
OpenShift Container Platform 4.12

Cluster Observability Operator

Configuring and using the Cluster Observability Operator in OpenShift Container
Platform

Last Updated: 2024-06-06

OpenShift Container Platform 4.12 Cluster Observability Operator

Configuring and using the Cluster Observability Operator in OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Use the Cluster Observability Operator to deploy and configure observability components in
OpenShift Container Platform.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. CLUSTER OBSERVABILITY OPERATOR RELEASE NOTES
1.1. CLUSTER OBSERVABILITY OPERATOR 0.2.0

1.1.1. New features and enhancements
1.2. CLUSTER OBSERVABILITY OPERATOR 0.1.3

1.2.1. Bug fixes
1.3. CLUSTER OBSERVABILITY OPERATOR 0.1.2

1.3.1. CVEs
1.3.2. Bug fixes

1.4. CLUSTER OBSERVABILITY OPERATOR 0.1.1
1.4.1. New features and enhancements

1.5. CLUSTER OBSERVABILITY OPERATOR 0.1

CHAPTER 2. CLUSTER OBSERVABILITY OPERATOR OVERVIEW
2.1. UNDERSTANDING THE CLUSTER OBSERVABILITY OPERATOR

2.1.1. Advantages of using the Cluster Observability Operator

CHAPTER 3. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR
3.1. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR IN THE WEB CONSOLE
3.2. UNINSTALLING THE CLUSTER OBSERVABILITY OPERATOR USING THE WEB CONSOLE

CHAPTER 4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE
4.1. DEPLOYING A SAMPLE SERVICE FOR CLUSTER OBSERVABILITY OPERATOR
4.2. SPECIFYING HOW A SERVICE IS MONITORED BY CLUSTER OBSERVABILITY OPERATOR
4.3. CREATING A MONITORINGSTACK OBJECT FOR THE CLUSTER OBSERVABILITY OPERATOR

3
3
3
3
3
3
4
4
4
4
4

5
5
5

7
7
8

9
9

10
12

Table of Contents

1

OpenShift Container Platform 4.12 Cluster Observability Operator

2

CHAPTER 1. CLUSTER OBSERVABILITY OPERATOR RELEASE
NOTES

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Cluster Observability Operator (COO) is an optional OpenShift Container Platform Operator that
enables administrators to create standalone monitoring stacks that are independently configurable for
use by different services and users.

The COO complements the built-in monitoring capabilities of OpenShift Container Platform. You can
deploy it in parallel with the default platform and user workload monitoring stacks managed by the
Cluster Monitoring Operator (CMO).

These release notes track the development of the Cluster Observability Operator in OpenShift
Container Platform.

1.1. CLUSTER OBSERVABILITY OPERATOR 0.2.0

The following advisory is available for Cluster Observability Operator 0.2.0:

RHEA-2024:2662 Cluster Observability Operator 0.2.0

1.1.1. New features and enhancements

With this release, the Cluster Observability Operator supports installing and managing
observability-related plugins for the OpenShift Container Platform web console user interface
(UI). (COO-58)

1.2. CLUSTER OBSERVABILITY OPERATOR 0.1.3

The following advisory is available for Cluster Observability Operator 0.1.3:

RHEA-2024:1744 Cluster Observability Operator 0.1.3

1.2.1. Bug fixes

Previously, if you tried to access the Prometheus web user interface (UI) at
http://<prometheus_url>:9090/graph, the following error message would display: Error
opening React index.html: open web/ui/static/react/index.html: no such file or directory.
This release resolves the issue, and the Prometheus web UI now displays correctly. (COO-34)

1.3. CLUSTER OBSERVABILITY OPERATOR 0.1.2

CHAPTER 1. CLUSTER OBSERVABILITY OPERATOR RELEASE NOTES

3

https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/errata/RHEA-2024:2662
https://issues.redhat.com/browse/COO-58
https://access.redhat.com/errata/RHEA-2024:1744
https://issues.redhat.com/browse/COO-34

The following advisory is available for Cluster Observability Operator 0.1.2:

RHEA-2024:1534 Cluster Observability Operator 0.1.2

1.3.1. CVEs

CVE-2023-45142

1.3.2. Bug fixes

Previously, certain cluster service version (CSV) annotations were not included in the metadata
for COO. Because of these missing annotations, certain COO features and capabilities did not
appear in the package manifest or in the OperatorHub user interface. This release adds the
missing annotations, thereby resolving this issue. (COO-11)

Previously, automatic updates of the COO did not work, and a newer version of the Operator did
not automatically replace the older version, even though the newer version was available in
OperatorHub. This release resolves the issue. (COO-12)

Previously, Thanos Querier only listened for network traffic on port 9090 of 127.0.0.1
(localhost), which resulted in a 502 Bad Gateway error if you tried to reach the Thanos Querier
service. With this release, the Thanos Querier configuration has been updated so that the
component now listens on the default port (10902), thereby resolving the issue. As a result of
this change, you can also now modify the port via server side apply (SSA) and add a proxy chain,
if required. (COO-14)

1.4. CLUSTER OBSERVABILITY OPERATOR 0.1.1

The following advisory is available for Cluster Observability Operator 0.1.1:

2024:0550 Cluster Observability Operator 0.1.1

1.4.1. New features and enhancements

This release updates the Cluster Observability Operator to support installing the Operator in restricted
networks or disconnected environments.

1.5. CLUSTER OBSERVABILITY OPERATOR 0.1

This release makes a Technology Preview version of the Cluster Observability Operator available on
OperatorHub.

OpenShift Container Platform 4.12 Cluster Observability Operator

4

https://access.redhat.com/errata/RHEA-2024:1534
https://access.redhat.com/security/cve/CVE-2023-45142
https://issues.redhat.com/browse/COO-11
https://issues.redhat.com/browse/COO-12
https://issues.redhat.com/browse/COO-14
https://access.redhat.com/errata/RHEA-2024:0550

CHAPTER 2. CLUSTER OBSERVABILITY OPERATOR
OVERVIEW

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

The Cluster Observability Operator (COO) is an optional component of the OpenShift Container
Platform. You can deploy it to create standalone monitoring stacks that are independently configurable
for use by different services and users.

The COO deploys the following monitoring components:

Prometheus

Thanos Querier (optional)

Alertmanager (optional)

The COO components function independently of the default in-cluster monitoring stack, which is
deployed and managed by the Cluster Monitoring Operator (CMO). Monitoring stacks deployed by the
two Operators do not conflict. You can use a COO monitoring stack in addition to the default platform
monitoring components deployed by the CMO.

2.1. UNDERSTANDING THE CLUSTER OBSERVABILITY OPERATOR

A default monitoring stack created by the Cluster Observability Operator (COO) includes a highly
available Prometheus instance capable of sending metrics to an external endpoint by using remote
write.

Each COO stack also includes an optional Thanos Querier component, which you can use to query a
highly available Prometheus instance from a central location, and an optional Alertmanager component,
which you can use to set up alert configurations for different services.

2.1.1. Advantages of using the Cluster Observability Operator

The MonitoringStack CRD used by the COO offers an opinionated default monitoring configuration for
COO-deployed monitoring components, but you can customize it to suit more complex requirements.

Deploying a COO-managed monitoring stack can help meet monitoring needs that are difficult or
impossible to address by using the core platform monitoring stack deployed by the Cluster Monitoring
Operator (CMO). A monitoring stack deployed using COO has the following advantages over core
platform and user workload monitoring:

Extendability

Users can add more metrics to a COO-deployed monitoring stack, which is not possible with core

CHAPTER 2. CLUSTER OBSERVABILITY OPERATOR OVERVIEW

5

https://access.redhat.com/support/offerings/techpreview/

Users can add more metrics to a COO-deployed monitoring stack, which is not possible with core
platform monitoring without losing support. In addition, COO-managed stacks can receive certain
cluster-specific metrics from core platform monitoring by using federation.

Multi-tenancy support

The COO can create a monitoring stack per user namespace. You can also deploy multiple stacks per
namespace or a single stack for multiple namespaces. For example, cluster administrators, SRE
teams, and development teams can all deploy their own monitoring stacks on a single cluster, rather
than having to use a single shared stack of monitoring components. Users on different teams can
then independently configure features such as separate alerts, alert routing, and alert receivers for
their applications and services.

Scalability

You can create COO-managed monitoring stacks as needed. Multiple monitoring stacks can run on a
single cluster, which can facilitate the monitoring of very large clusters by using manual sharding. This
ability addresses cases where the number of metrics exceeds the monitoring capabilities of a single
Prometheus instance.

Flexibility

Deploying the COO with Operator Lifecycle Manager (OLM) decouples COO releases from
OpenShift Container Platform release cycles. This method of deployment enables faster release
iterations and the ability to respond rapidly to changing requirements and issues. Additionally, by
deploying a COO-managed monitoring stack, users can manage alerting rules independently of
OpenShift Container Platform release cycles.

Highly customizable

The COO can delegate ownership of single configurable fields in custom resources to users by using
Server-Side Apply (SSA), which enhances customization.

Additional resources

Kubernetes documentation for Server-Side Apply (SSA)

OpenShift Container Platform 4.12 Cluster Observability Operator

6

https://kubernetes.io/docs/reference/using-api/server-side-apply/

CHAPTER 3. INSTALLING THE CLUSTER OBSERVABILITY
OPERATOR

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

As a cluster administrator, you can install or remove the Cluster Observability Operator (COO) from
OperatorHub by using the OpenShift Container Platform web console. OperatorHub is a user interface
that works in conjunction with Operator Lifecycle Manager (OLM), which installs and manages
Operators on a cluster.

3.1. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR IN THE
WEB CONSOLE

Install the Cluster Observability Operator (COO) from OperatorHub by using the OpenShift Container
Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have logged in to the OpenShift Container Platform web console.

Procedure

1. In the OpenShift Container Platform web console, click Operators → OperatorHub.

2. Type cluster observability operator in the Filter by keyword box.

3. Click Cluster Observability Operator in the list of results.

4. Read the information about the Operator, and review the following default installation settings:

Update channel → development

Version → <most_recent_version>

Installation mode → All namespaces on the cluster (default)

Installed Namespace → openshift-operators

Update approval → Automatic

5. Optional: Change default installation settings to suit your requirements. For example, you can

CHAPTER 3. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR

7

https://access.redhat.com/support/offerings/techpreview/

5. Optional: Change default installation settings to suit your requirements. For example, you can
select to subscribe to a different update channel, to install an older released version of the
Operator, or to require manual approval for updates to new versions of the Operator.

6. Click Install.

Verification

Go to Operators → Installed Operators, and verify that the Cluster Observability Operator
entry appears in the list.

Additional resources

Adding Operators to a cluster

3.2. UNINSTALLING THE CLUSTER OBSERVABILITY OPERATOR
USING THE WEB CONSOLE

If you have installed the Cluster Observability Operator (COO) by using OperatorHub, you can uninstall
it in the OpenShift Container Platform web console.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role.

You have logged in to the OpenShift Container Platform web console.

Procedure

1. Go to Operators → Installed Operators.

2. Locate the Cluster Observability Operator entry in the list.

3. Click for this entry and select Uninstall Operator.

Verification

Go to Operators → Installed Operators, and verify that the Cluster Observability Operator
entry no longer appears in the list.

OpenShift Container Platform 4.12 Cluster Observability Operator

8

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/#olm-adding-operators-to-a-cluster

CHAPTER 4. CONFIGURING THE CLUSTER OBSERVABILITY
OPERATOR TO MONITOR A SERVICE

IMPORTANT

The Cluster Observability Operator is a Technology Preview feature only. Technology
Preview features are not supported with Red Hat production service level agreements
(SLAs) and might not be functionally complete. Red Hat does not recommend using
them in production. These features provide early access to upcoming product features,
enabling customers to test functionality and provide feedback during the development
process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope .

You can monitor metrics for a service by configuring monitoring stacks managed by the Cluster
Observability Operator (COO).

To test monitoring a service, follow these steps:

Deploy a sample service that defines a service endpoint.

Create a ServiceMonitor object that specifies how the service is to be monitored by the COO.

Create a MonitoringStack object to discover the ServiceMonitor object.

4.1. DEPLOYING A SAMPLE SERVICE FOR CLUSTER OBSERVABILITY
OPERATOR

This configuration deploys a sample service named prometheus-coo-example-app in the user-defined
ns1-coo project. The service exposes the custom version metric.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or as a user with
administrative permissions for the namespace.

Procedure

1. Create a YAML file named prometheus-coo-example-app.yaml that contains the following
configuration details for a namespace, deployment, and service:

apiVersion: v1
kind: Namespace
metadata:
 name: ns1-coo

apiVersion: apps/v1
kind: Deployment
metadata:
 labels:
 app: prometheus-coo-example-app
 name: prometheus-coo-example-app

CHAPTER 4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE

9

https://access.redhat.com/support/offerings/techpreview/

2. Save the file.

3. Apply the configuration to the cluster by running the following command:

4. Verify that the pod is running by running the following command and observing the output:

Example output

4.2. SPECIFYING HOW A SERVICE IS MONITORED BY CLUSTER
OBSERVABILITY OPERATOR

To use the metrics exposed by the sample service you created in the "Deploying a sample service for

 namespace: ns1-coo
spec:
 replicas: 1
 selector:
 matchLabels:
 app: prometheus-coo-example-app
 template:
 metadata:
 labels:
 app: prometheus-coo-example-app
 spec:
 containers:
 - image: ghcr.io/rhobs/prometheus-example-app:0.4.2
 imagePullPolicy: IfNotPresent
 name: prometheus-coo-example-app

apiVersion: v1
kind: Service
metadata:
 labels:
 app: prometheus-coo-example-app
 name: prometheus-coo-example-app
 namespace: ns1-coo
spec:
 ports:
 - port: 8080
 protocol: TCP
 targetPort: 8080
 name: web
 selector:
 app: prometheus-coo-example-app
 type: ClusterIP

$ oc apply -f prometheus-coo-example-app.yaml

$ oc -n ns1-coo get pod

NAME READY STATUS RESTARTS AGE
prometheus-coo-example-app-0927545cb7-anskj 1/1 Running 0 81m

OpenShift Container Platform 4.12 Cluster Observability Operator

10

To use the metrics exposed by the sample service you created in the "Deploying a sample service for
Cluster Observability Operator" section, you must configure monitoring components to scrape metrics
from the /metrics endpoint.

You can create this configuration by using a ServiceMonitor object that specifies how the service is to
be monitored, or a PodMonitor object that specifies how a pod is to be monitored. The ServiceMonitor
object requires a Service object. The PodMonitor object does not, which enables the MonitoringStack
object to scrape metrics directly from the metrics endpoint exposed by a pod.

This procedure shows how to create a ServiceMonitor object for a sample service named prometheus-
coo-example-app in the ns1-coo namespace.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or as a user with
administrative permissions for the namespace.

You have installed the Cluster Observability Operator.

You have deployed the prometheus-coo-example-app sample service in the ns1-coo
namespace.

NOTE

The prometheus-coo-example-app sample service does not support TLS
authentication.

Procedure

1. Create a YAML file named example-coo-app-service-monitor.yaml that contains the
following ServiceMonitor object configuration details:

This configuration defines a ServiceMonitor object that the MonitoringStack object will
reference to scrape the metrics data exposed by the prometheus-coo-example-app sample
service.

2. Apply the configuration to the cluster by running the following command:

apiVersion: monitoring.rhobs/v1
kind: ServiceMonitor
metadata:
 labels:
 k8s-app: prometheus-coo-example-monitor
 name: prometheus-coo-example-monitor
 namespace: ns1-coo
spec:
 endpoints:
 - interval: 30s
 port: web
 scheme: http
 selector:
 matchLabels:
 app: prometheus-coo-example-app

$ oc apply -f example-app-service-monitor.yaml

CHAPTER 4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE

11

3. Verify that the ServiceMonitor resource is created by running the following command and
observing the output:

Example output

4.3. CREATING A MONITORINGSTACK OBJECT FOR THE CLUSTER
OBSERVABILITY OPERATOR

To scrape the metrics data exposed by the target prometheus-coo-example-app service, create a
MonitoringStack object that references the ServiceMonitor object you created in the "Specifying how
a service is monitored for Cluster Observability Operator" section. This MonitoringStack object can
then discover the service and scrape the exposed metrics data from it.

Prerequisites

You have access to the cluster as a user with the cluster-admin cluster role or as a user with
administrative permissions for the namespace.

You have installed the Cluster Observability Operator.

You have deployed the prometheus-coo-example-app sample service in the ns1-coo
namespace.

You have created a ServiceMonitor object named prometheus-coo-example-monitor in the
ns1-coo namespace.

Procedure

1. Create a YAML file for the MonitoringStack object configuration. For this example, name the
file example-coo-monitoring-stack.yaml.

2. Add the following MonitoringStack object configuration details:

Example MonitoringStack object

3. Apply the MonitoringStack object by running the following command:

$ oc -n ns1-coo get servicemonitors.monitoring.rhobs

NAME AGE
prometheus-coo-example-monitor 81m

apiVersion: monitoring.rhobs/v1alpha1
kind: MonitoringStack
metadata:
 name: example-coo-monitoring-stack
 namespace: ns1-coo
spec:
 logLevel: debug
 retention: 1d
 resourceSelector:
 matchLabels:
 k8s-app: prometheus-coo-example-monitor

OpenShift Container Platform 4.12 Cluster Observability Operator

12

4. Verify that the MonitoringStack object is available by running the following command and
inspecting the output:

Example output

$ oc apply -f example-coo-monitoring-stack.yaml

$ oc -n ns1-coo get monitoringstack

NAME AGE
example-coo-monitoring-stack 81m

CHAPTER 4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE

13

	Table of Contents
	CHAPTER 1. CLUSTER OBSERVABILITY OPERATOR RELEASE NOTES
	1.1. CLUSTER OBSERVABILITY OPERATOR 0.2.0
	1.1.1. New features and enhancements

	1.2. CLUSTER OBSERVABILITY OPERATOR 0.1.3
	1.2.1. Bug fixes

	1.3. CLUSTER OBSERVABILITY OPERATOR 0.1.2
	1.3.1. CVEs
	1.3.2. Bug fixes

	1.4. CLUSTER OBSERVABILITY OPERATOR 0.1.1
	1.4.1. New features and enhancements

	1.5. CLUSTER OBSERVABILITY OPERATOR 0.1

	CHAPTER 2. CLUSTER OBSERVABILITY OPERATOR OVERVIEW
	2.1. UNDERSTANDING THE CLUSTER OBSERVABILITY OPERATOR
	2.1.1. Advantages of using the Cluster Observability Operator

	CHAPTER 3. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR
	3.1. INSTALLING THE CLUSTER OBSERVABILITY OPERATOR IN THE WEB CONSOLE
	3.2. UNINSTALLING THE CLUSTER OBSERVABILITY OPERATOR USING THE WEB CONSOLE

	CHAPTER 4. CONFIGURING THE CLUSTER OBSERVABILITY OPERATOR TO MONITOR A SERVICE
	4.1. DEPLOYING A SAMPLE SERVICE FOR CLUSTER OBSERVABILITY OPERATOR
	4.2. SPECIFYING HOW A SERVICE IS MONITORED BY CLUSTER OBSERVABILITY OPERATOR
	4.3. CREATING A MONITORINGSTACK OBJECT FOR THE CLUSTER OBSERVABILITY OPERATOR

