& RedHat

OpenShift Container Platform 4.12

Service Mesh

Service Mesh installation, usage, and release notes

Last Updated: 2024-05-01

OpenShift Container Platform 4.12 Service Mesh

Service Mesh installation, usage, and release notes

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to use Service Mesh in OpenShift Container Platform.

Table of Contents

Table of Contents

CHAPTER 1. SERVICE MESH 2. X ..ttt ttitttitt ettt et eee e eateeaneeeaneeaneeeanaenaneesnneenneenns 17
1.1. ABOUT OPENSHIFT SERVICE MESH 17
1.1.1. Introduction to Red Hat OpenShift Service Mesh 17
1.1.2. Core features 17
1.2. SERVICE MESH RELEASE NOTES 18
1.2.1. Making open source more inclusive 18
1.2.2. New features and enhancements 18
1.2.2.1. New features Red Hat OpenShift Service Mesh version 2.5.1 18
1.2.2.1.1. Component versions for Red Hat OpenShift Service Mesh version 2.5.1 18
1.2.2.2. New features Red Hat OpenShift Service Mesh version 2.5 18
1.2.2.2.1. Component versions for Red Hat OpenShift Service Mesh version 2.5 18
1.2.2.2.2. Istio 1.18 support 18
1.2.2.2.3. Cluster-Wide mesh migration 19
1.2.2.2.4. Red Hat OpenShift Service Mesh Operator on ARM-based clusters 19
1.2.2.2.5. Integration with Red Hat OpenShift distributed tracing platform (Tempo) Stack 19
1.2.2.2.6. OpenShift Service Mesh Console plugin 19
1.2.2.2.7. Istio OpenShift Routing (IOR) default setting change 19
1.2.2.2.8. Istio proxy concurrency configuration enhancement 20
1.2.2.2.9. Gateway API CRD versions 20
1.2.2.3. New features Red Hat OpenShift Service Mesh version 2.4.7 21
1.2.2.3.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.7 21
1.2.2.4. New features Red Hat OpenShift Service Mesh version 2.4.6 21
1.2.2.4.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.6 21
1.2.2.5. New features Red Hat OpenShift Service Mesh version 2.4.5 21
1.2.2.5.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.5 22
1.2.2.6. New features Red Hat OpenShift Service Mesh version 2.4.4 22
1.2.2.6.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.4 22
1.2.2.7. New features Red Hat OpenShift Service Mesh version 2.4.3 22
1.2.2.7.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.3 22
1.2.2.7.2. Red Hat OpenShift Service Mesh operator to ARM-based clusters 23
1.2.2.7.3. Remote Procedure Calls (gRPC) API support for external authorization configuration 23
1.2.2.8. New features Red Hat OpenShift Service Mesh version 2.4.2 23
1.2.2.8.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.2 23
1.2.2.9. New features Red Hat OpenShift Service Mesh version 2.4.1 23
1.2.2.9.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.1 24
1.2.2.10. New features Red Hat OpenShift Service Mesh version 2.4 24
1.2.2.10.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4 24
1.2.2.10.2. Cluster-wide deployments 24
1.2.2.10.3. Support for discovery selectors 24
1.2.2.10.4. Integration with cert-manager istio-csr 25
1.2.2.10.5. Integration with external authorization systems 25
1.2.2.10.6. Integration with external Prometheus installation 25
1.2.2.10.7. Single stack IPv6 support 25
1.2.2.10.8. OpenShift Container Platform Gateway API support 26
1.2.2.10.8.1. Enabling OpenShift Container Platform Gateway API 26
1.2.2.10.9. Control plane deployment on infrastructure nodes 26
1.2.2.10.10. Istio 1.16 support 27
1.2.2.11. New features Red Hat OpenShift Service Mesh version 2.3.11 27
1.2.2.11.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.11 27
1.2.2.12. New features Red Hat OpenShift Service Mesh version 2.3.10 27
1.2.2.12.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.10 27

OpenShift Container Platform 4.12 Service Mesh

1.2.2.13. New features Red Hat OpenShift Service Mesh version 2.3.9

1.2.2.13.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.9
1.2.2.14. New features Red Hat OpenShift Service Mesh version 2.3.8

1.2.2.14.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.8
1.2.2.15. New features Red Hat OpenShift Service Mesh version 2.3.7

1.2.2.15.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.7
1.2.2.16. New features Red Hat OpenShift Service Mesh version 2.3.6

1.2.2.16.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.6
1.2.2.17. New features Red Hat OpenShift Service Mesh version 2.3.5

1.2.2.17.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.5
1.2.2.18. New features Red Hat OpenShift Service Mesh version 2.3.4

1.2.2.18.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.4
1.2.2.19. New features Red Hat OpenShift Service Mesh version 2.3.3

1.2.2.19.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.3
1.2.2.20. New features Red Hat OpenShift Service Mesh version 2.3.2

1.2.2.20.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.2
1.2.2.21. New features Red Hat OpenShift Service Mesh version 2.3.1

1.2.2.21.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.1
1.2.2.22. New features Red Hat OpenShift Service Mesh version 2.3

1.2.2.22.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3

1.2.2.22.2. New Container Network Interface (CNI) DaemonSet container and ConfigMap

1.2.2.22.3. Gateway injection support

1.2.2.22.4. Istio 1.14 Support

1.2.2.22.5. OpenShift Service Mesh Console

1.2.2.22.6. Cluster-wide deployment

1.2.2.22.6.1. Configuring cluster-wide deployment

1.2.2.23. New features Red Hat OpenShift Service Mesh version 2.2.12

1.2.2.23.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.12
1.2.2.24. New features Red Hat OpenShift Service Mesh version 2.2.11

1.2.2.24.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.11
1.2.2.25. New features Red Hat OpenShift Service Mesh version 2.2.10

1.2.2.25.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.10
1.2.2.26. New features Red Hat OpenShift Service Mesh version 2.2.9

1.2.2.26.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.9
1.2.2.27. New features Red Hat OpenShift Service Mesh version 2.2.8

1.2.2.27.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.8
1.2.2.28. New features Red Hat OpenShift Service Mesh version 2.2.7

1.2.2.28.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.7
1.2.2.29. New features Red Hat OpenShift Service Mesh version 2.2.6

1.2.2.29.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.6
1.2.2.30. New features Red Hat OpenShift Service Mesh version 2.2.5

1.2.2.30.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.5
1.2.2.31. New features Red Hat OpenShift Service Mesh version 2.2.4

1.2.2.31.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.4
1.2.2.32. New features Red Hat OpenShift Service Mesh version 2.2.3

1.2.2.32.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.3
1.2.2.33. New features Red Hat OpenShift Service Mesh version 2.2.2

1.2.2.33.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.2

1.2.2.33.2. Copy route labels
1.2.2.34. New features Red Hat OpenShift Service Mesh version 2.2.1

1.2.2.34.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.1
1.2.2.35. New features Red Hat OpenShift Service Mesh 2.2

1.2.2.35.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2

27
27
28
28
28
28
28
29
29
29
29
29
30
30
30
30
30
30
31
31
31
31
31
32
32
33
33
33
34
34
34
34
34
34
35
35
35
35
35
36
36
36
36
36
37
37
37
37
37
37
38
38
38

1.2.2.35.2. WasmPlugin API
1.2.2.35.3. ROSA support
1.2.2.35.4. istio-node DaemonSet renamed
1.2.2.35.5. Envoy sidecar networking changes
1.2.2.35.6. Service Mesh Control Plane 1.1
1.2.2.35.7. Istio 1.12 Support
1.2.2.35.8. Kubernetes Gateway API
1.2.2.35.8.1. Installing the Gateway API CRDs
1.2.2.35.8.2. Enabling Kubernetes Gateway API
1.2.2.35.8.3. Manually linking an existing gateway to a Gateway resource
1.2.2.36. New features Red Hat OpenShift Service Mesh 2.1.6
1.2.2.36.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.6
1.2.2.37. New features Red Hat OpenShift Service Mesh 2.1.5.2
1.2.2.37.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.2
1.2.2.38. New features Red Hat OpenShift Service Mesh 2.1.5.1
1.2.2.38.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.1
1.2.2.39. New features Red Hat OpenShift Service Mesh 2.1.5
1.2.2.39.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5
1.2.2.40. New features Red Hat OpenShift Service Mesh 2.1.4
1.2.2.40.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.4
1.2.2.41. New features Red Hat OpenShift Service Mesh 2.1.3
1.2.2.41.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.3
1.2.2.42. New features Red Hat OpenShift Service Mesh 2.1.2.1
1.2.2.42.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2.1
1.2.2.43. New features Red Hat OpenShift Service Mesh 2.1.2
1.2.2.43.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2
1.2.2.44. New features Red Hat OpenShift Service Mesh 2.1.1
1.2.2.44.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.1
1.2.2.44.2. Disabling network policies
1.2.2.45. New features and enhancements Red Hat OpenShift Service Mesh 2.1
1.2.2.45.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1
1.2.2.45.2. Service Mesh Federation
1.2.2.45.3. OVN-Kubernetes Container Network Interface (CNI) generally available
1.2.2.45.4. Service Mesh WebAssembly (WASM) Extensions
1.2.2.45.5. 3scale WebAssembly Adapter (WASM)
1.2.2.45.6. Istio 1.9 Support
1.2.2.45.7. Improved Service Mesh operator performance
1.2.2.45.8. Kiali updates
1.2.2.46. New features Red Hat OpenShift Service Mesh 2.0.11.1
1.2.2.46.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11.1
1.2.2.47. New features Red Hat OpenShift Service Mesh 2.0.11
1.2.2.47.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11
1.2.2.48. New features Red Hat OpenShift Service Mesh 2.0.10
1.2.2.48.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.10
1.2.2.49. New features Red Hat OpenShift Service Mesh 2.0.9
1.2.2.49.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.9
1.2.2.50. New features Red Hat OpenShift Service Mesh 2.0.8
1.2.2.51. New features Red Hat OpenShift Service Mesh 2.0.7.1
1.2.2.51.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments
1.2.2.51.2. Required update for authorization policies
1.2.2.52. New features Red Hat OpenShift Service Mesh 2.0.7

Table of Contents

38
38
38
38
39
39
39
39
39
40
40
40
40

41

41

41

41

41
42
42
42
42
42
42
43
43
43
43
43
44
44
45
45
45
45
45
46
46
46
46
47
47
47
47
47
47
48
48
48
49
50

1.2.2.53. Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated and Microsoft Azure Red Hat

OpenShift

50

OpenShift Container Platform 4.12 Service Mesh

1.2.2.54. New features Red Hat OpenShift Service Mesh 2.0.6
1.2.2.55. New features Red Hat OpenShift Service Mesh 2.0.5
1.2.2.56. New features Red Hat OpenShift Service Mesh 2.0.4
1.2.2.56.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920
1.2.2.56.2. Updating the path normalization configuration
1.2.2.56.3. Path normalization configuration examples
1.2.2.56.4. Configuring your SMCP for path normalization
1.2.2.56.5. Configuring for case normalization
1.2.2.57. New features Red Hat OpenShift Service Mesh 2.0.3
1.2.2.58. New features Red Hat OpenShift Service Mesh 2.0.2
1.2.2.59. New features Red Hat OpenShift Service Mesh 2.0.1
1.2.2.60. New features Red Hat OpenShift Service Mesh 2.0
1.2.3. Technology Preview
1.2.4. Deprecated and removed features
1.2.4.1. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.5
1.2.4.2. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.4
1.2.4.3. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.3
1.2.4.4. Deprecated features in Red Hat OpenShift Service Mesh 2.2
1.2.4.5. Removed features in Red Hat OpenShift Service Mesh 2.2
1.2.4.6. Removed features in Red Hat OpenShift Service Mesh 2.1
1.2.4.7. Deprecated features in Red Hat OpenShift Service Mesh 2.0
1.2.5. Known issues
1.2.5.1. Service Mesh known issues
1.2.5.2. Kiali known issues
1.2.6. Fixed issues
1.2.6.1. Service Mesh fixed issues
1.3. UNDERSTANDING SERVICE MESH
1.3.1. What is Red Hat OpenShift Service Mesh?
1.3.2. Service Mesh architecture
1.3.3. Understanding Kiali
1.3.3.1. Kiali overview
1.3.3.2. Kiali architecture
1.3.3.3. Kiali features
1.3.4. Understanding distributed tracing
1.3.4.1. Distributed tracing overview
1.3.4.2. Red Hat OpenShift distributed tracing platform architecture
1.3.4.3. Red Hat OpenShift distributed tracing platform features
1.3.5. Next steps
1.4. SERVICE MESH DEPLOYMENT MODELS
1.4.1. Cluster-Wide (Single Tenant) mesh deployment model
1.4.2. Multitenant deployment model
1.4.2.1. About migrating to a cluster-wide mesh

1.4.2.1.1. Including and excluding namespaces from a cluster-wide mesh by using the web console
1.4.2.1.2. Including and excluding namespaces from a cluster-wide mesh by using the CLI
1.4.2.1.3. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the web

console

1.4.2.1.4. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the CLI
1.4.2.1.5. Excluding individual pods from a cluster-wide mesh by using the web console

1.4.2.1.6. Excluding individual pods from a cluster-wide mesh by using the CLI
1.4.3. Multimesh or federated deployment model
1.5. SERVICE MESH AND ISTIO DIFFERENCES
1.5.1. Differences between Istio and Red Hat OpenShift Service Mesh
1.5.1.1. Command line tool

50
50
50
50

51
52
53
53
54
54
54
54
55
55
55
56
56
56
57
57
57
57
58

61

61
62
68
68
69

71

71
72
73
73
73
74
75
75
75
75
76
76
77
78

79

80
82
83
84
84
84

Table of Contents

1.5.1.2. Installation and upgrades 84
1.5.1.3. Automatic injection 84
1.5.1.4. Istio Role Based Access Control features 84
1.5.1.5. OpenSSL 85
1.5.1.6. External workloads 85
1.5.1.7. Virtual Machine Support 85
1.5.1.8. Component modifications 85
1.5.1.9. Envoy filters 86
1.5.1.10. Envoy services 86
1.5.1.11. Istio Container Network Interface (CNI) plugin 86
1.5.1.12. Global mTLS settings 86
1.5.113. Gateways 86
1.5.1.14. Multicluster configurations 86
1.5.1.15. Custom Certificate Signing Requests (CSR) 86
1.5.1.16. Routes for Istio Gateways 87
1.5.1.16.1. Catch-all domains 87
1.5.1.16.2. Subdomains 87
1.5.1.16.3. Transport layer security 87
Additional resources 87

1.5.2. Multitenant installations 87
1.5.2.1. Multitenancy versus cluster-wide installations 87
1.5.2.2. Cluster scoped resources 88
1.5.3. Kiali and service mesh 88
1.5.4. Distributed tracing and service mesh 89
1.6. PREPARING TO INSTALL SERVICE MESH 89
1.6.1. Prerequisites 89
1.6.2. Supported configurations 90
1.6.2.1. Supported platforms 90
1.6.2.2. Unsupported configurations 90
1.6.2.3. Supported network configurations 90
1.6.2.4. Supported configurations for Service Mesh 90
1.6.2.5. Supported configurations for Kiali 91
1.6.2.6. Supported configurations for Distributed Tracing 91
1.6.2.7. Supported WebAssembly module 91
1.6.3. Next steps 91
1.7. INSTALLING THE OPERATORS 91
1.7.1. Operator overview 92
1.7.2. Installing the Operators 92
1.7.3. Configuring the Service Mesh Operator to run on infrastructure nodes 93
1.7.4. Verifying the Service Mesh Operator is running on infrastructure node 94
1.7.5. Next steps 94
1.8. CREATING THE SERVICEMESHCONTROLPLANE 94
1.8.1. About ServiceMeshControlPlane 94
1.8.1.1. Deploying the Service Mesh control plane from the web console 95
1.8.1.2. Deploying the Service Mesh control plane using the CLI 96
1.8.1.3. Validating your SMCP installation with the CLI 97
1.8.2. About control plane components and infrastructure nodes 97
1.8.2.1. Configuring all control plane components to run on infrastructure nodes using the web console 98
1.8.2.2. Configuring individual control plane components to run on infrastructure nodes using the web console
99

1.8.2.3. Configuring all control plane components to run on infrastructure nodes using the CLI 100
1.8.2.4. Configuring individual control plane components to run on infrastructure nodes using the CLI 101
1.8.2.5. Verifying the Service Mesh control plane is running on infrastructure nodes 103

OpenShift Container Platform 4.12 Service Mesh

1.8.3. About control plane and cluster-wide deployments
1.8.3.1. Configuring the control plane for cluster-wide deployment with the web console
1.8.3.2. Configuring the control plane for cluster-wide deployment with the CLI
1.8.3.3. Customizing the member roll for a cluster-wide mesh

1.8.4. Validating your SMCP installation with Kiali

1.8.5. Additional resources

1.8.6. Next steps

1.9. ADDING SERVICES TO A SERVICE MESH

1.9.1. About adding projects to a service mesh

1.9.2. Creating the Red Hat OpenShift Service Mesh member roll
1.9.2.1. Creating the member roll from the web console
1.9.2.2. Creating the member roll from the CLI

1.9.3. About adding projects using the ServiceMeshMemberRoll resource

103
103
104
105
106
108
108
108
109
109
109
110
m

1.9.3.1. Adding or removing projects from the mesh using the ServiceMeshMemberRoll resource with the web

console

1.9.3.2. Adding or removing projects from the mesh using ServiceMeshMemberRoll resource with the CLI

1.9.4. About adding projects using the ServiceMeshMember resource

1.9.4.1. Adding a project to the mesh using the ServiceMeshMember resource with the web console
1.9.4.2. Adding a project to the mesh using the ServiceMeshMember resource with the CLI

1.9.5. About adding projects using label selectors
1.9.5.1. Adding a project to the mesh using label selectors with the web console
1.9.5.2. Adding a project to the mesh using label selectors with the CLI
1.9.6. Bookinfo example application
1.9.6.1. Installing the Bookinfo application
1.9.6.2. Adding default destination rules
1.9.6.3. Verifying the Bookinfo installation
1.9.6.4. Removing the Bookinfo application
1.9.6.4.1. Delete the Bookinfo project
1.9.6.4.2. Remove the Bookinfo project from the Service Mesh member roll
1.9.7. Next steps
110. ENABLING SIDECAR INJECTION
1.10.1. Prerequisites
1.10.2. Enabling automatic sidecar injection
1.10.3. Validating sidecar injection
1.10.4. Setting proxy environment variables through annotations
1.10.5. Updating sidecar proxies
1.10.6. Next steps
1.11. UPGRADING SERVICE MESH
1.11.1. Understanding versioning
1.11.1.1. How versioning affects Service Mesh upgrades
1.11.1.2. Understanding Service Mesh versions
1.11.2. Upgrade considerations
1.11.2.1. Known issues that may affect upgrade
1.11.3. Upgrading the Operators
1.11.4. Upgrading the control plane
1.1.4.1. Upgrade changes from version 2.4 to version 2.5
1.11.4.1.1. Istio OpenShift Routing (IOR) default setting change
1.11.4.1.2. Istio proxy concurrency configuration enhancement
1.1.4.2. Upgrade changes from version 2.3 to version 2.4
1.1.4.3. Upgrade changes from version 2.2 to version 2.3
1.1.4.4. Upgrade changes from version 2.1 to version 2.2
1.1.4.5. Upgrade changes from version 2.0 to version 2.1
111.4.6. Upgrading the Service Mesh control plane

12
13
13
14
15
116
n7
18
19
19
122
122
124
124
124
125
125
125
126
127
128
129
129
129
129
130
130
130

131
132
133
133
133
134
134
134
135
135
136

Table of Contents

1.1.4.7. Migrating Red Hat OpenShift Service Mesh from version 1.1to version 2.0 137
111.4.7.1. Upgrading Red Hat OpenShift Service Mesh 137
1.11.4.7.2. Configuring the 2.0 ServiceMeshControlPlane 139

1.11.4.7.2.1. Architecture changes 139
111.4.7.2.2. Annotation changes 139
1.11.4.7.2.3. Behavioral changes 139
1.11.4.7.2.4. Migration details for unsupported resources 140
1.11.4.7.2.5. Mixer plugins 141
111.4.7.2.6. Mutual TLS changes 141
111.4.7.2.6.1. Other mTLS Examples 142
1.11.4.7.3. Configuration recipes 144
111.4.7.3.1. Mutual TLS in a data plane 144
111.4.7.3.2. Custom signing key 144
111.4.7.3.3. Tracing 144
1.11.4.7.3.4. Visualization 145
1.11.4.7.3.5. Resource utilization and scheduling 146
1.11.4.7.4. Next steps for migrating your applications and workloads 147
1.11.5. Upgrading the data plane 147
1.11.5.1. Updating your applications and workloads 147
112. MANAGING USERS AND PROFILES 148
112.1. Creating the Red Hat OpenShift Service Mesh members 148
112.2. Creating Service Mesh control plane profiles 149
112.2.1. Creating the ConfigMap 149
112.2.2. Setting the correct network policy 150
113. SECURITY 150
1.13.1. About mutual Transport Layer Security (mTLS) 150

113.1.1. Enabling strict mTLS across the service mesh 150
1.13.1.1.1. Configuring sidecars for incoming connections for specific services 151
1.13.1.1.2. Configuring sidecars for outgoing connections 152
113.1.1.3. Setting the minimum and maximum protocol versions 152

113.1.2. Validating encryption with Kiali 153

1.13.2. Configuring Role Based Access Control (RBAC) 154

113.2.1. Configure intra-project communication 156
113.2.1.1. Restrict access to services outside a namespace 156
113.2.1.2. Creating allow-all and default deny-all authorization policies 156

113.2.2. Allow or deny access to the ingress gateway 157

113.2.3. Restrict access with JSSON Web Token 157

1.13.3. Configuring cipher suites and ECDH curves 158
1.13.4. Configuring JSON Web Key Sets resolver certificate authority 159
113.5. Adding an external certificate authority key and certificate 160

113.5.1. Adding an existing certificate and key 160

113.5.2. Verifying your certificates 161

113.5.3. Removing the certificates 162

1.13.6. About integrating Service Mesh with cert-manager and istio-csr 163
113.6.1. Installing cert-manager 163
113.7. Additional resources 167
114. MANAGING TRAFFIC IN YOUR SERVICE MESH 167
1.14.1. Using gateways 168

114.1.1. Enabling gateway injection 169

1.14.1.2. Deploying automatic gateway injection 169

114.1.3. Managing ingress traffic 172
1.14.1.3.1. Determining the ingress IP and ports 172

114.1.3.1.1. Determining ingress ports with a load balancer 172

OpenShift Container Platform 4.12 Service Mesh

1.14.1.3.1.2. Determining ingress ports without a load balancer
114.1.4. Configuring an ingress gateway
1.14.2. Understanding automatic routes
1.14.2.1. Routes with subdomains
114.2.2. Creating subdomain routes
114.2.3. Route labels and annotations
1.14.2.4. Disabling automatic route creation
114.2.4.1. Disabling automatic route creation for specific cases
114.2.4.2. Disabling automatic route creation for all cases
1.14.3. Understanding service entries
1.14.4. Using VirtualServices
114.4.1. Configuring VirtualServices
114.4.2. VirtualService configuration reference
1.14.5. Understanding destination rules
1.14.6. Understanding network policies
114.6.1. Disabling automatic NetworkPolicy creation
114.7. Configuring sidecars for traffic management
1.14.8. Routing Tutorial
114.8.1. Bookinfo routing tutorial
1.14.8.2. Applying a virtual service
114.8.3. Testing the new route configuration
1.14.8.4. Route based on user identity
115. METRICS, LOGS, AND TRACES
1.15.1. Discovering console addresses
1.15.2. Accessing the Kiali console
115.3. Viewing service mesh data in the Kiali console
1.15.3.1. Changing graph layouts in Kiali
115.3.2. Viewing logs in the Kiali console
115.3.3. Viewing metrics in the Kiali console
1.15.4. Distributed tracing
115.4.1. Configuring the distributed tracing platform (Tempo)
115.4.2. Connecting an existing distributed tracing Jaeger instance
1.15.4.3. Adjusting the sampling rate
115.5. Accessing the Jaeger console
1.15.6. Accessing the Grafana console
115.7. Accessing the Prometheus console
1.15.8. Integrating with user-workload monitoring
115.9. Additional resources
116. PERFORMANCE AND SCALABILITY
1.16.1. Setting limits on compute resources
116.2. Load test results
1.16.2.1. Service Mesh Control plane performance
116.2.2. Data plane performance
1.16.2.2.1. CPU and memory consumption
116.2.2.2. Additional latency
1.17. CONFIGURING SERVICE MESH FOR PRODUCTION

1.17.1. Configuring your ServiceMeshControlPlane resource for production

1.17.2. Additional resources
1.18. CONNECTING SERVICE MESHES
1.18.1. Federation overview
118.2. Federation features
1.18.3. Federation security
1.18.4. Federation limitations

173
173
175
176
176
176
177
177
177
177
178
179
180
180
181
181
182
183
183
183
184
184
185
185
186
187
188
188
189
190
190
192
193
194
195
196
196
201
201
201
203
203
203
204
204
204
204
205
206
206
206
207
207

1.18.5. Federation prerequisites
1.18.6. Planning your mesh federation
118.7. Mesh federation across clusters

1.18.7.1. Exposing the federation ingress on clusters running on bare metal
118.7.2. Exposing the federation ingress on clusters running on IBM Power and IBM Z
118.7.3. Exposing the federation ingress on Amazon Web Services (AWS)

1.18.7.4. Exposing the federation ingress on Azure

118.7.5. Exposing the federation ingress on Google Cloud Platform (GCP)

1.18.8. Federation implementation checklist
1.18.9. Configuring a Service Mesh control plane for federation
118.9.1. Understanding federation gateways
118.9.2. Understanding federation trust domain parameters
1.18.10. Joining a federated mesh
1.18.10.1. Creating a ServiceMeshPeer resource
1.18.11. Exporting a service from a federated mesh
1.18.11.1. Creating an ExportedServiceSet
1.18.12. Importing a service into a federated mesh
1.18.12.1. Creating an ImportedServiceSet
118.13. Configuring a federated mesh for failover
1.18.13.1. Configuring an ImportedServiceSet for failover
1.18.13.2. Configuring a DestinationRule for failover
1.18.14. Removing a service from the federated mesh
118.14.1. To remove a service from a single mesh
1.18.14.2. To remove a service from the entire federated mesh
1.18.15. Removing a mesh from the federated mesh
1.19. EXTENSIONS
1.19.1. WebAssembly modules overview
1.19.2. WasmPlugin container format
1.19.3. WasmPlugin API reference
119.3.1. Deploying WasmPlugin resources
1.19.4. ServiceMeshExtension container format
1.19.5. ServiceMeshExtension reference
119.5.1. Deploying ServiceMeshExtension resources

1.19.6. Migrating from ServiceMeshExtension to WasmPlugin resources

1.19.6.1. APl changes
1.19.6.2. Container image format changes
1.19.6.3. Migrating to WasmPlugin resources
1.20. OPENSHIFT SERVICE MESH CONSOLE PLUGIN
1.20.1. About the OpenShift Service Mesh Console plugin

Table of Contents

207
208
208
209
209
209
209
209
209
210

212
216

217
220
222
226
228

231
232
233
234
236
236
236
236
236
236
237
238
243
243
244
246
247
247
248
248
248
249

1.20.2. Installing OpenShift Service Mesh Console plugin using the OpenShift Container Platform web console

1.20.3. Installing OpenShift Service Mesh Console plugin using the CLI

250
251

1.20.4. Uninstalling OpenShift Service Mesh Console plugin using the OpenShift Container Platform web

console

1.20.5. Uninstalling OpenShift Service Mesh Console plugin using the CLI

1.20.6. Additional resources
1.21. USING THE 3SCALE WEBASSEMBLY MODULE
1.21.1. Compatibility
1.21.2. Usage as a stand-alone module
1.21.3. Prerequisites
1.21.4. Configuring the threescale-wasm-auth module
1.21.4.1. The WasmPlugin APl extension
1.21.5. Applying 3scale external ServiceEntry objects

251
252
252
252
253
253
253
253
253
254

9

OpenShift Container Platform 4.12 Service Mesh

1.21.6. The 3scale WebAssembly module configuration
1.21.6.1. Configuring the 3scale WebAssembly module
1.21.6.2. The 3scale WebAssembly module api object
1.21.6.3. The 3scale WebAssembly module system object
1.21.6.4. The 3scale WebAssembly module upstream object
1.21.6.5. The 3scale WebAssembly module backend object
1.21.6.6. The 3scale WebAssembly module services object
1.21.6.7. The 3scale WebAssembly module credentials object
1.21.6.8. The 3scale WebAssembly module lookup queries
1.21.6.9. The 3scale WebAssembly module source object
1.21.6.10. The 3scale WebAssembly module operations object
1.21.6.11. The 3scale WebAssembly module mapping_rules object
1.21.6.12. The 3scale WebAssembly module mapping_rule object
1.21.7. The 3scale WebAssembly module examples for credentials use cases
1.21.7.1. APl key (user_key) in query string parameters
1.21.7.2. Application ID and key
1.21.7.3. Authorization header
1.21.7.4. OpenlD Connect (OIDC) use case
1.21.7.5. Picking up the JWT token from a header
1.21.8. 3scale WebAssembly module minimal working configuration
1.22. USING THE 3SCALE ISTIO ADAPTER
1.22.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh
1.22.1.1. Generating 3scale custom resources
1.22.1.1.1. Generate templates from URL examples
1.22.1.2. Generating manifests from a deployed adapter
1.22.1.3. Routing service traffic through the adapter
1.22.2. Configure the integration settings in 3scale
1.22.3. Caching behavior
1.22.4. Authenticating requests
1.22.4.1. Applying authentication patterns
1.22.4.1.1. API key authentication method
1.22.4.1.2. Application ID and application key pair authentication method
1.22.4.1.3. OpenlD authentication method
1.22.4.1.4. Hybrid authentication method
1.22.5. 3scale Adapter metrics
1.22.6. 3scale backend cache
1.22.6.1. Advantages of enabling backend cache
1.22.6.2. Trade-offs for having lower latencies
1.22.6.3. Backend cache configuration settings
1.22.7. 3scale Istio Adapter APlcast emulation
1.22.8. 3scale Istio adapter verification
1.22.9. 3scale Istio adapter troubleshooting checklist
1.23. TROUBLESHOOTING YOUR SERVICE MESH
1.23.1. Understanding Service Mesh versions
1.23.2. Troubleshooting Operator installation
1.23.2.1. Validating Operator installation
1.23.2.2. Troubleshooting service mesh Operators
1.23.2.2.1. Viewing Operator pod logs
1.23.3. Troubleshooting the control plane
1.23.3.1. Validating the Service Mesh control plane installation
1.23.3.1.1. Accessing the Kiali console
1.23.3.1.2. Accessing the Jaeger console
1.23.3.2. Troubleshooting the Service Mesh control plane

10

257
257
257
258
259
260
261
262
263
264
265
265
265
267
267
268
268

271
272
273
274
274
276
276
277
278
278
279
279
279
280
280

281
282
282
283
283
283
284
284
285
285
286
286
286
286
288
288
288
288

291
292
293

1.23.4. Troubleshooting the data plane
1.23.4.1. Troubleshooting sidecar injection
1.23.4.1.1. Troubleshooting Istio sidecar injection
1.23.4.1.2. Troubleshooting Jaeger agent sidecar injection
1.24. TROUBLESHOOTING ENVOY PROXY
1.24.1. Enabling Envoy access logs
1.24.2. Getting support
1.24.2.1. About the Red Hat Knowledgebase
1.24.2.2. Searching the Red Hat Knowledgebase
1.24.2.3. About collecting service mesh data
1.24.2.4. Submitting a support case
1.25. SERVICE MESH CONTROL PLANE CONFIGURATION REFERENCE
1.25.1. Service Mesh Control plane parameters
1.25.2. spec parameters
1.25.2.1. general parameters
1.25.2.2. profiles parameters
1.25.2.3. techPreview parameters
1.25.2.4. tracing parameters
1.25.2.5. version parameter
1.25.2.6. 3scale configuration
1.25.3. status parameter
1.25.4. Additional resources
1.26. KIALI CONFIGURATION REFERENCE
1.26.1. Specifying Kiali configuration in the SMCP
1.26.2. Specifying Kiali configuration in a Kiali custom resource
1.27. JAEGER CONFIGURATION REFERENCE
1.27.1. Enabling and disabling tracing
1.27.2. Specifying Jaeger configuration in the SMCP
1.27.3. Deploying the distributed tracing platform
1.27.3.1. Default distributed tracing platform (Jaeger) deployment
1.27.3.2. Production distributed tracing platform (Jaeger) deployment (minimal)
1.27.3.3. Production distributed tracing platform (Jaeger) deployment (fully customized)
1.27.3.4. Streaming Jaeger deployment
1.27.4. Specifying Jaeger configuration in a Jaeger custom resource
1.27.4.1. Deployment best practices
1.27.4.2. Configuring distributed tracing security for service mesh
1.27.4.2.1. Configuring distributed tracing security for service mesh from the web console
1.27.4.2.2. Configuring distributed tracing security for service mesh from the command line
1.27.4.3. Distributed tracing default configuration options
1.27.4.4. Jaeger Collector configuration options
1.27.4.5. Distributed tracing sampling configuration options
1.27.4.6. Distributed tracing storage configuration options
1.27.4.6.1. Auto-provisioning an Elasticsearch instance
1.27.4.6.2. Connecting to an existing Elasticsearch instance
1.27.4.7. Managing certificates with Elasticsearch
1.27.4.8. Query configuration options
1.27.4.9. Ingester configuration options
1.28. UNINSTALLING SERVICE MESH
1.28.1. Removing the Red Hat OpenShift Service Mesh control plane
1.28.1.1. Removing the Service Mesh control plane using the web console
1.28.1.2. Removing the Service Mesh control plane using the CLI
1.28.2. Removing the installed Operators
1.28.2.1. Removing the Operators

Table of Contents

293
294
294
294
294
294
295
295
295
296
297
298
298
305
305
306
306
306
307
307
310
3N
3N
312
316
316
316
317
317
318
318
319
319
320
320
320
321
322
323
326
329
331
332
336
344
346
347
349
349
349
349
350
350

1

OpenShift Container Platform 4.12 Service Mesh

1.28.3. Clean up Operator resources

CHAPTER 2. SERVICE MESH 1.X .. i i e it

2.1. SERVICE MESH RELEASE NOTES
2.1.1. Making open source more inclusive
2.1.2. Introduction to Red Hat OpenShift Service Mesh
2.1.3. Getting support
2.1.3.1. About the must-gather tool
2.1.3.2. Prerequisites
2.1.3.3. About collecting service mesh data
2.1.4. Red Hat OpenShift Service Mesh supported configurations
2.1.4.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
2.1.4.2. Supported Mixer adapters
2.1.5. New Features
2.1.5.1. New features Red Hat OpenShift Service Mesh 1.1.18.2
2.1.5.1.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.2
2.1.5.2. New features Red Hat OpenShift Service Mesh 1.1.18.1
2.1.5.2.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18.1
2.1.5.3. New features Red Hat OpenShift Service Mesh 1.1.18
2.1.5.3.1. Component versions included in Red Hat OpenShift Service Mesh version 1.1.18
2.1.5.4. New features Red Hat OpenShift Service Mesh 1.1.17.1
2.1.5.4.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments
2.1.5.4.2. Required update for authorization policies
2.1.5.5. New features Red Hat OpenShift Service Mesh 1.1.17
2.1.5.6. New features Red Hat OpenShift Service Mesh 1.1.16
2.15.7. New features Red Hat OpenShift Service Mesh 1.1.15
2.1.5.8. New features Red Hat OpenShift Service Mesh 1.1.14
2.1.5.8.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920
2.1.5.8.2. Updating the path normalization configuration
2.1.5.8.3. Path normalization configuration examples
2.1.5.8.4. Configuring your SMCP for path normalization
2.1.5.9. New features Red Hat OpenShift Service Mesh 1.1.13
2.1.5.10. New features Red Hat OpenShift Service Mesh 1.1.12
2.1.5.11. New features Red Hat OpenShift Service Mesh 1.1.11
2.1.5.12. New features Red Hat OpenShift Service Mesh 1.1.10
2.1.5.13. New features Red Hat OpenShift Service Mesh 1.1.9
2.15.14. New features Red Hat OpenShift Service Mesh 1.1.8
2.1.5.15. New features Red Hat OpenShift Service Mesh 1.1.7
2.1.5.16. New features Red Hat OpenShift Service Mesh 1.1.6
2.15.17. New features Red Hat OpenShift Service Mesh 1.1.5
2.1.5.18. New features Red Hat OpenShift Service Mesh 1.1.4
2.1.5.18.1. Manual updates required by CVE-2020-8663
2.1.5.18.2. Upgrading from Elasticsearch 5 to Elasticsearch 6
2.1.5.19. New features Red Hat OpenShift Service Mesh 1.1.3
2.1.5.20. New features Red Hat OpenShift Service Mesh 1.1.2
2.1.5.21. New features Red Hat OpenShift Service Mesh 1.1.1
2.1.5.22. New features Red Hat OpenShift Service Mesh 1.1.0
2.1.5.22.1. Manual updates from 1.0 to 1.1
2.1.6. Deprecated features
2.1.6.1. Deprecated features Red Hat OpenShift Service Mesh 1.1.5
2.1.7. Known issues
2.1.7.1. Service Mesh known issues
2.1.7.2. Kiali known issues

12

350

353
353
353
353
353
354
355
355
356
356
356
356
357
357
357
357
357
357
358
358
358
359
359
359
359
359
360
362
362
362
362
363
363
363
363
363
363
363
363
363
365
366
366
366
366
366
367
367
368
368
369

2.1.8. Fixed issues
2.1.8.1. Service Mesh fixed issues
2.1.8.2. Kiali fixed issues
2.2. UNDERSTANDING SERVICE MESH
2.2.1. What is Red Hat OpenShift Service Mesh?
2.2.2. Red Hat OpenShift Service Mesh Architecture
2.2.3. Understanding Kiali
2.2.3.1. Kiali overview
2.2.3.2. Kiali architecture
2.2.3.3. Kiali features
2.2.4. Understanding Jaeger
2.2.4.1. Distributed tracing overview
2.2.4.2. Distributed tracing architecture
2.2.4.3. Red Hat OpenShift distributed tracing platform features
2.2.5. Next steps
2.3. SERVICE MESH AND ISTIO DIFFERENCES
2.3.1. Multitenant installations
2.3.1.1. Multitenancy versus cluster-wide installations
2.3.1.2. Cluster scoped resources
2.3.2. Differences between Istio and Red Hat OpenShift Service Mesh
2.3.2.1. Command line tool
2.3.2.2. Automatic injection
2.3.2.3. Istio Role Based Access Control features
2.3.2.4. OpenSSL
2.3.2.5. Component modifications
2.3.2.6. Envoy, Secret Discovery Service, and certificates
2.3.2.7. Istio Container Network Interface (CNI) plugin
2.3.2.8. Routes for Istio Gateways
2.3.2.8.1. Catch-all domains
2.3.2.8.2. Subdomains
2.3.2.8.3. Transport layer security
Additional resources
2.3.3. Kiali and service mesh
2.3.4. Distributed tracing and service mesh
2.4. PREPARING TO INSTALL SERVICE MESH
2.4.1. Prerequisites
2.4.2. Red Hat OpenShift Service Mesh supported configurations
2.4.2.1. Supported configurations for Kiali on Red Hat OpenShift Service Mesh
2.4.2.2. Supported Mixer adapters
2.4.3. Operator overview
2.4.4. Next steps
2.5.INSTALLING SERVICE MESH
2.5.1. Prerequisites
2.5.2. Installing the OpenShift Elasticsearch Operator
2.5.3. Installing the Red Hat OpenShift distributed tracing platform Operator
2.5.4. Installing the Kiali Operator
2.5.5. Installing the Operators
2.5.6. Deploying the Red Hat OpenShift Service Mesh control plane
2.5.6.1. Deploying the control plane from the web console
2.5.6.2. Deploying the control plane from the CLI
2.5.7. Creating the Red Hat OpenShift Service Mesh member roll
2.5.7.1. Creating the member roll from the web console
2.5.7.2. Creating the member roll from the CLI

Table of Contents

369
369
370
371
371
372
372
372
373
374
374
374
375
375
376
376
376
376
377
377
377
377
378
378
379
379
379
379
379
379
379
380
380
380
380
381
381
382
382
382
383
383
383
384
385
386
387
388
388
389
391
391
392

13

OpenShift Container Platform 4.12 Service Mesh

14

2.5.8. Adding or removing projects from the service mesh
2.5.8.1. Adding or removing projects from the member roll using the web console
2.5.8.2. Adding or removing projects from the member roll using the CLI

2.5.9. Manual updates
2.5.9.1. Updating sidecar proxies

2.5.10. Next steps

2.6. CUSTOMIZING SECURITY IN A SERVICE MESH

2.6.1. Enabling mutual Transport Layer Security (mTLS)

2.6.1.1. Enabling strict mTLS across the mesh

2.6.11.1. Configuring sidecars for incoming connections for specific services
2.6.1.2. Configuring sidecars for outgoing connections
2.6.1.3. Setting the minimum and maximum protocol versions

2.6.2. Configuring cipher suites and ECDH curves

2.6.3. Adding an external certificate authority key and certificate
2.6.3.1. Adding an existing certificate and key
2.6.3.2. Verifying your certificates
2.6.3.3. Removing the certificates

2.7. TRAFFIC MANAGEMENT

2.7.1. Using gateways

2.7.2. Configuring an ingress gateway

2.7.3. Managing ingress traffic
2.7.3.1. Determining the ingress IP and ports

2.7.3.1.1. Determining ingress ports with a load balancer
2.7.3.1.2. Determining ingress ports without a load balancer

2.7.4. Automatic route creation
2.7.4.1. Enabling Automatic Route Creation
2.7.4.2. Subdomains

2.7.5. Understanding service entries

2.7.6. Using VirtualServices
2.7.6.1. Configuring VirtualServices
2.7.6.2. VirtualService configuration reference

2.7.7. Understanding destination rules

2.7.8. Bookinfo routing tutorial
2.7.8.1. Applying a virtual service
2.7.8.2. Testing the new route configuration
2.7.8.3. Route based on user identity

2.7.9. Additional resources

2.8. DEPLOYING APPLICATIONS ON SERVICE MESH

2.8.1. Prerequisites

2.8.2. Creating control plane templates
2.8.2.1. Creating the ConfigMap

2.8.3. Enabling automatic sidecar injection

2.8.4. Setting proxy environment variables through annotations

2.8.5. Updating Mixer policy enforcement
2.8.5.1. Setting the correct network policy

2.8.6. Bookinfo example application
2.8.6.1. Installing the Bookinfo application
2.8.6.2. Adding default destination rules
2.8.6.3. Verifying the Bookinfo installation
2.8.6.4. Removing the Bookinfo application

2.8.6.4.1. Delete the Bookinfo project
2.8.6.4.2. Remove the Bookinfo project from the Service Mesh member roll
2.8.7. Generating example traces and analyzing trace data

393
393
393
394
394
395
395
395
395
396
396
396
397
398
398
399
400
401
401
402
404
404
405
405
406
406
406
407
408
408
409
410
4n
4n
4n
412
412
413
413
413
413
415
416
417
417
418
418
420
421
422
423
423
423

2.9. DATA VISUALIZATION AND OBSERVABILITY
2.9.1. Viewing service mesh data
2.9.2. Viewing service mesh data in the Kiali console
2.9.2.1. Changing graph layouts in Kiali
2.10. CUSTOM RESOURCES
2.10.1. Prerequisites
2.10.2. Red Hat OpenShift Service Mesh custom resources
2.10.3. ServiceMeshControlPlane parameters
2.10.3.1. Istio global example
2.10.3.2. Istio gateway configuration
2.10.3.3. Istio Mixer configuration
2.10.3.4. Istio Pilot configuration
2.10.4. Configuring Kiali
2.10.4.1. Configuring Kiali for Grafana
2.10.4.2. Configuring Kiali for Jaeger
2.10.5. Configuring Jaeger
2.10.5.1. Configuring Elasticsearch
2.10.5.2. Connecting to an existing Jaeger instance
2.10.5.3. Configuring Elasticsearch
2.10.5.4. Configuring the Elasticsearch index cleaner job
2.10.6. 3scale configuration
2.11. USING THE 3SCALE ISTIO ADAPTER

2.11.1. Integrate the 3scale adapter with Red Hat OpenShift Service Mesh

2.11.1.1. Generating 3scale custom resources
2.11.1.1.1. Generate templates from URL examples
2.11.1.2. Generating manifests from a deployed adapter
2.11.1.3. Routing service traffic through the adapter
2.11.2. Configure the integration settings in 3scale
2.11.3. Caching behavior
2.11.4. Authenticating requests
2.11.4.1. Applying authentication patterns
2.11.4.1.1. APl key authentication method

2.11.4.1.2. Application ID and application key pair authentication method

2.11.4.1.3. OpenlID authentication method
2.11.4.1.4. Hybrid authentication method
2.11.5. 3scale Adapter metrics
2.11.6. 3scale Istio adapter verification
2.11.7. 3scale Istio adapter troubleshooting checklist
2.12. REMOVING SERVICE MESH

2.12.1. Removing the Red Hat OpenShift Service Mesh control plane
2.12.1.1. Removing the Service Mesh control plane using the web console
2.12.1.2. Removing the Service Mesh control plane using the CLI

2.12.2. Removing the installed Operators
2.12.2.1. Removing the Operators
2.12.2.2. Clean up Operator resources

Table of Contents

424
425
425
426
427
427
427
429
429
431
433
434
435
436
437
437
438

441
442
445
445
448
448
450
450

451
452
452
453
453
453
454
454
455
456
456
456
457
457
458
458
458
459
459
459

15

OpenShift Container Platform 4.12 Service Mesh

16

CHAPTER 1. SERVICE MESH 2.X

CHAPTER 1. SERVICE MESH 2.X

1.1. ABOUT OPENSHIFT SERVICE MESH

NOTE

Because Red Hat OpenShift Service Mesh releases on a different cadence from
OpenShift Container Platform and because the Red Hat OpenShift Service Mesh
Operator supports deploying multiple versions of the ServiceMeshControlPlane, the
Service Mesh documentation does not maintain separate documentation sets for minor
versions of the product. The current documentation set applies to the most recent
version of Service Mesh unless version-specific limitations are called out in a particular
topic or for a particular feature.

For additional information about the Red Hat OpenShift Service Mesh life cycle and
supported platforms, refer to the Platform Life Cycle Policy.

1.1.1. Introduction to Red Hat OpenShift Service Mesh

Red Hat OpenShift Service Mesh addresses a variety of problems in a microservice architecture by
creating a centralized point of control in an application. It adds a transparent layer on existing distributed
applications without requiring any changes to the application code.

Microservice architectures split the work of enterprise applications into modular services, which can
make scaling and maintenance easier. However, as an enterprise application built on a microservice
architecture grows in size and complexity, it becomes difficult to understand and manage. Service Mesh
can address those architecture problems by capturing or intercepting traffic between services and can
modify, redirect, or create new requests to other services.

Service Mesh, which is based on the open source Istio project, provides an easy way to create a network
of deployed services that provides discovery, load balancing, service-to-service authentication, failure
recovery, metrics, and monitoring. A service mesh also provides more complex operational functionality,
including A/B testing, canary releases, access control, and end-to-end authentication.

1.1.2. Core features

Red Hat OpenShift Service Mesh provides a number of key capabilities uniformly across a network of
services:

e Traffic Management - Control the flow of traffic and API calls between services, make calls
more reliable, and make the network more robust in the face of adverse conditions.

® Service Identity and Security- Provide services in the mesh with a verifiable identity and
provide the ability to protect service traffic as it flows over networks of varying degrees of
trustworthiness.

® Policy Enforcement - Apply organizational policy to the interaction between services, ensure
access policies are enforced and resources are fairly distributed among consumers. Policy

changes are made by configuring the mesh, not by changing application code.

® Telemetry - Gain understanding of the dependencies between services and the nature and flow
of traffic between them, providing the ability to quickly identify issues.

17

https://access.redhat.com/support/policy/updates/openshift#ossm
https://istio.io/

OpenShift Container Platform 4.12 Service Mesh

1.2. SERVICE MESH RELEASE NOTES

1.2.1. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

1.2.2. New features and enhancements

This release adds improvements related to the following components and concepts.

1.2.2.1. New features Red Hat OpenShift Service Mesh version 2.5.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.1.1. Component versions for Red Hat OpenShift Service Mesh version 2.5.1

Component Version

Istio 118.5
Envoy Proxy 1.26.8
Kiali 1.73.7

1.2.2.2. New features Red Hat OpenShift Service Mesh version 2.5

This release of Red Hat OpenShift Service Mesh adds new features, addresses Common Vulnerabilities
and Exposures (CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and
later.

This release ends maintenance support for OpenShift Service Mesh version 2.2. If you are using
OpenShift Service Mesh version 2.2, you should update to a supported version.

1.2.2.2.1. Component versions for Red Hat OpenShift Service Mesh version 2.5

Component Version
Istio 118.5
Envoy Proxy 1.26.8
Kiali 1.73.4

1.2.2.2.2. Istio 1.18 support

18

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. SERVICE MESH 2.X

Service Mesh 2.5 is based on Istio 1.18, which brings in new features and product enhancements. While
Red Hat OpenShift Service Mesh supports many Istio 1.18 features, the following exceptions should be
noted:

® Ambient mesh is not supported

® QuickAssist Technology (QAT) PrivateKeyProvider in Istio is not supported

1.2.2.2.3. Cluster-Wide mesh migration

This release adds documentation for migrating from a multitenant mesh to a cluster-wide mesh. For
more information, see the following documentation:

® "About migrating to a cluster-wide mesh"
® "Excluding namespaces from a cluster-wide mesh"
® "Defining which namespaces receive sidecar injection in a cluster-wide mesh"

® "Excluding individual pods from a cluster-wide mesh"

1.2.2.2.4. Red Hat OpenShift Service Mesh Operator on ARM-based clusters

This release provides the Red Hat OpenShift Service Mesh Operator on ARM-based clusters as a
generally available feature.

1.2.2.2.5. Integration with Red Hat OpenShift distributed tracing platform (Tempo) Stack

This release introduces a generally available integration of the tracing extension provider(s). You can
expose tracing data to the Red Hat OpenShift distributed tracing platform (Tempo) stack by appending
a named element and the zipkin provider to the spec.meshConfig.extensionProviders specification.
Then, a telemetry custom resource configures Istio proxies to collect trace spans and send them to the
Tempo distributor service endpoint.

NOTE
Red Hat OpenShift distributed tracing platform (Tempo) Stack is not supported on {ibm-
z-titlel.

1.2.2.2.6. OpenShift Service Mesh Console plugin

This release introduces a generally available version of the OpenShift Service Mesh Console (OSSMC)
plugin.

The OSSMC plugin is an extension to the OpenShift Console that provides visibility into your Service
Mesh. With the OSSMC plugin installed, a new Service Mesh menu option is available on the navigation
pane of the web console, as well as new Service Mesh tabs that enhance existing Workloads and Service
console pages.

The features of the OSSMC plugin are very similar to those of the standalone Kiali Console. The
OSSMC plugin does not replace the Kiali Console, and after installing the OSSMC plugin, you can still
access the standalone Kiali Console.

1.2.2.2.7. Istio OpenShift Routing (IOR) default setting change

19

OpenShift Container Platform 4.12 Service Mesh

The default setting for Istio OpenShift Routing (IOR) has changed. Starting with this release, automatic
routes are disabled by default for new instances of the ServiceMeshControlPlane resource.

For new instances of the ServiceMeshControlPlane resources, you can use automatic routes by setting
the enabled field to true in the gateways.openshiftRoute specification of the
ServiceMeshControlPlane resource.

Example ServiceMeshControlPlane resource

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
gateways:
openshiftRoute:
enabled: true

When updating existing instances of the ServiceMeshControlPlane resource to Red Hat OpenShift
Service Mesh version 2.5, automatic routes remain enabled by default.

1.2.2.2.8. Istio proxy concurrency configuration enhancement

The concurrency parameter in the networking.istio AP| configures how many worker threads the Istio
proxy runs.

For consistency across deployments, Istio now configures the concurrency parameter based upon the
CPU limit allocated to the proxy container. For example, a limit of 2500m would set the concurrency
parameter to 3. If you set the concurrency parameter to a different value, then Istio uses that value to
configure how many threads the proxy runs instead of using the CPU limit.

Previously, the default setting for the parameter was 2.

1.2.2.2.9. Gateway API CRD versions

IMPORTANT

OpenShift Container Platform Gateway APl support is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

A new version of the Gateway API custom resource definition (CRD) is now available. Refer to the
following table to determine which Gateway API version should be installed with the OpenShift Service
Mesh version you are using:

Service Mesh Version Istio Version Gateway API Version

20

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. SERVICE MESH 2.X

Service Mesh Version Istio Version Gateway API Version

2.5x 118.x 0.6.2 Use the experimental
branch because
ReferenceGrand is
missing in v0.6.2

2.4.x 116.x 0.51 For multitenant mesh
deployment, all Gateway
API CRDs must be
present. Use the
experimental branch.

1.2.2.3. New features Red Hat OpenShift Service Mesh version 2.4.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.3.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.7

Component Version

Istio 116.7
Envoy Proxy 1.24.12
Kiali 1.65.1

1.2.2.4. New features Red Hat OpenShift Service Mesh version 2.4.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.4.1. Component versions for Red Hat OpenShift Service Mesh version 2.4.6

Component Version

Istio 116.7
Envoy Proxy 1.24.12
Kiali 1.65.1

1.2.2.5. New features Red Hat OpenShift Service Mesh version 2.4.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

OpenShift Container Platform 4.12 Service Mesh

1.2.2.5.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.5

Component Version

Istio 116.7
Envoy Proxy 1.24.12
Kiali 1.65.1

1.2.2.6. New features Red Hat OpenShift Service Mesh version 2.4.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.6.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.4

Component Version

Istio 1.16.7
Envoy Proxy 1.24.12
Jaeger 1.47.0
Kiali 1.65.10

1.2.2.7. New features Red Hat OpenShift Service Mesh version 2.4.3

® The Red Hat OpenShift Service Mesh Operator is now available on ARM-based clusters as a
Technology Preview feature.

® The envoyExtAuthzGrpc field has been added, which is used to configure an external
authorization provider using the gRPC API.

® Common Vulnerabilities and Exposures (CVEs) have been addressed.

® This release is supported on OpenShift Container Platform 4.10 and newer versions.

1.2.2.7.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.3

Component Version

Istio 1.16.7
Envoy Proxy 1.24.10
Jaeger 1.42.0

22

CHAPTER 1. SERVICE MESH 2.X

Component Version

Kiali 1.65.8

1.2.2.7.2. Red Hat OpenShift Service Mesh operator to ARM-based clusters

IMPORTANT

Red Hat OpenShift Service Mesh operator to ARM based clusters is a Technology
Preview feature only. Technology Preview features are not supported with Red Hat
production service level agreements (SLAs) and might not be functionally complete. Red
Hat does not recommend using them in production. These features provide early access
to upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

This release makes the Red Hat OpenShift Service Mesh Operator available on ARM-based clusters as a
Technology Preview feature. Images are available for Istio, Envoy, Prometheus, Kiali, and Grafana.
Images are not available for Jaeger, so Jaeger must be disabled as a Service Mesh add-on.

1.2.2.7.3. Remote Procedure Calls (gRPC) API support for external authorization configuration

This enhancement adds the envoyExtAuthzGrpc field to configure an external authorization provider
using the gRPC API.

1.2.2.8. New features Red Hat OpenShift Service Mesh version 2.4.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.8.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.2

Component Version

Istio 1.16.7
Envoy Proxy 1.24.10
Jaeger 1.42.0
Kiali 1.65.7

1.2.2.9. New features Red Hat OpenShift Service Mesh version 2.4.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

23

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.12 Service Mesh

1.2.2.9.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4.1

Component Version

Istio 116.5

Envoy Proxy 1.24.8
Jaeger 1.42.0
Kiali 1.65.7

1.2.2.10. New features Red Hat OpenShift Service Mesh version 2.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.10.1. Component versions included in Red Hat OpenShift Service Mesh version 2.4

Component Version

Istio 1.16.5

Envoy Proxy 1.24.8
Jaeger 1.42.0
Kiali 1.65.6

1.2.2.10.2. Cluster-wide deployments

This enhancement introduces a generally available version of cluster-wide deployments. A cluster-wide
deployment contains a service mesh control plane that monitors resources for an entire cluster. The
control plane uses a single query across all namespaces to monitor each Istio or Kubernetes resource
that affects the mesh configuration. Reducing the number of queries the control plane performsin a
cluster-wide deployment improves performance.

1.2.2.10.3. Support for discovery selectors

This enhancement introduces a generally available version of the meshConfig.discoverySelectors
field, which can be used in cluster-wide deployments to limit the services the service mesh control plane
can discover.

spec:
meshConfig
discoverySelectors:
- matchLabels:
env: prod
region: us-easti

24

CHAPTER 1. SERVICE MESH

- matchExpressions:
- key: app
operator: In
values:
- cassandra
- spark

1.2.2.10.4. Integration with cert-manager istio-csr

With this update, Red Hat OpenShift Service Mesh integrates with the cert-manager controller and the
istio-csr agent. cert-manager adds certificates and certificate issuers as resource types in Kubernetes
clusters, and simplifies the process of obtaining, renewing, and using those certificates. cert-manager
provides and rotates an intermediate CA certificate for Istio. Integration with istio-csr enables users to
delegate signing certificate requests from Istio proxies to cert-manager. ServiceMeshControlPlane
v2.4 accepts CA certificates provided by cert-manager as cacerts secret.

NOTE

Integration with cert-manager and istio-csr is not supported on IBM Power, IBM Z, and
IBM® LinuxONE.

1.2.2.10.5. Integration with external authorization systems

This enhancement introduces a generally available method of integrating Red Hat OpenShift Service
Mesh with external authorization systems by using the action: CUSTOM field of the
AuthorizationPolicy resource. Use the envoyExtAuthzHttp field to delegate the access control to an
external authorization system.

1.2.2.10.6. Integration with external Prometheus installation

This enhancement introduces a generally available version of the Prometheus extension provider. You
can expose metrics to the OpenShift Container Platform monitoring stack or a custom Prometheus
installation by setting the value of the extensionProviders field to prometheus in the
spec.meshConfig specification. The telemetry object configures Istio proxies to collect traffic metrics.
Service Mesh only supports the Telemetry API for Prometheus metrics.

spec:
meshConfig:
extensionProviders:
- name: prometheus
prometheus: {}
apiVersion: telemetry.istio.io/vialphai
kind: Telemetry
metadata:
name: enable-prometheus-metrics
spec:
metrics:
- providers:
- name: prometheus

1.2.2.10.7. Single stack IPv6 support

2.X

25

OpenShift Container Platform 4.12 Service Mesh

This enhancement introduces generally available support for single stack IPv6 clusters, providing access
to a broader range of IP addresses. Dual stack IPv4 or IPv6 cluster is not supported.

NOTE

Single stack IPv6 support is not available on IBM Power, IBM Z, and IBM® LinuxONE.

1.2.2.10.8. OpenShift Container Platform Gateway API support

IMPORTANT

OpenShift Container Platform Gateway APl support is a Technology Preview feature
only. Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

This enhancement introduces an updated Technology Preview version of the OpenShift Container
Platform Gateway API. By default, the OpenShift Container Platform Gateway APl is disabled.

1.2.2.10.8.1. Enabling OpenShift Container Platform Gateway API

To enable the OpenShift Container Platform Gateway API, set the value of the enabled field to true in
the techPreview.gatewayAPI specification of the ServiceMeshControlPlane resource.

spec:
techPreview:
gatewayAPI:
enabled: true

Previously, environment variables were used to enable the Gateway API.

spec:
runtime:
components:
pilot:
container:
env:
PILOT_ENABLE_GATEWAY_API: "true"
PILOT_ENABLE_GATEWAY_API_STATUS: "true"
PILOT_ENABLE_GATEWAY_API DEPLOYMENT_CONTROLLER: "true"

1.2.2.10.9. Control plane deployment on infrastructure nodes

Service Mesh control plane deployment is now supported and documented on OpenShift infrastructure
nodes. For more information, see the following documentation:

e Configuring all Service Mesh control plane components to run on infrastructure nodes

e Configuring individual Service Mesh control plane components to run on infrastructure nodes

26

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. SERVICE MESH 2.X

1.2.2.10.10. Istio 1.16 support

Service Mesh 2.4 is based on Istio 1.16, which brings in new features and product enhancements. While
many Istio 1.16 features are supported, the following exceptions should be noted:

e HBONE protocol for sidecars is an experimental feature that is not supported.
® Service Mesh on ARM64 architecture is not supported.

® OpenTelemetry APl remains a Technology Preview feature.

1.2.2.11. New features Red Hat OpenShift Service Mesh version 2.3.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later.

1.2.2.11.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.11

Component Version

Istio 114.5
Envoy Proxy 1221
Kiali 1.57.14

1.2.2.12. New features Red Hat OpenShift Service Mesh version 2.3.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.12 and later versions.

1.2.2.12.1. Component versions for Red Hat OpenShift Service Mesh version 2.3.10

Component Version

Istio 114.5
Envoy Proxy 1221
Kiali 1.57.14

1.2.2.13. New features Red Hat OpenShift Service Mesh version 2.3.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.13.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.9

OpenShift Container Platform 4.12 Service Mesh

Component Version

Istio 114.5
Envoy Proxy 1221
Jaeger 1.47.0
Kiali 1.57.14

1.2.2.14. New features Red Hat OpenShift Service Mesh version 2.3.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.14.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.8

Component Version

Istio 1.14.5

Envoy Proxy 1221
Jaeger 1.47.0
Kiali 1.57.13

1.2.2.15. New features Red Hat OpenShift Service Mesh version 2.3.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.15.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.7

Component Version

Istio 114.6
Envoy Proxy 1221
Jaeger 1.42.0
Kiali 1.57.11

1.2.2.16. New features Red Hat OpenShift Service Mesh version 2.3.6

28

CHAPTER 1. SERVICE MESH 2.X

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.16.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.6

Component Version

Istio 1.14.5
Envoy Proxy 1221
Jaeger 1.42.0
Kiali 1.57.10

1.2.2.17. New features Red Hat OpenShift Service Mesh version 2.3.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.17.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.5

Component Version

Istio 1.14.5
Envoy Proxy 1.22.9
Jaeger 1.42.0
Kiali 1.57.10

1.2.2.18. New features Red Hat OpenShift Service Mesh version 2.3.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.18.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.4

Component Version

Istio 114.6
Envoy Proxy 1.22.9
Jaeger 1.42.0

OpenShift Container Platform 4.12 Service Mesh

Component Version

Kiali 1.57.9

1.2.2.19. New features Red Hat OpenShift Service Mesh version 2.3.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.19.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.3

Component Version

Istio 1.14.5

Envoy Proxy 1.22.9
Jaeger 1.42.0
Kiali 1.57.7

1.2.2.20. New features Red Hat OpenShift Service Mesh version 2.3.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.20.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.2

Component Version

Istio 1.14.5
Envoy Proxy 1.22.7
Jaeger 1.39

Kiali 1.57.6

1.2.2.21. New features Red Hat OpenShift Service Mesh version 2.3.1

This release of Red Hat OpenShift Service Mesh introduces new features, addresses Common
Vulnerabilities and Exposures (CVESs), contains bug fixes, and is supported on OpenShift Container
Platform 4.9 and later versions.

1.2.2.21.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3.1

30

CHAPTER 1. SERVICE MESH 2.X

Component Version

Istio 1.14.5
Envoy Proxy 1.22.4
Jaeger 1.39

Kiali 1.57.5

1.2.2.22. New features Red Hat OpenShift Service Mesh version 2.3

This release of Red Hat OpenShift Service Mesh introduces new features, addresses Common
Vulnerabilities and Exposures (CVESs), contains bug fixes, and is supported on OpenShift Container
Platform 4.9 and later versions.

1.2.2.22.1. Component versions included in Red Hat OpenShift Service Mesh version 2.3

Component Version

Istio 1.14.3
Envoy Proxy 1.22.4
Jaeger 1.38

Kiali 1.57.3

1.2.2.22.2. New Container Network Interface (CNI) DaemonSet container and ConfigMap

The openshift-operators namespace includes a new istio CNI DaemonSet istio-chi-node-v2-3 and a
new ConfigMap resource, istio-cni-config-v2-3.

When upgrading to Service Mesh Control Plane 2.3, the existing istio-cni-node DaemonSet is not
changed, and a new istio-cni-node-v2-3 DaemonSet is created.

This name change does not affect previous releases or any istio-cni-node CNI DaemonSet associated
with a Service Mesh Control Plane deployed using a previous release.

1.2.2.22.3. Gateway injection support

This release introduces generally available support for Gateway injection. Gateway configurations are
applied to standalone Envoy proxies that are running at the edge of the mesh, rather than the sidecar
Envoy proxies running alongside your service workloads. This enables the ability to customize gateway
options. When using gateway injection, you must create the following resources in the namespace where
you want to run your gateway proxy: Service, Deployment, Role, and RoleBinding.

1.2.2.22.4. Istio 1.14 Support

OpenShift Container Platform 4.12 Service Mesh

Service Mesh 2.3 is based on Istio 1.14, which brings in new features and product enhancements. While
many Istio 1.14 features are supported, the following exceptions should be noted:

e ProxyConfig APl is supported with the exception of the image field.
® Telemetry APl is a Technology Preview feature.

® SPIRE runtime is not a supported feature.

1.2.2.22.5. OpenShift Service Mesh Console

IMPORTANT

OpenShift Service Mesh Console is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

This release introduces a Technology Preview version of the OpenShift Container Platform Service
Mesh Console, which integrates the Kiali interface directly into the OpenShift web console. For
additional information, see Introducing the OpenShift Service Mesh Console (A Technology Preview)

1.2.2.22.6. Cluster-wide deployment

IMPORTANT

Cluster-wide deployment is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

This release introduces cluster-wide deployment as a Technology Preview feature. A cluster-wide
deployment contains a Service Mesh Control Plane that monitors resources for an entire cluster. The
control plane uses a single query across all namespaces to monitor each Istio or Kubernetes resource
kind that affects the mesh configuration. In contrast, the multitenant approach uses a query per
namespace for each resource kind. Reducing the number of queries the control plane performsin a
cluster-wide deployment improves performance.

NOTE

This cluster-wide deployment documentation is only applicable for control planes
deployed using SMCP v2.3. cluster-wide deployments created using SMCP v2.3 are not
compatible with cluster-wide deployments created using SMCP v2.4.

32

https://access.redhat.com/support/offerings/techpreview/
https://cloud.redhat.com/blog/introducing-the-openshift-service-mesh-console-a-developer-preview
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. SERVICE MESH 2.X

1.2.2.22.6.1. Configuring cluster-wide deployment

The following example ServiceMeshControlPlane object configures a cluster-wide deployment.

To create an SMCP for cluster-wide deployment, a user must belong to the cluster-admin ClusterRole.
If the SMCP is configured for cluster-wide deployment, it must be the only SMCP in the cluster. You
cannot change the control plane mode from multitenant to cluster-wide (or from cluster-wide to
multitenant). If a multitenant control plane already exists, delete it and create a new one.

This example configures the SMCP for cluster-wide deployment.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:

name: cluster-wide

namespace: istio-system
spec:

version: v2.3

techPreview:

controlPlaneMode: ClusterScoped ﬂ

Enables Istiod to monitor resources at the cluster level rather than monitor each individual
namespace.

Additionally, the SMMR must also be configured for cluster-wide deployment. This example configures
the SMMR for cluster-wide deployment.

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
name: default
spec:
members:

- 0

Adds all namespaces to the mesh, including any namespaces you subsequently create. The
following namespaces are not part of the mesh: kube, openshift, kube-* and openshift-*.

1.2.2.23. New features Red Hat OpenShift Service Mesh version 2.2.12

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.23.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.12

Component Version

Istio 112.9

Envoy Proxy 1.20.8

33

OpenShift Container Platform 4.12 Service Mesh

Component Version

Jaeger 1.47.0

Kiali 1.48.11

1.2.2.24. New features Red Hat OpenShift Service Mesh version 2.2.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.11 and later versions.

1.2.2.24.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.11

Component Version

Istio 1.12.9
Envoy Proxy 1.20.8
Jaeger 1.47.0
Kiali 1.48.10

1.2.2.25. New features Red Hat OpenShift Service Mesh version 2.2.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.25.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.10

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8
Jaeger 1.42.0
Kiali 1.48.8

1.2.2.26. New features Red Hat OpenShift Service Mesh version 2.2.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.26.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.9

34

CHAPTER 1. SERVICE MESH 2.X

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8
Jaeger 1.42.0
Kiali 1.48.7

1.2.2.27. New features Red Hat OpenShift Service Mesh version 2.2.8

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.27.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.8

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8
Jaeger 1.42.0
Kiali 1.48.7

1.2.2.28. New features Red Hat OpenShift Service Mesh version 2.2.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.10 and later versions.

1.2.2.28.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.7

Component Version

Istio 1.12.9

Envoy Proxy 1.20.8
Jaeger 1.42.0
Kiali 1.48.6

1.2.2.29. New features Red Hat OpenShift Service Mesh version 2.2.6

OpenShift Container Platform 4.12 Service Mesh

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.29.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.6

Component Version

Istio 1.12.9
Envoy Proxy 1.20.8
Jaeger 1.39
Kiali 1.48.5

1.2.2.30. New features Red Hat OpenShift Service Mesh version 2.2.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.30.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.5

Component Version

Istio 1.12.9
Envoy Proxy 1.20.8
Jaeger 1.39
Kiali 1.48.3

1.2.2.31. New features Red Hat OpenShift Service Mesh version 2.2.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.31.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.4

Component Version

Istio 112.9
Envoy Proxy 1.20.8
Jaeger 1.36.14

36

CHAPTER 1. SERVICE MESH 2.X

Component Version

Kiali 1.48.3

1.2.2.32. New features Red Hat OpenShift Service Mesh version 2.2.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.32.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.3

Component Version

Istio 1.12.9
Envoy Proxy 1.20.8
Jaeger 1.36
Kiali 1.48.3

1.2.2.33. New features Red Hat OpenShift Service Mesh version 2.2.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.33.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.2

Component Version

Istio 112.7
Envoy Proxy 1.20.6
Jaeger 1.36
Kiali 1.48.2-1

1.2.2.33.2. Copy route labels

With this enhancement, in addition to copying annotations, you can copy specific labels for an OpenShift
route. Red Hat OpenShift Service Mesh copies all labels and annotations present in the Istio Gateway
resource (with the exception of annotations starting with kubectl.kubernetes.io) into the managed
OpenShift Route resource.

1.2.2.34. New features Red Hat OpenShift Service Mesh version 2.2.1

OpenShift Container Platform 4.12 Service Mesh

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.34.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2.1

Component Version

Istio 112.7
Envoy Proxy 1.20.6
Jaeger 1.34.1
Kiali 1.48.2-1

1.2.2.35. New features Red Hat OpenShift Service Mesh 2.2

This release of Red Hat OpenShift Service Mesh adds new features and enhancements, and is
supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.35.1. Component versions included in Red Hat OpenShift Service Mesh version 2.2

Component Version

Istio 112.7
Envoy Proxy 1.20.4
Jaeger 1.34.1
Kiali 1.48.0.16

1.2.2.35.2. WasmPlugin API

This release adds support for the WasmPlugin APl and deprecates the ServiceMeshExtension API.

1.2.2.35.3. ROSA support

This release introduces service mesh support for Red Hat OpenShift on AWS (ROSA), including multi-
cluster federation.

1.2.2.35.4. istio-node DaemonSet renamed

This release, the istio-node DaemonSet is renamed to istio-cnhi-node to match the name in upstream
Istio.

1.2.2.35.5. Envoy sidecar networking changes

Istio 1.10 updated Envoy to send traffic to the application container using eth0 rather than lo by default.

38

CHAPTER 1. SERVICE MESH 2.X

1.2.2.35.6. Service Mesh Control Plane 1.1

This release marks the end of support for Service Mesh Control Planes based on Service Mesh 1.1 for all
platforms.

1.2.2.35.7. Istio 1.12 Support

Service Mesh 2.2 is based on Istio 1.12, which brings in new features and product enhancements. While
many Istio 1.12 features are supported, the following unsupported features should be noted:

e AuthPolicy Dry Runis a tech preview feature.

® gRPC Proxyless Service Mesh is a tech preview feature.
® Telemetry APl is a tech preview feature.

® Discovery selectors is not a supported feature.

® External control plane is not a supported feature.

® Gateway injection is not a supported feature.

1.2.2.35.8. Kubernetes Gateway API

IMPORTANT

Kubernetes Gateway APl is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

Kubernetes Gateway APl is a technology preview feature that is disabled by default. If the Kubernetes
API deployment controller is disabled, you must manually deploy and link an ingress gateway to the
created Gateway object.

If the Kubernetes API deployment controller is enabled, then an ingress gateway automatically deploys
when a Gateway object is created.

1.2.2.35.8.1. Installing the Gateway API CRDs

The Gateway API CRDs do not come preinstalled by default on OpenShift clusters. Install the CRDs
prior to enabling Gateway API support in the SMCP.

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize "github.com/kubernetes-
sigs/gateway-api/config/crd?ref=v0.4.0" | kubectl apply -f -; }

1.2.2.35.8.2. Enabling Kubernetes Gateway API

To enable the feature, set the following environment variables for the Istiod container in
ServiceMeshControlPlane:

39

https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.12 Service Mesh

spec:
runtime:
components:
pilot:
container:
env:
PILOT_ENABLE_GATEWAY_API: "true"
PILOT_ENABLE_GATEWAY_API_STATUS: "true"
and optionally, for the deployment controller
PILOT_ENABLE_GATEWAY_API_DEPLOYMENT_CONTROLLER: "true"

Restricting route attachment on Gateway APl listeners is possible using the SameNamespace or All
settings. Istio ignores usage of label selectors in listeners.allowedRoutes.namespaces and reverts to
the default behavior (SameNamespace).

1.2.2.35.8.3. Manually linking an existing gateway to a Gateway resource

If the Kubernetes API deployment controller is disabled, you must manually deploy and then link an
ingress gateway to the created Gateway resource.

apiVersion: gateway.networking.k8s.io/v1alpha2
kind: Gateway
metadata:
name: gateway
spec:
addresses:
- value: ingress.istio-gateways.svc.cluster.local
type: Hosthname

1.2.2.36. New features Red Hat OpenShift Service Mesh 2.1.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.36.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.6

Component Version

Istio 1.9.9
Envoy Proxy 117.5
Jaeger 1.36
Kiali 1.36.16

1.2.2.37. New features Red Hat OpenShift Service Mesh 2.1.5.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), contains bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

40

CHAPTER 1. SERVICE MESH 2.X

1.2.2.37.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.2

Component Version

Istio 1.9.9
Envoy Proxy 117.5
Jaeger 1.36
Kiali 1.24.17

1.2.2.38. New features Red Hat OpenShift Service Mesh 2.1.5.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.38.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5.1

Component Version

Istio 1.9.9
Envoy Proxy 117.5
Jaeger 1.36
Kiali 1.36.13

1.2.2.39. New features Red Hat OpenShift Service Mesh 2.1.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 and later versions.

1.2.2.39.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.5

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.36
Kiali 1.36.12-1

41

OpenShift Container Platform 4.12 Service Mesh

1.2.2.40. New features Red Hat OpenShift Service Mesh 2.1.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.40.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.4

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.30.2
Kiali 1.36.12-1

1.2.2.41. New features Red Hat OpenShift Service Mesh 2.1.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.41.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.3

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.30.2
Kiali 1.36.10-2

1.2.2.42. New features Red Hat OpenShift Service Mesh 2.1.2.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.42.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2.1

Component Version

Istio 1.9.9

Envoy Proxy 1171

42

CHAPTER 1. SERVICE MESH 2.X

Component Version

Jaeger 1.30.2

Kiali 1.36.9

1.2.2.43. New features Red Hat OpenShift Service Mesh 2.1.2

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

With this release, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator is now installed

to the openshift-distributed-tracing namespace by default. Previously the default installation had
been in the openshift-operator namespace.

1.2.2.43.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.2

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.30.1
Kiali 1.36.8

1.2.2.44. New features Red Hat OpenShift Service Mesh 2.1.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

This release also adds the ability to disable the automatic creation of network policies.
1.2.2.44.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1.1

Component Version

Istio 1.9.9
Envoy Proxy 1171
Jaeger 1.24.1
Kiali 1.36.7

1.2.2.44.2. Disabling network policies

OpenShift Container Platform 4.12 Service Mesh

Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies
resources in the Service Mesh control plane and application namespaces. This is to ensure that
applications and the control plane can communicate with each other.

If you want to disable the automatic creation and management of NetworkPolicies resources, for
example to enforce company security policies, you can do so. You can edit the
ServiceMeshControlPlane to set the spec.security.manageNetworkPolicy setting to false

NOTE

When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service
Mesh will not create any NetworkPolicy objects. The system administrator is responsible
for managing the network and fixing any issues this might cause.

Procedure

1. In the OpenShift Container Platform web console, click Operators = Installed Operators.

2. Select the project where you installed the Service Mesh control plane, for example istio-system,
from the Project menu.

3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane
column, click the name of your ServiceMeshControlPlane, for example basic-install.

4. On the Create ServiceMeshControlPlane Details page, click YAML to modify your
configuration.

5. Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as
shown in this example.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
security:
trust:
manageNetworkPolicy: false

6. Click Save.

1.2.2.45. New features and enhancements Red Hat OpenShift Service Mesh 2.1

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.9.8, Envoy Proxy 1.17.1, Jaeger
1.24.1, and Kiali 1.36.5 on OpenShift Container Platform 4.6 EUS, 4.7, 4.8, 4.9, along with new features
and enhancements.

1.2.2.45.1. Component versions included in Red Hat OpenShift Service Mesh version 2.1

Component Version

Istio 1.9.6

Envoy Proxy 1171

44

CHAPTER 1. SERVICE MESH 2.X

Component Version

Jaeger 1.24.1

Kiali 1.36.5

1.2.2.45.2. Service Mesh Federation

New Custom Resource Definitions (CRDs) have been added to support federating service meshes.
Service meshes may be federated both within the same cluster or across different OpenShift clusters.
These new resources include:

e ServiceMeshPeer - Defines a federation with a separate service mesh, including gateway
configuration, root trust certificate configuration, and status fields. In a pair of federated
meshes, each mesh will define its own separate ServiceMeshPeer resource.

e ExportedServiceMeshSet - Defines which services for a given ServiceMeshPeer are available
for the peer mesh to import.

e ImportedServiceSet - Defines which services for a given ServiceMeshPeer are imported from
the peer mesh. These services must also be made available by the peer’s
ExportedServiceMeshSet resource.

Service Mesh Federation is not supported between clusters on Red Hat OpenShift Service on AWS
(ROSA), Azure Red Hat OpenShift (ARO), or OpenShift Dedicated (OSD).

1.2.2.45.3. OVN-Kubernetes Container Network Interface (CNI) generally available

The OVN-Kubernetes Container Network Interface (CNI) was previously introduced as a Technology
Preview feature in Red Hat OpenShift Service Mesh 2.0.1and is now generally available in Red Hat
OpenShift Service Mesh 2.1and 2.0.x for use on OpenShift Container Platform 4.7.32, OpenShift
Container Platform 4.8.12, and OpenShift Container Platform 4.9.

1.2.2.45.4. Service Mesh WebAssembly (WASM) Extensions

The ServiceMeshExtensions Custom Resource Definition (CRD), first introduced in 2.0 as Technology
Preview, is now generally available. You can use CRD to build your own plugins, but Red Hat does not
provide support for the plugins you create.

Mixer has been completely removed in Service Mesh 2.1. Upgrading from a Service Mesh 2.0.x release to
2.1 will be blocked if Mixer is enabled. Mixer plugins will need to be ported to WebAssembly Extensions.

1.2.2.45.5. 3scale WebAssembly Adapter (WASM)

With Mixer now officially removed, OpenShift Service Mesh 2.1 does not support the 3scale mixer
adapter. Before upgrading to Service Mesh 2.1, remove the Mixer-based 3scale adapter and any
additional Mixer plugins. Then, manually install and configure the new 3scale WebAssembly adapter with
Service Mesh 2.1+ using a ServiceMeshExtension resource.

3scale 2.1Tintroduces an updated Service Mesh integration based on WebAssembly.

1.2.2.45.6. Istio 1.9 Support

45

OpenShift Container Platform 4.12 Service Mesh

Service Mesh 2.1is based on Istio 1.9, which brings in a large number of new features and product
enhancements. While the majority of Istio 1.9 features are supported, the following exceptions should be
noted:

® \Virtual Machine integration is not yet supported

® Kubernetes Gateway APl is not yet supported

® Remote fetch and load of WebAssembly HTTP filters are not yet supported

® Custom CA Integration using the Kubernetes CSR APl is not yet supported

® Request Classification for monitoring traffic is a tech preview feature

® |ntegration with external authorization systems via Authorization policy’'s CUSTOM action is a
tech preview feature

1.2.2.45.7. Improved Service Mesh operator performance

The amount of time Red Hat OpenShift Service Mesh uses to prune old resources at the end of every
ServiceMeshControlPlane reconciliation has been reduced. This results in faster
ServiceMeshControlPlane deployments, and allows changes applied to existing SMCPs to take effect
more quickly.

1.2.2.45.8. Kiali updates

Kiali 1.36 includes the following features and enhancements:

® Service Mesh troubleshooting functionality

o Control plane and gateway monitoring

o Proxy sync statuses

o Envoy configuration views

o Unified view showing Envoy proxy and application logs interleaved
® Namespace and cluster boxing to support federated service mesh views

® New validations, wizards, and distributed tracing enhancements

1.2.2.46. New features Red Hat OpenShift Service Mesh 2.0.11.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.46.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11.1

Component Version

Istio 1.6.14

Envoy Proxy 114.5

46

CHAPTER 1. SERVICE MESH 2.X

Component Version

Jaeger 1.36

Kiali 1.24.17

1.2.2.47. New features Red Hat OpenShift Service Mesh 2.0.11

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs), bug fixes, and is supported on OpenShift Container Platform 4.9 or later.

1.2.2.47.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.11

Component Version

Istio 1.6.14
Envoy Proxy 114.5
Jaeger 1.36
Kiali 1.24.16-1

1.2.2.48. New features Red Hat OpenShift Service Mesh 2.0.10

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.48.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.10

Component Version

Istio 1.6.14
Envoy Proxy 114.5
Jaeger 1.28.0
Kiali 1.24.16-1

1.2.2.49. New features Red Hat OpenShift Service Mesh 2.0.9

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.49.1. Component versions included in Red Hat OpenShift Service Mesh version 2.0.9

OpenShift Container Platform 4.12 Service Mesh

Component Version

Istio 1.6.14
Envoy Proxy 114.5
Jaeger 1.24.1
Kiali 1.24.11

1.2.2.50. New features Red Hat OpenShift Service Mesh 2.0.8

This release of Red Hat OpenShift Service Mesh addresses bug fixes.

1.2.2.51. New features Red Hat OpenShift Service Mesh 2.0.7.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs).

1.2.2.51.1. Change in how Red Hat OpenShift Service Mesh handles URI fragments

Red Hat OpenShift Service Mesh contains a remotely exploitable vulnerability, CVE-2021-39156, where
an HTTP request with a fragment (a section in the end of a URI that begins with a # character) in the URI
path could bypass the Istio URI path-based authorization policies. For instance, an Istio authorization
policy denies requests sent to the URI path /user/profile. In the vulnerable versions, a request with URI
path /user/profile#section1 bypasses the deny policy and routes to the backend (with the normalized
URI path /user/profile%23section1), possibly leading to a security incident.

You are impacted by this vulnerability if you use authorization policies with DENY actions and
operation.paths, or ALLOW actions and operation.notPaths.

With the mitigation, the fragment part of the request’s URI is removed before the authorization and
routing. This prevents a request with a fragment in its URI from bypassing authorization policies which

are based on the URI without the fragment part.

To opt-out from the new behavior in the mitigation, the fragment section in the URI will be kept. You can
configure your ServiceMeshControlPlane to keep URI fragments.

' WARNING
A Disabling the new behavior will normalize your paths as described above and is

considered unsafe. Ensure that you have accommodated for this in any security
policies before opting to keep URI fragments.

Example ServiceMeshControlPlane modification

I apiVersion: maistra.io/v2

48

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-39156

CHAPTER 1. SERVICE MESH 2.X

kind: ServiceMeshControlPlane
metadata:

name: basic
spec:

techPreview:

meshConfig:
defaultConfig:
proxyMetadata: HTTP_STRIP_FRAGMENT_FROM_PATH_UNSAFE_IF_DISABLED: "false"

1.2.2.51.2. Required update for authorization policies

Istio generates hostnames for both the hostname itself and all matching ports. For instance, a virtual
service or Gateway for a host of "httpbin.foo" generates a config matching "httpbin.foo and
httpbin.foo:*". However, exact match authorization policies only match the exact string given for the
hosts or notHosts fields.

Your cluster is impacted if you have AuthorizationPolicy resources using exact string comparison for
the rule to determine hosts or notHosts.

You must update your authorization policy rules to use prefix match instead of exact match. For
example, replacing hosts: ["httpbin.com™] with hosts: ["httpbin.com:*""] in the first
AuthorizationPolicy example.

First example AuthorizationPolicy using prefix match

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: httpbin
namespace: foo
spec:
action: DENY
rules:
- from:
- source:
namespaces: ["dev"]
to:
- operation:
hosts: [“httpbin.com”,"httpbin.com:*"]

Second example AuthorizationPolicy using prefix match

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:

name: httpbin

namespace: default
spec:

action: DENY

rules:

- to:

- operation:
hosts: ["httpbin.example.com:*"]

49

https://istio.io/latest/docs/reference/config/security/authorization-policy/#Operation
https://istio.io/latest/docs/reference/config/security/authorization-policy/#Rule

OpenShift Container Platform 4.12 Service Mesh

1.2.2.52. New features Red Hat OpenShift Service Mesh 2.0.7

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.53. Red Hat OpenShift Service Mesh on Red Hat OpenShift Dedicated and Microsoft
Azure Red Hat OpenShift

Red Hat OpenShift Service Mesh is now supported through Red Hat OpenShift Dedicated and
Microsoft Azure Red Hat OpenShift.

1.2.2.54. New features Red Hat OpenShift Service Mesh 2.0.6

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.55. New features Red Hat OpenShift Service Mesh 2.0.5

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.56. New features Red Hat OpenShift Service Mesh 2.0.4

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

IMPORTANT

There are manual steps that must be completed to address CVE-2021-29492 and CVE-
2021-31920.

1.2.2.56.1. Manual updates required by CVE-2021-29492 and CVE-2021-31920

Istio contains a remotely exploitable vulnerability where an HTTP request path with multiple slashes or
escaped slash characters (%2F or %5C) could potentially bypass an Istio authorization policy when path-
based authorization rules are used.

For example, assume an Istio cluster administrator defines an authorization DENY policy to reject the
request at path /admin. A request sent to the URL path //admin will NOT be rejected by the
authorization policy.

According to RFC 3986, the path //admin with multiple slashes should technically be treated as a
different path from the /admin. However, some backend services choose to normalize the URL paths by
merging multiple slashes into a single slash. This can result in a bypass of the authorization policy
(//admin does not match /admin), and a user can access the resource at path /admin in the backend;
this would represent a security incident.

Your cluster is impacted by this vulnerability if you have authorization policies using ALLOW action +
notPaths field or DENY action + paths field patterns. These patterns are vulnerable to unexpected
policy bypasses.

Your cluster is NOT impacted by this vulnerability if:

® You don't have authorization policies.

50

https://tools.ietf.org/html/rfc3986#section-6

CHAPTER 1. SERVICE MESH 2.X

® Your authorization policies don’t define paths or notPaths fields.

® Your authorization policies use ALLOW action + paths field or DENY action + notPaths field
patterns. These patterns could only cause unexpected rejection instead of policy bypasses. The
upgrade is optional for these cases.

NOTE

The Red Hat OpenShift Service Mesh configuration location for path normalization is
different from the Istio configuration.

1.2.2.56.2. Updating the path normalization configuration

Istio authorization policies can be based on the URL paths in the HTTP request. Path normalization, also
known as URI normalization, modifies and standardizes the incoming requests' paths so that the
normalized paths can be processed in a standard way. Syntactically different paths may be equivalent
after path normalization.

Istio supports the following normalization schemes on the request paths before evaluating against the
authorization policies and routing the requests:

Table 1.1. Normalization schemes

Option Description Example Notes

NONE No normalization is ../%2Fa../b is evaluated This setting is vulnerable
done. Anything received by the authorization to CVE-2021-31920.
by Envoy will be policies and sent to your
forwarded exactly as-is service.

to any backend service.

BASE This is currently the /al../bis normalized to This setting is vulnerable
option used in the /b.\da is normalized to to CVE-2021-31920.
default installation of /da.

Istio. This applies the
normalize_path
option on Envoy proxies,
which follows RFC 3986
with extra normalization
to convert backslashes
to forward slashes.

MERGE_SLASHES Slashes are merged /allb is normalized to Update to this setting to
after the BASE /alb. mitigate CVE-2021-
normalization. 31920.

51

https://en.wikipedia.org/wiki/URI_normalization
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path
https://tools.ietf.org/html/rfc3986

OpenShift Container Platform 4.12 Service Mesh

Option Description Example Notes

DECODE_AND MER The strictest setting /a%2fb is normalized to Update to this setting to

GE_SLASHES when you allow all traffic ~ /a/b. mitigate CVE-2021-
by default. This setting is 31920. This setting is
recommended, with the more secure, but also
caveat that you must has the potential to
thoroughly test your break applications. Test
authorization policies your applications before
routes. Percent- deploying to production.

encoded slash and
backslash characters
(%2F, %2f, %5C and
%5¢) are decoded to/
or\, before the
MERGE_SLASHES

normalization.

The normalization algorithms are conducted in the following order:
1. Percent-decode %2F, %2f, %5C and %5c.
2. The RFC 3986 and other normalization implemented by the normalize_path option in Envoy.

3. Merge slashes.

' WARNING
A While these normalization options represent recommendations from HTTP

standards and common industry practices, applications may interpret a URL in any
way it chooses to. When using denial policies, ensure that you understand how your
application behaves.

1.2.2.56.3. Path normalization configuration examples

Ensuring Envoy normalizes request paths to match your backend services' expectations is critical to the
security of your system. The following examples can be used as a reference for you to configure your
system. The normalized URL paths, or the original URL paths if NONE is selected, will be:

1. Used to check against the authorization policies.

2. Forwarded to the backend application.

Table 1.2. Configuration examples

If your application...

52

https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://www.envoyproxy.io/docs/envoy/latest/api-v3/extensions/filters/network/http_connection_manager/v3/http_connection_manager.proto#envoy-v3-api-field-extensions-filters-network-http-connection-manager-v3-httpconnectionmanager-normalize-path

CHAPTER 1. SERVICE MESH 2.X

If your application... Choose...

Relies on the proxy to do normalization BASE, MERGE_SLASHES or
DECODE_AND_ MERGE_SLASHES

Normalizes request paths based on RFC 3986 and BASE
does not merge slashes.

Normalizes request paths based on RFC 3986 and MERGE_SLASHES
merges slashes, but does not decode percent-
encoded slashes.

Normalizes request paths based on RFC 3986, DECODE_AND_ MERGE_SLASHES
decodes percent-encoded slashes, and merges

slashes.

Processes request paths in a way that is NONE

incompatible with RFC 3986.

1.2.2.56.4. Configuring your SMCP for path normalization

To configure path normalization for Red Hat OpenShift Service Mesh, specify the following in your
ServiceMeshControlPlane. Use the configuration examples to help determine the settings for your
system.

SMCP v2 pathNormalization

spec:
techPreview:
global:
pathNormalization: <option>

1.2.2.56.5. Configuring for case normalization

In some environments, it may be useful to have paths in authorization policies compared in a case
insensitive manner. For example, treating hitps:/myurl/get and https://myurl/GeT as equivalent. In
those cases, you can use the EnvoyFilter shown below. This filter will change both the path used for
comparison and the path presented to the application. In this example, istio-system is the name of the
Service Mesh control plane project.

Save the EnvoyfFilter to a file and run the following command:

I $ oc create -f <myEnvoyFilterFile>

apiVersion: networking.istio.io/vialpha3
kind: EnvoyFilter
metadata:
name: ingress-case-insensitive
namespace: istio-system

53

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986#section-2.1
https://tools.ietf.org/html/rfc3986
https://myurl/get
https://myurl/GeT

OpenShift Container Platform 4.12 Service Mesh

spec:
configPatches:
- applyTo: HTTP_FILTER
match:
context: GATEWAY
listener:
filterChain:
filter:
name: "envoy.filters.network.http_connection_manager"
subFilter:
name: "envoy.filters.http.router"
patch:
operation: INSERT_BEFORE
value:
name: envoy.lua
typed_config:
"@type": "type.googleapis.com/envoy.extensions.filters.http.lua.v3.Lua"
inlineCode: |
function envoy_on_request(request_handle)
local path = request_handle:headers():get(":path")
request_handle:headers():replace(":path", string.lower(path))
end

1.2.2.57. New features Red Hat OpenShift Service Mesh 2.0.3

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

In addition, this release has the following new features:

® Added an option to the must-gather data collection tool that gathers information from a
specified Service Mesh control plane namespace. For more information, see OSSM-351.

® Improved performance for Service Mesh control planes with hundreds of namespaces

1.2.2.58. New features Red Hat OpenShift Service Mesh 2.0.2

This release of Red Hat OpenShift Service Mesh adds support for IBM Z and IBM Power Systems. It also
addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.2.59. New features Red Hat OpenShift Service Mesh 2.0.1

This release of Red Hat OpenShift Service Mesh addresses Common Vulnerabilities and Exposures
(CVEs) and bug fixes.

1.2.2.60. New features Red Hat OpenShift Service Mesh 2.0

This release of Red Hat OpenShift Service Mesh adds support for Istio 1.6.5, Jaeger 1.20.0, Kiali 1.24.2,
and the 3scale Istio Adapter 2.0 and OpenShift Container Platform 4.6.

In addition, this release has the following new features:
e Simplifies installation, upgrades, and management of the Service Mesh control plane.

® Reduces the Service Mesh control plane’s resource usage and startup time.

54

https://issues.redhat.com/browse/OSSM-351

CHAPTER 1. SERVICE MESH 2.X

® |mproves performance by reducing inter-control plane communication over networking.

o Adds support for Envoy's Secret Discovery Service (SDS). SDS is a more secure and
efficient mechanism for delivering secrets to Envoy side car proxies.

® Removes the need to use Kubernetes Secrets, which have well known security risks.

® |mproves performance during certificate rotation, as proxies no longer require a restart to
recognize new certificates.

o Adds support for Istio’s Telemetry v2 architecture, which is built using WebAssembly
extensions. This new architecture brings significant performance improvements.

o Updates the ServiceMeshControlPlane resource to v2 with a streamlined configuration to
make it easier to manage the Service Mesh Control Plane.

o Introduces WebAssembly extensions as a Technology Preview feature.

1.2.3. Technology Preview

Some features in this release are currently in Technology Preview. These experimental features are not
intended for production use.

IMPORTANT

Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

1.2.4. Deprecated and removed features

Some features available in previous releases have been deprecated or removed.
Deprecated functionality is still included in OpenShift Container Platform and continues to be
supported; however, it will be removed in a future release of this product and is not recommended for

new deployments.

Removed functionality no longer exists in the product.

1.2.4.1. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.5

The v2.2 ServiceMeshControlPlane resource is no longer supported. Customers should update their
mesh deployments to use a later version of the ServiceMeshControlPlane resource.

Support for the Red Hat OpenShift distributed tracing platform (Jaeger) Operator is deprecated. To
collect trace spans, use the Red Hat OpenShift distributed tracing platform (Tempo) Stack.

Support for the OpenShift Elasticsearch Operator is deprecated.

Istio will remove support for first-party JSON Web Tokens (JWTs). Istio will still support third-Party
JWTs.

55

https://access.redhat.com/support/offerings/techpreview
https://access.redhat.com/support/offerings/techpreview/

OpenShift Container Platform 4.12 Service Mesh

1.2.4.2. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.4

The v2.1ServiceMeshControlPlane resource is no longer supported. Customers should upgrade their
mesh deployments to use a later version of the ServiceMeshControlPlane resource.

Support for Istio OpenShift Routing (IOR) is deprecated and will be removed in a future release.
Support for Grafana is deprecated and will be removed in a future release.
Support for the following cipher suites, which were deprecated in Red Hat OpenShift Service Mesh 2.3,
has been removed from the default list of ciphers used in TLS negotiations on both the client and server
sides. Applications that require access to services requiring one of these cipher suites will fail to connect
when a TLS connection is initiated from the proxy.

e ECDHE-ECDSA-AESI28-SHA

e ECDHE-RSA-AES128-SHA

e AESI28-GCM-SHA256

e AESI28-SHA

e ECDHE-ECDSA-AES256-SHA

e ECDHE-RSA-AES256-SHA

® AES256-GCM-SHA384

o AES256-SHA

1.2.4.3. Deprecated and removed features in Red Hat OpenShift Service Mesh 2.3

Support for the following cipher suites has been deprecated. In a future release, they will be removed
from the default list of ciphers used in TLS negotiations on both the client and server sides.

e ECDHE-ECDSA-AESI28-SHA

e ECDHE-RSA-AES128-SHA

e AESI28-GCM-SHA256

e AESI28-SHA

e ECDHE-ECDSA-AES256-SHA

e ECDHE-RSA-AES256-SHA

o AES256-GCM-SHA384

® AES256-SHA
The ServiceMeshExtension API, which was deprecated in Red Hat OpenShift Service Mesh version 2.2,
was removed in Red Hat OpenShift Service Mesh version 2.3. If you are using the

ServiceMeshExtension API, you must migrate to the WasmPlugin API to continue using your
WebAssembly extensions.

1.2.4.4. Deprecated features in Red Hat OpenShift Service Mesh 2.2

56

CHAPTER 1. SERVICE MESH 2.X

The ServiceMeshExtension APl is deprecated as of release 2.2 and will be removed in a future release.
While ServiceMeshExtension APl is still supported in release 2.2, customers should start moving to the
new WasmPlugin API.

1.2.4.5. Removed features in Red Hat OpenShift Service Mesh 2.2

This release marks the end of support for Service Mesh control planes based on Service Mesh 1.1 for all
platforms.

1.2.4.6. Removed features in Red Hat OpenShift Service Mesh 2.1

In Service Mesh 2.1, the Mixer component is removed. Bug fixes and support is provided through the end
of the Service Mesh 2.0 life cycle.

Upgrading from a Service Mesh 2.0.x release to 2.1 will not proceed if Mixer plugins are enabled. Mixer
plugins must be ported to WebAssembly Extensions.

1.2.4.7. Deprecated features in Red Hat OpenShift Service Mesh 2.0

The Mixer component was deprecated in release 2.0 and will be removed in release 2.1. While using Mixer
for implementing extensions was still supported in release 2.0, extensions should have been migrated to
the new WebAssembly mechanism.
The following resource types are no longer supported in Red Hat OpenShift Service Mesh 2.0:

® Policy (authentication.istio.io/vlalphal) is no longer supported. Depending on the specific

configuration in your Policy resource, you may have to configure multiple resources to achieve
the same effect.

o Use RequestAuthentication (security.istio.io/vibetal)
o Use PeerAuthentication (security.istio.io/vibetal)

e ServiceMeshPolicy (maistra.io/v1) is no longer supported.

o Use RequestAuthentication or PeerAuthentication, as mentioned above, but place in the
Service Mesh control plane namespace.

® RbacConfig (rbac.istio.io/vlalphal) is no longer supported.

o Replaced by AuthorizationPolicy (security.istio.io/vibetal), which encompasses behavior of
RbacConfig, ServiceRole, and ServiceRoleBinding.

e ServiceMeshRbacConfig (maistra.io/v1) is no longer supported.

o Use AuthorizationPolicy as above, but place in Service Mesh control plane namespace.
e ServiceRole (rbac.istio.io/vlalphal) is no longer supported.
e ServiceRoleBinding (rbac.istio.io/vlalphal) is no longer supported.

® |nKiali, the login and LDAP strategies are deprecated. A future version will introduce
authentication using OpenlD providers.

1.2.5. Known issues

57

https://istio.io/latest/blog/2020/wasm-announce/

OpenShift Container Platform 4.12 Service Mesh

These limitations exist in Red Hat OpenShift Service Mesh:

Red Hat OpenShift Service Mesh does not yet fully support IPv6. As a result, Red Hat
OpenShift Service Mesh does not support dual-stack clusters.

Graph layout - The layout for the Kiali graph can render differently, depending on your
application architecture and the data to display (number of graph nodes and their interactions).
Because it is difficult if not impossible to create a single layout that renders nicely for every
situation, Kiali offers a choice of several different layouts. To choose a different layout, you can
choose a different Layout Schema from the Graph Settings menu.

The first time you access related services such as distributed tracing platform (Jaeger) and
Grafana, from the Kiali console, you must accept the certificate and re-authenticate using your
OpenShift Container Platform login credentials. This happens due to an issue with how the
framework displays embedded pages in the console.

The Bookinfo sample application cannot be installed on IBM Power, IBM Z, and IBM® LinuxONE.
WebAssembly extensions are not supported on IBM Power, IBM Z, and IBM® LinuxONE.

LuaJIT is not supported on IBM Power, IBM Z, and IBM® LinuxONE.

Single stack IPv6 support is not available on IBM Power, IBM Z, and IBM® LinuxONE.

1.2.5.1. Service Mesh known issues

These are the known issues in Red Hat OpenShift Service Mesh:

58

OSSM-6267 After a data source is configured correctly in the Grafana, a data query returns
authentication error. Users are not able to view data in the Istio service and Istio workload
dashboards. Currently, no workaround exists for this issue.

OSSM-5556 Gateways are skipped when istio-system labels do not match discovery selectors.
Workaround: Label the control plane namespace to match discovery selectors to avoid skipping
the Gateway configurations.

Example ServiceMeshControlPlane resource

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
namespace: istio-system
spec:
mode: ClusterWide
meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: enabled
gateways:
ingress:
enabled: true

Then, run the following command at the command line:

https://issues.redhat.com/browse/MAISTRA-1314
https://issues.redhat.com/browse/OSSM-6267
https://issues.redhat.com/browse/OSSM-5556

CHAPTER 1. SERVICE MESH 2.X

I oc label namespace istio-system istio-discovery=enabled

® (OSSM-3890 Attempting to use the Gateway APl in a multitenant mesh deployment generates
an error message similar to the following:

2023-05-02T15:20:42.541034Z error watch error in cluster Kubernetes: failed to list
*vialpha2.TLSRoute: the server could not find the requested resource (get
tisroutes.gateway.networking.k8s.io)

2023-05-02T15:20:42.616450Z info kube controller
"gateway.networking.k8s.io/v1alpha2/TCPRoute" is syncing...

To support Gateway APl in a multitenant mesh deployment, all Gateway API Custom Resource
Definition (CRD) files must be present in the cluster.

In a multitenant mesh deployment, CRD scan is disabled, and Istio has no way to discover which
CRDs are present in a cluster. As a result, Istio attempts to watch all supported Gateway API
CRDs, but generates errors if some of those CRDs are not present.

Service Mesh 2.3.1and later versions support both vialpha2 and vibetal CRDs. Therefore,
both CRD versions must be present for a multitenant mesh deployment to support the Gateway
API.

Workaround: In the following example, the kubectl get operation installs the vialpha2 and
vibetal CRDs. Note the URL contains the additional experimental segment and updates any
of your existing scripts accordingly:

$ kubectl get crd gateways.gateway.networking.k8s.io || { kubectl kustomize
"github.com/kubernetes-sigs/gateway-api/config/crd/experimental ?ref=v0.5.1" | kubectl apply

-5}

® (OSSM-2042 Deployment of SMCP named default fails. If you are creating an SMCP object, and
set its version field to v2.3, the name of the object cannot be default. If the name is default,
then the control plane fails to deploy, and OpenShift generates a Warning event with the
following message:
Error processing component mesh-config: error: [mesh-
config/templates/telemetryv2_1.6.yaml: Internal error occurred: failed calling webhook
"rev.validation.istio.io": Post "https://istiod-default.istio-system.svc:443/validate?
timeout=10s": x509: certificate is valid for istiod.istio-system.svc, istiod-remote.istio-
system.svc, istio-pilot.istio-system.svc, not istiod-default.istio-system.svc, mesh-
config/templates/enable-mesh-permissive.yaml

® (OSSM-1655 Kiali dashboard shows error after enabling mTLS in SMCP.
After enabling the spec.security.controlPlane.mtls setting in the SMCP, the Kiali console
displays the following error message No subsets defined.

® OSSM-1505 This issue only occurs when using the ServiceMeshExtension resource on
OpenShift Container Platform 4.11. When you use ServiceMeshExtension on OpenShift
Container Platform 4.11 the resource never becomes ready. If you inspect the issue using oc
describe ServiceMeshExtension you will see the following error: stderr: Error creating
mount namespace before pivot: function not implemented.
Workaround: ServiceMeshExtension was deprecated in Service Mesh 2.2. Migrate from
ServiceMeshExtension to the WasmPlugin resource. For more information, see Migrating
from ServiceMeshExtension to WasmPlugin resources.

59

https://issues.redhat.com/browse/OSSM-3890
https://issues.redhat.com/browse/OSSM-2042
https://issues.redhat.com/browse/OSSM-1655
https://issues.redhat.com/browse/OSSM-1505

OpenShift Container Platform 4.12 Service Mesh

60

OSSM-1396 If a gateway resource contains the spec.externallPs setting, instead of being
recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never
recreated.

OSSM-1168 When service mesh resources are created as a single YAML file, the Envoy proxy
sidecar is not reliably injected into pods. When the SMCP, SMMR, and Deployment resources
are created individually, the deployment works as expected.

OSSM-1115 The concurrency field of the spec.proxy API did not propagate to the istio-proxy.
The concurrency field works when set with ProxyConfig. The concurrency field specifies the
number of worker threads to run. If the field is set to 0, then the number of worker threads
available is equal to the number of CPU cores. If the field is not set, then the number of worker
threads available defaults to 2.

In the following example, the concurrency field is set to 0.

apiVersion: networking.istio.io/vibetat
kind: ProxyConfig
metadata:
name: mesh-wide-concurrency
namespace: <istiod-namespace>
spec:
concurrency: 0

OSSM-1052 When configuring a Service ExternallP for the ingressgateway in the Service Mesh
control plane, the service is not created. The schema for the SMCP is missing the parameter for
the service.

Workaround: Disable the gateway creation in the SMCP spec and manage the gateway
deployment entirely manually (including Service, Role and RoleBinding).

OSSM-882 This applies for Service Mesh 2.1 and earlier. Namespace is in the
accessible_namespace list but does not appear in Kiali Ul. By default, Kiali will not show any
namespaces that start with "kube" because these namespaces are typically internal-use only
and not part of a mesh.

For example, if you create a namespace called 'akube-a' and add it to the Service Mesh member
roll, then the Kiali Ul does not display the namespace. For defined exclusion patterns, the
software excludes namespaces that start with or contain the pattern.

Workaround: Change the Kiali Custom Resource setting so it prefixes the setting with a carat
(™). For example:

api:
namespaces:
exclude:
- "Nistio-operator”
- "kube-.*"
- "Aopenshift.*"
- "Nbm.*"
- ""kiali-operator"

MAISTRA-2692 With Mixer removed, custom metrics that have been defined in Service Mesh
2.0.x cannot be used in 2.1. Custom metrics can be configured using EnvoyFilter. Red Hat is
unable to support EnvoyFilter configuration except where explicitly documented. This is due to
tight coupling with the underlying Envoy APIs, meaning that backward compatibility cannot be
maintained.

https://issues.redhat.com/browse/OSSM-1396
https://issues.redhat.com/browse/OSSM-1168
https://issues.redhat.com/browse/OSSM-1115
https://issues.redhat.com/browse/OSSM-1052
https://issues.redhat.com/browse/OSSM-882
https://issues.redhat.com/browse/MAISTRA-2692

CHAPTER 1. SERVICE MESH 2.X

® MAISTRA-2648 Service mesh extensions are currently not compatible with meshes deployed on
IBM Z.

® MAISTRA-1959 Migration to 2.0 Prometheus scraping (spec.addons.prometheus.scrape set
to true) does not work when mTLS is enabled. Additionally, Kiali displays extraneous graph data
when mTLS is disabled.

This problem can be addressed by excluding port 15020 from proxy configuration, for example,

spec:
proxy:
networking:
trafficControl:
inbound:
excludedPorts:
- 15020

e MAISTRA-453 If you create a new project and deploy pods immediately, sidecar injection does
not occur. The operator fails to add the maistra.io/member-of before the pods are created,
therefore the pods must be deleted and recreated for sidecar injection to occur.

® MAISTRA-158 Applying multiple gateways referencing the same hostname will cause all
gateways to stop functioning.

1.2.5.2. Kiali known issues

NOTE

New issues for Kiali should be created in the OpenShift Service Mesh project with the
Component set to Kiali.

These are the known issues in Kiali:

® (OSSM-6298 When you click an item reference within the OpenShift Service Mesh Console
(OSSMC) plugin, such as a workload link related to a specific service, the console sometimes
performs multiple redirections before opening the desired page. If you click Back in a web
browser, a different page of the console opens instead of the previous page.
Workaround: In the web browser, click Back twice to navigate to the previous page.

® KIALI-2206 When you are accessing the Kiali console for the first time, and there is no cached
browser data for Kiali, the “View in Grafana” link on the Metrics tab of the Kiali Service Details
page redirects to the wrong location. The only way you would encounter this issue is if you are
accessing Kiali for the first time.

e KIALI-507 Kiali does not support Internet Explorer 11. This is because the underlying frameworks
do not support Internet Explorer. To access the Kiali console, use one of the two most recent
versions of the Chrome, Edge, Firefox or Safari browser.

1.2.6. Fixed issues

The following issues have been resolved in the current release:
® OSSM-6177 Previously, when validation messages were enabled in the

ServiceMeshControlPlane (SMCP), the istiod crashed continuously unless GatewayAPI
support was enabled. Now, when validation messages are enabled but GatewayAPI support is

61

https://issues.redhat.com/browse/MAISTRA-2648
https://issues.jboss.org/browse/MAISTRA-1959
https://issues.jboss.org/browse/MAISTRA-453
https://issues.jboss.org/browse/MAISTRA-158
https://issues.redhat.com/projects/OSSM/
https://issues.redhat.com/browse/OSSM-6298
https://issues.jboss.org/browse/KIALI-2206
https://github.com/kiali/kiali/issues/507
https://issues.redhat.com/browse/OSSM-6177

OpenShift Container Platform 4.12 Service Mesh

not, the istiod does not continuously crash.

® (OSSM-6163 Resolves the following issues:

o Previously, an unstable Prometheus image was included in the Service Mesh control plane
(SMCP) v2.5, and users were not able to access the Prometheus dashboard. Now, in the
Service Mesh operator 2.5.1, the Prometheus image has been updated.

o Previously, in the Service Mesh control plane (SMCP), a Grafana data source was not able
to set Basic authentication password automatically and users were not able to view metrics
from Prometheus in Grafana mesh dashboards. Now, a Grafana data source password is
configured under the securedsonData field. Metrics are displayed correctly in dashboards.

OSSM-6148 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not respond
when the user clicked any option in the menu of any node on the Traffic Graph page. Now, the
plugin responds to the selected option in the menu by redirecting to the corresponding details

page.

OSSM-6099 Previously, the OpenShift Service Mesh Console (OSSMC) plugin failed to load
correctly in an IPv6 cluster. Now, the OSSMC plugin configuration has been modified to ensure
proper loading in an IPv6 cluster.

OSSM-5960 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not display
notification messages such as backend errors or Istio validations. Now, these notifications are
displayed correctly at the top of the plugin page.

OSSM-5959 Previously, the OpenShift Service Mesh Console (OSSMC) plugin did not display
TLS and Istio certification information in the Overview page. Now, this information is displayed
correctly.

OSSM-5902 Previously, the OpenShift Service Mesh Console (OSSMC) plugin redirected to a
"Not Found Page" error when the user clicked the Istio config health symbol on the Overview
page. Now, the plugin redirects to the correct Istio config details page.

OSSM-5541 Previously, an Istio operator pod might keep waiting for the leader lease in some
restart conditions. Now, the leader election implementation has been enhanced to avoid this
issue.

The following issues have been resolved in previous releases:

1.2.6.1. Service Mesh fixed issues

62

® (OSSM-1397 Previously, if you removed the maistra.io/member-of label from a namespace, the

Service Mesh Operator did not automatically reapply the label to the namespace. As a result,
sidecar injection did not work in the namespace.

The Operator would reapply the label to the namespace when you made changes to the
ServiceMeshMember object, which triggered the reconciliation of this member object.

Now, any change to the namespace also triggers the member object reconciliation.

OSSM-3647 Previously, in the Service Mesh control plane (SMCP) v2.2 (Istio 1.12), WasmPlugins
were applied only to inbound listeners. Since SMCP v2.3 (Istio 1.14), WasmPlugins have been
applied to inbound and outbound listeners by default, which introduced regression for users of
the 3scale WasmPlugin. Now, the environment variable
APPLY_WASM_PLUGINS_TO_INBOUND_ONLY is added, which allows safe migration from
SMCP v2.2 tov2.3 and v2.4.

The following setting should be added to the SMCP config:

https://issues.redhat.com/browse/OSSM-6163
https://issues.redhat.com/browse/OSSM-6148
https://issues.redhat.com/browse/OSSM-6099
https://issues.redhat.com/browse/OSSM-5960
https://issues.redhat.com/browse/OSSM-5959
https://issues.redhat.com/browse/OSSM-5902
https://issues.redhat.com/browse/OSSM-5541
https://issues.redhat.com/browse/OSSM-1397
https://issues.redhat.com/browse/OSSM-3647

CHAPTER 1. SERVICE MESH 2.X

spec:
runtime:
components:
pilot:
container:
env:
APPLY _WASM_PLUGINS _TO _INBOUND_ONLY: "true"

To ensure safe migration, perform the following steps:
. Set APPLY_WASM_PLUGINS_TO_INBOUND_ONLY in SMCP v2.2.
2. Upgrade to 2.4.
3. Set spec.match[].mode: SERVER in WasmPlugins.
4. Remove the previously-added environment variable.

OSSM-4851 Previously, an error occurred in the operator deploying new pods in a namespace
scoped inside the mesh when runAsGroup, runAsUser, or fsGroup parameters were nil. Now,
a yaml validation has been added to avoid the nil value.

OSSM-3771Previously, OpenShift routes could not be disabled for additional ingress gateways
defined in a Service Mesh Control Plane (SMCP). Now, a routeConfig block can be added to
each additionallngress gateway so the creation of OpenShift routes can be enabled or
disabled for each gateway.

OSSM-4197 Previously, if you deployed a v2.2 or v2.1 of the 'ServiceMeshControlPlane'
resource, the /etc/cni/multus/net.d/ directory was not created. As a result, the istio-cni pod
failed to become ready, and the istio-cni pods log contained the following message:

$ error Installer exits with open /host/etc/cni/multus/net.d/v2-2-istio-
cni.kubeconfig.tmp.841118073: no such file or directory

Now, if you deploy a v2.2 or v2.1 of the 'ServiceMeshControlPlane' resource, the
/etc/cni/multus/net.d/ directory is created, and the istio-cni pod becomes ready.

OSSM-3993 Previously, Kiali only supported OpenShift OAuth via a proxy on the standard
HTTPS port of 443. Now, Kiali supports OpenShift OAuth over a non-standard HTTPS port. To
enable the port, you must set the spec.server.web_port field to the proxy’s non-standard
HTTPS port in the Kiali CR.

OSSM-3936 Previously, the values for the injection_label_rev and injection_label_name
attributes were hardcoded. This prevented custom configurations from taking effect in the Kiali
Custom Resource Definition (CRD). Now, the attribute values are not hardcoded. You can
customize the values for the injection_label_rev and injection_label_name attributes in the
spec.istio_labels specification.

OSSM-3644 Previously, the federation egress-gateway received the wrong update of network
gateway endpoints, causing extra endpoint entries. Now, the federation-egress gateway has
been updated on the server side so it receives the correct network gateway endpoints.

OSSM-3595 Previously, the istio-cni plugin sometimes failed on RHEL because SELinux did

not allow the utility iptables-restore to open files in the /tmp directory. Now, SELinux passes
iptables-restore via stdin input stream instead of via a file.

63

https://issues.redhat.com/browse/OSSM-4851
https://issues.redhat.com/browse/OSSM-3771
https://issues.redhat.com/browse/OSSM-4197
https://issues.redhat.com/browse/OSSM-3993
https://issues.redhat.com/browse/OSSM-3936
https://issues.redhat.com/browse/OSSM-3644
https://issues.redhat.com/browse/OSSM-3595

OpenShift Container Platform 4.12 Service Mesh

64

OSSM-3586 Previously, Istio proxies were slow to start when Google Cloud Platform (GCP)
metadata servers were not available. When you upgrade to Istio 1.14.6, Istio proxies start as
expected on GCP, even if metadata servers are not available.

OSSM-3025 Istiod sometimes fails to become ready. Sometimes, when a mesh contained many
member namespaces, the Istiod pod did not become ready due to a deadlock within Istiod. The
deadlock is now resolved and the pod now starts as expected.

OSSM-2493 Default nodeSelector and tolerations in SMCP not passed to Kiali. The
nodeSelector and tolerations you add to SMCP.spec.runtime.defaults are now passed to the
Kiali resource.

OSSM-2492 Default tolerations in SMCP not passed to Jaeger. The nodeSelector and
tolerations you add to SMCP.spec.runtime.defaults are now passed to the Jaeger resource.

OSSM-23741f you deleted one of the ServiceMeshMember resources, then the Service Mesh
operator deleted the ServiceMeshMemberRoll. While this is expected behavior when you
delete the last ServiceMeshMember, the operator should not delete the
ServiceMeshMemberRoll if it contains any members in addition to the one that was deleted.
This issue is now fixed and the operator only deletes the ServiceMeshMemberRoll when the last
ServiceMeshMember resource is deleted.

OSSM-2373 Error trying to get OAuth metadata when logging in. To fetch the cluster version,
the system:anonymous account is used. With the cluster’s default bundled ClusterRoles and
ClusterRoleBinding, the anonymous account can fetch the version correctly. If the
system:anonymous account loses its privileges to fetch the cluster version, OpenShift
authentication becomes unusable.

This is fixed by using the Kiali SA to fetch the cluster version. This also allows for improved
security on the cluster.

OSSM-2371 Despite Kiali being configured as "view-only," a user can change the proxy logging
level via the Workload details' Logs tab’s kebab menu. This issue has been fixed so the options
under "Set Proxy Log Level" are disabled when Kiali is configured as "view-only."

OSSM-2344 Restarting Istiod causes Kiali to flood CRI-O with port-forward requests. This issue
occurred when Kiali could not connect to Istiod and Kiali simultaneously issued a large number of
requests to istiod. Kiali now limits the number of requests it sends to istiod.

OSSM-2335 Dragging the mouse pointer over the Traces scatterchart plot sometimes caused
the Kiali console to stop responding due to concurrent backend requests.

OSSM-2221Previously, gateway injection in the ServiceMeshControlPlane namespace was not
possible because the ignore-namespace label was applied to the namespace by default.

When creating a v2.4 control plane, the namespace no longer has the ignore-namespace label
applied, and gateway injection is possible.

In the following example, the oc label command removes the ignore-namespace label from a
namespace in an existing deployment:

I $ oc label namespace istio-system maistra.io/ignore-namespace-

where:

istio_system

Specified the name of the ServiceMeshControlPlane namespace.

https://issues.redhat.com/browse/OSSM-3586
https://issues.redhat.com/browse/OSSM-3025
https://issues.redhat.com/browse/OSSM-2493
https://issues.redhat.com/browse/OSSM-2492
https://issues.redhat.com/browse/OSSM-2374
https://issues.redhat.com/browse/OSSM-2373
https://issues.redhat.com/browse/OSSM-2371
https://issues.redhat.com/browse/OSSM-2344
https://issues.redhat.com/browse/OSSM-2335
https://issues.redhat.com/browse/OSSM-2221

CHAPTER 1. SERVICE MESH 2.X

OSSM-2053 Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, during SMCP
reconciliation, the SMMR controller removed the member namespaces from
SMMR.status.configuredMembers. This caused the services in the member namespaces to
become unavailable for a few moments.

Using Red Hat OpenShift Service Mesh Operator 2.2 or 2.3, the SMMR controller no longer
removes the namespaces from SMMR.status.configuredMembers. Instead, the controller adds
the namespaces to SMMR.status.pendingMembers to indicate that they are not up-to-date.
During reconciliation, as each namespace synchronizes with the SMCP, the namespace is
automatically removed from SMMR.status.pendingMembers.

OSSM-1962 Use EndpointSlices in federation controller. The federation controller now uses
EndpointSlices, which improves scalability and performance in large deployments. The
PILOT_USE_ENDPOINT_SLICE flag is enabled by default. Disabling the flag prevents use of
federation deployments.

OSSM-1668 A new field spec.security.jwksResolverCA was added to the Version 2.1 SMCP
but was missing in the 2.2.0 and 2.2.1 releases. When upgrading from an Operator version where
this field was present to an Operator version that was missing this field, the
.spec.security.jwksResolverCA field was not available in the SMCP.

OSSM-1325 istiod pod crashes and displays the following error message: fatal error:
concurrent map iteration and map write.

OSSM-1211 Configuring Federated service meshes for failover does not work as expected.
The Istiod pilot log displays the following error: envoy connection [C289] TLS error:
337047686:SSL routines:tls_process_server_certificate:certificate verify failed

OSSM-1099 The Kiali console displayed the message Sorry, there was a problem. Try a
refresh or navigate to a different page.

OSSM-1074 Pod annotations defined in SMCP are not injected in the pods.

OSSM-999 Kiali retention did not work as expected. Calendar times were greyed out in the
dashboard graph.

OSSM-797 Kiali Operator pod generates CreateContainerConfigError while installing or
updating the operator.

OSSM-722 Namespace starting with kube is hidden from Kiali.

OSSM-569 There is no CPU memory limit for the Prometheus istio-proxy container. The
Prometheus istio-proxy sidecar now uses the resource limits defined in
spec.proxy.runtime.container.

OSSM-535 Support validationMessages in SMCP. The ValidationMessages field in the Service
Mesh Control Plane can now be set to True. This writes a log for the status of the resources,
which can be helpful when troubleshooting problems.

OSSM-449 VirtualService and Service causes an error "Only unique values for domains are
permitted. Duplicate entry of domain."

OSSM-419 Namespaces with similar names will all show in Kiali namespace list, even though
namespaces may not be defined in Service Mesh Member Role.

OSSM-296 When adding health configuration to the Kiali custom resource (CR) is it not being
replicated to the Kiali configmap.

65

https://issues.redhat.com/browse/OSSM-2053
https://issues.redhat.com/browse/OSSM-1962
https://issues.redhat.com/browse/OSSM-1668
https://issues.redhat.com/browse/OSSM-1325
https://issues.redhat.com/browse/OSSM-1211
https://issues.redhat.com/browse/OSSM-1099
https://issues.redhat.com/browse/OSSM-1074
https://issues.redhat.com/browse/OSSM-999
https://issues.redhat.com/browse/OSSM-797
https://issues.redhat.com/browse/OSSM-722
https://issues.redhat.com/browse/OSSM-569
https://issues.redhat.com/browse/OSSM-535
https://issues.redhat.com/browse/OSSM-449
https://issues.redhat.com/browse/OSSM-419
https://issues.redhat.com/browse/OSSM-296

OpenShift Container Platform 4.12 Service Mesh

66

OSSM-2911n the Kiali console, on the Applications, Services, and Workloads pages, the "Remove
Label from Filters" function is not working.

OSSM-289 In the Kiali console, on the Service Details pages for the 'istio-ingressgateway' and
'laeger-query' services there are no Traces being displayed. The traces exist in Jaeger.

OSSM-287 In the Kiali console there are no traces being displayed on the Graph Service.

OSSM-285 When trying to access the Kiali console, receive the following error message "Error
trying to get OAuth Metadata".
Workaround: Restart the Kiali pod.

MAISTRA-2735 The resources that the Service Mesh Operator deletes when reconciling the
SMCP changed in Red Hat OpenShift Service Mesh version 2.1. Previously, the Operator deleted
a resource with the following labels:

o maistra.io/owner
o app.kubernetes.io/version

Now, the Operator ignores resources that does not also include the
app-kubernetes.io/managed-by=maistra-istio-operator label. If you create your own
resources, you should not add the app.kubernetes.io/managed-by=maistra-istio-operator
label to them.

MAISTRA-2687 Red Hat OpenShift Service Mesh 2.1 federation gateway does not send the full
certificate chain when using external certificates. The Service Mesh federation egress gateway
only sends the client certificate. Because the federation ingress gateway only knows about the
root certificate, it cannot verify the client certificate unless you add the root certificate to the
federation import ConfigMap.

MAISTRA-2635 Replace deprecated Kubernetes API. To remain compatible with OpenShift
Container Platform 4.8, the apiextensions.k8s.io/vibetal APl was deprecated as of Red Hat
OpenShift Service Mesh 2.0.8.

MAISTRA-2631The WASM feature is not working because podman is failing due to nsenter
binary not being present. Red Hat OpenShift Service Mesh generates the following error
message: Error: error configuring CNI network plugin exec: "nsenter": executable file not
found in $PATH. The container image now contains nsenter and WASM works as expected.

MAISTRA-2534 When istiod attempted to fetch the JWKS for an issuer specified in a JWT rule,
the issuer service responded with a 502. This prevented the proxy container from becoming
ready and caused deployments to hang. The fix for the community bug has been included in the
Service Mesh 2.0.7 release.

MAISTRA-2411 When the Operator creates a new ingress gateway using
spec.gateways.additionalngress in the ServiceMeshControlPlane, Operator is not creating a
NetworkPolicy for the additional ingress gateway like it does for the default istio-
ingressgateway. This is causing a 503 response from the route of the new gateway.
Workaround: Manually create the NetworkPolicy in the istio-system namespace.

MAISTRA-2401CVE-2021-3586 servicemesh-operator: NetworkPolicy resources incorrectly
specified ports for ingress resources. The NetworkPolicy resources installed for Red Hat
OpenShift Service Mesh did not properly specify which ports could be accessed. This allowed
access to all ports on these resources from any pod. Network policies applied to the following
resources are affected:

o Gallev

https://issues.redhat.com/browse/OSSM-291
https://issues.redhat.com/browse/OSSM-289
https://issues.redhat.com/browse/OSSM-287
https://issues.redhat.com/browse/OSSM-285
https://issues.redhat.com/browse/MAISTRA-2735
https://issues.jboss.org/browse/MAISTRA-2687
https://issues.redhat.com/browse/MAISTRA-2635
https://issues.redhat.com/browse/MAISTRA-2631
https://issues.redhat.com/browse/MAISTRA-2534
https://github.com/istio/istio/issues/24629
https://issues.jboss.org/browse/MAISTRA-2411
https://issues.redhat.com/browse/MAISTRA-2401

CHAPTER 1. SERVICE MESH 2.X
o Grafana
o |Istiod
o Jaeger
o Kiali
o Prometheus
o Sidecar injector

® MAISTRA-2378 When the cluster is configured to use OpenShift SDN with ovs-multitenant
and the mesh contains a large number of namespaces (200+), the OpenShift Container
Platform networking plugin is unable to configure the namespaces quickly. Service Mesh times
out causing namespaces to be continuously dropped from the service mesh and then
reenlisted.

e MAISTRA-2370 Handle tombstones in listerinformer. The updated cache codebase was not
handling tombstones when translating the events from the namespace caches to the
aggregated cache, leading to a panic in the go routine.

® MAISTRA-2117 Add optional ConfigMap mount to operator. The CSV now contains an optional
ConfigMap volume mount, which mounts the smcp-templates ConfigMap if it exists. If the
smcp-templates ConfigMap does not exist, the mounted directory is empty. When you create
the ConfigMap, the directory is populated with the entries from the ConfigMap and can be
referenced in SMCP.spec.profiles. No restart of the Service Mesh operator is required.
Customers using the 2.0 operator with a modified CSV to mount the smcp-templates
ConfigMap can upgrade to Red Hat OpenShift Service Mesh 2.1. After upgrading, you can
continue using an existing ConfigMap, and the profiles it contains, without editing the CSV.
Customers that previously used ConfigMap with a different name will either have to rename the
ConfigMap or update the CSV after upgrading.

e MAISTRA-2010 AuthorizationPolicy does not support request.regex.headers field. The
validatingwebhook rejects any AuthorizationPolicy with the field, and even if you disable that,
Pilot tries to validate it using the same code, and it does not work.

o MAISTRA-1979 Migration to 2.0 The conversion webhook drops the following important fields
when converting SMCP.status from v2 to vI:

o conditions
O components
o observedGeneration

© annotations
Upgrading the operator to 2.0 might break client tools that read the SMCP status using the
maistra.io/v1 version of the resource.

This also causes the READY and STATUS columns to be empty when you run oc get
servicemeshcontrolplanes.vi.maistra.io.

® MAISTRA-1947 Technology Preview Updates to ServiceMeshExtensions are not applied.
Workaround: Remove and recreate the ServiceMeshExtensions.

67

https://issues.redhat.com/browse/MAISTRA-2378
https://issues.redhat.com/browse/MAISTRA-2370
https://issues.redhat.com/browse/MAISTRA-2117
https://issues.redhat.com/browse/MAISTRA-2010
https://issues.jboss.org/browse/MAISTRA-1979
https://issues.jboss.org/browse/MAISTRA-1947

OpenShift Container Platform 4.12 Service Mesh

MAISTRA-1983 Migration to 2.0 Upgrading to 2.0.0 with an existing invalid
ServiceMeshControlPlane cannot easily be repaired. The invalid items in the
ServiceMeshControlPlane resource caused an unrecoverable error. The fix makes the errors
recoverable. You can delete the invalid resource and replace it with a new one or edit the
resource to fix the errors. For more information about editing your resource, see [Configuring
the Red Hat OpenShift Service Mesh installation].

MAISTRA-1502 As a result of CVEs fixes in version 1.0.10, the Istio dashboards are not available
from the Home Dashboard menu in Grafana. To access the Istio dashboards, click the
Dashboard menu in the navigation panel and select the Manage tab.

MAISTRA-1399 Red Hat OpenShift Service Mesh no longer prevents you from installing
unsupported CNI protocols. The supported network configurations has not changed.

MAISTRA-1089 Migration to 2.0 Gateways created in a non-control plane namespace are
automatically deleted. After removing the gateway definition from the SMCP spec, you need to
manually delete these resources.

MAISTRA-858 The following Envoy log messages describing deprecated options and
configurations associated with Istio 1.1.x are expected:

o [2019-06-03 07:03:28.943][19][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:129] Using deprecated option
‘envoy.api.v2.listener.Filter.config'. This configuration will be removed from Envoy soon.

o [2019-08-12 22:12:59.001][13][warning][misc]
[external/envoy/source/common/protobuf/utility.cc:174] Using deprecated option
‘envoy.api.v2.Listener.use_original_dst' from file Ids.proto. This configuration will be
removed from Envoy soon.

MAISTRA-806 Evicted Istio Operator Pod causes mesh and CNI not to deploy.
Workaround: If the istio-operator pod is evicted while deploying the control pane, delete the
evicted istio-operator pod.

MAISTRA-681When the Service Mesh control plane has many namespaces, it can lead to
performance issues.

MAISTRA-193 Unexpected console info messages are visible when health checking is enabled
for citadel.

Bugzilla 1821432 The toggle controls in OpenShift Container Platform Custom Resource details
page does not update the CR correctly. Ul Toggle controls in the Service Mesh Control Plane
(SMCP) Overview page in the OpenShift Container Platform web console sometimes updates
the wrong field in the resource. To update a SMCP, edit the YAML content directly or update
the resource from the command line instead of clicking the toggle controls.

1.3. UNDERSTANDING SERVICE MESH

Red Hat OpenShift Service Mesh provides a platform for behavioral insight and operational control over
your networked microservices in a service mesh. With Red Hat OpenShift Service Mesh, you can
connect, secure, and monitor microservices in your OpenShift Container Platform environment.

1.3.1. What is Red Hat OpenShift Service Mesh?

68

https://issues.redhat.com/browse/MAISTRA-1983
https://issues.redhat.com/browse/MAISTRA-1502
https://issues.redhat.com/browse/MAISTRA-1399
https://issues.jboss.org/browse/MAISTRA-1089
https://issues.jboss.org/browse/MAISTRA-858
https://www.envoyproxy.io/docs/envoy/latest/intro/deprecated
https://issues.jboss.org/browse/MAISTRA-806
https://issues.jboss.org/browse/MAISTRA-681
https://issues.jboss.org/browse/MAISTRA-193
https://bugzilla.redhat.com/show_bug.cgi?id=1821432

CHAPTER 1. SERVICE MESH 2.X

A service mesh is the network of microservices that make up applications in a distributed microservice
architecture and the interactions between those microservices. When a Service Mesh grows in size and
complexity, it can become harder to understand and manage.

Based on the open source Istio project, Red Hat OpenShift Service Mesh adds a transparent layer on
existing distributed applications without requiring any changes to the service code. You add Red Hat
OpenShift Service Mesh support to services by deploying a special sidecar proxy to relevant services in
the mesh that intercepts all network communication between microservices. You configure and manage
the Service Mesh using the Service Mesh control plane features.

Red Hat OpenShift Service Mesh gives you an easy way to create a network of deployed services that
provide:

® Discovery
® | oad balancing
® Service-to-service authentication
® Failure recovery
® Metrics
® Monitoring
Red Hat OpenShift Service Mesh also provides more complex operational functions including:
® A/B testing
® Canary releases
® Access control

® [End-to-end authentication

1.3.2. Service Mesh architecture

Service mesh technology operates at the network communication level. That is, service mesh
components capture or intercept traffic to and from microservices, either modifying requests,
redirecting them, or creating new requests to other services.

69

https://istio.io/

OpenShift Container Platform 4.12 Service Mesh

Service A Service B Service C
Egress traffic

Proxy 4 p Proxy 4 p Proxy »

! I]

Control plane

Data plane \

Ingress gateway

"
!

istiod (proxy configuration)

At a high level, Red Hat OpenShift Service Mesh consists of a data plane and a control plane

The data planeis a set of intelligent proxies, running alongside application containers in a pod, that
intercept and control all inbound and outbound network communication between microservices in the
service mesh. The data plane is implemented in such a way that it intercepts all inbound (ingress) and
outbound (egress) network traffic. The Istio data plane consists of Envoy containers running along side
application containers in a pod. The Envoy container acts as a proxy, controlling all network
communication into and out of the pod.

® Envoy proxies are the only Istio components that interact with data plane traffic. Allincoming
(ingress) and outgoing (egress) network traffic between services flows through the proxies.
The Envoy proxy also collects all metrics related to services traffic within the mesh. Envoy
proxies are deployed as sidecars, running in the same pod as services. Envoy proxies are also
used to implement mesh gateways.

o Sidecar proxies manage inbound and outbound communication for their workload instance.

o Gateways are proxies operating as load balancers receiving incoming or outgoing
HTTP/TCP connections. Gateway configurations are applied to standalone Envoy proxies
that are running at the edge of the mesh, rather than sidecar Envoy proxies running
alongside your service workloads. You use a Gateway to manage inbound and outbound
traffic for your mesh, letting you specify which traffic you want to enter or leave the mesh.

B |ngress-gateway - Also known as an Ingress Controller, the Ingress Gateway is a
dedicated Envoy proxy that receives and controls traffic entering the service mesh. An
Ingress Gateway allows features such as monitoring and route rules to be applied to
traffic entering the cluster.

®m Egress-gateway - Also known as an egress controller, the Egress Gateway is a
dedicated Envoy proxy that manages traffic leaving the service mesh. An Egress
Gateway allows features such as monitoring and route rules to be applied to traffic
exiting the mesh.

The control plane manages and configures the proxies that make up the data plane. It is the
authoritative source for configuration, manages access control and usage policies, and collects metrics

from the proxies in the service mesh.

® The Istio control plane is composed of Istiod which consolidates several previous control plane
components (Citadel, Galley, Pilot) into a single binary. Istiod provides service discovery,

70

CHAPTER 1. SERVICE MESH 2.X

configuration, and certificate management. It converts high-level routing rules to Envoy
configurations and propagates them to the sidecars at runtime.

o |Istiod can act as a Certificate Authority (CA), generating certificates supporting secure
mTLS communication in the data plane. You can also use an external CA for this purpose.

o |stiod is responsible for injecting sidecar proxy containers into workloads deployed to an
OpenShift cluster.

Red Hat OpenShift Service Mesh uses the istio-operator to manage the installation of the control
plane. An Operator is a piece of software that enables you to implement and automate common
activities in your OpenShift cluster. It acts as a controller, allowing you to set or change the desired state
of objects in your cluster, in this case, a Red Hat OpenShift Service Mesh installation.

Red Hat OpenShift Service Mesh also bundles the following Istio add-ons as part of the product:

e Kiali - Kialiis the management console for Red Hat OpenShift Service Mesh. It provides
dashboards, observability, and robust configuration and validation capabilities. It shows the
structure of your service mesh by inferring traffic topology and displays the health of your mesh.
Kiali provides detailed metrics, powerful validation, access to Grafana, and strong integration
with the distributed tracing platform (Jaeger).

® Prometheus - Red Hat OpenShift Service Mesh uses Prometheus to store telemetry
information from services. Kiali depends on Prometheus to obtain metrics, health status, and
mesh topology.

® Jaeger - Red Hat OpenShift Service Mesh supports the distributed tracing platform (Jaeger).
Jaeger is an open source traceability server that centralizes and displays traces associated with
a single request between multiple services. Using the distributed tracing platform (Jaeger) you
can monitor and troubleshoot your microservices-based distributed systems.

® Elasticsearch - Elasticsearch is an open source, distributed, JSON-based search and analytics
engine. The distributed tracing platform (Jaeger) uses Elasticsearch for persistent storage.

® Grafana - Grafana provides mesh administrators with advanced query and metrics analysis and
dashboards for Istio data. Optionally, Grafana can be used to analyze service mesh metrics.

The following Istio integrations are supported with Red Hat OpenShift Service Mesh:

® 3scale - Istio provides an optional integration with Red Hat 3scale APl Management solutions.
For versions prior to 2.1, this integration was achieved via the 3scale Istio adapter. For version 2.1
and later, the 3scale integration is achieved via a WebAssembly module.

For information about how to install the 3scale adapter, refer to the 3scale Istio adapter documentation

1.3.3. Understanding Kiali

Kiali provides visibility into your service mesh by showing you the microservices in your service mesh, and
how they are connected.

1.3.3.1. Kiali overview

Kiali provides observability into the Service Mesh running on OpenShift Container Platform. Kiali helps
you define, validate, and observe your Istio service mesh. It helps you to understand the structure of your
service mesh by inferring the topology, and also provides information about the health of your service
mesh.

71

OpenShift Container Platform 4.12 Service Mesh

Kiali provides an interactive graph view of your namespace in real time that provides visibility into
features like circuit breakers, request rates, latency, and even graphs of traffic flows. Kiali offers insights
about components at different levels, from Applications to Services and Workloads, and can display the
interactions with contextual information and charts on the selected graph node or edge. Kiali also
provides the ability to validate your Istio configurations, such as gateways, destination rules, virtual
services, mesh policies, and more. Kiali provides detailed metrics, and a basic Grafana integration is
available for advanced queries. Distributed tracing is provided by integrating Jaeger into the Kiali
console.

Kiali is installed by default as part of the Red Hat OpenShift Service Mesh.

1.3.3.2. Kiali architecture

Kiali is based on the open source Kiali project. Kiali is composed of two components: the Kiali application
and the Kiali console.

e Kiali application (back end) - This component runs in the container application platform and
communicates with the service mesh components, retrieves and processes data, and exposes
this data to the console. The Kiali application does not need storage. When deploying the
application to a cluster, configurations are set in ConfigMaps and secrets.

e Kiali console (front end) - The Kiali console is a web application. The Kiali application serves the
Kiali console, which then queries the back end for data to present it to the user.

In addition, Kiali depends on external services and components provided by the container application
platform and Istio.

® Red Hat Service Mesh(Istio) - Istio is a Kiali requirement. Istio is the component that provides
and controls the service mesh. Although Kiali and Istio can be installed separately, Kiali depends
on Istio and will not work if it is not present. Kiali needs to retrieve Istio data and configurations,
which are exposed through Prometheus and the cluster API.

® Prometheus - A dedicated Prometheus instance is included as part of the Red Hat OpenShift
Service Mesh installation. When Istio telemetry is enabled, metrics data are stored in
Prometheus. Kiali uses this Prometheus data to determine the mesh topology, display metrics,
calculate health, show possible problems, and so on. Kiali communicates directly with
Prometheus and assumes the data schema used by Istio Telemetry. Prometheus is an Istio
dependency and a hard dependency for Kiali, and many of Kiali's features will not work without
Prometheus.

® Cluster API - Kiali uses the API of the OpenShift Container Platform (cluster API) to fetch and
resolve service mesh configurations. Kiali queries the cluster API to retrieve, for example,
definitions for namespaces, services, deployments, pods, and other entities. Kiali also makes
queries to resolve relationships between the different cluster entities. The cluster APl is also
queried to retrieve Istio configurations like virtual services, destination rules, route rules,
gateways, quotas, and so on.

e Jaeger - Jaeger is optional, but is installed by default as part of the Red Hat OpenShift Service
Mesh installation. When you install the distributed tracing platform (Jaeger) as part of the
default Red Hat OpenShift Service Mesh installation, the Kiali console includes a tab to display
distributed tracing data. Note that tracing data will not be available if you disable Istio’s
distributed tracing feature. Also note that user must have access to the namespace where the
Service Mesh control plane is installed to view tracing data.

e Grafana - Grafana is optional, but is installed by default as part of the Red Hat OpenShift

Service Mesh installation. When available, the metrics pages of Kiali display links to direct the
user to the same metric in Grafana. Note that user must have access to the namespace where

72

https://kiali.io/

CHAPTER 1. SERVICE MESH 2.X

the Service Mesh control plane is installed to view links to the Grafana dashboard and view
Grafana data.

1.3.3.3. Kiali features

The Kiali console is integrated with Red Hat Service Mesh and provides the following capabilities:
® Health - Quickly identify issues with applications, services, or workloads.

® Topology - Visualize how your applications, services, or workloads communicate via the Kiali
graph.

® Metrics - Predefined metrics dashboards let you chart service mesh and application
performance for Go, Node.js. Quarkus, Spring Boot, Thorntail and Vert.x. You can also create
your own custom dashboards.

® Tracing - Integration with Jaeger lets you follow the path of a request through various
microservices that make up an application.

e Validations - Perform advanced validations on the most common Istio objects (Destination
Rules, Service Entries, Virtual Services, and so on).

e Configuration - Optional ability to create, update and delete Istio routing configuration using
wizards or directly in the YAML editor in the Kiali Console.

1.3.4. Understanding distributed tracing

Every time a user takes an action in an application, a request is executed by the architecture that may
require dozens of different services to participate to produce a response. The path of this requestis a
distributed transaction. The distributed tracing platform (Jaeger) lets you perform distributed tracing,
which follows the path of a request through various microservices that make up an application.

Distributed tracing is a technique that is used to tie the information about different units of work
together—usually executed in different processes or hosts—to understand a whole chain of eventsin a
distributed transaction. Distributed tracing lets developers visualize call flows in large service oriented
architectures. It can be invaluable in understanding serialization, parallelism, and sources of latency.

The distributed tracing platform (Jaeger) records the execution of individual requests across the whole
stack of microservices, and presents them as traces. A trace is a data/execution path through the

system. An end-to-end trace comprises one or more spans.

A span represents a logical unit of work that has an operation name, the start time of the operation, and
the duration. Spans may be nested and ordered to model causal relationships.

1.3.4.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use the Red Hat OpenShift distributed tracing platform for
monitoring, network profiling, and troubleshooting the interaction between components in modern,
cloud-native, microservices-based applications.

With the distributed tracing platform, you can perform the following functions:

® Monitor distributed transactions

e Optimize performance and latency

73

OpenShift Container Platform 4.12 Service Mesh

® Perform root cause analysis

1.3.4.2. Red Hat OpenShift distributed tracing platform architecture

Red Hat OpenShift distributed tracing platform is made up of several components that work together
to collect, store, and display tracing data.

74

® Red Hat OpenShift distributed tracing platform (Tempo)- This component is based on the
open source Grafana Tempo project.

(o}

Gateway - The Gateway handles authentication, authorization, and forwarding requests to
the Distributor or Query front-end service.

Distributor - The Distributor accepts spans in multiple formats including Jaeger,
OpenTelemetry, and Zipkin. It routes spans to Ingesters by hashing the tracelD and using a
distributed consistent hash ring.

Ingester - The Ingester batches a trace into blocks, creates bloom filters and indexes, and
then flushes it all to the back end.

Query Frontend - The Query Frontend is responsible for sharding the search space for an
incoming query. The search query is then sent to the Queriers. The Query Frontend
deployment exposes the Jaeger Ul through the Tempo Query sidecar.

Querier - The Querier is responsible for finding the requested trace ID in either the
Ingesters or the back-end storage. Depending on parameters, it can query the Ingesters
and pull Bloom indexes from the back end to search blocks in object storage.

Compactor - The Compactors stream blocks to and from the back-end storage to reduce
the total number of blocks.

® Red Hat build of OpenTelemetry- This component is based on the open source
OpenTelemetry project.

(o}

OpenTelemetry Collector - The OpenTelemetry Collector is a vendor-agnostic way to
receive, process, and export telemetry data. The OpenTelemetry Collector supports open-
source observability data formats, for example, Jaeger and Prometheus, sending to one or
more open-source or commercial back-ends. The Collector is the default location
instrumentation libraries export their telemetry data.

e Red Hat OpenShift distributed tracing platform (Jaeger)- This component is based on the
open source Jaeger project.

(o}

(o}

(o}

Client (Jaeger client, Tracer, Reporter, instrumented application, client libraries)- The
distributed tracing platform (Jaeger) clients are language-specific implementations of the
OpenTracing API. They can be used to instrument applications for distributed tracing either
manually or with a variety of existing open source frameworks, such as Camel (Fuse), Spring
Boot (RHOAR), MicroProfile (RHOAR/Thorntail), Wildfly (EAP), and many more, that are
already integrated with OpenTracing.

Agent (Jaeger agent, Server Queue, Processor Workers) - The distributed tracing platform
(Jaeger) agent is a network daemon that listens for spans sent over User Datagram
Protocol (UDP), which it batches and sends to the Collector. The agent is meant to be
placed on the same host as the instrumented application. This is typically accomplished by
having a sidecar in container environments such as Kubernetes.

Jaeger Collector (Collector, Queue, Workers) - Similar to the Jaeger agent, the Jaeger

https://grafana.com/oss/tempo/
https://opentelemetry.io/
https://www.jaegertracing.io/

CHAPTER 1. SERVICE MESH 2.X

Collector receives spans and places them in an internal queue for processing. This allows the
Jaeger Collector to return immediately to the client/agent instead of waiting for the span
to make its way to the storage.

o Storage (Data Store) - Collectors require a persistent storage backend. Red Hat OpenShift
distributed tracing platform (Jaeger) has a pluggable mechanism for span storage. Red Hat
OpenShift distributed tracing platform (Jaeger) supports the Elasticsearch storage.

o Query (Query Service) - Query is a service that retrieves traces from storage.

o Ingester (Ingester Service) - Red Hat OpenShift distributed tracing platform can use
Apache Kafka as a buffer between the Collector and the actual Elasticsearch backing
storage. Ingester is a service that reads data from Kafka and writes to the Elasticsearch
storage backend.

o Jaeger Console - With the Red Hat OpenShift distributed tracing platform (Jaeger) user
interface, you can visualize your distributed tracing data. On the Search page, you can find
traces and explore details of the spans that make up an individual trace.

1.3.4.3. Red Hat OpenShift distributed tracing platform features

Red Hat OpenShift distributed tracing platform provides the following capabilities:

® |ntegration with Kiali - When properly configured, you can view distributed tracing platform data
from the Kiali console.

® High scalability - The distributed tracing platform back end is designed to have no single points
of failure and to scale with the business needs.

e Distributed Context Propagation - Enables you to connect data from different components
together to create a complete end-to-end trace.

® Backwards compatibility with Zipkin - Red Hat OpenShift distributed tracing platform has APls
that enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting
Zipkin compatibility in this release.

1.3.5. Next steps

® Prepare to install Red Hat OpenShift Service Mesh in your OpenShift Container Platform
environment.

1.4. SERVICE MESH DEPLOYMENT MODELS

Red Hat OpenShift Service Mesh supports several different deployment models that can be combined
in different ways to best suit your business requirements.

In Istio, a tenant is a group of users that share common access and privileges for a set of deployed
workloads. You can use tenants to provide a level of isolation between different teams. You can
segregate access to different tenants using NetworkPolicies, AuthorizationPolicies, and exportTo
annotations on istio.io or service resources.

1.4.1. Cluster-Wide (Single Tenant) mesh deployment model

A cluster-wide deployment contains a Service Mesh Control Plane that monitors resources for an entire
cluster. Monitoring resources for an entire cluster closely resembles Istio functionality in that the control

75

OpenShift Container Platform 4.12 Service Mesh

plane uses a single query across all namespaces to monitor Istio and Kubernetes resources. As a result,
cluster-wide deployments decrease the number of requests sent to the APl server.

Similar to Istio, a cluster-wide mesh includes namespaces with the istio-injection=enabled namespace
label by default. You can change this label by modifying the spec.labelSelectors field of the
ServiceMeshMemberRoll resource.

1.4.2. Multitenant deployment model

Red Hat OpenShift Service Mesh installs a ServiceMeshControlPlane that is configured for
multitenancy by default. Red Hat OpenShift Service Mesh uses a multitenant Operator to manage the
Service Mesh control plane lifecycle. Within a mesh, namespaces are used for tenancy.

Red Hat OpenShift Service Mesh uses ServiceMeshControlPlane resources to manage mesh
installations, whose scope is limited by default to namespace that contains the resource. You use
ServiceMeshMemberRoll and ServiceMeshMember resources to include additional namespaces into
the mesh. A namespace can only be included in a single mesh, and multiple meshes can be installed in a
single OpenShift cluster.

Typical service mesh deployments use a single Service Mesh control plane to configure communication
between services in the mesh. Red Hat OpenShift Service Mesh supports “soft multitenancy”, where
there is one control plane and one mesh per tenant, and there can be multiple independent control
planes within the cluster. Multitenant deployments specify the projects that can access the Service
Mesh and isolate the Service Mesh from other control plane instances.

The cluster administrator gets control and visibility across all the Istio control planes, while the tenant
administrator only gets control over their specific Service Mesh, Kiali, and Jaeger instances.

You can grant a team permission to deploy its workloads only to a given namespace or set of
namespaces. If granted the mesh-user role by the service mesh administrator, users can create a
ServiceMeshMember resource to add namespaces to the ServiceMeshMemberRoll.

1.4.2.1. About migrating to a cluster-wide mesh

In a cluster-wide mesh, one ServiceMeshControlPlane (SMCP) watches all of the namespaces for an
entire cluster. You can migrate an existing cluster from a multitenant mesh to a cluster-wide mesh using
Red Hat OpenShift Service Mesh version 2.5 or later.

NOTE

If a cluster must have more than one SMCP, then you cannot migrate to a cluster-wide
mesh.

By default, a cluster-wide mesh discovers all of the namespaces that comprise a cluster. However, you
can configure the mesh to access a limited set of namespaces. Namespaces do not receive sidecar
injection by default. You must specify which namespaces receive sidecar injection.

Similarly, you must specify which pods receive sidecar injection. Pods that exist in a namespace that
receives sidecar injection do not inherit sidecar injection. Applying sidecar injection to namespaces and
to pods are separate operations.

If you change the Istio version when migrating to a cluster-wide mesh, then you must restart the

applications. If you use the same Istio version, the application proxies will connect to the new SMCP for
the cluster-wide mesh, and work the same way they did for a multitenant mesh.

76

CHAPTER 1. SERVICE MESH 2.X

1.4.2.1.1. Including and excluding namespaces from a cluster-wide mesh by using the web console

By default, the Red Hat OpenShift Service Mesh Operator uses discovery selectors to identify the
namespaces that make up the mesh. Namespaces that do not contain the label defined in the
ServiceMeshMemberRoll resource are not matched by the discovery selector and are excluded from
the mesh.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.
® You have deployed a ServiceMeshControlPlane resource.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1. Login to the OpenShift Container Platform web console.
2. Navigate to Operators — Installed Operators.

3. Click the Red Hat OpenShift Service Mesh Operator.

4. Click Istio Service Mesh Control Plane

5. Click the name of the control plane.

6. Click YAML.

7. Modify the YAML file so that the spec.discoverySelectors field of the
ServiceMeshMemberRoll resource includes the discovery selector. The following example
uses istio-discovery: enabled:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
spec:
mode: ClusterWide
meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: enabled ﬂ
- matchExpressions:
- key: kubernetes.io/metadata.name 9
operator: Notln
values:
- bookinfo
- httpbin

Ensures that the mesh discovers namespaces that contain the label istio-discovery:
enabled. The mesh does not discover namespaces that do not contain the label.

® o

Ensures that the mesh does not discover namespaces bookinfo and httpbin.

77

OpenShift Container Platform 4.12 Service Mesh

8. Save the file.

1.4.2.1.2. Including and excluding namespaces from a cluster-wide mesh by using the CLI

By default, the Red Hat OpenShift Service Mesh Operator uses discovery selectors to identify the
namespaces that make up the mesh. Namespaces that do not contain the label defined in the
ServiceMeshMemberRoll resource are not matched by the discovery selector and are excluded from
the mesh.

Prerequisites
® You have installed the Red Hat OpenShift Service Mesh Operator.
® You have deployed a ServiceMeshControlPlane resource.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1. Login to the OpenShift Container Platform CLI.

2. Open the ServiceMeshControlPlane resource as a YAML file by running the following
command:

I $ oc -n istio-system edit smcp <name> ﬂ

ﬂ <names> represents the name of the ServiceMeshControlPlane resource.

3. Modify the YAML file so that the spec.discoverySelectors field of the
ServiceMeshMemberRoll resource includes the discovery selector. The following example
uses istio-discovery: enabled:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
spec:
mode: ClusterWide
meshConfig:
discoverySelectors:
- matchLabels:
istio-discovery: enabled ﬂ
- matchExpressions:
- key: kubernetes.io/metadata.name 9
operator: Notln
values:
- bookinfo
- httpbin

Ensures that the mesh discovers namespaces that contain the label istio-discovery:
enabled. The mesh does not discover namespaces that do not contain the label.

9 Ensures that the mesh does not discover namespaces bookinfo and httpbin.

78

CHAPTER 1. SERVICE MESH 2.X

4. Save the file and exit the editor.

1.4.2.1.3. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the
web console

By default, the Red Hat OpenShift Service Mesh Operator uses member selectors to identify which
namespaces receive sidecar injection. Namespaces that do not match the istio-injection=enabled label
as defined in the ServiceMeshMemberRoll resource do not receive sidecar injection.

NOTE

Using discovery selectors to determine which namespaces the mesh can discover has no
effect on sidecar injection. Discovering namespaces and configuring sidecar injection are
separate operations.

Prerequisites
® You have installed the Red Hat OpenShift Service Mesh Operator.

® You have deployed a ServiceMeshControlPlanae resource with the mode: ClusterWide
annotation.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1. Login to the OpenShift Container Platform web console.
2. Navigate to Operators - Installed Operators.
3. Click the Red Hat OpenShift Service Mesh Operator.
4. Click Istio Service Mesh Member Roll
5. Click the ServiceMeshMemberRoll resource.
6. Click YAML.

7. Modify the spec.memberSelectors field in the ServiceMeshMemberRoll resource by adding a
member selector that matches the inject label. The following example uses istio-injection:
enabled:

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:

name: default
spec:

memberSelectors:

- matchLabels:

istio-injection: enabled ﬂ

ﬂ Ensures that the namespace receives sidecar injection.

79

OpenShift Container Platform 4.12 Service Mesh

8. Save the file.

1.4.2.1.4. Defining which namespaces receive sidecar injection in a cluster-wide mesh by using the
CLI

By default, the Red Hat OpenShift Service Mesh Operator uses member selectors to identify which
namespaces receive sidecar injection. Namespaces that do not match the istio-injection=enabled label
as defined in the ServiceMeshMemberRoll resource do not receive sidecar injection.

NOTE

Using discovery selectors to determine which namespaces the mesh can discover has no
effect on sidecar injection. Discovering namespaces and configuring sidecar injection are
separate operations.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You have deployed a ServiceMeshControlPlanae resource with the mode: ClusterWide
annotation.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1. Login to the OpenShift Container Platform CLI.

2. Edit the ServiceMeshMemberRoll resource.

I $ oc edit smmr -n <controlplane-namespace>

3. Modify the spec.memberSelectors field in the ServiceMeshMemberRoll resource by adding a
member selector that matches the inject label. The following example uses istio-injection:
enabled:

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:

name: default
spec:

memberSelectors:

- matchLabels:

istio-injection: enabled ﬂ

ﬂ Ensures that the namespace receives sidecar injection.

4. Save the file and exit the editor.

1.4.2.1.5. Excluding individual pods from a cluster-wide mesh by using the web console

80

CHAPTER 1. SERVICE MESH 2.X

A pod recelves sidecar injection IT It has the sidecar.I1st10.10/Inject: true annotation applied, and the pod
exists in a namespace that matches either the label selector or the members list defined in the
ServiceMeshMemberRoll resource.

If a pod does not have the sidecar.istio.io/inject annotation applied, it cannot receive sidecar injection.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You have deployed a ServiceMeshControlPlane resource with the mode: ClusterWide
annotation.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure
1. Login to the OpenShift Container Platform web console.

2. Navigate to Workloads — Deployments.

3. Click the name of the deployment.

4. Click YAML.

5. Modify the YAML file to deploy one application that receives sidecar injection and one that does

not, as shown in the following example:

apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx
spec:
selector:
matchLabels:
app: nginx
template:
metadata:
annotations:

sidecar.istio.io/inject: 'true’ ﬂ

labels:

app: nginx

spec:

containers:

- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80
apiVersion: apps/v1
kind: Deployment
metadata:

name: nginx-without-sidecar
spec:
selector:

81

OpenShift Container Platform 4.12 Service Mesh

matchLabels:
app: nginx-without-sidecar
template:
metadata:
labels:
app: nginx-without-sidecar 9
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

ﬂ This pod has the sidecar.istio.io/inject annotation applied, so it receives sidecar injection.

9 This pod does not have the annotation, so it does not receive sidecar injection.

6. Save the file.

1.4.2.1.6. Excluding individual pods from a cluster-wide mesh by using the CLI
A pod receives sidecar injection if it has the sidecar.istio.io/inject: true annotation applied, and the pod

exists in a namespace that matches either the label selector or the members list defined in the
ServiceMeshMemberRoll resource.

If a pod does not have the sidecar.istio.io/inject annotation applied, it cannot receive sidecar injection.

Prerequisites
® You have installed the Red Hat OpenShift Service Mesh Operator.

® You have deployed a ServiceMeshControlPlane resource with the mode: ClusterWide
annotation.

® You are logged in as a user with the cluster-admin role. If you use Red Hat OpenShift
Dedicated, you are logged in as a user with the dedicated-admin role.

Procedure

1. Login to the OpenShift Container Platform CLI.

2. Edit the deployment by running the following command:

I $ oc edit deployment -n <namespace> <deploymentName>

3. Modify the YAML file to deploy one application that receives sidecar injection and one that does
not, as shown in the following example:

apiVersion: apps/vi
kind: Deployment
metadata:

name: nginx
spec:

selector:

82

CHAPTER 1. SERVICE MESH 2.X

matchLabels:
app: nginx
template:
metadata:
annotations:
sidecar.istio.io/inject: 'true’ ﬂ
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx-without-sidecar
spec:
selector:
matchLabels:
app: nginx-without-sidecar
template:
metadata:
labels:
app: nginx-without-sidecar 9
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

ﬂ This pod has the sidecar.istio.io/inject annotation applied, so it receives sidecar injection.

9 This pod does not have the annotation, so it does not receive sidecar injection.

4. Save the file.

1.4.3. Multimesh or federated deployment model

Federation is a deployment model that lets you share services and workloads between separate meshes
managed in distinct administrative domains.

The Istio multi-cluster model requires a high level of trust between meshes and remote access to all
Kubernetes APl servers on which the individual meshes reside. Red Hat OpenShift Service Mesh
federation takes an opinionated approach to a multi-cluster implementation of Service Mesh that
assumes minimal trust between meshes.

A federated mesh is a group of meshes behaving as a single mesh. The services in each mesh can be
unique services, for example a mesh adding services by importing them from another mesh, can provide
additional workloads for the same services across the meshes, providing high availability, or a
combination of both. All meshes that are joined into a federated mesh remain managed individually, and

83

OpenShift Container Platform 4.12 Service Mesh

you must explicitly configure which services are exported to and imported from other meshes in the
federation. Support functions such as certificate generation, metrics and trace collection remain local in
their respective meshes.

1.5. SERVICE MESH AND ISTIO DIFFERENCES

Red Hat OpenShift Service Mesh differs from an installation of Istio to provide additional features or to
handle differences when deploying on OpenShift Container Platform.

1.5.1. Differences between Istio and Red Hat OpenShift Service Mesh

The following features are different in Service Mesh and Istio.

1.5.1.1. Command line tool

The command line tool for Red Hat OpenShift Service Mesh is oc. Red Hat OpenShift Service
Mesh does not support istioctl.

1.5.1.2. Installation and upgrades

Red Hat OpenShift Service Mesh does not support Istio installation profiles.

Red Hat OpenShift Service Mesh does not support canary upgrades of the service mesh.

1.5.1.3. Automatic injection

The upstream Istio community installation automatically injects the sidecar into pods within the projects
you have labeled.

Red Hat OpenShift Service Mesh does not automatically inject the sidecar into any pods, but you must
opt in to injection using an annotation without labeling projects. This method requires fewer privileges
and does not conflict with other OpenShift Container Platform capabilities such as builder pods. To
enable automatic injection, specify the sidecar.istio.io/inject label, or annotation, as described in the
Automatic sidecar injection section.

Table 1.3. Sidecar injection label and annotation settings

Upstream Istio Red Hat OpenShift Service Mesh

Namespace Label supports "enabled" and "disabled" supports "disabled"
Pod Label supports "true" and "false” supports "true" and "false”
Pod Annotation supports "false" only supports "true" and "false”

1.5.1.4. Istio Role Based Access Control features

Istio Role Based Access Control (RBAC) provides a mechanism you can use to control access to a
service. You can identify subjects by user name or by specifying a set of properties and apply access
controls accordingly.

84

CHAPTER 1. SERVICE MESH 2.X

The upstream Istio community installation includes options to perform exact header matches, match
wildcards in headers, or check for a header containing a specific prefix or suffix.

Red Hat OpenShift Service Mesh extends the ability to match request headers by using a regular
expression. Specify a property key of request.regex.headers with a regular expression.

Upstream Istio community matching request headers example

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: httpbin-usernamepolicy
spec:
action: ALLOW
rules:
- when:
- key: 'request.regex.headers[username]’
values:
- "allowed.*"
selector:
matchLabels:
app: httpbin

1.5.1.5. OpenSSL
Red Hat OpenShift Service Mesh replaces BoringSSL with OpenSSL. OpenSSL is a software library that
contains an open source implementation of the Secure Sockets Layer (SSL) and Transport Layer

Security (TLS) protocols. The Red Hat OpenShift Service Mesh Proxy binary dynamically links the
OpenSSL libraries (libssl and libcrypto) from the underlying Red Hat Enterprise Linux operating system.

1.5.1.6. External workloads

Red Hat OpenShift Service Mesh does not support external workloads, such as virtual machines running
outside OpenShift on bare metal servers.

1.5.1.7. Virtual Machine Support

You can deploy virtual machines to OpenShift using OpenShift Virtualization. Then, you can apply a
mesh policy, such as mTLS or AuthorizationPolicy, to these virtual machines, just like any other pod that
is part of a mesh.

1.5.1.8. Component modifications

® A maistra-version label has been added to all resources.
® AllIngress resources have been converted to OpenShift Route resources.

® Grafana, distributed tracing (Jaeger), and Kiali are enabled by default and exposed through
OpenShift routes.

® Godebug has been removed from all templates

® The istio-multi ServiceAccount and ClusterRoleBinding have been removed, as well as the istio-
reader ClusterRole.

85

OpenShift Container Platform 4.12 Service Mesh

1.5.1.9. Envoy filters

Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where explicitly
documented. Due to tight coupling with the underlying Envoy APIs, backward compatibility cannot be
maintained. EnvoyFilter patches are very sensitive to the format of the Envoy configuration that is
generated by Istio. If the configuration generated by Istio changes, it has the potential to break the
application of the EnvoyFilter.

1.5.1.10. Envoy services

Red Hat OpenShift Service Mesh does not support QUIC-based services.

1.5.1.11. Istio Container Network Interface (CNI) plugin

Red Hat OpenShift Service Mesh includes CNI plugin, which provides you with an alternate way to
configure application pod networking. The CNI plugin replaces the init-container network configuration
eliminating the need to grant service accounts and projects access to security context constraints
(SCCs) with elevated privileges.

NOTE
By default, Istio Container Network Interface (CNI) pods are created on all OpenShift
Container Platform nodes. To exclude the creation of CNI pods in a specific node, apply

the maistra.io/exclude-cni=true label to the node. Adding this label removes any
previously deployed Istio CNI pods from the node.

1.5.1.12. Global mTLS settings

Red Hat OpenShift Service Mesh creates a PeerAuthentication resource that enables or disables
Mutual TLS authentication (mTLS) within the mesh.

1.5.1.13. Gateways

Red Hat OpenShift Service Mesh installs ingress and egress gateways by default. You can disable
gateway installation in the ServiceMeshControlPlane (SMCP) resource by using the following settings:

® spec.gateways.enabled=false to disable both ingress and egress gateways.
® spec.gateways.ingress.enabled=false to disable ingress gateways.

® spec.gateways.egress.enabled=false to disable egress gateways.

NOTE

The Operator annotates the default gateways to indicate that they are generated by and
managed by the Red Hat OpenShift Service Mesh Operator.

1.5.1.14. Multicluster configurations

Red Hat OpenShift Service Mesh support for multicluster configurations is limited to the federation of
service meshes across multiple clusters.

1.5.1.15. Custom Certificate Signing Requests (CSR)

86

CHAPTER 1. SERVICE MESH 2.X

You cannot configure Red Hat OpenShift Service Mesh to process CSRs through the Kubernetes
certificate authority (CA).

1.5.1.16. Routes for Istio Gateways

OpenShift routes for Istio Gateways are automatically managed in Red Hat OpenShift Service Mesh.
Every time an Istio Gateway is created, updated or deleted inside the service mesh, an OpenShift route
is created, updated or deleted.

A Red Hat OpenShift Service Mesh control plane component called Istio OpenShift Routing (IOR)
synchronizes the gateway route. For more information, see Automatic route creation.

1.5.1.16.1. Catch-all domains

Catch-all domains ("*") are not supported. If one is found in the Gateway definition, Red Hat OpenShift
Service Mesh will create the route, but will rely on OpenShift to create a default hostname. This means
that the newly created route will not be a catch all ("*") route, instead it will have a hostname in the form
<route-name>[-<project>].<suffix>. See the OpenShift Container Platform documentation for more
information about how default hostnames work and how a cluster-admin can customize it. If you use
Red Hat OpenShift Dedicated, refer to the Red Hat OpenShift Dedicated the dedicated-admin role.

1.5.1.16.2. Subdomains

Subdomains (e.g.: "*.domain.com") are supported. However this ability doesn't come enabled by default
in OpenShift Container Platform. This means that Red Hat OpenShift Service Mesh will create the route
with the subdomain, but it will only be in effect if OpenShift Container Platform is configured to enable
it.

1.5.1.16.3. Transport layer security

Transport Layer Security (TLS) is supported. This means that, if the Gateway contains a tls section, the
OpenShift Route will be configured to support TLS.

Additional resources

® Automatic route creation

1.5.2. Multitenant installations

Whereas upstream Istio takes a single tenant approach, Red Hat OpenShift Service Mesh supports
multiple independent control planes within the cluster. Red Hat OpenShift Service Mesh uses a
multitenant operator to manage the control plane lifecycle.

Red Hat OpenShift Service Mesh installs a multitenant control plane by default. You specify the projects
that can access the Service Mesh, and isolate the Service Mesh from other control plane instances.

1.5.2.1. Multitenancy versus cluster-wide installations

The main difference between a multitenant installation and a cluster-wide installation is the scope of
privileges used by istod. The components no longer use cluster-scoped Role Based Access Control
(RBAC) resource ClusterRoleBinding.

Every project in the ServiceMeshMemberRoll members list will have a RoleBinding for each service

account associated with the control plane deployment and each control plane deployment will only
watch those member projects. Each member project has a maistra.io/member-of label added to it,

87

OpenShift Container Platform 4.12 Service Mesh

where the member-of value is the project containing the control plane installation.

Red Hat OpenShift Service Mesh configures each member project to ensure network access between
itself, the control plane, and other member projects. The exact configuration differs depending on how
OpenShift Container Platform software-defined networking (SDN) is configured. See About OpenShift
SDN for additional details.

If the OpenShift Container Platform cluster is configured to use the SDN plugin:

® NetworkPolicy: Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each
member project allowing ingress to all pods from the other members and the control plane. If
you remove a member from Service Mesh, this NetworkPolicy resource is deleted from the
project.

NOTE

This also restricts ingress to only member projects. If you require ingress from
non-member projects, you need to create a NetworkPolicy to allow that traffic
through.

® Multitenant: Red Hat OpenShift Service Mesh joins the NetNamespace for each member
project to the NetNamespace of the control plane project (the equivalent of running oc adm
pod-network join-projects --to control-plane-project member-project). If you remove a
member from the Service Mesh, its NetNamespace is isolated from the control plane (the
equivalent of running oc adm pod-network isolate-projects member-project).

® Subnet: No additional configuration is performed.

1.5.2.2. Cluster scoped resources

Upstream Istio has two cluster scoped resources that it relies on. The MeshPolicy and the
ClusterRbacConfig. These are not compatible with a multitenant cluster and have been replaced as
described below.

® ServiceMeshPolicy replaces MeshPolicy for configuration of control-plane-wide authentication
policies. This must be created in the same project as the control plane.

® ServicemeshRbacConfig replaces ClusterRbacConfig for configuration of control-plane-wide
role based access control. This must be created in the same project as the control plane.

1.5.3. Kiali and service mesh

Installing Kiali via the Service Mesh on OpenShift Container Platform differs from community Kiali
installations in multiple ways. These modifications are sometimes necessary to resolve issues, provide
additional features, or to handle differences when deploying on OpenShift Container Platform.

e Kiali has been enabled by default.

® Ingress has been enabled by default.

e Updates have been made to the Kiali ConfigMap.

® Updates have been made to the ClusterRole settings for Kiali.

® Do not edit the ConfigMap, because your changes might be overwritten by the Service Mesh or

88

CHAPTER 1. SERVICE MESH 2.X

Kiali Operators. Files that the Kiali Operator manages have a kiali.io/ l[abel or annotation.
Updating the Operator files should be restricted to those users with cluster-admin privileges. If
you use Red Hat OpenShift Dedicated, updating the Operator files should be restricted to
those users with dedicated-admin privileges.

1.5.4. Distributed tracing and service mesh

Installing the distributed tracing platform (Jaeger) with the Service Mesh on OpenShift Container
Platform differs from community Jaeger installations in multiple ways. These modifications are
sometimes necessary to resolve issues, provide additional features, or to handle differences when
deploying on OpenShift Container Platform.

Distributed tracing has been enabled by default for Service Mesh.
Ingress has been enabled by default for Service Mesh.
The name for the Zipkin port name has changed to jaeger-collector-zipkin (from http)

Jaeger uses Elasticsearch for storage by default when you select either the production or
streaming deployment option.

The community version of Istio provides a generic "tracing” route. Red Hat OpenShift Service
Mesh uses a "jaeger” route that is installed by the Red Hat OpenShift distributed tracing
platform (Jaeger) Operator and is already protected by OAuth.

Red Hat OpenShift Service Mesh uses a sidecar for the Envoy proxy, and Jaeger also uses a
sidecar, for the Jaeger agent. These two sidecars are configured separately and should not be
confused with each other. The proxy sidecar creates spans related to the pod’s ingress and
egress traffic. The agent sidecar receives the spans emitted by the application and sends them
to the Jaeger Collector.

1.6. PREPARING TO INSTALL SERVICE MESH

Before you can install Red Hat OpenShift Service Mesh, you must subscribe to OpenShift Container
Platform and install OpenShift Container Platform in a supported configuration.

1.6.1. Prerequisites

Maintain an active OpenShift Container Platform subscription on your Red Hat account. If you
do not have a subscription, contact your sales representative for more information.

Review the OpenShift Container Platform 4.12 overview .
Install OpenShift Container Platform 4.12. If you are installing Red Hat OpenShift Service Mesh

on arestricted network, follow the instructions for your chosen OpenShift Container Platform
infrastructure.

o Install OpenShift Container Platform 4.12 on AWS

o Install OpenShift Container Platform 4.12 on user-provisioned AWS
o Install OpenShift Container Platform 4.12 on bare metal

o Install OpenShift Container Platform 4.12 on vSphere

o Install OpenShift Container Platform 4.12 on IBM Z and IBM® LinuxONE

89

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/architecture/#installation-overview_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#supported-installation-methods-for-different-platforms
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-aws-account
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-vsphere
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-ibm-z

OpenShift Container Platform 4.12 Service Mesh

o Install OpenShift Container Platform 4.12 on IBM Power

® |nstall the version of the OpenShift Container Platform command line utility (the oc client tool)
that matches your OpenShift Container Platform version and add it to your path.

o If you are using OpenShift Container Platform 4.12, see About the OpenShift CLI.

For additional information about Red Hat OpenShift Service Mesh lifecycle and supported platforms,
refer to the Support Policy.

1.6.2. Supported configurations

The following configurations are supported for the current release of Red Hat OpenShift Service Mesh.

1.6.2.1. Supported platforms

The Red Hat OpenShift Service Mesh Operator supports multiple versions of the
ServiceMeshControlPlane resource. Version 2.5 Service Mesh control planes are supported on the
following platform versions:

® Red Hat OpenShift Container Platform version 4.10 or later.

® Red Hat OpenShift Dedicated version 4.

® Azure Red Hat OpenShift (ARO) version 4.

® Red Hat OpenShift Service on AWS (ROSA).

1.6.2.2. Unsupported configurations
Explicitly unsupported cases include:
® OpenShift Online is not supported for Red Hat OpenShift Service Mesh.

® Red Hat OpenShift Service Mesh does not support the management of microservices outside
the cluster where Service Mesh is running.

1.6.2.3. Supported network configurations
Red Hat OpenShift Service Mesh supports the following network configurations.
® OpenShift-SDN
® OVN-Kubernetes is available on all supported versions of OpenShift Container Platform.

e Third-Party Container Network Interface (CNI) plugins that have been certified on OpenShift
Container Platform and passed Service Mesh conformance testing. See Certified OpenShift
CNI Plug-ins for more information.

1.6.2.4. Supported configurations for Service Mesh

® This release of Red Hat OpenShift Service Mesh is only available on OpenShift Container
Platform x86_64, IBM Z, and IBM Power.

o IBM Zis only supported on OpenShift Container Platform 4.10 and later.

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-ibm-power
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/cli_tools/#cli-about-cli_cli-developer-commands
https://access.redhat.com/support/policy/updates/openshift#ossm
https://access.redhat.com/articles/5436171

CHAPTER 1. SERVICE MESH 2.X

o IBM Power is only supported on OpenShift Container Platform 4.10 and later.

e Configurations where all Service Mesh components are contained within a single OpenShift
Container Platform cluster.

e Configurations that do not integrate external services such as virtual machines.

® Red Hat OpenShift Service Mesh does not support EnvoyFilter configuration except where
explicitly documented.

1.6.2.5. Supported configurations for Kiali

® The Kiali console is only supported on the two most recent releases of the Google Chrome,
Microsoft Edge, Mozilla Firefox, or Apple Safari browsers.

e The openshift authentication strategy is the only supported authentication configuration when
Kiali is deployed with Red Hat OpenShift Service Mesh (OSSM). The openshift strategy
controls access based on the individual's role-based access control (RBAC) roles of the
OpenShift Container Platform.

1.6.2.6. Supported configurations for Distributed Tracing

® Jaeger agent as a sidecar is the only supported configuration for Jaeger. Jaeger as a
daemonset is not supported for multitenant installations or OpenShift Dedicated.

1.6.2.7. Supported WebAssembly module

® 3scale WebAssembly is the only provided WebAssembly module. You can create custom
WebAssembly modules.

1.6.3. Next steps

e |nstall Red Hat OpenShift Service Mesh in your OpenShift Container Platform environment.

1.7. INSTALLING THE OPERATORS

To install Red Hat OpenShift Service Mesh, first install the required Operators on OpenShift Container
Platform and then create a ServiceMeshControlPlane resource to deploy the control plane.

NOTE

This basic installation is configured based on the default OpenShift settings and is not
designed for production use. Use this default installation to verify your installation, and
then configure your service mesh for your specific environment.

Prerequisites

® Read the Preparing to install Red Hat OpenShift Service Mesh process.

® An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must
have an account with the dedicated-admin role.

The following steps show how to install a basic instance of Red Hat OpenShift Service Mesh on
OpenShift Container Platform.

o1

OpenShift Container Platform 4.12 Service Mesh

1.7.1. Operator overview

Red Hat OpenShift Service Mesh requires the following four Operators:

® OpenShift Elasticsearch - (Optional) Provides database storage for tracing and logging with

the distributed tracing platform (Jaeger). It is based on the open source Elasticsearch project.

Red Hat OpenShift distributed tracing platform (Jaeger)- Provides distributed tracing to
monitor and troubleshoot transactions in complex distributed systems. It is based on the open
source Jaeger project.

Kiali Operator (provided by Red Hat) - Provides observability for your service mesh. You can
view configurations, monitor traffic, and analyze traces in a single console. It is based on the
open source Kiali project.

Red Hat OpenShift Service Mesh- Allows you to connect, secure, control, and observe the
microservices that comprise your applications. The Service Mesh Operator defines and
monitors the ServiceMeshControlPlane resources that manage the deployment, updating,
and deletion of the Service Mesh components. It is based on the open source Istio project.

' WARNING
A Do not install Community versions of the Operators. Community Operators are not

supported.

1.7.2. Installing the Operators

To install Red Hat OpenShift Service Mesh, install the following Operators in this order. Repeat the
procedure for each Operator.

OpenShift Elasticsearch
Red Hat OpenShift distributed tracing platform (Jaeger)
Kiali Operator provided by Red Hat

Red Hat OpenShift Service Mesh

NOTE

If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift
Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red
Hat OpenShift distributed tracing platform (Jaeger) Operator will create the
Elasticsearch instance using the installed OpenShift Elasticsearch Operator.

Procedure

1.

92

Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

https://www.elastic.co/
https://www.jaegertracing.io/
https://www.kiali.io/
https://istio.io/

CHAPTER 1. SERVICE MESH 2.X

2. In the OpenShift Container Platform web console, click Operators = OperatorHub.

3. Type the name of the Operator into the filter box and select the Red Hat version of the
Operator. Community versions of the Operators are not supported.

4. Click Install.
5. On the Install Operator page for each Operator, accept the default settings.

6. Click Install. Wait until the Operator has installed before repeating the steps for the next
Operator in the list.

® The OpenShift Elasticsearch Operator is installed in the openshift-operators-redhat
namespace and is available for all namespaces in the cluster.

® The Red Hat OpenShift distributed tracing platform (Jaeger) is installed in the openshift-
distributed-tracing namespace and is available for all namespaces in the cluster.

® The Kiali Operator provided by Red Hat is installed in the openshift-operators namespace
and is available for all namespaces in the cluster.

® The Red Hat OpenShift Service Mesh Operator is installed in the openshift-operators
namespace and is available for all namespaces in the cluster.

Verification

e After all you have installed all four Operators, click Operators — Installed Operators to verify
that your Operators are installed.

1.7.3. Configuring the Service Mesh Operator to run on infrastructure nodes

This task should only be performed if the Service Mesh Operator runs on an infrastructure node.

If the operator will run on a worker node, skip this task.

Prerequisites

® The Service Mesh Operator must be installed.

® One of the nodes comprising the deployment must be an infrastructure node. For more
information, see "Creating infrastructure machine sets."

Procedure

1. List the operators installed in the namespace:

I $ oc -n openshift-operators get subscriptions

2. Edit the Service Mesh Operator Subscription resource to specify where the operator should
run:

I $ oc -n openshift-operators edit subscription <name> ﬂ

<hames> represents the name of the Subscription resource. The default name of the
Subscription resource is servicemeshoperator.

93

OpenShift Container Platform 4.12 Service Mesh

3. Add the nodeSelector and tolerations to spec.config in the Subscription resource:

apiVersion: operators.coreos.com/vialphait
kind: Subscription
metadata:
labels:
operators.coreos.com/servicemeshoperator.openshift-operators: ™
name: servicemeshoperator
namespace: openshift-operators
#...
spec:
config:
nodeSelector: ﬂ
node-role.kubernetes.io/infra: "
tolerations: g
- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved
- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved

ﬂ Ensures that the operator pod is only scheduled on an infrastructure node.

9 Ensures that the pod is accepted by the infrastructure node.

1.7.4. Verifying the Service Mesh Operator is running on infrastructure node

Procedure

e Verify that the node associated with the Operator pod is an infrastructure node:

I $ oc -n openshift-operators get po -I name=istio-operator -owide

1.7.5. Next steps

® The Red Hat OpenShift Service Mesh Operator does not create the Service Mesh custom
resource definitions (CRDs) until you deploy a Service Mesh control plane. You can use the
ServiceMeshControlPlane resource to install and configure the Service Mesh components.
For more information, see Creating the ServiceMeshControlPlane.

1.8. CREATING THE SERVICEMESHCONTROLPLANE

1.8.1. About ServiceMeshControlPlane

The control plane includes Istiod, Ingress and Egress Gateways, and other components, such as Kiali and
Jaeger. The control plane must be deployed in a separate namespace than the Service Mesh Operators
and the data plane applications and services. You can deploy a basic installation of the
ServiceMeshControlPlane(SMCP) from the OpenShift Container Platform web console or the
command line using the oc client tool.

94

CHAPTER 1. SERVICE MESH 2.X

NOTE

This basic installation is configured based on the default OpenShift Container Platform
settings and is not designed for production use. Use this default installation to verify your
installation, and then configure your ServiceMeshControlPlane settings for your
environment.

NOTE

The Service Mesh documentation uses istio-system as the example project, but you can
deploy the service mesh to any project.

1.8.1.1. Deploying the Service Mesh control plane from the web console

You can deploy a basic ServiceMeshControlPlane by using the web console. In this example, istio-
system is the name of the Service Mesh control plane project.

Prerequisites
® The Red Hat OpenShift Service Mesh Operator must be installed.

® An account with the cluster-admin role.

Procedure

1. Login to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Create a project named istio-system.

a. Navigate to Home — Projects.
b. Click Create Project.

c. Inthe Name field, enter istio-system. The ServiceMeshControlPlane resource must be
installed in a project that is separate from your microservices and Operators.
These steps use istio-system as an example, but you can deploy your Service Mesh control
plane in any project as long as it is separate from the project that contains your services.

d. Click Create.
3. Navigate to Operators - Installed Operators.

4. Click the Red Hat OpenShift Service Mesh Operator, then click Istio Service Mesh Control
Plane.

5. On thelstio Service Mesh Control Planetab, click Create ServiceMeshControlPlane.

a. Accept the default Service Mesh control plane version to take advantage of the features
available in the most current version of the product. The version of the control plane
determines the features available regardless of the version of the Operator.

b. Click Create.

95

OpenShift Container Platform 4.12 Service Mesh

The Operator creates pods, services, and Service Mesh control plane components based on

your configuration parameters. You can configure ServiceMeshControlPlane settings at a
later time.

Verification
® To verify the control plane installed correctly, click the Istio Service Mesh Control Planetab.

a. Click the name of the new control plane.

b. Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane
resources the Operator created and configured.
1.8.1.2. Deploying the Service Mesh control plane using the CLI

You can deploy a basic ServiceMeshControlPlane from the command line.

Prerequisites
® The Red Hat OpenShift Service Mesh Operator must be installed.
® Access to the OpenShift CLI (o¢).

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure

1. Create a project named istio-system.
I $ oc new-project istio-system

2. Create a ServiceMeshControlPlane file named istio-installation.yaml using the following
example. The version of the Service Mesh control plane determines the features available
regardless of the version of the Operator.

Example version 2.5 istio-installation.yaml

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
namespace: istio-system
spec:
version: v2.5
tracing:
type: Jaeger
sampling: 10000

addons:
jaeger:
name: jaeger
install:
storage:
type: Memory
kiali:

enabled: true

96

CHAPTER 1. SERVICE MESH 2.X

name: kiali
grafana:
enabled: true

3. Run the following command to deploy the Service Mesh control plane, where
<istio_installation.yaml> includes the full path to your file.

I $ oc create -n istio-system -f <istio_installation.yaml|>
4. To watch the progress of the pod deployment, run the following command:
I $ oc get pods -n istio-system -w

You should see output similar to the following:

NAME READY STATUS RESTARTS AGE
grafana-b4d59bd7-mrgbr 2/2 Running 0 65m
istio-egressgateway-678dc97b4c-wrikp 1/1 Running 0 108s
istio-ingressgateway-b45c9d54d-4qgén 1/1 Running 0 108s
istiod-basic-55d78bbbcd-j5556 1/1 Running 0 108s
jaeger-67c75bd6dc-jveke 2/2 Running 0 65m
kiali-6476c7656¢-x5msp 1/1 Running 0 43m
prometheus-58954b8d6b-m5std 2/2 Running 0 66m

1.8.1.3. Validating your SMCP installation with the CLI

You can validate the creation of the ServiceMeshControlPlane from the command line.

1. Prerequisites

® The Red Hat OpenShift Service Mesh Operator must be installed.

® Access to the OpenShift CLI (oc).

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure

1. Run the following command to verify the Service Mesh control plane installation, where istio-
system is the namespace where you installed the Service Mesh control plane.

I $ oc get smcp -n istio-system
The installation has finished successfully when the STATUS column is ComponentsReady.

NAME READY STATUS PROFILES VERSION AGE
basic 10/10 ComponentsReady ['default"] 2.5.1 66m

1.8.2. About control plane components and infrastructure nodes

Infrastructure nodes provide a way to isolate infrastructure workloads for two primary purposes:

® To prevent incurring billing costs against subscription counts

97

OpenShift Container Platform 4.12 Service Mesh

® To separate maintenance and management of infrastructure workloads

You can configure some or all of the Service Mesh control plane components to run on infrastructure
nodes.

1.8.2.1. Configuring all control plane components to run on infrastructure nodes using the
web console

Perform this task if all of the components deployed by the Service Mesh control plane will run on
infrastructure nodes. These deployed components include Istiod, Ingress Gateway, and Egress
Gateway, and optional applications such as Prometheus, Grafana, and Distributed Tracing.

If the control plane will run on a worker node, skip this task.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure

1. Login to the OpenShift Container Platform web console.
2. Navigate to Operators - Installed Operators.

3. Click the Red Hat OpenShift Service Mesh Operator, and then click Istio Service Mesh Control
Plane.

4. Click the name of the control plane resource. For example, basic.
5. Click YAML.

6. Add the nodeSelector and tolerations fields to the spec.runtime.defaults.pod specification in
the ServiceMeshControlPlane resource, as shown in the following example:

spec:
runtime:
defaults:
pod:

nodeSelector: ﬂ
node-role.kubernetes.io/infra: ""

tolerations: g

- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved

- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved

Ensures that the ServiceMeshControlPlane pod is only scheduled on an infrastructure
node.

9 Ensures that the pod is accepted by the infrastructure node for execution.

98

CHAPTER 1. SERVICE MESH 2.X

7. Click Save.

8. Click Reload.

1.8.2.2. Configuring individual control plane components to run on infrastructure nodes
using the web console

Perform this task if individual components deployed by the Service Mesh control plane will run on
infrastructure nodes. These deployed components include Istiod, the Ingress Gateway, and the Egress
Gateway.

If the control plane will run on a worker node, skip this task.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure

1. Login to the OpenShift Container Platform web console.
2. Navigate to Operators - Installed Operators.

3. Click the Red Hat OpenShift Service Mesh Operator, and then click Istio Service Mesh Control
Plane.

4. Click the name of the control plane resource. For example, basic.
5. Click YAML.

6. Add the nodeSelector and tolerations fields to the spec.runtime.components.pilot.pod
specification in the ServiceMeshControlPlane resource, as shown in the following example:

spec:
runtime:
components:
pilot:
pod:
nodeSelector: ﬂ
node-role.kubernetes.io/infra:
tolerations: g
- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved
- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved

Ensures that the Istiod pod is only scheduled on an infrastructure node.

®9

Ensures that the pod is accepted by the infrastructure node for execution.

99

OpenShift Container Platform 4.12 Service Mesh

7. Add the nodeSelector and the tolerations fields to the spec.gateways.ingress.runtime.pod
and spec.gateways.egress.runtime.pod specifications in the ServiceMeshControlPlane
resource, as shown in the following example:

spec:
gateways:
ingress:
runtime:
pod:
nodeSelector: ﬂ
node-role.kubernetes.io/infra: ™
tolerations: g
- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved
- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved
egress:
runtime:
pod:
nodeSelector: 6
node-role.kubernetes.io/infra: ™
tolerations: ﬂ
- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved
- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved

wEnsures that the gateway pod is only scheduled on an infrastructure node

wEnsures that the pod is accepted by the infrastructure node for execution.

8. Click Save.

9. Click Reload.

1.8.2.3. Configuring all control plane components to run on infrastructure nodes using the
CLI

Perform this task if all of the components deployed by the Service Mesh control plane will run on
infrastructure nodes. These deployed components include Istiod, Ingress Gateway, and Egress

Gateway, and optional applications such as Prometheus, Grafana, and Distributed Tracing.

If the control plane will run on a worker node, skip this task.

Prerequisites
® You have installed the Red Hat OpenShift Service Mesh Operator.

® You are logged in to OpenShift Container Platform as" cluster-admin".

100

CHAPTER 1. SERVICE MESH 2.X

Frocedure

1. Open the ServiceMeshControlPlane resource as a YAML file:
I $ oc -n istio-system edit smcp <name> ﬂ

ﬂ <hames> represents the name of the ServiceMeshControlPlane resource.

2. Torun all of the Service Mesh components deployed by the ServiceMeshControlPlane on
infrastructure nodes, add the nodeSelector and tolerations fields to the
spec.runtime.defaults.pod spec in the ServiceMeshControlPlane resource:

spec:
runtime:
defaults:
pod:

nodeSelector: ﬂ
node-role.kubernetes.io/infra: ™"

tolerations: 9

- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved

- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved

ﬂ Ensures that the SMCP pods are only scheduled on an infrastructure node.

9 Ensures that the pods are accepted by the infrastructure node.

1.8.2.4. Configuring individual control plane components to run on infrastructure nodes
using the CLI

Perform this task if individual components deployed by the Service Mesh control plane will run on
infrastructure nodes. These deployed components include Istiod, the Ingress Gateway, and the Egress
Gateway.

If the control plane will run on a worker node, skip this task.

Prerequisites
® You have installed the Red Hat OpenShift Service Mesh Operator.

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure

1. Open the ServiceMeshControlPlane resource as a YAML file.
I $ oc -n istio-system edit smcp <name> ﬂ

ﬂ <hames> represents the name of the ServiceMeshControlPlane resource.

101

OpenShift Container Platform 4.12 Service Mesh

2. Torun the Istiod component on an infrastructure node, add the nodeSelector and the
tolerations fields to the spec.runtime.components.pilot.pod specin the
ServiceMeshControlPlane resource.

spec:
runtime:
components:
pilot:
pod:
nodeSelector: ﬂ
node-role.kubernetes.io/infra: "
tolerations: 9
- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved
- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved

ﬂ Ensures that the Istiod pod is only scheduled on an infrastructure node.

9 Ensures that the pod is accepted by the infrastructure node.

3. Torun Ingress and Egress Gateways on infrastructure nodes, add the nodeSelector and the
tolerations fields to the spec.gateways.ingress.runtime.pod spec and the
spec.gateways.egress.runtime.pod spec in the ServiceMeshControlPlane resource.

spec:
gateways:
ingress:
runtime:
pod:
nodeSelector: ﬂ
node-role.kubernetes.io/infra: ™
tolerations: 9
- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved
- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved
egress:
runtime:
pod:
nodeSelector: 6
node-role.kubernetes.io/infra: "
tolerations: ﬂ
- effect: NoSchedule
key: node-role.kubernetes.io/infra
value: reserved
- effect: NoExecute
key: node-role.kubernetes.io/infra
value: reserved

102

CHAPTER 1. SERVICE MESH 2.X

wEnsures that the gateway pod is only scheduled on an infrastructure node

wEnsures that the pod is accepted by the infrastructure node.

1.8.2.5. Verifying the Service Mesh control plane is running on infrastructure nodes

Procedure

e Confirm that the nodes associated with Istiod, Ingress Gateway, and Egress Gateway pods are
infrastructure nodes:

I $ oc -n istio-system get pods -owide

1.8.3. About control plane and cluster-wide deployments

A cluster-wide deployment contains a Service Mesh Control Plane that monitors resources for an entire
cluster. Monitoring resources for an entire cluster closely resembles Istio functionality in that the control
plane uses a single query across all namespaces to monitor Istio and Kubernetes resources. As a result,
cluster-wide deployments decrease the number of requests sent to the APl server.

You can configure the Service Mesh Control Plane for cluster-wide deployments using either the
OpenShift Container Platform web console or the CLI.

1.8.3.1. Configuring the control plane for cluster-wide deployment with the web console

You can configure the ServiceMeshControlPlane resource for cluster-wide deployment using the
OpenShift Container Platform web console. In this example, istio-system is the name of the Service
Mesh control plane project.

Prerequisites

® The Red Hat OpenShift Service Mesh Operator is installed.

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure
1. Create a project named istio-system.
a. Navigate to Home — Projects.
b. Click Create Project.

c. Inthe Name field, enter istio-system. The ServiceMeshControlPlane resource must be
installed in a project that is separate from your microservices and Operators.
These steps use istio-system as an example. You can deploy the Service Mesh control
plane to any project as long as it is separate from the project that contains your services.

d. Click Create.
2. Navigate to Operators - Installed Operators.

3. Click the Red Hat OpenShift Service Mesh Operator, then click Istio Service Mesh Control
Plane.

103

OpenShift Container Platform 4.12 Service Mesh

4. On thelstio Service Mesh Control Planetab, click Create ServiceMeshControlPlane.

5. Click YAML view. The version of the Service Mesh control plane determines the features
available regardless of the version of the Operator.

6. Modify the spec.mode field of the YAML file to specify ClusterWide.

Example version 2.5 istio-installation.yaml

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:

name: basic

namespace: istio-system
spec:

version: v2.5

mode: ClusterWide

7. Click Create. The Operator creates pods, services, and Service Mesh control plane components
based on your configuration parameters. The operator also creates the
ServiceMeshMemberRoll if it does not exist as part of the default configuration.

Verification
® To verify that the control plane installed correctly:

a. Click the Istio Service Mesh Control Planetab.
b. Click the name of the new ServiceMeshControlPlane object.

c. Click the Resources tab to see the Red Hat OpenShift Service Mesh control plane
resources that the Operator created and configured.

1.8.3.2. Configuring the control plane for cluster-wide deployment with the CLI

You can configure the ServiceMeshControlPlane resource for cluster-wide deployment using the CLI.
In this example, istio-system is the name of the Service Mesh control plane namespace.

Prerequisites
® The Red Hat OpenShift Service Mesh Operator is installed.
® You have access to the OpenShift CLI (oc¢).

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure

1. Create a project named istio-system.
I $ oc new-project istio-system

2. Create a ServiceMeshControlPlane file named istio-installation.yaml using the following
example:

104

CHAPTER 1. SERVICE MESH 2.X

Example version 2.5 istio-installation.yaml

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:

name: basic

namespace: istio-system
spec:

version: v2.5

mode: ClusterWide

3. Run the following command to deploy the Service Mesh control plane:
I $ oc create -n istio-system -f <istio_installation.yaml|>

where:

<istio_installation.yaml>

Specifies the full path to your file.

Verification
1. To monitor the progress of the pod deployment, run the following command:
I $ oc get pods -n istio-system -w
You should see output similar to the following example:

Example output

NAME READY STATUS RESTARTS AGE
grafana-b4d59bd7-mrgbr 2/2 Running 0 65m
istio-egressgateway-678dc97b4c-wrikp 1/1 Running 0 108s
istio-ingressgateway-b45c9d54d-4qgén 1/1 Running 0 108s
istiod-basic-55d78bbbcd-j5556 1/1 Running 0 108s
jaeger-67c75bd6dc-jveke 2/2 Running 0 65m
kiali-6476c7656¢-x5msp 1/1 Running 0 43m
prometheus-58954b8d6b-m5std 2/2 Running 0 66m

1.8.3.3. Customizing the member roll for a cluster-wide mesh

In cluster-wide mode, when you create the ServiceMeshControlPlane resource, the
ServiceMeshMemberRoll resource is also created. You can modify the ServiceMeshMemberRoll
resource after it gets created. After you modify the resource, the Service Mesh operator no longer
changes it. If you modify the ServiceMeshMemberRoll resource by using the OpenShift Container
Platform web console, accept the prompt to overwrite the modifications.

Alternatively, you can create a ServiceMeshMemberRoll resource before deploying the
ServiceMeshControlPlane resource. When you create the ServiceMeshControlPlane resource, the
Service Mesh Operator will not modify the ServiceMeshMemberRoll.

105

OpenShift Container Platform 4.12 Service Mesh

NOTE

The ServiceMeshMemberRoll resource name must be named default and must be
created in the same project namespace as the ServiceMeshControlPlane resource.

There are two ways to add a namespace to the mesh. You can either add the namespace by specifying
its name in the spec.members list, or configure a set of namespace label selectors to include or
exclude namespaces based on their labels.

NOTE

Regardless of how members are specified in the ServiceMeshMemberRoll resource, you
can also add members to the mesh by creating the ServiceMeshMember resource in
each namespace.

1.8.4. Validating your SMCP installation with Kiali

You can use the Kiali console to validate your Service Mesh installation. The Kiali console offers several
ways to validate your Service Mesh components are deployed and configured properly.

1. Prerequisites
® The Red Hat OpenShift Service Mesh Operator must be installed.
® Access to the OpenShift CLI (o¢).

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure

1. In the OpenShift Container Platform web console, navigate to Networking = Routes.

2. Onthe Routes page, select the Service Mesh control plane project, for example istio-system,
from the Namespace menu.
The Location column displays the linked address for each route.

3. If necessary, use the filter to find the route for the Kiali console. Click the route Location to
launch the console.

4. Click Log In With OpenShift
When you first log in to the Kiali Console, you see the Overview page which displays all the
namespaces in your service mesh that you have permission to view. When there are multiple
namespaces shown on the Overview page, Kiali shows namespaces with health or validation
problems first.

106

CHAPTER 1. SERVICE MESH 2.X

Figure 1.1. Kiali Overview page

= @kiali 8 A& @ kibeadmin v
Overview Namespace v nespa Name v 1% Lastlom v Everylss v B
Gra -
Graph Healthfor Apps v 3@ i
bookinfo H istio-system
3 Labels 4Labels
Services Istio Config o Istio Config o

4 Applications @ 4 8 Applications @8

Istio Config Traffic, 10m

/\ / No traffic
Distributed Tracing &' .

The tile for each namespace displays the number of labels, the Istio Config health, the number
of and Applications health, and Traffic for the namespace. If you are validating the console
installation and namespaces have not yet been added to the mesh, there might not be any data
to display other than istio-system.

Kiali has four dashboards specifically for the namespace where the Service Mesh control plane is

L]
installed. To view these dashboards, click the Options menu on the tile for the control
plane namespace, for example, istio-system, and select one of the following options:

® |stio Mesh Dashboard

® |stio Control Plane Dashboard

® |stio Performance Dashboard

® |stio Wasm Exetension Dashboard

Figure 1.2. Grafana Istio Control Plane Dashboard

8 istio / Istio Control Plane Dashboard ¢ ¢
v Resource Usage

Memory Goroutines

> Pilot Push Information

~ Envoy Information

Envoy Details XDS Active Connections XDS Requests Size

X0
~ Webhooks

Configuration Validation Sidecar Injection

107

OpenShift Container Platform 4.12 Service Mesh
Kiali also installs two additional Grafana dashboards, available from the Grafana Home
page:
® |stio Workload Dashboard

® |stio Service Dashboard

6. To view the Service Mesh control plane nodes, click the Graph page, select the Namespace
where you installed the ServiceMeshControlPlane from the menu, for example istio-system.

a. If necessary, click Display idle nodes.
b. To learn more about the Graph page, click the Graph tour link.

c. To view the mesh topology, select one or more additional namespaces from the Service
Mesh Member Roll from the Namespace menu.

7. Toview the list of applications in the istio-system namespace, click the Applications page. Kiali
displays the health of the applications.

a. Hover your mouse over the information icon to view any additional information noted in the
Details column.

8. To view the list of workloads in the istio-system namespace, click the Workloads page. Kiali
displays the health of the workloads.

a. Hover your mouse over the information icon to view any additional information noted in the
Details column.

9. To view the list of services in the istio-system namespace, click the Services page. Kiali displays
the health of the services and of the configurations.

a. Hover your mouse over the information icon to view any additional information noted in the
Details column.

10. To view a list of the Istio Configuration objects in the istio-system namespace, click the Istio
Config page. Kiali displays the health of the configuration.

a. If there are configuration errors, click the row and Kiali opens the configuration file with the
error highlighted.
1.8.5. Additional resources

Red Hat OpenShift Service Mesh supports multiple independent control planes within the cluster. You
can create reusable configurations with ServiceMeshControlPlane profiles. For more information, see
Creating control plane profiles.

1.8.6. Next steps

® Add a project to the Service Mesh so that applications can be made available. For more
information, see Adding services to a service mesh .

1.9. ADDING SERVICES TO A SERVICE MESH

A project contains services; however, the services are only available if you add the project to the service
mesh.

108

CHAPTER 1. SERVICE MESH 2.X

1.9.1. About adding projects to a service mesh

After installing the Operators and creating the ServiceMeshControlPlane resource, add one or more
projects to the service mesh.

NOTE

In OpenShift Container Platform, a project is essentially a Kubernetes namespace with
additional annotations, such as the range of user IDs that can be used in the project.
Typically, the OpenShift Container Platform web console uses the term project, and the
CLI uses the term namespace, but the terms are essentially synonymous.

You can add projects to an existing service mesh using either the OpenShift Container Platform web
console or the CLI. There are three methods to add a project to a service mesh:

® Specifying the project name in the ServiceMeshMemberRoll resource.

e Configuring label selectors in the spec.labelSelectors field of the ServiceMeshMemberRoll
resource.

® Creating the ServiceMeshMember resource in the project.

If you use the first method, then you must create the ServiceMeshMemberRoll resource.

1.9.2. Creating the Red Hat OpenShift Service Mesh member roll

The ServiceMeshMemberRoll lists the projects that belong to the Service Mesh control plane. Only
projects listed in the ServiceMeshMemberRoll are affected by the control plane. A project does not
belong to a service mesh until you add it to the member roll for a particular control plane deployment.

You must create a ServiceMeshMemberRoll resource named default in the same project as the
ServiceMeshControlPlane, for example istio-system.

1.9.2.1. Creating the member roll from the web console

You can add one or more projects to the Service Mesh member roll from the web console. In this
example, istio-system is the name of the Service Mesh control plane project.

Prerequisites

® Aninstalled, verified Red Hat OpenShift Service Mesh Operator.

e |ist of existing projects to add to the service mesh.

Procedure

1. Login to the OpenShift Container Platform web console.
2. If you do not already have services for your mesh, or you are starting from scratch, create a

project for your applications. It must be different from the project where you installed the
Service Mesh control plane.

a. Navigate to Home — Projects.

b. Enter a name in the Name field.

109

OpenShift Container Platform 4.12 Service Mesh

c. Click Create.
3. Navigate to Operators - Installed Operators.

4. Click the Project menu and choose the project where your ServiceMeshControlPlane
resource is deployed from the list, for example istio-system.

5. Click the Red Hat OpenShift Service Mesh Operator.
6. Click the Istio Service Mesh Member Rolltab.
7. Click Create ServiceMeshMemberRoll

8. Click Members, then enter the name of your project in the Value field. You can add any number
of projects, but a project can only belong to one ServiceMeshMemberRoll resource.

9. Click Create.

1.9.2.2. Creating the member roll from the CLI

You can add a project to the ServiceMeshMemberRoll from the command line.

Prerequisites

® Aninstalled, verified Red Hat OpenShift Service Mesh Operator.
® |ist of projects to add to the service mesh.

® Access to the OpenShift CLI (o¢).

Procedure

1. Login to the OpenShift Container Platform CLI.

I $ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

2. If you do not already have services for your mesh, or you are starting from scratch, create a
project for your applications. It must be different from the project where you installed the
Service Mesh control plane.

I $ oc new-project <your-project>

3. To add your projects as members, modify the following example YAML. You can add any
number of projects, but a project can only belong to one ServiceMeshMemberRoll resource. In
this example, istio-system is the name of the Service Mesh control plane project.

Example servicemeshmemberroll-default.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:

name: default

namespace: istio-system
spec:

members:

110

CHAPTER 1. SERVICE MESH 2.X

a list of projects joined into the service mesh
- your-project-name
- another-project-name

4. Run the following command to upload and create the ServiceMeshMemberRoll resource in the
istio-system namespace.

I $ oc create -n istio-system -f servicemeshmemberroll-default.yaml

5. Run the following command to verify the ServiceMeshMemberRoll was created successfully.
I $ oc get smmr -n istio-system default

The installation has finished successfully when the STATUS column is Configured.

1.9.3. About adding projects using the ServiceMeshMemberRoll resource

Using the ServiceMeshMemberRoll resource is the simplest way to add a project to a service mesh. To
add a project, specify the project name in the spec.members field of the ServiceMeshMemberRoll
resource. The ServiceMeshMemberRoll resource specifies which projects are controlled by the
ServiceMeshControlPlane resource.

Service Mesh

Namespace: istio-system Namespace: (my-application Namespace: my-other-app

Service Mesh Control Plane

Service Mesh Member Roll

spec:
members:

Services Pods Services Pods
C - my-application)

D Name matches Name doesn’t match

NOTE

Adding projects using this method requires the user to have the update
servicemeshmemberrolls and the update pods privileges in the project that is being
added.

e |f you already have an application, workload, or service to add to the service mesh, see the
following:

o Adding or removing projects from the mesh using the ServiceMeshMemberRoll resource
with the web console

o Adding or removing projects from the mesh using the ServiceMeshMemberRoll resource
with the CLI

m

OpenShift Container Platform 4.12 Service Mesh

Alternatively, to install a sample application called Bookinfo and add it to a
ServiceMeshMemberRoll resource, see the Bookinfo example application tutorial.

1.9.3.1. Adding or removing projects from the mesh using the ServiceMeshMemberRoll
resource with the web console

You can add or remove projects from the mesh using the ServiceMeshMemberRoll resource with the

OpenShift Container Platform web console. You can add any number of projects, but a project can only

belong to one mesh.

The ServiceMeshMemberRoll resource is deleted when its corresponding ServiceMeshControlPlane

resource is deleted.

Prerequisites

An installed, verified Red Hat OpenShift Service Mesh Operator.
An existing ServiceMeshMemberRoll resource.
The name of the project with the ServiceMeshMemberRoll resource.

The names of the projects you want to add or remove from the mesh.

Procedure

1.

2.

3.

12

Log in to the OpenShift Container Platform web console.
Navigate to Operators — Installed Operators.

Click the Project menu and choose the project where your ServiceMeshControlPlane
resource is deployed from the list. For example istio-system.

Click the Red Hat OpenShift Service Mesh Operator.
Click the Istio Service Mesh Member Rolltab.

Click the default link.

Click the YAML tab.

Modify the YAML to add projects as members (or delete them to remove existing members).
You can add any number of projects, but a project can only belong to one
ServiceMeshMemberRoll resource.

Example servicemeshmemberroll-default.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
name: default
namespace: istio-system #control plane project
spec:
members:
a list of projects joined into the service mesh
- your-project-name
- another-project-name

CHAPTER 1. SERVICE MESH 2.X

9. Click Save.

10. Click Reload.

1.9.3.2. Adding or removing projects from the mesh using ServiceMeshMemberRoll
resource with the CLI

You can add one or more projects to the mesh using the ServiceMeshMemberRoll resource with the
CLLI You can add any number of projects, but a project can only belong to one mesh.

The ServiceMeshMemberRoll resource is deleted when its corresponding ServiceMeshControlPlane
resource is deleted.

Prerequisites

® Aninstalled, verified Red Hat OpenShift Service Mesh Operator.

An existing ServiceMeshMemberRoll resource.
® The name of the project with the ServiceMeshMemberRoll resource.

® The names of the projects you want to add or remove from the mesh.

Access to the OpenShift CLI (o¢).

Procedure

1. Login to the OpenShift Container Platform CLI.

2. Edit the ServiceMeshMemberRoll resource.

I $ oc edit smmr -n <controlplane-namespace>

3. Modify the YAML to add or remove projects as members. You can add any number of projects,
but a project can only belong to one ServiceMeshMemberRoll resource.

Example servicemeshmemberroll-default.yaml

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
name: default
namespace: istio-system #control plane project
spec:
members:
a list of projects joined into the service mesh
- your-project-name
- another-project-name

4. Save the file and exit the editor.

1.9.4. About adding projects using the ServiceMeshMember resource

A ServiceMeshMember resource provides a way to add a project to a service mesh without modifying

13

OpenShift Container Platform 4.12 Service Mesh

the ServiceMeshMemberRoll resource. To add a project, create a ServiceMeshMember resource in
the project that you want to add to the service mesh. When the Service Mesh Operator processes the
ServiceMeshMember object, the project appears in the status.members list of the
ServiceMeshMemberRoll resource. Then, the services that reside in the project are made available to
the mesh.

Service Mesh

Namespace: istio-system Namespace: my-application Namespace: my-other-app

Service Mesh Member

(Service Mesh Control Plane 4--------- controlPlaneRef

~

Service Mesh Member Roll Services Pods Services Pods

D SMM references control plane SMM doesn't exist

The mesh administrator must grant each mesh user permission to reference the
ServiceMeshControlPlane resource in the ServiceMeshMember resource. With this permission in
place, a mesh user can add a project to a mesh even when that user does not have direct access rights
for the service mesh project or the ServiceMeshMemberRoll resource. For more information, see
Creating the Red Hat OpenShift Service Mesh members.

1.9.4.1. Adding a project to the mesh using the ServiceMeshMember resource with the web
console

You can add one or more projects to the mesh using the ServiceMeshMember resource with the
OpenShift Container Platform web console.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You know the name of the ServiceMeshControlPlane resource and the name of the project
that the resource belongs to.

® You know the name of the project you want to add to the mesh.
® A service mesh administrator must explicitly grant access to the service mesh. Administrators
can grant users permissions to access the mesh by assigning them the mesh-user Role using a

RoleBinding or ClusterRoleBinding. For more information, see Creating the Red Hat
OpenShift Service Mesh members.

Procedure
1. Login to the OpenShift Container Platform web console.

2. Navigate to Operators — Installed Operators.

14

CHAPTER 1. SERVICE MESH 2.X

3. Click the Project menu and choose the project that you want to add to the mesh from the
drop-down list. For example, istio-system.

4. Click the Red Hat OpenShift Service Mesh Operator.

5. Click the Istio Service Mesh Membertab.

6. Click Create ServiceMeshMember

7. Accept the default name for the ServiceMeshMember.
8. Click to expand ControlPlaneRef.

9. In the Namespace field, select the project that the ServiceMeshControlPlane resource
belongs to. For example, istio-system.

10. In the Name field, enter the name of the ServiceMeshControlPlane resource that this
namespace belongs to. For example, basic.

11. Click Create.

Verification

1. Confirm the ServiceMeshMember resource was created and that the project was added to the
mesh by using the following steps:

a. Click the resource name, for example, default.
b. View the Conditions section shown at the end of the screen.

c. Confirm that the Status of the Reconciled and Ready conditions is True.
If the Status is False, see the Reason and Message columns for more information.

1.9.4.2. Adding a project to the mesh using the ServiceMeshMember resource with the CLI

You can add one or more projects to the mesh using the ServiceMeshMember resource with the CLI.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.

® You know the name of the ServiceMeshControlPlane resource and the name of the project it
belongs to.

® You know the name of the project you want to add to the mesh.
® A service mesh administrator must explicitly grant access to the service mesh. Administrators
can grant users permissions to access the mesh by assigning them the mesh-user Role using a

RoleBinding or ClusterRoleBinding. For more information, see Creating the Red Hat
OpenShift Service Mesh members.

Procedure

1. Login to the OpenShift Container Platform CLI.

115

OpenShift Container Platform 4.12 Service Mesh

Z. Create the YANMIL Tile Tor the Serviceneshvember manitest. | he manitest adds the my-
application project to the service mesh that was created by the ServiceMeshControlPlane
resource deployed in the istio-system namespace:

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
name: default
namespace: my-application
spec:
controlPlaneRef:
namespace: istio-system
name: basic

3. Apply the YAML file to create the ServiceMeshMember resource:

I $ oc apply -f <file-name>

Verification

e Verify that the namespace is part of the mesh by running the following command. Confirm the
that the value True appears in the READY column.

I $ oc get smm default -n my-application

Example output

NAME CONTROL PLANE READY AGE
default istio-system/basic True 2miis

e Alternatively, view the ServiceMeshMemberRoll resource to confirm that the my-application
namespace is displayed in the status.members and status.configuredMembers fields of the
ServiceMeshMemberRoll resource.

I $ oc describe smmr default -n istio-system
Example output

Name: default
Namespace: istio-system
Labels: <none>

#...

Status:

#...

Configured Members:
default
my-application

#...

Members:
default
my-application

1.9.5. About adding projects using label selectors

16

CHAPTER 1. SERVICE MESH 2.X

For cluster-wide deployments, you can use label selectors to add projects to the mesh. Label selectors
specified in the ServiceMeshMemberRoll resource enable the Service Mesh Operator to add or
remove namespaces to or from the mesh based on namespace labels. Unlike other standard OpenShift
Container Platform resources that you can use to specify a single label selector, you can use the
ServiceMeshMemberRoll resource to specify multiple label selectors.

Service Mesh

Namespace: istio-system Namespace: my-application Namespace: my-other-app
metadata: metadata:
labels: labels:
Service Mesh Control Plane
(my-key: my-value) my-key: different-value
Service Mesh Member Roll
spec:
memberSelectors:
Services Pods Services Pods
(my-key: my-value)

D Label matches Label doesn’t match

If the labels for a namespace match any of the selectors specified in the ServiceMeshMemberRoll
resource, then the namespace is included in the mesh.

NOTE

In OpenShift Container Platform, a project is essentially a Kubernetes namespace with
additional annotations, such as the range of user IDs that can be used in the project.
Typically, the OpenShift Container Platform web console uses the term project, and the
CLI uses the term namespace, but the terms are essentially synonymous.

1.9.5.1. Adding a project to the mesh using label selectors with the web console

You can use labels selectors to add a project to the Service Mesh with the OpenShift Container
Platform web console.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.
® The deployment has an existing ServiceMeshMemberRoll resource.

® You are logged in to the OpenShift Container Platform web console as cluster-admin.

Procedure

1. Navigate to Operators — Installed Operators.

2. Click the Project menu, and from the drop-down list, select the project where your
ServiceMeshMemberRoll resource is deployed. For example, istio-system.

3. Click the Red Hat OpenShift Service Mesh Operator.

17

OpenShift Container Platform 4.12 Service Mesh

4.

5.

6.

Click the Istio Service Mesh Member Rolltab.
Click Create ServiceMeshMember Roll
Accept the default name for the ServiceMeshMemberRoll.

In the Labels field, enter key-value pairs to define the labels that identify which namespaces to
include in the service mesh. If a project namespace has either label specified by the selectors,
then the project namespace is included in the service mesh. You do not need to include both
labels.

For example, entering mykey=myvalue includes all namespaces with this label as part of the
mesh. When the selector identifies a match, the project namespace is added to the service
mesh.

Entering myotherkey=myothervalue includes all namespaces with this label as part of the
mesh. When the selector identifies a match, the project namespace is added to the service
mesh.

8. Click Create.

1.9.5.2. Adding a project to the mesh using label selectors with the CLI

You can use label selectors to add a project to the Service Mesh with the CLI.

Prerequisites

® You have installed the Red Hat OpenShift Service Mesh Operator.
® The deployment has an existing ServiceMeshMemberRoll resource.

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure

18

1.

Log in to the OpenShift Container Platform CLI.

2. Edit the ServiceMeshMemberRoll resource.

I $ oc edit smmr default -n istio-system

You can deploy the Service Mesh control plane to any project provided that it is separate from
the project that contains your services.

3. Modify the YAML file to include namespace label selectors in the spec.memberSelectors field

of the ServiceMeshMemberRoll resource.

NOTE

Instead of using the matchLabels field, you can also use the matchExpressions
field in the selector.

apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:

name: default

CHAPTER 1. SERVICE MESH 2.X

namespace: istio-system
spec:

memberSelectors: ﬂ

- matchLabels: 9

mykey: myvalue 6
- matchLabels:
myotherkey: myothervalue 9

ﬂ Contains the label selectors used to identify which project namespaces are included in the
service mesh. If a project namespace has either label specified by the selectors, then the
project namespace is included in the service mesh. The project namespace does not need
both labels to be included.

pecifies all namespaces with the mykey=myvalue label. When the selector identifies a
match, the project namespace is added to the service mesh.

pecifies all namespaces with the myotherkey=myothervalue label. When the selector
identifies a match, the project namespace is added to the service mesh.

1.9.6. Bookinfo example application

The Bookinfo example application allows you to test your Red Hat OpenShift Service Mesh 2.5.1
installation on OpenShift Container Platform.

The Bookinfo application displays information about a book, similar to a single catalog entry of an online
book store. The application displays a page that describes the book, book details (ISBN, number of
pages, and other information), and book reviews.

The Bookinfo application consists of these microservices:

® The productpage microservice calls the details and reviews microservices to populate the
page.

® The details microservice contains book information.

® The reviews microservice contains book reviews. It also calls the ratings microservice.

® The ratings microservice contains book ranking information that accompanies a book review.
There are three versions of the reviews microservice:

® \ersion vl does not call the ratings Service.

e Version v2 calls the ratings Service and displays each rating as one to five black stars.

® Version v3 calls the ratings Service and displays each rating as one to five red stars.

1.9.6.1. Installing the Bookinfo application

This tutorial walks you through how to create a sample application by creating a project, deploying the
Bookinfo application to that project, and viewing the running application in Service Mesh.

Prerequisites:

19

OpenShift Container Platform 4.12 Service Mesh

OpenShift Container Platform 4.1 or higher installed.
Red Hat OpenShift Service Mesh 2.5.1installed.
Access to the OpenShift CLI (o¢).

You are logged in to OpenShift Container Platform as " cluster-admin".

NOTE

The Bookinfo sample application cannot be installed on IBM Z and IBM Power.

NOTE

The commands in this section assume the Service Mesh control plane project is istio-
system. If you installed the control plane in another namespace, edit each command
before you run it.

Procedure

1.

2.

120

Click Home — Projects.
Click Create Project.

Enter bookinfo as the Project Name, enter a Display Name, and enter a Description, then click
Create.

e Alternatively, you can run this command from the CLI to create the bookinfo project.
I $ oc new-project bookinfo

Click Operators — Installed Operators.

Click the Project menu and use the Service Mesh control plane namespace. In this example, use
istio-system.

Click the Red Hat OpenShift Service MeshOperator.

Click the Istio Service Mesh Member Rolltab.

a. If you have already created a Istio Service Mesh Member Roll, click the name, then click the
YAML tab to open the YAML editor.

b. If you have not created a ServiceMeshMemberRoll, click Create
ServiceMeshMemberRoll.

Click Members, then enter the name of your project in the Value field.

Click Create to save the updated Service Mesh Member Roll.

a. Or, save the following example to a YAML file.

Bookinfo ServiceMeshMemberRoll example servicemeshmemberroll-
default.yaml

I apiVersion: maistra.io/v1

10. Run the following command to verify the ServiceMeshMemberRoll was created successfully.

1.

CHAPTER 1. SERVICE MESH 2.X

kind: ServiceMeshMemberRoll
metadata:

name: default
spec:

members:

- bookinfo

b. Run the following command to upload that file and create the ServiceMeshMemberRoll
resource in the istio-system namespace. In this example, istio-system is the name of the

Service Mesh control plane project.

I $ oc create -n istio-system -f servicemeshmemberroll-default.yaml

$ oc get smmr -n istio-system -0 wide

The installation has finished successfully when the STATUS column is Configured.

From the CLI, deploy the Bookinfo application in the “bookinfo™ project by applying the

NAME READY STATUS AGE MEMBERS
default 1/1 Configured 70s ["bookinfo"]

bookinfo.yaml file:

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.5/samples/bookinfo/platform/kube/bookinfo.yaml

You should see output similar to the following:

service/details created
serviceaccount/bookinfo-details created
deployment.apps/details-v1 created
service/ratings created
serviceaccount/bookinfo-ratings created
deployment.apps/ratings-v1 created
service/reviews created
serviceaccount/bookinfo-reviews created
deployment.apps/reviews-v1 created
deployment.apps/reviews-v2 created
deployment.apps/reviews-v3 created
service/productpage created
serviceaccount/bookinfo-productpage created
deployment.apps/productpage-vi created

12. Create the ingress gateway by applying the bookinfo-gateway.yaml file:

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.5/samples/bookinfo/networking/bookinfo-gateway.yaml

You should see output similar to the following:

121

OpenShift Container Platform 4.12 Service Mesh

gateway.networking.istio.io/bookinfo-gateway created
virtualservice.networking.istio.io/bookinfo created

13. Set the value for the GATEWAY_URL parameter:

$ export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}")

1.9.6.2. Adding default destination rules

Before you can use the Bookinfo application, you must first add default destination rules. There are two

preconfigured YAML files, depending on whether or not you enabled mutual transport layer security
(TLS) authentication.

Procedure
1. To add destination rules, run one of the following commands:

e |f you did not enable mutual TLS:

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.5/samples/bookinfo/networking/destination-rule-all.yaml

e |f you enabled mutual TLS:

$ oc apply -n bookinfo -f https://raw.githubusercontent.com/Maistra/istio/maistra-
2.5/samples/bookinfo/networking/destination-rule-all-mtls.yaml

You should see output similar to the following:

destinationrule.networking.istio.io/productpage created
destinationrule.networking.istio.io/reviews created
destinationrule.networking.istio.io/ratings created
destinationrule.networking.istio.io/details created

1.9.6.3. Verifying the Bookinfo installation

To confirm that the sample Bookinfo application was successfully deployed, perform the following
steps.

Prerequisites

® Red Hat OpenShift Service Mesh installed.
® Complete the steps for installing the Bookinfo sample app.

® You are logged in to OpenShift Container Platform as" cluster-admin".

Procedure from CLI

1. Verify that all pods are ready with this command:

I $ oc get pods -n bookinfo

122

CHAPTER 1. SERVICE MESH 2.X

All pods should have a status of Running. You should see output similar to the following:

NAME READY STATUS RESTARTS AGE
details-v1-55b869668-jh7hb 2/2 Running 0 12m
productpage-v1-6fc77ff794-nsl8r 2/2 Running 0 12m
ratings-v1-7d7d8d8b56-55scn 2/2 Running 0 12m
reviews-v1-868597db96-bdxgq 2/2 Running 0 12m
reviews-v2-5b64f47978-cvssp 2/2 Running 0 12m

reviews-v3-6dfd49b55b-vewpf 2/2 Running 0 12m

2. Run the following command to retrieve the URL for the product page:

3. Copy and paste the output in a web browser to verify the Bookinfo product page is deployed.

echo "http://$GATEWAY_URL/productpage”

Procedure from Kiali web console

1. Obtain the address for the Kiali web console.

a.

b.

Log in to the OpenShift Container Platform web console.
Navigate to Networking = Routes.

On the Routes page, select the Service Mesh control plane project, for example istio-
system, from the Namespace menu.
The Location column displays the linked address for each route.

Click the link in the Location column for Kiali.

Click Log In With OpenShift The Kiali Overview screen presents tiles for each project
namespace.

2. InKiali, click Graph.

3. Select bookinfo from the Namespace list, and App graph from the Graph Type list.

4. Click Display idle nodes from the Display menu.
This displays nodes that are defined but have not received or sent requests. It can confirm that
an application is properly defined, but that no request traffic has been reported.

123

OpenShift Container Platform 4.12 Service Mesh

Okiali -

Overview Namespace: bookinfo Appgraph v D Last5m v EverylSs w n

Graph Display v Find v Hide v ® Graph tour

Mar 17,02:47:56 PM .. 02:5256 PM M
I @helth
»

Totl Ksuccess emor
Distributed Tracing &'
details
ow o5 w000 000
. Out ————

I
-] istio-ingressgateway productpage o = s s w
(istio-system) C O BOK 3o W4 WS BNR

reviews ratings

® Use the Duration menu to increase the time period to help ensure older traffic is captured.
® Use the Refresh Rate menu to refresh traffic more or less often, or not at all.

5. Click Services, Workloads or Istio Config to see list views of bookinfo components, and
confirm that they are healthy.

1.9.6.4. Removing the Bookinfo application

Follow these steps to remove the Bookinfo application.

Prerequisites

® OpenShift Container Platform 4.1 or higher installed.
® Red Hat OpenShift Service Mesh 2.5.1installed.

® Access to the OpenShift CLI (oc).
1.9.6.4.1. Delete the Bookinfo project

Procedure

1. Login to the OpenShift Container Platform web console.

2. Click to Home — Projects.

3. Click the bookinfo menu , and then click Delete Project.

4. Type bookinfo in the confirmation dialog box, and then click Delete.

® Alternatively, you can run this command using the CLI to create the bookinfo project.

I $ oc delete project bookinfo

1.9.6.4.2. Remove the Bookinfo project from the Service Mesh member roll

124

CHAPTER 1. SERVICE MESH 2.X

Procedure

1. Login to the OpenShift Container Platform web console.
2. Click Operators — Installed Operators.
3. Click the Project menu and choose istio-system from the list.

4. Click the Istio Service Mesh Member Rolllink under Provided APIS for the Red Hat
OpenShift Service Mesh Operator.

5. Click the ServiceMeshMemberRoll menu and select Edit Service Mesh Member Roll

6. Edit the default Service Mesh Member Roll YAML and remove bookinfo from the members list.

e Alternatively, you can run this command using the CLI to remove the bookinfo project from
the ServiceMeshMemberRoll. In this example, istio-system is the name of the Service
Mesh control plane project.

$ oc -n istio-system patch --type='json' smmr default -p '[{"op": "remove", "path":
"/spec/members”, "value":[""bookinfo""]}]'

7. Click Save to update Service Mesh Member Roll.

1.9.7. Next steps

® To continue the installation process, you must enable sidecar injection.

1.10. ENABLING SIDECAR INJECTION

After adding the namespaces that contain your services to your mesh, the next step is to enable
automatic sidecar injection in the Deployment resource for your application. You must enable automatic
sidecar injection for each deployment.

If you have installed the Bookinfo sample application, the application was deployed and the sidecars
were injected as part of the installation procedure. If you are using your own project and service, deploy
your applications on OpenShift Container Platform.

For more information, see the OpenShift Container Platform documentation, Understanding
Deployment and DeploymentConfig objects.

NOTE

Traffic started by Init Containers, specialized containers that run before the application
containers in a pod, cannot travel outside of the service mesh by default. Any action Init
Containers perform that requires establishing a network traffic connection outside of the
mesh fails.

For more information about connecting Init Containers to a service, see the Red Hat
Knowledgebase solution initContainer in CrashLoopBackOff on pod with Service Mesh
sidecar injected

1.10.1. Prerequisites

125

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/building_applications/#understanding-deployments-and-deploymentconfigs
https://access.redhat.com/solutions/6653601

OpenShift Container Platform 4.12 Service Mesh

® Services deployed to the mesh, for example the Bookinfo sample application.

® A Deployment resource file.

1.10.2. Enabling automatic sidecar injection

When deploying an application, you must opt-in to injection by configuring the label
sidecar.istio.io/inject in spec.template.metadata.labels to true in the deployment object. Optingin
ensures that the sidecar injection does not interfere with other OpenShift Container Platform features
such as builder pods used by numerous frameworks within the OpenShift Container Platform ecosystem.

Prerequisites

® |dentify the namespaces that are part of your service mesh and the deployments that need
automatic sidecar injection.

Procedure

1. To find your deployments use the oc get command.
I $ oc get deployment -n <namespace>

For example, to view the Deployment YAML file for the 'ratings-v1' microservice in the
bookinfo namespace, use the following command to see the resource in YAML format.

I oc get deployment -n bookinfo ratings-v1 -o yaml

2. Open the application’s Deployment YAML file in an editor.

3. Add spec.template.metadata.labels.sidecar.istio/inject to your Deployment YAML file and
set sidecar.istio.io/inject to true as shown in the following example.

Example snippet from bookinfo deployment-ratings-vl.yaml

apiVersion: apps/vi
kind: Deployment
metadata:
name: ratings-v1
namespace: bookinfo
labels:
app: ratings
version: v1
spec:
template:
metadata:
labels:
sidecar.istio.io/inject: 'true'

NOTE

Using the annotations parameter when enabling automatic sidecar injection is
deprecated and is replaced by using the labels parameter.

126

CHAPTER 1. SERVICE MESH 2.X

4. Save the Deployment YAML file.

5. Add the file back to the project that contains your app.
I $ oc apply -n <namespace> -f deployment.yaml

In this example, bookinfo is the name of the project that contains the ratings-v1 app and
deployment-ratings-vi.yaml is the file you edited.

I $ oc apply -n bookinfo -f deployment-ratings-v1.yaml

6. To verify that the resource uploaded successfully, run the following command.
I $ oc get deployment -n <namespace> <deploymentName> -o yaml|
For example,

I $ oc get deployment -n bookinfo ratings-v1 -o yaml

1.10.3. Validating sidecar injection

The Kiali console offers several ways to validate whether or not your applications, services, and
workloads have a sidecar proxy.

Figure 1.3. Missing sidecar badge

The Graph page displays a node badge indicating a Missing Sidecar on the following graphs:
® App graph
® \/ersioned app graph
® Workload graph

Figure 1.4. Missing sidecar icon

‘[] Missing Sidecar

127

OpenShift Container Platform 4.12 Service Mesh

The Applications page displays a Missing Sidecar icon in the Details column for any applications in a
namespace that do not have a sidecar.

The Workloads page displays a Missing Sidecar icon in the Details column for any applicationsin a
namespace that do not have a sidecar.

The Services page displays a Missing Sidecar icon in the Details column for any applicationsin a
namespace that do not have a sidecar. When there are multiple versions of a service, you use the
Service Details page to view Missing Sidecar icons.

The Workload Details page has a special unified Logs tab that lets you view and correlate application
and proxy logs. You can view the Envoy logs as another way to validate sidecar injection for your
application workloads.

The Workload Details page also has an Envoy tab for any workload that is an Envoy proxy or has been
injected with an Envoy proxy. This tab displays a built-in Envoy dashboard that includes subtabs for
Clusters, Listeners, Routes, Bootstrap, Config, and Metrics.

For information about enabling Envoy access logs, see the Troubleshooting section.

For information about viewing Envoy logs, see Viewing logs in the Kiali console

1.10.4. Setting proxy environment variables through annotations

Configuration for the Envoy sidecar proxies is managed by the ServiceMeshControlPlane.

You can set environment variables for the sidecar proxy for applications by adding pod annotations to
the deployment in the injection-template.yaml file. The environment variables are injected to the
sidecar.

Example injection-template.yaml

apiVersion: apps/v1
kind: Deployment
metadata:
name: resource
spec:
replicas: 7
selector:
matchLabels:
app: resource
template:
metadata:
annotations:
sidecar.maistra.io/proxyEnv: "{ \"maistra_test_env\": \"env_value\", \"maistra_test_env_2\":
\"env_value_2\"}"

128

CHAPTER 1. SERVICE MESH 2.X

' WARNING
A You should never include maistra.io/ labels and annotations when creating your

own custom resources. These labels and annotations indicate that the resources
are generated and managed by the Operator. If you are copying content from an
Operator-generated resource when creating your own resources, do not include
labels or annotations that start with maistra.io/. Resources that include these labels
or annotations will be overwritten or deleted by the Operator during the next
reconciliation.

1.10.5. Updating sidecar proxies

In order to update the configuration for sidecar proxies the application administrator must restart the
application pods.

If your deployment uses automatic sidecar injection, you can update the pod template in the
deployment by adding or modifying an annotation. Run the following command to redeploy the pods:

$ oc patch deployment/<deployment> -p {"spec":{"template":{"metadata":{"annotations":
{"kubectl.kubernetes.io/restartedAt": ""date -lseconds’"}}}}}'

If your deployment does not use automatic sidecar injection, you must manually update the sidecars by
modifying the sidecar container image specified in the deployment or pod, and then restart the pods.

1.10.6. Next steps

Configure Red Hat OpenShift Service Mesh features for your environment.
® Security
® Traffic management

® Metrics, logs, and traces

1.11. UPGRADING SERVICE MESH

To access the most current features of Red Hat OpenShift Service Mesh, upgrade to the current
version, 2.5.1.

1.11.1. Understanding versioning

Red Hat uses semantic versioning for product releases. Semantic Versioning is a 3-component number
in the format of X.Y.Z, where:

e X stands for a Major version. Major releases usually denote some sort of breaking change:
architectural changes, API changes, schema changes, and similar major updates.

® Y stands for a Minor version. Minor releases contain new features and functionality while
maintaining backwards compatibility.

129

OpenShift Container Platform 4.12 Service Mesh

® 7 stands for a Patch version (also known as a z-stream release). Patch releases are used to
addresses Common Vulnerabilities and Exposures (CVEs) and release bug fixes. New features
and functionality are generally not released as part of a Patch release.

1.11.1.1. How versioning affects Service Mesh upgrades

Depending on the version of the update you are making, the upgrade process is different.

e Patch updates - Patch upgrades are managed by the Operator Lifecycle Manager (OLM); they
happen automatically when you update your Operators.

® Minor upgrades - Minor upgrades require both updating to the most recent Red Hat OpenShift
Service Mesh Operator version and manually modifying the spec.version value in your
ServiceMeshControlPlane resources.

® Major upgrades - Major upgrades require both updating to the most recent Red Hat OpenShift
Service Mesh Operator version and manually modifying the spec.version value in your
ServiceMeshControlPlane resources. Because major upgrades can contain changes that are
not backwards compatible, additional manual changes might be required.

1.11.1.2. Understanding Service Mesh versions

In order to understand what version of Red Hat OpenShift Service Mesh you have deployed on your
system, you need to understand how each of the component versions is managed.

® Operator version - The most current Operator version is 2.5.1. The Operator version number
only indicates the version of the currently installed Operator. Because the Red Hat OpenShift
Service Mesh Operator supports multiple versions of the Service Mesh control plane, the
version of the Operator does not determine the version of your deployed
ServiceMeshControlPlane resources.

IMPORTANT

Upgrading to the latest Operator version automatically applies patch updates,
but does not automatically upgrade your Service Mesh control plane to the latest
minor version.

® ServiceMeshControlPlane version - The ServiceMeshControlPlane version determines what
version of Red Hat OpenShift Service Mesh you are using. The value of the spec.version field in
the ServiceMeshControlPlane resource controls the architecture and configuration settings
that are used to install and deploy Red Hat OpenShift Service Mesh. When you create the
Service Mesh control plane you can set the version in one of two ways:

o To configure in the Form View, select the version from the Control Plane Version menu.
o To configure in the YAML View, set the value for spec.version in the YAML file.
Operator Lifecycle Manager (OLM) does not manage Service Mesh control plane upgrades, so the

version number for your Operator and ServiceMeshControlPlane (SMCP) may not match, unless you
have manually upgraded your SMCP.

1.11.2. Upgrade considerations

130

CHAPTER 1. SERVICE MESH 2.X

The maistra.io/ label or annotation should not be used on a user-created custom resource, because it
indicates that the resource was generated by and should be managed by the Red Hat OpenShift Service
Mesh Operator.

' WARNING
A During the upgrade, the Operator makes changes, including deleting or replacing

files, to resources that include the following labels or annotations that indicate that
the resource is managed by the Operator.

Before upgrading check for user-created custom resources that include the following labels or
annotations:

® maistra.io/ AND the app.kubernetes.io/managed-by label set to maistra-istio-operator (Red
Hat OpenShift Service Mesh)

e kiali.io/ (Kiali)
e jaegertracing.io/ (Red Hat OpenShift distributed tracing platform (Jaeger))
® |ogging.openshift.io/ (Red Hat Elasticsearch)

Before upgrading, check your user-created custom resources for labels or annotations that indicate
they are Operator managed. Remove the label or annotation from custom resources that you do not
want to be managed by the Operator.

When upgrading to version 2.0, the Operator only deletes resources with these labels in the same
namespace as the SMCP.

When upgrading to version 2.1, the Operator deletes resources with these labels in all namespaces.

1.11.2.1. Known issues that may affect upgrade

Known issues that may affect your upgrade include:

e When upgrading an Operator, custom configurations for Jaeger or Kiali might be reverted.
Before upgrading an Operator, note any custom configuration settings for the Jaeger or Kiali
objects in the Service Mesh production deployment so that you can recreate them.

® Red Hat OpenShift Service Mesh does not support the use of EnvoyFilter configuration except
where explicitly documented. This is due to tight coupling with the underlying Envoy APlIs,
meaning that backward compatibility cannot be maintained. If you are using Envoy Filters, and
the configuration generated by Istio has changed due to the lastest version of Envoy introduced
by upgrading your ServiceMeshControlPlane, that has the potential to break any EnvoyFilter
you may have implemented.

e (OSSM-1505 ServiceMeshExtension does not work with OpenShift Container Platform version
4.11. Because ServiceMeshExtension has been deprecated in Red Hat OpenShift Service Mesh
2.2, this known issue will not be fixed and you must migrate your extensions to WasmPluging

131

https://issues.redhat.com/browse/OSSM-1505

OpenShift Container Platform 4.12 Service Mesh

e (OSSM-1396 If a gateway resource contains the spec.externallPs setting, rather than being
recreated when the ServiceMeshControlPlane is updated, the gateway is removed and never
recreated.

® (OSSM-1052 When configuring a Service ExternallP for the ingressgateway in the Service Mesh
control plane, the service is not created. The schema for the SMCP is missing the parameter for
the service.
Workaround: Disable the gateway creation in the SMCP spec and manage the gateway
deployment entirely manually (including Service, Role and RoleBinding).

1.11.3. Upgrading the Operators

In order to keep your Service Mesh patched with the latest security fixes, bug fixes, and software
updates, you must keep your Operators updated. You initiate patch updates by upgrading your
Operators.

IMPORTANT

The version of the Operator does not determine the version of your service mesh. The
version of your deployed Service Mesh control plane determines your version of Service
Mesh.

Because the Red Hat OpenShift Service Mesh Operator supports multiple versions of the Service Mesh
control plane, updating the Red Hat OpenShift Service Mesh Operator does not update the
spec.version value of your deployed ServiceMeshControlPlane. Also note that the spec.version
value is a two digit number, for example 2.2, and that patch updates, for example 2.2.1, are not reflected
in the SMCP version value.

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. The OLM runs by default in OpenShift Container Platform. OLM
queries for available Operators as well as upgrades for installed Operators.

Whether or not you have to take action to upgrade your Operators depends on the settings you selected
when installing them. When you installed each of your Operators, you selected an Update Channeland
an Approval Strategy. The combination of these two settings determine when and how your Operators
are updated.

Table 1.4. Interaction of Update Channel and Approval Strategy

Versioned channel "Stable" or "Preview" Channel

Automatic Automatically updates the Automatically updates Operator
Operator for minor and patch for all major, minor, and patch
releases for that version only. Will releases.

not automatically update to the
next major version (that is, from
version 2.0 to 3.0). Manual
change to Operator subscription
required to update to the next
major version.

132

https://issues.redhat.com/browse/OSSM-1396
https://issues.redhat.com/browse/OSSM-1052

CHAPTER 1. SERVICE MESH 2.X

Versioned channel "Stable" or "Preview" Channel

Manual Manual updates required for Manual updates required for all
minor and patch releases for the major, minor, and patch releases.
specified version. Manual change
to Operator subscription required
to update to the next major
version.

When you update your Red Hat OpenShift Service Mesh Operator the Operator Lifecycle Manager
(OLM) removes the old Operator pod and starts a new pod. Once the new Operator pod starts, the
reconciliation process checks the ServiceMeshControlPlane (SMCP), and if there are updated
container images available for any of the Service Mesh control plane components, it replaces those
Service Mesh control plane pods with ones that use the new container images.

When you upgrade the Kiali and Red Hat OpenShift distributed tracing platform (Jaeger) Operators, the
OLM reconciliation process scans the cluster and upgrades the managed instances to the version of the
new Operator. For example, if you update the Red Hat OpenShift distributed tracing platform (Jaeger)
Operator from version 1.30.2 to version 1.34.1, the Operator scans for running instances of distributed
tracing platform (Jaeger) and upgrades them to 1.34.1 as well.

To stay on a particular patch version of Red Hat OpenShift Service Mesh, you would need to disable
automatic updates and remain on that specific version of the Operator.

For more information about upgrading Operators, refer to the Operator Lifecycle Manager
documentation.

1.11.4. Upgrading the control plane

You must manually update the control plane for minor and major releases. The community Istio project
recommends canary upgrades, Red Hat OpenShift Service Mesh only supports in-place upgrades. Red
Hat OpenShift Service Mesh requires that you upgrade from each minor release to the next minor
release in sequence. For example, you must upgrade from version 2.0 to version 2.1, and then upgrade to
version 2.2. You cannot update from Red Hat OpenShift Service Mesh 2.0 to 2.2 directly.

When you upgrade the service mesh control plane, all Operator managed resources, for example
gateways, are also upgraded.

Although you can deploy multiple versions of the control plane in the same cluster, Red Hat OpenShift
Service Mesh does not support canary upgrades of the service mesh. That is, you can have different

SCMP resources with different values for spec.version, but they cannot be managing the same mesh.

For more information about migrating your extensions, refer to Migrating from ServiceMeshExtension to
WasmPlugin resources.

1.11.4.1. Upgrade changes from version 2.4 to version 2.5

1.11.4.1.1. Istio OpenShift Routing (IOR) default setting change

The default setting for Istio OpenShift Routing (IOR) has changed. The setting is now disabled by
default.

133

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#updating-installed-operators

OpenShift Container Platform 4.12 Service Mesh

You can use |IOR by setting the enabled field to true in the spec.gateways.openshiftRoute
specification of the ServiceMeshControlPlane resource.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
gateways:
openshiftRoute:
enabled: true

1.11.4.1.2. Istio proxy concurrency configuration enhancement

For consistency across deployments, Istio now configures the concurrency parameter based on the
CPU limit allocated to the proxy container. For example, a limit of 2500m would set the concurrency
parameter to 3. If you set the concurrency parameter to a value, Istio uses that value to configure how
many threads the proxy runs instead of using the CPU limit.

Previously, the default setting for the parameter was 2.

1.11.4.2. Upgrade changes from version 2.3 to version 2.4

Upgrading the Service Mesh control plane from version 2.3 to 2.4 introduces the following behavioral
changes:

® Support for Istio OpenShift Routing (IOR) has been deprecated. IOR functionality is still
enabled, but it will be removed in a future release.

® The following cipher suites are no longer supported, and were removed from the list of ciphers
used in client and server side TLS negotiations.

o ECDHE-ECDSA-AES128-SHA
o ECDHE-RSA-AES128-SHA

o AES128-GCM-SHA256

o AESI28-SHA

o ECDHE-ECDSA-AES256-SHA
o ECDHE-RSA-AES256-SHA

o AES256-GCM-SHA384

o AES256-SHA
Applications that require access to services that use one of these cipher suites will fail to
connect when the proxy initiates a TLS connection.

1.11.4.3. Upgrade changes from version 2.2 to version 2.3

Upgrading the Service Mesh control plane from version 2.2 to 2.3 introduces the following behavioral
changes:

® This release requires use of the WasmPlugin API. Support for the ServiceMeshExtension AP],

which was deprecated in 2.2, has now been removed. If you attempt to upgrade while using the
ServiceMeshExtension API, then the upgrade fails.

134

CHAPTER 1. SERVICE MESH 2.X

1.11.4.4. Upgrade changes from version 2.1to version 2.2

Upgrading the Service Mesh control plane from version 2.1to 2.2 introduces the following behavioral
changes:

® The istio-node DaemonSet is renamed to istio-cni-node to match the name in upstream Istio.

® |stio 110 updated Envoy to send traffic to the application container using eth0 rather than lo by
default.

® This release adds support for the WasmPlugin API and deprecates the
ServiceMeshExtension API.

1.11.4.5. Upgrade changes from version 2.0 to version 2.1

Upgrading the Service Mesh control plane from version 2.0 to 2.1introduces the following architectural
and behavioral changes.

Architecture changes

Mixer has been completely removed in Red Hat OpenShift Service Mesh 2.1. Upgrading from a Red Hat
OpenShift Service Mesh 2.0.x release to 2.1 will be blocked if Mixer is enabled.

If you see the following message when upgrading from v2.0 to v2.1, update the existing Mixer type to
Istiod type in the existing Control Plane spec before you update the .spec.version field:

An error occurred

admission webhook smcp.validation.maistra.io denied the request: [support for policy.type "Mixer"
and policy.Mixer options have been removed in v2.1, please use another alternative, support for
telemetry.type "Mixer" and telemetry.Mixer options have been removed in v2.1, please use another
alternative]”

For example:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
policy:
type: Istiod
telemetry:
type: Istiod
version: v2.5

Behavioral changes

e AuthorizationPolicy updates:

o With the PROXY protocol, if you're using ipBlocks and notlpBlocks to specify remote IP
addresses, update the configuration to use remotelpBlocks and notRemotelpBlocks
instead.

o Added support for nested JSON Web Token (JWT) claims.

® EnvoyFilter breaking changes>

o Must use typed_config

135

OpenShift Container Platform 4.12 Service Mesh

o xDSv2is no longer supported
o Deprecated filter names

e Older versions of proxies may report 503 status codes when receiving 1xx or 204 status codes
from newer proxies.

1.11.4.6. Upgrading the Service Mesh control plane

To upgrade Red Hat OpenShift Service Mesh, you must update the version field of the Red Hat
OpenShift Service Mesh ServiceMeshControlPlane v2 resource. Then, once it is configured and
applied, restart the application pods to update each sidecar proxy and its configuration.

Prerequisites

® You are running OpenShift Container Platform 4.9 or later.

® You have the latest Red Hat OpenShift Service Mesh Operator.

Procedure

1. Switch to the project that contains your ServiceMeshControlPlane resource. In this example,
istio-system is the name of the Service Mesh control plane project.

I $ oc project istio-system

2. Check your v2 ServiceMeshControlPlane resource configuration to verify it is valid.

a. Run the following command to view your ServiceMeshControlPlane resource as a v2
resource.

I $ oc get smcp -0 yaml

TIP

Back up your Service Mesh control plane configuration.

3. Update the .spec.version field and apply the configuration.
For example:

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
spec:
version: v2.5

Alternatively, instead of using the command line, you can use the web console to edit the
Service Mesh control plane. In the OpenShift Container Platform web console, click Project and
select the project name you just entered.

a. Click Operators — Installed Operators.

b. Find your ServiceMeshControlPlane instance.

136

CHAPTER 1. SERVICE MESH 2.X

c. Select YAML view and update text of the YAML file, as shown in the previous example.

d. Click Save.

1.11.4.7. Migrating Red Hat OpenShift Service Mesh from version 1.1 to version 2.0

Upgrading from version 1.1to 2.0 requires manual steps that migrate your workloads and application to a
new instance of Red Hat OpenShift Service Mesh running the new version.

Prerequisites

® You must upgrade to OpenShift Container Platform 4.7. before you upgrade to Red Hat
OpenShift Service Mesh 2.0.

® You must have Red Hat OpenShift Service Mesh version 2.0 operator. If you selected the
automatic upgrade path, the operator automatically downloads the latest information.
However, there are steps you must take to use the features in Red Hat OpenShift Service Mesh
version 2.0.

1.11.4.7.1. Upgrading Red Hat OpenShift Service Mesh

To upgrade Red Hat OpenShift Service Mesh, you must create an instance of Red Hat OpenShift
Service Mesh ServiceMeshControlPlane v2 resource in a new namespace. Then, once it's configured,
move your microservice applications and workloads from your old mesh to the new service mesh.

Procedure
1. Check your vl ServiceMeshControlPlane resource configuration to make sure it is valid.

a. Run the following command to view your ServiceMeshControlPlane resource as a v2
resource.

I $ oc get smcp -0 yaml

b. Check the spec.techPreview.errored.message field in the output for information about
any invalid fields.

c. If there are invalid fields in your vl resource, the resource is not reconciled and cannot be
edited as a v2 resource. All updates to v2 fields will be overridden by the original vl settings.
To fix the invalid fields, you can replace, patch, or edit the v1 version of the resource. You
can also delete the resource without fixing it. After the resource has been fixed, it can be
reconciled, and you can to modify or view the v2 version of the resource.

d. To fix the resource by editing a file, use oc get to retrieve the resource, edit the text file
locally, and replace the resource with the file you edited.

$ oc get smcp.v1.maistra.io <smcp_name> > smcp-resource.yaml
#Edit the smcp-resource.yaml file.
$ oc replace -f smcp-resource.yaml

e. To fix the resource using patching, use oc patch.

$ oc patch smcp.v1.maistra.io <smcp_name> --type json --patch '[{"op":
"replace”,"path":"/spec/path/to/bad/setting","value":"corrected-value"}]'

137

OpenShift Container Platform 4.12 Service Mesh

138

f. To fix the resource by editing with command line tools, use oc edit.

I $ oc edit smcp.v1.maistra.io <smcp_name>

. Back up your Service Mesh control plane configuration. Switch to the project that contains your

ServiceMeshControlPlane resource. In this example, istio-system is the name of the Service
Mesh control plane project.

I $ oc project istio-system

. Enter the following command to retrieve the current configuration. Your <smcp_name> is

specified in the metadata of your ServiceMeshControlPlane resource, for example basic-
install or full-install.

$ oc get servicemeshcontrolplanes.v1.maistra.io <smcp_name> -o yaml >
<smcp_name>.vi.yaml

. Convert your ServiceMeshControlPlane to a v2 control plane version that contains information

about your configuration as a starting point.

I $ oc get smcp <smcp_name> -0 yaml > <smcp_name>.v2.yam|

. Create a project. In the OpenShift Container Platform console Project menu, click New Project

and enter a name for your project, istio-system-upgrade, for example. Or, you can run this
command from the CLI.

I $ oc new-project istio-system-upgrade

. Update the metadata.namespace field in your v2 ServiceMeshControlPlane with your new

project name. In this example, use istio-system-upgrade.

. Update the version field from 1.1to 2.0 or remove it in your v2 ServiceMeshControlPlane.

. Create a ServiceMeshControlPlane in the new namespace. On the command line, run the

following command to deploy the control plane with the v2 version of the
ServiceMeshControlPlane that you retrieved. In this example, replace “<smcp_name.v2> “with
the path to your file.

I $ oc create -n istio-system-upgrade -f <smcp_name>.v2.yaml

Alternatively, you can use the console to create the Service Mesh control plane. In the
OpenShift Container Platform web console, click Project. Then, select the project name you
just entered.

a. Click Operators — Installed Operators.

b. Click Create ServiceMeshControlPlane.

c. Select YAML view and paste text of the YAML file you retrieved into the field. Check that
the apiVersion field is set to maistra.io/v2 and modify the metadata.namespace field to

use the new namespace, for example istio-system-upgrade.

d. Click Create.

CHAPTER 1. SERVICE MESH 2.X

1.11.4.7.2. Configuring the 2.0 ServiceMeshControlPlane

The ServiceMeshControlPlane resource has been changed for Red Hat OpenShift Service Mesh
version 2.0. After you created a v2 version of the ServiceMeshControlPlane resource, modify it to take
advantage of the new features and to fit your deployment. Consider the following changes to the
specification and behavior of Red Hat OpenShift Service Mesh 2.0 as you're modifying your
ServiceMeshControlPlane resource. You can also refer to the Red Hat OpenShift Service Mesh 2.0
product documentation for new information to features you use. The v2 resource must be used for Red
Hat OpenShift Service Mesh 2.0 installations.

1.11.4.7.2.1. Architecture changes

The architectural units used by previous versions have been replaced by Istiod. In 2.0 the Service Mesh
control plane components Mixer, Pilot, Citadel, Galley, and the sidecar injector functionality have been
combined into a single component, Istiod.

Although Mixer is no longer supported as a control plane component, Mixer policy and telemetry plugins
are now supported through WASM extensions in Istiod. Mixer can be enabled for policy and telemetry if
you need to integrate legacy Mixer plugins.

Secret Discovery Service (SDS) is used to distribute certificates and keys to sidecars directly from
Istiod. In Red Hat OpenShift Service Mesh version 1.1, secrets were generated by Citadel, which were
used by the proxies to retrieve their client certificates and keys.

1.11.4.7.2.2. Annotation changes

The following annotations are no longer supported in v2.0. If you are using one of these annotations, you
must update your workload before moving it to a v2.0 Service Mesh control plane.

e sidecar.maistra.io/proxyCPULimit has been replaced with sidecar.istio.io/proxyCPULimit. If
you were using sidecar.maistra.io annotations on your workloads, you must modify those
workloads to use sidecar.istio.io equivalents instead.

® sidecar.maistra.io/proxyMemoryLimit has been replaced with
sidecar.istio.io/proxyMemoryLimit

e sidecar.istio.io/discoveryAddress is no longer supported. Also, the default discovery address
has moved from pilot.<control_plane_namespaces.svc:15010 (or port 15011, if mtls is
enabled) to istiod-<smcp_names.<control_plane_namespace>.svc:15012.

® The health status port is no longer configurable and is hard-coded to 15021. * If you were
defining a custom status port, for example, status.sidecar.istio.io/port, you must remove the
override before moving the workload to a v2.0 Service Mesh control plane. Readiness checks
can still be disabled by setting the status port to 0.

e Kubernetes Secret resources are no longer used to distribute client certificates for sidecars.

Certificates are now distributed through Istiod’s SDS service. If you were relying on mounted
secrets, they are longer available for workloads in v2.0 Service Mesh control planes.

1.11.4.7.2.3. Behavioral changes

Some features in Red Hat OpenShift Service Mesh 2.0 work differently than they did in previous
versions.

® The readiness port on gateways has moved from 15020 to 15021.

139

OpenShift Container Platform 4.12 Service Mesh

® The target host visibility includes VirtualService, as well as ServiceEntry resources. It includes
any restrictions applied through Sidecar resources.

® Automatic mutual TLS is enabled by default. Proxy to proxy communication is automatically
configured to use mTLS, regardless of global PeerAuthentication policies in place.

® Secure connections are always used when proxies communicate with the Service Mesh control
plane regardless of spec.security.controlPlane.mtls setting. The
spec.security.controlPlane.mtls setting is only used when configuring connections for Mixer
telemetry or policy.

1.11.4.7.2.4. Migration details for unsupported resources

Policy (authentication.istio.io/vlalphal)

Policy resources must be migrated to new resource types for use with v2.0 Service Mesh control planes,
PeerAuthentication and RequestAuthentication. Depending on the specific configuration in your Policy
resource, you may have to configure multiple resources to achieve the same effect.

Mutual TLS

Mutual TLS enforcement is accomplished using the security.istio.io/vibetal PeerAuthentication
resource. The legacy spec.peers.mtls.mode field maps directly to the new resource’s spec.mtls.mode
field. Selection criteria has changed from specifying a service name in spec.targets[x].name to a label
selector in spec.selector.matchLabels. In PeerAuthentication, the labels must match the selector on
the services named in the targets list. Any port-specific settings will need to be mapped into
spec.portLevelMtls.

Authentication

Additional authentication methods specified in spec.origins, must be mapped into a
security.istio.io/vibetal RequestAuthentication resource. spec.selector.matchLabels must be
configured similarly to the same field on PeerAuthentication. Configuration specific to JWT principals
from spec.origins.jwt items map to similar fields in spec.rules items.

® spec.origins[x].jwt.triggerRules specified in the Policy must be mapped into one or more
security.istio.io/vibetal AuthorizationPolicy resources. Any spec.selector.labels must be
configured similarly to the same field on RequestAuthentication.

e spec.origins[x].jwt.triggerRules.excludedPaths must be mapped into an AuthorizationPolicy
whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path entries matching the
excluded paths.

® spec.origins[x].jwt.triggerRules.includedPaths must be mapped into a separate
AuthorizationPolicy whose spec.action is set to ALLOW, with spec.rules[x].to.operation.path
entries matching the included paths, and spec.rules.[x].from.source.requestPrincipals entries
that align with the specified spec.origins[x].jwt.issuer in the Policy resource.

ServiceMeshPolicy (maistra.io/v1)

ServiceMeshPolicy was configured automatically for the Service Mesh control plane through the
spec.istio.global.mtls.enabled in the viresource or spec.security.dataPlane.mtls in the v2 resource
setting. For v2 control planes, a functionally equivalent PeerAuthentication resource is created during
installation. This feature is deprecated in Red Hat OpenShift Service Mesh version 2.0

RbacConfig, ServiceRole, ServiceRoleBinding (rbac.istio.io/vlalphat)

These resources were replaced by the security.istio.io/vibetal AuthorizationPolicy resource.

140

CHAPTER 1. SERVICE MESH 2.X

Mimicking RbacConfig behavior requires writing a default AuthorizationPolicy whose settings depend on
the spec.mode specified in the RbacConfig.

e When spec.mode is set to OFF, no resource is required as the default policy is ALLOW, unless
an AuthorizationPolicy applies to the request.

e When spec.mode is set to ON, set spec: {}. You must create AuthorizationPolicy policies for all
services in the mesh.

o spec.modeis set to ON_WITH_INCLUSION, must create an AuthorizationPolicy with spec: {}
in each included namespace. Inclusion of individual services is not supported by
AuthorizationPolicy. However, as soon as any AuthorizationPolicy is created that applies to the
workloads for the service, all other requests not explicitly allowed will be denied.

® When spec.modeis set to ON_WITH_EXCLUSION, it is not supported by AuthorizationPolicy.
A global DENY policy can be created, but an AuthorizationPolicy must be created for every
workload in the mesh because there is no allow-all policy that can be applied to either a
namespace or a workload.

AuthorizationPolicy includes configuration for both the selector to which the configuration applies,
which is similar to the function ServiceRoleBinding provides and the rules which should be applied, which
is similar to the function ServiceRole provides.

ServiceMeshRbacConfig (maistra.io/v1)

This resource is replaced by using a security.istio.io/vibetal AuthorizationPolicy resource with an
empty spec.selector in the Service Mesh control plane’s namespace. This policy will be the default
authorization policy applied to all workloads in the mesh. For specific migration details, see RbacConfig
above.

1.11.4.7.2.5. Mixer plugins

Mixer components are disabled by default in version 2.0. If you rely on Mixer plugins for your workload,
you must configure your version 2.0 ServiceMeshControlPlane to include the Mixer components.

To enable the Mixer policy components, add the following snippet to your ServiceMeshControlPlane.

spec:

policy:
type: Mixer

To enable the Mixer telemetry components, add the following snippet to your
ServiceMeshControlPlane.

spec:
telemetry:
type: Mixer

Legacy mixer plugins can also be migrated to WASM and integrated using the new
ServiceMeshExtension (maistra.io/vlalphal) custom resource.

Built-in WASM filters included in the upstream Istio distribution are not available in Red Hat OpenShift
Service Mesh 2.0.

1.11.4.7.2.6. Mutual TLS changes

141

OpenShift Container Platform 4.12 Service Mesh

When using mTLS with workload specific PeerAuthentication policies, a corresponding DestinationRule
is required to allow traffic if the workload policy differs from the namespace/global policy.

Auto mTLS is enabled by default, but can be disabled by setting spec.security.dataPlane.automtls to
false in the ServiceMeshControlPlane resource. When disabling auto mTLS, DestinationRules may be
required for proper communication between services. For example, setting PeerAuthentication to
STRICT for one namespace may prevent services in other namespaces from accessing them, unless a
DestinationRule configures TLS mode for the services in the namespace.

For information about mTLS, see Enabling mutual Transport Layer Security (mTLS)

1.11.4.7.2.6.1. Other mTLS Examples

To disable mTLS For productpage service in the bookinfo sample application, your Policy resource was
configured the following way for Red Hat OpenShift Service Mesh v1.1.

Example Policy resource

apiVersion: authentication.istio.io/vialphai
kind: Policy
metadata:
name: productpage-mTLS-disable
namespace: <namespace>
spec:
targets:
- name: productpage

To disable mTLS For productpage service in the bookinfo sample application, use the following example
to configure your PeerAuthentication resource for Red Hat OpenShift Service Mesh v2.0.

Example PeerAuthentication resource

apiVersion: security.istio.io/vibetai
kind: PeerAuthentication
metadata:
name: productpage-mTLS-disable
namespace: <namespace>
spec:
mtls:
mode: DISABLE
selector:
matchLabels:
this should match the selector for the "productpage” service
app: productpage

To enable mTLS With JWT authentication for the productpage service in the bookinfo sample
application, your Policy resource was configured the following way for Red Hat OpenShift Service Mesh
vl

Example Policy resource

apiVersion: authentication.istio.io/vialphai
kind: Policy
metadata:

name: productpage-mTLS-with-JWT

142

CHAPTER 1. SERVICE MESH 2.X

namespace. <namespace>

spec:
targets:
- name: productpage
ports:
- number: 9000
peers:
- mtls:
origins:
- jwt:
issuer: "https://securetoken.google.com”
audiences:
- "productpage”
jwksUri: "https://www.googleapis.com/oauth2/v1/certs"
jwtHeaders:

- "X-goog-iap-jwt-assertion"
triggerRules:
- excludedPaths:
- exact: /health_check
principalBinding: USE_ORIGIN

To enable mTLS With JWT authentication for the productpage service in the bookinfo sample
application, use the following example to configure your PeerAuthentication resource for Red Hat
OpenShift Service Mesh v2.0.

Example PeerAuthentication resource

#require mtls for productpage:9000
apiVersion: security.istio.io/vibetai
kind: PeerAuthentication
metadata:
name: productpage-mTLS-with-JWT
namespace: <namespace>
spec:
selector:
matchLabels:
this should match the selector for the "productpage” service
app: productpage
portLevelMtls:
9000:
mode: STRICT
#JWT authentication for productpage
apiVersion: security.istio.io/vibetai
kind: RequestAuthentication
metadata:
name: productpage-mTLS-with-JWT
namespace: <namespace>
spec:
selector:
matchLabels:
this should match the selector for the "productpage” service
app: productpage
jwtRules:
- issuer: "https://securetoken.google.com”
audiences:

143

OpenShift Container Platform 4.12 Service Mesh

- "productpage”
jwksUri: "https://www.googleapis.com/oauth2/vi/certs"
fromHeaders:
- hame: "X-goog-iap-jwt-assertion"
#Require JWT token to access product page service from
#any client to all paths except /health_check
apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: productpage-mTLS-with-JWT
namespace: <namespace>
spec:
action: ALLOW
selector:
matchLabels:
this should match the selector for the "productpage” service
app: productpage
rules:
- to: # require JWT token to access all other paths
- operation:
notPaths:
- /health_check
from:
- source:
if using principalBinding: USE_PEER in the Policy,
then use principals, e.g.
principals:
#_
requestPrincipals:
- to: # no JWT token required to access health_check
- operation:
paths:
- /health_check

1.11.4.7.3. Configuration recipes

You can configure the following items with these configuration recipes.

1.11.4.7.3.1. Mutual TLS in a data plane

Mutual TLS for data plane communication is configured through spec.security.dataPlane.mtls in the
ServiceMeshControlPlane resource, which is false by default.

1.11.4.7.3.2. Custom signing key

Istiod manages client certificates and private keys used by service proxies. By default, Istiod uses a self-
signed certificate for signing, but you can configure a custom certificate and private key. For more
information about how to configure signing keys, see Adding an external certificate authority key and
certificate

1.11.4.7.3.3. Tracing

b U S Y of U I S DY PSS UtStriy Fr iy SR IS N o S I S E S R [P

144

CHAPTER 1. SERVICE MESH 2.X

Iracing Is contigurea in spec.wuracing. currenty, tne only type or tracer tnat IS supportea 1s Jaeger.
Sampling is a scaled integer representing 0.01% increments, for example, 1is 0.01% and 10000 is 100%.
The tracing implementation and sampling rate can be specified:

spec:
tracing:
sampling: 100 # 1%
type: Jaeger

Jaeger is configured in the addons section of the ServiceMeshControlPlane resource.

spec:
addons:
jaeger:
name: jaeger
install:
storage:
type: Memory # or Elasticsearch for production mode
memory:

maxTraces: 100000
elasticsearch: # the following values only apply if storage:type:=Elasticsearch
storage: # specific storageclass configuration for the Jaeger Elasticsearch (optional)
size: "100G"
storageClassName: "storageclass”
nodeCount: 3
redundancyPolicy: SingleRedundancy
runtime:
components:
tracing.jaeger: {} # general Jaeger specific runtime configuration (optional)
tracing.jaeger.elasticsearch: #runtime configuration for Jaeger Elasticsearch deployment
(optional)
container:
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "1Gi"

The Jaeger installation can be customized with the install field. Container configuration, such as
resource limits is configured in spec.runtime.components.jaeger related fields. If a Jaeger resource
matching the value of spec.addons.jaeger.name exists, the Service Mesh control plane will be
configured to use the existing installation. Use an existing Jaeger resource to fully customize your
Jaeger installation.

1.11.4.7.3.4. Visualization

Kiali and Grafana are configured under the addons section of the ServiceMeshControlPlane resource.

spec:
addons:
grafana:
enabled: true
install: {} # customize install
kiali:

145

OpenShift Container Platform 4.12 Service Mesh

enabled: true
name: kiali
install: {} # customize install

The Grafana and Kiali installations can be customized through their respective install fields. Container
customization, such as resource limits, is configured in spec.runtime.components.kiali and
spec.runtime.components.grafana. If an existing Kiali resource matching the value of name exists, the
Service Mesh control plane configures the Kiali resource for use with the control plane. Some fields in
the Kiali resource are overridden, such as the accessible_namespaces list, as well as the endpoints for
Grafana, Prometheus, and tracing. Use an existing resource to fully customize your Kiali installation.

1.11.4.7.3.5. Resource utilization and scheduling

Resources are configured under spec.runtime.<components. The following component names are
supported.

Component Description Versions supported
security Citadel container v1.0/1.1
galley Galley container v1.0/1.1
pilot Pilot/Istiod container v1.0/1.1/2.0
mixer istio-telemetry and istio-policy v1.0/1.1

containers
mixer.policy istio-policy container v2.0
mixer.telemetry istio-telemetry container v2.0
global.oauthproxy oauth-proxy container used with v1.0/1.1/2.0

various addons

sidecarlnjectorWebhook sidecar injector webhook v1.0/1.1
container
tracing.jaeger general Jaeger container - not all v1.0/1.1/2.0

settings may be applied.
Complete customization of
Jaeger installation is supported
by specifying an existing Jaeger
resource in the Service Mesh
control plane configuration.

tracing.jaeger.agent settings specific to Jaeger agent v1.0/1.1/2.0
tracing.jaeger.allinOne settings specific to Jaeger v1.0/1.1/2.0
allinOne

146

CHAPTER 1. SERVICE MESH 2.X

Component Description Versions supported

tracing.jaeger.collector settings specific to Jaeger v1.0/1.1/2.0
collector
tracing.jaeger.elasticsearch settings specific to Jaeger v1.0/1.1/2.0

elasticsearch deployment

tracing.jaeger.query settings specific to Jaeger query v1.0/1.1/2.0
prometheus prometheus container v1.0/1.1/2.0
kiali Kiali container - complete v1.0/1.1/2.0

customization of Kiali installation
is supported by specifying an
existing Kiali resource in the
Service Mesh control plane
configuration.

grafana Grafana container v1.0/1.1/2.0

3scale 3scale container v1.0/1.1/2.0

wasmExtensions.cacher WASM extensions cacher v2.0 - tech preview
container

Some components support resource limiting and scheduling. For more information, see Performance
and scalability.

1.11.4.7.4. Next steps for migrating your applications and workloads

Move the application workload to the new mesh and remove the old instances to complete your
upgrade.

1.11.5. Upgrading the data plane

Your data plane will still function after you have upgraded the control plane. But in order to apply
updates to the Envoy proxy and any changes to the proxy configuration, you must restart your
application pods and workloads.

1.11.5.1. Updating your applications and workloads

To complete the migration, restart all of the application pods in the mesh to upgrade the Envoy sidecar
proxies and their configuration.

To perform a rolling update of a deployment use the following command:

I $ oc rollout restart <deployment>

147

OpenShift Container Platform 4.12 Service Mesh

You must perform a rolling update for all applications that make up the mesh.

1.12. MANAGING USERS AND PROFILES

1.12.1. Creating the Red Hat OpenShift Service Mesh members

ServiceMeshMember resources provide a way for Red Hat OpenShift Service Mesh administrators to
delegate permissions to add projects to a service mesh, even when the respective users don't have
direct access to the service mesh project or member roll. While project administrators are automatically
given permission to create the ServiceMeshMember resource in their project, they cannot point it to
any ServiceMeshControlPlane until the service mesh administrator explicitly grants access to the
service mesh. Administrators can grant users permissions to access the mesh by granting them the
mesh-user user role. In this example, istio-system is the name of the Service Mesh control plane
project.

I $ oc policy add-role-to-user -n istio-system --role-namespace istio-system mesh-user <user_name>

Administrators can modify the mesh-user role binding in the Service Mesh control plane project to
specify the users and groups that are granted access. The ServiceMeshMember adds the project to
the ServiceMeshMemberRoll within the Service Mesh control plane project that it references.

apiVersion: maistra.io/v1
kind: ServiceMeshMember
metadata:
name: default
spec:
controlPlaneRef:
namespace: istio-system
name: basic

The mesh-users role binding is created automatically after the administrator creates the
ServiceMeshControlPlane resource. An administrator can use the following command to add a role to a
user.

I $ oc policy add-role-to-user

The administrator can also create the mesh-user role binding before the administrator creates the
ServiceMeshControlPlane resource. For example, the administrator can create it in the same oc apply
operation as the ServiceMeshControlPlane resource.

This example adds a role binding for alice:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
namespace: istio-system
name: mesh-users
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: mesh-user
subjects:

148

CHAPTER 1. SERVICE MESH 2.X

- apiGroup: rbac.authorization.k8s.io
kind: User
name: alice

1.12.2. Creating Service Mesh control plane profiles

You can create reusable configurations with ServiceMeshControlPlane profiles. Individual users can
extend the profiles they create with their own configurations. Profiles can also inherit configuration
information from other profiles. For example, you can create an accounting control plane for the
accounting team and a marketing control plane for the marketing team. If you create a development
template and a production template, members of the marketing team and the accounting team can
extend the development and production profiles with team-specific customization.

When you configure Service Mesh control plane profiles, which follow the same syntax as the
ServiceMeshControlPlane, users inherit settings in a hierarchical fashion. The Operator is delivered
with a default profile with default settings for Red Hat OpenShift Service Mesh.

1.12.2.1. Creating the ConfigMap

To add custom profiles, you must create a ConfigMap named smcp-templates in the openshift-
operators project. The Operator container automatically mounts the ConfigMap.

Prerequisites

® Aninstalled, verified Service Mesh Operator.

® An account with the cluster-admin role. If you use Red Hat OpenShift Dedicated, you must
have an account with the dedicated-admin role.

® | ocation of the Operator deployment.

® Access to the OpenShift CLI (oc¢).

Procedure

1. Login to the OpenShift Container Platform CLI as a cluster-admin. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

2. From the CLI, run this command to create the ConfigMap named smcp-templates in the
openshift-operators project and replace <profiles-directory> with the location of the
ServiceMeshControlPlane files on your local disk:

I $ oc create configmap --from-file=<profiles-directory> smcp-templates -n openshift-operators

3. You can use the profiles parameter in the ServiceMeshControlPlane to specify one or more
templates.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
spec:
profiles:
- default

149

OpenShift Container Platform 4.12 Service Mesh

1.12.2.2. Setting the correct network policy

Service Mesh creates network policies in the Service Mesh control plane and member namespaces to
allow traffic between them. Before you deploy, consider the following conditions to ensure the services
in your service mesh that were previously exposed through an OpenShift Container Platform route.

e Trafficinto the service mesh must always go through the ingress-gateway for Istio to work
properly.

® Deploy services external to the service mesh in separate namespaces that are not in any service
mesh.

® Non-mesh services that need to be deployed within a service mesh enlisted namespace should
label their deployments maistra.io/expose-route: "true", which ensures OpenShift Container
Platform routes to these services still work.

113. SECURITY

If your service mesh application is constructed with a complex array of microservices, you can use Red
Hat OpenShift Service Mesh to customize the security of the communication between those services.
The infrastructure of OpenShift Container Platform along with the traffic management features of
Service Mesh help you manage the complexity of your applications and secure microservices.

Before you begin

If you have a project, add your project to the ServiceMeshMemberRoll resource.

If you don't have a project, install the Bookinfo sample application and add it to the
ServiceMeshMemberRoll resource. The sample application helps illustrate security concepts.

1.13.1. About mutual Transport Layer Security (mTLS)

Mutual Transport Layer Security (mTLS) is a protocol that enables two parties to authenticate each
other. It is the default mode of authentication in some protocols (IKE, SSH) and optional in others
(TLS). You can use mTLS without changes to the application or service code. The TLS is handled
entirely by the service mesh infrastructure and between the two sidecar proxies.

By default, mTLS in Red Hat OpenShift Service Mesh is enabled and set to permissive mode, where the
sidecars in Service Mesh accept both plain-text traffic and connections that are encrypted using mTLS.
If a service in your mesh configured to use strict mTLS is communicating with a service outside the
mesh, communication might break between those services because strict mTLS requires both the client
and the server to be able to verify the identify of each other. Use permissive mode while you migrate
your workloads to Service Mesh. Then, you can enable strict mTLS across your mesh, namespace, or
application.

Enabling mTLS across your mesh at the Service Mesh control plane level secures all the traffic in your
service mesh without rewriting your applications and workloads. You can secure namespaces in your
mesh at the data plane level in the ServiceMeshControlPlane resource. To customize traffic
encryption connections, configure namespaces at the application level with PeerAuthentication and
DestinationRule resources.

1.13.1.1. Enabling strict mTLS across the service mesh

If your workloads do not communicate with outside services, you can quickly enable mTLS across your
mesh without communication interruptions. You can enable it by setting spec.security.dataPlane.mtls
to true in the ServiceMeshControlPlane resource. The Operator creates the required resources.

150

CHAPTER 1. SERVICE MESH 2.X

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
version: v2.5
security:
dataPlane:
mtls: true

You can also enable mTLS by using the OpenShift Container Platform web console.

Procedure

1. Login to the web console.

2. Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

3. Click Operators — Installed Operators.
4. Click Service Mesh Control Planeunder Provided APIs.
5. Click the name of your ServiceMeshControlPlane resource, for example, basic.

6. On the Details page, click the toggle in the Security section for Data Plane Security.

1.13.1.1.1. Configuring sidecars for incoming connections for specific services

You can also configure mTLS for individual services by creating a policy.

Procedure

1. Create a YAML file using the following example.

PeerAuthentication Policy example policy.yaml

apiVersion: security.istio.io/vibetai
kind: PeerAuthentication
metadata:

name: default

namespace: <namespace>
spec:

mtls:

mode: STRICT

a. Replace <hamespace> with the namespace where the service is located.

2. Run the following command to create the resource in the namespace where the service is
located. It must match the namespace field in the Policy resource you just created.

I $ oc create -n <namespace> -f <policy.yaml>

151

OpenShift Container Platform 4.12 Service Mesh

NOTE

If you are not using automatic mTLS and you are setting PeerAuthentication to STRICT,
you must create a DestinationRule resource for your service.

1.13.1.1.2. Configuring sidecars for outgoing connections

Create a destination rule to configure Service Mesh to use mTLS when sending requests to other
services in the mesh.

Procedure

1. Create a YAML file using the following example.

DestinationRule example destination-rule.yaml

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:
name: default
namespace: <namespace>
spec:
host: "*.<namespace>.svc.cluster.local"
trafficPolicy:
tls:
mode: ISTIO_MUTUAL

a. Replace <hamespace> with the namespace where the service is located.

2. Run the following command to create the resource in the namespace where the service is
located. It must match the namespace field in the DestinationRule resource you just created.

I $ oc create -n <namespace> -f <destination-rule.yaml>

1.13.1.1.3. Setting the minimum and maximum protocol versions

If your environment has specific requirements for encrypted traffic in your service mesh, you can control
the cryptographic functions that are allowed by setting the
spec.security.controlPlane.tls.minProtocolVersion or
spec.security.controlPlane.tls.maxProtocolVersion in your ServiceMeshControlPlane resource.
Those values, configured in your Service Mesh control plane resource, define the minimum and
maximum TLS version used by mesh components when communicating securely over TLS.

The defaultis TLS_AUTO and does not specify a version of TLS.

Table 1.5. Valid values

Value Description

TLS_AUTO default

TLSv1_0 TLS version 1.0

152

CHAPTER 1. SERVICE MESH 2.X

Value Description

TLSv1_1 TLS version 1.1

TLSv1_2 TLS version 1.2

TLSv1_3 TLS version 1.3
Procedure

1.

2.

8.

S.

Log in to the web console.

Click the Project menu and select the project where you installed the Service Mesh control
plane, for example istio-system.

Click Operators — Installed Operators.

Click Service Mesh Control Planeunder Provided APIs.

Click the name of your ServiceMeshControlPlane resource, for example, basic.

Click the YAML tab.

Insert the following code snippet in the YAML editor. Replace the value in the
minProtocolVersion with the TLS version value. In this example, the minimum TLS version is

set to TLSv1_2.

ServiceMeshControlPlane snippet

kind: ServiceMeshControlPlane
spec:
security:
controlPlane:
tls:
minProtocolVersion: TLSv1_ 2

Click Save.

Click Refresh to verify that the changes updated correctly.

1.13.1.2. Validating encryption with Kiali

The Kiali console offers several ways to validate whether or not your applications, services, and
workloads have mTLS encryption enabled.

Figure 1.5. Masthead icon mesh-wide mTLS enabled

Mesh-wide mTLS is enabled 8 A ©@ anonymous

153

OpenShift Container Platform 4.12 Service Mesh

At the right side ot the masthead, Kiali shows a lock icon when the mesh has strictly enabled mILS for
the whole service mesh. It means that all communications in the mesh use mTLS.

Figure 1.6. Masthead icon mesh-wide mTLS partially enabled

Mesh-wide TLS is partially enabled 5 A © anonymous

Kiali displays a hollow lock icon when either the mesh is configured in PERMISSIVE mode or thereis a
error in the mesh-wide mTLS configuration.

Figure 1.7. Security badge

= kiali 8 A © kbeadmin -

Namespace: bookinfo v App graph + < LastSm v Everylss ~ ﬂ

Graph Display ~ Find v Hide v @ Graph tour

P) FRestricted /Extemal

I Config

t%tp/ details

Distributed Tracing

—a—r([~
() istio-ingressgateway productpage = ——— —
(istio-system) o x s 7 w0

OC W3 Mdx WS5x EAR

reviews ratings HTTP Request Traffic min / max:
RPS:0,00/ 167, %Error 000,/ 0.00

E0 BOEZa:

HTTP Request Response Time (ms):

The Graph page has the option to display a Security badge on the graph edges to indicate that mTLS is
enabled. To enable security badges on the graph, from the Display menu, under Show Badges, select
the Security checkbox. When an edge shows a lock icon, it means at least one request with mTLS
enabled is present. In case there are both mTLS and non-mTLS requests, the side-panel will show the
percentage of requests that use mTLS.

The Applications Detail Overview page displays a Security icon on the graph edges where at least one
request with mTLS enabled is present.

The Workloads Detail Overview page displays a Security icon on the graph edges where at least one
request with mTLS enabled is present.

The Services Detail Overview page displays a Security icon on the graph edges where at least one

request with mTLS enabled is present. Also note that Kiali displays a lock icon in the Network section
next to ports that are configured for mTLS.

1.13.2. Configuring Role Based Access Control (RBAC)

Role-based access control (RBAC) objects determine whether a user or service is allowed to perform a
given action within a project. You can define mesh-, namespace-, and workload-wide access control for
your workloads in the mesh.

154

CHAPTER 1. SERVICE MESH 2.X

To configure RBAC, create an AuthorizationPolicy resource in the namespace for which you are
configuring access. If you are configuring mesh-wide access, use the project where you installed the
Service Mesh control plane, for example istio-system.

For example, with RBAC, you can create policies that:
e Configure intra-project communication.
® Allow or deny full access to all workloads in the default namespace.
® Allow or deny ingress gateway access.
® Require a token for access.
An authorization policy includes a selector, an action, and a list of rules:
e The selector field specifies the target of the policy.
® The action field specifies whether to allow or deny the request.

e The rules field specifies when to trigger the action.

o The from field specifies constraints on the request origin.
o The to field specifies constraints on request target and parameters.

o The when field specifies additional conditions that to apply the rule.

Procedure

1. Create your AuthorizationPolicy resource. The following example shows a resource that
updates the ingress-policy AuthorizationPolicy to deny an IP address from accessing the
ingress gateway.

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: ingress-policy
namespace: istio-system
spec:
selector:
matchLabels:
app: istio-ingressgateway
action: DENY
rules:
- from:
- source:
ipBlocks: ['1.2.3.4"]

2. Run the following command after you write your resource to create your resource in your
namespace. The namespace must match your metadata.namespace field in your
AuthorizationPolicy resource.

I $ oc create -n istio-system -f <filename>

Next steps

155

OpenShift Container Platform 4.12 Service Mesh

Consider the following examples for other common configurations.

1.13.2.1. Configure intra-project communication

You can use AuthorizationPolicy to configure your Service Mesh control plane to allow or deny the
traffic communicating with your mesh or services in your mesh.

1.13.2.1.1. Restrict access to services outside a namespace

You can deny requests from any source that is not in the bookinfo namespace with the following
AuthorizationPolicy resource example.

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: httpbin-deny
namespace: bookinfo
spec:
selector:
matchLabels:
app: httpbin
version: v1
action: DENY
rules:
- from:
- source:
notNamespaces: ["bookinfo"]

1.13.2.1.2. Creating allow-all and default deny-all authorization policies

The following example shows an allow-all authorization policy that allows full access to all workloads in
the bookinfo namespace.

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:

name: allow-all

namespace: bookinfo
spec:

action: ALLOW

rules:

-{}

The following example shows a policy that denies any access to all workloads in the bookinfo
namespace.

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:

name: deny-all

namespace: bookinfo
spec:

{}

156

CHAPTER 1. SERVICE MESH 2.X

1.13.2.2. Allow or deny access to the ingress gateway

You can set an authorization policy to add allow or deny lists based on IP addresses.

apiVersion: security.istio.io/vibetai
kind: AuthorizationPolicy
metadata:
name: ingress-policy
namespace: istio-system
spec:
selector:
matchLabels:
app: istio-ingressgateway
action: ALLOW
rules:
- from:
- source:
ipBlocks: ['1.2.3.4", "5.6.7.0/24"]

1.13.2.3. Restrict access with JSON Web Token

You can restrict what can access your mesh with a JSON Web Token (JWT). After authentication, a user
or service can access routes, services that are associated with that token.

Create a RequestAuthentication resource, which defines the authentication methods that are
supported by a workload. The following example accepts a JWT issued by
http://localhost:8080/auth/realms/master.

apiVersion: "security.istio.io/vibetal”
kind: "RequestAuthentication”
metadata:
name: "jwt-example”
namespace: bookinfo
spec:
selector:
matchLabels:
app: httpbin
jwtRules:
- issuer: "http://localhost:8080/auth/realms/master”
jwksUri: "http:/keycloak.default.svc:8080/auth/realms/master/protocol/openid-connect/certs"

Then, create an AuthorizationPolicy resource in the same namespace to work with
RequestAuthentication resource you created. The following example requires a JWT to be presentin
the Authorization header when sending a request to httpbin workloads.

apiVersion: "security.istio.io/vibetal”
kind: "AuthorizationPolicy"
metadata:
name: "frontend-ingress"
namespace: bookinfo
spec:
selector:
matchLabels:
app: httpbin
action: DENY

157

http://localhost:8080/auth/realms/master

OpenShift Container Platform 4.12 Service Mesh

rules:
- from:
- source:
notRequestPrincipals: ["*"]

1.13.3. Configuring cipher suites and ECDH curves

Cipher suites and Elliptic-curve Diffie-Hellman (ECDH curves) can help you secure your service mesh.
You can define a comma separated list of cipher suites using
spec.security.controlplane.tls.cipherSuites and ECDH curves using
spec.security.controlplane.tls.ecdhCurves in your ServiceMeshControlPlane resource. If either of
these attributes are empty, then the default values are used.

The cipherSuites setting is effective if your service mesh uses TLS 1.2 or earlier. It has no effect when
negotiating with TLS 1.3.

Set your cipher suites in the comma separated list in order of priority. For example, ecdhCurves:
CurveP256, CurveP384 sets CurveP256 as a higher priority than CurveP384.

NOTE
You must include either TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256 or

TLS_ECDHE_ECDSA_WITH_AES 128 GCM_SHA256 when you configure the cipher
suite. HTTP/2 support requires at least one of these cipher suites.

The supported cipher suites are:
® TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
e TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256
e TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256
e TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256
e TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
e TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384
e TLS_ECDHE_RSA WITH_AES_128_CBC_SHA256
e TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA
e TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256
e TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
e TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA
e TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
® TLS_RSA_WITH_AES_128_GCM_SHA256
® TLS_RSA_WITH_AES_256_GCM_SHA384

e TLS_RSA WITH_AES_128_CBC_SHA256

158

CHAPTER 1. SERVICE MESH 2.X

® TLS_RSA_WITH_AES_128_CBC_SHA
® TLS_RSA_WITH_AES_256_CBC_SHA
e TLS_ECDHE_RSA WITH_3DES_EDE_CBC_SHA
e TLS_RSA_WITH_3DES_EDE_CBC_SHA
The supported ECDH Curves are:
® CurveP256
® CurveP384
® CurveP521

® X25519

1.13.4. Configuring JSON Web Key Sets resolver certificate authority

You can configure your own JSON Web Key Sets (JWKS) resolver certificate authority (CA) from the
ServiceMeshControlPlane (SMCP) spec.

Procedure

1. Edit the ServiceMeshControlPlane spec file:

I $ oc edit smcp <smcp-name>

2. Enable mtls for the data plane by setting the value of the mtls field to true in the
ServiceMeshControlPlane spec, as shown in the following example:

spec:
security:
dataPlane:
mtls: true # enable mitls for data plane
JWKSResolver extra CA
PEM-encoded cetrtificate content to trust an additional CA
jwksResolverCA: |

3. Save the changes. OpenShift Container Platform automatically applies them.
A ConfigMap such as pilot-jwks-cacerts-<SMCP names is created with the CA .pem data.

Example ConfigMap pilot-jwks-cacerts-<SMCP name>

kind: ConfigMap
apiVersion: vi
data:

extra.pem: |

159

OpenShift Container Platform 4.12 Service Mesh

1.13.5. Adding an external certificate authority key and certificate

By default, Red Hat OpenShift Service Mesh generates a self-signed root certificate and key and uses
them to sign the workload certificates. You can also use the user-defined certificate and key to sign
workload certificates with user-defined root certificate. This task demonstrates an example to plug
certificates and key into Service Mesh.

Prerequisites

® |nstall Red Hat OpenShift Service Mesh with mutual TLS enabled to configure certificates.

® This example uses the certificates from the Maistra repository. For production, use your own
certificates from your certificate authority.

® Deploy the Bookinfo sample application to verify the results with these instructions.

® OpenSSL is required to verify certificates.

1.13.5.1. Adding an existing certificate and key

To use an existing signing (CA) certificate and key, you must create a chain of trust file that includes the
CA certificate, key, and root certificate. You must use the following exact file names for each of the
corresponding certificates. The CA certificate is named ca-cert.pem, the key is ca-key.pem, and the
root certificate, which signs ca-cert.pem, is named root-cert.pem. If your workload uses intermediate
certificates, you must specify them in a cert-chain.pem file.

1. Save the example certificates from the Maistra repository locally and replace <path> with the
path to your certificates.

2. Create a secret named cacert that includes the input files ca-cert.pem, ca-key.pem, root-
cert.pem and cert-chain.pem.

$ oc create secret generic cacerts -n istio-system --from-file=<path>/ca-cert.pem \
--from-file=<path>/ca-key.pem --from-file=<path>/root-cert.pem \
--from-file=<path>/cert-chain.pem

3. In the ServiceMeshControlPlane resource set spec.security.dataPlane.mtls true to true and
configure the certificateAuthority field as shown in the following example. The default
rootCADir is /etc/cacerts. You do not need to set the privateKey if the key and certs are
mounted in the default location. Service Mesh reads the certificates and key from the secret-
mount files.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
security:
dataPlane:
mtls: true
certificateAuthority:
type: Istiod

160

https://github.com/maistra/istio/tree/maistra-2.5/samples/certs
https://github.com/maistra/istio/tree/maistra-2.5/samples/certs

CHAPTER 1. SERVICE MESH 2.X

istiod:
type: PrivateKey
privateKey:
rootCADir: /etc/cacerts

4. After creating/changing/deleting the cacert secret, the Service Mesh control plane istiod and
gateway pods must be restarted so the changes go into effect. Use the following command to
restart the pods:

I $ oc -n istio-system delete pods -I 'app in (istiod,istio-ingressgateway, istio-egressgateway)’
The Operator will automatically recreate the pods after they have been deleted.

5. Restart the bookinfo application pods so that the sidecar proxies pick up the secret changes.
Use the following command to restart the pods:

I $ oc -n bookinfo delete pods --alll

You should see output similar to the following:

pod "details-v1-6¢cd699df8c-j54nh" deleted

pod "productpage-v1-5ddcb4b84f-mtmf2" deleted
pod "ratings-v1-bdbcc68bc-kmng4" deleted

pod "reviews-v1-754ddd7b6f-lghsv" deleted

pod "reviews-v2-675679877f-67r2" deleted

pod "reviews-v3-79d7549c7-c2gjs" deleted

6. Verify that the pods were created and are ready with the following command:

I $ oc get pods -n bookinfo

1.13.5.2. Verifying your certificates

Use the Bookinfo sample application to verify that the workload certificates are signed by the
certificates that were plugged into the CA. This process requires that you have openssl installed on
your machine.

1. To extract certificates from bookinfo workloads use the following command:

$ sleep 60

$ oc -n bookinfo exec "$(oc -n bookinfo get pod -l app=productpage -o jsonpath=
{.items..metadata.name})" -c istio-proxy -- openssl| s_client -showcerts -connect details:9080
> bookinfo-proxy-cert.txt

$ sed -n '/-----BEGIN CERTIFICATE-----/{:start /-----END CERTIFICATE-----/{N;b
start};/.*/p}' bookinfo-proxy-cert.txt > certs.pem

$ awk 'BEGIN {counter=0;} /BEGIN CERT/{counter++} { print > "proxy-cert-" counter ".pem"}'
< certs.pem

After running the command, you should have three files in your working directory: proxy-cert-
1.pem, proxy-cert-2.pem and proxy-cert-3.pem.

2. Verify that the root certificate is the same as the one specified by the administrator. Replace
<path> with the path to your certificates.

161

OpenShift Container Platform 4.12 Service Mesh

I $ openssl x509 -in <path>/root-cert.pem -text -noout > /tmp/root-cert.crt.txt
Run the following syntax at the terminal window.

I $ openssl x509 -in ./proxy-cert-3.pem -text -noout > /tmp/pod-root-cert.crt.txt
Compare the certificates by running the following syntax at the terminal window.
I $ diff -s /tmp/root-cert.crt.txt /tmp/pod-root-cert.crt.txt

You should see the following result: Files /tmp/root-cert.crt.txt and /tmp/pod-root-cert.crt.txt
are identical

3. Verify that the CA certificate is the same as the one specified by the administrator. Replace
<path> with the path to your certificates.

I $ openssl x509 -in <path>/ca-cert.pem -text -noout > /tmp/ca-cert.crt.txt

Run the following syntax at the terminal window.

I $ openssl x509 -in ./proxy-cert-2.pem -text -noout > /tmp/pod-cert-chain-ca.crt.txt
Compare the certificates by running the following syntax at the terminal window.

I $ diff -s /tmp/ca-cert.crt.txt /tmp/pod-cert-chain-ca.crt.txt

You should see the following result: Files /tmp/ca-cert.crt.txt and /tmp/pod-cert-chain-
ca.crt.txt are identical.

Verify the certificate chain from the root certificate to the workload certificate. Replace <path>
with the path to your certificates.

I $ openssl verify -CAfile <(cat <path>/ca-cert.pem <path>/root-cert.pem) ./proxy-cert-1.pem

You should see the following result: ./proxy-cert-1.pem: OK

1.13.5.3. Removing the certificates

To remove the certificates you added, follow these steps.

162

1. Remove the secret cacerts. In this example, istio-system is the name of the Service Mesh
control plane project.

I $ oc delete secret cacerts -n istio-system

2. Redeploy Service Mesh with a self-signed root certificate in the ServiceMeshControlPlane
resource.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:

CHAPTER 1. SERVICE MESH 2.X

security:
dataPlane:
mtls: true

1.13.6. About integrating Service Mesh with cert-manager and istio-csr

The cert-manager tool is a solution for X.509 certificate management on Kubernetes. It delivers a
unified API to integrate applications with private or public key infrastructure (PKI), such as Vault, Google
Cloud Certificate Authority Service, Let’'s Encrypt, and other providers.

The cert-manager tool ensures the certificates are valid and up-to-date by attempting to renew
certificates at a configured time before they expire.

For Istio users, cert-manager also provides integration with istio-csr, which is a certificate authority (CA)
server that handles certificate signing requests (CSR) from Istio proxies. The server then delegates
signing to cert-manager, which forwards CSRs to the configured CA server.

NOTE

Red Hat provides support for integrating with istio-csr and cert-manager. Red Hat does
not provide direct support for the istio-csr or the community cert-manager components.
The use of community cert-manager shown here is for demonstration purposes only.

Prerequisites
® One of these versions of cert-manager:
o cert-manager Operator for Red Hat OpenShift 110 or later
o community cert-manager Operator 1.11 or later
o cert-manager 1.11 or later
® OpenShift Service Mesh Operator 2.4 or later

e jstio-csr 0.6.0 or later

NOTE

To avoid creating config maps in all namespaces when the istio-csr server is installed with
the jetstack/cert-manager-istio-csr Helm chart, use the following setting:
app.controller.configmapNamespaceSelector: "maistra.io/member-of: <istio-
namespace>" in the istio-csr.yaml file.

L

1.13.6.1. Installing cert-manager

You can install the cert-manager tool to manage the lifecycle of TLS certificates and ensure that they
are valid and up-to-date. If you are running Istio in your environment, you can also install the istio-csr
certificate authority (CA) server, which handles certificate signing requests (CSR) from Istio proxies. The
istio-csr CA delegates signing to the cert-manager tool, which delegates to the configured CA.

Procedure

1. Create the root cluster issuer:

163

OpenShift Container Platform 4.12 Service Mesh

Example cluster-issuer.yaml

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: selfsigned-root-issuer
namespace: cert-manager
spec:
selfSigned: {}
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: root-ca
namespace: cert-manager
spec:
isCA: true
duration: 21600h # 900d
secretName: root-ca
commonName: root-ca.my-company.net
subject:
organizations:
- my-company.net
issuerRef:
name: selfsigned-root-issuer
kind: Issuer
group: cert-manager.io
apiVersion: cert-manager.io/v1
kind: Clusterlssuer
metadata:
name: root-ca
spec:
ca:
secretName: root-ca

NOTE

The namespace of the selfsigned-root-issuer issuer and root-ca certificate is
cert-manager because root-ca is a cluster issuer, so the cert-manager looks for a
referenced secret in its own namespace. The namespace is called cert-manager
in the case of the cert-manager Operator for Red Hat OpenShift.

a. Create the object by using the following command:
I $ oc apply -f cluster-issuer.yaml

b. Create the istio-ca object as in the following example:

Example istio-ca.yaml

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:

164

CHAPTER 1. SERVICE MESH 2.X

name: istio-ca
namespace: istio-system
spec:
isCA: true
duration: 21600h
secretName: istio-ca
commonName: istio-ca.my-company.net
subject:
organizations:
- my-company.net
issuerRef:
name: root-ca
kind: Clusterlssuer
group: cert-manager.io
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: istio-ca
namespace: istio-system
spec:
ca:
secretName: istio-ca

c. Use the following command to create the object:
I $ oc apply -n istio-system -f istio-ca.yaml
2. Install istio-cst:

$ helm install istio-csr jetstack/cert-manager-istio-csr \
-n istio-system \
-f deploy/examples/cert-manager/istio-csr/istio-csr.yaml

Example istio-csr.yaml

replicaCount: 2

image:
repository: quay.io/jetstack/cert-manager-istio-csr
tag: v0.6.0
pullSecretName: "

app:
certmanager:
namespace: istio-system
issuer:
group: cert-manager.io
kind: Issuer
name: istio-ca

controller:
configmapNamespaceSelector: "maistra.io/member-of=istio-system
leaderElectionNamespace: istio-system

165

OpenShift Container Platform 4.12 Service Mesh

istio:
namespace: istio-system
revisions: ["basic"]

server:
maxCertificateDuration: 5m

tls:
certificateDNSNames:
This DNS name must be set in the SMCP spec.security.certificateAuthority.cert-
manager.address
- cert-manager-istio-csr.istio-system.svc

3. Deploy SMCP:
I $ oc apply -f mesh.yaml -n istio-system
Example mesh.yaml

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
metadata:
name: basic
spec:
addons:
grafana:
enabled: false
kiali:
enabled: false
prometheus:
enabled: false
proxy:
accesslLogging:
file:
name: /dev/stdout
security:
certificateAuthority:
cert-manager:
address: cert-manager-istio-csr.istio-system.svc:443
type: cert-manager
dataPlane:
mtls: true
identity:
type: ThirdParty
tracing:
type: None
apiVersion: maistra.io/v1
kind: ServiceMeshMemberRoll
metadata:
name: default
spec:
members:
- httpbin
- sleep

166

CHAPTER 1. SERVICE MESH 2.X

NOTE

security.identity.type: ThirdParty must be set when
security.certificateAuthority.type: cert-manager is configured.

Verification

Use the sample httpbin service and sleep app to check mTLS traffic from ingress gateways and verify
that the cert-manager tool is installed.

1. Deploy the HTTP and sleep apps:

I $ oc new-project <namespace>

$ oc apply -f https://raw.githubusercontent.com/maistra/istio/maistra-
2.4/samples/httpbin/httpbin.yaml

$ oc apply -f https://raw.githubusercontent.com/maistra/istio/maistra-
2.4/samples/sleep/sleep.yaml
2. Verify that sleep can access the httpbin service:

$ oc exec "$(oc get pod -l app=sleep -n <namespace> \
-0 jsonpath={.items..metadata.name})" -c sleep -n <namespace> -- \
curl http://httpbin.<namespace>:8000/ip -s -0 /dev/null \
-w "%{http_code}\n"

Example output:
I 200

3. Check mTLS traffic from the ingress gateway to the httpbin service:

$ oc apply -n <namespace> -f https://raw.githubusercontent.com/maistra/istio/maistra-
2.4/samples/httpbin/httpbin-gateway.yaml

4. Get the istio-ingressgateway route:

INGRESS_HOST=$(oc -n istio-system get routes istio-ingressgateway -o
jsonpath='{.spec.host}")

5. Verify mTLS traffic from the ingress gateway to the httpbin service:

I $ curl -s -l http://$INGRESS_HOST/headers -o /dev/null -w "%{http_code}" -s
1.13.7. Additional resources

For information about how to install the cert-manager Operator for OpenShift Container Platform, see:
Installing the cert-manager Operator for Red Hat OpenShift .

1.14. MANAGING TRAFFIC IN YOUR SERVICE MESH

167

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/security_and_compliance/#installing-the-cert-manager-operator-for-red-hat-openshift

OpenShift Container Platform 4.12 Service Mesh

Using Red Hat OpenShift Service Mesh, you can control the flow of traffic and API calls between
services. Some services in your service mesh might need to communicate within the mesh and others
might need to be hidden. You can manage the traffic to hide specific backend services, expose services,
create testing or versioning deployments, or add a security layer on a set of services.

1.14.1. Using gateways

You can use a gateway to manage inbound and outbound traffic for your mesh to specify which traffic
you want to enter or leave the mesh. Gateway configurations are applied to standalone Envoy proxies
that are running at the edge of the mesh, rather than sidecar Envoy proxies running alongside your
service workloads.

Unlike other mechanisms for controlling traffic entering your systems, such as the Kubernetes Ingress
APls, Red Hat OpenShift Service Mesh gateways use the full power and flexibility of traffic routing.

The Red Hat OpenShift Service Mesh gateway resource can use layer 4-6 load balancing properties,
such as ports, to expose and configure Red Hat OpenShift Service Mesh TLS settings. Instead of adding
application-layer traffic routing (L7) to the same APl resource, you can bind a regular Red Hat
OpenShift Service Mesh virtual service to the gateway and manage gateway traffic like any other data
plane traffic in a service mesh.

Gateways are primarily used to manage ingress traffic, but you can also configure egress gateways. An
egress gateway lets you configure a dedicated exit node for the traffic leaving the mesh. This enables
you to limit which services have access to external networks, which adds security control to your service
mesh. You can also use a gateway to configure a purely internal proxy.

Gateway example

A gateway resource describes a load balancer operating at the edge of the mesh receiving incoming or
outgoing HTTP/TCP connections. The specification describes a set of ports that should be exposed, the
type of protocol to use, SNI configuration for the load balancer, and so on.

The following example shows a sample gateway configuration for external HTTPS ingress traffic:

apiVersion: networking.istio.io/vialpha3
kind: Gateway
metadata:
name: ext-host-gwy
spec:
selector:
istio: ingressgateway # use istio default controller
servers:
- port:
number: 443
name: https
protocol: HTTPS
hosts:
- ext-host.example.com
tls:
mode: SIMPLE
serverCertificate: /tmp/tls.crt
privateKey: /tmp/tls.key

This gateway configuration lets HTTPS traffic from ext-host.example.com into the mesh on port 443,
but doesn't specify any routing for the traffic.

168

CHAPTER 1. SERVICE MESH 2.X

To specify routing and for the gateway to work as intended, you must also bind the gateway to a virtual
service. You do this using the virtual service’s gateways field, as shown in the following example:

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:

name: virtual-svc
spec:

hosts:

- ext-host.example.com

gateways:

- ext-host-gwy

You can then configure the virtual service with routing rules for the external traffic.

1.14.1.1. Enabling gateway injection

Gateway configurations apply to standalone Envoy proxies running at the edge of the mesh, rather than
sidecar Envoy proxies running alongside your service workloads. Because gateways are Envoy proxies,
you can configure Service Mesh to inject gateways automatically, similar to how you can inject sidecars.

Using automatic injection for gateways, you can deploy and manage gateways independent from the
ServiceMeshControlPlane resource and manage the gateways with your user applications. Using auto-
injection for gateway deployments gives developers full control over the gateway deployment while
simplifying operations. When a new upgrade is available, or a configuration has changed, you restart the
gateway pods to update them. Doing so makes the experience of operating a gateway deployment the
same as operating sidecars.

NOTE

Injection is disabled by default for the ServiceMeshControlPlane namespace, for
example the istio-system namespace. As a security best practice, deploy gateways in a
different namespace from the control plane.

1.14.1.2. Deploying automatic gateway injection

When deploying a gateway, you must opt-in to injection by adding an injection label or annotation to the
gateway deployment object. The following example deploys a gateway.

Prerequisites

® The namespace must be a member of the mesh by defining it in the ServiceMeshMemberRoll
or by creating a ServiceMeshMember resource.

Procedure

1. Set a unique label for the Istio ingress gateway. This setting is required to ensure that the
gateway can select the workload. This example uses ingressgateway as the name of the
gateway.

apiVersion: v1i
kind: Service
metadata:
name: istio-ingressgateway

169

OpenShift Container Platform 4.12 Service Mesh

namespace: istio-ingress
spec:
type: ClusterIP
selector:
istio: ingressgateway
ports:
- name: http2
port: 80
targetPort: 8080
- name: https
port: 443
targetPort: 8443
apiVersion: apps/v1
kind: Deployment
metadata:
name: istio-ingressgateway
namespace: istio-ingress
spec:
selector:
matchLabels:
istio: ingressgateway
template:
metadata:
annotations:
inject.istio.io/templates: gateway
labels:
istio: ingressgateway
sidecar.istio.io/inject: "true"
spec:
containers:
- hame: istio-proxy
image: auto

ﬂ Enable gateway injection by setting the sidecar.istio.io/inject field to "true".

Set the image field to auto so that the image automatically updates each time the pod
starts.

2. Set up roles to allow reading credentials for TLS.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: istio-ingressgateway-sds
namespace: istio-ingress
rules:
- apiGroups: ["]
resources: ["'secrets"]
verbs: ["get", "watch", "list"]
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: istio-ingressgateway-sds

170

CHAPTER 1. SERVICE MESH 2.X

namespace: istio-ingress
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: istio-ingressgateway-sds
subjects:
- kind: ServiceAccount
name: default

3. Grant access to the new gateway from outside the cluster, which is required whenever
spec.security.manageNetworkPolicy is set to true.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: gatewayingress
namespace: istio-ingress
spec:
podSelector:
matchLabels:
istio: ingressgateway
ingress:
-{}
policy Types:
- Ingress

4. Automatically scale the pod when ingress traffic increases. This example sets the minimum
replicas to 2 and the maximum replicas to 5. It also creates another replica when utilization
reaches 80%.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
labels:
istio: ingressgateway
release: istio
name: ingressgatewayhpa
namespace: istio-ingress
spec:
maxReplicas: 5
metrics:
- resource:
name: cpu
target:
averageUltilization: 80
type: Utilization
type: Resource
minReplicas: 2
scaleTargetRef:
apiVersion: apps/vi
kind: Deployment
name: istio-ingressgateway

5. Specify the minimum number of pods that must be running on the node. This example ensures
one replica is running if a pod gets restarted on a new node.

171

OpenShift Container Platform 4.12 Service Mesh

apiVersion: policy/v1
kind: PodDisruptionBudget
metadata:
labels:
istio: ingressgateway
release: istio
name: ingressgatewaypdb
namespace: istio-ingress
spec:
minAvailable: 1
selector:
matchLabels:
istio: ingressgateway

1.14.1.3. Managing ingress traffic

In Red Hat OpenShift Service Mesh, the Ingress Gateway enables features such as monitoring, security,
and route rules to apply to traffic that enters the cluster. Use a Service Mesh gateway to expose a
service outside of the service mesh.

1.14.1.3.1. Determining the ingress IP and ports

Ingress configuration differs depending on if your environment supports an external load balancer. An
external load balancer is set in the ingress IP and ports for the cluster. To determine if your cluster’s IP
and ports are configured for external load balancers, run the following command. In this example, istio-
system is the name of the Service Mesh control plane project.

I $ oc get svc istio-ingressgateway -n istio-system

That command returns the NAME, TYPE, CLUSTER-IP, EXTERNAL-IP, PORT(S), and AGE of each
item in your namespace.

If the EXTERNAL-IP value is set, your environment has an external load balancer that you can use for
the ingress gateway.

If the EXTERNAL-IP value is <nones, or perpetually <pending>, your environment does not provide an

external load balancer for the ingress gateway. You can access the gateway using the service's node
port.

1.14.1.3.1.1. Determining ingress ports with a load balancer

Follow these instructions if your environment has an external load balancer.

Procedure

1. Run the following command to set the ingress IP and ports. This command sets a variable in your
terminal.

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath="{.status.loadBalancer.ingress[0].ip}")

2. Run the following command to set the ingress port.

172

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#configuring-node-port-service-range

CHAPTER 1. SERVICE MESH 2.X

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].port})

3. Run the following command to set the secure ingress port.

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -
0 jsonpath='{.spec.ports[?(@.name=="https")].port}")

4. Run the following command to set the TCP ingress port.

$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="tcp")].port}’)

NOTE

In some environments, the load balancer may be exposed using a hostname instead of an
IP address. For that case, the ingress gateway's EXTERNAL-IP value is not an IP address.
Instead, it's a hostname, and the previous command fails to set the INGRESS_HOST
environment variable.

In that case, use the following command to correct the INGRESS_HOST value:

$ export INGRESS_HOST=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath="{.status.loadBalancer.ingress[0].hostname}’)

1.14.1.3.1.2. Determining ingress ports without a load balancer

If your environment does not have an external load balancer, determine the ingress ports and use a node
port instead.

Procedure

1. Set the ingress ports.

$ export INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="http2")].nodePort}")
2. Run the following command to set the secure ingress port.

$ export SECURE_INGRESS_PORT=$(oc -n istio-system get service istio-ingressgateway -
o0 jsonpath='{.spec.ports[?(@.name=="https")].nodePort})

3. Run the following command to set the TCP ingress port.

$ export TCP_INGRESS_PORT=$(kubectl -n istio-system get service istio-ingressgateway -o
jsonpath='{.spec.ports[?(@.name=="tcp")].nodePort}")

1.14.1.4. Configuring an ingress gateway

An ingress gateway is a load balancer operating at the edge of the mesh that receives incoming
HTTP/TCP connections. It configures exposed ports and protocols but does not include any traffic

173

OpenShift Container Platform 4.12 Service Mesh

routing configuration. Traffic routing for ingress traffic is instead configured with routing rules, the same
way as for internal service requests.

The following steps show how to create a gateway and configure a VirtualService to expose a service in
the Bookinfo sample application to outside traffic for paths /productpage and /login.

Procedure
1. Create a gateway to accept traffic.

a. Create a YAML file, and copy the following YAML into it.

Gateway example gateway.yaml

apiVersion: networking.istio.io/vialpha3
kind: Gateway

metadata:
name: bookinfo-gateway
spec:
selector:
istio: ingressgateway
servers:
- port:
number: 80
name: http
protocol: HTTP
hosts:

nkn

b. Apply the YAML file.
I $ oc apply -f gateway.yaml

2. Create a VirtualService object to rewrite the host header.

a. Create a YAML file, and copy the following YAML into it.

Virtual service example

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:
name: bookinfo
spec:
hosts:
gateways:
- bookinfo-gateway
http:
- match:
- uri:
exact: /productpage
- uri:
prefix: /static
- uri:

174

CHAPTER 1. SERVICE MESH 2.X

exact: /login
- uri:
exact: /logout
- uri:
prefix: /api/v1/products
route:
- destination:
host: productpage
port:

number: 9080
b. Apply the YAML file.
I $ oc apply -f vs.yaml
3. Test that the gateway and VirtualService have been set correctly.
a. Setthe Gateway URL.

export GATEWAY_URL=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.host}")

b. Set the port number. In this example, istio-system is the name of the Service Mesh control
plane project.

export TARGET_PORT=$(oc -n istio-system get route istio-ingressgateway -o
jsonpath='{.spec.port.targetPort}’)

c. Test a page that has been explicitly exposed.
I curl -s -1 "$GATEWAY_URL/productpage”

The expected result is 200.
1.14.2. Understanding automatic routes

IMPORTANT

Istio OpenShift Routing (IOR) is a deprecated feature. Deprecated functionality is still
included in OpenShift Container Platform and continues to be supported; however, it will
be removed in a future release of this product and is not recommended for new
deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

OpenShift routes for gateways are automatically managed in Service Mesh. Every time an Istio Gateway
is created, updated or deleted inside the service mesh, an OpenShift route is created, updated or
deleted.

175

OpenShift Container Platform 4.12 Service Mesh

NOTE

Starting with Service Mesh 2.5, automatic routes are disabled by default for new
instances of the ServiceMeshControlPlane resource.

1.14.2.1. Routes with subdomains

Red Hat OpenShift Service Mesh creates the route with the subdomain, but OpenShift Container
Platform must be configured to enable it. Subdomains, for example *.domain.com, are supported, but
not by default. Configure an OpenShift Container Platform wildcard policy before configuring a wildcard
host gateway.

For more information, see Using wildcard routes.

1.14.2.2. Creating subdomain routes

The following example creates a gateway in the Bookinfo sample application, which creates subdomain
routes.

apiVersion: networking.istio.io/vialpha3
kind: Gateway
metadata:
name: gateway1
spec:
selector:
istio: ingressgateway
servers:
- port:
number: 80
name: http
protocol: HTTP
hosts:
- www.bookinfo.com
- bookinfo.example.com

The Gateway resource creates the following OpenShift routes. You can check that the routes are
created by using the following command. In this example, istio-system is the name of the Service Mesh
control plane project.

I $ oc -n istio-system get routes

Expected output
NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
gateway1-Ivlfn bookinfo.example.com istio-ingressgateway <all> None
gateway1-scghv www.bookinfo.com istio-ingressgateway <all> None

If you delete the gateway, Red Hat OpenShift Service Mesh deletes the routes. However, routes you
have manually created are never modified by Red Hat OpenShift Service Mesh.

1.14.2.3. Route labels and annotations

176

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#using-wildcard-routes_configuring-ingress

CHAPTER 1. SERVICE MESH 2.X

Sometimes specitic labels or annotations are needed in an OpenShitt route. For example, some
advanced features in OpenShift routes are managed using special annotations. See "Route-specific
annotations" in the following "Additional resources" section.

For this and other use cases, Red Hat OpenShift Service Mesh will copy all labels and annotations
present in the Istio gateway resource (with the exception of annotations starting with
kubectl.kubernetes.io) into the managed OpenShift route resource.

If you need specific labels or annotations in the OpenShift routes created by Service Mesh, create them
in the Istio gateway resource and they will be copied into the OpenShift route resources managed by
the Service Mesh.

Additional resources

® Route-specific annotations.

1.14.2.4. Disabling automatic route creation

By default, the ServiceMeshControlPlane resource automatically synchronizes the Istio gateway
resources with OpenShift routes. Disabling the automatic route creation allows you more flexibility to
control routes if you have a special case or prefer to control routes manually.

1.14.2.4.1. Disabling automatic route creation for specific cases

If you want to disable the automatic management of OpenShift routes for a specific Istio gateway, you
must add the annotation maistra.io/manageRoute: false to the gateway metadata definition. Red Hat
OpenShift Service Mesh will ignore Istio gateways with this annotation, while keeping the automatic
management of the other Istio gateways.

1.14.2.4.2. Disabling automatic route creation for all cases

You can disable the automatic management of OpenShift routes for all gateways in your mesh.

Disable integration between Istio gateways and OpenShift routes by setting the
ServiceMeshControlPlane field gateways.openshiftRoute.enabled to false. For example, see the
following resource snippet.

apiVersion: maistra.io/vialphat
kind: ServiceMeshControlPlane
metadata:
namespace: istio-system
spec:
gateways:
openshiftRoute:
enabled: false

1.14.3. Understanding service entries

A service entry adds an entry to the service registry that Red Hat OpenShift Service Mesh maintains
internally. After you add the service entry, the Envoy proxies send traffic to the service as if it is a service
in your mesh. Service entries allow you to do the following:

® Manage traffic for services that run outside of the service mesh.

177

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/networking/#nw-route-specific-annotations_route-configuration

OpenShift Container Platform 4.12 Service Mesh

® Redirect and forward traffic for external destinations (such as, APIs consumed from the web) or
traffic to services in legacy infrastructure.

e Define retry, timeout, and fault injection policies for external destinations.

® Run a mesh service in a Virtual Machine (VM) by adding VMs to your mesh.

NOTE

Add services from a different cluster to the mesh to configure a multicluster Red Hat
OpenShift Service Mesh mesh on Kubernetes.

Service entry examples
The following example is a mesh-external service entry that adds the ext-resource external dependency

to the Red Hat OpenShift Service Mesh service registry:

apiVersion: networking.istio.io/vialpha3
kind: ServiceEntry

metadata:
name: svc-entry
spec:
hosts:
- ext-svc.example.com
ports:
- number: 443
name: https

protocol: HTTPS
location: MESH_EXTERNAL
resolution: DNS

Specify the external resource using the hosts field. You can qualify it fully or use a wildcard prefixed
domain name.

You can configure virtual services and destination rules to control traffic to a service entry in the same
way you configure traffic for any other service in the mesh. For example, the following destination rule
configures the traffic route to use mutual TLS to secure the connection to the ext-svc.example.com
external service that is configured using the service entry:

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:
name: ext-res-dr
spec:
host: ext-svc.example.com
trafficPolicy:
tls:
mode: MUTUAL
clientCertificate: /etc/certs/myclientcert.pem
privateKey: /etc/certs/client_private_key.pem
caCertificates: /etc/certs/rootcacerts.pem

1.14.4. Using VirtualServices

178

CHAPTER 1. SERVICE MESH 2.X

You can route requests dynamically to multiple versions of a microservice through Red Hat OpenShift
Service Mesh with a virtual service. With virtual services, you can:

® Address multiple application services through a single virtual service. If your mesh uses
Kubernetes, for example, you can configure a virtual service to handle all services in a specific
namespace. A virtual service enables you to turn a monolithic application into a service
consisting of distinct microservices with a seamless consumer experience.

e Configure traffic rules in combination with gateways to control ingress and egress traffic.

1.14.4.1. Configuring VirtualServices

Requests are routed to services within a service mesh with virtual services. Each virtual service consists
of a set of routing rules that are evaluated in order. Red Hat OpenShift Service Mesh matches each
given request to the virtual service to a specific real destination within the mesh.

Without virtual services, Red Hat OpenShift Service Mesh distributes traffic using least requests load
balancing between all service instances. With a virtual service, you can specify traffic behavior for one or
more hostnames. Routing rules in the virtual service tell Red Hat OpenShift Service Mesh how to send
the traffic for the virtual service to appropriate destinations. Route destinations can be versions of the
same service or entirely different services.

Procedure

1. Create a YAML file using the following example to route requests to different versions of the
Bookinfo sample application service depending on which user connects to the application.

Example VirtualService.yaml

apiVersion: networking.istio.io/vialpha3
kind: VirtualService
metadata:
name: reviews
spec:
hosts:
- reviews
http:
- match:

- headers:

end-user:
exact: jason
route:

- destination:
host: reviews
subset: v2

- route:

- destination:
host: reviews
subset: v3

2. Run the following command to apply VirtualService.yaml, where VirtualService.yaml is the
path to the file.

I $ oc apply -f <VirtualService.yaml>

179

OpenShift Container Platform 4.12 Service Mesh

1.14.4.2. VirtualService configuration reference

Parameter Description

The hosts field lists the virtual service's destination
spec: address to which the routing rules apply. This is the
hosts: address(es) that are used to send requests to the

service. The virtual service hostname can be an IP
address, a DNS name, or a short name that resolves
to a fully qualified domain name.

The http section contains the virtual service's routing

spec: rules which describe match conditions and actions for
http: routing HTTP/1.1, HTTP2, and gRPC traffic sent to
- match: the destination as specified in the hosts field. A

routing rule consists of the destination where you
want the traffic to go and any specified match
conditions. The first routing rule in the example has a
condition that begins with the match field. In this
example, this routing applies to all requests from the
user jason. Add the headers, end-user, and exact
fields to select the appropriate requests.

The destination field in the route section specifies

spec: the actual destination for traffic that matches this
http: condition. Unlike the virtual service's host, the
- match: destination’s host must be a real destination that
- destination: exists in the Red Hat OpenShift Service Mesh service

registry. This can be a mesh service with proxies or a
non-mesh service added using a service entry. In this
example, the hostname is a Kubernetes service
name:

1.14.5. Understanding destination rules

Destination rules are applied after virtual service routing rules are evaluated, so they apply to the
traffic's real destination. Virtual services route traffic to a destination. Destination rules configure what
happens to traffic at that destination.

By default, Red Hat OpenShift Service Mesh uses a least requests load balancing policy, where the
service instance in the pool with the least number of active connections receives the request. Red Hat
OpenShift Service Mesh also supports the following models, which you can specify in destination rules
for requests to a particular service or service subset.

® Random: Requests are forwarded at random to instances in the pool.

e Weighted: Requests are forwarded to instances in the pool according to a specific percentage.

® | eastrequests: Requests are forwarded to instances with the least number of requests.

Destination rule example

The following example destination rule configures three different subsets for the my-sve destination
service, with different load balancing policies:

180

CHAPTER 1. SERVICE MESH 2.X

apiVersion: networking.istio.io/vialpha3
kind: DestinationRule
metadata:
name: my-destination-rule
spec:
host: my-svc
trafficPolicy:
loadBalancer:
simple: RANDOM
subsets:
- name: vi
labels:
version: v1
- name: v2
labels:
version: v2
trafficPolicy:
loadBalancer:
simple: ROUND_ROBIN
- name: v3
labels:
version: v3

1.14.6. Understanding network policies

Red Hat OpenShift Service Mesh automatically creates and manages a number of NetworkPolicies
resources in the Service Mesh control plane and application namespaces. This is to ensure that
applications and the control plane can communicate with each other.

For example, if you have configured your OpenShift Container Platform cluster to use the SDN plugin,
Red Hat OpenShift Service Mesh creates a NetworkPolicy resource in each member project. This
enables ingress to all pods in the mesh from the other mesh members and the control plane. This also
restricts ingress to only member projects. If you require ingress from non-member projects, you need to
create a NetworkPolicy to allow that traffic through. If you remove a namespace from Service Mesh,
this NetworkPolicy resource is deleted from the project.

1.14.6.1. Disabling automatic NetworkPolicy creation

If you want to disable the automatic creation and management of NetworkPolicy resources, for
example to enforce company security policies, or to allow direct access to pods in the mesh, you can do
so. You can edit the ServiceMeshControlPlane and set spec.security.manageNetworkPolicy to
false.

NOTE
When you disable spec.security.manageNetworkPolicy Red Hat OpenShift Service

Mesh will not create any NetworkPolicy objects. The system administrator is responsible
for managing the network and fixing any issues this might cause.

Prerequisites
® Red Hat OpenShift Service Mesh Operator version 2.1.1 or higher installed.

e ServiceMeshControlPlane resource updated to version 2.1 or higher.

181

OpenShift Container Platform 4.12 Service Mesh

Procedure

1. In the OpenShift Container Platform web console, click Operators = Installed Operators.

2. Select the project where you installed the Service Mesh control plane, for example istio-system,
from the Project menu.

3. Click the Red Hat OpenShift Service Mesh Operator. In the Istio Service Mesh Control Plane
column, click the name of your ServiceMeshControlPlane, for example basic-install.

4. On the Create ServiceMeshControlPlane Details page, click YAML to modify your
configuration.

5. Set the ServiceMeshControlPlane field spec.security.manageNetworkPolicy to false, as
shown in this example.

apiVersion: maistra.io/v2
kind: ServiceMeshControlPlane
spec:
security:
manageNetworkPolicy: false

6. Click Save.

1.14.7. Configuring sidecars for traffic management

By default, Red Hat OpenShift Service Mesh configures every Envoy proxy to accept traffic on all the
ports of its associated workload, and to reach every workload in the mesh when forwarding traffic. You
can use a sidecar configuration to do the following:

® Fine-tune the set of ports and protocols that an Envoy proxy accepts.

® Limit the set of services that the Envoy proxy can reach.

NOTE

To optimize performance of your service mesh, consider limiting Envoy proxy
configurations.

In the Bookinfo sample application, configure a Sidecar so all services can reach other services running
in the same namespace and control plane. This Sidecar configuration is required for using Red Hat
OpenShift Service Mesh policy and telemetry features.

Procedure

1. Create a YAML file using the following example to specify that you want a sidecar configuration
to apply to all workloads in a particular namespace. Otherwise, choose specific workloads using a
workloadSelector.

Example sidecar.yaml

apiVersion: networking.istio.io/vialpha3
kind: Sidecar
metadata:

name: default

182

CHAPTER 1. SERVICE MESH 2.X

namespace: bookinfo
spec:
egress:
- hosts:
- "./*H
- "istio-system/*"

2. Run the following command to apply sidecar.yaml, where sidecar.yaml is the path to the file.

I $ oc apply -f sidecar.yaml

3. Run the following command to verify that the sidecar was created successfully.

I $ oc get sidecar

1.14.8. Routing Tutorial

This guide references the Bookinfo sample application to provide examples of routing in an example
application. Install the Bookinfo application to learn how these routing examples work.

1.14.8.1. Bookinfo routing tutorial

The Service Mesh Bookinfo sample application consists of four separate microservices, eac