
OpenShift Container Platform 4.12

Distributed tracing

Configuring and using distributed tracing in OpenShift Container Platform

Last Updated: 2024-05-15

OpenShift Container Platform 4.12 Distributed tracing

Configuring and using distributed tracing in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use distributed tracing to store, analyze, and visualize microservices transactions passing through
distributed systems in OpenShift Container Platform.

. .

Table of Contents

CHAPTER 1. RELEASE NOTES
1.1. RELEASE NOTES FOR RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM 3.1.1

1.1.1. Distributed tracing overview
1.1.2. CVEs
1.1.3. Red Hat OpenShift distributed tracing platform (Tempo)

1.1.3.1. Known issues
1.1.4. Red Hat OpenShift distributed tracing platform (Jaeger)

1.1.4.1. Support for OpenShift Elasticsearch Operator
1.1.4.2. Deprecated functionality
1.1.4.3. Known issues

1.1.5. Getting support
1.1.6. Making open source more inclusive

1.2. RELEASE NOTES FOR PAST RELEASES OF RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM
1.2.1. Distributed tracing overview
1.2.2. Release notes for Red Hat OpenShift distributed tracing platform 3.1

1.2.2.1. Red Hat OpenShift distributed tracing platform (Tempo)
1.2.2.1.1. New features and enhancements
1.2.2.1.2. Bug fixes
1.2.2.1.3. Known issues

1.2.2.2. Red Hat OpenShift distributed tracing platform (Jaeger)
1.2.2.2.1. Support for OpenShift Elasticsearch Operator
1.2.2.2.2. Deprecated functionality
1.2.2.2.3. New features and enhancements
1.2.2.2.4. Bug fixes
1.2.2.2.5. Known issues

1.2.3. Release notes for Red Hat OpenShift distributed tracing platform 3.0
1.2.3.1. Component versions in the Red Hat OpenShift distributed tracing platform 3.0
1.2.3.2. Red Hat OpenShift distributed tracing platform (Jaeger)

1.2.3.2.1. Deprecated functionality
1.2.3.2.2. New features and enhancements
1.2.3.2.3. Bug fixes
1.2.3.2.4. Known issues

1.2.3.3. Red Hat OpenShift distributed tracing platform (Tempo)
1.2.3.3.1. New features and enhancements
1.2.3.3.2. Bug fixes
1.2.3.3.3. Known issues

1.2.4. Release notes for Red Hat OpenShift distributed tracing platform 2.9.2
1.2.4.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9.2
1.2.4.2. CVEs
1.2.4.3. Red Hat OpenShift distributed tracing platform (Jaeger)

1.2.4.3.1. Known issues
1.2.4.4. Red Hat OpenShift distributed tracing platform (Tempo)

1.2.4.4.1. Known issues
1.2.5. Release notes for Red Hat OpenShift distributed tracing platform 2.9.1

1.2.5.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9.1
1.2.5.2. CVEs
1.2.5.3. Red Hat OpenShift distributed tracing platform (Jaeger)

1.2.5.3.1. Known issues
1.2.5.4. Red Hat OpenShift distributed tracing platform (Tempo)

1.2.5.4.1. Known issues
1.2.6. Release notes for Red Hat OpenShift distributed tracing platform 2.9

6
6
6
6
6
6
6
7
7
7
7
7
8
8
8
8
8
8
9
9
9
9
9
9

10
10
10
10
10
10
10
11
11
11
11
11
11

12
12
12
12
12
12
14
14
14
14
14
14
15
16

Table of Contents

1

. .

1.2.6.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9
1.2.6.2. Red Hat OpenShift distributed tracing platform (Jaeger)

1.2.6.2.1. Bug fixes
1.2.6.2.2. Known issues

1.2.6.3. Red Hat OpenShift distributed tracing platform (Tempo)
1.2.6.3.1. New features and enhancements
1.2.6.3.2. Bug fixes
1.2.6.3.3. Known issues

1.2.7. Release notes for Red Hat OpenShift distributed tracing platform 2.8
1.2.7.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.8
1.2.7.2. Technology Preview features
1.2.7.3. Bug fixes

1.2.8. Release notes for Red Hat OpenShift distributed tracing platform 2.7
1.2.8.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.7
1.2.8.2. Bug fixes

1.2.9. Release notes for Red Hat OpenShift distributed tracing platform 2.6
1.2.9.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.6
1.2.9.2. Bug fixes

1.2.10. Release notes for Red Hat OpenShift distributed tracing platform 2.5
1.2.10.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.5
1.2.10.2. New features and enhancements
1.2.10.3. Bug fixes

1.2.11. Release notes for Red Hat OpenShift distributed tracing platform 2.4
1.2.11.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.4
1.2.11.2. New features and enhancements
1.2.11.3. Technology Preview features
1.2.11.4. Bug fixes

1.2.12. Release notes for Red Hat OpenShift distributed tracing platform 2.3
1.2.12.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.3.1
1.2.12.2. Component versions in the Red Hat OpenShift distributed tracing platform 2.3.0
1.2.12.3. New features and enhancements
1.2.12.4. Bug fixes

1.2.13. Release notes for Red Hat OpenShift distributed tracing platform 2.2
1.2.13.1. Technology Preview features
1.2.13.2. Bug fixes

1.2.14. Release notes for Red Hat OpenShift distributed tracing platform 2.1
1.2.14.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.1
1.2.14.2. Technology Preview features
1.2.14.3. Bug fixes

1.2.15. Release notes for Red Hat OpenShift distributed tracing platform 2.0
1.2.15.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.0
1.2.15.2. New features and enhancements
1.2.15.3. Technology Preview features
1.2.15.4. Bug fixes

1.2.16. Getting support
1.2.17. Making open source more inclusive

CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE
2.1. DISTRIBUTED TRACING ARCHITECTURE

2.1.1. Distributed tracing overview
2.1.2. Red Hat OpenShift distributed tracing platform features
2.1.3. Red Hat OpenShift distributed tracing platform architecture
2.1.4. Additional resources

16
16
16
17
17
17
17
18
19
19
19

20
20
20
20
20
20
21
21
21
21
21
21
21
21
22
22
22
22
22
22
22
22
22
22
23
23
23
23
23
23
24
24
24
24
25

26
26
26
26
27
28

OpenShift Container Platform 4.12 Distributed tracing

2

. .

. .

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)
3.1. INSTALLING

3.1.1. Object storage setup
3.1.2. Installing by using the web console
3.1.3. Installing by using the CLI
3.1.4. Additional resources

3.2. CONFIGURING
3.2.1. Customizing your deployment

3.2.1.1. Default configuration options
3.2.1.2. Storage configuration
3.2.1.3. Query configuration options

3.2.1.3.1. Additional resources
3.2.1.4. Configuration of the monitor tab in Jaeger UI

3.2.1.4.1. OpenTelemetry Collector configuration
3.2.1.4.2. Tempo configuration
3.2.1.4.3. Span RED metrics and alerting rules

3.2.1.5. Multitenancy
3.2.2. Configuring monitoring and alerts

3.2.2.1. Configuring the TempoStack metrics and alerts
3.2.2.1.1. Additional resources

3.2.2.2. Configuring the Tempo Operator metrics and alerts
3.3. UPGRADING

3.3.1. Additional resources
3.4. REMOVING

3.4.1. Removing by using the web console
3.4.2. Removing by using the CLI
3.4.3. Additional resources

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)
4.1. INSTALLING

4.1.1. Prerequisites
4.1.2. Red Hat OpenShift distributed tracing platform installation overview
4.1.3. Installing the OpenShift Elasticsearch Operator
4.1.4. Installing the Red Hat OpenShift distributed tracing platform Operator

4.2. CONFIGURING
4.2.1. Supported deployment strategies
4.2.2. Deploying the distributed tracing platform default strategy from the web console

4.2.2.1. Deploying the distributed tracing platform default strategy from the CLI
4.2.3. Deploying the distributed tracing platform production strategy from the web console

4.2.3.1. Deploying the distributed tracing platform production strategy from the CLI
4.2.4. Deploying the distributed tracing platform streaming strategy from the web console

4.2.4.1. Deploying the distributed tracing platform streaming strategy from the CLI
4.2.5. Validating your deployment

4.2.5.1. Accessing the Jaeger console
4.2.6. Customizing your deployment

4.2.6.1. Deployment best practices
4.2.6.2. Distributed tracing default configuration options
4.2.6.3. Jaeger Collector configuration options
4.2.6.4. Distributed tracing sampling configuration options
4.2.6.5. Distributed tracing storage configuration options

4.2.6.5.1. Auto-provisioning an Elasticsearch instance
4.2.6.5.2. Connecting to an existing Elasticsearch instance

4.2.6.6. Managing certificates with Elasticsearch

29
29
29
30
33
37
38
38
38
41

43
45
45
46
47
47
48
51
51
52
52
53
53
53
53
53
54

55
55
55
56
56
57
58
59
60
61

62
64
65
66
67
68
68
68
69
72
74
76
77
81

89

Table of Contents

3

4.2.6.7. Query configuration options
4.2.6.8. Ingester configuration options

4.2.7. Injecting sidecars
4.2.7.1. Automatically injecting sidecars
4.2.7.2. Manually injecting sidecars

4.3. UPGRADING
4.3.1. Additional resources

4.4. REMOVING
4.4.1. Removing a distributed tracing platform (Jaeger) instance by using the web console
4.4.2. Removing a distributed tracing platform (Jaeger) instance by using the CLI
4.4.3. Removing the Red Hat OpenShift distributed tracing platform Operators

91
92
94
94
95
96
96
96
97
97
99

OpenShift Container Platform 4.12 Distributed tracing

4

Table of Contents

5

CHAPTER 1. RELEASE NOTES

1.1. RELEASE NOTES FOR RED HAT OPENSHIFT DISTRIBUTED
TRACING PLATFORM 3.1.1

1.1.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use the Red Hat OpenShift distributed tracing platform for
monitoring, network profiling, and troubleshooting the interaction between components in modern,
cloud-native, microservices-based applications.

With the distributed tracing platform, you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

You can use the distributed tracing platform in combination with the Red Hat build of OpenTelemetry .

This release of the Red Hat OpenShift distributed tracing platform includes the Red Hat OpenShift
distributed tracing platform (Tempo) and the deprecated Red Hat OpenShift distributed tracing
platform (Jaeger).

1.1.2. CVEs

This release fixes CVE-2023-39326.

1.1.3. Red Hat OpenShift distributed tracing platform (Tempo)

The Red Hat OpenShift distributed tracing platform (Tempo) is provided through the Tempo Operator.

1.1.3.1. Known issues

There are currently known issues:

Currently, when used with the Tempo Operator, the Jaeger UI only displays services that have
sent traces in the last 15 minutes. For services that did not send traces in the last 15 minutes,
traces are still stored but not displayed in the Jaeger UI. (TRACING-3139)

Currently, the distributed tracing platform (Tempo) fails on the IBM Z (s390x) architecture.
(TRACING-3545)

1.1.4. Red Hat OpenShift distributed tracing platform (Jaeger)

The Red Hat OpenShift distributed tracing platform (Jaeger) is provided through the Red Hat
OpenShift distributed tracing platform Operator.

IMPORTANT

Jaeger does not use FIPS validated cryptographic modules.

OpenShift Container Platform 4.12 Distributed tracing

6

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/red_hat_build_of_opentelemetry/#otel-forwarding-traces
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/red_hat_build_of_opentelemetry/#install-otel
https://access.redhat.com/security/cve/cve-2023-39326
https://issues.redhat.com/browse/TRACING-3139
https://issues.redhat.com/browse/TRACING-3545

1.1.4.1. Support for OpenShift Elasticsearch Operator

Red Hat OpenShift distributed tracing platform (Jaeger) 3.1.1 is supported for use with the OpenShift
Elasticsearch Operator 5.6, 5.7, and 5.8.

1.1.4.2. Deprecated functionality

In the Red Hat OpenShift distributed tracing platform 3.1.1, Jaeger and support for Elasticsearch remain
deprecated, and both are planned to be removed in a future release. Red Hat will provide critical and
above CVE bug fixes and support for these components during the current release lifecycle, but these
components will no longer receive feature enhancements.

In the Red Hat OpenShift distributed tracing platform 3.1.1, Tempo provided by the Tempo Operator
and the OpenTelemetry Collector provided by the Red Hat build of OpenTelemetry are the preferred
Operators for distributed tracing collection and storage. The OpenTelemetry and Tempo distributed
tracing stack is to be adopted by all users because this will be the stack that will be enhanced going
forward.

1.1.4.3. Known issues

There are currently known issues:

Currently, Apache Spark is not supported.

Currently, the streaming deployment via AMQ/Kafka is not supported on the {ibm-z-title} and
{ibm-power-title} architectures.

1.1.5. Getting support

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager Hybrid Cloud
Console. Insights provides details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

1.1.6. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

1.2. RELEASE NOTES FOR PAST RELEASES OF RED HAT OPENSHIFT

CHAPTER 1. RELEASE NOTES

7

http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12391126
https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

1.2. RELEASE NOTES FOR PAST RELEASES OF RED HAT OPENSHIFT
DISTRIBUTED TRACING PLATFORM

1.2.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use the Red Hat OpenShift distributed tracing platform for
monitoring, network profiling, and troubleshooting the interaction between components in modern,
cloud-native, microservices-based applications.

With the distributed tracing platform, you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

You can use the distributed tracing platform in combination with the Red Hat build of OpenTelemetry .

1.2.2. Release notes for Red Hat OpenShift distributed tracing platform 3.1

This release of the Red Hat OpenShift distributed tracing platform includes the Red Hat OpenShift
distributed tracing platform (Tempo) and the deprecated Red Hat OpenShift distributed tracing
platform (Jaeger).

1.2.2.1. Red Hat OpenShift distributed tracing platform (Tempo)

The Red Hat OpenShift distributed tracing platform (Tempo) is provided through the Tempo Operator.

1.2.2.1.1. New features and enhancements

This update introduces the following enhancements for the distributed tracing platform (Tempo):

Red Hat OpenShift distributed tracing platform (Tempo) 3.1 is based on the open source
Grafana Tempo 2.3.1.

Support for cluster-wide proxy environments.

Support for TraceQL to Gateway component.

1.2.2.1.2. Bug fixes

This update introduces the following bug fixes for the distributed tracing platform (Tempo):

Before this update, when a TempoStack instance was created with the monitorTab enabled in
OpenShift Container Platform 4.15, the required tempo-redmetrics-cluster-monitoring-view
ClusterRoleBinding was not created. This update resolves the issue by fixing the Operator RBAC
for the monitor tab when the Operator is deployed in an arbitrary namespace. (TRACING-3786)

Before this update, when a TempoStack instance was created on an OpenShift Container
Platform cluster with only an IPv6 networking stack, the compactor and ingestor pods ran in the
CrashLoopBackOff state, resulting in multiple errors. This update provides support for IPv6
clusters.(TRACING-3226)

OpenShift Container Platform 4.12 Distributed tracing

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/red_hat_build_of_opentelemetry/#otel-forwarding-traces
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/red_hat_build_of_opentelemetry/#install-otel
https://grafana.com/oss/tempo/
https://issues.redhat.com/browse/TRACING-3786
https://issues.redhat.com/browse/TRACING-3226

1.2.2.1.3. Known issues

There are currently known issues:

Currently, when used with the Tempo Operator, the Jaeger UI only displays services that have
sent traces in the last 15 minutes. For services that did not send traces in the last 15 minutes,
traces are still stored but not displayed in the Jaeger UI. (TRACING-3139)

Currently, the distributed tracing platform (Tempo) fails on the IBM Z (s390x) architecture.
(TRACING-3545)

1.2.2.2. Red Hat OpenShift distributed tracing platform (Jaeger)

The Red Hat OpenShift distributed tracing platform (Jaeger) is provided through the Red Hat
OpenShift distributed tracing platform Operator.

IMPORTANT

Jaeger does not use FIPS validated cryptographic modules.

1.2.2.2.1. Support for OpenShift Elasticsearch Operator

Red Hat OpenShift distributed tracing platform (Jaeger) 3.1 is supported for use with the OpenShift
Elasticsearch Operator 5.6, 5.7, and 5.8.

1.2.2.2.2. Deprecated functionality

In the Red Hat OpenShift distributed tracing platform 3.1, Jaeger and support for Elasticsearch remain
deprecated, and both are planned to be removed in a future release. Red Hat will provide critical and
above CVE bug fixes and support for these components during the current release lifecycle, but these
components will no longer receive feature enhancements.

In the Red Hat OpenShift distributed tracing platform 3.1, Tempo provided by the Tempo Operator and
the OpenTelemetry Collector provided by the Red Hat build of OpenTelemetry are the preferred
Operators for distributed tracing collection and storage. The OpenTelemetry and Tempo distributed
tracing stack is to be adopted by all users because this will be the stack that will be enhanced going
forward.

1.2.2.2.3. New features and enhancements

This update introduces the following enhancements for the distributed tracing platform (Jaeger):

Red Hat OpenShift distributed tracing platform (Jaeger) 3.1 is based on the open source
Jaeger release 1.53.0.

1.2.2.2.4. Bug fixes

This update introduces the following bug fix for the distributed tracing platform (Jaeger):

Before this update, the connection target URL for the jaeger-agent container in the jager-
query pod was overwritten with another namespace URL in OpenShift Container Platform 4.13.
This was caused by a bug in the sidecar injection code in the jaeger-operator, causing
nondeterministic jaeger-agent injection. With this update, the Operator prioritizes the Jaeger
instance from the same namespace as the target deployment. (TRACING-3722)

CHAPTER 1. RELEASE NOTES

9

https://issues.redhat.com/browse/TRACING-3139
https://issues.redhat.com/browse/TRACING-3545
https://www.jaegertracing.io/
https://issues.redhat.com/browse/TRACING-3722

1.2.2.2.5. Known issues

There are currently known issues:

Currently, Apache Spark is not supported.

Currently, the streaming deployment via AMQ/Kafka is not supported on the {ibm-z-title} and
{ibm-power-title} architectures.

1.2.3. Release notes for Red Hat OpenShift distributed tracing platform 3.0

1.2.3.1. Component versions in the Red Hat OpenShift distributed tracing platform 3.0

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.51.0

Red Hat OpenShift distributed
tracing platform (Tempo)

Tempo 2.3.0

1.2.3.2. Red Hat OpenShift distributed tracing platform (Jaeger)

1.2.3.2.1. Deprecated functionality

In the Red Hat OpenShift distributed tracing platform 3.0, Jaeger and support for Elasticsearch are
deprecated, and both are planned to be removed in a future release. Red Hat will provide critical and
above CVE bug fixes and support for these components during the current release lifecycle, but these
components will no longer receive feature enhancements.

In the Red Hat OpenShift distributed tracing platform 3.0, Tempo provided by the Tempo Operator and
the OpenTelemetry Collector provided by the Red Hat build of OpenTelemetry are the preferred
Operators for distributed tracing collection and storage. The OpenTelemetry and Tempo distributed
tracing stack is to be adopted by all users because this will be the stack that will be enhanced going
forward.

1.2.3.2.2. New features and enhancements

This update introduces the following enhancements for the distributed tracing platform (Jaeger):

Support for the ARM architecture.

Support for cluster-wide proxy environments.

1.2.3.2.3. Bug fixes

This update introduces the following bug fix for the distributed tracing platform (Jaeger):

Before this update, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator used
other images than relatedImages. This caused the ImagePullBackOff error in disconnected
network environments when launching the jaeger pod because the oc adm catalog mirror

OpenShift Container Platform 4.12 Distributed tracing

10

command mirrors images specified in relatedImages. This update provides support for
disconnected environments when using the oc adm catalog mirror CLI command. (TRACING-
3546)

1.2.3.2.4. Known issues

There is currently a known issue:

Currently, Apache Spark is not supported.

Currently, the streaming deployment via AMQ/Kafka is not supported on the {ibm-z-title} and
{ibm-power-title} architectures.

1.2.3.3. Red Hat OpenShift distributed tracing platform (Tempo)

1.2.3.3.1. New features and enhancements

This update introduces the following enhancements for the distributed tracing platform (Tempo):

Support for the ARM architecture.

Support for span request count, duration, and error count (RED) metrics. The metrics can be
visualized in the Jaeger console deployed as part of Tempo or in the web console in the
Observe menu.

1.2.3.3.2. Bug fixes

This update introduces the following bug fixes for the distributed tracing platform (Tempo):

Before this update, the TempoStack CRD was not accepting custom CA certificate despite the
option to choose CA certificates. This update fixes support for the custom TLS CA option for
connecting to object storage. (TRACING-3462)

Before this update, when mirroring the Red Hat OpenShift distributed tracing platform
Operator images to a mirror registry for use in a disconnected cluster, the related Operator
images for tempo, tempo-gateway, opa-openshift, and tempo-query were not mirrored. This
update fixes support for disconnected environments when using the oc adm catalog mirror
CLI command. (TRACING-3523)

Before this update, the query frontend service of the Red Hat OpenShift distributed tracing
platform was using internal mTLS when gateway was not deployed. This caused endpoint failure
errors. This update fixes mTLS when Gateway is not deployed. (TRACING-3510)

1.2.3.3.3. Known issues

There are currently known issues:

Currently, when used with the Tempo Operator, the Jaeger UI only displays services that have
sent traces in the last 15 minutes. For services that did not send traces in the last 15 minutes,
traces are still stored but not displayed in the Jaeger UI. (TRACING-3139)

Currently, the distributed tracing platform (Tempo) fails on the {ibm-z-title} (s390x)
architecture. (TRACING-3545)

1.2.4. Release notes for Red Hat OpenShift distributed tracing platform 2.9.2

CHAPTER 1. RELEASE NOTES

11

https://issues.redhat.com/browse/TRACING-3546
https://issues.redhat.com/browse/TRACING-3462
https://issues.redhat.com/browse/TRACING-3523
https://issues.redhat.com/browse/TRACING-3510
https://issues.redhat.com/browse/TRACING-3139
https://issues.redhat.com/browse/TRACING-3545

1.2.4.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9.2

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.47.0

Red Hat OpenShift distributed
tracing platform (Tempo)

Tempo 2.1.1

1.2.4.2. CVEs

This release fixes CVE-2023-46234.

1.2.4.3. Red Hat OpenShift distributed tracing platform (Jaeger)

1.2.4.3.1. Known issues

There are currently known issues:

Apache Spark is not supported.

The streaming deployment via AMQ/Kafka is unsupported on the {ibm-z-title} and {ibm-power-
title} architectures.

1.2.4.4. Red Hat OpenShift distributed tracing platform (Tempo)

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Tempo) is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.2.4.4.1. Known issues

There are currently known issues:

Currently, the custom TLS CA option is not implemented for connecting to object storage.
(TRACING-3462)

Currently, when used with the Tempo Operator, the Jaeger UI only displays services that have
sent traces in the last 15 minutes. For services that did not send traces in the last 15 minutes,
traces are still stored but not displayed in the Jaeger UI. (TRACING-3139)

Currently, the distributed tracing platform (Tempo) fails on the {ibm-z-title} (s390x)

OpenShift Container Platform 4.12 Distributed tracing

12

https://bugzilla.redhat.com/show_bug.cgi?id=2246470
https://access.redhat.com/support/offerings/techpreview/
https://issues.redhat.com/browse/TRACING-3462
https://issues.redhat.com/browse/TRACING-3139

1

Currently, the distributed tracing platform (Tempo) fails on the {ibm-z-title} (s390x)
architecture. (TRACING-3545)

Currently, the Tempo query frontend service must not use internal mTLS when Gateway is not
deployed. This issue does not affect the Jaeger Query API. The workaround is to disable mTLS.
(TRACING-3510)

Workaround

Disable mTLS as follows:

1. Open the Tempo Operator ConfigMap for editing by running the following command:

The project where the Tempo Operator is installed.

2. Disable the mTLS in the Operator configuration by updating the YAML file:

3. Restart the Tempo Operator pod by running the following command:

Missing images for running the Tempo Operator in restricted environments. The Red Hat
OpenShift distributed tracing platform (Tempo) CSV is missing references to the operand
images. (TRACING-3523)

Workaround

Add the Tempo Operator related images in the mirroring tool to mirror the images to the
registry:

$ oc edit configmap tempo-operator-manager-config -n openshift-tempo-operator 1

data:
 controller_manager_config.yaml: |
 featureGates:
 httpEncryption: false
 grpcEncryption: false
 builtInCertManagement:
 enabled: false

$ oc rollout restart deployment.apps/tempo-operator-controller -n openshift-tempo-
operator

kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
archiveSize: 20
storageConfig:
 local:
 path: /home/user/images
mirror:
 operators:
 - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.13
 packages:
 - name: tempo-product
 channels:
 - name: stable
 additionalImages:

CHAPTER 1. RELEASE NOTES

13

https://issues.redhat.com/browse/TRACING-3545
https://issues.redhat.com/browse/TRACING-3510
https://issues.redhat.com/browse/TRACING-3523

1.2.5. Release notes for Red Hat OpenShift distributed tracing platform 2.9.1

1.2.5.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9.1

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.47.0

Red Hat OpenShift distributed
tracing platform (Tempo)

Tempo 2.1.1

1.2.5.2. CVEs

This release fixes CVE-2023-44487.

1.2.5.3. Red Hat OpenShift distributed tracing platform (Jaeger)

1.2.5.3.1. Known issues

There are currently known issues:

Apache Spark is not supported.

The streaming deployment via AMQ/Kafka is unsupported on the {ibm-z-title} and {ibm-power-
title} architectures.

1.2.5.4. Red Hat OpenShift distributed tracing platform (Tempo)

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Tempo) is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

 - name: registry.redhat.io/rhosdt/tempo-
rhel8@sha256:e4295f837066efb05bcc5897f31eb2bdbd81684a8c59d6f9498dd3590c62c12a
 - name: registry.redhat.io/rhosdt/tempo-gateway-
rhel8@sha256:b62f5cedfeb5907b638f14ca6aaeea50f41642980a8a6f87b7061e88d90fac23
 - name: registry.redhat.io/rhosdt/tempo-gateway-opa-
rhel8@sha256:8cd134deca47d6817b26566e272e6c3f75367653d589f5c90855c59b2fab01e9

 - name: registry.redhat.io/rhosdt/tempo-query-
rhel8@sha256:0da43034f440b8258a48a0697ba643b5643d48b615cdb882ac7f4f1f80aad08e

OpenShift Container Platform 4.12 Distributed tracing

14

https://access.redhat.com/security/cve/cve-2023-44487
https://access.redhat.com/support/offerings/techpreview/

1

1.2.5.4.1. Known issues

There are currently known issues:

Currently, the custom TLS CA option is not implemented for connecting to object storage.
(TRACING-3462)

Currently, when used with the Tempo Operator, the Jaeger UI only displays services that have
sent traces in the last 15 minutes. For services that did not send traces in the last 15 minutes,
traces are still stored but not displayed in the Jaeger UI. (TRACING-3139)

Currently, the distributed tracing platform (Tempo) fails on the {ibm-z-title} (s390x)
architecture. (TRACING-3545)

Currently, the Tempo query frontend service must not use internal mTLS when Gateway is not
deployed. This issue does not affect the Jaeger Query API. The workaround is to disable mTLS.
(TRACING-3510)

Workaround

Disable mTLS as follows:

1. Open the Tempo Operator ConfigMap for editing by running the following command:

The project where the Tempo Operator is installed.

2. Disable the mTLS in the Operator configuration by updating the YAML file:

3. Restart the Tempo Operator pod by running the following command:

Missing images for running the Tempo Operator in restricted environments. The Red Hat
OpenShift distributed tracing platform (Tempo) CSV is missing references to the operand
images. (TRACING-3523)

Workaround

Add the Tempo Operator related images in the mirroring tool to mirror the images to the
registry:

$ oc edit configmap tempo-operator-manager-config -n openshift-tempo-operator 1

data:
 controller_manager_config.yaml: |
 featureGates:
 httpEncryption: false
 grpcEncryption: false
 builtInCertManagement:
 enabled: false

$ oc rollout restart deployment.apps/tempo-operator-controller -n openshift-tempo-
operator

kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
archiveSize: 20

CHAPTER 1. RELEASE NOTES

15

https://issues.redhat.com/browse/TRACING-3462
https://issues.redhat.com/browse/TRACING-3139
https://issues.redhat.com/browse/TRACING-3545
https://issues.redhat.com/browse/TRACING-3510
https://issues.redhat.com/browse/TRACING-3523

1.2.6. Release notes for Red Hat OpenShift distributed tracing platform 2.9

1.2.6.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.47.0

Red Hat OpenShift distributed
tracing platform (Tempo)

Tempo 2.1.1

1.2.6.2. Red Hat OpenShift distributed tracing platform (Jaeger)

1.2.6.2.1. Bug fixes

Before this update, connection was refused due to a missing gRPC port on the jaeger-query
deployment. This issue resulted in transport: Error while dialing: dial tcp :16685: connect:
connection refused error message. With this update, the Jaeger Query gRPC port (16685) is
successfully exposed on the Jaeger Query service. (TRACING-3322)

Before this update, the wrong port was exposed for jaeger-production-query, resulting in
refused connection. With this update, the issue is fixed by exposing the Jaeger Query gRPC
port (16685) on the Jaeger Query deployment. (TRACING-2968)

Before this update, when deploying Service Mesh on single-node OpenShift clusters in
disconnected environments, the Jaeger pod frequently went into the Pending state. With this
update, the issue is fixed. (TRACING-3312)

Before this update, the Jaeger Operator pod restarted with the default memory value due to

storageConfig:
 local:
 path: /home/user/images
mirror:
 operators:
 - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.13
 packages:
 - name: tempo-product
 channels:
 - name: stable
 additionalImages:
 - name: registry.redhat.io/rhosdt/tempo-
rhel8@sha256:e4295f837066efb05bcc5897f31eb2bdbd81684a8c59d6f9498dd3590c62c12a
 - name: registry.redhat.io/rhosdt/tempo-gateway-
rhel8@sha256:b62f5cedfeb5907b638f14ca6aaeea50f41642980a8a6f87b7061e88d90fac23
 - name: registry.redhat.io/rhosdt/tempo-gateway-opa-
rhel8@sha256:8cd134deca47d6817b26566e272e6c3f75367653d589f5c90855c59b2fab01e9

 - name: registry.redhat.io/rhosdt/tempo-query-
rhel8@sha256:0da43034f440b8258a48a0697ba643b5643d48b615cdb882ac7f4f1f80aad08e

OpenShift Container Platform 4.12 Distributed tracing

16

https://issues.redhat.com/browse/TRACING-3322
https://issues.redhat.com/browse/TRACING-2968
https://issues.redhat.com/browse/TRACING-3312

Before this update, the Jaeger Operator pod restarted with the default memory value due to
the reason: OOMKilled error message. With this update, this issue is fixed by removing the
resource limits. (TRACING-3173)

1.2.6.2.2. Known issues

There are currently known issues:

Apache Spark is not supported.

The streaming deployment via AMQ/Kafka is unsupported on the {ibm-z-title} and {ibm-power-
title} architectures.

1.2.6.3. Red Hat OpenShift distributed tracing platform (Tempo)

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Tempo) is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

1.2.6.3.1. New features and enhancements

This release introduces the following enhancements for the distributed tracing platform (Tempo):

Support the operator maturity Level IV, Deep Insights, which enables upgrading, monitoring, and
alerting of the TempoStack instances and the Tempo Operator.

Add Ingress and Route configuration for the Gateway.

Support the managed and unmanaged states in the TempoStack custom resource.

Expose the following additional ingestion protocols in the Distributor service: Jaeger Thrift
binary, Jaeger Thrift compact, Jaeger gRPC, and Zipkin. When the Gateway is enabled, only the
OpenTelemetry protocol (OTLP) gRPC is enabled.

Expose the Jaeger Query gRPC endpoint on the Query Frontend service.

Support multitenancy without Gateway authentication and authorization.

1.2.6.3.2. Bug fixes

Before this update, the Tempo Operator was not compatible with disconnected environments.
With this update, the Tempo Operator supports disconnected environments. (TRACING-3145)

Before this update, the Tempo Operator with TLS failed to start on OpenShift Container
Platform. With this update, the mTLS communication is enabled between Tempo components,
the Operand starts successfully, and the Jaeger UI is accessible. (TRACING-3091)

Before this update, the resource limits from the Tempo Operator caused error messages such

CHAPTER 1. RELEASE NOTES

17

https://issues.redhat.com/browse/TRACING-3173
https://access.redhat.com/support/offerings/techpreview/
https://operatorframework.io/operator-capabilities/
https://issues.redhat.com/browse/TRACING-3145
https://issues.redhat.com/browse/TRACING-3091

1

Before this update, the resource limits from the Tempo Operator caused error messages such
as reason: OOMKilled. With this update, the resource limits for the Tempo Operator are
removed to avoid such errors. (TRACING-3204)

1.2.6.3.3. Known issues

There are currently known issues:

Currently, the custom TLS CA option is not implemented for connecting to object storage.
(TRACING-3462)

Currently, when used with the Tempo Operator, the Jaeger UI only displays services that have
sent traces in the last 15 minutes. For services that did not send traces in the last 15 minutes,
traces are still stored but not displayed in the Jaeger UI. (TRACING-3139)

Currently, the distributed tracing platform (Tempo) fails on the {ibm-z-title} (s390x)
architecture. (TRACING-3545)

Currently, the Tempo query frontend service must not use internal mTLS when Gateway is not
deployed. This issue does not affect the Jaeger Query API. The workaround is to disable mTLS.
(TRACING-3510)

Workaround

Disable mTLS as follows:

1. Open the Tempo Operator ConfigMap for editing by running the following command:

The project where the Tempo Operator is installed.

2. Disable the mTLS in the Operator configuration by updating the YAML file:

3. Restart the Tempo Operator pod by running the following command:

Missing images for running the Tempo Operator in restricted environments. The Red Hat
OpenShift distributed tracing platform (Tempo) CSV is missing references to the operand
images. (TRACING-3523)

Workaround

Add the Tempo Operator related images in the mirroring tool to mirror the images to the
registry:

$ oc edit configmap tempo-operator-manager-config -n openshift-tempo-operator 1

data:
 controller_manager_config.yaml: |
 featureGates:
 httpEncryption: false
 grpcEncryption: false
 builtInCertManagement:
 enabled: false

$ oc rollout restart deployment.apps/tempo-operator-controller -n openshift-tempo-
operator

OpenShift Container Platform 4.12 Distributed tracing

18

https://issues.redhat.com/browse/TRACING-3204
https://issues.redhat.com/browse/TRACING-3462
https://issues.redhat.com/browse/TRACING-3139
https://issues.redhat.com/browse/TRACING-3545
https://issues.redhat.com/browse/TRACING-3510
https://issues.redhat.com/browse/TRACING-3523

1.2.7. Release notes for Red Hat OpenShift distributed tracing platform 2.8

1.2.7.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.8

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.42

Red Hat OpenShift distributed
tracing platform (Tempo)

Tempo 0.1.0

1.2.7.2. Technology Preview features

This release introduces support for the Red Hat OpenShift distributed tracing platform (Tempo) as a
Technology Preview feature for Red Hat OpenShift distributed tracing platform.

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Tempo) is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

kind: ImageSetConfiguration
apiVersion: mirror.openshift.io/v1alpha2
archiveSize: 20
storageConfig:
 local:
 path: /home/user/images
mirror:
 operators:
 - catalog: registry.redhat.io/redhat/redhat-operator-index:v4.13
 packages:
 - name: tempo-product
 channels:
 - name: stable
 additionalImages:
 - name: registry.redhat.io/rhosdt/tempo-
rhel8@sha256:e4295f837066efb05bcc5897f31eb2bdbd81684a8c59d6f9498dd3590c62c12a
 - name: registry.redhat.io/rhosdt/tempo-gateway-
rhel8@sha256:b62f5cedfeb5907b638f14ca6aaeea50f41642980a8a6f87b7061e88d90fac23
 - name: registry.redhat.io/rhosdt/tempo-gateway-opa-
rhel8@sha256:8cd134deca47d6817b26566e272e6c3f75367653d589f5c90855c59b2fab01e9

 - name: registry.redhat.io/rhosdt/tempo-query-
rhel8@sha256:0da43034f440b8258a48a0697ba643b5643d48b615cdb882ac7f4f1f80aad08e

CHAPTER 1. RELEASE NOTES

19

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/support/offerings/techpreview/

The feature uses version 0.1.0 of the Red Hat OpenShift distributed tracing platform (Tempo) and
version 2.0.1 of the upstream distributed tracing platform (Tempo) components.

You can use the distributed tracing platform (Tempo) to replace Jaeger so that you can use S3-
compatible storage instead of ElasticSearch. Most users who use the distributed tracing platform
(Tempo) instead of Jaeger will not notice any difference in functionality because the distributed tracing
platform (Tempo) supports the same ingestion and query protocols as Jaeger and uses the same user
interface.

If you enable this Technology Preview feature, note the following limitations of the current
implementation:

The distributed tracing platform (Tempo) currently does not support disconnected installations.
(TRACING-3145)

When you use the Jaeger user interface (UI) with the distributed tracing platform (Tempo), the
Jaeger UI lists only services that have sent traces within the last 15 minutes. For services that
have not sent traces within the last 15 minutes, those traces are still stored even though they are
not visible in the Jaeger UI. (TRACING-3139)

Expanded support for the Tempo Operator is planned for future releases of the Red Hat OpenShift
distributed tracing platform. Possible additional features might include support for TLS authentication,
multitenancy, and multiple clusters. For more information about the Tempo Operator, see the Tempo
community documentation.

1.2.7.3. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.8. Release notes for Red Hat OpenShift distributed tracing platform 2.7

1.2.8.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.7

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.39

1.2.8.2. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.9. Release notes for Red Hat OpenShift distributed tracing platform 2.6

1.2.9.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.6

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.38

OpenShift Container Platform 4.12 Distributed tracing

20

https://issues.redhat.com/browse/TRACING-3145
https://issues.redhat.com/browse/TRACING-3139
https://tempo-operator.netlify.app

1.2.9.2. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.10. Release notes for Red Hat OpenShift distributed tracing platform 2.5

1.2.10.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.5

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.36

1.2.10.2. New features and enhancements

This release introduces support for ingesting OpenTelemetry protocol (OTLP) to the Red Hat
OpenShift distributed tracing platform (Jaeger) Operator. The Operator now automatically enables the
OTLP ports:

Port 4317 for the OTLP gRPC protocol.

Port 4318 for the OTLP HTTP protocol.

This release also adds support for collecting Kubernetes resource attributes to the Red Hat build of
OpenTelemetry Operator.

1.2.10.3. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.11. Release notes for Red Hat OpenShift distributed tracing platform 2.4

1.2.11.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.4

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.34.1

1.2.11.2. New features and enhancements

This release adds support for auto-provisioning certificates using the OpenShift Elasticsearch Operator.

Self-provisioning by using the Red Hat OpenShift distributed tracing platform (Jaeger) Operator to call
the OpenShift Elasticsearch Operator during installation.

+

IMPORTANT

CHAPTER 1. RELEASE NOTES

21

IMPORTANT

When upgrading to the Red Hat OpenShift distributed tracing platform 2.4, the Operator
recreates the Elasticsearch instance, which might take five to ten minutes. Distributed
tracing will be down and unavailable for that period.

1.2.11.3. Technology Preview features

Creating the Elasticsearch instance and certificates first and then configuring the distributed tracing
platform (Jaeger) to use the certificate is a Technology Preview for this release.

1.2.11.4. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.12. Release notes for Red Hat OpenShift distributed tracing platform 2.3

1.2.12.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.3.1

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.30.2

1.2.12.2. Component versions in the Red Hat OpenShift distributed tracing platform 2.3.0

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.30.1

1.2.12.3. New features and enhancements

With this release, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator is now installed
to the openshift-distributed-tracing namespace by default. Before this update, the default installation
had been in the openshift-operators namespace.

1.2.12.4. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.13. Release notes for Red Hat OpenShift distributed tracing platform 2.2

1.2.13.1. Technology Preview features

The unsupported OpenTelemetry Collector components included in the 2.1 release are removed.

1.2.13.2. Bug fixes

OpenShift Container Platform 4.12 Distributed tracing

22

https://access.redhat.com/support/offerings/techpreview/

This release of the Red Hat OpenShift distributed tracing platform addresses Common Vulnerabilities
and Exposures (CVEs) and bug fixes.

1.2.14. Release notes for Red Hat OpenShift distributed tracing platform 2.1

1.2.14.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.1

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.29.1

1.2.14.2. Technology Preview features

This release introduces a breaking change to how to configure certificates in the
OpenTelemetry custom resource file. With this update, the ca_file moves under tls in the
custom resource, as shown in the following examples.

CA file configuration for OpenTelemetry version 0.33

CA file configuration for OpenTelemetry version 0.41.1

1.2.14.3. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.15. Release notes for Red Hat OpenShift distributed tracing platform 2.0

1.2.15.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.0

spec:
 mode: deployment
 config: |
 exporters:
 jaeger:
 endpoint: jaeger-production-collector-headless.tracing-system.svc:14250
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"

spec:
 mode: deployment
 config: |
 exporters:
 jaeger:
 endpoint: jaeger-production-collector-headless.tracing-system.svc:14250
 tls:
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"

CHAPTER 1. RELEASE NOTES

23

Operator Component Version

Red Hat OpenShift distributed
tracing platform (Jaeger)

Jaeger 1.28.0

1.2.15.2. New features and enhancements

This release introduces the following new features and enhancements:

Rebrands Red Hat OpenShift Jaeger as the Red Hat OpenShift distributed tracing platform.

Updates Red Hat OpenShift distributed tracing platform (Jaeger) Operator to Jaeger 1.28.
Going forward, the Red Hat OpenShift distributed tracing platform will only support the stable
Operator channel. Channels for individual releases are no longer supported.

Adds support for OpenTelemetry protocol (OTLP) to the Query service.

Introduces a new distributed tracing icon that appears in the OperatorHub.

Includes rolling updates to the documentation to support the name change and new features.

1.2.15.3. Technology Preview features

This release adds the Red Hat build of OpenTelemetry as a Technology Preview, which you install using
the Red Hat build of OpenTelemetry Operator. Red Hat build of OpenTelemetry is based on the
OpenTelemetry APIs and instrumentation. The Red Hat build of OpenTelemetry includes the
OpenTelemetry Operator and Collector. You can use the Collector to receive traces in the
OpenTelemetry or Jaeger protocol and send the trace data to the Red Hat OpenShift distributed
tracing platform. Other capabilities of the Collector are not supported at this time. The OpenTelemetry
Collector allows developers to instrument their code with vendor agnostic APIs, avoiding vendor lock-in
and enabling a growing ecosystem of observability tooling.

1.2.15.4. Bug fixes

This release addresses Common Vulnerabilities and Exposures (CVEs) and bug fixes.

1.2.16. Getting support

If you experience difficulty with a procedure described in this documentation, or with OpenShift
Container Platform in general, visit the Red Hat Customer Portal . From the Customer Portal, you can:

Search or browse through the Red Hat Knowledgebase of articles and solutions relating to Red
Hat products.

Submit a support case to Red Hat Support.

Access other product documentation.

To identify issues with your cluster, you can use Insights in OpenShift Cluster Manager Hybrid Cloud
Console. Insights provides details about issues and, if available, information on how to solve a problem.

If you have a suggestion for improving this documentation or have found an error, submit a Jira issue for
the most relevant documentation component. Please provide specific details, such as the section name
and OpenShift Container Platform version.

OpenShift Container Platform 4.12 Distributed tracing

24

https://access.redhat.com/support/offerings/techpreview/
https://opentelemetry.io/
http://access.redhat.com
https://console.redhat.com/openshift
https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12332330&summary=Documentation_issue&issuetype=1&components=12367614&priority=10200&versions=12391126

1.2.17. Making open source more inclusive

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

CHAPTER 1. RELEASE NOTES

25

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE

2.1. DISTRIBUTED TRACING ARCHITECTURE

Every time a user takes an action in an application, a request is executed by the architecture that may
require dozens of different services to participate to produce a response. Red Hat OpenShift
distributed tracing platform lets you perform distributed tracing, which records the path of a request
through various microservices that make up an application.

Distributed tracing is a technique that is used to tie the information about different units of work
together — usually executed in different processes or hosts — to understand a whole chain of events in a
distributed transaction. Developers can visualize call flows in large microservice architectures with
distributed tracing. It is valuable for understanding serialization, parallelism, and sources of latency.

Red Hat OpenShift distributed tracing platform records the execution of individual requests across the
whole stack of microservices, and presents them as traces. A trace is a data/execution path through the
system. An end-to-end trace is comprised of one or more spans.

A span represents a logical unit of work in Red Hat OpenShift distributed tracing platform that has an
operation name, the start time of the operation, and the duration, as well as potentially tags and logs.
Spans may be nested and ordered to model causal relationships.

2.1.1. Distributed tracing overview

As a service owner, you can use distributed tracing to instrument your services to gather insights into
your service architecture. You can use the Red Hat OpenShift distributed tracing platform for
monitoring, network profiling, and troubleshooting the interaction between components in modern,
cloud-native, microservices-based applications.

With the distributed tracing platform, you can perform the following functions:

Monitor distributed transactions

Optimize performance and latency

Perform root cause analysis

2.1.2. Red Hat OpenShift distributed tracing platform features

Red Hat OpenShift distributed tracing platform provides the following capabilities:

Integration with Kiali – When properly configured, you can view distributed tracing platform data
from the Kiali console.

High scalability – The distributed tracing platform back end is designed to have no single points
of failure and to scale with the business needs.

Distributed Context Propagation – Enables you to connect data from different components
together to create a complete end-to-end trace.

Backwards compatibility with Zipkin – Red Hat OpenShift distributed tracing platform has APIs
that enable it to be used as a drop-in replacement for Zipkin, but Red Hat is not supporting
Zipkin compatibility in this release.

OpenShift Container Platform 4.12 Distributed tracing

26

2.1.3. Red Hat OpenShift distributed tracing platform architecture

Red Hat OpenShift distributed tracing platform is made up of several components that work together
to collect, store, and display tracing data.

Red Hat OpenShift distributed tracing platform (Tempo) - This component is based on the
open source Grafana Tempo project.

Gateway – The Gateway handles authentication, authorization, and forwarding requests to
the Distributor or Query front-end service.

Distributor – The Distributor accepts spans in multiple formats including Jaeger,
OpenTelemetry, and Zipkin. It routes spans to Ingesters by hashing the traceID and using a
distributed consistent hash ring.

Ingester – The Ingester batches a trace into blocks, creates bloom filters and indexes, and
then flushes it all to the back end.

Query Frontend – The Query Frontend is responsible for sharding the search space for an
incoming query. The search query is then sent to the Queriers. The Query Frontend
deployment exposes the Jaeger UI through the Tempo Query sidecar.

Querier - The Querier is responsible for finding the requested trace ID in either the
Ingesters or the back-end storage. Depending on parameters, it can query the Ingesters
and pull Bloom indexes from the back end to search blocks in object storage.

Compactor – The Compactors stream blocks to and from the back-end storage to reduce
the total number of blocks.

Red Hat build of OpenTelemetry - This component is based on the open source
OpenTelemetry project.

OpenTelemetry Collector - The OpenTelemetry Collector is a vendor-agnostic way to
receive, process, and export telemetry data. The OpenTelemetry Collector supports open-
source observability data formats, for example, Jaeger and Prometheus, sending to one or
more open-source or commercial back-ends. The Collector is the default location
instrumentation libraries export their telemetry data.

Red Hat OpenShift distributed tracing platform (Jaeger) - This component is based on the
open source Jaeger project.

Client (Jaeger client, Tracer, Reporter, instrumented application, client libraries)- The
distributed tracing platform (Jaeger) clients are language-specific implementations of the
OpenTracing API. They can be used to instrument applications for distributed tracing either
manually or with a variety of existing open source frameworks, such as Camel (Fuse), Spring
Boot (RHOAR), MicroProfile (RHOAR/Thorntail), Wildfly (EAP), and many more, that are
already integrated with OpenTracing.

Agent (Jaeger agent, Server Queue, Processor Workers) - The distributed tracing platform
(Jaeger) agent is a network daemon that listens for spans sent over User Datagram
Protocol (UDP), which it batches and sends to the Collector. The agent is meant to be
placed on the same host as the instrumented application. This is typically accomplished by
having a sidecar in container environments such as Kubernetes.

Jaeger Collector (Collector, Queue, Workers) - Similar to the Jaeger agent, the Jaeger
Collector receives spans and places them in an internal queue for processing. This allows the
Jaeger Collector to return immediately to the client/agent instead of waiting for the span
to make its way to the storage.
Storage (Data Store) - Collectors require a persistent storage backend. Red Hat OpenShift

CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE

27

https://grafana.com/oss/tempo/
https://opentelemetry.io/
https://www.jaegertracing.io/

Storage (Data Store) - Collectors require a persistent storage backend. Red Hat OpenShift
distributed tracing platform (Jaeger) has a pluggable mechanism for span storage. Red Hat
OpenShift distributed tracing platform (Jaeger) supports the Elasticsearch storage.

Query (Query Service) - Query is a service that retrieves traces from storage.

Ingester (Ingester Service) - Red Hat OpenShift distributed tracing platform can use
Apache Kafka as a buffer between the Collector and the actual Elasticsearch backing
storage. Ingester is a service that reads data from Kafka and writes to the Elasticsearch
storage backend.

Jaeger Console – With the Red Hat OpenShift distributed tracing platform (Jaeger) user
interface, you can visualize your distributed tracing data. On the Search page, you can find
traces and explore details of the spans that make up an individual trace.

2.1.4. Additional resources

Red Hat build of OpenTelemetry

OpenShift Container Platform 4.12 Distributed tracing

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/red_hat_build_of_opentelemetry/#install-otel

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

3.1. INSTALLING

Installing the distributed tracing platform (Tempo) involves the following steps:

1. Setting up supported object storage.

2. Installing the Tempo Operator.

3. Creating a secret for the object storage credentials.

4. Creating a namespace for a TempoStack instance.

5. Creating a TempoStack custom resource to deploy at least one TempoStack instance.

3.1.1. Object storage setup

You can use the following configuration parameters when setting up a supported object storage.

Table 3.1. Required secret parameters

Storage provider

Secret parameters

Red Hat OpenShift Data Foundation

name: tempostack-dev-odf # example

bucket: <bucket_name> # requires an ObjectBucketClaim

endpoint: https://s3.openshift-storage.svc

access_key_id: <data_foundation_access_key_id>

access_key_secret: <data_foundation_access_key_secret>

MinIO

See MinIO Operator.

name: tempostack-dev-minio # example

bucket: <minio_bucket_name> # MinIO documentation

endpoint: <minio_bucket_endpoint>

access_key_id: <minio_access_key_id>

access_key_secret: <minio_access_key_secret>

Amazon S3

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

29

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/
https://operator.min.io/
https://min.io/docs/minio/linux/reference/minio-mc/mc-mb.html#command-mc.mb

name: tempostack-dev-s3 # example

bucket: <s3_bucket_name> # Amazon S3 documentation

endpoint: <s3_bucket_endpoint>

access_key_id: <s3_access_key_id>

access_key_secret: <s3_access_key_secret>

Microsoft Azure Blob Storage

name: tempostack-dev-azure # example

container: <azure_blob_storage_container_name> # Microsoft Azure documentation

account_name: <azure_blob_storage_account_name>

account_key: <azure_blob_storage_account_key>

Google Cloud Storage on Google Cloud Platform (GCP)

name: tempostack-dev-gcs # example

bucketname: <google_cloud_storage_bucket_name> # requires a bucket created in a GCP
project

key.json: <path/to/key.json> # requires a service account in the bucket’s GCP project for GCP
authentication

Storage provider

3.1.2. Installing by using the web console

You can install the distributed tracing platform (Tempo) from the Administrator view of the web
console.

Prerequisites

You are logged in to the OpenShift Container Platform web console as a cluster administrator
with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must be logged in using an account with the dedicated-
admin role.

You have completed setting up the required object storage by a supported provider: Red Hat
OpenShift Data Foundation, MinIO, Amazon S3, Azure Blob Storage , Google Cloud Storage .
For more information, see "Object storage setup".

OpenShift Container Platform 4.12 Distributed tracing

30

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://learn.microsoft.com/en-us/rest/api/storageservices/create-container?tabs=azure-ad
https://cloud.google.com/storage/docs/creating-buckets
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/docs/authentication/getting-started#creating_a_service_account
https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://min.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://cloud.google.com/storage/

WARNING

Object storage is required and not included with the distributed tracing
platform (Tempo). You must choose and set up object storage by a
supported provider before installing the distributed tracing platform
(Tempo).

Procedure

1. Install the Tempo Operator:

a. Go to Operators → OperatorHub and search for Tempo Operator.

b. Select the Tempo Operator that is provided by Red Hat.

IMPORTANT

The following selections are the default presets for this Operator:

Update channel → stable

Installation mode → All namespaces on the cluster

Installed Namespace → openshift-tempo-operator

Update approval → Automatic

c. Select the Enable Operator recommended cluster monitoring on this Namespace
checkbox.

d. Select Install → Install → View Operator.

e. In the Details tab of the page of the installed Operator, under ClusterServiceVersion
details, verify that the installation Status is Succeeded.

2. Create a project of your choice for the TempoStack instance that you will create in a
subsequent step: go to Home → Projects → Create Project.

3. In the project that you created for the TempoStack instance, create a secret for your object
storage bucket: go to Workloads → Secrets → Create → From YAML. For more information,
see "Object storage setup".

Example secret for Amazon S3 and MinIO storage

apiVersion: v1
kind: Secret
metadata:
 name: minio-test
stringData:
 endpoint: http://minio.minio.svc:9000
 bucket: tempo

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

31

1

2

3

4. Create a TempoStack instance.

NOTE

You can create multiple TempoStack instances in separate projects on the same
cluster.

a. Go to Operators → Installed Operators.

b. Select TempoStack → Create TempoStack → YAML view.

c. In the YAML view, customize the TempoStack custom resource (CR):

The secret you created in step 3.

The value of the name in the metadata of the secret.

The accepted values are azure for Azure Blob Storage; gcs for Google Cloud Storage;
and s3 for Amazon S3, MinIO, or Red Hat OpenShift Data Foundation.

Example of a TempoStack CR for AWS S3 and MinIO storage

 access_key_id: tempo
 access_key_secret: <secret>
type: Opaque

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: sample
 namespace: <project_of_tempostack_instance>
spec:
 storageSize: 1Gi
 storage:
 secret: 1
 name: <secret-name> 2
 type: <secret-provider> 3
 template:
 queryFrontend:
 jaegerQuery:
 enabled: true
 ingress:
 route:
 termination: edge
 type: route

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: simplest
 namespace: <project_of_tempostack_instance>
spec:
 storageSize: 1Gi

OpenShift Container Platform 4.12 Distributed tracing

32

1

2

In this example, the object storage was set up as one of the prerequisites, and the
object storage secret was created in step 3.

The stack deployed in this example is configured to receive Jaeger Thrift over HTTP
and OpenTelemetry Protocol (OTLP), which permits visualizing the data with the
Jaeger UI.

d. Select Create.

Verification

1. Use the Project: dropdown list to select the project of the TempoStack instance.

2. Go to Operators → Installed Operators to verify that the Status of the TempoStack instance
is Condition: Ready.

3. Go to Workloads → Pods to verify that all the component pods of the TempoStack instance
are running.

4. Access the Tempo console:

a. Go to Networking → Routes and Ctrl+F to search for tempo.

b. In the Location column, open the URL to access the Tempo console.

NOTE

The Tempo console initially shows no trace data following the Tempo
console installation.

3.1.3. Installing by using the CLI

You can install the distributed tracing platform (Tempo) from the command line.

Prerequisites

 storage: 1
 secret:
 name: minio-test
 type: s3
 resources:
 total:
 limits:
 memory: 2Gi
 cpu: 2000m
 template:
 queryFrontend:
 jaegerQuery: 2
 enabled: true
 ingress:
 route:
 termination: edge
 type: route

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

33

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

TIP

Ensure that your OpenShift CLI (oc) version is up to date and matches your OpenShift
Container Platform version.

Run oc login:

You have completed setting up the required object storage by a supported provider: Red Hat
OpenShift Data Foundation, MinIO, Amazon S3, Azure Blob Storage , Google Cloud Storage .
For more information, see "Object storage setup".

WARNING

Object storage is required and not included with the distributed tracing
platform (Tempo). You must choose and set up object storage by a
supported provider before installing the distributed tracing platform
(Tempo).

Procedure

1. Install the Tempo Operator:

a. Create a project for the Tempo Operator by running the following command:

b. Create an Operator group by running the following command:

$ oc login --username=<your_username>

$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 labels:
 kubernetes.io/metadata.name: openshift-tempo-operator
 openshift.io/cluster-monitoring: "true"
 name: openshift-tempo-operator
EOF

$ oc apply -f - << EOF
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: openshift-tempo-operator
 namespace: openshift-tempo-operator
spec:
 upgradeStrategy: Default
EOF

OpenShift Container Platform 4.12 Distributed tracing

34

https://www.redhat.com/en/technologies/cloud-computing/openshift-data-foundation
https://min.io/
https://aws.amazon.com/s3/
https://azure.microsoft.com/en-us/products/storage/blobs/
https://cloud.google.com/storage/

c. Create a subscription by running the following command:

d. Check the Operator status by running the following command:

2. Run the following command to create a project of your choice for the TempoStack instance that
you will create in a subsequent step:

3. In the project that you created for the TempoStack instance, create a secret for your object
storage bucket by running the following command:

For more information, see "Object storage setup".

Example secret for Amazon S3 and MinIO storage

4. Create a TempoStack instance in the project that you created for the TempoStack instance.

NOTE

$ oc apply -f - << EOF
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: tempo-product
 namespace: openshift-tempo-operator
spec:
 channel: stable
 installPlanApproval: Automatic
 name: tempo-product
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-tempo-operator

$ oc apply -f - << EOF
apiVersion: project.openshift.io/v1
kind: Project
metadata:
 name: <project_of_tempostack_instance>
EOF

$ oc apply -f - << EOF
<object_storage_secret>
EOF

apiVersion: v1
kind: Secret
metadata:
 name: minio-test
stringData:
 endpoint: http://minio.minio.svc:9000
 bucket: tempo
 access_key_id: tempo
 access_key_secret: <secret>
type: Opaque

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

35

1

2

3

NOTE

You can create multiple TempoStack instances in separate projects on the same
cluster.

a. Customize the TempoStack custom resource (CR):

The secret you created in step 3.

The value of the name in the metadata of the secret.

The accepted values are azure for Azure Blob Storage; gcs for Google Cloud Storage;
and s3 for Amazon S3, MinIO, or Red Hat OpenShift Data Foundation.

Example of a TempoStack CR for AWS S3 and MinIO storage

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: sample
 namespace: <project_of_tempostack_instance>
spec:
 storageSize: 1Gi
 storage:
 secret: 1
 name: <secret-name> 2
 type: <secret-provider> 3
 template:
 queryFrontend:
 jaegerQuery:
 enabled: true
 ingress:
 route:
 termination: edge
 type: route

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: simplest
 namespace: project_of_tempostack_instance
spec:
 storageSize: 1Gi
 storage: 1
 secret:
 name: minio-test
 type: s3
 resources:
 total:
 limits:
 memory: 2Gi
 cpu: 2000m
 template:
 queryFrontend:

OpenShift Container Platform 4.12 Distributed tracing

36

1

2

In this example, the object storage was set up as one of the prerequisites, and the
object storage secret was created in step 3.

The stack deployed in this example is configured to receive Jaeger Thrift over HTTP
and OpenTelemetry Protocol (OTLP), which permits visualizing the data with the
Jaeger UI.

b. Apply the customized CR by running the following command.

Verification

1. Verify that the status of all TempoStack components is Running and the conditions are type:
Ready by running the following command:

2. Verify that all the TempoStack component pods are running by running the following command:

3. Access the Tempo console:

a. Query the route details by running the following command:

b. Open https://<route_from_previous_step> in a web browser.

NOTE

The Tempo console initially shows no trace data following the Tempo
console installation.

3.1.4. Additional resources

Creating a cluster admin

OperatorHub.io

Accessing the web console

Installing from OperatorHub using the web console

 jaegerQuery: 2
 enabled: true
 ingress:
 route:
 termination: edge
 type: route

$ oc apply -f - << EOF
<TempoStack_custom_resource>
EOF

$ oc get tempostacks.tempo.grafana.com simplest -o yaml

$ oc get pods

$ oc get route

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/post-installation_configuration/#creating-cluster-admin_post-install-preparing-for-users
https://operatorhub.io/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/web_console/#web-console
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-installing-from-operatorhub-using-web-console_olm-adding-operators-to-a-cluster

Creating applications from installed Operators

Getting started with the OpenShift CLI

3.2. CONFIGURING

The Tempo Operator uses a custom resource definition (CRD) file that defines the architecture and
configuration settings to be used when creating and deploying the distributed tracing platform (Tempo)
resources. You can install the default configuration or modify the file.

3.2.1. Customizing your deployment

For information about configuring the back-end storage, see Understanding persistent storage and the
appropriate configuration topic for your chosen storage option.

3.2.1.1. Default configuration options

The Tempo custom resource (CR) defines the architecture and settings to be used when creating the
distributed tracing platform (Tempo) resources. You can modify these parameters to customize your
distributed tracing platform (Tempo) implementation to your business needs.

Example of a generic Tempo YAML file

Table 3.2. Tempo parameters

Parameter Description Values Default value

apiVersion:
API version to use when
creating the object.

tempo.grafana.com/
v1alpha1

tempo.grafana.com/
v1alpha1

kind:
Defines the kind of
Kubernetes object to
create.

tempo

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: name
spec:
 storage: {}
 resources: {}
 storageSize: 200M
 replicationFactor: 1
 retention: {}
 template:
 distributor:{}
 ingester: {}
 compactor: {}
 querier: {}
 queryFrontend: {}
 gateway: {}

OpenShift Container Platform 4.12 Distributed tracing

38

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-creating-apps-from-installed-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/cli_tools/#getting-started-cli
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/storage/#understanding-persistent-storage

metadata:
Data that uniquely
identifies the object,
including a name string,
UID, and optional
namespace.

 OpenShift Container
Platform automatically
generates the UID and
completes the
namespace with the
name of the project
where the object is
created.

name:
Name for the object. Name of your

TempoStack instance.
tempo-all-in-one-
inmemory

spec:
Specification for the
object to be created.

Contains all of the
configuration
parameters for your
TempoStack instance.
When a common
definition for all Tempo
components is required,
it is defined under the
spec node. When the
definition relates to an
individual component, it
is placed under the
spec/template/<com
ponent> node.

N/A

resources:
Resources assigned to
the TempoStack
instance.

storageSize:
Storage size for ingester
PVCs.

replicationFactor:
Configuration for the
replication factor.

retention:
Configuration options
for retention of traces.

Parameter Description Values Default value

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

39

storage:
Configuration options
that define the storage.
All storage-related
options must be placed
under storage and not
under the allInOne or
other component
options.

template.distributor:
Configuration options
for the Tempo
distributor.

template.ingester:
Configuration options
for the Tempo
ingester.

template.compactor
:

Configuration options
for the Tempo
compactor.

template.querier:
Configuration options
for the Tempo querier.

template.queryFron
tend:

Configuration options
for the Tempo query-
frontend.

template.gateway:
Configuration options
for the Tempo
gateway.

Parameter Description Values Default value

Minimum required configuration

The following is the required minimum for creating a distributed tracing platform (Tempo) deployment
with the default settings:

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: simplest
spec:
 storage: 1
 secret:
 name: minio
 type: s3
 resources:

OpenShift Container Platform 4.12 Distributed tracing

40

1 This section specifies the deployed object storage back end, which requires a created secret with
credentials for access to the object storage.

3.2.1.2. Storage configuration

You can configure object storage for the distributed tracing platform (Tempo) in the TempoStack
custom resource under spec.storage. You can choose from among several storage providers that are
supported.

Table 3.3. General storage parameters used by the Tempo Operator to define distributed tracing
storage

Parameter Description Values Default value

spec:
 storage:
 secret
 type:

Type of storage to use
for the deployment.

memory. Memory
storage is only
appropriate for
development, testing,
demonstrations, and
proof of concept
environments because
the data does not persist
when the pod is shut
down.

memory

storage:
 secretname:

Name of the secret that
contains the credentials
for the set object
storage type.

 N/A

storage:
 tls:
 caName:

CA is the name of a
ConfigMap object
containing a CA
certificate.

Table 3.4. Required secret parameters

Storage provider

Secret parameters

 total:
 limits:
 memory: 2Gi
 cpu: 2000m
 template:
 queryFrontend:
 jaegerQuery:
 enabled: true
 ingress:
 type: route

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

41

Red Hat OpenShift Data Foundation

name: tempostack-dev-odf # example

bucket: <bucket_name> # requires an ObjectBucketClaim

endpoint: https://s3.openshift-storage.svc

access_key_id: <data_foundation_access_key_id>

access_key_secret: <data_foundation_access_key_secret>

MinIO

See MinIO Operator.

name: tempostack-dev-minio # example

bucket: <minio_bucket_name> # MinIO documentation

endpoint: <minio_bucket_endpoint>

access_key_id: <minio_access_key_id>

access_key_secret: <minio_access_key_secret>

Amazon S3

name: tempostack-dev-s3 # example

bucket: <s3_bucket_name> # Amazon S3 documentation

endpoint: <s3_bucket_endpoint>

access_key_id: <s3_access_key_id>

access_key_secret: <s3_access_key_secret>

Microsoft Azure Blob Storage

name: tempostack-dev-azure # example

container: <azure_blob_storage_container_name> # Microsoft Azure documentation

account_name: <azure_blob_storage_account_name>

account_key: <azure_blob_storage_account_key>

Google Cloud Storage on Google Cloud Platform (GCP)

Storage provider

OpenShift Container Platform 4.12 Distributed tracing

42

https://access.redhat.com/documentation/en-us/red_hat_openshift_data_foundation/
https://operator.min.io/
https://min.io/docs/minio/linux/reference/minio-mc/mc-mb.html#command-mc.mb
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://learn.microsoft.com/en-us/rest/api/storageservices/create-container?tabs=azure-ad

name: tempostack-dev-gcs # example

bucketname: <google_cloud_storage_bucket_name> # requires a bucket created in a GCP
project

key.json: <path/to/key.json> # requires a service account in the bucket’s GCP project for GCP
authentication

Storage provider

3.2.1.3. Query configuration options

Two components of the distributed tracing platform (Tempo), the querier and query frontend, manage
queries. You can configure both of these components.

The querier component finds the requested trace ID in the ingesters or back-end storage. Depending
on the set parameters, the querier component can query both the ingesters and pull bloom or indexes
from the back end to search blocks in object storage. The querier component exposes an HTTP
endpoint at GET /querier/api/traces/<trace_id>, but it is not expected to be used directly. Queries
must be sent to the query frontend.

Table 3.5. Configuration parameters for the querier component

Parameter Description Values

nodeSelector The simple form of the node-
selection constraint.

type: object

replicas The number of replicas to be
created for the component.

type: integer; format: int32

tolerations Component-specific pod
tolerations.

type: array

The query frontend component is responsible for sharding the search space for an incoming query. The
query frontend exposes traces via a simple HTTP endpoint: GET /api/traces/<trace_id>. Internally, the
query frontend component splits the blockID space into a configurable number of shards and then
queues these requests. The querier component connects to the query frontend component via a
streaming gRPC connection to process these sharded queries.

Table 3.6. Configuration parameters for the query frontend component

Parameter Description Values

component Configuration of the query
frontend component.

type: object

component.nodeSelector The simple form of the node
selection constraint.

type: object

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

43

https://cloud.google.com/storage/docs/creating-buckets
https://cloud.google.com/resource-manager/docs/creating-managing-projects
https://cloud.google.com/docs/authentication/getting-started#creating_a_service_account

component.replicas The number of replicas to be
created for the query frontend
component.

type: integer; format: int32

component.tolerations Pod tolerations specific to the
query frontend component.

type: array

jaegerQuery The options specific to the
Jaeger Query component.

type: object

jaegerQuery.enabled When enabled, creates the
Jaeger Query
component,jaegerQuery.

type: boolean

jaegerQuery.ingress The options for the Jaeger Query
ingress.

type: object

jaegerQuery.ingress.annotati
ons

The annotations of the ingress
object.

type: object

jaegerQuery.ingress.host The hostname of the ingress
object.

type: string

jaegerQuery.ingress.ingress
ClassName

The name of an IngressClass
cluster resource. Defines which
ingress controller serves this
ingress resource.

type: string

jaegerQuery.ingress.route The options for the OpenShift
route.

type: object

jaegerQuery.ingress.route.te
rmination

The termination type. The default
is edge.

type: string (enum: insecure,
edge, passthrough, reencrypt)

jaegerQuery.ingress.type The type of ingress for the Jaeger
Query UI. The supported types
are ingress, route, and none.

type: string (enum: ingress, route)

jaegerQuery.monitorTab The monitor tab configuration. type: object

jaegerQuery.monitorTab.ena
bled

Enables the monitor tab in the
Jaeger console. The
PrometheusEndpoint must be
configured.

type: boolean

Parameter Description Values

OpenShift Container Platform 4.12 Distributed tracing

44

jaegerQuery.monitorTab.pro
metheusEndpoint

The endpoint to the Prometheus
instance that contains the span
rate, error, and duration (RED)
metrics. For example,
https://thanos-
querier.openshift-
monitoring.svc.cluster.local:
9091.

type: string

Parameter Description Values

Example configuration of the query frontend component in a TempoStack CR

3.2.1.3.1. Additional resources

Understanding taints and tolerations

3.2.1.4. Configuration of the monitor tab in Jaeger UI

Trace data contains rich information, and the data is normalized across instrumented languages and
frameworks. Therefore, request rate, error, and duration (RED) metrics can be extracted from traces.
The metrics can be visualized in Jaeger console in the Monitor tab.

The metrics are derived from spans in the OpenTelemetry Collector that are scraped from the Collector
by the Prometheus deployed in the user-workload monitoring stack. The Jaeger UI queries these
metrics from the Prometheus endpoint and visualizes them.

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: simplest
spec:
 storage:
 secret:
 name: minio
 type: s3
 storageSize: 200M
 resources:
 total:
 limits:
 memory: 2Gi
 cpu: 2000m
 template:
 queryFrontend:
 jaegerQuery:
 enabled: true
 ingress:
 route:
 termination: edge
 type: route

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

45

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/nodes/#nodes-scheduler-taints-tolerations-about_nodes-scheduler-taints-tolerations

1

2

3

4

3.2.1.4.1. OpenTelemetry Collector configuration

The OpenTelemetry Collector requires configuration of the spanmetrics connector that derives
metrics from traces and exports the metrics in the Prometheus format.

OpenTelemetry Collector custom resource for span RED

Creates the ServiceMonitor custom resource to enable scraping of the Prometheus exporter.

The Spanmetrics connector receives traces and exports metrics.

The OTLP receiver to receive spans in the OpenTelemetry protocol.

The Prometheus exporter is used to export metrics in the Prometheus format.

kind: OpenTelemetryCollector
apiVersion: opentelemetry.io/v1alpha1
metadata:
 name: otel
spec:
 mode: deployment
 observability:
 metrics:
 enableMetrics: true 1
 config: |
 connectors:
 spanmetrics: 2
 metrics_flush_interval: 15s

 receivers:
 otlp: 3
 protocols:
 grpc:
 http:

 exporters:
 prometheus: 4
 endpoint: 0.0.0.0:8889
 add_metric_suffixes: false
 resource_to_telemetry_conversion:
 enabled: true # by default resource attributes are dropped

 otlp:
 endpoint: "tempo-simplest-distributor:4317"
 tls:
 insecure: true

 service:
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [otlp, spanmetrics] 5
 metrics:
 receivers: [spanmetrics] 6
 exporters: [prometheus]

OpenShift Container Platform 4.12 Distributed tracing

46

5

6

1

2

The Spanmetrics connector is configured as exporter in traces pipeline.

The Spanmetrics connector is configured as receiver in metrics pipeline.

3.2.1.4.2. Tempo configuration

The TempoStack custom resource must specify the following: the Monitor tab is enabled, and the
Prometheus endpoint is set to the Thanos querier service to query the data from the user-defined
monitoring stack.

TempoStack custom resource with the enabled Monitor tab

Enables the monitoring tab in the Jaeger console.

The service name for Thanos Querier from user-workload monitoring.

3.2.1.4.3. Span RED metrics and alerting rules

The metrics generated by the spanmetrics connector are usable with alerting rules. For example, for
alerts about a slow service or to define service level objectives (SLOs), the connector creates a
duration_bucket histogram and the calls counter metric. These metrics have labels that identify the
service, API name, operation type, and other attributes.

Table 3.7. Labels of the metrics created in the spanmetrics connector

Label Description Values

service_name
Service name set by the
otel_service_name
environment variable.

frontend

span_name
Name of the operation.

/

/customer

kind: TempoStack
apiVersion: tempo.grafana.com/v1alpha1
metadata:
 name: simplest
spec:
 template:
 queryFrontend:
 jaegerQuery:
 enabled: true
 monitorTab:
 enabled: true 1
 prometheusEndpoint: https://thanos-querier.openshift-monitoring.svc.cluster.local:9091 2
 ingress:
 type: route

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

47

1

span_kind
Identifies the server, client,
messaging, or internal operation. SPAN_KIND_SERVE

R

SPAN_KIND_CLIENT

SPAN_KIND_PRODU
CER

SPAN_KIND_CONSU
MER

SPAN_KIND_INTERN
AL

Label Description Values

Example PrometheusRule CR that defines an alerting rule for SLO when not serving 95% of
requests within 2000ms on the front-end service

The expression for checking if 95% of the front-end server response time values are below 2000
ms. The time range ([5m]) must be at least four times the scrape interval and long enough to
accommodate a change in the metric.

3.2.1.5. Multitenancy

Multitenancy with authentication and authorization is provided in the Tempo Gateway service. The
authentication uses OpenShift OAuth and the Kubernetes TokenReview API. The authorization uses
the Kubernetes SubjectAccessReview API.

Sample Tempo CR with two tenants, dev and prod

apiVersion: monitoring.coreos.com/v1
kind: PrometheusRule
metadata:
 name: span-red
spec:
 groups:
 - name: server-side-latency
 rules:
 - alert: SpanREDFrontendAPIRequestLatency
 expr: histogram_quantile(0.95, sum(rate(duration_bucket{service_name="frontend",
span_kind="SPAN_KIND_SERVER"}[5m])) by (le, service_name, span_name)) > 2000 1
 labels:
 severity: Warning
 annotations:
 summary: "High request latency on {{$labels.service_name}} and {{$labels.span_name}}"
 description: "{{$labels.instance}} has 95th request latency above 2s (current value: {{$value}}s)"

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: simplest

OpenShift Container Platform 4.12 Distributed tracing

48

1

2

3

4

5

Must be set to openshift.

The list of tenants.

The tenant name. Must be provided in the X-Scope-OrgId header when ingesting the data.

A unique tenant ID.

Enables a gateway that performs authentication and authorization. The Jaeger UI is exposed at
http://<gateway-ingress>/api/traces/v1/<tenant-name>/search.

The authorization configuration uses the ClusterRole and ClusterRoleBinding of the Kubernetes
Role-Based Access Control (RBAC). By default, no users have read or write permissions.

Sample of the read RBAC configuration that allows authenticated users to read the trace
data of the dev and prod tenants

spec:
 tenants:
 mode: openshift 1
 authentication: 2
 - tenantName: dev 3
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfa" 4
 - tenantName: prod
 tenantId: "1610b0c3-c509-4592-a256-a1871353dbfb"
 template:
 gateway:
 enabled: true 5
 queryFrontend:
 jaegerQuery:
 enabled: true

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: tempostack-traces-reader
rules:
 - apiGroups:
 - 'tempo.grafana.com'
 resources: 1
 - dev
 - prod
 resourceNames:
 - traces
 verbs:
 - 'get' 2

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: tempostack-traces-reader
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

49

http:/api/traces/v1/<tenant-name>/search

1

2

3

1

2

Lists the tenants.

The get value enables the read operation.

Grants all authenticated users the read permissions for trace data.

Sample of the write RBAC configuration that allows the otel-collector service account to
write the trace data for the dev tenant

The service account name for the client to use when exporting trace data. The client must send the
service account token, /var/run/secrets/kubernetes.io/serviceaccount/token, as the bearer
token header.

Lists the tenants.

 name: tempostack-traces-reader
subjects:
 - kind: Group
 apiGroup: rbac.authorization.k8s.io
 name: system:authenticated 3

apiVersion: v1
kind: ServiceAccount
metadata:
 name: otel-collector 1
 namespace: otel

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: tempostack-traces-write
rules:
 - apiGroups:
 - 'tempo.grafana.com'
 resources: 2
 - dev
 resourceNames:
 - traces
 verbs:
 - 'create' 3

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: tempostack-traces
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: tempostack-traces-write
subjects:
 - kind: ServiceAccount
 name: otel-collector
 namespace: otel

OpenShift Container Platform 4.12 Distributed tracing

50

3 The create value enables the write operation.

Trace data can be sent to the Tempo instance from the OpenTelemetry Collector that uses the service
account with RBAC for writing the data.

Sample OpenTelemetry CR configuration

3.2.2. Configuring monitoring and alerts

The Tempo Operator supports monitoring and alerts about each TempoStack component such as
distributor, ingester, and so on, and exposes upgrade and operational metrics about the Operator itself.

3.2.2.1. Configuring the TempoStack metrics and alerts

You can enable metrics and alerts of TempoStack instances.

Prerequisites

Monitoring for user-defined projects is enabled in the cluster.

Procedure

1. To enable metrics of a TempoStack instance, set the
spec.observability.metrics.createServiceMonitors field to true:

apiVersion: opentelemetry.io/v1alpha1
kind: OpenTelemetryCollector
metadata:
 name: cluster-collector
 namespace: tracing-system
spec:
 mode: deployment
 serviceAccount: otel-collector
 config: |
 extensions:
 bearertokenauth:
 filename: "/var/run/secrets/kubernetes.io/serviceaccount/token"
 exporters:
 otlp/dev:
 endpoint: tempo-simplest-gateway.tempo.svc.cluster.local:8090
 tls:
 insecure: false
 ca_file: "/var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt"
 auth:
 authenticator: bearertokenauth
 headers:
 X-Scope-OrgID: "dev"
 service:
 extensions: [bearertokenauth]
 pipelines:
 traces:
 exporters: [otlp/dev]

apiVersion: tempo.grafana.com/v1alpha1

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

51

2. To enable alerts for a TempoStack instance, set the
spec.observability.metrics.createPrometheusRules field to true:

Verification

You can use the Administrator view of the web console to verify successful configuration:

1. Go to Observe → Targets, filter for Source: User, and check that ServiceMonitors in the
format tempo-<instance_name>-<component> have the Up status.

2. To verify that alerts are set up correctly, go to Observe → Alerting → Alerting rules, filter for
Source: User, and check that the Alert rules for the TempoStack instance components are
available.

3.2.2.1.1. Additional resources

Enabling monitoring for user-defined projects

3.2.2.2. Configuring the Tempo Operator metrics and alerts

When installing the Tempo Operator from the web console, you can select the Enable Operator
recommended cluster monitoring on this Namespace checkbox, which enables creating metrics and
alerts of the Tempo Operator.

If the checkbox was not selected during installation, you can manually enable metrics and alerts even
after installing the Tempo Operator.

Procedure

Add the openshift.io/cluster-monitoring: "true" label in the project where the Tempo
Operator is installed, which is openshift-tempo-operator by default.

Verification

You can use the Administrator view of the web console to verify successful configuration:

1. Go to Observe → Targets, filter for Source: Platform, and search for tempo-operator, which
must have the Up status.

kind: TempoStack
metadata:
 name: <name>
spec:
 observability:
 metrics:
 createServiceMonitors: true

apiVersion: tempo.grafana.com/v1alpha1
kind: TempoStack
metadata:
 name: <name>
spec:
 observability:
 metrics:
 createPrometheusRules: true

OpenShift Container Platform 4.12 Distributed tracing

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/monitoring/#enabling-monitoring-for-user-defined-projects

2. To verify that alerts are set up correctly, go to Observe → Alerting → Alerting rules, filter for
Source: Platform, and locate the Alert rules for the Tempo Operator.

3.3. UPGRADING

For version upgrades, the Tempo Operator uses the Operator Lifecycle Manager (OLM), which controls
installation, upgrade, and role-based access control (RBAC) of Operators in a cluster.

The OLM runs in the OpenShift Container Platform by default. The OLM queries for available
Operators as well as upgrades for installed Operators.

When the Tempo Operator is upgraded to the new version, it scans for running TempoStack instances
that it manages and upgrades them to the version corresponding to the Operator’s new version.

3.3.1. Additional resources

Operator Lifecycle Manager concepts and resources

Updating installed Operators

3.4. REMOVING

The steps for removing the Red Hat OpenShift distributed tracing platform (Tempo) from an OpenShift
Container Platform cluster are as follows:

1. Shut down all distributed tracing platform (Tempo) pods.

2. Remove any TempoStack instances.

3. Remove the Tempo Operator.

3.4.1. Removing by using the web console

You can remove a TempoStack instance in the Administrator view of the web console.

Prerequisites

You are logged in to the OpenShift Container Platform web console as a cluster administrator
with the cluster-admin role.

For Red Hat OpenShift Dedicated, you must be logged in using an account with the dedicated-
admin role.

Procedure

1. Go to Operators → Installed Operators → Tempo Operator → TempoStack.

2. To remove the TempoStack instance, select → Delete TempoStack → Delete.

3. Optional: Remove the Tempo Operator.

3.4.2. Removing by using the CLI

CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-upgrading-operators

You can remove a TempoStack instance on the command line.

Prerequisites

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

TIP

Ensure that your OpenShift CLI (oc) version is up to date and matches your OpenShift
Container Platform version.

Run oc login:

Procedure

1. Get the name of the TempoStack instance by running the following command:

2. Remove the TempoStack instance by running the following command:

3. Optional: Remove the Tempo Operator.

Verification

1. Run the following command to verify that the TempoStack instance is not found in the output,
which indicates its successful removal:

3.4.3. Additional resources

Deleting Operators from a cluster

Getting started with the OpenShift CLI

$ oc login --username=<your_username>

$ oc get deployments -n <project_of_tempostack_instance>

$ oc delete tempo <tempostack_instance_name> -n <project_of_tempostack_instance>

$ oc get deployments -n <project_of_tempostack_instance>

OpenShift Container Platform 4.12 Distributed tracing

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-deleting-operators-from-a-cluster
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/cli_tools/#getting-started-cli

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

4.1. INSTALLING

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Jaeger) is a deprecated feature.
Deprecated functionality is still included in OpenShift Container Platform and continues
to be supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

You can install Red Hat OpenShift distributed tracing platform on OpenShift Container Platform in
either of two ways:

You can install Red Hat OpenShift distributed tracing platform as part of Red Hat OpenShift
Service Mesh. Distributed tracing is included by default in the Service Mesh installation. To
install Red Hat OpenShift distributed tracing platform as part of a service mesh, follow the Red
Hat Service Mesh Installation instructions. You must install Red Hat OpenShift distributed
tracing platform in the same namespace as your service mesh, that is, the
ServiceMeshControlPlane and the Red Hat OpenShift distributed tracing platform resources
must be in the same namespace.

If you do not want to install a service mesh, you can use the Red Hat OpenShift distributed
tracing platform Operators to install distributed tracing platform by itself. To install Red Hat
OpenShift distributed tracing platform without a service mesh, use the following instructions.

4.1.1. Prerequisites

Before you can install Red Hat OpenShift distributed tracing platform, review the installation activities,
and ensure that you meet the prerequisites:

Possess an active OpenShift Container Platform subscription on your Red Hat account. If you
do not have a subscription, contact your sales representative for more information.

Review the OpenShift Container Platform 4.12 overview .

Install OpenShift Container Platform 4.12.

Install OpenShift Container Platform 4.12 on AWS

Install OpenShift Container Platform 4.12 on user-provisioned AWS

Install OpenShift Container Platform 4.12 on bare metal

Install OpenShift Container Platform 4.12 on vSphere

Install the version of the oc CLI tool that matches your OpenShift Container Platform version
and add it to your path.

An account with the cluster-admin role.

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

55

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/service_mesh/#preparing-ossm-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/architecture/#installation-overview_architecture-installation
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-aws-account
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-aws-user-infra
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/installing/#installing-vsphere

4.1.2. Red Hat OpenShift distributed tracing platform installation overview

The steps for installing Red Hat OpenShift distributed tracing platform are as follows:

Review the documentation and determine your deployment strategy.

If your deployment strategy requires persistent storage, install the OpenShift Elasticsearch
Operator via the OperatorHub.

Install the Red Hat OpenShift distributed tracing platform (Jaeger) Operator via the
OperatorHub.

Modify the custom resource YAML file to support your deployment strategy.

Deploy one or more instances of Red Hat OpenShift distributed tracing platform (Jaeger) to
your OpenShift Container Platform environment.

4.1.3. Installing the OpenShift Elasticsearch Operator

The default Red Hat OpenShift distributed tracing platform (Jaeger) deployment uses in-memory
storage because it is designed to be installed quickly for those evaluating Red Hat OpenShift distributed
tracing platform, giving demonstrations, or using Red Hat OpenShift distributed tracing platform
(Jaeger) in a test environment. If you plan to use Red Hat OpenShift distributed tracing platform
(Jaeger) in production, you must install and configure a persistent storage option, in this case,
Elasticsearch.

Prerequisites

You have access to the OpenShift Container Platform web console.

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

WARNING

Do not install Community versions of the Operators. Community Operators are not
supported.

NOTE

If you have already installed the OpenShift Elasticsearch Operator as part of OpenShift
Logging, you do not need to install the OpenShift Elasticsearch Operator again. The Red
Hat OpenShift distributed tracing platform (Jaeger) Operator creates the Elasticsearch
instance using the installed OpenShift Elasticsearch Operator.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

OpenShift Container Platform 4.12 Distributed tracing

56

2. Navigate to Operators → OperatorHub.

3. Type Elasticsearch into the filter box to locate the OpenShift Elasticsearch Operator.

4. Click the OpenShift Elasticsearch Operator provided by Red Hat to display information about
the Operator.

5. Click Install.

6. On the Install Operator page, select the stable Update Channel. This automatically updates
your Operator as new versions are released.

7. Accept the default All namespaces on the cluster (default). This installs the Operator in the
default openshift-operators-redhat project and makes the Operator available to all projects in
the cluster.

NOTE

The Elasticsearch installation requires the openshift-operators-redhat
namespace for the OpenShift Elasticsearch Operator. The other Red Hat
OpenShift distributed tracing platform Operators are installed in the openshift-
operators namespace.

8. Accept the default Automatic approval strategy. By accepting the default, when a new version
of this Operator is available, Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without human intervention. If you select Manual updates,
when a newer version of an Operator is available, OLM creates an update request. As a cluster
administrator, you must then manually approve that update request to have the Operator
updated to the new version.

NOTE

The Manual approval strategy requires a user with appropriate credentials to
approve the Operator install and subscription process.

9. Click Install.

10. On the Installed Operators page, select the openshift-operators-redhat project. Wait for the
InstallSucceeded status of the OpenShift Elasticsearch Operator before continuing.

4.1.4. Installing the Red Hat OpenShift distributed tracing platform Operator

You can install the Red Hat OpenShift distributed tracing platform Operator through the OperatorHub.

By default, the Operator is installed in the openshift-operators project.

Prerequisites

You have access to the OpenShift Container Platform web console.

You have access to the cluster as a user with the cluster-admin role. If you use Red Hat
OpenShift Dedicated, you must have an account with the dedicated-admin role.

If you require persistent storage, you must install the OpenShift Elasticsearch Operator before
installing the Red Hat OpenShift distributed tracing platform Operator.

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

57

https://operatorhub.io/

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.
If you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Operators → OperatorHub.

3. Search for the Red Hat OpenShift distributed tracing platform Operator by entering
distributed tracing platform in the search field.

4. Select the Red Hat OpenShift distributed tracing platform Operator, which is provided by
Red Hat, to display information about the Operator.

5. Click Install.

6. For the Update channel on the Install Operator page, select stable to automatically update
the Operator when new versions are released.

7. Accept the default All namespaces on the cluster (default). This installs the Operator in the
default openshift-operators project and makes the Operator available to all projects in the
cluster.

8. Accept the default Automatic approval strategy.

NOTE

If you accept this default, the Operator Lifecycle Manager (OLM) automatically
upgrades the running instance of this Operator when a new version of the
Operator becomes available.

If you select Manual updates, the OLM creates an update request when a new
version of the Operator becomes available. To update the Operator to the new
version, you must then manually approve the update request as a cluster
administrator. The Manual approval strategy requires a cluster administrator to
manually approve Operator installation and subscription.

9. Click Install.

10. Navigate to Operators → Installed Operators.

11. On the Installed Operators page, select the openshift-operators project. Wait for the
Succeeded status of the Red Hat OpenShift distributed tracing platform Operator before
continuing.

4.2. CONFIGURING

IMPORTANT

OpenShift Container Platform 4.12 Distributed tracing

58

1

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Jaeger) is a deprecated feature.
Deprecated functionality is still included in OpenShift Container Platform and continues
to be supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator uses a custom resource
definition (CRD) file that defines the architecture and configuration settings to be used when creating
and deploying the distributed tracing platform (Jaeger) resources. You can install the default
configuration or modify the file.

If you have installed distributed tracing platform as part of Red Hat OpenShift Service Mesh, you can
perform basic configuration as part of the ServiceMeshControlPlane, but for complete control, you must
configure a Jaeger CR and then reference your distributed tracing configuration file in the
ServiceMeshControlPlane.

The Red Hat OpenShift distributed tracing platform (Jaeger) has predefined deployment strategies.
You specify a deployment strategy in the custom resource file. When you create a distributed tracing
platform (Jaeger) instance, the Operator uses this configuration file to create the objects necessary for
the deployment.

Jaeger custom resource file showing deployment strategy

Deployment strategy.

4.2.1. Supported deployment strategies

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator currently supports the following
deployment strategies:

allInOne

- This strategy is intended for development, testing, and demo purposes; it is not intended for
production use. The main backend components, Agent, Collector, and Query service, are all
packaged into a single executable which is configured, by default. to use in-memory storage.

NOTE

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: MyConfigFile
spec:
 strategy: production 1

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

59

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/service_mesh/#installing-ossm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/service_mesh/#ossm-config-external-jaeger_observability

NOTE

In-memory storage is not persistent, which means that if the distributed tracing
platform (Jaeger) instance shuts down, restarts, or is replaced, that your trace data
will be lost. And in-memory storage cannot be scaled, since each pod has its own
memory. For persistent storage, you must use the production or streaming
strategies, which use Elasticsearch as the default storage.

production

The production strategy is intended for production environments, where long term storage of trace
data is important, as well as a more scalable and highly available architecture is required. Each of the
backend components is therefore deployed separately. The Agent can be injected as a sidecar on
the instrumented application. The Query and Collector services are configured with a supported
storage type - currently Elasticsearch. Multiple instances of each of these components can be
provisioned as required for performance and resilience purposes.

streaming

The streaming strategy is designed to augment the production strategy by providing a streaming
capability that effectively sits between the Collector and the Elasticsearch backend storage. This
provides the benefit of reducing the pressure on the backend storage, under high load situations,
and enables other trace post-processing capabilities to tap into the real time span data directly from
the streaming platform (AMQ Streams/ Kafka).

NOTE

The streaming strategy requires an additional Red Hat subscription for AMQ
Streams.

The streaming deployment strategy is currently unsupported on IBM Z.

4.2.2. Deploying the distributed tracing platform default strategy from the web
console

The custom resource definition (CRD) defines the configuration used when you deploy an instance of
Red Hat OpenShift distributed tracing platform. The default CR is named jaeger-all-in-one-inmemory
and it is configured with minimal resources to ensure that you can successfully install it on a default
OpenShift Container Platform installation. You can use this default configuration to create a Red Hat
OpenShift distributed tracing platform (Jaeger) instance that uses the AllInOne deployment strategy,
or you can define your own custom resource file.

NOTE

In-memory storage is not persistent. If the Jaeger pod shuts down, restarts, or is
replaced, your trace data will be lost. For persistent storage, you must use the
production or streaming strategies, which use Elasticsearch as the default storage.

Prerequisites

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the cluster as a user with the cluster-admin role.

OpenShift Container Platform 4.12 Distributed tracing

60

https://access.redhat.com/documentation/en-us/red_hat_amq/7.6/html/using_amq_streams_on_openshift/index
https://kafka.apache.org/documentation/

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Create a new project, for example tracing-system.

NOTE

If you are installing as part of Service Mesh, the distributed tracing platform
resources must be installed in the same namespace as the
ServiceMeshControlPlane resource, for example istio-system.

a. Go to Home → Projects.

b. Click Create Project.

c. Enter tracing-system in the Name field.

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. If necessary, select tracing-system from the Project menu. You may have to wait a few
moments for the Operators to be copied to the new project.

5. Click the Red Hat OpenShift distributed tracing platform (Jaeger) Operator. On the Details
tab, under Provided APIs, the Operator provides a single link.

6. Under Jaeger, click Create Instance.

7. On the Create Jaeger page, to install using the defaults, click Create to create the distributed
tracing platform (Jaeger) instance.

8. On the Jaegers page, click the name of the distributed tracing platform (Jaeger) instance, for
example, jaeger-all-in-one-inmemory.

9. On the Jaeger Details page, click the Resources tab. Wait until the pod has a status of
"Running" before continuing.

4.2.2.1. Deploying the distributed tracing platform default strategy from the CLI

Follow this procedure to create an instance of distributed tracing platform (Jaeger) from the command
line.

Prerequisites

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator has been installed and
verified.

You have reviewed the instructions for how to customize the deployment.

You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform
version.

You have access to the cluster as a user with the cluster-admin role.

Procedure

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

61

Procedure

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role by
running the following command:

2. Create a new project named tracing-system by running the following command:

3. Create a custom resource file named jaeger.yaml that contains the following text:

Example jaeger-all-in-one.yaml

4. Run the following command to deploy distributed tracing platform (Jaeger):

5. Run the following command to watch the progress of the pods during the installation process:

After the installation process has completed, the output is similar to the following example:

4.2.3. Deploying the distributed tracing platform production strategy from the web
console

The production deployment strategy is intended for production environments that require a more
scalable and highly available architecture, and where long-term storage of trace data is important.

Prerequisites

The OpenShift Elasticsearch Operator has been installed.

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:8443

$ oc new-project tracing-system

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-all-in-one-inmemory

$ oc create -n tracing-system -f jaeger.yaml

$ oc get pods -n tracing-system -w

NAME READY STATUS RESTARTS AGE
jaeger-all-in-one-inmemory-cdff7897b-qhfdx 2/2 Running 0 24s

OpenShift Container Platform 4.12 Distributed tracing

62

2. Create a new project, for example tracing-system.

NOTE

If you are installing as part of Service Mesh, the distributed tracing platform
resources must be installed in the same namespace as the
ServiceMeshControlPlane resource, for example istio-system.

a. Navigate to Home → Projects.

b. Click Create Project.

c. Enter tracing-system in the Name field.

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. If necessary, select tracing-system from the Project menu. You may have to wait a few
moments for the Operators to be copied to the new project.

5. Click the Red Hat OpenShift distributed tracing platform (Jaeger) Operator. On the Overview
tab, under Provided APIs, the Operator provides a single link.

6. Under Jaeger, click Create Instance.

7. On the Create Jaeger page, replace the default all-in-one YAML text with your production
YAML configuration, for example:

Example jaeger-production.yaml file with Elasticsearch

8. Click Create to create the distributed tracing platform (Jaeger) instance.

9. On the Jaegers page, click the name of the distributed tracing platform (Jaeger) instance, for

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-production
 namespace:
spec:
 strategy: production
 ingress:
 security: oauth-proxy
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 3
 redundancyPolicy: SingleRedundancy
 esIndexCleaner:
 enabled: true
 numberOfDays: 7
 schedule: 55 23 * * *
 esRollover:
 schedule: '*/30 * * * *'

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

63

9. On the Jaegers page, click the name of the distributed tracing platform (Jaeger) instance, for
example, jaeger-prod-elasticsearch.

10. On the Jaeger Details page, click the Resources tab. Wait until all the pods have a status of
"Running" before continuing.

4.2.3.1. Deploying the distributed tracing platform production strategy from the CLI

Follow this procedure to create an instance of distributed tracing platform (Jaeger) from the command
line.

Prerequisites

The OpenShift Elasticsearch Operator has been installed.

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform
version.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift CLI (oc) as a user with the cluster-admin role by running the following
command:

2. Create a new project named tracing-system by running the following command:

3. Create a custom resource file named jaeger-production.yaml that contains the text of the
example file in the previous procedure.

4. Run the following command to deploy distributed tracing platform (Jaeger):

5. Run the following command to watch the progress of the pods during the installation process:

After the installation process has completed, you will see output similar to the following
example:

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:8443

$ oc new-project tracing-system

$ oc create -n tracing-system -f jaeger-production.yaml

$ oc get pods -n tracing-system -w

NAME READY STATUS RESTARTS AGE
elasticsearch-cdm-jaegersystemjaegerproduction-1-6676cf568gwhlw 2/2 Running 0
10m
elasticsearch-cdm-jaegersystemjaegerproduction-2-bcd4c8bf5l6g6w 2/2 Running 0
10m

OpenShift Container Platform 4.12 Distributed tracing

64

4.2.4. Deploying the distributed tracing platform streaming strategy from the web
console

The streaming deployment strategy is intended for production environments that require a more
scalable and highly available architecture, and where long-term storage of trace data is important.

The streaming strategy provides a streaming capability that sits between the Collector and the
Elasticsearch storage. This reduces the pressure on the storage under high load situations, and enables
other trace post-processing capabilities to tap into the real-time span data directly from the Kafka
streaming platform.

NOTE

The streaming strategy requires an additional Red Hat subscription for AMQ Streams. If
you do not have an AMQ Streams subscription, contact your sales representative for
more information.

NOTE

The streaming deployment strategy is currently unsupported on IBM Z.

Prerequisites

The AMQ Streams Operator has been installed. If using version 1.4.0 or higher you can use self-
provisioning. Otherwise you must create the Kafka instance.

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console as a user with the cluster-admin role.

2. Create a new project, for example tracing-system.

NOTE

If you are installing as part of Service Mesh, the distributed tracing platform
resources must be installed in the same namespace as the
ServiceMeshControlPlane resource, for example istio-system.

a. Navigate to Home → Projects.

b. Click Create Project.

c. Enter tracing-system in the Name field.

elasticsearch-cdm-jaegersystemjaegerproduction-3-844d6d9694hhst 2/2 Running 0
10m
jaeger-production-collector-94cd847d-jwjlj 1/1 Running 3 8m32s
jaeger-production-query-5cbfbd499d-tv8zf 3/3 Running 3 8m32s

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

65

1

d. Click Create.

3. Navigate to Operators → Installed Operators.

4. If necessary, select tracing-system from the Project menu. You may have to wait a few
moments for the Operators to be copied to the new project.

5. Click the Red Hat OpenShift distributed tracing platform (Jaeger) Operator. On the Overview
tab, under Provided APIs, the Operator provides a single link.

6. Under Jaeger, click Create Instance.

7. On the Create Jaeger page, replace the default all-in-one YAML text with your streaming
YAML configuration, for example:

Example jaeger-streaming.yaml file

If the brokers are not defined, AMQStreams 1.4.0+ self-provisions Kafka.

8. Click Create to create the distributed tracing platform (Jaeger) instance.

9. On the Jaegers page, click the name of the distributed tracing platform (Jaeger) instance, for
example, jaeger-streaming.

10. On the Jaeger Details page, click the Resources tab. Wait until all the pods have a status of
"Running" before continuing.

4.2.4.1. Deploying the distributed tracing platform streaming strategy from the CLI

Follow this procedure to create an instance of distributed tracing platform (Jaeger) from the command
line.

Prerequisites

The AMQ Streams Operator has been installed. If using version 1.4.0 or higher you can use self-

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-streaming
spec:
 strategy: streaming
 collector:
 options:
 kafka:
 producer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092 1
 storage:
 type: elasticsearch
 ingester:
 options:
 kafka:
 consumer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092

OpenShift Container Platform 4.12 Distributed tracing

66

The AMQ Streams Operator has been installed. If using version 1.4.0 or higher you can use self-
provisioning. Otherwise you must create the Kafka instance.

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator has been installed.

You have reviewed the instructions for how to customize the deployment.

You have access to the OpenShift CLI (oc) that matches your OpenShift Container Platform
version.

You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Log in to the OpenShift CLI (oc) as a user with the cluster-admin role by running the following
command:

2. Create a new project named tracing-system by running the following command:

3. Create a custom resource file named jaeger-streaming.yaml that contains the text of the
example file in the previous procedure.

4. Run the following command to deploy Jaeger:

5. Run the following command to watch the progress of the pods during the installation process:

After the installation process has completed, you should see output similar to the following
example:

4.2.5. Validating your deployment

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:8443

$ oc new-project tracing-system

$ oc create -n tracing-system -f jaeger-streaming.yaml

$ oc get pods -n tracing-system -w

NAME READY STATUS RESTARTS AGE
elasticsearch-cdm-jaegersystemjaegerstreaming-1-697b66d6fcztcnn 2/2 Running 0
5m40s
elasticsearch-cdm-jaegersystemjaegerstreaming-2-5f4b95c78b9gckz 2/2 Running 0
5m37s
elasticsearch-cdm-jaegersystemjaegerstreaming-3-7b6d964576nnz97 2/2 Running 0
5m5s
jaeger-streaming-collector-6f6db7f99f-rtcfm 1/1 Running 0 80s
jaeger-streaming-entity-operator-6b6d67cc99-4lm9q 3/3 Running 2
2m18s
jaeger-streaming-ingester-7d479847f8-5h8kc 1/1 Running 0 80s
jaeger-streaming-kafka-0 2/2 Running 0 3m1s
jaeger-streaming-query-65bf5bb854-ncnc7 3/3 Running 0 80s
jaeger-streaming-zookeeper-0 2/2 Running 0 3m39s

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

67

4.2.5.1. Accessing the Jaeger console

To access the Jaeger console you must have either Red Hat OpenShift Service Mesh or Red Hat
OpenShift distributed tracing platform installed, and Red Hat OpenShift distributed tracing platform
(Jaeger) installed, configured, and deployed.

The installation process creates a route to access the Jaeger console.

If you know the URL for the Jaeger console, you can access it directly. If you do not know the URL, use
the following directions.

Procedure from the web console

1. Log in to the OpenShift Container Platform web console as a user with cluster-admin rights. If
you use Red Hat OpenShift Dedicated, you must have an account with the dedicated-admin
role.

2. Navigate to Networking → Routes.

3. On the Routes page, select the control plane project, for example tracing-system, from the
Namespace menu.
The Location column displays the linked address for each route.

4. If necessary, use the filter to find the jaeger route. Click the route Location to launch the
console.

5. Click Log In With OpenShift.

Procedure from the CLI

1. Log in to the OpenShift Container Platform CLI as a user with the cluster-admin role by
running the following command. If you use Red Hat OpenShift Dedicated, you must have an
account with the dedicated-admin role.

2. To query for details of the route using the command line, enter the following command. In this
example, tracing-system is the control plane namespace.

3. Launch a browser and navigate to https://<JAEGER_URL>, where <JAEGER_URL> is the
route that you discovered in the previous step.

4. Log in using the same user name and password that you use to access the OpenShift Container
Platform console.

5. If you have added services to the service mesh and have generated traces, you can use the
filters and Find Traces button to search your trace data.
If you are validating the console installation, there is no trace data to display.

4.2.6. Customizing your deployment

4.2.6.1. Deployment best practices

Red Hat OpenShift distributed tracing platform instance names must be unique. If you want to

$ oc login --username=<NAMEOFUSER> https://<HOSTNAME>:6443

$ export JAEGER_URL=$(oc get route -n tracing-system jaeger -o jsonpath='{.spec.host}')

OpenShift Container Platform 4.12 Distributed tracing

68

Red Hat OpenShift distributed tracing platform instance names must be unique. If you want to
have multiple Red Hat OpenShift distributed tracing platform (Jaeger) instances and are using
sidecar injected agents, then the Red Hat OpenShift distributed tracing platform (Jaeger)
instances should have unique names, and the injection annotation should explicitly specify the
Red Hat OpenShift distributed tracing platform (Jaeger) instance name the tracing data should
be reported to.

If you have a multitenant implementation and tenants are separated by namespaces, deploy a
Red Hat OpenShift distributed tracing platform (Jaeger) instance to each tenant namespace.

For information about configuring persistent storage, see Understanding persistent storage and the
appropriate configuration topic for your chosen storage option.

4.2.6.2. Distributed tracing default configuration options

The Jaeger custom resource (CR) defines the architecture and settings to be used when creating the
distributed tracing platform (Jaeger) resources. You can modify these parameters to customize your
distributed tracing platform (Jaeger) implementation to your business needs.

Generic YAML example of the Jaeger CR

Table 4.1. Jaeger parameters

Parameter Description Values Default value

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: name
spec:
 strategy: <deployment_strategy>
 allInOne:
 options: {}
 resources: {}
 agent:
 options: {}
 resources: {}
 collector:
 options: {}
 resources: {}
 sampling:
 options: {}
 storage:
 type:
 options: {}
 query:
 options: {}
 resources: {}
 ingester:
 options: {}
 resources: {}
 options: {}

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/storage/#understanding-persistent-storage

apiVersion: API version to use when
creating the object.

jaegertracing.io/v1 jaegertracing.io/v1

kind: Defines the kind of
Kubernetes object to
create.

jaeger

metadata: Data that helps uniquely
identify the object,
including a name string,
UID, and optional
namespace.

 OpenShift Container
Platform automatically
generates the UID and
completes the
namespace with the
name of the project
where the object is
created.

name: Name for the object. The name of your
distributed tracing
platform (Jaeger)
instance.

jaeger-all-in-one-
inmemory

spec: Specification for the
object to be created.

Contains all of the
configuration
parameters for your
distributed tracing
platform (Jaeger)
instance. When a
common definition for
all Jaeger components
is required, it is defined
under the spec node.
When the definition
relates to an individual
component, it is placed
under the
spec/<component>
node.

N/A

strategy: Jaeger deployment
strategy

allInOne, production,
or streaming

allInOne

Parameter Description Values Default value

OpenShift Container Platform 4.12 Distributed tracing

70

allInOne: Because the allInOne
image deploys the
Agent, Collector, Query,
Ingester, and Jaeger UI
in a single pod,
configuration for this
deployment must nest
component
configuration under the
allInOne parameter.

agent: Configuration options
that define the Agent.

collector: Configuration options
that define the Jaeger
Collector.

sampling: Configuration options
that define the sampling
strategies for tracing.

storage: Configuration options
that define the storage.
All storage-related
options must be placed
under storage, rather
than under the allInOne
or other component
options.

query: Configuration options
that define the Query
service.

ingester: Configuration options
that define the Ingester
service.

Parameter Description Values Default value

The following example YAML is the minimum required to create a Red Hat OpenShift distributed tracing
platform (Jaeger) deployment using the default settings.

Example minimum required dist-tracing-all-in-one.yaml

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-all-in-one-inmemory

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

71

4.2.6.3. Jaeger Collector configuration options

The Jaeger Collector is the component responsible for receiving the spans that were captured by the
tracer and writing them to persistent Elasticsearch storage when using the production strategy, or to
AMQ Streams when using the streaming strategy.

The Collectors are stateless and thus many instances of Jaeger Collector can be run in parallel.
Collectors require almost no configuration, except for the location of the Elasticsearch cluster.

Table 4.2. Parameters used by the Operator to define the Jaeger Collector

Parameter Description Values

collector:
 replicas:

Specifies the number of Collector
replicas to create.

Integer, for example, 5

Table 4.3. Configuration parameters passed to the Collector

Parameter Description Values

spec:
 collector:
 options: {}

Configuration options that define
the Jaeger Collector.

options:
 collector:
 num-workers:

The number of workers pulling
from the queue.

Integer, for example, 50

options:
 collector:
 queue-size:

The size of the Collector queue. Integer, for example, 2000

options:
 kafka:
 producer:
 topic: jaeger-spans

The topic parameter identifies
the Kafka configuration used by
the Collector to produce the
messages, and the Ingester to
consume the messages.

Label for the producer.

options:
 kafka:
 producer:
 brokers: my-cluster-
kafka-brokers.kafka:9092

Identifies the Kafka configuration
used by the Collector to produce
the messages. If brokers are not
specified, and you have AMQ
Streams 1.4.0+ installed, the Red
Hat OpenShift distributed tracing
platform (Jaeger) Operator will
self-provision Kafka.

OpenShift Container Platform 4.12 Distributed tracing

72

options:
 log-level:

Logging level for the Collector. Possible values: debug, info,
warn, error, fatal, panic.

options:
 otlp:
 enabled: true
 grpc:
 host-port: 4317
 max-connection-age: 0s
 max-connection-age-
grace: 0s
 max-message-size:
4194304
 tls:
 enabled: false
 cert: /path/to/cert.crt
 cipher-suites:
"TLS_AES_256_GCM_SHA
384,TLS_CHACHA20_POL
Y1305_SHA256"
 client-ca:
/path/to/cert.ca
 reload-interval: 0s
 min-version: 1.2
 max-version: 1.3

To accept OTLP/gRPC, explicitly
enable the otlp. All the other
options are optional.

Parameter Description Values

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

73

options:
 otlp:
 enabled: true
 http:
 cors:
 allowed-headers:
[<header-name>[, <header-
name>]*]
 allowed-origins: *
 host-port: 4318
 max-connection-age: 0s
 max-connection-age-
grace: 0s
 max-message-size:
4194304
 read-timeout: 0s
 read-header-timeout: 2s
 idle-timeout: 0s
 tls:
 enabled: false
 cert: /path/to/cert.crt
 cipher-suites:
"TLS_AES_256_GCM_SHA
384,TLS_CHACHA20_POL
Y1305_SHA256"
 client-ca:
/path/to/cert.ca
 reload-interval: 0s
 min-version: 1.2
 max-version: 1.3

To accept OTLP/HTTP, explicitly
enable the otlp. All the other
options are optional.

Parameter Description Values

4.2.6.4. Distributed tracing sampling configuration options

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator can be used to define sampling
strategies that will be supplied to tracers that have been configured to use a remote sampler.

While all traces are generated, only a few are sampled. Sampling a trace marks the trace for further
processing and storage.

NOTE

This is not relevant if a trace was started by the Envoy proxy, as the sampling decision is
made there. The Jaeger sampling decision is only relevant when the trace is started by an
application using the client.

When a service receives a request that contains no trace context, the client starts a new trace, assigns it
a random trace ID, and makes a sampling decision based on the currently installed sampling strategy.
The sampling decision propagates to all subsequent requests in the trace so that other services are not
making the sampling decision again.

OpenShift Container Platform 4.12 Distributed tracing

74

distributed tracing platform (Jaeger) libraries support the following samplers:

Probabilistic - The sampler makes a random sampling decision with the probability of sampling
equal to the value of the sampling.param property. For example, using sampling.param=0.1
samples approximately 1 in 10 traces.

Rate Limiting - The sampler uses a leaky bucket rate limiter to ensure that traces are sampled
with a certain constant rate. For example, using sampling.param=2.0 samples requests with the
rate of 2 traces per second.

Table 4.4. Jaeger sampling options

Parameter Description Values Default value

spec:
 sampling:
 options: {}
 default_strategy:

service_strategy:

Configuration options
that define the sampling
strategies for tracing.

 If you do not provide
configuration, the
Collectors will return the
default probabilistic
sampling policy with
0.001 (0.1%) probability
for all services.

default_strategy:
 type:
service_strategy:
 type:

Sampling strategy to
use. See descriptions
above.

Valid values are
probabilistic, and
ratelimiting.

probabilistic

default_strategy:
 param:
service_strategy:
 param:

Parameters for the
selected sampling
strategy.

Decimal and integer
values (0, .1, 1, 10)

1

This example defines a default sampling strategy that is probabilistic, with a 50% chance of the trace
instances being sampled.

Probabilistic sampling example

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: with-sampling
spec:
 sampling:
 options:
 default_strategy:
 type: probabilistic
 param: 0.5
 service_strategies:
 - service: alpha
 type: probabilistic

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

75

If there are no user-supplied configurations, the distributed tracing platform (Jaeger) uses the following
settings:

Default sampling

4.2.6.5. Distributed tracing storage configuration options

You configure storage for the Collector, Ingester, and Query services under spec.storage. Multiple
instances of each of these components can be provisioned as required for performance and resilience
purposes.

Table 4.5. General storage parameters used by the Red Hat OpenShift distributed tracing platform
(Jaeger) Operator to define distributed tracing storage

Parameter Description Values Default value

spec:
 storage:
 type:

Type of storage to use
for the deployment.

memory or
elasticsearch.
Memory storage is only
appropriate for
development, testing,
demonstrations, and
proof of concept
environments as the
data does not persist if
the pod is shut down.
For production
environments
distributed tracing
platform (Jaeger)
supports Elasticsearch
for persistent storage.

memory

 param: 0.8
 operation_strategies:
 - operation: op1
 type: probabilistic
 param: 0.2
 - operation: op2
 type: probabilistic
 param: 0.4
 - service: beta
 type: ratelimiting
 param: 5

spec:
 sampling:
 options:
 default_strategy:
 type: probabilistic
 param: 1

OpenShift Container Platform 4.12 Distributed tracing

76

storage:
 secretname:

Name of the secret, for
example tracing-
secret.

 N/A

storage:
 options: {}

Configuration options
that define the storage.

Parameter Description Values Default value

Table 4.6. Elasticsearch index cleaner parameters

Parameter Description Values Default value

storage:
 esIndexCleaner:
 enabled:

When using
Elasticsearch storage,
by default a job is
created to clean old
traces from the index.
This parameter enables
or disables the index
cleaner job.

true/ false true

storage:
 esIndexCleaner:
 numberOfDays:

Number of days to wait
before deleting an index.

Integer value 7

storage:
 esIndexCleaner:
 schedule:

Defines the schedule for
how often to clean the
Elasticsearch index.

Cron expression "55 23 * * *"

4.2.6.5.1. Auto-provisioning an Elasticsearch instance

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform
(Jaeger) Operator uses the OpenShift Elasticsearch Operator to create an Elasticsearch cluster based
on the configuration provided in the storage section of the custom resource file. The Red Hat
OpenShift distributed tracing platform (Jaeger) Operator will provision Elasticsearch if the following
configurations are set:

spec.storage:type is set to elasticsearch

spec.storage.elasticsearch.doNotProvision set to false

spec.storage.options.es.server-urls is not defined, that is, there is no connection to an
Elasticsearch instance that was not provisioned by the OpenShift Elasticsearch Operator.

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

77

When provisioning Elasticsearch, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator
sets the Elasticsearch custom resource name to the value of spec.storage.elasticsearch.name from
the Jaeger custom resource. If you do not specify a value for spec.storage.elasticsearch.name, the
Operator uses elasticsearch.

Restrictions

You can have only one distributed tracing platform (Jaeger) with self-provisioned Elasticsearch
instance per namespace. The Elasticsearch cluster is meant to be dedicated for a single
distributed tracing platform (Jaeger) instance.

There can be only one Elasticsearch per namespace.

NOTE

If you already have installed Elasticsearch as part of OpenShift Logging, the Red Hat
OpenShift distributed tracing platform (Jaeger) Operator can use the installed
OpenShift Elasticsearch Operator to provision storage.

The following configuration parameters are for a self-provisioned Elasticsearch instance, that is an
instance created by the Red Hat OpenShift distributed tracing platform (Jaeger) Operator using the
OpenShift Elasticsearch Operator. You specify configuration options for self-provisioned Elasticsearch
under spec:storage:elasticsearch in your configuration file.

Table 4.7. Elasticsearch resource configuration parameters

Parameter Description Values Default value

elasticsearch:
 properties:
 doNotProvision:

Use to specify whether
or not an Elasticsearch
instance should be
provisioned by the Red
Hat OpenShift
distributed tracing
platform (Jaeger)
Operator.

true/false true

elasticsearch:
 properties:
 name:

Name of the
Elasticsearch instance.
The Red Hat OpenShift
distributed tracing
platform (Jaeger)
Operator uses the
Elasticsearch instance
specified in this
parameter to connect to
Elasticsearch.

string elasticsearch

OpenShift Container Platform 4.12 Distributed tracing

78

elasticsearch:
 nodeCount:

Number of Elasticsearch
nodes. For high
availability use at least 3
nodes. Do not use 2
nodes as “split brain”
problem can happen.

Integer value. For
example, Proof of
concept = 1, Minimum
deployment =3

3

elasticsearch:
 resources:
 requests:
 cpu:

Number of central
processing units for
requests, based on your
environment’s
configuration.

Specified in cores or
millicores, for example,
200m, 0.5, 1. For
example, Proof of
concept = 500m,
Minimum deployment =1

1

elasticsearch:
 resources:
 requests:
 memory:

Available memory for
requests, based on your
environment’s
configuration.

Specified in bytes, for
example, 200Ki, 50Mi,
5Gi. For example, Proof
of concept = 1Gi,
Minimum deployment =
16Gi*

16Gi

elasticsearch:
 resources:
 limits:
 cpu:

Limit on number of
central processing units,
based on your
environment’s
configuration.

Specified in cores or
millicores, for example,
200m, 0.5, 1. For
example, Proof of
concept = 500m,
Minimum deployment =1

elasticsearch:
 resources:
 limits:
 memory:

Available memory limit
based on your
environment’s
configuration.

Specified in bytes, for
example, 200Ki, 50Mi,
5Gi. For example, Proof
of concept = 1Gi,
Minimum deployment =
16Gi*

elasticsearch:

redundancyPolicy:

Data replication policy
defines how
Elasticsearch shards are
replicated across data
nodes in the cluster. If
not specified, the Red
Hat OpenShift
distributed tracing
platform (Jaeger)
Operator automatically
determines the most
appropriate replication
based on number of
nodes.

ZeroRedundancy(no
replica shards),
SingleRedundancy(o
ne replica shard),
MultipleRedundancy
(each index is spread
over half of the Data
nodes),
FullRedundancy
(each index is fully
replicated on every Data
node in the cluster).

Parameter Description Values Default value

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

79

elasticsearch:

useCertManageme
nt:

Use to specify whether
or not distributed tracing
platform (Jaeger)
should use the
certificate management
feature of the
OpenShift Elasticsearch
Operator. This feature
was added to {logging-
title} 5.2 in OpenShift
Container Platform 4.7
and is the preferred
setting for new Jaeger
deployments.

true/false true

Parameter Description Values Default value

Each Elasticsearch node can operate with a lower memory setting though this is NOT recommended for
production deployments. For production use, you must have no less than 16 Gi allocated to each pod by
default, but preferably allocate as much as you can, up to 64 Gi per pod.

Production storage example

Storage example with persistent storage:

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 3
 resources:
 requests:
 cpu: 1
 memory: 16Gi
 limits:
 memory: 16Gi

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 nodeCount: 1
 storage: 1

OpenShift Container Platform 4.12 Distributed tracing

80

1 Persistent storage configuration. In this case AWS gp2 with 5Gi size. When no value is specified,
distributed tracing platform (Jaeger) uses emptyDir. The OpenShift Elasticsearch Operator
provisions PersistentVolumeClaim and PersistentVolume which are not removed with distributed
tracing platform (Jaeger) instance. You can mount the same volumes if you create a distributed
tracing platform (Jaeger) instance with the same name and namespace.

4.2.6.5.2. Connecting to an existing Elasticsearch instance

You can use an existing Elasticsearch cluster for storage with distributed tracing platform. An existing
Elasticsearch cluster, also known as an external Elasticsearch instance, is an instance that was not
installed by the Red Hat OpenShift distributed tracing platform (Jaeger) Operator or by the OpenShift
Elasticsearch Operator.

When you deploy a Jaeger custom resource, the Red Hat OpenShift distributed tracing platform
(Jaeger) Operator will not provision Elasticsearch if the following configurations are set:

spec.storage.elasticsearch.doNotProvision set to true

spec.storage.options.es.server-urls has a value

spec.storage.elasticsearch.name has a value, or if the Elasticsearch instance name is
elasticsearch.

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator uses the Elasticsearch instance
specified in spec.storage.elasticsearch.name to connect to Elasticsearch.

Restrictions

You cannot share or reuse a OpenShift Container Platform logging Elasticsearch instance with
distributed tracing platform (Jaeger). The Elasticsearch cluster is meant to be dedicated for a
single distributed tracing platform (Jaeger) instance.

The following configuration parameters are for an already existing Elasticsearch instance, also known as
an external Elasticsearch instance. In this case, you specify configuration options for Elasticsearch under
spec:storage:options:es in your custom resource file.

Table 4.8. General ES configuration parameters

Parameter Description Values Default value

es:
 server-urls:

URL of the Elasticsearch
instance.

The fully-qualified
domain name of the
Elasticsearch server.

http://elasticsearch.
<namespace>.svc:92
00

 storageClassName: gp2
 size: 5Gi
 resources:
 requests:
 cpu: 200m
 memory: 4Gi
 limits:
 memory: 4Gi
 redundancyPolicy: ZeroRedundancy

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

81

http://:9200

es:
 max-doc-count:

The maximum document
count to return from an
Elasticsearch query. This
will also apply to
aggregations. If you set
both es.max-doc-
count and es.max-
num-spans,
Elasticsearch will use the
smaller value of the two.

 10000

es:
 max-num-spans:

[Deprecated - Will be
removed in a future
release, use es.max-
doc-count instead.]
The maximum number
of spans to fetch at a
time, per query, in
Elasticsearch. If you set
both es.max-num-
spans and es.max-
doc-count,
Elasticsearch will use the
smaller value of the two.

 10000

es:
 max-span-age:

The maximum lookback
for spans in
Elasticsearch.

 72h0m0s

es:
 sniffer:

The sniffer configuration
for Elasticsearch. The
client uses the sniffing
process to find all nodes
automatically. Disabled
by default.

true/ false false

es:
 sniffer-tls-
enabled:

Option to enable TLS
when sniffing an
Elasticsearch Cluster.
The client uses the
sniffing process to find
all nodes automatically.
Disabled by default

true/ false false

es:
 timeout:

Timeout used for
queries. When set to
zero there is no timeout.

 0s

Parameter Description Values Default value

OpenShift Container Platform 4.12 Distributed tracing

82

es:
 username:

The username required
by Elasticsearch. The
basic authentication also
loads CA if it is specified.
See also es.password.

es:
 password:

The password required
by Elasticsearch. See
also, es.username.

es:
 version:

The major Elasticsearch
version. If not specified,
the value will be auto-
detected from
Elasticsearch.

 0

Parameter Description Values Default value

Table 4.9. ES data replication parameters

Parameter Description Values Default value

es:
 num-replicas:

The number of replicas
per index in
Elasticsearch.

 1

es:
 num-shards:

The number of shards
per index in
Elasticsearch.

 5

Table 4.10. ES index configuration parameters

Parameter Description Values Default value

es:
 create-index-
templates:

Automatically create
index templates at
application startup when
set to true. When
templates are installed
manually, set to false.

true/ false true

es:
 index-prefix:

Optional prefix for
distributed tracing
platform (Jaeger)
indices. For example,
setting this to
"production" creates
indices named
"production-tracing-*".

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

83

Table 4.11. ES bulk processor configuration parameters

Parameter Description Values Default value

es:
 bulk:
 actions:

The number of requests
that can be added to the
queue before the bulk
processor decides to
commit updates to disk.

 1000

es:
 bulk:
 flush-interval:

A time.Duration after
which bulk requests are
committed, regardless
of other thresholds. To
disable the bulk
processor flush interval,
set this to zero.

 200ms

es:
 bulk:
 size:

The number of bytes
that the bulk requests
can take up before the
bulk processor decides
to commit updates to
disk.

 5000000

es:
 bulk:
 workers:

The number of workers
that are able to receive
and commit bulk
requests to
Elasticsearch.

 1

Table 4.12. ES TLS configuration parameters

Parameter Description Values Default value

es:
 tls:
 ca:

Path to a TLS
Certification Authority
(CA) file used to verify
the remote servers.

 Will use the system
truststore by default.

es:
 tls:
 cert:

Path to a TLS
Certificate file, used to
identify this process to
the remote servers.

es:
 tls:
 enabled:

Enable transport layer
security (TLS) when
talking to the remote
servers. Disabled by
default.

true/ false false

OpenShift Container Platform 4.12 Distributed tracing

84

es:
 tls:
 key:

Path to a TLS Private
Key file, used to identify
this process to the
remote servers.

es:
 tls:
 server-name:

Override the expected
TLS server name in the
certificate of the remote
servers.

es:
 token-file:

Path to a file containing
the bearer token. This
flag also loads the
Certification Authority
(CA) file if it is specified.

Parameter Description Values Default value

Table 4.13. ES archive configuration parameters

Parameter Description Values Default value

es-archive:
 bulk:
 actions:

The number of requests
that can be added to the
queue before the bulk
processor decides to
commit updates to disk.

 0

es-archive:
 bulk:
 flush-interval:

A time.Duration after
which bulk requests are
committed, regardless
of other thresholds. To
disable the bulk
processor flush interval,
set this to zero.

 0s

es-archive:
 bulk:
 size:

The number of bytes
that the bulk requests
can take up before the
bulk processor decides
to commit updates to
disk.

 0

es-archive:
 bulk:
 workers:

The number of workers
that are able to receive
and commit bulk
requests to
Elasticsearch.

 0

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

85

es-archive:
 create-index-
templates:

Automatically create
index templates at
application startup when
set to true. When
templates are installed
manually, set to false.

true/ false false

es-archive:
 enabled:

Enable extra storage. true/ false false

es-archive:
 index-prefix:

Optional prefix for
distributed tracing
platform (Jaeger)
indices. For example,
setting this to
"production" creates
indices named
"production-tracing-*".

es-archive:
 max-doc-count:

The maximum document
count to return from an
Elasticsearch query. This
will also apply to
aggregations.

 0

es-archive:
 max-num-spans:

[Deprecated - Will be
removed in a future
release, use es-
archive.max-doc-
count instead.] The
maximum number of
spans to fetch at a time,
per query, in
Elasticsearch.

 0

es-archive:
 max-span-age:

The maximum lookback
for spans in
Elasticsearch.

 0s

es-archive:
 num-replicas:

The number of replicas
per index in
Elasticsearch.

 0

Parameter Description Values Default value

OpenShift Container Platform 4.12 Distributed tracing

86

es-archive:
 num-shards:

The number of shards
per index in
Elasticsearch.

 0

es-archive:
 password:

The password required
by Elasticsearch. See
also, es.username.

es-archive:
 server-urls:

The comma-separated
list of Elasticsearch
servers. Must be
specified as fully
qualified URLs, for
example,
http://localhost:9200.

es-archive:
 sniffer:

The sniffer configuration
for Elasticsearch. The
client uses the sniffing
process to find all nodes
automatically. Disabled
by default.

true/ false false

es-archive:
 sniffer-tls-
enabled:

Option to enable TLS
when sniffing an
Elasticsearch Cluster.
The client uses the
sniffing process to find
all nodes automatically.
Disabled by default.

true/ false false

es-archive:
 timeout:

Timeout used for
queries. When set to
zero there is no timeout.

 0s

es-archive:
 tls:
 ca:

Path to a TLS
Certification Authority
(CA) file used to verify
the remote servers.

 Will use the system
truststore by default.

es-archive:
 tls:
 cert:

Path to a TLS
Certificate file, used to
identify this process to
the remote servers.

Parameter Description Values Default value

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

87

es-archive:
 tls:
 enabled:

Enable transport layer
security (TLS) when
talking to the remote
servers. Disabled by
default.

true/ false false

es-archive:
 tls:
 key:

Path to a TLS Private
Key file, used to identify
this process to the
remote servers.

es-archive:
 tls:
 server-name:

Override the expected
TLS server name in the
certificate of the remote
servers.

es-archive:
 token-file:

Path to a file containing
the bearer token. This
flag also loads the
Certification Authority
(CA) file if it is specified.

es-archive:
 username:

The username required
by Elasticsearch. The
basic authentication also
loads CA if it is specified.
See also es-
archive.password.

es-archive:
 version:

The major Elasticsearch
version. If not specified,
the value will be auto-
detected from
Elasticsearch.

 0

Parameter Description Values Default value

Storage example with volume mounts

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200
 index-prefix: my-prefix

OpenShift Container Platform 4.12 Distributed tracing

88

1

2

3

4

The following example shows a Jaeger CR using an external Elasticsearch cluster with TLS CA
certificate mounted from a volume and user/password stored in a secret.

External Elasticsearch example

URL to Elasticsearch service running in default namespace.

TLS configuration. In this case only CA certificate, but it can also contain es.tls.key and es.tls.cert
when using mutual TLS.

Secret which defines environment variables ES_PASSWORD and ES_USERNAME. Created by
kubectl create secret generic tracing-secret --from-literal=ES_PASSWORD=changeme --from-
literal=ES_USERNAME=elastic

Volume mounts and volumes which are mounted into all storage components.

4.2.6.6. Managing certificates with Elasticsearch

 tls:
 ca: /es/certificates/ca.crt
 secretName: tracing-secret
 volumeMounts:
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: https://quickstart-es-http.default.svc:9200 1
 index-prefix: my-prefix
 tls: 2
 ca: /es/certificates/ca.crt
 secretName: tracing-secret 3
 volumeMounts: 4
 - name: certificates
 mountPath: /es/certificates/
 readOnly: true
 volumes:
 - name: certificates
 secret:
 secretName: quickstart-es-http-certs-public

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

89

You can create and manage certificates using the OpenShift Elasticsearch Operator. Managing
certificates using the OpenShift Elasticsearch Operator also lets you use a single Elasticsearch cluster
with multiple Jaeger Collectors.

IMPORTANT

Managing certificates with Elasticsearch is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

Starting with version 2.4, the Red Hat OpenShift distributed tracing platform (Jaeger) Operator
delegates certificate creation to the OpenShift Elasticsearch Operator by using the following
annotations in the Elasticsearch custom resource:

logging.openshift.io/elasticsearch-cert-management: "true"

logging.openshift.io/elasticsearch-cert.jaeger-<shared-es-node-name>: "user.jaeger"

logging.openshift.io/elasticsearch-cert.curator-<shared-es-node-name>:
"system.logging.curator"

Where the <shared-es-node-name> is the name of the Elasticsearch node. For example, if you create
an Elasticsearch node named custom-es, your custom resource might look like the following example.

Example Elasticsearch CR showing annotations

apiVersion: logging.openshift.io/v1
kind: Elasticsearch
metadata:
 annotations:
 logging.openshift.io/elasticsearch-cert-management: "true"
 logging.openshift.io/elasticsearch-cert.jaeger-custom-es: "user.jaeger"
 logging.openshift.io/elasticsearch-cert.curator-custom-es: "system.logging.curator"
 name: custom-es
spec:
 managementState: Managed
 nodeSpec:
 resources:
 limits:
 memory: 16Gi
 requests:
 cpu: 1
 memory: 16Gi
 nodes:
 - nodeCount: 3
 proxyResources: {}
 resources: {}
 roles:
 - master

OpenShift Container Platform 4.12 Distributed tracing

90

https://access.redhat.com/support/offerings/techpreview/

Prerequisites

The Red Hat OpenShift Service Mesh Operator is installed.

The {logging-title} is installed with default configuration in your cluster.

The Elasticsearch node and the Jaeger instances must be deployed in the same namespace.
For example, tracing-system.

You enable certificate management by setting spec.storage.elasticsearch.useCertManagement to
true in the Jaeger custom resource.

Example showing useCertManagement

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator sets the Elasticsearch custom
resource name to the value of spec.storage.elasticsearch.name from the Jaeger custom resource
when provisioning Elasticsearch.

The certificates are provisioned by the OpenShift Elasticsearch Operator and the Red Hat OpenShift
distributed tracing platform (Jaeger) Operator injects the certificates.

4.2.6.7. Query configuration options

Query is a service that retrieves traces from storage and hosts the user interface to display them.

Table 4.14. Parameters used by the Red Hat OpenShift distributed tracing platform (Jaeger)
Operator to define Query

Parameter Description Values Default value

spec:
 query:
 replicas:

Specifies the number of
Query replicas to create.

Integer, for example, 2

 - client
 - data
 storage: {}
 redundancyPolicy: ZeroRedundancy

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger-prod
spec:
 strategy: production
 storage:
 type: elasticsearch
 elasticsearch:
 name: custom-es
 doNotProvision: true
 useCertManagement: true

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

91

Table 4.15. Configuration parameters passed to Query

Parameter Description Values Default value

spec:
 query:
 options: {}

Configuration options
that define the Query
service.

options:
 log-level:

Logging level for Query. Possible values: debug,
info, warn, error, fatal,
panic.

options:
 query:
 base-path:

The base path for all
jaeger-query HTTP
routes can be set to a
non-root value, for
example, /jaeger would
cause all UI URLs to
start with /jaeger. This
can be useful when
running jaeger-query
behind a reverse proxy.

/<path>

Sample Query configuration

4.2.6.8. Ingester configuration options

Ingester is a service that reads from a Kafka topic and writes to the Elasticsearch storage backend. If you
are using the allInOne or production deployment strategies, you do not need to configure the Ingester
service.

Table 4.16. Jaeger parameters passed to the Ingester

apiVersion: jaegertracing.io/v1
kind: "Jaeger"
metadata:
 name: "my-jaeger"
spec:
 strategy: allInOne
 allInOne:
 options:
 log-level: debug
 query:
 base-path: /jaeger

OpenShift Container Platform 4.12 Distributed tracing

92

Parameter Description Values

spec:
 ingester:
 options: {}

Configuration options that define
the Ingester service.

options:
 deadlockInterval:

Specifies the interval, in seconds
or minutes, that the Ingester must
wait for a message before
terminating. The deadlock interval
is disabled by default (set to 0), to
avoid terminating the Ingester
when no messages arrive during
system initialization.

Minutes and seconds, for
example, 1m0s. Default value is
0.

options:
 kafka:
 consumer:
 topic:

The topic parameter identifies
the Kafka configuration used by
the collector to produce the
messages, and the Ingester to
consume the messages.

Label for the consumer. For
example, jaeger-spans.

options:
 kafka:
 consumer:
 brokers:

Identifies the Kafka configuration
used by the Ingester to consume
the messages.

Label for the broker, for example,
my-cluster-kafka-
brokers.kafka:9092.

options:
 log-level:

Logging level for the Ingester. Possible values: debug, info,
warn, error, fatal, dpanic,
panic.

Streaming Collector and Ingester example

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: simple-streaming
spec:
 strategy: streaming
 collector:
 options:
 kafka:
 producer:
 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 options:
 kafka:
 consumer:

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

93

1

4.2.7. Injecting sidecars

The Red Hat OpenShift distributed tracing platform (Jaeger) relies on a proxy sidecar within the
application’s pod to provide the Agent. The Red Hat OpenShift distributed tracing platform (Jaeger)
Operator can inject Agent sidecars into deployment workloads. You can enable automatic sidecar
injection or manage it manually.

4.2.7.1. Automatically injecting sidecars

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator can inject Jaeger Agent
sidecars into deployment workloads. To enable automatic injection of sidecars, add the
sidecar.jaegertracing.io/inject annotation set to either the string true or to the distributed tracing
platform (Jaeger) instance name that is returned by running $ oc get jaegers. When you specify true,
there must be only a single distributed tracing platform (Jaeger) instance for the same namespace as
the deployment. Otherwise, the Operator is unable to determine which distributed tracing platform
(Jaeger) instance to use. A specific distributed tracing platform (Jaeger) instance name on a
deployment has a higher precedence than true applied on its namespace.

The following snippet shows a simple application that will inject a sidecar, with the agent pointing to the
single distributed tracing platform (Jaeger) instance available in the same namespace:

Automatic sidecar injection example

Set to either the string true or to the Jaeger instance name.

 topic: jaeger-spans
 brokers: my-cluster-kafka-brokers.kafka:9092
 ingester:
 deadlockInterval: 5
 storage:
 type: elasticsearch
 options:
 es:
 server-urls: http://elasticsearch:9200

apiVersion: apps/v1
kind: Deployment
metadata:
 name: myapp
 annotations:
 "sidecar.jaegertracing.io/inject": "true" 1
spec:
 selector:
 matchLabels:
 app: myapp
 template:
 metadata:
 labels:
 app: myapp
 spec:
 containers:
 - name: myapp
 image: acme/myapp:myversion

OpenShift Container Platform 4.12 Distributed tracing

94

When the sidecar is injected, the agent can then be accessed at its default location on localhost.

4.2.7.2. Manually injecting sidecars

The Red Hat OpenShift distributed tracing platform (Jaeger) Operator can only automatically inject
Jaeger Agent sidecars into Deployment workloads. For controller types other than Deployments, such
as StatefulSets`and `DaemonSets, you can manually define the Jaeger agent sidecar in your
specification.

The following snippet shows the manual definition you can include in your containers section for a
Jaeger agent sidecar:

Sidecar definition example for a StatefulSet

The agent can then be accessed at its default location on localhost.

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: example-statefulset
 namespace: example-ns
 labels:
 app: example-app
spec:

 spec:
 containers:
 - name: example-app
 image: acme/myapp:myversion
 ports:
 - containerPort: 8080
 protocol: TCP
 - name: jaeger-agent
 image: registry.redhat.io/distributed-tracing/jaeger-agent-rhel7:<version>
 # The agent version must match the Operator version
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 5775
 name: zk-compact-trft
 protocol: UDP
 - containerPort: 5778
 name: config-rest
 protocol: TCP
 - containerPort: 6831
 name: jg-compact-trft
 protocol: UDP
 - containerPort: 6832
 name: jg-binary-trft
 protocol: UDP
 - containerPort: 14271
 name: admin-http
 protocol: TCP
 args:
 - --reporter.grpc.host-port=dns:///jaeger-collector-headless.example-ns:14250
 - --reporter.type=grpc

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

95

4.3. UPGRADING

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Jaeger) is a deprecated feature.
Deprecated functionality is still included in OpenShift Container Platform and continues
to be supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

Operator Lifecycle Manager (OLM) controls the installation, upgrade, and role-based access control
(RBAC) of Operators in a cluster. The OLM runs by default in OpenShift Container Platform. OLM
queries for available Operators as well as upgrades for installed Operators.

During an update, the Red Hat OpenShift distributed tracing platform Operators upgrade the managed
distributed tracing platform instances to the version associated with the Operator. Whenever a new
version of the Red Hat OpenShift distributed tracing platform (Jaeger) Operator is installed, all the
distributed tracing platform (Jaeger) application instances managed by the Operator are upgraded to
the Operator’s version. For example, after upgrading the Operator from 1.10 installed to 1.11, the Operator
scans for running distributed tracing platform (Jaeger) instances and upgrades them to 1.11 as well.

IMPORTANT

If you have not already updated your OpenShift Elasticsearch Operator as described in
Updating OpenShift Logging, complete that update before updating your Red Hat
OpenShift distributed tracing platform (Jaeger) Operator.

4.3.1. Additional resources

Operator Lifecycle Manager concepts and resources

Updating installed Operators

Updating OpenShift Logging

4.4. REMOVING

IMPORTANT

The Red Hat OpenShift distributed tracing platform (Jaeger) is a deprecated feature.
Deprecated functionality is still included in OpenShift Container Platform and continues
to be supported; however, it will be removed in a future release of this product and is not
recommended for new deployments.

For the most recent list of major functionality that has been deprecated or removed
within OpenShift Container Platform, refer to the Deprecated and removed features
section of the OpenShift Container Platform release notes.

The steps for removing Red Hat OpenShift distributed tracing platform from an OpenShift Container
Platform cluster are as follows:

OpenShift Container Platform 4.12 Distributed tracing

96

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/logging/#cluster-logging-upgrading
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-understanding-olm
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-upgrading-operators
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/logging/#cluster-logging-upgrading

1. Shut down any Red Hat OpenShift distributed tracing platform pods.

2. Remove any Red Hat OpenShift distributed tracing platform instances.

3. Remove the Red Hat OpenShift distributed tracing platform (Jaeger) Operator.

4. Remove the Red Hat build of OpenTelemetry Operator.

4.4.1. Removing a distributed tracing platform (Jaeger) instance by using the web
console

You can remove a distributed tracing platform (Jaeger) instance in the Administrator view of the web
console.

WARNING

When deleting an instance that uses in-memory storage, all data is irretrievably lost.
Data stored in persistent storage such as Elasticsearch is not deleted when a Red
Hat OpenShift distributed tracing platform (Jaeger) instance is removed.

Prerequisites

You are logged in to the web console as a cluster administrator with the cluster-admin role.

Procedure

1. Log in to the OpenShift Container Platform web console.

2. Navigate to Operators → Installed Operators.

3. Select the name of the project where the Operators are installed from the Project menu, for
example, openshift-operators.

4. Click the Red Hat OpenShift distributed tracing platform (Jaeger) Operator.

5. Click the Jaeger tab.

6. Click the Options menu next to the instance you want to delete and select Delete
Jaeger.

7. In the confirmation message, click Delete.

4.4.2. Removing a distributed tracing platform (Jaeger) instance by using the CLI

You can remove a distributed tracing platform (Jaeger) instance on the command line.

Prerequisites

An active OpenShift CLI (oc) session by a cluster administrator with the cluster-admin role.

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

97

TIP

Ensure that your OpenShift CLI (oc) version is up to date and matches your OpenShift
Container Platform version.

Run oc login:

Procedure

1. Log in with the OpenShift CLI (oc) by running the following command:

2. To display the distributed tracing platform (Jaeger) instances, run the following command:

For example,

The names of Operators have the suffix -operator. The following example shows two Red Hat
OpenShift distributed tracing platform (Jaeger) Operators and four distributed tracing
platform (Jaeger) instances:

You will see output similar to the following:

3. To remove an instance of distributed tracing platform (Jaeger), run the following command:

For example:

4. To verify the deletion, run the oc get deployments command again:

For example:

$ oc login --username=<your_username>

$ oc login --username=<NAMEOFUSER>

$ oc get deployments -n <jaeger-project>

$ oc get deployments -n openshift-operators

$ oc get deployments -n openshift-operators

NAME READY UP-TO-DATE AVAILABLE AGE
elasticsearch-operator 1/1 1 1 93m
jaeger-operator 1/1 1 1 49m
jaeger-test 1/1 1 1 7m23s
jaeger-test2 1/1 1 1 6m48s
tracing1 1/1 1 1 7m8s
tracing2 1/1 1 1 35m

$ oc delete jaeger <deployment-name> -n <jaeger-project>

$ oc delete jaeger tracing2 -n openshift-operators

$ oc get deployments -n <jaeger-project>

OpenShift Container Platform 4.12 Distributed tracing

98

You will see generated output that is similar to the following example:

4.4.3. Removing the Red Hat OpenShift distributed tracing platform Operators

Procedure

1. Follow the instructions in Deleting Operators from a cluster to remove the Red Hat OpenShift
distributed tracing platform (Jaeger) Operator.

2. Optional: After the Red Hat OpenShift distributed tracing platform (Jaeger) Operator has been
removed, remove the OpenShift Elasticsearch Operator.

$ oc get deployments -n openshift-operators

NAME READY UP-TO-DATE AVAILABLE AGE
elasticsearch-operator 1/1 1 1 94m
jaeger-operator 1/1 1 1 50m
jaeger-test 1/1 1 1 8m14s
jaeger-test2 1/1 1 1 7m39s
tracing1 1/1 1 1 7m59s

CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)

99

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-deleting-operators-from-a-cluster

	Table of Contents
	CHAPTER 1. RELEASE NOTES
	1.1. RELEASE NOTES FOR RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM 3.1.1
	1.1.1. Distributed tracing overview
	1.1.2. CVEs
	1.1.3. Red Hat OpenShift distributed tracing platform (Tempo)
	1.1.3.1. Known issues

	1.1.4. Red Hat OpenShift distributed tracing platform (Jaeger)
	1.1.4.1. Support for OpenShift Elasticsearch Operator
	1.1.4.2. Deprecated functionality
	1.1.4.3. Known issues

	1.1.5. Getting support
	1.1.6. Making open source more inclusive

	1.2. RELEASE NOTES FOR PAST RELEASES OF RED HAT OPENSHIFT DISTRIBUTED TRACING PLATFORM
	1.2.1. Distributed tracing overview
	1.2.2. Release notes for Red Hat OpenShift distributed tracing platform 3.1
	1.2.2.1. Red Hat OpenShift distributed tracing platform (Tempo)
	1.2.2.2. Red Hat OpenShift distributed tracing platform (Jaeger)

	1.2.3. Release notes for Red Hat OpenShift distributed tracing platform 3.0
	1.2.3.1. Component versions in the Red Hat OpenShift distributed tracing platform 3.0
	1.2.3.2. Red Hat OpenShift distributed tracing platform (Jaeger)
	1.2.3.3. Red Hat OpenShift distributed tracing platform (Tempo)

	1.2.4. Release notes for Red Hat OpenShift distributed tracing platform 2.9.2
	1.2.4.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9.2
	1.2.4.2. CVEs
	1.2.4.3. Red Hat OpenShift distributed tracing platform (Jaeger)
	1.2.4.4. Red Hat OpenShift distributed tracing platform (Tempo)

	1.2.5. Release notes for Red Hat OpenShift distributed tracing platform 2.9.1
	1.2.5.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9.1
	1.2.5.2. CVEs
	1.2.5.3. Red Hat OpenShift distributed tracing platform (Jaeger)
	1.2.5.4. Red Hat OpenShift distributed tracing platform (Tempo)

	1.2.6. Release notes for Red Hat OpenShift distributed tracing platform 2.9
	1.2.6.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.9
	1.2.6.2. Red Hat OpenShift distributed tracing platform (Jaeger)
	1.2.6.3. Red Hat OpenShift distributed tracing platform (Tempo)

	1.2.7. Release notes for Red Hat OpenShift distributed tracing platform 2.8
	1.2.7.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.8
	1.2.7.2. Technology Preview features
	1.2.7.3. Bug fixes

	1.2.8. Release notes for Red Hat OpenShift distributed tracing platform 2.7
	1.2.8.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.7
	1.2.8.2. Bug fixes

	1.2.9. Release notes for Red Hat OpenShift distributed tracing platform 2.6
	1.2.9.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.6
	1.2.9.2. Bug fixes

	1.2.10. Release notes for Red Hat OpenShift distributed tracing platform 2.5
	1.2.10.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.5
	1.2.10.2. New features and enhancements
	1.2.10.3. Bug fixes

	1.2.11. Release notes for Red Hat OpenShift distributed tracing platform 2.4
	1.2.11.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.4
	1.2.11.2. New features and enhancements
	1.2.11.3. Technology Preview features
	1.2.11.4. Bug fixes

	1.2.12. Release notes for Red Hat OpenShift distributed tracing platform 2.3
	1.2.12.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.3.1
	1.2.12.2. Component versions in the Red Hat OpenShift distributed tracing platform 2.3.0
	1.2.12.3. New features and enhancements
	1.2.12.4. Bug fixes

	1.2.13. Release notes for Red Hat OpenShift distributed tracing platform 2.2
	1.2.13.1. Technology Preview features
	1.2.13.2. Bug fixes

	1.2.14. Release notes for Red Hat OpenShift distributed tracing platform 2.1
	1.2.14.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.1
	1.2.14.2. Technology Preview features
	1.2.14.3. Bug fixes

	1.2.15. Release notes for Red Hat OpenShift distributed tracing platform 2.0
	1.2.15.1. Component versions in the Red Hat OpenShift distributed tracing platform 2.0
	1.2.15.2. New features and enhancements
	1.2.15.3. Technology Preview features
	1.2.15.4. Bug fixes

	1.2.16. Getting support
	1.2.17. Making open source more inclusive

	CHAPTER 2. DISTRIBUTED TRACING ARCHITECTURE
	2.1. DISTRIBUTED TRACING ARCHITECTURE
	2.1.1. Distributed tracing overview
	2.1.2. Red Hat OpenShift distributed tracing platform features
	2.1.3. Red Hat OpenShift distributed tracing platform architecture
	2.1.4. Additional resources

	CHAPTER 3. DISTRIBUTED TRACING PLATFORM (TEMPO)
	3.1. INSTALLING
	3.1.1. Object storage setup
	3.1.2. Installing by using the web console
	3.1.3. Installing by using the CLI
	3.1.4. Additional resources

	3.2. CONFIGURING
	3.2.1. Customizing your deployment
	3.2.1.1. Default configuration options
	3.2.1.2. Storage configuration
	3.2.1.3. Query configuration options
	3.2.1.4. Configuration of the monitor tab in Jaeger UI
	3.2.1.5. Multitenancy

	3.2.2. Configuring monitoring and alerts
	3.2.2.1. Configuring the TempoStack metrics and alerts
	3.2.2.2. Configuring the Tempo Operator metrics and alerts

	3.3. UPGRADING
	3.3.1. Additional resources

	3.4. REMOVING
	3.4.1. Removing by using the web console
	3.4.2. Removing by using the CLI
	3.4.3. Additional resources

	CHAPTER 4. DISTRIBUTED TRACING PLATFORM (JAEGER)
	4.1. INSTALLING
	4.1.1. Prerequisites
	4.1.2. Red Hat OpenShift distributed tracing platform installation overview
	4.1.3. Installing the OpenShift Elasticsearch Operator
	4.1.4. Installing the Red Hat OpenShift distributed tracing platform Operator

	4.2. CONFIGURING
	4.2.1. Supported deployment strategies
	4.2.2. Deploying the distributed tracing platform default strategy from the web console
	4.2.2.1. Deploying the distributed tracing platform default strategy from the CLI

	4.2.3. Deploying the distributed tracing platform production strategy from the web console
	4.2.3.1. Deploying the distributed tracing platform production strategy from the CLI

	4.2.4. Deploying the distributed tracing platform streaming strategy from the web console
	4.2.4.1. Deploying the distributed tracing platform streaming strategy from the CLI

	4.2.5. Validating your deployment
	4.2.5.1. Accessing the Jaeger console

	4.2.6. Customizing your deployment
	4.2.6.1. Deployment best practices
	4.2.6.2. Distributed tracing default configuration options
	4.2.6.3. Jaeger Collector configuration options
	4.2.6.4. Distributed tracing sampling configuration options
	4.2.6.5. Distributed tracing storage configuration options
	4.2.6.6. Managing certificates with Elasticsearch
	4.2.6.7. Query configuration options
	4.2.6.8. Ingester configuration options

	4.2.7. Injecting sidecars
	4.2.7.1. Automatically injecting sidecars
	4.2.7.2. Manually injecting sidecars

	4.3. UPGRADING
	4.3.1. Additional resources

	4.4. REMOVING
	4.4.1. Removing a distributed tracing platform (Jaeger) instance by using the web console
	4.4.2. Removing a distributed tracing platform (Jaeger) instance by using the CLI
	4.4.3. Removing the Red Hat OpenShift distributed tracing platform Operators

