& RedHat

OpenShift Container Platform 4.11

Networking

Configuring and managing cluster networking

Last Updated: 2024-02-07

OpenShift Container Platform 4.11 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your OpenShift Container
Platform cluster network, including DNS, ingress, and the Pod network.

Table of Contents

Table of Contents

CHAPTER 1. UNDERSTANDING NETWORKING ... i ittt it tieneeeeeeenneeneannnns 17
1.1. OPENSHIFT CONTAINER PLATFORM DNS 17
1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR 17

1.2.1. Comparing routes and Ingress 18
1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER PLATFORM NETWORKING 18

CHAPTER 2. ACCESSING HOST S .ottt ei e i e et et eaeeaneeeaneenaneennneenneenns 21
2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE
CLUSTER 21

CHAPTER 3. NETWORKING OPERATORS OVERVIEW ... it i ittt et tiieeeeeennnnnns 22
3.1. CLUSTER NETWORK OPERATOR 22
3.2. DNS OPERATOR 22
3.3. INGRESS OPERATOR 22
3.4. EXTERNAL DNS OPERATOR 22
3.5.NETWORK OBSERVABILITY OPERATOR 22

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM 23
4.1. CLUSTER NETWORK OPERATOR 23
4.2.VIEWING THE CLUSTER NETWORK CONFIGURATION 23
4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS 24
4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS 24
4.5. CLUSTER NETWORK OPERATOR CONFIGURATION 24

4.5.1. Cluster Network Operator configuration object 25
defaultNetwork object configuration 26
Configuration for the OpenShift SDN CNI cluster network provider 26
Configuration for the OVN-Kubernetes CNI cluster network provider 27
kubeProxyConfig object configuration 29
4.5.2. Cluster Network Operator example configuration 30
4.6. ADDITIONAL RESOURCES 31

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM ittt ieenn, 32
5.1. DNS OPERATOR 32
5.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE 32
5.3. CONTROLLING DNS POD PLACEMENT 33
5.4.VIEW THE DEFAULT DNS 34
5.5. USING DNS FORWARDING 34
5.6. DNS OPERATOR STATUS 38
5.7. DNS OPERATOR LOGS 39
5.8. SETTING THE COREDNS LOG LEVEL 39
59.SETTING THE COREDNS OPERATOR LOG LEVEL 39

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINERPLATFORM it 41
6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR 41
6.2. THE INGRESS CONFIGURATION ASSET 41
6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS 41

6.3.1. Ingress Controller TLS security profiles 52
6.3.1.1. Understanding TLS security profiles 52
6.3.1.2. Configuring the TLS security profile for the Ingress Controller 53
6.3.1.3. Configuring mutual TLS authentication 55

6.4. VIEW THE DEFAULT INGRESS CONTROLLER 56
6.5. VIEW INGRESS OPERATOR STATUS 56
6.6. VIEW INGRESS CONTROLLER LOGS 57

OpenShift Container Platform 4.11 Networking

6.7. VIEW INGRESS CONTROLLER STATUS 57
6.8. CONFIGURING THE INGRESS CONTROLLER 57
6.8.1. Setting a custom default certificate 57
6.8.2. Removing a custom default certificate 59
6.8.3. Scaling an Ingress Controller 60
6.8.4. Configuring Ingress access logging 61
6.8.5. Setting Ingress Controller thread count 63
6.8.6. Configuring an Ingress Controller to use an internal load balancer 63
6.8.7. Configuring global access for an Ingress Controller on GCP 65
6.8.8. Setting the Ingress Controller health check interval 66
6.8.9. Configuring the default Ingress Controller for your cluster to be internal 67
6.8.10. Configuring the route admission policy 68
6.8.11. Using wildcard routes 69
6.8.12. Using X-Forwarded headers 69
Example use cases 70
6.8.13. Enabling HTTP/2 Ingress connectivity 70
6.8.14. Configuring the PROXY protocol for an Ingress Controller 72
6.8.15. Specifying an alternative cluster domain using the appsDomain option 73
6.8.16. Converting HTTP header case 74
6.8.17. Using router compression 76
6.8.18. Exposing router metrics 76
6.8.19. Customizing HAProxy error code response pages 78
6.8.20. Setting the Ingress Controller maximum connections 80
6.9. ADDITIONAL RESOURCES 81
CHAPTER 7. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORMiiiiiiiiiiiiiiiiianenn, 82
7.1.INGRESS CONTROLLER SHARDING 82
7.1.1. Traditional sharding example 83
7.1.2. Overlapped sharding example 84
7.1.3. Sharding the default Ingress Controller 84
7.1.4. Ingress sharding and DNS 85
7.1.5. Configuring Ingress Controller sharding by using route labels 85
7.1.6. Configuring Ingress Controller sharding by using namespace labels 87
7.2. CREATING A ROUTE FOR INGRESS CONTROLLER SHARDING 88
Additional Resources 90
CHAPTER 8. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY 91
8.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY 91
8.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal 92
8.1.2. Configuring the Ingress Controller endpoint publishing scope to External 93
8.2. ADDITIONAL RESOURCES 93
CHAPTER 9. VERIFYING CONNECTIVITY TOAN ENDPOINT .. otiiiiiiitiiteieeiteeaneennnenns 94
9.1. CONNECTION HEALTH CHECKS PERFORMED 94
9.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS 94
9.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS 94
Connection log fields 96
9.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT 97
CHAPTER 10. CHANGING THE MTU FOR THE CLUSTERNETWORK ... ittt it ieiiiennens 102
10.1. ABOUT THE CLUSTER MTU 102
10.1.1. Service interruption considerations 102
10.1.2. MTU value selection 102
10.1.3. How the migration process works 102

Table of Contents

10.2. CHANGING THE CLUSTER MTU 104
10.3. ADDITIONAL RESOURCES 110
CHAPTER 11. CONFIGURING THE NODE PORTSERVICERANGE e m
11.1. PREREQUISITES m
11.2. EXPANDING THE NODE PORT RANGE m
11.3. ADDITIONAL RESOURCES 12
CHAPTER12. CONFIGURING IP FAILOVER et n3
12.1. IP FAILOVER ENVIRONMENT VARIABLES 14
12.2. CONFIGURING IP FAILOVER 15
12.3. ABOUT VIRTUAL IP ADDRESSES 18
12.4. CONFIGURING CHECK AND NOTIFY SCRIPTS 19
12.5. CONFIGURING VRRP PREEMPTION 121
12.6. ABOUT VRRP ID OFFSET 122
12.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES 122
12.8. HIGH AVAILABILITY FOR INGRESSIP 123
12.9. REMOVING IP FAILOVER 123
CHAPTER 13. CONFIGURING INTERFACE-LEVEL NETWORKSYSCTLS ... 126
13.1. CONFIGURING THE TUNING CNI 126
13.2. ADDITIONAL RESOURCES 129

CHAPTER 14. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL

(0 I 103 X PP 130
14.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON OPENSHIFT CONTAINER
PLATFORM 130

14.1.1. Example configurations using SCTP protocol 130
14.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) 131
14.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) IS ENABLED 132

CHAPTER 15. USING PTP HARDW A RE ...ttt ettt eaeeaneeeaeennneeannenaneennneenn 135
15.1. ABOUT PTP HARDWARE 135
15.2. ABOUT PTP 135

15.2.1. Elements of a PTP domain 135
15.2.2. Advantages of PTP over NTP 136
15.2.3. Using PTP with dual NIC hardware 136
15.3. INSTALLING THE PTP OPERATOR USING THE CLI 136
15.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE 138
15.5. CONFIGURING PTP DEVICES 138
15.5.1. Discovering PTP capable network devices in your cluster 139
15.5.2. Configuring linuxptp services as a grandmaster clock 139
15.5.3. Configuring linuxptp services as an ordinary clock 143
15.5.4. Configuring linuxptp services as a boundary clock 148
15.5.5. Configuring linuxptp services as boundary clocks for dual NIC hardware 154
15.5.6. Intel Columbiaville ESOO series NIC as PTP ordinary clock reference 156
15.5.7. Configuring FIFO priority scheduling for PTP hardware 156
15.6. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES 158
15.6.1. Collecting Precision Time Protocol (PTP) Operator data 160
15.7. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK 160
15.7.1. About PTP and clock synchronization error events 160
15.7.2. About the PTP fast event notifications framework 161
15.7.3. Installing the AMQ messaging bus 163
15.7.4. Configuring the PTP fast event notifications publisher 163

OpenShift Container Platform 4.11 Networking

15.7.5. Subscribing DU applications to PTP events REST APl reference
15.7.5.1. api/ocloudNotifications/v1/subscriptions
HTTP method
Description
HTTP method
Description
15.7.5.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>
HTTP method
Description
15.7.5.3. api/ocloudNotifications/vi/health/
HTTP method
Description
15.7.5.4. api/ocloudNotifications/v1/publishers
HTTP method
Description
15.7.5.5. /api/ocloudnotifications/vl/<resource_address>/CurrentState
HTTP method
Description
15.7.6. Monitoring PTP fast event metrics using the CLI
15.7.7. Monitoring PTP fast event metrics in the web console

CHAPTER16. EXTERNAL DNS OPERATOR i

16.1. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
16.1.1. External DNS Operator
16.1.2. External DNS Operator logs
16.1.2.1. External DNS Operator domain name limitations
16.2. INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS
16.2.1. Installing the External DNS Operator
16.3. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS
16.3.1. External DNS Operator configuration parameters
16.4. CREATING DNS RECORDS ON AWS

16.4.1. Creating DNS records on an public hosted zone for AWS by using Red Hat External DNS Operator

16.5. CREATING DNS RECORDS ON AZURE

16.5.1. Creating DNS records on an public DNS zone for Azure by using Red Hat External DNS Operator

16.6. CREATING DNS RECORDS ON GCP

16.6.1. Creating DNS records on an public managed zone for GCP by using Red Hat External DNS Operator

16.7. CREATING DNS RECORDS ON INFOBLOX
16.7.1. Creating DNS records on a public DNS zone on Infoblox

16.8. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL DNS OPERATOR
16.8.1. Configuring the External DNS Operator to trust the certificate authority of the cluster-wide proxy

CHAPTER17.NETWORK POLICY .. e i

17.1. ABOUT NETWORK POLICY
17.1.1. About network policy
17.1.1.1. Using the allow-from-router network policy
17.1.1.2. Using the allow-from-hostnetwork network policy
17.1.2. Optimizations for network policy
17.1.3. Next steps
17.1.4. Additional resources
17.2. LOGGING NETWORK POLICY EVENTS
17.2.1. Network policy audit logging
17.2.2. Network policy audit configuration

165
166
166
166
166
166
166
166
166
167
167
167
167
167
167
169
169
170

171
172

174
174
174
174
175
176
176
176
176
179
179
180

181
182

182
184
184
186
186

187
187
187
189
189
190
190
190

191

191
192

Table of Contents

17.2.3. Configuring network policy auditing for a cluster 193
17.2.4. Enabling network policy audit logging for a namespace 197
17.2.5. Disabling network policy audit logging for a namespace 198
17.2.6. Additional resources 198
17.3. CREATING A NETWORK POLICY 198
17.3.1. Example NetworkPolicy object 199
17.3.2. Creating a network policy using the CLI 199
17.3.3. Additional resources 201
17.4. VIEWING A NETWORK POLICY 201
17.4.1. Example NetworkPolicy object 201
17.4.2. Viewing network policies using the CLI 201
17.5. EDITING A NETWORK POLICY 203
17.5.1. Editing a network policy 203
17.5.2. Example NetworkPolicy object 204
17.5.3. Additional resources 205
17.6. DELETING A NETWORK POLICY 205
17.6.1. Deleting a network policy using the CLI 205
17.7. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS 206
17.7.1. Modifying the template for new projects 206
17.7.2. Adding network policies to the new project template 207
17.8. CONFIGURING MULTITENANT ISOLATION WITH NETWORK POLICY 209
17.8.1. Configuring multitenant isolation by using network policy 209
17.8.2. Next steps 21
17.8.3. Additional resources 21
CHAPTER18. CIDR RANGE DEFINITIONS ... ittt ittt te et eatenaneeaneeraneennneens 212
18.1. MACHINE CIDR 212
18.2. SERVICE CIDR 212
18.3. POD CIDR 212
18.4. HOST PREFIX 212
CHAPTER 19. AWS LOAD BALANCER OPERATOR .. iiiitttiitttiittiteieeeatennneeanneraneennneenn 213
19.1. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER PLATFORM 213
19.1.1. AWS Load Balancer Operator considerations 213
19.1.2. AWS Load Balancer Operator 213
19.1.3. AWS Load Balancer Operator logs 214
19.2. UNDERSTANDING AWS LOAD BALANCER OPERATOR 214
19.2.1. Installing the AWS Load Balancer Operator 214
19.3. CREATING AN INSTANCE OF AWS LOAD BALANCER CONTROLLER 215
19.3.1. Creating an instance of the AWS Load Balancer Controller using AWS Load Balancer Operator 215
19.4. CREATING MULTIPLE INGRESSES 218
19.4.1. Creating multiple ingresses through a single AWS Load Balancer 218
19.5. ADDING TLS TERMINATION 221
19.5.1. Adding TLS termination on the AWS Load Balancer 222
CHAPTER 20. MULTIPLE NETWORKS . ittt et itit et tanteeaeenneeeaneeeaneennneennnns 224
20.1. UNDERSTANDING MULTIPLE NETWORKS 224
20.1.1. Usage scenarios for an additional network 224
20.1.2. Additional networks in OpenShift Container Platform 224
20.2. CONFIGURING AN ADDITIONAL NETWORK 225
20.2.1. Approaches to managing an additional network 225
20.2.2. Configuration for an additional network attachment 225
20.2.2.1. Configuration of an additional network through the Cluster Network Operator 226
20.2.2.2. Configuration of an additional network from a YAML manifest 226

OpenShift Container Platform 4.11 Networking

20.2.3. Configurations for additional network types
20.2.3.1. Configuration for a bridge additional network
20.2.3.1.1. bridge configuration example
20.2.3.2. Configuration for a host device additional network
20.2.3.2.1. host-device configuration example
20.2.3.3. Configuration for an IPVLAN additional network
20.2.3.3.1.ipvlan configuration example
20.2.3.4. Configuration for a MACVLAN additional network
20.2.3.4.1. macvlan configuration example
20.2.4. Configuration of IP address assignment for an additional network
20.2.4.1. Static IP address assignment configuration
20.2.4.2. Dynamic IP address (DHCP) assignment configuration
20.2.4.3. Dynamic IP address assignment configuration with Whereabouts
20.2.4.4. Creating a Whereabouts reconciler daemon set
20.2.5. Creating an additional network attachment with the Cluster Network Operator
20.2.6. Creating an additional network attachment by applying a YAML manifest
20.3. ABOUT VIRTUAL ROUTING AND FORWARDING
20.3.1. About virtual routing and forwarding
20.3.1.1. Benefits of secondary networks for pods for telecommunications operators
20.4. CONFIGURING MULTI-NETWORK POLICY
20.4.1. Differences between multi-network policy and network policy
20.4.2. Enabling multi-network policy for the cluster
20.4.3. Working with multi-network policy
20.4.3.1. Prerequisites
20.4.3.2. Creating a multi-network policy using the CLI
20.4.3.3. Editing a multi-network policy
20.4.3.4. Viewing multi-network policies using the CLI
20.4.3.5. Deleting a multi-network policy using the CLI
20.4.4. Additional resources
20.5. ATTACHING A POD TO AN ADDITIONAL NETWORK
20.5.1. Adding a pod to an additional network
20.5.1.1. Specifying pod-specific addressing and routing options
20.6. REMOVING A POD FROM AN ADDITIONAL NETWORK
20.6.1. Removing a pod from an additional network
20.7. EDITING AN ADDITIONAL NETWORK
20.7.1. Modifying an additional network attachment definition
20.8. REMOVING AN ADDITIONAL NETWORK
20.8.1. Removing an additional network attachment definition
20.9. ASSIGNING A SECONDARY NETWORK TO A VRF
20.9.1. Assigning a secondary network to a VRF
20.9.1.1. Creating an additional network attachment with the CNI VRF plugin

CHAPTER 21. HARDWARE NETWORKS ... e

21.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS
21.1.1. Components that manage SR-10OV network devices
21.1.1.1. Supported platforms
21.1.1.2. Supported devices
21.1.1.3. Automated discovery of SR-IOV network devices
21.1.1.3.1. Example SriovNetworkNodeState object
21.1.1.4. Example use of a virtual function in a pod
21.1.1.5. DPDK library for use with container applications
21.1.1.6. Huge pages resource injection for Downward API
21.1.2. Next steps

227
227
228
229
229
230
230

231
232
232
232
233
234
235
236
238
238
238
239
239
239
240
240
240
240
242
243
244
245
245
245
247

251

251

251

251
252
252
253
253
253

256
256
256
257
257
258
259
260

261

261
262

Table of Contents

21.2. INSTALLING THE SR-IOV NETWORK OPERATOR 262
21.2.1. Installing SR-IOV Network Operator 262
21.2.1.1. CLI: Installing the SR-IOV Network Operator 262
21.2.1.2. Web console: Installing the SR-IOV Network Operator 264
21.2.2. Next steps 265
21.3. CONFIGURING THE SR-IOV NETWORK OPERATOR 265
21.3.1. Configuring the SR-IOV Network Operator 265
21.3.1.1. SR-IOV Network Operator config custom resource 265
21.3.1.2. About the Network Resources Injector 266
21.3.1.3. About the SR-IOV Network Operator admission controller webhook 267
21.3.1.4. About custom node selectors 267
21.3.1.5. Disabling or enabling the Network Resources Injector 267
21.3.1.6. Disabling or enabling the SR-IOV Network Operator admission controller webhook 268
21.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon 269
21.3.1.8. Configuring the SR-IOV Network Operator for single node installations 270
21.3.2. Next steps 270
21.4. CONFIGURING AN SR-10V NETWORK DEVICE 270
21.4.1. SR-IOV network node configuration object 270
21.4.1.1. SR-IOV network node configuration examples 273
21.4.1.2. Virtual function (VF) partitioning for SR-IOV devices 274
21.4.2. Configuring SR-IOV network devices 276
21.4.3. Troubleshooting SR-IOV configuration 277
21.4.4. Assigning an SR-10V network to a VRF 277
21.4.4.1. Creating an additional SR-IOV network attachment with the CNI VRF plugin 277
21.4.5. Next steps 279
21.5. CONFIGURING AN SR-I0OV ETHERNET NETWORK ATTACHMENT 280
21.5.1. Ethernet device configuration object 280
21.5.1.1. Configuration of IP address assignment for an additional network 281
21.5.1.1.1. Static IP address assignment configuration 281
21.5.1.1.2. Dynamic IP address (DHCP) assignment configuration 283
21.5.1.1.3. Dynamic IP address assignment configuration with Whereabouts 284
21.5.1.1.4. Creating a Whereabouts reconciler daemon set 284

21.5.2. Configuring SR-IOV additional network 286
21.5.3. Next steps 286
21.5.4. Additional resources 287
21.6. CONFIGURING AN SR-IOV INFINIBAND NETWORK ATTACHMENT 287
21.6.1. InfiniBand device configuration object 287
21.6.1.1. Configuration of IP address assignment for an additional network 287
21.6.1.1.1. Static IP address assignment configuration 288
21.6.1.1.2. Dynamic IP address (DHCP) assignment configuration 289
21.6.1.1.3. Dynamic IP address assignment configuration with Whereabouts 290
21.6.1.1.4. Creating a Whereabouts reconciler daemon set 291

21.6.2. Configuring SR-10OV additional network 292
21.6.3. Next steps 293
21.6.4. Additional resources 293
21.7. ADDING A POD TO AN SR-10V ADDITIONAL NETWORK 293
21.7.1. Runtime configuration for a network attachment 293
21.7.1.1. Runtime configuration for an Ethernet-based SR-IOV attachment 294
21.7.1.2. Runtime configuration for an InfiniBand-based SR-IOV attachment 294
21.7.2. Adding a pod to an additional network 295
21.7.3. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod 298
21.7.4. A test pod template for clusters that use SR-IOV on OpenStack 299
21.7.5. Additional resources 300

OpenShift Container Platform 4.11 Networking

21.8. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTL SETTINGS FOR SR-IOV NETWORKS 300
21.8.1. Labeling nodes with an SR-IOV enabled NIC 300
21.8.2. Setting one sysctl flag 300

21.8.2.1. Setting one sysctl flag on nodes with SR-IOV network devices 301
21.8.2.2. Configuring sysctl on a SR-IOV network 302
21.8.3. Configuring sysctl settings for pods associated with bonded SR-IOV interface flag 306
21.8.3.1. Setting all sysctl flag on nodes with bonded SR-IOV network devices 306
21.8.3.2. Configuring sysctl on a bonded SR-IOV network 308

21.9. USING HIGH PERFORMANCE MULTICAST 312
21.9.1. High performance multicast 312
21.9.2. Configuring an SR-10V interface for multicast 312

21.10. USING DPDK AND RDMA 314
21.10.1. Using a virtual function in DPDK mode with an Intel NIC 314
21.10.2. Using a virtual function in DPDK mode with a Mellanox NIC 317
21.10.3. Overview of achieving a specific DPDK line rate 320
21.10.4. Using SR-IOV and the Node Tuning Operator to achieve a DPDK line rate 321

21.10.4.1. Example SR-IOV Network Operator for virtual functions 322
21.10.4.2. Example SR-IOV network operator 324
21.10.4.3. Example DPDK base workload 325
21.10.4.4. Example testpmd script 326
21.10.5. Using a virtual function in RDMA mode with a Mellanox NIC 326
21.10.6. A test pod template for clusters that use OVS-DPDK on OpenStack 330
21.10.7. A test pod template for clusters that use OVS hardware offloading on OpenStack 331
21.10.8. Additional resources 331

21.11. USING POD-LEVEL BONDING 332

21.11.1. Configuring a bond interface from two SR-IOV interfaces 332
21.11.1.1. Creating a bond network attachment definition 332
21.11.1.2. Creating a pod using a bond interface 334

21.12. CONFIGURING HARDWARE OFFLOADING 335
21.12.1. About hardware offloading 335
21.12.2. Supported devices 336
21.12.3. Prerequisites 336
21.12.4. Configuring a machine config pool for hardware offloading 336
21.12.5. Configuring the SR-IOV network node policy 338

21.12.5.1. An example SR-IOV network node policy for OpenStack 339
21.12.6. Creating a network attachment definition 339
21.12.7. Adding the network attachment definition to your pods 340

21.13. UNINSTALLING THE SR-IOV NETWORK OPERATOR 340

21.13.1. Uninstalling the SR-IOV Network Operator 340
CHAPTER 22. OPENSHIFT SDN DEFAULT CNINETWORKPROVIDERciiiiiiiiiiiiiinennnnn, 342

22.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER 342
22.1.1. OpenShift SDN network isolation modes 342
22.1.2. Supported default CNI network provider feature matrix 342

22.2. CONFIGURING EGRESS IPS FOR A PROJECT 343
22.2.1. Egress IP address architectural design and implementation 343

22.2.1.1. Platform support 343
22.2.1.2. Public cloud platform considerations 344
22.2.1.2.1. Amazon Web Services (AWS) IP address capacity limits 345
22.2.1.2.2. Google Cloud Platform (GCP) IP address capacity limits 345
22.2.1.2.3. Microsoft Azure IP address capacity limits 345
22.2.1.3. Limitations 346
22.2.1.4. P address assighment approaches 346

Table of Contents

22.2.1.4.1. Considerations when using automatically assigned egress IP addresses 346
22.2.1.4.2. Considerations when using manually assigned egress IP addresses 347
22.2.2. Configuring automatically assigned egress IP addresses for a namespace 347
22.2.3. Configuring manually assigned egress IP addresses for a namespace 348
22.2.4. Additional resources 350
22.3. CONFIGURING AN EGRESS FIREWALL FOR APROJECT 350
22.3.1. How an egress firewall works in a project 350
22.3.1.1. Limitations of an egress firewall 352
22.3.1.2. Matching order for egress firewall policy rules 352
22.3.1.3. How Domain Name Server (DNS) resolution works 352
22.3.2. EgressNetworkPolicy custom resource (CR) object 353
22.3.2.1. EgressNetworkPolicy rules 353
22.3.2.2. Example EgressNetworkPolicy CR objects 354
22.3.3. Creating an egress firewall policy object 354
22.4. EDITING AN EGRESS FIREWALL FOR A PROJECT 355
22.4.1. Viewing an EgressNetworkPolicy object 355
22.5. EDITING AN EGRESS FIREWALL FOR A PROJECT 356
22.5.1. Editing an EgressNetworkPolicy object 356
22.6. REMOVING AN EGRESS FIREWALL FROM A PROJECT 356
22.6.1. Removing an EgressNetworkPolicy object 357
22.7. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD 357
22.7.1. About an egress router pod 357
22.7.1.1. Egress router modes 357
22.7.1.2. Egress router pod implementation 358
22.7.1.3. Deployment considerations 358
22.7.1.4. Failover configuration 359
22.7.2. Additional resources 359
22.8. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE 360
22.8.1. Egress router pod specification for redirect mode 360
22.8.2. Egress destination configuration format 361
22.8.3. Deploying an egress router pod in redirect mode 362
22.8.4. Additional resources 362
22.9. DEPLOYING AN EGRESS ROUTER POD IN HTTP PROXY MODE 363
22.9.1. Egress router pod specification for HTTP mode 363
22.9.2. Egress destination configuration format 364
22.9.3. Deploying an egress router pod in HTTP proxy mode 364
22.9.4. Additional resources 365
22.10. DEPLOYING AN EGRESS ROUTER POD IN DNS PROXY MODE 365
22.10.1. Egress router pod specification for DNS mode 365
22.10.2. Egress destination configuration format 366
22.10.3. Deploying an egress router pod in DNS proxy mode 367
22.10.4. Additional resources 368
22.11. CONFIGURING AN EGRESS ROUTER POD DESTINATION LIST FROM A CONFIG MAP 368
22.11.1. Configuring an egress router destination mappings with a config map 368
22.11.2. Additional resources 370
22.12. ENABLING MULTICAST FOR A PROJECT 370
22.12.1. About multicast 370
22.12.2. Enabling multicast between pods 371
22.13. DISABLING MULTICAST FOR A PROJECT 373
22.13.1. Disabling multicast between pods 373
22.14. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN 373
22.14.1. Prerequisites 374
22.14.2. Joining projects 374

9

OpenShift Container Platform 4.11 Networking

22.14.3. Isolating a project

22.14.4. Disabling network isolation for a project
22.15. CONFIGURING KUBE-PROXY

22.15.1. About iptables rules synchronization

22.15.2. kube-proxy configuration parameters

22.15.3. Modifying the kube-proxy configuration

CHAPTER 23. OVN-KUBERNETES DEFAULT CNI NETWORK PROVIDER

23.1. ABOUT THE OVN-KUBERNETES DEFAULT CONTAINER NETWORK INTERFACE (CNI) NETWORK

PROVIDER
23.1.1. OVN-Kubernetes features
23.1.2. Supported default CNI network provider feature matrix
23.1.3. OVN-Kubernetes limitations

23.2. MIGRATING FROM THE OPENSHIFT SDN CLUSTER NETWORK PROVIDER

23.2.1. Migration to the OVN-Kubernetes network provider

23.2.1.1. Considerations for migrating to the OVN-Kubernetes network provider

Namespace isolation
Egress IP addresses
Egress network policies
Egress router pods
Multicast
Network policies
23.2.1.2. How the migration process works
23.2.2. Migrating to the OVN-Kubernetes default CNI network provider
23.2.3. Additional resources
23.3. ROLLING BACK TO THE OPENSHIFT SDN NETWORK PROVIDER
23.3.1. Rolling back the default CNI network provider to OpenShift SDN
23.4. CONVERTING TO IPV4/IPV6 DUAL-STACK NETWORKING
23.4.1. Converting to a dual-stack cluster network
23.4.2. Converting to a single-stack cluster network
23.5. CONFIGURING IPSEC ENCRYPTION
23.5.1. Prerequisites
23.5.2. Types of network traffic flows encrypted by IPsec
23.5.2.1. Network connectivity requirements when IPsec is enabled
23.5.3. Encryption protocol and IPsec mode
23.5.4. Security certificate generation and rotation
23.5.5. Enabling IPsec encryption
23.5.6. Verifying that IPsec is enabled
23.5.7. Disabling IPsec encryption
23.5.8. Additional resources
23.6. CONFIGURING AN EGRESS FIREWALL FOR A PROJECT
23.6.1. How an egress firewall works in a project
23.6.1.1. Limitations of an egress firewall
23.6.1.2. Matching order for egress firewall policy rules
23.6.1.3. How Domain Name Server (DNS) resolution works
23.6.2. EgressFirewall custom resource (CR) object
23.6.2.1. EgressFirewall rules
23.6.2.2. Example EgressFirewall CR objects
23.6.3. Creating an egress firewall policy object
23.7.VIEWING AN EGRESS FIREWALL FOR A PROJECT
23.7.1. Viewing an EgressFirewall object
23.8. EDITING AN EGRESS FIREWALL FOR A PROJECT
23.8.1. Editing an EgressFirewall object

10

374
374
375
375
375
376

378

378
378
378
379
380
380
381
381
381
382
382
382
382
382
384
390
390
390
394
395
396
397
397
397
398
398
398
399
399
400
400
400
400
402
403
403
403
404
404
405
406
406
407
407

Table of Contents

23.9. REMOVING AN EGRESS FIREWALL FROM A PROJECT 407
23.9.1. Removing an EgressFirewall object 408
23.10. CONFIGURING AN EGRESS IP ADDRESS 408
23.10.1. Egress IP address architectural design and implementation 408
23.10.1.1. Platform support 409
23.10.1.2. Public cloud platform considerations 409
23.10.1.2.1. Amazon Web Services (AWS) IP address capacity limits 410
23.10.1.2.2. Google Cloud Platform (GCP) IP address capacity limits 410
23.10.1.2.3. Microsoft Azure IP address capacity limits 410
23.10.1.3. Assignment of egress IPs to pods 41
23.10.1.4. Assignment of egress IPs to nodes 4n
23.10.1.5. Architectural diagram of an egress IP address configuration 4M
23.10.2. EgresslIP object 413
23.10.3. Labeling a node to host egress IP addresses 415
23.10.4. Next steps 415
23.10.5. Additional resources 415
23.11. ASSIGNING AN EGRESS IP ADDRESS 415
23.11.1. Assigning an egress |IP address to a namespace 415
23.11.2. Additional resources 416
23.12. CONSIDERATIONS FOR THE USE OF AN EGRESS ROUTER POD 417
23.12.1. About an egress router pod 417
23.12.1.1. Egress router modes 417
23.12.1.2. Egress router pod implementation 417
23.12.1.3. Deployment considerations 418
23.12.1.4. Failover configuration 418
23.12.2. Additional resources 419
23.13. DEPLOYING AN EGRESS ROUTER POD IN REDIRECT MODE 419
23.13.1. Egress router custom resource 419
23.13.2. Deploying an egress router in redirect mode 421
23.14. ENABLING MULTICAST FOR A PROJECT 424
23.14.1. About multicast 424
23.14.2. Enabling multicast between pods 424
23.15. DISABLING MULTICAST FOR A PROJECT 426
23.15.1. Disabling multicast between pods 426
23.16. TRACKING NETWORK FLOWS 427
23.16.1. Network object configuration for tracking network flows 428
23.16.2. Adding destinations for network flows collectors 429
23.16.3. Deleting all destinations for network flows collectors 430
23.16.4. Additional resources 430
23.17. CONFIGURING HYBRID NETWORKING 431
23.17.1. Configuring hybrid networking with OVN-Kubernetes 431
23.17.2. Additional resources 432
CHAPTER 24. CONFIGURING ROUTES ... iittttttttiitttittenieeanteeaneennneeaneeraneennneennens 433
24.1. ROUTE CONFIGURATION 433
24.1.1. Creating an HTTP-based route 433
24.1.2. Creating a route for Ingress Controller sharding 434
24.1.3. Configuring route timeouts 436
24.1.4. HTTP Strict Transport Security 437
24.1.4.1. Enabling HTTP Strict Transport Security per-route 437
24.1.4.2. Disabling HTTP Strict Transport Security per-route 438
24.1.4.3. Enforcing HTTP Strict Transport Security per-domain 439
24.1.5. Throughput issue troubleshooting methods 442

1

OpenShift Container Platform 4.11 Networking

24.1.6. Using cookies to keep route statefulness
24.1.6.1. Annotating a route with a cookie
24.1.7. Path-based routes
24.1.8. Route-specific annotations
24.1.9. Configuring the route admission policy
24.1.10. Creating a route through an Ingress object
24.1.11. Creating a route using the default certificate through an Ingress object
24.1.12. Creating a route using the destination CA certificate in the Ingress annotation

24.1.13. Configuring the OpenShift Container Platform Ingress Controller for dual-stack networking

24.2. SECURED ROUTES
24.2.1. Creating a re-encrypt route with a custom certificate
24.2.2. Creating an edge route with a custom certificate
24.2.3. Creating a passthrough route

CHAPTER 25. CONFIGURING INGRESS CLUSTER TRAFFIC i

25.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
25.1.1. Comparision: Fault tolerant access to external IP addresses
25.2. CONFIGURING EXTERNALIPS FOR SERVICES
25.2.1. Prerequisites
25.2.2. About ExternallP
25.2.2.1. Configuration for ExternallP
25.2.2.2. Restrictions on the assignment of an external IP address
25.2.2.3. Example policy objects
25.2.3. ExternallP address block configuration
Example external IP configurations
25.2.4. Configure external IP address blocks for your cluster
25.2.5. Next steps
25.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
25.3.1. Using Ingress Controllers and routes
25.3.2. Prerequisites
25.3.3. Creating a project and service
25.3.4. Exposing the service by creating a route
25.3.5. Configuring Ingress Controller sharding by using route labels
25.3.6. Configuring Ingress Controller sharding by using namespace labels
25.3.7. Creating a route for Ingress Controller sharding
25.3.8. Additional resources
25.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
25.4.1. Using a load balancer to get traffic into the cluster
25.4.2. Prerequisites
25.4.3. Creating a project and service
25.4.4. Exposing the service by creating a route
25.4.5. Creating a load balancer service
25.5. CONFIGURING INGRESS CLUSTER TRAFFIC ON AWS
25.5.1. Configuring Classic Load Balancer timeouts on AWS
25.5.1.1. Configuring route timeouts
25.5.1.2. Configuring Classic Load Balancer timeouts
25.5.2. Configuring ingress cluster traffic on AWS using a Network Load Balancer

25.5.2.1. Replacing Ingress Controller Classic Load Balancer with Network Load Balancer
25.5.2.2. Configuring an Ingress Controller Network Load Balancer on an existing AWS cluster
25.5.2.3. Configuring an Ingress Controller Network Load Balancer on a new AWS cluster

25.5.3. Additional resources
25.6. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
25.6.1. Prerequisites

12

443
443
444
445
452
453
455
456
458
459
459

461
462

464
464
464
465
465
465
466
467
468
468
469
470
471
471
471
471
472
472
473
475
476
478
478
479
479
479
480
481
483
483
483
483
484
484
485
486
487
487
488

25.6.2. Attaching an ExternallP to a service
25.6.3. Additional resources
25.7. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
25.7.1. Using a NodePort to get traffic into the cluster
25.7.2. Prerequisites
25.7.3. Creating a project and service
25.7.4. Exposing the service by creating a route
25.7.5. Additional resources

CHAPTER 26. KUBERNETES NMSTATE ..o

26.1. ABOUT THE KUBERNETES NMSTATE OPERATOR
26.1.1. Installing the Kubernetes NMState Operator
26.1.1.1. Installing the Kubernetes NMState Operator using the web console
26.1.1.2. Installing the Kubernetes NMState Operator using the CLI
26.2. OBSERVING AND UPDATING THE NODE NETWORK STATE AND CONFIGURATION
26.2.1. Viewing the network state of a node
26.2.2. Managing policy by using the CLI
26.2.2.1. Creating an interface on nodes
Additional resources
26.2.3. Confirming node network policy updates on nodes
26.2.4. Removing an interface from nodes
26.2.5. Example policy configurations for different interfaces
26.2.5.1. Example: Linux bridge interface node network configuration policy
26.2.5.2. Example: VLAN interface node network configuration policy
26.2.5.3. Example: Bond interface node network configuration policy
26.2.5.4. Example: Ethernet interface node network configuration policy
26.2.5.5. Example: Multiple interfaces in the same node network configuration policy
26.2.6. Capturing the static IP of a NIC attached to a bridge

Table of Contents

488
489
489
489
489
490
490
492

............ 493

493
493
494
494
496
496
497
497
498
498
499
500
500

501
502
503
504
505

26.2.6.1. Example: Linux bridge interface node network configuration policy to inherit static IP address from

the NIC attached to the bridge

26.2.7. Examples: IP management
26.2.7.1. Static
26.2.7.2. No IP address
26.2.7.3. Dynamic host configuration
26.2.7.4.DNS
26.2.7.5. Static routing

26.3. TROUBLESHOOTING NODE NETWORK CONFIGURATION
26.3.1. Troubleshooting an incorrect node network configuration policy configuration

CHAPTER 27. CONFIGURING THE CLUSTER-WIDE PROXY,

27.1. PREREQUISITES

27.2. ENABLING THE CLUSTER-WIDE PROXY

27.3. REMOVING THE CLUSTER-WIDE PROXY
Additional resources

CHAPTER 28. CONFIGURING ACUSTOMPKI .. i

28.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
28.2. ENABLING THE CLUSTER-WIDE PROXY
28.3. CERTIFICATE INJECTION USING OPERATORS

CHAPTER 29. LOAD BALANCING ONRHOSP i

29.1. USING THE OCTAVIA OVN LOAD BALANCER PROVIDER DRIVER WITH KURYR SDN
29.2. SCALING CLUSTERS FOR APPLICATION TRAFFIC BY USING OCTAVIA
29.2.1. Scaling clusters by using Octavia

505
506
506
507
507
507
508
509
509

............. 514

514
514
516
517

............. 518

518
520
522

............ 524

524
525
525

13

OpenShift Container Platform 4.11 Networking

29.2.2. Scaling clusters that use Kuryr by using Octavia
29.3. SCALING FOR INGRESS TRAFFIC BY USING RHOSP OCTAVIA
29.4. CONFIGURING AN EXTERNAL LOAD BALANCER

CHAPTER 30. LOAD BALANCINGWITHMETALLB ... e

30.1. ABOUT METALLB AND THE METALLB OPERATOR
30.1.1. When to use MetalLB
30.1.2. MetalLB Operator custom resources
30.1.3. MetalLB software components
30.1.4. MetalLB and external traffic policy
30.1.5. MetalLB concepts for layer 2 mode
30.1.6. MetalLLB concepts for BGP mode
30.1.7. Limitations and restrictions
30.1.7.1. Infrastructure considerations for MetalLB
30.1.7.2. Limitations for layer 2 mode
30.1.7.2.1. Single-node bottleneck
30.1.7.2.2. Slow failover performance
30.1.7.2.3. Additional Network and MetalLB cannot use same network
30.1.7.3. Limitations for BGP mode
30.1.7.3.1. Node failure can break all active connections
30.1.7.3.2. Support for a single ASN and a single router ID only
30.1.8. Additional resources
30.2. INSTALLING THE METALLB OPERATOR

30.2.1. Installing the MetalLB Operator from the OperatorHub using the web console

30.2.2. Installing from OperatorHub using the CLI
30.2.3. Starting MetalLB on your cluster
30.2.3.1. Limit speaker pods to specific nodes
30.2.4. Additional resources
30.2.5. Next steps
30.3. UPGRADING THE METALLB OPERATOR
30.3.1. Deleting the MetalLB Operator from a cluster using the web console
30.3.2. Deleting MetalLB Operator from a cluster using the CLI
30.3.3. Editing the MetallLB Operator Operator group
30.3.4. Upgrading the MetalLB Operator
30.3.5. Additional resources
30.4. CONFIGURING METALLB ADDRESS POOLS
30.4.1. About the IPAddressPool custom resource
30.4.2. Configuring an address pool
30.4.3. Example address pool configurations
30.4.3.1. Example: IPv4 and CIDR ranges
30.4.3.2. Example: Reserve IP addresses
30.4.3.3. Example: IPv4 and IPv6 addresses
30.4.4. Additional resources
30.4.5. Next steps
30.5. ABOUT ADVERTISING FOR THE IP ADDRESS POOLS
30.5.1. About the BGPAdvertisement custom resource
30.5.2. Configuring MetalLB with a BGP advertisement and a basic use case
30.5.2.1. Example: Advertise a basic address pool configuration with BGP
30.5.3. Configuring MetalLB with a BGP advertisement and an advanced use case
30.5.3.1. Example: Advertise an advanced address pool configuration with BGP
30.5.4. About the L2Advertisement custom resource
30.5.5. Configuring MetalLB with an L2 advertisement
30.5.6. Configuring MetalLLB with a L2 advertisement and label

14

527
527
529

538
538
538
538
539
540
540
542
544
544
544
544
544
545
545
545
545
546
546
546
546
548
549
550
550
550

551

551
552
554
555
555
555
556
557
557
557
558
558
558
558
558
560
560

561

561
563
564
565

Table of Contents

30.5.7. Additional resources 566
30.6. CONFIGURING METALLB BGP PEERS 566
30.6.1. About the BGP peer custom resource 566
30.6.2. Configuring a BGP peer 568
30.6.3. Configure a specific set of BGP peers for a given address pool 568
30.6.4. Example BGP peer configurations 571
30.6.4.1. Example: Limit which nodes connect to a BGP peer 571
30.6.4.2. Example: Specify a BFD profile for a BGP peer 571
30.6.4.3. Example: Specify BGP peers for dual-stack networking 572
30.6.5. Next steps 572
30.7. CONFIGURING COMMUNITY ALIAS 572
30.7.1. About the community custom resource 572
30.7.2. Configuring MetalLB with a BGP advertisement and community alias 573
30.8. CONFIGURING METALLB BFD PROFILES 575
30.8.1. About the BFD profile custom resource 575
30.8.2. Configuring a BFD profile 576
30.8.3. Next steps 577
30.9. CONFIGURING SERVICES TO USE METALLB 577
30.9.1. Request a specific IP address 577
30.9.2. Request an IP address from a specific pool 577
30.9.3. Accept any IP address 578
30.9.4. Share a specific IP address 578
30.9.5. Configuring a service with MetalLB 580
30.10. METALLB LOGGING, TROUBLESHOOTING, AND SUPPORT 581
30.10.1. Setting the MetalLB logging levels 581
30.10.1.1. FRRouting (FRR) log levels 585
30.10.2. Troubleshooting BGP issues 585
30.10.3. Troubleshooting BFD issues 588
30.10.4. MetalLB metrics for BGP and BFD 589
30.10.5. About collecting MetallLB data 590
CHAPTER 31. ASSOCIATING SECONDARY INTERFACES METRICS TO NETWORK ATTACHMENTS 592
31.1. EXTENDING SECONDARY NETWORK METRICS FOR MONITORING 592
31.1.1. Network Metrics Daemon 592
31.1.2. Metrics with network name 593

15

OpenShift Container Platform 4.11 Networking

16

CHAPTER 1. UNDERSTANDING NETWORKING

CHAPTER 1. UNDERSTANDING NETWORKING

Cluster Administrators have several options for exposing applications that run inside a cluster to
external traffic and securing network connections:

® Service types, such as node ports or load balancers
® APl resources, such as Ingress and Route

By default, Kubernetes allocates each pod an internal IP address for applications running within the pod.
Pods and their containers can network, but clients outside the cluster do not have networking access.
When you expose your application to external traffic, giving each pod its own IP address means that
pods can be treated like physical hosts or virtual machines in terms of port allocation, networking,
naming, service discovery, load balancing, application configuration, and migration.

NOTE

Some cloud platforms offer metadata APIs that listen on the 169.254.169.254 IP address,
a link-local IP address in the IPv4 169.254.0.0/16 CIDR block.

This CIDR block is not reachable from the pod network. Pods that need access to these
IP addresses must be given host network access by setting the spec.hostNetwork field
in the pod spec to true.

If you allow a pod host network access, you grant the pod privileged access to the
underlying network infrastructure.

1.1. OPENSHIFT CONTAINER PLATFORM DNS

If you are running multiple services, such as front-end and back-end services for use with multiple pods,
environment variables are created for user names, service IPs, and more so the front-end pods can
communicate with the back-end services. If the service is deleted and recreated, a new IP address can
be assigned to the service, and requires the front-end pods to be recreated to pick up the updated
values for the service IP environment variable. Additionally, the back-end service must be created
before any of the front-end pods to ensure that the service IP is generated properly, and that it can be
provided to the front-end pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port.

1.2. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController APl and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

17

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

OpenShift Container Platform 4.11 Networking

1.2.1. Comparing routes and Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster. The most common way to manage
Ingress traffic is with the Ingress Controller. You can scale and replicate this pod like any other regular
pod. This router service is based on HAProxy, which is an open source load balancer solution.

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

Ingress traffic accesses services in the cluster through a route. Routes and Ingress are the main
resources for handling Ingress traffic. Ingress provides features similar to a route, such as accepting
external requests and delegating them based on the route. However, with Ingress you can only allow
certain types of connections: HTTP/2, HTTPS and server name identification (SNI), and TLS with
certificate. In OpenShift Container Platform, routes are generated to meet the conditions specified by
the Ingress resource.

1.3. GLOSSARY OF COMMON TERMS FOR OPENSHIFT CONTAINER
PLATFORM NETWORKING

This glossary defines common terms that are used in the networking content.

authentication

To control access to an OpenShift Container Platform cluster, a cluster administrator can configure
user authentication and ensure only approved users access the cluster. To interact with an
OpenShift Container Platform cluster, you must authenticate to the OpenShift Container Platform
API. You can authenticate by providing an OAuth access token or an X.509 client certificate in your
requests to the OpenShift Container Platform API.

AWS Load Balancer Operator

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the aws-load-
balancer-controller.

Cluster Network Operator

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) default network provider plug-in selected for the cluster during installation.

config map

A config map provides a way to inject configuration data into pods. You can reference the data
stored in a config map in a volume of type ConfigMap. Applications running in a pod can use this
data.

custom resource (CR)
A CRis extension of the Kubernetes API. You can create custom resources.
DNS

Cluster DNS is a DNS server which serves DNS records for Kubernetes services. Containers started
by Kubernetes automatically include this DNS server in their DNS searches.

DNS Operator

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods.
This enables DNS-based Kubernetes Service discovery in OpenShift Container Platform.

deployment

A Kubernetes resource object that maintains the life cycle of an application.

18

http://www.haproxy.org/

CHAPTER 1. UNDERSTANDING NETWORKING

domain

Domain is a DNS name serviced by the Ingress Controller.
egress

The process of data sharing externally through a network'’s outbound traffic from a pod.
External DNS Operator

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

HTTP-based route

An HTTP-based route is an unsecured route that uses the basic HTTP routing protocol and exposes
a service on an unsecured application port.

Ingress

The Kubernetes Ingress resource in OpenShift Container Platform implements the Ingress Controller
with a shared router service that runs as a pod inside the cluster.

Ingress Controller

The Ingress Operator manages Ingress Controllers. Using an Ingress Controller is the most common
way to allow external access to an OpenShift Container Platform cluster.

installer-provisioned infrastructure
The installation program deploys and configures the infrastructure that the cluster runs on.
kubelet

A primary node agent that runs on each node in the cluster to ensure that containers are runningin a
pod.

Kubernetes NMState Operator

The Kubernetes NMState Operator provides a Kubernetes API for performing state-driven network
configuration across the OpenShift Container Platform cluster’s nodes with NMState.

kube-proxy

Kube-proxy is a proxy service which runs on each node and helps in making services available to the
external host. It helps in forwarding the request to correct containers and is capable of performing
primitive load balancing.

load balancers

OpenShift Container Platform uses load balancers for communicating from outside the cluster with
services running in the cluster.

MetalLB Operator

As a cluster administrator, you can add the MetalLB Operator to your cluster so that when a service
of type LoadBalancer is added to the cluster, MetalLB can add an external IP address for the
service.

multicast
With IP multicast, data is broadcast to many IP addresses simultaneously.
namespaces

A namespace isolates specific system resources that are visible to all processes. Inside a namespace,
only processes that are members of that namespace can see those resources.

networking
Network information of a OpenShift Container Platform cluster.
node

A worker machine in the OpenShift Container Platform cluster. A node is either a virtual machine
(VM) or a physical machine.

19

OpenShift Container Platform 4.11 Networking

OpenShift Container Platform Ingress Operator

The Ingress Operator implements the IngressController APl and is the component responsible for
enabling external access to OpenShift Container Platform services.

pod

One or more containers with shared resources, such as volume and IP addresses, running in your
OpenShift Container Platform cluster. A pod is the smallest compute unit defined, deployed, and
managed.

PTP Operator
The PTP Operator creates and manages the linuxptp services.
route

The OpenShift Container Platform route provides Ingress traffic to services in the cluster. Routes
provide advanced features that might not be supported by standard Kubernetes Ingress Controllers,
such as TLS re-encryption, TLS passthrough, and split traffic for blue-green deployments.

scaling
Increasing or decreasing the resource capacity.
service
Exposes a running application on a set of pods.
Single Root I/O Virtualization (SR-IOV) Network Operator

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network
devices and network attachments in your cluster.

software-defined networking (SDN)

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a
unified cluster network that enables communication between pods across the OpenShift Container
Platform cluster.

Stream Control Transmission Protocol (SCTP)
SCTP is a reliable message based protocol that runs on top of an IP network.
taint

Taints and tolerations ensure that pods are scheduled onto appropriate nodes. You can apply one or
more taints on a node.

toleration

You can apply tolerations to pods. Tolerations allow the scheduler to schedule pods with matching
taints.

web console

A user interface (Ul) to manage OpenShift Container Platform.

20

CHAPTER 2. ACCESSING HOSTS

CHAPTER 2. ACCESSING HOSTS

Learn how to create a bastion host to access OpenShift Container Platform instances and access the
control plane nodes with secure shell (SSH) access.

2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN
INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

The OpenShift Container Platform installer does not create any public IP addresses for any of the
Amazon Elastic Compute Cloud (Amazon EC2) instances that it provisions for your OpenShift
Container Platform cluster. To be able to SSH to your OpenShift Container Platform hosts, you must
follow this procedure.

Procedure

1. Create a security group that allows SSH access into the virtual private cloud (VPC) created by
the openshift-install command.

2. Create an Amazon EC2 instance on one of the public subnets the installer created.

3. Associate a public IP address with the Amazon EC2 instance that you created.
Unlike with the OpenShift Container Platform installation, you should associate the Amazon EC2
instance you created with an SSH keypair. It does not matter what operating system you choose
for this instance, as it will simply serve as an SSH bastion to bridge the internet into your
OpenShift Container Platform cluster’s VPC. The Amazon Machine Image (AMI) you use does
matter. With Red Hat Enterprise Linux CoreOS (RHCOS), for example, you can provide keys via
Ignition, like the installer does.

4. After you provisioned your Amazon EC2 instance and can SSH into it, you must add the SSH key

that you associated with your OpenShift Container Platform installation. This key can be
different from the key for the bastion instance, but does not have to be.

NOTE

Direct SSH access is only recommended for disaster recovery. When the
Kubernetes APl is responsive, run privileged pods instead.

2

5. Run oc get nodes, inspect the output, and choose one of the nodes that is a master. The
hostname looks similar to ip-10-0-1-163.ec2.internal.

6. From the bastion SSH host you manually deployed into Amazon EC2, SSH into that control
plane host. Ensure that you use the same SSH key you specified during the installation:

I $ ssh -i <ssh-key-path> core@<master-hostname>

21

OpenShift Container Platform 4.11 Networking

CHAPTER 3. NETWORKING OPERATORS OVERVIEW

OpenShift Container Platform supports multiple types of networking Operators. You can manage the
cluster networking using these networking Operators.

3.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator (CNO) deploys and manages the cluster network components in an
OpenShift Container Platform cluster. This includes deployment of the Container Network Interface
(CNI) default network provider plugin selected for the cluster during installation. For more information,
see Cluster Network Operator in OpenShift Container Platform .

3.2. DNS OPERATOR

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods. This
enables DNS-based Kubernetes Service discovery in OpenShift Container Platform. For more
information, see DNS Operator in OpenShift Container Platform .

3.3.INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated IP addresses. The IP addresses are accessible to other pods and services running
nearby but are not accessible to external clients. The Ingress Operator implements the Ingress
Controller APl and is responsible for enabling external access to OpenShift Container Platform cluster
services. For more information, see Ingress Operator in OpenShift Container Platform.

3.4. EXTERNAL DNS OPERATOR

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform. For more
information, see Understanding the External DNS Operator.

3.5.NETWORK OBSERVABILITY OPERATOR

The Network Observability Operator is an optional Operator that allows cluster administrators to
observe the network traffic for OpenShift Container Platform clusters. The Network Observability
Operator uses the eBPF technology to create network flows. The network flows are then enriched with
OpenShift Container Platform information and stored in Loki. You can view and analyze the stored
network flows information in the OpenShift Container Platform console for further insight and
troubleshooting. For more information, see About Network Observability Operator.

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#cluster-network-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#dns-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#external-dns-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/network_observability/#dependency-network-observability

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

The Cluster Network Operator (CNO) deploys and manages the cluster network components on an
OpenShift Container Platform cluster, including the Container Network Interface (CNI) default network
provider plugin selected for the cluster during installation.

4.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OpenShift SDN default Container Network Interface (CNI) network provider
plugin, or the default network provider plugin that you selected during cluster installation, by using a
daemon set.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

I $ oc get -n openshift-network-operator deployment/network-operator
Example output

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

2. Run the following command to view the state of the Cluster Network Operator:

I $ oc get clusteroperator/network
Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.5.4 True False False 50m

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

4.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

® Use the oc describe command to view the cluster network configuration:

I $ oc describe network.config/cluster

Example output

23

OpenShift Container Platform 4.11 Networking

Name: cluster
Namespace:
Labels: <none>

Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
Self Link: /apis/config.openshift.io/v1/networks/cluster
Spec:ﬂ
Cluster Network:
Cidr: 10.128.0.0/14
Host Prefix: 23
Network Type: OpenShiftSDN
Service Network:
172.30.0.0/16

Status: 9

Cluster Network:
Cidr: 10.128.0.0/14
Host Prefix: 23
Cluster Network MTU: 8951
Network Type: OpenShiftSDN
Service Network:
172.30.0.0/16
Events: <none>

ﬂ The Spec field displays the configured state of the cluster network.

9 The Status field displays the current state of the cluster network configuration.

4.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

® Run the following command to view the status of the Cluster Network Operator:

I $ oc describe clusteroperators/network

4.4. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

® Run the following command to view the logs of the Cluster Network Operator:

I $ oc logs --namespace=openshift-network-operator deployment/network-operator

4.5. CLUSTER NETWORK OPERATOR CONFIGURATION

24

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a custom resource (CR) object that is named cluster. The CR specifies the
fields for the Network APl in the operator.openshift.io APl group.

The CNO configuration inherits the following fields during cluster installation from the Network APl in
the Network.config.openshift.io APl group and these fields cannot be changed:

clusterNetwork

IP address pools from which pod IP addresses are allocated.
serviceNetwork

IP address pool for services.
defaultNetwork.type

Cluster network provider, such as OpenShift SDN or OVN-Kubernetes.

NOTE

After cluster installation, you cannot modify the fields listed in the previous section.

You can specify the cluster network provider configuration for your cluster by setting the fields for the
defaultNetwork object in the CNO object named cluster.

4.5.1. Cluster Network Operator configuration object

The fields for the Cluster Network Operator (CNO) are described in the following table:

Table 4.1. Cluster Network Operator configuration object

Field Type Description

metadata.name string The name of the CNO object. This name is always cluster.
spec.clusterNet array A list specifying the blocks of IP addresses from which pod IP
work addresses are allocated and the subnet prefix length assigned to

each individual node in the cluster. For example:

spec:
clusterNetwork:
- cidr: 10.128.0.0/19
hostPrefix: 23
- cidr: 10.128.32.0/19
hostPrefix: 23

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

25

OpenShift Container Platform 4.11 Networking

Field Type Description
spec.serviceNet array A block of IP addresses for services. The OpenShift SDN and
work OVN-Kubernetes Container Network Interface (CNI) network

providers support only a single IP address block for the service
network. For example:

spec:
serviceNetwork:
-172.30.0.0/14

This value is ready-only and inherited from the
Network.config.openshift.io object named cluster during
cluster installation.

spec.defaultNet object Configures the Container Network Interface (CNI) cluster

work network provider for the cluster network.

spec.kubeProxy object The fields for this object specify the kube-proxy configuration. If
Config you are using the OVN-Kubernetes cluster network provider, the

kube-proxy configuration has no effect.

defaultNetwork object configuration
The values for the defaultNetwork object are defined in the following table:

Table 4.2. defaultNetwork object

Field Type Description

type string Either OpenShiftSDN or OVNKubernetes. The
cluster network provider is selected during
installation. This value cannot be changed after
cluster installation.

NOTE

OpenShift Container Platform uses
the OpenShift SDN Container
Network Interface (CNI) cluster
network provider by default.

openshiftSDNConfig object This object is only valid for the OpenShift SDN
cluster network provider.

ovnKubernetesConfig object This object is only valid for the OVN-Kubernetes
cluster network provider.

Configuration for the OpenShift SDN CNI cluster network provider

26

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

The following table describes the configuration fields for the OpenShift SDN Container Network
Interface (CNI) cluster network provider.

Table 4.3. openshiftSDNConfig object

Field Type Description
mode string The network isolation mode for OpenShift SDN.
mtu integer The maximum transmission unit (MTU) for the VXLAN overlay

network. This value is normally configured automatically.

vxlanPort integer The port to use for all VXLAN packets. The default value is 4789.

NOTE

You can only change the configuration for your cluster network provider during cluster
installation.

Example OpenShift SDN configuration

defaultNetwork:
type: OpenShiftSDN
openshiftSDNConfig:
mode: NetworkPolicy
mtu: 1450
vxlanPort: 4789

Configuration for the OVN-Kubernetes CNI cluster network provider
The following table describes the configuration fields for the OVN-Kubernetes CNI cluster network
provider.

Table 4.4. ovhKubernetesConfig object

Field Type Description

mtu integer The maximum transmission unit (MTU) for the Geneve (Generic
Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

genevePort integer The UDP port for the Geneve overlay network.

ipsecConfig object If the field is present, IPsec is enabled for the cluster.
policyAuditConf object Specify a configuration object for customizing network policy
ig audit logging. If unset, the defaults audit log settings are used.

27

OpenShift Container Platform 4.11 Networking

Field Type

gatewayConfig object

Table 4.5. policyAuditConfig object

Field Type
rateLimit integer
maxFileSize integer
destination string
syslogFacility string

Table 4.6. gatewayConfig object

Field Type

28

Description

Optional: Specify a configuration object for customizing how
egress traffic is sent to the node gateway.

NOTE

While migrating egress traffic, you can expect
some disruption to workloads and service traffic
until the Cluster Network Operator (CNO)

™ successfully rolls out the changes.

Description

The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.

One of the following additional audit log targets:

libc

The libc syslog() function of the journald process on the
host.

udp:<host>:<port>

A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>

A Unix Domain Socket file specified by <file>.
null

Do not send the audit logs to any additional target.

The syslog facility, such as kern, as defined by RFC5424. The
default value is localO.

Description

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Field Type Description

routingViaHost boolean Set this field to true to send egress traffic from pods to the
host networking stack. For highly-specialized installations and
applications that rely on manually configured routes in the
kernel routing table, you might want to route egress traffic to
the host networking stack. By default, egress traffic is processed
in OVN to exit the cluster and is not affected by specialized
routes in the kernel routing table. The default value is false.

This field has an interaction with the Open vSwitch hardware
offloading feature. If you set this field to true, you do not
receive the performance benefits of the offloading because
egress traffic is processed by the host networking stack.

NOTE

You can only change the configuration for your cluster network provider during cluster
installation, except for the gatewayConfig field that can be changed at runtime as a
post-installation activity.

Example OVN-Kubernetes configuration with IPSec enabled

defaultNetwork:
type: OVNKubernetes
ovnKubernetesConfig:
mtu: 1400
genevePort: 6081
ipsecConfig: {}

kubeProxyConfig object configuration
The values for the kubeProxyConfig object are defined in the following table:

Table 4.7. kubeProxyConfig object

Field Type Description

29

OpenShift Container Platform 4.11 Networking

Field Type Description

iptablesSyncPeriod string The refresh period for iptables rules. The default
value is 30s. Valid suffixes includes, m, and h and
are described in the Go time package
documentation.

NOTE

Because of performance
improvements introduced in
OpenShift Container Platform 4.3
and greater, adjusting the
iptablesSyncPeriod parameter is
no longer necessary.

proxyArguments.iptables- array The minimum duration before refreshing iptables

min-sync-period rules. This field ensures that the refresh does not
happen too frequently. Valid suffixes include s, m,
and h and are described in the Go time package.
The default value is:

kubeProxyConfig:
proxyArguments:
iptables-min-sync-period:
- 0s

4.5.2. Cluster Network Operator example configuration

A complete CNO configuration is specified in the following example:

Example Cluster Network Operator object

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
clusterNetwork: ﬂ
- cidr: 10.128.0.0/14
hostPrefix: 23
serviceNetwork: g
-172.30.0.0/16
defaultNetwork: 6
type: OpenShiftSDN
openshiftSDNConfig:
mode: NetworkPolicy
mtu: 1450
vxlanPort: 4789
kubeProxyConfig:
iptablesSyncPeriod: 30s

30

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

CHAPTER 4. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORN

proxyArguments:
iptables-min-sync-period:
- O0s

monfigured only during cluster installation.

4.6. ADDITIONAL RESOURCES

o Network APl in the operator.openshift.io APl group

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#network-operator-openshift-io-v1

OpenShift Container Platform 4.11 Networking

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in OpenShift Container Platform.

5.1. DNS OPERATOR
The DNS Operator implements the dns API from the operator.openshift.io APl group. The Operator
deploys CoreDNS using a daemon set, creates a service for the daemon set, and configures the kubelet

to instruct pods to use the CoreDNS service IP address for name resolution.

Procedure

The DNS Operator is deployed during installation with a Deployment object.

1. Use the oc get command to view the deployment status:

I $ oc get -n openshift-dns-operator deployment/dns-operator

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

2. Use the oc get command to view the state of the DNS Operator:

I $ oc get clusteroperator/dns

Example output

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
dns 4.1.0-0.11 True False False 92m

AVAILABLE, PROGRESSING and DEGRADED provide information about the status of the
operator. AVAILABLE is True when at least 1 pod from the CoreDNS daemon set reports an
Available status condition.

5.2. CHANGING THE DNS OPERATOR MANAGEMENTSTATE

DNS manages the CoreDNS component to provide a name resolution service for pods and services in
the cluster. The managementState of the DNS Operator is set to Managed by default, which means
that the DNS Operator is actively managing its resources. You can change it to Unmanaged, which
means the DNS Operator is not managing its resources.

The following are use cases for changing the DNS Operator managementState:
® You are a developer and want to test a configuration change to see if it fixes an issue in

CoreDNS. You can stop the DNS Operator from overwriting the fix by setting the
managementState to Unmanaged.

32

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

® You are a cluster administrator and have reported an issue with CoreDNS, but need to apply a
workaround until the issue is fixed. You can set the managementState field of the DNS
Operator to Unmanaged to apply the workaround.

Procedure

® Change managementState DNS Operator:

oc patch dns.operator.openshift.io default --type merge --patch '{"spec":
{"managementState":"Unmanaged"}}'

5.3. CONTROLLING DNS POD PLACEMENT

The DNS Operator has two daemon sets: one for CoreDNS and one for managing the /etc/hosts file.
The daemon set for /etec/hosts must run on every node host to add an entry for the cluster image
registry to support pulling images. Security policies can prohibit communication between pairs of nodes,
which prevents the daemon set for CoreDNS from running on every node.

As a cluster administrator, you can use a custom node selector to configure the daemon set for
CoreDNS to run or not run on certain nodes.

Prerequisites

® You installed the oc CLI.

® You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

® To prevent communication between certain nodes, configure the
spec.nodePlacement.nodeSelector API field:

1. Modify the DNS Operator object named default:

I $ oc edit dns.operator/default

2. Specify a node selector that includes only control plane nodes in the
spec.nodePlacement.nodeSelector API field:

spec:
nodePlacement:

nodeSelector:
node-role.kubernetes.io/worker: "

® To allow the daemon set for CoreDNS to run on nodes, configure a taint and toleration:

1. Modify the DNS Operator object named default:

I $ oc edit dns.operator/default

2. Specify a taint key and a toleration for the taint:

spec:
nodePlacement:

33

OpenShift Container Platform 4.11 Networking

tolerations:
- effect: NoExecute
key: "dns-only"
operators: Equal
value: abc
tolerationSeconds: 3600 ﬂ

If the taint is dns-only, it can be tolerated indefinitely. You can omit
tolerationSeconds.

5.4.VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

I $ oc describe dns.operator/default

Example output

Name: default
Namespace:
Labels: <none>

Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS

Status:
Cluster Domain: cluster.local ﬂ
Cluster IP: 172.30.0.10 @

ﬂ The Cluster Domain field is the base DNS domain used to construct fully qualified pod and
service domain names.

9 The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the service CIDR range.

2. To find the service CIDR of your cluster, use the oc get command:

I $ oc get networks.config/cluster -o jsonpath="{$.status.serviceNetwork}'

Example output

I [172.30.0.0/16]

5.5. USING DNS FORWARDING

34

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

You can use DNS forwarding to override the default forwarding configuration in the /etc/resolv.conf file
in the following ways:

® Specify name servers for every zone. If the forwarded zone is the Ingress domain managed by
OpenShift Container Platform, then the upstream name server must be authorized for the
domain.

® Provide a list of upstream DNS servers.

® Change the default forwarding policy.

NOTE

A DNS forwarding configuration for the default domain can have both the default servers
specified in the /etc/resolv.conf file and the upstream DNS servers.

Procedure

1. Modify the DNS Operator object named default:
I $ oc edit dns.operator/default

After you issue the previous command, the Operator creates and updates the config map
named dns-default with additional server configuration blocks based on Server. If none of the
servers have a zone that matches the query, then name resolution falls back to the upstream
DNS servers.

Configuring DNS forwarding

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
name: default
spec:
servers:
- name: example-server 0
zones:
- example.com
forwardPlugin:
policy: Random
upstreams:
-1.1.11
-2.2.2.2:5353
upstreamResolvers: 6
policy: Random G
upstreams:
- type: SystemResolvConf 6
- type: Network
address: 1.2.3.4 Q

port: 53 @

ﬂ Must comply with the rfc6335 service name syntax.

35

OpenShift Container Platform 4.11 Networking

36

2]

@ O 099 o ®©6 o

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

A maximum of 15 upstreams is allowed per forwardPlugin.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Determines the order in which upstream servers are selected for querying. You can specify
one of these values: Random, RoundRobin, or Sequential. The default value is
Sequential.

Optional. You can use it to provide upstream resolvers.

You can specify two types of upstreams - SystemResolvConf and Network.
SystemResolvConf configures the upstream to use /etc/resolv.conf and Network
defines a Networkresolver. You can specify one or both.

If the specified type is Network, you must provide an IP address. The address field must
be a valid IPv4 or IPv6 address.

If the specified type is Network, you can optionally provide a port. The port field must have
a value between 1 and 65535. If you do not specify a port for the upstream, by default port
853 is tried.

2. Optional: When working in a highly regulated environment, you might need the ability to secure
DNS traffic when forwarding requests to upstream resolvers so that you can ensure additional
DNS traffic and data privacy. Cluster administrators can configure transport layer security
(TLS) for forwarded DNS queries.

Configuring DNS forwarding with TLS

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:

name: default

spec:

servers:
- name: example-server 0
zones:
- example.com
forwardPlugin:
transportConfig:
transport: TLS
tls:
caBundle:
name: mycacert
serverName: dnstls.example.com ﬂ
policy: Random 9
upstreams:
-1.1.141

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

-2.2.2.2:5353
upstreamResolvers: ﬂ
transportConfig:
transport: TLS
tls:
caBundle:
name: mycacert
serverName: dnstls.example.com
upstreams:

- type: Network 6
address: 1.2.3.4 Q

port: 53 @

Must comply with the rfc6335 service name syntax.

Must conform to the definition of a subdomain in the rfc1123 service name syntax. The
cluster domain, cluster.local, is an invalid subdomain for the zones field. The cluster
domain, cluster.local, is an invalid subdomain for zones.

®9

When configuring TLS for forwarded DNS queries, set the transport field to have the value
TLS. By default, CoreDNS caches forwarded connections for 10 seconds. CoreDNS will
hold a TCP connection open for those 10 seconds if no request is issued. With large
clusters, ensure that your DNS server is aware that it might get many new connections to
hold open because you can initiate a connection per node. Set up your DNS hierarchy
accordingly to avoid performance issues.

o

When configuring TLS for forwarded DNS queries, this is a mandatory server name used as
part of the server name indication (SNI) to validate the upstream TLS server certificate.

Defines the policy to select upstream resolvers. Default value is Random. You can also use
the values RoundRobin, and Sequential.

Required. You can use it to provide upstream resolvers. A maximum of 15 upstreams
entries are allowed per forwardPlugin entry.

Optional. You can use it to override the default policy and forward DNS resolution to the
specified DNS resolvers (upstream resolvers) for the default domain. If you do not provide
any upstream resolvers, the DNS name queries go to the servers in /etc/resolv.conf.

Network type indicates that this upstream resolver should handle forwarded requests
separately from the upstream resolvers listed in /etc/resolv.conf. Only the Network type is
allowed when using TLS and you must provide an IP address.

The address field must be a valid IPv4 or IPv6 address.

oo O O O ® o

You can optionally provide a port. The port must have a value between 1 and 65535. If you
do not specify a port for the upstream, by default port 853 is tried.

NOTE

If servers is undefined or invalid, the config map only contains the default server.

Verification

37

OpenShift Container Platform 4.11 Networking

1. View the config map:

I $ oc get configmap/dns-default -n openshift-dns -o yaml
Sample DNS ConfigMap based on previous sample DNS

apiVersion: vi
data:
Corefile: |
example.com:5353 {
forward . 1.1.1.1 2.2.2.2:5353
}
bar.com:5353 example.com:5353 {
forward . 3.3.3.3 4.4.4.4:5454 §)
}
.:56353 {
errors
health
kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
upstream
fallthrough in-addr.arpa ip6.arpa
}
prometheus :9153
forward . /etc/resolv.conf 1.2.3.4:53 {
policy Random
}
cache 30
reload
}
kind: ConfigMap
metadata:
labels:
dns.operator.openshift.io/owning-dns: default
name: dns-default
namespace: openshift-dns

ﬂ Changes to the forwardPlugin triggers a rolling update of the CoreDNS daemon set.

Additional resources

® For more information on DNS forwarding, see the CoreDNS forward documentation.

5.6. DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

I $ oc describe clusteroperators/dns

38

https://coredns.io/plugins/forward/

CHAPTER 5. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

5.7.DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.
Procedure

View the logs of the DNS Operator:

I $ oc logs -n openshift-dns-operator deployment/dns-operator -¢c dns-operator

5.8.SETTING THE COREDNS LOG LEVEL

You can configure the CoreDNS log level to determine the amount of detail in logged error messages.
The valid values for CoreDNS log level are Normal, Debug, and Trace. The default logLevel is Normal.

NOTE

The errors plugin is always enabled. The following logLevel settings report different error
responses:

e JogLevel: Normal enables the "errors” class: log . { class error }.
e loglLevel: Debug enables the "denial” class: log . { class denial error }.

® JogLevel: Trace enables the "all" class: log . { class all }.

Procedure

e Toset logLevel to Debug, enter the following command:

I $ oc patch dnses.operator.openshift.io/default -p '{"spec":{"logLevel":"Debug"}}' --type=merge

® TosetloglLevel to Trace, enter the following command:

I $ oc patch dnses.operator.openshift.io/default -p {"spec":{"logLevel":"Trace"}}' --type=merge

Verification

® To ensure the desired log level was set, check the config map:

I $ oc get configmap/dns-default -n openshift-dns -o yaml

5.9.SETTING THE COREDNS OPERATOR LOG LEVEL

Cluster administrators can configure the Operator log level to more quickly track down OpenShift DNS
issues. The valid values for operatorLogLevel are Normal, Debug, and Trace. Trace has the most
detailed information. The default operatorlogLevel is Normal. There are seven logging levels for issues:
Trace, Debug, Info, Warning, Error, Fatal and Panic. After the logging level is set, log entries with that
severity or anything above it will be logged.

e operatorLogLevel: "Normal" sets logrus.SetLogLevel("Info").

e operatorLogLevel: "Debug” sets logrus.SetLogLevel("Debug™).

39

OpenShift Container Platform 4.11 Networking

o operatorLogLevel: "Trace" sets logrus.SetLogLevel("Trace").

Procedure

e To set operatorLogLevel to Debug, enter the following command:

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Debug"}}' --
type=merge

® To set operatorLogLevel to Trace, enter the following command:

$ oc patch dnses.operator.openshift.io/default -p '{"spec":{"operatorLogLevel":"Trace"}}' --
type=merge

40

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

6.1. OPENSHIFT CONTAINER PLATFORM INGRESS OPERATOR

When you create your OpenShift Container Platform cluster, pods and services running on the cluster
are each allocated their own IP addresses. The IP addresses are accessible to other pods and services
running nearby but are not accessible to outside clients. The Ingress Operator implements the
IngressController APl and is the component responsible for enabling external access to OpenShift
Container Platform cluster services.

The Ingress Operator makes it possible for external clients to access your service by deploying and
managing one or more HAProxy-based Ingress Controllers to handle routing. You can use the Ingress
Operator to route traffic by specifying OpenShift Container Platform Route and Kubernetes Ingress
resources. Configurations within the Ingress Controller, such as the ability to define
endpointPublishingStrategy type and internal load balancing, provide ways to publish Ingress
Controller endpoints.

6.2. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
spec:
domain: apps.openshiftdemos.com

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

® The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

® The OpenShift APl Server Operator uses the domain from the cluster Ingress configuration.
This domain is also used when generating a default host for a Route resource that does not
specify an explicit host.

6.3. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

41

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

OpenShift Container Platform 4.11 Networking

Parameter Description

domain

replicas

endpointPublishingStr
ategy

42

domain is a DNS name serviced by the Ingress Controller and is used to
configure multiple features:

e Forthe LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

® When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

® The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress Controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas is the desired number of Ingress Controller replicas. If not set, the
default value is 2.

endpointPublishingStrategy is used to publish the Ingress Controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

o Amazon Web Services (AWS): LoadBalancerService (with External
scope)

e Azure: LoadBalancerService (with External scope)

® Google Cloud Platform (GCP): LoadBalancerService (with
External scope)

o Bare metal: NodePortService

o Other: HostNetwork

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

following default values for the optional binding ports:
httpPort: 80, httpsPort: 443, and statsPort: 1936.
With the binding ports, you can deploy multiple

Ingress Controllers on the same node for the
HostNetwork strategy.

Example

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: internal
namespace: openshift-ingress-operator
spec:
domain: example.com
endpointPublishingStrategy:
type: HostNetwork
hostNetwork:
httpPort: 80
httpsPort: 443
statsPort: 1936

NOTE

On Red Hat OpenStack Platform (RHOSP), the
LoadBalancerService endpoint publishing strategy
is only supported if a cloud provider is configured to
create health monitors. For RHOSP 16.1 and 16.2, this
strategy is only possible if you use the Amphora
Octavia provider.

For more information, see the "Setting cloud provider
options" section of the RHOSP installation
documentation.

For most platforms, the endpointPublishingStrategy value can be
updated. On GCP, you can configure the following
endpointPublishingStrategy fields:

loadBalancer.scope
loadbalancer.providerParameters.gcp.clientAccess
hostNetwork.protocol

nodePort.protocol

43

OpenShift Container Platform 4.11 Networking

Parameter Description

44

defaultCertificate

namespaceSelector

routeSelector

nodePlacement

The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress Controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress Controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

namespaceSelector is used to filter the set of namespaces serviced by the
Ingress Controller. This is useful for implementing shards.

routeSelector is used to filter the set of Routes serviced by the Ingress
Controller. This is useful for implementing shards.

nodePlacement enables explicit control over the scheduling of the Ingress
Controller.

If not set, the defaults values are used.

y NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

nodePlacement:
nodeSelector:
matchLabels:
kubernetes.io/os: linux
tolerations:
- effect: NoSchedule
operator: Exists

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Parameter Description

tisSecurityProfile tisSecurityProfile specifies settings for TLS connections for Ingress
Controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress Controller, resulting in a rollout.

The minimum TLS version for Ingress Controllers is 1.1, and the maximum TLS
version is 1.3.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

IMPORTANT

The Ingress Operator converts the TLS 1.0 of anOld or
Custom profile to 1.1.

clientTLS clientTLS authenticates client access to the cluster and services; as a result,
mutual TLS authentication is enabled. If not set, then client TLS is not enabled.

clientTLS has the required subfields,
spec.clientTLS.clientCertificatePolicy and spec.clientTLS.ClientCA.

The ClientCertificatePolicy subfield accepts one of the two values:
Required or Optional. The ClientCA subfield specifies a config map that is
in the openshift-config namespace. The config map should contain a CA
certificate bundle.

The AllowedSubjectPatterns is an optional value that specifies a list of
regular expressions, which are matched against the distinguished name on a
valid client certificate to filter requests. The regular expressions must use
PCRE syntax. At least one pattern must match a client certificate's
distinguished name; otherwise, the Ingress Controller rejects the certificate and
denies the connection. If not specified, the Ingress Controller does not reject
certificates based on the distinguished name.

45

OpenShift Container Platform 4.11 Networking

Parameter Description

routeAdmission routeAdmission defines a policy for handling new route claims, such as
allowing or denying claims across namespaces.

namespaceOwnership describes how hostname claims across namespaces
should be handled. The default is Strict.

Strict: does not allow routes to claim the same hostname across
namespaces.

InterNamespaceAllowed: allows routes to claim different paths of
the same hostname across namespaces.

wildcardPolicy describes how routes with wildcard policies are handled by
the Ingress Controller.

46

WildcardsAllowed: Indicates routes with any wildcard policy are
admitted by the Ingress Controller.

WildcardsDisallowed: Indicates only routes with a wildcard policy
of None are admitted by the Ingress Controller. Updating
wildcardPolicy from WildcardsAllowed to
WildcardsDisallowed causes admitted routes with a wildcard policy
of Subdomain to stop working. These routes must be recreated to a
wildcard policy of None to be readmitted by the Ingress Controller.
WildcardsDisallowed is the default setting.

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Parameter Description

IngressControllerLoggi logging defines parameters for what is logged where. If this field is empty,
ng operational logs are enabled but access logs are disabled.

® access describes how client requests are logged. If this field is
empty, access logging is disabled.

o destination describes a destination for log messages.
m type is the type of destination for logs:

e Container specifies that logs should go to a sidecar
container. The Ingress Operator configures the
container, named logs, on the Ingress Controller pod and
configures the Ingress Controller to write logs to the
container. The expectation is that the administrator
configures a custom logging solution that reads logs
from this container. Using container logs means that
logs may be dropped if the rate of logs exceeds the
container runtime capacity or the custom logging
solution capacity.

e Syslog specifies that logs are sent to a Syslog
endpoint. The administrator must specify an endpoint
that can receive Syslog messages. The expectation is
that the administrator has configured a custom Syslog
instance.

m container describes parameters for the Container logging
destination type. Currently there are no parameters for
container logging, so this field must be empty.

m syslog describes parameters for the Syslog logging
destination type:

o address is the IP address of the syslog endpoint that
receives log messages.

e portis the UDP port number of the syslog endpoint that
receives log messages.

e maxLength is the maximum length of the syslog
message. It must be between 480 and 4096 bytes. If this
field is empty, the maximum length is set to the default
value of 1024 bytes.

e facility specifies the syslog facility of log messages. If
this field is empty, the facility is local1. Otherwise, it
must specify a valid syslog facility: kern, user, mail,
daemon, auth, syslog, Ipr, news, uucp, cron, auth2,
ftp, ntp, audit, alert, cron2, local0, local1, local2,
local3.local4, local5, local6, orlocal?.

o httpLogFormat specifies the format of the log message for an
HTTP request. If this field is empty, log messages use the
implementation’s default HTTP log format. For HAProxy's default
HTTP log format, see the HAProxy documentation.

47

http://cbonte.github.io/haproxy-dconv/2.0/configuration.html#8.2.3

OpenShift Container Platform 4.11 Networking

Parameter Description

httpHeaders httpHeaders defines the policy for HTTP headers.

By setting the forwardedHeaderPolicy for the
IngressControllerHTTPHeaders, you specify when and how the Ingress
Controller sets the Forwarded, X-Forwarded-For, X-Forwarded-Host, X-
Forwarded-Port, X-Forwarded-Proto, and X-Forwarded-Proto-Version
HTTP headers.

By default, the policy is set to Append.

Append specifies that the Ingress Controller appends the headers,
preserving any existing headers.

Replace specifies that the Ingress Controller sets the headers,
removing any existing headers.

IfNone specifies that the Ingress Controller sets the headers if they
are not already set.

Never specifies that the Ingress Controller never sets the headers,
preserving any existing headers.

By setting headerNameCaseAdjustments, you can specify case
adjustments that can be applied to HTTP header names. Each adjustment is
specified as an HTTP header name with the desired capitalization. For example,
specifying X-Forwarded-For indicates that the x-forwarded-for HTTP
header should be adjusted to have the specified capitalization.

These adjustments are only applied to cleartext, edge-terminated, and re-
encrypt routes, and only when using HTTP/1.

For request headers, these adjustments are applied only for routes that have
the haproxy.router.openshift.io/h1-adjust-case=true annotation. For
response headers, these adjustments are applied to all HTTP responses. If this
field is empty, no request headers are adjusted.

httpCompression httpCompression defines the policy for HTTP traffic compression.

mimeTypes defines a list of MIME types to which compression
should be applied. For example, text/css; charset=utf-8, text/html,
text/*, image/svg+xml, application/octet-stream, X-
custom/customsub, using the format pattern,type/subtype;
[;attribute=value]. Thetypes are: application, image, message,
multipart, text, video, or a custom type prefaced by X-; e.g. To see the
full notation for MIME types and subtypes, see RFC1341

httpErrorCodePages httpErrorCodePages specifies custom HTTP error code response pages. By
default, an IngressController uses error pages built into the IngressController

image.

48

https://datatracker.ietf.org/doc/html/rfc1341#page-7

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Parameter Description

httpCaptureCookies httpCaptureCookies specifies HTTP cookies that you want to capture in
access logs. If the httpCaptureCookies field is empty, the access logs do not
capture the cookies.

For any cookie that you want to capture, the following parameters must be in
your IngressController configuration:

® name specifies the name of the cookie.
e maxLength specifies tha maximum length of the cookie.

e matchType specifies if the field hame of the cookie exactly matches
the capture cookie setting or is a prefix of the capture cookie setting.
The matchType field uses the Exact and Prefix parameters.

For example:

httpCaptureCookies:

- matchType: Exact
maxLength: 128
name: MYCOOKIE

httpCaptureHeaders httpCaptureHeaders specifies the HTTP headers that you want to capture
in the access logs. If the httpCaptureHeaders field is empty, the access logs
do not capture the headers.

httpCaptureHeaders contains two lists of headers to capture in the access
logs. The two lists of header fields are request and response. In both lists,
the name field must specify the header name and themaxlength field must
specify the maximum length of the header. For example:

httpCaptureHeaders:

request:

- maxLength: 256
name: Connection

- maxLength: 128
name: User-Agent

response:

- maxLength: 256
name: Content-Type

- maxLength: 256
name: Content-Length

tuningOptions tuningOptions specifies options for tuning the performance of Ingress
Controller pods.

e clientFinTimeout specifies how long a connection is held open while
waiting for the client response to the server closing the connection.
The default timeout is 18s.

o clientTimeout specifies how long a connection is held open while
waiting for a client response. The default timeout is 30s.

o headerBufferBytes specifies how much memory is reserved, in

49

OpenShift Container Platform 4.11 Networking

recommended because headerBufferBytes values that are too
small can break the Ingress Controller, and headerBufferBytes
values that are too large could cause the Ingress Controller to use
significantly more memory than necessary.

o headerBufferMaxRewriteBytes specifies how much memory
should be reserved, in bytes, from headerBufferBytes for HTTP
header rewriting and appending for Ingress Controller connection
sessions. The minimum value for headerBufferMaxRewriteBytes is
4096. headerBufferBytes must be greater than
headerBufferMaxRewriteBytes for incoming HTTP requests. If
not set, the default value is 8192 bytes. Setting this field not
recommended because headerBufferMaxRewriteBytes values
that are too small can break the Ingress Controller and
headerBufferMaxRewriteBytes values that are too large could
cause the Ingress Controller to use significantly more memory than
necessary.

e healthChecklnterval specifies how long the router waits between
health checks. The default is 5s.

o serverFinTimeout specifies how long a connection is held open
while waiting for the server response to the client that is closing the
connection. The default timeout is 1s.

e serverTimeout specifies how long a connection is held open while
waiting for a server response. The default timeout is 30s.

o threadCount specifies the number of threads to create per HAProxy
process. Creating more threads allows each Ingress Controller pod to
handle more connections, at the cost of more system resources being
used. HAProxy supports up to 64 threads. If this field is empty, the
Ingress Controller uses the default value of 4 threads. The default
value can change in future releases. Setting this field is not
recommended because increasing the number of HAProxy threads
allows Ingress Controller pods to use more CPU time under load, and
prevent other pods from receiving the CPU resources they need to
perform. Reducing the number of threads can cause the Ingress
Controller to perform poorly.

e tlsinspectDelay specifies how long the router can hold data to find
a matching route. Setting this value too short can cause the router to
fall back to the default certificate for edge-terminated, reencrypted,
or passthrough routes, even when using a better matched certificate.
The default inspect delay is 5s.

e tunnelTimeout specifies how long a tunnel connection, including

websockets, remains open while the tunnel is idle. The default timeout
is 1h.

e maxConnections specifies the maximum number of simultaneous
connections that can be established per HAProxy process. Increasing
this value allows each ingress controller pod handle more connections
at the cost of additional system resources. Permitted values are 0,-1,
any value within the range 2000 and 2000000, or the field can be left
empty.

o |If this field is left empty or has the value 0, the ingress controller
will use the default value of 20000. This value is subject to
change in future releases.

o If the field has the value of -1, then HAProxy will dynamically
compute a maximum value based on the available ulimits in the

50

Parameter

logEmptyRequests

HTTPEmptyRequestsP
olicy

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Description

o |If the field has a value that is greater than the current operating
system limit, the HAProxy process will not start.

o If you choose a discrete value and the router pod is migrated to a
new node, it is possible the new node does not have an identical
ulimit configured. In such cases, the pod fails to start.

o If you have nodes with different ulimits configured, and you
choose a discrete value, it is recommended to use the value of -1
for this field so that the maximum number of connections is
calculated at runtime.

logEmptyRequests specifies connections for which no request is received
and logged. These empty requests come from load balancer health probes or
web browser speculative connections (preconnect) and logging these requests
can be undesirable. However, these requests can be caused by network errors,
in which case logging empty requests can be useful for diagnosing the errors.
These requests can be caused by port scans, and logging empty requests can
aid in detecting intrusion attempts. Allowed values for this field are Log and
Ignore. The default value isLog.

The LoggingPolicy type accepts either one of two values:

e Log: Setting this value to Log indicates that an event should be
logged.

e Ignore: Setting this value to lgnore sets the dontlognull option in
the HAproxy configuration.

HTTPEmptyRequestsPolicy describes how HTTP connections are handled
if the connection times out before a request is received. Allowed values for this
field are Respond and Ignore. The default value isRespond.

The HTTPEmptyRequestsPolicy type accepts either one of two values:

e Respond: If the field is set to Respond, the Ingress Controller sends
an HTTP 400 or 408 response, logs the connection if access logging is
enabled, and counts the connection in the appropriate metrics.

e Ignore: Setting this option tolgnore adds the http-ignore-probes
parameter in the HAproxy configuration. If the field is set to Ignore,
the Ingress Controller closes the connection without sending a
response, then logs the connection, or incrementing metrics.

These connections come from load balancer health probes or web browser
speculative connections (preconnect) and can be safely ignored. However,
these requests can be caused by network errors, so setting this field to lgnore
can impede detection and diagnosis of problems. These requests can be
caused by port scans, in which case logging empty requests can aid in detecting
intrusion attempts.

51

OpenShift Container Platform 4.11 Networking

NOTE

All parameters are optional.

6.3.1. Ingress Controller TLS security profiles

TLS security profiles provide a way for servers to regulate which ciphers a connecting client can use
when connecting to the server.

6.3.1.1. Understanding TLS security profiles

You can use a TLS (Transport Layer Security) security profile to define which TLS ciphers are required
by various OpenShift Container Platform components. The OpenShift Container Platform TLS security
profiles are based on Mozilla recommended configurations.

You can specify one of the following TLS security profiles for each component:

Table 6.1. TLS security profiles

Profile Description

Oild This profile is intended for use with legacy clients or libraries. The profile
is based on the Old backward compatibility recommended configuration.

The Old profile requires a minimum TLS version of 1.0.

NOTE

R

For the Ingress Controller, the minimum TLS version is
converted from 1.0 to 1.1.

Intermediate This profile is the recommended configuration for the majority of clients.
Itis the default TLS security profile for the Ingress Controller, kubelet,
and control plane. The profile is based on the Intermediate compatibility
recommended configuration.

The Intermediate profile requires a minimum TLS version of 1.2.

Modern This profile is intended for use with modern clients that have no need for
backwards compatibility. This profile is based on the Modern
compatibility recommended configuration.

The Modern profile requires a minimum TLS version of 1.3.

52

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS#Old_backward_compatibility
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Modern_compatibility

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Profile Description

Custom This profile allows you to define the TLS version and ciphers to use.

' WARNING
A Use caution when using a Custom profile,

because invalid configurations can cause
problems.

NOTE

When using one of the predefined profile types, the effective profile configuration is
subject to change between releases. For example, given a specification to use the
Intermediate profile deployed on release X.Y.Z, an upgrade to release X.Y.Z+1 might
cause a new profile configuration to be applied, resulting in a rollout.

6.3.1.2. Configuring the TLS security profile for the Ingress Controller

To configure a TLS security profile for an Ingress Controller, edit the IngressController custom
resource (CR) to specify a predefined or custom TLS security profile. If a TLS security profile is not
configured, the default value is based on the TLS security profile set for the APl server.

Sample IngressController CR that configures the Old TLS security profile

apiVersion: operator.openshift.io/v1
kind: IngressController

spec:
tisSecurityProfile:
old: {}
type: Old

The TLS security profile defines the minimum TLS version and the TLS ciphers for TLS connections for
Ingress Controllers.

You can see the ciphers and the minimum TLS version of the configured TLS security profile in the
IngressController custom resource (CR) under Status.Tls Profile and the configured TLS security
profile under Spec.Tls Security Profile. For the Custom TLS security profile, the specific ciphers and
minimum TLS version are listed under both parameters.

53

OpenShift Container Platform 4.11 Networking

NOTE
The HAProxy Ingress Controller image supports TLS 1.3 and the Modern profile.

The Ingress Operator also converts the TLS 1.0 of an Old or Custom profile to 1.1.

Prerequisites

® You have access to the cluster as a user with the cluster-admin role.

Procedure

1. Edit the IngressController CR in the openshift-ingress-operator project to configure the TLS
security profile:

I $ oc edit IngressController default -n openshift-ingress-operator

2. Add the spec.tisSecurityProfile field:

Sample IngressController CR for a Custom profile

apiVersion: operator.openshift.io/v1
kind: IngressController

spec:
tisSecurityProfile:

type: Custom ﬂ

custom:
ciphers: e
- ECDHE-ECDSA-CHACHA20-POLY 1305
- ECDHE-RSA-CHACHA20-POLY1305
- ECDHE-RSA-AES128-GCM-SHA256
- ECDHE-ECDSA-AES128-GCM-SHA256
minTLSVersion: VersionTLS11

Specify the TLS security profile type (Old, Intermediate, or Custom). The default is
Intermediate.

Specify the appropriate field for the selected type:

o

e old: {}
e intermediate: {}
e custom:

9 For the custom type, specify a list of TLS ciphers and minimum accepted TLS version.

3. Save the file to apply the changes.

Verification

e Verify that the profile is set in the IngressController CR:

54

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

I $ oc describe IngressController default -n openshift-ingress-operator

Example output

Name: default
Namespace: openshift-ingress-operator
Labels: <none>

Annotations: <none>
API Version: operator.openshift.io/v1
Kind: IngressController

Spec:

Tls Security Profile:
Custom:

Ciphers:
ECDHE-ECDSA-CHACHA20-POLY1305
ECDHE-RSA-CHACHA20-POLY1305
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-GCM-SHA256

Min TLS Version: VersionTLS11

Type: Custom

6.3.1.3. Configuring mutual TLS authentication

You can configure the Ingress Controller to enable mutual TLS (mTLS) authentication by setting a
spec.clientTLS value. The clientTLS value configures the Ingress Controller to verify client certificates.
This configuration includes setting a clientCA value, which is a reference to a config map. The config
map contains the PEM-encoded CA certificate bundle that is used to verify a client’s certificate.
Optionally, you can also configure a list of certificate subject filters.

If the clientCA value specifies an X509v3 certificate revocation list (CRL) distribution point, the Ingress
Operator downloads and manages a CRL config map based on the HTTP URI X509v3 CRL Distribution
Point specified in each provided certificate. The Ingress Controller uses this config map during
mTLS/TLS negotiation. Requests that do not provide valid certificates are rejected.

Prerequisites
® You have access to the cluster as a user with the cluster-admin role.
® You have a PEM-encoded CA certificate bundle.

e |f your CA bundle references a CRL distribution point, you must have also included the end-
entity or leaf certificate to the client CA bundle. This certificate must have included an HTTP
URI under CRL Distribution Points, as described in RFC 5280. For example:

Issuer: C=US, O=Example Inc, CN=Example Global G2 TLS RSA SHA256 2020 CA1
Subject: SOME SIGNED CERT X509v3 CRL Distribution Points:
Full Name:
URI:http://crl.example.com/example.crl

Procedure

55

OpenShift Container Platform 4.11 Networking

1. In the openshift-config namespace, create a config map from your CA bundle:

$ oc create configmap \
router-ca-certs-default \

--from-file=ca-bundle.pem=client-ca.crt \ﬂ
-n openshift-config

ﬂ The config map data key must be ca-bundle.pem, and the data value must be a CA
certificate in PEM format.

2. Edit the IngressController resource in the openshift-ingress-operator project:

I $ oc edit IngressController default -n openshift-ingress-operator

3. Add the spec.clientTLS field and subfields to configure mutual TLS:

Sample IngressController CR for a clientTLS profile that specifies filtering patterns

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
clientTLS:
clientCertificatePolicy: Required
clientCA:
name: router-ca-certs-default
allowedSubjectPatterns:
- ""/CN=example.com/ST=NC/C=US/O=Security/OU=0OpenShift$"

6.4. VIEW THE DEFAULT INGRESS CONTROLLER
The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

® View the default Ingress Controller:

I $ oc describe --namespace=openshift-ingress-operator ingresscontroller/default
6.5. VIEW INGRESS OPERATOR STATUS
You can view and inspect the status of your Ingress Operator.

Procedure

® View your Ingress Operator status:

56

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

I $ oc describe clusteroperators/ingress

6.6. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

® \iew your Ingress Controller logs:

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator -c
<container_name>

6.7. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

® View the status of an Ingress Controller:

I $ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

6.8. CONFIGURING THE INGRESS CONTROLLER

6.8.1. Setting a custom default certificate

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

® You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configuredin a
custom PKI.

® Your certificate meets the following requirements:

o The certificate is valid for the ingress domain.

o The certificate uses the subjectAltName extension to specify a wildcard domain, such as
*.apps.ocp4.example.com.

® You must have an IngressController CR. You may use the default one:

I $ oc --namespace openshift-ingress-operator get ingresscontrollers

Example output

NAME AGE
default 10m

57

OpenShift Container Platform 4.11 Networking

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
itin the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

2. Update the IngressController CR to reference the new certificate secret:

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
--patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

3. Verify the update was effective:

$ echo Q |\

openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null \

openssl x509 -noout -subject -issuer -enddate

where:

<domain>

Specifies the base domain name for your cluster.

Example output

subject=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = *.apps.example.com
issuer=C = US, ST = NC, L = Raleigh, O = RH, OU = OCP4, CN = example.com
notAfter=May 10 08:32:45 2022 GM

58

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

TIP

You can alternatively apply the following YAML to set a custom default certificate:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

defaultCertificate:

name: custom-certs-default

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

6.8.2. Removing a custom default certificate

As an administrator, you can remove a custom certificate that you configured an Ingress Controller to
use.

Prerequisites
® You have access to the cluster as a user with the cluster-admin role.
® You have installed the OpenShift CLI (oc).

® You previously configured a custom default certificate for the Ingress Controller.

Procedure

® Toremove the custom certificate and restore the certificate that ships with OpenShift
Container Platform, enter the following command:

$ oc patch -n openshift-ingress-operator ingresscontrollers/default \
--type json -p $'- op: remove\n path: /spec/defaultCertificate’

There can be a delay while the cluster reconciles the new certificate configuration.

Verification

® To confirm that the original cluster certificate is restored, enter the following command:

$echoQ]\

openssl s_client -connect console-openshift-console.apps.<domain>:443 -showcerts
2>/dev/null |\

openssl x509 -noout -subject -issuer -enddate

where:

<domain>

Specifies the base domain name for your cluster.

59

OpenShift Container Platform 4.11 Networking

Example output

subject=CN = *.apps.<domain>
issuer=CN = ingress-operator@1620633373
notAfter=May 10 10:44:36 2023 GMT

6.8.3. Scaling an Ingress Controller

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. o0¢c commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

Procedure

1. View the current number of available replicas for the default IngressController:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

Example output

| -

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

Example output
I ingresscontroller.operator.openshift.io/default patched

3. Verify that the default IngressController scaled to the number of replicas that you specified:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

Example output

K

60

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

TIP

You can alternatively apply the following YAML to scale an Ingress Controller to three replicas:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:

replicas: 3 ﬂ

ﬂ If you need a different amount of replicas, change the replicas value.

6.8.4. Configuring Ingress access logging

You can configure the Ingress Controller to enable access logs. If you have clusters that do not receive
much traffic, then you can log to a sidecar. If you have high traffic clusters, to avoid exceeding the
capacity of the logging stack or to integrate with a logging infrastructure outside of OpenShift
Container Platform, you can forward logs to a custom syslog endpoint. You can also specify the format
for access logs.

Container logging is useful to enable access logs on low-traffic clusters when there is no existing Syslog
logging infrastructure, or for short-term use while diagnosing problems with the Ingress Controller.

Syslog is needed for high-traffic clusters where access logs could exceed the OpenShift Logging
stack’s capacity, or for environments where any logging solution needs to integrate with an existing
Syslog logging infrastructure. The Syslog use-cases can overlap.

Prerequisites

® | ogin as a user with cluster-admin privileges.

Procedure

Configure Ingress access logging to a sidecar.

® To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a sidecar container, you must specify
Container spec.logging.access.destination.type. The following example is an Ingress
Controller definition that logs to a Container destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Container

61

OpenShift Container Platform 4.11 Networking

® When you configure the Ingress Controller to log to a sidecar, the operator creates a container
named logs inside the Ingress Controller Pod:

I $ oc -n openshift-ingress logs deployment.apps/router-default -c logs
Example output

2020-05-11T19:11:50.135710+00:00 router-default-57dfc6cd95-bpmk6 router-default-
57dfc6cd95-bpmk6 haproxy[108]: 174.19.21.82:39654 [11/May/2020:19:11:50.133] public
be_http:hello-openshift:hello-openshift/pod:hello-openshift:hello-openshift:10.128.2.12:8080
0/0/1/0/1 200 142 - - --NI 1/1/0/0/0 0/0 "GET / HTTP/1.1"

Configure Ingress access logging to a Syslog endpoint.

® To configure Ingress access logging, you must specify a destination using
spec.logging.access.destination. To specify logging to a Syslog endpoint destination, you
must specify Syslog for spec.logging.access.destination.type. If the destination type is
Syslog, you must also specify a destination endpoint using
spec.logging.access.destination.syslog.endpoint and you can specify a facility using
spec.logging.access.destination.syslog.facility. The following example is an Ingress
Controller definition that logs to a Syslog destination:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2
logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
port: 10514

NOTE

The syslog destination port must be UDP.

Configure Ingress access logging with a specific log format.

® You can specify spec.logging.access.httpLogFormat to customize the log format. The
following example is an Ingress Controller definition that logs to a syslog endpoint with IP
address 1.2.3.4 and port 10514:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
replicas: 2

62

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

logging:
access:
destination:
type: Syslog
syslog:
address: 1.2.3.4
port: 10514
httpLogFormat: '%ci:%cp [Y%t] %ft Y%b/%s %B %bq Y%eHM %HU %HV'

Disable Ingress access logging.

® To disable Ingress access logging, leave spec.logging or spec.logging.access empty:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

replicas: 2

logging:

access: null

6.8.5. Setting Ingress Controller thread count

A cluster administrator can set the thread count to increase the amount of incoming connections a
cluster can handle. You can patch an existing Ingress Controller to increase the amount of threads.

Prerequisites

® The following assumes that you already created an Ingress Controller.

Procedure

e Update the Ingress Controller to increase the number of threads:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"threadCount": 8}}}'

NOTE

If you have a node that is capable of running large amounts of resources, you can
configure spec.nodePlacement.nodeSelector with labels that match the
capacity of the intended node, and configure spec.tuningOptions.threadCount
to an appropriately high value.

6.8.6. Configuring an Ingress Controller to use an internal load balancer

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

63

OpenShift Container Platform 4.11 Networking

' WARNING
A If your cloud provider is Microsoft Azure, you must have at least one public load

balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the

.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Figure 6.1. Diagram of LoadBalancer

A

Client

.

Cloud Provider

DNS

apps.foo.openshift.example.com foo.az.lb.cloudprovider.com Load balancer

!

’ Ingress ’
load balancer

www.yourappl.openshift.com www.yourapp2.openshift.com

Node 1 Node 2 Node N
Pod Pod Pod
T weRea— 10.0.128.5 10.0.128.6
Cluster

(Service yourapp1:8080, yourapp2:4200)

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress LoadBalancerService endpoint publishing strategy:

® You can load balance externally, using the cloud provider load balancer, or internally, using the
OpenShift Ingress Controller Load Balancer.

64

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

® You can use the single IP address of the load balancer and more familiar ports, such as 8080
and 4200 as shown on the cluster depicted in the graphic.

e Traffic from the external load balancer is directed at the pods, and managed by the load
balancer, as depicted in the instance of a down node. See the Kubernetes Services
documentation for implementation details.

Prerequisites
® |nstall the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Create an IngressController custom resource (CR) in a file named <hame>-ingress-
controller.yaml, such as in the following example:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator
name: <name>
spec:
domain: <domain> g
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:

scope: Internal 6

Q Replace <names with a name for the IngressController object.
9 Specify the domain for the application published by the controller.

g Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:
I $ oc create -f <name>-ingress-controller.yaml ﬂ

Q Replace <names with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

I $ oc --all-namespaces=true get ingresscontrollers

6.8.7. Configuring global access for an Ingress Controller on GCP

An Ingress Controller created on GCP with an internal load balancer generates an internal IP address for
the service. A cluster administrator can specify the global access option, which enables clients in any
region within the same VPC network and compute region as the load balancer, to reach the workloads
running on your cluster.

65

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

OpenShift Container Platform 4.11 Networking

For more information, see the GCP documentation for global access.

Prerequisites

® You deployed an OpenShift Container Platform cluster on GCP infrastructure.
® You configured an Ingress Controller to use an internal load balancer.

® You installed the OpenShift CLI (o¢).

Procedure

1. Configure the Ingress Controller resource to allow global access.

NOTE

You can also create an Ingress Controller and specify the global access option.

a. Configure the Ingress Controller resource:

I $ oc -n openshift-ingress-operator edit ingresscontroller/default

b. Edit the YAML file:

Sample clientAccess configuration to Global

spec:
endpointPublishingStrategy:
loadBalancer:
providerParameters:
gcp:
clientAccess: Global ﬂ
type: GCP
scope: Internal
type: LoadBalancerService

Q Set gcp.clientAccess to Global.

c. Save the file to apply the changes.
2. Run the following command to verify that the service allows global access:
I $ oc -n openshift-ingress edit svc/router-default -o yaml

The output shows that global access is enabled for GCP with the annotation,
networking.gke.io/internal-load-balancer-allow-global-access.
6.8.8. Setting the Ingress Controller health check interval

A cluster administrator can set the health check interval to define how long the router waits between
two consecutive health checks. This value is applied globally as a default for all routes. The default value
is 5 seconds.

66

https://cloud.google.com/kubernetes-engine/docs/how-to/internal-load-balancing#global_access

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Prerequisites

® The following assumes that you already created an Ingress Controller.

Procedure

® Update the Ingress Controller to change the interval between back end health checks:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"healthChecklinterval": "8s"}}}'

NOTE
To override the healthChecklInterval for a single route, use the route annotation
router.openshift.io/haproxy.health.check.interval

6.8.9. Configuring the default Ingress Controller for your cluster to be internal

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

' WARNING
A If your cloud provider is Microsoft Azure, you must have at least one public load

balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController, you can change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the custom
resource (CR) is created.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
namespace: openshift-ingress-operator

67

OpenShift Container Platform 4.11 Networking

name: default
spec:
endpointPublishingStrategy:
type: LoadBalancerService
loadBalancer:
scope: Internal
EOF

6.8.10. Configuring the route admission policy
Administrators and application developers can run applications in multiple namespaces with the same

domain name. This is for organizations where multiple teams develop microservices that are exposed on
the same hostname.

' WARNING
A Allowing claims across namespaces should only be enabled for clusters with trust

between namespaces, otherwise a malicious user could take over a hostname. For
this reason, the default admission policy disallows hostname claims across
namespaces.

Prerequisites

® Cluster administrator privileges.

Procedure

e Edit the .spec.routeAdmission field of the ingresscontroller resource variable using the
following command:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --patch '{"spec":
{"routeAdmission":{"namespaceOwnership":"InterNamespaceAllowed"}}}' --type=merge

Sample Ingress Controller configuration

spec:
routeAdmission:
namespaceOwnership: InterNamespaceAllowed

68

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

TIP

You can alternatively apply the following YAML to configure the route admission policy:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

routeAdmission:

namespaceOwnership: InterNamespaceAllowed

6.8.11. Using wildcard routes

The HAProxy Ingress Controller has support for wildcard routes. The Ingress Operator uses
wildcardPolicy to configure the ROUTER_ALLOW_WILDCARD_ROUTES environment variable of
the Ingress Controller.

The default behavior of the Ingress Controller is to admit routes with a wildcard policy of None, which is
backwards compatible with existing IngressController resources.

Procedure
1. Configure the wildcard policy.

a. Use the following command to edit the IngressController resource:

I $ oc edit IngressController

b. Under spec, set the wildcardPolicy field to WildcardsDisallowed or WildcardsAllowed:

spec:
routeAdmission:
wildcardPolicy: WildcardsDisallowed # or WildcardsAllowed

6.8.12. Using X-Forwarded headers

You configure the HAProxy Ingress Controller to specify a policy for how to handle HTTP headers
including Forwarded and X-Forwarded-For. The Ingress Operator uses the HTTPHeaders field to
configure the ROUTER_SET_FORWARDED_HEADERS environment variable of the Ingress
Controller.

Procedure
1. Configure the HTTPHeaders field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

I $ oc edit IngressController

b. Under spec, set the HTTPHeaders policy field to Append, Replace, IfNone, or Never:

69

OpenShift Container Platform 4.11 Networking

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: default

namespace: openshift-ingress-operator
spec:

httpHeaders:

forwardedHeaderPolicy: Append

Example use cases
As a cluster administrator, you can:

e Configure an external proxy that injects the X-Forwarded-For header into each request before
forwarding it to an Ingress Controller.
To configure the Ingress Controller to pass the header through unmodified, you specify the
never policy. The Ingress Controller then never sets the headers, and applications receive only
the headers that the external proxy provides.

e Configure the Ingress Controller to pass the X-Forwarded-For header that your external proxy
sets on external cluster requests through unmodified.
To configure the Ingress Controller to set the X-Forwarded-For header on internal cluster
requests, which do not go through the external proxy, specify the if-none policy. If an HTTP
request already has the header set through the external proxy, then the Ingress Controller
preserves it. If the header is absent because the request did not come through the proxy, then
the Ingress Controller adds the header.

As an application developer, you can:

e Configure an application-specific external proxy that injects the X-Forwarded-For header.
To configure an Ingress Controller to pass the header through unmodified for an application’s
Route, without affecting the policy for other Routes, add an annotation
haproxy.router.openshift.io/set-forwarded-headers: if-none or
haproxy.router.openshift.io/set-forwarded-headers: never on the Route for the application.

NOTE

You can set the haproxy.router.openshift.io/set-forwarded-headers
annotation on a per route basis, independent from the globally set value for the
Ingress Controller.

6.8.13. Enabling HTTP/2 Ingress connectivity

You can enable transparent end-to-end HTTP/2 connectivity in HAProxy. It allows application owners
to make use of HTTP/2 protocol capabilities, including single connection, header compression, binary
streams, and more.

You can enable HTTP/2 connectivity for an individual Ingress Controller or for the entire cluster.
To enable the use of HTTP/2 for the connection from the client to HAProxy, a route must specify a
custom certificate. A route that uses the default certificate cannot use HTTP/2. This restriction is

necessary to avoid problems from connection coalescing, where the client re-uses a connection for
different routes that use the same certificate.

The connection from HAProxy to the application pod can use HTTP/2 only for re-encrypt routes and
not for edge-terminated or insecure routes. This restriction is because HAProxy uses Application-Level

70

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Protocol Negotiation (ALPN), which is a TLS extension, to negotiate the use of HTTP/2 with the back-
end. The implication is that end-to-end HTTP/2 is possible with passthrough and re-encrypt and not
with insecure or edge-terminated routes.

' WARNING
A Using WebSockets with a re-encrypt route and with HTTP/2 enabled on an Ingress

Controller requires WebSocket support over HTTP/2. WebSockets over HTTP/2 is a
feature of HAProxy 2.4, which is unsupported in OpenShift Container Platform at
this time.

IMPORTANT

For non-passthrough routes, the Ingress Controller negotiates its connection to the
application independently of the connection from the client. This means a client may
connect to the Ingress Controller and negotiate HTTP/1.1, and the Ingress Controller may
then connect to the application, negotiate HTTP/2, and forward the request from the
client HTTP/1.1 connection using the HTTP/2 connection to the application. This poses a
problem if the client subsequently tries to upgrade its connection from HTTP/1.1 to the
WebSocket protocol, because the Ingress Controller cannot forward WebSocket to
HTTP/2 and cannot upgrade its HTTP/2 connection to WebSocket. Consequently, if you
have an application that is intended to accept WebSocket connections, it must not allow
negotiating the HTTP/2 protocol or else clients will fail to upgrade to the WebSocket
protocol.

Procedure

Enable HTTP/2 on a single Ingress Controller.

® Toenable HTTP/2 on an Ingress Controller, enter the oc annotate command:

$ oc -n openshift-ingress-operator annotate ingresscontrollers/<ingresscontroller_name>
ingress.operator.openshift.io/default-enable-http2=true

Replace <ingresscontroller_name> with the name of the Ingress Controller to annotate.
Enable HTTP/2 on the entire cluster.

® Toenable HTTP/2 for the entire cluster, enter the oc annotate command:

I $ oc annotate ingresses.config/cluster ingress.operator.openshift.io/default-enable-http2=true

71

OpenShift Container Platform 4.11 Networking

TIP

You can alternatively apply the following YAML to add the annotation:

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
name: cluster
annotations:
ingress.operator.openshift.io/default-enable-http2: "true"

6.8.14. Configuring the PROXY protocol for an Ingress Controller

A cluster administrator can configure the PROXY protocol when an Ingress Controller uses either the
HostNetwork or NodePortService endpoint publishing strategy types. The PROXY protocol enables
the load balancer to preserve the original client addresses for connections that the Ingress Controller
receives. The original client addresses are useful for logging, filtering, and injecting HTTP headers. In the
default configuration, the connections that the Ingress Controller receives only contain the source
address that is associated with the load balancer.

This feature is not supported in cloud deployments. This restriction is because when OpenShift
Container Platform runs in a cloud platform, and an IngressController specifies that a service load
balancer should be used, the Ingress Operator configures the load balancer service and enables the
PROXY protocol based on the platform requirement for preserving source addresses.

IMPORTANT

You must configure both OpenShift Container Platform and the external load balancer
to either use the PROXY protocol or to use TCP.

' WARNING
A The PROXY protocol is unsupported for the default Ingress Controller with

installer-provisioned clusters on non-cloud platforms that use a Keepalived Ingress
VIP.

Prerequisites

® You created an Ingress Controller.

Procedure

1. Edit the Ingress Controller resource:
I $ oc -n openshift-ingress-operator edit ingresscontroller/default

2. Set the PROXY configuration:

72

https://www.haproxy.org/download/1.8/doc/proxy-protocol.txt

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

e |f your Ingress Controller uses the hostNetwork endpoint publishing strategy type, set the
spec.endpointPublishingStrategy.hostNetwork.protocol subfield to PROXY:

Sample hostNetwork configuration to PROXY

spec:
endpointPublishingStrategy:
hostNetwork:
protocol: PROXY
type: HostNetwork

e |f your Ingress Controller uses the NodePortService endpoint publishing strategy type, set
the spec.endpointPublishingStrategy.nodePort.protocol subfield to PROXY:

Sample nodePort configuration to PROXY

spec:
endpointPublishingStrategy:
nodePort:
protocol: PROXY
type: NodePortService

6.8.15. Specifying an alternative cluster domain using the appsDomain option

As a cluster administrator, you can specify an alternative to the default cluster domain for user-created
routes by configuring the appsDomain field. The appsDomain field is an optional domain for
OpenShift Container Platform to use instead of the default, which is specified in the domain field. If you
specify an alternative domain, it overrides the default cluster domain for the purpose of determining the
default host for a new route.

For example, you can use the DNS domain for your company as the default domain for routes and
ingresses for applications running on your cluster.

Prerequisites
® You deployed an OpenShift Container Platform cluster.

® You installed the oc command line interface.

Procedure

1. Configure the appsDomain field by specifying an alternative default domain for user-created
routes.

a. Edit the ingress cluster resource:
I $ oc edit ingresses.config/cluster -o yaml
b. Edit the YAML file:

Sample appsDomain configuration to test.example.com

apiVersion: config.openshift.io/v1
kind: Ingress

73

OpenShift Container Platform 4.11 Networking

metadata:
name: cluster

spec:
domain: apps.example.com ﬂ
appsDomain: <test.example.com> 9

ﬂ Specifies the default domain. You cannot modify the default domain after installation.
9 Optional: Domain for OpenShift Container Platform infrastructure to use for

application routes. Instead of the default prefix, apps, you can use an alternative prefix
like test.

2. Verify that an existing route contains the domain name specified in the appsDomain field by
exposing the route and verifying the route domain change:

NOTE

Wait for the openshift-apiserver finish rolling updates before exposing the
route.

a. Expose the route:

$ oc expose service hello-openshift
route.route.openshift.io/hello-openshift exposed

Example output:

$ oc get routes

NAME HOST/PORT PATH SERVICES PORT
TERMINATION WILDCARD

hello-openshift hello_openshift-<my_project>.test.example.com

hello-openshift 8080-tcp None

6.8.16. Converting HTTP header case

HAProxy 2.2 lowercases HTTP header names by default, for example, changing Host: xyz.com to host:
xyz.com. If legacy applications are sensitive to the capitalization of HTTP header names, use the Ingress
Controller spec.httpHeaders.headerNameCaseAdjustments API field for a solution to accommodate
legacy applications until they can be fixed.

IMPORTANT

Because OpenShift Container Platform includes HAProxy 2.2, make sure to add the
necessary configuration by using spec.httpHeaders.headerNameCaseAdjustments
before upgrading.

Prerequisites

® You have installed the OpenShift CLI (oc).

® You have access to the cluster as a user with the cluster-admin role.

74

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

Procedure

As a cluster administrator, you can convert the HTTP header case by entering the oc patch command or
by setting the HeaderNameCaseAdjustments field in the Ingress Controller YAML file.

e Specify an HTTP header to be capitalized by entering the oc patch command.

1. Enter the oc patch command to change the HTTP host header to Host:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch="{"spec":{"httpHeaders":{"headerNameCaseAdjustments":["Host"|}}}'

2. Annotate the route of the application:

I $ oc annotate routes/my-application haproxy.router.openshift.io/h1-adjust-case=true

The Ingress Controller then adjusts the host request header as specified.

e Specify adjustments using the HeaderNameCaseAdjustments field by configuring the Ingress
Controller YAML file.

1. The following example Ingress Controller YAML adjusts the host header to Host for HTTP/1
requests to appropriately annotated routes:

Example Ingress Controller YAML

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpHeaders:
headerNameCaseAdjustments:
- Host

2. The following example route enables HTTP response header name case adjustments using
the haproxy.router.openshift.io/h1-adjust-case annotation:

Example route YAML

apiVersion: route.openshift.io/v1
kind: Route
metadata:
annotations:
haproxy.router.openshift.io/h1-adjust-case: true ﬂ
name: my-application
namespace: my-application
spec:
to:
kind: Service
name: my-application

Q Set haproxy.router.openshift.io/h1-adjust-case to true.

75

OpenShift Container Platform 4.11 Networking

6.8.17. Using router compression

You configure the HAProxy Ingress Controller to specify router compression globally for specific MIME
types. You can use the mimeTypes variable to define the formats of MIME types to which compression
is applied. The types are: application, image, message, multipart, text, video, or a custom type prefaced
by "X-". To see the full notation for MIME types and subtypes, see RFCI1341.

NOTE

Memory allocated for compression can affect the max connections. Additionally,
compression of large buffers can cause latency, like heavy regex or long lists of regex.

Not all MIME types benefit from compression, but HAProxy still uses resources to try to
compress if instructed to. Generally, text formats, such as html, css, and s, formats
benefit from compression, but formats that are already compressed, such as image, audio,
and video, benefit little in exchange for the time and resources spent on compression.

Procedure
1. Configure the httpCompression field for the Ingress Controller.

a. Use the following command to edit the IngressController resource:

I $ oc edit -n openshift-ingress-operator ingresscontrollers/default

b. Under spec, set the httpCompression policy field to mimeTypes and specify a list of
MIME types that should have compression applied:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
httpCompression:
mimeTypes:
- "text/html"
- "text/css; charset=utf-8"
- "application/json"

6.8.18. Exposing router metrics

You can expose the HAProxy router metrics by default in Prometheus format on the default stats port,
1936. The external metrics collection and aggregation systems such as Prometheus can access the
HAProxy router metrics. You can view the HAProxy router metrics in a browser in the HTML and comma
separated values (CSV) format.

Prerequisites

® You configured your firewall to access the default stats port, 1936.

Procedure

76

https://datatracker.ietf.org/doc/html/rfc1341#page-7

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

. Get the router pod name by running the following command:
I $ oc get pods -n openshift-ingress

Example output

NAME READY STATUS RESTARTS AGE
router-default-76bfffb66¢c-46qwp 1/1 Running 0 11h

. Get the router’s username and password, which the router pod stores in the
/var/lib/haproxy/conf/metrics-auth/statsUsername and /var/lib/haproxy/conf/metrics-
auth/statsPassword files:

a. Get the username by running the following command:

I $ oc rsh <router_pod_name> cat metrics-auth/statsUsername

b. Get the password by running the following command:

I $ oc rsh <router_pod_name> cat metrics-auth/statsPassword

. Get the router IP and metrics certificates by running the following command:

I $ oc describe pod <router_pod>

. Get the raw statistics in Prometheus format by running the following command:

I $ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

. Access the metrics securely by running the following command:

I $ curl -u user:password https://<router_IP>:<stats_port>/metrics -k

. Access the default stats port, 1936, by running the following command:

I $ curl -u <user>:<password> http://<router_IP>:<stats_port>/metrics

Example 6.1. Example output

... # HELP haproxy_backend_connections_total Total number of connections. # TYPE
haproxy_backend_connections_total gauge
haproxy_backend_connections_total{backend="http",namespace="default" route="hello-
route"} O
haproxy_backend_connections_total{backend="http",namespace="default" route="hello-
route-alt"t O
haproxy_backend_connections_total{backend="http",namespace="default" route="hello-
route01"} O ... # HELP haproxy_exporter_server_threshold Number of servers tracked and
the current threshold value. # TYPE haproxy_exporter_server_threshold gauge
haproxy_exporter_server_threshold{type="current"} 11
haproxy_exporter_server_threshold{type="limit"} 500 ... # HELP
haproxy_frontend_bytes_in_total Current total of incoming bytes. # TYPE
haproxy_frontend_bytes_in_total gauge
haproxy_frontend_bytes_in_total{frontend="fe_no_sni"} O

77

OpenShift Container Platform 4.11 Networking

haproxy_frontend_bytes_in_total{frontend="fe_sni"} O
haproxy_frontend_bytes_in_total{frontend="public"} 119070 ... # HELP
haproxy_server_bytes_in_total Current total of incoming bytes. # TYPE
haproxy_server_bytes_in_total gauge
haproxy_server_bytes_in_total{namespace="",pod=""route=""server="fe_no_sni" service=""}
0 haproxy_server_bytes_in_total{namespace=""pod=""route="",server="fe_sni",service=""1 O
haproxy_server_bytes_in_total{namespace="default",pod="docker-registry-5-
nk5fz",route="docker-registry",server="10.130.0.89:5000" service="docker-registry"} O
haproxy_server_bytes_in_total{namespace="default",pod="hello-rc-vkjgx",route="hello-
route” server="10.130.0.90:8080" service="hello-svc-1"} O ...

7. Launch the stats window by entering the following URL in a browser:

I http://<user>:<password>@-<router_IP>:<stats_port>

8. Optional: Get the stats in CSV format by entering the following URL in a browser:

I http://<user>:<password>@<router_ip>:1936/metrics;csv

6.8.19. Customizing HAProxy error code response pages

As a cluster administrator, you can specify a custom error code response page for either 503, 404, or
both error pages. The HAProxy router serves a 503 error page when the application pod is not running
or a 404 error page when the requested URL does not exist. For example, if you customize the 503 error
code response page, then the page is served when the application pod is not running, and the default
404 error code HTTP response page is served by the HAProxy router for an incorrect route or a non-
existing route.

Custom error code response pages are specified in a config map then patched to the Ingress Controller.
The config map keys have two available file names as follows: error-page-503.http and error-page-
404.http.

Custom HTTP error code response pages must follow the HAProxy HTTP error page configuration
guidelines. Here is an example of the default OpenShift Container Platform HAProxy router http 503
error code response page. You can use the default content as a template for creating your own custom

page.

By default, the HAProxy router serves only a 503 error page when the application is not running or when
the route is incorrect or non-existent. This default behavior is the same as the behavior on OpenShift
Container Platform 4.8 and earlier. If a config map for the customization of an HTTP error code
response is not provided, and you are using a custom HTTP error code response page, the router serves
a default 404 or 503 error code response page.

NOTE

If you use the OpenShift Container Platform default 503 error code page as a template
for your customizations, the headers in the file require an editor that can use CRLF line
endings.

Procedure

1. Create a config map named my-custom-error-code-pages in the openshift-config
namespace:

78

https://www.haproxy.com/documentation/hapee/latest/configuration/config-sections/http-errors/
https://raw.githubusercontent.com/openshift/router/master/images/router/haproxy/conf/error-page-503.http

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORN

$ oc -n openshift-config create configmap my-custom-error-code-pages \
--from-file=error-page-503.http \
--from-file=error-page-404.http

IMPORTANT

If you do not specify the correct format for the custom error code response
page, a router pod outage occurs. To resolve this outage, you must delete or
correct the config map and delete the affected router pods so they can be
recreated with the correct information.

2. Patch the Ingress Controller to reference the my-custom-error-code-pages config map by
name:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":
{"httpErrorCodePages":{"name":"my-custom-error-code-pages"}}}' --type=merge

The Ingress Operator copies the my-custom-error-code-pages config map from the
openshift-config namespace to the openshift-ingress namespace. The Operator names the
config map according to the pattern, <your_ingresscontroller_name>-errorpages, in the
openshift-ingress namespace.

3. Display the copy:
I $ oc get cm default-errorpages -n openshift-ingress
Example output

NAME DATA AGE
default-errorpages 2 25s 0

The example config map name is default-errorpages because the default Ingress
Controller custom resource (CR) was patched.

4. Confirm that the config map containing the custom error response page mounts on the router
volume where the config map key is the filename that has the custom HTTP error code
response:

® For503 custom HTTP custom error code response:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-503.http

® For 404 custom HTTP custom error code response:

$ oc -n openshift-ingress rsh <router_pod> cat
/var/lib/haproxy/conf/error_code_pages/error-page-404.http

Verification

Verify your custom error code HTTP response:

79

OpenShift Container Platform 4.11 Networking

1. Create a test project and application:

I $ oc new-project test-ingress
I $ oc new-app django-psql-example

2. For 503 custom http error code response:

a. Stop all the pods for the application.

b. Run the following curl command or visit the route hostname in the browser:

I $ curl -vk <route_hostname>

3. For 404 custom http error code response:

a. Visit a non-existent route or an incorrect route.

b. Run the following curl command or visit the route hostname in the browser:

I $ curl -vk <route_hostname>

4. Check if the errorfile attribute is properly in the haproxy.config file:

I $ oc -n openshift-ingress rsh <routers> cat /var/lib/haproxy/conf/haproxy.config | grep errorfile

6.8.20. Setting the Ingress Controller maximum connections

A cluster administrator can set the maximum number of simultaneous connections for OpenShift router
deployments. You can patch an existing Ingress Controller to increase the maximum number of
connections.

Prerequisites

e The following assumes that you already created an Ingress Controller

Procedure

e Update the Ingress Controller to change the maximum number of connections for HAProxy:

$ oc -n openshift-ingress-operator patch ingresscontroller/default --type=merge -p '{"spec":
{"tuningOptions": {"maxConnections": 7500}}}'

80

CHAPTER 6. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORNM

WARNING
A If you set the spec.tuningOptions.maxConnections value greater than

the current operating system limit, the HAProxy process will not start. See
the table in the "Ingress Controller configuration parameters” section for
more information about this parameter.

6.9. ADDITIONAL RESOURCES

e Configuring a custom PKI

81

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-a-custom-pki

OpenShift Container Platform 4.11 Networking

CHAPTER 7. INGRESS SHARDING IN OPENSHIFT CONTAINER
PLATFORM

In OpenShift Container Platform, an Ingress Controller can serve all routes, or it can serve a subset of
routes. By default, the Ingress Controller serves any route created in any namespace in the cluster. You
can add additional Ingress Controllers to your cluster to optimize routing by creating shards, which are
subsets of routes based on selected characteristics. To mark a route as a member of a shard, use labels
in the route or namespace metadata field. The Ingress Controller uses selectors, also known as a
selection expression, to select a subset of routes from the entire pool of routes to serve.

Ingress sharding is useful in cases where you want to load balance incoming traffic across multiple
Ingress Controllers, when you want to isolate traffic to be routed to a specific Ingress Controller, or for a
variety of other reasons described in the next section.

By default, each route uses the default domain of the cluster. However, routes can be configured to use
the domain of the router instead. For more information, see Creating a route for Ingress Controller
Sharding.

7.1. INGRESS CONTROLLER SHARDING
You can use Ingress sharding, also known as router sharding, to distribute a set of routes across multiple
routers by adding labels to routes, namespaces, or both. The Ingress Controller uses a corresponding

set of selectors to admit only the routes that have a specified label. Each Ingress shard comprises the
routes that are filtered using a given selection expression.

As the primary mechanism for traffic to enter the cluster, the demands on the Ingress Controller can be
significant. As a cluster administrator, you can shard the routes to:

® Balance Ingress Controllers, or routers, with several routes to speed up responses to changes.
® Allocate certain routes to have different reliability guarantees than other routes.

® Allow certain Ingress Controllers to have different policies defined.

® Allow only specific routes to use additional features.

® Expose different routes on different addresses so that internal and external users can see
different routes, for example.

e Transfer traffic from one version of an application to another during a blue green deployment.

When Ingress Controllers are sharded, a given route is admitted to zero or more Ingress Controllers in
the group. A route’s status describes whether an Ingress Controller has admitted it or not. An Ingress
Controller will only admit a route if it is unique to its shard.

An Ingress Controller can use three sharding methods:

® Adding only a namespace selector to the Ingress Controller, so that all routes in a namespace
with labels that match the namespace selector are in the Ingress shard.

® Adding only a route selector to the Ingress Controller, so that all routes with labels that match
the route selector are in the Ingress shard.

® Adding both a namespace selector and route selector to the Ingress Controller, so that routes
with labels that match the route selector in a namespace with labels that match the namespace
selector are in the Ingress shard.

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-ingress-sharding-route-configuration_ingress-sharding

CHAPTER 7. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORN

With sharding, you can distribute subsets of routes over multiple Ingress Controllers. These subsets can
be non-overlapping, also called traditional sharding, or overlapping, otherwise known as overlapped
sharding.

7.1.1. Traditional sharding example

An Ingress Controller finops-router is configured with the label selector
spec.namespaceSelector.matchLabels.name set to finance and ops:

Example YAML definition for finops-router

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: finops-router
namespace: openshift-ingress-operator
spec:
namespaceSelector:
matchLabels:
name:
- finance
- ops

A second Ingress Controller dev-router is configured with the label selector
spec.namespaceSelector.matchLabels.name set to dev:

Example YAML definition for dev-router

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:

name: dev-router

namespace: openshift-ingress-operator
spec:

namespaceSelector:

matchLabels:
name: dev

If all application routes are in separate namespaces, each labeled with name:finance, name:ops, and
name:dev respectively, this configuration effectively distributes your routes between the two Ingress
Controllers. OpenShift Container Platform routes for console, authentication, and other purposes
should not be handled.

In the above scenario, sharding becomes a special case of partitioning, with no overlapping subsets.
Routes are divided between router shards.

83

OpenShift Container Platform 4.11 Networking

' WARNING
A The default Ingress Controller continues to serve all routes unless the

namespaceSelector or routeSelector fields contain routes that are meant for
exclusion. See this Red Hat Knowledgebase solution and the section "Sharding the
default Ingress Controller” for more information on how to exclude routes from the
default Ingress Controller.

7.1.2. Overlapped sharding example

In addition to finops-router and dev-router in the example above, you also have devops-router, which
is configured with the label selector spec.namespaceSelector.matchLabels.name set to dev and ops:

Example YAML definition for devops-router

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: devops-router
namespace: openshift-ingress-operator
spec:
namespaceSelector:
matchLabels:
name:
- dev
- Ops

The routes in the namespaces labeled name:dev and name:ops are now serviced by two different
Ingress Controllers. With this configuration, you have overlapping subsets of routes.

With overlapping subsets of routes you can create more complex routing rules. For example, you can
divert higher priority traffic to the dedicated finops-router while sending lower priority traffic to
devops-router.

7.1.3. Sharding the default Ingress Controller

After creating a new Ingress shard, there might be routes that are admitted to your new Ingress shard
that are also admitted by the default Ingress Controller. This is because the default Ingress Controller
has no selectors and admits all routes by default.

You can restrict an Ingress Controller from servicing routes with specific labels using either namespace
selectors or route selectors. The following procedure restricts the default Ingress Controller from
servicing your newly sharded finance, ops, and dev, routes using a namespace selector. This adds
further isolation to Ingress shards.

IMPORTANT

You must keep all of OpenShift Container Platform’s administration routes on the same
Ingress Controller. Therefore, avoid adding additional selectors to the default Ingress
Controller that exclude these essential routes.

84

https://access.redhat.com/solutions/5097511

CHAPTER 7. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORN

Prerequisites

® You installed the OpenShift CLI (o¢).

® You are logged in as a project administrator.

Procedure

1. Modify the default Ingress Controller by running the following command:

I $ oc edit ingresscontroller -n openshift-ingress-operator default

2. Edit the Ingress Controller to contain a namespaceSelector that excludes the routes with any
of the finance, ops, and dev labels:

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: default
namespace: openshift-ingress-operator
spec:
namespaceSelector:
matchExpressions:
- key: type
operator: Notln
values:
- finance
- ops
- dev

The default Ingress Controller will no longer serve the namespaces labeled name:finance, name:ops,
and hame:dev.

7.1.4. Ingress sharding and DNS

The cluster administrator is responsible for making a separate DNS entry for each router in a project. A
router will not forward unknown routes to another router.

Consider the following example:
® Router A lives on host 192.168.0.5 and has routes with *.foo.com.
® Router B lives on host 192.168.1.9 and has routes with *.example.com.

Separate DNS entries must resolve *.foo.com to the node hosting Router A and *.example.com to the
node hosting Router B:

e *foo.com A IN 192.168.0.5

e *.example.com A IN 192.168.1.9

7.1.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

85

OpenShift Container Platform 4.11 Networking

Figure 7.1. Ingress sharding using route labels

Ingress Controller 1

routeSelector: label 1

Interface

Ingress Controller 2

routeSelector: label 2

routeSelector: label 3

!

!

Ingress Controller 3

routeSelector: label 3

!

Namespace 1 Namespace 2 Namespace 3
Route 1 Route 1 Route 1
Label1 Label 2 Label 3
Route 2 Label 3 Route 2
Label1 Label 3

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

cat router-internal.yaml
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: sharded
namespace: openshift-ingress-operator
spec:
domain: <apps-sharded.basedomain.example.net> ﬂ
nodePlacement:
nodeSelector:
matchLabels:
node-role.kubernetes.io/worker: "
routeSelector:
matchLabels:
type: sharded

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

86

CHAPTER 7. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORN

2. Apply the Ingress Controller router-internal.yaml file:
I # oc apply -f router-internal.yaml

The Ingress Controller selects routes in any namespace that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yamil:

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

7.1.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Figure 7.2. Ingress sharding using namespace labels

Interface

Ingress Controller 1 Ingress Controller 2 Ingress Controller 3

namespaceSelector: label 2

namespaceSelector: label 1

.

namespaceSelector: label 3

!

Namespace 1
Route 1
Route 2
Label1

Namespace 2
Route 1
Label 2
Label 3

namespaceSelector: label 3

.

Namespace 3
Route 1
Route 2
Label 3

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

I # cat router-internal.yaml

Example output

87

OpenShift Container Platform 4.11 Networking

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
name: sharded
namespace: openshift-ingress-operator
spec:
domain: <apps-sharded.basedomain.example.net> ﬂ
nodePlacement:
nodeSelector:
matchLabels:
node-role.kubernetes.io/worker: "
namespaceSelector:
matchLabels:
type: sharded

Specify a domain to be used by the Ingress Controller. This domain must be different from
the default Ingress Controller domain.

2. Apply the Ingress Controller router-internal.yaml file:
I # oc apply -f router-internal.yaml

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

3. Create a new route using the domain configured in the router-internal.yamil:

$ oc expose svc <service-name> --hostname <route-name>.apps-
sharded.basedomain.example.net

7.2. CREATING A ROUTE FOR INGRESS CONTROLLER SHARDING

A route allows you to host your application at a URL. In this case, the hostname is not set and the route
uses a subdomain instead. When you specify a subdomain, you automatically use the domain of the
Ingress Controller that exposes the route. For situations where a route is exposed by multiple Ingress
Controllers, the route is hosted at multiple URLSs.

The following procedure describes how to create a route for Ingress Controller sharding, using the hello-
openshift application as an example.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress

Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Prerequisites

® You installed the OpenShift CLI (o¢).
® You are logged in as a project administrator.

® You have a web application that exposes a port and an HTTP or TLS endpoint listening for
traffic on the port.

88

CHAPTER 7. INGRESS SHARDING IN OPENSHIFT CONTAINER PLATFORN

® You have configured the Ingress Controller for sharding.

Procedure

1. Create a project called hello-openshift by running the following command:
I $ oc new-project hello-openshift

2. Create a pod in the project by running the following command:

$ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/hello-
openshift/hello-pod.json

3. Create a service called hello-openshift by running the following command:
I $ oc expose pod/hello-openshift

4. Create a route definition called hello-openshift-route.yaml:

YAML definition of the created route for sharding:

apiVersion: route.openshift.io/v1
kind: Route
metadata:
labels:
type: sharded ﬂ
name: hello-openshift-edge
namespace: hello-openshift

spec:
subdomain: hello-openshift g
tls:
termination: edge
to:
kind: Service

name: hello-openshift

ﬂ Both the label key and its corresponding label value must match the ones specified in the
Ingress Controller. In this example, the Ingress Controller has the label key and value type:
sharded.

9 The route will be exposed using the value of the subdomain field. When you specify the
subdomain field, you must leave the hostname unset. If you specify both the host and
subdomain fields, then the route will use the value of the host field, and ignore the
subdomain field.

5. Use hello-openshift-route.yaml to create a route to the hello-openshift application by running
the following command:

I $ oc -n hello-openshift create -f hello-openshift-route.yaml

Verification

89

OpenShift Container Platform 4.11 Networking

® Get the status of the route with the following command:
I $ oc -n hello-openshift get routes/hello-openshift-edge -o yaml

The resulting Route resource should look similar to the following:

Example output

apiVersion: route.openshift.io/v1
kind: Route
metadata:
labels:
type: sharded
name: hello-openshift-edge
namespace: hello-openshift
spec:
subdomain: hello-openshift
tls:
termination: edge
to:
kind: Service
name: hello-openshift
status:
ingress:
- host: hello-openshift.<apps-sharded.basedomain.example.net> ﬂ
routerCanonicalHostname: router-sharded.<apps-sharded.basedomain.example.net> g

routerName: sharded 6

ﬂ The hostname the Ingress Controller, or router, uses to expose the route. The value of the
host field is automatically determined by the Ingress Controller, and uses its domain. In this
example, the domain of the Ingress Controller is <apps-
sharded.basedomain.example.net>.

9 The hostname of the Ingress Controller.

9 The name of the Ingress Controller. In this example, the Ingress Controller has the name
sharded.

Additional Resources

® Baseline Ingress Controller (router) performance

90

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/scalability_and_performance/#baseline-router-performance_routing-optimization

CHAPTER 8. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

CHAPTER 8. CONFIGURING THE INGRESS CONTROLLER
ENDPOINT PUBLISHING STRATEGY

8.1. INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY

NodePortService endpoint publishing strategy

The NodePortService endpoint publishing strategy publishes the Ingress Controller using a Kubernetes
NodePort service.

In this configuration, the Ingress Controller deployment uses container networking. A NodePortService
is created to publish the deployment. The specific node ports are dynamically allocated by OpenShift
Container Platform; however, to support static port allocations, your changes to the node port field of
the managed NodePortService are preserved.

Figure 8.1. Diagram of NodePortService

A

Client
Connect
10.0.128.4
10.0.128.5
10.0.128.6

IngressController

www.yourapp.openshift.com

!

=]

NodePort
41000

l

Node 1 Node 2 Node N

Pod Pod Pod

e 10.0.128.5 10.0.128.6

OpenShift Cluster

The preceding graphic shows the following concepts pertaining to OpenShift Container Platform
Ingress NodePort endpoint publishing strategy:

® All the available nodes in the cluster have their own, externally accessible IP addresses. The
service running in the cluster is bound to the unique NodePort for all the nodes.

® When the client connects to a node that is down, for example, by connecting the 10.0.128.4 |P

o1

OpenShift Container Platform 4.11 Networking

address in the graphic, the node port directly connects the client to an available node that is
running the service. In this scenario, no load balancing is required. As the image shows, the
10.0.128.4 address is down and another IP address must be used instead.

NOTE

The Ingress Operator ignores any updates to .spec.ports[].nodePort fields of the
service.

By default, ports are allocated automatically and you can access the port allocations for
integrations. However, sometimes static port allocations are necessary to integrate with
existing infrastructure which may not be easily reconfigured in response to dynamic ports.
To achieve integrations with static node ports, you can update the managed service
resource directly.

For more information, see the Kubernetes Services documentation on NodePort.
HostNetwork endpoint publishing strategy

The HostNetwork endpoint publishing strategy publishes the Ingress Controller on node ports where
the Ingress Controller is deployed.

An Ingress Controller with the HostNetwork endpoint publishing strategy can have only one pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another pod on the same node is using those ports.

8.1.1. Configuring the Ingress Controller endpoint publishing scope to Internal

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External. Cluster administrators can change an
External scoped Ingress Controller to Internal.

Prerequisites

® You installed the oc CLI.
Procedure
® To change an External scoped Ingress Controller to Internal, enter the following command:

$ oc -n openshift-ingress-operator patch ingresscontrollers/default --type=merge --
patch="{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"Internal"}}}}'

® To check the status of the Ingress Controller, enter the following command:
I $ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

o The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

I $ oc -n openshift-ingress delete services/router-default

92

https://kubernetes.io/docs/concepts/services-networking/service/#nodeport

CHAPTER 8. CONFIGURING THE INGRESS CONTROLLER ENDPOINT PUBLISHING STRATEGY
If you delete the service, the Ingress Operator recreates it as Internal.

8.1.2. Configuring the Ingress Controller endpoint publishing scope to External

When a cluster administrator installs a new cluster without specifying that the cluster is private, the
default Ingress Controller is created with a scope set to External.

The Ingress Controller’s scope can be configured to be Internal during installation or after, and cluster
administrators can change an Internal Ingress Controller to External.

IMPORTANT
On some platforms, it is necessary to delete and recreate the service.

Changing the scope can cause disruption to Ingress traffic, potentially for several
minutes. This applies to platforms where it is necessary to delete and recreate the
service, because the procedure can cause OpenShift Container Platform to deprovision
the existing service load balancer, provision a new one, and update DNS.

Prerequisites

® You installed the oc CLI.

Procedure

® To change an Internal scoped Ingress Controller to External, enter the following command:

$ oc -n openshift-ingress-operator patch ingresscontrollers/private --type=merge --
patch="{"spec":{"endpointPublishingStrategy":{"type":"LoadBalancerService","loadBalancer":
{"scope":"External"}}}}'

® To check the status of the Ingress Controller, enter the following command:
I $ oc -n openshift-ingress-operator get ingresscontrollers/default -o yaml

o The Progressing status condition indicates whether you must take further action. For
example, the status condition can indicate that you need to delete the service by entering
the following command:

I $ oc -n openshift-ingress delete services/router-default

If you delete the service, the Ingress Operator recreates it as External.

8.2. ADDITIONAL RESOURCES

® For more information, see Ingress Controller configuration parameters.

93

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-ingress-controller-configuration-parameters_configuring-ingress

OpenShift Container Platform 4.11 Networking

CHAPTER 9. VERIFYING CONNECTIVITY TO AN ENDPOINT

The Cluster Network Operator (CNO) runs a controller, the connectivity check controller, that performs
a connection health check between resources within your cluster. By reviewing the results of the health
checks, you can diagnose connection problems or eliminate network connectivity as the cause of an
issue that you are investigating.

9.1. CONNECTION HEALTH CHECKS PERFORMED

To verify that cluster resources are reachable, a TCP connection is made to each of the following cluster
APl services:

® Kubernetes APl server service

® Kubernetes APl server endpoints
® OpenShift APl server service

® OpenShift APl server endpoints
® | oad balancers

To verify that services and service endpoints are reachable on every node in the cluster, a TCP
connection is made to each of the following targets:

® Health check target service

® Health check target endpoints

9.2. IMPLEMENTATION OF CONNECTION HEALTH CHECKS

The connectivity check controller orchestrates connection verification checks in your cluster. The results
for the connection tests are stored in PodNetworkConnectivity objects in the openshift-network-
diagnostics namespace. Connection tests are performed every minute in parallel.

The Cluster Network Operator (CNO) deploys several resources to the cluster to send and receive
connectivity health checks:

Health check source

This program deploys in a single pod replica set managed by a Deployment object. The program
consumes PodNetworkConnectivity objects and connects to the spec.targetEndpoint specified in
each object.

Health check target

A pod deployed as part of a daemon set on every node in the cluster. The pod listens for inbound
health checks. The presence of this pod on every node allows for the testing of connectivity to each
node.

9.3. PODNETWORKCONNECTIVITYCHECK OBJECT FIELDS

The PodNetworkConnectivityCheck object fields are described in the following tables.

Table 9.1. PodNetworkConnectivityCheck object fields

94

CHAPTER 9. VERIFYING CONNECTIVITY TO AN ENDPOINT

Field Type Description

metadata.name string The name of the object in the following format:
<source>-to-<target>. The destination described
by <target> includes one of following strings:

e load-balancer-api-external

load-balancer-api-internal

e kubernetes-apiserver-endpoint

e kubernetes-apiserver-service-cluster
e network-check-target

e openshift-apiserver-endpoint

e openshift-apiserver-service-cluster

metadata.namespace string The namespace that the object is associated with.
This value is always openshift-network-
diagnostics.

spec.sourcePod string The name of the pod where the connection check

originates, such as hetwork-check-source-
596b4c6566-rgh92.

spec.targetEndpoint string The target of the connection check, such as
api.devcluster.example.com:6443.

spec.tisClientCert object Configuration for the TLS certificate to use.

spec.tisClientCert.name string The name of the TLS certificate used, if any. The
default value is an empty string.

status object An object representing the condition of the
connection test and logs of recent connection
successes and failures.

status.conditions array The latest status of the connection check and any
previous statuses.

status.failures array Connection test logs from unsuccessful attempts.

status.outages array Connect test logs covering the time periods of any
outages.

status.successes array Connection test logs from successful attempts.

The following table describes the fields for objects in the status.conditions array:

95

OpenShift Container Platform 4.11 Networking

Table 9.2. status.conditions

Description

Field Type

lastTransitionTime string
message string
reason string
status string
type string

The time that the condition of the connection
transitioned from one status to another.

The details about last transition in a human readable
format.

The last status of the transition in a machine readable
format.

The status of the condition.

The type of the condition.

The following table describes the fields for objects in the status.conditions array:

Table 9.3. status.outages

Field Type
end string
endLogs array
message string
start string
startLogs array

Connection log fields
The fields for a connection log entry are described in the following table. The object is used in the
following fields:

o status.failures[]
e status.successes|]
e status.outagesl].startLogs|]

e status.outages[].endLogs[]

Table 9.4. Connection log object

96

Description

The timestamp from when the connection failure is
resolved.

Connection log entries, including the log entry
related to the successful end of the outage.

A summary of outage details in a human readable
format.

The timestamp from when the connection failure is
first detected.

Connection log entries, including the original failure.

Field

latency

message

reason

success

time

CHAPTER 9. VERIFYING CONNECTIVITY TO AN ENDPOINT

Type Description

string Records the duration of the action.

string Provides the status in a human readable format.
string Provides the reason for status in a machine readable

format. The value is one of TCPConnect,
TCPConnectError, DNSResolve, DNSError.

boolean Indicates if the log entry is a success or failure.

string The start time of connection check.

9.4. VERIFYING NETWORK CONNECTIVITY FOR AN ENDPOINT

As a cluster administrator, you can verify the connectivity of an endpoint, such as an APl server, load
balancer, service, or pod.

Prerequisites

e Install the OpenShift CLI (oc).

® Access to the cluster as a user with the cluster-admin role.

Procedure

1. To

list the current PodNetworkConnectivityCheck objects, enter the following command:

$ oc get podnetworkconnectivitycheck -n openshift-network-diagnostics

Example output

NAME AGE
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-0 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-1 73m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-2 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-apiserver-
service-cluster 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-default-
service-cluster 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
external 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-load-balancer-api-
internal 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-master-0 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-

97

OpenShift Container Platform 4.11 Networking

98

In-x5sv9rb-f76d1-4rzrp-master-1 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-master-2 75m

network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh ~ 74m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-worker-c-n8mbf ~ 74m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-ci-
In-x5sv9rb-f76d1-4rzrp-worker-d-4hnrz ~ 74m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-network-check-target-
service-cluster 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-0 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-1 75m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
endpoint-ci-In-x5svOrb-f76d1-4rzrp-master-2 74m
network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-openshift-apiserver-
service-cluster 75m

2. View the connection test logs:

a. From the output of the previous command, identify the endpoint that you want to review
the connectivity logs for.

b. To view the object, enter the following command:

$ oc get podnetworkconnectivitycheck <name> \
-n openshift-network-diagnostics -o yaml

where <names specifies the name of the PodNetworkConnectivityCheck object.

Example output

apiVersion: controlplane.operator.openshift.io/vialphai
kind: PodNetworkConnectivityCheck
metadata:
name: network-check-source-ci-In-x5sv9rb-f76d1-4rzrp-worker-b-6xdmh-to-kubernetes-
apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0
namespace: openshift-network-diagnostics

spec:
sourcePod: network-check-source-7¢88f6d9f-hmg2f
targetEndpoint: 10.0.0.4:6443
tisClientCert:
name: "
status:
conditions:
- lastTransitionTime: "2021-01-13T20:11:34Z2"
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: tcp
connection to 10.0.0.4:6443 succeeded'
reason: TCPConnectSuccess
status: "True"
type: Reachable
failures:
- latency: 2.241775ms

CHAPTER 9. VERIFYING CONNECTIVITY TO AN ENDPOINT

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: failed
to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:10:34Z2"
- latency: 2.582129ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: failed
to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T720:09:34Z"
- latency: 3.483578ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: failed
to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443: connect:
connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:08:34Z2"
outages:
- end: "2021-01-13T20:11:34Z"
endLogs:
- latency: 2.032018ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
tcp connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T20:11:34Z2"
- latency: 2.241775ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
connect: connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:10:34Z2"
- latency: 2.582129ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
connect: connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:09:34Z2"
- latency: 3.483578ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:
connect: connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:08:342"
message: Connectivity restored after 2m59.9997891865s
start: "2021-01-13T20:08:34Z2"
startLogs:
- latency: 3.483578ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:
failed to establish a TCP connection to 10.0.0.4:6443: dial tcp 10.0.0.4:6443:

99

OpenShift Container Platform 4.11 Networking

100

connect: connection refused'
reason: TCPConnectError
success: false
time: "2021-01-13T20:08:342"
successes:
- latency: 2.845865ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:14:342"
latency: 2.926345ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:13:342"
latency: 2.895796ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:12:342"
latency: 2.696844ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:11:342"
latency: 1.502064ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:10:342"
latency: 1.388857ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:09:342"
latency: 1.906383ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T721:08:342"
latency: 2.089073ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:07:34Z2"
- latency: 2.156994ms

message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0:

connection to 10.0.0.4:6443 succeeded'

tcp

tcp

tcp

tcp

tcp

tcp

tcp

tcp

tcp

CHAPTER 9. VERIFYING CONNECTIVITY TO AN ENDPOINT

reason: TCPConnect
success: true
time: "2021-01-13T21:06:34Z"
- latency: 1.777043ms
message: 'kubernetes-apiserver-endpoint-ci-In-x5sv9rb-f76d1-4rzrp-master-0: tcp
connection to 10.0.0.4:6443 succeeded'
reason: TCPConnect
success: true
time: "2021-01-13T21:05:34Z"

101

OpenShift Container Platform 4.11 Networking

CHAPTER 10. CHANGING THE MTU FOR THE CLUSTER
NETWORK

As a cluster administrator, you can change the MTU for the cluster network after cluster installation.
This change is disruptive as cluster nodes must be rebooted to finalize the MTU change. You can
change the MTU only for clusters using the OVN-Kubernetes or OpenShift SDN cluster network
providers.

10.1. ABOUT THE CLUSTER MTU

During installation the maximum transmission unit (MTU) for the cluster network is detected
automatically based on the MTU of the primary network interface of nodes in the cluster. You do not
normally need to override the detected MTU.

You might want to change the MTU of the cluster network for several reasons:

® The MTU detected during cluster installation is not correct for your infrastructure

® Your cluster infrastructure now requires a different MTU, such as from the addition of nodes
that need a different MTU for optimal performance

You can change the cluster MTU for only the OVN-Kubernetes and OpenShift SDN cluster network
providers.

10.1.1. Service interruption considerations

When you initiate an MTU change on your cluster the following effects might impact service availability:

® At least two rolling reboots are required to complete the migration to a new MTU. During this
time, some nodes are not available as they restart.

® Specific applications deployed to the cluster with shorter timeout intervals than the absolute
TCP timeout interval might experience disruption during the MTU change.

10.1.2. MTU value selection

When planning your MTU migration there are two related but distinct MTU values to consider.
o Hardware MTU: This MTU value is set based on the specifics of your network infrastructure.
® Cluster network MTU: This MTU value is always less than your hardware MTU to account for

the cluster network overlay overhead. The specific overhead is determined by your cluster
network provider:

o OVN-Kubernetes: 100 bytes

o OpenShift SDN: 50 bytes
If your cluster requires different MTU values for different nodes, you must subtract the overhead value
for your cluster network provider from the lowest MTU value that is used by any node in your cluster. For

example, if some nodes in your cluster have an MTU of 9001, and some have an MTU of 1500, you must
set this value to 1400.

10.1.3. How the migration process works

102

CHAPTER 10. CHANGING THE MTU FOR THE CLUSTER NETWORK

The following table summarizes the migration process by segmenting between the user-initiated steps
in the process and the actions that the migration performs in response.

Table 10.1. Live migration of the cluster MTU

User-initiated steps OpenShift Container Platform activity
Set the following values in the Cluster Network Cluster Network Operator (CNO) Confirms that
Operator configuration: each field is set to a valid value.
e spec.migration.mtu.machine.to o The mtu.machine.to must be set to either
the new hardware MTU or to the current
e spec.migration.mtu.network.from hardware MTU if the MTU for the hardware
is not changing. This value is transient and is
e spec.migration.mtu.network.to used as part of the migration process.

Separately, if you specify a hardware MTU
that is different from your existing hardware
MTU value, you must manually configure
the MTU to persist by other means, such as
with a machine config, DHCP setting, or a
Linux kernel command line.

o The mtu.network.from field must equal
the
network.status.clusterNetworkMTU
field, which is the current MTU of the cluster
network.

o The mtu.network.to field must be set to
the target cluster network MTU and must
be lower than the hardware MTU to allow for
the overlay overhead of the cluster network
provider. For OVN-Kubernetes, the
overhead is 100 bytes and for OpenShift
SDN the overhead is 50 bytes.

If the values provided are valid, the CNO writes out a
new temporary configuration with the MTU for the
cluster network set to the value of the
mtu.network.to field.

Machine Config Operator (MCO) Performs a
rolling reboot of each node in the cluster.

Reconfigure the MTU of the primary network N/A
interface for the nodes on the cluster. You can use a
variety of methods to accomplish this, including:

® Deploying a new NetworkManager
connection profile with the MTU change

e Changing the MTU through a DHCP server
setting

e Changing the MTU through boot
parameters

103

OpenShift Container Platform 4.11 Networking

User-initiated steps OpenShift Container Platform activity

Set the mtu value in the CNO configuration for the Machine Config Operator (MCO) Performs a
cluster network provider and set spec.migration to rolling reboot of each node in the cluster with the
null. new MTU configuration.

10.2. CHANGING THE CLUSTER MTU

As a cluster administrator, you can change the maximum transmission unit (MTU) for your cluster. The
migration is disruptive and nodes in your cluster might be temporarily unavailable as the MTU update
rolls out.

The following procedure describes how to change the cluster MTU by using either machine configs,
DHCP, or an ISO. If you use the DHCP or ISO approach, you must refer to configuration artifacts that
you kept after installing your cluster to complete the procedure.

Prerequisites

® You installed the OpenShift CLI (o¢).
® You are logged in to the cluster with a user with cluster-admin privileges.

® You identified the target MTU for your cluster. The correct MTU varies depending on the
cluster network provider that your cluster uses:

o OVN-Kubernetes: The cluster MTU must be set to 100 less than the lowest hardware MTU
value in your cluster.

o OpenShift SDN: The cluster MTU must be set to 50 less than the lowest hardware MTU
value in your cluster.

Procedure

To increase or decrease the MTU for the cluster network complete the following procedure.

1. To obtain the current MTU for the cluster network, enter the following command:

I $ oc describe network.config cluster

Example output

Status:

Cluster Network:
Cidr: 10.217.0.0/22

Host Prefix: 23
Cluster Network MTU: 1400
Network Type: OpenShiftSDN
Service Network:

10.217.4.0/23

104

CHAPTER 10. CHANGING THE MTU FOR THE CLUSTER NETWORK

2. Prepare your configuration for the hardware MTU:

e |f your hardware MTU is specified with DHCP, update your DHCP configuration such as with
the following dnsmasq configuration:

I dhcp-option-force=26,<mtu>

where:

<mtu>
Specifies the hardware MTU for the DHCP server to advertise.

e |f your hardware MTU is specified with a kernel command line with PXE, update that
configuration accordingly.

e |f your hardware MTU is specified in a NetworkManager connection configuration, complete
the following steps. This approach is the default for OpenShift Container Platform if you do
not explicitly specify your network configuration with DHCP, a kernel command line, or some
other method. Your cluster nodes must all use the same underlying network configuration
for the following procedure to work unmodified.

i. Find the primary network interface:

o If you are using the OpenShift SDN cluster network provider, enter the following
command:

I $ oc debug node/<node_name> -- chroot /host ip route list match 0.0.0.0/0 | awk
{print $5 }'

where:

<hode_name>

Specifies the name of a node in your cluster.

o If you are using the OVN-Kubernetes cluster network provider, enter the following
command:

$ oc debug node/<node_name> -- chroot /host nmcli -g connection.interface-
name ¢ show ovs-if-phys0

where:

<hode_name>

Specifies the name of a node in your cluster.
ii. Create the following NetworkManager configuration in the <interface>-mtu.conf file:

Example NetworkManager connection configuration

[connection-<interface>-mtu]
match-device=interface-name:<interface>
ethernet.mtu=<mtu>

where:

105

OpenShift Container Platform 4.11 Networking

<mtu>
Specifies the new hardware MTU value.
<interface>

Specifies the primary network interface name.

iii. Create two MachineConfig objects, one for the control plane nodes and another for
the worker nodes in your cluster:

A. Create the following Butane config in the control-plane-interface.bu file:

variant: openshift
version: 4.11.0
metadata:
name: 01-control-plane-interface
labels:
machineconfiguration.openshift.io/role: master
storage:
files:
- path: /etc/NetworkManager/conf.d/99-<interface>-mtu.conf ﬂ
contents:
local: <interface>-mtu.conf 9
mode: 0600

ﬂ Specify the NetworkManager connection name for the primary network
interface.

Specify the local filename for the updated NetworkManager configuration file
from the previous step.

B. Create the following Butane config in the worker-interface.bu file:

variant: openshift
version: 4.11.0
metadata:
name: 01-worker-interface
labels:
machineconfiguration.openshift.io/role: worker
storage:
files:
- path: /etc/NetworkManager/conf.d/99-<interface>-mtu.conf ﬂ
contents:
local: <interface>-mtu.conf 9
mode: 0600

ﬂ Specify the NetworkManager connection name for the primary network
interface.

Specify the local filename for the updated NetworkManager configuration file

from the previous step.

C. Create MachineConfig objects from the Butane configs by running the following
command:

106

CHAPTER 10. CHANGING THE MTU FOR THE CLUSTER NETWORK

$ for manifest in control-plane-interface worker-interface; do
butane --files-dir . $manifest.bu > $manifest.yaml
done

3. To begin the MTU migration, specify the migration configuration by entering the following
command. The Machine Config Operator performs a rolling reboot of the nodes in the cluster in
preparation for the MTU change.

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
{"spec": { "migration”: { "mtu": { "network": { "from": <overlay_from>, "to": <overlay_to>},
"machine": { "to" : <machine_to>}}}}}

where:

<overlay_from>
Specifies the current cluster network MTU value.
<overlay_to>

Specifies the target MTU for the cluster network. This value is set relative to the value for
<machine_to> and for OVN-Kubernetes must be 100 less and for OpenShift SDN must be
50 less.

<machine_to>

Specifies the MTU for the primary network interface on the underlying host network.

Example that increases the cluster MTU

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
{"spec": { "migration”: { "mtu": { "network": { "from": 1400, "to": 9000 } , "machine": { "to" :
9100} } } } ¥

4. As the MCO updates machines in each machine config pool, it reboots each node one by one.
You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

I $ oc get mep

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

5. Confirm the status of the new machine configuration on the hosts:

a. Tolist the machine configuration state and the name of the applied machine configuration,
enter the following command:

I $ oc describe node | egrep "hostname|machineconfig"

Example output

107

OpenShift Container Platform 4.11 Networking

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

Verify that the following statements are true:
® The value of machineconfiguration.openshift.io/state field is Done.

® The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:
I $ oc get machineconfig <config_name> -o yaml | grep ExecStart

where <config_names is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

The machine config must include the following update to the systemd configuration:
I ExecStart=/usr/local/bin/mtu-migration.sh

6. Update the underlying network interface MTU value:

e |f you are specifying the new MTU with a NetworkManager connection configuration, enter
the following command. The MachineConfig Operator automatically performs a rolling
reboot of the nodes in your cluster.

$ for manifest in control-plane-interface worker-interface; do
oc create -f $manifest.yaml
done

e |f you are specifying the new MTU with a DHCP server option or a kernel command line and
PXE, make the necessary changes for your infrastructure.

7. As the MCO updates machines in each machine config pool, it reboots each node one by one.

You must wait until all the nodes are updated. Check the machine config pool status by entering
the following command:

I $ oc get mep

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED-=false.

NOTE

By default, the MCO updates one machine per pool at a time, causing the total
time the migration takes to increase with the size of the cluster.

8. Confirm the status of the new machine configuration on the hosts:

108

CHAPTER 10. CHANGING THE MTU FOR THE CLUSTER NETWORK

a. Tolist the machine configuration state and the name of the applied machine configuration,
enter the following command:

I $ oc describe node | egrep "hostname|machineconfig"
Example output

kubernetes.io/hostname=master-0
machineconfiguration.openshift.io/currentConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/desiredConfig: rendered-master-
c53e221d9d24e1c8bb6ee89dd3d8ad7b
machineconfiguration.openshift.io/reason:
machineconfiguration.openshift.io/state: Done

Verify that the following statements are true:
® The value of machineconfiguration.openshift.io/state field is Done.

® The value of the machineconfiguration.openshift.io/currentConfig field is equal to
the value of the machineconfiguration.openshift.io/desiredConfig field.

b. To confirm that the machine config is correct, enter the following command:
I $ oc get machineconfig <config_name> -o yaml | grep path:

where <config_names is the name of the machine config from the
machineconfiguration.openshift.io/currentConfig field.

If the machine config is successfully deployed, the previous output contains the
/etc/NetworkManager/system-connections/<connection_names file path.

The machine config must not contain the ExecStart=/usr/local/bin/mtu-migration.sh line.
9. To finalize the MTU migration, enter one of the following commands:

® |f you are using the OVN-Kubernetes cluster network provider:

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
{"spec": { "migration": null, "defaultNetwork":{ "ovnKubernetesConfig": { "mtu": <mtu>

Yy

where:

<mtu>

Specifies the new cluster network MTU that you specified with <overlay_to>.

e |f you are using the OpenShift SDN cluster network provider:

$ oc patch Network.operator.openshift.io cluster --type=merge --patch \
{"spec": { "migration”: null, "defaultNetwork":{ "openshiftSDNConfig": { "mtu": <mtu> }}}}'

where:

<mtu>

109

OpenShift Container Platform 4.11 Networking

Specifies the new cluster network MTU that you specified with <overlay_to>.
10. After finalizing the MTU migration, each MCP node is rebooted one by one. You must wait until

all the nodes are updated. Check the machine config pool status by entering the following
command:

I $ oc get mep

A successfully updated node has the following status: UPDATED=true, UPDATING=false,
DEGRADED-=false.

Verification

You can verify that a node in your cluster uses an MTU that you specified in the previous procedure.

1. To get the current MTU for the cluster network, enter the following command:
I $ oc describe network.config cluster
2. Getthe current MTU for the primary network interface of a node.
a. Tolist the nodes in your cluster, enter the following command:

I $ oc get nodes

b. To obtain the current MTU setting for the primary network interface on a node, enter the
following command:

I $ oc debug node/<node> -- chroot /host ip address show <interface>

where:

<hode>

Specifies a node from the output from the previous step.

<interface>

Specifies the primary network interface name for the node.

Example output

I ens3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 8051

10.3. ADDITIONAL RESOURCES
® Using advanced networking options for PXE and ISO installations
® Manually creating NetworkManager profiles in key file format

® Configuring a dynamic Ethernet connection using nmcli

110

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/installing/#installation-user-infra-machines-advanced_network_installing-bare-metal
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index#proc_manually-creating-a-networkmanager-profile-in-keyfile-format_assembly_networkmanager-connection-profiles-in-keyfile-format
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_and_managing_networking/index#configuring-a-dynamic-ethernet-connection-using-nmcli_configuring-an-ethernet-connection

CHAPTER 11. CONFIGURING THE NODE PORT SERVICE RANGE

CHAPTER 1. CONFIGURING THE NODE PORT SERVICE
RANGE

As a cluster administrator, you can expand the available node port range. If your cluster uses of a large
number of node ports, you might need to increase the number of available ports.

The default port range is 30000-32767. You can never reduce the port range, even if you first expand it
beyond the default range.

11.1. PREREQUISITES

® Your cluster infrastructure must allow access to the ports that you specify within the expanded
range. For example, if you expand the node port range to 30000-32900, the inclusive port range
of 32768-32900 must be allowed by your firewall or packet filtering configuration.

11.2. EXPANDING THE NODE PORT RANGE

You can expand the node port range for the cluster.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin to the cluster with a user with cluster-admin privileges.

Procedure

1. To expand the node port range, enter the following command. Replace <port> with the largest
port number in the new range.

$ oc patch network.config.openshift.io cluster --type=merge -p \
'

"spec":
{ "serviceNodePortRange": "30000-<port>" }

}l

TIP

You can alternatively apply the following YAML to update the node port range:

apiVersion: config.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
serviceNodePortRange: "30000-<port>"

Example output

I network.config.openshift.io/cluster patched

m

OpenShift Container Platform 4.11 Networking

2. To confirm that the configuration is active, enter the following command. It can take several
minutes for the update to apply.

$ oc get configmaps -n openshift-kube-apiserver config \
-0 jsonpath="{.data['config\.yamI]}" | \
grep -Eo "service-node-port-range":["[[:digit:]]+-[[:digit:]]+"]'

Example output

I "service-node-port-range":["30000-33000"]

11.3. ADDITIONAL RESOURCES

® Configuring ingress cluster traffic using a NodePort
® Network [config.openshift.io/v1]

® Service [core/V]

12

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-ingress-cluster-traffic-nodeport
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#network-config-openshift-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#service-v1

CHAPTER 12. CONFIGURING IP FAILOVER

CHAPTER 12. CONFIGURING IP FAILOVER

This topic describes configuring IP failover for pods and services on your OpenShift Container Platform
cluster.

IP failover manages a pool of Virtual IP (VIP) addresses on a set of nodes. Every VIP in the set is
serviced by a node selected from the set. As long a single node is available, the VIPs are served. There is
no way to explicitly distribute the VIPs over the nodes, so there can be nodes with no VIPs and other
nodes with many VIPs. If there is only one node, all VIPs are on it.

NOTE

The VIPs must be routable from outside the cluster.

IP failover monitors a port on each VIP to determine whether the port is reachable on the node. If the
port is not reachable, the VIP is not assigned to the node. If the port is set to 0, this check is suppressed.
The check script does the needed testing.

IP failover uses Keepalived to host a set of externally accessible VIP addresses on a set of hosts. Each
VIP is only serviced by a single host at a time. Keepalived uses the Virtual Router Redundancy Protocol
(VRRP) to determine which host, from the set of hosts, services which VIP. If a host becomes
unavailable, or if the service that Keepalived is watching does not respond, the VIP is switched to
another host from the set. This means a VIP is always serviced as long as a host is available.

When a node running Keepalived passes the check script, the VIP on that node can enter the master
state based on its priority and the priority of the current master and as determined by the preemption
strategy.

A cluster administrator can provide a script through the OPENSHIFT_HA_NOTIFY_SCRIPT variable,
and this script is called whenever the state of the VIP on the node changes. Keepalived uses the master
state when it is servicing the VIP, the backup state when another node is servicing the VIP, or in the
fault state when the check script fails. The notify script is called with the new state whenever the state
changes.

You can create an IP failover deployment configuration on OpenShift Container Platform. The IP
failover deployment configuration specifies the set of VIP addresses, and the set of nodes on which to
service them. A cluster can have multiple IP failover deployment configurations, with each managing its
own set of unique VIP addresses. Each node in the IP failover configuration runs an IP failover pod, and
this pod runs Keepalived.

When using VIPs to access a pod with host networking, the application pod runs on all nodes that are
running the IP failover pods. This enables any of the IP failover nodes to become the master and service
the VIPs when needed. If application pods are not running on all nodes with IP failover, either some IP
failover nodes never service the VIPs or some application pods never receive any traffic. Use the same
selector and replication count, for both IP failover and the application pods, to avoid this mismatch.

While using VIPs to access a service, any of the nodes can be in the IP failover set of nodes, since the
service is reachable on all nodes, no matter where the application pod is running. Any of the IP failover
nodes can become master at any time. The service can either use external IPs and a service port or it can
use a NodePort.

When using external IPs in the service definition, the VIPs are set to the external IPs, and the IP failover
monitoring port is set to the service port. When using a node port, the port is open on every node in the
cluster, and the service load-balances traffic from whatever node currently services the VIP. In this case,
the IP failover monitoring port is set to the NodePort in the service definition.

13

http://www.keepalived.org/

OpenShift Container Platform 4.11 Networking

IMPORTANT

Setting up a NodePort is a privileged operation.

IMPORTANT

Even though a service VIP is highly available, performance can still be affected.
Keepalived makes sure that each of the VIPs is serviced by some node in the
configuration, and several VIPs can end up on the same node even when other nodes
have none. Strategies that externally load-balance across a set of VIPs can be thwarted
when IP failover puts multiple VIPs on the same node.

When you use ingressIP, you can set up IP failover to have the same VIP range as the ingressIP range.
You can also disable the monitoring port. In this case, all the VIPs appear on same node in the cluster.
Any user can set up a service with an ingressIP and have it highly available.

IMPORTANT

There are a maximum of 254 VIPs in the cluster.

12.1. IP FAILOVER ENVIRONMENT VARIABLES
The following table contains the variables used to configure IP failover.

Table 12.1. IP failover environment variables

Variable Name Default Description
OPENSHIFT_HA_MONITOR_POR 80 The IP failover pod tries to open a TCP connection
T to this port on each Virtual IP (VIP). If connection is

established, the service is considered to be running.
If this port is set to 0, the test always passes.

OPENSHIFT_HA_NETWORK_INT The interface name that IP failover uses to send
ERFACE Virtual Router Redundancy Protocol (VRRP) traffic.
The default value is eth0.

OPENSHIFT_HA_REPLICA_COU 2 The number of replicas to create. This must match
NT spec.replicas value in IP failover deployment
configuration.

OPENSHIFT_HA_VIRTUAL_IPS The list of IP address ranges to replicate. This must
be provided. For example, 1.2.3.4-6,1.2.3.9.

OPENSHIFT_HA_VRRP_ID OFFS 0 The offset value used to set the virtual router IDs.

ET Using different offset values allows multiple IP
failover configurations to exist within the same
cluster. The default offset is 0, and the allowed range
is 0 through 255.

14

CHAPTER 12. CONFIGURING IP FAILOVER

Variable Name Default Description

OPENSHIFT_HA_VIP_GROUPS The number of groups to create for VRRP. If not set,
a group is created for each virtual IP range specified
with the OPENSHIFT_HA_VIP_GROUPS

variable.
OPENSHIFT_HA_IPTABLES_CHA INPUT The name of the iptables chain, to automatically add
IN an iptables rule to allow the VRRP traffic on. If the

value is not set, an iptables rule is not added. If the
chain does not exist, it is not created.

OPENSHIFT_HA CHECK_SCRIP The full path name in the pod file system of a script

T that is periodically run to verify the application is
operating.

OPENSHIFT_HA_CHECK_INTER 2 The period, in seconds, that the check script is run.

VAL

OPENSHIFT_HA_NOTIFY_SCRIP The full path name in the pod file system of a script

T that is run whenever the state changes.

OPENSHIFT_HA_ PREEMPTION preempt The strategy for handling a new higher priority host.
_hodelay The nopreempt strategy does not move master
300 from the lower priority host to the higher priority
host.

12.2. CONFIGURING IP FAILOVER

As a cluster administrator, you can configure IP failover on an entire cluster, or on a subset of nodes, as
defined by the label selector. You can also configure multiple IP failover deployment configurations in
your cluster, where each one is independent of the others.

The IP failover deployment configuration ensures that a failover pod runs on each of the nodes
matching the constraints or the label used.

This pod runs Keepalived, which can monitor an endpoint and use Virtual Router Redundancy Protocol
(VRRP) to fail over the virtual IP (VIP) from one node to another if the first node cannot reach the

service or endpoint.

For production use, set a selector that selects at least two nodes, and set replicas equal to the number
of selected nodes.

Prerequisites
® You are logged in to the cluster with a user with cluster-admin privileges.

® You created a pull secret.

PDunmnmnadiiva

115

OpenShift Container Platform 4.11 Networking

rioccuuic

1. Create an IP failover service account:
I $ oc create sa ipfailover
2. Update security context constraints (SCC) for hostNetwork:

$ oc adm policy add-scc-to-user privileged -z ipfailover
$ oc adm policy add-scc-to-user hostnetwork -z ipfailover

3. Create a deployment YAML file to configure IP failover:

Example deployment YAML for IP failover configuration

apiVersion: apps/v1
kind: Deployment
metadata:
name: ipfailover-keepalived 0
labels:
ipfailover: hello-openshift
spec:
strategy:
type: Recreate
replicas: 2
selector:
matchLabels:
ipfailover: hello-openshift
template:
metadata:

labels:
ipfailover: hello-openshift

spec:

serviceAccountName: ipfailover

privileged: true

hostNetwork: true

nodeSelector:
node-role.kubernetes.io/worker: "

containers:

- name: openshift-ipfailover
image: quay.io/openshift/origin-keepalived-ipfailover
ports:

- containerPort: 63000
hostPort: 63000

imagePullPolicy: IfNotPresent

securityContext:
privileged: true
volumeMounts:

- name: lib-modules
mountPath: /lib/modules
readOnly: true

- name: host-slash
mountPath: /host
readOnly: true
mountPropagation: HostToContainer

- name: etc-sysconfig

16

CHAPTER 12. CONFIGURING IP FAILOVER

mountPath: /etc/sysconfig
readOnly: true
- name: config-volume
mountPath: /etc/keepalive
env:
- name: OPENSHIFT_HA_CONFIG_NAME
value: "ipfailover"
- name: OPENSHIFT_HA_VIRTUAL_IPS e
value: "1.1.1.1-2"
- name: OPENSHIFT_HA_VIP_GROUPS 9
value: "10"
- name: OPENSHIFT_HA_NETWORK_INTERFACE ﬂ
value: "ens3" #The host interface to assign the VIPs
- name: OPENSHIFT_HA_MONITOR_PORT 6
value: "30060"
- name: OPENSHIFT_HA_VRRP_ID_OFFSET G
value: "0"
- name: OPENSHIFT_HA_REPLICA_COUNT ﬂ
value: "2" #Must match the number of replicas in the deployment
- name: OPENSHIFT_HA_USE_UNICAST
value: "false"
#- name: OPENSHIFT_HA_UNICAST_PEERS
#value: "10.0.148.40,10.0.160.234,10.0.199.110"
- name: OPENSHIFT_HA_IPTABLES_CHAIN 6
value: "INPUT"
#- name: OPENSHIFT_HA_NOTIFY_SCRIPT 9
value: /etc/keepalive/mynotifyscript.sh
- name: OPENSHIFT_HA_CHECK_SCRIPT@
value: "/etc/keepalive/mycheckscript.sh”
- name: OPENSHIFT_HA_PREEMPTION m
value: "preempt_delay 300"
- name: OPENSHIFT_HA_CHECK_INTERVAL @
value: "2"
livenessProbe:
initialDelaySeconds: 10
exec:
command:
- pgrep
- keepalived
volumes:
- name: lib-modules
hostPath:
path: /lib/modules
- name: host-slash
hostPath:
path: /
- name: etc-sysconfig
hostPath:
path: /etc/sysconfig
config-volume contains the check script
created with "oc create configmap keepalived-checkscript --from-file=mycheckscript.sh
- configMap:
defaultMode: 0755
name: keepalived-checkscript

17

OpenShift Container Platform 4.11 Networking

name: config-volume
imagePullSecrets:
- name: openshift-pull-secret @

The name of the IP failover deployment.

The list of IP address ranges to replicate. This must be provided. For example, 1.2.3.4-
6,1.2.3.9.

The number of groups to create for VRRP. If not set, a group is created for each virtual IP
range specified with the OPENSHIFT_HA_VIP_GROUPS variable.

The interface name that IP failover uses to send VRRP traffic. By default, eth0 is used.

The IP failover pod tries to open a TCP connection to this port on each VIP. If connection is
established, the service is considered to be running. If this port is set to 0, the test always
passes. The default value is 80.

The offset value used to set the virtual router IDs. Using different offset values allows
multiple IP failover configurations to exist within the same cluster. The default offset is 0,
and the allowed range is 0 through 255.

The number of replicas to create. This must match spec.replicas value in IP failover
deployment configuration. The default value is 2.

The name of the iptables chain to automatically add an iptables rule to allow the VRRP
traffic on. If the value is not set, an iptables rule is not added. If the chain does not exist, it
is not created, and Keepalived operates in unicast mode. The default is INPUT.

The full path name in the pod file system of a script that is run whenever the state
changes.

The full path name in the pod file system of a script that is periodically run to verify the
application is operating.

The strategy for handling a new higher priority host. The default value is preempt_delay
300, which causes a Keepalived instance to take over a VIP after 5 minutes if a lower-
priority master is holding the VIP.

The period, in seconds, that the check script is run. The default value is 2.

Create the pull secret before creating the deployment, otherwise you will get an error when
creating the deployment.

o0 O 9 6 9 9 O O®©5 o0 o9

12.3. ABOUT VIRTUAL IP ADDRESSES

Keepalived manages a set of virtual IP addresses (VIP). The administrator must make sure that all of
these addresses:

® Are accessible on the configured hosts from outside the cluster.

® Are not used for any other purpose within the cluster.

18

CHAPTER 12. CONFIGURING IP FAILOVER

Keepalived on each node determines whether the needed service is running. If it is, VIPs are supported
and Keepalived participates in the negotiation to determine which node serves the VIP. For a node to
participate, the service must be listening on the watch port on a VIP or the check must be disabled.

NOTE

Each VIP in the set may end up being served by a different node.

12.4. CONFIGURING CHECK AND NOTIFY SCRIPTS

Keepalived monitors the health of the application by periodically running an optional user supplied check
script. For example, the script can test a web server by issuing a request and verifying the response.

When a check script is not provided, a simple default script is run that tests the TCP connection. This
default test is suppressed when the monitor portis 0.

Each IP failover pod manages a Keepalived daemon that manages one or more virtual IPs (VIP) on the
node where the pod is running. The Keepalived daemon keeps the state of each VIP for that node. A
particular VIP on a particular node may be in master, backup, or fault state.

When the check script for that VIP on the node that is in master state fails, the VIP on that node enters
the fault state, which triggers a renegotiation. During renegotiation, all VIPs on a node that are not in the
fault state participate in deciding which node takes over the VIP. Ultimately, the VIP enters the master
state on some node, and the VIP stays in the backup state on the other nodes.

When a node with a VIP in backup state fails, the VIP on that node enters the fault state. When the
check script passes again for a VIP on a node in the fault state, the VIP on that node exits the fault

state and negotiates to enter the master state. The VIP on that node may then enter either the master
or the backup state.

As cluster administrator, you can provide an optional notify script, which is called whenever the state
changes. Keepalived passes the following three parameters to the script:

e $1 - group or instance

e $2 - Name of the group or instance

e $3 - The new state: master, backup, or fault
The check and notify scripts run in the IP failover pod and use the pod file system, not the host file
system. However, the IP failover pod makes the host file system available under the /hosts mount path.
When configuring a check or notify script, you must provide the full path to the script. The
recommended approach for providing the scripts is to use a config map.
The full path names of the check and notify scripts are added to the Keepalived configuration file,

_letc/keepalived/keepalived.conf, which is loaded every time Keepalived starts. The scripts can be
added to the pod with a config map as follows.

Prerequisites

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

19

OpenShift Container Platform 4.11 Networking

1. Create the desired script and create a config map to hold it. The script has no input arguments
and must return 0 for OK and 1 for fail.
The check script, mycheckscript.sh:

#!/bin/bash

Whatever tests are needed

E.g., send request and verify response
exit 0

2. Create the config map:

I $ oc create configmap mycustomcheck --from-file=mycheckscript.sh

3. Add the script to the pod. The defaultMode for the mounted config map files must able to run
by using oc commands or by editing the deployment configuration. A value of 0755, 493
decimal, is typical:

$ oc set env deploy/ipfailover-keepalived \
OPENSHIFT_HA_CHECK_SCRIPT=/etc/keepalive/mycheckscript.sh

$ oc set volume deploy/ipfailover-keepalived --add --overwrite \
--name=config-volume \
--mount-path=/etc/keepalive \
--source='{"configMap": { "name": "mycustomcheck", "defaultMode": 493}}'

NOTE

The oc set env command is whitespace sensitive. There must be no whitespace
on either side of the =sign.

120

CHAPTER 12. CONFIGURING IP FAILOVER

TIP

You can alternatively edit the ipfailover-keepalived deployment configuration:

I $ oc edit deploy ipfailover-keepalived

spec:
containers:
- env:
- name: OPENSHIFT_HA CHECK_SCRIPT ﬂ

value: /etc/keepalive/mycheckscript.sh

volumeMounts: 9
- mountPath: /etc/keepalive
name: config-volume
dnsPolicy: ClusterFirst

volumes: e

- configMap:
defaultMode: 0755 @)
name: customrouter

name: config-volume

ﬂ In the spec.container.env field, add the OPENSHIFT_HA_CHECK_SCRIPT environment
variable to point to the mounted script file.
Add the spec.container.volumeMounts field to create the mount point.

Add a new spec.volumes field to mention the config map.
This sets run permission on the files. When read back, it is displayed in decimal, 493.

Save the changes and exit the editor. This restarts ipfailover-keepalived.

12.5. CONFIGURING VRRP PREEMPTION

When a Virtual IP (VIP) on a node leaves the fault state by passing the check script, the VIP on the node
enters the backup state if it has lower priority than the VIP on the node that is currently in the master
state. However, if the VIP on the node that is leaving fault state has a higher priority, the preemption
strategy determines its role in the cluster.

The nopreempt strategy does not move master from the lower priority VIP on the host to the higher

priority VIP on the host. With preempt_delay 300, the default, Keepalived waits the specified 300
seconds and moves master to the higher priority VIP on the host.

Prerequisites

® You installed the OpenShift CLI (o¢).

Procedure

® To specify preemption enter oc edit deploy ipfailover-keepalived to edit the router
deployment configuration:

I $ oc edit deploy ipfailover-keepalived

121

OpenShift Container Platform 4.11 Networking

spec:
containers:
- env:
- name: OPENSHIFT_HA_PREEMPTION ﬂ
value: preempt_delay 300

€@ Setthe OPENSHIFT_HA_PREEMPTION value:

o preempt_delay 300: Keepalived waits the specified 300 seconds and moves master
to the higher priority VIP on the host. This is the default value.

o nopreempt: does not move master from the lower priority VIP on the host to the
higher priority VIP on the host.

12.6. ABOUT VRRP ID OFFSET

Each IP failover pod managed by the IP failover deployment configuration, 1 pod per node or replica,
runs a Keepalived daemon. As more IP failover deployment configurations are configured, more pods are
created and more daemons join into the common Virtual Router Redundancy Protocol (VRRP)
negotiation. This negotiation is done by all the Keepalived daemons and it determines which nodes
service which virtual IPs (VIP).

Internally, Keepalived assigns a unique vrrp-id to each VIP. The negotiation uses this set of vrrp-ids,
when a decision is made, the VIP corresponding to the winning vrrp-id is serviced on the winning node.

Therefore, for every VIP defined in the IP failover deployment configuration, the IP failover pod must
assign a corresponding vrrp-id. This is done by starting at OPENSHIFT_HA_VRRP_ID_OFFSET and
sequentially assigning the vrrp-ids to the list of VIPs. The vrrp-ids can have values in the range 1..255.

When there are multiple IP failover deployment configurations, you must specify
OPENSHIFT_HA_VRRP_ID_OFFSET so that there is room to increase the number of VIPs in the
deployment configuration and none of the vrrp-id ranges overlap.

12.7. CONFIGURING IP FAILOVER FOR MORE THAN 254 ADDRESSES

IP failover management is limited to 254 groups of Virtual IP (VIP) addresses. By default OpenShift
Container Platform assigns one IP address to each group. You can use the
OPENSHIFT_HA_VIP_GROUPS variable to change this so multiple IP addresses are in each group and
define the number of VIP groups available for each Virtual Router Redundancy Protocol (VRRP)
instance when configuring IP failover.

Grouping VIPs creates a wider range of allocation of VIPs per VRRP in the case of VRRP failover events,
and is useful when all hosts in the cluster have access to a service locally. For example, when a service is
being exposed with an ExternallP.

NOTE

As a rule for failover, do not limit services, such as the router, to one specific host. Instead,
services should be replicated to each host so that in the case of IP failover, the services
do not have to be recreated on the new host.

122

CHAPTER 12. CONFIGURING IP FAILOVER

NOTE

If you are using OpenShift Container Platform health checks, the nature of IP failover and
groups means that all instances in the group are not checked. For that reason, the
Kubernetes health checks must be used to ensure that services are live.

Prerequisites

® You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

® To change the number of IP addresses assigned to each group, change the value for the
OPENSHIFT_HA_VIP_GROUPS variable, for example:

Example Deployment YAML for IP failover configuration

spec:
env:
- name: OPENSHIFT_HA_VIP_GROUPS ﬂ
value: "3"

If OPENSHIFT_HA_VIP_GROUPS is set to 3 in an environment with seven VIPs, it creates
three groups, assigning three VIPs to the first group, and two VIPs to the two remaining
groups.

NOTE

If the number of groups set by OPENSHIFT_HA_VIP_GROUPS is fewer than the number
of IP addresses set to fail over, the group contains more than one IP address, and all of
€ the addresses move as a single unit.

12.8. HIGH AVAILABILITY FOR INGRESSIP

In non-cloud clusters, IP failover and ingressIP to a service can be combined. The result is high
availability services for users that create services using ingressIP.

The approach is to specify an ingressIPNetworkCIDR range and then use the same range in creating
the ipfailover configuration.

Because IP failover can support up to a maximum of 255 VIPs for the entire cluster, the
ingressIPNetworkCIDR needs to be /24 or smaller.

12.9. REMOVING IP FAILOVER

When IP failover is initially configured, the worker nodes in the cluster are modified with an iptables rule
that explicitly allows multicast packets on 224.0.0.18 for Keepalived. Because of the change to the
nodes, removing IP failover requires running a job to remove the iptables rule and removing the virtual
IP addresses used by Keepalived.

123

https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-probes/

OpenShift Container Platform 4.11 Networking

Procedure
1. Optional: Identify and delete any check and notify scripts that are stored as config maps:

a. ldentify whether any pods for IP failover use a config map as a volume:

$ oc get pod - ipfailover \
-0 jsonpath="\

{range .items[?(@.spec.volumes[*].configMap)]}

{'Namespace: "}{.metadata.namespace}

{'Pod: "{.metadata.name}

{'Volumes that use config maps:"}

{range .spec.volumes[?(@.configMap)]} {'volume: 'H.name}
{'configMap: "{.configMap.name}{"\n'}{end}

{end}"

Example output

Namespace: default
Pod: keepalived-worker-59df45db9c-2x9mn
Volumes that use config maps:

volume: config-volume

configMap: mycustomcheck

b. If the preceding step provided the names of config maps that are used as volumes, delete
the config maps:

I $ oc delete configmap <configmap_name>
2. ldentify an existing deployment for IP failover:
I $ oc get deployment -l ipfailover
Example output
I NAMESPACE NAME READY UP-TO-DATE AVAILABLE AGE
default ipfailover 2/2 2 2 105d
3. Delete the deployment:
I $ oc delete deployment <ipfailover_deployment_name>
4. Remove the ipfailover service account:

I $ oc delete sa ipfailover

5. Run ajob that removes the IP tables rule that was added when IP failover was initially
configured:

a. Create a file such as remove-ipfailover-job.yaml with contents that are similar to the
following example:

I apiVersion: batch/v1

124

CHAPTER 12. CONFIGURING IP FAILOVER

kind: Job
metadata:
generateName: remove-ipfailover-
labels:
app: remove-ipfailover
spec:
template:
metadata:
name: remove-ipfailover
spec:
containers:
- name: remove-ipfailover
image: quay.io/openshift/origin-keepalived-ipfailover:4.11
command: ["/var/lib/ipfailover/keepalived/remove-failover.sh"]
nodeSelector:
kubernetes.io/hostname: <host_name> <.>
restartPolicy: Never

<.> Run the job for each node in your cluster that was configured for IP failover and replace
the hostname each time.

b. Run the job:

I $ oc create -f remove-ipfailover-job.yaml
Example output

I job.batch/remove-ipfailover-2h8dm created

Verification

® Confirm that the job removed the initial configuration for IP failover.
I $ oc logs job/remove-ipfailover-2h8dm
Example output

remove-failover.sh: OpenShift IP Failover service terminating.
- Removing ip_vs module ...
- Cleaning up ...
- Releasing VIPs (interface eth0) ...

125

OpenShift Container Platform 4.11 Networking

CHAPTER 13. CONFIGURING INTERFACE-LEVEL NETWORK
SYSCTLS

In Linux, sysctl allows an administrator to modify kernel parameters at runtime. You can modify
interface-level network sysctls using the tuning Container Network Interface (CNI) meta plugin. The
tuning CNI meta plugin operates in a chain with a main CNI plugin as illustrated.

Network

v

Main CNI plug-in Handover Tuning plug-in Namespace

(Interface creation) > (Adgjol:‘lggilrg;;g:)ace
Container

The main CNI plugin assigns the interface and passes this to the tuning CNI meta plugin at runtime. You
can change some sysctls and several interface attributes (promiscuous mode, all-multicast mode, MTU,
and MAC address) in the network namespace by using the tuning CNI meta plugin. In the tuning CNI
meta plugin configuration, the interface name is represented by the IFNAME token, and is replaced with
the actual name of the interface at runtime.

NOTE

In OpenShift Container Platform, the tuning CNI meta plugin only supports changing
interface-level network sysctls.

13.1. CONFIGURING THE TUNING CNI

The following procedure configures the tuning CNI to change the interface-level network
net.ipv4.conf.lIFNAME.accept_redirects sysctl. This example enables accepting and sending ICMP-
redirected packets.

Procedure

1. Create a network attachment definition, such as tuning-example.yaml, with the following
content:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: <name> 0
namespace: default 9
spec:
config: '{
"cniVersion": "0.4.0", 9
"name": "<name>", G
"plugins": [{
"type": "<main_CNI_plugin>" e
b

126

CHAPTER 13. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTLS

{
lltype": Iltuningll’ G
"sysctl": {
"net.ipv4.conf.IFNAME.accept_redirects": "1" a

}
}
]
}

Specifies the name for the additional network attachment to create. The name must be
unique within the specified namespace.

Specifies the namespace that the object is associated with.
Specifies the CNI specification version.

Specifies the name for the configuration. It is recommended to match the configuration
name to the name value of the network attachment definition.

Specifies the name of the main CNI plugin to configure.
Specifies the name of the CNI meta plugin.

Specifies the sysctl to set.

OS99 060600 9

An example yaml file is shown here:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
name: tuningnad
namespace: default
spec:
config: '{
"cniVersion": "0.4.0",
"name": "tuningnad”,
"plugins": [{
"type": "bridge"
b
{
"type": "tuning",
"sysctl": {
"net.ipv4.conf.IFNAME.accept_redirects™: "1"
}
}
]
y

2. Apply the yaml by running the following command:
I $ oc apply -f tuning-example.yaml

Example output

127

OpenShift Container Platform 4.11 Networking

I networkattachmentdefinition.k8.cni.cncf.io/tuningnad created

3. Create a pod such as examplepod.yaml with the network attachment definition similar to the
following:

@ ® 00009

7]

apiVersion: vi

kind: Pod

metadata:
name: tunepod
namespace: default
annotations:

k8s.v1.cni.cncf.io/networks: tuningnad 0

spec:
containers:
- name: podexample

image: centos
command: ["/bin/bash", "-c", "sleep INF"]
securityContext:
runAsUser: 2000 @)
runAsGroup: 3000 6
allowPrivilegeEscalation: false ﬂ
capabilities: 6
drop: ["ALL"]

securityContext:

runAsNonRoot: true G
seccompProfile: ﬂ
type: RuntimeDefault

Specify the name of the configured NetworkAttachmentDefinition.

runAsUser controls which user ID the container is run with.

runAsGroup controls which primary group ID the containers is run with.
allowPrivilegeEscalation determines if a pod can request to allow privilege escalation. If
unspecified, it defaults to true. This boolean directly controls whether the no_new_privs

flag gets set on the container process.

capabilities permit privileged actions without giving full root access. This policy ensures all
capabilities are dropped from the pod.

runAsNonRoot: true requires that the container will run with a user with any UID other
than O.

RuntimeDefault enables the default seccomp profile for a pod or container workload.

4. Apply the yaml by running the following command:

I $ oc apply -f examplepod.yaml

5. Verify that the pod is created by running the following command:

I $ oc get pod

128

CHAPTER 13. CONFIGURING INTERFACE-LEVEL NETWORK SYSCTLS

Example output

NAME READY STATUS RESTARTS AGE
tunepod 1/1 Running 0 47s
6. Login to the pod by running the following command:

I $ oc rsh tunepod

7. Verify the values of the configured sysctl flags. For example, find the value
net.ipv4.conf.net1.accept_redirects by running the following command:

I sh-4.4# sysctl net.ipv4.conf.net1.accept_redirects
Expected output

I net.ipv4.conf.net1.accept_redirects = 1

13.2. ADDITIONAL RESOURCES

® Using sysctls in containers

129

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/nodes/#nodes-containers-sysctls

OpenShift Container Platform 4.11 Networking

CHAPTER 14. USING THE STREAM CONTROL TRANSMISSION
PROTOCOL (SCTP) ON A BARE METAL CLUSTER

As a cluster administrator, you can use the Stream Control Transmission Protocol (SCTP) on a cluster.

14.1. SUPPORT FOR STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) ON OPENSHIFT CONTAINER PLATFORM

As a cluster administrator, you can enable SCTP on the hosts in the cluster. On Red Hat Enterprise Linux

CoreOS (RHCOS), the SCTP module is disabled by default.

SCTP is a reliable message based protocol that runs on top of an IP network.

When enabled, you can use SCTP as a protocol with pods, services, and network policy. A Service object
must be defined with the type parameter set to either the ClusterlP or NodePort value.

14.1.1. Example configurations using SCTP protocol

You can configure a pod or service to use SCTP by setting the protocol parameter to the SCTP value in

the pod or service object.

In the following example, a pod is configured to use SCTP:

apiVersion: vi
kind: Pod
metadata:
namespace: projecti
name: example-pod
spec:
containers:
- hame: example-pod

ports:
- containerPort: 30100
name: sctpserver
protocol: SCTP

In the following example, a service is configured to use SCTP:

130

apiVersion: vi

kind: Service

metadata:
namespace: projecti
name: sctpserver

spec:

ports:

- name: sctpserver
protocol: SCTP
port: 30100
targetPort: 30100

type: ClusterIP

CHAPTER 14. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

In the following example, a NetworkPolicy object is configured to apply to SCTP network traffic on port
80 from any pods with a specific label:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-sctp-on-http
spec:
podSelector:
matchLabels:
role: web
ingress:
- ports:
- protocol: SCTP
port: 80

14.2. ENABLING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP)

As a cluster administrator, you can load and enable the blacklisted SCTP kernel module on worker nodes
in your cluster.

Prerequisites

e Install the OpenShift CLI (oc).

® Access to the cluster as a user with the cluster-admin role.

Procedure

1. Create a file named load-sctp-module.yaml that contains the following YAML definition:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
name: load-sctp-module
labels:
machineconfiguration.openshift.io/role: worker
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- path: /etc/modprobe.d/sctp-blacklist.conf
mode: 0644
overwrite: true
contents:
source: data:,
- path: /etc/modules-load.d/sctp-load.conf
mode: 0644
overwrite: true
contents:
source: data:,sctp

131

OpenShift Container Platform 4.11 Networking

2. To create the MachineConfig object, enter the following command:

I $ oc create -f load-sctp-module.yaml

3. Optional: To watch the status of the nodes while the MachineConfig Operator applies the
configuration change, enter the following command. When the status of a node transitions to
Ready, the configuration update is applied.

I $ oc get nodes

14.3. VERIFYING STREAM CONTROL TRANSMISSION PROTOCOL
(SCTP) IS ENABLED

You can verify that SCTP is working on a cluster by creating a pod with an application that listens for
SCTP traffic, associating it with a service, and then connecting to the exposed service.

Prerequisites

® Access to the internet from the cluster to install the nc package.
® |nstall the OpenShift CLI (oc).

® Access to the cluster as a user with the cluster-admin role.

Procedure
1. Create a pod starts an SCTP listener:

a. Create a file named sctp-server.yaml that defines a pod with the following YAML:

apiVersion: vi
kind: Pod
metadata:
name: sctpserver
labels:
app: sctpserver
spec:
containers:
- name: sctpserver
image: registry.access.redhat.com/ubi8/ubi
command: ["/bin/sh", "-c"]
args:
['dnf install -y nc && sleep inf"]
ports:
- containerPort: 30102
name: sctpserver
protocol: SCTP

b. Create the pod by entering the following command:

I $ oc create -f sctp-server.yaml

2. Create a service for the SCTP listener pod.

132

CHAPTER 14. USING THE STREAM CONTROL TRANSMISSION PROTOCOL (SCTP) ON A BARE METAL CLUSTER

a. Create a file named sctp-service.yaml that defines a service with the following YAML.:

apiVersion: vi
kind: Service
metadata:
name: sctpservice
labels:
app: sctpserver
spec:
type: NodePort
selector:

app: sctpserver

ports:

- name: sctpserver
protocol: SCTP
port: 30102
targetPort: 30102

b. To create the service, enter the following command:
I $ oc create -f sctp-service.yaml

3. Create a pod for the SCTP client.

a. Create a file named sctp-client.yaml with the following YAML:

apiVersion: vi
kind: Pod
metadata:
name: sctpclient
labels:
app: sctpclient
spec:
containers:
- name: sctpclient
image: registry.access.redhat.com/ubi8/ubi
command: ["/bin/sh", "-c"]
args:
['dnf install -y nc && sleep inf"]

b. To create the Pod object, enter the following command:
I $ oc apply -f sctp-client.yaml

4. Run an SCTP listener on the server.

a. To connect to the server pod, enter the following command:

I $ oc rsh sctpserver

b. To start the SCTP listener, enter the following command:

I $ nc -1 30102 --sctp

133

OpenShift Container Platform 4.11 Networking

5. Connect to the SCTP listener on the server.

a. Open a new terminal window or tab in your terminal program.

b. Obtain the IP address of the sctpservice service. Enter the following command:
I $ oc get services sctpservice -0 go-template="{{.spec.cluster|P}}{{"\n"}}'

c. To connect to the client pod, enter the following command:
I $ oc rsh sctpclient

d. To start the SCTP client, enter the following command. Replace <cluster_IP> with the
cluster IP address of the sctpservice service.

I # nc <cluster_IP> 30102 --sctp

134

CHAPTER 15. USING PTP HARDWARE

CHAPTER15. USING PTP HARDWARE

You can configure linuxptp services and use PTP-capable hardware in OpenShift Container Platform
cluster nodes.

15.1. ABOUT PTP HARDWARE
You can use the OpenShift Container Platform console or OpenShift CLI (o¢) to install PTP by
deploying the PTP Operator. The PTP Operator creates and manages the linuxptp services and
provides the following features:

® Discovery of the PTP-capable devices in the cluster.

® Management of the configuration of linuxptp services.

e Notification of PTP clock events that negatively affect the performance and reliability of your
application with the PTP Operator cloud-event-proxy sidecar.

NOTE

The PTP Operator works with PTP-capable devices on clusters provisioned only on bare-
metal infrastructure.

15.2. ABOUT PTP

Precision Time Protocol (PTP) is used to synchronize clocks in a network. When used in conjunction with
hardware support, PTP is capable of sub-microsecond accuracy, and is more accurate than Network
Time Protocol (NTP).

The linuxptp package includes the ptp4l and phe2sys programs for clock synchronization. ptp4l
implements the PTP boundary clock and ordinary clock. ptp4l synchronizes the PTP hardware clock to
the source clock with hardware time stamping and synchronizes the system clock to the source clock
with software time stamping. phc2sys is used for hardware time stamping to synchronize the system
clock to the PTP hardware clock on the network interface controller (NIC).

15.2.1. Elements of a PTP domain

PTP is used to synchronize multiple nodes connected in a network, with clocks for each node. The clocks
synchronized by PTP are organized in a source-destination hierarchy. The hierarchy is created and
updated automatically by the best master clock (BMC) algorithm, which runs on every clock. Destination
clocks are synchronized to source clocks, and destination clocks can themselves be the source for other
downstream clocks. The following types of clocks can be included in configurations:

Grandmaster clock

The grandmaster clock provides standard time information to other clocks across the network and
ensures accurate and stable synchronisation. It writes time stamps and responds to time requests
from other clocks. Grandmaster clocks can be synchronized to a Global Positioning System (GPS)
time source.

Ordinary clock

The ordinary clock has a single port connection that can play the role of source or destination clock,
depending on its position in the network. The ordinary clock can read and write time stamps.

Boundary clock

135

OpenShift Container Platform 4.11 Networking

The boundary clock has ports in two or more communication paths and can be a source and a
destination to other destination clocks at the same time. The boundary clock works as a destination
clock upstream. The destination clock receives the timing message, adjusts for delay, and then
creates a new source time signal to pass down the network. The boundary clock produces a new
timing packet that is still correctly synced with the source clock and can reduce the number of
connected devices reporting directly to the source clock.

15.2.2. Advantages of PTP over NTP

One of the main advantages that PTP has over NTP is the hardware support present in various network
interface controllers (NIC) and network switches. The specialized hardware allows PTP to account for
delays in message transfer and improves the accuracy of time synchronization. To achieve the best
possible accuracy, it is recommended that all networking components between PTP clocks are PTP
hardware enabled.

Hardware-based PTP provides optimal accuracy, since the NIC can time stamp the PTP packets at the
exact moment they are sent and received. Compare this to software-based PTP, which requires
additional processing of the PTP packets by the operating system.

IMPORTANT

Before enabling PTP, ensure that NTP is disabled for the required nodes. You can disable
the chrony time service (chronyd) using a MachineConfig custom resource. For more
information, see Disabling chrony time service.

15.2.3. Using PTP with dual NIC hardware

OpenShift Container Platform supports single and dual NIC hardware for precision PTP timing in the
cluster.

For 5G telco networks that deliver mid-band spectrum coverage, each virtual distributed unit (vDU)
requires connections to 6 radio units (RUs). To make these connections, each vDU host requires 2 NICs

configured as boundary clocks.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate
ptp4l instances for each NIC feeding the downstream clocks.

15.3. INSTALLING THE PTP OPERATOR USING THE CLI

As a cluster administrator, you can install the Operator by using the CLI.

Prerequisites
® A clusterinstalled on bare-metal hardware with nodes that have hardware that supports PTP.
® |nstall the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure
1. Create a namespace for the PTP Operator.

a. Save the following YAML in the ptp-namespace.yaml file:

136

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/post-installation_configuration/#cnf-disable-chronyd_post-install-machine-configuration-tasks

CHAPTER 15. USING PTP HARDWARE

apiVersion: vi
kind: Namespace
metadata:
name: openshift-ptp
annotations:
workload.openshift.io/allowed: management
labels:
name: openshift-ptp
openshift.io/cluster-monitoring: "true"

b. Create the Namespace CR:
I $ oc create -f ptp-namespace.yaml

2. Create an Operator group for the PTP Operator.

a. Save the following YAML in the ptp-operatorgroup.yaml file:

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: ptp-operators
namespace: openshift-ptp
spec:
targetNamespaces:
- openshift-ptp

b. Create the OperatorGroup CR:
I $ oc create -f ptp-operatorgroup.yami

3. Subscribe to the PTP Operator.

a. Save the following YAML in the ptp-sub.yaml file:

apiVersion: operators.coreos.com/vialphai
kind: Subscription
metadata:
name: ptp-operator-subscription
namespace: openshift-ptp
spec:
channel: "stable"
name: ptp-operator
source: redhat-operators
sourceNamespace: openshift-marketplace

b. Create the Subscription CR:
I $ oc create -f ptp-sub.yaml
4. To verify that the Operator is installed, enter the following command:

$ oc get csv -n openshift-ptp -0 custom-
columns=Name:.metadata.name,Phase:.status.phase

137

OpenShift Container Platform 4.11 Networking

Example output

Name Phase
4.12.0-202301261535 Succeeded

15.4. INSTALLING THE PTP OPERATOR USING THE WEB CONSOLE

As a cluster administrator, you can install the PTP Operator using the web console.

NOTE

You have to create the namespace and Operator group as mentioned in the previous
section.

Procedure
1. Install the PTP Operator using the OpenShift Container Platform web console:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.
b. Choose PTP Operator from the list of available Operators, and then click Install.

c. On the Install Operator page, under A specific namespace on the clusterselect
openshift-ptp. Then, click Install.

2. Optional: Verify that the PTP Operator installed successfully:

a. Switch to the Operators — Installed Operators page.

b. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of
InstallSucceeded.

NOTE
During installation an Operator might display a Failed status. If the

installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the Operator does not appear as installed, to troubleshoot further:

® Go to the Operators — Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

® Go to the Workloads = Pods page and check the logs for pods in the openshift-ptp
project.

15.5. CONFIGURING PTP DEVICES

The PTP Operator adds the NodePtpDevice.ptp.openshift.io custom resource definition (CRD) to
OpenShift Container Platform.

138

CHAPTER 15. USING PTP HARDWARE

When installed, the PTP Operator searches your cluster for PTP-capable network devices on each node.
It creates and updates a NodePtpDevice custom resource (CR) object for each node that provides a
compatible PTP-capable network device.

15.5.1. Discovering PTP capable network devices in your cluster

® Toreturn a complete list of PTP capable network devices in your cluster, run the following
command:

I $ oc get NodePtpDevice -n openshift-ptp -0 yaml
Example output

apiVersion: v1
items:
- apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
creationTimestamp: "2022-01-27T15:16:28Z"
generation: 1
name: dev-worker-0 0
namespace: openshift-ptp
resourceVersion: "6538103"
uid: d42fc9ad-bcbf-4590-b6d8-b676c642781a
spec: {}
status:
devices: 9
- name: eno1
- hame: eno2
- name: eno3
- name: eno4
- name: enp5s0f0
- name: enp5s0fi

ﬂ The value for the name parameter is the same as the name of the parent node.

The devices collection includes a list of the PTP capable devices that the PTP Operator
discovers for the node.

15.5.2. Configuring linuxptp services as a grandmaster clock

You can configure the linuxptp services (ptp4l, phc2sys, ts2phc) as grandmaster clock by creating a
PtpConfig custom resource (CR) that configures the host NIC.

The ts2phc utility allows you to synchronize the system clock with the PTP grandmaster clock so that
the node can stream precision clock signal to downstream PTP ordinary clocks and boundary clocks.

139

OpenShift Container Platform 4.11 Networking

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
the grandmaster clock for your particular hardware and environment. This example CR
does not configure PTP fast events. To configure PTP fast events, set appropriate
values for ptp4lOpts, ptp4lConf, and ptpClockThreshold. ptpClockThreshold is used
only when events are enabled. See "Configuring the PTP fast event notifications
publisher" for more information.

Prerequisites

® |nstall an Intel Westport Channel network interface in the bare-metal cluster host.
® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator.

Procedure

140

1. Create the PtpConfig resource. For example:

a. Save the following YAML in the grandmaster-clock-ptp-config.yaml file:

Example PTP grandmaster clock configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: grandmaster-clock
namespace: openshift-ptp
annotations: {}
spec:
profile:
- name: grandmaster-clock
The interface name is hardware-specific
interface: $interface
ptp4lOpts: "-2"
phc2sysOpts: "-a -r -r -n 24"
ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10
ptpSettings:
logReduce: "true"
ptp4IConf: |
[global]
#
Default Data Set
#
twoStepFlag 1
slaveOnly 0
priority1 128
priority2 128
domainNumber 24
#utc_offset 37
clockClass 255

clockAccuracy OxFE
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0

dscp_general 0
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
#

Port Data Set

#

logAnnouncelnterval -3
logSynclinterval -4
logMinDelayReqInterval -4
logMinPdelayReqlnterval -4
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset_interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info 0

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval 0
kernel_leap 1
check_fup_sync 0
clock_class_threshold 7

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002

CHAPTER 15. USING PTP HARDWARE

141

OpenShift Container Platform 4.11 Networking

max_frequency 900000000
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0
#
Transport options
#
transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1
udp6_scope 0x0E
uds_address /var/run/ptp4l
#
Default interface options
#
clock_type OC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0
#
Clock description
#
productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;
timeSource 0xAO

recommend:

- profile: grandmaster-clock
priority: 4
match:

- nodeLabel: "node-role.kubernetes.io/$mcp"

b. Create the CR by running the following command:
I $ oc create -f grandmaster-clock-ptp-config.yaml
Verification

1. Check that the PtpConfig profile is applied to the node.

a. Getthe list of pods in the openshift-ptp namespace by running the following command:
I $ oc get pods -n openshift-ptp -0 wide
Example output

I NAME READY STATUS RESTARTS AGE [P NODE

142

CHAPTER 15. USING PTP HARDWARE

linuxptp-daemon-74m2g 3/3 Running 3 4d15h 10.16.230.7 compute-
1.example.com
ptp-operator-5f4f48d7c-x7zkf 1/1 Running 1 4d15h 10.128.1.145 compute-
1.example.com

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

I $ oc logs linuxptp-daemon-74m2g -n openshift-ptp -c linuxptp-daemon-container
Example output

ts2phc[94980.334]: [ts2phc.0.config] nmea delay: 98690975 ns

ts2phc[94980.334]: [ts2phc.0.config] ens3f0 extts index 0 at 1676577329.999999999 corr
0 src 1676577330.901342528 diff -1

ts2phc[94980.334]: [ts2phc.0.config] ens3f0 master offset -1s2freq -1
ts2phc[94980.441]: [ts2phc.0.config] nmea sentence:
GNRMC,195453.00,A,4233.24427,N,07126.64420,W,0.008,,160223,,,A,V
phc2sys[94980.450]: [ptp4l.0.config] CLOCK_REALTIME phc offset 943 s2 freq -
89604 delay 504

phc2sys[94980.512]: [ptp4l.0.config] CLOCK_REALTIME phc offset 1000 s2 freq -
89264 delay 474

15.5.3. Configuring linuxptp services as an ordinary clock

You can configure linuxptp services (ptp4l, phc2sys) as ordinary clock by creating a PtpConfig custom
resource (CR) object.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
an ordinary clock for your particular hardware and environment. This example CR does
not configure PTP fast events. To configure PTP fast events, set appropriate values for
ptp4l0pts, ptp4iConf, and ptpClockThreshold. ptpClockThreshold is required only
when events are enabled. See "Configuring the PTP fast event notifications publisher”
for more information.

Prerequisites

® [nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the ordinary-clock-ptp-
config.yaml file.

Example PTP ordinary clock configuration

143

OpenShift Container Platform 4.11 Networking

144

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: ordinary-clock
namespace: openshift-ptp
annotations: {}
spec:
profile:
- name: ordinary-clock
The interface name is hardware-specific
interface: $interface
ptp4lOpts: "-2 -s"
phc2sysOpts: "-a -r -n 24"
ptpSchedulingPolicy: SCHED_FIFO
ptpSchedulingPriority: 10
ptpSettings:
logReduce: "true"
ptp4IConf: |
[global]
#
Default Data Set
#
twoStepFlag 1
slaveOnly 1
priority1 128
priority2 128
domainNumber 24
#utc_offset 37
clockClass 255
clockAccuracy OXFE
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0
dscp_general 0
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
#
Port Data Set
#
logAnnouncelnterval -3
logSynclinterval -4
logMinDelayReqlnterval -4
logMinPdelayReqlnterval -4
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset_interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#
Run time options
#
assume_two_step 0
logging_level 6

path_trace_enabled 0
follow_up_info 0

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0
summary_interval 0
kernel_leap 1
check_fup_sync 0
clock_class_threshold 7

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
max_frequency 900000000
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0

#

Transport options

#

transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1

udp6_scope 0x0E
uds_address /var/run/ptp4l
#

Default interface options
#

clock_type OC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0

#

CHAPTER 15. USING PTP HARDWARE

145

OpenShift Container Platform 4.11 Networking

146

Clock description

#

productDescription ;;

revisionData ;;

manufacturerldentity 00:00:00

userDescription ;
timeSource 0xA0

recommend:

- profile: ordinary-clock

priority: 4
match:

- nodeLabel: "node-role.kubernetes.io/$mcp"

Table 15.1. PTP ordinary clock CR configuration options

Custom resource
field

name

profile

interface

ptp4lOpts

phc2sysOpts

ptp4iConf

tx_timestamp_time
out

boundary_clock_jb
od

ptpSchedulingPoli
cy

Description

The name of the PtpConfig CR.

Specify an array of one or more profile objects. Each profile must be
uniquely named.

Specify the network interface to be used by the ptp4l service, for example
ens787f1.

Specify system config options for the ptp4l service, for example -2 to
select the IEEE 802.3 network transport. The options should not include
the network interface name =i <interface> and service config file=f
/etc/ptp4l.conf because the network interface name and the service
config file are automatically appended. Append --summary_interval -4
to use PTP fast events with this interface.

Specify system config options for the phc2sys service. If this field is
empty, the PTP Operator does not start the phc2sys service. For Intel
Columbiaville 800 Series NICs, set phc2sysOpts options to-a - -m -n
24 -N 8 -R 16.-m prints messages tostdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

Specify a string that contains the configuration to replace the default
/etc/ptp4l.conf file. To use the default configuration, leave the field
empty.

For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to
50.

For Intel Columbiaville 800 Series NICs, set boundary_clock_jbod to 0.

Scheduling policy for ptp4l and phc2sys processes. Default value is
SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

Custom resource
field

ptpSchedulingPrio
rity

ptpClockThreshold

recommend

.recommend.profil
e

.recommend.priorit
y

.recommend.matc
h

.recommend.matc
h.nodeLabel

.recommend.matc
h.nodeName

CHAPTER 15. USING PTP HARDWARE

Description

Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys
processes when ptpSchedulingPolicy is set to SCHED_FIFO. The
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is
set to SCHED_OTHER.

Optional. If ptpClockThreshold is not present, default values are used
for the ptpClockThreshold fields. ptpClockThreshold configures how
long after the PTP master clock is disconnected before PTP events are
triggered. holdOverTimeout is the time value in seconds before the PTP
clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the
values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l).
When the ptp4l or phc2sys offset value is outside this range, the PTP
clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

Specify an array of one or more recommend objects that define rules on
how the profile should be applied to nodes.

Specify the .recommend.profile object name defined in theprofile
section.

Set.recommend.priority to 0 for ordinary clock.

Specify .recommend.match rules withnodeLabel ornodeName
values.

Set nodeLabel with thekey of the node.Labels field from the node
object by using the oc get nodes --show-labels command. For
example, node-role.kubernetes.io/worker.

Set nodeName with the value of thenode.Name field from the node
object by using the oc get nodes command. For example, compute-
1.example.com.

2. Create the PtpConfig CR by running the following command:

I $ oc create -f ordinary-clock-ptp-config.yaml

Verification
1. Check that the PtpConfig profile is applied to the node.

a. Getthe list of pods in the openshift-ptp namespace by running the following command:

147

OpenShift Container Platform 4.11 Networking

I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-
0.example.com

linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-

1.example.com
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-
plane-1.example.com

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

I $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container
Example output

1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
1115 09:41:17.117607 4143292 daemon.go:110]
11115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1
1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -2 -s

1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
1115 09:41:17.117626 4143292 daemon.go:116]

Additional resources

® For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO
priority scheduling for PTP hardware.

® For more information about configuring PTP fast events, see Configuring the PTP fast event
notifications publisher.

15.5.4. Configuring linuxptp services as a boundary clock

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clock by creating a PtpConfig
custom resource (CR) object.

NOTE

Use the following example PtpConfig CR as the basis to configure linuxptp services as
the boundary clock for your particular hardware and environment. This example CR does
not configure PTP fast events. To configure PTP fast events, set appropriate values for
ptp4l0pts, ptp4iConf, and ptpClockThreshold. ptpClockThreshold is used only when
events are enabled. See "Configuring the PTP fast event notifications publisher” for
more information.

Prerequisites

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#cnf-configuring-fifo-priority-scheduling-for-ptp_using-ptp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#cnf-configuring-the-ptp-fast-event-publisher_using-ptp

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

® |[nstall the PTP Operator.

Procedure

CHAPTER 15. USING PTP HARDWARE

1. Create the following PtpConfig CR, and then save the YAML in the boundary-clock-ptp-
config.yaml file.

Example PTP boundary clock configuration

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: boundary-clock
namespace: openshift-ptp
annotations: {}
spec:
profile:
- name: boundary-clock

ptp4lOpts: "-2"
phc2sysOpts: "-a -r -n 24"

ptpSchedulingPolicy: SCHED_FIFO

ptpSchedulingPriority: 10
ptpSettings:

logReduce: "true"
ptp4IConf: |

The interface name is hardware-specific

[$iface_slave]
masterOnly 0
[$iface_master 1]
masterOnly 1
[$iface_master 2]
masterOnly 1
[$iface_master_ 3]
masterOnly 1
[global]

#

Default Data Set
#

twoStepFlag 1
slaveOnly 0

priority1 128
priority2 128
domainNumber 24
#utc_offset 37
clockClass 248
clockAccuracy OxFE
offsetScaledLogVariance OxFFFF
free_running 0
freq_est_interval 1
dscp_event 0
dscp_general 0
dataset_comparison G.8275.x

149

OpenShift Container Platform 4.11 Networking

G.8275.defaultDS.localPriority 128
#

Port Data Set

#

logAnnouncelnterval -3
logSynclinterval -4
logMinDelayReqInterval -4
logMinPdelayReqlnterval -4
announceReceiptTimeout 3
syncReceiptTimeout 0
delayAsymmetry O
fault_reset_interval -4
neighborPropDelayThresh 20000000
masterOnly 0
G.8275.portDS.localPriority 128
#

Run time options

#

assume_two_step 0
logging_level 6
path_trace_enabled 0
follow_up_info O

hybrid_e2e 0
inhibit_multicast_service 0
net_sync_monitor 0
tc_spanning_tree 0
tx_timestamp_timeout 50
unicast_listen 0
unicast_master_table 0
unicast_req_duration 3600
use_syslog 1

verbose 0

summary_interval 0
kernel_leap 1
check_fup_sync 0
clock_class_threshold 135

#

Servo Options

#

pi_proportional_const 0.0
pi_integral_const 0.0
pi_proportional_scale 0.0
pi_proportional_exponent -0.3
pi_proportional_norm_max 0.7
pi_integral_scale 0.0
pi_integral_exponent 0.4
pi_integral_norm_max 0.3
step_threshold 2.0
first_step_threshold 0.00002
max_frequency 900000000
clock_servo pi
sanity_freq_limit 200000000
ntpshm_segment 0

#

Transport options

#

150

CHAPTER 15. USING PTP HARDWARE

transportSpecific 0x0
ptp_dst_mac 01:1B:19:00:00:00
p2p_dst_mac 01:80:C2:00:00:0E
udp_ttl 1
udp6_scope 0x0E
uds_address /var/run/ptp4l
#
Default interface options
#
clock_type BC
network_transport L2
delay_mechanism E2E
time_stamping hardware
tsproc_mode filter
delay_filter moving_median
delay_filter_length 10
egressLatency 0
ingressLatency 0
boundary_clock_jbod 0
#
Clock description
#
productDescription ;;
revisionData ;;
manufacturerldentity 00:00:00
userDescription ;
timeSource 0xAO
recommend:
- profile: boundary-clock
priority: 4
match:
- nodeLabel: "node-role.kubernetes.io/$mcp"

Table 15.2. PTP boundary clock CR configuration options

Custom resource Description

field

name The name of the PtpConfig CR.

profile Specify an array of one or more profile objects.

hame Specify the name of a profile object which uniquely identifies a profile
object.

ptp4lOpts Specify system config options for the ptp4l service. The options should

not include the network interface name -i <interfaces and service config
file -f /etc/ptp4l.conf because the network interface name and the
service config file are automatically appended.

ptp4lConf Specify the required configuration to start ptp4l as boundary clock. For
example, ens1f0 synchronizes from a grandmaster clock andens1f3
synchronizes connected devices.

151

Custom resource
field

<interface_1>

<interface_2>

tx_timestamp_time
out

boundary_clock_jb
od

phc2sysOpts

ptpSchedulingPoli
cy

ptpSchedulingPrio
rity

ptpClockThreshold

recommend

.recommend.profil
e

.recommend.priorit
y

OpenShift Container Platform 4.11 Networking

Description

The interface that receives the synchronization clock.

The interface that sends the synchronization clock.

For Intel Columbiaville 800 Series NICs, set tx_timestamp_timeout to
50.

For Intel Columbiaville 800 Series NICs, ensure boundary_clock_jbod
is set to 0. For Intel Fortville X710 Series NICs, ensure
boundary_clock_jbod is setto 1.

Specify system config options for the phc2sys service. If this field is
empty, the PTP Operator does not start the phc2sys service.

Scheduling policy for ptp4l and phc2sys processes. Default value is
SCHED_OTHER. Use SCHED_FIFO on systems that support FIFO
scheduling.

Integer value from 1-65 used to set FIFO priority for ptp4l and phc2sys
processes when ptpSchedulingPolicy is set to SCHED_FIFO. The
ptpSchedulingPriority field is not used when ptpSchedulingPolicy is
set to SCHED_OTHER.

Optional. If ptpClockThreshold is not present, default values are used
for the ptpClockThreshold fields. ptpClockThreshold configures how
long after the PTP master clock is disconnected before PTP events are
triggered. holdOverTimeout is the time value in seconds before the PTP
clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold
settings configure offset values in nanoseconds that compare against the
values for CLOCK_REALTIME (phc2sys) or master offset (ptp4l).
When the ptp4l or phc2sys offset value is outside this range, the PTP
clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

Specify an array of one or more recommend objects that define rules on
how the profile should be applied to nodes.

Specify the .recommend.profile object name defined in theprofile
section.

Specify the priority with an integer value between0 and 99. A larger
number gets lower priority, so a priority of 99 is lower than a priority of10.
If a node can be matched with multiple profiles according to rules defined
in the match field, the profile with the higher priority is applied to that
node.

CHAPTER 15. USING PTP HARDWARE

Custom resource Description

field

.recommend.matc Specify .recommend.match rules withnodeLabel ornodeName
h values.

.recommend.matc Set nodeLabel with thekey of the node.Labels field from the node
h.nodeLabel object by using the oc get nodes --show-labels command. For
example, node-role.kubernetes.io/worker.

.recommend.matc Set nodeName with the value of thenode.Name field from the node
h.nodeName object by using the oc get nodes command. For example, compute-
1.example.com.

2. Create the CR by running the following command:

I $ oc create -f boundary-clock-ptp-config.yami
Verification

1. Check that the PtpConfig profile is applied to the node.

a. Getthe list of pods in the openshift-ptp namespace by running the following command:
I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-4xkbb 1/1 Running 0 43m 10.1.196.24 compute-
0.example.com

linuxptp-daemon-tdspf 1/1 Running 0 43m 10.1.196.25 compute-

1.example.com
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.129.0.61 control-
plane-1.example.com

b. Check that the profile is correct. Examine the logs of the linuxptp daemon that
corresponds to the node you specified in the PtpConfig profile. Run the following
command:

I $ oc logs linuxptp-daemon-4xkbb -n openshift-ptp -c linuxptp-daemon-container
Example output

1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile
1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
11115 09:41:17.117607 4143292 daemon.go:110]
1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1
1115 09:41:17.117616 4143292 daemon.go:102] Interface:

153

OpenShift Container Platform 4.11 Networking

1115 09:41:17.117620 4143292 daemon.go:102] Ptp4|Opts: -2
1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r -n 24
1115 09:41:17.117626 4143292 daemon.go:116]

Additional resources

® For more information about FIFO priority scheduling on PTP hardware, see Configuring FIFO
priority scheduling for PTP hardware.

® For more information about configuring PTP fast events, see Configuring the PTP fast event
notifications publisher.

15.5.5. Configuring linuxptp services as boundary clocks for dual NIC hardware

IMPORTANT

Precision Time Protocol (PTP) hardware with dual NIC configured as boundary clocks is a
Technology Preview feature only. Technology Preview features are not supported with
Red Hat production service level agreements (SLAs) and might not be functionally
complete. Red Hat does not recommend using them in production. These features
provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see Technology Preview Features Support Scope.

You can configure the linuxptp services (ptp4l, phc2sys) as boundary clocks for dual NIC hardware by
creating a PtpConfig custom resource (CR) object for each NIC.

Dual NIC hardware allows you to connect each NIC to the same upstream leader clock with separate
ptp4l instances for each NIC feeding the downstream clocks.

Prerequisites

® [nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator.

Procedure

1. Create two separate PtpConfig CRs, one for each NIC, using the reference CR in "Configuring
linuxptp services as a boundary clock" as the basis for each CR. For example:

a. Create boundary-clock-ptp-config-nic1.yaml, specifying values for phc2sysOpts:

apiVersion: ptp.openshift.io/v1

kind: PtpConfig

metadata:
name: boundary-clock-ptp-config-nic1
namespace: openshift-ptp

spec:
profile:

154

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#cnf-configuring-fifo-priority-scheduling-for-ptp_using-ptp
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#cnf-configuring-the-ptp-fast-event-publisher_using-ptp
https://access.redhat.com/support/offerings/techpreview/

CHAPTER 15. USING PTP HARDWARE

- name: "profile1"
ptp4IOpts: "-2 --summary_interval -4"
ptp4iCont: | €)
[ens5f1]
masterOnly 1
[ens5f0]
masterOnly 0

phc2sysOpts: "-a -r-m -n 24 -N 8 -R 16" g

ﬂ Specify the required interfaces to start ptp4l as a boundary clock. For example, ens5f0
synchronizes from a grandmaster clock and ens5f1 synchronizes connected devices.

9 Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

b. Create boundary-clock-ptp-config-nic2.yaml, removing the phc2sysOpts field
altogether to disable the phe2sys service for the second NIC:

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: boundary-clock-ptp-config-nic2
namespace: openshift-ptp
spec:
profile:
- name: "profile2"
ptp4IOpts: "-2 --summary_interval -4"
ptp4iCont: | €)
[ens7f1]
masterOnly 1
[ens7f0]
masterOnly 0

ﬂ Specify the required interfaces to start ptp4l as a boundary clock on the second NIC.

NOTE

You must completely remove the phc2sysOpts field from the second
PtpConfig CR to disable the phc2sys service on the second NIC.

2. Create the dual NIC PtpConfig CRs by running the following commands:

a. Create the CR that configures PTP for the first NIC:
I $ oc create -f boundary-clock-ptp-config-nic1.yaml
b. Create the CR that configures PTP for the second NIC:

I $ oc create -f boundary-clock-ptp-config-nic2.yaml

155

OpenShift Container Platform 4.11 Networking

Verification

® Check that the PTP Operator has applied the PtpConfig CRs for both NICs. Examine the logs
for the linuxptp daemon corresponding to the node that has the dual NIC hardware installed.
For example, run the following command:

I $ oc logs linuxptp-daemon-cvgré -n openshift-ptp -c linuxptp-daemon-container
Example output

ptp41[80828.335]: [ptp4l.1.config] master offset 5s2freq -5727 path delay 519
ptp41[80828.343]: [ptp4l.0.config] master offset -5 82 freq -10607 path delay 533
phc2sys[80828.390]: [ptp4l.0.config] CLOCK_REALTIME phc offset 1 82 freq -87239
delay 539

15.5.6. Intel Columbiaville EBOO series NIC as PTP ordinary clock reference

The following table describes the changes that you must make to the reference PTP configuration in
order to use Intel Columbiaville EBOO series NICs as ordinary clocks. Make the changes in a PtpConfig
custom resource (CR) that you apply to the cluster.

Table 15.3. Recommended PTP settings for Intel Columbiaville NIC

PTP configuration Recommended setting

phc2sysOpts -a-r-m-n24-N8-R16
tx_timestamp_timeout 50
boundary_clock_jbod 0

NOTE

For phc2sysOpts, -m prints messages to stdout. The linuxptp-daemon DaemonSet
parses the logs and generates Prometheus metrics.

Additional resources

® Foracomplete example CR that configures linuxptp services as an ordinary clock with PTP fast
events, see Configuring linuxptp services as ordinary clock.

15.5.7. Configuring FIF O priority scheduling for PTP hardware

In telco or other deployment configurations that require low latency performance, PTP daemon threads
run in a constrained CPU footprint alongside the rest of the infrastructure components. By default, PTP
threads run with the SCHED_OTHER policy. Under high load, these threads might not get the
scheduling latency they require for error-free operation.

To mitigate against potential scheduling latency errors, you can configure the PTP Operator linuxptp
services to allow threads to run with a SCHED_FIFO policy. If SCHED_FIFO is set for a PtpConfig CR,
then ptp4l and phc2sys will run in the parent container under chrt with a priority set by the
ptpSchedulingPriority field of the PtpConfig CR.

156

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-linuxptp-services-as-ordinary-clock_using-ptp

CHAPTER 15. USING PTP HARDWARE

NOTE

Setting ptpSchedulingPolicy is optional, and is only required if you are experiencing
latency errors.

Procedure

1. Edit the PtpConfig CR profile:
I $ oc edit PtpConfig -n openshift-ptp
2. Change the ptpSchedulingPolicy and ptpSchedulingPriority fields:

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
name: <ptp_config_name>
namespace: openshift-ptp
spec:
profile:
- name: "profile1"

ptpSchedulingPolicy: SCHED_FIFO €))
ptpSchedulingPriority: 10 g

ﬂ Scheduling policy for ptp4l and phc2sys processes. Use SCHED_FIFO on systems that
support FIFO scheduling.

9 Required. Sets the integer value 1-65 used to configure FIFO priority for ptp4l and
phc2sys processes.

3. Save and exit to apply the changes to the PtpConfig CR.

Verification

1. Get the name of the linuxptp-daemon pod and corresponding node where the PtpConfig CR
has been applied:

I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-gmv2n 3/3 Running 0 1d17h 10.1.196.24 compute-
0.example.com

linuxptp-daemon-lgm55 3/3 Running 0 1d17h 10.1.196.25 compute-
1.example.com

ptp-operator-3r4dcvi7f4-zndk7 1/1 Running 0 1d7h 10.129.0.61 control-plane-

1.example.com

2. Check that the ptp4l process is running with the updated chrt FIFO priority:

157

OpenShift Container Platform 4.11 Networking

I $ oc -n openshift-ptp logs linuxptp-daemon-Igm55 -c linuxptp-daemon-container|grep chrt
Example output

1216 19:24:57.091872 1600715 daemon.go:285] /bin/chrt -f 65 /usr/sbin/ptp4l -f
/var/run/ptp4l.0.config -2 --summary_interval -4 -m

15.6. TROUBLESHOOTING COMMON PTP OPERATOR ISSUES

Troubleshoot common problems with the PTP Operator by performing the following steps.

Prerequisites

® |nstall the OpenShift Container Platform CLI (oc¢).
® | ogin as a user with cluster-admin privileges.

® |nstall the PTP Operator on a bare-metal cluster with hosts that support PTP.

Procedure

1. Check the Operator and operands are successfully deployed in the cluster for the configured
nodes.

I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-Imvgn 3/3 Running 0 4d17h 10.1.196.24 compute-
0.example.com

linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-

1.example.com
ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-plane-
1.example.com

NOTE

When the PTP fast event bus is enabled, the number of ready linuxptp-daemon
pods is 3/3. If the PTP fast event bus is not enabled, 2/2is displayed.

2. Check that supported hardware is found in the cluster.
I $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io

Example output

NAME AGE
control-plane-0.example.com 10d
control-plane-1.example.com 10d

158

CHAPTER 15. USING PTP HARDWARE

compute-0.example.com 10d
compute-1.example.com 10d
compute-2.example.com 10d

3. Check the available PTP network interfaces for a node:

I $ oc -n openshift-ptp get nodeptpdevices.ptp.openshift.io <node_name> -o yaml

where:

<node_name>

Specifies the node you want to query, for example, compute-0.example.com.

Example output

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
creationTimestamp: "2021-09-14T16:52:33Z2"
generation: 1
name: compute-0.example.com
namespace: openshift-ptp
resourceVersion: "177400"
uid: 30413db0-4d8d-46da-9bef-737bacd548fd
spec: {}
status:
devices:
- name: enof
- hame: eno2
- name: eno3
- name: eno4
- name: enp5s0f0
- name: enp5s0f1

4. Check that the PTP interface is successfully synchronized to the primary clock by accessing the
linuxptp-daemon pod for the corresponding node.

a. Get the name of the linuxptp-daemon pod and corresponding node you want to
troubleshoot by running the following command:

I $ oc get pods -n openshift-ptp -0 wide

Example output

NAME READY STATUS RESTARTS AGE IP NODE
linuxptp-daemon-Imvgn 3/3 Running 0 4d17h 10.1.196.24 compute-
0.example.com

linuxptp-daemon-qhfg7 3/3 Running 0 4d17h 10.1.196.25 compute-

1.example.com
ptp-operator-6b8dcbf7f4-zndk7 1/1 Running 0 5d7h 10.129.0.61 control-
plane-1.example.com

b. Remote shell into the required linuxptp-daemon container:

159

OpenShift Container Platform 4.11 Networking

I $ oc rsh -n openshift-ptp -c linuxptp-daemon-container <linux_daemon_container>

where:

<linux_daemon_container>

is the container you want to diagnose, for example linuxptp-daemon-Imvgn.

c. In the remote shell connection to the linuxptp-daemon container, use the PTP
Management Client (pmc) tool to diagnose the network interface. Run the following pme
command to check the sync status of the PTP device, for example ptp4l.

I # pmc -u -f /var/run/ptp4l.0.config -b 0 'GET PORT_DATA_SET'
Example output when the node is successfully synced to the primary clock

sending: GET PORT_DATA_SET
40a6b7.fffe.166ef0-1 seq 0 RESPONSE MANAGEMENT PORT_DATA_SET

portldentity 40a6b7.fffe.166ef0-1
portState SLAVE
logMinDelayReqInterval -4
peerMeanPathDelay 0
logAnnouncelnterval -3
announceReceiptTimeout 3

logSyncinterval -4
delayMechanism 1
logMinPdelayReqlnterval -4
versionNumber 2

15.6.1. Collecting Precision Time Protocol (PTP) Operator data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with Precision Time Protocol (PTP) Operator.

Prerequisites
® You have access to the cluster as a user with the cluster-admin role.
® You have installed the OpenShift CLI (oc).

® You have installed the PTP Operator.

Procedure

® To collect PTP Operator data with must-gather, you must specify the PTP Operator must-
gather image.

I $ oc adm must-gather --image=registry.redhat.io/openshift4/ptp-must-gather-rhel8:v4.11

15.7. PTP HARDWARE FAST EVENT NOTIFICATIONS FRAMEWORK

15.7.1. About PTP and clock synchronization error events

160

CHAPTER 15. USING PTP HARDWARE

Cloud native applications such as virtual RAN require access to notifications about hardware timing
events that are critical to the functioning of the overall network. Fast event notifications are early
warning signals about impending and real-time Precision Time Protocol (PTP) clock synchronization
events. PTP clock synchronization errors can negatively affect the performance and reliability of your
low latency application, for example, a VRAN application running in a distributed unit (DU).

Loss of PTP synchronization is a critical error for a RAN network. If synchronization is lost on a node, the
radio might be shut down and the network Over the Air (OTA) traffic might be shifted to another node
in the wireless network. Fast event notifications mitigate against workload errors by allowing cluster
nodes to communicate PTP clock sync status to the VRAN application running in the DU.

Event notifications are available to RAN applications running on the same DU node. A publish/subscribe
REST API passes events notifications to the messaging bus. Publish/subscribe messaging, or pub/sub
messaging, is an asynchronous service to service communication architecture where any message
published to a topic is immediately received by all the subscribers to the topic.

Fast event notifications are generated by the PTP Operator in OpenShift Container Platform for every
PTP-capable network interface. The events are made available using a cloud-event-proxy sidecar
container over an Advanced Message Queuing Protocol (AMQP) message bus. The AMQP message bus
is provided by the AMQ Interconnect Operator.

NOTE

PTP fast event notifications are available for network interfaces configured to use PTP
ordinary clocks or PTP boundary clocks.

15.7.2. About the PTP fast event notifications framework

You can subscribe distributed unit (DU) applications to Precision Time Protocol (PTP) fast events
notifications that are generated by OpenShift Container Platform with the PTP Operator and cloud-
event-proxy sidecar container. You enable the cloud-event-proxy sidecar container by setting the
enableEventPublisher field to true in the ptpOperatorConfig custom resource (CR) and specifying an
Advanced Message Queuing Protocol (AMQP) transportHost address. PTP fast events use an AMQP
event notification bus provided by the AMQ Interconnect Operator. AMQ Interconnect is a component
of Red Hat AMQ, a messaging router that provides flexible routing of messages between any AMQP-
enabled endpoints. An overview of the PTP fast events framework is below:

161

OpenShift Container Platform 4.11 Networking

Figure 15.1. Overview of PTP fast events

PTP Operator-managed pod Dispatch router

(AMQP 1.0 QPID)

linuxptp-daemon Sidecar: cloud Sidecar: cloud vDU
event proxy event proxy
http http
(REST API)

]]] |
1 1 1 i
i i i i
]]] |
]]] |
1 1 1 i
! PTP4L PHC2SYS (REST API) t ! !
i i i i
1 1 1 i
]] | | |
]] —I—r—> |
1 1 1 i
i i i i
]]] |
]]] |
i i i i
i i i i
]]] |
]]] |
i i i i

Cloud native CNCF CNCF Cloud native
event CloudEvents CloudEvent event
PTP plug-in

Unix domain socket

o T

The cloud-event-proxy sidecar container can access the same resources as the primary vRAN
application without using any of the resources of the primary application and with no significant latency.

The fast events notifications framework uses a REST API for communication and is based on the O-RAN
REST API specification. The framework consists of a publisher, subscriber, and an AMQ messaging bus
to handle communications between the publisher and subscriber applications. The cloud-event-proxy
sidecar is a utility container that runs in a pod that is loosely coupled to the main DU application
container on the DU node. It provides an event publishing framework that allows you to subscribe DU
applications to published PTP events.

DU applications run the cloud-event-proxy container in a sidecar pattern to subscribe to PTP events.
The following workflow describes how a DU application uses PTP fast events:

1. DU application requests a subscription The DU sends an APl request to the cloud-event-
proxy sidecar to create a PTP events subscription. The cloud-event-proxy sidecar creates a
subscription resource.

2. cloud-event-proxy sidecar creates the subscription The event resource is persisted by the
cloud-event-proxy sidecar. The cloud-event-proxy sidecar container sends an
acknowledgment with an ID and URL location to access the stored subscription resource. The
sidecar creates an AMQ messaging listener protocol for the resource specified in the
subscription.

3. DU application receives the PTP event notification The cloud-event-proxy sidecar container
listens to the address specified in the resource qualifier. The DU events consumer processes
the message and passes it to the return URL specified in the subscription.

4. cloud-event-proxy sidecar validates the PTP event and posts it to the DU applicatianThe
cloud-event-proxy sidecar receives the event, unwraps the cloud events object to retrieve the

data, and fetches the return URL to post the event back to the DU consumer application.

5. DU application uses the PTP event The DU application events consumer receives and
processes the PTP event.

162

CHAPTER 15. USING PTP HARDWARE

15.7.3. Installing the AMQ messaging bus
To pass PTP fast event notifications between publisher and subscriber on a node, you must install and

configure an AMQ messaging bus to run locally on the node. You do this by installing the AMQ
Interconnect Operator for use in the cluster.

Prerequisites
® |nstall the OpenShift Container Platform CLI (oc¢).

® | ogin as a user with cluster-admin privileges.

Procedure

® [nstall the AMQ Interconnect Operator to its own amg-interconnect namespace. See Adding
the Red Hat Integration - AMQ Interconnect Operator.

Verification

1. Check that the AMQ Interconnect Operator is available and the required pods are running:

I $ oc get pods -n amg-interconnect

Example output

NAME READY STATUS RESTARTS AGE
amgq-interconnect-645db76c76-k8ghs 1/1 Running 0 23h
interconnect-operator-5¢cb5fc7cc-4v7gm 1/1 Running 0 23h

2. Check that the required linuxptp-daemon PTP event producer pods are running in the
openshift-ptp namespace.

I $ oc get pods -n openshift-ptp

Example output

NAME READY STATUS RESTARTS AGE
linuxptp-daemon-2t78p 3/3 Running 0 12h
linuxptp-daemon-k8n88 3/3 Running 0 12h

15.7.4. Configuring the PTP fast event notifications publisher
To start using PTP fast event notifications for a network interface in your cluster, you must enable the

fast event publisher in the PTP Operator PtpOperatorConfig custom resource (CR) and configure
ptpClockThreshold values in a PtpConfig CR that you create.

Prerequisites
® |nstall the OpenShift Container Platform CLI (o¢).
® | ogin as a user with cluster-admin privileges.

® |[nstall the PTP Operator and AMQ Interconnect Operator.

163

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.q1/html/deploying_amq_interconnect_on_openshift/adding-operator-router-ocp

OpenShift Container Platform 4.11 Networking

Procedure
1. Modify the default PTP Operator config to enable PTP fast events.

a. Save the following YAML in the ptp-operatorconfig.yaml file:

apiVersion: ptp.openshift.io/v1
kind: PtpOperatorConfig
metadata:
name: default
namespace: openshift-ptp
spec:
daemonNodeSelector:
node-role.kubernetes.io/worker: "
ptpEventConfig:
enableEventPublisher: true ﬂ

transportHost: amqp://<instance_name>.<namespace>.svc.cluster.local 9

ﬂ Set enableEventPublisher to true to enable PTP fast event notifications.

9 Set transportHost to the AMQ router that you configured where <instance_name>
and <namespace> correspond to the AMQ Interconnect router instance name and
namespace, for example, amqp://amg-interconnect.amq-
interconnect.svc.cluster.local

b. Update the PtpOperatorConfig CR:
I $ oc apply -f ptp-operatorconfig.yaml

2. Create a PtpConfig custom resource (CR) for the PTP enabled interface, and set the required
values for ptpClockThreshold and ptp4lOpts. The following YAML illustrates the required
values that you must set in the PtpConfig CR:

spec:
profile:
- name: "profile1"
interface: "enp5s0f0"
ptp4IOpts: "-2 -s --summary_interval -4" ﬂ
phc2sysOpts: "-a -r-m -n 24 -N 8 -R 16" 9
ptp4iConf: " €)
ptpClockThreshold:)
holdOverTimeout: 5
maxOffsetThreshold: 100
minOffsetThreshold: -100

Append --summary_interval -4 to use PTP fast events.

Required phc2sysOpts values. -m prints messages to stdout. The linuxptp-daemon
DaemonSet parses the logs and generates Prometheus metrics.

Specify a string that contains the configuration to replace the default /etc/ptp4l.conf file.
To use the default configuration, leave the field empty.

Optional. If the ptpClockThreshold stanza is not present, default values are used for the
ntnClarkThrachnld ficlde Tha ctan7za chnwe Aafanlt ninClacrkThrachald valilce The

o ® 990

164

CHAPTER 15. USING PTP HARDWARE

MUY YIVVIL I TN UODIIWIM 1IC D, T HIe DU AU DHIVIVD UL TUUIL MM WIVWIL T T WD IWIM VUIUC O, i

ptpClockThreshold values configure how long after the PTP master clock is disconnected
before PTP events are triggered. holdOverTimeout is the time value in seconds before
the PTP clock event state changes to FREERUN when the PTP master clock is
disconnected. The maxOffsetThreshold and minOffsetThreshold settings configure
offset values in nanoseconds that compare against the values for CLOCK_REALTIME
(phc2sys) or master offset (ptp4l). When the ptp4l or phc2sys offset value is outside this
range, the PTP clock state is set to FREERUN. When the offset value is within this range,
the PTP clock state is set to LOCKED.

Additional resources

® Foracomplete example CR that configures linuxptp services as an ordinary clock with PTP fast
events, see Configuring linuxptp services as ordinary clock.

15.7.5. Subscribing DU applications to PTP events REST APl reference

Use the PTP event notifications REST API to subscribe a distributed unit (DU) application to the PTP
events that are generated on the parent node.

Subscribe applications to PTP events by using the resource address /cluster/node/<node_name>/ptp,
where <node_names is the cluster node running the DU application.

Deploy your cloud-event-consumer DU application container and cloud-event-proxy sidecar container
in a separate DU application pod. The cloud-event-consumer DU application subscribes to the cloud-
event-proxy container in the application pod.

Use the following APl endpoints to subscribe the cloud-event-consumer DU application to PTP events
posted by the cloud-event-proxy container at http:/localhost:8089/api/ocloudNotifications/v1/ in
the DU application pod:

e /api/ocloudNotifications/v1/subscriptions
o POST: Creates a new subscription
o GET: Retrieves a list of subscriptions
e /api/ocloudNotifications/v1/subscriptions/<subscription_id>
o GET: Returns details for the specified subscription ID
e /api/ocloudNotifications/v1i/health
o GET: Returns the health status of ocloudNotifications API
e api/ocloudNotifications/v1/publishers

o GET: Returns an array of os-clock-sync-state, ptp-clock-class-change, and lock-state
messages for the cluster node

e /api/ocloudnotifications/vi/<resource_address>/CurrentState

o GET: Returns the current state of one the following event types: os-clock-sync-state, ptp-
clock-class-change, or lock-state events

165

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-linuxptp-services-as-ordinary-clock_using-ptp

OpenShift Container Platform 4.11 Networking

NOTE

9089 is the default port for the cloud-event-consumer container deployed in the
application pod. You can configure a different port for your DU application as required.

15.7.5.1. api/ocloudNotifications/v1/subscriptions

HTTP method
GET api/ocloudNotifications/v1/subscriptions

Description
Returns a list of subscriptions. If subscriptions exist, a 200 OK status code is returned along with the list
of subscriptions.

Example API response

[

{
"id": "75b1ad8f-c807-4c23-act5-56f4b7ee3826",

"endpointUri": "http://localhost:9089/event",

"uriLocation": "http://localhost:8089/api/ocloudNotifications/vi1/subscriptions/75b1ad8f-c807-4c23-
acf5-56f4b7ee3826",

"resource": "/cluster/node/compute-1.example.com/ptp"

}
]

HTTP method
POST api/ocloudNotifications/vi/subscriptions

Description
Creates a new subscription. If a subscription is successfully created, or if it already exists, a 201 Created
status code is returned.

Table 15.4. Query parameters

Parameter Type

subscription data

Example payload

{

"uriLocation": "http://localhost:8089/api/ocloudNotifications/v1/subscriptions”,
"resource": "/cluster/node/compute-1.example.com/ptp"

}

15.7.5.2. api/ocloudNotifications/v1/subscriptions/<subscription_id>

HTTP method
GET api/ocloudNotifications/v1/subscriptions/<subscription_id>

Description
Returns details for the subscription with ID <subscription_id>

166

CHAPTER 15. USING PTP HARDWARE

Table 15.5. Query parameters

Parameter Type

<subscription_id> string

Example API response

{
"id":"48210fb3-45be-4ce0-aa9b-41a0e58730ab",

"endpointUri": "http://localhost:9089/event",

"uriLocation":"http://localhost:8089/api/ocloudNotifications/v1/subscriptions/48210fb3-45be-4ce0-
aa9b-41a0e58730ab",

"resource":"/cluster/node/compute-1.example.com/ptp"

}

15.7.5.3. api/ocloudNotifications/v1/health/

HTTP method
GET api/ocloudNotifications/v1/health/

Description
Returns the health status for the ocloudNotifications REST API.

Example API response

| ox

15.7.5.4. api/ocloudNotifications/v1/publishers

HTTP method
GET api/ocloudNotifications/v1/publishers

Description
Returns an array of os-clock-sync-state, ptp-clock-class-change, and lock-state details for the
cluster node. The system generates notifications when the relevant equipment state changes.

e os-clock-sync-state notifications describe the host operating system clock synchronization
state. Can be in LOCKED or FREERUN state.

e ptp-clock-class-change notifications describe the current state of the PTP clock class.

e |ock-state notifications describe the current status of the PTP equipment lock state. Can be in
LOCKED, HOLDOVER or FREERUN state.

Example API response

[

{
"id": "0Ofa415ae-a3cf-4299-876a-589438bacf75",

"endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy”,
"uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/0fa415ae-a3cf-4299-
876a-589438bacf75",

167

OpenShift Container Platform 4.11 Networking

"resource": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state”
|3

{
"id": "28cd82df-8436-4150-bbd9-7a9742828a71",

"endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy”,
"uriLocation": "http://localhost:9085/api/ocloudNotifications/v1/publishers/28cd82df-8436-4f50-
bbd9-7a9742828a71",
"resource": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change”
b
{
"id": "442a480d-7347-48b0-a5b0-e0af01fa9677",

"endpointUri": "http://localhost:9085/api/ocloudNotifications/v1/dummy”,
"uriLocation": "http://localhost:9085/api/ocloudNotifications/vi/publishers/44aa480d-7347-48b0-
abb0-e0af01fa9677",
"resource": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state"
}
]

You can find os-clock-sync-state, ptp-clock-class-change and lock-state events in the logs for the
cloud-event-proxy container. For example:

I $ oc logs -f linuxptp-daemon-cvgré -n openshift-ptp -c¢ cloud-event-proxy

Example os-clock-sync-state event

"id":"c8a784d1-5f4a-4c16-9a81-a3b4313affeb",
"type":"event.sync.sync-status.os-clock-sync-state-change”,
"source":"/cluster/compute-1.example.com/ptp/CLOCK_REALTIME",
"dataContentType":"application/json",
"time":"2022-05-06T15:31:23.906277159Z",
"data":{
"version":"v1",
"values" [
{
"resource":"/sync/sync-status/os-clock-sync-state”,
"dataType":"notification”,
"valueType":"enumeration”,
"value":"LOCKED"
b
{
"resource":"/sync/sync-status/os-clock-sync-state”,
"dataType":"metric",
"valueType":"decimal64.3",
"value":"-53"
}
]
}
}

Example ptp-clock-class-change event

{
"id":"69eddb52-1650-4e56-b325-86d44688d02b"

’

168

CHAPTER 15

"type":"event.sync.ptp-status.ptp-clock-class-change”,
"source":"/cluster/compute-1.example.com/ptp/ens2fx/master”,
"dataContentType":"application/json",
"time":"2022-05-06T15:31:23.147100033Z",
"data":{
"version":"v1",
"values" [
{
"resource":"/sync/ptp-status/ptp-clock-class-change",
"dataType":"metric",
"valueType":"decimal64.3",
"value":"135"

Example lock-state event

"id":"305ec18b-1472-47b3-aadd-8f37933249a9",
"type":"event.sync.ptp-status.ptp-state-change”,
"source":"/cluster/compute-1.example.com/ptp/ens2fx/master”,
"dataContentType":"application/json",
"time":"2022-05-06T15:31:23.467684081Z",
"data":{
"version™":"v1",
"values"[
{
"resource":"/sync/ptp-status/lock-state",
"dataType":"notification”,
"valueType":"enumeration”,
"value":"LOCKED"
},
{

"resource":"/sync/ptp-status/lock-state",
"dataType":"metric",
"valueType":"decimal64.3",
"value":"62"
}
]
}
}

15.7.5.5. /api/ocloudnotifications/vl/<resource_address>/CurrentState

HTTP method

. USING PTP HARDWARE

GET api/ocloudNotifications/v1/cluster/node/<node_names/sync/ptp-status/lock-

state/CurrentState

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/sync-status/os-clock-sync-

state/CurrentState

GET api/ocloudNotifications/v1/cluster/node/<node_name>/sync/ptp-status/ptp-clock-class-

change/CurrentState

169

OpenShift Container Platform 4.11 Networking

Description
Configure the CurrentState AP| endpoint to return the current state of the os-clock-sync-state, ptp-
clock-class-change, or lock-state events for the cluster node.

e os-clock-sync-state notifications describe the host operating system clock synchronization
state. Can be in LOCKED or FREERUN state.

e ptp-clock-class-change notifications describe the current state of the PTP clock class.

e |ock-state notifications describe the current status of the PTP equipment lock state. Can be in
LOCKED, HOLDOVER or FREERUN state.

Table 15.6. Query parameters

Parameter Type

<resource_address> string

Example lock-state APl response

"id": "c1ac3aab-1195-4786-84f8-da0ead462921",
"type": "event.sync.ptp-status.ptp-state-change”,
"source": "/cluster/node/compute-1.example.com/sync/ptp-status/lock-state”,
"dataContentType": "application/json",
"time": "2023-01-10T02:41:57.094981478Z",
"data": {
"version": "v1",
"values": [
{
"resource": "/cluster/node/compute-1.example.com/ens5fx/master”,
"dataType": "notification”,
"valueType": "enumeration”,
"value": "LOCKED"
b
{

"resource": "/cluster/node/compute-1.example.com/ens5fx/master”,
"dataType": "metric",

"valueType": "decimal64.3",

"value": "29"

}
]
}
}

Example os-clock-sync-state APl response

"specversion™: "0.3",

"id": "4f51fe99-feaa-4e66-9112-66¢c5¢c9b9afch”,

"source": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state”,
"type": "event.sync.sync-status.os-clock-sync-state-change”,

"subject": "/cluster/node/compute-1.example.com/sync/sync-status/os-clock-sync-state”,
"datacontenttype": "application/json",

170

CHAPTER 15. USING PTP HARDWARE

"time": "2022-11-29T17:44.:22.202Z",
"data": {
"version": "v1",
"values": [
{
"resource": "/cluster/node/compute-1.example.com/CLOCK_REALTIME",
"dataType": "notification”,
"valueType": "enumeration”,
"value": "LOCKED"

"resource": "/cluster/node/compute-1.example.com/CLOCK_REALTIME",
"dataType": "metric",

"valueType": "decimal64.3",

"value": "27"

Example ptp-clock-class-change API response

"id": "064c9e67-5ad4-4afb-98ff-189c6aa9c205",
"type": "event.sync.ptp-status.ptp-clock-class-change”,
"source": "/cluster/node/compute-1.example.com/sync/ptp-status/ptp-clock-class-change”,
"dataContentType": "application/json",
"time": "2023-01-10T02:41:56.785673989Z",
"data™: {
"version": "v1",
"values": [
{
"resource": "/cluster/node/compute-1.example.com/ens5fx/master”,
"dataType": "metric",
"valueType": "decimal64.3",
"value": "165"

15.7.6. Monitoring PTP fast event metrics using the CLI

You can monitor fast events bus metrics directly from cloud-event-proxy containers using the oc CLI.

NOTE

PTP fast event notification metrics are also available in the OpenShift Container
Platform web console.

Prerequisites

® |nstall the OpenShift Container Platform CLI (oc¢).

171

OpenShift Container Platform 4.11 Networking

® | ogin as a user with cluster-admin privileges.

e |nstall and configure the PTP Operator.

Procedure

1. Get the list of active linuxptp-daemon pods.
I $ oc get pods -n openshift-ptp
Example output

NAME READY STATUS RESTARTS AGE
linuxptp-daemon-2t78p 3/3 Running 0 8h
linuxptp-daemon-k8n88 3/3 Running 0 8h

2. Access the metrics for the required cloud-event-proxy container by running the following
command:

$ oc exec -it <linuxptp-daemon> -n openshift-ptp -c cloud-event-proxy -- curl
127.0.0.1:9091/metrics

where:

<linuxptp-daemon>

Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

Example output

HELP cne_amqp_events_published Metric to get number of events published by the
transport

TYPE cne_amqgp_events_published gauge
cne_amgqp_events_published{address="/cluster/node/compute-
1.example.com/ptp/status”,status="success"} 1041

HELP cne_amqp_events_received Metric to get number of events received by the
transport

TYPE cne_amqp_events_received gauge
cne_amqp_events_received{address="/cluster/node/compute-
1.example.com/ptp",status="success"} 1019

HELP cne_amqp_receiver Metric to get number of receiver created

TYPE cne_amqp_receiver gauge
cne_amqp_receiver{address="/cluster/node/mock",status="active"} 1
cne_amgqp_receiver{address="/cluster/node/compute-1.example.com/ptp",status="active"}
1

cne_amqp_receiver{address="/cluster/node/compute-
1.example.com/redfish/event”,status="active"}

15.7.7. Monitoring PTP fast event metrics in the web console

You can monitor PTP fast event metrics in the OpenShift Container Platform web console by using the
pre-configured and self-updating Prometheus monitoring stack.

172

CHAPTER 15. USING PTP HARDWARE

Prerequisites
® |nstall the OpenShift Container Platform CLI oc.

® | ogin as a user with cluster-admin privileges.

Procedure

1. Enter the following command to return the list of available PTP metrics from the cloud-event-
proxy sidecar container:

$ oc exec -it <linuxptp_daemon_pod> -n openshift-ptp -c cloud-event-proxy -- curl
127.0.0.1:9091/metrics

where:

<linuxptp_daemon_pod>

Specifies the pod you want to query, for example, linuxptp-daemon-2t78p.

2. Copy the name of the PTP metric you want to query from the list of returned metrics, for
example, cne_amqp_events_received.

3. In the OpenShift Container Platform web console, click Observe — Metrics.

4. Paste the PTP metric into the Expression field, and click Run queries.

Additional resources

® Managing metrics

173

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/monitoring/#managing-metrics-1

OpenShift Container Platform 4.11 Networking

CHAPTER 16. EXTERNAL DNS OPERATOR

16.1. EXTERNAL DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The External DNS Operator deploys and manages ExternalDNS to provide the name resolution for
services and routes from the external DNS provider to OpenShift Container Platform.

16.1.1. External DNS Operator

The External DNS Operator implements the External DNS API from the olm.openshift.io API group.
The External DNS Operator deploys the ExternalDNS using a deployment resource. The ExternalDNS
deployment watches the resources such as services and routes in the cluster and updates the external
DNS providers.

Procedure

You can deploy the ExternalDNS Operator on demand from the OperatorHub, this creates a
Subscription object.

1. Check the name of an install plan:

$ oc -n external-dns-operator get sub external-dns-operator -o yaml | yq
'.status.installplan.name’

Example output
I install-zcvlr
2. Check the status of an install plan, the status of an install plan must be Complete:
I $ oc -n external-dns-operator get ip <install_plan_name> -o yaml | yq '.status.phase'
Example output
I Complete
3. Use the oc get command to view the Deployment status:
I $ oc get -n external-dns-operator deployment/external-dns-operator
Example output

NAME READY UP-TO-DATE AVAILABLE AGE
external-dns-operator 1/1 1 1 23h

16.1.2. External DNS Operator logs

You can view External DNS Operator logs by using the oc logs command.

Procedure

174

CHAPTER 16. EXTERNAL DNS OPERATOR

1. View the logs of the External DNS Operator:

I $ oc logs -n external-dns-operator deployment/external-dns-operator -¢ external-dns-operator

16.1.2.1. External DNS Operator domain name limitations

External DNS Operator uses the TXT registry, which follows the new format and adds the prefix for the
TXT records. This reduces the maximum length of the domain name for the TXT records. A DNS record
cannot be present without a corresponding TXT record, so the domain name of the DNS record must
follow the same limit as the TXT records. For example, DNS record is <domain-name-from-source> and
the TXT record is external-dns-<record-type>-<domain-name-from-source>.

The domain name of the DNS records generated by External DNS Operator has the following
limitations:

Record type Number of characters

CNAME 44

Wildcard CNAME records 42

on AzureDNS

A 48
Wildcard A records on 46
AzureDNS

If the domain name generated by External DNS exceeds the domain name limitation, the External DNS
instance gives the following error:

I $ oc -n external-dns-operator logs external-dns-aws-7ddbd9c7{8-2jgjh ﬂ

ﬂ The external-dns-aws-7ddbd9c7{8-2jqjh parameter specifies the name of the External DNS pod.

Example output

time="2022-09-02T08:53:57Z" level=info msg="Desired change: CREATE external-dns-cname-hello-
openshift-aaaaaaaaaa-bbbbbbbbbb-ccccccce.test.example.io TXT [Id:
/hostedzone/Z06988883Q0HORL6UMXXX]"

time="2022-09-02T08:53:57Z" level=info msg="Desired change: CREATE external-dns-hello-
openshift-aaaaaaaaaa-bbbbbbbbbb-ccccccce.test.example.io TXT [Id:
/hostedzone/Z06988883Q0HORL6UMXXX]"

time="2022-09-02T08:53:57Z" level=info msg="Desired change: CREATE hello-openshift-
aaaaaaaaaa-bbbbbbbbbb-ccccccce.test.example.io A [Id: /hostedzone/Z06988883Q0HORLEUMXXX]"
time="2022-09-02T08:53:57Z" level=error msg="Failure in zone test.example.io. [ld:
/hostedzone/Z06988883Q0HORL6UMXXX]"

time="2022-09-02T08:53:57Z" level=error msg="InvalidChangeBatch: [FATAL problem:
DomainLabelTooLong (Domain label is too long) encountered with 'external-dns-a-hello-openshift-
aaaaaaaaaa-bbbbbbbbbb-cccccec|\n\tstatus code: 400, request id: e54dfd5a-06c6-47b0-bcb9-
a4f7c3a4e0c6"

175

OpenShift Container Platform 4.11 Networking

16.2. INSTALLING EXTERNAL DNS OPERATOR ON CLOUD PROVIDERS

You can install External DNS Operator on cloud providers such as AWS, Azure and GCP.

16.2.1. Installing the External DNS Operator

You can install the External DNS Operator using the OpenShift Container Platform OperatorHub.

Procedure

1. Click Operators = OperatorHub in the OpenShift Container Platform Web Console.

2. Click External DNS Operator. You can use the Filter by keyword text box or the filter list to
search for External DNS Operator from the list of Operators.

3. Select the external-dns-operator namespace.

4. On the External DNS Operator page, click Install.

5. On the Install Operator page, ensure that you selected the following options:
a. Update the channel as stable-v1.0.
b. Installation mode as A specific name on the cluster

c. Installed namespace as external-dns-operator. If namespace external-dns-operator does
not exist, it gets created during the Operator installation.

d. Select Approval Strategy as Automatic or Manual. Approval Strategy is set to Automatic
by default.

e. ClickInstall.

If you select Automatic updates, the Operator Lifecycle Manager (OLM) automatically upgrades the
running instance of your Operator without any intervention.

If you select Manual updates, the OLM creates an update request. As a cluster administrator, you must
then manually approve that update request to have the Operator updated to the new version.

Verification

Verify that External DNS Operator shows the Status as Succeeded on the Installed Operators
dashboard.

16.3. EXTERNAL DNS OPERATOR CONFIGURATION PARAMETERS

The External DNS Operators includes the following configuration parameters:

16.3.1. External DNS Operator configuration parameters

The External DNS Operator includes the following configuration parameters:

176

CHAPTER 16. EXTERNAL DNS OPERATOR

Parameter Description

spec Enables the type of a cloud provider.

spec:
provider:
type: AWS @
aws:
credentials:
name: aws-access-key 9

Defines available options such as AWS, GCP and Azure.

Defines a name of the secret which contains credentials for your cloud
provider.

1]
2]

zones Enables you to specify DNS zones by their domains. If you do not specify zones,
ExternalDNS discovers all the zones present in your cloud provider account.

zones:
- "myzoneid" 0

ﬁ Specifies the IDs of DNS zones.

domains Enables you to specify AWS zones by their domains. If you do not specify
domains, ExternalDNS discovers all the zones present in your cloud provider
account.

domains:
- filterType: Include

matchType: Exact

name: "myzonedomaini.com" 9
- filterType: Include

matchType: Pattern ﬂ
pattern: ".*\\.otherzonedomain\\.com"

Instructs ExternalDNS to include the domain specified.

Instructs ExtrnalDNS that the domain matching has to be exact as
opposed to regular expression match.

Defines the exact domain name by which ExternalDNS filters.

Sets regex-domain-filter flag in ExternalDNS. You can limit possible
domains by using a Regex filter.

O 99 99O

Defines the regex pattern to be used by ExternalDNS to filter the
domains of the target zones.

177

OpenShift Container Platform 4.11 Networking

Parameter

178

Description

999

@ 9

o9

source: @

type: Service 9
service:

serviceType:G
- LoadBalancer

- ClusterlP

labelFilter: @)

matchLabels:
external-dns.mydomain.org/publish: "yes"
hostnameAnnotation: "Allow"
fgdnTemplate:
- "{{.Name}}.myzonedomain.com" G

Defines the settings for the source of DNS records.
The ExternalDNS uses Service type as source for creating dns records.

Sets service-type-filter flag in ExternalDNS. The serviceType
contains the following fields:

e default: LoadBalancer
e expected: ClusterlP
e NodePort

e LoadBalancer

e ExternalName

Ensures that the controller considers only those resources which matches
with label filter.

The default value for hosthameAnnotation is Ignore which instructs
ExternalDNS to generate DNS records using the templates specified in
the field fqdnTemplates. When the value is Allow the DNS records get
generated based on the value specified in the external-
dns.alpha.kubernetes.io/hosthname annotation.

External DNS Operator uses a string to generate DNS names from
sources that don't define a hostname, or to add a hostname suffix when
paired with the fake source.

source:

type: OpenShiftRoute ﬂ
openshiftRouteOptions:
routerName: default
labelFilter:
matchLabels:
external-dns.mydomain.org/publish: "yes"

ExternalDNS" uses type route as source for creating dns records.

If the source is OpenShiftRoute, then you can pass the Ingress
Controller name. The ExternalDNS uses canonical name of Ingress
Controller as the target for CNAME record.

CHAPTER 16. EXTERNAL DNS OPERATOR

You can create DNS records on AWS and AWS GovCloud by using External DNS Operator.

16.4.1. Creating DNS records on an public hosted zone for AWS by using Red Hat
External DNS Operator

You can create DNS records on a public hosted zone for AWS by using the Red Hat External DNS
Operator. You can use the same instructions to create DNS records on a hosted zone for AWS
GovCloud.

Procedure

1. Check the user. The user must have access to the kube-system namespace. If you don't have
the credentials, as you can fetch the credentials from the kube-system namespace to use the
cloud provider client:

I $ oc whoami
Example output
I system:admin
2. Fetch the values from aws-creds secret present in kube-system namespace.

$ export AWS_ACCESS_KEY_ID=$(oc get secrets aws-creds -n kube-system --template=
{{.data.aws_access_key_id}} | base64 -d)

$ export AWS_SECRET_ACCESS_KEY=%(oc get secrets aws-creds -n kube-system --
template={{.data.aws_secret_access_key}} | base64 -d)

3. Get the routes to check the domain:

I $ oc get routes --all-namespaces | grep console

Example output

openshift-console console console-openshift-
console.apps.testextdnsoperator.apacshift.support console https
reencrypt/Redirect None

openshift-console downloads downloads-openshift-
console.apps.testextdnsoperator.apacshift.support downloads http
edge/Redirect None

4. Get the list of dns zones to find the one which corresponds to the previously found route’s
domain:

I $ aws route53 list-hosted-zones | grep testextdnsoperator.apacshift.support

Example output

179

OpenShift Container Platform 4.11 Networking

HOSTEDZONES terraform /hostedzone/Z02355203TNN1XXXX1J60
testextdnsoperator.apacshift.support. 5

5. Create ExternalDNS resource for route source:

@ 990® 6 ® 00

$ cat <<EOF | oc create -f -
apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-aws ﬂ
spec:
domains:
- filterType: Include
matchType: Exact
name: testextdnsoperator.apacshift.support ﬂ
provider:
type: AWS @
source:
type: OpenShiftRoute ﬂ
openshiftRouteOptions:
routerName: default
EOF

Defines the name of external DNS resource.

By default all hosted zones are selected as potential targets. You can include a hosted
zone that you need.

The matching of the target zone’s domain has to be exact (as opposed to regular
expression match).

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines the AWS Route53 DNS provider.

Defines options for the source of DNS records.

Defines OpenShift route resource as the source for the DNS records which gets created in

the previously specified DNS provider.

If the source is OpenShiftRoute, then you can pass the OpenShift Ingress Controller

name. External DNS Operator selects the canonical hostname of that router as the target

while creating CNAME record.

6. Check the records created for OCP routes using the following command:

$ aws route53 list-resource-record-sets --hosted-zone-id Z02355203TNN1XXXX1J60O --
query "ResourceRecordSets[?Type == 'CNAME']" | grep console

16.5. CREATING DNS RECORDS ON AZURE

You can create DNS records on Azure using External DNS Operator.

180

CHAPTER 16. EXTERNAL DNS OPERATOR

16.5.1. Creating DNS records on an public DNS zone for Azure by using Red Hat
External DNS Operator

You can create DNS records on a public DNS zone for Azure by using Red Hat External DNS Operator.

Procedure

1. Check the user. The user must have access to the kube-system namespace. If you don't have
the credentials, as you can fetch the credentials from the kube-system namespace to use the
cloud provider client:

I $ oc whoami
Example output
I system:admin
2. Fetch the values from azure-credentials secret present in kube-system namespace.

$ CLIENT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_id}} | base64 -d)

$ CLIENT_SECRET=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_client_secret}} | base64 -d)

$ RESOURCE_GROUP=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_resourcegroup}} | base64 -d)

$ SUBSCRIPTION_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_subscription_id}} | base64 -d)

$ TENANT_ID=$(oc get secrets azure-credentials -n kube-system --template=
{{.data.azure_tenant_id}} | base64 -d)

3. Login to azure with base64 decoded values:

$ az login --service-principal -u "${CLIENT_ID}" -p "${CLIENT_SECRET}" --tenant
"${TENANT_ID}"

4. Get the routes to check the domain:

I $ oc get routes --all-namespaces | grep console

Example output

openshift-console console console-openshift-
console.apps.test.azure.example.com console https reencrypt/Redirect
None

openshift-console downloads downloads-openshift-
console.apps.test.azure.example.com downloads http edge/Redirect
None

5. Get the list of dns zones to find the one which corresponds to the previously found route’s
domain:

I $ az network dns zone list --resource-group "${RESOURCE_GROUP}"

181

OpenShift Container Platform 4.11 Networking

6. Create ExternalDNS resource for route source:

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-azure ﬂ
spec:
zones:
- "/subscriptions/1234567890/resourceGroups/test-azure-xxxxx-
rg/providers/Microsoft.Network/dnszones/test.azure.example.com” g
provider:
type: Azure 6
source:
openshiftRouteOptions: ﬂ
routerName: default 9
type: OpenShiftRoute G
EOF

Specifies the name of External DNS CR.
Define the zone ID.
Defines the Azure DNS provider.

You can define options for the source of DNS records.

0009

If the source is OpenShiftRoute then you can pass the OpenShift Ingress Controller name.
External DNS selects the canonical hostname of that router as the target while creating
CNAME record.

6 Defines OpenShift route resource as the source for the DNS records which gets created in
the previously specified DNS provider.

7. Check the records created for OCP routes using the following command:

$ az network dns record-set list -g "${RESOURCE_GROUP}" -z test.azure.example.com |
grep console

NOTE
To create records on private hosted zones on private Azure dns, you need to

specify the private zone under zones which populates the provider type to
azure-private-dns in the ExternalDNS container args.

16.6. CREATING DNS RECORDS ON GCP

You can create DNS records on GCP using External DNS Operator.

16.6.1. Creating DNS records on an public managed zone for GCP by using Red Hat
External DNS Operator

You can create DNS records on a public managed zone for GCP by using Red Hat External DNS
Operator.

182

CHAPTER 16. EXTERNAL DNS OPERATOR

Procedure

1.

Check the user. The user must have access to the kube-system namespace. If you don’t have
the credentials, as you can fetch the credentials from the kube-system namespace to use the
cloud provider client:

I $ oc whoami
Example output
I system:admin

Copy the value of service_account.json in gcp-credentials secret in a file encoded-gcloud.json
by running the following command:

$ oc get secret gcp-credentials -n kube-system --template="{{$v := index .data
"service_account.json"}H{{$v}}' | base64 -d - > decoded-gcloud.json

Export Google credentials:
I $ export GOOGLE_CREDENTIALS=decoded-gcloud.json
Activate your account by using the following command:

$ gcloud auth activate-service-account <client_email as per decoded-gcloud.json> --key-
file=decoded-gcloud.json

Set your project:
I $ gcloud config set project <project_id as per decoded-gcloud.json>
Get the routes to check the domain:

I $ oc get routes --all-namespaces | grep console

Example output

openshift-console console console-openshift-
console.apps.test.gcp.example.com console https reencrypt/Redirect
None

openshift-console downloads downloads-openshift-
console.apps.test.gcp.example.com downloads http edge/Redirect
None

Get the list of managed zones to find the zone which corresponds to the previously found
route’s domain:

$ gcloud dns managed-zones list | grep test.gcp.example.com
ge-cvs4g-private-zone test.gcp.example.com

Create ExternalDNS resource for route source:

183

OpenShift Container Platform 4.11 Networking

OS0® 6 ® 0

0

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-gcp ﬂ
spec:
domains:
- filterType: Include
matchType: Exact
name: test.gcp.example.com ﬂ
provider:
type: GCP 9
source:
openshiftRouteOptions: G
routerName: default ﬂ
type: OpenShiftRoute G
EOF

Specifies the name of External DNS CR.

By default all hosted zones are selected as potential targets. You can include a hosted
zone that you need.

The matching of the target zone’s domain has to be exact (as opposed to regular
expression match).

Specify the exact domain of the zone you want to update. The hostname of the routes
must be subdomains of the specified domain.

Defines Google Cloud DNS provider.

You can define options for the source of DNS records.

If the source is OpenShiftRoute then you can pass the OpenShift Ingress Controller name.
External DNS selects the canonical hostname of that router as the target while creating

CNAME record.

Defines OpenShift route resource as the source for the DNS records which gets created in
the previously specified DNS provider.

9. Check the records created for OCP routes using the following command:

$ gcloud dns record-sets list --zone=qe-cvs4g-private-zone | grep console

16.7. CREATING DNS RECORDS ON INFOBLOX

You can create DNS records on Infoblox using the Red Hat External DNS Operator.

16.7.1. Creating DNS records on a public DNS zone on Infoblox

You can create DNS records on a public DNS zone on Infoblox by using the Red Hat External DNS
Operator.

184

CHAPTER 16. EXTERNAL DNS OPERATOR

Prerequisites
® You have access to the OpenShift CLI (oc¢).

® You have access to the Infoblox Ul.
Procedure
1. Create a secret object with Infoblox credentials by running the following command:

$ oc -n external-dns-operator create secret generic infoblox-credentials --from-
literal=EXTERNAL_DNS_INFOBLOX_WAPI|_USERNAME=<infoblox_username> --from-
literal=EXTERNAL_DNS_INFOBLOX_WAPI_PASSWORD-=<infoblox_password>

2. Get the routes objects to check your cluster domain by running the following command:

I $ oc get routes --all-namespaces | grep console

Example Output

openshift-console console console-openshift-console.apps.test.example.com
console https reencrypt/Redirect None

openshift-console downloads downloads-openshift-
console.apps.test.example.com downloads http edge/Redirect

None

3. Create an ExternalDNS resource YAML file, for example, sample-infoblox.yaml, as follows:

apiVersion: externaldns.olm.openshift.io/vibetai
kind: ExternalDNS
metadata:
name: sample-infoblox
spec:
provider:
type: Infoblox
infoblox:
credentials:
name: infoblox-credentials
gridHost: ${INFOBLOX_GRID_PUBLIC_IP}
wapiPort: 443
wapiVersion: "2.3.1"
domains:
- filterType: Include
matchType: Exact
name: test.example.com
source:
type: OpenShiftRoute
openshiftRouteOptions:
routerName: default

4. Create an ExternalDNS resource on Infoblox by running the following command:

I $ oc create -f sample-infoblox.yaml

185

OpenShift Container Platform 4.11 Networking

5. From the Infoblox Ul, check the DNS records created for console routes:

a. Click Data Management - DNS — Zones.

b. Select the zone name.

16.8. CONFIGURING THE CLUSTER-WIDE PROXY ON THE EXTERNAL
DNS OPERATOR

You can configure the cluster-wide proxy in the External DNS Operator. After configuring the cluster-
wide proxy in the External DNS Operator, Operator Lifecycle Manager (OLM) automatically updates all
the deployments of the Operators with the environment variables such as HTTP_PROXY,
HTTPS_PROXY, and NO_PROXY.

16.8.1. Configuring the External DNS Operator to trust the certificate authority of
the cluster-wide proxy

You can configure the External DNS Operator to trust the certificate authority of the cluster-wide
proxy.

Procedure

1. Create the config map to contain the CA bundle in the external-dns-operator namespace by
running the following command:

I $ oc -n external-dns-operator create configmap trusted-ca

2. Toinject the trusted CA bundle into the config map, add the config.openshift.io/inject-
trusted-cabundle=true label to the config map by running the following command:

$ oc -n external-dns-operator label cm trusted-ca config.openshift.io/inject-trusted-
cabundle=true

3. Update the subscription of the External DNS Operator by running the following command:
$ oc -n external-dns-operator patch subscription external-dns-operator --type='json’ -

p="[{"op": "add", "path": "/spec/config", "value":{"env":
[{"name":"TRUSTED_CA_CONFIGMAP_NAME","value":"trusted-ca"}]}}'

Verification

e After the deployment of the External DNS Operator is completed, verify that the trusted CA
environment variable is added to the external-dns-operator deployment by running the
following command:

$ oc -n external-dns-operator exec deploy/external-dns-operator -c external-dns-operator --
printenv TRUSTED_CA_CONFIGMAP_NAME

Example output

I trusted-ca

186

CHAPTER 17. NETWORK POLICY

CHAPTER 17. NETWORK POLICY

17.1. ABOUT NETWORK POLICY

As a cluster administrator, you can define network policies that restrict traffic to pods in your cluster.

17.1.1. About network policy

In a cluster using a Kubernetes Container Network Interface (CNI) plugin that supports Kubernetes
network policy, network isolation is controlled entirely by NetworkPolicy objects. In OpenShift
Container Platform 4.11, OpenShift SDN supports using network policy in its default network isolation
mode.

' WARNING
A Network policy does not apply to the host network namespace. Pods with host

networking enabled are unaffected by network policy rules. However, pods
connecting to the host-networked pods might be affected by the network policy
rules.

Network policies cannot block traffic from localhost or from their resident nodes.

By default, all pods in a project are accessible from other pods and network endpoints. To isolate one or
more pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a pod is matched by selectors in one or more NetworkPolicy objects, then the pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A pod that is not selected
by any NetworkPolicy objects is fully accessible.

A network policy applies to only the TCP, UDP, ICMP, and SCTP protocols. Other protocols are not
affected.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

® Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all pods but
accepts no traffic:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: deny-by-default
spec:
podSelector: {}
ingress: []

® Only allow connections from the OpenShift Container Platform Ingress Controller:

187

OpenShift Container Platform 4.11 Networking

To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-ingress
spec:

ingress:

- from:

- namespaceSelector:
matchLabels:
network.openshift.io/policy-group: ingress

podSelector: {}

policyTypes:

- Ingress

® Only accept connections from pods within a project:
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects, add the following NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-same-namespace
spec:

podSelector: {}

ingress:

- from:

- podSelector: {}

® Only allow HTTP and HTTPS traffic based on pod labels:
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-http-and-https
spec:
podSelector:
matchLabels:
role: frontend
ingress:
- ports:
- protocol: TCP
port: 80
- protocol: TCP
port: 443

® Accept connections by using both namespace and pod selectors:
To match network traffic by combining namespace and pod selectors, you can use a
NetworkPolicy object similar to the following:

188

CHAPTER 17. NETWORK POLICY

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-pod-and-namespace-both
spec:
podSelector:
matchLabels:
name: test-pods
ingress:
- from:
- namespaceSelector:
matchLabels:
project: project_name
podSelector:
matchLabels:
name: test-pods

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

17.1.1.1. Using the allow-from-router network policy

Use the following NetworkPolicy to allow external traffic regardless of the router configuration:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-router
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress: ﬂ
podSelector: {}
policyTypes:
- Ingress

Q policy-group.network.openshift.io/ingress:"" label supports both OpenShift-SDN and OVN-
Kubernetes.

17.1.1.2. Using the allow-from-hostnetwork network policy

Add the following allow-from-hostnetwork NetworkPolicy object to direct traffic from the host
network pods:

I apiVersion: networking.k8s.io/v1

189

OpenShift Container Platform 4.11 Networking

kind: NetworkPolicy
metadata:

name: allow-from-hostnetwork
spec:

ingress:

- from:

- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/host-network: ™"

podSelector: {}

policyTypes:

- Ingress

17.1.2. Optimizations for network policy

Use a network policy to isolate pods that are differentiated from one another by labels within a
namespace.

NOTE

The guidelines for efficient use of network policy rules applies to only the OpenShift SDN
cluster network provider.

Itis inefficient to apply NetworkPolicy objects to large numbers of individual pods in a single
namespace. Pod labels do not exist at the IP address level, so a network policy generates a separate
Open vSwitch (OVS) flow rule for every possible link between every pod selected with a podSelector.

For example, if the spec podSelector and the ingress podSelector within a NetworkPolicy object each
match 200 pods, then 40,000 (200*200) OVS flow rules are generated. This might slow down a node.

When designing your network policy, refer to the following guidelines:

® Reduce the number of OVS flow rules by using namespaces to contain groups of pods that need
to be isolated.
NetworkPolicy objects that select a whole namespace, by using the namespaceSelector or an
empty podSelector, generate only a single OVS flow rule that matches the VXLAN virtual
network ID (VNID) of the namespace.

® Keep the pods that do not need to be isolated in their original namespace, and move the pods
that require isolation into one or more different namespaces.

® Create additional targeted cross-namespace network policies to allow the specific traffic that
you do want to allow from the isolated pods.

17.1.3. Next steps

® Creating a network policy

® Optional: Defining a default network policy

17.1.4. Additional resources

® Projects and namespaces

190

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#creating-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#rbac-projects-namespaces_using-rbac

CHAPTER 17. NETWORK POLICY

® Configuring multitenant network policy

® NetworkPolicy API

17.2. LOGGING NETWORK POLICY EVENTS

As a cluster administrator, you can configure network policy audit logging for your cluster and enable
logging for one or more namespaces.

NOTE

Audit logging of network policies is available for only the OVN-Kubernetes cluster
network provider.

17.2.1. Network policy audit logging

The OVN-Kubernetes cluster network provider uses Open Virtual Network (OVN) ACLs to manage
network policy. Audit logging exposes allow and deny ACL events.

You can configure the destination for network policy audit logs, such as a syslog server or a UNIX domain
socket. Regardless of any additional configuration, an audit log is always saved to /var/log/ovn/acl-
audit-log.log on each OVN-Kubernetes pod in the cluster.

Network policy audit logging is enabled per namespace by annotating the namespace with the
k8s.ovn.org/acl-logging key as in the following example:

Example namespace annotation

kind: Namespace
apiVersion: vi
metadata:
name: example1
annotations:
k8s.ovn.org/acl-logging: |-
{
"deny": "info",
"allow": "info"

}

The logging format is compatible with syslog as defined by RFC5424. The syslog facility is configurable
and defaults to local0. An example log entry might resemble the following:

Example ACL deny log entry

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)INFO|name="verify-audit-logging_deny-all",
verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57,nw_dst=
10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

The following table describes namespace annotation values:

Table 17.1. Network policy audit logging namespace annotation

191

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#multitenant-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/api_reference/#networkpolicy-networking-k8s-io-v1
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-ovn-kubernetes

OpenShift Container Platform 4.11 Networking

Annotation Value

k8s.ovn.org/acl-logging You must specify at least one of allow, deny, or both to enable
network policy audit logging for a namespace.

deny

Optional: Specify alert, warning, notice, info, ordebug.
allow

Optional: Specify alert, warning, notice, info, ordebug.

17.2.2. Network policy audit configuration

The configuration for audit logging is specified as part of the OVN-Kubernetes cluster network provider
configuration. The following YAML illustrates default values for network policy audit logging feature.

Audit logging configuration

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
defaultNetwork:
ovnKubernetesConfig:
policyAuditConfig:
destination: "null"
maxFileSize: 50
rateLimit: 20
syslogFacility: local0

The following table describes the configuration fields for network policy audit logging.

Table 17.2. policyAuditConfig object

Field Type Description

rateLimit integer The maximum number of messages to generate every second
per node. The default value is 20 messages per second.

maxFileSize integer The maximum size for the audit log in bytes. The default value is
50000000 or 50 MB.

192

CHAPTER 17. NETWORK POLICY

Field Type Description
destination string One of the following additional audit log targets:
libc
The libc syslog() function of the journald process on the
host.

udp:<host>:<port>

A syslog server. Replace <host>:<port> with the host and
port of the syslog server.

unix:<file>

A Unix Domain Socket file specified by <file>.
null

Do not send the audit logs to any additional target.

syslogFacility string The syslog facility, such as kern, as defined by RFC5424. The
default value is localO.

17.2.3. Configuring network policy auditing for a cluster

As a cluster administrator, you can customize network policy audit logging for your cluster.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin to the cluster with a user with cluster-admin privileges.

Procedure

® To customize the network policy audit logging configuration, enter the following command:

I $ oc edit network.operator.openshift.io/cluster

TIP

You can alternatively customize and apply the following YAML to configure audit logging:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
defaultNetwork:
ovnKubernetesConfig:
policyAuditConfig:
destination: "null"
maxFileSize: 50
rateLimit: 20
syslogFacility: local0

193

OpenShift Container Platform 4.11 Networking

Verification
1. To create a namespace with network policies complete the following steps:

a. Create a namespace for verification:

$ cat <<EOF| oc create -f -
kind: Namespace
apiVersion: v1
metadata:

name: verify-audit-logging

annotations:

k8s.ovn.org/acl-logging: '{ "deny": "alert", "allow": "alert" }'

EOF

Example output
I namespace/verify-audit-logging created

b. Enable audit logging:

$ oc annotate namespace verify-audit-logging k8s.ovn.org/acl-logging='{ "deny": "alert",
"allow": "alert" }'

I namespace/verify-audit-logging annotated

c. Create network policies for the namespace:

$ cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: deny-all
spec:
podSelector:
matchLabels:
policyTypes:
- Ingress
- Egress
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-same-namespace
spec:
podSelector: {}
policyTypes:
- Ingress
- Egress
ingress:
- from:
- podSelector: {}
egress:
- to:

194

CHAPTER 17. NETWORK POLICY

- namespaceSelector:
matchLabels:
namespace: verify-audit-logging
EOF

Example output

networkpolicy.networking.k8s.io/deny-all created
networkpolicy.networking.k8s.io/allow-from-same-namespace created

2. Create a pod for source traffic in the default namespace:

$ cat <<EOF| oc create -n default -f -
apiVersion: v1
kind: Pod
metadata:
name: client
spec:
containers:
- name: client
image: registry.access.redhat.com/rhel7/rhel-tools
command: ["/bin/sh", "-c"]
args:
["sleep inf"]
EOF

3. Create two pods in the verify-audit-logging namespace:

$ for name in client server; do
cat <<EOF| oc create -n verify-audit-logging -f -
apiVersion: v1
kind: Pod
metadata:
name: ${name}
spec:
containers:
- name: ${name}
image: registry.access.redhat.com/rhel7/rhel-tools
command: ["/bin/sh", "-c"]
args:
["sleep inf"]
EOF
done

Example output

pod/client created
pod/server created

4. To generate traffic and produce network policy audit log entries, complete the following steps:

a. Obtain the IP address for pod named server in the verify-audit-logging namespace:

I $ POD_IP=$(oc get pods server -n verify-audit-logging -o jsonpath="{.status.podIP}')

195

OpenShift Container Platform 4.11 Networking

b. Ping the IP address from the previous command from the pod named client in the default
namespace and confirm that all packets are dropped:

I $ oc exec -it client -n default -- /bin/ping -c 2 $POD_IP
Example output

PING 10.128.2.55 (10.128.2.55) 56(84) bytes of data.

--- 10.128.2.55 ping statistics ---
2 packets transmitted, 0 received, 100% packet loss, time 2041ms

c. Ping the IP address saved in the POD_IP shell environment variable from the pod named
client in the verify-audit-logging namespace and confirm that all packets are allowed:

I $ oc exec -it client -n verify-audit-logging -- /bin/ping -c 2 $POD_IP
Example output

PING 10.128.0.86 (10.128.0.86) 56(84) bytes of data.
64 bytes from 10.128.0.86: icmp_seqg=1 ttl=64 time=2.21 ms
64 bytes from 10.128.0.86: icmp_seq=2 ttl=64 time=0.440 ms

--- 10.128.0.86 ping statistics ---
2 packets transmitted, 2 received, 0% packet loss, time 1001ms
rtt min/avg/max/mdev = 0.440/1.329/2.219/0.890 ms

5. Display the latest entries in the network policy audit log:

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -1 app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log
done

Example output

Defaulting container name to ovn-controller.

Use 'oc describe pod/ovnkube-node-hdb8v -n openshift-ovn-kubernetes' to see all of the
containers in this pod.
2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttI=64,icmp_type=8,icmp_code=0
2021-06-13T19:33:12.614Z|00006|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttI=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:10.037Z|00007|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_allow-from-same-namespace_0", verdict=allow, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,dl_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59.
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttI=64,icmp_type=8,icmp_code=0
2021-06-13T19:44:11.037Z|00008|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-

196

CHAPTER 17. NETWORK POLICY

logging_allow-from-same-namespace_0", verdict=allow, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:3b,d|_dst=0a:58:0a:80:02:3a,nw_src=10.128.2.59.
nw_dst=10.128.2.58,nw_tos=0,nw_ecn=0,nw_ttI=64,icmp_type=8,icmp_code=0

17.2.4. Enabling network policy audit logging for a namespace

As a cluster administrator, you can enable network policy audit logging for a namespace.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin to the cluster with a user with cluster-admin privileges.

Procedure

® To enable network policy audit logging for a namespace, enter the following command:

$ oc annotate namespace <namespace> \
k8s.ovn.org/acl-logging="{ "deny": "alert", "allow": "notice" }'

where:

<hamespace>

Specifies the name of the namespace.

TIP

You can alternatively apply the following YAML to enable audit logging:

kind: Namespace
apiVersion: vi
metadata:
name: <namespace>
annotations:
k8s.ovn.org/acl-logging: |-

{

"deny": "alert",
"allow": "notice"

}

Example output
I namespace/verify-audit-logging annotated
Verification
® Display the latest entries in the network policy audit log:

$ for pod in $(oc get pods -n openshift-ovn-kubernetes -1 app=ovnkube-node --no-
headers=true | awk '{ print $1 }') ; do
oc exec -it $pod -n openshift-ovn-kubernetes -- tail -4 /var/log/ovn/acl-audit-log.log

197

OpenShift Container Platform 4.11 Networking

I done
Example output

2021-06-13T19:33:11.590Z|00005|acl_log(ovn_pinctrl0)|INFO|name="verify-audit-
logging_deny-all", verdict=drop, severity=alert:
icmp,vlan_tci=0x0000,dl_src=0a:58:0a:80:02:39,dl_dst=0a:58:0a:80:02:37,nw_src=10.128.2.57
nw_dst=10.128.2.55,nw_tos=0,nw_ecn=0,nw_ttl=64,icmp_type=8,icmp_code=0

17.2.5. Disabling network policy audit logging for a namespace

As a cluster administrator, you can disable network policy audit logging for a namespace.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin to the cluster with a user with cluster-admin privileges.
Procedure
® To disable network policy audit logging for a namespace, enter the following command:
I $ oc annotate --overwrite namespace <namespace> k8s.ovn.org/acl-logging-

where:

<hamespace>

Specifies the name of the namespace.
TIP
You can alternatively apply the following YAML to disable audit logging:
kind: Namespace
apiVersion: vi
metadata:
name: <namespace>

annotations:
k8s.ovn.org/acl-logging: null

Example output

I namespace/verify-audit-logging annotated

17.2.6. Additional resources

® About network policy

17.3. CREATING A NETWORK POLICY

198

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-network-policy

CHAPTER 17. NETWORK POLICY
As a user with the admin role, you can create a network policy for a namespace.

17.3.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-27107 ﬂ
spec:
podSelector: 9
matchLabels:
app: mongodb
ingress:
- from:
- podSelector: 6
matchLabels:
app: app
ports:
- protocol: TCP
port: 27017

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

® 9O

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

Q A list of one or more destination ports on which to accept traffic.

17.3.2. Creating a network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a network policy.

NOTE

If you log in with a user with the cluster-admin role, then you can create a network policy
in any namespace in the cluster.

Prerequisites
® Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.
® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with admin privileges.

199

OpenShift Container Platform 4.11 Networking

® You are working in the namespace that the network policy applies to.

Procedure
1. Create a policy rule:

a. Create a <policy_names.yaml file:
I $ touch <policy_name>.yaml

where:

<policy_name>

Specifies the network policy file name.

b. Define a network policy in the file that you just created, such as in the following examples:

Deny ingress from all pods in all namespaces

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: deny-by-default
spec:
podSelector:
ingress: []

Allow ingress from all pods in the same namespace

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-same-namespace
spec:

podSelector:

ingress:

- from:

- podSelector: {}

2. To create the network policy object, enter the following command:
I $ oc apply -f <policy_name>.yaml -n <namespace>

where:

<policy_name>
Specifies the network policy file name.
<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

200

CHAPTER 17. NETWORK POLICY
I networkpolicy.networking.k8s.io/default-deny created

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

17.3.3. Additional resources

® Accessing the web console

17.4. VIEWING A NETWORK POLICY

As a user with the admin role, you can view a network policy for a namespace.

17.4.1. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-27107 ﬂ
spec:
podSelector: g
matchLabels:
app: mongodb
ingress:
- from:
- podSelector: e
matchLabels:
app: app
ports:
- protocol: TCP
port: 27017

The name of the NetworkPolicy object.

A selector that describes the pods to which the policy applies. The policy object can only select
pods in the project that defines the NetworkPolicy object.

O 9O

A selector that matches the pods from which the policy object allows ingress traffic. The selector
matches pods in the same namespace as the NetworkPolicy.

Q A list of one or more destination ports on which to accept traffic.

17.4.2. Viewing network policies using the CLI

You can examine the network policies in a namespace.

201

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/web_console/#web-console

OpenShift Container Platform 4.11 Networking

NOTE

If you log in with a user with the cluster-admin role, then you can view any network policy
in the cluster.

Prerequisites

® You installed the OpenShift CLI (o¢).
® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace where the network policy exists.

Procedure
® List network policies in a namespace:

o To view network policy objects defined in a namespace, enter the following command:
I $ oc get networkpolicy

o Optional: To examine a specific network policy, enter the following command:
I $ oc describe networkpolicy <policy _name> -n <namespace>

where:

<policy_name>
Specifies the name of the network policy to inspect.
<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

For example:

I $ oc describe networkpolicy allow-same-namespace

Output foroc describe command

Name: allow-same-namespace
Namespace: nsf
Created on: 2021-05-24 22:28:56 -0400 EDT

Labels: <none>
Annotations: <none>
Spec:

PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
Allowing ingress traffic:
To Port: <any> (traffic allowed to all ports)
From:
PodSelector: <none>
Not affecting egress traffic
Policy Types: Ingress

202

CHAPTER 17. NETWORK POLICY

NOTE
If you log in to the web console with cluster-admin privileges, you have a choice of

viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

17.5. EDITING A NETWORK POLICY

As a user with the admin role, you can edit an existing network policy for a namespace.

17.5.1. Editing a network policy

You can edit a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can edit a network policy in
any namespace in the cluster.

Prerequisites

® Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

® You installed the OpenShift CLI (oc).

® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace where the network policy exists.

Procedure

1. Optional: To list the network policy objects in a namespace, enter the following command:
I $ oc get networkpolicy

where:

<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

2. Edit the network policy object.

e |f you saved the network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

I $ oc apply -n <namespace> -f <policy_file>.yaml

where:

<hamespace>

203

OpenShift Container Platform 4.11 Networking

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

e |f you need to update the network policy object directly, enter the following command:
I $ oc edit networkpolicy <policy _name> -n <namespace>

where:

<policy_name>
Specifies the name of the network policy.
<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the network policy object is updated.
I $ oc describe networkpolicy <policy _name> -n <namespace>

where:

<policy_name>
Specifies the name of the network policy.
<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
editing a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

17.5.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-27107 ﬂ
spec:
podSelector: g
matchLabels:
app: mongodb
ingress:
- from:
- podSelector: 6
matchLabels:

app: app

204

CHAPTER 17. NETWORK POLICY

ports: @)

- protocol: TCP
port: 27017

The name of the NetworkPolicy object.

pods in the project that defines the NetworkPolicy object.

A selector that matches the pods from which the policy object allows ingress traffic. The selector

9 A selector that describes the pods to which the policy applies. The policy object can only select
matches pods in the same namespace as the NetworkPolicy.

Q A list of one or more destination ports on which to accept traffic.

17.5.3. Additional resources

® Creating a network policy

17.6. DELETING A NETWORK POLICY

As a user with the admin role, you can delete a network policy from a namespace.

17.6.1. Deleting a network policy using the CLI

You can delete a network policy in a namespace.

NOTE

If you log in with a user with the cluster-admin role, then you can delete any network
policy in the cluster.

Prerequisites

® Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with admin privileges.

® You are working in the namespace where the network policy exists.
Procedure
® To delete a network policy object, enter the following command:
I $ oc delete networkpolicy <policy _name> -n <namespace>

where:

<policy_name>

Specifies the name of the network policy.

205

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#creating-network-policy

OpenShift Container Platform 4.11 Networking

<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

I networkpolicy.networking.k8s.io/default-deny deleted

NOTE
If you log in to the web console with cluster-admin privileges, you have a choice of

deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

17.7. DEFINING A DEFAULT NETWORK POLICY FOR PROJECTS
As a cluster administrator, you can modify the new project template to automatically include network

policies when you create a new project. If you do not yet have a customized template for new projects,
you must first create one.

17.7.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Procedure

1. Login as a user with cluster-admin privileges.

2. Generate the default project template:

I $ oc adm create-bootstrap-project-template -o yaml > template.yami

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

I $ oc create -f template.yaml -n openshift-config

5. Edit the project configuration resource using the web console or CLI.
® Using the web console:

i. Navigate to the Administration — Cluster Settings page.
ii. Click Configuration to view all configuration resources.

ii. Find the entry for Project and click Edit YAML.

206

6.

CHAPTER 17. NETWORK POLICY

® Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:
I $ oc edit project.config.openshift.io/cluster

Update the spec section to include the projectRequestTemplate and hame parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

apiVersion: config.openshift.io/v1
kind: Project
metadata:

spec:
projectRequestTemplate:
name: <template_name>

7. After you save your changes, create a new project to verify that your changes were successfully

applied.

17.7.2. Adding network policies to the new project template

As a cluster administrator, you can add network policies to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy objects specified in the
template in the project.

Prerequisites

Your cluster uses a default CNI network provider that supports NetworkPolicy objects, such as
the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default
for OpenShift SDN.

You installed the OpenShift CLI (o¢).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1.

Edit the default template for a new project by running the following command:
I $ oc edit template <project_template> -n openshift-config

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

In the template, add each NetworkPolicy object as an element to the objects parameter. The
objects parameter accepts a collection of one or more objects.

In the following example, the objects parameter collection includes several NetworkPolicy
objects.

207

OpenShift Container Platform 4.11 Networking

objects:
- apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-same-namespace
spec:
podSelector: {}
ingress:
- from:
- podSelector: {}
- apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-openshift-ingress
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
network.openshift.io/policy-group: ingress
podSelector: {}
policyTypes:
- Ingress
- apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-kube-apiserver-operator
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: openshift-kube-apiserver-operator
podSelector:
matchLabels:
app: kube-apiserver-operator
policyTypes:
- Ingress

3. Optional: Create a new project to confirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:

I $ oc new-project <project> ﬂ

ﬂ Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

$ oc get networkpolicy
NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s

208

CHAPTER 17. NETWORK POLICY

I allow-from-same-namespace <none> 7s

17.8. CONFIGURING MULTITENANT ISOLATION WITH NETWORK
POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

NOTE

If you are using the OpenShift SDN cluster network provider, configuring network policies
as described in this section provides network isolation similar to multitenant mode but
with network policy mode set.

17.8.1. Configuring multitenant isolation by using network policy

You can configure your project to isolate it from pods and services in other project namespaces.

Prerequisites

® Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with admin privileges.

Procedure
1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress.

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-ingress
spec:

ingress:

- from:

- namespaceSelector:
matchLabels:
policy-group.network.openshift.io/ingress: "

podSelector: {}

policyTypes:

- Ingress
EOF

209

OpenShift Container Platform 4.11 Networking

NOTE

policy-group.network.openshift.io/ingress: "" is the preferred namespace
selector label for OpenShift SDN. You can use the
network.openshift.io/policy-group: ingress namespace selector label, but
this is a legacy label.

b. A policy named allow-from-openshift-monitoring:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:

name: allow-from-openshift-monitoring
spec:

ingress:

- from:

- namespaceSelector:
matchLabels:
network.openshift.io/policy-group: monitoring

podSelector: {}

policyTypes:

- Ingress
EOF

c. A policy named allow-same-namespace:

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-same-namespace
spec:

podSelector:

ingress:

- from:

- podSelector: {}

EOF

d. A policy named allow-from-kube-apiserver-operator:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-kube-apiserver-operator
spec:
ingress:
- from:
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: openshift-kube-apiserver-operator
podSelector:
matchLabels:
app: kube-apiserver-operator

210

CHAPTER 17. NETWORK POLICY

policyTypes:
- Ingress
EOF

For more details, see New kube-apiserver-operator webhook controller validating health
of webhook.

2. Optional: To confirm that the network policies exist in your current project, enter the following
command:

I $ oc describe networkpolicy
Example output

Name: allow-from-openshift-ingress
Namespace: examplei
Created on: 2020-06-09 00:28:17 -0400 EDT

Labels: <none>
Annotations: <none>
Spec:

PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
Allowing ingress traffic:
To Port: <any> (traffic allowed to all ports)
From:
NamespaceSelector: network.openshift.io/policy-group: ingress
Not affecting egress traffic
Policy Types: Ingress

Name: allow-from-openshift-monitoring
Namespace: examplei
Created on: 2020-06-09 00:29:57 -0400 EDT

Labels: <none>
Annotations: <none>
Spec:

PodSelector: <none> (Allowing the specific traffic to all pods in this namespace)
Allowing ingress traffic:
To Port: <any> (traffic allowed to all ports)
From:
NamespaceSelector: network.openshift.io/policy-group: monitoring
Not affecting egress traffic
Policy Types: Ingress

17.8.2. Next steps

® Defining a default network policy

17.8.3. Additional resources

® OpenShift SDN network isolation modes

21

https://access.redhat.com/solutions/6964520
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-openshift-sdn-modes_about-openshift-sdn

OpenShift Container Platform 4.11 Networking

CHAPTER 18. CIDR RANGE DEFINITIONS

You must specify non-overlapping ranges for the following CIDR ranges.

NOTE

Machine CIDR ranges cannot be changed after creating your cluster.

IMPORTANT

OVN-Kubernetes, the default network provider in OpenShift Container Platform 4.11 and
later, uses the 100.64.0.0/16 IP address range internally. If your cluster uses OVN-
Kubernetes, do not include the 100.64.0.0/16 IP address range in any other CIDR
definitions in your cluster.

18.1. MACHINE CIDR

In the Machine CIDR field, you must specify the IP address range for machines or cluster nodes.

The default is 10.0.0.0/16. This range must not conflict with any connected networks.

18.2. SERVICE CIDR

In the Service CIDR field, you must specify the IP address range for services. The range must be large
enough to accommodate your workload. The address block must not overlap with any external service
accessed from within the cluster. The default is 172.30.0.0/16.

18.3. POD CIDR

In the pod CIDR field, you must specify the IP address range for pods.
The pod CIDR is the same as the clusterNetwork CIDR and the cluster CIDR. The range must be large
enough to accommodate your workload. The address block must not overlap with any external service

accessed from within the cluster. The default is 10.128.0.0/14. You can expand the range after cluster
installation.

Additional resources

® Cluster Network Operator Configuration

18.4. HOST PREFIX

In the Host Prefix field, you must specify the subnet prefix length assigned to pods scheduled to
individual machines. The host prefix determines the pod IP address pool for each machine.

For example, if the host prefix is set to /23, each machine is assigned a /23 subnet from the pod CIDR
address range. The default is /23, allowing 510 cluster nodes, and 510 pod IP addresses per node.

212

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-operator-cr-cno-object_cluster-network-operator

CHAPTER 19. AWS LOAD BALANCER OPERATOR

CHAPTER 19. AWS LOAD BALANCER OPERATOR

19.1. AWS LOAD BALANCER OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The AWS Load Balancer (ALB) Operator deploys and manages an instance of the aws-load-balancer-
controller. You can install the ALB Operator from the OperatorHub by using OpenShift Container
Platform web console or CLI.

19.1.1. AWS Load Balancer Operator considerations

Review the following limitations before installing and using the AWS Load Balancer Operator.

e The IP traffic mode only works on AWS Elastic Kubernetes Service (EKS). The AWS Load
Balancer Operator disables the IP traffic mode for the AWS Load Balancer Controller. As a
result of disabling the IP traffic mode, the AWS Load Balancer Controller cannot use the pod
readiness gate.

® The AWS Load Balancer Operator adds command-line flags such as --disable-ingress-class-
annotation and --disable-ingress-group-name-annotation to the AWS Load Balancer
Controller. Therefore, the AWS Load Balancer Operator does not allow using the

kubernetes.io/ingress.class and alb.ingress.kubernetes.io/group.name annotations in the
Ingress resource.

19.1.2. AWS Load Balancer Operator

The AWS Load Balancer Operator can tag the public subnets if the kubernetes.io/role/elb tag is
missing. Also, the AWS Load Balancer Operator detects the following from the underlying AWS cloud:

® The ID of the virtual private cloud (VPC) on which the cluster hosting the Operator is deployed
in.

® Public and private subnets of the discovered VPC.

Prerequisites

® You must have the AWS credentials secret. The credentials are used to provide subnet tagging
and VPC discovery.

Procedure

1. You can deploy the AWS Load Balancer Operator on demand from the OperatorHub, by
creating a Subscription object:

$ oc -n aws-load-balancer-operator get sub aws-load-balancer-operator --
template="{{.status.installplan.name}}{{"\n"}}'

Example output
I install-zlIfbt

2. Check the status of an install plan. The status of an install plan must be Complete:

213

OpenShift Container Platform 4.11 Networking

I $ oc -n aws-load-balancer-operator get ip <install_plan_name> --template="{{.status.phase}}
{"\n"}
Example output
I Complete
3. Use the oc get command to view the Deployment status:

$ oc get -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager

Example output

NAME READY UP-TO-DATE AVAILABLE AGE
aws-load-balancer-operator-controller-manager 1/1 1 1 23h

19.1.3. AWS Load Balancer Operator logs

Use the oc logs command to view the AWS Load Balancer Operator logs.

Procedure

® View the logs of the AWS Load Balancer Operator:

$ oc logs -n aws-load-balancer-operator deployment/aws-load-balancer-operator-controller-
manager -c manager

19.2. UNDERSTANDING AWS LOAD BALANCER OPERATOR
The AWS Load Balancer (ALB) Operator deploys and manages an instance of the aws-load-balancer-

controller resource. You can install the AWS Load Balancer Operator from the OperatorHub by using
OpenShift Container Platform web console or CLI.

19.2.1. Installing the AWS Load Balancer Operator

You can install the AWS Load Balancer Operator from the OperatorHub by using the OpenShift
Container Platform web console.

Prerequisites

® You have logged in to the OpenShift Container Platform web console as a user with cluster-
admin permissions.

® Your cluster is configured with AWS as the platform type and cloud provider.

Procedure

1. Navigate to Operators = OperatorHub in the OpenShift Container Platform web console.

214

CHAPTER 19. AWS LOAD BALANCER OPERATOR

2. Select the AWS Load Balancer Operator. You can use the Filter by keyword text box or use
the filter list to search for the AWS Load Balancer Operator from the list of Operators.

3. Select the aws-load-balancer-operator namespace.
4. Follow the instructions to prepare the Operator for installation.
5. On the AWS Load Balancer Operatorpage, click Install.

6. On the Install Operator page, select the following options:

. Update the channelas stable-vO.1.

Q

b. Installation mode as A specific namespace on the cluster

c. Installed Namespace as aws-load-balancer-operator. If the aws-load-balancer-operator
namespace does not exist, it gets created during the Operator installation.

d. Select Update approvalas Automatic or Manual. By default, the Update approvalis set to
Automatic. If you select automatic updates, the Operator Lifecycle Manager (OLM)
automatically upgrades the running instance of your Operator without any intervention. If
you select manual updates, the OLM creates an update request. As a cluster administrator,
you must then manually approve that update request to update the Operator updated to
the new version.

e. Click Install.

Verification

e Verify that the AWS Load Balancer Operator shows the Status as Succeeded on the Installed
Operators dashboard.

19.3. CREATING AN INSTANCE OF AWS LOAD BALANCER
CONTROLLER

After installing the Operator, you can create an instance of the AWS Load Balancer Controller.

19.3.1. Creating an instance of the AWS Load Balancer Controller using AWS Load
Balancer Operator

You can install only a single instance of the aws-load-balancer-controller in a cluster. You can create
the AWS Load Balancer Controller by using CLI. The AWS Load Balancer(ALB) Operator reconciles only
the resource with the name cluster.

Prerequisites

® You have created the echoserver namespace.

® You have access to the OpenShift CLI (oc).

Procedure

1. Create an aws-load-balancer-controller resource YAML file, for example, sample-aws-
Ib.yaml, as follows:

215

OpenShift Container Platform 4.11 Networking

216

®9

o

Q90 ®O

apiVersion: networking.olm.openshift.io/vialphai
kind: AWSLoadBalancerControlier €))
metadata:
name: clustere
spec:
subnetTagging: Auto 6
additionalResourceTags:
example.org/cost-center: 5113232
example.org/security-scope: staging
ingressClass: alb
config:
replicas: 2
enabledAddons: ﬂ
- AWSWAFv2 ©)

Defines the aws-load-balancer-controller resource.

Defines the AWS Load Balancer Controller instance name. This instance name gets added
as a suffix to all related resources.

Valid options are Auto and Manual. When the value is set to Auto, the Operator attempts
to determine the subnets that belong to the cluster and tags them appropriately. The
Operator cannot determine the role correctly if the internal subnet tags are not present on
internal subnet. If you installed your cluster on user-provided infrastructure, you can

manually tag the subnets with the appropriate role tags and set the subnet tagging policy
to Manual.

Defines the tags used by the controller when it provisions AWS resources.

The default value for this field is alb. The Operator provisions an IngressClass resource
with the same name if it does not exist.

Specifies the number of replicas of the controller.
Specifies add-ons for AWS load balancers, which get specified through annotations.

Enables the alb.ingress.kubernetes.io/wafv2-acl-arn annotation.

2. Create a aws-load-balancer-controller resource by running the following command:

$ oc create -f sample-aws-Ib.yaml

3. After the AWS Load Balancer Controller is running, create a deployment resource:

apiVersion: apps/vi
kind: Deployment €))
metadata:

name: <echoserver> 9

namespace: echoserver
spec:

selector:

matchLabels:
app: echoserver

CHAPTER 19. AWS LOAD BALANCER OPERATOR

replicas: 3 6
template:
metadata:
labels:
app: echoserver
spec:
containers:
- image: openshift/origin-node
args:
- TCP4-LISTEN:8080,reuseaddr,fork
- EXEC:'/bin/bash -c \"printf W'HTTP/1.0 200 OK\A\n\n\n\\\"; sed -e \\\"/Mr/g\"\"
imagePullPolicy: Always
name: echoserver
ports:
- containerPort: 8080

ﬂ Defines the deployment resource.
9 Specifies the deployment name.

9 Specifies the number of replicas of the deployment.

4. Create a service resource:

apiVersion: vi
kind: Service)
metadata:
name: <echoserver> g
namespace: echoserver
spec:
ports:
- port: 80
targetPort: 8080
protocol: TCP
type: NodePort
selector:
app: echoserver

ﬂ Defines the service resource.

9 Specifies the name of the service.

5. Deploy an ALB-backed Ingress resource:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: <echoserver> 9
namespace: echoserver
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing

alb.ingress.kubernetes.io/target-type: instance
spec:

217

OpenShift Container Platform 4.11 Networking

ingressClassName: alb
rules:
- http:
paths:

- path: /
pathType: Exact
backend:

service:
name: <echoserver> e
port:
number: 80

ﬂ Defines the ingress resource.
9 Specifies the name of the ingress resource.

9 Specifies the name of the service resource.

Verification

e Verify the status of the Ingress resource to show the host of the provisioned AWS Load
Balancer (ALB) by running the following command:

I $ HOST=$(kubectl get ingress -n echoserver echoserver -o json | jq -r

".status.loadBalancer.ingress[0].hostname’)

® \Verify the status of the provisioned AWS Load Balancer (ALB) host by running the following

command:

I $ curl $HOST

19.4. CREATING MULTIPLE INGRESSES

You can route the traffic to different services that are part of a single domain through a single AWS
Load Balancer (ALB). Each Ingress resource provides different endpoints of the domain.

19.4.1. Creating multiple ingresses through a single AWS Load Balancer

You can route the traffic to multiple Ingresses through a single AWS Load Balancer (ALB) by using the

CLL

Prerequisites

® You have an access to the OpenShift CLI (oc¢).

Procedure

1. Create an IngressClassParams resource YAML file, for example, sample-single-lb-

params.yaml, as follows:

apiVersion: elbv2.k8s.aws/v1ibetat 0
kind: IngressClassParams

218

CHAPTER 19. AWS LOAD BALANCER OPERATOR

metadata:
name: single-lb-params 9
spec:
group:
name: single-lb 6

ﬂ Defines the API group and version of the IngressClassParams resource.
9 Specifies the name of the IngressClassParams resource.
g Specifies the name of the IngressGroup. All Ingresses of this class belong to this

IngressGroup.

2. Create an IngressClassParams resource by running the following command:
I $ oc create -f sample-single-lb-params.yaml

3. Create an IngressClass resource YAML file, for example, sample-single-lb-class.yaml, as
follows:

apiVersion: networking.k8s.io/v1 ﬂ
kind: IngressClass
metadata:
name: single-lb 9
spec:
controller: ingress.k8s.aws/alb G
parameters:
apiGroup: elbv2.k8s.aws ﬂ
kind: IngressClassParams 9
name: single-lb-params G

Defines the API group and version of the IngressClass resource.

Specifies the name of the IngressClass.

Defines the controller name. ingress.k8s.aws/alb denotes that all Ingresses of this class
should be managed by the aws-load-balancer-controller.

Defines the API group of the IngressClassParams resource.
Defines the resource type of the IngressClassParams resource.

Defines the name of the IngressClassParams resource.

QDO 009

4. Create an IngressClass resource by running the following command:
I $ oc create -f sample-single-lb-class.yaml

5. Create an AWSLoadBalancerController resource YAML file, for example, sample-single-
Ib.yaml, as follows:

I apiVersion: networking.olm.openshift.io/v1

219

OpenShift Container Platform 4.11 Networking

kind: AWSLoadBalancerController
metadata:
name: cluster
spec:
subnetTagging: Auto
ingressClass: single-lb ﬂ

ﬂ Defines the name of the IngressClass resource.

6. Create an AWSLoadBalancerController resource by running the following command:

I $ oc create -f sample-single-lb.yaml

7. Create an Ingress resource YAML file, for example, sample-multiple-ingress.yami, as follows:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-1 ﬂ
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing g
alb.ingress.kubernetes.io/group.order: "1"
alb.ingress.kubernetes.io/target-type: instance ﬂ
spec:
ingressClassName: single-1b 6
rules:
- host: example.com G
http:
paths:
- path: /blog ﬂ
pathType: Prefix
backend:
service:
name: example-1 6
port:
number: 80 Q
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-2
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress.kubernetes.io/group.order: "2"
alb.ingress.kubernetes.io/target-type: instance
spec:
ingressClassName: single-1b
rules:
- host: example.com
http:
paths:
- path: /store
pathType: Prefix

220

CHAPTER 19. AWS LOAD BALANCER OPERATOR

backend:
service:
name: example-2
port:
number: 80
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: example-3
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing
alb.ingress.kubernetes.io/group.order: "3"
alb.ingress.kubernetes.io/target-type: instance

spec:
ingressClassName: single-Ib
rules:
- host: example.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: example-3
port:
number: 80

Specifies the name of an ingress.

Indicates the load balancer to provision in the public subnet and makes it accessible over
the internet.

Specifies the order in which the rules from the Ingresses are matched when the request is
received at the load balancer.

Indicates the load balancer will target OpenShift nodes to reach the service.
Specifies the Ingress Class that belongs to this ingress.

Defines the name of a domain used for request routing.

Defines the path that must route to the service.

Defines the name of the service that serves the endpoint configured in the ingress.

909902066 0 9

Defines the port on the service that serves the endpoint.

8. Create the Ingress resources by running the following command:

I $ oc create -f sample-multiple-ingress.yaml

19.5. ADDING TLS TERMINATION

You can add TLS termination on the AWS Load Balancer.

221

OpenShift Container Platform 4.11 Networking

19.5.1. Adding TLS termination on the AWS Load Balancer

You can route the traffic for the domain to pods of a service and add TLS termination on the AWS Load
Balancer.

Prerequisites

® You have an access to the OpenShift CLI (o¢).

Procedure

1. Install the Operator and create an instance of the aws-load-balancer-controller resource:

apiVersion: networking.k8s.io/v1
kind: AWSLoadBalancerController
group: networking.olm.openshift.io/vialphat ﬂ
metadata:
name: cluster
spec:
subnetTagging: Auto
ingressClass: tls-termination 9

efines the name of aningressClass resource reconciled by the AWS Load Balancer
Controller. This ingressClass resource gets created if it is not present. You can add
additional ingressClass values. The controller reconciles the ingressClass values if the
spec.controller is set to ingress.k8s.aws/alb.

2. Create an Ingress resource:

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: <example> ﬂ
annotations:
alb.ingress.kubernetes.io/scheme: internet-facing g
alb.ingress.kubernetes.io/certificate-arn: arn:aws:acm:us-west-2:xxxxx 6

spec:
ingressClassName: tls-termination ﬂ
rules:
- host: <example.com> 6
http:
paths:
- path: /
pathType: Exact
backend:
service:
name: <example-service> G
port:
number: 80

ﬂ Specifies the name of an ingress.

The controller provisions the load balancer for this Ingress resource in a public subnet so
that the load balancer is reachable over the internet.

222

o - -

CHAPTER 19. AWS LOAD BALANCER OPERATOR

The Amazon Resource Name of the certificate that you attach to the load balancer.
Defines the ingress class name.
Defines the domain for traffic routing.

Defines the service for traffic routing.

223

OpenShift Container Platform 4.11 Networking

CHAPTER 20. MULTIPLE NETWORKS

20.1. UNDERSTANDING MULTIPLE NETWORKS

In Kubernetes, container networking is delegated to networking plugins that implement the Container
Network Interface (CNI).

OpenShift Container Platform uses the Multus CNI plugin to allow chaining of CNI plugins. During cluster
installation, you configure your default pod network. The default network handles all ordinary network
traffic for the cluster. You can define an additional network based on the available CNI plugins and attach
one or more of these networks to your pods. You can define more than one additional network for your
cluster, depending on your needs. This gives you flexibility when you configure pods that deliver network
functionality, such as switching or routing.

20.1.1. Usage scenarios for an additional network

You can use an additional network in situations where network isolation is needed, including data plane
and control plane separation. Isolating network traffic is useful for the following performance and
security reasons:

Performance
You can send traffic on two different planes to manage how much traffic is along each plane.
Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

All of the pods in the cluster still use the cluster-wide default network to maintain connectivity across
the cluster. Every pod has an eth0 interface that is attached to the cluster-wide pod network. You can
view the interfaces for a pod by using the oc exec -it <pod_name> -- ip a command. If you add
additional network interfaces that use Multus CNI, they are named net1, net2, ..., netN.

To attach additional network interfaces to a pod, you must create configurations that define how the
interfaces are attached. You specify each interface by using a NetworkAttachmentDefinition custom
resource (CR). A CNI configuration inside each of these CRs defines how that interface is created.

20.1.2. Additional networks in OpenShift Container Platform

OpenShift Container Platform provides the following CNI plugins for creating additional networks in
your cluster:

® bridge: Configure a bridge-based additional network to allow pods on the same host to
communicate with each other and the host.

® host-device: Configure a host-device additional network to allow pods access to a physical
Ethernet network device on the host system.

® ipvlan: Configure an ipvlan-based additional network to allow pods on a host to communicate
with other hosts and pods on those hosts, similar to a macvlan-based additional network. Unlike
a macvlan-based additional network, each pod shares the same MAC address as the parent
physical network interface.

® macvlan: Configure a macvlan-based additional network to allow pods on a host to
communicate with other hosts and pods on those hosts by using a physical network interface.

224

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

CHAPTER 20. MULTIPLE NETWORKS
Each pod that is attached to a macvlan-based additional network is provided a unique MAC
address.

® SR-I0V: Configure an SR-IOV based additional network to allow pods to attach to a virtual
function (VF) interface on SR-IOV capable hardware on the host system.

20.2. CONFIGURING AN ADDITIONAL NETWORK

As a cluster administrator, you can configure an additional network for your cluster. The following
network types are supported:

® Bridge
® Host device
e |PVLAN

o MACVLAN

20.2.1. Approaches to managing an additional network

You can manage the life cycle of an additional network by two approaches. Each approach is mutually
exclusive and you can only use one approach for managing an additional network at a time. For either
approach, the additional network is managed by a Container Network Interface (CNI) plugin that you

configure.

For an additional network, IP addresses are provisioned through an IP Address Management (IPAM) CNI
plugin that you configure as part of the additional network. The IPAM plugin supports a variety of IP
address assignment approaches including DHCP and static assignment.

® Modify the Cluster Network Operator (CNO) configuration: The CNO automatically creates and
manages the NetworkAttachmentDefinition object. In addition to managing the object
lifecycle the CNO ensures a DHCP is available for an additional network that uses a DHCP
assigned IP address.

® Applying a YAML manifest: You can manage the additional network directly by creating an
NetworkAttachmentDefinition object. This approach allows for the chaining of CNI plugins.
20.2.2. Configuration for an additional network attachment
An additional network is configured via the NetworkAttachmentDefinition API in the k8s.cni.cncf.io
API group.
IMPORTANT

Do not store any sensitive information or a secret in the NetworkAttachmentDefinition
object because this information is accessible by the project administration user.

The configuration for the APl is described in the following table:

Table 20.1. NetworkAttachmentDefinition API fields

225

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-sriov
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-bridge-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-host-device-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-ipvlan-object_configuring-additional-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

OpenShift Container Platform 4.11 Networking

Field Type Description

metadata.name string The name for the additional network.
metadata.namespace string The namespace that the object is associated with.
spec.config string The CNI plugin configuration in JSON format.

20.2.2.1. Configuration of an additional network through the Cluster Network Operator

The configuration for an additional network attachment is specified as part of the Cluster Network
Operator (CNO) configuration.

The following YAML describes the configuration parameters for managing an additional network with
the CNO:

Cluster Network Operator configuration

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
#...
additionalNetworks: @)
- name: <name> g
namespace: <namespace> 6
rawCNIConfig: |-)

{

}
type: Raw

An array of one or more additional network configurations.

The name for the additional network attachment that you are creating. The name must be unique
within the specified namespace.

The namespace to create the network attachment in. If you do not specify a value, then the default
namespace is used.

o ® 00

A CNI plugin configuration in JSON format.

20.2.2.2. Configuration of an additional network from a YAML manifest

The configuration for an additional network is specified from a YAML configuration file, such as in the
following example:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:

226

name: <name> 0

spec:
config: |- @
{

}...

CHAPTER 20. MULTIPLE NETWORKS

ﬂ The name for the additional network attachment that you are creating.

9 A CNI plugin configuration in JSON format.

20.2.3. Configurations for additional network types

The specific configuration fields for additional networks is described in the following sections.

20.2.3.1. Configuration for a bridge additional network

The following object describes the configuration parameters for the bridge CNI plugin:

Table 20.2. Bridge CNI plugin JSON configuration object

Field

chiVersion

name

type

ipam

bridge

ipMasq

isGateway

isDefaultGatewa
y

Type

string

string

string

object

string

boolean

boolean

boolean

Description

The CNI specification version. The 0.3.1 value is required.

The value for the name parameter you provided previously for
the CNO configuration.

The name of the CNI plugin to configure: bridge.

The configuration object for the IPAM CNI plugin. The plugin
manages |IP address assignment for the attachment definition.

Optional: Specify the name of the virtual bridge to use. If the
bridge interface does not exist on the host, it is created. The
default value is cni0.

Optional: Set to true to enable IP masquerading for traffic that
leaves the virtual network. The source IP address for all traffic is
rewritten to the bridge’s IP address. If the bridge does not have
an IP address, this setting has no effect. The default value is
false.

Optional: Set to true to assign an IP address to the bridge. The
default value is false.

Optional: Set to true to configure the bridge as the default
gateway for the virtual network. The default value is false. If
isDefaultGateway is set to true, thenisGateway is also set
to true automatically.

227

OpenShift Container Platform 4.11 Networking

Field Type Description

forceAddress boolean Optional: Set to true to allow assignment of a previously
assigned IP address to the virtual bridge. When set to false, if an
IPv4 address or an IPv6 address from overlapping subsets is
assigned to the virtual bridge, an error occurs. The default value
is false.

hairpinMode boolean Optional: Set to true to allow the virtual bridge to send an
Ethernet frame back through the virtual port it was received on.
This mode is also known as reflective relay. The default value is
false.

promiscMode boolean Optional: Set to true to enable promiscuous mode on the
bridge. The default value is false.

vian string Optional: Specify a virtual LAN (VLAN) tag as an integer value.
By default, no VLAN tag is assigned.

preserveDefault string Optional: Indicates whether the default vlan must be preserved

Vian on the veth end connected to the bridge. Defaults to true.

vlanTrunk list Optional: Assign a VLAN trunk tag. The default value is none.

mtu string Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

enabledad boolean Optional: Enables duplicate address detection for the container

side veth. The default value isfalse.

macspoofchk boolean Optional: Enables mac spoof check, limiting the traffic
originating from the container to the mac address of the
interface. The default value is false.

NOTE

The VLAN parameter configures the VLAN tag on the host end of the veth and also
enables the vlan_filtering feature on the bridge interface.

NOTE
‘ To configure uplink for a L2 network you need to allow the vlan on the uplink interface by

using the following command:

I $ bridge vlan add vid VLAN_ID dev DEV

20.2.3.1.1. bridge configuration example

228

CHAPTER 20. MULTIPLE NETWORKS

The following example configures an additional network named bridge-net:

"cniVersion": "0.3.1",
"name": "bridge-net",
"type": "bridge",
"isGateway": true,
"vlan": 2,
"ipam": {

"type": "dhcp"

1

1

20.2.3.2. Configuration for a host device additional network

NOTE

Specify your network device by setting only one of the following parameters:
device hwaddr, kernelpath, or pciBuslID.

The following object describes the configuration parameters for the host-device CNI plugin:

Table 20.3. Host device CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

hame string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: host-device.

device string Optional: The name of the device, such as eth0.

hwaddr string Optional: The device hardware MAC address.

kernelpath string Optional: The Linux kernel device path, such as

/sys/devices/pci0000:00/0000:00:11.6.

pciBusID string Optional: The PCl address of the network device, such as
0000:00:11.6.

20.2.3.2.1. host-device configuration example

The following example configures an additional network named hostdev-net:

{

"cniVersion": "0.3.1",
"name": "hostdev-net",

229

OpenShift Container Platform 4.11 Networking

"type": "host-device",
"device": "eth1"

}

20.2.3.3. Configuration for an IPVLAN additional network

The following object describes the configuration parameters for the IPVLAN CNI plugin:

Table 20.4. IPVLAN CNI plugin JSON configuration object

Field

chiVersion

name

type

ipam

mode

master

mtu

NOTE

Type Description

string The CNI specification version. The 0.3.1 value is required.

string The value for the name parameter you provided previously for
the CNO configuration.

string The name of the CNI plugin to configure: ipvlan.

object The configuration object for the IPAM CNI plugin. The plugin

manages |IP address assignment for the attachment definition.
This is required unless the plugin is chained.

string Optional: The operating mode for the virtual network. The value
must be 12,13, orI3s. The default value isl2.

string Optional: The Ethernet interface to associate with the network
attachment. If a master is not specified, the interface for the
default network route is used.

integer Optional: Set the maximum transmission unit (MTU) to the
specified value. The default value is automatically set by the
kernel.

The ipvlan object does not allow virtual interfaces to communicate with the
master interface. Therefore the container will not be able to reach the host by
using the ipvlan interface. Be sure that the container joins a network that
provides connectivity to the host, such as a network supporting the Precision
Time Protocol (PTP).

A single master interface cannot simultaneously be configured to use both
macvlan and ipvlan.

For IP allocation schemes that cannot be interface agnostic, the ipvlan plugin
can be chained with an earlier plugin that handles this logic. If the master is
omitted, then the previous result must contain a single interface name for the
ipvlan plugin to enslave. If ipam is omitted, then the previous result is used to
configure the ipvlan interface.

20.2.3.3.1. ipvlan configuration example

230

CHAPTER 20. MULTIPLE NETWORKS

The following example configures an additional network named ipvlan-net:

{
"cniVersion": "0.3.1",
"name": "ipvlan-net",
"type": "ipvlan"”,
"master": "eth1",
"mode": "I3",
"ipam": {
"type": "static",
"addresses": [
{
"address": "192.168.10.10/24"
}
]
}
}

20.2.3.4. Configuration for a MACVLAN additional network

The following object describes the configuration parameters for the macvlan CNI plugin:

Table 20.5. MACVLAN CNI plugin JSON configuration object

Field Type Description

cniVersion string The CNI specification version. The 0.3.1 value is required.

hame string The value for the name parameter you provided previously for
the CNO configuration.

type string The name of the CNI plugin to configure: macvlan.

ipam object The configuration object for the IPAM CNI plugin. The plugin

manages |IP address assignment for the attachment definition.

mode string Optional: Configures traffic visibility on the virtual network.
Must be either bridge, passthru, private, orvepa. If a value is
not provided, the default value is bridge.

master string Optional: The host network interface to associate with the newly
created macvlan interface. If a value is not specified, then the
default route interface is used.

mtu string Optional: The maximum transmission unit (MTU) to the specified
value. The default value is automatically set by the kernel.

231

OpenShift Container Platform 4.11 Networking

NOTE

If you specify the master key for the plugin configuration, use a different physical
network interface than the one that is associated with your primary network plugin to
avoid possible conflicts.

20.2.3.4.1. macvlan configuration example

The following example configures an additional network named macvlan-net:

"cniVersion": "0.3.1",
"name": "macvlan-net",
"type": "macvlan”,
"master": "eth1",

"mode": "bridge”,
"ipam": {
"type": "dhcp"
!
!

20.2.4. Configuration of IP address assignment for an additional network

The IP address management (IPAM) Container Network Interface (CNI) plugin provides IP addresses
for other CNI plugins.

You can use the following IP address assignment types:
® Static assignment.

® Dynamic assignment through a DHCP server. The DHCP server you specify must be reachable
from the additional network.

® Dynamic assignment through the Whereabouts IPAM CNI plugin.

20.2.4.1. Static IP address assignment configuration

The following table describes the configuration for static IP address assignment:

Table 20.6. ipam static configuration object

Field Type Description
type string The IPAM address type. The value static is required.
addresses array An array of objects specifying IP addresses to assign to the

virtual interface. Both IPv4 and IPv6 IP addresses are supported.

routes array An array of objects specifying routes to configure inside the pod.

dns array Optional: An array of objects specifying the DNS configuration.

The addresses array requires objects with the following fields:

232

CHAPTER 20. MULTIPLE NETWORKS

Table 20.7. ipam.addresses[] array

Field Type Description

address string An IP address and network prefix that you specify. For example,
if you specify 10.10.21.10/24, then the additional network is
assigned an IP address of 10.10.21.10 and the netmask is

255.255.255.0.
gateway string The default gateway to route egress network traffic to.
Table 20.8. ipam.routes[] array
Field Type Description
dst string The IP address range in CIDR format, such as 192.168.17.0/24

or 0.0.0.0/0 for the default route.

gw string The gateway where network traffic is routed.

Table 20.9. ipam.dns object

Field Type Description
hameservers array An array of one or more IP addresses for to send DNS queries to.
domain array The default domain to append to a hostname. For example, if

the domain is set to example.com, a DNS lookup query for
example-host is rewritten asexample-host.example.com.

search array An array of domain names to append to an unqualified
hostname, such as example-host, during a DNS lookup query.

Static IP address assignment configuration example

{
"ipam": {
"type": "static",
"addresses": [
{
"address": "191.168.1.7/24"
}
]
}
}

20.2.4.2. Dynamic IP address (DHCP) assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

233

OpenShift Container Platform 4.11 Networking

RENEWAL OF DHCP LEASES

A pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:

additionalNetworks:

- name: dhcp-shim
namespace: default
type: Raw
rawCNIConfig: |-

{
"name": "dhcp-shim",
"cniVersion": "0.3.1",
"type": "bridge",
"ipam™: {
"type": "dhcp"
}

}
#...

Table 20.10. ipam DHCP configuration object

Field Type Description

type string The IPAM address type. The value dhep is required.

Dynamic IP address (DHCP) assignment configuration example

{
"ipam": {
"type": "dhcp"
}
1

20.2.4.3. Dynamic IP address assignment configuration with Whereabouts

The Whereabouts CNI plugin allows the dynamic assignment of an IP address to an additional network
without the use of a DHCP server.

The following table describes the configuration for dynamic IP address assignment with Whereabouts:

Table 20.11. ipam whereabouts configuration object

234

CHAPTER 20. MULTIPLE NETWORKS

Field Type Description
type string The IPAM address type. The value whereabouts is required.
range string An IP address and range in CIDR notation. IP addresses are

assigned from within this range of addresses.

exclude array Optional: A list of zero or more IP addresses and ranges in CIDR
notation. IP addresses within an excluded address range are not
assigned.

Dynamic IP address assignment configuration example that uses Whereabouts

{
"ipam": {
"type": "whereabouts",
"range": "192.0.2.192/27",
"exclude": [
"192.0.2.192/30",
"192.0.2.196/32"

20.2.4.4. Creating a Whereabouts reconciler daemon set

The Whereabouts reconciler is responsible for managing dynamic IP address assignments for the pods
within a cluster using the Whereabouts IP Address Management (IPAM) solution. It ensures that each
pods gets a unique IP address from the specified IP address range. It also handles IP address releases
when pods are deleted or scaled down.

NOTE

You can also use a NetworkAttachmentDefinition custom resource for dynamic IP
address assignment.

e

The Whereabouts reconciler daemon set is automatically created when you configure an additional
network through the Cluster Network Operator. It is not automatically created when you configure an
additional network from a YAML manifest.

To trigger the deployment of the Whereabouts reconciler daemonset, you must manually create a
whereabouts-shim network attachment by editing the Cluster Network Operator custom resource file.

Use the following procedure to deploy the Whereabouts reconciler daemonset.

Procedure

1. Edit the Network.operator.openshift.io custom resource (CR) by running the following
command:

I $ oc edit network.operator.openshift.io cluster

235

OpenShift Container Platform 4.11 Networking

2. Modify the additionalNetworks parameter in the CR to add the whereabouts-shim network
attachment definition. For example:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:

additionalNetworks:

- name: whereabouts-shim
namespace: default
rawCNIConfig: |-

{
"name": "whereabouts-shim",
"cniVersion": "0.3.1",
"type": "bridge",
"ipam": {
"type": "whereabouts"
}

}
type: Raw

3. Save the file and exit the text editor.

4. Verify that the whereabouts-reconciler daemon set deployed successfully by running the
following command:

I $ oc get all -n openshift-multus | grep whereabouts-reconciler
Example output

pod/whereabouts-reconciler-jnp6g 1/1 Running 0 6s
pod/whereabouts-reconciler-k76gg 1/1 Running 0 6s
pod/whereabouts-reconciler-k86t9 1/1 Running 0 6s
pod/whereabouts-reconciler-p4sxw 1/1 Running 0 6s
pod/whereabouts-reconciler-rvfdv 1/1 Running 0 6s
pod/whereabouts-reconciler-svzw9 1/1 Running 0 6s
daemonset.apps/whereabouts-reconciler 6 6 6 6 6 kubernetes.io/os=linux 6s

20.2.5. Creating an additional network attachment with the Cluster Network
Operator

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition object automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition objects that the Cluster Network
Operator manages. Doing so might disrupt network traffic on your additional network.

Prerequisites

e Install the OpenShift CLI (oc).

236

CHAPTER 20. MULTIPLE NETWORKS

® | ogin as a user with cluster-admin privileges.

Procedure

1. Optional: Create the namespace for the additional networks:

I $ oc create namespace <namespace_name>

2. To edit the CNO configuration, enter the following command:

I $ oc edit networks.operator.openshift.io cluster

3. Modify the CR that you are creating by adding the configuration for the additional network that
you are creating, as in the following example CR.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:

#...

additionalNetworks:

- name: tertiary-net
namespace: namespace2
type: Raw
rawCNIConfig: |-

{
"cniVersion": "0.3.1",
"name": "tertiary-net",

"type": "ipvlan",
"master": "eth1",
"mode": "I2",
"ipam": {
"type": "static",
"addresses": [
{
"address": "192.168.1.23/24"
}

]
}
}

4. Save your changes and quit the text editor to commit your changes.

Verification

® Confirm that the CNO created the NetworkAttachmentDefinition object by running the
following command. There might be a delay before the CNO creates the object.

I $ oc get network-attachment-definitions -n <namespace>

where:

<hamespace>

237

OpenShift Container Platform 4.11 Networking

Specifies the namespace for the network attachment that you added to the CNO
configuration.

Example output

NAME AGE
test-network-1 14m

20.2.6. Creating an additional network attachment by applying a YAML manifest

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin as a user with cluster-admin privileges.

Procedure

1. Create a YAML file with your additional network configuration, such as in the following example:

apiVersion: k8s.cni.cncf.io/v1
kind: NetworkAttachmentDefinition
metadata:
name: next-net
spec:
config: |-
{
"cniVersion": "0.3.1",
"name": "work-network",
"type": "host-device",

"device": "eth1",
"ipam": {
lltypell: "dhcpll

}
}

2. To create the additional network, enter the following command:

I $ oc apply -f <file>.yaml
where:

<file>

Specifies the name of the file contained the YAML manifest.

20.3. ABOUT VIRTUAL ROUTING AND FORWARDING

20.3.1. About virtual routing and forwarding

Virtual routing and forwarding (VRF) devices combined with IP rules provide the ability to create virtual
routing and forwarding domains. VRF reduces the number of permissions needed by CNF, and provides
increased visibility of the network topology of secondary networks. VRF is used to provide multi-tenancy

238

CHAPTER 20. MULTIPLE NETWORKS

functionality, for example, where each tenant has its own unique routing tables and requires different
default gateways.

Processes can bind a socket to the VRF device. Packets through the binded socket use the routing table
associated with the VRF device. An important feature of VRF is that it impacts only OSI model layer 3
traffic and above so L2 tools, such as LLDP, are not affected. This allows higher priority IP rules such as
policy based routing to take precedence over the VRF device rules directing specific traffic.

20.3.1.1. Benefits of secondary networks for pods for telecommunications operators

In telecommunications use cases, each CNF can potentially be connected to multiple different networks
sharing the same address space. These secondary networks can potentially conflict with the cluster’s
main network CIDR. Using the CNI VRF plugin, network functions can be connected to different
customers' infrastructure using the same IP address, keeping different customers isolated. IP addresses
are overlapped with OpenShift Container Platform IP space. The CNI VRF plugin also reduces the
number of permissions needed by CNF and increases the visibility of network topologies of secondary
networks.

20.4. CONFIGURING MULTI-NETWORK POLICY

As a cluster administrator, you can configure network policy for additional networks.

NOTE

You can specify multi-network policy for only macvlan additional networks. Other types
of additional networks, such as ipvlan, are not supported.

20.4.1. Differences between multi-network policy and network policy

Although the MultiNetworkPolicy APl implements the NetworkPolicy API, there are several important
differences:

® You must use the MultiNetworkPolicy API:

apiVersion: k8s.cni.cncf.io/vibetal
kind: MultiNetworkPolicy

® You must use the multi-networkpolicy resource name when using the CLI to interact with
multi-network policies. For example, you can view a multi-network policy object with the oc get
multi-networkpolicy <name> command where <names is the name of a multi-network policy.

® You must specify an annotation with the name of the network attachment definition that
defines the macvlan additional network:

apiVersion: k8s.cni.cncf.io/vibetal
kind: MultiNetworkPolicy
metadata:
annotations:
k8s.v1.cni.cncf.io/policy-for: <network_name>

where:

<network_name>

Specifies the name of a network attachment definition.

239

OpenShift Container Platform 4.11 Networking

20.4.2. Enabling multi-network policy for the cluster

As a cluster administrator, you can enable multi-network policy support on your cluster.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin to the cluster with a user with cluster-admin privileges.

Procedure

1. Create the multinetwork-enable-patch.yaml file with the following YAML:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
useMultiNetworkPolicy: true

2. Configure the cluster to enable multi-network policy:

$ oc patch network.operator.openshift.io cluster --type=merge --patch-file=multinetwork-
enable-patch.yaml

Example output

I network.operator.openshift.io/cluster patched

20.4.3. Working with multi-network policy

As a cluster administrator, you can create, edit, view, and delete multi-network policies.

20.4.3.1. Prerequisites

® You have enabled multi-network policy support for your cluster.

20.4.3.2. Creating a multi-network policy using the CLI

To define granular rules describing ingress or egress network traffic allowed for namespaces in your
cluster, you can create a multi-network policy.

Prerequisites

® Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with cluster-admin privileges.

240

CHAPTER 20. MULTIPLE NETWORKS

® You are working in the namespace that the multi-network policy applies to.

Procedure
1. Create a policy rule:

a. Create a <policy_names.yaml file:
I $ touch <policy_name>.yaml

where:

<policy_name>

Specifies the multi-network policy file name.

b. Define a multi-network policy in the file that you just created, such as in the following
examples:

Deny ingress from all pods in all namespaces

apiVersion: k8s.cni.cncf.io/vibetal
kind: MultiNetworkPolicy
metadata:

name: deny-by-default

annotations:

k8s.v1.cni.cncf.io/policy-for: <network_name>

spec:

podSelector:

ingress: []

where

<network_name>

Specifies the name of a network attachment definition.

Allow ingress from all pods in the same namespace

apiVersion: k8s.cni.cncf.io/vibetat
kind: MultiNetworkPolicy
metadata:
name: allow-same-namespace
annotations:
k8s.v1.cni.cncf.io/policy-for: <network_name>
spec:
podSelector:
ingress:
- from:
- podSelector: {}

where

<network_name>

Specifies the name of a network attachment definition.

241

OpenShift Container Platform 4.11 Networking

2. To create the multi-network policy object, enter the following command:

I $ oc apply -f <policy_name>.yaml -n <namespace>

where:

<policy_name>
Specifies the multi-network policy file name.
<namespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

I multinetworkpolicy.k8s.cni.cncf.io/default-deny created

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
creating a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

20.4.3.3. Editing a multi-network policy

You can edit a multi-network policy in a namespace.

Prerequisites

® Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.
® You installed the OpenShift CLI (o¢).
® You are logged in to the cluster with a user with cluster-admin privileges.
® You are working in the namespace where the multi-network policy exists.
Procedure
1. Optional: To list the multi-network policy objects in a namespace, enter the following command:
I $ oc get multi-networkpolicy
where:
<hamespace>
Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.
2. Edit the multi-network policy object.

242

CHAPTER 20. MULTIPLE NETWORKS

e |f you saved the multi-network policy definition in a file, edit the file and make any necessary
changes, and then enter the following command.

I $ oc apply -n <namespace> -f <policy_file>.yaml

where:

<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

<policy_file>

Specifies the name of the file containing the network policy.

e |f you need to update the multi-network policy object directly, enter the following
command:

I $ oc edit multi-networkpolicy <policy_name> -n <namespace>

where:

<policy_name>
Specifies the name of the network policy.
<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

3. Confirm that the multi-network policy object is updated.
I $ oc describe multi-networkpolicy <policy_name> -n <namespace>

where:

<policy_name>
Specifies the name of the multi-network policy.
<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

NOTE
If you log in to the web console with cluster-admin privileges, you have a choice of

editing a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

20.4.3.4. Viewing multi-network policies using the CLI

You can examine the multi-network policies in a namespace.

Prerequisites

® You installed the OpenShift CLI (o¢).

243

OpenShift Container Platform 4.11 Networking

® You are logged in to the cluster with a user with cluster-admin privileges.

® You are working in the namespace where the multi-network policy exists.

Procedure
® List multi-network policies in a namespace:

o To view multi-network policy objects defined in a namespace, enter the following command:
I $ oc get multi-networkpolicy

o Optional: To examine a specific multi-network policy, enter the following command:
I $ oc describe multi-networkpolicy <policy_name> -n <namespace>

where:

<policy_name>
Specifies the name of the multi-network policy to inspect.
<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than
the current namespace.

NOTE
If you log in to the web console with cluster-admin privileges, you have a choice of

viewing a network policy in any namespace in the cluster directly in YAML or from a form
in the web console.

20.4.3.5. Deleting a multi-network policy using the CLI

You can delete a multi-network policy in a namespace.

Prerequisites

® Your cluster uses a cluster network provider that supports NetworkPolicy objects, such as the
OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the default for
OpenShift SDN.

® You installed the OpenShift CLI (o¢).

® You are logged in to the cluster with a user with cluster-admin privileges.

® You are working in the namespace where the multi-network policy exists.

Procedure

® To delete a multi-network policy object, enter the following command:
I $ oc delete multi-networkpolicy <policy _names> -n <namespace>

where:

244

CHAPTER 20. MULTIPLE NETWORKS

<policy_name>
Specifies the name of the multi-network policy.
<hamespace>

Optional: Specifies the namespace if the object is defined in a different namespace than the
current namespace.

Example output

I multinetworkpolicy.k8s.cni.cncf.io/default-deny deleted

NOTE

If you log in to the web console with cluster-admin privileges, you have a choice of
deleting a network policy in any namespace in the cluster directly in YAML or from the
policy in the web console through the Actions menu.

20.4.4. Additional resources

® About network policy
® Understanding multiple networks

® Configuring a macvlan network

20.5. ATTACHING A POD TO AN ADDITIONAL NETWORK

As a cluster user you can attach a pod to an additional network.

20.5.1. Adding a pod to an additional network

You can add a pod to an additional network. The pod continues to send normal cluster-related network
traffic over the default network.

When a pod is created additional networks are attached to it. However, if a pod already exists, you
cannot attach additional networks to it.

The pod must be in the same namespace as the additional network.

Prerequisites

e Install the OpenShift CLI (oc).

® | ogin to the cluster.

Procedure
1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the pod:

245

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#about-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#understanding-multiple-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#nw-multus-macvlan-object_configuring-additional-network

OpenShift Container Platform 4.11 Networking

metadata:
annotations:
k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] ﬂ

ﬂ To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

metadata:
annotations:
k8s.v1.cni.cncf.io/networks: |-

[
{

"name": "<network>", ﬂ
"namespace”: "<namespace>",
"default-route”: ["<default-route>"] 6

}
]

ﬂ Specify the name of the additional network defined by a
NetworkAttachmentDefinition object.

9 Specify the namespace where the NetworkAttachmentDefinition object is defined.

g Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the pod, enter the following command. Replace <hame> with the name of the pod.

I $ oc create -f <name>.yaml

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <names with the name of the pod.

I $ oc get pod <name> -0 yaml
In the following example, the example-pod pod is attached to the net1 additional network:

$ oc get pod example-pod -0 yaml
apiVersion: v1
kind: Pod
metadata:
annotations:
k8s.v1.cni.cncf.io/networks: macvlan-bridge
k8s.v1.cni.cncf.io/networks-status: |-
[{
"name": "openshift-sdn"”,
"interface": "eth0Q",

"ips": [

246

CHAPTER 20. MULTIPLE NETWORKS

"10.128.2.14"
],

"default": true,
"dns": {}
3
"name": "macvlan-bridge",
"interface": "net1",
"ips": [
"20.2.2.100"
]

"mac": "22:2f:60:a5:18:00",
"dns": {}
]

name: example-pod
namespace: default
spec:

status:

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the pod. The annotation
value is stored as a plain text value.

20.5.1.1. Specifying pod-specific addressing and routing options

When attaching a pod to an additional network, you may want to specify further properties about that
network in a particular pod. This allows you to change some aspects of routing, as well as specify static
IP addresses and MAC addresses. To accomplish this, you can use the JSON formatted annotations.

Prerequisites

® The pod must be in the same namespace as the additional network.
® |nstall the OpenShift CLI (oc).
® You must login to the cluster.

Procedure

To add a pod to an additional network while specifying addressing and/or routing options, complete the
following steps:

1. Edit the Pod resource definition. If you are editing an existing Pod resource, run the following
command to edit its definition in the default editor. Replace <hame> with the name of the Pod
resource to edit.

I $ oc edit pod <name>

2. Inthe Pod resource definition, add the k8s.v1.cni.cncf.io/networks parameter to the pod
metadata mapping. The k8s.v1.cni.cncf.io/networks accepts a JSON string of a list of objects
that reference the name of NetworkAttachmentDefinition custom resource (CR) names in
addition to specifying additional properties.

247

OpenShift Container Platform 4.11 Networking

metadata:
annotations:
k8s.v1.cni.cncf.io/networks: [<network>[,<network>,...]]' ﬂ

Replace <network> with a JSON object as shown in the following examples. The single
quotes are required.

3. In the following example the annotation specifies which network attachment will have the
default route, using the default-route parameter.

apiVersion: vi
kind: Pod
metadata:
name: example-pod
annotations:
k8s.v1.cni.cncf.io/networks: '
{
"name": "net1"
b
{
"name": "net2", 0
"default-route": ["192.0.2.1"] g
i)
spec:
containers:
- name: example-pod
command: ["/bin/bash", "-c", "sleep 2000000000000"]
image: centos/tools

ﬂ The name key is the name of the additional network to associate with the pod.

9 The default-route key specifies a value of a gateway for traffic to be routed over if no
other routing entry is present in the routing table. If more than one default-route key is
specified, this will cause the pod to fail to become active.

The default route will cause any traffic that is not specified in other routes to be routed to the gateway.

IMPORTANT

Setting the default route to an interface other than the default network interface for
OpenShift Container Platform may cause traffic that is anticipated for pod-to-pod
traffic to be routed over another interface.

To verify the routing properties of a pod, the oc command may be used to execute the ip command
within a pod.

I $ oc exec -it <pod_name> -- ip route

248

CHAPTER 20. MULTIPLE NETWORKS

NOTE

You may also reference the pod'’s k8s.v1.chi.cncf.io/networks-status to see which
additional network has been assigned the default route, by the presence of the default-
route key in the JSON-formatted list of objects.

To set a static IP address or MAC address for a pod you can use the JSON formatted annotations. This
requires you create networks that specifically allow for this functionality. This can be specified in a
rawCNIConfig for the CNO.

1. Edit the CNO CR by running the following command:
I $ oc edit networks.operator.openshift.io cluster

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

name: <name> 0
namespace: <namespace> 9
rawCNIConfig: '{ €)

}l
type: Raw

ﬂ Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Q Specify the namespace to create the network attachment in. If you do not specify a value, then the
default namespace is used.

9 Specify the CNI plugin configuration in JSON format, which is based on the following template.

The following object describes the configuration parameters for utilizing static MAC address and IP
address using the macvlan CNI plugin:

macvlan CNI plugin JSON configuration object using static IP and MAC address

{

"cniVersion": "0.3.1",

"name"; "<name>",

"plugins”: [{ 9
"type": "macvlan”,
"capabilities": { "ips": true }, G
"master": "ethQ", ﬂ

"mode": "bridge",
"ipam": {
"type": "static"

}
b A
"capabilities": { "mac": true }, 6

249

OpenShift Container Platform 4.11 Networking

"type": "tuning"
1l
}

Specifies the name for the additional network attachment to create. The name must be unique
within the specified namespace.

Specifies an array of CNI plugin configurations. The first object specifies a macvlan plugin
configuration and the second object specifies a tuning plugin configuration.

Specifies that a request is made to enable the static IP address functionality of the CNI plugin
runtime configuration capabilities.

Specifies the interface that the macvlan plugin uses.

®0 o ® °

Specifies that a request is made to enable the static MAC address functionality of a CNI plugin.

The above network attachment can be referenced in a JSON formatted annotation, along with keys to
specify which static IP and MAC address will be assigned to a given pod.

Edit the pod with:
I $ oc edit pod <name>
macvlan CNI plugin JSON configuration object using static IP and MAC address

apiVersion: vi
kind: Pod
metadata:
name: example-pod
annotations:
k8s.v1.cni.cncf.io/networks: '

{

"name": "<name>",
llipSll: [ll192-0-2.205/24"], 9
"mac": "CA:FE:CO:FF:EE:00" €)

}
T

ﬂ Use the <name> as provided when creating the rawCNIConfig above.

9 Provide an IP address including the subnet mask.

9 Provide the MAC address.

NOTE

Static IP addresses and MAC addresses do not have to be used at the same time, you
may use them individually, or together.

To verify the IP address and MAC properties of a pod with additional networks, use the o¢ command to
execute the ip command within a pod.

250

CHAPTER 20. MULTIPLE NETWORKS
I $ oc exec -it <pod_name> -- ip a

20.6. REMOVING A POD FROM AN ADDITIONAL NETWORK

As a cluster user you can remove a pod from an additional network.

20.6.1. Removing a pod from an additional network

You can remove a pod from an additional network only by deleting the pod.

Prerequisites

® An additional network is attached to the pod.
® |nstall the OpenShift CLI (oc).

® | ogin to the cluster.

Procedure

® To delete the pod, enter the following command:
I $ oc delete pod <name> -n <namespace>

o <names is the name of the pod.

© <hamespaces is the namespace that contains the pod.

20.7. EDITING AN ADDITIONAL NETWORK

As a cluster administrator you can modify the configuration for an existing additional network.

20.7.1. Modifying an additional network attachment definition

As a cluster administrator, you can make changes to an existing additional network. Any existing pods
attached to the additional network will not be updated.

Prerequisites

® You have configured an additional network for your cluster.
® [nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

Procedure

To edit an additional network for your cluster, complete the following steps:

1. Run the following command to edit the Cluster Network Operator (CNO) CR in your default text
editor:

I $ oc edit networks.operator.openshift.io cluster

251

OpenShift Container Platform 4.11 Networking

2.

3.

4.

In the additionalNetworks collection, update the additional network with your changes.
Save your changes and quit the text editor to commit your changes.

Optional: Confirm that the CNO updated the NetworkAttachmentDefinition object by running
the following command. Replace <network-name> with the name of the additional network to
display. There might be a delay before the CNO updates the NetworkAttachmentDefinition
object to reflect your changes.

I $ oc get network-attachment-definitions <network-name> -o yaml

For example, the following console output displays a NetworkAttachmentDefinition object that
is named net1:

$ oc get network-attachment-definitions net1 -o go-template="{{printf "%s\n" .spec.config}}'
{ "cniVersion": "0.3.1", "type": "macvlan”,

"master": "ensb",

"mode": "bridge",

"ipam": {"type":"static","routes":[{"dst":"0.0.0.0/0","gw":"10.128.2.1"}],"addresses":
[{"address":"10.128.2.100/23","gateway":"10.128.2.1"}],"dns":{"nameservers":
["172.30.0.10"],"domain":"us-west-2.compute.internal”,"search":["us-west-
2.compute.internal"}} }

20.8. REMOVING AN ADDITIONAL NETWORK

As a cluster administrator you can remove an additional network attachment.

20.8.1. Removing an additional network attachment definition

As a cluster administrator, you can remove an additional network from your OpenShift Container
Platform cluster. The additional network is not removed from any pods it is attached to.

Prerequisites

® Install the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.
Procedure

To remove an additional network from your cluster, complete the following steps:

252

1.

Edit the Cluster Network Operator (CNO) in your default text editor by running the following
command:

I $ oc edit networks.operator.openshift.io cluster

Modify the CR by removing the configuration from the additionalNetworks collection for the
network attachment definition you are removing.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:

CHAPTER 20. MULTIPLE NETWORKS

name: cluster
spec:
additionalNetworks: [] ﬂ

If you are removing the configuration mapping for the only additional network attachment
definition in the additionalNetworks collection, you must specify an empty collection.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the additional network CR was deleted by running the following
command:

I $ oc get network-attachment-definition --all-namespaces

20.9. ASSIGNING A SECONDARY NETWORK TO A VRF

20.9.1. Assigning a secondary network to a VRF

As a cluster administrator, you can configure an additional network for your VRF domain by using the
CNI VRF plugin. The virtual network created by this plugin is associated with a physical interface that
you specify.

| NOTE
Applications that use VRFs need to bind to a specific device. The common usage is to use
| the SO_BINDTODEVICE option for a socket. SO_BINDTODEVICE binds the socket to a
device that is specified in the passed interface name, for example, eth1. To use
SO_BINDTODEVICE, the application must have CAP_NET_RAW capabilities.
[N

Using a VRF through the ip vrf exec command is not supported in OpenShift Container
Platform pods. To use VRF, bind applications directly to the VRF interface.

20.9.1.1. Creating an additional network attachment with the CNI VRF plugin

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition custom resource
(CR) automatically.

¢ NOTE
Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator

manages. Doing so might disrupt network traffic on your additional network.
To create an additional network attachment with the CNI VRF plugin, perform the following procedure.

Prerequisites

® |nstall the OpenShift Container Platform CLI (oc).

® | oginto the OpenShift cluster as a user with cluster-admin privileges.

Procedure

253

OpenShift Container Platform 4.11 Networking

1. Create the Network custom resource (CR) for the additional network attachment and insert the
rawCNIConfig configuration for the additional network, as in the following example CR. Save
the YAML as the file additional-network-attachment.yaml.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:

name: cluster

spec:

additionalNetworks:

- name: test-network-1
namespace: additional-network-1
type: Raw
rawCNIConfig: '{

"cniVersion": "0.3.1",
"name": "macvlan-vrf",
"plugins™: | ﬂ
{
"type": "macvlan”, g
"master": "eth1",
"ipam™: {
"type": "static",
"addresses":

{
"address": "191.168.1.23/24"

}

b

{
"type": "vrf",
"vrfname": "example-vrf-name", 9
"table": 1001 ﬂ

i

y

plugins must be a list. The first item in the list must be the secondary network
underpinning the VRF network. The second item in the list is the VRF plugin configuration.

type must be set to vrf.

vrfname is the name of the VRF that the interface is assigned to. If it does not exist in the
pod, itis created.

Optional. table is the routing table ID. By default, the tableid parameter is used. If it is not
specified, the CNI assigns a free routing table ID to the VRF.

o 0 o

NOTE

VRF functions correctly only when the resource is of type netdevice.

2. Create the Network resource:

I $ oc create -f additional-network-attachment.yaml

254

CHAPTER 20. MULTIPLE NETWORKS

3. Confirm that the CNO created the NetworkAttachmentDefinition CR by running the following
command. Replace <hamespace> with the namespace that you specified when configuring the
network attachment, for example, additional-network-1.

I $ oc get network-attachment-definitions -n <namespace>

Example output

NAME AGE
additional-network-1 14m

NOTE

There might be a delay before the CNO creates the CR.

Verifying that the additional VRF network attachment is successful

To verify that the VRF CNl is correctly configured and the additional network attachment is attached, do
the following:

1. Create a network that uses the VRF CNI.
2. Assign the network to a pod.

3. Verify that the pod network attachment is connected to the VRF additional network. Remote
shell into the pod and run the following command:

I $ ip vrf show
Example output

Name Table

red 10

4. Confirm the VRF interface is master of the secondary interface:
I $ ip link

Example output

5: net1: <cBROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue master red
state UP mode

255

OpenShift Container Platform 4.11 Networking

CHAPTER 21. HARDWARE NETWORKS

21.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE
NETWORKS

The Single Root I/O Virtualization (SR-IOV) specification is a standard for a type of PCl device
assignment that can share a single device with multiple pods.

SR-I0OV can segment a compliant network device, recognized on the host node as a physical function
(PF), into multiple virtual functions (VFs). The VF is used like any other network device. The SR-IOV
network device driver for the device determines how the VF is exposed in the container:

e netdevice driver: A regular kernel network device in the netns of the container
e vfio-pci driver: A character device mounted in the container

You can use SR-IOV network devices with additional networks on your OpenShift Container Platform
cluster installed on bare metal or Red Hat OpenStack Platform (RHOSP) infrastructure for applications
that require high bandwidth or low latency.

You can enable SR-IOV on a node by using the following command:

I $ oc label node <node_name> feature.node.kubernetes.io/network-sriov.capable="true"

21.1.1. Components that manage SR-IOV network devices

The SR-IOV Network Operator creates and manages the components of the SR-IOV stack. It performs
the following functions:

® Orchestrates discovery and management of SR-IOV network devices

® Generates NetworkAttachmentDefinition custom resources for the SR-IOV Container
Network Interface (CNI)

® Creates and updates the configuration of the SR-IOV network device plugin

® Creates node specific SriovNetworkNodeState custom resources

e Updates the spec.interfaces field in each SriovNetworkNodeState custom resource
The Operator provisions the following components:

SR-IOV network configuration daemon

A daemon set that is deployed on worker nodes when the SR-IOV Network Operator starts. The
daemon is responsible for discovering and initializing SR-IOV network devices in the cluster.

SR-IOV Network Operator webhook

A dynamic admission controller webhook that validates the Operator custom resource and sets
appropriate default values for unset fields.

SR-IOV Network resources injector

A dynamic admission controller webhook that provides functionality for patching Kubernetes pod
specifications with requests and limits for custom network resources such as SR-IOV VFs. The SR-
IOV network resources injector adds the resource field to only the first container in a pod
automatically.

256

CHAPTER 21. HARDWARE NETWORKS

SR-IOV network device plugin

A device plugin that discovers, advertises, and allocates SR-IOV network virtual function (VF)
resources. Device plugins are used in Kubernetes to enable the use of limited resources, typically in
physical devices. Device plugins give the Kubernetes scheduler awareness of resource availability, so
that the scheduler can schedule pods on nodes with sufficient resources.

SR-IOV CNI plugin

A CNI plugin that attaches VF interfaces allocated from the SR-IOV network device plugin directly
into a pod.

SR-IOV InfiniBand CNI plugin

A CNI plugin that attaches InfiniBand (IB) VF interfaces allocated from the SR-IOV network device
plugin directly into a pod.

NOTE

The SR-IOV Network resources injector and SR-I0OV Network Operator webhook are
enabled by default and can be disabled by editing the default SriovOperatorConfig CR.
Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices.

21.1.1.1. Supported platforms

The SR-IOV Network Operator is supported on the following platforms:
® Bare metal

® Red Hat OpenStack Platform (RHOSP)

21.1.1.2. Supported devices

OpenShift Container Platform supports the following network interface controllers:

Table 21.1. Supported network interface controllers

Manufacturer Model Vendor ID Device ID

Broadcom BCM57414 14e4 16d7
Broadcom BCM57508 14e4 1750
Intel X710 8086 1572
Intel XL710 8086 1583
Intel XXV710 8086 158b
Intel E810-CQDA2 8086 1592
Intel E810-2CQDA2 8086 1592

257

OpenShift Container Platform 4.11 Networking

Manufacturer Model Vendor ID
Intel E810-XXVDA2 8086
Intel E810-XXVDA4 8086
Mellanox MT27700 Family [ConnectX-4] 15b3
Mellanox MT27710 Family [ConnectX-4 Lx] 15b3
Mellanox MT27800 Family [ConnectX-5] 15b3
Mellanox MT28880 Family [ConnectX-5 Ex] 15b3
Mellanox MT28908 Family [ConnectX-6] 15b3
Mellanox MT2892 Family [ConnectX-6 Dx] 15b3
Mellanox MT2894 Family [ConnectX-6 Lx] 15b3

Pensando !

Pensando !

DSC-25 dual-port 25G distributed Ox1dd8
services card for ionic driver

DSC-100 dual-port 100G distributed Ox1dd8
services card for ionic driver

Device ID

159b

1593

1013

1015

1017

1019

101b

101d

101f

0x1002

0x1003

1. OpenShift SR-IOV is supported, but you must set a static, Virtual Function (VF) media access

control (MAC) address using the SR-IOV CNI config file when using SR-IOV.

NOTE

For the most up-to-date list of supported cards and compatible OpenShift Container
Platform versions available, see Openshift Single Root |/O Virtualization (SR-IOV) and

PTP hardware networks Support Matrix.

21.1.1.3. Automated discovery of SR-IOV network devices

The SR-IOV Network Operator searches your cluster for SR-IOV capable network devices on worker
nodes. The Operator creates and updates a SriovNetworkNodeState custom resource (CR) for each
worker node that provides a compatible SR-IOV network device.

The CRis assigned the same name as the worker node. The status.interfaces list provides information
about the network devices on a node.

258

IMPORTANT

Do not modify a SriovNetworkNodeState object. The Operator creates and manages

these resources automatically.

https://access.redhat.com/articles/6954499

CHAPTER 21. HARDWARE NETWORKS

21.1.1.3.1. Example SriovNetworkNodeState object

The following YAML is an example of a SriovNetworkNodeState object created by the SR-IOV Network
Operator:

An SriovNetworkNodeState object

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
metadata:
name: node-25 ﬂ
namespace: openshift-sriov-network-operator
ownerReferences:
- apiVersion: sriovnetwork.openshift.io/v1
blockOwnerDeletion: true
controller: true
kind: SriovNetworkNodePolicy
name: default
spec:
dpConfigVersion: "39824"
status:

interfaces: g

- devicelD: "1017"

driver: mIx5_core

mtu: 1500

name: ens785f0
pciAddress: "0000:18:00.0"
totalvfs: 8

vendor: 15b3

devicelD: "1017"

driver: mix5_core

mtu: 1500

name: ens785f1
pciAddress: "0000:18:00.1"
totalvfs: 8

vendor: 15b3

devicelD: 158b

driver: i40e

mtu: 1500

name: ens817f0
pciAddress: 0000:81:00.0
totalvfs: 64

vendor: "8086"

devicelD: 158b

driver: i40e

mtu: 1500

name: ens817f1
pciAddress: 0000:81:00.1
totalvfs: 64

vendor: "8086"

devicelD: 158b

driver: i40e

mtu: 1500

name: ens803f0
pciAddress: 0000:86:00.0

259

OpenShift Container Platform 4.11 Networking

totalvfs: 64
vendor: "8086"
syncStatus: Succeeded

ﬂ The value of the name field is the same as the name of the worker node.

The interfaces stanza includes a list of all of the SR-IOV devices discovered by the Operator on
the worker node.

21.1.1.4. Example use of a virtual function in a pod

You can run a remote direct memory access (RDMA) or a Data Plane Development Kit (DPDK)
application in a pod with SR-IOV VF attached.

This example shows a pod using a virtual function (VF) in RDMA mode:

Pod spec that uses RDMA mode

apiVersion: vi
kind: Pod
metadata:
name: rdma-app
annotations:
k8s.v1.cni.cncf.io/networks: sriov-rdma-minx
spec:
containers:
- name: testpmd
image: <RDMA_image>
imagePullPolicy: IfNotPresent
securityContext:
runAsUser: 0
capabilities:
add: ['IPC_LOCK","SYS_RESOURCE","NET_RAW"]

command: ["sleep”, "infinity"]

The following example shows a pod with a VF in DPDK mode:

Pod spec that uses DPDK mode

apiVersion: vi
kind: Pod
metadata:
name: dpdk-app
annotations:
k8s.v1.cni.cncf.io/networks: sriov-dpdk-net
spec:
containers:
- name: testpmd
image: <DPDK_image>
securityContext:
runAsUser: 0
capabilities:
add: ['IPC_LOCK","SYS_RESOURCE","NET_RAW"]
volumeMounts:

260

CHAPTER 21. HARDWARE NETWORKS

- mountPath: /dev/hugepages
name: hugepage
resources:
limits:
memory: "1Gi"
cpu: "2"
hugepages-1Gi: "4Gi"
requests:
memory: "1Gi"
cpu: "2"
hugepages-1Gi: "4Gi"
command: ["sleep", "infinity"]
volumes:
- name: hugepage
emptyDir:
medium: HugePages

21.1.1.5. DPDK library for use with container applications

An optional library, app-netutil, provides several APl methods for gathering network information about a
pod from within a container running within that pod.

This library can assist with integrating SR-IOV virtual functions (VFs) in Data Plane Development Kit
(DPDK) mode into the container. The library provides both a Golang APl and a C APLI.

Currently there are three APl methods implemented:

GetCPUiInfo()
This function determines which CPUs are available to the container and returns the list.
GetHugepages()

This function determines the amount of huge page memory requested in the Pod spec for each
container and returns the values.

Getlnterfaces()

This function determines the set of interfaces in the container and returns the list. The return value
includes the interface type and type-specific data for each interface.

The repository for the library includes a sample Dockerfile to build a container image, dpdk-app-centos.
The container image can run one of the following DPDK sample applications, depending on an
environment variable in the pod specification: 12fwd, I3wd or testpmd. The container image provides an
example of integrating the app-netutil library into the container image itself. The library can also
integrate into an init container. The init container can collect the required data and pass the data to an
existing DPDK workload.

21.1.1.6. Huge pages resource injection for Downward API

When a pod specification includes a resource request or limit for huge pages, the Network Resources
Injector automatically adds Downward AP fields to the pod specification to provide the huge pages
information to the container.

The Network Resources Injector adds a volume that is named podnetinfo and is mounted at
/ete/podnetinfo for each container in the pod. The volume uses the Downward APl and includes a file

for huge pages requests and limits. The file naming convention is as follows:

e /etc/podnetinfo/hugepages_1G_request_<container-name>

261

https://github.com/openshift/app-netutil

OpenShift Container Platform 4.11 Networking

e /etc/podnetinfo/hugepages_1G_limit_<container-name>

e /etc/podnetinfo/hugepages_2M_request_<container-name>

e /etc/podnetinfo/hugepages_2M_limit_<container-name>
The paths specified in the previous list are compatible with the app-netutil library. By default, the library
is configured to search for resource information in the /etc/podnetinfo directory. If you choose to
specify the Downward API path items yourself manually, the app-netutil library searches for the
following paths in addition to the paths in the previous list.

e /etc/podnetinfo/hugepages_request

e /etc/podnetinfo/hugepages_limit

e /etc/podnetinfo/hugepages_1G_request

e /etc/podnetinfo/hugepages_1G_limit

e /etc/podnetinfo/hugepages_2M_request

/etc/podnetinfo/hugepages_2M_limit

As with the paths that the Network Resources Injector can create, the paths in the preceding list can
optionally end with a _<container-name> suffix.

21.1.2. Next steps

Installing the SR-IOV Network Operator

® Optional: Configuring the SR-IOV Network Operator

® Configuring an SR-IOV network device

e |f you use OpenShift Virtualization: Connecting a virtual machine to an SR-IOV network
® Configuring an SR-IOV network attachment

® Adding a pod to an SR-IOV additional network

21.2. INSTALLING THE SR-IOV NETWORK OPERATOR

You can install the Single Root I/O Virtualization (SR-IOV) Network Operator on your cluster to manage
SR-IOV network devices and network attachments.

21.2.1. Installing SR-IOV Network Operator

As a cluster administrator, you can install the SR-IOV Network Operator by using the OpenShift
Container Platform CLI or the web console.

21.2.1.1. CLI: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

262

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#installing-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/virtualization/#virt-attaching-vm-to-sriov-network
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-sriov-net-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#add-pod

CHAPTER 21. HARDWARE NETWORKS

® A clusterinstalled on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

e Install the OpenShift CLI (oc).

® An account with cluster-admin privileges.

Procedure

1. To create the openshift-sriov-network-operator namespace, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
name: openshift-sriov-network-operator
annotations:
workload.openshift.io/allowed: management
EOF

2. To create an OperatorGroup CR, enter the following command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
name: sriov-network-operators
namespace: openshift-sriov-network-operator
spec:
targetNamespaces:
- openshift-sriov-network-operator
EOF

3. Subscribe to the SR-IOV Network Operator.

a. Run the following command to get the OpenShift Container Platform major and minor
version. It is required for the channel value in the next step.
$ OC_VERSION=$(oc version -0 yaml | grep openshiftVersion | \
grep -0 '[0-91*[.][0-9]1*" | head -1)

b. To create a Subscription CR for the SR-IOV Network Operator, enter the following
command:

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/vialphat
kind: Subscription
metadata:
name: sriov-network-operator-subscription
namespace: openshift-sriov-network-operator
spec:
channel: "${OC_VERSION}"
name: sriov-network-operator

263

OpenShift Container Platform 4.11 Networking

source: redhat-operators
sourceNamespace: openshift-marketplace
EOF

4. To verify that the Operator is installed, enter the following command:

$ oc get csv -n openshift-sriov-network-operator \
-0 custom-columns=Name:.metadata.name,Phase:.status.phase

Example output

Name Phase
sriov-network-operator.4.12.0-202310121402 Succeeded

21.2.1.2. Web console: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the web console.

Prerequisites

® A clusterinstalled on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

e Install the OpenShift CLI (oc).

® An account with cluster-admin privileges.

Procedure
1. Install the SR-IOV Network Operator:

a. Inthe OpenShift Container Platform web console, click Operators = OperatorHub.

b. Select SR-IOV Network Operator from the list of available Operators, and then click
Install.

c. On the Install Operator page, under Installed Namespace, select Operator
recommended Namespace.

d. Click Install.

2. Verify that the SR-IOV Network Operator is installed successfully:

a. Navigate to the Operators — Installed Operators page.

b. Ensure that SR-IOV Network Operatoris listed in the openshift-sriov-network-operator
project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

264

CHAPTER 21. HARDWARE NETWORKS

If the Operator does not appear as installed, to troubleshoot further:

® Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors
under Status.

® Navigate to the Workloads = Pods page and check the logs for pods in the openshift-
sriov-network-operator project.

® Check the namespace of the YAML file. If the annotation is missing, you can add the
annotation workload.openshift.io/allowed=management to the Operator namespace
with the following command:

$ oc annotate ns/openshift-sriov-network-operator
workload.openshift.io/allowed=management

NOTE

For single-node OpenShift clusters, the annotation
workload.openshift.io/allowed=management is required for the
namespace.

21.2.2. Next steps

® Optional: Configuring the SR-IOV Network Operator

21.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

21.3.1. Configuring the SR-IOV Network Operator

IMPORTANT

Modifying the SR-IOV Network Operator configuration is not normally necessary. The
default configuration is recommended for most use cases. Complete the steps to modify
the relevant configuration only if the default behavior of the Operator is not compatible
with your use case.

The SR-IOV Network Operator adds the SriovOperatorConfig.sriovnhetwork.openshift.io
CustomResourceDefinition resource. The Operator automatically creates a SriovOperatorConfig
custom resource (CR) named default in the openshift-sriov-network-operator namespace.

NOTE

The default CR contains the SR-IOV Network Operator configuration for your cluster. To
change the Operator configuration, you must modify this CR.

21.3.1.1. SR-I0OV Network Operator config custom resource

The fields for the sriovoperatorconfig custom resource are described in the following table:

Table 21.2. SR-IOV Network Operator config custom resource

265

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-sriov-operator

OpenShift Container Platform 4.11 Networking

Field Type Description

metadata.name string Specifies the name of the SR-IOV Network Operator instance.
The default value is default. Do not set a different value.

metadata.name string Specifies the namespace of the SR-IOV Network Operator
space instance. The default value is openshift-sriov-network-
operator. Do not set a different value.

spec.configDae string Specifies the node selection to control scheduling the SR-IOV
monNodeSelect Network Config Daemon on selected nodes. By default, this field
or is not set and the Operator deploys the SR-IOV Network Config

daemon set on worker nodes.

spec.disableDra boolean Specifies whether to disable the node draining process or enable

in the node draining process when you apply a new policy to
configure the NIC on a node. Setting this field to true facilitates
software development and installing OpenShift Container
Platform on a single node. By default, this field is not set.

For single-node clusters, set this field to true after installing the
Operator. This field must remain set to true.

spec.enablelnje boolean Specifies whether to enable or disable the Network Resources

ctor Injector daemon set. By default, this field is set to true.

spec.enableOpe boolean Specifies whether to enable or disable the Operator Admission

ratorWebhook Controller webhook daemon set. By default, this field is set to
true.

spec.logLevel integer Specifies the log verbosity level of the Operator. Set to 0 to

show only the basic logs. Set to 2 to show all the available logs.
By default, this field is set to 2.

21.3.1.2. About the Network Resources Injector

The Network Resources Injector is a Kubernetes Dynamic Admission Controller application. It provides
the following capabilities:

® Mutation of resource requests and limits in a pod specification to add an SR-IOV resource name
according to an SR-IOV network attachment definition annotation.

® Mutation of a pod specification with a Downward API volume to expose pod annotations, labels,
and huge pages requests and limits. Containers that run in the pod can access the exposed
information as files under the /etc/podnetinfo path.
By default, the Network Resources Injector is enabled by the SR-IOV Network Operator and runs as a

daemon set on all control plane nodes. The following is an example of Network Resources Injector pods
running in a cluster with three control plane nodes:

I $ oc get pods -n openshift-sriov-network-operator

266

CHAPTER 21. HARDWARE NETWORKS

Example output

NAME READY STATUS RESTARTS AGE
network-resources-injector-5¢z5p 1/1 Running 0 10m
network-resources-injector-dwqpx 1/1 Running 0 10m
network-resources-injector-lktz5 1/1 Running 0 10m

21.3.1.3. About the SR-IOV Network Operator admission controller webhook

The SR-IOV Network Operator Admission Controller webhook is a Kubernetes Dynamic Admission
Controller application. It provides the following capabilities:

® Validation of the SriovNetworkNodePolicy CR when it is created or updated.

® Mutation of the SriovNetworkNodePolicy CR by setting the default value for the priority and
deviceType fields when the CR is created or updated.

By default the SR-IOV Network Operator Admission Controller webhook is enabled by the Operator and
runs as a daemon set on all control plane nodes.

NOTE

Use caution when disabling the SR-IOV Network Operator Admission Controller
webhook. You can disable the webhook under specific circumstances, such as
troubleshooting, or if you want to use unsupported devices. For information about
configuring unsupported devices, see Configuring the SR-IOV Network Operator to use
an unsupported NIC.

The following is an example of the Operator Admission Controller webhook pods running in a cluster
with three control plane nodes:

I $ oc get pods -n openshift-sriov-network-operator

Example output

NAME READY STATUS RESTARTS AGE
operator-webhook-9jkw6 1/1 Running 0 16m
operator-webhook-kbr5p 1/1 Running 0 16m
operator-webhook-rpfrl 1/1 Running 0 16m

21.3.1.4. About custom node selectors

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

21.3.1.5. Disabling or enabling the Network Resources Injector

To disable or enable the Network Resources Injector, which is enabled by default, complete the following
procedure.

Prerequisites

267

https://access.redhat.com/articles/7010183

OpenShift Container Platform 4.11 Networking

® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® You must have installed the SR-IOV Network Operator.

Procedure

e Set the enablelnjector field. Replace <value> with false to disable the feature or true to
enable the feature.

$ oc patch sriovoperatorconfig default \
--type=merge -n openshift-sriov-network-operator \
--patch '{ "spec": { "enablelnjector": <value>}}'

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
enablelnjector: <value>

21.3.1.6. Disabling or enabling the SR-I0V Network Operator admission controller webhook

To disable or enable the admission controller webhook, which is enabled by default, complete the
following procedure.

Prerequisites
® |nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® You must have installed the SR-IOV Network Operator.

Procedure

® Set the enableOperatorWebhook field. Replace <values with false to disable the feature or
true to enable it

$ oc patch sriovoperatorconfig default --type=merge \
-n openshift-sriov-network-operator \
--patch '{ "spec": { "enableOperatorWebhook": <value> } }'

268

CHAPTER 21. HARDWARE NETWORKS

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
enableOperatorWebhook: <value>

21.3.1.7. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

To specify the nodes where the SR-IOV Network Config daemon is deployed, complete the following
procedure.

IMPORTANT

When you update the configDaemonNodeSelector field, the SR-IOV Network Config
daemon is recreated on each selected node. While the daemon is recreated, cluster users
are unable to apply any new SR-IOV Network node policy or create new SR-IOV pods.

Procedure

® To update the node selector for the operator, enter the following command:

$ oc patch sriovoperatorconfig default --type=json \
-n openshift-sriov-network-operator \
--patch '[{
"op": "replace”,
"path": "/spec/configDaemonNodeSelector",
"value": {<node_label>}

1

Replace <node_label> with a label to apply as in the following example: "node-
role.kubernetes.io/worker": """

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:

name: default

namespace: openshift-sriov-network-operator
spec:

configDaemonNodeSelector:

<node_label>

269

OpenShift Container Platform 4.11 Networking

21.3.1.8. Configuring the SR-IOV Network Operator for single node installations

By default, the SR-IOV Network Operator drains workloads from a node before every policy change.
The Operator performs this action to ensure that there no workloads using the virtual functions before
the reconfiguration.

For installations on a single node, there are no other nodes to receive the workloads. As a result, the
Operator must be configured not to drain the workloads from the single node.

IMPORTANT

After performing the following procedure to disable draining workloads, you must remove
any workload that uses an SR-IOV network interface before you change any SR-IOV
network node policy.

Prerequisites
® [nstall the OpenShift CLI (oc).
® | ogin as a user with cluster-admin privileges.

® You must have installed the SR-IOV Network Operator.

Procedure

® To set the disableDrain field to true, enter the following command:

$ oc patch sriovoperatorconfig default --type=merge \
-n openshift-sriov-network-operator \
--patch '{ "spec": { "disableDrain": true } }'

TIP

You can alternatively apply the following YAML to update the Operator:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovOperatorConfig
metadata:
name: default
namespace: openshift-sriov-network-operator
spec:
disableDrain: true
21.3.2. Next steps

® Configuring an SR-IOV network device

21.4. CONFIGURING AN SR-I0OV NETWORK DEVICE

You can configure a Single Root |I/O Virtualization (SR-IOV) device in your cluster.

21.4.1. SR-IOV network node configuration object

270

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/networking/#configuring-sriov-device

CHAPTER 21. HARDWARE NETWORKS

You specify the SR-IOV network device configuration for a node by creating an SR-IOV network node
policy. The APl object for the policy is part of the sriovhetwork.openshift.io API group.

The following YAML describes an SR-IOV network node policy:

909

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: <name> ﬂ
namespace: openshift-sriov-network-operator g
spec:
resourceName: <sriov_resource_name> 6
nodeSelector:
feature.node.kubernetes.io/network-sriov.capable: "true"
priority: <priority> 6
mtu: <mtu>
needVhostNet: false ﬂ
numVfs: <num> 6
nicSelector: Q
vendor: "<vendor_code>" @
devicelD: "<device id>"
pfNames: ["<pf_name>", ...] @
rootDevices: ["<pci_bus_id>", ...] @
netFilter: "<filter_string>" @
deviceType: <device_type>
isRdma: false
linkType: <link_type> ¢
eSwitchMode: "switchdev"

The name for the custom resource object.
The namespace where the SR-IOV Network Operator is installed.

The resource name of the SR-IOV network device plugin. You can create multiple SR-IOV network
node policies for a resource name.

When specifying a name, be sure to use the accepted syntax expression A[a-zA-Z0-9_]+$ in the
resourceName.

The node selector specifies the nodes to configure. Only SR-IOV network devices on the selected

nodes are configured. The SR-IOV Container Network Interface (CNI) plugin and device plugin are
deployed on selected nodes only.

271

OpenShift Container Platform 4.11 Networking

@ o

o

o 00 9 9

272

IMPORTANT

The SR-IOV Network Operator applies node network configuration policies to nodes
in sequence. Before applying node network configuration policies, the SR-IOV
Network Operator checks if the machine config pool (MCP) for a node is in an
unhealthy state such as Degraded or Updating. If a node is in an unhealthy MCP,
the process of applying node network configuration policies to all targeted nodes in
the cluster pauses until the MCP returns to a healthy state.

To avoid a node in an unhealthy MCP from blocking the application of node network
configuration policies to other nodes, including nodes in other MCPs, you must
create a separate node network configuration policy for each MCP,

Optional: The priority is an integer value between 0 and 99. A smaller value receives higher priority.
For example, a priority of 10 is a higher priority than 99. The default value is 99.

Optional: The maximum transmission unit (MTU) of the virtual function. The maximum MTU value
can vary for different network interface controller (NIC) models.

IMPORTANT

If you want to create virtual function on the default network interface, ensure that
the MTU is set to a value that matches the cluster MTU.

Optional: Set needVhostNet to true to mount the /dev/vhost-net device in the pod. Use the
mounted /dev/vhost-net device with Data Plane Development Kit (DPDK) to forward traffic to the
kernel network stack.

The number of the virtual functions (VF) to create for the SR-IOV physical network device. For an
Intel network interface controller (NIC), the number of VFs cannot be larger than the total VFs
supported by the device. For a Mellanox NIC, the number of VFs cannot be larger than 128.

The NIC selector identifies the device for the Operator to configure. You do not have to specify
values for all the parameters. It is recommended to identify the network device with enough
precision to avoid selecting a device unintentionally.

If you specify rootDevices, you must also specify a value for vendor, devicelD, or pfNames. If you
specify both pfNames and rootDevices at the same time, ensure that they refer to the same
device. If you specify a value for netFilter, then you do not need to specify any other parameter
because a network ID is unique.

Optional: The vendor hexadecimal code of the SR-IOV network device. The only allowed values are
8086 and 15b3.

Optional: The device hexadecimal code of the SR-IOV network device. For example, 101b is the
device ID for a Mellanox ConnectX-6 device.

Optional: An array of one or more physical function (PF) names for the device.

Optional: An array of one or more PCl bus addresses for the PF of the device. Provide the address
in the following format: 0000:02:00.1.

Optional: The platform-specific network filter. The only supported platform is Red Hat OpenStack
Platform (RHOSP). Acceptable values use the following format: openstack/NetworklID :xxxxxxxx-
XXXX-XXXX-XXXX-XXXXXXXXXXXX. Replace XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX with the value
from the /var/config/openstack/latest/network_data.json metadata file.

CHAPTER 21. HARDWARE NETWORKS

Optional: The driver type for the virtual functions. The only allowed values are netdevice and vfio-
pci. The default value is netdevice.

For a Mellanox NIC to work in DPDK mode on bare metal nodes, use the netdevice driver type and
set isRdma to true.

Optional: Configures whether to enable remote direct memory access (RDMA) mode. The default
value is false.

If the isRdma parameter is set to true, you can continue to use the RDMA-enabled VF as a normal
network device. A device can be used in either mode.

Set isRdma to true and additionally set needVhostNet to true to configure a Mellanox NIC for
use with Fast Datapath DPDK applications.

Optional: The link type for the VFs. The default value is eth for Ethernet. Change this value to 'ib’
for InfiniBand.

When linkType is set to ib, isRdma is automatically set to true by the SR-IOV Network Operator
webhook. When linkType is set to ib, deviceType should not be set to vfio-pci.

Do not set linkType to 'eth’ for SriovNetworkNodePolicy, because this can lead to an incorrect
number of available devices reported by the device plugin.

Optional: The NIC device mode. The only allowed values are legacy or switchdev.
When eSwitchMode is set to legacy, the default SR-IOV behavior is enabled.

When eSwitchMode is set to switchdev, hardware offloading is enabled.

21.4.1.1. SR-IOV network node configuration examples

The following example describes the configuration for an InfiniBand device:

Example configuration for an InfiniBand device

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: policy-ib-net-1
namespace: openshift-sriov-network-operator
spec:
resourceName: ibnic1
nodeSelector:
feature.node.kubernetes.io/network-sriov.capable: "true"
numVfs: 4
nicSelector:
vendor: "15b3"
devicelD: "101b"
rootDevices:
- "0000:19:00.0"
linkType: ib
isRdma: true

273

OpenShift Container Platform 4.11 Networking

The following example describes the configuration for an SR-IOV network device in a RHOSP virtual
machine:

Example configuration for an SR-IOV device in a virtual machine

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: policy-sriov-net-openstack-1
namespace: openshift-sriov-network-operator
spec:
resourceName: sriovnic1
nodeSelector:
feature.node.kubernetes.io/network-sriov.capable: "true"
numVfs: 1 ﬂ
nicSelector:
vendor: "15b3"
devicelD: "101b"
netFilter: "openstack/NetworkID:ea24bd04-8674-4f69-b0ee-faOb3bd20509" 9

The netFilter field must refer to a network ID when the virtual machine is deployed on RHOSP.

ﬂ The numVfs field is always set to 1 when configuring the node network policy for a virtual machine.
Valid values for netFilter are available from an SriovNetworkNodeState object.

21.4.1.2. Virtual function (VF) partitioning for SR-IOV devices

In some cases, you might want to split virtual functions (VFs) from the same physical function (PF) into
multiple resource pools. For example, you might want some of the VFs to load with the default driver
and the remaining VF's load with the vfio-pci driver. In such a deployment, the pfNames selector in your
SriovNetworkNodePolicy custom resource (CR) can be used to specify a range of VFs for a pool using
the following format: <pfname>#<first_vf>-<last vfs.

For example, the following YAML shows the selector for an interface named netpf0 with VF 2 through 7:
I pfNames: ["netpfO#2-7"]

e netpf0 is the PF interface name.
® 2isthe first VF index (O-based) that is included in the range.
® 7is the last VF index (O-based) that is included in the range.

You can select VFs from the same PF by using different policy CRs if the following requirements are
met:

® The numVfs value must be identical for policies that select the same PF.

® The VF index must be in the range of 0 to <numVfs>-1. For example, if you have a policy with
numVfs set to 8, then the <first_vf> value must not be smaller than 0, and the <last_vf> must
not be larger than 7.

® The VFsranges in different policies must not overlap.

® The <first_vf> must not be larger than the <last_vf>.

274

CHAPTER 21. HARDWARE NETWORKS

The following example illustrates NIC partitioning for an SR-IOV device.

The policy policy-net-1 defines a resource pool net-1 that contains the VF 0 of PF netpf0 with the
default VF driver. The policy policy-net-1-dpdk defines a resource pool net-1-dpdk that contains the
VF 8 to 15 of PF netpf0 with the vfio VF driver.

Policy policy-net-1:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: policy-net-1
namespace: openshift-sriov-network-operator
spec:
resourceName: net1
nodeSelector:
feature.node.kubernetes.io/network-sriov.capable: "true"
numVfs: 16
nicSelector:
pfNames: ["'netpf0#0-0"]
deviceType: netdevice

Policy policy-net-1-dpdk:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
name: policy-net-1-dpdk
namespace: openshift-sriov-network-operator
spec:
resourceName: net1dpdk
nodeSelector:
feature.node.kubernetes.io/network-sriov.capable: "true"
numVfs: 16
nicSelector:
pfNames: ["'netpf0#8-15"]
deviceType: vfio-pci

Verifying that the interface is successfully partitioned

Confirm that the interface partitioned to virtual functions (VFs) for the SR-IOV device by running the
following command.

I $ ip link show <interface> ﬂ

Replace <interface> with the interface that you specified when partitioning to VFs for the SR-IOV
device, for example, ens3f1.

Example output

5: ens3f1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc mq state UP mode
DEFAULT group default glen 1000
link/ether 3c:fd:fe:d1:bc:01 brd ff:ff:ff:ff:ff:ff

275

OpenShift Container Platform 4.11 Networking

viO
vf 1
vf 2
vf3
vf 4

21.4.2.

link/ether 5a:e7:88:25:ea:a0 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
link/ether 3e:1d:36:d7:3d:49 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
link/ether ce:09:56:97:df:f9 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off

link/ether 5e:91:cf:88:d1:38 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off
link/ether €6:06:a1:96:2f:de brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off

Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovhetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

IOV Operator might drain the nodes, and in some cases, reboot nodes.

It might take several minutes for a configuration change to apply.

Prerequisites

You installed the OpenShift CLI (o¢).
You have access to the cluster as a user with the cluster-admin role.
You have installed the SR-IOV Network Operator.

You have enough available nodes in your cluster to handle the evicted workload from drained
nodes.

You have not selected any control plane nodes for SR-IOV network device configuration.

Procedure

1.

2.

276

Create an SriovNetworkNodePolicy object, and then save the YAML in the <name>-sriov-
node-network.yaml file. Replace <name> with the name for this configuration.

Optional: Label the SR-IOV capable cluster nodes with
SriovNetworkNodePolicy.Spec.NodeSelector if they are not already labeled. For more

information about labeling nodes, see "Understanding how to update labels on nodes".

Create the SriovNetworkNodePolicy object:
I $ oc create -f <name>-sriov-node-network.yami

where <names specifies the name for this configuration.

After applying the configuration update, all the pods in sriov-network-operator namespace
transition to the Running status.

. To verify that the SR-IOV network device is configured, enter the following command. Replace

<node_name> with the name of a node with the SR-IOV network device that you just
configured.

When applying the configuration specified in a SriovNetworkNodePolicy object, the SR-

CHAPTER 21. HARDWARE NETWORKS

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -0
jsonpath="{.status.syncStatus}'

Additional resources

® Understanding how to update labels on nodes .

21.4.3. Troubleshooting SR-IOV configuration

After following the procedure to configure an SR-IOV network device, the following sections address
some error conditions.

To display the state of nodes, run the following command:

I $ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name>

where: <node_name> specifies the name of a node with an SR-IOV network device.

Error output: Cannot allocate memory
I "lastSyncError": "write /sys/bus/pci/devices/0000:3b:00.1/sriov_numvfs: cannot allocate memory"

When a node indicates that it cannot allocate memory, check the following items:
e Confirm that global SR-IOV settings are enabled in the BIOS for the node.

e Confirm that VT-d is enabled in the BIOS for the node.

21.4.4. Assig