolicyGenTemplate CR - common-du-ranGen.yaml

---
apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
  name: "common"
  namespace: "ztp-common"
spec:
  bindingRules:
    common: "true" 1
  sourceFiles: 2
    - fileName: SriovSubscription.yaml
      policyName: "subscriptions-policy"
    - fileName: SriovSubscriptionNS.yaml
      policyName: "subscriptions-policy"
    - fileName: SriovSubscriptionOperGroup.yaml
      policyName: "subscriptions-policy"
    - fileName: SriovOperatorStatus.yaml
      policyName: "subscriptions-policy"
    - fileName: PtpSubscription.yaml
      policyName: "subscriptions-policy"
    - fileName: PtpSubscriptionNS.yaml
      policyName: "subscriptions-policy"
    - fileName: PtpSubscriptionOperGroup.yaml
      policyName: "subscriptions-policy"
    - fileName: PtpOperatorStatus.yaml
      policyName: "subscriptions-policy"
    - fileName: ClusterLogNS.yaml
      policyName: "subscriptions-policy"
    - fileName: ClusterLogOperGroup.yaml
      policyName: "subscriptions-policy"
    - fileName: ClusterLogSubscription.yaml
      policyName: "subscriptions-policy"

OpenShift Container Platform 4.15 Edge computing

50



1

2

3

4

5

common: "true" applies the policies to all clusters with this label.

Files listed under sourceFiles create the Operator policies for installed clusters.

OperatorHub.yaml configures the OperatorHub for the disconnected registry.

DefaultCatsrc.yaml configures the catalog source for the disconnected registry.

policyName: "config-policy" configures Operator subscriptions. The OperatorHub CR disables
the default and this CR replaces redhat-operators with a CatalogSource CR that points to the
disconnected registry.

A PolicyGenTemplate CR can be constructed with any number of included CRs. Apply the following
example CR in the hub cluster to generate a policy containing a single CR:

    - fileName: ClusterLogOperatorStatus.yaml
      policyName: "subscriptions-policy"
    - fileName: StorageNS.yaml
      policyName: "subscriptions-policy"
    - fileName: StorageOperGroup.yaml
      policyName: "subscriptions-policy"
    - fileName: StorageSubscription.yaml
      policyName: "subscriptions-policy"
    - fileName: StorageOperatorStatus.yaml
      policyName: "subscriptions-policy"
    - fileName: ReduceMonitoringFootprint.yaml
      policyName: "config-policy"
    - fileName: OperatorHub.yaml 3
      policyName: "config-policy"
    - fileName: DefaultCatsrc.yaml 4
      policyName: "config-policy" 5
      metadata:
        name: redhat-operators
      spec:
        displayName: disconnected-redhat-operators
        image: registry.example.com:5000/disconnected-redhat-operators/disconnected-redhat-
operator-index:v4.9
    - fileName: DisconnectedICSP.yaml
      policyName: "config-policy"
      spec:
        repositoryDigestMirrors:
        - mirrors:
          - registry.example.com:5000
          source: registry.redhat.io

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
  name: "group-du-sno"
  namespace: "ztp-group"
spec:
  bindingRules:
    group-du-sno: ""
  mcp: "master"
  sourceFiles:

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

51



Using the source file PtpConfigSlave.yaml as an example, the file defines a PtpConfig CR. The
generated policy for the PtpConfigSlave example is named group-du-sno-config-policy. The 
PtpConfig CR defined in the generated group-du-sno-config-policy is named du-ptp-slave. The spec
defined in PtpConfigSlave.yaml is placed under du-ptp-slave along with the other spec items defined
under the source file.

The following example shows the group-du-sno-config-policy CR:

    - fileName: PtpConfigSlave.yaml
      policyName: "config-policy"
      metadata:
        name: "du-ptp-slave"
      spec:
        profile:
        - name: "slave"
          interface: "ens5f0"
          ptp4lOpts: "-2 -s --summary_interval -4"
          phc2sysOpts: "-a -r -n 24"

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
  name: group-du-ptp-config-policy
  namespace: groups-sub
  annotations:
    policy.open-cluster-management.io/categories: CM Configuration Management
    policy.open-cluster-management.io/controls: CM-2 Baseline Configuration
    policy.open-cluster-management.io/standards: NIST SP 800-53
spec:
    remediationAction: inform
    disabled: false
    policy-templates:
        - objectDefinition:
            apiVersion: policy.open-cluster-management.io/v1
            kind: ConfigurationPolicy
            metadata:
                name: group-du-ptp-config-policy-config
            spec:
                remediationAction: inform
                severity: low
                namespaceselector:
                    exclude:
                        - kube-*
                    include:
                        - '*'
                object-templates:
                    - complianceType: musthave
                      objectDefinition:
                        apiVersion: ptp.openshift.io/v1
                        kind: PtpConfig
                        metadata:
                            name: du-ptp-slave
                            namespace: openshift-ptp
                        spec:
                            recommend:
                                - match:

OpenShift Container Platform 4.15 Edge computing

52



5.2. RECOMMENDATIONS WHEN CUSTOMIZING
POLICYGENTEMPLATE CRS

Consider the following best practices when customizing site configuration PolicyGenTemplate custom
resources (CRs):

Use as few policies as are necessary. Using fewer policies requires less resources. Each additional
policy creates overhead for the hub cluster and the deployed managed cluster. CRs are
combined into policies based on the policyName field in the PolicyGenTemplate CR. CRs in
the same PolicyGenTemplate which have the same value for policyName are managed under a
single policy.

In disconnected environments, use a single catalog source for all Operators by configuring the
registry as a single index containing all Operators. Each additional CatalogSource CR on the
managed clusters increases CPU usage.

MachineConfig CRs should be included as extraManifests in the SiteConfig CR so that they
are applied during installation. This can reduce the overall time taken until the cluster is ready to
deploy applications.

PolicyGenTemplates should override the channel field to explicitly identify the desired version.
This ensures that changes in the source CR during upgrades does not update the generated
subscription.

Additional resources

For recommendations about scaling clusters with RHACM, see Performance and scalability.

NOTE

                                - nodeLabel: node-role.kubernetes.io/worker-du
                                  priority: 4
                                  profile: slave
                            profile:
                                - interface: ens5f0
                                  name: slave
                                  phc2sysOpts: -a -r -n 24
                                  ptp4lConf: |
                                    [global]
                                    #
                                    # Default Data Set
                                    #
                                    twoStepFlag 1
                                    slaveOnly 0
                                    priority1 128
                                    priority2 128
                                    domainNumber 24
                                    .....

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

53

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html/install/installing#performance-and-scalability


NOTE

When managing large numbers of spoke clusters on the hub cluster, minimize the number
of policies to reduce resource consumption.

Grouping multiple configuration CRs into a single or limited number of policies is one way
to reduce the overall number of policies on the hub cluster. When using the common,
group, and site hierarchy of policies for managing site configuration, it is especially
important to combine site-specific configuration into a single policy.

5.3. POLICYGENTEMPLATE CRS FOR RAN DEPLOYMENTS

Use PolicyGenTemplate (PGT) custom resources (CRs) to customize the configuration applied to the
cluster by using the GitOps Zero Touch Provisioning (ZTP) pipeline. The PGT CR allows you to generate
one or more policies to manage the set of configuration CRs on your fleet of clusters. The PGT
identifies the set of managed CRs, bundles them into policies, builds the policy wrapping around those
CRs, and associates the policies with clusters by using label binding rules.

The reference configuration, obtained from the GitOps ZTP container, is designed to provide a set of
critical features and node tuning settings that ensure the cluster can support the stringent performance
and resource utilization constraints typical of RAN (Radio Access Network) Distributed Unit (DU)
applications. Changes or omissions from the baseline configuration can affect feature availability,
performance, and resource utilization. Use the reference PolicyGenTemplate CRs as the basis to
create a hierarchy of configuration files tailored to your specific site requirements.

The baseline PolicyGenTemplate CRs that are defined for RAN DU cluster configuration can be
extracted from the GitOps ZTP ztp-site-generate container. See "Preparing the GitOps ZTP site
configuration repository" for further details.

The PolicyGenTemplate CRs can be found in the ./out/argocd/example/policygentemplates folder.
The reference architecture has common, group, and site-specific configuration CRs. Each 
PolicyGenTemplate CR refers to other CRs that can be found in the ./out/source-crs folder.

The PolicyGenTemplate CRs relevant to RAN cluster configuration are described below. Variants are
provided for the group PolicyGenTemplate CRs to account for differences in single-node, three-node
compact, and standard cluster configurations. Similarly, site-specific configuration variants are provided
for single-node clusters and multi-node (compact or standard) clusters. Use the group and site-specific
configuration variants that are relevant for your deployment.

Table 5.1. PolicyGenTemplate CRs for RAN deployments

PolicyGenTemplate CR Description

example-multinode-site.yaml Contains a set of CRs that get applied to multi-node
clusters. These CRs configure SR-IOV features
typical for RAN installations.

example-sno-site.yaml Contains a set of CRs that get applied to single-
node OpenShift clusters. These CRs configure SR-
IOV features typical for RAN installations.

OpenShift Container Platform 4.15 Edge computing

54



common-ranGen.yaml Contains a set of common RAN CRs that get applied
to all clusters. These CRs subscribe to a set of
operators providing cluster features typical for RAN
as well as baseline cluster tuning.

group-du-3node-ranGen.yaml Contains the RAN policies for three-node clusters
only.

group-du-sno-ranGen.yaml Contains the RAN policies for single-node clusters
only.

group-du-standard-ranGen.yaml Contains the RAN policies for standard three
control-plane clusters.

group-du-3node-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for three-node clusters.

group-du-standard-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for standard clusters.

group-du-sno-validator-ranGen.yaml PolicyGenTemplate CR used to generate the
various policies required for single-node OpenShift
clusters.

PolicyGenTemplate CR Description

Additional resources

Preparing the GitOps ZTP site configuration repository

5.4. CUSTOMIZING A MANAGED CLUSTER WITH
POLICYGENTEMPLATE CRS

Use the following procedure to customize the policies that get applied to the managed cluster that you
provision using the GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You configured the hub cluster for generating the required installation and policy CRs.

You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
Argo CD application.

Procedure

1. Create a PolicyGenTemplate CR for site-specific configuration CRs.

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

55



a. Choose the appropriate example for your CR from the 
out/argocd/example/policygentemplates folder, for example, example-sno-site.yaml or 
example-multinode-site.yaml.

b. Change the bindingRules field in the example file to match the site-specific label included
in the SiteConfig CR. In the example SiteConfig file, the site-specific label is sites: 
example-sno.

NOTE

Ensure that the labels defined in your PolicyGenTemplate bindingRules
field correspond to the labels that are defined in the related managed
clusters SiteConfig CR.

c. Change the content in the example file to match the desired configuration.

2. Optional: Create a PolicyGenTemplate CR for any common configuration CRs that apply to
the entire fleet of clusters.

a. Select the appropriate example for your CR from the 
out/argocd/example/policygentemplates folder, for example, common-ranGen.yaml.

b. Change the content in the example file to match the desired configuration.

3. Optional: Create a PolicyGenTemplate CR for any group configuration CRs that apply to the
certain groups of clusters in the fleet.
Ensure that the content of the overlaid spec files matches your desired end state. As a
reference, the out/source-crs directory contains the full list of source-crs available to be
included and overlaid by your PolicyGenTemplate templates.

NOTE

Depending on the specific requirements of your clusters, you might need more
than a single group policy per cluster type, especially considering that the
example group policies each have a single PerformancePolicy.yaml file that can
only be shared across a set of clusters if those clusters consist of identical
hardware configurations.

a. Select the appropriate example for your CR from the 
out/argocd/example/policygentemplates folder, for example, group-du-sno-
ranGen.yaml.

b. Change the content in the example file to match the desired configuration.

4. Optional. Create a validator inform policy PolicyGenTemplate CR to signal when the GitOps
ZTP installation and configuration of the deployed cluster is complete. For more information,
see "Creating a validator inform policy".

5. Define all the policy namespaces in a YAML file similar to the example 
out/argocd/example/policygentemplates/ns.yaml file.

IMPORTANT

Do not include the Namespace CR in the same file with the PolicyGenTemplate
CR.

OpenShift Container Platform 4.15 Edge computing

56



6. Add the PolicyGenTemplate CRs and Namespace CR to the kustomization.yaml file in the
generators section, similar to the example shown in 
out/argocd/example/policygentemplates/kustomization.yaml.

7. Commit the PolicyGenTemplate CRs, Namespace CR, and associated kustomization.yaml
file in your Git repository and push the changes.
The ArgoCD pipeline detects the changes and begins the managed cluster deployment. You
can push the changes to the SiteConfig CR and the PolicyGenTemplate CR simultaneously.

Additional resources

Signalling ZTP cluster deployment completion with validator inform policies

5.5. MONITORING MANAGED CLUSTER POLICY DEPLOYMENT
PROGRESS

The ArgoCD pipeline uses PolicyGenTemplate CRs in Git to generate the RHACM policies and then
sync them to the hub cluster. You can monitor the progress of the managed cluster policy
synchronization after the assisted service installs OpenShift Container Platform on the managed cluster.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. The Topology Aware Lifecycle Manager (TALM) applies the configuration policies that are
bound to the cluster.
After the cluster installation is complete and the cluster becomes Ready, a 
ClusterGroupUpgrade CR corresponding to this cluster, with a list of ordered policies defined
by the ran.openshift.io/ztp-deploy-wave annotations, is automatically created by the TALM.
The cluster’s policies are applied in the order listed in ClusterGroupUpgrade CR.

You can monitor the high-level progress of configuration policy reconciliation by using the
following commands:

Example output

2. You can monitor the detailed cluster policy compliance status by using the RHACM dashboard

$ export CLUSTER=<clusterName>

$ oc get clustergroupupgrades -n ztp-install $CLUSTER -o jsonpath='{.status.conditions[-1:]}' 
| jq

{
  "lastTransitionTime": "2022-11-09T07:28:09Z",
  "message": "Remediating non-compliant policies",
  "reason": "InProgress",
  "status": "True",
  "type": "Progressing"
}

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

57



2. You can monitor the detailed cluster policy compliance status by using the RHACM dashboard
or the command line.

a. To check policy compliance by using oc, run the following command:

Example output

b. To check policy status from the RHACM web console, perform the following actions:

i. Click Governance → Find policies.

ii. Click on a cluster policy to check it’s status.

When all of the cluster policies become compliant, GitOps ZTP installation and configuration for the
cluster is complete. The ztp-done label is added to the cluster.

In the reference configuration, the final policy that becomes compliant is the one defined in the *-du-
validator-policy policy. This policy, when compliant on a cluster, ensures that all cluster configuration,
Operator installation, and Operator configuration is complete.

5.6. VALIDATING THE GENERATION OF CONFIGURATION POLICY
CRS

Policy custom resources (CRs) are generated in the same namespace as the PolicyGenTemplate from
which they are created. The same troubleshooting flow applies to all policy CRs generated from a 
PolicyGenTemplate regardless of whether they are ztp-common, ztp-group, or ztp-site based, as
shown using the following commands:

The expected set of policy-wrapped CRs should be displayed.

If the policies failed synchronization, use the following troubleshooting steps.

$ oc get policies -n $CLUSTER

NAME                                                     REMEDIATION ACTION   COMPLIANCE STATE   
AGE
ztp-common.common-config-policy                          inform               Compliant          
3h42m
ztp-common.common-subscriptions-policy                   inform               NonCompliant       
3h42m
ztp-group.group-du-sno-config-policy                     inform               NonCompliant       
3h42m
ztp-group.group-du-sno-validator-du-policy               inform               NonCompliant       
3h42m
ztp-install.example1-common-config-policy-pjz9s          enforce              Compliant          
167m
ztp-install.example1-common-subscriptions-policy-zzd9k   enforce              NonCompliant       
164m
ztp-site.example1-config-policy                          inform               NonCompliant       3h42m
ztp-site.example1-perf-policy                            inform               NonCompliant       3h42m

$ export NS=<namespace>

$ oc get policy -n $NS

OpenShift Container Platform 4.15 Edge computing

58



Procedure

1. To display detailed information about the policies, run the following command:

2. Check for Status: Conditions: to show the error logs. For example, setting an invalid 
sourceFile→fileName: generates the error shown below:

3. Check for Status: Sync:. If there are log errors at Status: Conditions:, the Status: Sync:
shows Unknown or Error:

4. When Red Hat Advanced Cluster Management (RHACM) recognizes that policies apply to a 
ManagedCluster object, the policy CR objects are applied to the cluster namespace. Check to
see if the policies were copied to the cluster namespace:

Example output:

RHACM copies all applicable policies into the cluster namespace. The copied policy names have
the format: <policyGenTemplate.Namespace>.<policyGenTemplate.Name>-<policyName>.

5. Check the placement rule for any policies not copied to the cluster namespace. The 

$ oc describe -n openshift-gitops application policies

Status:
  Conditions:
    Last Transition Time:  2021-11-26T17:21:39Z
    Message:               rpc error: code = Unknown desc = `kustomize build 
/tmp/https___git.com/ran-sites/policies/ --enable-alpha-plugins` failed exit status 1: 
2021/11/26 17:21:40 Error could not find test.yaml under source-crs/: no such file or directory 
Error: failure in plugin configured via /tmp/kust-plugin-config-52463179; exit status 1: exit 
status 1
    Type:  ComparisonError

Status:
  Sync:
    Compared To:
      Destination:
        Namespace:  policies-sub
        Server:     https://kubernetes.default.svc
      Source:
        Path:             policies
        Repo URL:         https://git.com/ran-sites/policies/.git
        Target Revision:  master
    Status:               Error

$ oc get policy -n $CLUSTER

NAME                                         REMEDIATION ACTION   COMPLIANCE STATE   AGE
ztp-common.common-config-policy              inform               Compliant          13d
ztp-common.common-subscriptions-policy       inform               Compliant          13d
ztp-group.group-du-sno-config-policy         inform               Compliant          13d
Ztp-group.group-du-sno-validator-du-policy   inform               Compliant          13d
ztp-site.example-sno-config-policy           inform               Compliant          13d

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

59



5. Check the placement rule for any policies not copied to the cluster namespace. The 
matchSelector in the PlacementRule for those policies should match labels on the 
ManagedCluster object:

6. Note the PlacementRule name appropriate for the missing policy, common, group, or site,
using the following command:

The status-decisions should include your cluster name.

The key-value pair of the matchSelector in the spec must match the labels on your
managed cluster.

7. Check the labels on the ManagedCluster object using the following command:

8. Check to see which policies are compliant using the following command:

If the Namespace, OperatorGroup, and Subscription policies are compliant but the Operator
configuration policies are not, it is likely that the Operators did not install on the managed
cluster. This causes the Operator configuration policies to fail to apply because the CRD is not
yet applied to the spoke.

5.7. RESTARTING POLICY RECONCILIATION

You can restart policy reconciliation when unexpected compliance issues occur, for example, when the 
ClusterGroupUpgrade custom resource (CR) has timed out.

Procedure

1. A ClusterGroupUpgrade CR is generated in the namespace ztp-install by the Topology Aware
Lifecycle Manager after the managed cluster becomes Ready:

2. If there are unexpected issues and the policies fail to become complaint within the configured
timeout (the default is 4 hours), the status of the ClusterGroupUpgrade CR shows 
UpgradeTimedOut:

3. A ClusterGroupUpgrade CR in the UpgradeTimedOut state automatically restarts its policy
reconciliation every hour. If you have changed your policies, you can start a retry immediately by
deleting the existing ClusterGroupUpgrade CR. This triggers the automatic creation of a new 

$ oc get placementrule -n $NS

$ oc get placementrule -n $NS <placementRuleName> -o yaml

$ oc get ManagedCluster $CLUSTER -o jsonpath='{.metadata.labels}' | jq

$ oc get policy -n $CLUSTER

$ export CLUSTER=<clusterName>

$ oc get clustergroupupgrades -n ztp-install $CLUSTER

$ oc get clustergroupupgrades -n ztp-install $CLUSTER -o jsonpath='{.status.conditions[?
(@.type=="Ready")]}'

OpenShift Container Platform 4.15 Edge computing

60



ClusterGroupUpgrade CR that begins reconciling the policies immediately:

Note that when the ClusterGroupUpgrade CR completes with status UpgradeCompleted and the
managed cluster has the label ztp-done applied, you can make additional configuration changes using 
PolicyGenTemplate. Deleting the existing ClusterGroupUpgrade CR will not make the TALM generate
a new CR.

At this point, GitOps ZTP has completed its interaction with the cluster and any further interactions
should be treated as an update and a new ClusterGroupUpgrade CR created for remediation of the
policies.

Additional resources

For information about using Topology Aware Lifecycle Manager (TALM) to construct your own 
ClusterGroupUpgrade CR, see About the ClusterGroupUpgrade CR.

5.8. CHANGING APPLIED MANAGED CLUSTER CRS USING POLICIES

You can remove content from a custom resource (CR) that is deployed in a managed cluster through a
policy.

By default, all Policy CRs created from a PolicyGenTemplate CR have the complianceType field set
to musthave. A musthave policy without the removed content is still compliant because the CR on the
managed cluster has all the specified content. With this configuration, when you remove content from a
CR, TALM removes the content from the policy but the content is not removed from the CR on the
managed cluster.

With the complianceType field to mustonlyhave, the policy ensures that the CR on the cluster is an
exact match of what is specified in the policy.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have deployed a managed cluster from a hub cluster running RHACM.

You have installed Topology Aware Lifecycle Manager on the hub cluster.

Procedure

1. Remove the content that you no longer need from the affected CRs. In this example, the 
disableDrain: false line was removed from the SriovOperatorConfig CR.

Example CR

$ oc delete clustergroupupgrades -n ztp-install $CLUSTER

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
  name: default
  namespace: openshift-sriov-network-operator
spec:

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

61



2. Change the complianceType of the affected policies to mustonlyhave in the group-du-sno-
ranGen.yaml file.

Example YAML

3. Create a ClusterGroupUpdates CR and specify the clusters that must receive the CR changes::

Example ClusterGroupUpdates CR

4. Create the ClusterGroupUpgrade CR by running the following command:

5. When you are ready to apply the changes, for example, during an appropriate maintenance
window, change the value of the spec.enable field to true by running the following command:

Verification

1. Check the status of the policies by running the following command:

  configDaemonNodeSelector:
    "node-role.kubernetes.io/$mcp": ""
  disableDrain: true
  enableInjector: true
  enableOperatorWebhook: true

# ...
- fileName: SriovOperatorConfig.yaml
  policyName: "config-policy"
  complianceType: mustonlyhave
# ...

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-remove
  namespace: default
spec:
  managedPolicies:
    - ztp-group.group-du-sno-config-policy
  enable: false
  clusters:
  - spoke1
  - spoke2
  remediationStrategy:
    maxConcurrency: 2
    timeout: 240
  batchTimeoutAction:

$ oc create -f cgu-remove.yaml

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-remove \
--patch '{"spec":{"enable":true}}' --type=merge

$ oc get <kind> <changed_cr_name>

OpenShift Container Platform 4.15 Edge computing

62



Example output

When the COMPLIANCE STATE of the policy is Compliant, it means that the CR is updated
and the unwanted content is removed.

2. Check that the policies are removed from the targeted clusters by running the following
command on the managed clusters:

If there are no results, the CR is removed from the managed cluster.

5.9. INDICATION OF DONE FOR GITOPS ZTP INSTALLATIONS

GitOps Zero Touch Provisioning (ZTP) simplifies the process of checking the GitOps ZTP installation
status for a cluster. The GitOps ZTP status moves through three phases: cluster installation, cluster
configuration, and GitOps ZTP done.

Cluster installation phase

The cluster installation phase is shown by the ManagedClusterJoined and 
ManagedClusterAvailable conditions in the ManagedCluster CR . If the ManagedCluster CR does
not have these conditions, or the condition is set to False, the cluster is still in the installation phase.
Additional details about installation are available from the AgentClusterInstall and 
ClusterDeployment CRs. For more information, see "Troubleshooting GitOps ZTP".

Cluster configuration phase

The cluster configuration phase is shown by a ztp-running label applied the ManagedCluster CR for
the cluster.

GitOps ZTP done

Cluster installation and configuration is complete in the GitOps ZTP done phase. This is shown by the
removal of the ztp-running label and addition of the ztp-done label to the ManagedCluster CR.
The ztp-done label shows that the configuration has been applied and the baseline DU configuration
has completed cluster tuning.
The transition to the GitOps ZTP done state is conditional on the compliant state of a Red Hat
Advanced Cluster Management (RHACM) validator inform policy. This policy captures the existing
criteria for a completed installation and validates that it moves to a compliant state only when GitOps
ZTP provisioning of the managed cluster is complete.

The validator inform policy ensures the configuration of the cluster is fully applied and Operators
have completed their initialization. The policy validates the following:

The target MachineConfigPool contains the expected entries and has finished updating. All
nodes are available and not degraded.

The SR-IOV Operator has completed initialization as indicated by at least one 
SriovNetworkNodeState with syncStatus: Succeeded.

The PTP Operator daemon set exists.

NAMESPACE   NAME                                                   REMEDIATION ACTION   
COMPLIANCE STATE   AGE
default     cgu-ztp-group.group-du-sno-config-policy               enforce                                 17m
default     ztp-group.group-du-sno-config-policy                   inform               NonCompliant       
15h

$ oc get <kind> <changed_cr_name>

CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

63



CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE
OPENSHIFT CLUSTER WITH ZTP

You can deploy a managed single-node OpenShift cluster by using Red Hat Advanced Cluster
Management (RHACM) and the assisted service.

NOTE

If you are creating multiple managed clusters, use the SiteConfig method described in
Deploying far edge sites with ZTP .

IMPORTANT

The target bare-metal host must meet the networking, firmware, and hardware
requirements listed in Recommended cluster configuration for vDU application
workloads.

6.1. GENERATING GITOPS ZTP INSTALLATION AND CONFIGURATION
CRS MANUALLY

Use the generator entrypoint for the ztp-site-generate container to generate the site installation and
configuration custom resource (CRs) for a cluster based on SiteConfig and PolicyGenTemplate CRs.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

Procedure

1. Create an output folder by running the following command:

2. Export the argocd directory from the ztp-site-generate container image:

The ./out directory has the reference PolicyGenTemplate and SiteConfig CRs in the 
out/argocd/example/ folder.

Example output

$ mkdir -p ./out

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.15 extract /home/ztp --tar | tar x -C ./out

out
 └── argocd
      └── example
           ├── policygentemplates
           │     ├── common-ranGen.yaml
           │     ├── example-sno-site.yaml
           │     ├── group-du-sno-ranGen.yaml

OpenShift Container Platform 4.15 Edge computing

64



3. Create an output folder for the site installation CRs:

4. Modify the example SiteConfig CR for the cluster type that you want to install. Copy example-
sno.yaml to site-1-sno.yaml and modify the CR to match the details of the site and bare-
metal host that you want to install, for example:

           │     ├── group-du-sno-validator-ranGen.yaml
           │     ├── kustomization.yaml
           │     └── ns.yaml
           └── siteconfig
                  ├── example-sno.yaml
                  ├── KlusterletAddonConfigOverride.yaml
                  └── kustomization.yaml

$ mkdir -p ./site-install

# example-node1-bmh-secret & assisted-deployment-pull-secret need to be created under 
same namespace example-sno
---
apiVersion: ran.openshift.io/v2
kind: SiteConfig
metadata:
  name: "example-sno"
  namespace: "example-sno"
spec:
  baseDomain: "example.com"
  pullSecretRef:
    name: "assisted-deployment-pull-secret"
  clusterImageSetNameRef: "openshift-4.10"
  sshPublicKey: "ssh-rsa AAAA..."
  clusters:
    - clusterName: "example-sno"
      networkType: "OVNKubernetes"
      # installConfigOverrides is a generic way of passing install-config
      # parameters through the siteConfig.  The 'capabilities' field configures
      # the composable openshift feature.  In this 'capabilities' setting, we
      # remove all but the marketplace component from the optional set of
      # components.
      # Notes:
      # - OperatorLifecycleManager is needed for 4.15 and later
      # - NodeTuning is needed for 4.13 and later, not for 4.12 and earlier
      installConfigOverrides: "{\"capabilities\":{\"baselineCapabilitySet\": \"None\", 
\"additionalEnabledCapabilities\": [ \"OperatorLifecycleManager\", \"NodeTuning\" ] }}"
      # It is strongly recommended to include crun manifests as part of the additional install-
time manifests for 4.13+.
      # The crun manifests can be obtained from source-crs/optional-extra-manifest/ and 
added to the git repo ie.sno-extra-manifest.
      # extraManifestPath: sno-extra-manifest
      clusterLabels:
        # These example cluster labels correspond to the bindingRules in the 
PolicyGenTemplate examples
        du-profile: "latest"
        # These example cluster labels correspond to the bindingRules in the 
PolicyGenTemplate examples in ../policygentemplates:
        # ../policygentemplates/common-ranGen.yaml will apply to all clusters with 'common: 

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP

65



true'
        common: true
        # ../policygentemplates/group-du-sno-ranGen.yaml will apply to all clusters with 'group-
du-sno: ""'
        group-du-sno: ""
        # ../policygentemplates/example-sno-site.yaml will apply to all clusters with 'sites: 
"example-sno"'
        # Normally this should match or contain the cluster name so it only applies to a single 
cluster
        sites: "example-sno"
      clusterNetwork:
        - cidr: 1001:1::/48
          hostPrefix: 64
      machineNetwork:
        - cidr: 1111:2222:3333:4444::/64
      serviceNetwork:
        - 1001:2::/112
      additionalNTPSources:
        - 1111:2222:3333:4444::2
      # Initiates the cluster for workload partitioning. Setting specific reserved/isolated CPUSets 
is done via PolicyTemplate
      # please see Workload Partitioning Feature for a complete guide.
      cpuPartitioningMode: AllNodes
      # Optionally; This can be used to override the KlusterletAddonConfig that is created for 
this cluster:
      #crTemplates:
      #  KlusterletAddonConfig: "KlusterletAddonConfigOverride.yaml"
      nodes:
        - hostName: "example-node1.example.com"
          role: "master"
          # Optionally; This can be used to configure desired BIOS setting on a host:
          #biosConfigRef:
          #  filePath: "example-hw.profile"
          bmcAddress: "idrac-
virtualmedia+https://[1111:2222:3333:4444::bbbb:1]/redfish/v1/Systems/System.Embedded.1"

          bmcCredentialsName:
            name: "example-node1-bmh-secret"
          bootMACAddress: "AA:BB:CC:DD:EE:11"
          # Use UEFISecureBoot to enable secure boot
          bootMode: "UEFI"
          rootDeviceHints:
            wwn: "0x11111000000asd123"
            # example of diskPartition below is used for image registry (check ImageRegistry.md 
for more details), but it's not limited to this use case
          #        diskPartition:
          #          - device: /dev/disk/by-id/wwn-0x11111000000asd123 # match rootDeviceHints
          #            partitions:
          #              - mount_point: /var/imageregistry
          #                size: 102500
          #                start: 344844

          nodeNetwork:
            interfaces:
              - name: eno1
                macAddress: "AA:BB:CC:DD:EE:11"

OpenShift Container Platform 4.15 Edge computing

66



NOTE

Once you have extracted reference CR configuration files from the out/extra-
manifest directory of the ztp-site-generate container, you can use 
extraManifests.searchPaths to include the path to the git directory containing
those files. This allows the GitOps ZTP pipeline to apply those CR files during
cluster installation. If you configure a searchPaths directory, the GitOps ZTP
pipeline does not fetch manifests from the ztp-site-generate container during
site installation.

5. Generate the Day 0 installation CRs by processing the modified SiteConfig CR site-1-
sno.yaml by running the following command:

Example output

            config:
              interfaces:
                - name: eno1
                  type: ethernet
                  state: up
                  ipv4:
                    enabled: false
                  ipv6:
                    enabled: true
                    address:
                      # For SNO sites with static IP addresses, the node-specific,
                      # API and Ingress IPs should all be the same and configured on
                      # the interface
                      - ip: 1111:2222:3333:4444::aaaa:1
                        prefix-length: 64
              dns-resolver:
                config:
                  search:
                    - example.com
                  server:
                    - 1111:2222:3333:4444::2
              routes:
                config:
                  - destination: ::/0
                    next-hop-interface: eno1
                    next-hop-address: 1111:2222:3333:4444::1
                    table-id: 254

$ podman run -it --rm -v `pwd`/out/argocd/example/siteconfig:/resources:Z -v `pwd`/site-
install:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.15 generator install 
site-1-sno.yaml /output

site-install
└── site-1-sno
    ├── site-1_agentclusterinstall_example-sno.yaml
    ├── site-1-sno_baremetalhost_example-node1.example.com.yaml
    ├── site-1-sno_clusterdeployment_example-sno.yaml
    ├── site-1-sno_configmap_example-sno.yaml
    ├── site-1-sno_infraenv_example-sno.yaml

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP

67



6. Optional: Generate just the Day 0 MachineConfig installation CRs for a particular cluster type
by processing the reference SiteConfig CR with the -E option. For example, run the following
commands:

a. Create an output folder for the MachineConfig CRs:

b. Generate the MachineConfig installation CRs:

Example output

7. Generate and export the Day 2 configuration CRs using the reference PolicyGenTemplate
CRs from the previous step. Run the following commands:

a. Create an output folder for the Day 2 CRs:

b. Generate and export the Day 2 configuration CRs:

The command generates example group and site-specific PolicyGenTemplate CRs for
single-node OpenShift, three-node clusters, and standard clusters in the ./ref folder.

Example output

    ├── site-1-sno_klusterletaddonconfig_example-sno.yaml
    ├── site-1-sno_machineconfig_02-master-workload-partitioning.yaml
    ├── site-1-sno_machineconfig_predefined-extra-manifests-master.yaml
    ├── site-1-sno_machineconfig_predefined-extra-manifests-worker.yaml
    ├── site-1-sno_managedcluster_example-sno.yaml
    ├── site-1-sno_namespace_example-sno.yaml
    └── site-1-sno_nmstateconfig_example-node1.example.com.yaml

$ mkdir -p ./site-machineconfig

$ podman run -it --rm -v `pwd`/out/argocd/example/siteconfig:/resources:Z -v `pwd`/site-
machineconfig:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.15 
generator install -E site-1-sno.yaml /output

site-machineconfig
└── site-1-sno
    ├── site-1-sno_machineconfig_02-master-workload-partitioning.yaml
    ├── site-1-sno_machineconfig_predefined-extra-manifests-master.yaml
    └── site-1-sno_machineconfig_predefined-extra-manifests-worker.yaml

$ mkdir -p ./ref

$ podman run -it --rm -v `pwd`/out/argocd/example/policygentemplates:/resources:Z -v 
`pwd`/ref:/output:Z,U registry.redhat.io/openshift4/ztp-site-generate-rhel8:v4.15 generator 
config -N . /output

ref
 └── customResource
      ├── common
      ├── example-multinode-site
      ├── example-sno
      ├── group-du-3node

OpenShift Container Platform 4.15 Edge computing

68



1

8. Use the generated CRs as the basis for the CRs that you use to install the cluster. You apply the
installation CRs to the hub cluster as described in "Installing a single managed cluster". The
configuration CRs can be applied to the cluster after cluster installation is complete.

Verification

Verify that the custom roles and labels are applied after the node is deployed:

Example output

The custom label is applied to the node.

Additional resources

Workload partitioning

BMC addressing

About root device hints

Single-node OpenShift SiteConfig CR installation reference

6.2. CREATING THE MANAGED BARE-METAL HOST SECRETS

Add the required Secret custom resources (CRs) for the managed bare-metal host to the hub cluster.
You need a secret for the GitOps Zero Touch Provisioning (ZTP) pipeline to access the Baseboard
Management Controller (BMC) and a secret for the assisted installer service to pull cluster installation
images from the registry.

NOTE

      ├── group-du-3node-validator
      │    └── Multiple-validatorCRs
      ├── group-du-sno
      ├── group-du-sno-validator
      ├── group-du-standard
      └── group-du-standard-validator
           └── Multiple-validatorCRs

$ oc describe node example-node.example.com

Name:   example-node.example.com
Roles:  control-plane,example-label,master,worker
Labels: beta.kubernetes.io/arch=amd64
        beta.kubernetes.io/os=linux
        custom-label/parameter1=true
        kubernetes.io/arch=amd64
        kubernetes.io/hostname=cnfdf03.telco5gran.eng.rdu2.redhat.com
        kubernetes.io/os=linux
        node-role.kubernetes.io/control-plane=
        node-role.kubernetes.io/example-label= 1
        node-role.kubernetes.io/master=
        node-role.kubernetes.io/worker=
        node.openshift.io/os_id=rhcos

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#bmc-addressing_ipi-install-installation-workflow
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#root-device-hints_preparing-to-install-with-agent-based-installer


1

2

3

4

NOTE

The secrets are referenced from the SiteConfig CR by name. The namespace must
match the SiteConfig namespace.

Procedure

1. Create a YAML secret file containing credentials for the host Baseboard Management
Controller (BMC) and a pull secret required for installing OpenShift and all add-on cluster
Operators:

a. Save the following YAML as the file example-sno-secret.yaml:

Must match the namespace configured in the related SiteConfig CR

Base64-encoded values for password and username

Must match the namespace configured in the related SiteConfig CR

Base64-encoded pull secret

2. Add the relative path to example-sno-secret.yaml to the kustomization.yaml file that you use
to install the cluster.

6.3. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR
MANUAL INSTALLATIONS USING GITOPS ZTP

The GitOps Zero Touch Provisioning (ZTP) workflow uses the Discovery ISO as part of the OpenShift
Container Platform installation process on managed bare-metal hosts. You can edit the InfraEnv
resource to specify kernel arguments for the Discovery ISO. This is useful for cluster installations with
specific environmental requirements. For example, configure the rd.net.timeout.carrier kernel
argument for the Discovery ISO to facilitate static networking for the cluster or to receive a DHCP
address before downloading the root file system during installation.

NOTE

apiVersion: v1
kind: Secret
metadata:
  name: example-sno-bmc-secret
  namespace: example-sno 1
data: 2
  password: <base64_password>
  username: <base64_username>
type: Opaque
---
apiVersion: v1
kind: Secret
metadata:
  name: pull-secret
  namespace: example-sno  3
data:
  .dockerconfigjson: <pull_secret> 4
type: kubernetes.io/dockerconfigjson

OpenShift Container Platform 4.15 Edge computing

70



1

2

NOTE

In OpenShift Container Platform 4.15, you can only add kernel arguments. You can not
replace or delete kernel arguments.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have manually generated the installation and configuration custom resources (CRs).

Procedure

1. Edit the spec.kernelArguments specification in the InfraEnv CR to configure kernel
arguments:

Specify the append operation to add a kernel argument.

Specify the kernel argument you want to configure. This example configures the audit kernel
argument and the trace kernel argument.

NOTE

The SiteConfig CR generates the InfraEnv resource as part of the day-0 installation
CRs.

Verification

To verify that the kernel arguments are applied, after the Discovery image verifies that OpenShift
Container Platform is ready for installation, you can SSH to the target host before the installation
process begins. At that point, you can view the kernel arguments for the Discovery ISO in the 
/proc/cmdline file.

1. Begin an SSH session with the target host:

apiVersion: agent-install.openshift.io/v1beta1
kind: InfraEnv
metadata:
  name: <cluster_name>
  namespace: <cluster_name>
spec:
  kernelArguments:
    - operation: append 1
      value: audit=0 2
    - operation: append
      value: trace=1
  clusterRef:
    name: <cluster_name>
    namespace: <cluster_name>
  pullSecretRef:
    name: pull-secret

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP

71



1

2

2. View the system’s kernel arguments by using the following command:

6.4. INSTALLING A SINGLE MANAGED CLUSTER

You can manually deploy a single managed cluster using the assisted service and Red Hat Advanced
Cluster Management (RHACM).

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have created the baseboard management controller (BMC) Secret and the image pull-
secret Secret custom resources (CRs). See "Creating the managed bare-metal host secrets"
for details.

Your target bare-metal host meets the networking and hardware requirements for managed
clusters.

Procedure

1. Create a ClusterImageSet for each specific cluster version to be deployed, for example 
clusterImageSet-4.15.yaml. A ClusterImageSet has the following format:

The descriptive version that you want to deploy.

Specifies the releaseImage to deploy and determines the operating system image
version. The discovery ISO is based on the image version as set by releaseImage, or the
latest version if the exact version is unavailable.

2. Apply the clusterImageSet CR:

3. Create the Namespace CR in the cluster-namespace.yaml file:

$ ssh -i /path/to/privatekey core@<host_name>

$ cat /proc/cmdline

apiVersion: hive.openshift.io/v1
kind: ClusterImageSet
metadata:
  name: openshift-4.15.0 1
spec:
   releaseImage: quay.io/openshift-release-dev/ocp-release:4.15.0-x86_64 2

$ oc apply -f clusterImageSet-4.15.yaml

apiVersion: v1
kind: Namespace
metadata:

OpenShift Container Platform 4.15 Edge computing

72



1 2 The name of the managed cluster to provision.

4. Apply the Namespace CR by running the following command:

5. Apply the generated day-0 CRs that you extracted from the ztp-site-generate container and
customized to meet your requirements:

Additional resources

Connectivity prerequisites for managed cluster networks

Deploying LVM Storage on single-node OpenShift clusters

Configuring LVM Storage using PolicyGenTemplate CRs

6.5. MONITORING THE MANAGED CLUSTER INSTALLATION STATUS

Ensure that cluster provisioning was successful by checking the cluster status.

Prerequisites

All of the custom resources have been configured and provisioned, and the Agent custom
resource is created on the hub for the managed cluster.

Procedure

1. Check the status of the managed cluster:

True indicates the managed cluster is ready.

2. Check the agent status:

3. Use the describe command to provide an in-depth description of the agent’s condition.
Statuses to be aware of include BackendError, InputError, ValidationsFailing, 
InstallationFailed, and AgentIsConnected. These statuses are relevant to the Agent and 
AgentClusterInstall custom resources.

4. Check the cluster provisioning status:

     name: <cluster_name> 1
     labels:
        name: <cluster_name> 2

$ oc apply -f cluster-namespace.yaml

$ oc apply -R ./site-install/site-sno-1

$ oc get managedcluster

$ oc get agent -n <cluster_name>

$ oc describe agent -n <cluster_name>

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP

73

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/storage/#lvms-preface-sno-ran_logical-volume-manager-storage


5. Use the describe command to provide an in-depth description of the cluster provisioning
status:

6. Check the status of the managed cluster’s add-on services:

7. Retrieve the authentication information of the kubeconfig file for the managed cluster:

6.6. TROUBLESHOOTING THE MANAGED CLUSTER

Use this procedure to diagnose any installation issues that might occur with the managed cluster.

Procedure

1. Check the status of the managed cluster:

Example output

If the status in the AVAILABLE column is True, the managed cluster is being managed by the
hub.

If the status in the AVAILABLE column is Unknown, the managed cluster is not being managed
by the hub. Use the following steps to continue checking to get more information.

2. Check the AgentClusterInstall install status:

Example output

If the status in the INSTALLED column is false, the installation was unsuccessful.

3. If the installation failed, enter the following command to review the status of the 

$ oc get agentclusterinstall -n <cluster_name>

$ oc describe agentclusterinstall -n <cluster_name>

$ oc get managedclusteraddon -n <cluster_name>

$ oc get secret -n <cluster_name> <cluster_name>-admin-kubeconfig -o jsonpath=
{.data.kubeconfig} | base64 -d > <directory>/<cluster_name>-kubeconfig

$ oc get managedcluster

NAME            HUB ACCEPTED   MANAGED CLUSTER URLS   JOINED   AVAILABLE   
AGE
SNO-cluster     true                                   True     True      2d19h

$ oc get clusterdeployment -n <cluster_name>

NAME        PLATFORM            REGION   CLUSTERTYPE   INSTALLED    INFRAID    
VERSION  POWERSTATE AGE
Sno0026    agent-baremetal                               false                          Initialized
2d14h

OpenShift Container Platform 4.15 Edge computing

74



3. If the installation failed, enter the following command to review the status of the 
AgentClusterInstall resource:

4. Resolve the errors and reset the cluster:

a. Remove the cluster’s managed cluster resource:

b. Remove the cluster’s namespace:

This deletes all of the namespace-scoped custom resources created for this cluster. You
must wait for the ManagedCluster CR deletion to complete before proceeding.

c. Recreate the custom resources for the managed cluster.

6.7. RHACM GENERATED CLUSTER INSTALLATION CRS REFERENCE

Red Hat Advanced Cluster Management (RHACM) supports deploying OpenShift Container Platform
on single-node clusters, three-node clusters, and standard clusters with a specific set of installation
custom resources (CRs) that you generate using SiteConfig CRs for each site.

NOTE

Every managed cluster has its own namespace, and all of the installation CRs except for 
ManagedCluster and ClusterImageSet are under that namespace. ManagedCluster
and ClusterImageSet are cluster-scoped, not namespace-scoped. The namespace and
the CR names match the cluster name.

The following table lists the installation CRs that are automatically applied by the RHACM assisted
service when it installs clusters using the SiteConfig CRs that you configure.

Table 6.1. Cluster installation CRs generated by RHACM

CR Description Usage

BareMetal
Host

Contains the connection information for the
Baseboard Management Controller (BMC)
of the target bare-metal host.

Provides access to the BMC to load and start
the discovery image on the target server by
using the Redfish protocol.

InfraEnv Contains information for installing OpenShift
Container Platform on the target bare-metal
host.

Used with ClusterDeployment to
generate the discovery ISO for the managed
cluster.

$ oc describe agentclusterinstall -n <cluster_name> <cluster_name>

$ oc delete managedcluster <cluster_name>

$ oc delete namespace <cluster_name>

CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP

75



AgentClus
terInstall

Specifies details of the managed cluster
configuration such as networking and the
number of control plane nodes. Displays the
cluster kubeconfig and credentials when
the installation is complete.

Specifies the managed cluster configuration
information and provides status during the
installation of the cluster.

ClusterDe
ployment

References the AgentClusterInstall CR to
use.

Used with InfraEnv to generate the
discovery ISO for the managed cluster.

NMStateC
onfig

Provides network configuration information
such as MAC address to IP mapping, DNS
server, default route, and other network
settings.

Sets up a static IP address for the managed
cluster’s Kube API server.

Agent Contains hardware information about the
target bare-metal host.

Created automatically on the hub when the
target machine’s discovery image boots.

Managed
Cluster

When a cluster is managed by the hub, it
must be imported and known. This
Kubernetes object provides that interface.

The hub uses this resource to manage and
show the status of managed clusters.

Klusterlet
AddonCo
nfig

Contains the list of services provided by the
hub to be deployed to the 
ManagedCluster resource.

Tells the hub which addon services to deploy
to the ManagedCluster resource.

Namespac
e

Logical space for ManagedCluster
resources existing on the hub. Unique per
site.

Propagates resources to the 
ManagedCluster.

Secret Two CRs are created: BMC Secret and 
Image Pull Secret. BMC Secret authenticates into

the target bare-metal host using its
username and password.

Image Pull Secret contains
authentication information for the
OpenShift Container Platform
image installed on the target bare-
metal host.

ClusterIm
ageSet

Contains OpenShift Container Platform
image information such as the repository and
image name.

Passed into resources to provide OpenShift
Container Platform images.

CR Description Usage

OpenShift Container Platform 4.15 Edge computing

76



CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT
CLUSTER CONFIGURATION FOR VDU APPLICATION

WORKLOADS
Use the following reference information to understand the single-node OpenShift configurations
required to deploy virtual distributed unit (vDU) applications in the cluster. Configurations include
cluster optimizations for high performance workloads, enabling workload partitioning, and minimizing
the number of reboots required postinstallation.

Additional resources

To deploy a single cluster by hand, see Manually installing a single-node OpenShift cluster with
GitOps ZTP.

To deploy a fleet of clusters using GitOps Zero Touch Provisioning (ZTP), see Deploying far
edge sites with GitOps ZTP.

7.1. RUNNING LOW LATENCY APPLICATIONS ON OPENSHIFT
CONTAINER PLATFORM

OpenShift Container Platform enables low latency processing for applications running on commercial
off-the-shelf (COTS) hardware by using several technologies and specialized hardware devices:

Real-time kernel for RHCOS

Ensures workloads are handled with a high degree of process determinism.

CPU isolation

Avoids CPU scheduling delays and ensures CPU capacity is available consistently.

NUMA-aware topology management

Aligns memory and huge pages with CPU and PCI devices to pin guaranteed container memory and
huge pages to the non-uniform memory access (NUMA) node. Pod resources for all Quality of
Service (QoS) classes stay on the same NUMA node. This decreases latency and improves
performance of the node.

Huge pages memory management

Using huge page sizes improves system performance by reducing the amount of system resources
required to access page tables.

Precision timing synchronization using PTP

Allows synchronization between nodes in the network with sub-microsecond accuracy.

7.2. RECOMMENDED CLUSTER HOST REQUIREMENTS FOR VDU
APPLICATION WORKLOADS

Running vDU application workloads requires a bare-metal host with sufficient resources to run
OpenShift Container Platform services and production workloads.

Table 7.1. Minimum resource requirements

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

77



Profile vCPU Memory Storage

Minimum 4 to 8 vCPU cores 32GB of RAM 120GB

NOTE

One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or
Hyper-Threading, is not enabled. When enabled, use the following formula to calculate
the corresponding ratio:

(threads per core × cores) × sockets = vCPUs

IMPORTANT

The server must have a Baseboard Management Controller (BMC) when booting with
virtual media.

7.3. CONFIGURING HOST FIRMWARE FOR LOW LATENCY AND HIGH
PERFORMANCE

Bare-metal hosts require the firmware to be configured before the host can be provisioned. The
firmware configuration is dependent on the specific hardware and the particular requirements of your
installation.

Procedure

1. Set the UEFI/BIOS Boot Mode to UEFI.

2. In the host boot sequence order, set Hard drive first.

3. Apply the specific firmware configuration for your hardware. The following table describes a
representative firmware configuration for an Intel Xeon Skylake or Intel Cascade Lake server,
based on the Intel FlexRAN 4G and 5G baseband PHY reference design.

IMPORTANT

The exact firmware configuration depends on your specific hardware and
network requirements. The following sample configuration is for illustrative
purposes only.

Table 7.2. Sample firmware configuration for an Intel Xeon Skylake or Cascade Lake server

Firmware setting Configuration

CPU Power and Performance Policy Performance

Uncore Frequency Scaling Disabled

Performance P-limit Disabled

OpenShift Container Platform 4.15 Edge computing

78



Enhanced Intel SpeedStep ® Tech Enabled

Intel Configurable TDP Enabled

Configurable TDP Level Level 2

Intel® Turbo Boost Technology Enabled

Energy Efficient Turbo Disabled

Hardware P-States Disabled

Package C-State C0/C1 state

C1E Disabled

Processor C6 Disabled

Firmware setting Configuration

NOTE

Enable global SR-IOV and VT-d settings in the firmware for the host. These settings are
relevant to bare-metal environments.

7.4. CONNECTIVITY PREREQUISITES FOR MANAGED CLUSTER
NETWORKS

Before you can install and provision a managed cluster with the GitOps Zero Touch Provisioning (ZTP)
pipeline, the managed cluster host must meet the following networking prerequisites:

There must be bi-directional connectivity between the GitOps ZTP container in the hub cluster
and the Baseboard Management Controller (BMC) of the target bare-metal host.

The managed cluster must be able to resolve and reach the API hostname of the hub hostname
and *.apps hostname. Here is an example of the API hostname of the hub and *.apps
hostname:

api.hub-cluster.internal.domain.com

console-openshift-console.apps.hub-cluster.internal.domain.com

The hub cluster must be able to resolve and reach the API and *.apps hostname of the
managed cluster. Here is an example of the API hostname of the managed cluster and *.apps
hostname:

api.sno-managed-cluster-1.internal.domain.com

console-openshift-console.apps.sno-managed-cluster-1.internal.domain.com

7.5. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT WITH

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

79



7.5. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT WITH
GITOPS ZTP

Workload partitioning configures OpenShift Container Platform services, cluster management
workloads, and infrastructure pods to run on a reserved number of host CPUs.

To configure workload partitioning with GitOps Zero Touch Provisioning (ZTP), you configure a 
cpuPartitioningMode field in the SiteConfig custom resource (CR) that you use to install the cluster
and you apply a PerformanceProfile CR that configures the isolated and reserved CPUs on the host.

Configuring the SiteConfig CR enables workload partitioning at cluster installation time and applying
the PerformanceProfile CR configures the specific allocation of CPUs to reserved and isolated sets.
Both of these steps happen at different points during cluster provisioning.

NOTE

Configuring workload partitioning by using the cpuPartitioningMode field in the 
SiteConfig CR is a Tech Preview feature in OpenShift Container Platform 4.13.

Alternatively, you can specify cluster management CPU resources with the cpuset field
of the SiteConfig custom resource (CR) and the reserved field of the group 
PolicyGenTemplate CR. The GitOps ZTP pipeline uses these values to populate the
required fields in the workload partitioning MachineConfig CR (cpuset) and the 
PerformanceProfile CR (reserved) that configure the single-node OpenShift cluster.
This method is a General Availability feature in OpenShift Container Platform 4.14.

The workload partitioning configuration pins the OpenShift Container Platform infrastructure pods to
the reserved CPU set. Platform services such as systemd, CRI-O, and kubelet run on the reserved CPU
set. The isolated CPU sets are exclusively allocated to your container workloads. Isolating CPUs
ensures that the workload has guaranteed access to the specified CPUs without contention from other
applications running on the same node. All CPUs that are not isolated should be reserved.

IMPORTANT

Ensure that reserved and isolated CPU sets do not overlap with each other.

Additional resources

For the recommended single-node OpenShift workload partitioning configuration, see
Workload partitioning.

7.6. RECOMMENDED CLUSTER INSTALL MANIFESTS

The ZTP pipeline applies the following custom resources (CRs) during cluster installation. These
configuration CRs ensure that the cluster meets the feature and performance requirements necessary
for running a vDU application.

NOTE

When using the GitOps ZTP plugin and SiteConfig CRs for cluster deployment, the
following MachineConfig CRs are included by default.

Use the SiteConfig extraManifests filter to alter the CRs that are included by default. For more

OpenShift Container Platform 4.15 Edge computing

80



1

Use the SiteConfig extraManifests filter to alter the CRs that are included by default. For more
information, see Advanced managed cluster configuration with SiteConfig CRs .

7.6.1. Workload partitioning

Single-node OpenShift clusters that run DU workloads require workload partitioning. This limits the
cores allowed to run platform services, maximizing the CPU core for application payloads.

NOTE

Workload partitioning can be enabled during cluster installation only. You cannot disable
workload partitioning postinstallation. You can however change the set of CPUs assigned
to the isolated and reserved sets through the PerformanceProfile CR. Changes to CPU
settings cause the node to reboot.

UPGRADING FROM OPENSHIFT CONTAINER PLATFORM 4.12 TO 4.13+

When transitioning to using cpuPartitioningMode for enabling workload partitioning,
remove the workload partitioning MachineConfig CRs from the /extra-manifest folder
that you use to provision the cluster.

Recommended SiteConfig CR configuration for workload partitioning

Set the cpuPartitioningMode field to AllNodes to configure workload partitioning for all nodes in
the cluster.

Verification

Check that the applications and cluster system CPU pinning is correct. Run the following commands:

1. Open a remote shell prompt to the managed cluster:

2. Check that the OpenShift infrastructure applications CPU pinning is correct:

Example output

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
  name: "<site_name>"
  namespace: "<site_name>"
spec:
  baseDomain: "example.com"
  cpuPartitioningMode: AllNodes 1

$ oc debug node/example-sno-1

sh-4.4# pgrep ovn | while read i; do taskset -cp $i; done

pid 8481's current affinity list: 0-1,52-53
pid 8726's current affinity list: 0-1,52-53
pid 9088's current affinity list: 0-1,52-53

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

81



3. Check that the system applications CPU pinning is correct:

Example output

7.6.2. Reduced platform management footprint

To reduce the overall management footprint of the platform, a MachineConfig custom resource (CR) is
required that places all Kubernetes-specific mount points in a new namespace separate from the host
operating system. The following base64-encoded example MachineConfig CR illustrates this
configuration.

Recommended container mount namespace configuration ( 01-container-mount-ns-and-
kubelet-conf-master.yaml)

pid 9945's current affinity list: 0-1,52-53
pid 10387's current affinity list: 0-1,52-53
pid 12123's current affinity list: 0-1,52-53
pid 13313's current affinity list: 0-1,52-53

sh-4.4# pgrep systemd | while read i; do taskset -cp $i; done

pid 1's current affinity list: 0-1,52-53
pid 938's current affinity list: 0-1,52-53
pid 962's current affinity list: 0-1,52-53
pid 1197's current affinity list: 0-1,52-53

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: container-mount-namespace-and-kubelet-conf-master
spec:
  config:
    ignition:
      version: 3.2.0
    storage:
      files:
        - contents:
            source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKCmRlYnVnKCkgewogIGVjaG8gJEAgPiYyCn0KCnVzYWdlKCkgewogIGVj
aG8gVXNhZ2U6ICQoYmFzZW5hbWUgJDApIFVOSVQgW2VudmZpbGUgW3Zhcm5hbWVdXQogIGV
jaG8KICBlY2hvIEV4dHJhY3QgdGhlIGNvbnRlbnRzIG9mIHRoZSBmaXJzdCBFeGVjU3RhcnQgc3Rhbn
phIGZyb20gdGhlIGdpdmVuIHN5c3RlbWQgdW5pdCBhbmQgcmV0dXJuIGl0IHRvIHN0ZG91dAogIGVj
aG8KICBlY2hvICJJZiAnZW52ZmlsZScgaXMgcHJvdmlkZWQsIHB1dCBpdCBpbiB0aGVyZSBpbnN0ZW
FkLCBhcyBhbiBlbnZpcm9ubWVudCB2YXJpYWJsZSBuYW1lZCAndmFybmFtZSciCiAgZWNobyAiRGV
mYXVsdCAndmFybmFtZScgaXMgRVhFQ1NUQVJUIGlmIG5vdCBzcGVjaWZpZWQiCiAgZXhpdCAxC
n0KClVOSVQ9JDEKRU5WRklMRT0kMgpWQVJOQU1FPSQzCmlmIFtbIC16ICRVTklUIHx8ICRVTklUI
D09ICItLWhlbHAiIHx8ICRVTklUID09ICItaCIgXV07IHRoZW4KICB1c2FnZQpmaQpkZWJ1ZyAiRXh0cm
FjdGluZyBFeGVjU3RhcnQgZnJvbSAkVU5JVCIKRklMRT0kKHN5c3RlbWN0bCBjYXQgJFVOSVQgfCB
oZWFkIC1uIDEpCkZJTEU9JHtGSUxFI1wjIH0KaWYgW1sgISAtZiAkRklMRSBdXTsgdGhlbgogIGRlYnV
nICJGYWlsZWQgdG8gZmluZCByb290IGZpbGUgZm9yIHVuaXQgJFVOSVQgKCRGSUxFKSIKICBle
Gl0CmZpCmRlYnVnICJTZXJ2aWNlIGRlZmluaXRpb24gaXMgaW4gJEZJTEUiCkVYRUNTVEFSVD0k
KHNlZCAtbiAtZSAnL15FeGVjU3RhcnQ9LipcXCQvLC9bXlxcXSQvIHsgcy9eRXhlY1N0YXJ0PS8vOyBw

OpenShift Container Platform 4.15 Edge computing

82



IH0nIC1lICcvXkV4ZWNTdGFydD0uKlteXFxdJC8geyBzL15FeGVjU3RhcnQ9Ly87IHAgfScgJEZJTEUp
CgppZiBbWyAkRU5WRklMRSBdXTsgdGhlbgogIFZBUk5BTUU9JHtWQVJOQU1FOi1FWEVDU1RBUl
R9CiAgZWNobyAiJHtWQVJOQU1FfT0ke0VYRUNTVEFSVH0iID4gJEVOVkZJTEUKZWxzZQogIGVja
G8gJEVYRUNTVEFSVApmaQo=
          mode: 493
          path: /usr/local/bin/extractExecStart
        - contents:
            source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKbnNlbnRlciAtLW1vdW50PS9ydW4vY29udGFpbmVyLW1vdW50LW5hbWV
zcGFjZS9tbnQgIiRAIgo=
          mode: 493
          path: /usr/local/bin/nsenterCmns
    systemd:
      units:
        - contents: |
            [Unit]
            Description=Manages a mount namespace that both kubelet and crio can use to share their 
container-specific mounts

            [Service]
            Type=oneshot
            RemainAfterExit=yes
            RuntimeDirectory=container-mount-namespace
            Environment=RUNTIME_DIRECTORY=%t/container-mount-namespace
            Environment=BIND_POINT=%t/container-mount-namespace/mnt
            ExecStartPre=bash -c "findmnt ${RUNTIME_DIRECTORY} || mount --make-unbindable --
bind ${RUNTIME_DIRECTORY} ${RUNTIME_DIRECTORY}"
            ExecStartPre=touch ${BIND_POINT}
            ExecStart=unshare --mount=${BIND_POINT} --propagation slave mount --make-rshared /
            ExecStop=umount -R ${RUNTIME_DIRECTORY}
          name: container-mount-namespace.service
        - dropins:
            - contents: |
                [Unit]
                Wants=container-mount-namespace.service
                After=container-mount-namespace.service

                [Service]
                ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env 
ORIG_EXECSTART
                EnvironmentFile=-/%t/%N-execstart.env
                ExecStart=
                ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
                    ${ORIG_EXECSTART}"
              name: 90-container-mount-namespace.conf
          name: crio.service
        - dropins:
            - contents: |
                [Unit]
                Wants=container-mount-namespace.service
                After=container-mount-namespace.service

                [Service]
                ExecStartPre=/usr/local/bin/extractExecStart %n /%t/%N-execstart.env 
ORIG_EXECSTART
                EnvironmentFile=-/%t/%N-execstart.env

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

83



7.6.3. SCTP

Stream Control Transmission Protocol (SCTP) is a key protocol used in RAN applications. This 
MachineConfig object adds the SCTP kernel module to the node to enable this protocol.

Recommended control plane node SCTP configuration ( 03-sctp-machine-config-
master.yaml)

Recommended worker node SCTP configuration ( 03-sctp-machine-config-worker.yaml)

                ExecStart=
                ExecStart=bash -c "nsenter --mount=%t/container-mount-namespace/mnt \
                    ${ORIG_EXECSTART} --housekeeping-interval=30s"
              name: 90-container-mount-namespace.conf
            - contents: |
                [Service]
                Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"
                Environment="OPENSHIFT_EVICTION_MONITORING_PERIOD_DURATION=30s"
              name: 30-kubelet-interval-tuning.conf
          name: kubelet.service

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: load-sctp-module-master
spec:
  config:
    ignition:
      version: 2.2.0
    storage:
      files:
        - contents:
            source: data:,
            verification: {}
          filesystem: root
          mode: 420
          path: /etc/modprobe.d/sctp-blacklist.conf
        - contents:
            source: data:text/plain;charset=utf-8,sctp
          filesystem: root
          mode: 420
          path: /etc/modules-load.d/sctp-load.conf

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: load-sctp-module-worker
spec:
  config:
    ignition:

OpenShift Container Platform 4.15 Edge computing

84



7.6.4. Accelerated container startup

The following MachineConfig CR configures core OpenShift processes and containers to use all
available CPU cores during system startup and shutdown. This accelerates the system recovery during
initial boot and reboots.

Recommended accelerated container startup configuration ( 04-accelerated-container-
startup-master.yaml)

      version: 2.2.0
    storage:
      files:
        - contents:
            source: data:,
            verification: {}
          filesystem: root
          mode: 420
          path: /etc/modprobe.d/sctp-blacklist.conf
        - contents:
            source: data:text/plain;charset=utf-8,sctp
          filesystem: root
          mode: 420
          path: /etc/modules-load.d/sctp-load.conf

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 04-accelerated-container-startup-master
spec:
  config:
    ignition:
      version: 3.2.0
    storage:
      files:
        - contents:
            source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKIwojIFRlbXBvcmFyaWx5IHJlc2V0IHRoZSBjb3JlIHN5c3RlbSBwcm9jZXNz
ZXMncyBDUFUgYWZmaW5pdHkgdG8gYmUgdW5yZXN0cmljdGVkIHRvIGFjY2VsZXJhdGUgc3Rhcn
R1cCBhbmQgc2h1dGRvd24KIwojIFRoZSBkZWZhdWx0cyBiZWxvdyBjYW4gYmUgb3ZlcnJpZGRlbiB2a
WEgZW52aXJvbm1lbnQgdmFyaWFibGVzCiMKCiMgVGhlIGRlZmF1bHQgc2V0IG9mIGNyaXRpY2FsI
HByb2Nlc3NlcyB3aG9zZSBhZmZpbml0eSBzaG91bGQgYmUgdGVtcG9yYXJpbHkgdW5ib3VuZDoKQ
1JJVElDQUxfUFJPQ0VTU0VTPSR7Q1JJVElDQUxfUFJPQ0VTU0VTOi0iY3JpbyBrdWJlbGV0IE5ldHd
vcmtNYW5hZ2VyIGNvbm1vbiBkYnVzIn0KCiMgRGVmYXVsdCB3YWl0IHRpbWUgaXMgNjAwcyA9IDE
wbToKTUFYSU1VTV9XQUlUX1RJTUU9JHtNQVhJTVVNX1dBSVRfVElNRTotNjAwfQoKIyBEZWZhd
Wx0IHN0ZWFkeS1zdGF0ZSB0aHJlc2hvbGQgPSAyJQojIEFsbG93ZWQgdmFsdWVzOgojICA0ICAtIG
Fic29sdXRlIHBvZCBjb3VudCAoKy8tKQojICA0JSAtIHBlcmNlbnQgY2hhbmdlICgrLy0pCiMgIC0xIC0gZG
lzYWJsZSB0aGUgc3RlYWR5LXN0YXRlIGNoZWNrClNURUFEWV9TVEFURV9USFJFU0hPTEQ9JHt
TVEVBRFlfU1RBVEVfVEhSRVNIT0xEOi0yJX0KCiMgRGVmYXVsdCBzdGVhZHktc3RhdGUgd2luZG9
3ID0gNjBzCiMgSWYgdGhlIHJ1bm5pbmcgcG9kIGNvdW50IHN0YXlzIHdpdGhpbiB0aGUgZ2l2ZW4gdG
hyZXNob2xkIGZvciB0aGlzIHRpbWUKIyBwZXJpb2QsIHJldHVybiBDUFUgdXRpbGl6YXRpb24gdG8gb
m9ybWFsIGJlZm9yZSB0aGUgbWF4aW11bSB3YWl0IHRpbWUgaGFzCiMgZXhwaXJlcwpTVEVBRFlf
U1RBVEVfV0lORE9XPSR7U1RFQURZX1NUQVRFX1dJTkRPVzotNjB9CgojIERlZmF1bHQgc3RlYW
R5LXN0YXRlIGFsbG93cyBhbnkgcG9kIGNvdW50IHRvIGJlICJzdGVhZHkgc3RhdGUiCiMgSW5jcmVhc

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

85



2luZyB0aGlzIHdpbGwgc2tpcCBhbnkgc3RlYWR5LXN0YXRlIGNoZWNrcyB1bnRpbCB0aGUgY291bnQ
gcmlzZXMgYWJvdmUKIyB0aGlzIG51bWJlciB0byBhdm9pZCBmYWxzZSBwb3NpdGl2ZXMgaWYgdGhl
cmUgYXJlIHNvbWUgcGVyaW9kcyB3aGVyZSB0aGUKIyBjb3VudCBkb2Vzbid0IGluY3JlYXNlIGJ1dCB3
ZSBrbm93IHdlIGNhbid0IGJlIGF0IHN0ZWFkeS1zdGF0ZSB5ZXQuClNURUFEWV9TVEFURV9NSU5J
TVVNPSR7U1RFQURZX1NUQVRFX01JTklNVU06LTB9CgojIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjI
yMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjCgpLVUJFTEVUX0NQVV9TVEFURT0vdmFyL2xpYi9rdWJlbGV0L2Nw
dV9tYW5hZ2VyX3N0YXRlCkZVTExfQ1BVX1NUQVRFPS9zeXMvZnMvY2dyb3VwL2NwdXNldC9jcHVz
ZXQuY3B1cwpLVUJFTEVUX0NPTkY9L2V0Yy9rdWJlcm5ldGVzL2t1YmVsZXQuY29uZgp1bnJlc3Rya
WN0ZWRDcHVzZXQoKSB7CiAgbG9jYWwgY3B1cwogIGlmIFtbIC1lICRLVUJFTEVUX0NQVV9TVEF
URSBdXTsgdGhlbgogICAgY3B1cz0kKGpxIC1yICcuZGVmYXVsdENwdVNldCcgPCRLVUJFTEVUX0N
QVV9TVEFURSkKICAgIGlmIFtbIC1uICIke2NwdXN9IiAmJiAtZSAke0tVQkVMRVRfQ09ORn0gXV07IH
RoZW4KICAgICAgcmVzZXJ2ZWRfY3B1cz0kKGpxIC1yICcucmVzZXJ2ZWRTeXN0ZW1DUFVzJyA8L2
V0Yy9rdWJlcm5ldGVzL2t1YmVsZXQuY29uZikKICAgICAgaWYgW1sgLW4gIiR7cmVzZXJ2ZWRfY3B1c
30iIF1dOyB0aGVuCiAgICAgICAgIyBVc2UgdGFza3NldCB0byBtZXJnZSB0aGUgdHdvIGNwdXNldHMK
ICAgICAgICBjcHVzPSQodGFza3NldCAtYyAiJHtyZXNlcnZlZF9jcHVzfSwke2NwdXN9IiBncmVwIC1pIE
NwdXNfYWxsb3dlZF9saXN0IC9wcm9jL3NlbGYvc3RhdHVzIHwgYXdrICd7cHJpbnQgJDJ9JykKICAgIC
AgZmkKICAgIGZpCiAgZmkKICBpZiBbWyAteiAkY3B1cyBdXTsgdGhlbgogICAgIyBmYWxsIGJhY2sgdG
8gdXNpbmcgYWxsIGNwdXMgaWYgdGhlIGt1YmVsZXQgc3RhdGUgaXMgbm90IGNvbmZpZ3VyZWQ
geWV0CiAgICBbWyAtZSAkRlVMTF9DUFVfU1RBVEUgXV0gfHwgcmV0dXJuIDEKICAgIGNwdXM9JC
g8JEZVTExfQ1BVX1NUQVRFKQogIGZpCiAgZWNobyAkY3B1cwp9CgpyZXN0cmljdGVkQ3B1c2V0K
CkgewogIGZvciBhcmcgaW4gJCg8L3Byb2MvY21kbGluZSk7IGRvCiAgICBpZiBbWyAkYXJnID1+IF5zeX
N0ZW1kLmNwdV9hZmZpbml0eT0gXV07IHRoZW4KICAgICAgZWNobyAke2FyZyMqPX0KICAgICAgc
mV0dXJuIDAKICAgIGZpCiAgZG9uZQogIHJldHVybiAxCn0KCnJlc2V0QWZmaW5pdHkoKSB7CiAgbG
9jYWwgY3B1c2V0PSIkMSIKICBsb2NhbCBmYWlsY291bnQ9MAogIGxvY2FsIHN1Y2Nlc3Njb3VudD0w
CiAgbG9nZ2VyICJSZWNvdmVyeTogU2V0dGluZyBDUFUgYWZmaW5pdHkgZm9yIGNyaXRpY2FsIH
Byb2Nlc3NlcyBcIiRDUklUSUNBTF9QUk9DRVNTRVNcIiB0byAkY3B1c2V0IgogIGZvciBwcm9jIGluICRD
UklUSUNBTF9QUk9DRVNTRVM7IGRvCiAgICBsb2NhbCBwaWRzPSIkKHBncmVwICRwcm9jKSIKIC
AgIGZvciBwaWQgaW4gJHBpZHM7IGRvCiAgICAgIGxvY2FsIHRhc2tzZXRPdXRwdXQKICAgICAgdG
Fza3NldE91dHB1dD0iJCh0YXNrc2V0IC1hcGMgIiRjcHVzZXQiICRwaWQgMj4mMSkiCiAgICAgIGlmIFt
bICQ/IC1uZSAwIF1dOyB0aGVuCiAgICAgICAgZWNobyAiRVJST1I6ICR0YXNrc2V0T3V0cHV0IgogIC
AgICAgICgoZmFpbGNvdW50KyspKQogICAgICBlbHNlCiAgICAgICAgKChzdWNjZXNzY291bnQrKykp
CiAgICAgIGZpCiAgICBkb25lCiAgZG9uZQoKICBsb2dnZXIgIlJlY292ZXJ5OiBSZS1hZmZpbmVkICRzd
WNjZXNzY291bnQgcGlkcyBzdWNjZXNzZnVsbHkiCiAgaWYgW1sgJGZhaWxjb3VudCAtZ3QgMCBdXT
sgdGhlbgogICAgbG9nZ2VyICJSZWNvdmVyeTogRmFpbGVkIHRvIHJlLWFmZmluZSAkZmFpbGNvdW
50IHByb2Nlc3NlcyIKICAgIHJldHVybiAxCiAgZmkKfQoKc2V0VW5yZXN0cmljdGVkKCkgewogIGxvZ2dlci
AiUmVjb3Zlcnk6IFNldHRpbmcgY3JpdGljYWwgc3lzdGVtIHByb2Nlc3NlcyB0byBoYXZlIHVucmVzdHJpY3
RlZCBDUFUgYWNjZXNzIgogIHJlc2V0QWZmaW5pdHkgIiQodW5yZXN0cmljdGVkQ3B1c2V0KSIKfQo
Kc2V0UmVzdHJpY3RlZCgpIHsKICBsb2dnZXIgIlJlY292ZXJ5OiBSZXNldHRpbmcgY3JpdGljYWwgc3lzd
GVtIHByb2Nlc3NlcyBiYWNrIHRvIG5vcm1hbGx5IHJlc3RyaWN0ZWQgYWNjZXNzIgogIHJlc2V0QWZm
aW5pdHkgIiQocmVzdHJpY3RlZENwdXNldCkiCn0KCmN1cnJlbnRBZmZpbml0eSgpIHsKICBsb2NhbC
BwaWQ9IiQxIgogIHRhc2tzZXQgLXBjICRwaWQgfCBhd2sgLUYnOiAnICd7cHJpbnQgJDJ9Jwp9Cgp3a
XRoaW4oKSB7CiAgbG9jYWwgbGFzdD0kMSBjdXJyZW50PSQyIHRocmVzaG9sZD0kMwogIGxvY2FsI
GRlbHRhPTAgcGNoYW5nZQogIGRlbHRhPSQoKCBjdXJyZW50IC0gbGFzdCApKQogIGlmIFtbICRjd
XJyZW50IC1lcSAkbGFzdCBdXTsgdGhlbgogICAgcGNoYW5nZT0wCiAgZWxpZiBbWyAkbGFzdCAtZX
EgMCBdXTsgdGhlbgogICAgcGNoYW5nZT0xMDAwMDAwCiAgZWxzZQogICAgcGNoYW5nZT0kKCg
gKCAkZGVsdGEgKiAxMDApIC8gbGFzdCApKQogIGZpCiAgZWNobyAtbiAibGFzdDokbGFzdCBjdXJy
ZW50OiRjdXJyZW50IGRlbHRhOiRkZWx0YSBwY2hhbmdlOiR7cGNoYW5nZX0lOiAiCiAgbG9jYWwgY
WJzb2x1dGUgbGltaXQKICBjYXNlICR0aHJlc2hvbGQgaW4KICAgIColKQogICAgICBhYnNvbHV0ZT0k
e3BjaGFuZ2UjIy19ICMgYWJzb2x1dGUgdmFsdWUKICAgICAgbGltaXQ9JHt0aHJlc2hvbGQlJSV9CiAgI
CAgIDs7CiAgICAqKQogICAgICBhYnNvbHV0ZT0ke2RlbHRhIyMtfSAjIGFic29sdXRlIHZhbHVlCiAgICAg
IGxpbWl0PSR0aHJlc2hvbGQKICAgICAgOzsKICBlc2FjCiAgaWYgW1sgJGFic29sdXRlIC1sZSAkbGltaX
QgXV07IHRoZW4KICAgIGVjaG8gIndpdGhpbiAoKy8tKSR0aHJlc2hvbGQiCiAgICByZXR1cm4gMAogI
GVsc2UKICAgIGVjaG8gIm91dHNpZGUgKCsvLSkkdGhyZXNob2xkIgogICAgcmV0dXJuIDEKICBmaQ
p9CgpzdGVhZHlzdGF0ZSgpIHsKICBsb2NhbCBsYXN0PSQxIGN1cnJlbnQ9JDIKICBpZiBbWyAkbGFz
dCAtbHQgJFNURUFEWV9TVEFURV9NSU5JTVVNIF1dOyB0aGVuCiAgICBlY2hvICJsYXN0OiRsYXN
0IGN1cnJlbnQ6JGN1cnJlbnQgV2FpdGluZyB0byByZWFjaCAkU1RFQURZX1NUQVRFX01JTklNVU0g

OpenShift Container Platform 4.15 Edge computing

86



YmVmb3JlIGNoZWNraW5nIGZvciBzdGVhZHktc3RhdGUiCiAgICByZXR1cm4gMQogIGZpCiAgd2l0aGl
uICRsYXN0ICRjdXJyZW50ICRTVEVBRFlfU1RBVEVfVEhSRVNIT0xECn0KCndhaXRGb3JSZWFkeSg
pIHsKICBsb2dnZXIgIlJlY292ZXJ5OiBXYWl0aW5nICR7TUFYSU1VTV9XQUlUX1RJTUV9cyBmb3IgdG
hlIGluaXRpYWxpemF0aW9uIHRvIGNvbXBsZXRlIgogIGxvY2FsIGxhc3RTeXN0ZW1kQ3B1c2V0PSIkK
GN1cnJlbnRBZmZpbml0eSAxKSIKICBsb2NhbCBsYXN0RGVzaXJlZENwdXNldD0iJCh1bnJlc3RyaWN
0ZWRDcHVzZXQpIgogIGxvY2FsIHQ9MCBzPTEwCiAgbG9jYWwgbGFzdENjb3VudD0wIGNjb3VudD0
wIHN0ZWFkeVN0YXRlVGltZT0wCiAgd2hpbGUgW1sgJHQgLWx0ICRNQVhJTVVNX1dBSVRfVElNRS
BdXTsgZG8KICAgIHNsZWVwICRzCiAgICAoKHQgKz0gcykpCiAgICAjIFJlLWNoZWNrIHRoZSBjdXJyZ
W50IGFmZmluaXR5IG9mIHN5c3RlbWQsIGluIGNhc2Ugc29tZSBvdGhlciBwcm9jZXNzIGhhcyBjaGFuZ
2VkIGl0CiAgICBsb2NhbCBzeXN0ZW1kQ3B1c2V0PSIkKGN1cnJlbnRBZmZpbml0eSAxKSIKICAgICMg
UmUtY2hlY2sgdGhlIHVucmVzdHJpY3RlZCBDcHVzZXQsIGFzIHRoZSBhbGxvd2VkIHNldCBvZiB1bnJl
c2VydmVkIGNvcmVzIG1heSBjaGFuZ2UgYXMgcG9kcyBhcmUgYXNzaWduZWQgdG8gY29yZXMKICA
gIGxvY2FsIGRlc2lyZWRDcHVzZXQ9IiQodW5yZXN0cmljdGVkQ3B1c2V0KSIKICAgIGlmIFtbICRzeXN0
ZW1kQ3B1c2V0ICE9ICRsYXN0U3lzdGVtZENwdXNldCB8fCAkbGFzdERlc2lyZWRDcHVzZXQgIT0gJ
GRlc2lyZWRDcHVzZXQgXV07IHRoZW4KICAgICAgcmVzZXRBZmZpbml0eSAiJGRlc2lyZWRDcHVzZ
XQiCiAgICAgIGxhc3RTeXN0ZW1kQ3B1c2V0PSIkKGN1cnJlbnRBZmZpbml0eSAxKSIKICAgICAgbGF
zdERlc2lyZWRDcHVzZXQ9IiRkZXNpcmVkQ3B1c2V0IgogICAgZmkKCiAgICAjIERldGVjdCBzdGVhZHk
tc3RhdGUgcG9kIGNvdW50CiAgICBjY291bnQ9JChjcmljdGwgcHMgfCB3YyAtbCkKICAgIGlmIHN0ZW
FkeXN0YXRlICRsYXN0Q2NvdW50ICRjY291bnQ7IHRoZW4KICAgICAgKChzdGVhZHlTdGF0ZVRpb
WUgKz0gcykpCiAgICAgIGVjaG8gIlN0ZWFkeS1zdGF0ZSBmb3IgJHtzdGVhZHlTdGF0ZVRpbWV9cy8
ke1NURUFEWV9TVEFURV9XSU5ET1d9cyIKICAgICAgaWYgW1sgJHN0ZWFkeVN0YXRlVGltZSAtZ2
UgJFNURUFEWV9TVEFURV9XSU5ET1cgXV07IHRoZW4KICAgICAgICBsb2dnZXIgIlJlY292ZXJ5OiB
TdGVhZHktc3RhdGUgKCsvLSAkU1RFQURZX1NUQVRFX1RIUkVTSE9MRCkgZm9yICR7U1RFQU
RZX1NUQVRFX1dJTkRPV31zOiBEb25lIgogICAgICAgIHJldHVybiAwCiAgICAgIGZpCiAgICBlbHNlCiAg
ICAgIGlmIFtbICRzdGVhZHlTdGF0ZVRpbWUgLWd0IDAgXV07IHRoZW4KICAgICAgICBlY2hvICJSZX
NldHRpbmcgc3RlYWR5LXN0YXRlIHRpbWVyIgogICAgICAgIHN0ZWFkeVN0YXRlVGltZT0wCiAgICAgI
GZpCiAgICBmaQogICAgbGFzdENjb3VudD0kY2NvdW50CiAgZG9uZQogIGxvZ2dlciAiUmVjb3Zlcnk6I
FJlY292ZXJ5IENvbXBsZXRlIFRpbWVvdXQiCn0KCm1haW4oKSB7CiAgaWYgISB1bnJlc3RyaWN0ZW
RDcHVzZXQgPiYvZGV2L251bGw7IHRoZW4KICAgIGxvZ2dlciAiUmVjb3Zlcnk6IE5vIHVucmVzdHJpY3
RlZCBDcHVzZXQgY291bGQgYmUgZGV0ZWN0ZWQiCiAgICByZXR1cm4gMQogIGZpCgogIGlmICE
gcmVzdHJpY3RlZENwdXNldCA+Ji9kZXYvbnVsbDsgdGhlbgogICAgbG9nZ2VyICJSZWNvdmVyeTogT
m8gcmVzdHJpY3RlZCBDcHVzZXQgaGFzIGJlZW4gY29uZmlndXJlZC4gIFdlIGFyZSBhbHJlYWR5IHJ1
bm5pbmcgdW5yZXN0cmljdGVkLiIKICAgIHJldHVybiAwCiAgZmkKCiAgIyBFbnN1cmUgd2UgcmVzZXQg
dGhlIENQVSBhZmZpbml0eSB3aGVuIHdlIGV4aXQgdGhpcyBzY3JpcHQgZm9yIGFueSByZWFzb24KI
CAjIFRoaXMgd2F5IGVpdGhlciBhZnRlciB0aGUgdGltZXIgZXhwaXJlcyBvciBhZnRlciB0aGUgcHJvY2Vzc
yBpcyBpbnRlcnJ1cHRlZAogICMgdmlhIF5DIG9yIFNJR1RFUk0sIHdlIHJldHVybiB0aGluZ3MgYmFjayB0
byB0aGUgd2F5IHRoZXkgc2hvdWxkIGJlLgogIHRyYXAgc2V0UmVzdHJpY3RlZCBFWElUCgogIGxvZ2
dlciAiUmVjb3Zlcnk6IFJlY292ZXJ5IE1vZGUgU3RhcnRpbmciCiAgc2V0VW5yZXN0cmljdGVkCiAgd2Fpd
EZvclJlYWR5Cn0KCmlmIFtbICIke0JBU0hfU09VUkNFWzBdfSIgPSAiJHswfSIgXV07IHRoZW4KICBtYW
luICIke0B9IgogIGV4aXQgJD8KZmkK
          mode: 493
          path: /usr/local/bin/accelerated-container-startup.sh
    systemd:
      units:
        - contents: |
            [Unit]
            Description=Unlocks more CPUs for critical system processes during container startup

            [Service]
            Type=simple
            ExecStart=/usr/local/bin/accelerated-container-startup.sh

            # Maximum wait time is 600s = 10m:
            Environment=MAXIMUM_WAIT_TIME=600

            # Steady-state threshold = 2%

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

87



7.6.5. Setting rcu_normal

            # Allowed values:
            #  4  - absolute pod count (+/-)
            #  4% - percent change (+/-)
            #  -1 - disable the steady-state check
            # Note: '%' must be escaped as '%%' in systemd unit files
            Environment=STEADY_STATE_THRESHOLD=2%%

            # Steady-state window = 120s
            # If the running pod count stays within the given threshold for this time
            # period, return CPU utilization to normal before the maximum wait time has
            # expires
            Environment=STEADY_STATE_WINDOW=120

            # Steady-state minimum = 40
            # Increasing this will skip any steady-state checks until the count rises above
            # this number to avoid false positives if there are some periods where the
            # count doesn't increase but we know we can't be at steady-state yet.
            Environment=STEADY_STATE_MINIMUM=40

            [Install]
            WantedBy=multi-user.target
          enabled: true
          name: accelerated-container-startup.service
        - contents: |
            [Unit]
            Description=Unlocks more CPUs for critical system processes during container shutdown
            DefaultDependencies=no

            [Service]
            Type=simple
            ExecStart=/usr/local/bin/accelerated-container-startup.sh

            # Maximum wait time is 600s = 10m:
            Environment=MAXIMUM_WAIT_TIME=600

            # Steady-state threshold
            # Allowed values:
            #  4  - absolute pod count (+/-)
            #  4% - percent change (+/-)
            #  -1 - disable the steady-state check
            # Note: '%' must be escaped as '%%' in systemd unit files
            Environment=STEADY_STATE_THRESHOLD=-1

            # Steady-state window = 60s
            # If the running pod count stays within the given threshold for this time
            # period, return CPU utilization to normal before the maximum wait time has
            # expires
            Environment=STEADY_STATE_WINDOW=60

            [Install]
            WantedBy=shutdown.target reboot.target halt.target
          enabled: true
          name: accelerated-container-shutdown.service

OpenShift Container Platform 4.15 Edge computing

88



The following MachineConfig CR configures the system to set rcu_normal to 1 after the system has
finished startup. This improves kernel latency for vDU applications.

Recommended configuration for disabling rcu_expedited after the node has finished
startup (08-set-rcu-normal-master.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 08-set-rcu-normal-master
spec:
  config:
    ignition:
      version: 3.2.0
    storage:
      files:
        - contents:
            source: data:text/plain;charset=utf-
8;base64,IyEvYmluL2Jhc2gKIwojIERpc2FibGUgcmN1X2V4cGVkaXRlZCBhZnRlciBub2RlIGhhcyBmaW
5pc2hlZCBib290aW5nCiMKIyBUaGUgZGVmYXVsdHMgYmVsb3cgY2FuIGJlIG92ZXJyaWRkZW4gdml
hIGVudmlyb25tZW50IHZhcmlhYmxlcwojCgojIERlZmF1bHQgd2FpdCB0aW1lIGlzIDYwMHMgPSAxMG
06Ck1BWElNVU1fV0FJVF9USU1FPSR7TUFYSU1VTV9XQUlUX1RJTUU6LTYwMH0KCiMgRGVmY
XVsdCBzdGVhZHktc3RhdGUgdGhyZXNob2xkID0gMiUKIyBBbGxvd2VkIHZhbHVlczoKIyAgNCAgLSBh
YnNvbHV0ZSBwb2QgY291bnQgKCsvLSkKIyAgNCUgLSBwZXJjZW50IGNoYW5nZSAoKy8tKQojICAt
MSAtIGRpc2FibGUgdGhlIHN0ZWFkeS1zdGF0ZSBjaGVjawpTVEVBRFlfU1RBVEVfVEhSRVNIT0xEP
SR7U1RFQURZX1NUQVRFX1RIUkVTSE9MRDotMiV9CgojIERlZmF1bHQgc3RlYWR5LXN0YXRlIHd
pbmRvdyA9IDYwcwojIElmIHRoZSBydW5uaW5nIHBvZCBjb3VudCBzdGF5cyB3aXRoaW4gdGhlIGdpd
mVuIHRocmVzaG9sZCBmb3IgdGhpcyB0aW1lCiMgcGVyaW9kLCByZXR1cm4gQ1BVIHV0aWxpemF0
aW9uIHRvIG5vcm1hbCBiZWZvcmUgdGhlIG1heGltdW0gd2FpdCB0aW1lIGhhcwojIGV4cGlyZXMKU1
RFQURZX1NUQVRFX1dJTkRPVz0ke1NURUFEWV9TVEFURV9XSU5ET1c6LTYwfQoKIyBEZWZhd
Wx0IHN0ZWFkeS1zdGF0ZSBhbGxvd3MgYW55IHBvZCBjb3VudCB0byBiZSAic3RlYWR5IHN0YXRlIgo
jIEluY3JlYXNpbmcgdGhpcyB3aWxsIHNraXAgYW55IHN0ZWFkeS1zdGF0ZSBjaGVja3MgdW50aWwgd
GhlIGNvdW50IHJpc2VzIGFib3ZlCiMgdGhpcyBudW1iZXIgdG8gYXZvaWQgZmFsc2UgcG9zaXRpdmV
zIGlmIHRoZXJlIGFyZSBzb21lIHBlcmlvZHMgd2hlcmUgdGhlCiMgY291bnQgZG9lc24ndCBpbmNyZWF
zZSBidXQgd2Uga25vdyB3ZSBjYW4ndCBiZSBhdCBzdGVhZHktc3RhdGUgeWV0LgpTVEVBRFlfU1RB
VEVfTUlOSU1VTT0ke1NURUFEWV9TVEFURV9NSU5JTVVNOi0wfQoKIyMjIyMjIyMjIyMjIyMjIyMjIyMjI
yMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIwoKd2l0aGluKCkgewogIGxvY2FsIGxhc3Q9JDEgY3VycmV
udD0kMiB0aHJlc2hvbGQ9JDMKICBsb2NhbCBkZWx0YT0wIHBjaGFuZ2UKICBkZWx0YT0kKCggY3Vy
cmVudCAtIGxhc3QgKSkKICBpZiBbWyAkY3VycmVudCAtZXEgJGxhc3QgXV07IHRoZW4KICAgIHBjaG
FuZ2U9MAogIGVsaWYgW1sgJGxhc3QgLWVxIDAgXV07IHRoZW4KICAgIHBjaGFuZ2U9MTAwMDA
wMAogIGVsc2UKICAgIHBjaGFuZ2U9JCgoICggIiRkZWx0YSIgKiAxMDApIC8gbGFzdCApKQogIGZpCi
AgZWNobyAtbiAibGFzdDokbGFzdCBjdXJyZW50OiRjdXJyZW50IGRlbHRhOiRkZWx0YSBwY2hhbmdl
OiR7cGNoYW5nZX0lOiAiCiAgbG9jYWwgYWJzb2x1dGUgbGltaXQKICBjYXNlICR0aHJlc2hvbGQgaW4
KICAgIColKQogICAgICBhYnNvbHV0ZT0ke3BjaGFuZ2UjIy19ICMgYWJzb2x1dGUgdmFsdWUKICAgI
CAgbGltaXQ9JHt0aHJlc2hvbGQlJSV9CiAgICAgIDs7CiAgICAqKQogICAgICBhYnNvbHV0ZT0ke2RlbH
RhIyMtfSAjIGFic29sdXRlIHZhbHVlCiAgICAgIGxpbWl0PSR0aHJlc2hvbGQKICAgICAgOzsKICBlc2FjCiA
gaWYgW1sgJGFic29sdXRlIC1sZSAkbGltaXQgXV07IHRoZW4KICAgIGVjaG8gIndpdGhpbiAoKy8tKSR
0aHJlc2hvbGQiCiAgICByZXR1cm4gMAogIGVsc2UKICAgIGVjaG8gIm91dHNpZGUgKCsvLSkkdGhyZ
XNob2xkIgogICAgcmV0dXJuIDEKICBmaQp9CgpzdGVhZHlzdGF0ZSgpIHsKICBsb2NhbCBsYXN0PS
QxIGN1cnJlbnQ9JDIKICBpZiBbWyAkbGFzdCAtbHQgJFNURUFEWV9TVEFURV9NSU5JTVVNIF1dO
yB0aGVuCiAgICBlY2hvICJsYXN0OiRsYXN0IGN1cnJlbnQ6JGN1cnJlbnQgV2FpdGluZyB0byByZWFja
CAkU1RFQURZX1NUQVRFX01JTklNVU0gYmVmb3JlIGNoZWNraW5nIGZvciBzdGVhZHktc3RhdGUi
CiAgICByZXR1cm4gMQogIGZpCiAgd2l0aGluICIkbGFzdCIgIiRjdXJyZW50IiAiJFNURUFEWV9TVEFU
RV9USFJFU0hPTEQiCn0KCndhaXRGb3JSZWFkeSgpIHsKICBsb2dnZXIgIlJlY292ZXJ5OiBXYWl0aW

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

89



5nICR7TUFYSU1VTV9XQUlUX1RJTUV9cyBmb3IgdGhlIGluaXRpYWxpemF0aW9uIHRvIGNvbXBsZX
RlIgogIGxvY2FsIHQ9MCBzPTEwCiAgbG9jYWwgbGFzdENjb3VudD0wIGNjb3VudD0wIHN0ZWFkeVN
0YXRlVGltZT0wCiAgd2hpbGUgW1sgJHQgLWx0ICRNQVhJTVVNX1dBSVRfVElNRSBdXTsgZG8KIC
AgIHNsZWVwICRzCiAgICAoKHQgKz0gcykpCiAgICAjIERldGVjdCBzdGVhZHktc3RhdGUgcG9kIGNvd
W50CiAgICBjY291bnQ9JChjcmljdGwgcHMgMj4vZGV2L251bGwgfCB3YyAtbCkKICAgIGlmIFtbICRjY2
91bnQgLWd0IDAgXV0gJiYgc3RlYWR5c3RhdGUgIiRsYXN0Q2NvdW50IiAiJGNjb3VudCI7IHRoZW4KI
CAgICAgKChzdGVhZHlTdGF0ZVRpbWUgKz0gcykpCiAgICAgIGVjaG8gIlN0ZWFkeS1zdGF0ZSBmb3
IgJHtzdGVhZHlTdGF0ZVRpbWV9cy8ke1NURUFEWV9TVEFURV9XSU5ET1d9cyIKICAgICAgaWYgW
1sgJHN0ZWFkeVN0YXRlVGltZSAtZ2UgJFNURUFEWV9TVEFURV9XSU5ET1cgXV07IHRoZW4KICA
gICAgICBsb2dnZXIgIlJlY292ZXJ5OiBTdGVhZHktc3RhdGUgKCsvLSAkU1RFQURZX1NUQVRFX1RI
UkVTSE9MRCkgZm9yICR7U1RFQURZX1NUQVRFX1dJTkRPV31zOiBEb25lIgogICAgICAgIHJldHVy
biAwCiAgICAgIGZpCiAgICBlbHNlCiAgICAgIGlmIFtbICRzdGVhZHlTdGF0ZVRpbWUgLWd0IDAgXV07
IHRoZW4KICAgICAgICBlY2hvICJSZXNldHRpbmcgc3RlYWR5LXN0YXRlIHRpbWVyIgogICAgICAgIHN
0ZWFkeVN0YXRlVGltZT0wCiAgICAgIGZpCiAgICBmaQogICAgbGFzdENjb3VudD0kY2NvdW50CiAgZ
G9uZQogIGxvZ2dlciAiUmVjb3Zlcnk6IFJlY292ZXJ5IENvbXBsZXRlIFRpbWVvdXQiCn0KCnNldFJjdU5vc
m1hbCgpIHsKICBlY2hvICJTZXR0aW5nIHJjdV9ub3JtYWwgdG8gMSIKICBlY2hvIDEgPiAvc3lzL2tlcm5lb
C9yY3Vfbm9ybWFsCn0KCm1haW4oKSB7CiAgd2FpdEZvclJlYWR5CiAgZWNobyAiV2FpdGluZyBmb3I
gc3RlYWR5IHN0YXRlIHRvb2s6ICQoYXdrICd7cHJpbnQgaW50KCQxLzM2MDApImgiLCBpbnQoKCQ
xJTM2MDApLzYwKSJtIiwgaW50KCQxJTYwKSJzIn0nIC9wcm9jL3VwdGltZSkiCiAgc2V0UmN1Tm9yb
WFsCn0KCmlmIFtbICIke0JBU0hfU09VUkNFWzBdfSIgPSAiJHswfSIgXV07IHRoZW4KICBtYWluICIke0
B9IgogIGV4aXQgJD8KZmkK
          mode: 493
          path: /usr/local/bin/set-rcu-normal.sh
    systemd:
      units:
        - contents: |
            [Unit]
            Description=Disable rcu_expedited after node has finished booting by setting rcu_normal to 1

            [Service]
            Type=simple
            ExecStart=/usr/local/bin/set-rcu-normal.sh

            # Maximum wait time is 600s = 10m:
            Environment=MAXIMUM_WAIT_TIME=600

            # Steady-state threshold = 2%
            # Allowed values:
            #  4  - absolute pod count (+/-)
            #  4% - percent change (+/-)
            #  -1 - disable the steady-state check
            # Note: '%' must be escaped as '%%' in systemd unit files
            Environment=STEADY_STATE_THRESHOLD=2%%

            # Steady-state window = 120s
            # If the running pod count stays within the given threshold for this time
            # period, return CPU utilization to normal before the maximum wait time has
            # expires
            Environment=STEADY_STATE_WINDOW=120

            # Steady-state minimum = 40
            # Increasing this will skip any steady-state checks until the count rises above
            # this number to avoid false positives if there are some periods where the
            # count doesn't increase but we know we can't be at steady-state yet.
            Environment=STEADY_STATE_MINIMUM=40

OpenShift Container Platform 4.15 Edge computing

90



7.6.6. Automatic kernel crash dumps with kdump

kdump is a Linux kernel feature that creates a kernel crash dump when the kernel crashes. kdump is
enabled with the following MachineConfig CRs.

Recommended MachineConfig CR to remove ice driver from control plane kdump logs ( 05-
kdump-config-master.yaml)

            [Install]
            WantedBy=multi-user.target
          enabled: true
          name: set-rcu-normal.service

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 05-kdump-config-master
spec:
  config:
    ignition:
      version: 3.2.0
    systemd:
      units:
        - enabled: true
          name: kdump-remove-ice-module.service
          contents: |
            [Unit]
            Description=Remove ice module when doing kdump
            Before=kdump.service
            [Service]
            Type=oneshot
            RemainAfterExit=true
            ExecStart=/usr/local/bin/kdump-remove-ice-module.sh
            [Install]
            WantedBy=multi-user.target
    storage:
      files:
        - contents:
            source: data:text/plain;charset=utf-
8;base64,IyEvdXNyL2Jpbi9lbnYgYmFzaAoKIyBUaGlzIHNjcmlwdCByZW1vdmVzIHRoZSBpY2UgbW9k
dWxlIGZyb20ga2R1bXAgdG8gcHJldmVudCBrZHVtcCBmYWlsdXJlcyBvbiBjZXJ0YWluIHNlcnZlcnMuCi
MgVGhpcyBpcyBhIHRlbXBvcmFyeSB3b3JrYXJvdW5kIGZvciBSSEVMUExBTi0xMzgyMzYgYW5kIGNhb
iBiZSByZW1vdmVkIHdoZW4gdGhhdCBpc3N1ZSBpcwojIGZpeGVkLgoKc2V0IC14CgpTRUQ9Ii91c3Iv
YmluL3NlZCIKR1JFUD0iL3Vzci9iaW4vZ3JlcCIKCiMgb3ZlcnJpZGUgZm9yIHRlc3RpbmcgcHVycG9zZX
MKS0RVTVBfQ09ORj0iJHsxOi0vZXRjL3N5c2NvbmZpZy9rZHVtcH0iClJFTU9WRV9JQ0VfU1RSPSJtb
2R1bGVfYmxhY2tsaXN0PWljZSIKCiMgZXhpdCBpZiBmaWxlIGRvZXNuJ3QgZXhpc3QKWyAhIC1mIC
R7S0RVTVBfQ09ORn0gXSAmJiBleGl0IDAKCiMgZXhpdCBpZiBmaWxlIGFscmVhZHkgdXBkYXRlZAok
e0dSRVB9IC1GcSAke1JFTU9WRV9JQ0VfU1RSfSAke0tEVU1QX0NPTkZ9ICYmIGV4aXQgMAoKIyB
UYXJnZXQgbGluZSBsb29rcyBzb21ldGhpbmcgbGlrZSB0aGlzOgojIEtEVU1QX0NPTU1BTkRMSU5FX
0FQUEVORD0iaXJxcG9sbCBucl9jcHVzPTEgLi4uIGhlc3RfZGlzYWJsZSIKIyBVc2Ugc2VkIHRvIG1hdG
NoIGV2ZXJ5dGhpbmcgYmV0d2VlbiB0aGUgcXVvdGVzIGFuZCBhcHBlbmQgdGhlIFJFTU9WRV9JQ0
VfU1RSIHRvIGl0CiR7U0VEfSAtaSAncy9eS0RVTVBfQ09NTUFORExJTkVfQVBQRU5EPSJbXiJdKi8m

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

91



Recommended control plane node kdump configuration ( 06-kdump-master.yaml)

Recommended MachineConfig CR to remove ice driver from worker node kdump logs ( 05-
kdump-config-worker.yaml)

ICcke1JFTU9WRV9JQ0VfU1RSfScvJyAke0tEVU1QX0NPTkZ9IHx8IGV4aXQgMAo=
          mode: 448
          path: /usr/local/bin/kdump-remove-ice-module.sh

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 06-kdump-enable-master
spec:
  config:
    ignition:
      version: 3.2.0
    systemd:
      units:
        - enabled: true
          name: kdump.service
  kernelArguments:
    - crashkernel=512M

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: 05-kdump-config-worker
spec:
  config:
    ignition:
      version: 3.2.0
    systemd:
      units:
        - enabled: true
          name: kdump-remove-ice-module.service
          contents: |
            [Unit]
            Description=Remove ice module when doing kdump
            Before=kdump.service
            [Service]
            Type=oneshot
            RemainAfterExit=true
            ExecStart=/usr/local/bin/kdump-remove-ice-module.sh
            [Install]
            WantedBy=multi-user.target
    storage:
      files:
        - contents:
            source: data:text/plain;charset=utf-
8;base64,IyEvdXNyL2Jpbi9lbnYgYmFzaAoKIyBUaGlzIHNjcmlwdCByZW1vdmVzIHRoZSBpY2UgbW9k

OpenShift Container Platform 4.15 Edge computing

92



Recommended kdump worker node configuration ( 06-kdump-worker.yaml)

7.6.7. Disable automatic CRI-O cache wipe

After an uncontrolled host shutdown or cluster reboot, CRI-O automatically deletes the entire CRI-O
cache, causing all images to be pulled from the registry when the node reboots. This can result in
unacceptably slow recovery times or recovery failures. To prevent this from happening in single-node
OpenShift clusters that you install with GitOps ZTP, disable the CRI-O delete cache feature during
cluster installation.

Recommended MachineConfig CR to disable CRI-O cache wipe on control plane nodes ( 99-
crio-disable-wipe-master.yaml)

dWxlIGZyb20ga2R1bXAgdG8gcHJldmVudCBrZHVtcCBmYWlsdXJlcyBvbiBjZXJ0YWluIHNlcnZlcnMuCi
MgVGhpcyBpcyBhIHRlbXBvcmFyeSB3b3JrYXJvdW5kIGZvciBSSEVMUExBTi0xMzgyMzYgYW5kIGNhb
iBiZSByZW1vdmVkIHdoZW4gdGhhdCBpc3N1ZSBpcwojIGZpeGVkLgoKc2V0IC14CgpTRUQ9Ii91c3Iv
YmluL3NlZCIKR1JFUD0iL3Vzci9iaW4vZ3JlcCIKCiMgb3ZlcnJpZGUgZm9yIHRlc3RpbmcgcHVycG9zZX
MKS0RVTVBfQ09ORj0iJHsxOi0vZXRjL3N5c2NvbmZpZy9rZHVtcH0iClJFTU9WRV9JQ0VfU1RSPSJtb
2R1bGVfYmxhY2tsaXN0PWljZSIKCiMgZXhpdCBpZiBmaWxlIGRvZXNuJ3QgZXhpc3QKWyAhIC1mIC
R7S0RVTVBfQ09ORn0gXSAmJiBleGl0IDAKCiMgZXhpdCBpZiBmaWxlIGFscmVhZHkgdXBkYXRlZAok
e0dSRVB9IC1GcSAke1JFTU9WRV9JQ0VfU1RSfSAke0tEVU1QX0NPTkZ9ICYmIGV4aXQgMAoKIyB
UYXJnZXQgbGluZSBsb29rcyBzb21ldGhpbmcgbGlrZSB0aGlzOgojIEtEVU1QX0NPTU1BTkRMSU5FX
0FQUEVORD0iaXJxcG9sbCBucl9jcHVzPTEgLi4uIGhlc3RfZGlzYWJsZSIKIyBVc2Ugc2VkIHRvIG1hdG
NoIGV2ZXJ5dGhpbmcgYmV0d2VlbiB0aGUgcXVvdGVzIGFuZCBhcHBlbmQgdGhlIFJFTU9WRV9JQ0
VfU1RSIHRvIGl0CiR7U0VEfSAtaSAncy9eS0RVTVBfQ09NTUFORExJTkVfQVBQRU5EPSJbXiJdKi8m
ICcke1JFTU9WRV9JQ0VfU1RSfScvJyAke0tEVU1QX0NPTkZ9IHx8IGV4aXQgMAo=
          mode: 448
          path: /usr/local/bin/kdump-remove-ice-module.sh

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: 06-kdump-enable-worker
spec:
  config:
    ignition:
      version: 3.2.0
    systemd:
      units:
        - enabled: true
          name: kdump.service
  kernelArguments:
    - crashkernel=512M

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 99-crio-disable-wipe-master
spec:
  config:

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

93



Recommended MachineConfig CR to disable CRI-O cache wipe on worker nodes ( 99-crio-
disable-wipe-worker.yaml)

7.6.8. Configuring crun as the default container runtime

The following ContainerRuntimeConfig custom resources (CRs) configure crun as the default OCI
container runtime for control plane and worker nodes. The crun container runtime is fast and lightweight
and has a low memory footprint.

IMPORTANT

For optimal performance, enable crun for control plane and worker nodes in single-node
OpenShift, three-node OpenShift, and standard clusters. To avoid the cluster rebooting
when the CR is applied, apply the change as a GitOps ZTP additional Day 0 install-time
manifest.

Recommended ContainerRuntimeConfig CR for control plane nodes ( enable-crun-
master.yaml)

    ignition:
      version: 3.2.0
    storage:
      files:
        - contents:
            source: data:text/plain;charset=utf-
8;base64,W2NyaW9dCmNsZWFuX3NodXRkb3duX2ZpbGUgPSAiIgo=
          mode: 420
          path: /etc/crio/crio.conf.d/99-crio-disable-wipe.toml

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: 99-crio-disable-wipe-worker
spec:
  config:
    ignition:
      version: 3.2.0
    storage:
      files:
        - contents:
            source: data:text/plain;charset=utf-
8;base64,W2NyaW9dCmNsZWFuX3NodXRkb3duX2ZpbGUgPSAiIgo=
          mode: 420
          path: /etc/crio/crio.conf.d/99-crio-disable-wipe.toml

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
  name: enable-crun-master
spec:
  machineConfigPoolSelector:

OpenShift Container Platform 4.15 Edge computing

94



Recommended ContainerRuntimeConfig CR for worker nodes ( enable-crun-worker.yaml)

7.7. RECOMMENDED POSTINSTALLATION CLUSTER
CONFIGURATIONS

When the cluster installation is complete, the ZTP pipeline applies the following custom resources (CRs)
that are required to run DU workloads.

NOTE

In GitOps ZTP v4.10 and earlier, you configure UEFI secure boot with a MachineConfig
CR. This is no longer required in GitOps ZTP v4.11 and later. In v4.11, you configure UEFI
secure boot for single-node OpenShift clusters by updating the 
spec.clusters.nodes.bootMode field in the SiteConfig CR that you use to install the
cluster. For more information, see Deploying a managed cluster with SiteConfig and
GitOps ZTP.

7.7.1. Operators

Single-node OpenShift clusters that run DU workloads require the following Operators to be installed:

Local Storage Operator

Logging Operator

PTP Operator

SR-IOV Network Operator

You also need to configure a custom CatalogSource CR, disable the default OperatorHub
configuration, and configure an ImageContentSourcePolicy mirror registry that is accessible from the
clusters that you install.

Recommended Storage Operator namespace and Operator group configuration
(StorageNS.yaml, StorageOperGroup.yaml)

    matchLabels:
      pools.operator.machineconfiguration.openshift.io/master: ""
  containerRuntimeConfig:
    defaultRuntime: crun

apiVersion: machineconfiguration.openshift.io/v1
kind: ContainerRuntimeConfig
metadata:
  name: enable-crun-worker
spec:
  machineConfigPoolSelector:
    matchLabels:
      pools.operator.machineconfiguration.openshift.io/worker: ""
  containerRuntimeConfig:
    defaultRuntime: crun

---

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

95



Recommended Cluster Logging Operator namespace and Operator group configuration
(ClusterLogNS.yaml, ClusterLogOperGroup.yaml)

Recommended PTP Operator namespace and Operator group configuration
(PtpSubscriptionNS.yaml, PtpSubscriptionOperGroup.yaml)

apiVersion: v1
kind: Namespace
metadata:
  name: openshift-local-storage
  annotations:
    workload.openshift.io/allowed: management
---
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: openshift-local-storage
  namespace: openshift-local-storage
  annotations: {}
spec:
  targetNamespaces:
    - openshift-local-storage

---
apiVersion: v1
kind: Namespace
metadata:
  name: openshift-logging
  annotations:
    workload.openshift.io/allowed: management
---
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: cluster-logging
  namespace: openshift-logging
  annotations: {}
spec:
  targetNamespaces:
    - openshift-logging

---
apiVersion: v1
kind: Namespace
metadata:
  name: openshift-ptp
  annotations:
    workload.openshift.io/allowed: management
  labels:
    openshift.io/cluster-monitoring: "true"
---
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: ptp-operators

OpenShift Container Platform 4.15 Edge computing

96



Recommended SR-IOV Operator namespace and Operator group configuration
(SriovSubscriptionNS.yaml, SriovSubscriptionOperGroup.yaml)

Recommended CatalogSource configuration (DefaultCatsrc.yaml)

Recommended ImageContentSourcePolicy configuration (DisconnectedICSP.yaml)

  namespace: openshift-ptp
  annotations: {}
spec:
  targetNamespaces:
    - openshift-ptp

---
apiVersion: v1
kind: Namespace
metadata:
  name: openshift-sriov-network-operator
  annotations:
    workload.openshift.io/allowed: management
---
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
  name: sriov-network-operators
  namespace: openshift-sriov-network-operator
  annotations: {}
spec:
  targetNamespaces:
    - openshift-sriov-network-operator

apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: default-cat-source
  namespace: openshift-marketplace
  annotations:
    target.workload.openshift.io/management: '{"effect": "PreferredDuringScheduling"}'
spec:
  displayName: default-cat-source
  image: $imageUrl
  publisher: Red Hat
  sourceType: grpc
  updateStrategy:
    registryPoll:
      interval: 1h
status:
  connectionState:
    lastObservedState: READY

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  name: disconnected-internal-icsp

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

97



Recommended OperatorHub configuration (OperatorHub.yaml)

7.7.2. Operator subscriptions

Single-node OpenShift clusters that run DU workloads require the following Subscription CRs. The
subscription provides the location to download the following Operators:

Local Storage Operator

Logging Operator

PTP Operator

SR-IOV Network Operator

SRIOV-FEC Operator

For each Operator subscription, specify the channel to get the Operator from. The recommended
channel is stable.

You can specify Manual or Automatic updates. In Automatic mode, the Operator automatically
updates to the latest versions in the channel as they become available in the registry. In Manual mode,
new Operator versions are installed only when they are explicitly approved.

TIP

Use Manual mode for subscriptions. This allows you to control the timing of Operator updates to fit
within scheduled maintenance windows.

Recommended Local Storage Operator subscription ( StorageSubscription.yaml)

  annotations: {}
spec:
  repositoryDigestMirrors:
    - $mirrors

apiVersion: config.openshift.io/v1
kind: OperatorHub
metadata:
  name: cluster
  annotations: {}
spec:
  disableAllDefaultSources: true

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: local-storage-operator
  namespace: openshift-local-storage
  annotations: {}
spec:
  channel: "stable"
  name: local-storage-operator
  source: redhat-operators-disconnected

OpenShift Container Platform 4.15 Edge computing

98



Recommended SR-IOV Operator subscription (SriovSubscription.yaml)

Recommended PTP Operator subscription (PtpSubscription.yaml)

Recommended Cluster Logging Operator subscription ( ClusterLogSubscription.yaml)

  sourceNamespace: openshift-marketplace
  installPlanApproval: Manual
status:
  state: AtLatestKnown

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: sriov-network-operator-subscription
  namespace: openshift-sriov-network-operator
  annotations: {}
spec:
  channel: "stable"
  name: sriov-network-operator
  source: redhat-operators-disconnected
  sourceNamespace: openshift-marketplace
  installPlanApproval: Manual
status:
  state: AtLatestKnown

---
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: ptp-operator-subscription
  namespace: openshift-ptp
  annotations: {}
spec:
  channel: "stable"
  name: ptp-operator
  source: redhat-operators-disconnected
  sourceNamespace: openshift-marketplace
  installPlanApproval: Manual
status:
  state: AtLatestKnown

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: cluster-logging
  namespace: openshift-logging
  annotations: {}
spec:
  channel: "stable"
  name: cluster-logging
  source: redhat-operators-disconnected
  sourceNamespace: openshift-marketplace

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

99



7.7.3. Cluster logging and log forwarding

Single-node OpenShift clusters that run DU workloads require logging and log forwarding for
debugging. The following ClusterLogging and ClusterLogForwarder custom resources (CRs) are
required.

Recommended cluster logging configuration ( ClusterLogging.yaml)

Recommended log forwarding configuration ( ClusterLogForwarder.yaml)

Set the spec.outputs.url field to the URL of the Kafka server where the logs are forwarded to.

7.7.4. Performance profile

Single-node OpenShift clusters that run DU workloads require a Node Tuning Operator performance
profile to use real-time host capabilities and services.

NOTE

In earlier versions of OpenShift Container Platform, the Performance Addon Operator
was used to implement automatic tuning to achieve low latency performance for
OpenShift applications. In OpenShift Container Platform 4.11 and later, this functionality
is part of the Node Tuning Operator.

The following example PerformanceProfile CR illustrates the required single-node OpenShift cluster
configuration.

  installPlanApproval: Manual
status:
  state: AtLatestKnown

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
  name: instance
  namespace: openshift-logging
  annotations: {}
spec:
  managementState: "Managed"
  collection:
    logs:
      type: "vector"

apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
  name: instance
  namespace: openshift-logging
  annotations: {}
spec:
  outputs: $outputs
  pipelines: $pipelines

OpenShift Container Platform 4.15 Edge computing

100



Recommended performance profile configuration ( PerformanceProfile.yaml)

Table 7.3. PerformanceProfile CR options for single-node OpenShift clusters

PerformanceProfile CR field Description

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
  # if you change this name make sure the 'include' line in TunedPerformancePatch.yaml
  # matches this name: include=openshift-node-performance-${PerformanceProfile.metadata.name}
  # Also in file 'validatorCRs/informDuValidator.yaml':
  # name: 50-performance-${PerformanceProfile.metadata.name}
  name: openshift-node-performance-profile
  annotations:
    ran.openshift.io/reference-configuration: "ran-du.redhat.com"
spec:
  additionalKernelArgs:
    - "rcupdate.rcu_normal_after_boot=0"
    - "efi=runtime"
    - "vfio_pci.enable_sriov=1"
    - "vfio_pci.disable_idle_d3=1"
    - "module_blacklist=irdma"
  cpu:
    isolated: $isolated
    reserved: $reserved
  hugepages:
    defaultHugepagesSize: $defaultHugepagesSize
    pages:
      - size: $size
        count: $count
        node: $node
  machineConfigPoolSelector:
    pools.operator.machineconfiguration.openshift.io/$mcp: ""
  nodeSelector:
    node-role.kubernetes.io/$mcp: ''
  numa:
    topologyPolicy: "restricted"
  # To use the standard (non-realtime) kernel, set enabled to false
  realTimeKernel:
    enabled: true
  workloadHints:
    # WorkloadHints defines the set of upper level flags for different type of workloads.
    # See https://github.com/openshift/cluster-node-tuning-
operator/blob/master/docs/performanceprofile/performance_profile.md#workloadhints
    # for detailed descriptions of each item.
    # The configuration below is set for a low latency, performance mode.
    realTime: true
    highPowerConsumption: false
    perPodPowerManagement: false

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

101



metadata.name Ensure that name matches the following fields set in
related GitOps ZTP custom resources (CRs):

include=openshift-node-
performance-
${PerformanceProfile.metadata.name
} in TunedPerformancePatch.yaml

name: 50-performance-
${PerformanceProfile.metadata.name
} in 
validatorCRs/informDuValidator.yaml

spec.additionalKernelArgs "efi=runtime" Configures UEFI secure boot for the
cluster host.

spec.cpu.isolated Set the isolated CPUs. Ensure all of the Hyper-
Threading pairs match.

IMPORTANT

The reserved and isolated CPU pools
must not overlap and together must
span all available cores. CPU cores
that are not accounted for cause an
undefined behaviour in the system.

spec.cpu.reserved Set the reserved CPUs. When workload partitioning
is enabled, system processes, kernel threads, and
system container threads are restricted to these
CPUs. All CPUs that are not isolated should be
reserved.

spec.hugepages.pages
Set the number of huge pages (count)

Set the huge pages size (size).

Set node to the NUMA node where the 
hugepages are allocated (node)

spec.realTimeKernel Set enabled to true to use the realtime kernel.

spec.workloadHints Use workloadHints to define the set of top level
flags for different type of workloads. The example
configuration configures the cluster for low latency
and high performance.

PerformanceProfile CR field Description

7.7.5. Configuring cluster time synchronization

OpenShift Container Platform 4.15 Edge computing

102



Run a one-time system time synchronization job for control plane or worker nodes.

Recommended one time time-sync for control plane nodes ( 99-sync-time-once-master.yaml)

Recommended one time time-sync for worker nodes ( 99-sync-time-once-worker.yaml)

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 99-sync-time-once-master
spec:
  config:
    ignition:
      version: 3.2.0
    systemd:
      units:
        - contents: |
            [Unit]
            Description=Sync time once
            After=network.service
            [Service]
            Type=oneshot
            TimeoutStartSec=300
            ExecCondition=/bin/bash -c 'systemctl is-enabled chronyd.service --quiet && exit 1 || exit 0'
            ExecStart=/usr/sbin/chronyd -n -f /etc/chrony.conf -q
            RemainAfterExit=yes
            [Install]
            WantedBy=multi-user.target
          enabled: true
          name: sync-time-once.service

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
  labels:
    machineconfiguration.openshift.io/role: worker
  name: 99-sync-time-once-worker
spec:
  config:
    ignition:
      version: 3.2.0
    systemd:
      units:
        - contents: |
            [Unit]
            Description=Sync time once
            After=network.service
            [Service]
            Type=oneshot
            TimeoutStartSec=300
            ExecCondition=/bin/bash -c 'systemctl is-enabled chronyd.service --quiet && exit 1 || exit 0'
            ExecStart=/usr/sbin/chronyd -n -f /etc/chrony.conf -q
            RemainAfterExit=yes

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

103



7.7.6. PTP

Single-node OpenShift clusters use Precision Time Protocol (PTP) for network time synchronization.
The following example PtpConfig CRs illustrate the required PTP configurations for ordinary clocks,
boundary clocks, and grandmaster clocks. The exact configuration you apply will depend on the node
hardware and specific use case.

Recommended PTP ordinary clock configuration ( PtpConfigSlave.yaml)

            [Install]
            WantedBy=multi-user.target
          enabled: true
          name: sync-time-once.service

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
  name: slave
  namespace: openshift-ptp
  annotations: {}
spec:
  profile:
    - name: "slave"
      # The interface name is hardware-specific
      interface: $interface
      ptp4lOpts: "-2 -s"
      phc2sysOpts: "-a -r -n 24"
      ptpSchedulingPolicy: SCHED_FIFO
      ptpSchedulingPriority: 10
      ptpSettings:
        logReduce: "true"
      ptp4lConf: |
        [global]
        #
        # Default Data Set
        #
        twoStepFlag 1
        slaveOnly 1
        priority1 128
        priority2 128
        domainNumber 24
        #utc_offset 37
        clockClass 255
        clockAccuracy 0xFE
        offsetScaledLogVariance 0xFFFF
        free_running 0
        freq_est_interval 1
        dscp_event 0
        dscp_general 0
        dataset_comparison G.8275.x
        G.8275.defaultDS.localPriority 128
        #
        # Port Data Set
        #
        logAnnounceInterval -3

OpenShift Container Platform 4.15 Edge computing

104



        logSyncInterval -4
        logMinDelayReqInterval -4
        logMinPdelayReqInterval -4
        announceReceiptTimeout 3
        syncReceiptTimeout 0
        delayAsymmetry 0
        fault_reset_interval -4
        neighborPropDelayThresh 20000000
        masterOnly 0
        G.8275.portDS.localPriority 128
        #
        # Run time options
        #
        assume_two_step 0
        logging_level 6
        path_trace_enabled 0
        follow_up_info 0
        hybrid_e2e 0
        inhibit_multicast_service 0
        net_sync_monitor 0
        tc_spanning_tree 0
        tx_timestamp_timeout 50
        unicast_listen 0
        unicast_master_table 0
        unicast_req_duration 3600
        use_syslog 1
        verbose 0
        summary_interval 0
        kernel_leap 1
        check_fup_sync 0
        clock_class_threshold 7
        #
        # Servo Options
        #
        pi_proportional_const 0.0
        pi_integral_const 0.0
        pi_proportional_scale 0.0
        pi_proportional_exponent -0.3
        pi_proportional_norm_max 0.7
        pi_integral_scale 0.0
        pi_integral_exponent 0.4
        pi_integral_norm_max 0.3
        step_threshold 2.0
        first_step_threshold 0.00002
        max_frequency 900000000
        clock_servo pi
        sanity_freq_limit 200000000
        ntpshm_segment 0
        #
        # Transport options
        #
        transportSpecific 0x0
        ptp_dst_mac 01:1B:19:00:00:00
        p2p_dst_mac 01:80:C2:00:00:0E
        udp_ttl 1
        udp6_scope 0x0E

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

105



Recommended boundary clock configuration (PtpConfigBoundary.yaml)

        uds_address /var/run/ptp4l
        #
        # Default interface options
        #
        clock_type OC
        network_transport L2
        delay_mechanism E2E
        time_stamping hardware
        tsproc_mode filter
        delay_filter moving_median
        delay_filter_length 10
        egressLatency 0
        ingressLatency 0
        boundary_clock_jbod 0
        #
        # Clock description
        #
        productDescription ;;
        revisionData ;;
        manufacturerIdentity 00:00:00
        userDescription ;
        timeSource 0xA0
  recommend:
    - profile: "slave"
      priority: 4
      match:
        - nodeLabel: "node-role.kubernetes.io/$mcp"

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
  name: boundary
  namespace: openshift-ptp
  annotations: {}
spec:
  profile:
    - name: "boundary"
      ptp4lOpts: "-2"
      phc2sysOpts: "-a -r -n 24"
      ptpSchedulingPolicy: SCHED_FIFO
      ptpSchedulingPriority: 10
      ptpSettings:
        logReduce: "true"
      ptp4lConf: |
        # The interface name is hardware-specific
        [$iface_slave]
        masterOnly 0
        [$iface_master_1]
        masterOnly 1
        [$iface_master_2]
        masterOnly 1
        [$iface_master_3]
        masterOnly 1

OpenShift Container Platform 4.15 Edge computing

106



        [global]
        #
        # Default Data Set
        #
        twoStepFlag 1
        slaveOnly 0
        priority1 128
        priority2 128
        domainNumber 24
        #utc_offset 37
        clockClass 248
        clockAccuracy 0xFE
        offsetScaledLogVariance 0xFFFF
        free_running 0
        freq_est_interval 1
        dscp_event 0
        dscp_general 0
        dataset_comparison G.8275.x
        G.8275.defaultDS.localPriority 128
        #
        # Port Data Set
        #
        logAnnounceInterval -3
        logSyncInterval -4
        logMinDelayReqInterval -4
        logMinPdelayReqInterval -4
        announceReceiptTimeout 3
        syncReceiptTimeout 0
        delayAsymmetry 0
        fault_reset_interval -4
        neighborPropDelayThresh 20000000
        masterOnly 0
        G.8275.portDS.localPriority 128
        #
        # Run time options
        #
        assume_two_step 0
        logging_level 6
        path_trace_enabled 0
        follow_up_info 0
        hybrid_e2e 0
        inhibit_multicast_service 0
        net_sync_monitor 0
        tc_spanning_tree 0
        tx_timestamp_timeout 50
        unicast_listen 0
        unicast_master_table 0
        unicast_req_duration 3600
        use_syslog 1
        verbose 0
        summary_interval 0
        kernel_leap 1
        check_fup_sync 0
        clock_class_threshold 135
        #
        # Servo Options

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

107



Recommended PTP Westport Channel e810 grandmaster clock configuration
(PtpConfigGmWpc.yaml)

        #
        pi_proportional_const 0.0
        pi_integral_const 0.0
        pi_proportional_scale 0.0
        pi_proportional_exponent -0.3
        pi_proportional_norm_max 0.7
        pi_integral_scale 0.0
        pi_integral_exponent 0.4
        pi_integral_norm_max 0.3
        step_threshold 2.0
        first_step_threshold 0.00002
        max_frequency 900000000
        clock_servo pi
        sanity_freq_limit 200000000
        ntpshm_segment 0
        #
        # Transport options
        #
        transportSpecific 0x0
        ptp_dst_mac 01:1B:19:00:00:00
        p2p_dst_mac 01:80:C2:00:00:0E
        udp_ttl 1
        udp6_scope 0x0E
        uds_address /var/run/ptp4l
        #
        # Default interface options
        #
        clock_type BC
        network_transport L2
        delay_mechanism E2E
        time_stamping hardware
        tsproc_mode filter
        delay_filter moving_median
        delay_filter_length 10
        egressLatency 0
        ingressLatency 0
        boundary_clock_jbod 0
        #
        # Clock description
        #
        productDescription ;;
        revisionData ;;
        manufacturerIdentity 00:00:00
        userDescription ;
        timeSource 0xA0
  recommend:
    - profile: "boundary"
      priority: 4
      match:
        - nodeLabel: "node-role.kubernetes.io/$mcp"

apiVersion: ptp.openshift.io/v1

OpenShift Container Platform 4.15 Edge computing

108



kind: PtpConfig
metadata:
  name: grandmaster
  namespace: openshift-ptp
  annotations: {}
spec:
  profile:
    - name: "grandmaster"
      ptp4lOpts: "-2 --summary_interval -4"
      phc2sysOpts: -r -u 0 -m -O -37 -N 8 -R 16 -s $iface_master -n 24
      ptpSchedulingPolicy: SCHED_FIFO
      ptpSchedulingPriority: 10
      ptpSettings:
        logReduce: "true"
      plugins:
        e810:
          enableDefaultConfig: false
          settings:
            LocalMaxHoldoverOffSet: 1500
            LocalHoldoverTimeout: 14400
            MaxInSpecOffset: 100
          pins: $e810_pins
          #  "$iface_master":
          #    "U.FL2": "0 2"
          #    "U.FL1": "0 1"
          #    "SMA2": "0 2"
          #    "SMA1": "0 1"
          ublxCmds:
            - args: #ubxtool -P 29.20 -z CFG-HW-ANT_CFG_VOLTCTRL,1
                - "-P"
                - "29.20"
                - "-z"
                - "CFG-HW-ANT_CFG_VOLTCTRL,1"
              reportOutput: false
            - args: #ubxtool -P 29.20 -e GPS
                - "-P"
                - "29.20"
                - "-e"
                - "GPS"
              reportOutput: false
            - args: #ubxtool -P 29.20 -d Galileo
                - "-P"
                - "29.20"
                - "-d"
                - "Galileo"
              reportOutput: false
            - args: #ubxtool -P 29.20 -d GLONASS
                - "-P"
                - "29.20"
                - "-d"
                - "GLONASS"
              reportOutput: false
            - args: #ubxtool -P 29.20 -d BeiDou
                - "-P"
                - "29.20"
                - "-d"

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

109



                - "BeiDou"
              reportOutput: false
            - args: #ubxtool -P 29.20 -d SBAS
                - "-P"
                - "29.20"
                - "-d"
                - "SBAS"
              reportOutput: false
            - args: #ubxtool -P 29.20 -t -w 5 -v 1 -e SURVEYIN,600,50000
                - "-P"
                - "29.20"
                - "-t"
                - "-w"
                - "5"
                - "-v"
                - "1"
                - "-e"
                - "SURVEYIN,600,50000"
              reportOutput: true
            - args: #ubxtool -P 29.20 -p MON-HW
                - "-P"
                - "29.20"
                - "-p"
                - "MON-HW"
              reportOutput: true
      ts2phcOpts: " "
      ts2phcConf: |
        [nmea]
        ts2phc.master 1
        [global]
        use_syslog  0
        verbose 1
        logging_level 7
        ts2phc.pulsewidth 100000000
        #cat /dev/GNSS to find available serial port
        #example value of gnss_serialport is /dev/ttyGNSS_1700_0
        ts2phc.nmea_serialport $gnss_serialport
        leapfile  /usr/share/zoneinfo/leap-seconds.list
        [$iface_master]
        ts2phc.extts_polarity rising
        ts2phc.extts_correction 0
      ptp4lConf: |
        [$iface_master]
        masterOnly 1
        [$iface_master_1]
        masterOnly 1
        [$iface_master_2]
        masterOnly 1
        [$iface_master_3]
        masterOnly 1
        [global]
        #
        # Default Data Set
        #
        twoStepFlag 1
        priority1 128

OpenShift Container Platform 4.15 Edge computing

110



        priority2 128
        domainNumber 24
        #utc_offset 37
        clockClass 6
        clockAccuracy 0x27
        offsetScaledLogVariance 0xFFFF
        free_running 0
        freq_est_interval 1
        dscp_event 0
        dscp_general 0
        dataset_comparison G.8275.x
        G.8275.defaultDS.localPriority 128
        #
        # Port Data Set
        #
        logAnnounceInterval -3
        logSyncInterval -4
        logMinDelayReqInterval -4
        logMinPdelayReqInterval 0
        announceReceiptTimeout 3
        syncReceiptTimeout 0
        delayAsymmetry 0
        fault_reset_interval -4
        neighborPropDelayThresh 20000000
        masterOnly 0
        G.8275.portDS.localPriority 128
        #
        # Run time options
        #
        assume_two_step 0
        logging_level 6
        path_trace_enabled 0
        follow_up_info 0
        hybrid_e2e 0
        inhibit_multicast_service 0
        net_sync_monitor 0
        tc_spanning_tree 0
        tx_timestamp_timeout 50
        unicast_listen 0
        unicast_master_table 0
        unicast_req_duration 3600
        use_syslog 1
        verbose 0
        summary_interval -4
        kernel_leap 1
        check_fup_sync 0
        clock_class_threshold 7
        #
        # Servo Options
        #
        pi_proportional_const 0.0
        pi_integral_const 0.0
        pi_proportional_scale 0.0
        pi_proportional_exponent -0.3
        pi_proportional_norm_max 0.7
        pi_integral_scale 0.0

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

111



The following optional PtpOperatorConfig CR configures PTP events reporting for the node.

Recommended PTP events configuration ( PtpOperatorConfigForEvent.yaml)

        pi_integral_exponent 0.4
        pi_integral_norm_max 0.3
        step_threshold 2.0
        first_step_threshold 0.00002
        clock_servo pi
        sanity_freq_limit  200000000
        ntpshm_segment 0
        #
        # Transport options
        #
        transportSpecific 0x0
        ptp_dst_mac 01:1B:19:00:00:00
        p2p_dst_mac 01:80:C2:00:00:0E
        udp_ttl 1
        udp6_scope 0x0E
        uds_address /var/run/ptp4l
        #
        # Default interface options
        #
        clock_type BC
        network_transport L2
        delay_mechanism E2E
        time_stamping hardware
        tsproc_mode filter
        delay_filter moving_median
        delay_filter_length 10
        egressLatency 0
        ingressLatency 0
        boundary_clock_jbod 0
        #
        # Clock description
        #
        productDescription ;;
        revisionData ;;
        manufacturerIdentity 00:00:00
        userDescription ;
        timeSource 0x20
  recommend:
    - profile: "grandmaster"
      priority: 4
      match:
        - nodeLabel: "node-role.kubernetes.io/$mcp"

apiVersion: ptp.openshift.io/v1
kind: PtpOperatorConfig
metadata:
  name: default
  namespace: openshift-ptp
  annotations: {}
spec:
  daemonNodeSelector:
    node-role.kubernetes.io/$mcp: ""

OpenShift Container Platform 4.15 Edge computing

112



7.7.7. Extended Tuned profile

Single-node OpenShift clusters that run DU workloads require additional performance tuning
configurations necessary for high-performance workloads. The following example Tuned CR extends
the Tuned profile:

Recommended extended Tuned profile configuration (TunedPerformancePatch.yaml)

Table 7.4. Tuned CR options for single-node OpenShift clusters

Tuned CR field Description

  ptpEventConfig:
    enableEventPublisher: true
    transportHost: "http://ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043"

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  name: performance-patch
  namespace: openshift-cluster-node-tuning-operator
  annotations: {}
spec:
  profile:
    - name: performance-patch
      # Please note:
      # - The 'include' line must match the associated PerformanceProfile name, following below 
pattern
      #   include=openshift-node-performance-${PerformanceProfile.metadata.name}
      # - When using the standard (non-realtime) kernel, remove the kernel.timer_migration override 
from
      #   the [sysctl] section and remove the entire section if it is empty.
      data: |
        [main]
        summary=Configuration changes profile inherited from performance created tuned
        include=openshift-node-performance-openshift-node-performance-profile
        [sysctl]
        kernel.timer_migration=1
        [scheduler]
        group.ice-ptp=0:f:10:*:ice-ptp.*
        group.ice-gnss=0:f:10:*:ice-gnss.*
        [service]
        service.stalld=start,enable
        service.chronyd=stop,disable
  recommend:
    - machineConfigLabels:
        machineconfiguration.openshift.io/role: "$mcp"
      priority: 19
      profile: performance-patch

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

113



spec.profile.data
The include line that you set in 
spec.profile.data must match the
associated PerformanceProfile CR name.
For example, include=openshift-node-
performance-
${PerformanceProfile.metadata.name
}.

When using the non-realtime kernel,
remove the timer_migration override
line from the [sysctl] section.

Tuned CR field Description

7.7.8. SR-IOV

Single root I/O virtualization (SR-IOV) is commonly used to enable fronthaul and midhaul networks. The
following YAML example configures SR-IOV for a single-node OpenShift cluster.

NOTE

The configuration of the SriovNetwork CR will vary depending on your specific network
and infrastructure requirements.

Recommended SriovOperatorConfig CR configuration (SriovOperatorConfig.yaml)

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
  name: default
  namespace: openshift-sriov-network-operator
  annotations: {}
spec:
  configDaemonNodeSelector:
    "node-role.kubernetes.io/$mcp": ""
  # Injector and OperatorWebhook pods can be disabled (set to "false") below
  # to reduce the number of management pods. It is recommended to start with the
  # webhook and injector pods enabled, and only disable them after verifying the
  # correctness of user manifests.
  #   If the injector is disabled, containers using sr-iov resources must explicitly assign
  #   them in the  "requests"/"limits" section of the container spec, for example:
  #    containers:
  #    - name: my-sriov-workload-container
  #      resources:
  #        limits:
  #          openshift.io/<resource_name>:  "1"
  #        requests:
  #          openshift.io/<resource_name>:  "1"
  enableInjector: true
  enableOperatorWebhook: true
  logLevel: 0

OpenShift Container Platform 4.15 Edge computing

114



Table 7.5. SriovOperatorConfig CR options for single-node OpenShift clusters

SriovOperatorConfig CR field Description

spec.enableInjector Disable Injector pods to reduce the number of
management pods. Start with the Injector pods
enabled, and only disable them after verifying the
user manifests. If the injector is disabled, containers
that use SR-IOV resources must explicitly assign
them in the requests and limits section of the
container spec.

For example:

spec.enableOperatorWebhook Disable OperatorWebhook pods to reduce the
number of management pods. Start with the 
OperatorWebhook pods enabled, and only disable
them after verifying the user manifests.

Recommended SriovNetwork configuration (SriovNetwork.yaml)

Table 7.6. SriovNetwork CR options for single-node OpenShift clusters

containers:
- name: my-sriov-workload-container
  resources:
    limits:
      openshift.io/<resource_name>:  "1"
    requests:
      openshift.io/<resource_name>:  "1"

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
  name: ""
  namespace: openshift-sriov-network-operator
  annotations: {}
spec:
  #  resourceName: ""
  networkNamespace: openshift-sriov-network-operator
#  vlan: ""
#  spoofChk: ""
#  ipam: ""
#  linkState: ""
#  maxTxRate: ""
#  minTxRate: ""
#  vlanQoS: ""
#  trust: ""
#  capabilities: ""

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

115



SriovNetwork CR field Description

spec.vlan Configure vlan with the VLAN for the midhaul
network.

Recommended SriovNetworkNodePolicy CR configuration (SriovNetworkNodePolicy.yaml)

Table 7.7. SriovNetworkPolicy CR options for single-node OpenShift clusters

SriovNetworkNodePolicy CR field Description

spec.deviceType Configure deviceType as vfio-pci or netdevice.
For Mellanox NICs, set deviceType: netdevice,
and isRdma: true. For Intel based NICs, set 
deviceType: vfio-pci and isRdma: false.

spec.nicSelector.pfNames Specifies the interface connected to the fronthaul
network.

spec.numVfs Specifies the number of VFs for the fronthaul
network.

spec.nicSelector.pfNames The exact name of physical function must match the
hardware.

Recommended SR-IOV kernel configurations (07-sriov-related-kernel-args-master.yaml)

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
  name: $name
  namespace: openshift-sriov-network-operator
  annotations: {}
spec:
  # The attributes for Mellanox/Intel based NICs as below.
  #     deviceType: netdevice/vfio-pci
  #     isRdma: true/false
  deviceType: $deviceType
  isRdma: $isRdma
  nicSelector:
    # The exact physical function name must match the hardware used
    pfNames: [$pfNames]
  nodeSelector:
    node-role.kubernetes.io/$mcp: ""
  numVfs: $numVfs
  priority: $priority
  resourceName: $resourceName

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig

OpenShift Container Platform 4.15 Edge computing

116



7.7.9. Console Operator

Use the cluster capabilities feature to prevent the Console Operator from being installed. When the
node is centrally managed it is not needed. Removing the Operator provides additional space and
capacity for application workloads.

To disable the Console Operator during the installation of the managed cluster, set the following in the 
spec.clusters.0.installConfigOverrides field of the SiteConfig custom resource (CR):

7.7.10. Alertmanager

Single-node OpenShift clusters that run DU workloads require reduced CPU resources consumed by
the OpenShift Container Platform monitoring components. The following ConfigMap custom resource
(CR) disables Alertmanager.

Recommended cluster monitoring configuration ( ReduceMonitoringFootprint.yaml)

7.7.11. Operator Lifecycle Manager

Single-node OpenShift clusters that run distributed unit workloads require consistent access to CPU
resources. Operator Lifecycle Manager (OLM) collects performance data from Operators at regular
intervals, resulting in an increase in CPU utilisation. The following ConfigMap custom resource (CR)
disables the collection of Operator performance data by OLM.

metadata:
  labels:
    machineconfiguration.openshift.io/role: master
  name: 07-sriov-related-kernel-args-master
spec:
  config:
    ignition:
      version: 3.2.0
  kernelArguments:
    - intel_iommu=on
    - iommu=pt

installConfigOverrides:  "{\"capabilities\":{\"baselineCapabilitySet\": \"None\" }}"

apiVersion: v1
kind: ConfigMap
metadata:
  name: cluster-monitoring-config
  namespace: openshift-monitoring
  annotations: {}
data:
  config.yaml: |
    alertmanagerMain:
      enabled: false
    telemeterClient:
      enabled: false
    prometheusK8s:
       retention: 24h

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

117



Recommended cluster OLM configuration ( ReduceOLMFootprint.yaml)

7.7.12. LVM Storage

You can dynamically provision local storage on single-node OpenShift clusters with Logical Volume
Manager (LVM) Storage.

NOTE

The recommended storage solution for single-node OpenShift is the Local Storage
Operator. Alternatively, you can use LVM Storage but it requires additional CPU
resources to be allocated.

The following YAML example configures the storage of the node to be available to OpenShift Container
Platform applications.

Recommended LVMCluster configuration (StorageLVMCluster.yaml)

Table 7.8. LVMCluster CR options for single-node OpenShift clusters

LVMCluster CR field Description

deviceSelector.paths Configure the disks used for LVM storage. If no disks
are specified, the LVM Storage uses all the unused
disks in the specified thin pool.

apiVersion: v1
kind: ConfigMap
metadata:
  name: collect-profiles-config
  namespace: openshift-operator-lifecycle-manager
data:
  pprof-config.yaml: |
    disabled: True

apiVersion: lvm.topolvm.io/v1alpha1
kind: LVMCluster
metadata:
  name: odf-lvmcluster
  namespace: openshift-storage
spec:
  storage:
    deviceClasses:
    - name: vg1
      deviceSelector:
        paths:
        - /usr/disk/by-path/pci-0000:11:00.0-nvme-1
      thinPoolConfig:
        name: thin-pool-1
        overprovisionRatio: 10
        sizePercent: 90

OpenShift Container Platform 4.15 Edge computing

118



7.7.13. Network diagnostics

Single-node OpenShift clusters that run DU workloads require less inter-pod network connectivity
checks to reduce the additional load created by these pods. The following custom resource (CR)
disables these checks.

Recommended network diagnostics configuration ( DisableSnoNetworkDiag.yaml)

Additional resources

Deploying far edge sites using ZTP

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
  name: cluster
  annotations: {}
spec:
  disableNetworkDiagnostics: true

CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS

119



CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT
CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

Before you can deploy virtual distributed unit (vDU) applications, you need to tune and configure the
cluster host firmware and various other cluster configuration settings. Use the following information to
validate the cluster configuration to support vDU workloads.

Additional resources

Workload partitioning in single-node OpenShift with GitOps ZTP

Reference configuration for deploying vDUs on single-node OpenShift

8.1. RECOMMENDED FIRMWARE CONFIGURATION FOR VDU CLUSTER
HOSTS

Use the following table as the basis to configure the cluster host firmware for vDU applications running
on OpenShift Container Platform 4.15.

NOTE

The following table is a general recommendation for vDU cluster host firmware
configuration. Exact firmware settings will depend on your requirements and specific
hardware platform. Automatic setting of firmware is not handled by the zero touch
provisioning pipeline.

Table 8.1. Recommended cluster host firmware settings

Firmware setting Configuration Description

HyperTransport
(HT)

Enabled HyperTransport (HT) bus is a bus technology developed by
AMD. HT provides a high-speed link between the components in
the host memory and other system peripherals.

UEFI Enabled Enable booting from UEFI for the vDU host.

CPU Power and
Performance
Policy

Performance Set CPU Power and Performance Policy to optimize the system
for performance over energy efficiency.

Uncore Frequency
Scaling

Disabled Disable Uncore Frequency Scaling to prevent the voltage and
frequency of non-core parts of the CPU from being set
independently.

Uncore Frequency Maximum Sets the non-core parts of the CPU such as cache and memory
controller to their maximum possible frequency of operation.

Performance P-
limit

Disabled Disable Performance P-limit to prevent the Uncore frequency
coordination of processors.

OpenShift Container Platform 4.15 Edge computing

120



Enhanced Intel®
SpeedStep Tech

Enabled Enable Enhanced Intel SpeedStep to allow the system to
dynamically adjust processor voltage and core frequency that
decreases power consumption and heat production in the host.

Intel® Turbo Boost
Technology

Enabled Enable Turbo Boost Technology for Intel-based CPUs to
automatically allow processor cores to run faster than the rated
operating frequency if they are operating below power, current,
and temperature specification limits.

Intel Configurable
TDP

Enabled Enables Thermal Design Power (TDP) for the CPU.

Configurable TDP
Level

Level 2 TDP level sets the CPU power consumption required for a
particular performance rating. TDP level 2 sets the CPU to the
most stable performance level at the cost of power
consumption.

Energy Efficient
Turbo

Disabled Disable Energy Efficient Turbo to prevent the processor from
using an energy-efficiency based policy.

Hardware P-States Enabled or
Disabled

Enable OS-controlled P-States to allow power saving
configurations. Disable P-states (performance states) to
optimize the operating system and CPU for performance over
power consumption.

Package C-State C0/C1 state Use C0 or C1 states to set the processor to a fully active state
(C0) or to stop CPU internal clocks running in software (C1).

C1E Disabled CPU Enhanced Halt (C1E) is a power saving feature in Intel
chips. Disabling C1E prevents the operating system from sending
a halt command to the CPU when inactive.

Processor C6 Disabled C6 power-saving is a CPU feature that automatically disables
idle CPU cores and cache. Disabling C6 improves system
performance.

Sub-NUMA
Clustering

Disabled Sub-NUMA clustering divides the processor cores, cache, and
memory into multiple NUMA domains. Disabling this option can
increase performance for latency-sensitive workloads.

Firmware setting Configuration Description

NOTE

Enable global SR-IOV and VT-d settings in the firmware for the host. These settings are
relevant to bare-metal environments.

NOTE

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

121



NOTE

Enable both C-states and OS-controlled P-States to allow per pod power management.

8.2. RECOMMENDED CLUSTER CONFIGURATIONS TO RUN VDU
APPLICATIONS

Clusters running virtualized distributed unit (vDU) applications require a highly tuned and optimized
configuration. The following information describes the various elements that you require to support vDU
workloads in OpenShift Container Platform 4.15 clusters.

8.2.1. Recommended cluster MachineConfig CRs for single-node OpenShift clusters

Check that the MachineConfig custom resources (CRs) that you extract from the ztp-site-generate
container are applied in the cluster. The CRs can be found in the extracted out/source-crs/extra-
manifest/ folder.

The following MachineConfig CRs from the ztp-site-generate container configure the cluster host:

Table 8.2. Recommended GitOps ZTP MachineConfig CRs

MachineConfig CR Description

01-container-mount-ns-and-kubelet-conf-
master.yaml

01-container-mount-ns-and-kubelet-conf-
worker.yaml

Configures the container mount namespace and
kubelet configuration.

03-sctp-machine-config-master.yaml

03-sctp-machine-config-worker.yaml

Loads the SCTP kernel module. These 
MachineConfig CRs are optional and can be
omitted if you do not require this kernel module.

05-kdump-config-master.yaml

05-kdump-config-worker.yaml

06-kdump-master.yaml

06-kdump-worker.yaml

Configures kdump crash reporting for the cluster.

07-sriov-related-kernel-args-master.yaml Configures SR-IOV kernel arguments in the cluster.

08-set-rcu-normal-master.yaml

08-set-rcu-normal-worker.yaml

Disables rcu_expedited mode after the cluster has
rebooted.

99-crio-disable-wipe-master.yaml

99-crio-disable-wipe-worker.yaml

Disables the automatic CRI-O cache wipe following
cluster reboot.

OpenShift Container Platform 4.15 Edge computing

122



99-sync-time-once-master.yaml

99-sync-time-once-worker.yaml

Configures the one-time check and adjustment of
the system clock by the Chrony service.

enable-crun-master.yaml

enable-crun-worker.yaml

Enables the crun OCI container runtime.

extra-manifest/enable-cgroups-v1.yaml

source-crs/extra-manifest/enable-cgroups-
v1.yaml

Enables cgroups v1 during cluster installation and
when generating RHACM cluster policies.

MachineConfig CR Description

NOTE

In OpenShift Container Platform 4.14 and later, you configure workload partitioning with
the cpuPartitioningMode field in the SiteConfig CR.

Additional resources

Workload partitioning in single-node OpenShift with GitOps ZTP

Extracting source CRs from the ztp-site-generate container

8.2.2. Recommended cluster Operators

The following Operators are required for clusters running virtualized distributed unit (vDU) applications
and are a part of the baseline reference configuration:

Node Tuning Operator (NTO). NTO packages functionality that was previously delivered with
the Performance Addon Operator, which is now a part of NTO.

PTP Operator

SR-IOV Network Operator

Red Hat OpenShift Logging Operator

Local Storage Operator

8.2.3. Recommended cluster kernel configuration

Always use the latest supported real-time kernel version in your cluster. Ensure that you apply the
following configurations in the cluster:

1. Ensure that the following additionalKernelArgs are set in the cluster performance profile:

spec:
  additionalKernelArgs:
  - "rcupdate.rcu_normal_after_boot=0"

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

123



2. Ensure that the performance-patch profile in the Tuned CR configures the correct CPU
isolation set that matches the isolated CPU set in the related PerformanceProfile CR, for
example:

8.2.4. Checking the realtime kernel version

Always use the latest version of the realtime kernel in your OpenShift Container Platform clusters. If you
are unsure about the kernel version that is in use in the cluster, you can compare the current realtime
kernel version to the release version with the following procedure.

Prerequisites

You have installed the OpenShift CLI (oc).

You are logged in as a user with cluster-admin privileges.

You have installed podman.

Procedure

1. Run the following command to get the cluster version:

2. Get the release image SHA number:

3. Run the release image container and extract the kernel version that is packaged with cluster’s

  - "efi=runtime"
  - "module_blacklist=irdma"

spec:
  profile:
    - name: performance-patch
      # The 'include' line must match the associated PerformanceProfile name, for example:
      # include=openshift-node-performance-${PerformanceProfile.metadata.name}
      # When using the standard (non-realtime) kernel, remove the kernel.timer_migration 
override from the [sysctl] section
      data: |
        [main]
        summary=Configuration changes profile inherited from performance created tuned
        include=openshift-node-performance-openshift-node-performance-profile
        [sysctl]
        kernel.timer_migration=1
        [scheduler]
        group.ice-ptp=0:f:10:*:ice-ptp.*
        group.ice-gnss=0:f:10:*:ice-gnss.*
        [service]
        service.stalld=start,enable
        service.chronyd=stop,disable

$ OCP_VERSION=$(oc get clusterversion version -o jsonpath='{.status.desired.version}
{"\n"}')

$ DTK_IMAGE=$(oc adm release info --image-for=driver-toolkit quay.io/openshift-release-
dev/ocp-release:$OCP_VERSION-x86_64)

OpenShift Container Platform 4.15 Edge computing

124



3. Run the release image container and extract the kernel version that is packaged with cluster’s
current release:

Example output

This is the default realtime kernel version that ships with the release.

NOTE

The realtime kernel is denoted by the string .rt in the kernel version.

Verification

Check that the kernel version listed for the cluster’s current release matches actual realtime kernel that
is running in the cluster. Run the following commands to check the running realtime kernel version:

1. Open a remote shell connection to the cluster node:

2. Check the realtime kernel version:

Example output

8.3. CHECKING THAT THE RECOMMENDED CLUSTER
CONFIGURATIONS ARE APPLIED

You can check that clusters are running the correct configuration. The following procedure describes
how to check the various configurations that you require to deploy a DU application in OpenShift
Container Platform 4.15 clusters.

Prerequisites

You have deployed a cluster and tuned it for vDU workloads.

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

Procedure

1. Check that the default OperatorHub sources are disabled. Run the following command:

$ podman run --rm $DTK_IMAGE rpm -qa | grep 'kernel-rt-core-' | sed 's#kernel-rt-core-##'

4.18.0-305.49.1.rt7.121.el8_4.x86_64

$ oc debug node/<node_name>

sh-4.4# uname -r

4.18.0-305.49.1.rt7.121.el8_4.x86_64

$ oc get operatorhub cluster -o yaml

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

125



1

Example output

2. Check that all required CatalogSource resources are annotated for workload partitioning
(PreferredDuringScheduling) by running the following command:

Example output

CatalogSource resources that are not annotated are also returned. In this example, the 
ran-operators CatalogSource resource is not annotated and does not have the 
PreferredDuringScheduling annotation.

NOTE

In a properly configured vDU cluster, only a single annotated catalog source is
listed.

3. Check that all applicable OpenShift Container Platform Operator namespaces are annotated
for workload partitioning. This includes all Operators installed with core OpenShift Container
Platform and the set of additional Operators included in the reference DU tuning configuration.
Run the following command:

Example output

IMPORTANT

Additional Operators must not be annotated for workload partitioning. In the
output from the previous command, additional Operators should be listed
without any value on the right side of the -- separator.

4. Check that the ClusterLogging configuration is correct. Run the following commands:

spec:
    disableAllDefaultSources: true

$ oc get catalogsource -A -o jsonpath='{range .items[*]}{.metadata.name}{" -- "}
{.metadata.annotations.target\.workload\.openshift\.io/management}{"\n"}{end}'

certified-operators -- {"effect": "PreferredDuringScheduling"}
community-operators -- {"effect": "PreferredDuringScheduling"}
ran-operators 1
redhat-marketplace -- {"effect": "PreferredDuringScheduling"}
redhat-operators -- {"effect": "PreferredDuringScheduling"}

$ oc get namespaces -A -o jsonpath='{range .items[*]}{.metadata.name}{" -- "}
{.metadata.annotations.workload\.openshift\.io/allowed}{"\n"}{end}'

default --
openshift-apiserver -- management
openshift-apiserver-operator -- management
openshift-authentication -- management
openshift-authentication-operator -- management

OpenShift Container Platform 4.15 Edge computing

126



a. Validate that the appropriate input and output logs are configured:

Example output

b. Check that the curation schedule is appropriate for your application:

Example output

$ oc get -n openshift-logging ClusterLogForwarder instance -o yaml

apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
  creationTimestamp: "2022-07-19T21:51:41Z"
  generation: 1
  name: instance
  namespace: openshift-logging
  resourceVersion: "1030342"
  uid: 8c1a842d-80c5-447a-9150-40350bdf40f0
spec:
  inputs:
  - infrastructure: {}
    name: infra-logs
  outputs:
  - name: kafka-open
    type: kafka
    url: tcp://10.46.55.190:9092/test
  pipelines:
  - inputRefs:
    - audit
    name: audit-logs
    outputRefs:
    - kafka-open
  - inputRefs:
    - infrastructure
    name: infrastructure-logs
    outputRefs:
    - kafka-open
...

$ oc get -n openshift-logging clusterloggings.logging.openshift.io instance -o yaml

apiVersion: logging.openshift.io/v1
kind: ClusterLogging
metadata:
  creationTimestamp: "2022-07-07T18:22:56Z"
  generation: 1
  name: instance
  namespace: openshift-logging
  resourceVersion: "235796"
  uid: ef67b9b8-0e65-4a10-88ff-ec06922ea796
spec:
  collection:
    logs:

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

127



5. Check that the web console is disabled (managementState: Removed) by running the
following command:

Example output

6. Check that chronyd is disabled on the cluster node by running the following commands:

Check the status of chronyd on the node:

Example output

7. Check that the PTP interface is successfully synchronized to the primary clock using a remote
shell connection to the linuxptp-daemon container and the PTP Management Client (pmc)
tool:

a. Set the $PTP_POD_NAME variable with the name of the linuxptp-daemon pod by running
the following command:

b. Run the following command to check the sync status of the PTP device:

Example output

      fluentd: {}
      type: fluentd
  curation:
    curator:
      schedule: 30 3 * * *
    type: curator
  managementState: Managed
...

$ oc get consoles.operator.openshift.io cluster -o jsonpath="{ .spec.managementState }"

Removed

$ oc debug node/<node_name>

sh-4.4# chroot /host

sh-4.4# systemctl status chronyd

● chronyd.service - NTP client/server
    Loaded: loaded (/usr/lib/systemd/system/chronyd.service; disabled; vendor preset: 
enabled)
    Active: inactive (dead)
      Docs: man:chronyd(8)
            man:chrony.conf(5)

$ PTP_POD_NAME=$(oc get pods -n openshift-ptp -l app=linuxptp-daemon -o name)

$ oc -n openshift-ptp rsh -c linuxptp-daemon-container ${PTP_POD_NAME} pmc -u -f 
/var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'

OpenShift Container Platform 4.15 Edge computing

128



1

2

c. Run the following pmc command to check the PTP clock status:

Example output

master_offset should be between -100 and 100 ns.

Indicates that the PTP clock is synchronized to a master, and the local clock is not the
grandmaster clock.

d. Check that the expected master offset value corresponding to the value in 
/var/run/ptp4l.0.config is found in the linuxptp-daemon-container log:

Example output

sending: GET PORT_DATA_SET
  3cecef.fffe.7a7020-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
    portIdentity            3cecef.fffe.7a7020-1
    portState               SLAVE
    logMinDelayReqInterval  -4
    peerMeanPathDelay       0
    logAnnounceInterval     1
    announceReceiptTimeout  3
    logSyncInterval         0
    delayMechanism          1
    logMinPdelayReqInterval 0
    versionNumber           2
  3cecef.fffe.7a7020-2 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET
    portIdentity            3cecef.fffe.7a7020-2
    portState               LISTENING
    logMinDelayReqInterval  0
    peerMeanPathDelay       0
    logAnnounceInterval     1
    announceReceiptTimeout  3
    logSyncInterval         0
    delayMechanism          1
    logMinPdelayReqInterval 0
    versionNumber           2

$ oc -n openshift-ptp rsh -c linuxptp-daemon-container ${PTP_POD_NAME} pmc -u -f 
/var/run/ptp4l.0.config -b 0 'GET TIME_STATUS_NP'

sending: GET TIME_STATUS_NP
  3cecef.fffe.7a7020-0 seq 0 RESPONSE MANAGEMENT TIME_STATUS_NP
    master_offset              10 1
    ingress_time               1657275432697400530
    cumulativeScaledRateOffset +0.000000000
    scaledLastGmPhaseChange    0
    gmTimeBaseIndicator        0
    lastGmPhaseChange          0x0000'0000000000000000.0000
    gmPresent                  true 2
    gmIdentity                 3c2c30.ffff.670e00

$ oc logs $PTP_POD_NAME -n openshift-ptp -c linuxptp-daemon-container

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

129



8. Check that the SR-IOV configuration is correct by running the following commands:

a. Check that the disableDrain value in the SriovOperatorConfig resource is set to true:

Example output

b. Check that the SriovNetworkNodeState sync status is Succeeded by running the
following command:

Example output

c. Verify that the expected number and configuration of virtual functions (Vfs) under each
interface configured for SR-IOV is present and correct in the .status.interfaces field. For
example:

Example output

phc2sys[56020.341]: [ptp4l.1.config] CLOCK_REALTIME phc offset  -1731092 s2 freq -
1546242 delay    497
ptp4l[56020.390]: [ptp4l.1.config] master offset         -2 s2 freq   -5863 path delay       541
ptp4l[56020.390]: [ptp4l.0.config] master offset         -8 s2 freq  -10699 path delay       533

$ oc get sriovoperatorconfig -n openshift-sriov-network-operator default -o jsonpath="
{.spec.disableDrain}{'\n'}"

true

$ oc get SriovNetworkNodeStates -n openshift-sriov-network-operator -o jsonpath="
{.items[*].status.syncStatus}{'\n'}"

Succeeded

$ oc get SriovNetworkNodeStates -n openshift-sriov-network-operator -o yaml

apiVersion: v1
items:
- apiVersion: sriovnetwork.openshift.io/v1
  kind: SriovNetworkNodeState
...
  status:
    interfaces:
    ...
    - Vfs:
      - deviceID: 154c
        driver: vfio-pci
        pciAddress: 0000:3b:0a.0
        vendor: "8086"
        vfID: 0
      - deviceID: 154c
        driver: vfio-pci
        pciAddress: 0000:3b:0a.1
        vendor: "8086"
        vfID: 1

OpenShift Container Platform 4.15 Edge computing

130



9. Check that the cluster performance profile is correct. The cpu and hugepages sections will
vary depending on your hardware configuration. Run the following command:

Example output

      - deviceID: 154c
        driver: vfio-pci
        pciAddress: 0000:3b:0a.2
        vendor: "8086"
        vfID: 2
      - deviceID: 154c
        driver: vfio-pci
        pciAddress: 0000:3b:0a.3
        vendor: "8086"
        vfID: 3
      - deviceID: 154c
        driver: vfio-pci
        pciAddress: 0000:3b:0a.4
        vendor: "8086"
        vfID: 4
      - deviceID: 154c
        driver: vfio-pci
        pciAddress: 0000:3b:0a.5
        vendor: "8086"
        vfID: 5
      - deviceID: 154c
        driver: vfio-pci
        pciAddress: 0000:3b:0a.6
        vendor: "8086"
        vfID: 6
      - deviceID: 154c
        driver: vfio-pci
        pciAddress: 0000:3b:0a.7
        vendor: "8086"
        vfID: 7

$ oc get PerformanceProfile openshift-node-performance-profile -o yaml

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
  creationTimestamp: "2022-07-19T21:51:31Z"
  finalizers:
  - foreground-deletion
  generation: 1
  name: openshift-node-performance-profile
  resourceVersion: "33558"
  uid: 217958c0-9122-4c62-9d4d-fdc27c31118c
spec:
  additionalKernelArgs:
  - idle=poll
  - rcupdate.rcu_normal_after_boot=0
  - efi=runtime
  cpu:
    isolated: 2-51,54-103

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

131



NOTE

CPU settings are dependent on the number of cores available on the server and
should align with workload partitioning settings. hugepages configuration is
server and application dependent.

10. Check that the PerformanceProfile was successfully applied to the cluster by running the
following command:

Example output

    reserved: 0-1,52-53
  hugepages:
    defaultHugepagesSize: 1G
    pages:
    - count: 32
      size: 1G
  machineConfigPoolSelector:
    pools.operator.machineconfiguration.openshift.io/master: ""
  net:
    userLevelNetworking: true
  nodeSelector:
    node-role.kubernetes.io/master: ""
  numa:
    topologyPolicy: restricted
  realTimeKernel:
    enabled: true
status:
  conditions:
  - lastHeartbeatTime: "2022-07-19T21:51:31Z"
    lastTransitionTime: "2022-07-19T21:51:31Z"
    status: "True"
    type: Available
  - lastHeartbeatTime: "2022-07-19T21:51:31Z"
    lastTransitionTime: "2022-07-19T21:51:31Z"
    status: "True"
    type: Upgradeable
  - lastHeartbeatTime: "2022-07-19T21:51:31Z"
    lastTransitionTime: "2022-07-19T21:51:31Z"
    status: "False"
    type: Progressing
  - lastHeartbeatTime: "2022-07-19T21:51:31Z"
    lastTransitionTime: "2022-07-19T21:51:31Z"
    status: "False"
    type: Degraded
  runtimeClass: performance-openshift-node-performance-profile
  tuned: openshift-cluster-node-tuning-operator/openshift-node-performance-openshift-node-
performance-profile

$ oc get performanceprofile openshift-node-performance-profile -o jsonpath="{range 
.status.conditions[*]}{ @.type }{' -- '}{@.status}{'\n'}{end}"

Available -- True
Upgradeable -- True

OpenShift Container Platform 4.15 Edge computing

132



1

11. Check the Tuned performance patch settings by running the following command:

Example output

The cpu list in cmdline=nohz_full= will vary based on your hardware configuration.

12. Check that cluster networking diagnostics are disabled by running the following command:

Example output

13. Check that the Kubelet housekeeping interval is tuned to slower rate. This is set in the 

Progressing -- False
Degraded -- False

$ oc get tuneds.tuned.openshift.io -n openshift-cluster-node-tuning-operator performance-
patch -o yaml

apiVersion: tuned.openshift.io/v1
kind: Tuned
metadata:
  creationTimestamp: "2022-07-18T10:33:52Z"
  generation: 1
  name: performance-patch
  namespace: openshift-cluster-node-tuning-operator
  resourceVersion: "34024"
  uid: f9799811-f744-4179-bf00-32d4436c08fd
spec:
  profile:
  - data: |
      [main]
      summary=Configuration changes profile inherited from performance created tuned
      include=openshift-node-performance-openshift-node-performance-profile
      [bootloader]
      cmdline_crash=nohz_full=2-23,26-47 1
      [sysctl]
      kernel.timer_migration=1
      [scheduler]
      group.ice-ptp=0:f:10:*:ice-ptp.*
      [service]
      service.stalld=start,enable
      service.chronyd=stop,disable
    name: performance-patch
  recommend:
  - machineConfigLabels:
      machineconfiguration.openshift.io/role: master
    priority: 19
    profile: performance-patch

$ oc get networks.operator.openshift.io cluster -o 
jsonpath='{.spec.disableNetworkDiagnostics}'

true

CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS

133



13. Check that the Kubelet housekeeping interval is tuned to slower rate. This is set in the 
containerMountNS machine config. Run the following command:

Example output

14. Check that Grafana and alertManagerMain are disabled and that the Prometheus retention
period is set to 24h by running the following command:

Example output

a. Use the following commands to verify that Grafana and alertManagerMain routes are not
found in the cluster:

Both queries should return Error from server (NotFound) messages.

15. Check that there is a minimum of 4 CPUs allocated as reserved for each of the 
PerformanceProfile, Tuned performance-patch, workload partitioning, and kernel command
line arguments by running the following command:

Example output

NOTE

Depending on your workload requirements, you might require additional reserved
CPUs to be allocated.

$ oc describe machineconfig container-mount-namespace-and-kubelet-conf-master | grep 
OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION

Environment="OPENSHIFT_MAX_HOUSEKEEPING_INTERVAL_DURATION=60s"

$ oc get configmap cluster-monitoring-config -n openshift-monitoring -o jsonpath="{ 
.data.config\.yaml }"

grafana:
  enabled: false
alertmanagerMain:
  enabled: false
prometheusK8s:
   retention: 24h

$ oc get route -n openshift-monitoring alertmanager-main

$ oc get route -n openshift-monitoring grafana

$ oc get performanceprofile -o jsonpath="{ .items[0].spec.cpu.reserved }"

0-3

OpenShift Container Platform 4.15 Edge computing

134



CHAPTER 9. ADVANCED MANAGED CLUSTER
CONFIGURATION WITH SITECONFIG RESOURCES

You can use SiteConfig custom resources (CRs) to deploy custom functionality and configurations in
your managed clusters at installation time.

9.1. CUSTOMIZING EXTRA INSTALLATION MANIFESTS IN THE GITOPS
ZTP PIPELINE

You can define a set of extra manifests for inclusion in the installation phase of the GitOps Zero Touch
Provisioning (ZTP) pipeline. These manifests are linked to the SiteConfig custom resources (CRs) and
are applied to the cluster during installation. Including MachineConfig CRs at install time makes the
installation process more efficient.

Prerequisites

Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for the Argo CD
application.

Procedure

1. Create a set of extra manifest CRs that the GitOps ZTP pipeline uses to customize the cluster
installs.

2. In your custom /siteconfig directory, create a subdirectory /custom-manifest for your extra
manifests. The following example illustrates a sample /siteconfig with /custom-manifest folder:

NOTE

The subdirectory names /custom-manifest and /extra-manifest used
throughout are example names only. There is no requirement to use these names
and no restriction on how you name these subdirectories. In this example /extra-
manifest refers to the Git subdirectory that stores the contents of /extra-
manifest from the ztp-site-generate container.

3. Add your custom extra manifest CRs to the siteconfig/custom-manifest directory.

4. In your SiteConfig CR, enter the directory name in the extraManifests.searchPaths field, for
example:

siteconfig
├── site1-sno-du.yaml
├── site2-standard-du.yaml
├── extra-manifest/
└── custom-manifest
    └── 01-example-machine-config.yaml

clusters:
- clusterName: "example-sno"
  networkType: "OVNKubernetes"
  extraManifests:

CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES

135



1

2

Folder for manifests copied from the ztp-site-generate container.

Folder for custom manifests.

5. Save the SiteConfig, /extra-manifest, and /custom-manifest CRs, and push them to the site
configuration repo.

During cluster provisioning, the GitOps ZTP pipeline appends the CRs in the /custom-manifest
directory to the default set of extra manifests stored in extra-manifest/.

NOTE

As of version 4.14 extraManifestPath is subject to a deprecation warning.

While extraManifestPath is still supported, we recommend that you use 
extraManifests.searchPaths. If you define extraManifests.searchPaths in the 
SiteConfig file, the GitOps ZTP pipeline does not fetch manifests from the ztp-site-
generate container during site installation.

If you define both extraManifestPath and extraManifests.searchPaths in the 
Siteconfig CR, the setting defined for extraManifests.searchPaths takes precedence.

It is strongly recommended that you extract the contents of /extra-manifest from the 
ztp-site-generate container and push it to the GIT repository.

9.2. FILTERING CUSTOM RESOURCES USING SITECONFIG FILTERS

By using filters, you can easily customize SiteConfig custom resources (CRs) to include or exclude
other CRs for use in the installation phase of the GitOps Zero Touch Provisioning (ZTP) pipeline.

You can specify an inclusionDefault value of include or exclude for the SiteConfig CR, along with a
list of the specific extraManifest RAN CRs that you want to include or exclude. Setting 
inclusionDefault to include makes the GitOps ZTP pipeline apply all the files in /source-crs/extra-
manifest during installation. Setting inclusionDefault to exclude does the opposite.

You can exclude individual CRs from the /source-crs/extra-manifest folder that are otherwise included
by default. The following example configures a custom single-node OpenShift SiteConfig CR to
exclude the /source-crs/extra-manifest/03-sctp-machine-config-worker.yaml CR at installation time.

Some additional optional filtering scenarios are also described.

Prerequisites

You configured the hub cluster for generating the required installation and policy CRs.

You created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
Argo CD application.

Procedure

    searchPaths:
      - extra-manifest/ 1
      - custom-manifest/ 2

OpenShift Container Platform 4.15 Edge computing

136



1

2

1. To prevent the GitOps ZTP pipeline from applying the 03-sctp-machine-config-worker.yaml
CR file, apply the following YAML in the SiteConfig CR:

The GitOps ZTP pipeline skips the 03-sctp-machine-config-worker.yaml CR during
installation. All other CRs in /source-crs/extra-manifest are applied.

2. Save the SiteConfig CR and push the changes to the site configuration repository.
The GitOps ZTP pipeline monitors and adjusts what CRs it applies based on the SiteConfig
filter instructions.

3. Optional: To prevent the GitOps ZTP pipeline from applying all the /source-crs/extra-manifest
CRs during cluster installation, apply the following YAML in the SiteConfig CR:

4. Optional: To exclude all the /source-crs/extra-manifest RAN CRs and instead include a custom
CR file during installation, edit the custom SiteConfig CR to set the custom manifests folder
and the include file, for example:

Replace <custom_manifest_folder> with the name of the folder that contains the custom
installation CRs, for example, user-custom-manifest/.

Set inclusionDefault to exclude to prevent the GitOps ZTP pipeline from applying the
files in /source-crs/extra-manifest during installation.

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
  name: "site1-sno-du"
  namespace: "site1-sno-du"
spec:
  baseDomain: "example.com"
  pullSecretRef:
    name: "assisted-deployment-pull-secret"
  clusterImageSetNameRef: "openshift-4.15"
  sshPublicKey: "<ssh_public_key>"
  clusters:
- clusterName: "site1-sno-du"
  extraManifests:
    filter:
      exclude:
        - 03-sctp-machine-config-worker.yaml

- clusterName: "site1-sno-du"
  extraManifests:
    filter:
      inclusionDefault: exclude

clusters:
- clusterName: "site1-sno-du"
  extraManifestPath: "<custom_manifest_folder>" 1
  extraManifests:
    filter:
      inclusionDefault: exclude  2
      include:
        - custom-sctp-machine-config-worker.yaml

CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES

137



The following example illustrates the custom folder structure:

9.3. DELETING A NODE BY USING THE SITECONFIG CR

By using a SiteConfig custom resource (CR), you can delete and reprovision a node. This method is
more efficient than manually deleting the node.

Prerequisites

You have configured the hub cluster to generate the required installation and policy CRs.

You have created a Git repository in which you can manage your custom site configuration data.
The repository must be accessible from the hub cluster and be defined as the source repository
for the Argo CD application.

Procedure

1. Update the SiteConfig CR to include the bmac.agent-install.openshift.io/remove-agent-and-
node-on-delete=true annotation:

2. Suppress the generation of the BareMetalHost CR by updating the SiteConfig CR to include
the crSuppression.BareMetalHost annotation:

siteconfig
  ├── site1-sno-du.yaml
  └── user-custom-manifest
        └── custom-sctp-machine-config-worker.yaml

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
  name: "cnfdf20"
  namespace: "cnfdf20"
spec:
  Clusters:
    nodes:
    - hostname: node6
      role: "worker"
      crAnnotations:
        add:
          BareMetalHost:
            bmac.agent-install.openshift.io/remove-agent-and-node-on-delete: true
# ...

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
  name: "cnfdf20"
  namespace: "cnfdf20"
spec:
  clusters:
  - nodes:
    - hostName: node6
      role: "worker"

OpenShift Container Platform 4.15 Edge computing

138



3. Push the changes to the Git repository and wait for deprovisioning to start. The status of the 
BareMetalHost CR should change to deprovisioning. Wait for the BareMetalHost to finish
deprovisioning, and be fully deleted.

Verification

1. Verify that the BareMetalHost and Agent CRs for the worker node have been deleted from the
hub cluster by running the following commands:

2. Verify that the node record has been deleted from the spoke cluster by running the following
command:

NOTE

If you are working with secrets, deleting a secret too early can cause an issue
because ArgoCD needs the secret to complete resynchronization after deletion.
Delete the secret only after the node cleanup, when the current ArgoCD
synchronization is complete.

Next Steps

To reprovision a node, delete the changes previously added to the SiteConfig, push the changes to the
Git repository, and wait for the synchronization to complete. This regenerates the BareMetalHost CR of
the worker node and triggers the re-install of the node.

      crSuppression:
      - BareMetalHost
# ...

$ oc get bmh -n <cluster-ns>

$ oc get agent -n <cluster-ns>

$ oc get nodes

CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES

139



CHAPTER 10. ADVANCED MANAGED CLUSTER
CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

You can use PolicyGenTemplate CRs to deploy custom functionality in your managed clusters.

10.1. DEPLOYING ADDITIONAL CHANGES TO CLUSTERS

If you require cluster configuration changes outside of the base GitOps Zero Touch Provisioning (ZTP)
pipeline configuration, there are three options:

Apply the additional configuration after the GitOps ZTP pipeline is complete

When the GitOps ZTP pipeline deployment is complete, the deployed cluster is ready for application
workloads. At this point, you can install additional Operators and apply configurations specific to your
requirements. Ensure that additional configurations do not negatively affect the performance of the
platform or allocated CPU budget.

Add content to the GitOps ZTP library

The base source custom resources (CRs) that you deploy with the GitOps ZTP pipeline can be
augmented with custom content as required.

Create extra manifests for the cluster installation

Extra manifests are applied during installation and make the installation process more efficient.

IMPORTANT

Providing additional source CRs or modifying existing source CRs can significantly impact
the performance or CPU profile of OpenShift Container Platform.

Additional resources

Customizing extra installation manifests in the GitOps ZTP pipeline

10.2. USING POLICYGENTEMPLATE CRS TO OVERRIDE SOURCE CRS
CONTENT

PolicyGenTemplate custom resources (CRs) allow you to overlay additional configuration details on
top of the base source CRs provided with the GitOps plugin in the ztp-site-generate container. You can
think of PolicyGenTemplate CRs as a logical merge or patch to the base CR. Use PolicyGenTemplate
CRs to update a single field of the base CR, or overlay the entire contents of the base CR. You can
update values and insert fields that are not in the base CR.

The following example procedure describes how to update fields in the generated PerformanceProfile
CR for the reference configuration based on the PolicyGenTemplate CR in the group-du-sno-
ranGen.yaml file. Use the procedure as a basis for modifying other parts of the PolicyGenTemplate
based on your requirements.

Prerequisites

Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for Argo CD.

Procedure

1. Review the baseline source CR for existing content. You can review the source CRs listed in the

OpenShift Container Platform 4.15 Edge computing

140



1. Review the baseline source CR for existing content. You can review the source CRs listed in the
reference PolicyGenTemplate CRs by extracting them from the GitOps Zero Touch
Provisioning (ZTP) container.

a. Create an /out folder:

b. Extract the source CRs:

2. Review the baseline PerformanceProfile CR in ./out/source-crs/PerformanceProfile.yaml:

NOTE

Any fields in the source CR which contain $… ​ are removed from the generated
CR if they are not provided in the PolicyGenTemplate CR.

3. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file. The following example PolicyGenTemplate CR stanza supplies
appropriate CPU specifications, sets the hugepages configuration, and adds a new field that
sets globallyDisableIrqLoadBalancing to false.

$ mkdir -p ./out

$ podman run --log-driver=none --rm registry.redhat.io/openshift4/ztp-site-generate-
rhel8:v4.15.1 extract /home/ztp --tar | tar x -C ./out

apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
  name: $name
  annotations:
    ran.openshift.io/ztp-deploy-wave: "10"
spec:
  additionalKernelArgs:
  - "idle=poll"
  - "rcupdate.rcu_normal_after_boot=0"
  cpu:
    isolated: $isolated
    reserved: $reserved
  hugepages:
    defaultHugepagesSize: $defaultHugepagesSize
    pages:
      - size: $size
        count: $count
        node: $node
  machineConfigPoolSelector:
    pools.operator.machineconfiguration.openshift.io/$mcp: ""
  net:
    userLevelNetworking: true
  nodeSelector:
    node-role.kubernetes.io/$mcp: ''
  numa:
    topologyPolicy: "restricted"
  realTimeKernel:
    enabled: true

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

141



4. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP argo CD application.

Example output

The GitOps ZTP application generates an RHACM policy that contains the generated 
PerformanceProfile CR. The contents of that CR are derived by merging the metadata and spec
contents from the PerformanceProfile entry in the PolicyGenTemplate onto the source CR. The
resulting CR has the following content:

NOTE

- fileName: PerformanceProfile.yaml
  policyName: "config-policy"
  metadata:
    name: openshift-node-performance-profile
  spec:
    cpu:
      # These must be tailored for the specific hardware platform
      isolated: "2-19,22-39"
      reserved: "0-1,20-21"
    hugepages:
      defaultHugepagesSize: 1G
      pages:
        - size: 1G
          count: 10
    globallyDisableIrqLoadBalancing: false

---
apiVersion: performance.openshift.io/v2
kind: PerformanceProfile
metadata:
    name: openshift-node-performance-profile
spec:
    additionalKernelArgs:
        - idle=poll
        - rcupdate.rcu_normal_after_boot=0
    cpu:
        isolated: 2-19,22-39
        reserved: 0-1,20-21
    globallyDisableIrqLoadBalancing: false
    hugepages:
        defaultHugepagesSize: 1G
        pages:
            - count: 10
              size: 1G
    machineConfigPoolSelector:
        pools.operator.machineconfiguration.openshift.io/master: ""
    net:
        userLevelNetworking: true
    nodeSelector:
        node-role.kubernetes.io/master: ""
    numa:
        topologyPolicy: restricted
    realTimeKernel:
        enabled: true

OpenShift Container Platform 4.15 Edge computing

142



1

NOTE

In the /source-crs folder that you extract from the ztp-site-generate container, the $
syntax is not used for template substitution as implied by the syntax. Rather, if the 
policyGen tool sees the $ prefix for a string and you do not specify a value for that field
in the related PolicyGenTemplate CR, the field is omitted from the output CR entirely.

An exception to this is the $mcp variable in /source-crs YAML files that is substituted
with the specified value for mcp from the PolicyGenTemplate CR. For example, in 
example/policygentemplates/group-du-standard-ranGen.yaml, the value for mcp is 
worker:

The policyGen tool replace instances of $mcp with worker in the output CRs.

10.3. ADDING CUSTOM CONTENT TO THE GITOPS ZTP PIPELINE

Perform the following procedure to add new content to the GitOps ZTP pipeline.

Procedure

1. Create a subdirectory named source-crs in the directory that contains the kustomization.yaml
file for the PolicyGenTemplate custom resource (CR).

2. Add your user-provided CRs to the source-crs subdirectory, as shown in the following example:

The source-crs subdirectory must be in the same directory as the kustomization.yaml
file.

3. Update the required PolicyGenTemplate CRs to include references to the content you added
in the source-crs/custom-crs and source-crs/elasticsearch directories. For example:

spec:
  bindingRules:
    group-du-standard: ""
  mcp: "worker"

example
└── policygentemplates
    ├── dev.yaml
    ├── kustomization.yaml
    ├── mec-edge-sno1.yaml
    ├── sno.yaml
    └── source-crs 1
        ├── PaoCatalogSource.yaml
        ├── PaoSubscription.yaml
        ├── custom-crs
        |   ├── apiserver-config.yaml
        |   └── disable-nic-lldp.yaml
        └── elasticsearch
            ├── ElasticsearchNS.yaml
            └── ElasticsearchOperatorGroup.yaml

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

143



metadata:
  name: "group-dev"
  namespace: "ztp-clusters"
spec:
  bindingRules:
    dev: "true"
  mcp: "master"
  sourceFiles:
    # These policies/CRs come from the internal container Image
    #Cluster Logging
    - fileName: ClusterLogNS.yaml
      remediationAction: inform
      policyName: "group-dev-cluster-log-ns"
    - fileName: ClusterLogOperGroup.yaml
      remediationAction: inform
      policyName: "group-dev-cluster-log-operator-group"
    - fileName: ClusterLogSubscription.yaml
      remediationAction: inform
      policyName: "group-dev-cluster-log-sub"
    #Local Storage Operator
    - fileName: StorageNS.yaml
      remediationAction: inform
      policyName: "group-dev-lso-ns"
    - fileName: StorageOperGroup.yaml
      remediationAction: inform
      policyName: "group-dev-lso-operator-group"
    - fileName: StorageSubscription.yaml
      remediationAction: inform
      policyName: "group-dev-lso-sub"
    #These are custom local polices that come from the source-crs directory in the git repo
    # Performance Addon Operator
    - fileName: PaoSubscriptionNS.yaml
      remediationAction: inform
      policyName: "group-dev-pao-ns"
    - fileName: PaoSubscriptionCatalogSource.yaml
      remediationAction: inform
      policyName: "group-dev-pao-cat-source"
      spec:
        image: <image_URL_here>
    - fileName: PaoSubscription.yaml
      remediationAction: inform
      policyName: "group-dev-pao-sub"
    #Elasticsearch Operator
    - fileName: elasticsearch/ElasticsearchNS.yaml 1
      remediationAction: inform
      policyName: "group-dev-elasticsearch-ns"
    - fileName: elasticsearch/ElasticsearchOperatorGroup.yaml
      remediationAction: inform
      policyName: "group-dev-elasticsearch-operator-group"
    #Custom Resources
    - fileName: custom-crs/apiserver-config.yaml 2
      remediationAction: inform
      policyName: "group-dev-apiserver-config"
    - fileName: custom-crs/disable-nic-lldp.yaml
      remediationAction: inform
      policyName: "group-dev-disable-nic-lldp"

OpenShift Container Platform 4.15 Edge computing

144



1 2 Set fileName to include the relative path to the file from the /source-crs parent directory.

4. Commit the PolicyGenTemplate change in Git, and then push to the Git repository that is
monitored by the GitOps ZTP Argo CD policies application.

5. Update the ClusterGroupUpgrade CR to include the changed PolicyGenTemplate and save it
as cgu-test.yaml. The following example shows a generated cgu-test.yaml file.

6. Apply the updated ClusterGroupUpgrade CR by running the following command:

Verification

Check that the updates have succeeded by running the following command:

Example output

10.4. CONFIGURING POLICY COMPLIANCE EVALUATION TIMEOUTS
FOR POLICYGENTEMPLATE CRS

Use Red Hat Advanced Cluster Management (RHACM) installed on a hub cluster to monitor and report
on whether your managed clusters are compliant with applied policies. RHACM uses policy templates to
apply predefined policy controllers and policies. Policy controllers are Kubernetes custom resource
definition (CRD) instances.

You can override the default policy evaluation intervals with PolicyGenTemplate custom resources
(CRs). You configure duration settings that define how long a ConfigurationPolicy CR can be in a state
of policy compliance or non-compliance before RHACM re-evaluates the applied cluster policies.

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: custom-source-cr
  namespace: ztp-clusters
spec:
  managedPolicies:
    - group-dev-config-policy
  enable: true
  clusters:
  - cluster1
  remediationStrategy:
    maxConcurrency: 2
    timeout: 240

$ oc apply -f cgu-test.yaml

$ oc get cgu -A

NAMESPACE     NAME               AGE   STATE        DETAILS
ztp-clusters  custom-source-cr   6s    InProgress   Remediating non-compliant policies
ztp-install   cluster1           19h   Completed    All clusters are compliant with all the managed 
policies

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

145



The GitOps Zero Touch Provisioning (ZTP) policy generator generates ConfigurationPolicy CR policies
with pre-defined policy evaluation intervals. The default value for the noncompliant state is 10 seconds.
The default value for the compliant state is 10 minutes. To disable the evaluation interval, set the value
to never.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have created a Git repository where you manage your custom site configuration data.

Procedure

1. To configure the evaluation interval for all policies in a PolicyGenTemplate CR, add 
evaluationInterval to the spec field, and then set the appropriate compliant and 
noncompliant values. For example:

2. To configure the evaluation interval for the spec.sourceFiles object in a PolicyGenTemplate
CR, add evaluationInterval to the sourceFiles field, for example:

3. Commit the PolicyGenTemplate CRs files in the Git repository and push your changes.

Verification

Check that the managed spoke cluster policies are monitored at the expected intervals.

1. Log in as a user with cluster-admin privileges on the managed cluster.

2. Get the pods that are running in the open-cluster-management-agent-addon namespace. Run
the following command:

Example output

3. Check the applied policies are being evaluated at the expected interval in the logs for the 

spec:
  evaluationInterval:
    compliant: 30m
    noncompliant: 20s

spec:
  sourceFiles:
   - fileName: SriovSubscription.yaml
     policyName: "sriov-sub-policy"
     evaluationInterval:
       compliant: never
       noncompliant: 10s

$ oc get pods -n open-cluster-management-agent-addon

NAME                                         READY   STATUS    RESTARTS        AGE
config-policy-controller-858b894c68-v4xdb    1/1     Running   22 (5d8h ago)   10d

OpenShift Container Platform 4.15 Edge computing

146



1

3. Check the applied policies are being evaluated at the expected interval in the logs for the 
config-policy-controller pod:

Example output

10.5. SIGNALLING GITOPS ZTP CLUSTER DEPLOYMENT
COMPLETION WITH VALIDATOR INFORM POLICIES

Create a validator inform policy that signals when the GitOps Zero Touch Provisioning (ZTP) installation
and configuration of the deployed cluster is complete. This policy can be used for deployments of
single-node OpenShift clusters, three-node clusters, and standard clusters.

Procedure

1. Create a standalone PolicyGenTemplate custom resource (CR) that contains the source file 
validatorCRs/informDuValidator.yaml. You only need one standalone PolicyGenTemplate
CR for each cluster type. For example, this CR applies a validator inform policy for single-node
OpenShift clusters:

Example single-node cluster validator inform policy CR (group-du-sno-validator-
ranGen.yaml)

The name of PolicyGenTemplates object. This name is also used as part of the names for
the placementBinding, placementRule, and policy that are created in the requested 
namespace.

$ oc logs -n open-cluster-management-agent-addon config-policy-controller-858b894c68-
v4xdb

2022-05-10T15:10:25.280Z       info   configuration-policy-controller 
controllers/configurationpolicy_controller.go:166      Skipping the policy evaluation due to the 
policy not reaching the evaluation interval  {"policy": "compute-1-config-policy-config"}
2022-05-10T15:10:25.280Z       info   configuration-policy-controller 
controllers/configurationpolicy_controller.go:166      Skipping the policy evaluation due to the 
policy not reaching the evaluation interval  {"policy": "compute-1-common-compute-1-catalog-
policy-config"}

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
  name: "group-du-sno-validator" 1
  namespace: "ztp-group" 2
spec:
  bindingRules:
    group-du-sno: "" 3
  bindingExcludedRules:
    ztp-done: "" 4
  mcp: "master" 5
  sourceFiles:
    - fileName: validatorCRs/informDuValidator.yaml
      remediationAction: inform 6
      policyName: "du-policy" 7

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

147



2

3

4

5

6

7

This value should match the namespace used in the group PolicyGenTemplates.

The group-du-* label defined in bindingRules must exist in the SiteConfig files.

The label defined in bindingExcludedRules must be`ztp-done:`. The ztp-done label is
used in coordination with the Topology Aware Lifecycle Manager.

mcp defines the MachineConfigPool object that is used in the source file 
validatorCRs/informDuValidator.yaml. It should be master for single node and three-
node cluster deployments and worker for standard cluster deployments.

Optional. The default value is inform.

This value is used as part of the name for the generated RHACM policy. The generated
validator policy for the single node example is group-du-sno-validator-du-policy.

2. Commit the PolicyGenTemplate CR file in your Git repository and push the changes.

Additional resources

Upgrading GitOps ZTP

10.6. CONFIGURING POWER STATES USING POLICYGENTEMPLATES
CRS

For low latency and high-performance edge deployments, it is necessary to disable or limit C-states and
P-states. With this configuration, the CPU runs at a constant frequency, which is typically the maximum
turbo frequency. This ensures that the CPU is always running at its maximum speed, which results in
high performance and low latency. This leads to the best latency for workloads. However, this also leads
to the highest power consumption, which might not be necessary for all workloads.

Workloads can be classified as critical or non-critical, with critical workloads requiring disabled C-state
and P-state settings for high performance and low latency, while non-critical workloads use C-state and
P-state settings for power savings at the expense of some latency and performance. You can configure
the following three power states using GitOps Zero Touch Provisioning (ZTP):

High-performance mode provides ultra low latency at the highest power consumption.

Performance mode provides low latency at a relatively high power consumption.

Power saving balances reduced power consumption with increased latency.

The default configuration is for a low latency, performance mode.

PolicyGenTemplate custom resources (CRs) allow you to overlay additional configuration details onto
the base source CRs provided with the GitOps plugin in the ztp-site-generate container.

Configure the power states by updating the workloadHints fields in the generated PerformanceProfile
CR for the reference configuration, based on the PolicyGenTemplate CR in the group-du-sno-
ranGen.yaml.

The following common prerequisites apply to configuring all three power states.

Prerequisites

OpenShift Container Platform 4.15 Edge computing

148



You have created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for
Argo CD.

You have followed the procedure described in "Preparing the GitOps ZTP site configuration
repository".

Additional resources

Configuring node power consumption and realtime processing with workload hints

10.6.1. Configuring performance mode using PolicyGenTemplate CRs

Follow this example to set performance mode by updating the workloadHints fields in the generated 
PerformanceProfile CR for the reference configuration, based on the PolicyGenTemplate CR in the 
group-du-sno-ranGen.yaml.

Performance mode provides low latency at a relatively high power consumption.

Prerequisites

You have configured the BIOS with performance related settings by following the guidance in
"Configuring host firmware for low latency and high performance".

Procedure

1. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file in out/argocd/example/policygentemplates as follows to set
performance mode.

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP Argo CD application.

10.6.2. Configuring high-performance mode using PolicyGenTemplate CRs

Follow this example to set high performance mode by updating the workloadHints fields in the
generated PerformanceProfile CR for the reference configuration, based on the PolicyGenTemplate
CR in the group-du-sno-ranGen.yaml.

High performance mode provides ultra low latency at the highest power consumption.

Prerequisites

- fileName: PerformanceProfile.yaml
  policyName: "config-policy"
  metadata:
    [...]
  spec:
    [...]
    workloadHints:
         realTime: true
         highPowerConsumption: false
         perPodPowerManagement: false

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

149

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#configuring-workload-hints_cnf-low-latency-perf-profile


You have configured the BIOS with performance related settings by following the guidance in
"Configuring host firmware for low latency and high performance".

Procedure

1. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file in out/argocd/example/policygentemplates as follows to set high-
performance mode.

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP Argo CD application.

10.6.3. Configuring power saving mode using PolicyGenTemplate CRs

Follow this example to set power saving mode by updating the workloadHints fields in the generated 
PerformanceProfile CR for the reference configuration, based on the PolicyGenTemplate CR in the 
group-du-sno-ranGen.yaml.

The power saving mode balances reduced power consumption with increased latency.

Prerequisites

You enabled C-states and OS-controlled P-states in the BIOS.

Procedure

1. Update the PolicyGenTemplate entry for PerformanceProfile in the group-du-sno-
ranGen.yaml reference file in out/argocd/example/policygentemplates as follows to
configure power saving mode. It is recommended to configure the CPU governor for the power
saving mode through the additional kernel arguments object.

- fileName: PerformanceProfile.yaml
  policyName: "config-policy"
  metadata:
    [...]
  spec:
    [...]
    workloadHints:
         realTime: true
         highPowerConsumption: true
         perPodPowerManagement: false

- fileName: PerformanceProfile.yaml
  policyName: "config-policy"
  metadata:
    [...]
  spec:
    [...]
    workloadHints:
         realTime: true
         highPowerConsumption: false
         perPodPowerManagement: true
    [...]

OpenShift Container Platform 4.15 Edge computing

150



1 The schedutil governor is recommended, however, other governors that can be used
include ondemand and powersave.

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP Argo CD application.

Verification

1. Select a worker node in your deployed cluster from the list of nodes identified by using the
following command:

2. Log in to the node by using the following command:

Replace <node-name> with the name of the node you want to verify the power state on.

3. Set /host as the root directory within the debug shell. The debug pod mounts the host’s root file
system in /host within the pod. By changing the root directory to /host, you can run binaries
contained in the host’s executable paths as shown in the following example:

4. Run the following command to verify the applied power state:

Expected output

For power saving mode the intel_pstate=passive.

Additional resources

Configuring power saving for nodes that run colocated high and low priority workloads

Configuring host firmware for low latency and high performance

Preparing the GitOps ZTP site configuration repository

10.6.4. Maximizing power savings

Limiting the maximum CPU frequency is recommended to achieve maximum power savings. Enabling C-
states on the non-critical workload CPUs without restricting the maximum CPU frequency negates
much of the power savings by boosting the frequency of the critical CPUs.

Maximize power savings by updating the sysfs plugin fields, setting an appropriate value for 
max_perf_pct in the TunedPerformancePatch CR for the reference configuration. This example based

    additionalKernelArgs:
       - [...]
       - "cpufreq.default_governor=schedutil" 1

$ oc get nodes

$ oc debug node/<node-name>

# chroot /host

# cat /proc/cmdline

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

151

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#cnf-configuring-power-saving-for-nodes_cnf-low-latency-perf-profile


1

on the group-du-sno-ranGen.yaml describes the procedure to follow to restrict the maximum CPU
frequency.

Prerequisites

You have configured power savings mode as described in "Using PolicyGenTemplate CRs to
configure power savings mode".

Procedure

1. Update the PolicyGenTemplate entry for TunedPerformancePatch in the group-du-sno-
ranGen.yaml reference file in out/argocd/example/policygentemplates. To maximize power
savings, add max_perf_pct as shown in the following example:

The max_perf_pct controls the maximum frequency the cpufreq driver is allowed to set as
a percentage of the maximum supported CPU frequency. This value applies to all CPUs.
You can check the maximum supported frequency in 
/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq. As a starting point, you can
use a percentage that caps all CPUs at the All Cores Turbo frequency. The All Cores 
Turbo frequency is the frequency that all cores will run at when the cores are all fully
occupied.

NOTE

To maximize power savings, set a lower value. Setting a lower value for 
max_perf_pct limits the maximum CPU frequency, thereby reducing power
consumption, but also potentially impacting performance. Experiment with
different values and monitor the system’s performance and power consumption
to find the optimal setting for your use-case.

2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP Argo CD application.

10.7. CONFIGURING LVM STORAGE USING POLICYGENTEMPLATE
CRS

You can configure Logical Volume Manager (LVM) Storage for managed clusters that you deploy with
GitOps Zero Touch Provisioning (ZTP).

NOTE

- fileName: TunedPerformancePatch.yaml
      policyName: "config-policy"
      spec:
        profile:
          - name: performance-patch
            data: |
              [...]
              [sysfs]
              /sys/devices/system/cpu/intel_pstate/max_perf_pct=<x> 1

OpenShift Container Platform 4.15 Edge computing

152



NOTE

You use LVM Storage to persist event subscriptions when you use PTP events or bare-
metal hardware events with HTTP transport.

Use the Local Storage Operator for persistent storage that uses local volumes in
distributed units.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Create a Git repository where you manage your custom site configuration data.

Procedure

1. To configure LVM Storage for new managed clusters, add the following YAML to 
spec.sourceFiles in the common-ranGen.yaml file:

NOTE

The Storage LVMO subscription is deprecated. In future releases of OpenShift
Container Platform, the storage LVMO subscription will not be available. Instead,
you must use the Storage LVMS subscription.

In OpenShift Container Platform 4.15, you can use the Storage LVMS
subscription instead of the LVMO subscription. The LVMS subscription does not
require manual overrides in the common-ranGen.yaml file. Add the following
YAML to spec.sourceFiles in the common-ranGen.yaml file to use the Storage
LVMS subscription:

2. Add the LVMCluster CR to spec.sourceFiles in your specific group or individual site
configuration file. For example, in the group-du-sno-ranGen.yaml file, add the following:

- fileName: StorageLVMOSubscriptionNS.yaml
  policyName: subscription-policies
- fileName: StorageLVMOSubscriptionOperGroup.yaml
  policyName: subscription-policies
- fileName: StorageLVMOSubscription.yaml
  spec:
    name: lvms-operator
    channel: stable-4.15
  policyName: subscription-policies

- fileName: StorageLVMSubscriptionNS.yaml
  policyName: subscription-policies
- fileName: StorageLVMSubscriptionOperGroup.yaml
  policyName: subscription-policies
- fileName: StorageLVMSubscription.yaml
  policyName: subscription-policies

- fileName: StorageLVMCluster.yaml

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

153



1 This example configuration creates a volume group (vg1) with all the available devices,
except the disk where OpenShift Container Platform is installed. A thin-pool logical volume
is also created.

3. Merge any other required changes and files with your custom site repository.

4. Commit the PolicyGenTemplate changes in Git, and then push the changes to your site
configuration repository to deploy LVM Storage to new sites using GitOps ZTP.

10.8. CONFIGURING PTP EVENTS WITH POLICYGENTEMPLATE CRS

You can use the GitOps ZTP pipeline to configure PTP events that use HTTP or AMQP transport.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

10.8.1. Configuring PTP events that use HTTP transport

You can configure PTP events that use HTTP transport on managed clusters that you deploy with the
GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have created a Git repository where you manage your custom site configuration data.

Procedure

1. Apply the following PolicyGenTemplate changes to group-du-3node-ranGen.yaml, group-
du-sno-ranGen.yaml, or group-du-standard-ranGen.yaml files according to your
requirements:

a. In .sourceFiles, add the PtpOperatorConfig CR file that configures the transport host:

  policyName: "lvms-config" 1
  spec:
    storage:
      deviceClasses:
      - name: vg1
        thinPoolConfig:
          name: thin-pool-1
          sizePercent: 90
          overprovisionRatio: 10

- fileName: PtpOperatorConfigForEvent.yaml
  policyName: "config-policy"

OpenShift Container Platform 4.15 Edge computing

154

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect


1

2

3

4

5

NOTE

In OpenShift Container Platform 4.13 or later, you do not need to set the 
transportHost field in the PtpOperatorConfig resource when you use HTTP
transport with PTP events.

b. Configure the linuxptp and phc2sys for the PTP clock type and interface. For example,
add the following stanza into .sourceFiles:

Can be one of PtpConfigMaster.yaml, PtpConfigSlave.yaml, or 
PtpConfigSlaveCvl.yaml depending on your requirements. PtpConfigSlaveCvl.yaml
configures linuxptp services for an Intel E810 Columbiaville NIC. For configurations
based on group-du-sno-ranGen.yaml or group-du-3node-ranGen.yaml, use 
PtpConfigSlave.yaml.

Device specific interface name.

You must append the --summary_interval -4 value to ptp4lOpts in 
.spec.sourceFiles.spec.profile to enable PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon 
DaemonSet parses the logs and generates Prometheus metrics.

Optional. If the ptpClockThreshold stanza is not present, default values are used for
the ptpClockThreshold fields. The stanza shows default ptpClockThreshold values.
The ptpClockThreshold values configure how long after the PTP master clock is
disconnected before PTP events are triggered. holdOverTimeout is the time value in
seconds before the PTP clock event state changes to FREERUN when the PTP
master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the values for 
CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys
offset value is outside this range, the PTP clock state is set to FREERUN. When the

  spec:
    daemonNodeSelector: {}
    ptpEventConfig:
      enableEventPublisher: true
      transportHost: http://ptp-event-publisher-service-NODE_NAME.openshift-
ptp.svc.cluster.local:9043

- fileName: PtpConfigSlave.yaml 1
  policyName: "config-policy"
  metadata:
    name: "du-ptp-slave"
  spec:
    profile:
    - name: "slave"
      interface: "ens5f1" 2
      ptp4lOpts: "-2 -s --summary_interval -4" 3
      phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 4
    ptpClockThreshold: 5
      holdOverTimeout: 30 #secs
      maxOffsetThreshold: 100  #nano secs
      minOffsetThreshold: -100 #nano secs

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

155



offset value is within this range, the PTP clock state is set to LOCKED.

2. Merge any other required changes and files with your custom site repository.

3. Push the changes to your site configuration repository to deploy PTP fast events to new sites
using GitOps ZTP.

Additional resources

Using PolicyGenTemplate CRs to override source CRs content

10.8.2. Configuring PTP events that use AMQP transport

You can configure PTP events that use AMQP transport on managed clusters that you deploy with the
GitOps Zero Touch Provisioning (ZTP) pipeline.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have created a Git repository where you manage your custom site configuration data.

Procedure

1. Add the following YAML into .spec.sourceFiles in the common-ranGen.yaml file to configure
the AMQP Operator:

2. Apply the following PolicyGenTemplate changes to group-du-3node-ranGen.yaml, group-
du-sno-ranGen.yaml, or group-du-standard-ranGen.yaml files according to your
requirements:

a. In .sourceFiles, add the PtpOperatorConfig CR file that configures the AMQ transport
host to the config-policy:

#AMQ interconnect operator for fast events
- fileName: AmqSubscriptionNS.yaml
  policyName: "subscriptions-policy"
- fileName: AmqSubscriptionOperGroup.yaml
  policyName: "subscriptions-policy"
- fileName: AmqSubscription.yaml
  policyName: "subscriptions-policy"

- fileName: PtpOperatorConfigForEvent.yaml
  policyName: "config-policy"

OpenShift Container Platform 4.15 Edge computing

156

https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect


1

2

3

4

5

b. Configure the linuxptp and phc2sys for the PTP clock type and interface. For example,
add the following stanza into .sourceFiles:

Can be one PtpConfigMaster.yaml, PtpConfigSlave.yaml, or 
PtpConfigSlaveCvl.yaml depending on your requirements. PtpConfigSlaveCvl.yaml
configures linuxptp services for an Intel E810 Columbiaville NIC. For configurations
based on group-du-sno-ranGen.yaml or group-du-3node-ranGen.yaml, use 
PtpConfigSlave.yaml.

Device specific interface name.

You must append the --summary_interval -4 value to ptp4lOpts in 
.spec.sourceFiles.spec.profile to enable PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon 
DaemonSet parses the logs and generates Prometheus metrics.

Optional. If the ptpClockThreshold stanza is not present, default values are used for
the ptpClockThreshold fields. The stanza shows default ptpClockThreshold values.
The ptpClockThreshold values configure how long after the PTP master clock is
disconnected before PTP events are triggered. holdOverTimeout is the time value in
seconds before the PTP clock event state changes to FREERUN when the PTP
master clock is disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the values for 
CLOCK_REALTIME (phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys
offset value is outside this range, the PTP clock state is set to FREERUN. When the
offset value is within this range, the PTP clock state is set to LOCKED.

3. Apply the following PolicyGenTemplate changes to your specific site YAML files, for example, 
example-sno-site.yaml:

a. In .sourceFiles, add the Interconnect CR file that configures the AMQ router to the 
config-policy:

  spec:
    daemonNodeSelector: {}
    ptpEventConfig:
      enableEventPublisher: true
      transportHost: "amqp://amq-router.amq-router.svc.cluster.local"

- fileName: PtpConfigSlave.yaml 1
  policyName: "config-policy"
  metadata:
    name: "du-ptp-slave"
  spec:
    profile:
    - name: "slave"
      interface: "ens5f1" 2
      ptp4lOpts: "-2 -s --summary_interval -4" 3
      phc2sysOpts: "-a -r -m -n 24 -N 8 -R 16" 4
    ptpClockThreshold: 5
      holdOverTimeout: 30 #secs
      maxOffsetThreshold: 100  #nano secs
      minOffsetThreshold: -100 #nano secs

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

157



4. Merge any other required changes and files with your custom site repository.

5. Push the changes to your site configuration repository to deploy PTP fast events to new sites
using GitOps ZTP.

Additional resources

Installing the AMQ messaging bus

For more information about container image registries, see OpenShift image registry overview .

10.9. CONFIGURING BARE-METAL EVENTS WITH
POLICYGENTEMPLATE CRS

You can use the GitOps ZTP pipeline to configure bare-metal events that use HTTP or AMQP
transport.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

10.9.1. Configuring bare-metal events that use HTTP transport

You can configure bare-metal events that use HTTP transport on managed clusters that you deploy
with the GitOps Zero Touch Provisioning (ZTP) pipeline.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in as a user with cluster-admin privileges.

You have created a Git repository where you manage your custom site configuration data.

Procedure

1. Configure the Bare Metal Event Relay Operator by adding the following YAML to 
spec.sourceFiles in the common-ranGen.yaml file:

- fileName: AmqInstance.yaml
  policyName: "config-policy"

# Bare Metal Event Relay operator
- fileName: BareMetalEventRelaySubscriptionNS.yaml
  policyName: "subscriptions-policy"
- fileName: BareMetalEventRelaySubscriptionOperGroup.yaml
  policyName: "subscriptions-policy"
- fileName: BareMetalEventRelaySubscription.yaml
  policyName: "subscriptions-policy"

OpenShift Container Platform 4.15 Edge computing

158

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/networking/#cnf-installing-amq-interconnect-messaging-bus_using-ptp-events
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/registry/#registry-overview
https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect


1

2. Add the HardwareEvent CR to spec.sourceFiles in your specific group configuration file, for
example, in the group-du-sno-ranGen.yaml file:

Each baseboard management controller (BMC) requires a single HardwareEvent CR only.

NOTE

In OpenShift Container Platform 4.13 or later, you do not need to set the 
transportHost field in the HardwareEvent custom resource (CR) when you use
HTTP transport with bare-metal events.

3. Merge any other required changes and files with your custom site repository.

4. Push the changes to your site configuration repository to deploy bare-metal events to new sites
with GitOps ZTP.

5. Create the Redfish Secret by running the following command:

Additional resources

Installing the Bare Metal Event Relay using the CLI

Creating the bare-metal event and Secret CRs

10.9.2. Configuring bare-metal events that use AMQP transport

You can configure bare-metal events that use AMQP transport on managed clusters that you deploy
with the GitOps Zero Touch Provisioning (ZTP) pipeline.

NOTE

HTTP transport is the default transport for PTP and bare-metal events. Use HTTP
transport instead of AMQP for PTP and bare-metal events where possible. AMQ
Interconnect is EOL from 30 June 2024. Extended life cycle support (ELS) for AMQ
Interconnect ends 29 November 2029. For more information see, Red Hat AMQ
Interconnect support status.

Prerequisites

You have installed the OpenShift CLI (oc).

- fileName: HardwareEvent.yaml 1
  policyName: "config-policy"
  spec:
    nodeSelector: {}
    transportHost: "http://hw-event-publisher-service.openshift-bare-metal-
events.svc.cluster.local:9043"
    logLevel: "info"

$ oc -n openshift-bare-metal-events create secret generic redfish-basic-auth \
--from-literal=username=<bmc_username> --from-literal=password=<bmc_password> \
--from-literal=hostaddr="<bmc_host_ip_addr>"

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

159

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#nw-rfhe-installing-operator-cli_using-rfhe
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/scalability_and_performance/#nw-rfhe-creating-hardware-event_using-rfhe
https://access.redhat.com/support/policy/updates/jboss_notes#p_Interconnect


1

You have logged in as a user with cluster-admin privileges.

You have created a Git repository where you manage your custom site configuration data.

Procedure

1. To configure the AMQ Interconnect Operator and the Bare Metal Event Relay Operator, add
the following YAML to spec.sourceFiles in the common-ranGen.yaml file:

2. Add the Interconnect CR to .spec.sourceFiles in the site configuration file, for example, the 
example-sno-site.yaml file:

3. Add the HardwareEvent CR to spec.sourceFiles in your specific group configuration file, for
example, in the group-du-sno-ranGen.yaml file:

The transportHost URL is composed of the existing AMQ Interconnect CR name and 
namespace. For example, in transportHost: "amqp://amq-router.amq-
router.svc.cluster.local", the AMQ Interconnect name and namespace are both set to 
amq-router.

NOTE

Each baseboard management controller (BMC) requires a single HardwareEvent
resource only.

4. Commit the PolicyGenTemplate change in Git, and then push the changes to your site

# AMQ interconnect operator for fast events
- fileName: AmqSubscriptionNS.yaml
  policyName: "subscriptions-policy"
- fileName: AmqSubscriptionOperGroup.yaml
  policyName: "subscriptions-policy"
- fileName: AmqSubscription.yaml
  policyName: "subscriptions-policy"
# Bare Metal Event Rely operator
- fileName: BareMetalEventRelaySubscriptionNS.yaml
  policyName: "subscriptions-policy"
- fileName: BareMetalEventRelaySubscriptionOperGroup.yaml
  policyName: "subscriptions-policy"
- fileName: BareMetalEventRelaySubscription.yaml
  policyName: "subscriptions-policy"

- fileName: AmqInstance.yaml
  policyName: "config-policy"

- fileName: HardwareEvent.yaml
  policyName: "config-policy"
  spec:
    nodeSelector: {}
    transportHost: "amqp://<amq_interconnect_name>.
<amq_interconnect_namespace>.svc.cluster.local" 1
    logLevel: "info"

OpenShift Container Platform 4.15 Edge computing

160



4. Commit the PolicyGenTemplate change in Git, and then push the changes to your site
configuration repository to deploy bare-metal events monitoring to new sites using GitOps
ZTP.

5. Create the Redfish Secret by running the following command:

10.10. CONFIGURING THE IMAGE REGISTRY OPERATOR FOR LOCAL
CACHING OF IMAGES

OpenShift Container Platform manages image caching using a local registry. In edge computing use
cases, clusters are often subject to bandwidth restrictions when communicating with centralized image
registries, which might result in long image download times.

Long download times are unavoidable during initial deployment. Over time, there is a risk that CRI-O will
erase the /var/lib/containers/storage directory in the case of an unexpected shutdown. To address
long image download times, you can create a local image registry on remote managed clusters using
GitOps Zero Touch Provisioning (ZTP). This is useful in Edge computing scenarios where clusters are
deployed at the far edge of the network.

Before you can set up the local image registry with GitOps ZTP, you need to configure disk partitioning
in the SiteConfig CR that you use to install the remote managed cluster. After installation, you
configure the local image registry using a PolicyGenTemplate CR. Then, the GitOps ZTP pipeline
creates Persistent Volume (PV) and Persistent Volume Claim (PVC) CRs and patches the 
imageregistry configuration.

NOTE

The local image registry can only be used for user application images and cannot be used
for the OpenShift Container Platform or Operator Lifecycle Manager operator images.

Additional resources

OpenShift Container Platform registry overview .

10.10.1. Configuring disk partitioning with SiteConfig

Configure disk partitioning for a managed cluster using a SiteConfig CR and GitOps Zero Touch
Provisioning (ZTP). The disk partition details in the SiteConfig CR must match the underlying disk.

NOTE

Use persistent naming for devices to avoid device names such as /dev/sda and /dev/sdb
being switched at every reboot. You can use rootDeviceHints to choose the bootable
device and then use same device for further partitioning.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

$ oc -n openshift-bare-metal-events create secret generic redfish-basic-auth \
--from-literal=username=<bmc_username> --from-literal=password=<bmc_password> \
--from-literal=hostaddr="<bmc_host_ip_addr>"

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

161

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/registry/#registry-overview


1

2

3

You have created a Git repository where you manage your custom site configuration data for
use with GitOps Zero Touch Provisioning (ZTP).

Procedure

1. Add the following YAML that describes the host disk partitioning to the SiteConfig CR that you
use to install the managed cluster:

This setting depends on the hardware. The setting can be a serial number or device name.
The value must match the value set for rootDeviceHints.

The minimum value for size is 102500 MiB.

The minimum value for start is 25000 MiB. The total value of size and start must not
exceed the disk size, or the installation will fail.

2. Save the SiteConfig CR and push it to the site configuration repo.

The GitOps ZTP pipeline provisions the cluster using the SiteConfig CR and configures the disk
partition.

10.10.2. Configuring the image registry using PolicyGenTemplate CRs

Use PolicyGenTemplate (PGT) CRs to apply the CRs required to configure the image registry and
patch the imageregistry configuration.

Prerequisites

You have configured a disk partition in the managed cluster.

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have created a Git repository where you manage your custom site configuration data for
use with GitOps Zero Touch Provisioning (ZTP).

Procedure

1. Configure the storage class, persistent volume claim, persistent volume, and image registry
configuration in the appropriate PolicyGenTemplate CR. For example, to configure an
individual site, add the following YAML to the file example-sno-site.yaml:

nodes:
    rootDeviceHints:
      wwn: "0x62cea7f05c98c2002708a0a22ff480ea"
    diskPartition:
      - device: /dev/disk/by-id/wwn-0x62cea7f05c98c2002708a0a22ff480ea 1
        partitions:
          - mount_point: /var/imageregistry
            size: 102500 2
            start: 344844 3

sourceFiles:

OpenShift Container Platform 4.15 Edge computing

162



1

2

Set the appropriate value for ztp-deploy-wave depending on whether you are configuring
image registries at the site, common, or group level. ztp-deploy-wave: "100" is suitable
for development or testing because it allows you to group the referenced source files
together.

In ImageRegistryPV.yaml, ensure that the spec.local.path field is set to 
/var/imageregistry to match the value set for the mount_point field in the SiteConfig CR.

IMPORTANT

Do not set complianceType: mustonlyhave for the - fileName: 
ImageRegistryConfig.yaml configuration. This can cause the registry pod
deployment to fail.

  # storage class
  - fileName: StorageClass.yaml
    policyName: "sc-for-image-registry"
    metadata:
      name: image-registry-sc
      annotations:
        ran.openshift.io/ztp-deploy-wave: "100" 1
  # persistent volume claim
  - fileName: StoragePVC.yaml
    policyName: "pvc-for-image-registry"
    metadata:
      name: image-registry-pvc
      namespace: openshift-image-registry
      annotations:
        ran.openshift.io/ztp-deploy-wave: "100"
    spec:
      accessModes:
        - ReadWriteMany
      resources:
        requests:
          storage: 100Gi
      storageClassName: image-registry-sc
      volumeMode: Filesystem
  # persistent volume
  - fileName: ImageRegistryPV.yaml 2
    policyName: "pv-for-image-registry"
    metadata:
      annotations:
        ran.openshift.io/ztp-deploy-wave: "100"
  - fileName: ImageRegistryConfig.yaml
    policyName: "config-for-image-registry"
    complianceType: musthave
    metadata:
      annotations:
        ran.openshift.io/ztp-deploy-wave: "100"
    spec:
      storage:
        pvc:
          claim: "image-registry-pvc"

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

163



2. Commit the PolicyGenTemplate change in Git, and then push to the Git repository being
monitored by the GitOps ZTP ArgoCD application.

Verification

Use the following steps to troubleshoot errors with the local image registry on the managed clusters:

Verify successful login to the registry while logged in to the managed cluster. Run the following
commands:

a. Export the managed cluster name:

b. Get the managed cluster kubeconfig details:

c. Download and export the cluster kubeconfig:

d. Verify access to the image registry from the managed cluster. See "Accessing the registry".

Check that the Config CRD in the imageregistry.operator.openshift.io group instance is not
reporting errors. Run the following command while logged in to the managed cluster:

Example output

Check that the PersistentVolumeClaim on the managed cluster is populated with data. Run
the following command while logged in to the managed cluster:

$ cluster=<managed_cluster_name>

$ oc get secret -n $cluster $cluster-admin-password -o jsonpath='{.data.password}' | 
base64 -d > kubeadmin-password-$cluster

$ oc get secret -n $cluster $cluster-admin-kubeconfig -o jsonpath='{.data.kubeconfig}' | 
base64 -d > kubeconfig-$cluster && export KUBECONFIG=./kubeconfig-$cluster

$ oc get image.config.openshift.io cluster -o yaml

apiVersion: config.openshift.io/v1
kind: Image
metadata:
  annotations:
    include.release.openshift.io/ibm-cloud-managed: "true"
    include.release.openshift.io/self-managed-high-availability: "true"
    include.release.openshift.io/single-node-developer: "true"
    release.openshift.io/create-only: "true"
  creationTimestamp: "2021-10-08T19:02:39Z"
  generation: 5
  name: cluster
  resourceVersion: "688678648"
  uid: 0406521b-39c0-4cda-ba75-873697da75a4
spec:
  additionalTrustedCA:
    name: acm-ice

$ oc get pv image-registry-sc

OpenShift Container Platform 4.15 Edge computing

164



1

Check that the registry* pod is running and is located under the openshift-image-registry
namespace.

Example output

Check that the disk partition on the managed cluster is correct:

a. Open a debug shell to the managed cluster:

b. Run lsblk to check the host disk partitions:

/var/imageregistry indicates that the disk is correctly partitioned.

Additional resources

Accessing the registry

10.11. USING HUB TEMPLATES IN POLICYGENTEMPLATE CRS

Topology Aware Lifecycle Manager supports partial Red Hat Advanced Cluster Management (RHACM)
hub cluster template functions in configuration policies used with GitOps Zero Touch Provisioning
(ZTP).

Hub-side cluster templates allow you to define configuration policies that can be dynamically
customized to the target clusters. This reduces the need to create separate policies for many clusters
with similiar configurations but with different values.

IMPORTANT

Policy templates are restricted to the same namespace as the namespace where the
policy is defined. This means that you must create the objects referenced in the hub
template in the same namespace where the policy is created.

The following supported hub template functions are available for use in GitOps ZTP with TALM:

$ oc get pods -n openshift-image-registry | grep registry*

cluster-image-registry-operator-68f5c9c589-42cfg   1/1     Running     0          8d
image-registry-5f8987879-6nx6h                     1/1     Running     0          8d

$ oc debug node/sno-1.example.com

sh-4.4# lsblk
NAME   MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
sda      8:0    0 446.6G  0 disk
  |-sda1   8:1    0     1M  0 part
  |-sda2   8:2    0   127M  0 part
  |-sda3   8:3    0   384M  0 part /boot
  |-sda4   8:4    0 336.3G  0 part /sysroot
  `-sda5   8:5    0 100.1G  0 part /var/imageregistry 1
sdb      8:16   0 446.6G  0 disk
sr0     11:0    1   104M  0 rom

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

165

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/registry/#accessing-the-registry


fromConfigmap returns the value of the provided data key in the named ConfigMap resource.

NOTE

There is a 1 MiB size limit  for ConfigMap CRs. The effective size for ConfigMap
CRs is further limited by the last-applied-configuration annotation. To avoid the
last-applied-configuration limitation, add the following annotation to the
template ConfigMap:

base64enc returns the base64-encoded value of the input string

base64dec returns the decoded value of the base64-encoded input string

indent returns the input string with added indent spaces

autoindent returns the input string with added indent spaces based on the spacing used in the
parent template

toInt casts and returns the integer value of the input value

toBool converts the input string into a boolean value, and returns the boolean

Various Open source community functions  are also available for use with GitOps ZTP.

Additional resources

RHACM support for hub cluster templates in configuration policies

10.11.1. Example hub templates

The following code examples are valid hub templates. Each of these templates return values from the 
ConfigMap CR with the name test-config in the default namespace.

Returns the value with the key common-key:

Returns a string by using the concatenated value of the .ManagedClusterName field and the
string -name:

Casts and returns a boolean value from the concatenated value of the .ManagedClusterName
field and the string -name:

Casts and returns an integer value from the concatenated value of the .ManagedClusterName
field and the string -name:

argocd.argoproj.io/sync-options: Replace=true

{{hub fromConfigMap "default" "test-config" "common-key" hub}}

{{hub fromConfigMap "default" "test-config" (printf "%s-name" .ManagedClusterName) hub}}

{{hub fromConfigMap "default" "test-config" (printf "%s-name" .ManagedClusterName) | 
toBool hub}}

OpenShift Container Platform 4.15 Edge computing

166

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#fromConfigmap-func
https://kubernetes.io/docs/concepts/configuration/configmap/#motivation
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#base64enc-func
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#base64dec-func
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#indent-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#autoindent-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#toInt-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#toBool-function
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#open-source-community-functions
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html-single/governance/index#hub-templates


10.11.2. Specifying group and site configuration in group PolicyGenTemplate CRs
with hub templates

You can manage the configuration of fleets of clusters with ConfigMap CRs by using hub templates to
populate the group and site values in the generated policies that get applied to the managed clusters.
Using hub templates in site PolicyGenTemplate (PGT) CRs means that you do not need to create a 
PolicyGenTemplate CR for each site.

You can group the clusters in a fleet in various categories, depending on the use case, for example
hardware type or region. Each cluster should have a label corresponding to the group or groups that the
cluster is in. If you manage the configuration values for each group in different ConfigMap CRs, then you
require only one group PolicyGenTemplate CR to apply the changes to all the clusters in the group by
using hub templates.

The following example shows you how to use three ConfigMap CRs and one group 
PolicyGenTemplate CR to apply both site and group configuration to clusters grouped by hardware
type and region.

NOTE

When you use the fromConfigmap function, the printf variable is only available for the
template resource data key fields. You cannot use it with name and namespace fields.

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have created a Git repository where you manage your custom site configuration data. The
repository must be accessible from the hub cluster and be defined as a source repository for the
GitOps ZTP ArgoCD application.

Procedure

1. Create three ConfigMap CRs that contain the group and site configuration:

a. Create a ConfigMap CR named group-hardware-types-configmap to hold the hardware-
specific configuration. For example:

{{hub (printf "%s-name" .ManagedClusterName) | fromConfigMap "default" "test-config" | toInt 
hub}}

apiVersion: v1
kind: ConfigMap
metadata:
  name: group-hardware-types-configmap
  namespace: ztp-group
  annotations:
    argocd.argoproj.io/sync-options: Replace=true 1
data:
  # SriovNetworkNodePolicy.yaml
  hardware-type-1-sriov-node-policy-pfNames-1: "[\"ens5f0\"]"
  hardware-type-1-sriov-node-policy-pfNames-2: "[\"ens7f0\"]"

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

167



1 The argocd.argoproj.io/sync-options annotation is required only if the ConfigMap is
larger than 1 MiB in size.

b. Create a ConfigMap CR named group-zones-configmap to hold the regional
configuration. For example:

c. Create a ConfigMap CR named site-data-configmap to hold the site-specific
configuration. For example:

NOTE

Each ConfigMap CR must be in the same namespace as the policy to be
generated from the group PolicyGenTemplate CR.

2. Commit the ConfigMap CRs in Git, and then push to the Git repository being monitored by the
Argo CD application.

3. Apply the hardware type and region labels to the clusters. The following command applies to a
single cluster named du-sno-1-zone-1 and the labels chosen are "hardware-type": "hardware-
type-1" and "group-du-sno-zone": "zone-1":

  # PerformanceProfile.yaml
  hardware-type-1-cpu-isolated: "2-31,34-63"
  hardware-type-1-cpu-reserved: "0-1,32-33"
  hardware-type-1-hugepages-default: "1G"
  hardware-type-1-hugepages-size: "1G"
  hardware-type-1-hugepages-count: "32"

apiVersion: v1
kind: ConfigMap
metadata:
  name: group-zones-configmap
  namespace: ztp-group
data:
  # ClusterLogForwarder.yaml
  zone-1-cluster-log-fwd-outputs: "[{\"type\":\"kafka\", \"name\":\"kafka-open\", 
\"url\":\"tcp://10.46.55.190:9092/test\"}]"
  zone-1-cluster-log-fwd-pipelines: "[{\"inputRefs\":[\"audit\", \"infrastructure\"], \"labels\": 
{\"label1\": \"test1\", \"label2\": \"test2\", \"label3\": \"test3\", \"label4\": \"test4\"}, \"name\": 
\"all-to-default\", \"outputRefs\": [\"kafka-open\"]}]"

apiVersion: v1
kind: ConfigMap
metadata:
  name: site-data-configmap
  namespace: ztp-group
data:
  # SriovNetwork.yaml
  du-sno-1-zone-1-sriov-network-vlan-1: "140"
  du-sno-1-zone-1-sriov-network-vlan-2: "150"

OpenShift Container Platform 4.15 Edge computing

168



4. Create a group PolicyGenTemplate CR that uses hub templates to obtain the required data
from the ConfigMap objects. This example PolicyGenTemplate CR configures logging, VLAN
IDs, NICs and Performance Profile for the clusters that match the labels listed under 
spec.bindingRules:

$ oc patch managedclusters.cluster.open-cluster-management.io/du-sno-1-zone-1 --type 
merge -p '{"metadata":{"labels":{"hardware-type": "hardware-type-1", "group-du-sno-zone": 
"zone-1"}}}'

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
  name: group-du-sno-pgt
  namespace: ztp-group
spec:
  bindingRules:
    # These policies will correspond to all clusters with these labels
    group-du-sno-zone: "zone-1"
    hardware-type: "hardware-type-1"
  mcp: "master"
  sourceFiles:
    - fileName: ClusterLogForwarder.yaml # wave 10
      policyName: "group-du-sno-cfg-policy"
      spec:
        outputs: '{{hub fromConfigMap "" "group-zones-configmap" (printf "%s-cluster-log-fwd-
outputs" (index .ManagedClusterLabels "group-du-sno-zone")) | toLiteral hub}}'
        pipelines: '{{hub fromConfigMap "" "group-zones-configmap" (printf "%s-cluster-log-fwd-
pipelines" (index .ManagedClusterLabels "group-du-sno-zone")) | toLiteral hub}}'

    - fileName: PerformanceProfile.yaml # wave 10
      policyName: "group-du-sno-cfg-policy"
      metadata:
        name: openshift-node-performance-profile
      spec:
        additionalKernelArgs:
        - rcupdate.rcu_normal_after_boot=0
        - vfio_pci.enable_sriov=1
        - vfio_pci.disable_idle_d3=1
        - efi=runtime
        cpu:
          isolated: '{{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-cpu-
isolated" (index .ManagedClusterLabels "hardware-type")) hub}}'
          reserved: '{{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-cpu-
reserved" (index .ManagedClusterLabels "hardware-type")) hub}}'
        hugepages:
          defaultHugepagesSize: '{{hub fromConfigMap "" "group-hardware-types-configmap" 
(printf "%s-hugepages-default" (index .ManagedClusterLabels "hardware-type")) hub}}'
          pages:
            - size: '{{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-
hugepages-size" (index .ManagedClusterLabels "hardware-type")) hub}}'
              count: '{{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-
hugepages-count" (index .ManagedClusterLabels "hardware-type")) | toInt hub}}'
        realTimeKernel:
          enabled: true

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

169



NOTE

To retrieve site-specific configuration values, use the .ManagedClusterName
field. This is a template context value set to the name of the target managed
cluster.

To retrieve group-specific configuration, use the .ManagedClusterLabels field.
This is a template context value set to the value of the managed cluster’s labels.

    - fileName: SriovNetwork.yaml # wave 100
      policyName: "group-du-sno-sriov-policy"
      metadata:
        name: sriov-nw-du-fh
      spec:
        resourceName: du_fh
        vlan: '{{hub fromConfigMap "" "site-data-configmap" (printf "%s-sriov-network-vlan-1" 
.ManagedClusterName) | toInt hub}}'

    - fileName: SriovNetworkNodePolicy.yaml # wave 100
      policyName: "group-du-sno-sriov-policy"
      metadata:
        name: sriov-nnp-du-fh
      spec:
        deviceType: netdevice
        isRdma: false
        nicSelector:
          pfNames: '{{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-
sriov-node-policy-pfNames-1" (index .ManagedClusterLabels "hardware-type")) | toLiteral 
hub}}'
        numVfs: 8
        priority: 10
        resourceName: du_fh

    - fileName: SriovNetwork.yaml # wave 100
      policyName: "group-du-sno-sriov-policy"
      metadata:
        name: sriov-nw-du-mh
      spec:
        resourceName: du_mh
        vlan: '{{hub fromConfigMap "" "site-data-configmap" (printf "%s-sriov-network-vlan-2" 
.ManagedClusterName) | toInt hub}}'

    - fileName: SriovNetworkNodePolicy.yaml # wave 100
      policyName: "group-du-sno-sriov-policy"
      metadata:
        name: sriov-nw-du-fh
      spec:
        deviceType: netdevice
        isRdma: false
        nicSelector:
          pfNames: '{{hub fromConfigMap "" "group-hardware-types-configmap" (printf "%s-
sriov-node-policy-pfNames-2" (index .ManagedClusterLabels "hardware-type")) | toLiteral 
hub}}'
        numVfs: 8
        priority: 10
        resourceName: du_fh

OpenShift Container Platform 4.15 Edge computing

170



5. Commit the site PolicyGenTemplate CR in Git and push to the Git repository that is monitored
by the ArgoCD application.

NOTE

Subsequent changes to the referenced ConfigMap CR are not automatically
synced to the applied policies. You need to manually sync the new ConfigMap
changes to update existing PolicyGenTemplate CRs. See "Syncing new
ConfigMap changes to existing PolicyGenTemplate CRs".

You can use the same PolicyGenTemplate CR for multiple clusters. If there is a
configuration change, then the only modifications you need to make are to the 
ConfigMap objects that hold the configuration for each cluster and the labels of
the managed clusters.

10.11.3. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs

Prerequisites

You have installed the OpenShift CLI (oc).

You have logged in to the hub cluster as a user with cluster-admin privileges.

You have created a PolicyGenTemplate CR that pulls information from a ConfigMap CR using
hub cluster templates.

Procedure

1. Update the contents of your ConfigMap CR, and apply the changes in the hub cluster.

2. To sync the contents of the updated ConfigMap CR to the deployed policy, do either of the
following:

a. Option 1: Delete the existing policy. ArgoCD uses the PolicyGenTemplate CR to
immediately recreate the deleted policy. For example, run the following command:

b. Option 2: Apply a special annotation policy.open-cluster-management.io/trigger-update
to the policy with a different value every time when you update the ConfigMap. For
example:

NOTE

You must apply the updated policy for the changes to take effect. For more
information, see Special annotation for reprocessing.

3. Optional: If it exists, delete the ClusterGroupUpdate CR that contains the policy. For example:

$ oc delete policy <policy_name> -n <policy_namespace>

$ oc annotate policy <policy_name> -n <policy_namespace> policy.open-cluster-
management.io/trigger-update="1"

$ oc delete clustergroupupgrade <cgu_name> -n <cgu_namespace>

CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES

171

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.6/html-single/governance/index#special-annotation-processing


a. Create a new ClusterGroupUpdate CR that includes the policy to apply with the updated 
ConfigMap changes. For example, add the following YAML to the file cgr-example.yaml:

b. Apply the updated policy:

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: <cgr_name>
  namespace: <policy_namespace>
spec:
  managedPolicies:
    - <managed_policy>
  enable: true
  clusters:
  - <managed_cluster_1>
  - <managed_cluster_2>
  remediationStrategy:
    maxConcurrency: 2
    timeout: 240

$ oc apply -f cgr-example.yaml

OpenShift Container Platform 4.15 Edge computing

172



CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE
TOPOLOGY AWARE LIFECYCLE MANAGER

You can use the Topology Aware Lifecycle Manager (TALM) to manage the software lifecycle of
multiple clusters. TALM uses Red Hat Advanced Cluster Management (RHACM) policies to perform
changes on the target clusters.

11.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER
CONFIGURATION

The Topology Aware Lifecycle Manager (TALM) manages the deployment of Red Hat Advanced Cluster
Management (RHACM) policies for one or more OpenShift Container Platform clusters. Using TALM in
a large network of clusters allows the phased rollout of policies to the clusters in limited batches. This
helps to minimize possible service disruptions when updating. With TALM, you can control the following
actions:

The timing of the update

The number of RHACM-managed clusters

The subset of managed clusters to apply the policies to

The update order of the clusters

The set of policies remediated to the cluster

The order of policies remediated to the cluster

The assignment of a canary cluster

For single-node OpenShift, the Topology Aware Lifecycle Manager (TALM) offers the following
features:

Create a backup of a deployment before an upgrade

Pre-caching images for clusters with limited bandwidth

TALM supports the orchestration of the OpenShift Container Platform y-stream and z-stream updates,
and day-two operations on y-streams and z-streams.

11.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE
LIFECYCLE MANAGER

The Topology Aware Lifecycle Manager (TALM) uses RHACM policies for cluster updates.

TALM can be used to manage the rollout of any policy CR where the remediationAction field is set to 
inform. Supported use cases include the following:

Manual user creation of policy CRs

Automatically generated policies from the PolicyGenTemplate custom resource definition
(CRD)

For policies that update an Operator subscription with manual approval, TALM provides additional

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

173



For policies that update an Operator subscription with manual approval, TALM provides additional
functionality that approves the installation of the updated Operator.

For more information about managed policies, see Policy Overview in the RHACM documentation.

For more information about the PolicyGenTemplate CRD, see the "About the PolicyGenTemplate
CRD" section in "Configuring managed clusters with policies and PolicyGenTemplate resources".

11.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY
USING THE WEB CONSOLE

You can use the OpenShift Container Platform web console to install the Topology Aware Lifecycle
Manager.

Prerequisites

Install the latest version of the RHACM Operator.

Set up a hub cluster with disconnected regitry.

Log in as a user with cluster-admin privileges.

Procedure

1. In the OpenShift Container Platform web console, navigate to Operators → OperatorHub.

2. Search for the Topology Aware Lifecycle Manager from the list of available Operators, and
then click Install.

3. Keep the default selection of Installation mode ["All namespaces on the cluster (default)"] and
Installed Namespace ("openshift-operators") to ensure that the Operator is installed properly.

4. Click Install.

Verification

To confirm that the installation is successful:

1. Navigate to the Operators → Installed Operators page.

2. Check that the Operator is installed in the All Namespaces namespace and its status is 
Succeeded.

If the Operator is not installed successfully:

1. Navigate to the Operators → Installed Operators page and inspect the Status column for any
errors or failures.

2. Navigate to the Workloads → Pods page and check the logs in any containers in the cluster-
group-upgrades-controller-manager pod that are reporting issues.

11.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY
USING THE CLI

You can use the OpenShift CLI (oc) to install the Topology Aware Lifecycle Manager (TALM).

OpenShift Container Platform 4.15 Edge computing

174

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html-single/governance/index#policy-overview


Prerequisites

Install the OpenShift CLI (oc).

Install the latest version of the RHACM Operator.

Set up a hub cluster with disconnected registry.

Log in as a user with cluster-admin privileges.

Procedure

1. Create a Subscription CR:

a. Define the Subscription CR and save the YAML file, for example, talm-subscription.yaml:

b. Create the Subscription CR by running the following command:

Verification

1. Verify that the installation succeeded by inspecting the CSV resource:

Example output

2. Verify that the TALM is up and running:

Example output

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: openshift-topology-aware-lifecycle-manager-subscription
  namespace: openshift-operators
spec:
  channel: "stable"
  name: topology-aware-lifecycle-manager
  source: redhat-operators
  sourceNamespace: openshift-marketplace

$ oc create -f talm-subscription.yaml

$ oc get csv -n openshift-operators

NAME                                                   DISPLAY                            VERSION               
REPLACES                           PHASE
topology-aware-lifecycle-manager.4.15.x   Topology Aware Lifecycle Manager   4.15.x                                      
Succeeded

$ oc get deploy -n openshift-operators

NAMESPACE                                          NAME                                             READY   UP-TO-
DATE   AVAILABLE   AGE
openshift-operators                                cluster-group-upgrades-controller-manager        1/1     
1            1           14s

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

175



11.5. ABOUT THE CLUSTERGROUPUPGRADE CR

The Topology Aware Lifecycle Manager (TALM) builds the remediation plan from the 
ClusterGroupUpgrade CR for a group of clusters. You can define the following specifications in a 
ClusterGroupUpgrade CR:

Clusters in the group

Blocking ClusterGroupUpgrade CRs

Applicable list of managed policies

Number of concurrent updates

Applicable canary updates

Actions to perform before and after the update

Update timing

You can control the start time of an update using the enable field in the ClusterGroupUpgrade CR. For
example, if you have a scheduled maintenance window of four hours, you can prepare a 
ClusterGroupUpgrade CR with the enable field set to false.

You can set the timeout by configuring the spec.remediationStrategy.timeout setting as follows:

You can use the batchTimeoutAction to determine what happens if an update fails for a cluster. You
can specify continue to skip the failing cluster and continue to upgrade other clusters, or abort to stop
policy remediation for all clusters. Once the timeout elapses, TALM removes all enforce policies to
ensure that no further updates are made to clusters.

To apply the changes, you set the enabled field to true.

For more information see the "Applying update policies to managed clusters" section.

As TALM works through remediation of the policies to the specified clusters, the 
ClusterGroupUpgrade CR can report true or false statuses for a number of conditions.

NOTE

After TALM completes a cluster update, the cluster does not update again under the
control of the same ClusterGroupUpgrade CR. You must create a new 
ClusterGroupUpgrade CR in the following cases:

When you need to update the cluster again

When the cluster changes to non-compliant with the inform policy after being
updated

spec
  remediationStrategy:
          maxConcurrency: 1
          timeout: 240

OpenShift Container Platform 4.15 Edge computing

176



11.5.1. Selecting clusters

TALM builds a remediation plan and selects clusters based on the following fields:

The clusterLabelSelector field specifies the labels of the clusters that you want to update. This
consists of a list of the standard label selectors from k8s.io/apimachinery/pkg/apis/meta/v1.
Each selector in the list uses either label value pairs or label expressions. Matches from each
selector are added to the final list of clusters along with the matches from the clusterSelector
field and the cluster field.

The clusters field specifies a list of clusters to update.

The canaries field specifies the clusters for canary updates.

The maxConcurrency field specifies the number of clusters to update in a batch.

The actions field specifies beforeEnable actions that TALM takes as it begins the update
process, and afterCompletion actions that TALM takes as it completes policy remediation for
each cluster.

You can use the clusters, clusterLabelSelector, and clusterSelector fields together to create a
combined list of clusters.

The remediation plan starts with the clusters listed in the canaries field. Each canary cluster forms a
single-cluster batch.

Sample ClusterGroupUpgrade CR with the enabled field set to false

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  creationTimestamp: '2022-11-18T16:27:15Z'
  finalizers:
    - ran.openshift.io/cleanup-finalizer
  generation: 1
  name: talm-cgu
  namespace: talm-namespace
  resourceVersion: '40451823'
  uid: cca245a5-4bca-45fa-89c0-aa6af81a596c
Spec:
  actions:
    afterCompletion: 1
      addClusterLabels:
        upgrade-done: ""
      deleteClusterLabels:
        upgrade-running: ""
      deleteObjects: true
    beforeEnable: 2
      addClusterLabels:
        upgrade-running: ""
  backup: false
  clusters: 3
    - spoke1
  enable: false 4
  managedPolicies: 5
    - talm-policy

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

177



1

2

3

4

5

6

Specifies the action that TALM takes when it completes policy remediation for each cluster.

Specifies the action that TALM takes as it begins the update process.

Defines the list of clusters to update.

The enable field is set to false.

Lists the user-defined set of policies to remediate.

Defines the specifics of the cluster updates.

  preCaching: false
  remediationStrategy: 6
    canaries: 7
        - spoke1
    maxConcurrency: 2 8
    timeout: 240
  clusterLabelSelectors: 9
    - matchExpressions:
      - key: label1
      operator: In
      values:
        - value1a
        - value1b
  batchTimeoutAction: 10
status: 11
    computedMaxConcurrency: 2
    conditions:
      - lastTransitionTime: '2022-11-18T16:27:15Z'
        message: All selected clusters are valid
        reason: ClusterSelectionCompleted
        status: 'True'
        type: ClustersSelected 12
      - lastTransitionTime: '2022-11-18T16:27:15Z'
        message: Completed validation
        reason: ValidationCompleted
        status: 'True'
        type: Validated 13
      - lastTransitionTime: '2022-11-18T16:37:16Z'
        message: Not enabled
        reason: NotEnabled
        status: 'False'
        type: Progressing
    managedPoliciesForUpgrade:
      - name: talm-policy
        namespace: talm-namespace
    managedPoliciesNs:
      talm-policy: talm-namespace
    remediationPlan:
      - - spoke1
      - - spoke2
        - spoke3
    status:

OpenShift Container Platform 4.15 Edge computing

178



7

8

9

10

11

12

13

Defines the clusters for canary updates.

Defines the maximum number of concurrent updates in a batch. The number of remediation
batches is the number of canary clusters, plus the number of clusters, except the canary clusters,
divided by the maxConcurrency value. The clusters that are already compliant with all the
managed policies are excluded from the remediation plan.

Displays the parameters for selecting clusters.

Controls what happens if a batch times out. Possible values are abort or continue. If unspecified,
the default is continue.

Displays information about the status of the updates.

The ClustersSelected condition shows that all selected clusters are valid.

The Validated condition shows that all selected clusters have been validated.

NOTE

Any failures during the update of a canary cluster stops the update process.

When the remediation plan is successfully created, you can you set the enable field to true and TALM
starts to update the non-compliant clusters with the specified managed policies.

NOTE

You can only make changes to the spec fields if the enable field of the 
ClusterGroupUpgrade CR is set to false.

11.5.2. Validating

TALM checks that all specified managed policies are available and correct, and uses the Validated
condition to report the status and reasons as follows:

true
Validation is completed.

false
Policies are missing or invalid, or an invalid platform image has been specified.

11.5.3. Pre-caching

Clusters might have limited bandwidth to access the container image registry, which can cause a
timeout before the updates are completed. On single-node OpenShift clusters, you can use pre-
caching to avoid this. The container image pre-caching starts when you create a ClusterGroupUpgrade
CR with the preCaching field set to true. TALM compares the available disk space with the estimated
OpenShift Container Platform image size to ensure that there is enough space. If a cluster has
insufficient space, TALM cancels pre-caching for that cluster and does not remediate policies on it.

TALM uses the PrecacheSpecValid condition to report status information as follows:

true
The pre-caching spec is valid and consistent.

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

179



false
The pre-caching spec is incomplete.

TALM uses the PrecachingSucceeded condition to report status information as follows:

true
TALM has concluded the pre-caching process. If pre-caching fails for any cluster, the update
fails for that cluster but proceeds for all other clusters. A message informs you if pre-caching
has failed for any clusters.

false
Pre-caching is still in progress for one or more clusters or has failed for all clusters.

For more information see the "Using the container image pre-cache feature" section.

11.5.4. Creating a backup

For single-node OpenShift, TALM can create a backup of a deployment before an update. If the update
fails, you can recover the previous version and restore a cluster to a working state without requiring a
reprovision of applications. To use the backup feature you first create a ClusterGroupUpgrade CR with
the backup field set to true. To ensure that the contents of the backup are up to date, the backup is not
taken until you set the enable field in the ClusterGroupUpgrade CR to true.

TALM uses the BackupSucceeded condition to report the status and reasons as follows:

true
Backup is completed for all clusters or the backup run has completed but failed for one or more
clusters. If backup fails for any cluster, the update fails for that cluster but proceeds for all other
clusters.

false
Backup is still in progress for one or more clusters or has failed for all clusters.

For more information, see the "Creating a backup of cluster resources before upgrade" section.

11.5.5. Updating clusters

TALM enforces the policies following the remediation plan. Enforcing the policies for subsequent
batches starts immediately after all the clusters of the current batch are compliant with all the managed
policies. If the batch times out, TALM moves on to the next batch. The timeout value of a batch is the 
spec.timeout field divided by the number of batches in the remediation plan.

TALM uses the Progressing condition to report the status and reasons as follows:

true
TALM is remediating non-compliant policies.

false
The update is not in progress. Possible reasons for this are:

All clusters are compliant with all the managed policies.

The update has timed out as policy remediation took too long.

Blocking CRs are missing from the system or have not yet completed.

OpenShift Container Platform 4.15 Edge computing

180



The ClusterGroupUpgrade CR is not enabled.

Backup is still in progress.

NOTE

The managed policies apply in the order that they are listed in the managedPolicies field
in the ClusterGroupUpgrade CR. One managed policy is applied to the specified
clusters at a time. When a cluster complies with the current policy, the next managed
policy is applied to it.

Sample ClusterGroupUpgrade CR in the Progressing state

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  creationTimestamp: '2022-11-18T16:27:15Z'
  finalizers:
    - ran.openshift.io/cleanup-finalizer
  generation: 1
  name: talm-cgu
  namespace: talm-namespace
  resourceVersion: '40451823'
  uid: cca245a5-4bca-45fa-89c0-aa6af81a596c
Spec:
  actions:
    afterCompletion:
      deleteObjects: true
    beforeEnable: {}
  backup: false
  clusters:
    - spoke1
  enable: true
  managedPolicies:
    - talm-policy
  preCaching: true
  remediationStrategy:
    canaries:
        - spoke1
    maxConcurrency: 2
    timeout: 240
  clusterLabelSelectors:
    - matchExpressions:
      - key: label1
      operator: In
      values:
        - value1a
        - value1b
  batchTimeoutAction:
status:
    clusters:
      - name: spoke1
        state: complete
    computedMaxConcurrency: 2
    conditions:

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

181



1 The Progressing fields show that TALM is in the process of remediating policies.

11.5.6. Update status

TALM uses the Succeeded condition to report the status and reasons as follows:

true
All clusters are compliant with the specified managed policies.

false
Policy remediation failed as there were no clusters available for remediation, or because policy
remediation took too long for one of the following reasons:

The current batch contains canary updates and the cluster in the batch does not comply
with all the managed policies within the batch timeout.

Clusters did not comply with the managed policies within the timeout value specified in the 
remediationStrategy field.

Sample ClusterGroupUpgrade CR in the Succeeded state

      - lastTransitionTime: '2022-11-18T16:27:15Z'
        message: All selected clusters are valid
        reason: ClusterSelectionCompleted
        status: 'True'
        type: ClustersSelected
      - lastTransitionTime: '2022-11-18T16:27:15Z'
        message: Completed validation
        reason: ValidationCompleted
        status: 'True'
        type: Validated
      - lastTransitionTime: '2022-11-18T16:37:16Z'
        message: Remediating non-compliant policies
        reason: InProgress
        status: 'True'
        type: Progressing 1
    managedPoliciesForUpgrade:
      - name: talm-policy
        namespace: talm-namespace
    managedPoliciesNs:
      talm-policy: talm-namespace
    remediationPlan:
      - - spoke1
      - - spoke2
        - spoke3
    status:
      currentBatch: 2
      currentBatchRemediationProgress:
        spoke2:
          state: Completed
        spoke3:
          policyIndex: 0
          state: InProgress
      currentBatchStartedAt: '2022-11-18T16:27:16Z'
      startedAt: '2022-11-18T16:27:15Z'

OpenShift Container Platform 4.15 Edge computing

182



2

3

In the Progressing fields, the status is false as the update has completed; clusters are compliant
with all the managed policies.

The Succeeded fields show that the validations completed successfully.

    apiVersion: ran.openshift.io/v1alpha1
    kind: ClusterGroupUpgrade
    metadata:
      name: cgu-upgrade-complete
      namespace: default
    spec:
      clusters:
      - spoke1
      - spoke4
      enable: true
      managedPolicies:
      - policy1-common-cluster-version-policy
      - policy2-common-pao-sub-policy
      remediationStrategy:
        maxConcurrency: 1
        timeout: 240
    status: 1
      clusters:
        - name: spoke1
          state: complete
        - name: spoke4
          state: complete
      conditions:
      - message: All selected clusters are valid
        reason: ClusterSelectionCompleted
        status: "True"
        type: ClustersSelected
      - message: Completed validation
        reason: ValidationCompleted
        status: "True"
        type: Validated
      - message: All clusters are compliant with all the managed policies
        reason: Completed
        status: "False"
        type: Progressing 2
      - message: All clusters are compliant with all the managed policies
        reason: Completed
        status: "True"
        type: Succeeded 3
      managedPoliciesForUpgrade:
      - name: policy1-common-cluster-version-policy
        namespace: default
      - name: policy2-common-pao-sub-policy
        namespace: default
      remediationPlan:
      - - spoke1
      - - spoke4
      status:
        completedAt: '2022-11-18T16:27:16Z'
        startedAt: '2022-11-18T16:27:15Z'

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

183



1 The status field includes a list of clusters and their respective statuses. The status of a cluster can
be complete or timedout.

Sample ClusterGroupUpgrade CR in the timedout state

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  creationTimestamp: '2022-11-18T16:27:15Z'
  finalizers:
    - ran.openshift.io/cleanup-finalizer
  generation: 1
  name: talm-cgu
  namespace: talm-namespace
  resourceVersion: '40451823'
  uid: cca245a5-4bca-45fa-89c0-aa6af81a596c
spec:
  actions:
    afterCompletion:
      deleteObjects: true
    beforeEnable: {}
  backup: false
  clusters:
    - spoke1
    - spoke2
  enable: true
  managedPolicies:
    - talm-policy
  preCaching: false
  remediationStrategy:
    maxConcurrency: 2
    timeout: 240
status:
  clusters:
    - name: spoke1
      state: complete
    - currentPolicy: 1
        name: talm-policy
        status: NonCompliant
      name: spoke2
      state: timedout
  computedMaxConcurrency: 2
  conditions:
    - lastTransitionTime: '2022-11-18T16:27:15Z'
      message: All selected clusters are valid
      reason: ClusterSelectionCompleted
      status: 'True'
      type: ClustersSelected
    - lastTransitionTime: '2022-11-18T16:27:15Z'
      message: Completed validation
      reason: ValidationCompleted
      status: 'True'
      type: Validated
    - lastTransitionTime: '2022-11-18T16:37:16Z'
      message: Policy remediation took too long

OpenShift Container Platform 4.15 Edge computing

184



1

2

If a cluster’s state is timedout, the currentPolicy field shows the name of the policy and the policy
status.

The status for succeeded is false and the message indicates that policy remediation took too
long.

11.5.7. Blocking ClusterGroupUpgrade CRs

You can create multiple ClusterGroupUpgrade CRs and control their order of application.

For example, if you create ClusterGroupUpgrade CR C that blocks the start of ClusterGroupUpgrade
CR A, then ClusterGroupUpgrade CR A cannot start until the status of ClusterGroupUpgrade CR C
becomes UpgradeComplete.

One ClusterGroupUpgrade CR can have multiple blocking CRs. In this case, all the blocking CRs must
complete before the upgrade for the current CR can start.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Provision one or more managed clusters.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Save the content of the ClusterGroupUpgrade CRs in the cgu-a.yaml, cgu-b.yaml, and cgu-
c.yaml files.

      reason: TimedOut
      status: 'False'
      type: Progressing
    - lastTransitionTime: '2022-11-18T16:37:16Z'
      message: Policy remediation took too long
      reason: TimedOut
      status: 'False'
      type: Succeeded 2
  managedPoliciesForUpgrade:
    - name: talm-policy
      namespace: talm-namespace
  managedPoliciesNs:
    talm-policy: talm-namespace
  remediationPlan:
    - - spoke1
      - spoke2
  status:
        startedAt: '2022-11-18T16:27:15Z'
        completedAt: '2022-11-18T20:27:15Z'

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

185



1 Defines the blocking CRs. The cgu-a update cannot start until cgu-c is complete.

metadata:
  name: cgu-a
  namespace: default
spec:
  blockingCRs: 1
  - name: cgu-c
    namespace: default
  clusters:
  - spoke1
  - spoke2
  - spoke3
  enable: false
  managedPolicies:
  - policy1-common-cluster-version-policy
  - policy2-common-pao-sub-policy
  - policy3-common-ptp-sub-policy
  remediationStrategy:
    canaries:
    - spoke1
    maxConcurrency: 2
    timeout: 240
status:
  conditions:
  - message: The ClusterGroupUpgrade CR is not enabled
    reason: UpgradeNotStarted
    status: "False"
    type: Ready
  copiedPolicies:
  - cgu-a-policy1-common-cluster-version-policy
  - cgu-a-policy2-common-pao-sub-policy
  - cgu-a-policy3-common-ptp-sub-policy
  managedPoliciesForUpgrade:
  - name: policy1-common-cluster-version-policy
    namespace: default
  - name: policy2-common-pao-sub-policy
    namespace: default
  - name: policy3-common-ptp-sub-policy
    namespace: default
  placementBindings:
  - cgu-a-policy1-common-cluster-version-policy
  - cgu-a-policy2-common-pao-sub-policy
  - cgu-a-policy3-common-ptp-sub-policy
  placementRules:
  - cgu-a-policy1-common-cluster-version-policy
  - cgu-a-policy2-common-pao-sub-policy
  - cgu-a-policy3-common-ptp-sub-policy
  remediationPlan:
  - - spoke1
  - - spoke2

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:

OpenShift Container Platform 4.15 Edge computing

186



1 The cgu-b update cannot start until cgu-a is complete.

  name: cgu-b
  namespace: default
spec:
  blockingCRs: 1
  - name: cgu-a
    namespace: default
  clusters:
  - spoke4
  - spoke5
  enable: false
  managedPolicies:
  - policy1-common-cluster-version-policy
  - policy2-common-pao-sub-policy
  - policy3-common-ptp-sub-policy
  - policy4-common-sriov-sub-policy
  remediationStrategy:
    maxConcurrency: 1
    timeout: 240
status:
  conditions:
  - message: The ClusterGroupUpgrade CR is not enabled
    reason: UpgradeNotStarted
    status: "False"
    type: Ready
  copiedPolicies:
  - cgu-b-policy1-common-cluster-version-policy
  - cgu-b-policy2-common-pao-sub-policy
  - cgu-b-policy3-common-ptp-sub-policy
  - cgu-b-policy4-common-sriov-sub-policy
  managedPoliciesForUpgrade:
  - name: policy1-common-cluster-version-policy
    namespace: default
  - name: policy2-common-pao-sub-policy
    namespace: default
  - name: policy3-common-ptp-sub-policy
    namespace: default
  - name: policy4-common-sriov-sub-policy
    namespace: default
  placementBindings:
  - cgu-b-policy1-common-cluster-version-policy
  - cgu-b-policy2-common-pao-sub-policy
  - cgu-b-policy3-common-ptp-sub-policy
  - cgu-b-policy4-common-sriov-sub-policy
  placementRules:
  - cgu-b-policy1-common-cluster-version-policy
  - cgu-b-policy2-common-pao-sub-policy
  - cgu-b-policy3-common-ptp-sub-policy
  - cgu-b-policy4-common-sriov-sub-policy
  remediationPlan:
  - - spoke4
  - - spoke5
  status: {}

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

187



1 The cgu-c update does not have any blocking CRs. TALM starts the cgu-c update when
the enable field is set to true.

2. Create the ClusterGroupUpgrade CRs by running the following command for each relevant
CR:

3. Start the update process by running the following command for each relevant CR:

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-c
  namespace: default
spec: 1
  clusters:
  - spoke6
  enable: false
  managedPolicies:
  - policy1-common-cluster-version-policy
  - policy2-common-pao-sub-policy
  - policy3-common-ptp-sub-policy
  - policy4-common-sriov-sub-policy
  remediationStrategy:
    maxConcurrency: 1
    timeout: 240
status:
  conditions:
  - message: The ClusterGroupUpgrade CR is not enabled
    reason: UpgradeNotStarted
    status: "False"
    type: Ready
  copiedPolicies:
  - cgu-c-policy1-common-cluster-version-policy
  - cgu-c-policy4-common-sriov-sub-policy
  managedPoliciesCompliantBeforeUpgrade:
  - policy2-common-pao-sub-policy
  - policy3-common-ptp-sub-policy
  managedPoliciesForUpgrade:
  - name: policy1-common-cluster-version-policy
    namespace: default
  - name: policy4-common-sriov-sub-policy
    namespace: default
  placementBindings:
  - cgu-c-policy1-common-cluster-version-policy
  - cgu-c-policy4-common-sriov-sub-policy
  placementRules:
  - cgu-c-policy1-common-cluster-version-policy
  - cgu-c-policy4-common-sriov-sub-policy
  remediationPlan:
  - - spoke6
  status: {}

$ oc apply -f <name>.yaml

OpenShift Container Platform 4.15 Edge computing

188



The following examples show ClusterGroupUpgrade CRs where the enable field is set to true:

Example for cgu-a with blocking CRs

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/<name> \
--type merge -p '{"spec":{"enable":true}}'

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-a
  namespace: default
spec:
  blockingCRs:
  - name: cgu-c
    namespace: default
  clusters:
  - spoke1
  - spoke2
  - spoke3
  enable: true
  managedPolicies:
  - policy1-common-cluster-version-policy
  - policy2-common-pao-sub-policy
  - policy3-common-ptp-sub-policy
  remediationStrategy:
    canaries:
    - spoke1
    maxConcurrency: 2
    timeout: 240
status:
  conditions:
  - message: 'The ClusterGroupUpgrade CR is blocked by other CRs that have not yet
      completed: [cgu-c]' 1
    reason: UpgradeCannotStart
    status: "False"
    type: Ready
  copiedPolicies:
  - cgu-a-policy1-common-cluster-version-policy
  - cgu-a-policy2-common-pao-sub-policy
  - cgu-a-policy3-common-ptp-sub-policy
  managedPoliciesForUpgrade:
  - name: policy1-common-cluster-version-policy
    namespace: default
  - name: policy2-common-pao-sub-policy
    namespace: default
  - name: policy3-common-ptp-sub-policy
    namespace: default
  placementBindings:
  - cgu-a-policy1-common-cluster-version-policy
  - cgu-a-policy2-common-pao-sub-policy
  - cgu-a-policy3-common-ptp-sub-policy
  placementRules:
  - cgu-a-policy1-common-cluster-version-policy
  - cgu-a-policy2-common-pao-sub-policy

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

189



1 Shows the list of blocking CRs.

Example for cgu-b with blocking CRs

  - cgu-a-policy3-common-ptp-sub-policy
  remediationPlan:
  - - spoke1
  - - spoke2
  status: {}

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-b
  namespace: default
spec:
  blockingCRs:
  - name: cgu-a
    namespace: default
  clusters:
  - spoke4
  - spoke5
  enable: true
  managedPolicies:
  - policy1-common-cluster-version-policy
  - policy2-common-pao-sub-policy
  - policy3-common-ptp-sub-policy
  - policy4-common-sriov-sub-policy
  remediationStrategy:
    maxConcurrency: 1
    timeout: 240
status:
  conditions:
  - message: 'The ClusterGroupUpgrade CR is blocked by other CRs that have not yet
      completed: [cgu-a]' 1
    reason: UpgradeCannotStart
    status: "False"
    type: Ready
  copiedPolicies:
  - cgu-b-policy1-common-cluster-version-policy
  - cgu-b-policy2-common-pao-sub-policy
  - cgu-b-policy3-common-ptp-sub-policy
  - cgu-b-policy4-common-sriov-sub-policy
  managedPoliciesForUpgrade:
  - name: policy1-common-cluster-version-policy
    namespace: default
  - name: policy2-common-pao-sub-policy
    namespace: default
  - name: policy3-common-ptp-sub-policy
    namespace: default
  - name: policy4-common-sriov-sub-policy
    namespace: default
  placementBindings:
  - cgu-b-policy1-common-cluster-version-policy

OpenShift Container Platform 4.15 Edge computing

190



1 Shows the list of blocking CRs.

Example for cgu-c with blocking CRs

  - cgu-b-policy2-common-pao-sub-policy
  - cgu-b-policy3-common-ptp-sub-policy
  - cgu-b-policy4-common-sriov-sub-policy
  placementRules:
  - cgu-b-policy1-common-cluster-version-policy
  - cgu-b-policy2-common-pao-sub-policy
  - cgu-b-policy3-common-ptp-sub-policy
  - cgu-b-policy4-common-sriov-sub-policy
  remediationPlan:
  - - spoke4
  - - spoke5
  status: {}

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-c
  namespace: default
spec:
  clusters:
  - spoke6
  enable: true
  managedPolicies:
  - policy1-common-cluster-version-policy
  - policy2-common-pao-sub-policy
  - policy3-common-ptp-sub-policy
  - policy4-common-sriov-sub-policy
  remediationStrategy:
    maxConcurrency: 1
    timeout: 240
status:
  conditions:
  - message: The ClusterGroupUpgrade CR has upgrade policies that are still non compliant 
1

    reason: UpgradeNotCompleted
    status: "False"
    type: Ready
  copiedPolicies:
  - cgu-c-policy1-common-cluster-version-policy
  - cgu-c-policy4-common-sriov-sub-policy
  managedPoliciesCompliantBeforeUpgrade:
  - policy2-common-pao-sub-policy
  - policy3-common-ptp-sub-policy
  managedPoliciesForUpgrade:
  - name: policy1-common-cluster-version-policy
    namespace: default
  - name: policy4-common-sriov-sub-policy
    namespace: default
  placementBindings:
  - cgu-c-policy1-common-cluster-version-policy

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

191



1 The cgu-c update does not have any blocking CRs.

11.6. UPDATE POLICIES ON MANAGED CLUSTERS

The Topology Aware Lifecycle Manager (TALM) remediates a set of inform policies for the clusters
specified in the ClusterGroupUpgrade CR. TALM remediates inform policies by making enforce copies
of the managed RHACM policies. Each copied policy has its own corresponding RHACM placement rule
and RHACM placement binding.

One by one, TALM adds each cluster from the current batch to the placement rule that corresponds
with the applicable managed policy. If a cluster is already compliant with a policy, TALM skips applying
that policy on the compliant cluster. TALM then moves on to applying the next policy to the non-
compliant cluster. After TALM completes the updates in a batch, all clusters are removed from the
placement rules associated with the copied policies. Then, the update of the next batch starts.

If a spoke cluster does not report any compliant state to RHACM, the managed policies on the hub
cluster can be missing status information that TALM needs. TALM handles these cases in the following
ways:

If a policy’s status.compliant field is missing, TALM ignores the policy and adds a log entry.
Then, TALM continues looking at the policy’s status.status field.

If a policy’s status.status is missing, TALM produces an error.

If a cluster’s compliance status is missing in the policy’s status.status field, TALM considers
that cluster to be non-compliant with that policy.

The ClusterGroupUpgrade CR’s batchTimeoutAction determines what happens if an upgrade fails for
a cluster. You can specify continue to skip the failing cluster and continue to upgrade other clusters, or
specify abort to stop the policy remediation for all clusters. Once the timeout elapses, TALM removes all
enforce policies to ensure that no further updates are made to clusters.

Example upgrade policy

  - cgu-c-policy4-common-sriov-sub-policy
  placementRules:
  - cgu-c-policy1-common-cluster-version-policy
  - cgu-c-policy4-common-sriov-sub-policy
  remediationPlan:
  - - spoke6
  status:
    currentBatch: 1
    remediationPlanForBatch:
      spoke6: 0

apiVersion: policy.open-cluster-management.io/v1
kind: Policy
metadata:
  name: ocp-4.4.15.4
  namespace: platform-upgrade
spec:
  disabled: false
  policy-templates:
  - objectDefinition:
      apiVersion: policy.open-cluster-management.io/v1

OpenShift Container Platform 4.15 Edge computing

192



For more information about RHACM policies, see Policy overview .

Additional resources

For more information about the PolicyGenTemplate CRD, see About the PolicyGenTemplate CRD.

11.6.1. Configuring Operator subscriptions for managed clusters that you install with
TALM

Topology Aware Lifecycle Manager (TALM) can only approve the install plan for an Operator if the 
Subscription custom resource (CR) of the Operator contains the status.state.AtLatestKnown field.

Procedure

1. Add the status.state.AtLatestKnown field to the Subscription CR of the Operator:

Example Subscription CR

      kind: ConfigurationPolicy
      metadata:
        name: upgrade
      spec:
        namespaceselector:
          exclude:
          - kube-*
          include:
          - '*'
        object-templates:
        - complianceType: musthave
          objectDefinition:
            apiVersion: config.openshift.io/v1
            kind: ClusterVersion
            metadata:
              name: version
            spec:
              channel: stable-4.15
              desiredUpdate:
                version: 4.4.15.4
              upstream: https://api.openshift.com/api/upgrades_info/v1/graph
            status:
              history:
                - state: Completed
                  version: 4.4.15.4
        remediationAction: inform
        severity: low
  remediationAction: inform

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: cluster-logging
  namespace: openshift-logging
  annotations:
    ran.openshift.io/ztp-deploy-wave: "2"
spec:

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

193

https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html-single/governance/index#policy-overview


1 The status.state: AtLatestKnown field is used for the latest Operator version available
from the Operator catalog.

NOTE

When a new version of the Operator is available in the registry, the associated
policy becomes non-compliant.

2. Apply the changed Subscription policy to your managed clusters with a ClusterGroupUpgrade
CR.

11.6.2. Applying update policies to managed clusters

You can update your managed clusters by applying your policies.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Provision one or more managed clusters.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Save the contents of the ClusterGroupUpgrade CR in the cgu-1.yaml file.

  channel: "stable"
  name: cluster-logging
  source: redhat-operators
  sourceNamespace: openshift-marketplace
  installPlanApproval: Manual
status:
  state: AtLatestKnown 1

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-1
  namespace: default
spec:
  managedPolicies: 1
    - policy1-common-cluster-version-policy
    - policy2-common-nto-sub-policy
    - policy3-common-ptp-sub-policy
    - policy4-common-sriov-sub-policy
  enable: false
  clusters: 2
  - spoke1
  - spoke2
  - spoke5

OpenShift Container Platform 4.15 Edge computing

194



1

2

3

4

5

The name of the policies to apply.

The list of clusters to update.

The maxConcurrency field signifies the number of clusters updated at the same time.

The update timeout in minutes.

Controls what happens if a batch times out. Possible values are abort or continue. If
unspecified, the default is continue.

2. Create the ClusterGroupUpgrade CR by running the following command:

a. Check if the ClusterGroupUpgrade CR was created in the hub cluster by running the
following command:

Example output

b. Check the status of the update by running the following command:

Example output

  - spoke6
  remediationStrategy:
    maxConcurrency: 2 3
    timeout: 240 4
  batchTimeoutAction: 5

$ oc create -f cgu-1.yaml

$ oc get cgu --all-namespaces

NAMESPACE   NAME  AGE  STATE      DETAILS
default     cgu-1 8m55 NotEnabled Not Enabled

$ oc get cgu -n default cgu-1 -ojsonpath='{.status}' | jq

{
  "computedMaxConcurrency": 2,
  "conditions": [
    {
      "lastTransitionTime": "2022-02-25T15:34:07Z",
      "message": "Not enabled", 1
      "reason": "NotEnabled",
      "status": "False",
      "type": "Progressing"
    }
  ],
  "copiedPolicies": [
    "cgu-policy1-common-cluster-version-policy",
    "cgu-policy2-common-nto-sub-policy",
    "cgu-policy3-common-ptp-sub-policy",
    "cgu-policy4-common-sriov-sub-policy"

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

195



  ],
  "managedPoliciesContent": {
    "policy1-common-cluster-version-policy": "null",
    "policy2-common-nto-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"node-tuning-
operator\",\"namespace\":\"openshift-cluster-node-tuning-operator\"}]",
    "policy3-common-ptp-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"ptp-operator-
subscription\",\"namespace\":\"openshift-ptp\"}]",
    "policy4-common-sriov-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"sriov-network-
operator-subscription\",\"namespace\":\"openshift-sriov-network-operator\"}]"
  },
  "managedPoliciesForUpgrade": [
    {
      "name": "policy1-common-cluster-version-policy",
      "namespace": "default"
    },
    {
      "name": "policy2-common-nto-sub-policy",
      "namespace": "default"
    },
    {
      "name": "policy3-common-ptp-sub-policy",
      "namespace": "default"
    },
    {
      "name": "policy4-common-sriov-sub-policy",
      "namespace": "default"
    }
  ],
  "managedPoliciesNs": {
    "policy1-common-cluster-version-policy": "default",
    "policy2-common-nto-sub-policy": "default",
    "policy3-common-ptp-sub-policy": "default",
    "policy4-common-sriov-sub-policy": "default"
  },
  "placementBindings": [
    "cgu-policy1-common-cluster-version-policy",
    "cgu-policy2-common-nto-sub-policy",
    "cgu-policy3-common-ptp-sub-policy",
    "cgu-policy4-common-sriov-sub-policy"
  ],
  "placementRules": [
    "cgu-policy1-common-cluster-version-policy",
    "cgu-policy2-common-nto-sub-policy",
    "cgu-policy3-common-ptp-sub-policy",
    "cgu-policy4-common-sriov-sub-policy"
  ],
  "precaching": {
    "spec": {}
  },
  "remediationPlan": [
    [
      "spoke1",
      "spoke2"
    ],
    [
      "spoke5",

OpenShift Container Platform 4.15 Edge computing

196



1

1

The spec.enable field in the ClusterGroupUpgrade CR is set to false.

c. Check the status of the policies by running the following command:

Example output

The spec.remediationAction field of policies currently applied on the clusters is set to
enforce. The managed policies in inform mode from the ClusterGroupUpgrade CR
remain in inform mode during the update.

3. Change the value of the spec.enable field to true by running the following command:

Verification

1. Check the status of the update again by running the following command:

Example output

      "spoke6"
    ]
  ],
  "status": {}
}

$ oc get policies -A

NAMESPACE   NAME                                                 REMEDIATION ACTION   
COMPLIANCE STATE   AGE
default     cgu-policy1-common-cluster-version-policy            enforce                                 
17m 1
default     cgu-policy2-common-nto-sub-policy                    enforce                                 
17m
default     cgu-policy3-common-ptp-sub-policy                    enforce                                 
17m
default     cgu-policy4-common-sriov-sub-policy                  enforce                                 
17m
default     policy1-common-cluster-version-policy                inform               NonCompliant       
15h
default     policy2-common-nto-sub-policy                        inform               NonCompliant       
15h
default     policy3-common-ptp-sub-policy                        inform               NonCompliant       
18m
default     policy4-common-sriov-sub-policy                      inform               NonCompliant       
18m

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-1 \
--patch '{"spec":{"enable":true}}' --type=merge

$ oc get cgu -n default cgu-1 -ojsonpath='{.status}' | jq

{

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

197



  "computedMaxConcurrency": 2,
  "conditions": [ 1
    {
      "lastTransitionTime": "2022-02-25T15:33:07Z",
      "message": "All selected clusters are valid",
      "reason": "ClusterSelectionCompleted",
      "status": "True",
      "type": "ClustersSelected",
      "lastTransitionTime": "2022-02-25T15:33:07Z",
      "message": "Completed validation",
      "reason": "ValidationCompleted",
      "status": "True",
      "type": "Validated",
      "lastTransitionTime": "2022-02-25T15:34:07Z",
      "message": "Remediating non-compliant policies",
      "reason": "InProgress",
      "status": "True",
      "type": "Progressing"
    }
  ],
  "copiedPolicies": [
    "cgu-policy1-common-cluster-version-policy",
    "cgu-policy2-common-nto-sub-policy",
    "cgu-policy3-common-ptp-sub-policy",
    "cgu-policy4-common-sriov-sub-policy"
  ],
  "managedPoliciesContent": {
    "policy1-common-cluster-version-policy": "null",
    "policy2-common-nto-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"node-tuning-
operator\",\"namespace\":\"openshift-cluster-node-tuning-operator\"}]",
    "policy3-common-ptp-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"ptp-operator-
subscription\",\"namespace\":\"openshift-ptp\"}]",
    "policy4-common-sriov-sub-policy": "[{\"kind\":\"Subscription\",\"name\":\"sriov-network-
operator-subscription\",\"namespace\":\"openshift-sriov-network-operator\"}]"
  },
  "managedPoliciesForUpgrade": [
    {
      "name": "policy1-common-cluster-version-policy",
      "namespace": "default"
    },
    {
      "name": "policy2-common-nto-sub-policy",
      "namespace": "default"
    },
    {
      "name": "policy3-common-ptp-sub-policy",
      "namespace": "default"
    },
    {
      "name": "policy4-common-sriov-sub-policy",
      "namespace": "default"
    }
  ],
  "managedPoliciesNs": {
    "policy1-common-cluster-version-policy": "default",
    "policy2-common-nto-sub-policy": "default",

OpenShift Container Platform 4.15 Edge computing

198



1 Reflects the update progress of the current batch. Run this command again to receive
updated information about the progress.

2. If the policies include Operator subscriptions, you can check the installation progress directly on
the single-node cluster.

a. Export the KUBECONFIG file of the single-node cluster you want to check the installation
progress for by running the following command:

b. Check all the subscriptions present on the single-node cluster and look for the one in the
policy you are trying to install through the ClusterGroupUpgrade CR by running the
following command:

    "policy3-common-ptp-sub-policy": "default",
    "policy4-common-sriov-sub-policy": "default"
  },
  "placementBindings": [
    "cgu-policy1-common-cluster-version-policy",
    "cgu-policy2-common-nto-sub-policy",
    "cgu-policy3-common-ptp-sub-policy",
    "cgu-policy4-common-sriov-sub-policy"
  ],
  "placementRules": [
    "cgu-policy1-common-cluster-version-policy",
    "cgu-policy2-common-nto-sub-policy",
    "cgu-policy3-common-ptp-sub-policy",
    "cgu-policy4-common-sriov-sub-policy"
  ],
  "precaching": {
    "spec": {}
  },
  "remediationPlan": [
    [
      "spoke1",
      "spoke2"
    ],
    [
      "spoke5",
      "spoke6"
    ]
  ],
  "status": {
    "currentBatch": 1,
    "currentBatchStartedAt": "2022-02-25T15:54:16Z",
    "remediationPlanForBatch": {
      "spoke1": 0,
      "spoke2": 1
    },
    "startedAt": "2022-02-25T15:54:16Z"
  }
}

$ export KUBECONFIG=<cluster_kubeconfig_absolute_path>

$ oc get subs -A | grep -i <subscription_name>

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

199



1

Example output for cluster-logging policy

3. If one of the managed policies includes a ClusterVersion CR, check the status of platform
updates in the current batch by running the following command against the spoke cluster:

Example output

4. Check the Operator subscription by running the following command:

5. Check the install plans present on the single-node cluster that is associated with the desired
subscription by running the following command:

Example output for cluster-logging Operator

The install plans have their Approval field set to Manual and their Approved field changes
from false to true after TALM approves the install plan.

NOTE

When TALM is remediating a policy containing a subscription, it automatically
approves any install plans attached to that subscription. Where multiple install
plans are needed to get the operator to the latest known version, TALM might
approve multiple install plans, upgrading through one or more intermediate
versions to get to the final version.

6. Check if the cluster service version for the Operator of the policy that the 
ClusterGroupUpgrade is installing reached the Succeeded phase by running the following
command:

NAMESPACE                              NAME                         PACKAGE                      SOURCE             
CHANNEL
openshift-logging                      cluster-logging              cluster-logging              redhat-
operators   stable

$ oc get clusterversion

NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.4.15.5     True        True          43s     Working towards 4.4.15.7: 71 of 735 done 
(9% complete)

$ oc get subs -n <operator-namespace> <operator-subscription> -ojsonpath="{.status}"

$ oc get installplan -n <subscription_namespace>

NAMESPACE                              NAME            CSV                                 APPROVAL   
APPROVED
openshift-logging                      install-6khtw   cluster-logging.5.3.3-4             Manual     true 
1

$ oc get csv -n <operator_namespace>

OpenShift Container Platform 4.15 Edge computing

200



Example output for OpenShift Logging Operator

11.7. CREATING A BACKUP OF CLUSTER RESOURCES BEFORE
UPGRADE

For single-node OpenShift, the Topology Aware Lifecycle Manager (TALM) can create a backup of a
deployment before an upgrade. If the upgrade fails, you can recover the previous version and restore a
cluster to a working state without requiring a reprovision of applications.

To use the backup feature you first create a ClusterGroupUpgrade CR with the backup field set to 
true. To ensure that the contents of the backup are up to date, the backup is not taken until you set the 
enable field in the ClusterGroupUpgrade CR to true.

TALM uses the BackupSucceeded condition to report the status and reasons as follows:

true
Backup is completed for all clusters or the backup run has completed but failed for one or more
clusters. If backup fails for any cluster, the update does not proceed for that cluster.

false
Backup is still in progress for one or more clusters or has failed for all clusters. The backup
process running in the spoke clusters can have the following statuses:

PreparingToStart
The first reconciliation pass is in progress. The TALM deletes any spoke backup namespace
and hub view resources that have been created in a failed upgrade attempt.

Starting
The backup prerequisites and backup job are being created.

Active
The backup is in progress.

Succeeded
The backup succeeded.

BackupTimeout
Artifact backup is partially done.

UnrecoverableError
The backup has ended with a non-zero exit code.

NOTE

If the backup of a cluster fails and enters the BackupTimeout or UnrecoverableError
state, the cluster update does not proceed for that cluster. Updates to other clusters are
not affected and continue.

11.7.1. Creating a ClusterGroupUpgrade CR with backup

You can create a backup of a deployment before an upgrade on single-node OpenShift clusters. If the

NAME                    DISPLAY                     VERSION   REPLACES   PHASE
cluster-logging.5.4.2   Red Hat OpenShift Logging   5.4.2                Succeeded

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

201



You can create a backup of a deployment before an upgrade on single-node OpenShift clusters. If the
upgrade fails you can use the upgrade-recovery.sh script generated by Topology Aware Lifecycle
Manager (TALM) to return the system to its preupgrade state. The backup consists of the following
items:

Cluster backup

A snapshot of etcd and static pod manifests.

Content backup

Backups of folders, for example, /etc, /usr/local, /var/lib/kubelet.

Changed files backup

Any files managed by machine-config that have been changed.

Deployment

A pinned ostree deployment.

Images (Optional)

Any container images that are in use.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Provision one or more managed clusters.

Log in as a user with cluster-admin privileges.

Install Red Hat Advanced Cluster Management (RHACM).

NOTE

It is highly recommended that you create a recovery partition. The following is an example
SiteConfig custom resource (CR) for a recovery partition of 50 GB:

Procedure

1. Save the contents of the ClusterGroupUpgrade CR with the backup and enable fields set to 
true in the clustergroupupgrades-group-du.yaml file:

nodes:
    - hostName: "node-1.example.com"
    role: "master"
    rootDeviceHints:
        hctl: "0:2:0:0"
        deviceName: /dev/disk/by-id/scsi-3600508b400105e210000900000490000
...
    #Disk /dev/disk/by-id/scsi-3600508b400105e210000900000490000:
    #893.3 GiB, 959119884288 bytes, 1873281024 sectors
    diskPartition:
        - device: /dev/disk/by-id/scsi-3600508b400105e210000900000490000
        partitions:
        - mount_point: /var/recovery
            size: 51200
            start: 800000

OpenShift Container Platform 4.15 Edge computing

202



2. To start the update, apply the ClusterGroupUpgrade CR by running the following command:

Verification

Check the status of the upgrade in the hub cluster by running the following command:

Example output

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: du-upgrade-4918
  namespace: ztp-group-du-sno
spec:
  preCaching: true
  backup: true
  clusters:
  - cnfdb1
  - cnfdb2
  enable: true
  managedPolicies:
  - du-upgrade-platform-upgrade
  remediationStrategy:
    maxConcurrency: 2
    timeout: 240

$ oc apply -f clustergroupupgrades-group-du.yaml

$ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath='{.status}'

{
    "backup": {
        "clusters": [
            "cnfdb2",
            "cnfdb1"
    ],
    "status": {
        "cnfdb1": "Succeeded",
        "cnfdb2": "Failed" 1
    }
},
"computedMaxConcurrency": 1,
"conditions": [
    {
        "lastTransitionTime": "2022-04-05T10:37:19Z",
        "message": "Backup failed for 1 cluster", 2
        "reason": "PartiallyDone", 3
        "status": "True", 4
        "type": "Succeeded"
    }
],
"precaching": {

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

203



1

2

3

4

Backup has failed for one cluster.

The message confirms that the backup failed for one cluster.

The backup was partially successful.

The backup process has finished.

11.7.2. Recovering a cluster after a failed upgrade

If an upgrade of a cluster fails, you can manually log in to the cluster and use the backup to return the
cluster to its preupgrade state. There are two stages:

Rollback

If the attempted upgrade included a change to the platform OS deployment, you must roll back to
the previous version before running the recovery script.

IMPORTANT

A rollback is only applicable to upgrades from TALM and single-node OpenShift. This
process does not apply to rollbacks from any other upgrade type.

Recovery

The recovery shuts down containers and uses files from the backup partition to relaunch containers
and restore clusters.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Provision one or more managed clusters.

Install Red Hat Advanced Cluster Management (RHACM).

Log in as a user with cluster-admin privileges.

Run an upgrade that is configured for backup.

Procedure

1. Delete the previously created ClusterGroupUpgrade custom resource (CR) by running the
following command:

2. Log in to the cluster that you want to recover.

3. Check the status of the platform OS deployment by running the following command:

    "spec": {}
},
"status": {}

$ oc delete cgu/du-upgrade-4918 -n ztp-group-du-sno

OpenShift Container Platform 4.15 Edge computing

204



1

1

2

Example outputs

The current deployment is pinned. A platform OS deployment rollback is not necessary.

This platform OS deployment is marked for rollback.

The previous deployment is pinned and can be rolled back.

4. To trigger a rollback of the platform OS deployment, run the following command:

5. The first phase of the recovery shuts down containers and restores files from the backup
partition to the targeted directories. To begin the recovery, run the following command:

6. When prompted, reboot the cluster by running the following command:

7. After the reboot, restart the recovery by running the following command:

NOTE

If the recovery utility fails, you can retry with the --restart option:

$ ostree admin status

[root@lab-test-spoke2-node-0 core]# ostree admin status
* rhcos c038a8f08458bbed83a77ece033ad3c55597e3f64edad66ea12fda18cbdceaf9.0
    Version: 49.84.202202230006-0
    Pinned: yes 1
    origin refspec: 
c038a8f08458bbed83a77ece033ad3c55597e3f64edad66ea12fda18cbdceaf9

[root@lab-test-spoke2-node-0 core]# ostree admin status
* rhcos f750ff26f2d5550930ccbe17af61af47daafc8018cd9944f2a3a6269af26b0fa.0
    Version: 410.84.202204050541-0
    origin refspec: f750ff26f2d5550930ccbe17af61af47daafc8018cd9944f2a3a6269af26b0fa
rhcos ad8f159f9dc4ea7e773fd9604c9a16be0fe9b266ae800ac8470f63abc39b52ca.0 
(rollback) 1
    Version: 410.84.202203290245-0
    Pinned: yes 2
    origin refspec: 
ad8f159f9dc4ea7e773fd9604c9a16be0fe9b266ae800ac8470f63abc39b52ca

$ rpm-ostree rollback -r

$ /var/recovery/upgrade-recovery.sh

$ systemctl reboot

$ /var/recovery/upgrade-recovery.sh  --resume

$ /var/recovery/upgrade-recovery.sh --restart

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

205



1

2

3

Verification

To check the status of the recovery run the following command:

Example output

The cluster version is available and has the correct version.

The node status is Ready.

The ClusterOperator object’s availability is True.

11.8. USING THE CONTAINER IMAGE PRE-CACHE FEATURE

Single-node OpenShift clusters might have limited bandwidth to access the container image registry,
which can cause a timeout before the updates are completed.

NOTE

The time of the update is not set by TALM. You can apply the ClusterGroupUpgrade CR
at the beginning of the update by manual application or by external automation.

The container image pre-caching starts when the preCaching field is set to true in the 
ClusterGroupUpgrade CR.

TALM uses the PrecacheSpecValid condition to report status information as follows:

true
The pre-caching spec is valid and consistent.

false
The pre-caching spec is incomplete.

$ oc get clusterversion,nodes,clusteroperator

NAME                                         VERSION   AVAILABLE   PROGRESSING   SINCE   
STATUS
clusterversion.config.openshift.io/version   4.4.15.23    True        False         86d     Cluster 
version is 4.4.15.23 1

NAME                          STATUS   ROLES           AGE   VERSION
node/lab-test-spoke1-node-0   Ready    master,worker   86d   v1.22.3+b93fd35 2

NAME                                                                           VERSION   AVAILABLE   
PROGRESSING   DEGRADED   SINCE   MESSAGE
clusteroperator.config.openshift.io/authentication                             4.4.15.23    True        
False         False      2d7h    3
clusteroperator.config.openshift.io/baremetal                                  4.4.15.23    True        False         
False      86d

..............

OpenShift Container Platform 4.15 Edge computing

206



TALM uses the PrecachingSucceeded condition to report status information as follows:

true
TALM has concluded the pre-caching process. If pre-caching fails for any cluster, the update
fails for that cluster but proceeds for all other clusters. A message informs you if pre-caching
has failed for any clusters.

false
Pre-caching is still in progress for one or more clusters or has failed for all clusters.

After a successful pre-caching process, you can start remediating policies. The remediation actions start
when the enable field is set to true. If there is a pre-caching failure on a cluster, the upgrade fails for
that cluster. The upgrade process continues for all other clusters that have a successful pre-cache.

The pre-caching process can be in the following statuses:

NotStarted
This is the initial state all clusters are automatically assigned to on the first reconciliation pass of
the ClusterGroupUpgrade CR. In this state, TALM deletes any pre-caching namespace and
hub view resources of spoke clusters that remain from previous incomplete updates. TALM
then creates a new ManagedClusterView resource for the spoke pre-caching namespace to
verify its deletion in the PrecachePreparing state.

PreparingToStart
Cleaning up any remaining resources from previous incomplete updates is in progress.

Starting
Pre-caching job prerequisites and the job are created.

Active
The job is in "Active" state.

Succeeded
The pre-cache job succeeded.

PrecacheTimeout
The artifact pre-caching is partially done.

UnrecoverableError
The job ends with a non-zero exit code.

11.8.1. Using the container image pre-cache filter

The pre-cache feature typically downloads more images than a cluster needs for an update. You can
control which pre-cache images are downloaded to a cluster. This decreases download time, and saves
bandwidth and storage.

You can see a list of all images to be downloaded using the following command:

The following ConfigMap example shows how you can exclude images using the 
excludePrecachePatterns field.

$ oc adm release info <ocp-version>

apiVersion: v1

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

207



1 TALM excludes all images with names that include any of the patterns listed here.

11.8.2. Creating a ClusterGroupUpgrade CR with pre-caching

For single-node OpenShift, the pre-cache feature allows the required container images to be present
on the spoke cluster before the update starts.

NOTE

For pre-caching, TALM uses the spec.remediationStrategy.timeout value from the 
ClusterGroupUpgrade CR. You must set a timeout value that allows sufficient time for
the pre-caching job to complete. When you enable the ClusterGroupUpgrade CR after
pre-caching has completed, you can change the timeout value to a duration that is
appropriate for the update.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Provision one or more managed clusters.

Log in as a user with cluster-admin privileges.

Procedure

1. Save the contents of the ClusterGroupUpgrade CR with the preCaching field set to true in
the clustergroupupgrades-group-du.yaml file:

kind: ConfigMap
metadata:
  name: cluster-group-upgrade-overrides
data:
  excludePrecachePatterns: |
    azure 1
    aws
    vsphere
    alibaba

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: du-upgrade-4918
  namespace: ztp-group-du-sno
spec:
  preCaching: true 1
  clusters:
  - cnfdb1
  - cnfdb2
  enable: false
  managedPolicies:
  - du-upgrade-platform-upgrade
  remediationStrategy:
    maxConcurrency: 2
    timeout: 240

OpenShift Container Platform 4.15 Edge computing

208



1

1

The preCaching field is set to true, which enables TALM to pull the container images
before starting the update.

2. When you want to start pre-caching, apply the ClusterGroupUpgrade CR by running the
following command:

Verification

1. Check if the ClusterGroupUpgrade CR exists in the hub cluster by running the following
command:

Example output

The CR is created.

2. Check the status of the pre-caching task by running the following command:

Example output

$ oc apply -f clustergroupupgrades-group-du.yaml

$ oc get cgu -A

NAMESPACE          NAME              AGE   STATE        DETAILS
ztp-group-du-sno   du-upgrade-4918   10s   InProgress   Precaching is required and not done 
1

$ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath='{.status}'

{
  "conditions": [
    {
      "lastTransitionTime": "2022-01-27T19:07:24Z",
      "message": "Precaching is required and not done",
      "reason": "InProgress",
      "status": "False",
      "type": "PrecachingSucceeded"
    },
    {
      "lastTransitionTime": "2022-01-27T19:07:34Z",
      "message": "Pre-caching spec is valid and consistent",
      "reason": "PrecacheSpecIsWellFormed",
      "status": "True",
      "type": "PrecacheSpecValid"
    }
  ],
  "precaching": {
    "clusters": [
      "cnfdb1" 1
      "cnfdb2"
    ],

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

209



1

1

Displays the list of identified clusters.

3. Check the status of the pre-caching job by running the following command on the spoke
cluster:

Example output

4. Check the status of the ClusterGroupUpgrade CR by running the following command:

Example output

The pre-cache tasks are done.

11.9. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE
MANAGER

    "spec": {
      "platformImage": "image.example.io"},
    "status": {
      "cnfdb1": "Active"
      "cnfdb2": "Succeeded"}
    }
}

$ oc get jobs,pods -n openshift-talo-pre-cache

NAME                  COMPLETIONS   DURATION   AGE
job.batch/pre-cache   0/1           3m10s      3m10s

NAME                     READY   STATUS    RESTARTS   AGE
pod/pre-cache--1-9bmlr   1/1     Running   0          3m10s

$ oc get cgu -n ztp-group-du-sno du-upgrade-4918 -o jsonpath='{.status}'

"conditions": [
    {
      "lastTransitionTime": "2022-01-27T19:30:41Z",
      "message": "The ClusterGroupUpgrade CR has all clusters compliant with all the 
managed policies",
      "reason": "UpgradeCompleted",
      "status": "True",
      "type": "Ready"
    },
    {
      "lastTransitionTime": "2022-01-27T19:28:57Z",
      "message": "Precaching is completed",
      "reason": "PrecachingCompleted",
      "status": "True",
      "type": "PrecachingSucceeded" 1
    }

OpenShift Container Platform 4.15 Edge computing

210



The Topology Aware Lifecycle Manager (TALM) is an OpenShift Container Platform Operator that
remediates RHACM policies. When issues occur, use the oc adm must-gather command to gather
details and logs and to take steps in debugging the issues.

For more information about related topics, see the following documentation:

Red Hat Advanced Cluster Management for Kubernetes 2.4 Support Matrix

Red Hat Advanced Cluster Management Troubleshooting

The "Troubleshooting Operator issues" section

11.9.1. General troubleshooting

You can determine the cause of the problem by reviewing the following questions:

Is the configuration that you are applying supported?

Are the RHACM and the OpenShift Container Platform versions compatible?

Are the TALM and RHACM versions compatible?

Which of the following components is causing the problem?

Section 11.9.3, “Managed policies”

Section 11.9.4, “Clusters”

Section 11.9.5, “Remediation Strategy”

Section 11.9.6, “Topology Aware Lifecycle Manager”

To ensure that the ClusterGroupUpgrade configuration is functional, you can do the following:

1. Create the ClusterGroupUpgrade CR with the spec.enable field set to false.

2. Wait for the status to be updated and go through the troubleshooting questions.

3. If everything looks as expected, set the spec.enable field to true in the ClusterGroupUpgrade
CR.

WARNING

After you set the spec.enable field to true in the ClusterUpgradeGroup CR, the
update procedure starts and you cannot edit the CR’s spec fields anymore.

11.9.2. Cannot modify the ClusterUpgradeGroup CR

Issue

You cannot edit the ClusterUpgradeGroup CR after enabling the update.

Resolution



CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

211

https://access.redhat.com/articles/6218901
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.0/html/troubleshooting/troubleshooting


Restart the procedure by performing the following steps:

1. Remove the old ClusterGroupUpgrade CR by running the following command:

2. Check and fix the existing issues with the managed clusters and policies.

a. Ensure that all the clusters are managed clusters and available.

b. Ensure that all the policies exist and have the spec.remediationAction field set to 
inform.

3. Create a new ClusterGroupUpgrade CR with the correct configurations.

11.9.3. Managed policies

Checking managed policies on the system

Issue

You want to check if you have the correct managed policies on the system.

Resolution

Run the following command:

Example output

Checking remediationAction mode

Issue

You want to check if the remediationAction field is set to inform in the spec of the managed
policies.

Resolution

Run the following command:

Example output

$ oc delete cgu -n <ClusterGroupUpgradeCR_namespace> 
<ClusterGroupUpgradeCR_name>

$ oc apply -f <ClusterGroupUpgradeCR_YAML>

$ oc get cgu lab-upgrade -ojsonpath='{.spec.managedPolicies}'

["group-du-sno-validator-du-validator-policy", "policy2-common-nto-sub-policy", "policy3-common-
ptp-sub-policy"]

$ oc get policies --all-namespaces

NAMESPACE   NAME                                                 REMEDIATION ACTION   COMPLIANCE 
STATE   AGE
default     policy1-common-cluster-version-policy                inform               NonCompliant       
5d21h

OpenShift Container Platform 4.15 Edge computing

212



Checking policy compliance state

Issue

You want to check the compliance state of policies.

Resolution

Run the following command:

Example output

11.9.4. Clusters

Checking if managed clusters are present

Issue

You want to check if the clusters in the ClusterGroupUpgrade CR are managed clusters.

Resolution

Run the following command:

Example output

1. Alternatively, check the TALM manager logs:

a. Get the name of the TALM manager by running the following command:

Example output

default     policy2-common-nto-sub-policy                        inform               Compliant          5d21h
default     policy3-common-ptp-sub-policy                        inform               NonCompliant       5d21h
default     policy4-common-sriov-sub-policy                      inform               NonCompliant       5d21h

$ oc get policies --all-namespaces

NAMESPACE   NAME                                                 REMEDIATION ACTION   COMPLIANCE 
STATE   AGE
default     policy1-common-cluster-version-policy                inform               NonCompliant       
5d21h
default     policy2-common-nto-sub-policy                        inform               Compliant          5d21h
default     policy3-common-ptp-sub-policy                        inform               NonCompliant       5d21h
default     policy4-common-sriov-sub-policy                      inform               NonCompliant       5d21h

$ oc get managedclusters

NAME            HUB ACCEPTED   MANAGED CLUSTER URLS                    JOINED   AVAILABLE   
AGE
local-cluster   true           https://api.hub.example.com:6443        True     Unknown     13d
spoke1          true           https://api.spoke1.example.com:6443     True     True        13d
spoke3          true           https://api.spoke3.example.com:6443     True     True        27h

$ oc get pod -n openshift-operators

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

213



1

1 2

b. Check the TALM manager logs by running the following command:

Example output

The error message shows that the cluster is not a managed cluster.

Checking if managed clusters are available

Issue

You want to check if the managed clusters specified in the ClusterGroupUpgrade CR are available.

Resolution

Run the following command:

Example output

The value of the AVAILABLE field is True for the managed clusters.

Checking clusterLabelSelector

Issue

You want to check if the clusterLabelSelector field specified in the ClusterGroupUpgrade CR
matches at least one of the managed clusters.

Resolution

Run the following command:

NAME                                                         READY   STATUS    RESTARTS   AGE
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp   2/2     Running   0          
45m

$ oc logs -n openshift-operators \
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp -c manager

ERROR controller-runtime.manager.controller.clustergroupupgrade Reconciler error 
{"reconciler group": "ran.openshift.io", "reconciler kind": "ClusterGroupUpgrade", 
"name": "lab-upgrade", "namespace": "default", "error": "Cluster spoke5555 is not a 
ManagedCluster"} 1
sigs.k8s.io/controller-runtime/pkg/internal/controller.
(*Controller).processNextWorkItem

$ oc get managedclusters

NAME            HUB ACCEPTED   MANAGED CLUSTER URLS                    JOINED   AVAILABLE   
AGE
local-cluster   true           https://api.hub.testlab.com:6443        True     Unknown     13d
spoke1          true           https://api.spoke1.testlab.com:6443     True     True        13d 1
spoke3          true           https://api.spoke3.testlab.com:6443     True     True        27h 2

$ oc get managedcluster --selector=upgrade=true 1

OpenShift Container Platform 4.15 Edge computing

214



1 The label for the clusters you want to update is upgrade:true.

Example output

Checking if canary clusters are present

Issue

You want to check if the canary clusters are present in the list of clusters.

Example ClusterGroupUpgrade CR

Resolution

Run the following commands:

Example output

1. Check if the canary clusters are present in the list of clusters that match 
clusterLabelSelector labels by running the following command:

Example output

NOTE

NAME            HUB ACCEPTED   MANAGED CLUSTER URLS                     JOINED    
AVAILABLE   AGE
spoke1          true           https://api.spoke1.testlab.com:6443      True     True        13d
spoke3          true           https://api.spoke3.testlab.com:6443      True     True        27h

spec:
    remediationStrategy:
        canaries:
        - spoke3
        maxConcurrency: 2
        timeout: 240
    clusterLabelSelectors:
      - matchLabels:
          upgrade: true

$ oc get cgu lab-upgrade -ojsonpath='{.spec.clusters}'

["spoke1", "spoke3"]

$ oc get managedcluster --selector=upgrade=true

NAME            HUB ACCEPTED   MANAGED CLUSTER URLS   JOINED    AVAILABLE   
AGE
spoke1          true           https://api.spoke1.testlab.com:6443   True     True        13d
spoke3          true           https://api.spoke3.testlab.com:6443   True     True        27h

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

215



NOTE

A cluster can be present in spec.clusters and also be matched by the 
spec.clusterLabelSelector label.

Checking the pre-caching status on spoke clusters

1. Check the status of pre-caching by running the following command on the spoke cluster:

11.9.5. Remediation Strategy

Checking if remediationStrategy is present in the ClusterGroupUpgrade CR

Issue

You want to check if the remediationStrategy is present in the ClusterGroupUpgrade CR.

Resolution

Run the following command:

Example output

Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

Issue

You want to check if the maxConcurrency is specified in the ClusterGroupUpgrade CR.

Resolution

Run the following command:

Example output

11.9.6. Topology Aware Lifecycle Manager

Checking condition message and status in the ClusterGroupUpgrade CR

Issue

You want to check the value of the status.conditions field in the ClusterGroupUpgrade CR.

Resolution

Run the following command:

$ oc get jobs,pods -n openshift-talo-pre-cache

$ oc get cgu lab-upgrade -ojsonpath='{.spec.remediationStrategy}'

{"maxConcurrency":2, "timeout":240}

$ oc get cgu lab-upgrade -ojsonpath='{.spec.remediationStrategy.maxConcurrency}'

2

OpenShift Container Platform 4.15 Edge computing

216



Example output

Checking corresponding copied policies

Issue

You want to check if every policy from status.managedPoliciesForUpgrade has a corresponding
policy in status.copiedPolicies.

Resolution

Run the following command:

Example output

Checking if status.remediationPlan was computed

Issue

You want to check if status.remediationPlan is computed.

Resolution

Run the following command:

Example output

Errors in the TALM manager container

Issue

You want to check the logs of the manager container of TALM.

Resolution

Run the following command:

$ oc get cgu lab-upgrade -ojsonpath='{.status.conditions}'

{"lastTransitionTime":"2022-02-17T22:25:28Z", "message":"Missing managed policies:[policyList]", 
"reason":"NotAllManagedPoliciesExist", "status":"False", "type":"Validated"}

$ oc get cgu lab-upgrade -oyaml

status:
  …
  copiedPolicies:
  - lab-upgrade-policy3-common-ptp-sub-policy
  managedPoliciesForUpgrade:
  - name: policy3-common-ptp-sub-policy
    namespace: default

$ oc get cgu lab-upgrade -ojsonpath='{.status.remediationPlan}'

[["spoke2", "spoke3"]]

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

217



1

Example output

Displays the error.

Clusters are not compliant to some policies after a ClusterGroupUpgrade CR has completed

Issue

The policy compliance status that TALM uses to decide if remediation is needed has not yet fully
updated for all clusters. This may be because:

The CGU was run too soon after a policy was created or updated.

The remediation of a policy affects the compliance of subsequent policies in the 
ClusterGroupUpgrade CR.

Resolution

Create and apply a new ClusterGroupUpdate CR with the same specification.

Auto-created ClusterGroupUpgrade CR in the GitOps ZTP workflow has no managed policies

Issue

If there are no policies for the managed cluster when the cluster becomes Ready, a 
ClusterGroupUpgrade CR with no policies is auto-created. Upon completion of the 
ClusterGroupUpgrade CR, the managed cluster is labeled as ztp-done. If the PolicyGenTemplate
CRs were not pushed to the Git repository within the required time after SiteConfig resources were
pushed, this might result in no policies being available for the target cluster when the cluster became 
Ready.

Resolution

Verify that the policies you want to apply are available on the hub cluster, then create a 
ClusterGroupUpgrade CR with the required policies.

You can either manually create the ClusterGroupUpgrade CR or trigger auto-creation again. To trigger
auto-creation of the ClusterGroupUpgrade CR, remove the ztp-done label from the cluster and delete
the empty ClusterGroupUpgrade CR that was previously created in the zip-install namespace.

Pre-caching has failed

Issue

Pre-caching might fail for one of the following reasons:

There is not enough free space on the node.

For a disconnected environment, the pre-cache image has not been properly mirrored.

$ oc logs -n openshift-operators \
cluster-group-upgrades-controller-manager-75bcc7484d-8k8xp -c manager

ERROR controller-runtime.manager.controller.clustergroupupgrade Reconciler error {"reconciler 
group": "ran.openshift.io", "reconciler kind": "ClusterGroupUpgrade", "name": "lab-upgrade", 
"namespace": "default", "error": "Cluster spoke5555 is not a ManagedCluster"} 1
sigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNextWorkItem

OpenShift Container Platform 4.15 Edge computing

218



There was an issue when creating the pod.

Resolution

1. To check if pre-caching has failed due to insufficient space, check the log of the pre-caching
pod in the node.

a. Find the name of the pod using the following command:

b. Check the logs to see if the error is related to insufficient space using the following
command:

2. If there is no log, check the pod status using the following command:

3. If the pod does not exist, check the job status to see why it could not create a pod using the
following command:

Additional resources

For information about troubleshooting, see OpenShift Container Platform Troubleshooting
Operator Issues.

For more information about using Topology Aware Lifecycle Manager in the ZTP workflow, see
Updating managed policies with Topology Aware Lifecycle Manager .

For more information about the PolicyGenTemplate CRD, see About the PolicyGenTemplate
CRD

$ oc get pods -n openshift-talo-pre-cache

$ oc logs -n openshift-talo-pre-cache <pod name>

$ oc describe pod -n openshift-talo-pre-cache <pod name>

$ oc describe job -n openshift-talo-pre-cache pre-cache

CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

219

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/support/#troubleshooting-operator-issues


CHAPTER 12. UPDATING MANAGED CLUSTERS IN A
DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY

AWARE LIFECYCLE MANAGER
You can use the Topology Aware Lifecycle Manager (TALM) to manage the software lifecycle of
OpenShift Container Platform managed clusters. TALM uses Red Hat Advanced Cluster Management
(RHACM) policies to perform changes on the target clusters.

Additional resources

For more information about the Topology Aware Lifecycle Manager, see About the Topology
Aware Lifecycle Manager.

12.1. UPDATING CLUSTERS IN A DISCONNECTED ENVIRONMENT

You can upgrade managed clusters and Operators for managed clusters that you have deployed using
GitOps Zero Touch Provisioning (ZTP) and Topology Aware Lifecycle Manager (TALM).

12.1.1. Setting up the environment

TALM can perform both platform and Operator updates.

You must mirror both the platform image and Operator images that you want to update to in your mirror
registry before you can use TALM to update your disconnected clusters. Complete the following steps
to mirror the images:

For platform updates, you must perform the following steps:

1. Mirror the desired OpenShift Container Platform image repository. Ensure that the desired
platform image is mirrored by following the "Mirroring the OpenShift Container Platform
image repository" procedure linked in the Additional Resources. Save the contents of the 
imageContentSources section in the imageContentSources.yaml file:

Example output

2. Save the image signature of the desired platform image that was mirrored. You must add
the image signature to the PolicyGenTemplate CR for platform updates. To get the image
signature, perform the following steps:

a. Specify the desired OpenShift Container Platform tag by running the following
command:

b. Specify the architecture of the cluster by running the following command:

imageContentSources:
 - mirrors:
   - mirror-ocp-registry.ibmcloud.io.cpak:5000/openshift-release-dev/openshift4
   source: quay.io/openshift-release-dev/ocp-release
 - mirrors:
   - mirror-ocp-registry.ibmcloud.io.cpak:5000/openshift-release-dev/openshift4
   source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

$ OCP_RELEASE_NUMBER=<release_version>

OpenShift Container Platform 4.15 Edge computing

220



1 Specify the architecture of the cluster, such as x86_64, aarch64, s390x, or 
ppc64le.

c. Get the release image digest from Quay by running the following command

d. Set the digest algorithm by running the following command:

e. Set the digest signature by running the following command:

f. Get the image signature from the mirror.openshift.com website by running the following
command:

g. Save the image signature to the checksum-<OCP_RELEASE_NUMBER>.yaml file by
running the following commands:

3. Prepare the update graph. You have two options to prepare the update graph:

a. Use the OpenShift Update Service.
For more information about how to set up the graph on the hub cluster, see Deploy the
operator for OpenShift Update Service and Build the graph data init container .

b. Make a local copy of the upstream graph. Host the update graph on an http or https
server in the disconnected environment that has access to the managed cluster. To
download the update graph, use the following command:

For Operator updates, you must perform the following task:

Mirror the Operator catalogs. Ensure that the desired operator images are mirrored by
following the procedure in the "Mirroring Operator catalogs for use with disconnected
clusters" section.

Additional resources

$ ARCHITECTURE=<cluster_architecture> 1

$ DIGEST="$(oc adm release info quay.io/openshift-release-dev/ocp-
release:${OCP_RELEASE_NUMBER}-${ARCHITECTURE} | sed -n 's/Pull From: 
.*@//p')"

$ DIGEST_ALGO="${DIGEST%%:*}"

$ DIGEST_ENCODED="${DIGEST#*:}"

$ SIGNATURE_BASE64=$(curl -s "https://mirror.openshift.com/pub/openshift-
v4/signatures/openshift/release/${DIGEST_ALGO}=${DIGEST_ENCODED}/signature
-1" | base64 -w0 && echo)

$ cat >checksum-${OCP_RELEASE_NUMBER}.yaml <<EOF
${DIGEST_ALGO}-${DIGEST_ENCODED}: ${SIGNATURE_BASE64}
EOF

$ curl -s https://api.openshift.com/api/upgrades_info/v1/graph?channel=stable-4.15 -
o ~/upgrade-graph_stable-4.15

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

221

https://mirror.openshift.com/pub/openshift-v4/signatures/openshift/release/
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/clusters/managing-your-clusters#deploy-the-operator-for-cincinnati
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.4/html/clusters/managing-your-clusters#build-the-graph-data-init-container


Additional resources

For more information about how to update GitOps Zero Touch Provisioning (ZTP), see
Upgrading GitOps ZTP .

For more information about how to mirror an OpenShift Container Platform image repository,
see Mirroring the OpenShift Container Platform image repository .

For more information about how to mirror Operator catalogs for disconnected clusters, see
Mirroring Operator catalogs for use with disconnected clusters .

For more information about how to prepare the disconnected environment and mirroring the
desired image repository, see Preparing the disconnected environment.

For more information about update channels and releases, see Understanding update channels
and releases.

12.1.2. Performing a platform update

You can perform a platform update with the TALM.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Update GitOps Zero Touch Provisioning (ZTP) to the latest version.

Provision one or more managed clusters with GitOps ZTP.

Mirror the desired image repository.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Create a PolicyGenTemplate CR for the platform update:

a. Save the following contents of the PolicyGenTemplate CR in the du-upgrade.yaml file.

Example of PolicyGenTemplate for platform update

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
  name: "du-upgrade"
  namespace: "ztp-group-du-sno"
spec:
  bindingRules:
    group-du-sno: ""
  mcp: "master"
  remediationAction: inform
  sourceFiles:
    - fileName: ImageSignature.yaml 1
      policyName: "platform-upgrade-prep"
      binaryData:

OpenShift Container Platform 4.15 Edge computing

222

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-mirror-repository_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#olm-mirror-catalog_installing-mirroring-installation-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/updating_clusters/#understanding-update-channels-releases


1

2

3

4

The ConfigMap CR contains the signature of the desired release image to update to.

Shows the image signature of the desired OpenShift Container Platform release. Get
the signature from the checksum-${OCP_RELEASE_NUMBER}.yaml file you saved
when following the procedures in the "Setting up the environment" section.

Shows the mirror repository that contains the desired OpenShift Container Platform
image. Get the mirrors from the imageContentSources.yaml file that you saved when
following the procedures in the "Setting up the environment" section.

Shows the ClusterVersion CR to trigger the update. The channel, upstream, and 
desiredVersion fields are all required for image pre-caching.

The PolicyGenTemplate CR generates two policies:

The du-upgrade-platform-upgrade-prep policy does the preparation work for the
platform update. It creates the ConfigMap CR for the desired release image signature,
creates the image content source of the mirrored release image repository, and
updates the cluster version with the desired update channel and the update graph
reachable by the managed cluster in the disconnected environment.

The du-upgrade-platform-upgrade policy is used to perform platform upgrade.

b. Add the du-upgrade.yaml file contents to the kustomization.yaml file located in the
GitOps ZTP Git repository for the PolicyGenTemplate CRs and push the changes to the
Git repository.
ArgoCD pulls the changes from the Git repository and generates the policies on the hub
cluster.

        ${DIGEST_ALGO}-${DIGEST_ENCODED}: ${SIGNATURE_BASE64} 2
    - fileName: DisconnectedICSP.yaml
      policyName: "platform-upgrade-prep"
      metadata:
        name: disconnected-internal-icsp-for-ocp
      spec:
        repositoryDigestMirrors: 3
          - mirrors:
            - quay-intern.example.com/ocp4/openshift-release-dev
            source: quay.io/openshift-release-dev/ocp-release
          - mirrors:
            - quay-intern.example.com/ocp4/openshift-release-dev
            source: quay.io/openshift-release-dev/ocp-v4.0-art-dev
    - fileName: ClusterVersion.yaml 4
      policyName: "platform-upgrade"
      metadata:
        name: version
      spec:
        channel: "stable-4.15"
        upstream: http://upgrade.example.com/images/upgrade-graph_stable-4.15
        desiredUpdate:
          version: 4.15.4
      status:
        history:
          - version: 4.15.4
            state: "Completed"

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

223



c. Check the created policies by running the following command:

2. Create the ClusterGroupUpdate CR for the platform update with the spec.enable field set to 
false.

a. Save the content of the platform update ClusterGroupUpdate CR with the du-upgrade-
platform-upgrade-prep and the du-upgrade-platform-upgrade policies and the target
clusters to the cgu-platform-upgrade.yml file, as shown in the following example:

b. Apply the ClusterGroupUpdate CR to the hub cluster by running the following command:

3. Optional: Pre-cache the images for the platform update.

a. Enable pre-caching in the ClusterGroupUpdate CR by running the following command:

b. Monitor the update process and wait for the pre-caching to complete. Check the status of
pre-caching by running the following command on the hub cluster:

4. Start the platform update:

a. Enable the cgu-platform-upgrade policy and disable pre-caching by running the following
command:

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the

$ oc get policies -A | grep platform-upgrade

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-platform-upgrade
  namespace: default
spec:
  managedPolicies:
  - du-upgrade-platform-upgrade-prep
  - du-upgrade-platform-upgrade
  preCaching: false
  clusters:
  - spoke1
  remediationStrategy:
    maxConcurrency: 1
  enable: false

$ oc apply -f cgu-platform-upgrade.yml

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-platform-
upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

$ oc get cgu cgu-platform-upgrade -o jsonpath='{.status.precaching.status}'

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-platform-
upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

OpenShift Container Platform 4.15 Edge computing

224



b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

Additional resources

For more information about mirroring the images in a disconnected environment, see Preparing
the disconnected environment.

12.1.3. Performing an Operator update

You can perform an Operator update with the TALM.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Update GitOps Zero Touch Provisioning (ZTP) to the latest version.

Provision one or more managed clusters with GitOps ZTP.

Mirror the desired index image, bundle images, and all Operator images referenced in the
bundle images.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Update the PolicyGenTemplate CR for the Operator update.

a. Update the du-upgrade PolicyGenTemplate CR with the following additional contents in
the du-upgrade.yaml file:

$ oc get policies --all-namespaces

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
  name: "du-upgrade"
  namespace: "ztp-group-du-sno"
spec:
  bindingRules:
    group-du-sno: ""
  mcp: "master"
  remediationAction: inform
  sourceFiles:
    - fileName: DefaultCatsrc.yaml
      remediationAction: inform
      policyName: "operator-catsrc-policy"
      metadata:
        name: redhat-operators
      spec:
        displayName: Red Hat Operators Catalog
        image: registry.example.com:5000/olm/redhat-operators:v4.15 1

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

225



1

2

3

The index image URL contains the desired Operator images. If the index images are
always pushed to the same image name and tag, this change is not needed.

Set how frequently the Operator Lifecycle Manager (OLM) polls the index image for
new Operator versions with the registryPoll.interval field. This change is not needed
if a new index image tag is always pushed for y-stream and z-stream Operator
updates. The registryPoll.interval field can be set to a shorter interval to expedite the
update, however shorter intervals increase computational load. To counteract this, you
can restore registryPoll.interval to the default value once the update is complete.

Last observed state of the catalog connection. The READY value ensures that the 
CatalogSource policy is ready, indicating that the index pod is pulled and is running.
This way, TALM upgrades the Operators based on up-to-date policy compliance
states.

b. This update generates one policy, du-upgrade-operator-catsrc-policy, to update the 
redhat-operators catalog source with the new index images that contain the desired
Operators images.

NOTE

If you want to use the image pre-caching for Operators and there are
Operators from a different catalog source other than redhat-operators, you
must perform the following tasks:

Prepare a separate catalog source policy with the new index image or
registry poll interval update for the different catalog source.

Prepare a separate subscription policy for the desired Operators that are
from the different catalog source.

For example, the desired SRIOV-FEC Operator is available in the certified-operators
catalog source. To update the catalog source and the Operator subscription, add the
following contents to generate two policies, du-upgrade-fec-catsrc-policy and du-
upgrade-subscriptions-fec-policy:

        updateStrategy: 2
          registryPoll:
            interval: 1h
      status:
        connectionState:
            lastObservedState: READY 3

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
  name: "du-upgrade"
  namespace: "ztp-group-du-sno"
spec:
  bindingRules:
    group-du-sno: ""
  mcp: "master"
  remediationAction: inform
  sourceFiles:

OpenShift Container Platform 4.15 Edge computing

226



c. Remove the specified subscriptions channels in the common PolicyGenTemplate CR, if
they exist. The default subscriptions channels from the GitOps ZTP image are used for the
update.

NOTE

The default channel for the Operators applied through GitOps ZTP 4.15 is 
stable, except for the performance-addon-operator. As of OpenShift
Container Platform 4.11, the performance-addon-operator functionality was
moved to the node-tuning-operator. For the 4.10 release, the default
channel for PAO is v4.10. You can also specify the default channels in the
common PolicyGenTemplate CR.

d. Push the PolicyGenTemplate CRs updates to the GitOps ZTP Git repository.
ArgoCD pulls the changes from the Git repository and generates the policies on the hub
cluster.

e. Check the created policies by running the following command:

2. Apply the required catalog source updates before starting the Operator update.

a. Save the content of the ClusterGroupUpgrade CR named operator-upgrade-prep with
the catalog source policies and the target managed clusters to the cgu-operator-upgrade-
prep.yml file:

       …
    - fileName: DefaultCatsrc.yaml
      remediationAction: inform
      policyName: "fec-catsrc-policy"
      metadata:
        name: certified-operators
      spec:
        displayName: Intel SRIOV-FEC Operator
        image: registry.example.com:5000/olm/far-edge-sriov-fec:v4.10
        updateStrategy:
          registryPoll:
            interval: 10m
    - fileName: AcceleratorsSubscription.yaml
      policyName: "subscriptions-fec-policy"
      spec:
        channel: "stable"
        source: certified-operators

$ oc get policies -A | grep -E "catsrc-policy|subscription"

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-operator-upgrade-prep
  namespace: default
spec:
  clusters:
  - spoke1
  enable: true
  managedPolicies:

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

227



1

2

b. Apply the policy to the hub cluster by running the following command:

c. Monitor the update process. Upon completion, ensure that the policy is compliant by
running the following command:

3. Create the ClusterGroupUpgrade CR for the Operator update with the spec.enable field set
to false.

a. Save the content of the Operator update ClusterGroupUpgrade CR with the du-upgrade-
operator-catsrc-policy policy and the subscription policies created from the common 
PolicyGenTemplate and the target clusters to the cgu-operator-upgrade.yml file, as
shown in the following example:

The policy is needed by the image pre-caching feature to retrieve the operator images
from the catalog source.

The policy contains Operator subscriptions. If you have followed the structure and
content of the reference PolicyGenTemplates, all Operator subscriptions are
grouped into the common-subscriptions-policy policy.

NOTE

One ClusterGroupUpgrade CR can only pre-cache the images of the
desired Operators defined in the subscription policy from one catalog source
included in the ClusterGroupUpgrade CR. If the desired Operators are from
different catalog sources, such as in the example of the SRIOV-FEC
Operator, another ClusterGroupUpgrade CR must be created with du-
upgrade-fec-catsrc-policy and du-upgrade-subscriptions-fec-policy
policies for the SRIOV-FEC Operator images pre-caching and update.

  - du-upgrade-operator-catsrc-policy
  remediationStrategy:
    maxConcurrency: 1

$ oc apply -f cgu-operator-upgrade-prep.yml

$ oc get policies -A | grep -E "catsrc-policy"

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-operator-upgrade
  namespace: default
spec:
  managedPolicies:
  - du-upgrade-operator-catsrc-policy 1
  - common-subscriptions-policy 2
  preCaching: false
  clusters:
  - spoke1
  remediationStrategy:
    maxConcurrency: 1
  enable: false

OpenShift Container Platform 4.15 Edge computing

228



b. Apply the ClusterGroupUpgrade CR to the hub cluster by running the following command:

4. Optional: Pre-cache the images for the Operator update.

a. Before starting image pre-caching, verify the subscription policy is NonCompliant at this
point by running the following command:

Example output

b. Enable pre-caching in the ClusterGroupUpgrade CR by running the following command:

c. Monitor the process and wait for the pre-caching to complete. Check the status of pre-
caching by running the following command on the managed cluster:

d. Check if the pre-caching is completed before starting the update by running the following
command:

Example output

5. Start the Operator update.

$ oc apply -f cgu-operator-upgrade.yml

$ oc get policy common-subscriptions-policy -n <policy_namespace>

NAME                          REMEDIATION ACTION   COMPLIANCE STATE     AGE
common-subscriptions-policy   inform               NonCompliant         27d

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-operator-
upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

$ oc get cgu cgu-operator-upgrade -o jsonpath='{.status.precaching.status}'

$ oc get cgu -n default cgu-operator-upgrade -ojsonpath='{.status.conditions}' | jq

[
    {
      "lastTransitionTime": "2022-03-08T20:49:08.000Z",
      "message": "The ClusterGroupUpgrade CR is not enabled",
      "reason": "UpgradeNotStarted",
      "status": "False",
      "type": "Ready"
    },
    {
      "lastTransitionTime": "2022-03-08T20:55:30.000Z",
      "message": "Precaching is completed",
      "reason": "PrecachingCompleted",
      "status": "True",
      "type": "PrecachingDone"
    }
]

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

229



a. Enable the cgu-operator-upgrade ClusterGroupUpgrade CR and disable pre-caching to
start the Operator update by running the following command:

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

Additional resources

For more information about updating GitOps ZTP, see Upgrading GitOps ZTP .

Troubleshooting missed Operator updates due to out-of-date policy compliance states .

12.1.3.1. Troubleshooting missed Operator updates due to out-of-date policy compliance
states

In some scenarios, Topology Aware Lifecycle Manager (TALM) might miss Operator updates due to an
out-of-date policy compliance state.

After a catalog source update, it takes time for the Operator Lifecycle Manager (OLM) to update the
subscription status. The status of the subscription policy might continue to show as compliant while
TALM decides whether remediation is needed. As a result, the Operator specified in the subscription
policy does not get upgraded.

To avoid this scenario, add another catalog source configuration to the PolicyGenTemplate and specify
this configuration in the subscription for any Operators that require an update.

Procedure

1. Add a catalog source configuration in the PolicyGenTemplate resource:

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-operator-
upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

$ oc get policies --all-namespaces

- fileName: DefaultCatsrc.yaml
      remediationAction: inform
      policyName: "operator-catsrc-policy"
      metadata:
        name: redhat-operators
      spec:
        displayName: Red Hat Operators Catalog
        image: registry.example.com:5000/olm/redhat-operators:v{product-version}
        updateStrategy:
          registryPoll:
            interval: 1h
      status:
        connectionState:
            lastObservedState: READY
- fileName: DefaultCatsrc.yaml
      remediationAction: inform
      policyName: "operator-catsrc-policy"
      metadata:

OpenShift Container Platform 4.15 Edge computing

230



1

2

3

1

Update the name for the new configuration.

Update the display name for the new configuration.

Update the index image URL. This fileName.spec.image field overrides any configuration
in the DefaultCatsrc.yaml file.

2. Update the Subscription resource to point to the new configuration for Operators that require
an update:

Enter the name of the additional catalog source configuration that you defined in the 
PolicyGenTemplate resource.

12.1.4. Performing a platform and an Operator update together

You can perform a platform and an Operator update at the same time.

Prerequisites

Install the Topology Aware Lifecycle Manager (TALM).

Update GitOps Zero Touch Provisioning (ZTP) to the latest version.

Provision one or more managed clusters with GitOps ZTP.

Log in as a user with cluster-admin privileges.

Create RHACM policies in the hub cluster.

Procedure

1. Create the PolicyGenTemplate CR for the updates by following the steps described in the

        name: redhat-operators-v2 1
      spec:
        displayName: Red Hat Operators Catalog v2 2
        image: registry.example.com:5000/olredhat-operators:<version> 3
        updateStrategy:
          registryPoll:
            interval: 1h
      status:
        connectionState:
            lastObservedState: READY

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
  name: operator-subscription
  namespace: operator-namspace
# ...
spec:
  source: redhat-operators-v2 1
# ...

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

231



1. Create the PolicyGenTemplate CR for the updates by following the steps described in the
"Performing a platform update" and "Performing an Operator update" sections.

2. Apply the prep work for the platform and the Operator update.

a. Save the content of the ClusterGroupUpgrade CR with the policies for platform update
preparation work, catalog source updates, and target clusters to the cgu-platform-
operator-upgrade-prep.yml file, for example:

b. Apply the cgu-platform-operator-upgrade-prep.yml file to the hub cluster by running the
following command:

c. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

3. Create the ClusterGroupUpdate CR for the platform and the Operator update with the 
spec.enable field set to false.

a. Save the contents of the platform and Operator update ClusterGroupUpdate CR with the
policies and the target clusters to the cgu-platform-operator-upgrade.yml file, as shown in
the following example:

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-platform-operator-upgrade-prep
  namespace: default
spec:
  managedPolicies:
  - du-upgrade-platform-upgrade-prep
  - du-upgrade-operator-catsrc-policy
  clusterSelector:
  - group-du-sno
  remediationStrategy:
    maxConcurrency: 10
  enable: true

$ oc apply -f cgu-platform-operator-upgrade-prep.yml

$ oc get policies --all-namespaces

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu-du-upgrade
  namespace: default
spec:
  managedPolicies:
  - du-upgrade-platform-upgrade 1
  - du-upgrade-operator-catsrc-policy 2
  - common-subscriptions-policy 3
  preCaching: true
  clusterSelector:
  - group-du-sno

OpenShift Container Platform 4.15 Edge computing

232



1

2

3

This is the platform update policy.

This is the policy containing the catalog source information for the Operators to be
updated. It is needed for the pre-caching feature to determine which Operator images
to download to the managed cluster.

This is the policy to update the Operators.

b. Apply the cgu-platform-operator-upgrade.yml file to the hub cluster by running the
following command:

4. Optional: Pre-cache the images for the platform and the Operator update.

a. Enable pre-caching in the ClusterGroupUpgrade CR by running the following command:

b. Monitor the update process and wait for the pre-caching to complete. Check the status of
pre-caching by running the following command on the managed cluster:

c. Check if the pre-caching is completed before starting the update by running the following
command:

5. Start the platform and Operator update.

a. Enable the cgu-du-upgrade ClusterGroupUpgrade CR to start the platform and the
Operator update by running the following command:

b. Monitor the process. Upon completion, ensure that the policy is compliant by running the
following command:

NOTE

  remediationStrategy:
    maxConcurrency: 1
  enable: false

$ oc apply -f cgu-platform-operator-upgrade.yml

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-du-upgrade \
--patch '{"spec":{"preCaching": true}}' --type=merge

$ oc get jobs,pods -n openshift-talm-pre-cache

$ oc get cgu cgu-du-upgrade -ojsonpath='{.status.conditions}'

$ oc --namespace=default patch clustergroupupgrade.ran.openshift.io/cgu-du-upgrade \
--patch '{"spec":{"enable":true, "preCaching": false}}' --type=merge

$ oc get policies --all-namespaces

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

233



NOTE

The CRs for the platform and Operator updates can be created from the
beginning by configuring the setting to spec.enable: true. In this case, the
update starts immediately after pre-caching completes and there is no need
to manually enable the CR.

Both pre-caching and the update create extra resources, such as policies,
placement bindings, placement rules, managed cluster actions, and managed
cluster view, to help complete the procedures. Setting the 
afterCompletion.deleteObjects field to true deletes all these resources
after the updates complete.

12.1.5. Removing Performance Addon Operator subscriptions from deployed clusters

In earlier versions of OpenShift Container Platform, the Performance Addon Operator provided
automatic, low latency performance tuning for applications. In OpenShift Container Platform 4.11 or
later, these functions are part of the Node Tuning Operator.

Do not install the Performance Addon Operator on clusters running OpenShift Container Platform 4.11
or later. If you upgrade to OpenShift Container Platform 4.11 or later, the Node Tuning Operator
automatically removes the Performance Addon Operator.

NOTE

You need to remove any policies that create Performance Addon Operator subscriptions
to prevent a re-installation of the Operator.

The reference DU profile includes the Performance Addon Operator in the PolicyGenTemplate CR 
common-ranGen.yaml. To remove the subscription from deployed managed clusters, you must update 
common-ranGen.yaml.

NOTE

If you install Performance Addon Operator 4.10.3-5 or later on OpenShift Container
Platform 4.11 or later, the Performance Addon Operator detects the cluster version and
automatically hibernates to avoid interfering with the Node Tuning Operator functions.
However, to ensure best performance, remove the Performance Addon Operator from
your OpenShift Container Platform 4.11 clusters.

Prerequisites

Create a Git repository where you manage your custom site configuration data. The repository
must be accessible from the hub cluster and be defined as a source repository for ArgoCD.

Update to OpenShift Container Platform 4.11 or later.

Log in as a user with cluster-admin privileges.

Procedure

1. Change the complianceType to mustnothave for the Performance Addon Operator
namespace, Operator group, and subscription in the common-ranGen.yaml file.

OpenShift Container Platform 4.15 Edge computing

234



2. Merge the changes with your custom site repository and wait for the ArgoCD application to
synchronize the change to the hub cluster. The status of the common-subscriptions-policy
policy changes to Non-Compliant.

3. Apply the change to your target clusters by using the Topology Aware Lifecycle Manager. For
more information about rolling out configuration changes, see the "Additional resources"
section.

4. Monitor the process. When the status of the common-subscriptions-policy policy for a target
cluster is Compliant, the Performance Addon Operator has been removed from the cluster. Get
the status of the common-subscriptions-policy by running the following command:

5. Delete the Performance Addon Operator namespace, Operator group and subscription CRs
from .spec.sourceFiles in the common-ranGen.yaml file.

6. Merge the changes with your custom site repository and wait for the ArgoCD application to
synchronize the change to the hub cluster. The policy remains compliant.

12.1.6. Pre-caching user-specified images with TALM on single-node OpenShift
clusters

You can pre-cache application-specific workload images on single-node OpenShift clusters before
upgrading your applications.

You can specify the configuration options for the pre-caching jobs using the following custom resources
(CR):

PreCachingConfig CR

ClusterGroupUpgrade CR

NOTE

All fields in the PreCachingConfig CR are optional.

Example PreCachingConfig CR

 -  fileName: PaoSubscriptionNS.yaml
    policyName: "subscriptions-policy"
    complianceType: mustnothave
 -  fileName: PaoSubscriptionOperGroup.yaml
    policyName: "subscriptions-policy"
    complianceType: mustnothave
 -  fileName: PaoSubscription.yaml
    policyName: "subscriptions-policy"
    complianceType: mustnothave

$ oc get policy -n ztp-common common-subscriptions-policy

apiVersion: ran.openshift.io/v1alpha1
kind: PreCachingConfig
metadata:
  name: exampleconfig
  namespace: exampleconfig-ns

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

235



1

2

3

4

1

2

3

By default, TALM automatically populates the platformImage, operatorsIndexes, and the 
operatorsPackagesAndChannels fields from the policies of the managed clusters. You can
specify values to override the default TALM-derived values for these fields.

Specifies the minimum required disk space on the cluster. If unspecified, TALM defines a default
value for OpenShift Container Platform images. The disk space field must include an integer value
and the storage unit. For example: 40 GiB, 200 MB, 1 TiB.

Specifies the images to exclude from pre-caching based on image name matching.

Specifies the list of additional images to pre-cache.

Example ClusterGroupUpgrade CR with PreCachingConfig CR reference

The preCaching field set to true enables the pre-caching job.

The preCachingConfigRef.name field specifies the PreCachingConfig CR that you want to use.

The preCachingConfigRef.namespace specifies the namespace of the PreCachingConfig CR
that you want to use.

spec:
  overrides: 1
    platformImage: quay.io/openshift-release-dev/ocp-
release@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d3808fc925ada29c559a47e2e1ef
    operatorsIndexes:
      - registry.example.com:5000/custom-redhat-operators:1.0.0
    operatorsPackagesAndChannels:
      - local-storage-operator: stable
      - ptp-operator: stable
      - sriov-network-operator: stable
  spaceRequired: 30 Gi 2
  excludePrecachePatterns: 3
    - aws
    - vsphere
  additionalImages: 4
    - 
quay.io/exampleconfig/application1@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d3808fc925
ada29c559a47e2e1ef
    - 
quay.io/exampleconfig/application2@sha256:3d5800123dee7cd4727d3fe238a97e2d2976d3808fc925
ada29c559a47adfaef
    - 
quay.io/exampleconfig/applicationN@sha256:4fe1334adfafadsf987123adfffdaf1243340adfafdedga099
1234afdadfsa09

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu
spec:
  preCaching: true 1
  preCachingConfigRef:
    name: exampleconfig 2
    namespace: exampleconfig-ns 3

OpenShift Container Platform 4.15 Edge computing

236



1

2

that you want to use.

12.1.6.1. Creating the custom resources for pre-caching

You must create the PreCachingConfig CR before or concurrently with the ClusterGroupUpgrade
CR.

1. Create the PreCachingConfig CR with the list of additional images you want to pre-cache.

The namespace must be accessible to the hub cluster.

It is recommended to set the minimum disk space required field to ensure that there is
sufficient storage space for the pre-cached images.

2. Create a ClusterGroupUpgrade CR with the preCaching field set to true and specify the 
PreCachingConfig CR created in the previous step:

apiVersion: ran.openshift.io/v1alpha1
kind: PreCachingConfig
metadata:
  name: exampleconfig
  namespace: default 1
spec:
[...]
  spaceRequired: 30Gi 2
  additionalImages:
    - 
quay.io/exampleconfig/application1@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d38
08fc925ada29c559a47e2e1ef
    - 
quay.io/exampleconfig/application2@sha256:3d5800123dee7cd4727d3fe238a97e2d2976d38
08fc925ada29c559a47adfaef
    - 
quay.io/exampleconfig/applicationN@sha256:4fe1334adfafadsf987123adfffdaf1243340adfafd
edga0991234afdadfsa09

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: cgu
  namespace: default
spec:
  clusters:
  - sno1
  - sno2
  preCaching: true
  preCachingConfigRef:
  - name: exampleconfig
    namespace: default
  managedPolicies:
    - du-upgrade-platform-upgrade
    - du-upgrade-operator-catsrc-policy

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

237



WARNING

Once you install the images on the cluster, you cannot change or delete
them.

3. When you want to start pre-caching the images, apply the ClusterGroupUpgrade CR by
running the following command:

TALM verifies the ClusterGroupUpgrade CR.

From this point, you can continue with the TALM pre-caching workflow.

NOTE

All sites are pre-cached concurrently.

Verification

1. Check the pre-caching status on the hub cluster where the ClusterUpgradeGroup CR is
applied by running the following command:

Example output

    - common-subscriptions-policy
  remediationStrategy:
    timeout: 240



$ oc apply -f cgu.yaml

$ oc get cgu <cgu_name> -n <cgu_namespace> -oyaml

  precaching:
    spec:
      platformImage: quay.io/openshift-release-dev/ocp-
release@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d3808fc925ada29c559a47e2e1
ef
      operatorsIndexes:
        - registry.example.com:5000/custom-redhat-operators:1.0.0
      operatorsPackagesAndChannels:
        - local-storage-operator: stable
        - ptp-operator: stable
        - sriov-network-operator: stable
      excludePrecachePatterns:
        - aws
        - vsphere
      additionalImages:
        - 
quay.io/exampleconfig/application1@sha256:3d5800990dee7cd4727d3fe238a97e2d2976d38
08fc925ada29c559a47e2e1ef

OpenShift Container Platform 4.15 Edge computing

238



The pre-caching configurations are validated by checking if the managed policies exist. Valid
configurations of the ClusterGroupUpgrade and the PreCachingConfig CRs result in the
following statuses:

Example output of valid CRs

Example of an invalid PreCachingConfig CR

2. You can find the pre-caching job by running the following command on the managed cluster:

Example of pre-caching job in progress

        - 
quay.io/exampleconfig/application2@sha256:3d5800123dee7cd4727d3fe238a97e2d2976d38
08fc925ada29c559a47adfaef
        - 
quay.io/exampleconfig/applicationN@sha256:4fe1334adfafadsf987123adfffdaf1243340adfafd
edga0991234afdadfsa09
      spaceRequired: "30"
    status:
      sno1: Starting
      sno2: Starting

- lastTransitionTime: "2023-01-01T00:00:01Z"
  message: All selected clusters are valid
  reason: ClusterSelectionCompleted
  status: "True"
  type: ClusterSelected
- lastTransitionTime: "2023-01-01T00:00:02Z"
  message: Completed validation
  reason: ValidationCompleted
  status: "True"
  type: Validated
- lastTransitionTime: "2023-01-01T00:00:03Z"
  message: Precaching spec is valid and consistent
  reason: PrecacheSpecIsWellFormed
  status: "True"
  type: PrecacheSpecValid
- lastTransitionTime: "2023-01-01T00:00:04Z"
  message: Precaching in progress for 1 clusters
  reason: InProgress
  status: "False"
  type: PrecachingSucceeded

Type:    "PrecacheSpecValid"
Status:  False,
Reason:  "PrecacheSpecIncomplete"
Message: "Precaching spec is incomplete: failed to get PreCachingConfig resource due to 
PreCachingConfig.ran.openshift.io "<pre-caching_cr_name>" not found"

$ oc get jobs -n openshift-talo-pre-cache

NAME        COMPLETIONS       DURATION      AGE
pre-cache   0/1               1s            1s

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

239



3. You can check the status of the pod created for the pre-caching job by running the following
command:

Example of pre-caching job in progress

4. You can get live updates on the status of the job by running the following command:

5. To verify the pre-cache job is successfully completed, run the following command:

Example of completed pre-cache job

6. To verify that the images are successfully pre-cached on the single-node OpenShift, do the
following:

a. Enter into the node in debug mode:

b. Change root to host:

c. Search for the desired images:

Additional resources

For more information about the TALM precaching workflow, see Using the container image
precache feature.

12.2. ABOUT THE AUTO-CREATED CLUSTERGROUPUPGRADE CR FOR
GITOPS ZTP

TALM has a controller called ManagedClusterForCGU that monitors the Ready state of the 
ManagedCluster CRs on the hub cluster and creates the ClusterGroupUpgrade CRs for GitOps Zero
Touch Provisioning (ZTP).

For any managed cluster in the Ready state without a ztp-done label applied, the 

$ oc describe pod pre-cache -n openshift-talo-pre-cache

Type        Reason              Age    From              Message
Normal      SuccesfulCreate     19s    job-controller    Created pod: pre-cache-abcd1

$ oc logs -f pre-cache-abcd1 -n openshift-talo-pre-cache

$ oc describe pod pre-cache -n openshift-talo-pre-cache

Type        Reason              Age    From              Message
Normal      SuccesfulCreate     5m19s  job-controller    Created pod: pre-cache-abcd1
Normal      Completed           19s    job-controller    Job completed

$ oc debug node/cnfdf00.example.lab

$ chroot /host/

$ sudo podman images | grep <operator_name>

OpenShift Container Platform 4.15 Edge computing

240



1

For any managed cluster in the Ready state without a ztp-done label applied, the 
ManagedClusterForCGU controller automatically creates a ClusterGroupUpgrade CR in the ztp-
install namespace with its associated RHACM policies that are created during the GitOps ZTP process.
TALM then remediates the set of configuration policies that are listed in the auto-created 
ClusterGroupUpgrade CR to push the configuration CRs to the managed cluster.

If there are no policies for the managed cluster at the time when the cluster becomes Ready, a 
ClusterGroupUpgrade CR with no policies is created. Upon completion of the ClusterGroupUpgrade
the managed cluster is labeled as ztp-done. If there are policies that you want to apply for that managed
cluster, manually create a ClusterGroupUpgrade as a day-2 operation.

Example of an auto-created ClusterGroupUpgrade CR for GitOps ZTP

Applied to the managed cluster when TALM completes the cluster configuration.

apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  generation: 1
  name: spoke1
  namespace: ztp-install
  ownerReferences:
  - apiVersion: cluster.open-cluster-management.io/v1
    blockOwnerDeletion: true
    controller: true
    kind: ManagedCluster
    name: spoke1
    uid: 98fdb9b2-51ee-4ee7-8f57-a84f7f35b9d5
  resourceVersion: "46666836"
  uid: b8be9cd2-764f-4a62-87d6-6b767852c7da
spec:
  actions:
    afterCompletion:
      addClusterLabels:
        ztp-done: "" 1
      deleteClusterLabels:
        ztp-running: ""
      deleteObjects: true
    beforeEnable:
      addClusterLabels:
        ztp-running: "" 2
  clusters:
  - spoke1
  enable: true
  managedPolicies:
  - common-spoke1-config-policy
  - common-spoke1-subscriptions-policy
  - group-spoke1-config-policy
  - spoke1-config-policy
  - group-spoke1-validator-du-policy
  preCaching: false
  remediationStrategy:
    maxConcurrency: 1
    timeout: 240

CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER

241



2 Applied to the managed cluster when TALM starts deploying the configuration policies.

OpenShift Container Platform 4.15 Edge computing

242



CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT
CLUSTERS WITH GITOPS ZTP

You can expand single-node OpenShift clusters with GitOps Zero Touch Provisioning (ZTP). When you
add worker nodes to single-node OpenShift clusters, the original single-node OpenShift cluster retains
the control plane node role. Adding worker nodes does not require any downtime for the existing single-
node OpenShift cluster.

NOTE

Although there is no specified limit on the number of worker nodes that you can add to a
single-node OpenShift cluster, you must revaluate the reserved CPU allocation on the
control plane node for the additional worker nodes.

If you require workload partitioning on the worker node, you must deploy and remediate the managed
cluster policies on the hub cluster before installing the node. This way, the workload partitioning 
MachineConfig objects are rendered and associated with the worker machine config pool before the
GitOps ZTP workflow applies the MachineConfig ignition file to the worker node.

It is recommended that you first remediate the policies, and then install the worker node. If you create
the workload partitioning manifests after installing the worker node, you must drain the node manually
and delete all the pods managed by daemon sets. When the managing daemon sets create the new
pods, the new pods undergo the workload partitioning process.

IMPORTANT

Adding worker nodes to single-node OpenShift clusters with GitOps ZTP is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Additional resources

For more information about single-node OpenShift clusters tuned for vDU application
deployments, see Reference configuration for deploying vDUs on single-node OpenShift .

For more information about worker nodes, see Adding worker nodes to single-node OpenShift
clusters.

For information about removing a worker node from an expanded single-node OpenShift
cluster, see Removing managed cluster nodes by using the command line interface .

13.1. APPLYING PROFILES TO THE WORKER NODE

You can configure the additional worker node with a DU profile.

You can apply a RAN distributed unit (DU) profile to the worker node cluster using the GitOps Zero
Touch Provisioning (ZTP) common, group, and site-specific PolicyGenTemplate resources. The
GitOps ZTP pipeline that is linked to the ArgoCD policies application includes the following CRs that

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP

243

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/nodes/#nodes-sno-worker-nodes
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.10/html/clusters/cluster_mce_overview#auto-remove-host-steps-cli


1

1

you can find in the out/argocd/example/policygentemplates folder when you extract the ztp-site-
generate container:

common-ranGen.yaml

group-du-sno-ranGen.yaml

example-sno-site.yaml

ns.yaml

kustomization.yaml

Configuring the DU profile on the worker node is considered an upgrade. To initiate the upgrade flow,
you must update the existing policies or create additional ones. Then, you must create a 
ClusterGroupUpgrade CR to reconcile the policies in the group of clusters.

13.2. (OPTIONAL) ENSURING PTP AND SR-IOV DAEMON SELECTOR
COMPATIBILITY

If the DU profile was deployed using the GitOps Zero Touch Provisioning (ZTP) plugin version 4.11 or
earlier, the PTP and SR-IOV Operators might be configured to place the daemons only on nodes
labelled as master. This configuration prevents the PTP and SR-IOV daemons from operating on the
worker node. If the PTP and SR-IOV daemon node selectors are incorrectly configured on your system,
you must change the daemons before proceeding with the worker DU profile configuration.

Procedure

1. Check the daemon node selector settings of the PTP Operator on one of the spoke clusters:

Example output for PTP Operator

If the node selector is set to master, the spoke was deployed with the version of the
GitOps ZTP plugin that requires changes.

2. Check the daemon node selector settings of the SR-IOV Operator on one of the spoke clusters:

Example output for SR-IOV Operator

If the node selector is set to master, the spoke was deployed with the version of the
GitOps ZTP plugin that requires changes.

$ oc get ptpoperatorconfig/default -n openshift-ptp -ojsonpath='{.spec}' | jq

{"daemonNodeSelector":{"node-role.kubernetes.io/master":""}} 1

$  oc get sriovoperatorconfig/default -n \
openshift-sriov-network-operator -ojsonpath='{.spec}' | jq

{"configDaemonNodeSelector":{"node-
role.kubernetes.io/worker":""},"disableDrain":false,"enableInjector":true,"enableOperatorWebh
ook":true} 1

OpenShift Container Platform 4.15 Edge computing

244



3. In the group policy, add the following complianceType and spec entries:

IMPORTANT

Changing the daemonNodeSelector field causes temporary PTP
synchronization loss and SR-IOV connectivity loss.

4. Commit the changes in Git, and then push to the Git repository being monitored by the GitOps
ZTP ArgoCD application.

13.3. PTP AND SR-IOV NODE SELECTOR COMPATIBILITY

The PTP configuration resources and SR-IOV network node policies use node-
role.kubernetes.io/master: "" as the node selector. If the additional worker nodes have the same NIC
configuration as the control plane node, the policies used to configure the control plane node can be
reused for the worker nodes. However, the node selector must be changed to select both node types,
for example with the "node-role.kubernetes.io/worker" label.

13.4. USING POLICYGENTEMPLATE CRS TO APPLY WORKER NODE
POLICIES TO WORKER NODES

You can create policies for worker nodes.

Procedure

1. Create the following policy template:

spec:
    - fileName: PtpOperatorConfig.yaml
      policyName: "config-policy"
      complianceType: mustonlyhave
      spec:
        daemonNodeSelector:
          node-role.kubernetes.io/worker: ""
    - fileName: SriovOperatorConfig.yaml
      policyName: "config-policy"
      complianceType: mustonlyhave
      spec:
        configDaemonNodeSelector:
          node-role.kubernetes.io/worker: ""

apiVersion: ran.openshift.io/v1
kind: PolicyGenTemplate
metadata:
  name: "example-sno-workers"
  namespace: "example-sno"
spec:
  bindingRules:
    sites: "example-sno" 1
  mcp: "worker" 2
  sourceFiles:
    - fileName: MachineConfigGeneric.yaml 3
      policyName: "config-policy"

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP

245



      metadata:
        labels:
          machineconfiguration.openshift.io/role: worker
        name: enable-workload-partitioning
      spec:
        config:
          storage:
            files:
            - contents:
                source: data:text/plain;charset=utf-
8;base64,W2NyaW8ucnVudGltZS53b3JrbG9hZHMubWFuYWdlbWVudF0KYWN0aXZhdGlvbl
9hbm5vdGF0aW9uID0gInRhcmdldC53b3JrbG9hZC5vcGVuc2hpZnQuaW8vbWFuYWdlbWVu
dCIKYW5ub3RhdGlvbl9wcmVmaXggPSAicmVzb3VyY2VzLndvcmtsb2FkLm9wZW5zaGlmdC5
pbyIKcmVzb3VyY2VzID0geyAiY3B1c2hhcmVzIiA9IDAsICJjcHVzZXQiID0gIjAtMyIgfQo=
              mode: 420
              overwrite: true
              path: /etc/crio/crio.conf.d/01-workload-partitioning
              user:
                name: root
            - contents:
                source: data:text/plain;charset=utf-
8;base64,ewogICJtYW5hZ2VtZW50IjogewogICAgImNwdXNldCI6ICIwLTMiCiAgfQp9Cg==
              mode: 420
              overwrite: true
              path: /etc/kubernetes/openshift-workload-pinning
              user:
                name: root
    - fileName: PerformanceProfile.yaml
      policyName: "config-policy"
      metadata:
        name: openshift-worker-node-performance-profile
      spec:
        cpu: 4
          isolated: "4-47"
          reserved: "0-3"
        hugepages:
          defaultHugepagesSize: 1G
          pages:
            - size: 1G
              count: 32
        realTimeKernel:
          enabled: true
    - fileName: TunedPerformancePatch.yaml
      policyName: "config-policy"
      metadata:
        name: performance-patch-worker
      spec:
        profile:
          - name: performance-patch-worker
            data: |
              [main]
              summary=Configuration changes profile inherited from performance created tuned
              include=openshift-node-performance-openshift-worker-node-performance-profile
              [bootloader]
              cmdline_crash=nohz_full=4-47 5
              [sysctl]

OpenShift Container Platform 4.15 Edge computing

246



1

2

3

4

5

The policies are applied to all clusters with this label.

The MCP field must be set to worker.

This generic MachineConfig CR is used to configure workload partitioning on the worker
node.

The cpu.isolated and cpu.reserved fields must be configured for each particular
hardware platform.

The cmdline_crash CPU set must match the cpu.isolated set in the PerformanceProfile
section.

A generic MachineConfig CR is used to configure workload partitioning on the worker node.
You can generate the content of crio and kubelet configuration files.

2. Add the created policy template to the Git repository monitored by the ArgoCD policies
application.

3. Add the policy in the kustomization.yaml file.

4. Commit the changes in Git, and then push to the Git repository being monitored by the GitOps
ZTP ArgoCD application.

5. To remediate the new policies to your spoke cluster, create a TALM custom resource:

              kernel.timer_migration=1
              [scheduler]
              group.ice-ptp=0:f:10:*:ice-ptp.*
              [service]
              service.stalld=start,enable
              service.chronyd=stop,disable
        recommend:
        - profile: performance-patch-worker

$ cat <<EOF | oc apply -f -
apiVersion: ran.openshift.io/v1alpha1
kind: ClusterGroupUpgrade
metadata:
  name: example-sno-worker-policies
  namespace: default
spec:
  backup: false
  clusters:
  - example-sno
  enable: true
  managedPolicies:
  - group-du-sno-config-policy
  - example-sno-workers-config-policy
  - example-sno-config-policy
  preCaching: false
  remediationStrategy:
    maxConcurrency: 1
EOF

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP

247



13.5. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT
CLUSTERS WITH GITOPS ZTP

You can add one or more worker nodes to existing single-node OpenShift clusters to increase available
CPU resources in the cluster.

Prerequisites

Install and configure RHACM 2.6 or later in an OpenShift Container Platform 4.11 or later bare-
metal hub cluster

Install Topology Aware Lifecycle Manager in the hub cluster

Install Red Hat OpenShift GitOps in the hub cluster

Use the GitOps ZTP ztp-site-generate container image version 4.12 or later

Deploy a managed single-node OpenShift cluster with GitOps ZTP

Configure the Central Infrastructure Management as described in the RHACM documentation

Configure the DNS serving the cluster to resolve the internal API endpoint api-int.
<cluster_name>.<base_domain>

Procedure

1. If you deployed your cluster by using the example-sno.yaml SiteConfig manifest, add your new
worker node to the spec.clusters['example-sno'].nodes list:

nodes:
- hostName: "example-node2.example.com"
  role: "worker"
  bmcAddress: "idrac-
virtualmedia+https://[1111:2222:3333:4444::bbbb:1]/redfish/v1/Systems/System.Embedded.1"

  bmcCredentialsName:
    name: "example-node2-bmh-secret"
  bootMACAddress: "AA:BB:CC:DD:EE:11"
  bootMode: "UEFI"
  nodeNetwork:
    interfaces:
      - name: eno1
        macAddress: "AA:BB:CC:DD:EE:11"
    config:
      interfaces:
        - name: eno1
          type: ethernet
          state: up
          macAddress: "AA:BB:CC:DD:EE:11"
          ipv4:
            enabled: false
          ipv6:
            enabled: true
            address:
            - ip: 1111:2222:3333:4444::1

OpenShift Container Platform 4.15 Edge computing

248



2. Create a BMC authentication secret for the new host, as referenced by the 
bmcCredentialsName field in the spec.nodes section of your SiteConfig file:

3. Commit the changes in Git, and then push to the Git repository that is being monitored by the
GitOps ZTP ArgoCD application.
When the ArgoCD cluster application synchronizes, two new manifests appear on the hub
cluster generated by the GitOps ZTP plugin:

BareMetalHost

NMStateConfig

IMPORTANT

The cpuset field should not be configured for the worker node. Workload
partitioning for worker nodes is added through management policies after
the node installation is complete.

Verification

You can monitor the installation process in several ways.

Check if the preprovisioning images are created by running the following command:

Example output

              prefix-length: 64
      dns-resolver:
        config:
          search:
          - example.com
          server:
          - 1111:2222:3333:4444::2
      routes:
        config:
        - destination: ::/0
          next-hop-interface: eno1
          next-hop-address: 1111:2222:3333:4444::1
          table-id: 254

apiVersion: v1
data:
  password: "password"
  username: "username"
kind: Secret
metadata:
  name: "example-node2-bmh-secret"
  namespace: example-sno
type: Opaque

$ oc get ppimg -n example-sno

CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP

249



1

Check the state of the bare-metal hosts:

Example output

The provisioning state indicates that node booting from the installation media is in
progress.

Continuously monitor the installation process:

a. Watch the agent install process by running the following command:

Example output

b. When the worker node installation is finished, the worker node certificates are approved
automatically. At this point, the worker appears in the ManagedClusterInfo status. Run the
following command to see the status:

Example output

NAMESPACE       NAME            READY   REASON
example-sno     example-sno     True    ImageCreated
example-sno     example-node2   True    ImageCreated

$ oc get bmh -n example-sno

NAME            STATE          CONSUMER   ONLINE   ERROR   AGE
example-sno     provisioned               true             69m
example-node2   provisioning              true             4m50s 1

$ oc get agent -n example-sno --watch

NAME                                   CLUSTER   APPROVED   ROLE     STAGE
671bc05d-5358-8940-ec12-d9ad22804faa   example-sno   true       master   Done
[...]
14fd821b-a35d-9cba-7978-00ddf535ff37   example-sno   true       worker   Starting 
installation
14fd821b-a35d-9cba-7978-00ddf535ff37   example-sno   true       worker   Installing
14fd821b-a35d-9cba-7978-00ddf535ff37   example-sno   true       worker   Writing image 
to disk
[...]
14fd821b-a35d-9cba-7978-00ddf535ff37   example-sno   true       worker   Waiting for 
control plane
[...]
14fd821b-a35d-9cba-7978-00ddf535ff37   example-sno   true       worker   Rebooting
14fd821b-a35d-9cba-7978-00ddf535ff37   example-sno   true       worker   Done

$ oc get managedclusterinfo/example-sno -n example-sno -o \
jsonpath='{range .status.nodeList[*]}{.name}{"\t"}{.conditions}{"\t"}{.labels}{"\n"}{end}'

example-sno [{"status":"True","type":"Ready"}] {"node-
role.kubernetes.io/master":"","node-role.kubernetes.io/worker":""}
example-node2 [{"status":"True","type":"Ready"}] {"node-role.kubernetes.io/worker":""}

OpenShift Container Platform 4.15 Edge computing

250



CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE
OPENSHIFT DEPLOYMENTS

In environments with limited bandwidth where you use the GitOps Zero Touch Provisioning (ZTP)
solution to deploy a large number of clusters, you want to avoid downloading all the images that are
required for bootstrapping and installing OpenShift Container Platform. The limited bandwidth at
remote single-node OpenShift sites can cause long deployment times. The factory-precaching-cli tool
allows you to pre-stage servers before shipping them to the remote site for ZTP provisioning.

The factory-precaching-cli tool does the following:

Downloads the RHCOS rootfs image that is required by the minimal ISO to boot.

Creates a partition from the installation disk labelled as data.

Formats the disk in xfs.

Creates a GUID Partition Table (GPT) data partition at the end of the disk, where the size of the
partition is configurable by the tool.

Copies the container images required to install OpenShift Container Platform.

Copies the container images required by ZTP to install OpenShift Container Platform.

Optional: Copies Day-2 Operators to the partition.

IMPORTANT

The factory-precaching-cli tool is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

14.1. GETTING THE FACTORY-PRECACHING-CLI TOOL

The factory-precaching-cli tool Go binary is publicly available in the {rds-first} tools container image.
The factory-precaching-cli tool Go binary in the container image is executed on the server running an
RHCOS live image using podman. If you are working in a disconnected environment or have a private
registry, you need to copy the image there so you can download the image to the server.

Procedure

Pull the factory-precaching-cli tool image by running the following command:

Verification

To check that the tool is available, query the current version of the factory-precaching-cli tool
Go binary:

# podman pull quay.io/openshift-kni/telco-ran-tools:latest

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

251

https://access.redhat.com/support/offerings/techpreview/
https://quay.io/openshift-kni/telco-ran-tools:latest


Example output

14.2. BOOTING FROM A LIVE OPERATING SYSTEM IMAGE

You can use the factory-precaching-cli tool with to boot servers where only one disk is available and
external disk drive cannot be attached to the server.

WARNING

RHCOS requires the disk to not be in use when the disk is about to be written with
an RHCOS image.

Depending on the server hardware, you can mount the RHCOS live ISO on the blank server using one of
the following methods:

Using the Dell RACADM tool on a Dell server.

Using the HPONCFG tool on a HP server.

Using the Redfish BMC API.

NOTE

It is recommended to automate the mounting procedure. To automate the procedure,
you need to pull the required images and host them on a local HTTP server.

Prerequisites

You powered up the host.

You have network connectivity to the host.

PROCEDURE

This example procedure uses the Redfish BMC API to mount the RHCOS live ISO.

1. Mount the RHCOS live ISO:

a. Check virtual media status:

# podman run quay.io/openshift-kni/telco-ran-tools:latest -- factory-precaching-cli -v

factory-precaching-cli version 20221018.120852+main.feecf17



$ curl --globoff -H "Content-Type: application/json" -H \
"Accept: application/json" -k -X GET --user ${username_password} \
https://$BMC_ADDRESS/redfish/v1/Managers/Self/VirtualMedia/1 | python -m json.tool

OpenShift Container Platform 4.15 Edge computing

252



b. Mount the ISO file as a virtual media:

c. Set the boot order to boot from the virtual media once:

2. Reboot and ensure that the server is booting from virtual media.

Additional resources

For more information about the butane utility, see About Butane.

For more information about creating a custom live RHCOS ISO, see Creating a custom live
RHCOS ISO for remote server access.

For more information about using the Dell RACADM tool, see Integrated Dell Remote Access
Controller 9 RACADM CLI Guide.

For more information about using the HP HPONCFG tool, see Using HPONCFG.

For more information about using the Redfish BMC API, see Booting from an HTTP-hosted ISO
image using the Redfish API.

14.3. PARTITIONING THE DISK

To run the full pre-caching process, you have to boot from a live ISO and use the factory-precaching-cli
tool from a container image to partition and pre-cache all the artifacts required.

A live ISO or RHCOS live ISO is required because the disk must not be in use when the operating system
(RHCOS) is written to the device during the provisioning. Single-disk servers can also be enabled with
this procedure.

Prerequisites

You have a disk that is not partitioned.

You have access to the quay.io/openshift-kni/telco-ran-tools:latest image.

You have enough storage to install OpenShift Container Platform and pre-cache the required
images.

Procedure

1. Verify that the disk is cleared:

$ curl --globoff -L -w "%{http_code} %{url_effective}\\n" -ku ${username_password} -H 
"Content-Type: application/json" -H "Accept: application/json" -d '{"Image": 
"http://[$HTTPd_IP]/RHCOS-live.iso"}' -X POST 
https://$BMC_ADDRESS/redfish/v1/Managers/Self/VirtualMedia/1/Actions/VirtualMedia.Ins
ertMedia

$ curl --globoff  -L -w "%{http_code} %{url_effective}\\n"  -ku ${username_password}  -H 
"Content-Type: application/json" -H "Accept: application/json" -d '{"Boot":{ 
"BootSourceOverrideEnabled": "Once", "BootSourceOverrideTarget": "Cd", 
"BootSourceOverrideMode": "UEFI"}}' -X PATCH 
https://$BMC_ADDRESS/redfish/v1/Systems/Self

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

253

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#installation-special-config-butane-about_installing-customizing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#create-custom-live-rhcos-iso_install-sno-installing-sno-with-the-assisted-installer
https://www.dell.com/support/manuals/en-ie/poweredge-r440/idrac9_6.xx_racadm_pub/supported-racadm-interfaces?guid=guid-a5747353-fc88-4438-b617-c50ca260448e&lang=en-us
https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-a00007610en_us
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.15/html-single/installing/#install-booting-from-an-iso-over-http-redfish_install-sno-installing-sno-with-the-assisted-installer


Example output

2. Erase any file system, RAID or partition table signatures from the device:

Example output

IMPORTANT

The tool fails if the disk is not empty because it uses partition number 1 of the device for
pre-caching the artifacts.

14.3.1. Creating the partition

Once the device is ready, you create a single partition and a GPT partition table. The partition is
automatically labelled as data and created at the end of the device. Otherwise, the partition will be
overridden by the coreos-installer.

IMPORTANT

The coreos-installer requires the partition to be created at the end of the device and to
be labelled as data. Both requirements are necessary to save the partition when writing
the RHCOS image to the disk.

Prerequisites

The container must run as privileged due to formatting host devices.

You have to mount the /dev folder so that the process can be executed inside the container.

Procedure

In the following example, the size of the partition is 250 GiB due to allow pre-caching the DU profile for
Day 2 Operators.

1. Run the container as privileged and partition the disk:

# lsblk

NAME    MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
loop0     7:0    0  93.8G  0 loop /run/ephemeral
loop1     7:1    0 897.3M  1 loop /sysroot
sr0      11:0    1   999M  0 rom  /run/media/iso
nvme0n1 259:1    0   1.5T  0 disk

# wipefs -a /dev/nvme0n1

/dev/nvme0n1: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54
/dev/nvme0n1: 8 bytes were erased at offset 0x1749a955e00 (gpt): 45 46 49 20 50 41 52 54
/dev/nvme0n1: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa

# podman run -v /dev:/dev --privileged \
--rm quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli partition \ 1

OpenShift Container Platform 4.15 Edge computing

254



1

2

3

Specifies the partitioning function of the factory-precaching-cli tool.

Defines the root directory on the disk.

Defines the size of the disk in GB.

2. Check the storage information:

Example output

Verification

You must verify that the following requirements are met:

The device has a GPT partition table

The partition uses the latest sectors of the device.

The partition is correctly labeled as data.

Query the disk status to verify that the disk is partitioned as expected:

Example output

-d /dev/nvme0n1 \ 2
-s 250 3

# lsblk

NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
loop0         7:0    0  93.8G  0 loop /run/ephemeral
loop1         7:1    0 897.3M  1 loop /sysroot
sr0          11:0    1   999M  0 rom  /run/media/iso
nvme0n1     259:1    0   1.5T  0 disk
└─nvme0n1p1 259:3    0   250G  0 part

# gdisk -l /dev/nvme0n1

GPT fdisk (gdisk) version 1.0.3

Partition table scan:
  MBR: protective
  BSD: not present
  APM: not present
  GPT: present

Found valid GPT with protective MBR; using GPT.
Disk /dev/nvme0n1: 3125627568 sectors, 1.5 TiB
Model: Dell Express Flash PM1725b 1.6TB SFF
Sector size (logical/physical): 512/512 bytes
Disk identifier (GUID): CB5A9D44-9B3C-4174-A5C1-C64957910B61
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 3125627534

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

255



1

14.3.2. Mounting the partition

After verifying that the disk is partitioned correctly, you can mount the device into /mnt.

IMPORTANT

It is recommended to mount the device into /mnt because that mounting point is used
during GitOps ZTP preparation.

1. Verify that the partition is formatted as xfs:

Example output

2. Mount the partition:

Verification

Check that the partition is mounted:

Example output

The mount point is /var/mnt because the /mnt folder in RHCOS is a link to /var/mnt.

14.4. DOWNLOADING THE IMAGES

The factory-precaching-cli tool allows you to download the following images to your partitioned server:

Partitions will be aligned on 2048-sector boundaries
Total free space is 2601338846 sectors (1.2 TiB)

Number  Start (sector)    End (sector)  Size       Code  Name
   1      2601338880      3125627534   250.0 GiB   8300  data

# lsblk -f /dev/nvme0n1

NAME        FSTYPE LABEL UUID                                 MOUNTPOINT
nvme0n1
└─nvme0n1p1 xfs          1bee8ea4-d6cf-4339-b690-a76594794071

# mount /dev/nvme0n1p1 /mnt/

# lsblk

NAME        MAJ:MIN RM   SIZE RO TYPE MOUNTPOINT
loop0         7:0    0  93.8G  0 loop /run/ephemeral
loop1         7:1    0 897.3M  1 loop /sysroot
sr0          11:0    1   999M  0 rom  /run/media/iso
nvme0n1     259:1    0   1.5T  0 disk
└─nvme0n1p1 259:2    0   250G  0 part /var/mnt 1

OpenShift Container Platform 4.15 Edge computing

256



OpenShift Container Platform images

Operator images that are included in the distributed unit (DU) profile for 5G RAN sites

Operator images from disconnected registries

NOTE

The list of available Operator images can vary in different OpenShift Container Platform
releases.

14.4.1. Downloading with parallel workers

The factory-precaching-cli tool uses parallel workers to download multiple images simultaneously. You
can configure the number of workers with the --parallel or -p option. The default number is set to 80%
of the available CPUs to the server.

NOTE

Your login shell may be restricted to a subset of CPUs, which reduces the CPUs available
to the container. To remove this restriction, you can precede your commands with 
taskset 0xffffffff, for example:

14.4.2. Preparing to download the OpenShift Container Platform images

To download OpenShift Container Platform container images, you need to know the multicluster engine
version. When you use the --du-profile flag, you also need to specify the Red Hat Advanced Cluster
Management (RHACM) version running in the hub cluster that is going to provision the single-node
OpenShift.

Prerequisites

You have RHACM and the multicluster engine Operator installed.

You partitioned the storage device.

You have enough space for the images on the partitioned device.

You connected the bare-metal server to the Internet.

You have a valid pull secret.

Procedure

1. Check the RHACM version and the multicluster engine version by running the following
commands in the hub cluster:

Example output

# taskset 0xffffffff podman run --rm quay.io/openshift-kni/telco-ran-tools:latest factory-
precaching-cli download --help

$ oc get csv -A | grep -i advanced-cluster-management

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

257



1

Example output

2. To access the container registry, copy a valid pull secret on the server to be installed:

a. Create the .docker folder:

b. Copy the valid pull in the config.json file to the previously created .docker/ folder:

/root/.docker/config.json is the default path where podman checks for the login
credentials for the registry.

NOTE

If you use a different registry to pull the required artifacts, you need to copy the proper
pull secret. If the local registry uses TLS, you need to include the certificates from the
registry as well.

14.4.3. Downloading the OpenShift Container Platform images

The factory-precaching-cli tool allows you to pre-cache all the container images required to provision a
specific OpenShift Container Platform release.

Procedure

Pre-cache the release by running the following command:

open-cluster-management                            advanced-cluster-management.v2.6.3           
Advanced Cluster Management for Kubernetes   2.6.3                 advanced-cluster-
management.v2.6.3                Succeeded

$ oc get csv -A | grep -i multicluster-engine

multicluster-engine                                cluster-group-upgrades-operator.v0.0.3       cluster-
group-upgrades-operator              0.0.3                                                                   Pending
multicluster-engine                                multicluster-engine.v2.1.4                   multicluster 
engine for Kubernetes           2.1.4                 multicluster-engine.v2.0.3                        
Succeeded
multicluster-engine                                openshift-gitops-operator.v1.5.7             Red Hat 
OpenShift GitOps                     1.5.7                 openshift-gitops-operator.v1.5.6-
0.1664915551.p   Succeeded
multicluster-engine                                openshift-pipelines-operator-rh.v1.6.4       Red Hat 
OpenShift Pipelines                  1.6.4                 openshift-pipelines-operator-rh.v1.6.3            
Succeeded

$ mkdir /root/.docker

$ cp config.json /root/.docker/config.json 1

# podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools -- \
   factory-precaching-cli download \ 1
   -r 4.15.0 \ 2

OpenShift Container Platform 4.15 Edge computing

258



1

2

3

4

5

6

Specifies the downloading function of the factory-precaching-cli tool.

Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

Example output

Verification

Check that all the images are compressed in the target folder of server:

   --acm-version 2.6.3 \ 3
   --mce-version 2.1.4 \ 4
   -f /mnt \ 5
   --img quay.io/custom/repository 6

Generated /mnt/imageset.yaml
Generating list of pre-cached artifacts...
Processing artifact [1/176]: ocp-v4.0-art-
dev@sha256_6ac2b96bf4899c01a87366fd0feae9f57b1b61878e3b5823da0c3f34f707fbf5
Processing artifact [2/176]: ocp-v4.0-art-
dev@sha256_f48b68d5960ba903a0d018a10544ae08db5802e21c2fa5615a14fc58b1c1657c
Processing artifact [3/176]: ocp-v4.0-art-
dev@sha256_a480390e91b1c07e10091c3da2257180654f6b2a735a4ad4c3b69dbdb77bbc06

Processing artifact [4/176]: ocp-v4.0-art-
dev@sha256_ecc5d8dbd77e326dba6594ff8c2d091eefbc4d90c963a9a85b0b2f0e6155f995
Processing artifact [5/176]: ocp-v4.0-art-
dev@sha256_274b6d561558a2f54db08ea96df9892315bb773fc203b1dbcea418d20f4c7ad1
Processing artifact [6/176]: ocp-v4.0-art-
dev@sha256_e142bf5020f5ca0d1bdda0026bf97f89b72d21a97c9cc2dc71bf85050e822bbf
...
Processing artifact [175/176]: ocp-v4.0-art-
dev@sha256_16cd7eda26f0fb0fc965a589e1e96ff8577e560fcd14f06b5fda1643036ed6c8
Processing artifact [176/176]: ocp-v4.0-art-
dev@sha256_cf4d862b4a4170d4f611b39d06c31c97658e309724f9788e155999ae51e7188f
...
Summary:

Release:                            4.15.0
Hub Version:                        2.6.3
ACM Version:                        2.6.3
MCE Version:                        2.1.4
Include DU Profile:                 No
Workers:                            83

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

259



1 It is recommended that you pre-cache the images in the /mnt folder.

Example output

$ ls -l /mnt 1

-rw-r--r--. 1 root root  136352323 Oct 31 15:19 ocp-v4.0-art-
dev@sha256_edec37e7cd8b1611d0031d45e7958361c65e2005f145b471a8108f1b54316c07.t
gz
-rw-r--r--. 1 root root  156092894 Oct 31 15:33 ocp-v4.0-art-
dev@sha256_ee51b062b9c3c9f4fe77bd5b3cc9a3b12355d040119a1434425a824f137c61a9.tg
z
-rw-r--r--. 1 root root  172297800 Oct 31 15:29 ocp-v4.0-art-
dev@sha256_ef23d9057c367a36e4a5c4877d23ee097a731e1186ed28a26c8d21501cd82718.t
gz
-rw-r--r--. 1 root root  171539614 Oct 31 15:23 ocp-v4.0-art-
dev@sha256_f0497bb63ef6834a619d4208be9da459510df697596b891c0c633da144dbb025.t
gz
-rw-r--r--. 1 root root  160399150 Oct 31 15:20 ocp-v4.0-art-
dev@sha256_f0c339da117cde44c9aae8d0bd054bceb6f19fdb191928f6912a703182330ac2.tgz

-rw-r--r--. 1 root root  175962005 Oct 31 15:17 ocp-v4.0-art-
dev@sha256_f19dd2e80fb41ef31d62bb8c08b339c50d193fdb10fc39cc15b353cbbfeb9b24.tgz

-rw-r--r--. 1 root root  174942008 Oct 31 15:33 ocp-v4.0-art-
dev@sha256_f1dbb81fa1aa724e96dd2b296b855ff52a565fbef003d08030d63590ae6454df.tgz

-rw-r--r--. 1 root root  246693315 Oct 31 15:31 ocp-v4.0-art-
dev@sha256_f44dcf2c94e4fd843cbbf9b11128df2ba856cd813786e42e3da1fdfb0f6ddd01.tgz
-rw-r--r--. 1 root root  170148293 Oct 31 15:00 ocp-v4.0-art-
dev@sha256_f48b68d5960ba903a0d018a10544ae08db5802e21c2fa5615a14fc58b1c1657c.tg
z
-rw-r--r--. 1 root root  168899617 Oct 31 15:16 ocp-v4.0-art-
dev@sha256_f5099b0989120a8d08a963601214b5c5cb23417a707a8624b7eb52ab788a7f75.t
gz
-rw-r--r--. 1 root root  176592362 Oct 31 15:05 ocp-v4.0-art-
dev@sha256_f68c0e6f5e17b0b0f7ab2d4c39559ea89f900751e64b97cb42311a478338d9c3.tg
z
-rw-r--r--. 1 root root  157937478 Oct 31 15:37 ocp-v4.0-art-
dev@sha256_f7ba33a6a9db9cfc4b0ab0f368569e19b9fa08f4c01a0d5f6a243d61ab781bd8.tgz

-rw-r--r--. 1 root root  145535253 Oct 31 15:26 ocp-v4.0-art-
dev@sha256_f8f098911d670287826e9499806553f7a1dd3e2b5332abbec740008c36e84de5.t
gz
-rw-r--r--. 1 root root  158048761 Oct 31 15:40 ocp-v4.0-art-
dev@sha256_f914228ddbb99120986262168a705903a9f49724ffa958bb4bf12b2ec1d7fb47.tgz

-rw-r--r--. 1 root root  167914526 Oct 31 15:37 ocp-v4.0-art-
dev@sha256_fa3ca9401c7a9efda0502240aeb8d3ae2d239d38890454f17fe5158b62305010.tg
z
-rw-r--r--. 1 root root  164432422 Oct 31 15:24 ocp-v4.0-art-
dev@sha256_fc4783b446c70df30b3120685254b40ce13ba6a2b0bf8fb1645f116cf6a392f1.tgz

OpenShift Container Platform 4.15 Edge computing

260



1

2

3

4

5

6

7

14.4.4. Downloading the Operator images

You can also pre-cache Day-2 Operators used in the 5G Radio Access Network (RAN) Distributed Unit
(DU) cluster configuration. The Day-2 Operators depend on the installed OpenShift Container Platform
version.

IMPORTANT

You need to include the RHACM hub and multicluster engine Operator versions by using
the --acm-version and --mce-version flags so the factory-precaching-cli tool can pre-
cache the appropriate containers images for RHACM and the multicluster engine
Operator.

Procedure

Pre-cache the Operator images:

Specifies the downloading function of the factory-precaching-cli tool.

Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

Specifies pre-caching the Operators included in the DU configuration.

Example output

-rw-r--r--. 1 root root  306643814 Oct 31 15:11 
troubleshoot@sha256_b86b8aea29a818a9c22944fd18243fa0347c7a2bf1ad8864113ff2bb2d8
e0726.tgz

# podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools:latest -- factory-precaching-cli download \ 1
   -r 4.15.0 \ 2
   --acm-version 2.6.3 \ 3
   --mce-version 2.1.4 \ 4
   -f /mnt \ 5
   --img quay.io/custom/repository 6
   --du-profile -s 7

Generated /mnt/imageset.yaml
Generating list of pre-cached artifacts...
Processing artifact [1/379]: ocp-v4.0-art-
dev@sha256_7753a8d9dd5974be8c90649aadd7c914a3d8a1f1e016774c7ac7c9422e9f9958
Processing artifact [2/379]: ose-kube-rbac-
proxy@sha256_c27a7c01e5968aff16b6bb6670423f992d1a1de1a16e7e260d12908d3322431c

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

261



1

2

14.4.5. Pre-caching custom images in disconnected environments

The --generate-imageset argument stops the factory-precaching-cli tool after the 
ImageSetConfiguration custom resource (CR) is generated. This allows you to customize the 
ImageSetConfiguration CR before downloading any images. After you customized the CR, you can use
the --skip-imageset argument to download the images that you specified in the 
ImageSetConfiguration CR.

You can customize the ImageSetConfiguration CR in the following ways:

Add Operators and additional images

Remove Operators and additional images

Change Operator and catalog sources to local or disconnected registries

Procedure

1. Pre-cache the images:

Specifies the downloading function of the factory-precaching-cli tool.

Defines the OpenShift Container Platform release version.

Processing artifact [3/379]: ocp-v4.0-art-
dev@sha256_370e47a14c798ca3f8707a38b28cfc28114f492bb35fe1112e55d1eb51022c99
...
Processing artifact [378/379]: ose-local-storage-
operator@sha256_0c81c2b79f79307305e51ce9d3837657cf9ba5866194e464b4d1b299f85034
d0
Processing artifact [379/379]: multicluster-operators-channel-
rhel8@sha256_c10f6bbb84fe36e05816e873a72188018856ad6aac6cc16271a1b3966f73ceb3

...
Summary:

Release:                            4.15.0
Hub Version:                        2.6.3
ACM Version:                        2.6.3
MCE Version:                        2.1.4
Include DU Profile:                 Yes
Workers:                            83

# podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools:latest -- factory-precaching-cli download \ 1
   -r 4.15.0 \ 2
   --acm-version 2.6.3 \ 3
   --mce-version 2.1.4 \ 4
   -f /mnt \ 5
   --img quay.io/custom/repository 6
   --du-profile -s \ 7
   --generate-imageset 8

OpenShift Container Platform 4.15 Edge computing

262



3

4

5

6

7

8

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

Specifies pre-caching the Operators included in the DU configuration.

The --generate-imageset argument generates the ImageSetConfiguration CR only,
which allows you to customize the CR.

Example output

Example ImageSetConfiguration CR

Generated /mnt/imageset.yaml

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
mirror:
  platform:
    channels:
    - name: stable-4.15
      minVersion: 4.15.0 1
      maxVersion: 4.15.0
  additionalImages:
    - name: quay.io/custom/repository
  operators:
    - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.15
      packages:
        - name: advanced-cluster-management 2
          channels:
             - name: 'release-2.6'
               minVersion: 2.6.3
               maxVersion: 2.6.3
        - name: multicluster-engine 3
          channels:
             - name: 'stable-2.1'
               minVersion: 2.1.4
               maxVersion: 2.1.4
        - name: local-storage-operator 4
          channels:
            - name: 'stable'
        - name: ptp-operator 5
          channels:
            - name: 'stable'
        - name: sriov-network-operator 6
          channels:
            - name: 'stable'
        - name: cluster-logging 7
          channels:

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

263



1

2 3

4 5 6 7 8 9 10 11

The platform versions match the versions passed to the tool.

The versions of RHACM and the multicluster engine Operator match the versions passed
to the tool.

The CR contains all the specified DU Operators.

2. Customize the catalog resource in the CR:

When you download images by using a local or disconnected registry, you have to first add
certificates for the registries that you want to pull the content from.

3. To avoid any errors, copy the registry certificate into your server:

4. Then, update the certificates trust store:

5. Mount the host /etc/pki folder into the factory-cli image:

            - name: 'stable'
        - name: lvms-operator 8
          channels:
            - name: 'stable-4.15'
        - name: amq7-interconnect-operator 9
          channels:
            - name: '1.10.x'
        - name: bare-metal-event-relay 10
          channels:
            - name: 'stable'
    - catalog: registry.redhat.io/redhat/certified-operator-index:v4.15
      packages:
        - name: sriov-fec 11
          channels:
            - name: 'stable'

apiVersion: mirror.openshift.io/v1alpha2
kind: ImageSetConfiguration
mirror:
  platform:
[...]
  operators:
    - catalog: eko4.cloud.lab.eng.bos.redhat.com:8443/redhat/certified-operator-index:v4.15
      packages:
        - name: sriov-fec
          channels:
            - name: 'stable'

# cp /tmp/eko4-ca.crt /etc/pki/ca-trust/source/anchors/.

# update-ca-trust

# podman run -v /mnt:/mnt -v /root/.docker:/root/.docker -v /etc/pki:/etc/pki --privileged --rm 
quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli download \ 1

OpenShift Container Platform 4.15 Edge computing

264



1

2

3

4

5

6

7

8

Specifies the downloading function of the factory-precaching-cli tool.

Defines the OpenShift Container Platform release version.

Defines the RHACM version.

Defines the multicluster engine version.

Defines the folder where you want to download the images on the disk.

Optional. Defines the repository where you store your additional images. These images are
downloaded and pre-cached on the disk.

Specifies pre-caching the Operators included in the DU configuration.

The --skip-imageset argument allows you to download the images that you specified in
your customized ImageSetConfiguration CR.

6. Download the images without generating a new imageSetConfiguration CR:

Additional resources

To access the online Red Hat registries, see OpenShift installation customization tools .

For more information about using the multicluster engine, see About cluster lifecycle with the
multicluster engine operator.

14.5. PRE-CACHING IMAGES IN GITOPS ZTP

The SiteConfig manifest defines how an OpenShift cluster is to be installed and configured. In the
GitOps Zero Touch Provisioning (ZTP) provisioning workflow, the factory-precaching-cli tool requires
the following additional fields in the SiteConfig manifest:

clusters.ignitionConfigOverride

nodes.installerArgs

nodes.ignitionConfigOverride

   -r 4.15.0 \ 2
   --acm-version 2.6.3 \ 3
   --mce-version 2.1.4 \ 4
   -f /mnt \ 5
   --img quay.io/custom/repository 6
   --du-profile -s \ 7
   --skip-imageset 8

# podman run -v /mnt:/mnt -v /root/.docker:/root/.docker --privileged --rm quay.io/openshift-
kni/telco-ran-tools:latest -- factory-precaching-cli download -r 4.15.0 \
--acm-version 2.6.3 --mce-version 2.1.4 -f /mnt \
--img quay.io/custom/repository \
--du-profile -s \
--skip-imageset

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

265

https://console.redhat.com/openshift/downloads#tool-pull-secret
https://access.redhat.com/documentation/en-us/red_hat_advanced_cluster_management_for_kubernetes/2.9/html/clusters/cluster_mce_overview#mce-intro


Example SiteConfig with additional fields

apiVersion: ran.openshift.io/v1
kind: SiteConfig
metadata:
  name: "example-5g-lab"
  namespace: "example-5g-lab"
spec:
  baseDomain: "example.domain.redhat.com"
  pullSecretRef:
    name: "assisted-deployment-pull-secret"
  clusterImageSetNameRef: "img4.9.10-x86-64-appsub" 1
  sshPublicKey: "ssh-rsa ..."
  clusters:
  - clusterName: "sno-worker-0"
    clusterImageSetNameRef: "eko4-img4.11.5-x86-64-appsub" 2
    clusterLabels:
      group-du-sno: ""
      common-411: true
      sites : "example-5g-lab"
      vendor: "OpenShift"
    clusterNetwork:
      - cidr: 10.128.0.0/14
        hostPrefix: 23
    machineNetwork:
      - cidr: 10.19.32.192/26
    serviceNetwork:
      - 172.30.0.0/16
    networkType: "OVNKubernetes"
    additionalNTPSources:
      - clock.corp.redhat.com
    ignitionConfigOverride: '{"ignition":{"version":"3.1.0"},"systemd":{"units":[{"name":"var-
mnt.mount","enabled":true,"contents":"[Unit]\nDescription=Mount partition with 
artifacts\nBefore=precache-images.service\nBindsTo=precache-
images.service\nStopWhenUnneeded=true\n\n[Mount]\nWhat=/dev/disk/by-
partlabel/data\nWhere=/var/mnt\nType=xfs\nTimeoutSec=30\n\n[Install]\nRequiredBy=precache-
images.service"},{"name":"precache-images.service","enabled":true,"contents":"
[Unit]\nDescription=Extracts the precached images in discovery stage\nAfter=var-
mnt.mount\nBefore=agent.service\n\n[Service]\nType=oneshot\nUser=root\nWorkingDirectory=/var/mnt\
nExecStart=bash /usr/local/bin/extract-ai.sh\n#TimeoutStopSec=30\n\n[Install]\nWantedBy=multi-
user.target default.target\nWantedBy=agent.service"}]},"storage":{"files":
[{"overwrite":true,"path":"/usr/local/bin/extract-ai.sh","mode":755,"user":{"name":"root"},"contents":
{"source":"data:,%23%21%2Fbin%2Fbash%0A%0AFOLDER%3D%22%24%7BFOLDER%3A-
%24%28pwd%29%7D%22%0AOCP_RELEASE_LIST%3D%22%24%7BOCP_RELEASE_LIST%3A-
ai-
images.txt%7D%22%0ABINARY_FOLDER%3D%2Fvar%2Fmnt%0A%0Apushd%20%24FOLDER%0
A%0Atotal_copies%3D%24%28sort%20-
u%20%24BINARY_FOLDER%2F%24OCP_RELEASE_LIST%20%7C%20wc%20-
l%29%20%20%23%20Required%20to%20keep%20track%20of%20the%20pull%20task%20vs%20tot
al%0Acurrent_copy%3D1%0A%0Awhile%20read%20-
r%20line%3B%0Ado%0A%20%20uri%3D%24%28echo%20%22%24line%22%20%7C%20awk%20%
27%7Bprint%241%7D%27%29%0A%20%20%23tar%3D%24%28echo%20%22%24line%22%20%7
C%20awk%20%27%7Bprint%242%7D%27%29%0A%20%20podman%20image%20exists%20%24ur
i%0A%20%20if%20%5B%5B%20%24%3F%20-
eq%200%20%5D%5D%3B%20then%0A%20%20%20%20%20%20echo%20%22Skipping%20existin

OpenShift Container Platform 4.15 Edge computing

266



g%20image%20%24tar%22%0A%20%20%20%20%20%20echo%20%22Copying%20%24%7Buri%7
D%20%5B%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20%20%20
%20%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29%0A%20%20%20%20
%20%20continue%0A%20%20fi%0A%20%20tar%3D%24%28echo%20%22%24uri%22%20%7C%2
0%20rev%20%7C%20cut%20-d%20%22%2F%22%20-
f1%20%7C%20rev%20%7C%20tr%20%22%3A%22%20%22_%22%29%0A%20%20tar%20zxvf%20
%24%7Btar%7D.tgz%0A%20%20if%20%5B%20%24%3F%20-
eq%200%20%5D%3B%20then%20rm%20-
f%20%24%7Btar%7D.gz%3B%20fi%0A%20%20echo%20%22Copying%20%24%7Buri%7D%20%5B
%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20skopeo%20copy%20
dir%3A%2F%2F%24%28pwd%29%2F%24%7Btar%7D%20containers-
storage%3A%24%7Buri%7D%0A%20%20if%20%5B%20%24%3F%20-
eq%200%20%5D%3B%20then%20rm%20-
rf%20%24%7Btar%7D%3B%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29
%3B%20fi%0Adone%20%3C%20%24%7BBINARY_FOLDER%7D%2F%24%7BOCP_RELEASE_LI
ST%7D%0A%0A%23%20workaround%20while%20https%3A%2F%2Fgithub.com%2Fopenshift%2Fa
ssisted-service%2Fpull%2F3546%0A%23cp%20%2Fvar%2Fmnt%2Fmodified-rhcos-4.10.3-x86_64-
metal.x86_64.raw.gz%20%2Fvar%2Ftmp%2F.%0A%0Aexit%200"}},
{"overwrite":true,"path":"/usr/local/bin/agent-fix-bz1964591","mode":755,"user":
{"name":"root"},"contents":
{"source":"data:,%23%21%2Fusr%2Fbin%2Fsh%0A%0A%23%20This%20script%20is%20a%20work
around%20for%20bugzilla%201964591%20where%20symlinks%20inside%20%2Fvar%2Flib%2Fcont
ainers%2F%20get%0A%23%20corrupted%20under%20some%20circumstances.%0A%23%0A%23%
20In%20order%20to%20let%20agent.service%20start%20correctly%20we%20are%20checking%20h
ere%20whether%20the%20requested%0A%23%20container%20image%20exists%20and%20in%20c
ase%20%22podman%20images%22%20returns%20an%20error%20we%20try%20removing%20the
%20faulty%0A%23%20image.%0A%23%0A%23%20In%20such%20a%20scenario%20agent.service
%20will%20detect%20the%20image%20is%20not%20present%20and%20pull%20it%20again.%20In
%20case%0A%23%20the%20image%20is%20present%20and%20can%20be%20detected%20correc
tly%2C%20no%20any%20action%20is%20required.%0A%0AIMAGE%3D%24%28echo%20%241%2
0%7C%20sed%20%27s%2F%3A.%2A%2F%2F%27%29%0Apodman%20image%20exists%20%24I
MAGE%20%7C%7C%20echo%20%22already%20loaded%22%20%7C%7C%20echo%20%22need
%20to%20be%20pulled%22%0A%23podman%20images%20%7C%20grep%20%24IMAGE%20%7C
%7C%20podman%20rmi%20--force%20%241%20%7C%7C%20true"}}]}}'
    nodes:
      - hostName: "snonode.sno-worker-0.example.domain.redhat.com"
        role: "master"
        bmcAddress: "idrac-virtualmedia+https://10.19.28.53/redfish/v1/Systems/System.Embedded.1"
        bmcCredentialsName:
          name: "worker0-bmh-secret"
        bootMACAddress: "e4:43:4b:bd:90:46"
        bootMode: "UEFI"
        rootDeviceHints:
          deviceName: /dev/nvme0n1
        cpuset: "0-1,40-41"
        installerArgs: '["--save-partlabel", "data"]'
        ignitionConfigOverride: '{"ignition":{"version":"3.1.0"},"systemd":{"units":[{"name":"var-
mnt.mount","enabled":true,"contents":"[Unit]\nDescription=Mount partition with 
artifacts\nBefore=precache-ocp-images.service\nBindsTo=precache-ocp-
images.service\nStopWhenUnneeded=true\n\n[Mount]\nWhat=/dev/disk/by-
partlabel/data\nWhere=/var/mnt\nType=xfs\nTimeoutSec=30\n\n[Install]\nRequiredBy=precache-ocp-
images.service"},{"name":"precache-ocp-images.service","enabled":true,"contents":"
[Unit]\nDescription=Extracts the precached OCP images into containers storage\nAfter=var-
mnt.mount\nBefore=machine-config-daemon-pull.service nodeip-
configuration.service\n\n[Service]\nType=oneshot\nUser=root\nWorkingDirectory=/var/mnt\nExecStart=b
ash /usr/local/bin/extract-ocp.sh\nTimeoutStopSec=60\n\n[Install]\nWantedBy=multi-

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

267



1

2

Specifies the cluster image set used for deployment, unless you specify a different image set in the
spec.clusters.clusterImageSetNameRef field.

Specifies the cluster image set used to deploy an individual cluster. If defined, it overrides the 
spec.clusterImageSetNameRef at the site level.

14.5.1. Understanding the clusters.ignitionConfigOverride field

user.target"}]},"storage":{"files":[{"overwrite":true,"path":"/usr/local/bin/extract-
ocp.sh","mode":755,"user":{"name":"root"},"contents":
{"source":"data:,%23%21%2Fbin%2Fbash%0A%0AFOLDER%3D%22%24%7BFOLDER%3A-
%24%28pwd%29%7D%22%0AOCP_RELEASE_LIST%3D%22%24%7BOCP_RELEASE_LIST%3A-
ocp-
images.txt%7D%22%0ABINARY_FOLDER%3D%2Fvar%2Fmnt%0A%0Apushd%20%24FOLDER%0
A%0Atotal_copies%3D%24%28sort%20-
u%20%24BINARY_FOLDER%2F%24OCP_RELEASE_LIST%20%7C%20wc%20-
l%29%20%20%23%20Required%20to%20keep%20track%20of%20the%20pull%20task%20vs%20tot
al%0Acurrent_copy%3D1%0A%0Awhile%20read%20-
r%20line%3B%0Ado%0A%20%20uri%3D%24%28echo%20%22%24line%22%20%7C%20awk%20%
27%7Bprint%241%7D%27%29%0A%20%20%23tar%3D%24%28echo%20%22%24line%22%20%7
C%20awk%20%27%7Bprint%242%7D%27%29%0A%20%20podman%20image%20exists%20%24ur
i%0A%20%20if%20%5B%5B%20%24%3F%20-
eq%200%20%5D%5D%3B%20then%0A%20%20%20%20%20%20echo%20%22Skipping%20existin
g%20image%20%24tar%22%0A%20%20%20%20%20%20echo%20%22Copying%20%24%7Buri%7
D%20%5B%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20%20%20
%20%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29%0A%20%20%20%20
%20%20continue%0A%20%20fi%0A%20%20tar%3D%24%28echo%20%22%24uri%22%20%7C%2
0%20rev%20%7C%20cut%20-d%20%22%2F%22%20-
f1%20%7C%20rev%20%7C%20tr%20%22%3A%22%20%22_%22%29%0A%20%20tar%20zxvf%20
%24%7Btar%7D.tgz%0A%20%20if%20%5B%20%24%3F%20-
eq%200%20%5D%3B%20then%20rm%20-
f%20%24%7Btar%7D.gz%3B%20fi%0A%20%20echo%20%22Copying%20%24%7Buri%7D%20%5B
%24%7Bcurrent_copy%7D%2F%24%7Btotal_copies%7D%5D%22%0A%20%20skopeo%20copy%20
dir%3A%2F%2F%24%28pwd%29%2F%24%7Btar%7D%20containers-
storage%3A%24%7Buri%7D%0A%20%20if%20%5B%20%24%3F%20-
eq%200%20%5D%3B%20then%20rm%20-
rf%20%24%7Btar%7D%3B%20current_copy%3D%24%28%28current_copy%20%2B%201%29%29
%3B%20fi%0Adone%20%3C%20%24%7BBINARY_FOLDER%7D%2F%24%7BOCP_RELEASE_LI
ST%7D%0A%0Aexit%200"}}]}}'
        nodeNetwork:
          config:
            interfaces:
              - name: ens1f0
                type: ethernet
                state: up
                macAddress: "AA:BB:CC:11:22:33"
                ipv4:
                  enabled: true
                  dhcp: true
                ipv6:
                  enabled: false
          interfaces:
            - name: "ens1f0"
              macAddress: "AA:BB:CC:11:22:33"

OpenShift Container Platform 4.15 Edge computing

268



The clusters.ignitionConfigOverride field adds a configuration in Ignition format during the GitOps
ZTP discovery stage. The configuration includes systemd services in the ISO mounted in virtual media.
This way, the scripts are part of the discovery RHCOS live ISO and they can be used to load the Assisted
Installer (AI) images.

systemd services

The systemd services are var-mnt.mount and precache-images.services. The precache-
images.service depends on the disk partition to be mounted in /var/mnt by the var-mnt.mount unit.
The service calls a script called extract-ai.sh.

extract-ai.sh

The extract-ai.sh script extracts and loads the required images from the disk partition to the local
container storage. When the script finishes successfully, you can use the images locally.

agent-fix-bz1964591

The agent-fix-bz1964591 script is a workaround for an AI issue. To prevent AI from removing the
images, which can force the agent.service to pull the images again from the registry, the agent-fix-
bz1964591 script checks if the requested container images exist.

14.5.2. Understanding the nodes.installerArgs field

The nodes.installerArgs field allows you to configure how the coreos-installer utility writes the
RHCOS live ISO to disk. You need to indicate to save the disk partition labeled as data because the
artifacts saved in the data partition are needed during the OpenShift Container Platform installation
stage.

The extra parameters are passed directly to the coreos-installer utility that writes the live RHCOS to
disk. On the next reboot, the operating system starts from the disk.

You can pass several options to the coreos-installer utility:

14.5.3. Understanding the nodes.ignitionConfigOverride field

OPTIONS:
...
    -u, --image-url <URL>
            Manually specify the image URL

    -f, --image-file <path>
            Manually specify a local image file

    -i, --ignition-file <path>
            Embed an Ignition config from a file

    -I, --ignition-url <URL>
            Embed an Ignition config from a URL
...
        --save-partlabel <lx>...
            Save partitions with this label glob

        --save-partindex <id>...
            Save partitions with this number or range
...
        --insecure-ignition
            Allow Ignition URL without HTTPS or hash

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

269



Similarly to clusters.ignitionConfigOverride, the nodes.ignitionConfigOverride field allows the
addtion of configurations in Ignition format to the coreos-installer utility, but at the OpenShift
Container Platform installation stage. When the RHCOS is written to disk, the extra configuration
included in the GitOps ZTP discovery ISO is no longer available. During the discovery stage, the extra
configuration is stored in the memory of the live OS.

NOTE

At this stage, the number of container images extracted and loaded is bigger than in the
discovery stage. Depending on the OpenShift Container Platform release and whether
you install the Day-2 Operators, the installation time can vary.

At the installation stage, the var-mnt.mount and precache-ocp.services systemd services are used.

precache-ocp.service

The precache-ocp.service depends on the disk partition to be mounted in /var/mnt by the var-
mnt.mount unit. The precache-ocp.service service calls a script called extract-ocp.sh.

IMPORTANT

To extract all the images before the OpenShift Container Platform installation, you
must execute precache-ocp.service before executing the machine-config-daemon-
pull.service and nodeip-configuration.service services.

extract-ocp.sh

The extract-ocp.sh script extracts and loads the required images from the disk partition to the local
container storage. When the script finishes successfully, you can use the images locally.

When you upload the SiteConfig and the optional PolicyGenTemplates custom resources (CRs) to the
Git repo, which Argo CD is monitoring, you can start the GitOps ZTP workflow by syncing the CRs with
the hub cluster.

14.6. TROUBLESHOOTING

14.6.1. Rendered catalog is invalid

When you download images by using a local or disconnected registry, you might see the The rendered 
catalog is invalid error. This means that you are missing certificates of the new registry you want to pull
content from.

NOTE

The factory-precaching-cli tool image is built on a UBI RHEL image. Certificate paths and
locations are the same on RHCOS.

Example error

Generating list of pre-cached artifacts...
error: unable to run command oc-mirror -c /mnt/imageset.yaml file:///tmp/fp-cli-3218002584/mirror --
ignore-history --dry-run: Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-
workspace/src/publish

OpenShift Container Platform 4.15 Edge computing

270



Procedure

1. Copy the registry certificate into your server:

2. Update the certificates truststore:

3. Mount the host /etc/pki folder into the factory-cli image:

Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/v2
Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/charts
Creating directory: /tmp/fp-cli-3218002584/mirror/oc-mirror-workspace/src/release-signatures
backend is not configured in /mnt/imageset.yaml, using stateless mode
backend is not configured in /mnt/imageset.yaml, using stateless mode
No metadata detected, creating new workspace
level=info msg=trying next host error=failed to do request: Head 
"https://eko4.cloud.lab.eng.bos.redhat.com:8443/v2/redhat/redhat-operator-index/manifests/v4.11": 
x509: certificate signed by unknown authority host=eko4.cloud.lab.eng.bos.redhat.com:8443

The rendered catalog is invalid.

Run "oc-mirror list operators --catalog CATALOG-NAME --package PACKAGE-NAME" for more 
information.

error: error rendering new refs: render reference 
"eko4.cloud.lab.eng.bos.redhat.com:8443/redhat/redhat-operator-index:v4.11": error resolving name : 
failed to do request: Head "https://eko4.cloud.lab.eng.bos.redhat.com:8443/v2/redhat/redhat-
operator-index/manifests/v4.11": x509: certificate signed by unknown authority

# cp /tmp/eko4-ca.crt /etc/pki/ca-trust/source/anchors/.

# update-ca-trust

# podman run -v /mnt:/mnt -v /root/.docker:/root/.docker -v /etc/pki:/etc/pki --privileged -it --rm 
quay.io/openshift-kni/telco-ran-tools:latest -- \
factory-precaching-cli download -r 4.15.0 --acm-version 2.5.4 \
   --mce-version 2.0.4 -f /mnt \--img quay.io/custom/repository
   --du-profile -s --skip-imageset

CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS

271


	Table of Contents
	CHAPTER 1. CHALLENGES OF THE NETWORK FAR EDGE
	1.1. OVERCOMING THE CHALLENGES OF THE NETWORK FAR EDGE
	1.2. USING GITOPS ZTP TO PROVISION CLUSTERS AT THE NETWORK FAR EDGE
	1.3. INSTALLING MANAGED CLUSTERS WITH SITECONFIG RESOURCES AND RHACM
	1.4. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES

	CHAPTER 2. PREPARING THE HUB CLUSTER FOR ZTP
	2.1. TELCO RAN DU 4.15 VALIDATED SOFTWARE COMPONENTS
	2.2. RECOMMENDED HUB CLUSTER SPECIFICATIONS AND MANAGED CLUSTER LIMITS FOR GITOPS ZTP
	2.3. INSTALLING GITOPS ZTP IN A DISCONNECTED ENVIRONMENT
	2.4. ADDING RHCOS ISO AND ROOTFS IMAGES TO THE DISCONNECTED MIRROR HOST
	2.5. ENABLING THE ASSISTED SERVICE
	2.6. CONFIGURING THE HUB CLUSTER TO USE A DISCONNECTED MIRROR REGISTRY
	2.7. CONFIGURING THE HUB CLUSTER TO USE UNAUTHENTICATED REGISTRIES
	2.8. CONFIGURING THE HUB CLUSTER WITH ARGOCD
	2.9. PREPARING THE GITOPS ZTP SITE CONFIGURATION REPOSITORY
	2.9.1. Preparing the GitOps ZTP site configuration repository for version independence


	CHAPTER 3. UPDATING GITOPS ZTP
	3.1. OVERVIEW OF THE GITOPS ZTP UPDATE PROCESS
	3.2. PREPARING FOR THE UPGRADE
	3.3. LABELING THE EXISTING CLUSTERS
	3.4. STOPPING THE EXISTING GITOPS ZTP APPLICATIONS
	3.5. REQUIRED CHANGES TO THE GIT REPOSITORY
	3.6. INSTALLING THE NEW GITOPS ZTP APPLICATIONS
	3.7. ROLLING OUT THE GITOPS ZTP CONFIGURATION CHANGES

	CHAPTER 4. INSTALLING MANAGED CLUSTERS WITH RHACM AND SITECONFIG RESOURCES
	4.1. GITOPS ZTP AND TOPOLOGY AWARE LIFECYCLE MANAGER
	4.2. OVERVIEW OF DEPLOYING MANAGED CLUSTERS WITH GITOPS ZTP
	Overview of the managed site installation process

	4.3. CREATING THE MANAGED BARE-METAL HOST SECRETS
	4.4. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR INSTALLATIONS USING GITOPS ZTP
	4.5. DEPLOYING A MANAGED CLUSTER WITH SITECONFIG AND GITOPS ZTP
	4.5.1. Single-node OpenShift SiteConfig CR installation reference

	4.6. MONITORING MANAGED CLUSTER INSTALLATION PROGRESS
	4.7. TROUBLESHOOTING GITOPS ZTP BY VALIDATING THE INSTALLATION CRS
	4.8. TROUBLESHOOTING GITOPS ZTP VIRTUAL MEDIA BOOTING ON SUPERMICRO SERVERS
	4.9. REMOVING A MANAGED CLUSTER SITE FROM THE GITOPS ZTP PIPELINE
	4.10. REMOVING OBSOLETE CONTENT FROM THE GITOPS ZTP PIPELINE
	4.11. TEARING DOWN THE GITOPS ZTP PIPELINE

	CHAPTER 5. CONFIGURING MANAGED CLUSTERS WITH POLICIES AND POLICYGENTEMPLATE RESOURCES
	5.1. ABOUT THE POLICYGENTEMPLATE CRD
	5.2. RECOMMENDATIONS WHEN CUSTOMIZING POLICYGENTEMPLATE CRS
	5.3. POLICYGENTEMPLATE CRS FOR RAN DEPLOYMENTS
	5.4. CUSTOMIZING A MANAGED CLUSTER WITH POLICYGENTEMPLATE CRS
	5.5. MONITORING MANAGED CLUSTER POLICY DEPLOYMENT PROGRESS
	5.6. VALIDATING THE GENERATION OF CONFIGURATION POLICY CRS
	5.7. RESTARTING POLICY RECONCILIATION
	5.8. CHANGING APPLIED MANAGED CLUSTER CRS USING POLICIES
	5.9. INDICATION OF DONE FOR GITOPS ZTP INSTALLATIONS

	CHAPTER 6. MANUALLY INSTALLING A SINGLE-NODE OPENSHIFT CLUSTER WITH ZTP
	6.1. GENERATING GITOPS ZTP INSTALLATION AND CONFIGURATION CRS MANUALLY
	6.2. CREATING THE MANAGED BARE-METAL HOST SECRETS
	6.3. CONFIGURING DISCOVERY ISO KERNEL ARGUMENTS FOR MANUAL INSTALLATIONS USING GITOPS ZTP
	6.4. INSTALLING A SINGLE MANAGED CLUSTER
	6.5. MONITORING THE MANAGED CLUSTER INSTALLATION STATUS
	6.6. TROUBLESHOOTING THE MANAGED CLUSTER
	6.7. RHACM GENERATED CLUSTER INSTALLATION CRS REFERENCE

	CHAPTER 7. RECOMMENDED SINGLE-NODE OPENSHIFT CLUSTER CONFIGURATION FOR VDU APPLICATION WORKLOADS
	7.1. RUNNING LOW LATENCY APPLICATIONS ON OPENSHIFT CONTAINER PLATFORM
	7.2. RECOMMENDED CLUSTER HOST REQUIREMENTS FOR VDU APPLICATION WORKLOADS
	7.3. CONFIGURING HOST FIRMWARE FOR LOW LATENCY AND HIGH PERFORMANCE
	7.4. CONNECTIVITY PREREQUISITES FOR MANAGED CLUSTER NETWORKS
	7.5. WORKLOAD PARTITIONING IN SINGLE-NODE OPENSHIFT WITH GITOPS ZTP
	7.6. RECOMMENDED CLUSTER INSTALL MANIFESTS
	7.6.1. Workload partitioning
	7.6.2. Reduced platform management footprint
	7.6.3. SCTP
	7.6.4. Accelerated container startup
	7.6.5. Setting rcu_normal
	7.6.6. Automatic kernel crash dumps with kdump
	7.6.7. Disable automatic CRI-O cache wipe
	7.6.8. Configuring crun as the default container runtime

	7.7. RECOMMENDED POSTINSTALLATION CLUSTER CONFIGURATIONS
	7.7.1. Operators
	7.7.2. Operator subscriptions
	7.7.3. Cluster logging and log forwarding
	7.7.4. Performance profile
	7.7.5. Configuring cluster time synchronization
	7.7.6. PTP
	7.7.7. Extended Tuned profile
	7.7.8. SR-IOV
	7.7.9. Console Operator
	7.7.10. Alertmanager
	7.7.11. Operator Lifecycle Manager
	7.7.12. LVM Storage
	7.7.13. Network diagnostics


	CHAPTER 8. VALIDATING SINGLE-NODE OPENSHIFT CLUSTER TUNING FOR VDU APPLICATION WORKLOADS
	8.1. RECOMMENDED FIRMWARE CONFIGURATION FOR VDU CLUSTER HOSTS
	8.2. RECOMMENDED CLUSTER CONFIGURATIONS TO RUN VDU APPLICATIONS
	8.2.1. Recommended cluster MachineConfig CRs for single-node OpenShift clusters
	8.2.2. Recommended cluster Operators
	8.2.3. Recommended cluster kernel configuration
	8.2.4. Checking the realtime kernel version

	8.3. CHECKING THAT THE RECOMMENDED CLUSTER CONFIGURATIONS ARE APPLIED

	CHAPTER 9. ADVANCED MANAGED CLUSTER CONFIGURATION WITH SITECONFIG RESOURCES
	9.1. CUSTOMIZING EXTRA INSTALLATION MANIFESTS IN THE GITOPS ZTP PIPELINE
	9.2. FILTERING CUSTOM RESOURCES USING SITECONFIG FILTERS
	9.3. DELETING A NODE BY USING THE SITECONFIG CR

	CHAPTER 10. ADVANCED MANAGED CLUSTER CONFIGURATION WITH POLICYGENTEMPLATE RESOURCES
	10.1. DEPLOYING ADDITIONAL CHANGES TO CLUSTERS
	10.2. USING POLICYGENTEMPLATE CRS TO OVERRIDE SOURCE CRS CONTENT
	10.3. ADDING CUSTOM CONTENT TO THE GITOPS ZTP PIPELINE
	10.4. CONFIGURING POLICY COMPLIANCE EVALUATION TIMEOUTS FOR POLICYGENTEMPLATE CRS
	10.5. SIGNALLING GITOPS ZTP CLUSTER DEPLOYMENT COMPLETION WITH VALIDATOR INFORM POLICIES
	10.6. CONFIGURING POWER STATES USING POLICYGENTEMPLATES CRS
	10.6.1. Configuring performance mode using PolicyGenTemplate CRs
	10.6.2. Configuring high-performance mode using PolicyGenTemplate CRs
	10.6.3. Configuring power saving mode using PolicyGenTemplate CRs
	10.6.4. Maximizing power savings

	10.7. CONFIGURING LVM STORAGE USING POLICYGENTEMPLATE CRS
	10.8. CONFIGURING PTP EVENTS WITH POLICYGENTEMPLATE CRS
	10.8.1. Configuring PTP events that use HTTP transport
	10.8.2. Configuring PTP events that use AMQP transport

	10.9. CONFIGURING BARE-METAL EVENTS WITH POLICYGENTEMPLATE CRS
	10.9.1. Configuring bare-metal events that use HTTP transport
	10.9.2. Configuring bare-metal events that use AMQP transport

	10.10. CONFIGURING THE IMAGE REGISTRY OPERATOR FOR LOCAL CACHING OF IMAGES
	10.10.1. Configuring disk partitioning with SiteConfig
	10.10.2. Configuring the image registry using PolicyGenTemplate CRs

	10.11. USING HUB TEMPLATES IN POLICYGENTEMPLATE CRS
	10.11.1. Example hub templates
	10.11.2. Specifying group and site configuration in group PolicyGenTemplate CRs with hub templates
	10.11.3. Syncing new ConfigMap changes to existing PolicyGenTemplate CRs


	CHAPTER 11. UPDATING MANAGED CLUSTERS WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
	11.1. ABOUT THE TOPOLOGY AWARE LIFECYCLE MANAGER CONFIGURATION
	11.2. ABOUT MANAGED POLICIES USED WITH TOPOLOGY AWARE LIFECYCLE MANAGER
	11.3. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE WEB CONSOLE
	11.4. INSTALLING THE TOPOLOGY AWARE LIFECYCLE MANAGER BY USING THE CLI
	11.5. ABOUT THE CLUSTERGROUPUPGRADE CR
	11.5.1. Selecting clusters
	11.5.2. Validating
	11.5.3. Pre-caching
	11.5.4. Creating a backup
	11.5.5. Updating clusters
	11.5.6. Update status
	11.5.7. Blocking ClusterGroupUpgrade CRs

	11.6. UPDATE POLICIES ON MANAGED CLUSTERS
	11.6.1. Configuring Operator subscriptions for managed clusters that you install with TALM
	11.6.2. Applying update policies to managed clusters

	11.7. CREATING A BACKUP OF CLUSTER RESOURCES BEFORE UPGRADE
	11.7.1. Creating a ClusterGroupUpgrade CR with backup
	11.7.2. Recovering a cluster after a failed upgrade

	11.8. USING THE CONTAINER IMAGE PRE-CACHE FEATURE
	11.8.1. Using the container image pre-cache filter
	11.8.2. Creating a ClusterGroupUpgrade CR with pre-caching

	11.9. TROUBLESHOOTING THE TOPOLOGY AWARE LIFECYCLE MANAGER
	11.9.1. General troubleshooting
	11.9.2. Cannot modify the ClusterUpgradeGroup CR
	11.9.3. Managed policies
	Checking managed policies on the system
	Checking remediationAction mode
	Checking policy compliance state

	11.9.4. Clusters
	Checking if managed clusters are present
	Checking if managed clusters are available
	Checking clusterLabelSelector
	Checking if canary clusters are present
	Checking the pre-caching status on spoke clusters

	11.9.5. Remediation Strategy
	Checking if remediationStrategy is present in the ClusterGroupUpgrade CR
	Checking if maxConcurrency is specified in the ClusterGroupUpgrade CR

	11.9.6. Topology Aware Lifecycle Manager
	Checking condition message and status in the ClusterGroupUpgrade CR
	Checking corresponding copied policies
	Checking if status.remediationPlan was computed
	Errors in the TALM manager container
	Clusters are not compliant to some policies after a ClusterGroupUpgrade CR has completed
	Auto-created ClusterGroupUpgrade CR in the GitOps ZTP workflow has no managed policies
	Pre-caching has failed



	CHAPTER 12. UPDATING MANAGED CLUSTERS IN A DISCONNECTED ENVIRONMENT WITH THE TOPOLOGY AWARE LIFECYCLE MANAGER
	12.1. UPDATING CLUSTERS IN A DISCONNECTED ENVIRONMENT
	12.1.1. Setting up the environment
	12.1.2. Performing a platform update
	12.1.3. Performing an Operator update
	12.1.3.1. Troubleshooting missed Operator updates due to out-of-date policy compliance states

	12.1.4. Performing a platform and an Operator update together
	12.1.5. Removing Performance Addon Operator subscriptions from deployed clusters
	12.1.6. Pre-caching user-specified images with TALM on single-node OpenShift clusters
	12.1.6.1. Creating the custom resources for pre-caching


	12.2. ABOUT THE AUTO-CREATED CLUSTERGROUPUPGRADE CR FOR GITOPS ZTP

	CHAPTER 13. EXPANDING SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP
	13.1. APPLYING PROFILES TO THE WORKER NODE
	13.2. (OPTIONAL) ENSURING PTP AND SR-IOV DAEMON SELECTOR COMPATIBILITY
	13.3. PTP AND SR-IOV NODE SELECTOR COMPATIBILITY
	13.4. USING POLICYGENTEMPLATE CRS TO APPLY WORKER NODE POLICIES TO WORKER NODES
	13.5. ADDING WORKER NODES TO SINGLE-NODE OPENSHIFT CLUSTERS WITH GITOPS ZTP

	CHAPTER 14. PRE-CACHING IMAGES FOR SINGLE-NODE OPENSHIFT DEPLOYMENTS
	14.1. GETTING THE FACTORY-PRECACHING-CLI TOOL
	14.2. BOOTING FROM A LIVE OPERATING SYSTEM IMAGE
	14.3. PARTITIONING THE DISK
	14.3.1. Creating the partition
	14.3.2. Mounting the partition

	14.4. DOWNLOADING THE IMAGES
	14.4.1. Downloading with parallel workers
	14.4.2. Preparing to download the OpenShift Container Platform images
	14.4.3. Downloading the OpenShift Container Platform images
	14.4.4. Downloading the Operator images
	14.4.5. Pre-caching custom images in disconnected environments

	14.5. PRE-CACHING IMAGES IN GITOPS ZTP
	14.5.1. Understanding the clusters.ignitionConfigOverride field
	14.5.2. Understanding the nodes.installerArgs field
	14.5.3. Understanding the nodes.ignitionConfigOverride field

	14.6. TROUBLESHOOTING
	14.6.1. Rendered catalog is invalid



