
OpenShift Container Platform 4.11

CI/CD

Contains information on builds for OpenShift Container Platform

Last Updated: 2024-02-07

OpenShift Container Platform 4.11 CI/CD

Contains information on builds for OpenShift Container Platform

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Builds for the OpenShift Container Platform

. .

. .

Table of Contents

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD OVERVIEW
1.1. OPENSHIFT BUILDS
1.2. OPENSHIFT PIPELINES
1.3. OPENSHIFT GITOPS
1.4. JENKINS

CHAPTER 2. BUILDS
2.1. UNDERSTANDING IMAGE BUILDS

2.1.1. Builds
2.1.1.1. Docker build
2.1.1.2. Source-to-image build
2.1.1.3. Custom build
2.1.1.4. Pipeline build

2.2. UNDERSTANDING BUILD CONFIGURATIONS
2.2.1. BuildConfigs

2.3. CREATING BUILD INPUTS
2.3.1. Build inputs
2.3.2. Dockerfile source
2.3.3. Image source
2.3.4. Git source

2.3.4.1. Using a proxy
2.3.4.2. Source Clone Secrets

2.3.4.2.1. Automatically adding a source clone secret to a build configuration
2.3.4.2.2. Manually adding a source clone secret
2.3.4.2.3. Creating a secret from a .gitconfig file
2.3.4.2.4. Creating a secret from a .gitconfig file for secured Git
2.3.4.2.5. Creating a secret from source code basic authentication
2.3.4.2.6. Creating a secret from source code SSH key authentication
2.3.4.2.7. Creating a secret from source code trusted certificate authorities
2.3.4.2.8. Source secret combinations

2.3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file
2.3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate
2.3.4.2.8.3. Creating a basic authentication secret with a CA certificate
2.3.4.2.8.4. Creating a basic authentication secret with a .gitconfig file
2.3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

2.3.5. Binary (local) source
2.3.6. Input secrets and config maps

2.3.6.1. What is a secret?
2.3.6.1.1. Properties of secrets
2.3.6.1.2. Types of Secrets
2.3.6.1.3. Updates to secrets

2.3.6.2. Creating secrets
2.3.6.3. Using secrets
2.3.6.4. Adding input secrets and config maps
2.3.6.5. Source-to-image strategy
2.3.6.6. Docker strategy
2.3.6.7. Custom strategy

2.3.7. External artifacts
2.3.8. Using docker credentials for private registries
2.3.9. Build environments

2.3.9.1. Using build fields as environment variables

6
6
6
6
6

7
7
7
7
7
8
8
8
8

10
10
11
11

13
14
14
14
16
16
17
18
18
19

20
20
20
20
21
21
22
23
23
24
24
25
25
26
28
30
30
31
31
32
34
35

Table of Contents

1

2.3.9.2. Using secrets as environment variables
2.3.10. Service serving certificate secrets
2.3.11. Secrets restrictions

2.4. MANAGING BUILD OUTPUT
2.4.1. Build output
2.4.2. Output image environment variables
2.4.3. Output image labels

2.5. USING BUILD STRATEGIES
2.5.1. Docker build

2.5.1.1. Replacing Dockerfile FROM image
2.5.1.2. Using Dockerfile path
2.5.1.3. Using docker environment variables
2.5.1.4. Adding docker build arguments
2.5.1.5. Squashing layers with docker builds
2.5.1.6. Using build volumes

2.5.2. Source-to-image build
2.5.2.1. Performing source-to-image incremental builds
2.5.2.2. Overriding source-to-image builder image scripts
2.5.2.3. Source-to-image environment variables

2.5.2.3.1. Using source-to-image environment files
2.5.2.3.2. Using source-to-image build configuration environment

2.5.2.4. Ignoring source-to-image source files
2.5.2.5. Creating images from source code with source-to-image

2.5.2.5.1. Understanding the source-to-image build process
2.5.2.5.2. How to write source-to-image scripts

2.5.2.6. Using build volumes
2.5.3. Custom build

2.5.3.1. Using FROM image for custom builds
2.5.3.2. Using secrets in custom builds
2.5.3.3. Using environment variables for custom builds
2.5.3.4. Using custom builder images

2.5.3.4.1. Custom builder image
2.5.3.4.2. Custom builder workflow

2.5.4. Pipeline build
2.5.4.1. Understanding OpenShift Container Platform pipelines
2.5.4.2. Providing the Jenkins file for pipeline builds
2.5.4.3. Using environment variables for pipeline builds

2.5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters
2.5.4.4. Pipeline build tutorial

2.5.5. Adding secrets with web console
2.5.6. Enabling pulling and pushing

2.6. CUSTOM IMAGE BUILDS WITH BUILDAH
2.6.1. Prerequisites
2.6.2. Creating custom build artifacts
2.6.3. Build custom builder image
2.6.4. Use custom builder image

2.7. PERFORMING AND CONFIGURING BASIC BUILDS
2.7.1. Starting a build

2.7.1.1. Re-running a build
2.7.1.2. Streaming build logs
2.7.1.3. Setting environment variables when starting a build
2.7.1.4. Starting a build with source

2.7.2. Canceling a build

35
36
36
37
37
37
38
39
39
39
39
39
40
40
41

42
42
43
43
43
44
44
44
44
45
47
48
49
49
49
50
50
51
51
51
52
54
54
55
59
60
60
60
60
61

62
63
63
63
64
64
64
65

OpenShift Container Platform 4.11 CI/CD

2

2.7.2.1. Canceling multiple builds
2.7.2.2. Canceling all builds
2.7.2.3. Canceling all builds in a given state

2.7.3. Editing a BuildConfig
2.7.4. Deleting a BuildConfig
2.7.5. Viewing build details
2.7.6. Accessing build logs

2.7.6.1. Accessing BuildConfig logs
2.7.6.2. Accessing BuildConfig logs for a given version build
2.7.6.3. Enabling log verbosity

2.8. TRIGGERING AND MODIFYING BUILDS
2.8.1. Build triggers

2.8.1.1. Webhook triggers
2.8.1.1.1. Using GitHub webhooks
2.8.1.1.2. Using GitLab webhooks
2.8.1.1.3. Using Bitbucket webhooks
2.8.1.1.4. Using generic webhooks
2.8.1.1.5. Displaying webhook URLs

2.8.1.2. Using image change triggers
2.8.1.3. Identifying the image change trigger of a build
2.8.1.4. Configuration change triggers

2.8.1.4.1. Setting triggers manually
2.8.2. Build hooks

2.8.2.1. Configuring post commit build hooks
2.8.2.2. Using the CLI to set post commit build hooks

2.9. PERFORMING ADVANCED BUILDS
2.9.1. Setting build resources
2.9.2. Setting maximum duration
2.9.3. Assigning builds to specific nodes
2.9.4. Chained builds
2.9.5. Pruning builds
2.9.6. Build run policy

2.10. USING RED HAT SUBSCRIPTIONS IN BUILDS
2.10.1. Creating an image stream tag for the Red Hat Universal Base Image
2.10.2. Adding subscription entitlements as a build secret
2.10.3. Running builds with Subscription Manager

2.10.3.1. Docker builds using Subscription Manager
2.10.4. Running builds with Red Hat Satellite subscriptions

2.10.4.1. Adding Red Hat Satellite configurations to builds
2.10.4.2. Docker builds using Red Hat Satellite subscriptions

2.10.5. Running entitled builds using SharedSecret objects
2.10.6. Additional resources

2.11. SECURING BUILDS BY STRATEGY
2.11.1. Disabling access to a build strategy globally
2.11.2. Restricting build strategies to users globally
2.11.3. Restricting build strategies to a user within a project

2.12. BUILD CONFIGURATION RESOURCES
2.12.1. Build controller configuration parameters
2.12.2. Configuring build settings

2.13. TROUBLESHOOTING BUILDS
2.13.1. Resolving denial for access to resources
2.13.2. Service certificate generation failure

2.14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS

65
65
65
65
67
67
68
68
68
68
69
69
69
70
72
73
73
75
75
77
79
79
80
80
81
81
81

82
82
83
85
85
86
86
87
88
88
88
88
89
89
94
94
94
96
96
97
97
98
99

100
100
100

Table of Contents

3

. .

. .

. .

2.14.1. Adding certificate authorities to the cluster
2.14.2. Additional resources

CHAPTER 3. PIPELINES
3.1. ABOUT RED HAT OPENSHIFT PIPELINES

CHAPTER 4. GITOPS
4.1. ABOUT RED HAT OPENSHIFT GITOPS

4.1.1. Key features
4.1.2. Additional resources

CHAPTER 5. JENKINS
5.1. CONFIGURING JENKINS IMAGES

5.1.1. Configuration and customization
5.1.1.1. OpenShift Container Platform OAuth authentication
5.1.1.2. Jenkins authentication

5.1.2. Jenkins environment variables
5.1.3. Providing Jenkins cross project access
5.1.4. Jenkins cross volume mount points
5.1.5. Customizing the Jenkins image through source-to-image
5.1.6. Configuring the Jenkins Kubernetes plugin
5.1.7. Jenkins permissions
5.1.8. Creating a Jenkins service from a template
5.1.9. Using the Jenkins Kubernetes plugin
5.1.10. Jenkins memory requirements
5.1.11. Additional resources

5.2. JENKINS AGENT
5.2.1. Jenkins agent images
5.2.2. Jenkins agent environment variables
5.2.3. Jenkins agent memory requirements
5.2.4. Jenkins agent Gradle builds
5.2.5. Jenkins agent pod retention

5.3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON
5.3.1. Comparison of Jenkins and OpenShift Pipelines concepts

5.3.1.1. Jenkins terminology
5.3.1.2. OpenShift Pipelines terminology
5.3.1.3. Mapping of concepts

5.3.2. Migrating a sample pipeline from Jenkins to OpenShift Pipelines
5.3.2.1. Jenkins pipeline
5.3.2.2. OpenShift Pipelines pipeline

5.3.3. Migrating from Jenkins plugins to Tekton Hub tasks
5.3.4. Extending OpenShift Pipelines capabilities using custom tasks and scripts
5.3.5. Comparison of Jenkins and OpenShift Pipelines execution models
5.3.6. Examples of common use cases

5.3.6.1. Running a Maven pipeline in Jenkins and OpenShift Pipelines
5.3.6.2. Extending the core capabilities of Jenkins and OpenShift Pipelines by using plugins
5.3.6.3. Sharing reusable code in Jenkins and OpenShift Pipelines

5.3.7. Additional resources
5.4. IMPORTANT CHANGES TO OPENSHIFT JENKINS IMAGES

5.4.1. Relocation of OpenShift Jenkins images
5.4.2. Customizing the Jenkins image stream tag
5.4.3. Additional resources

101
101

102
102

103
103
104
104

105
105
105
105
106
107
110
111
111

112
117
117
118
121
121
121
122
123
124
124
125
126
126
126
126
127
127
127
128
129
130
131
131
131

134
134
134
134
135
136
137

OpenShift Container Platform 4.11 CI/CD

4

Table of Contents

5

CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD
OVERVIEW

OpenShift Container Platform is an enterprise-ready Kubernetes platform for developers, which enables
organizations to automate the application delivery process through DevOps practices, such as
continuous integration (CI) and continuous delivery (CD). To meet your organizational needs, the
OpenShift Container Platform provides the following CI/CD solutions:

OpenShift Builds

OpenShift Pipelines

OpenShift GitOps

1.1. OPENSHIFT BUILDS

With OpenShift Builds, you can create cloud-native apps by using a declarative build process. You can
define the build process in a YAML file that you use to create a BuildConfig object. This definition
includes attributes such as build triggers, input parameters, and source code. When deployed, the
BuildConfig object typically builds a runnable image and pushes it to a container image registry.

OpenShift Builds provides the following extensible support for build strategies:

Docker build

Source-to-image (S2I) build

Custom build

For more information, see Understanding image builds

1.2. OPENSHIFT PIPELINES

OpenShift Pipelines provides a Kubernetes-native CI/CD framework to design and run each step of the
CI/CD pipeline in its own container. It can scale independently to meet the on-demand pipelines with
predictable outcomes.

For more information, see Understanding OpenShift Pipelines .

1.3. OPENSHIFT GITOPS

OpenShift GitOps is an Operator that uses Argo CD as the declarative GitOps engine. It enables GitOps
workflows across multicluster OpenShift and Kubernetes infrastructure. Using OpenShift GitOps,
administrators can consistently configure and deploy Kubernetes-based infrastructure and applications
across clusters and development lifecycles.

For more information, see About Red Hat OpenShift GitOps .

1.4. JENKINS

Jenkins automates the process of building, testing, and deploying applications and projects. OpenShift
Developer Tools provides a Jenkins image that integrates directly with the OpenShift Container
Platform. Jenkins can be deployed on OpenShift by using the Samples Operator templates or certified
Helm chart.

OpenShift Container Platform 4.11 CI/CD

6

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#understanding-image-builds
https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#about-redhat-openshift-gitops

CHAPTER 2. BUILDS

2.1. UNDERSTANDING IMAGE BUILDS

2.1.1. Builds

A build is the process of transforming input parameters into a resulting object. Most often, the process
is used to transform input parameters or source code into a runnable image. A BuildConfig object is the
definition of the entire build process.

OpenShift Container Platform uses Kubernetes by creating containers from build images and pushing
them to a container image registry.

Build objects share common characteristics including inputs for a build, the requirement to complete a
build process, logging the build process, publishing resources from successful builds, and publishing the
final status of the build. Builds take advantage of resource restrictions, specifying limitations on
resources such as CPU usage, memory usage, and build or pod execution time.

The OpenShift Container Platform build system provides extensible support for build strategies that are
based on selectable types specified in the build API. There are three primary build strategies available:

Docker build

Source-to-image (S2I) build

Custom build

By default, docker builds and S2I builds are supported.

The resulting object of a build depends on the builder used to create it. For docker and S2I builds, the
resulting objects are runnable images. For custom builds, the resulting objects are whatever the builder
image author has specified.

Additionally, the pipeline build strategy can be used to implement sophisticated workflows:

Continuous integration

Continuous deployment

2.1.1.1. Docker build

OpenShift Container Platform uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

2.1.1.2. Source-to-image build

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah

CHAPTER 2. BUILDS

7

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

run command. S2I supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

2.1.1.3. Custom build

The custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base images.

Custom builds run with a high level of privilege and are not available to users by default. Only users who
can be trusted with cluster administration permissions should be granted access to run custom builds.

2.1.1.4. Pipeline build

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The Pipeline build strategy allows developers to define a Jenkins pipeline for use by the Jenkins pipeline
plugin. The build can be started, monitored, and managed by OpenShift Container Platform in the same
way as any other build type.

Pipeline workflows are defined in a jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

2.2. UNDERSTANDING BUILD CONFIGURATIONS

The following sections define the concept of a build, build configuration, and outline the primary build
strategies available.

2.2.1. BuildConfigs

A build configuration describes a single build definition and a set of triggers for when a new build is
created. Build configurations are defined by a BuildConfig, which is a REST object that can be used in a
POST to the API server to create a new instance.

A build configuration, or BuildConfig, is characterized by a build strategy and one or more sources. The
strategy determines the process, while the sources provide its input.

Depending on how you choose to create your application using OpenShift Container Platform, a
BuildConfig is typically generated automatically for you if you use the web console or CLI, and it can be
edited at any time. Understanding the parts that make up a BuildConfig and their available options can
help if you choose to manually change your configuration later.

The following example BuildConfig results in a new build every time a container image tag or the source
code changes:

OpenShift Container Platform 4.11 CI/CD

8

1

2

3

4

5

6

7

BuildConfig object definition

This specification creates a new BuildConfig named ruby-sample-build.

The runPolicy field controls whether builds created from this build configuration can be run
simultaneously. The default value is Serial, which means new builds run sequentially, not
simultaneously.

You can specify a list of triggers, which cause a new build to be created.

The source section defines the source of the build. The source type determines the primary
source of input, and can be either Git, to point to a code repository location, Dockerfile, to build
from an inline Dockerfile, or Binary, to accept binary payloads. It is possible to have multiple
sources at once. See the documentation for each source type for details.

The strategy section describes the build strategy used to execute the build. You can specify a
Source , Docker, or Custom strategy here. This example uses the ruby-20-centos7 container
image that Source-to-image (S2I) uses for the application build.

After the container image is successfully built, it is pushed into the repository described in the
output section.

The postCommit section defines an optional build hook.

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: "ruby-sample-build" 1
spec:
 runPolicy: "Serial" 2
 triggers: 3
 -
 type: "GitHub"
 github:
 secret: "secret101"
 - type: "Generic"
 generic:
 secret: "secret101"
 -
 type: "ImageChange"
 source: 4
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy: 5
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"
 output: 6
 to:
 kind: "ImageStreamTag"
 name: "origin-ruby-sample:latest"
 postCommit: 7
 script: "bundle exec rake test"

CHAPTER 2. BUILDS

9

2.3. CREATING BUILD INPUTS

Use the following sections for an overview of build inputs, instructions on how to use inputs to provide
source content for builds to operate on, and how to use build environments and create secrets.

2.3.1. Build inputs

A build input provides source content for builds to operate on. You can use the following build inputs to
provide sources in OpenShift Container Platform, listed in order of precedence:

Inline Dockerfile definitions

Content extracted from existing images

Git repositories

Binary (Local) inputs

Input secrets

External artifacts

You can combine multiple inputs in a single build. However, as the inline Dockerfile takes precedence, it
can overwrite any other file named Dockerfile provided by another input. Binary (local) input and Git
repositories are mutually exclusive inputs.

You can use input secrets when you do not want certain resources or credentials used during a build to
be available in the final application image produced by the build, or want to consume a value that is
defined in a secret resource. External artifacts can be used to pull in additional files that are not available
as one of the other build input types.

When you run a build:

1. A working directory is constructed and all input content is placed in the working directory. For
example, the input Git repository is cloned into the working directory, and files specified from
input images are copied into the working directory using the target path.

2. The build process changes directories into the contextDir, if one is defined.

3. The inline Dockerfile, if any, is written to the current directory.

4. The content from the current directory is provided to the build process for reference by the
Dockerfile, custom builder logic, or assemble script. This means any input content that resides
outside the contextDir is ignored by the build.

The following example of a source definition includes multiple input types and an explanation of how
they are combined. For more details on how each input type is defined, see the specific sections for
each input type.

source:
 git:
 uri: https://github.com/openshift/ruby-hello-world.git 1
 ref: "master"
 images:
 - from:
 kind: ImageStreamTag

OpenShift Container Platform 4.11 CI/CD

10

1

2

3

4

1

The repository to be cloned into the working directory for the build.

/usr/lib/somefile.jar from myinputimage is stored in <workingdir>/app/dir/injected/dir.

The working directory for the build becomes <original_workingdir>/app/dir.

A Dockerfile with this content is created in <original_workingdir>/app/dir, overwriting any existing
file with that name.

2.3.2. Dockerfile source

When you supply a dockerfile value, the content of this field is written to disk as a file named dockerfile.
This is done after other input sources are processed, so if the input source repository contains a
Dockerfile in the root directory, it is overwritten with this content.

The source definition is part of the spec section in the BuildConfig:

The dockerfile field contains an inline Dockerfile that is built.

Additional resources

The typical use for this field is to provide a Dockerfile to a docker strategy build.

2.3.3. Image source

You can add additional files to the build process with images. Input images are referenced in the same
way the From and To image targets are defined. This means both container images and image stream
tags can be referenced. In conjunction with the image, you must provide one or more path pairs to
indicate the path of the files or directories to copy the image and the destination to place them in the
build context.

The source path can be any absolute path within the image specified. The destination must be a relative
directory path. At build time, the image is loaded and the indicated files and directories are copied into
the context directory of the build process. This is the same directory into which the source repository
content is cloned. If the source path ends in /. then the content of the directory is copied, but the
directory itself is not created at the destination.

Image inputs are specified in the source definition of the BuildConfig:

 name: myinputimage:latest
 namespace: mynamespace
 paths:
 - destinationDir: app/dir/injected/dir 2
 sourcePath: /usr/lib/somefile.jar
 contextDir: "app/dir" 3
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4

source:
 dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1

source:
 git:

CHAPTER 2. BUILDS

11

1

2

3

4

5

6

An array of one or more input images and files.

A reference to the image containing the files to be copied.

An array of source/destination paths.

The directory relative to the build root where the build process can access the file.

The location of the file to be copied out of the referenced image.

An optional secret provided if credentials are needed to access the input image.

NOTE

If your cluster uses an ImageContentSourcePolicy object to configure repository
mirroring, you can use only global pull secrets for mirrored registries. You cannot add
a pull secret to a project.

Images that require pull secrets

When using an input image that requires a pull secret, you can link the pull secret to the service account
used by the build. By default, builds use the builder service account. The pull secret is automatically
added to the build if the secret contains a credential that matches the repository hosting the input
image. To link a pull secret to the service account used by the build, run:

NOTE

This feature is not supported for builds using the custom strategy.

Images on mirrored registries that require pull secrets

When using an input image from a mirrored registry, if you get a build error: failed to pull image

 uri: https://github.com/openshift/ruby-hello-world.git
 ref: "master"
 images: 1
 - from: 2
 kind: ImageStreamTag
 name: myinputimage:latest
 namespace: mynamespace
 paths: 3
 - destinationDir: injected/dir 4
 sourcePath: /usr/lib/somefile.jar 5
 - from:
 kind: ImageStreamTag
 name: myotherinputimage:latest
 namespace: myothernamespace
 pullSecret: mysecret 6
 paths:
 - destinationDir: injected/dir
 sourcePath: /usr/lib/somefile.jar

$ oc secrets link builder dockerhub

OpenShift Container Platform 4.11 CI/CD

12

1

2

3

When using an input image from a mirrored registry, if you get a build error: failed to pull image
message, you can resolve the error by using either of the following methods:

Create an input secret that contains the authentication credentials for the builder image’s
repository and all known mirrors. In this case, create a pull secret for credentials to the image
registry and its mirrors.

Use the input secret as the pull secret on the BuildConfig object.

2.3.4. Git source

When specified, source code is fetched from the supplied location.

If you supply an inline Dockerfile, it overwrites the Dockerfile in the contextDir of the Git repository.

The source definition is part of the spec section in the BuildConfig:

The git field contains the Uniform Resource Identifier (URI) to the remote Git repository of the
source code. You must specify the value of the ref field to check out a specific Git reference. A
valid ref can be a SHA1 tag or a branch name. The default value of the ref field is master.

The contextDir field allows you to override the default location inside the source code repository
where the build looks for the application source code. If your application exists inside a sub-
directory, you can override the default location (the root folder) using this field.

If the optional dockerfile field is provided, it should be a string containing a Dockerfile that
overwrites any Dockerfile that may exist in the source repository.

If the ref field denotes a pull request, the system uses a git fetch operation and then checkout
FETCH_HEAD.

When no ref value is provided, OpenShift Container Platform performs a shallow clone (--depth=1). In
this case, only the files associated with the most recent commit on the default branch (typically master)
are downloaded. This results in repositories downloading faster, but without the full commit history. To
perform a full git clone of the default branch of a specified repository, set ref to the name of the
default branch (for example main).

WARNING

Git clone operations that go through a proxy that is performing man in the middle
(MITM) TLS hijacking or reencrypting of the proxied connection do not work.

source:
 git: 1
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 contextDir: "app/dir" 2
 dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3



CHAPTER 2. BUILDS

13

2.3.4.1. Using a proxy

If your Git repository can only be accessed using a proxy, you can define the proxy to use in the source
section of the build configuration. You can configure both an HTTP and HTTPS proxy to use. Both fields
are optional. Domains for which no proxying should be performed can also be specified in the NoProxy
field.

NOTE

Your source URI must use the HTTP or HTTPS protocol for this to work.

NOTE

For Pipeline strategy builds, given the current restrictions with the Git plugin for Jenkins,
any Git operations through the Git plugin do not leverage the HTTP or HTTPS proxy
defined in the BuildConfig. The Git plugin only uses the proxy configured in the Jenkins
UI at the Plugin Manager panel. This proxy is then used for all git interactions within
Jenkins, across all jobs.

Additional resources

You can find instructions on how to configure proxies through the Jenkins UI at
JenkinsBehindProxy.

2.3.4.2. Source Clone Secrets

Builder pods require access to any Git repositories defined as source for a build. Source clone secrets
are used to provide the builder pod with access it would not normally have access to, such as private
repositories or repositories with self-signed or untrusted SSL certificates.

The following source clone secret configurations are supported:

.gitconfig File

Basic Authentication

SSH Key Authentication

Trusted Certificate Authorities

NOTE

You can also use combinations of these configurations to meet your specific needs.

2.3.4.2.1. Automatically adding a source clone secret to a build configuration

source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 ref: "master"
 httpProxy: http://proxy.example.com
 httpsProxy: https://proxy.example.com
 noProxy: somedomain.com, otherdomain.com

OpenShift Container Platform 4.11 CI/CD

14

https://wiki.jenkins-ci.org/display/JENKINS/JenkinsBehindProxy

When a BuildConfig is created, OpenShift Container Platform can automatically populate its source
clone secret reference. This behavior allows the resulting builds to automatically use the credentials
stored in the referenced secret to authenticate to a remote Git repository, without requiring further
configuration.

To use this functionality, a secret containing the Git repository credentials must exist in the namespace
in which the BuildConfig is later created. This secrets must include one or more annotations prefixed
with build.openshift.io/source-secret-match-uri-. The value of each of these annotations is a Uniform
Resource Identifier (URI) pattern, which is defined as follows. When a BuildConfig is created without a
source clone secret reference and its Git source URI matches a URI pattern in a secret annotation,
OpenShift Container Platform automatically inserts a reference to that secret in the BuildConfig.

Prerequisites

A URI pattern must consist of:

A valid scheme: *://, git://, http://, https:// or ssh://

A host: *` or a valid hostname or IP address optionally preceded by *.

A path: /* or / followed by any characters optionally including * characters

In all of the above, a * character is interpreted as a wildcard.

IMPORTANT

URI patterns must match Git source URIs which are conformant to RFC3986. Do not
include a username (or password) component in a URI pattern.

For example, if you use ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN jira.git
for a git repository URL, the source secret must be specified as
ssh://bitbucket.atlassian.com:7999/* (and not
ssh://git@bitbucket.atlassian.com:7999/*).

Procedure

If multiple secrets match the Git URI of a particular BuildConfig, OpenShift Container Platform selects
the secret with the longest match. This allows for basic overriding, as in the following example.

The following fragment shows two partial source clone secrets, the first matching any server in the
domain mycorp.com accessed by HTTPS, and the second overriding access to servers
mydev1.mycorp.com and mydev2.mycorp.com:

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

kind: Secret
apiVersion: v1
metadata:
 name: matches-all-corporate-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
 ...

kind: Secret

CHAPTER 2. BUILDS

15

https://www.ietf.org/rfc/rfc3986.txt

Add a build.openshift.io/source-secret-match-uri- annotation to a pre-existing secret using:

2.3.4.2.2. Manually adding a source clone secret

Source clone secrets can be added manually to a build configuration by adding a sourceSecret field to
the source section inside the BuildConfig and setting it to the name of the secret that you created. In
this example, it is the basicsecret.

Procedure

You can also use the oc set build-secret command to set the source clone secret on an existing build
configuration.

To set the source clone secret on an existing build configuration, enter the following command:

2.3.4.2.3. Creating a secret from a .gitconfig file

If the cloning of your application is dependent on a .gitconfig file, then you can create a secret that
contains it. Add it to the builder service account and then your BuildConfig.

apiVersion: v1
metadata:
 name: override-for-my-dev-servers-https-only
 annotations:
 build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
 build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
 ...

$ oc annotate secret mysecret \
 'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'

apiVersion: "build.openshift.io/v1"
kind: "BuildConfig"
metadata:
 name: "sample-build"
spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"
 source:
 git:
 uri: "https://github.com/user/app.git"
 sourceSecret:
 name: "basicsecret"
 strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "python-33-centos7:latest"

$ oc set build-secret --source bc/sample-build basicsecret

OpenShift Container Platform 4.11 CI/CD

16

Procedure

To create a secret from a .gitconfig file:

NOTE

SSL verification can be turned off if sslVerify=false is set for the http section in your
.gitconfig file:

2.3.4.2.4. Creating a secret from a .gitconfig file for secured Git

If your Git server is secured with two-way SSL and user name with password, you must add the
certificate files to your source build and add references to the certificate files in the .gitconfig file.

Prerequisites

You must have Git credentials.

Procedure

Add the certificate files to your source build and add references to the certificate files in the .gitconfig
file.

1. Add the client.crt, cacert.crt, and client.key files to the /var/run/secrets/openshift.io/source/
folder in the application source code.

2. In the .gitconfig file for the server, add the [http] section shown in the following example:

Example output

3. Create the secret:

$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>

[http]
 sslVerify=false

cat .gitconfig

[user]
 name = <name>
 email = <email>
[http]
 sslVerify = false
 sslCert = /var/run/secrets/openshift.io/source/client.crt
 sslKey = /var/run/secrets/openshift.io/source/client.key
 sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

$ oc create secret generic <secret_name> \
--from-literal=username=<user_name> \ 1
--from-literal=password=<password> \ 2
--from-file=.gitconfig=.gitconfig \

CHAPTER 2. BUILDS

17

1

2

The user’s Git user name.

The password for this user.

IMPORTANT

To avoid having to enter your password again, be sure to specify the source-to-image
(S2I) image in your builds. However, if you cannot clone the repository, you must still
specify your user name and password to promote the build.

Additional resources

/var/run/secrets/openshift.io/source/ folder in the application source code.

2.3.4.2.5. Creating a secret from source code basic authentication

Basic authentication requires either a combination of --username and --password, or a token to
authenticate against the software configuration management (SCM) server.

Prerequisites

User name and password to access the private repository.

Procedure

1. Create the secret first before using the --username and --password to access the private
repository:

2. Create a basic authentication secret with a token:

2.3.4.2.6. Creating a secret from source code SSH key authentication

SSH key based authentication requires a private SSH key.

The repository keys are usually located in the $HOME/.ssh/ directory, and are named id_dsa.pub,
id_ecdsa.pub, id_ed25519.pub, or id_rsa.pub by default.

Procedure

1. Generate SSH key credentials:

--from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
--from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
--from-file=client.key=/var/run/secrets/openshift.io/source/client.key

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=password=<token> \
 --type=kubernetes.io/basic-auth

OpenShift Container Platform 4.11 CI/CD

18

1

NOTE

Creating a passphrase for the SSH key prevents OpenShift Container Platform
from building. When prompted for a passphrase, leave it blank.

Two files are created: the public key and a corresponding private key (one of id_dsa, id_ecdsa,
id_ed25519, or id_rsa). With both of these in place, consult your source control management
(SCM) system’s manual on how to upload the public key. The private key is used to access your
private repository.

2. Before using the SSH key to access the private repository, create the secret:

Optional: Adding this field enables strict server host key check.

WARNING

Skipping the known_hosts file while creating the secret makes the build
vulnerable to a potential man-in-the-middle (MITM) attack.

NOTE

Ensure that the known_hosts file includes an entry for the host of your source
code.

2.3.4.2.7. Creating a secret from source code trusted certificate authorities

The set of Transport Layer Security (TLS) certificate authorities (CA) that are trusted during a Git clone
operation are built into the OpenShift Container Platform infrastructure images. If your Git server uses a
self-signed certificate or one signed by an authority not trusted by the image, you can create a secret
that contains the certificate or disable TLS verification.

If you create a secret for the CA certificate, OpenShift Container Platform uses it to access your Git
server during the Git clone operation. Using this method is significantly more secure than disabling Git
SSL verification, which accepts any TLS certificate that is presented.

Procedure

Create a secret with a CA certificate file.

1. If your CA uses Intermediate Certificate Authorities, combine the certificates for all CAs in a
ca.crt file. Enter the following command:

$ ssh-keygen -t ed25519 -C "your_email@example.com"

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/known_hosts> \ 1
 --type=kubernetes.io/ssh-auth



CHAPTER 2. BUILDS

19

1

a. Create the secret:

You must use the key name ca.crt.

2.3.4.2.8. Source secret combinations

You can combine the different methods for creating source clone secrets for your specific needs.

2.3.4.2.8.1. Creating a SSH-based authentication secret with a .gitconfig file

You can combine the different methods for creating source clone secrets for your specific needs, such
as a SSH-based authentication secret with a .gitconfig file.

Prerequisites

SSH authentication

.gitconfig file

Procedure

To create a SSH-based authentication secret with a .gitconfig file, run:

2.3.4.2.8.2. Creating a secret that combines a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a .gitconfig file and certificate authority (CA) certificate.

Prerequisites

.gitconfig file

CA certificate

Procedure

To create a secret that combines a .gitconfig file and CA certificate, run:

2.3.4.2.8.3. Creating a basic authentication secret with a CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such

$ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt

$ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1

$ oc create secret generic <secret_name> \
 --from-file=ssh-privatekey=<path/to/ssh/private/key> \
 --from-file=<path/to/.gitconfig> \
 --type=kubernetes.io/ssh-auth

$ oc create secret generic <secret_name> \
 --from-file=ca.crt=<path/to/certificate> \
 --from-file=<path/to/.gitconfig>

OpenShift Container Platform 4.11 CI/CD

20

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and certificate authority (CA) certificate.

Prerequisites

Basic authentication credentials

CA certificate

Procedure

Create a basic authentication secret with a CA certificate, run:

2.3.4.2.8.4. Creating a basic authentication secret with a .gitconfig file

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication and .gitconfig file.

Prerequisites

Basic authentication credentials

.gitconfig file

Procedure

To create a basic authentication secret with a .gitconfig file, run:

2.3.4.2.8.5. Creating a basic authentication secret with a .gitconfig file and CA certificate

You can combine the different methods for creating source clone secrets for your specific needs, such
as a secret that combines a basic authentication, .gitconfig file, and certificate authority (CA)
certificate.

Prerequisites

Basic authentication credentials

.gitconfig file

CA certificate

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --type=kubernetes.io/basic-auth

CHAPTER 2. BUILDS

21

Procedure

To create a basic authentication secret with a .gitconfig file and CA certificate, run:

2.3.5. Binary (local) source

Streaming content from a local file system to the builder is called a Binary type build. The
corresponding value of BuildConfig.spec.source.type is Binary for these builds.

This source type is unique in that it is leveraged solely based on your use of the oc start-build.

NOTE

Binary type builds require content to be streamed from the local file system, so
automatically triggering a binary type build, like an image change trigger, is not possible.
This is because the binary files cannot be provided. Similarly, you cannot launch binary
type builds from the web console.

To utilize binary builds, invoke oc start-build with one of these options:

--from-file: The contents of the file you specify are sent as a binary stream to the builder. You
can also specify a URL to a file. Then, the builder stores the data in a file with the same name at
the top of the build context.

--from-dir and --from-repo: The contents are archived and sent as a binary stream to the
builder. Then, the builder extracts the contents of the archive within the build context directory.
With --from-dir, you can also specify a URL to an archive, which is extracted.

--from-archive: The archive you specify is sent to the builder, where it is extracted within the
build context directory. This option behaves the same as --from-dir; an archive is created on
your host first, whenever the argument to these options is a directory.

In each of the previously listed cases:

If your BuildConfig already has a Binary source type defined, it is effectively ignored and
replaced by what the client sends.

If your BuildConfig has a Git source type defined, it is dynamically disabled, since Binary and
Git are mutually exclusive, and the data in the binary stream provided to the builder takes
precedence.

Instead of a file name, you can pass a URL with HTTP or HTTPS schema to --from-file and --from-
archive. When using --from-file with a URL, the name of the file in the builder image is determined by
the Content-Disposition header sent by the web server, or the last component of the URL path if the
header is not present. No form of authentication is supported and it is not possible to use custom TLS
certificate or disable certificate validation.

When using oc new-build --binary=true, the command ensures that the restrictions associated with

$ oc create secret generic <secret_name> \
 --from-literal=username=<user_name> \
 --from-literal=password=<password> \
 --from-file=</path/to/.gitconfig> \
 --from-file=ca-cert=</path/to/file> \
 --type=kubernetes.io/basic-auth

OpenShift Container Platform 4.11 CI/CD

22

binary builds are enforced. The resulting BuildConfig has a source type of Binary, meaning that the
only valid way to run a build for this BuildConfig is to use oc start-build with one of the --from options
to provide the requisite binary data.

The Dockerfile and contextDir source options have special meaning with binary builds.

Dockerfile can be used with any binary build source. If Dockerfile is used and the binary stream is an
archive, its contents serve as a replacement Dockerfile to any Dockerfile in the archive. If Dockerfile is
used with the --from-file argument, and the file argument is named Dockerfile, the value from Dockerfile
replaces the value from the binary stream.

In the case of the binary stream encapsulating extracted archive content, the value of the contextDir
field is interpreted as a subdirectory within the archive, and, if valid, the builder changes into that
subdirectory before executing the build.

2.3.6. Input secrets and config maps

IMPORTANT

To prevent the contents of input secrets and config maps from appearing in build output
container images, use build volumes in your Docker build and source-to-image build
strategies.

In some scenarios, build operations require credentials or other configuration data to access dependent
resources, but it is undesirable for that information to be placed in source control. You can define input
secrets and input config maps for this purpose.

For example, when building a Java application with Maven, you can set up a private mirror of Maven
Central or JCenter that is accessed by private keys. To download libraries from that private mirror, you
have to supply the following:

1. A settings.xml file configured with the mirror’s URL and connection settings.

2. A private key referenced in the settings file, such as ~/.ssh/id_rsa.

For security reasons, you do not want to expose your credentials in the application image.

This example describes a Java application, but you can use the same approach for adding SSL
certificates into the /etc/ssl/certs directory, API keys or tokens, license files, and more.

2.3.6.1. What is a secret?

The Secret object type provides a mechanism to hold sensitive information such as passwords,
OpenShift Container Platform client configuration files, dockercfg files, private source repository
credentials, and so on. Secrets decouple sensitive content from the pods. You can mount secrets into
containers using a volume plugin or the system can use secrets to perform actions on behalf of a pod.

YAML Secret Object Definition

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
 namespace: my-namespace
type: Opaque 1

CHAPTER 2. BUILDS

23

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-using-build-volumes_build-strategies-docker
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-using-build-volumes_build-strategies-s2i

1

2

3

4

5

Indicates the structure of the secret’s key names and values.

The allowable format for the keys in the data field must meet the guidelines in the
DNS_SUBDOMAIN value in the Kubernetes identifiers glossary.

The value associated with keys in the data map must be base64 encoded.

Entries in the stringData map are converted to base64 and the entry are then moved to the data
map automatically. This field is write-only. The value is only be returned by the data field.

The value associated with keys in the stringData map is made up of plain text strings.

2.3.6.1.1. Properties of secrets

Key properties include:

Secret data can be referenced independently from its definition.

Secret data volumes are backed by temporary file-storage facilities (tmpfs) and never come to
rest on a node.

Secret data can be shared within a namespace.

2.3.6.1.2. Types of Secrets

The value in the type field indicates the structure of the secret’s key names and values. The type can be
used to enforce the presence of user names and keys in the secret object. If you do not want validation,
use the opaque type, which is the default.

Specify one of the following types to trigger minimal server-side validation to ensure the presence of
specific key names in the secret data:

kubernetes.io/service-account-token. Uses a service account token.

kubernetes.io/dockercfg. Uses the .dockercfg file for required Docker credentials.

kubernetes.io/dockerconfigjson. Uses the .docker/config.json file for required Docker
credentials.

kubernetes.io/basic-auth. Use with basic authentication.

kubernetes.io/ssh-auth. Use with SSH key authentication.

kubernetes.io/tls. Use with TLS certificate authorities.

Specify type= Opaque if you do not want validation, which means the secret does not claim to conform
to any convention for key names or values. An opaque secret, allows for unstructured key:value pairs
that can contain arbitrary values.

NOTE

data: 2
 username: <username> 3
 password: <password>
stringData: 4
 hostname: myapp.mydomain.com 5

OpenShift Container Platform 4.11 CI/CD

24

NOTE

You can specify other arbitrary types, such as example.com/my-secret-type. These
types are not enforced server-side, but indicate that the creator of the secret intended to
conform to the key/value requirements of that type.

2.3.6.1.3. Updates to secrets

When you modify the value of a secret, the value used by an already running pod does not dynamically
change. To change a secret, you must delete the original pod and create a new pod, in some cases with
an identical PodSpec.

Updating a secret follows the same workflow as deploying a new container image. You can use the
kubectl rolling-update command.

The resourceVersion value in a secret is not specified when it is referenced. Therefore, if a secret is
updated at the same time as pods are starting, the version of the secret that is used for the pod is not
defined.

NOTE

Currently, it is not possible to check the resource version of a secret object that was used
when a pod was created. It is planned that pods report this information, so that a
controller could restart ones using an old resourceVersion. In the interim, do not update
the data of existing secrets, but create new ones with distinct names.

2.3.6.2. Creating secrets

You must create a secret before creating the pods that depend on that secret.

When creating secrets:

Create a secret object with secret data.

Update the pod service account to allow the reference to the secret.

Create a pod, which consumes the secret as an environment variable or as a file using a secret
volume.

Procedure

Use the create command to create a secret object from a JSON or YAML file:

For example, you can create a secret from your local .docker/config.json file:

This command generates a JSON specification of the secret named dockerhub and creates the
object.

YAML Opaque Secret Object Definition

$ oc create -f <filename>

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

CHAPTER 2. BUILDS

25

1

1

2

Specifies an opaque secret.

Docker Configuration JSON File Secret Object Definition

Specifies that the secret is using a docker configuration JSON file.

The output of a base64-encoded the docker configuration JSON file

2.3.6.3. Using secrets

After creating secrets, you can create a pod to reference your secret, get logs, and delete the pod.

Procedure

1. Create the pod to reference your secret:

2. Get the logs:

3. Delete the pod:

Additional resources

Example YAML files with secret data:

YAML Secret That Will Create Four Files

apiVersion: v1
kind: Secret
metadata:
 name: mysecret
type: Opaque 1
data:
 username: <username>
 password: <password>

apiVersion: v1
kind: Secret
metadata:
 name: aregistrykey
 namespace: myapps
type: kubernetes.io/dockerconfigjson 1
data:

.dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cg
YXV0aCBrZXlzCg== 2

$ oc create -f <your_yaml_file>.yaml

$ oc logs secret-example-pod

$ oc delete pod secret-example-pod

OpenShift Container Platform 4.11 CI/CD

26

1

2

3

4

File contains decoded values.

File contains decoded values.

File contains the provided string.

File contains the provided data.

YAML of a pod populating files in a volume with secret data

YAML of a pod populating environment variables with secret data

apiVersion: v1
kind: Secret
metadata:
 name: test-secret
data:
 username: <username> 1
 password: <password> 2
stringData:
 hostname: myapp.mydomain.com 3
 secret.properties: |- 4
 property1=valueA
 property2=valueB

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox
 command: ["/bin/sh", "-c", "cat /etc/secret-volume/*"]
 volumeMounts:
 # name must match the volume name below
 - name: secret-volume
 mountPath: /etc/secret-volume
 readOnly: true
 volumes:
 - name: secret-volume
 secret:
 secretName: test-secret
 restartPolicy: Never

apiVersion: v1
kind: Pod
metadata:
 name: secret-example-pod
spec:
 containers:
 - name: secret-test-container
 image: busybox

CHAPTER 2. BUILDS

27

YAML of a Build Config Populating Environment Variables with Secret Data

2.3.6.4. Adding input secrets and config maps

To provide credentials and other configuration data to a build without placing them in source control,
you can define input secrets and input config maps.

In some scenarios, build operations require credentials or other configuration data to access dependent
resources. To make that information available without placing it in source control, you can define input
secrets and input config maps.

Procedure

To add an input secret, config maps, or both to an existing BuildConfig object:

1. Create the ConfigMap object, if it does not exist:

This creates a new config map named settings-mvn, which contains the plain text content of
the settings.xml file.

TIP

 command: ["/bin/sh", "-c", "export"]
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username
 restartPolicy: Never

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: TEST_SECRET_USERNAME_ENV_VAR
 valueFrom:
 secretKeyRef:
 name: test-secret
 key: username

$ oc create configmap settings-mvn \
 --from-file=settings.xml=<path/to/settings.xml>

OpenShift Container Platform 4.11 CI/CD

28

TIP

You can alternatively apply the following YAML to create the config map:

2. Create the Secret object, if it does not exist:

This creates a new secret named secret-mvn, which contains the base64 encoded content of
the id_rsa private key.

TIP

You can alternatively apply the following YAML to create the input secret:

3. Add the config map and secret to the source section in the existing BuildConfig object:

To include the secret and config map in a new BuildConfig object, run the following command:

apiVersion: core/v1
kind: ConfigMap
metadata:
 name: settings-mvn
data:
 settings.xml: |
 <settings>
 … # Insert maven settings here
 </settings>

$ oc create secret generic secret-mvn \
 --from-file=ssh-privatekey=<path/to/.ssh/id_rsa>
 --type=kubernetes.io/ssh-auth

apiVersion: core/v1
kind: Secret
metadata:
 name: secret-mvn
type: kubernetes.io/ssh-auth
data:
 ssh-privatekey: |
 # Insert ssh private key, base64 encoded

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 secrets:
 - secret:
 name: secret-mvn

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \

CHAPTER 2. BUILDS

29

During the build, the settings.xml and id_rsa files are copied into the directory where the source code
is located. In OpenShift Container Platform S2I builder images, this is the image working directory, which
is set using the WORKDIR instruction in the Dockerfile. If you want to specify another directory, add a
destinationDir to the definition:

You can also specify the destination directory when creating a new BuildConfig object:

In both cases, the settings.xml file is added to the ./.m2 directory of the build environment, and the
id_rsa key is added to the ./.ssh directory.

2.3.6.5. Source-to-image strategy

When using a Source strategy, all defined input secrets are copied to their respective destinationDir. If
you left destinationDir empty, then the secrets are placed in the working directory of the builder image.

The same rule is used when a destinationDir is a relative path. The secrets are placed in the paths that
are relative to the working directory of the image. The final directory in the destinationDir path is
created if it does not exist in the builder image. All preceding directories in the destinationDir must
exist, or an error will occur.

NOTE

Input secrets are added as world-writable, have 0666 permissions, and are truncated to
size zero after executing the assemble script. This means that the secret files exist in the
resulting image, but they are empty for security reasons.

Input config maps are not truncated after the assemble script completes.

2.3.6.6. Docker strategy

When using a docker strategy, you can add all defined input secrets into your container image using the
ADD and COPY instructions in your Dockerfile.

If you do not specify the destinationDir for a secret, then the files are copied into the same directory in

 --context-dir helloworld --build-secret “secret-mvn” \
 --build-config-map "settings-mvn"

source:
 git:
 uri: https://github.com/wildfly/quickstart.git
 contextDir: helloworld
 configMaps:
 - configMap:
 name: settings-mvn
 destinationDir: ".m2"
 secrets:
 - secret:
 name: secret-mvn
 destinationDir: ".ssh"

$ oc new-build \
 openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
 --context-dir helloworld --build-secret “secret-mvn:.ssh” \
 --build-config-map "settings-mvn:.m2"

OpenShift Container Platform 4.11 CI/CD

30

https://docs.docker.com/engine/reference/builder/#add
https://docs.docker.com/engine/reference/builder/#copy

If you do not specify the destinationDir for a secret, then the files are copied into the same directory in
which the Dockerfile is located. If you specify a relative path as destinationDir, then the secrets are
copied into that directory, relative to your Dockerfile location. This makes the secret files available to the
Docker build operation as part of the context directory used during the build.

Example of a Dockerfile referencing secret and config map data

FROM centos/ruby-22-centos7

USER root
COPY ./secret-dir /secrets
COPY ./config /

Create a shell script that will output secrets and ConfigMaps when the image is run
RUN echo '#!/bin/sh' > /input_report.sh
RUN echo '(test -f /secrets/secret1 && echo -n "secret1=" && cat /secrets/secret1)' >>
/input_report.sh
RUN echo '(test -f /config && echo -n "relative-configMap=" && cat /config)' >> /input_report.sh
RUN chmod 755 /input_report.sh

CMD ["/bin/sh", "-c", "/input_report.sh"]

IMPORTANT

Users normally remove their input secrets from the final application image so that the
secrets are not present in the container running from that image. However, the secrets
still exist in the image itself in the layer where they were added. This removal is part of the
Dockerfile itself.

To prevent the contents of input secrets and config maps from appearing in the build
output container images and avoid this removal process altogether, use build volumes in
your Docker build strategy instead.

2.3.6.7. Custom strategy

When using a Custom strategy, all the defined input secrets and config maps are available in the builder
container in the /var/run/secrets/openshift.io/build directory. The custom build image must use these
secrets and config maps appropriately. With the Custom strategy, you can define secrets as described in
Custom strategy options.

There is no technical difference between existing strategy secrets and the input secrets. However, your
builder image can distinguish between them and use them differently, based on your build use case.

The input secrets are always mounted into the /var/run/secrets/openshift.io/build directory, or your
builder can parse the $BUILD environment variable, which includes the full build object.

IMPORTANT

If a pull secret for the registry exists in both the namespace and the node, builds default
to using the pull secret in the namespace.

2.3.7. External artifacts

It is not recommended to store binary files in a source repository. Therefore, you must define a build

CHAPTER 2. BUILDS

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-using-build-volumes_build-strategies-docker

It is not recommended to store binary files in a source repository. Therefore, you must define a build
which pulls additional files, such as Java .jar dependencies, during the build process. How this is done
depends on the build strategy you are using.

For a Source build strategy, you must put appropriate shell commands into the assemble script:

.s2i/bin/assemble File

.s2i/bin/run File

For a Docker build strategy, you must modify the Dockerfile and invoke shell commands with the RUN
instruction:

Excerpt of Dockerfile

In practice, you may want to use an environment variable for the file location so that the specific file to
be downloaded can be customized using an environment variable defined on the BuildConfig, rather
than updating the Dockerfile or assemble script.

You can choose between different methods of defining environment variables:

Using the .s2i/environment file] (only for a Source build strategy)

Setting in BuildConfig

Providing explicitly using oc start-build --env (only for builds that are triggered manually)

2.3.8. Using docker credentials for private registries

You can supply builds with a .docker/config.json file with valid credentials for private container
registries. This allows you to push the output image into a private container image registry or pull a
builder image from the private container image registry that requires authentication.

You can supply credentials for multiple repositories within the same registry, each with credentials
specific to that registry path.

NOTE

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

#!/bin/sh
exec java -jar app.jar

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD ["java", "-jar", "app.jar"]

OpenShift Container Platform 4.11 CI/CD

32

https://docs.docker.com/engine/reference/builder/#run

1

2

3

4

5

NOTE

For the OpenShift Container Platform container image registry, this is not required
because secrets are generated automatically for you by OpenShift Container Platform.

The .docker/config.json file is found in your home directory by default and has the following format:

URL of the registry.

Encrypted password.

Email address for the login.

URL and credentials for a specific image in a namespace.

URL and credentials for a registry namespace.

You can define multiple container image registries or define multiple repositories in the same registry.
Alternatively, you can also add authentication entries to this file by running the docker login command.
The file will be created if it does not exist.

Kubernetes provides Secret objects, which can be used to store configuration and passwords.

Prerequisites

You must have a .docker/config.json file.

Procedure

1. Create the secret from your local .docker/config.json file:

This generates a JSON specification of the secret named dockerhub and creates the object.

2. Add a pushSecret field into the output section of the BuildConfig and set it to the name of
the secret that you created, which in the previous example is dockerhub:

auths:
 index.docker.io/v1/: 1
 auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
 email: "user@example.com" 3
 docker.io/my-namespace/my-user/my-image: 4
 auth: "GzhYWRGU6R2fbclabnRgbkSp=""
 email: "user@example.com"
 docker.io/my-namespace: 5
 auth: "GzhYWRGU6R2deesfrRgbkSp=""
 email: "user@example.com"

$ oc create secret generic dockerhub \
 --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
 --type=kubernetes.io/dockerconfigjson

spec:
 output:
 to:

CHAPTER 2. BUILDS

33

You can use the oc set build-secret command to set the push secret on the build
configuration:

You can also link the push secret to the service account used by the build instead of specifying
the pushSecret field. By default, builds use the builder service account. The push secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s output image.

3. Pull the builder container image from a private container image registry by specifying the
pullSecret field, which is part of the build strategy definition:

You can use the oc set build-secret command to set the pull secret on the build configuration:

NOTE

This example uses pullSecret in a Source build, but it is also applicable in Docker
and Custom builds.

You can also link the pull secret to the service account used by the build instead of specifying
the pullSecret field. By default, builds use the builder service account. The pull secret is
automatically added to the build if the secret contains a credential that matches the repository
hosting the build’s input image. To link the pull secret to the service account used by the build
instead of specifying the pullSecret field, run:

NOTE

You must specify a from image in the BuildConfig spec to take advantage of
this feature. Docker strategy builds generated by oc new-build or oc new-app
may not do this in some situations.

2.3.9. Build environments

 kind: "DockerImage"
 name: "private.registry.com/org/private-image:latest"
 pushSecret:
 name: "dockerhub"

$ oc set build-secret --push bc/sample-build dockerhub

$ oc secrets link builder dockerhub

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "docker.io/user/private_repository"
 pullSecret:
 name: "dockerhub"

$ oc set build-secret --pull bc/sample-build dockerhub

$ oc secrets link builder dockerhub

OpenShift Container Platform 4.11 CI/CD

34

As with pod environment variables, build environment variables can be defined in terms of references to
other resources or variables using the Downward API. There are some exceptions, which are noted.

You can also manage environment variables defined in the BuildConfig with the oc set env command.

NOTE

Referencing container resources using valueFrom in build environment variables is not
supported as the references are resolved before the container is created.

2.3.9.1. Using build fields as environment variables

You can inject information about the build object by setting the fieldPath environment variable source
to the JsonPath of the field from which you are interested in obtaining the value.

NOTE

Jenkins Pipeline strategy does not support valueFrom syntax for environment variables.

Procedure

Set the fieldPath environment variable source to the JsonPath of the field from which you are
interested in obtaining the value:

2.3.9.2. Using secrets as environment variables

You can make key values from secrets available as environment variables using the valueFrom syntax.

IMPORTANT

This method shows the secrets as plain text in the output of the build pod console. To
avoid this, use input secrets and config maps instead.

Procedure

To use a secret as an environment variable, set the valueFrom syntax:

env:
 - name: FIELDREF_ENV
 valueFrom:
 fieldRef:
 fieldPath: metadata.name

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: secret-example-bc
spec:
 strategy:
 sourceStrategy:
 env:
 - name: MYVAL
 valueFrom:

CHAPTER 2. BUILDS

35

Additional resources

Input secrets and config maps

2.3.10. Service serving certificate secrets

Service serving certificate secrets are intended to support complex middleware applications that need
out-of-the-box certificates. It has the same settings as the server certificates generated by the
administrator tooling for nodes and masters.

Procedure

To secure communication to your service, have the cluster generate a signed serving certificate/key pair
into a secret in your namespace.

Set the service.beta.openshift.io/serving-cert-secret-name annotation on your service with
the value set to the name you want to use for your secret.
Then, your PodSpec can mount that secret. When it is available, your pod runs. The certificate
is good for the internal service DNS name, <service.name>.<service.namespace>.svc.

The certificate and key are in PEM format, stored in tls.crt and tls.key respectively. The
certificate/key pair is automatically replaced when it gets close to expiration. View the expiration
date in the service.beta.openshift.io/expiry annotation on the secret, which is in RFC3339
format.

NOTE

In most cases, the service DNS name <service.name>.<service.namespace>.svc is not
externally routable. The primary use of <service.name>.<service.namespace>.svc is
for intracluster or intraservice communication, and with re-encrypt routes.

Other pods can trust cluster-created certificates, which are only signed for internal DNS names, by using
the certificate authority (CA) bundle in the /var/run/secrets/kubernetes.io/serviceaccount/service-
ca.crt file that is automatically mounted in their pod.

The signature algorithm for this feature is x509.SHA256WithRSA. To manually rotate, delete the
generated secret. A new certificate is created.

2.3.11. Secrets restrictions

To use a secret, a pod needs to reference the secret. A secret can be used with a pod in three ways:

To populate environment variables for containers.

As files in a volume mounted on one or more of its containers.

By kubelet when pulling images for the pod.

Volume type secrets write data into the container as a file using the volume mechanism.
imagePullSecrets use service accounts for the automatic injection of the secret into all pods in a
namespaces.

 secretKeyRef:
 key: myval
 name: mysecret

OpenShift Container Platform 4.11 CI/CD

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs

When a template contains a secret definition, the only way for the template to use the provided secret is
to ensure that the secret volume sources are validated and that the specified object reference actually
points to an object of type Secret. Therefore, a secret needs to be created before any pods that
depend on it. The most effective way to ensure this is to have it get injected automatically through the
use of a service account.

Secret API objects reside in a namespace. They can only be referenced by pods in that same
namespace.

Individual secrets are limited to 1MB in size. This is to discourage the creation of large secrets that would
exhaust apiserver and kubelet memory. However, creation of a number of smaller secrets could also
exhaust memory.

2.4. MANAGING BUILD OUTPUT

Use the following sections for an overview of and instructions for managing build output.

2.4.1. Build output

Builds that use the docker or source-to-image (S2I) strategy result in the creation of a new container
image. The image is then pushed to the container image registry specified in the output section of the
Build specification.

If the output kind is ImageStreamTag, then the image will be pushed to the integrated OpenShift
image registry and tagged in the specified imagestream. If the output is of type DockerImage, then the
name of the output reference will be used as a docker push specification. The specification may contain
a registry or will default to DockerHub if no registry is specified. If the output section of the build
specification is empty, then the image will not be pushed at the end of the build.

Output to an ImageStreamTag

Output to a docker Push Specification

2.4.2. Output image environment variables

docker and source-to-image (S2I) strategy builds set the following environment variables on output
images:

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "sample-image:latest"

spec:
 output:
 to:
 kind: "DockerImage"
 name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

CHAPTER 2. BUILDS

37

Variable Description

OPENSHIFT_BUILD_NAME Name of the build

OPENSHIFT_BUILD_NAMESPACE Namespace of the build

OPENSHIFT_BUILD_SOURCE The source URL of the build

OPENSHIFT_BUILD_REFERENCE The Git reference used in the build

OPENSHIFT_BUILD_COMMIT Source commit used in the build

Additionally, any user-defined environment variable, for example those configured with S2I] or docker
strategy options, will also be part of the output image environment variable list.

2.4.3. Output image labels

docker and source-to-image (S2I)` builds set the following labels on output images:

Label Description

io.openshift.build.commit.author Author of the source commit used in the build

io.openshift.build.commit.date Date of the source commit used in the build

io.openshift.build.commit.id Hash of the source commit used in the build

io.openshift.build.commit.message Message of the source commit used in the build

io.openshift.build.commit.ref Branch or reference specified in the source

io.openshift.build.source-location Source URL for the build

You can also use the BuildConfig.spec.output.imageLabels field to specify a list of custom labels that
will be applied to each image built from the build configuration.

Custom Labels to be Applied to Built Images

spec:
 output:
 to:
 kind: "ImageStreamTag"
 name: "my-image:latest"
 imageLabels:
 - name: "vendor"
 value: "MyCompany"
 - name: "authoritative-source-url"
 value: "registry.mycompany.com"

OpenShift Container Platform 4.11 CI/CD

38

2.5. USING BUILD STRATEGIES

The following sections define the primary supported build strategies, and how to use them.

2.5.1. Docker build

OpenShift Container Platform uses Buildah to build a container image from a Dockerfile. For more
information on building container images with Dockerfiles, see the Dockerfile reference documentation.

TIP

If you set Docker build arguments by using the buildArgs array, see Understand how ARG and FROM
interact in the Dockerfile reference documentation.

2.5.1.1. Replacing Dockerfile FROM image

You can replace the FROM instruction of the Dockerfile with the from of the BuildConfig object. If the
Dockerfile uses multi-stage builds, the image in the last FROM instruction will be replaced.

Procedure

To replace the FROM instruction of the Dockerfile with the from of the BuildConfig.

2.5.1.2. Using Dockerfile path

By default, docker builds use a Dockerfile located at the root of the context specified in the
BuildConfig.spec.source.contextDir field.

The dockerfilePath field allows the build to use a different path to locate your Dockerfile, relative to the
BuildConfig.spec.source.contextDir field. It can be a different file name than the default Dockerfile,
such as MyDockerfile, or a path to a Dockerfile in a subdirectory, such as dockerfiles/app1/Dockerfile.

Procedure

To use the dockerfilePath field for the build to use a different path to locate your Dockerfile, set:

2.5.1.3. Using docker environment variables

To make environment variables available to the docker build process and resulting image, you can add
environment variables to the dockerStrategy definition of the build configuration.

The environment variables defined there are inserted as a single ENV Dockerfile instruction right after
the FROM instruction, so that it can be referenced later on within the Dockerfile.

strategy:
 dockerStrategy:
 from:
 kind: "ImageStreamTag"
 name: "debian:latest"

strategy:
 dockerStrategy:
 dockerfilePath: dockerfiles/app1/Dockerfile

CHAPTER 2. BUILDS

39

https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

Procedure

The variables are defined during build and stay in the output image, therefore they will be present in any
container that runs that image as well.

For example, defining a custom HTTP proxy to be used during build and runtime:

You can also manage environment variables defined in the build configuration with the oc set env
command.

2.5.1.4. Adding docker build arguments

You can set docker build arguments using the buildArgs array. The build arguments are passed to
docker when a build is started.

TIP

See Understand how ARG and FROM interact in the Dockerfile reference documentation.

Procedure

To set docker build arguments, add entries to the buildArgs array, which is located in the
dockerStrategy definition of the BuildConfig object. For example:

NOTE

Only the name and value fields are supported. Any settings on the valueFrom field are
ignored.

2.5.1.5. Squashing layers with docker builds

Docker builds normally create a layer representing each instruction in a Dockerfile. Setting the
imageOptimizationPolicy to SkipLayers merges all instructions into a single layer on top of the base
image.

Procedure

Set the imageOptimizationPolicy to SkipLayers:

dockerStrategy:
...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

dockerStrategy:
...
 buildArgs:
 - name: "foo"
 value: "bar"

strategy:
 dockerStrategy:
 imageOptimizationPolicy: SkipLayers

OpenShift Container Platform 4.11 CI/CD

40

https://docs.docker.com/engine/reference/builder/#arg
https://docs.docker.com/engine/reference/builder/#understand-how-arg-and-from-interact

1 5 9

2 6 10

2.5.1.6. Using build volumes

You can mount build volumes to give running builds access to information that you don’t want to persist
in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment
or configuration only needs at build time. Build volumes are different from build inputs, whose data can
persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to
pod volume mounts.

Prerequisites

You have added an input secret, config map, or both to a BuildConfig object .

Procedure

In the dockerStrategy definition of the BuildConfig object, add any build volumes to the
volumes array. For example:

Required. A unique name.

Required. The absolute path of the mount point. It must not contain .. or : and doesn’t

spec:
 dockerStrategy:
 volumes:
 - name: secret-mvn 1
 mounts:
 - destinationPath: /opt/app-root/src/.ssh 2
 source:
 type: Secret 3
 secret:
 secretName: my-secret 4
 - name: settings-mvn 5
 mounts:
 - destinationPath: /opt/app-root/src/.m2 6
 source:
 type: ConfigMap 7
 configMap:
 name: my-config 8
 - name: my-csi-volume 9
 mounts:
 - destinationPath: /opt/app-root/src/some_path 10
 source:
 type: CSI 11
 csi:
 driver: csi.sharedresource.openshift.io 12
 readOnly: true 13
 volumeAttributes: 14
 attribute: value

CHAPTER 2. BUILDS

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-define-build-inputs_creating-build-inputs
https://kubernetes.io/docs/concepts/storage/volumes/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs

3 7 11

4 8

12

13

14

1

2

Required. The absolute path of the mount point. It must not contain .. or : and doesn’t
collide with the destination path generated by the builder. The /opt/app-root/src is the

Required. The type of source, ConfigMap, Secret, or CSI.

Required. The name of the source.

Required. The driver that provides the ephemeral CSI volume.

Required. This value must be set to true. Provides a read-only volume.

Optional. The volume attributes of the ephemeral CSI volume. Consult the CSI driver’s
documentation for supported attribute keys and values.

NOTE

The Shared Resource CSI Driver is supported as a Technology Preview feature.

2.5.2. Source-to-image build

Source-to-image (S2I) is a tool for building reproducible container images. It produces ready-to-run
images by injecting application source into a container image and assembling a new image. The new
image incorporates the base image, the builder, and built source and is ready to use with the buildah
run command. S2I supports incremental builds, which re-use previously downloaded dependencies,
previously built artifacts, and so on.

2.5.2.1. Performing source-to-image incremental builds

Source-to-image (S2I) can perform incremental builds, which means it reuses artifacts from previously-
built images.

Procedure

To create an incremental build, create a with the following modification to the strategy
definition:

Specify an image that supports incremental builds. Consult the documentation of the
builder image to determine if it supports this behavior.

This flag controls whether an incremental build is attempted. If the builder image does not
support incremental builds, the build will still succeed, but you will get a log message
stating the incremental build was not successful because of a missing save-artifacts script.

Additional resources

See S2I Requirements for information on how to create a builder image supporting incremental

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "incremental-image:latest" 1
 incremental: true 2

OpenShift Container Platform 4.11 CI/CD

42

1

See S2I Requirements for information on how to create a builder image supporting incremental
builds.

2.5.2.2. Overriding source-to-image builder image scripts

You can override the assemble, run, and save-artifacts source-to-image (S2I) scripts provided by the
builder image.

Procedure

To override the assemble, run, and save-artifacts S2I scripts provided by the builder image, either:

Provide an assemble, run, or save-artifacts script in the .s2i/bin directory of your application
source repository.

Provide a URL of a directory containing the scripts as part of the strategy definition. For
example:

This path will have run, assemble, and save-artifacts appended to it. If any or all scripts
are found they will be used in place of the same named scripts provided in the image.

NOTE

Files located at the scripts URL take precedence over files located in .s2i/bin of the
source repository.

2.5.2.3. Source-to-image environment variables

There are two ways to make environment variables available to the source build process and resulting
image. Environment files and BuildConfig environment values. Variables provided will be present during
the build process and in the output image.

2.5.2.3.1. Using source-to-image environment files

Source build enables you to set environment values, one per line, inside your application, by specifying
them in a .s2i/environment file in the source repository. The environment variables specified in this file
are present during the build process and in the output image.

If you provide a .s2i/environment file in your source repository, source-to-image (S2I) reads this file
during the build. This allows customization of the build behavior as the assemble script may use these
variables.

Procedure

For example, to disable assets compilation for your Rails application during the build:

Add DISABLE_ASSET_COMPILATION=true in the .s2i/environment file.

In addition to builds, the specified environment variables are also available in the running application

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "builder-image:latest"
 scripts: "http://somehost.com/scripts_directory" 1

CHAPTER 2. BUILDS

43

In addition to builds, the specified environment variables are also available in the running application
itself. For example, to cause the Rails application to start in development mode instead of production:

Add RAILS_ENV=development to the .s2i/environment file.

The complete list of supported environment variables is available in the using images section for each
image.

2.5.2.3.2. Using source-to-image build configuration environment

You can add environment variables to the sourceStrategy definition of the build configuration. The
environment variables defined there are visible during the assemble script execution and will be defined
in the output image, making them also available to the run script and application code.

Procedure

For example, to disable assets compilation for your Rails application:

Additional resources

The build environment section provides more advanced instructions.

You can also manage environment variables defined in the build configuration with the oc set
env command.

2.5.2.4. Ignoring source-to-image source files

Source-to-image (S2I) supports a .s2iignore file, which contains a list of file patterns that should be
ignored. Files in the build working directory, as provided by the various input sources, that match a
pattern found in the .s2iignore file will not be made available to the assemble script.

2.5.2.5. Creating images from source code with source-to-image

Source-to-image (S2I) is a framework that makes it easy to write images that take application source
code as an input and produce a new image that runs the assembled application as output.

The main advantage of using S2I for building reproducible container images is the ease of use for
developers. As a builder image author, you must understand two basic concepts in order for your images
to provide the best S2I performance, the build process and S2I scripts.

2.5.2.5.1. Understanding the source-to-image build process

The build process consists of the following three fundamental elements, which are combined into a final
container image:

Sources

Source-to-image (S2I) scripts

sourceStrategy:
...
 env:
 - name: "DISABLE_ASSET_COMPILATION"
 value: "true"

OpenShift Container Platform 4.11 CI/CD

44

Builder image

S2I generates a Dockerfile with the builder image as the first FROM instruction. The Dockerfile
generated by S2I is then passed to Buildah.

2.5.2.5.2. How to write source-to-image scripts

You can write source-to-image (S2I) scripts in any programming language, as long as the scripts are
executable inside the builder image. S2I supports multiple options providing assemble/run/save-
artifacts scripts. All of these locations are checked on each build in the following order:

1. A script specified in the build configuration.

2. A script found in the application source .s2i/bin directory.

3. A script found at the default image URL with the io.openshift.s2i.scripts-url label.

Both the io.openshift.s2i.scripts-url label specified in the image and the script specified in a build
configuration can take one of the following forms:

image:///path_to_scripts_dir: absolute path inside the image to a directory where the S2I
scripts are located.

file:///path_to_scripts_dir: relative or absolute path to a directory on the host where the S2I
scripts are located.

http(s)://path_to_scripts_dir: URL to a directory where the S2I scripts are located.

Table 2.1. S2I scripts

Script Description

assemble The assemble script builds the application artifacts from a source and places
them into appropriate directories inside the image. This script is required. The
workflow for this script is:

1. Optional: Restore build artifacts. If you want to support incremental
builds, make sure to define save-artifacts as well.

2. Place the application source in the desired location.

3. Build the application artifacts.

4. Install the artifacts into locations appropriate for them to run.

run The run script executes your application. This script is required.

save-artifacts The save-artifacts script gathers all dependencies that can speed up the
build processes that follow. This script is optional. For example:

For Ruby, gems installed by Bundler.

For Java, .m2 contents.

These dependencies are gathered into a tar file and streamed to the standard
output.

CHAPTER 2. BUILDS

45

usage The usage script allows you to inform the user how to properly use your image.
This script is optional.

test/run The test/run script allows you to create a process to check if the image is
working correctly. This script is optional. The proposed flow of that process is:

1. Build the image.

2. Run the image to verify the usage script.

3. Run s2i build to verify the assemble script.

4. Optional: Run s2i build again to verify the save-artifacts and
assemble scripts save and restore artifacts functionality.

5. Run the image to verify the test application is working.

NOTE

The suggested location to put the test application built by your
test/run script is the test/test-app directory in your image
repository.

Script Description

Example S2I scripts

The following example S2I scripts are written in Bash. Each example assumes its tar contents are
unpacked into the /tmp/s2i directory.

assemble script:

run script:

#!/bin/bash

restore build artifacts
if ["$(ls /tmp/s2i/artifacts/ 2>/dev/null)"]; then
 mv /tmp/s2i/artifacts/* $HOME/.
fi

move the application source
mv /tmp/s2i/src $HOME/src

build application artifacts
pushd ${HOME}
make all

install the artifacts
make install
popd

#!/bin/bash

OpenShift Container Platform 4.11 CI/CD

46

save-artifacts script:

usage script:

Additional resources

S2I Image Creation Tutorial

2.5.2.6. Using build volumes

You can mount build volumes to give running builds access to information that you don’t want to persist
in the output container image.

Build volumes provide sensitive information, such as repository credentials, that the build environment
or configuration only needs at build time. Build volumes are different from build inputs, whose data can
persist in the output container image.

The mount points of build volumes, from which the running build reads data, are functionally similar to
pod volume mounts.

Prerequisites

You have added an input secret, config map, or both to a BuildConfig object .

Procedure

In the sourceStrategy definition of the BuildConfig object, add any build volumes to the
volumes array. For example:

run the application
/opt/application/run.sh

#!/bin/bash

pushd ${HOME}
if [-d deps]; then
 # all deps contents to tar stream
 tar cf - deps
fi
popd

#!/bin/bash

inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF

spec:
 sourceStrategy:
 volumes:
 - name: secret-mvn 1

CHAPTER 2. BUILDS

47

https://blog.openshift.com/create-s2i-builder-image/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-define-build-inputs_creating-build-inputs
https://kubernetes.io/docs/concepts/storage/volumes/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#builds-input-secrets-configmaps_creating-build-inputs

1 5 9

2 6 10

3 7 11

4 8

12

13

14

Required. A unique name.

Required. The absolute path of the mount point. It must not contain .. or : and doesn’t collide
with the destination path generated by the builder. The /opt/app-root/src is the default home

directory for many Red Hat S2I-enabled images.

Required. The type of source, ConfigMap, Secret, or CSI.

Required. The name of the source.

Required. The driver that provides the ephemeral CSI volume.

Required. This value must be set to true. Provides a read-only volume.

Optional. The volume attributes of the ephemeral CSI volume. Consult the CSI driver’s
documentation for supported attribute keys and values.

NOTE

The Shared Resource CSI Driver is supported as a Technology Preview feature.

2.5.3. Custom build

The custom build strategy allows developers to define a specific builder image responsible for the entire
build process. Using your own builder image allows you to customize your build process.

A custom builder image is a plain container image embedded with build process logic, for example for
building RPMs or base images.

 mounts:
 - destinationPath: /opt/app-root/src/.ssh 2
 source:
 type: Secret 3
 secret:
 secretName: my-secret 4
 - name: settings-mvn 5
 mounts:
 - destinationPath: /opt/app-root/src/.m2 6
 source:
 type: ConfigMap 7
 configMap:
 name: my-config 8
 - name: my-csi-volume 9
 mounts:
 - destinationPath: /opt/app-root/src/some_path 10
 source:
 type: CSI 11
 csi:
 driver: csi.sharedresource.openshift.io 12
 readOnly: true 13
 volumeAttributes: 14
 attribute: value

OpenShift Container Platform 4.11 CI/CD

48

1

2

Custom builds run with a high level of privilege and are not available to users by default. Only users who
can be trusted with cluster administration permissions should be granted access to run custom builds.

2.5.3.1. Using FROM image for custom builds

You can use the customStrategy.from section to indicate the image to use for the custom build

Procedure

Set the customStrategy.from section:

2.5.3.2. Using secrets in custom builds

In addition to secrets for source and images that can be added to all build types, custom strategies allow
adding an arbitrary list of secrets to the builder pod.

Procedure

To mount each secret at a specific location, edit the secretSource and mountPath fields of the
strategy YAML file:

secretSource is a reference to a secret in the same namespace as the build.

mountPath is the path inside the custom builder where the secret should be mounted.

2.5.3.3. Using environment variables for custom builds

To make environment variables available to the custom build process, you can add environment
variables to the customStrategy definition of the build configuration.

The environment variables defined there are passed to the pod that runs the custom build.

Procedure

1. Define a custom HTTP proxy to be used during build:

strategy:
 customStrategy:
 from:
 kind: "DockerImage"
 name: "openshift/sti-image-builder"

strategy:
 customStrategy:
 secrets:
 - secretSource: 1
 name: "secret1"
 mountPath: "/tmp/secret1" 2
 - secretSource:
 name: "secret2"
 mountPath: "/tmp/secret2"

customStrategy:

CHAPTER 2. BUILDS

49

2. To manage environment variables defined in the build configuration, enter the following
command:

2.5.3.4. Using custom builder images

OpenShift Container Platform’s custom build strategy enables you to define a specific builder image
responsible for the entire build process. When you need a build to produce individual artifacts such as
packages, JARs, WARs, installable ZIPs, or base images, use a custom builder image using the custom
build strategy.

A custom builder image is a plain container image embedded with build process logic, which is used for
building artifacts such as RPMs or base container images.

Additionally, the custom builder allows implementing any extended build process, such as a CI/CD flow
that runs unit or integration tests.

2.5.3.4.1. Custom builder image

Upon invocation, a custom builder image receives the following environment variables with the
information needed to proceed with the build:

Table 2.2. Custom Builder Environment Variables

Variable Name Description

BUILD The entire serialized JSON of the Build object definition. If you must use a
specific API version for serialization, you can set the buildAPIVersion parameter
in the custom strategy specification of the build configuration.

SOURCE_REPOSITO
RY

The URL of a Git repository with source to be built.

SOURCE_URI Uses the same value as SOURCE_REPOSITORY. Either can be used.

SOURCE_CONTEXT
_DIR

Specifies the subdirectory of the Git repository to be used when building. Only
present if defined.

SOURCE_REF The Git reference to be built.

ORIGIN_VERSION The version of the OpenShift Container Platform master that created this build
object.

OUTPUT_REGISTRY The container image registry to push the image to.

...
 env:
 - name: "HTTP_PROXY"
 value: "http://myproxy.net:5187/"

$ oc set env <enter_variables>

OpenShift Container Platform 4.11 CI/CD

50

OUTPUT_IMAGE The container image tag name for the image being built.

PUSH_DOCKERCFG
_PATH

The path to the container registry credentials for running a podman push
operation.

Variable Name Description

2.5.3.4.2. Custom builder workflow

Although custom builder image authors have flexibility in defining the build process, your builder image
must adhere to the following required steps necessary for running a build inside of OpenShift Container
Platform:

1. The Build object definition contains all the necessary information about input parameters for
the build.

2. Run the build process.

3. If your build produces an image, push it to the output location of the build if it is defined. Other
output locations can be passed with environment variables.

2.5.4. Pipeline build

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The Pipeline build strategy allows developers to define a Jenkins pipeline for use by the Jenkins pipeline
plugin. The build can be started, monitored, and managed by OpenShift Container Platform in the same
way as any other build type.

Pipeline workflows are defined in a jenkinsfile, either embedded directly in the build configuration, or
supplied in a Git repository and referenced by the build configuration.

2.5.4.1. Understanding OpenShift Container Platform pipelines

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

CHAPTER 2. BUILDS

51

Pipelines give you control over building, deploying, and promoting your applications on OpenShift
Container Platform. Using a combination of the Jenkins Pipeline build strategy, jenkinsfiles, and the
OpenShift Container Platform Domain Specific Language (DSL) provided by the Jenkins Client Plugin,
you can create advanced build, test, deploy, and promote pipelines for any scenario.

OpenShift Container Platform Jenkins Sync Plugin

The OpenShift Container Platform Jenkins Sync Plugin keeps the build configuration and build objects
in sync with Jenkins jobs and builds, and provides the following:

Dynamic job and run creation in Jenkins.

Dynamic creation of agent pod templates from image streams, image stream tags, or config
maps.

Injection of environment variables.

Pipeline visualization in the OpenShift Container Platform web console.

Integration with the Jenkins Git plugin, which passes commit information from OpenShift
Container Platform builds to the Jenkins Git plugin.

Synchronization of secrets into Jenkins credential entries.

OpenShift Container Platform Jenkins Client Plugin

The OpenShift Container Platform Jenkins Client Plugin is a Jenkins plugin which aims to provide a
readable, concise, comprehensive, and fluent Jenkins Pipeline syntax for rich interactions with an
OpenShift Container Platform API Server. The plugin uses the OpenShift Container Platform command
line tool, oc, which must be available on the nodes executing the script.

The Jenkins Client Plugin must be installed on your Jenkins master so the OpenShift Container Platform
DSL will be available to use within the jenkinsfile for your application. This plugin is installed and
enabled by default when using the OpenShift Container Platform Jenkins image.

For OpenShift Container Platform Pipelines within your project, you will must use the Jenkins Pipeline
Build Strategy. This strategy defaults to using a jenkinsfile at the root of your source repository, but
also provides the following configuration options:

An inline jenkinsfile field within your build configuration.

A jenkinsfilePath field within your build configuration that references the location of the
jenkinsfile to use relative to the source contextDir.

NOTE

The optional jenkinsfilePath field specifies the name of the file to use, relative to the
source contextDir. If contextDir is omitted, it defaults to the root of the repository. If
jenkinsfilePath is omitted, it defaults to jenkinsfile.

2.5.4.2. Providing the Jenkins file for pipeline builds

IMPORTANT

OpenShift Container Platform 4.11 CI/CD

52

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

The jenkinsfile uses the standard groovy language syntax to allow fine grained control over the
configuration, build, and deployment of your application.

You can supply the jenkinsfile in one of the following ways:

A file located within your source code repository.

Embedded as part of your build configuration using the jenkinsfile field.

When using the first option, the jenkinsfile must be included in your applications source code repository
at one of the following locations:

A file named jenkinsfile at the root of your repository.

A file named jenkinsfile at the root of the source contextDir of your repository.

A file name specified via the jenkinsfilePath field of the JenkinsPipelineStrategy section of
your BuildConfig, which is relative to the source contextDir if supplied, otherwise it defaults to
the root of the repository.

The jenkinsfile is run on the Jenkins agent pod, which must have the OpenShift Container Platform
client binaries available if you intend to use the OpenShift Container Platform DSL.

Procedure

To provide the Jenkins file, you can either:

Embed the Jenkins file in the build configuration.

Include in the build configuration a reference to the Git repository that contains the Jenkins file.

Embedded Definition

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node('agent') {
 stage 'build'
 openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs: 'true')
 stage 'deploy'
 openshiftDeploy(deploymentConfig: 'frontend')
 }

CHAPTER 2. BUILDS

53

1

Reference to Git Repository

The optional jenkinsfilePath field specifies the name of the file to use, relative to the source
contextDir. If contextDir is omitted, it defaults to the root of the repository. If jenkinsfilePath is
omitted, it defaults to jenkinsfile.

2.5.4.3. Using environment variables for pipeline builds

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

To make environment variables available to the Pipeline build process, you can add environment
variables to the jenkinsPipelineStrategy definition of the build configuration.

Once defined, the environment variables will be set as parameters for any Jenkins job associated with
the build configuration.

Procedure

To define environment variables to be used during build, edit the YAML file:

You can also manage environment variables defined in the build configuration with the oc set env
command.

2.5.4.3.1. Mapping between BuildConfig environment variables and Jenkins job parameters

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "sample-pipeline"
spec:
 source:
 git:
 uri: "https://github.com/openshift/ruby-hello-world"
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfilePath: some/repo/dir/filename 1

jenkinsPipelineStrategy:
...
 env:
 - name: "FOO"
 value: "BAR"

OpenShift Container Platform 4.11 CI/CD

54

When a Jenkins job is created or updated based on changes to a Pipeline strategy build configuration,
any environment variables in the build configuration are mapped to Jenkins job parameters definitions,
where the default values for the Jenkins job parameters definitions are the current values of the
associated environment variables.

After the Jenkins job’s initial creation, you can still add additional parameters to the job from the Jenkins
console. The parameter names differ from the names of the environment variables in the build
configuration. The parameters are honored when builds are started for those Jenkins jobs.

How you start builds for the Jenkins job dictates how the parameters are set.

If you start with oc start-build, the values of the environment variables in the build configuration
are the parameters set for the corresponding job instance. Any changes you make to the
parameters' default values from the Jenkins console are ignored. The build configuration values
take precedence.

If you start with oc start-build -e, the values for the environment variables specified in the -e
option take precedence.

If you specify an environment variable not listed in the build configuration, they will be
added as a Jenkins job parameter definitions.

Any changes you make from the Jenkins console to the parameters corresponding to the
environment variables are ignored. The build configuration and what you specify with oc
start-build -e takes precedence.

If you start the Jenkins job with the Jenkins console, then you can control the setting of the
parameters with the Jenkins console as part of starting a build for the job.

NOTE

It is recommended that you specify in the build configuration all possible environment
variables to be associated with job parameters. Doing so reduces disk I/O and improves
performance during Jenkins processing.

2.5.4.4. Pipeline build tutorial

IMPORTANT

The Pipeline build strategy is deprecated in OpenShift Container Platform 4. Equivalent
and improved functionality is present in the OpenShift Container Platform Pipelines
based on Tekton.

Jenkins images on OpenShift Container Platform are fully supported and users should
follow Jenkins user documentation for defining their jenkinsfile in a job or store it in a
Source Control Management system.

This example demonstrates how to create an OpenShift Container Platform Pipeline that will build,
deploy, and verify a Node.js/MongoDB application using the nodejs-mongodb.json template.

Procedure

1. Create the Jenkins master:

 $ oc project <project_name>

CHAPTER 2. BUILDS

55

Select the project that you want to use or create a new project with oc new-project
<project_name>.

If you want to use persistent storage, use jenkins-persistent instead.

2. Create a file named nodejs-sample-pipeline.yaml with the following content:

NOTE

This creates a BuildConfig object that employs the Jenkins pipeline strategy to
build, deploy, and scale the Node.js/MongoDB example application.

3. After you create a BuildConfig object with a jenkinsPipelineStrategy, tell the pipeline what to
do by using an inline jenkinsfile:

NOTE

This example does not set up a Git repository for the application.

The following jenkinsfile content is written in Groovy using the OpenShift
Container Platform DSL. For this example, include inline content in the
BuildConfig object using the YAML Literal Style, though including a jenkinsfile
in your source repository is the preferred method.

 $ oc new-app jenkins-ephemeral 1

kind: "BuildConfig"
apiVersion: "v1"
metadata:
 name: "nodejs-sample-pipeline"
spec:
 strategy:
 jenkinsPipelineStrategy:
 jenkinsfile: <pipeline content from below>
 type: JenkinsPipeline

def templatePath = 'https://raw.githubusercontent.com/openshift/nodejs-
ex/master/openshift/templates/nodejs-mongodb.json' 1
def templateName = 'nodejs-mongodb-example' 2
pipeline {
 agent {
 node {
 label 'nodejs' 3
 }
 }
 options {
 timeout(time: 20, unit: 'MINUTES') 4
 }
 stages {
 stage('preamble') {
 steps {
 script {
 openshift.withCluster() {

OpenShift Container Platform 4.11 CI/CD

56

 openshift.withProject() {
 echo "Using project: ${openshift.project()}"
 }
 }
 }
 }
 }
 stage('cleanup') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.selector("all", [template : templateName]).delete() 5
 if (openshift.selector("secrets", templateName).exists()) { 6
 openshift.selector("secrets", templateName).delete()
 }
 }
 }
 }
 }
 }
 stage('create') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.newApp(templatePath) 7
 }
 }
 }
 }
 }
 stage('build') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def builds = openshift.selector("bc", templateName).related('builds')
 timeout(5) { 8
 builds.untilEach(1) {
 return (it.object().status.phase == "Complete")
 }
 }
 }
 }
 }
 }
 }
 stage('deploy') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 def rm = openshift.selector("dc", templateName).rollout()
 timeout(5) { 9

CHAPTER 2. BUILDS

57

1

1 2

3

4

5

6

7

8

9

10

Path of the template to use.

Name of the template that will be created.

Spin up a node.js agent pod on which to run this build.

Set a timeout of 20 minutes for this pipeline.

Delete everything with this template label.

Delete any secrets with this template label.

Create a new application from the templatePath.

Wait up to five minutes for the build to complete.

Wait up to five minutes for the deployment to complete.

If everything else succeeded, tag the $ {templateName}:latest image as $
{templateName}-staging:latest. A pipeline build configuration for the staging
environment can watch for the $ {templateName}-staging:latest image to change and
then deploy it to the staging environment.

NOTE

The previous example was written using the declarative pipeline style, but the
older scripted pipeline style is also supported.

4. Create the Pipeline BuildConfig in your OpenShift Container Platform cluster:

 openshift.selector("dc", templateName).related('pods').untilEach(1) {
 return (it.object().status.phase == "Running")
 }
 }
 }
 }
 }
 }
 }
 stage('tag') {
 steps {
 script {
 openshift.withCluster() {
 openshift.withProject() {
 openshift.tag("${templateName}:latest", "${templateName}-staging:latest") 10
 }
 }
 }
 }
 }
 }
}

$ oc create -f nodejs-sample-pipeline.yaml

OpenShift Container Platform 4.11 CI/CD

58

a. If you do not want to create your own file, you can use the sample from the Origin repository
by running:

5. Start the Pipeline:

NOTE

Alternatively, you can start your pipeline with the OpenShift Container Platform
web console by navigating to the Builds → Pipeline section and clicking Start
Pipeline, or by visiting the Jenkins Console, navigating to the Pipeline that you
created, and clicking Build Now.

Once the pipeline is started, you should see the following actions performed within your project:

A job instance is created on the Jenkins server.

An agent pod is launched, if your pipeline requires one.

The pipeline runs on the agent pod, or the master if no agent is required.

Any previously created resources with the template=nodejs-mongodb-example label
will be deleted.

A new application, and all of its associated resources, will be created from the nodejs-
mongodb-example template.

A build will be started using the nodejs-mongodb-example BuildConfig.

The pipeline will wait until the build has completed to trigger the next stage.

A deployment will be started using the nodejs-mongodb-example deployment
configuration.

The pipeline will wait until the deployment has completed to trigger the next stage.

If the build and deploy are successful, the nodejs-mongodb-example:latest image will
be tagged as nodejs-mongodb-example:stage.

The agent pod is deleted, if one was required for the pipeline.

NOTE

The best way to visualize the pipeline execution is by viewing it in the
OpenShift Container Platform web console. You can view your pipelines by
logging in to the web console and navigating to Builds → Pipelines.

2.5.5. Adding secrets with web console

You can add a secret to your build configuration so that it can access a private repository.

$ oc create -f
https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/nodejs-
sample-pipeline.yaml

$ oc start-build nodejs-sample-pipeline

CHAPTER 2. BUILDS

59

Procedure

To add a secret to your build configuration so that it can access a private repository from the OpenShift
Container Platform web console:

1. Create a new OpenShift Container Platform project.

2. Create a secret that contains credentials for accessing a private source code repository.

3. Create a build configuration.

4. On the build configuration editor page or in the create app from builder image page of the
web console, set the Source Secret.

5. Click Save.

2.5.6. Enabling pulling and pushing

You can enable pulling to a private registry by setting the pull secret and pushing by setting the push
secret in the build configuration.

Procedure

To enable pulling to a private registry:

Set the pull secret in the build configuration.

To enable pushing:

Set the push secret in the build configuration.

2.6. CUSTOM IMAGE BUILDS WITH BUILDAH

With OpenShift Container Platform 4.11, a docker socket will not be present on the host nodes. This
means the mount docker socket option of a custom build is not guaranteed to provide an accessible
docker socket for use within a custom build image.

If you require this capability in order to build and push images, add the Buildah tool your custom build
image and use it to build and push the image within your custom build logic. The following is an example
of how to run custom builds with Buildah.

NOTE

Using the custom build strategy requires permissions that normal users do not have by
default because it allows the user to execute arbitrary code inside a privileged container
running on the cluster. This level of access can be used to compromise the cluster and
therefore should be granted only to users who are trusted with administrative privileges
on the cluster.

2.6.1. Prerequisites

Review how to grant custom build permissions.

2.6.2. Creating custom build artifacts

You must create the image you want to use as your custom build image.

OpenShift Container Platform 4.11 CI/CD

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#securing-builds-by-strategy

Procedure

1. Starting with an empty directory, create a file named Dockerfile with the following content:

2. In the same directory, create a file named dockerfile.sample. This file is included in the custom
build image and defines the image that is produced by the custom build:

3. In the same directory, create a file named build.sh. This file contains the logic that is run when
the custom build runs:

2.6.3. Build custom builder image

You can use OpenShift Container Platform to build and push custom builder images to use in a custom
strategy.

Prerequisites

FROM registry.redhat.io/rhel8/buildah
In this example, `/tmp/build` contains the inputs that build when this
custom builder image is run. Normally the custom builder image fetches
this content from some location at build time, by using git clone as an example.
ADD dockerfile.sample /tmp/input/Dockerfile
ADD build.sh /usr/bin
RUN chmod a+x /usr/bin/build.sh
/usr/bin/build.sh contains the actual custom build logic that will be run when
this custom builder image is run.
ENTRYPOINT ["/usr/bin/build.sh"]

FROM registry.access.redhat.com/ubi8/ubi
RUN touch /tmp/build

#!/bin/sh
Note that in this case the build inputs are part of the custom builder image, but normally this
is retrieved from an external source.
cd /tmp/input
OUTPUT_REGISTRY and OUTPUT_IMAGE are env variables provided by the custom
build framework
TAG="${OUTPUT_REGISTRY}/${OUTPUT_IMAGE}"

performs the build of the new image defined by dockerfile.sample
buildah --storage-driver vfs bud --isolation chroot -t ${TAG} .

buildah requires a slight modification to the push secret provided by the service
account to use it for pushing the image
cp /var/run/secrets/openshift.io/push/.dockercfg /tmp
(echo "{ \"auths\": " ; cat /var/run/secrets/openshift.io/push/.dockercfg ; echo "}") >
/tmp/.dockercfg

push the new image to the target for the build
buildah --storage-driver vfs push --tls-verify=false --authfile /tmp/.dockercfg ${TAG}

CHAPTER 2. BUILDS

61

1

Define all the inputs that will go into creating your new custom builder image.

Procedure

1. Define a BuildConfig object that will build your custom builder image:

2. From the directory in which you created your custom build image, run the build:

After the build completes, your new custom builder image is available in your project in an image
stream tag that is named custom-builder-image:latest.

2.6.4. Use custom builder image

You can define a BuildConfig object that uses the custom strategy in conjunction with your custom
builder image to execute your custom build logic.

Prerequisites

Define all the required inputs for new custom builder image.

Build your custom builder image.

Procedure

1. Create a file named buildconfig.yaml. This file defines the BuildConfig object that is created
in your project and executed:

Specify your project name.

$ oc new-build --binary --strategy=docker --name custom-builder-image

$ oc start-build custom-builder-image --from-dir . -F

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: sample-custom-build
 labels:
 name: sample-custom-build
 annotations:
 template.alpha.openshift.io/wait-for-ready: 'true'
spec:
 strategy:
 type: Custom
 customStrategy:
 forcePull: true
 from:
 kind: ImageStreamTag
 name: custom-builder-image:latest
 namespace: <yourproject> 1
 output:
 to:
 kind: ImageStreamTag
 name: sample-custom:latest

OpenShift Container Platform 4.11 CI/CD

62

2. Create the BuildConfig:

3. Create a file named imagestream.yaml. This file defines the image stream to which the build
will push the image:

4. Create the imagestream:

5. Run your custom build:

When the build runs, it launches a pod running the custom builder image that was built earlier.
The pod runs the build.sh logic that is defined as the entrypoint for the custom builder image.
The build.sh logic invokes Buildah to build the dockerfile.sample that was embedded in the
custom builder image, and then uses Buildah to push the new image to the sample-custom
image stream.

2.7. PERFORMING AND CONFIGURING BASIC BUILDS

The following sections provide instructions for basic build operations, including starting and canceling
builds, editing BuildConfigs, deleting BuildConfigs, viewing build details, and accessing build logs.

2.7.1. Starting a build

You can manually start a new build from an existing build configuration in your current project.

Procedure

To manually start a build, enter the following command:

2.7.1.1. Re-running a build

You can manually re-run a build using the --from-build flag.

Procedure

To manually re-run a build, enter the following command:

$ oc create -f buildconfig.yaml

kind: ImageStream
apiVersion: image.openshift.io/v1
metadata:
 name: sample-custom
spec: {}

$ oc create -f imagestream.yaml

$ oc start-build sample-custom-build -F

$ oc start-build <buildconfig_name>

$ oc start-build --from-build=<build_name>

CHAPTER 2. BUILDS

63

2.7.1.2. Streaming build logs

You can specify the --follow flag to stream the build’s logs in stdout.

Procedure

To manually stream a build’s logs in stdout, enter the following command:

2.7.1.3. Setting environment variables when starting a build

You can specify the --env flag to set any desired environment variable for the build.

Procedure

To specify a desired environment variable, enter the following command:

2.7.1.4. Starting a build with source

Rather than relying on a Git source pull or a Dockerfile for a build, you can also start a build by directly
pushing your source, which could be the contents of a Git or SVN working directory, a set of pre-built
binary artifacts you want to deploy, or a single file. This can be done by specifying one of the following
options for the start-build command:

Option Description

--from-dir=<directory> Specifies a directory that will be archived and used as a binary input for
the build.

--from-file=<file> Specifies a single file that will be the only file in the build source. The file
is placed in the root of an empty directory with the same file name as the
original file provided.

--from-repo=
<local_source_repo>

Specifies a path to a local repository to use as the binary input for a
build. Add the --commit option to control which branch, tag, or commit
is used for the build.

When passing any of these options directly to the build, the contents are streamed to the build and
override the current build source settings.

NOTE

Builds triggered from binary input will not preserve the source on the server, so rebuilds
triggered by base image changes will use the source specified in the build configuration.

Procedure

Start a build from a source using the following command to send the contents of a local Git

$ oc start-build <buildconfig_name> --follow

$ oc start-build <buildconfig_name> --env=<key>=<value>

OpenShift Container Platform 4.11 CI/CD

64

Start a build from a source using the following command to send the contents of a local Git
repository as an archive from the tag v2:

2.7.2. Canceling a build

You can cancel a build using the web console, or with the following CLI command.

Procedure

To manually cancel a build, enter the following command:

2.7.2.1. Canceling multiple builds

You can cancel multiple builds with the following CLI command.

Procedure

To manually cancel multiple builds, enter the following command:

2.7.2.2. Canceling all builds

You can cancel all builds from the build configuration with the following CLI command.

Procedure

To cancel all builds, enter the following command:

2.7.2.3. Canceling all builds in a given state

You can cancel all builds in a given state, such as new or pending, while ignoring the builds in other
states.

Procedure

To cancel all in a given state, enter the following command:

2.7.3. Editing a BuildConfig

To edit your build configurations, you use the Edit BuildConfig option in the Builds view of the
Developer perspective.

$ oc start-build hello-world --from-repo=../hello-world --commit=v2

$ oc cancel-build <build_name>

$ oc cancel-build <build1_name> <build2_name> <build3_name>

$ oc cancel-build bc/<buildconfig_name>

$ oc cancel-build bc/<buildconfig_name>

CHAPTER 2. BUILDS

65

You can use either of the following views to edit a BuildConfig:

The Form view enables you to edit your BuildConfig using the standard form fields and
checkboxes.

The YAML view enables you to edit your BuildConfig with full control over the operations.

You can switch between the Form view and YAML view without losing any data. The data in the Form
view is transferred to the YAML view and vice versa.

Procedure

1. In the Builds view of the Developer perspective, click the menu to see the Edit
BuildConfig option.

2. Click Edit BuildConfig to see the Form view option.

3. In the Git section, enter the Git repository URL for the codebase you want to use to create an
application. The URL is then validated.

Optional: Click Show Advanced Git Options to add details such as:

Git Reference to specify a branch, tag, or commit that contains code you want to use
to build the application.

Context Dir to specify the subdirectory that contains code you want to use to build the
application.

Source Secret to create a Secret Name with credentials for pulling your source code
from a private repository.

4. In the Build from section, select the option that you would like to build from. You can use the
following options:

Image Stream tag references an image for a given image stream and tag. Enter the project,
image stream, and tag of the location you would like to build from and push to.

Image Stream image references an image for a given image stream and image name. Enter
the image stream image you would like to build from. Also enter the project, image stream,
and tag to push to.

Docker image: The Docker image is referenced through a Docker image repository. You will
also need to enter the project, image stream, and tag to refer to where you would like to
push to.

5. Optional: In the Environment Variables section, add the environment variables associated with
the project by using the Name and Value fields. To add more environment variables, use Add
Value, or Add from ConfigMap and Secret .

6. Optional: To further customize your application, use the following advanced options:

Trigger

Triggers a new image build when the builder image changes. Add more triggers by clicking
Add Trigger and selecting the Type and Secret.

Secrets

OpenShift Container Platform 4.11 CI/CD

66

Adds secrets for your application. Add more secrets by clicking Add secret and selecting the
Secret and Mount point.

Policy

Click Run policy to select the build run policy. The selected policy determines the order in
which builds created from the build configuration must run.

Hooks

Select Run build hooks after image is built to run commands at the end of the build and
verify the image. Add Hook type, Command, and Arguments to append to the command.

7. Click Save to save the BuildConfig.

2.7.4. Deleting a BuildConfig

You can delete a BuildConfig using the following command.

Procedure

To delete a BuildConfig, enter the following command:

This also deletes all builds that were instantiated from this BuildConfig.

To delete a BuildConfig and keep the builds instatiated from the BuildConfig, specify the --
cascade=false flag when you enter the following command:

2.7.5. Viewing build details

You can view build details with the web console or by using the oc describe CLI command.

This displays information including:

The build source.

The build strategy.

The output destination.

Digest of the image in the destination registry.

How the build was created.

If the build uses the Docker or Source strategy, the oc describe output also includes information about
the source revision used for the build, including the commit ID, author, committer, and message.

Procedure

To view build details, enter the following command:

$ oc delete bc <BuildConfigName>

$ oc delete --cascade=false bc <BuildConfigName>

$ oc describe build <build_name>

CHAPTER 2. BUILDS

67

2.7.6. Accessing build logs

You can access build logs using the web console or the CLI.

Procedure

To stream the logs using the build directly, enter the following command:

2.7.6.1. Accessing BuildConfig logs

You can access BuildConfig logs using the web console or the CLI.

Procedure

To stream the logs of the latest build for a BuildConfig, enter the following command:

2.7.6.2. Accessing BuildConfig logs for a given version build

You can access logs for a given version build for a BuildConfig using the web console or the CLI.

Procedure

To stream the logs for a given version build for a BuildConfig, enter the following command:

2.7.6.3. Enabling log verbosity

You can enable a more verbose output by passing the BUILD_LOGLEVEL environment variable as part
of the sourceStrategy or dockerStrategy in a BuildConfig.

NOTE

An administrator can set the default build verbosity for the entire OpenShift Container
Platform instance by configuring env/BUILD_LOGLEVEL. This default can be overridden
by specifying BUILD_LOGLEVEL in a given BuildConfig. You can specify a higher
priority override on the command line for non-binary builds by passing --build-loglevel to
oc start-build.

Available log levels for source builds are as follows:

Level 0 Produces output from containers running the assemble script and all encountered errors.
This is the default.

Level 1 Produces basic information about the executed process.

$ oc describe build <build_name>

$ oc logs -f bc/<buildconfig_name>

$ oc logs --version=<number> bc/<buildconfig_name>

OpenShift Container Platform 4.11 CI/CD

68

1

Level 2 Produces very detailed information about the executed process.

Level 3 Produces very detailed information about the executed process, and a listing of the archive
contents.

Level 4 Currently produces the same information as level 3.

Level 5 Produces everything mentioned on previous levels and additionally provides docker push
messages.

Procedure

To enable more verbose output, pass the BUILD_LOGLEVEL environment variable as part of
the sourceStrategy or dockerStrategy in a BuildConfig:

Adjust this value to the desired log level.

2.8. TRIGGERING AND MODIFYING BUILDS

The following sections outline how to trigger builds and modify builds using build hooks.

2.8.1. Build triggers

When defining a BuildConfig, you can define triggers to control the circumstances in which the
BuildConfig should be run. The following build triggers are available:

Webhook

Image change

Configuration change

2.8.1.1. Webhook triggers

Webhook triggers allow you to trigger a new build by sending a request to the OpenShift Container
Platform API endpoint. You can define these triggers using GitHub, GitLab, Bitbucket, or Generic
webhooks.

Currently, OpenShift Container Platform webhooks only support the analogous versions of the push
event for each of the Git-based Source Code Management (SCM) systems. All other event types are
ignored.

When the push events are processed, the OpenShift Container Platform control plane host confirms if
the branch reference inside the event matches the branch reference in the corresponding BuildConfig.
If so, it then checks out the exact commit reference noted in the webhook event on the OpenShift

sourceStrategy:
...
 env:
 - name: "BUILD_LOGLEVEL"
 value: "2" 1

CHAPTER 2. BUILDS

69

Container Platform build. If they do not match, no build is triggered.

NOTE

oc new-app and oc new-build create GitHub and Generic webhook triggers
automatically, but any other needed webhook triggers must be added manually. You can
manually add triggers by setting triggers.

For all webhooks, you must define a secret with a key named WebHookSecretKey and the value being
the value to be supplied when invoking the webhook. The webhook definition must then reference the
secret. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
value of the key is compared to the secret provided during the webhook invocation.

For example here is a GitHub webhook with a reference to a secret named mysecret:

The secret is then defined as follows. Note that the value of the secret is base64 encoded as is required
for any data field of a Secret object.

2.8.1.1.1. Using GitHub webhooks

GitHub webhooks handle the call made by GitHub when a repository is updated. When defining the
trigger, you must specify a secret, which is part of the URL you supply to GitHub when configuring the
webhook.

Example GitHub webhook definition:

NOTE

The secret used in the webhook trigger configuration is not the same as secret field you
encounter when configuring webhook in GitHub UI. The former is to make the webhook
URL unique and hard to predict, the latter is an optional string field used to create HMAC
hex digest of the body, which is sent as an X-Hub-Signature header.

The payload URL is returned as the GitHub Webhook URL by the oc describe command (see Displaying
Webhook URLs), and is structured as follows:

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

- kind: Secret
 apiVersion: v1
 metadata:
 name: mysecret
 creationTimestamp:
 data:
 WebHookSecretKey: c2VjcmV0dmFsdWUx

type: "GitHub"
github:
 secretReference:
 name: "mysecret"

OpenShift Container Platform 4.11 CI/CD

70

Example output

Prerequisites

Create a BuildConfig from a GitHub repository.

Procedure

1. To configure a GitHub Webhook:

a. After creating a BuildConfig from a GitHub repository, run:

This generates a webhook GitHub URL that looks like:

Example output

b. Cut and paste this URL into GitHub, from the GitHub web console.

c. In your GitHub repository, select Add Webhook from Settings → Webhooks.

d. Paste the URL output into the Payload URL field.

e. Change the Content Type from GitHub’s default application/x-www-form-urlencoded to
application/json.

f. Click Add webhook.
You should see a message from GitHub stating that your webhook was successfully
configured.

Now, when you push a change to your GitHub repository, a new build automatically starts,
and upon a successful build a new deployment starts.

NOTE

Gogs supports the same webhook payload format as GitHub. Therefore, if
you are using a Gogs server, you can define a GitHub webhook trigger on
your BuildConfig and trigger it by your Gogs server as well.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ oc describe bc/<name-of-your-BuildConfig>

<https://api.starter-us-east-
1.openshift.com:443/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/github

$ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/github

CHAPTER 2. BUILDS

71

https://gogs.io

The -k argument is only necessary if your API server does not have a properly signed certificate.

NOTE

The build will only be triggered if the ref value from GitHub webhook event matches the
ref value specified in the source.git field of the BuildConfig resource.

Additional resources

Gogs

2.8.1.1.2. Using GitLab webhooks

GitLab webhooks handle the call made by GitLab when a repository is updated. As with the GitHub
triggers, you must specify a secret. The following example is a trigger definition YAML within the
BuildConfig:

The payload URL is returned as the GitLab Webhook URL by the oc describe command, and is
structured as follows:

Example output

Procedure

1. To configure a GitLab Webhook:

a. Describe the BuildConfig to get the webhook URL:

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the GitLab setup instructions to paste the webhook URL into your GitLab repository
settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

type: "GitLab"
gitlab:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/gitlab

$ oc describe bc <name>

$ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --
data-binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/gitlab

OpenShift Container Platform 4.11 CI/CD

72

https://gogs.io
https://docs.gitlab.com/ce/user/project/integrations/webhooks.html#webhooks

2.8.1.1.3. Using Bitbucket webhooks

Bitbucket webhooks handle the call made by Bitbucket when a repository is updated. Similar to the
previous triggers, you must specify a secret. The following example is a trigger definition YAML within
the BuildConfig:

The payload URL is returned as the Bitbucket Webhook URL by the oc describe command, and is
structured as follows:

Example output

Procedure

1. To configure a Bitbucket Webhook:

a. Describe the 'BuildConfig' to get the webhook URL:

b. Copy the webhook URL, replacing <secret> with your secret value.

c. Follow the Bitbucket setup instructions to paste the webhook URL into your Bitbucket
repository settings.

2. Given a file containing a valid JSON payload, such as payload.json, you can manually trigger
the webhook with curl:

The -k argument is only necessary if your API server does not have a properly signed certificate.

2.8.1.1.4. Using generic webhooks

Generic webhooks are invoked from any system capable of making a web request. As with the other
webhooks, you must specify a secret, which is part of the URL that the caller must use to trigger the
build. The secret ensures the uniqueness of the URL, preventing others from triggering the build. The
following is an example trigger definition YAML within the BuildConfig:

type: "Bitbucket"
bitbucket:
 secretReference:
 name: "mysecret"

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<na
me>/webhooks/<secret>/bitbucket

$ oc describe bc <name>

$ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-
binary @payload.json
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/bitbucket

type: "Generic"
generic:
 secretReference:
 name: "mysecret"
 allowEnv: true 1

CHAPTER 2. BUILDS

73

https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html
https://confluence.atlassian.com/bitbucket/manage-webhooks-735643732.html

1

1

Set to true to allow a generic webhook to pass in environment variables.

Procedure

1. To set up the caller, supply the calling system with the URL of the generic webhook endpoint for
your build:

Example output

The caller must invoke the webhook as a POST operation.

2. To invoke the webhook manually you can use curl:

The HTTP verb must be set to POST. The insecure -k flag is specified to ignore certificate
validation. This second flag is not necessary if your cluster has properly signed certificates.

The endpoint can accept an optional payload with the following format:

Similar to the BuildConfig environment variables, the environment variables defined here
are made available to your build. If these variables collide with the BuildConfig
environment variables, these variables take precedence. By default, environment variables
passed by webhook are ignored. Set the allowEnv field to true on the webhook definition
to enable this behavior.

3. To pass this payload using curl, define it in a file named payload_file.yaml and run:

The arguments are the same as the previous example with the addition of a header and a

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

$ curl -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

git:
 uri: "<url to git repository>"
 ref: "<optional git reference>"
 commit: "<commit hash identifying a specific git commit>"
 author:
 name: "<author name>"
 email: "<author e-mail>"
 committer:
 name: "<committer name>"
 email: "<committer e-mail>"
 message: "<commit message>"
env: 1
 - name: "<variable name>"
 value: "<variable value>"

$ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k
https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfi
gs/<name>/webhooks/<secret>/generic

OpenShift Container Platform 4.11 CI/CD

74

payload. The -H argument sets the Content-Type header to application/yaml or
application/json depending on your payload format. The --data-binary argument is used to
send a binary payload with newlines intact with the POST request.

NOTE

OpenShift Container Platform permits builds to be triggered by the generic webhook
even if an invalid request payload is presented, for example, invalid content type,
unparsable or invalid content, and so on. This behavior is maintained for backwards
compatibility. If an invalid request payload is presented, OpenShift Container Platform
returns a warning in JSON format as part of its HTTP 200 OK response.

2.8.1.1.5. Displaying webhook URLs

You can use the following command to display webhook URLs associated with a build configuration. If
the command does not display any webhook URLs, then no webhook trigger is defined for that build
configuration.

Procedure

To display any webhook URLs associated with a BuildConfig, run:

2.8.1.2. Using image change triggers

As a developer, you can configure your build to run automatically every time a base image changes.

You can use image change triggers to automatically invoke your build when a new version of an
upstream image is available. For example, if a build is based on a RHEL image, you can trigger that build
to run any time the RHEL image changes. As a result, the application image is always running on the
latest RHEL base image.

NOTE

Image streams that point to container images in v1 container registries only trigger a build
once when the image stream tag becomes available and not on subsequent image
updates. This is due to the lack of uniquely identifiable images in v1 container registries.

Procedure

1. Define an ImageStream that points to the upstream image you want to use as a trigger:

This defines the image stream that is tied to a container image repository located at <system-
registry>/<namespace>/ruby-20-centos7. The <system-registry> is defined as a service with
the name docker-registry running in OpenShift Container Platform.

2. If an image stream is the base image for the build, set the from field in the build strategy to
point to the ImageStream:

$ oc describe bc <name>

kind: "ImageStream"
apiVersion: "v1"
metadata:
 name: "ruby-20-centos7"

CHAPTER 2. BUILDS

75

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

1

2

In this case, the sourceStrategy definition is consuming the latest tag of the image stream
named ruby-20-centos7 located within this namespace.

3. Define a build with one or more triggers that point to ImageStreams:

An image change trigger that monitors the ImageStream and Tag as defined by the build
strategy’s from field. The imageChange object here must be empty.

An image change trigger that monitors an arbitrary image stream. The imageChange part,
in this case, must include a from field that references the ImageStreamTag to monitor.

When using an image change trigger for the strategy image stream, the generated build is supplied with
an immutable docker tag that points to the latest image corresponding to that tag. This new image
reference is used by the strategy when it executes for the build.

For other image change triggers that do not reference the strategy image stream, a new build is started,
but the build strategy is not updated with a unique image reference.

Since this example has an image change trigger for the strategy, the resulting build is:

This ensures that the triggered build uses the new image that was just pushed to the repository, and the
build can be re-run any time with the same inputs.

You can pause an image change trigger to allow multiple changes on the referenced image stream
before a build is started. You can also set the paused attribute to true when initially adding an
ImageChangeTrigger to a BuildConfig to prevent a build from being immediately triggered.

strategy:
 sourceStrategy:
 from:
 kind: "ImageStreamTag"
 name: "ruby-20-centos7:latest"

type: "ImageChange" 1
imageChange: {}
type: "ImageChange" 2
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"

strategy:
 sourceStrategy:
 from:
 kind: "DockerImage"
 name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

type: "ImageChange"
imageChange:
 from:
 kind: "ImageStreamTag"
 name: "custom-image:latest"
 paused: true

OpenShift Container Platform 4.11 CI/CD

76

In addition to setting the image field for all Strategy types, for custom builds, the
OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE environment variable is checked. If it does not exist,
then it is created with the immutable image reference. If it does exist, then it is updated with the
immutable image reference.

If a build is triggered due to a webhook trigger or manual request, the build that is created uses the
<immutableid> resolved from the ImageStream referenced by the Strategy. This ensures that builds
are performed using consistent image tags for ease of reproduction.

Additional resources

v1 container registries

2.8.1.3. Identifying the image change trigger of a build

As a developer, if you have image change triggers, you can identify which image change initiated the last
build. This can be useful for debugging or troubleshooting builds.

Example BuildConfig

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
 name: bc-ict-example
 namespace: bc-ict-example-namespace
spec:

...

 triggers:
 - imageChange:
 from:
 kind: ImageStreamTag
 name: input:latest
 namespace: bc-ict-example-namespace
 - imageChange:
 from:
 kind: ImageStreamTag
 name: input2:latest
 namespace: bc-ict-example-namespace
 type: ImageChange
status:
 imageChangeTriggers:
 - from:
 name: input:latest
 namespace: bc-ict-example-namespace
 lastTriggerTime: "2021-06-30T13:47:53Z"
 lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input@sha256:0f88ffbeb9d25525720bfa3524cb1bf0908b7f791057cf1acfae917b11266a69

 - from:
 name: input2:latest
 namespace: bc-ict-example-namespace
 lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-
namespace/input2@sha256:0f88ffbeb9d25525720bfa3524cb2ce0908b7f791057cf1acfae917b11266a6

CHAPTER 2. BUILDS

77

http://docs.docker.com/v1.7/reference/api/hub_registry_spec/#docker-registry-1-0

NOTE

This example omits elements that are not related to image change triggers.

Prerequisites

You have configured multiple image change triggers. These triggers have triggered one or more
builds.

Procedure

1. In buildConfig.status.imageChangeTriggers to identify the lastTriggerTime that has the
latest timestamp.
This ImageChangeTriggerStatus

Then you use the `name` and `namespace` from that build to find the corresponding image
change trigger in `buildConfig.spec.triggers`.

2. Under imageChangeTriggers, compare timestamps to identify the latest

Image change triggers

In your build configuration, buildConfig.spec.triggers is an array of build trigger policies,
BuildTriggerPolicy.

Each BuildTriggerPolicy has a type field and set of pointers fields. Each pointer field corresponds to
one of the allowed values for the type field. As such, you can only set BuildTriggerPolicy to only one
pointer field.

For image change triggers, the value of type is ImageChange. Then, the imageChange field is the
pointer to an ImageChangeTrigger object, which has the following fields:

lastTriggeredImageID: This field, which is not shown in the example, is deprecated in OpenShift
Container Platform 4.8 and will be ignored in a future release. It contains the resolved image
reference for the ImageStreamTag when the last build was triggered from this BuildConfig.

paused: You can use this field, which is not shown in the example, to temporarily disable this
particular image change trigger.

from: You use this field to reference the ImageStreamTag that drives this image change
trigger. Its type is the core Kubernetes type, OwnerReference.

The from field has the following fields of note: kind: For image change triggers, the only supported
value is ImageStreamTag. namespace: You use this field to specify the namespace of the
ImageStreamTag. ** name: You use this field to specify the ImageStreamTag.

Image change trigger status

In your build configuration, buildConfig.status.imageChangeTriggers is an array of
ImageChangeTriggerStatus elements. Each ImageChangeTriggerStatus element includes the from,
lastTriggeredImageID, and lastTriggerTime elements shown in the preceding example.

9

 lastVersion: 1

OpenShift Container Platform 4.11 CI/CD

78

The ImageChangeTriggerStatus that has the most recent lastTriggerTime triggered the most recent
build. You use its name and namespace to identify the image change trigger in
buildConfig.spec.triggers that triggered the build.

The lastTriggerTime with the most recent timestamp signifies the ImageChangeTriggerStatus of the
last build. This ImageChangeTriggerStatus has the same name and namespace as the image change
trigger in buildConfig.spec.triggers that triggered the build.

Additional resources

v1 container registries

2.8.1.4. Configuration change triggers

A configuration change trigger allows a build to be automatically invoked as soon as a new BuildConfig
is created.

The following is an example trigger definition YAML within the BuildConfig:

NOTE

Configuration change triggers currently only work when creating a new BuildConfig. In a
future release, configuration change triggers will also be able to launch a build whenever a
BuildConfig is updated.

2.8.1.4.1. Setting triggers manually

Triggers can be added to and removed from build configurations with oc set triggers.

Procedure

To set a GitHub webhook trigger on a build configuration, use:

To set an imagechange trigger, use:

To remove a trigger, add --remove:

NOTE

When a webhook trigger already exists, adding it again regenerates the webhook secret.

For more information, consult the help documentation with by running:

 type: "ConfigChange"

$ oc set triggers bc <name> --from-github

$ oc set triggers bc <name> --from-image='
 // Writer, remove or update this in 4.12

OpenShift Container Platform 4.11 CI/CD

114

The following example shows two containers that reference image streams that are present in the
openshift namespace. One container handles the JNLP contract for launching Pods as Jenkins Agents.
The other container uses an image with tools for building code in a particular coding language:

 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/tmp</workingDir>
 <command></command>
 <args>${computer.jnlpmac} ${computer.name}</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>
 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

kind: ConfigMap
apiVersion: v1
metadata:
 name: jenkins-agent
 labels:
 role: jenkins-agent
data:
 template2: |-
 <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
 <inheritFrom></inheritFrom>
 <name>template2</name>
 <instanceCap>2147483647</instanceCap>
 <idleMinutes>0</idleMinutes>
 <label>template2</label>
 <serviceAccount>jenkins</serviceAccount>
 <nodeSelector></nodeSelector>
 <volumes/>
 <containers>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>jnlp</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/home/jenkins/agent</workingDir>
 <command></command>
 <args>\$(JENKINS_SECRET) \$(JENKINS_NAME)</args>
 <ttyEnabled>false</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>

CHAPTER 5. JENKINS

115

NOTE

If you log in to the Jenkins console and make further changes to the pod template
configuration after the pod template is created, and the OpenShift Container Platform
Sync plugin detects that the config map has changed, it will replace the pod template and
overwrite those configuration changes. You cannot merge a new configuration with the
existing configuration.

Do not log in to the Jenkins console and change the pod template configuration. If you
do so after the pod template is created, and the OpenShift Container Platform Sync
plugin detects that the image associated with the image stream or image stream tag has
changed, it replaces the pod template and overwrites those configuration changes. You
cannot merge a new configuration with the existing configuration.

Consider the config map approach if you have more complex configuration needs.

After it is installed, the OpenShift Container Platform Sync plugin monitors the API server of OpenShift
Container Platform for updates to image streams, image stream tags, and config maps and adjusts the
configuration of the Kubernetes plugin.

The following rules apply:

Removing the label or annotation from the config map, image stream, or image stream tag
results in the deletion of any existing PodTemplate from the configuration of the Kubernetes
plugin.

If those objects are removed, the corresponding configuration is removed from the Kubernetes
plugin.

Either creating appropriately labeled or annotated ConfigMap, ImageStream, or
ImageStreamTag objects, or the adding of labels after their initial creation, leads to creating of
a PodTemplate in the Kubernetes-plugin configuration.

 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 <name>java</name>
 
 <privileged>false</privileged>
 <alwaysPullImage>true</alwaysPullImage>
 <workingDir>/home/jenkins/agent</workingDir>
 <command>cat</command>
 <args></args>
 <ttyEnabled>true</ttyEnabled>
 <resourceRequestCpu></resourceRequestCpu>
 <resourceRequestMemory></resourceRequestMemory>
 <resourceLimitCpu></resourceLimitCpu>
 <resourceLimitMemory></resourceLimitMemory>
 <envVars/>
 </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
 </containers>
 <envVars/>
 <annotations/>
 <imagePullSecrets/>
 <nodeProperties/>
 </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

OpenShift Container Platform 4.11 CI/CD

116

In the case of the PodTemplate by config map form, changes to the config map data for the
PodTemplate are applied to the PodTemplate settings in the Kubernetes plugin configuration
and overrides any changes that were made to the PodTemplate through the Jenkins UI
between changes to the config map.

To use a container image as a Jenkins agent, the image must run the agent as an entry point. For more
details, see the official Jenkins documentation.

Additional resources

Important changes to OpenShift Jenkins images

5.1.7. Jenkins permissions

If in the config map the <serviceAccount> element of the pod template XML is the OpenShift
Container Platform service account used for the resulting pod, the service account credentials are
mounted into the pod. The permissions are associated with the service account and control which
operations against the OpenShift Container Platform master are allowed from the pod.

Consider the following scenario with service accounts used for the pod, which is launched by the
Kubernetes Plugin that runs in the OpenShift Container Platform Jenkins image.

If you use the example template for Jenkins that is provided by OpenShift Container Platform, the
jenkins service account is defined with the edit role for the project Jenkins runs in, and the master
Jenkins pod has that service account mounted.

The two default Maven and NodeJS pod templates that are injected into the Jenkins configuration are
also set to use the same service account as the Jenkins master.

Any pod templates that are automatically discovered by the OpenShift Container Platform sync
plugin because their image streams or image stream tags have the required label or
annotations are configured to use the Jenkins master service account as their service account.

For the other ways you can provide a pod template definition into Jenkins and the Kubernetes
plugin, you have to explicitly specify the service account to use. Those other ways include the
Jenkins console, the podTemplate pipeline DSL that is provided by the Kubernetes plugin, or
labeling a config map whose data is the XML configuration for a pod template.

If you do not specify a value for the service account, the default service account is used.

Ensure that whatever service account is used has the necessary permissions, roles, and so on
defined within OpenShift Container Platform to manipulate whatever projects you choose to
manipulate from the within the pod.

5.1.8. Creating a Jenkins service from a template

Templates provide parameter fields to define all the environment variables with predefined default
values. OpenShift Container Platform provides templates to make creating a new Jenkins service easy.
The Jenkins templates should be registered in the default openshift project by your cluster
administrator during the initial cluster setup.

The two available templates both define deployment configuration and a service. The templates differ
in their storage strategy, which affects whether the Jenkins content persists across a pod restart.

NOTE

CHAPTER 5. JENKINS

117

https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds#Distributedbuilds-Launchslaveagentheadlessly
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#important-changes-to-openshift-jenkins-images

NOTE

A pod might be restarted when it is moved to another node or when an update of the
deployment configuration triggers a redeployment.

jenkins-ephemeral uses ephemeral storage. On pod restart, all data is lost. This template is
only useful for development or testing.

jenkins-persistent uses a Persistent Volume (PV) store. Data survives a pod restart.

To use a PV store, the cluster administrator must define a PV pool in the OpenShift Container Platform
deployment.

After you select which template you want, you must instantiate the template to be able to use Jenkins.

Procedure

1. Create a new Jenkins application using one of the following methods:

A PV:

Or an emptyDir type volume where configuration does not persist across pod restarts:

With both templates, you can run oc describe on them to see all the parameters available for overriding.

For example:

5.1.9. Using the Jenkins Kubernetes plugin

In the following example, the openshift-jee-sample BuildConfig object causes a Jenkins Maven agent
pod to be dynamically provisioned. The pod clones some Java source code, builds a WAR file, and
causes a second BuildConfig, openshift-jee-sample-docker to run. The second BuildConfig layers the
new WAR file into a container image.

Sample BuildConfig that uses the Jenkins Kubernetes plugin

$ oc new-app jenkins-persistent

$ oc new-app jenkins-ephemeral

$ oc describe jenkins-ephemeral

kind: List
apiVersion: v1
items:
- kind: ImageStream
 apiVersion: image.openshift.io/v1
 metadata:
 name: openshift-jee-sample
- kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: openshift-jee-sample-docker
 spec:

OpenShift Container Platform 4.11 CI/CD

118

It is also possible to override the specification of the dynamically created Jenkins agent pod. The
following is a modification to the preceding example, which overrides the container memory and
specifies an environment variable.

Sample BuildConfig that uses the Jenkins Kubernetes Plugin, specifying memory limit and
environment variable

 strategy:
 type: Docker
 source:
 type: Docker
 dockerfile: |-
 FROM openshift/wildfly-101-centos7:latest
 COPY ROOT.war /wildfly/standalone/deployments/ROOT.war
 CMD $STI_SCRIPTS_PATH/run
 binary:
 asFile: ROOT.war
 output:
 to:
 kind: ImageStreamTag
 name: openshift-jee-sample:latest
- kind: BuildConfig
 apiVersion: build.openshift.io/v1
 metadata:
 name: openshift-jee-sample
 spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 node("maven") {
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 triggers:
 - type: ConfigChange

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
 name: openshift-jee-sample
spec:
 strategy:
 type: JenkinsPipeline
 jenkinsPipelineStrategy:
 jenkinsfile: |-
 podTemplate(label: "mypod", 1
 cloud: "openshift", 2
 inheritFrom: "maven", 3
 containers: [
 containerTemplate(name: "jnlp", 4
 image: "openshift/jenkins-agent-maven-35-centos7:v3.10", 5
 resourceRequestMemory: "512Mi", 6
 resourceLimitMemory: "512Mi", 7

CHAPTER 5. JENKINS

119

1

2

3

4

5

6

7

8

9

A new pod template called mypod is defined dynamically. The new pod template name is
referenced in the node stanza.

The cloud value must be set to openshift.

The new pod template can inherit its configuration from an existing pod template. In this case,
inherited from the Maven pod template that is pre-defined by OpenShift Container Platform.

This example overrides values in the pre-existing container, and must be specified by name. All
Jenkins agent images shipped with OpenShift Container Platform use the Container name jnlp.

Specify the container image name again. This is a known issue.

A memory request of 512 Mi is specified.

A memory limit of 512 Mi is specified.

An environment variable CONTAINER_HEAP_PERCENT, with value 0.25, is specified.

The node stanza references the name of the defined pod template.

By default, the pod is deleted when the build completes. This behavior can be modified with the plugin or
within a pipeline Jenkinsfile.

Upstream Jenkins has more recently introduced a YAML declarative format for defining a podTemplate
pipeline DSL in-line with your pipelines. An example of this format, using the sample java-builder pod
template that is defined in the OpenShift Container Platform Jenkins image:

 envVars: [
 envVar(key: "CONTAINER_HEAP_PERCENT", value: "0.25") 8
])
]) {
 node("mypod") { 9
 sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
 sh "mvn -B -Popenshift package"
 sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
 }
 }
 triggers:
 - type: ConfigChange

def nodeLabel = 'java-buidler'

pipeline {
 agent {
 kubernetes {
 cloud 'openshift'
 label nodeLabel
 yaml """
apiVersion: v1
kind: Pod
metadata:
 labels:
 worker: ${nodeLabel}
spec:

OpenShift Container Platform 4.11 CI/CD

120

5.1.10. Jenkins memory requirements

When deployed by the provided Jenkins Ephemeral or Jenkins Persistent templates, the default
memory limit is 1 Gi.

By default, all other process that run in the Jenkins container cannot use more than a total of 512 MiB
of memory. If they require more memory, the container halts. It is therefore highly recommended that
pipelines run external commands in an agent container wherever possible.

And if Project quotas allow for it, see recommendations from the Jenkins documentation on what a
Jenkins master should have from a memory perspective. Those recommendations proscribe to allocate
even more memory for the Jenkins master.

It is recommended to specify memory request and limit values on agent containers created by the
Jenkins Kubernetes plugin. Admin users can set default values on a per-agent image basis through the
Jenkins configuration. The memory request and limit parameters can also be overridden on a per-
container basis.

You can increase the amount of memory available to Jenkins by overriding the MEMORY_LIMIT
parameter when instantiating the Jenkins Ephemeral or Jenkins Persistent template.

5.1.11. Additional resources

See Base image options for more information on the Red Hat Universal Base Images (UBI).

5.2. JENKINS AGENT

 containers:
 - name: jnlp
 image: image-registry.openshift-image-registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest
 args: ['\$(JENKINS_SECRET)', '\$(JENKINS_NAME)']
 - name: java
 image: image-registry.openshift-image-registry.svc:5000/openshift/java:latest
 command:
 - cat
 tty: true
"""
 }
 }

 options {
 timeout(time: 20, unit: 'MINUTES')
 }

 stages {
 stage('Build App') {
 steps {
 container("java") {
 sh "mvn --version"
 }
 }
 }
 }
}

CHAPTER 5. JENKINS

121

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/architecture/#base-image-options
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html-single/getting_started_with_containers/index#using_red_hat_base_container_images_standard_and_minimal

OpenShift Container Platform provides Base, Maven, and Node.js images for use as Jenkins agents.

The Base image for Jenkins agents does the following:

Pulls in both the required tools, headless Java, the Jenkins JNLP client, and the useful ones,
including git, tar, zip, and nss, among others.

Establishes the JNLP agent as the entry point.

Includes the oc client tooling for invoking command line operations from within Jenkins jobs.

Provides Dockerfiles for both Red Hat Enterprise Linux (RHEL) and localdev images.

The Maven v3.5, Node.js v10, and Node.js v12 images extend the Base image. They provide Dockerfiles
for the Universal Base Image (UBI) that you can reference when building new agent images. Also note
the contrib and contrib/bin subdirectories, which enable you to insert configuration files and
executable scripts for your image.

IMPORTANT

Use a version of the agent image that is appropriate for your OpenShift Container
Platform release version. Embedding an oc client version that is not compatible with the
OpenShift Container Platform version can cause unexpected behavior.

The OpenShift Container Platform Jenkins image also defines the following sample pod templates to
illustrate how you can use these agent images with the Jenkins Kubernetes plugin:

The maven pod template, which uses a single container that uses the OpenShift Container
Platform Maven Jenkins agent image.

The nodejs pod template, which uses a single container that uses the OpenShift Container
Platform Node.js Jenkins agent image.

The java-builder pod template, which employs two containers. One is the jnlp container, which
uses the OpenShift Container Platform Base agent image and handles the JNLP contract for
starting and stopping Jenkins agents. The second is the java container which uses the java
OpenShift Container Platform Sample ImageStream, which contains the various Java binaries,
including the Maven binary mvn, for building code.

The nodejs-builder pod template, which employs two containers. One is the jnlp container,
which uses the OpenShift Container Platform Base agent image and handles the JNLP contract
for starting and stopping Jenkins agents. The second is the nodejs container which uses the
nodejs OpenShift Container Platform Sample ImageStream, which contains the various Node.js
binaries, including the npm binary, for building code.

5.2.1. Jenkins agent images

The OpenShift Container Platform Jenkins agent images are available on Quay.io or registry.redhat.io.

Jenkins images are available through the Red Hat Registry:

$ docker pull registry.redhat.io/ocp-tools-4/jenkins-rhel8:<image_tag>

$ docker pull registry.redhat.io/ocp-tools-4/jenkins-agent-base-rhel8:<image_tag>

OpenShift Container Platform 4.11 CI/CD

122

https://quay.io
https://registry.redhat.io

To use these images, you can either access them directly from Quay.io or registry.redhat.io or push them
into your OpenShift Container Platform container image registry.

5.2.2. Jenkins agent environment variables

Each Jenkins agent container can be configured with the following environment variables.

Variable Definition Example values and settings

JAVA_MAX_HEAP_PARAM,
CONTAINER_HEAP_PERCEN
T,
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB

These values control the
maximum heap size of the Jenkins
JVM. If
JAVA_MAX_HEAP_PARAM is
set, its value takes precedence.
Otherwise, the maximum heap
size is dynamically calculated as
CONTAINER_HEAP_PERCE
NT of the container memory limit,
optionally capped at
JENKINS_MAX_HEAP_UPPE
R_BOUND_MB MiB.

By default, the maximum heap
size of the Jenkins JVM is set to
50% of the container memory
limit with no cap.

JAVA_MAX_HEAP_PARAM
example setting: -Xmx512m

CONTAINER_HEAP_PERCE
NT default: 0.5, or 50%

JENKINS_MAX_HEAP_UPPE
R_BOUND_MB example
setting: 512 MiB

JAVA_INITIAL_HEAP_PARA
M,
CONTAINER_INITIAL_PERC
ENT

These values control the initial
heap size of the Jenkins JVM. If
JAVA_INITIAL_HEAP_PARA
M is set, its value takes
precedence. Otherwise, the initial
heap size is dynamically calculated
as
CONTAINER_INITIAL_PERC
ENT of the dynamically
calculated maximum heap size.

By default, the JVM sets the
initial heap size.

JAVA_INITIAL_HEAP_PARA
M example setting: -Xms32m

CONTAINER_INITIAL_PERC
ENT example setting: 0.1, or 10%

CONTAINER_CORE_LIMIT If set, specifies an integer number
of cores used for sizing numbers
of internal JVM threads.

Example setting: 2

JAVA_TOOL_OPTIONS Specifies options to apply to all
JVMs running in this container. It
is not recommended to override
this value.

Default: -
XX:+UnlockExperimentalVM
Options -
XX:+UseCGroupMemoryLimi
tForHeap -
Dsun.zip.disableMemoryMap
ping=true

CHAPTER 5. JENKINS

123

https://quay.io
https://registry.redhat.io

JAVA_GC_OPTS Specifies Jenkins JVM garbage
collection parameters. It is not
recommended to override this
value.

Default: -XX:+UseParallelGC -
XX:MinHeapFreeRatio=5 -
XX:MaxHeapFreeRatio=10 -
XX:GCTimeRatio=4 -
XX:AdaptiveSizePolicyWeigh
t=90

JENKINS_JAVA_OVERRIDES Specifies additional options for
the Jenkins JVM. These options
are appended to all other options,
including the Java options above,
and can be used to override any
of them, if necessary. Separate
each additional option with a
space and if any option contains
space characters, escape them
with a backslash.

Example settings: -Dfoo -Dbar; -
Dfoo=first\ value -
Dbar=second\ value

USE_JAVA_VERSION Specifies the version of Java
version to use to run the agent in
its container. The container base
image has two versions of java
installed: java-11 and java-1.8.0.
If you extend the container base
image, you can specify any
alternative version of java using
its associated suffix.

The default value is java-11.

Example setting: java-1.8.0

Variable Definition Example values and settings

5.2.3. Jenkins agent memory requirements

A JVM is used in all Jenkins agents to host the Jenkins JNLP agent as well as to run any Java
applications such as javac, Maven, or Gradle.

By default, the Jenkins JNLP agent JVM uses 50% of the container memory limit for its heap. This value
can be modified by the CONTAINER_HEAP_PERCENT environment variable. It can also be capped at
an upper limit or overridden entirely.

By default, any other processes run in the Jenkins agent container, such as shell scripts or oc commands
run from pipelines, cannot use more than the remaining 50% memory limit without provoking an OOM
kill.

By default, each further JVM process that runs in a Jenkins agent container uses up to 25% of the
container memory limit for its heap. It might be necessary to tune this limit for many build workloads.

5.2.4. Jenkins agent Gradle builds

Hosting Gradle builds in the Jenkins agent on OpenShift Container Platform presents additional
complications because in addition to the Jenkins JNLP agent and Gradle JVMs, Gradle spawns a third
JVM to run tests if they are specified.

OpenShift Container Platform 4.11 CI/CD

124

1

The following settings are suggested as a starting point for running Gradle builds in a memory
constrained Jenkins agent on OpenShift Container Platform. You can modify these settings as required.

Ensure the long-lived Gradle daemon is disabled by adding org.gradle.daemon=false to the
gradle.properties file.

Disable parallel build execution by ensuring org.gradle.parallel=true is not set in the
gradle.properties file and that --parallel is not set as a command line argument.

To prevent Java compilations running out-of-process, set java { options.fork = false } in the
build.gradle file.

Disable multiple additional test processes by ensuring test { maxParallelForks = 1 } is set in the
build.gradle file.

Override the Gradle JVM memory parameters by the GRADLE_OPTS, JAVA_OPTS or
JAVA_TOOL_OPTIONS environment variables.

Set the maximum heap size and JVM arguments for any Gradle test JVM by defining the
maxHeapSize and jvmArgs settings in build.gradle, or through the -Dorg.gradle.jvmargs
command line argument.

5.2.5. Jenkins agent pod retention

Jenkins agent pods, are deleted by default after the build completes or is stopped. This behavior can be
changed by the Kubernetes plugin pod retention setting. Pod retention can be set for all Jenkins builds,
with overrides for each pod template. The following behaviors are supported:

Always keeps the build pod regardless of build result.

Default uses the plugin value, which is the pod template only.

Never always deletes the pod.

On Failure keeps the pod if it fails during the build.

You can override pod retention in the pipeline Jenkinsfile:

Allowed values for podRetention are never(), onFailure(), always(), and default().

podTemplate(label: "mypod",
 cloud: "openshift",
 inheritFrom: "maven",
 podRetention: onFailure(), 1
 containers: [
 ...
]) {
 node("mypod") {
 ...
 }
}

CHAPTER 5. JENKINS

125

WARNING

Pods that are kept might continue to run and count against resource quotas.

5.3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR
TEKTON

You can migrate your CI/CD workflows from Jenkins to Red Hat OpenShift Pipelines , a cloud-native
CI/CD experience based on the Tekton project.

5.3.1. Comparison of Jenkins and OpenShift Pipelines concepts

You can review and compare the following equivalent terms used in Jenkins and OpenShift Pipelines.

5.3.1.1. Jenkins terminology

Jenkins offers declarative and scripted pipelines that are extensible using shared libraries and plugins.
Some basic terms in Jenkins are as follows:

Pipeline: Automates the entire process of building, testing, and deploying applications by using
Groovy syntax.

Node: A machine capable of either orchestrating or executing a scripted pipeline.

Stage: A conceptually distinct subset of tasks performed in a pipeline. Plugins or user interfaces
often use this block to display the status or progress of tasks.

Step: A single task that specifies the exact action to be taken, either by using a command or a
script.

5.3.1.2. OpenShift Pipelines terminology

OpenShift Pipelines uses YAML syntax for declarative pipelines and consists of tasks. Some basic terms
in OpenShift Pipelines are as follows:

Pipeline: A set of tasks in a series, in parallel, or both.

Task: A sequence of steps as commands, binaries, or scripts.

PipelineRun: Execution of a pipeline with one or more tasks.

TaskRun: Execution of a task with one or more steps.

NOTE

You can initiate a PipelineRun or a TaskRun with a set of inputs such as
parameters and workspaces, and the execution results in a set of outputs and
artifacts.

Workspace: In OpenShift Pipelines, workspaces are conceptual blocks that serve the following



OpenShift Container Platform 4.11 CI/CD

126

https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html
https://groovy-lang.org/
https://yaml.org/

Workspace: In OpenShift Pipelines, workspaces are conceptual blocks that serve the following
purposes:

Storage of inputs, outputs, and build artifacts.

Common space to share data among tasks.

Mount points for credentials held in secrets, configurations held in config maps, and
common tools shared by an organization.

NOTE

In Jenkins, there is no direct equivalent of OpenShift Pipelines workspaces. You
can think of the control node as a workspace, as it stores the cloned code
repository, build history, and artifacts. When a job is assigned to a different node,
the cloned code and the generated artifacts are stored in that node, but the
control node maintains the build history.

5.3.1.3. Mapping of concepts

The building blocks of Jenkins and OpenShift Pipelines are not equivalent, and a specific comparison
does not provide a technically accurate mapping. The following terms and concepts in Jenkins and
OpenShift Pipelines correlate in general:

Table 5.1. Jenkins and OpenShift Pipelines - basic comparison

Jenkins OpenShift Pipelines

Pipeline Pipeline and PipelineRun

Stage Task

Step A step in a task

5.3.2. Migrating a sample pipeline from Jenkins to OpenShift Pipelines

You can use the following equivalent examples to help migrate your build, test, and deploy pipelines
from Jenkins to OpenShift Pipelines.

5.3.2.1. Jenkins pipeline

Consider a Jenkins pipeline written in Groovy for building, testing, and deploying:

pipeline {
 agent any
 stages {
 stage('Build') {
 steps {
 sh 'make'
 }
 }
 stage('Test'){
 steps {

CHAPTER 5. JENKINS

127

5.3.2.2. OpenShift Pipelines pipeline

To create a pipeline in OpenShift Pipelines that is equivalent to the preceding Jenkins pipeline, you
create the following three tasks:

Example build task YAML definition file

Example test task YAML definition file

Example deploy task YAML definition file

 sh 'make check'
 junit 'reports/**/*.xml'
 }
 }
 stage('Deploy') {
 steps {
 sh 'make publish'
 }
 }
 }
}

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myproject-build
spec:
 workspaces:
 - name: source
 steps:
 - image: my-ci-image
 command: ["make"]
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: myproject-test
spec:
 workspaces:
 - name: source
 steps:
 - image: my-ci-image
 command: ["make check"]
 workingDir: $(workspaces.source.path)
 - image: junit-report-image
 script: |
 #!/usr/bin/env bash
 junit-report reports/**/*.xml
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Task

OpenShift Container Platform 4.11 CI/CD

128

You can combine the three tasks sequentially to form a pipeline in OpenShift Pipelines:

Example: OpenShift Pipelines pipeline for building, testing, and deployment

5.3.3. Migrating from Jenkins plugins to Tekton Hub tasks

You can extend the capability of Jenkins by using plugins. To achieve similar extensibility in OpenShift
Pipelines, use any of the tasks available from Tekton Hub.

For example, consider the git-clone task in Tekton Hub, which corresponds to the git plugin for Jenkins.

Example: git-clone task from Tekton Hub

metadata:
 name: myprojectd-deploy
spec:
 workspaces:
 - name: source
 steps:
 - image: my-deploy-image
 command: ["make deploy"]
 workingDir: $(workspaces.source.path)

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: myproject-pipeline
spec:
 workspaces:
 - name: shared-dir
 tasks:
 - name: build
 taskRef:
 name: myproject-build
 workspaces:
 - name: source
 workspace: shared-dir
 - name: test
 taskRef:
 name: myproject-test
 workspaces:
 - name: source
 workspace: shared-dir
 - name: deploy
 taskRef:
 name: myproject-deploy
 workspaces:
 - name: source
 workspace: shared-dir

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: demo-pipeline
spec:

CHAPTER 5. JENKINS

129

https://plugins.jenkinsci.org
https://hub.tekton.dev
https://hub.tekton.dev/tekton/task/git-clone
https://plugins.jenkins.io/git/

5.3.4. Extending OpenShift Pipelines capabilities using custom tasks and scripts

In OpenShift Pipelines, if you do not find the right task in Tekton Hub, or need greater control over tasks,
you can create custom tasks and scripts to extend the capabilities of OpenShift Pipelines.

Example: A custom task for running the maven test command

Example: Run a custom shell script by providing its path

Example: Run a custom Python script by writing it in the YAML file

 params:
 - name: repo_url
 - name: revision
 workspaces:
 - name: source
 tasks:
 - name: fetch-from-git
 taskRef:
 name: git-clone
 params:
 - name: url
 value: $(params.repo_url)
 - name: revision
 value: $(params.revision)
 workspaces:
 - name: output
 workspace: source

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
 name: maven-test
spec:
 workspaces:
 - name: source
 steps:
 - image: my-maven-image
 command: ["mvn test"]
 workingDir: $(workspaces.source.path)

...
steps:
 image: ubuntu
 script: |
 #!/usr/bin/env bash
 /workspace/my-script.sh
...

...
steps:
 image: python
 script: |

OpenShift Container Platform 4.11 CI/CD

130

5.3.5. Comparison of Jenkins and OpenShift Pipelines execution models

Jenkins and OpenShift Pipelines offer similar functions but are different in architecture and execution.

Table 5.2. Comparison of execution models in Jenkins and OpenShift Pipelines

Jenkins OpenShift Pipelines

Jenkins has a controller node. Jenkins runs pipelines
and steps centrally, or orchestrates jobs running in
other nodes.

OpenShift Pipelines is serverless and distributed, and
there is no central dependency for execution.

Containers are launched by the Jenkins controller
node through the pipeline.

OpenShift Pipelines adopts a 'container-first'
approach, where every step runs as a container in a
pod (equivalent to nodes in Jenkins).

Extensibility is achieved by using plugins. Extensibility is achieved by using tasks in Tekton Hub
or by creating custom tasks and scripts.

5.3.6. Examples of common use cases

Both Jenkins and OpenShift Pipelines offer capabilities for common CI/CD use cases, such as:

Compiling, building, and deploying images using Apache Maven

Extending the core capabilities by using plugins

Reusing shareable libraries and custom scripts

5.3.6.1. Running a Maven pipeline in Jenkins and OpenShift Pipelines

You can use Maven in both Jenkins and OpenShift Pipelines workflows for compiling, building, and
deploying images. To map your existing Jenkins workflow to OpenShift Pipelines, consider the following
examples:

Example: Compile and build an image and deploy it to OpenShift using Maven in Jenkins

 #!/usr/bin/env python3
 print(“hello from python!”)
...

#!/usr/bin/groovy
node('maven') {
 stage 'Checkout'
 checkout scm

 stage 'Build'
 sh 'cd helloworld && mvn clean'
 sh 'cd helloworld && mvn compile'

 stage 'Run Unit Tests'
 sh 'cd helloworld && mvn test'

CHAPTER 5. JENKINS

131

Example: Compile and build an image and deploy it to OpenShift using Maven in OpenShift
Pipelines.

 stage 'Package'
 sh 'cd helloworld && mvn package'

 stage 'Archive artifact'
 sh 'mkdir -p artifacts/deployments && cp helloworld/target/*.war artifacts/deployments'
 archive 'helloworld/target/*.war'

 stage 'Create Image'
 sh 'oc login https://kubernetes.default -u admin -p admin --insecure-skip-tls-verify=true'
 sh 'oc new-project helloworldproject'
 sh 'oc project helloworldproject'
 sh 'oc process -f helloworld/jboss-eap70-binary-build.json | oc create -f -'
 sh 'oc start-build eap-helloworld-app --from-dir=artifacts/'

 stage 'Deploy'
 sh 'oc new-app helloworld/jboss-eap70-deploy.json' }

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: maven-pipeline
spec:
 workspaces:
 - name: shared-workspace
 - name: maven-settings
 - name: kubeconfig-dir
 optional: true
 params:
 - name: repo-url
 - name: revision
 - name: context-path
 tasks:
 - name: fetch-repo
 taskRef:
 name: git-clone
 workspaces:
 - name: output
 workspace: shared-workspace
 params:
 - name: url
 value: "$(params.repo-url)"
 - name: subdirectory
 value: ""
 - name: deleteExisting
 value: "true"
 - name: revision
 value: $(params.revision)
 - name: mvn-build
 taskRef:
 name: maven
 runAfter:
 - fetch-repo

OpenShift Container Platform 4.11 CI/CD

132

 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["-DskipTests", "clean", "compile"]
 - name: mvn-tests
 taskRef:
 name: maven
 runAfter:
 - mvn-build
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["test"]
 - name: mvn-package
 taskRef:
 name: maven
 runAfter:
 - mvn-tests
 workspaces:
 - name: source
 workspace: shared-workspace
 - name: maven-settings
 workspace: maven-settings
 params:
 - name: CONTEXT_DIR
 value: "$(params.context-path)"
 - name: GOALS
 value: ["package"]
 - name: create-image-and-deploy
 taskRef:
 name: openshift-client
 runAfter:
 - mvn-package
 workspaces:
 - name: manifest-dir
 workspace: shared-workspace
 - name: kubeconfig-dir
 workspace: kubeconfig-dir
 params:
 - name: SCRIPT
 value: |
 cd "$(params.context-path)"
 mkdir -p ./artifacts/deployments && cp ./target/*.war ./artifacts/deployments
 oc new-project helloworldproject

CHAPTER 5. JENKINS

133

5.3.6.2. Extending the core capabilities of Jenkins and OpenShift Pipelines by using plugins

Jenkins has the advantage of a large ecosystem of numerous plugins developed over the years by its
extensive user base. You can search and browse the plugins in the Jenkins Plugin Index .

OpenShift Pipelines also has many tasks developed and contributed by the community and enterprise
users. A publicly available catalog of reusable OpenShift Pipelines tasks are available in the Tekton Hub.

In addition, OpenShift Pipelines incorporates many of the plugins of the Jenkins ecosystem within its
core capabilities. For example, authorization is a critical function in both Jenkins and OpenShift
Pipelines. While Jenkins ensures authorization using the Role-based Authorization Strategy plugin,
OpenShift Pipelines uses OpenShift’s built-in Role-based Access Control system.

5.3.6.3. Sharing reusable code in Jenkins and OpenShift Pipelines

Jenkins shared libraries provide reusable code for parts of Jenkins pipelines. The libraries are shared
between Jenkinsfiles to create highly modular pipelines without code repetition.

Although there is no direct equivalent of Jenkins shared libraries in OpenShift Pipelines, you can achieve
similar workflows by using tasks from the Tekton Hub in combination with custom tasks and scripts.

5.3.7. Additional resources

Understanding OpenShift Pipelines

Role-based Access Control

5.4. IMPORTANT CHANGES TO OPENSHIFT JENKINS IMAGES

OpenShift Container Platform 4.11 moves the OpenShift Jenkins and OpenShift Agent Base images to
the ocp-tools-4 repository at registry.redhat.io. It also removes the OpenShift Jenkins Maven and
NodeJS Agent images from its payload:

OpenShift Container Platform 4.11 moves the OpenShift Jenkins and OpenShift Agent Base
images to the ocp-tools-4 repository at registry.redhat.io so that Red Hat can produce and
update the images outside the OpenShift Container Platform lifecycle. Previously, these images
were in the OpenShift Container Platform install payload and the openshift4 repository at
registry.redhat.io.

OpenShift Container Platform 4.10 deprecated the OpenShift Jenkins Maven and NodeJS
Agent images. OpenShift Container Platform 4.11 removes these images from its payload. Red
Hat no longer produces these images, and they are not available from the ocp-tools-4
repository at registry.redhat.io. Red Hat maintains the 4.10 and earlier versions of these
images for any significant bug fixes or security CVEs, following the OpenShift Container
Platform lifecycle policy.

These changes support the OpenShift Container Platform 4.10 recommendation to use multiple
container Pod Templates with the Jenkins Kubernetes Plugin.

 oc project helloworldproject
 oc process -f jboss-eap70-binary-build.json | oc create -f -
 oc start-build eap-helloworld-app --from-dir=artifacts/
 oc new-app jboss-eap70-deploy.json

OpenShift Container Platform 4.11 CI/CD

134

https://plugins.jenkins.io/
https://hub.tekton.dev/
https://plugins.jenkins.io/role-strategy/
https://www.jenkins.io/doc/book/pipeline/shared-libraries/
https://www.jenkins.io/doc/book/pipeline/jenkinsfile/
https://hub.tekton.dev/
https://docs.openshift.com/pipelines/latest/about/understanding-openshift-pipelines.html
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/authentication_and_authorization/#using-rbac
https://access.redhat.com/support/policy/updates/openshift
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#images-other-jenkins-config-kubernetes_images-other-jenkins

5.4.1. Relocation of OpenShift Jenkins images

OpenShift Container Platform 4.11 makes significant changes to the location and availability of specific
OpenShift Jenkins images. Additionally, you can configure when and how to update these images.

What stays the same with the OpenShift Jenkins images?

The Cluster Samples Operator manages the ImageStream and Template objects for operating
the OpenShift Jenkins images.

By default, the Jenkins DeploymentConfig object from the Jenkins pod template triggers a
redeployment when the Jenkins image changes. By default, this image is referenced by the
jenkins:2 image stream tag of Jenkins image stream in the openshift namespace in the
ImageStream YAML file in the Samples Operator payload.

If you upgrade from OpenShift Container Platform 4.10 and earlier to 4.11, the deprecated
maven and nodejs pod templates are still in the default image configuration.

If you upgrade from OpenShift Container Platform 4.10 and earlier to 4.11, the jenkins-agent-
maven and jenkins-agent-nodejs image streams still exist in your cluster. To maintain these
image streams, see the following section, "What happens with the jenkins-agent-maven and
jenkins-agent-nodejs image streams in the openshift namespace?"

What changes in the support matrix of the OpenShift Jenkins image?

Each new image in the ocp-tools-4 repository in the registry.redhat.io registry supports multiple
versions of OpenShift Container Platform. When Red Hat updates one of these new images, it is
simultaneously available for all versions. This availability is ideal when Red Hat updates an image in
response to a security advisory. Initially, this change applies to OpenShift Container Platform 4.11 and
later. It is planned that this change will eventually apply to OpenShift Container Platform 4.9 and later.

Previously, each Jenkins image supported only one version of OpenShift Container Platform and Red
Hat might update those images sequentially over time.

What additions are there with the OpenShift Jenkins and Jenkins Agent Base ImageStream
and ImageStreamTag objects?

By moving from an in-payload image stream to an image stream that references non-payload images,
OpenShift Container Platform can define additional image stream tags. Red Hat has created a series of
new image stream tags to go along with the existing "value": "jenkins:2" and "value": "image-
registry.openshift-image-registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest" image
stream tags present in OpenShift Container Platform 4.10 and earlier. These new image stream tags
address some requests to improve how the Jenkins-related image streams are maintained.

About the new image stream tags:

ocp-upgrade-redeploy

To update your Jenkins image when you upgrade OpenShift Container Platform, use this image
stream tag in your Jenkins deployment configuration. This image stream tag corresponds to the
existing 2 image stream tag of the jenkins image stream and the latest image stream tag of the
jenkins-agent-base-rhel8 image stream. It employs an image tag specific to only one SHA or image
digest. When the ocp-tools-4 image changes, such as for Jenkins security advisories, Red Hat
Engineering updates the Cluster Samples Operator payload.

user-maintained-upgrade-redeploy

To manually redeploy Jenkins after you upgrade OpenShift Container Platform, use this image
stream tag in your Jenkins deployment configuration. This image stream tag uses the least specific

CHAPTER 5. JENKINS

135

image version indicator available. When you redeploy Jenkins, run the following command: $ oc
import-image jenkins:user-maintained-upgrade-redeploy -n openshift. When you issue this
command, the OpenShift Container Platform ImageStream controller accesses the
registry.redhat.io image registry and stores any updated images in the OpenShift image registry’s
slot for that Jenkins ImageStreamTag object. Otherwise, if you do not run this command, your
Jenkins deployment configuration does not trigger a redeployment.

scheduled-upgrade-redeploy

To automatically redeploy the latest version of the Jenkins image when it is released, use this image
stream tag in your Jenkins deployment configuration. This image stream tag uses the periodic
importing of image stream tags feature of the OpenShift Container Platform image stream
controller, which checks for changes in the backing image. If the image changes, for example, due to
a recent Jenkins security advisory, OpenShift Container Platform triggers a redeployment of your
Jenkins deployment configuration. See "Configuring periodic importing of image stream tags" in the
following "Additional resources."

What happens with the jenkins-agent-maven and jenkins-agent-nodejs image streams in the
openshift namespace?

The OpenShift Jenkins Maven and NodeJS Agent images for OpenShift Container Platform were
deprecated in 4.10, and are removed from the OpenShift Container Platform install payload in 4.11. They
do not have alternatives defined in the ocp-tools-4 repository. However, you can work around this by
using the sidecar pattern described in the "Jenkins agent" topic mentioned in the following "Additional
resources" section.

However, the Cluster Samples Operator does not delete the jenkins-agent-maven and jenkins-agent-
nodejs image streams created by prior releases, which point to the tags of the respective OpenShift
Container Platform payload images on registry.redhat.io. Therefore, you can pull updates to these
images by running the following commands:

5.4.2. Customizing the Jenkins image stream tag

To override the default upgrade behavior and control how the Jenkins image is upgraded, you set the
image stream tag value that your Jenkins deployment configurations use.

The default upgrade behavior is the behavior that existed when the Jenkins image was part of the install
payload. The image stream tag names, 2 and ocp-upgrade-redeploy, in the jenkins-rhel.json image
stream file use SHA-specific image references. Therefore, when those tags are updated with a new SHA,
the OpenShift Container Platform image change controller automatically redeploys the Jenkins
deployment configuration from the associated templates, such as jenkins-ephemeral.json or jenkins-
persistent.json.

For new deployments, to override that default value, you change the value of the
JENKINS_IMAGE_STREAM_TAG in the jenkins-ephemeral.json Jenkins template. For example,
replace the 2 in "value": "jenkins:2" with one of the following image stream tags:

ocp-upgrade-redeploy, the default value, updates your Jenkins image when you upgrade
OpenShift Container Platform.

user-maintained-upgrade-redeploy requires you to manually redeploy Jenkins by running $ oc

$ oc import-image jenkins-agent-nodejs -n openshift

$ oc import-image jenkins-agent-maven -n openshift

OpenShift Container Platform 4.11 CI/CD

136

user-maintained-upgrade-redeploy requires you to manually redeploy Jenkins by running $ oc
import-image jenkins:user-maintained-upgrade-redeploy -n openshift after upgrading
OpenShift Container Platform.

scheduled-upgrade-redeploy periodically checks the given <image>:<tag> combination for
changes and upgrades the image when it changes. The image change controller pulls the
changed image and redeploys the Jenkins deployment configuration provisioned by the
templates. For more information about this scheduled import policy, see the "Adding tags to
image streams" in the following "Additional resources."

NOTE

To override the current upgrade value for existing deployments, change the values of the
environment variables that correspond to those template parameters.

Prerequisites

You are running OpenShift Jenkins on OpenShift Container Platform 4.11.

You know the namespace where OpenShift Jenkins is deployed.

Procedure

Set the image stream tag value, replacing <namespace> with namespace where OpenShift
Jenkins is deployed and <image_stream_tag> with an image stream tag:

Example

TIP

Alternatively, to edit the Jenkins deployment configuration YAML, enter $ oc edit dc/jenkins -
n <namespace> and update the value: 'jenkins:<image_stream_tag>' line.

5.4.3. Additional resources

Adding tags to image streams

Configuring periodic importing of image stream tags

Jenkins agent

Certified jenkins images

Certified jenkins-agent-base images

Certified jenkins-agent-maven images

Certified jenkins-agent-nodejs images

$ oc patch dc jenkins -p '{"spec":{"triggers":[{"type":"ImageChange","imageChangeParams":
{"automatic":true,"containerNames":["jenkins"],"from":
{"kind":"ImageStreamTag","namespace":"<namespace>","name":"jenkins:
<image_stream_tag>"}}}]}}'

CHAPTER 5. JENKINS

137

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/images/#images-add-tags-to-imagestreams_tagging-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/images/#images-imagestream-import_image-streams-managing
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/html-single/cicd/#images-other-jenkins-agent
https://catalog.redhat.com/software/containers/search?q=Jenkins 2&p=1
https://catalog.redhat.com/software/containers/search?q=Jenkins Agent Base&p=1
https://catalog.redhat.com/software/containers/search?q=jenkins-agent-maven&p=1
https://catalog.redhat.com/software/containers/search?q=jenkins-agent-nodejs&p=1

OpenShift Container Platform 4.11 CI/CD

138

	Table of Contents
	CHAPTER 1. OPENSHIFT CONTAINER PLATFORM CI/CD OVERVIEW
	1.1. OPENSHIFT BUILDS
	1.2. OPENSHIFT PIPELINES
	1.3. OPENSHIFT GITOPS
	1.4. JENKINS

	CHAPTER 2. BUILDS
	2.1. UNDERSTANDING IMAGE BUILDS
	2.1.1. Builds
	2.1.1.1. Docker build
	2.1.1.2. Source-to-image build
	2.1.1.3. Custom build
	2.1.1.4. Pipeline build

	2.2. UNDERSTANDING BUILD CONFIGURATIONS
	2.2.1. BuildConfigs

	2.3. CREATING BUILD INPUTS
	2.3.1. Build inputs
	2.3.2. Dockerfile source
	2.3.3. Image source
	2.3.4. Git source
	2.3.4.1. Using a proxy
	2.3.4.2. Source Clone Secrets

	2.3.5. Binary (local) source
	2.3.6. Input secrets and config maps
	2.3.6.1. What is a secret?
	2.3.6.2. Creating secrets
	2.3.6.3. Using secrets
	2.3.6.4. Adding input secrets and config maps
	2.3.6.5. Source-to-image strategy
	2.3.6.6. Docker strategy
	2.3.6.7. Custom strategy

	2.3.7. External artifacts
	2.3.8. Using docker credentials for private registries
	2.3.9. Build environments
	2.3.9.1. Using build fields as environment variables
	2.3.9.2. Using secrets as environment variables

	2.3.10. Service serving certificate secrets
	2.3.11. Secrets restrictions

	2.4. MANAGING BUILD OUTPUT
	2.4.1. Build output
	2.4.2. Output image environment variables
	2.4.3. Output image labels

	2.5. USING BUILD STRATEGIES
	2.5.1. Docker build
	2.5.1.1. Replacing Dockerfile FROM image
	2.5.1.2. Using Dockerfile path
	2.5.1.3. Using docker environment variables
	2.5.1.4. Adding docker build arguments
	2.5.1.5. Squashing layers with docker builds
	2.5.1.6. Using build volumes

	2.5.2. Source-to-image build
	2.5.2.1. Performing source-to-image incremental builds
	2.5.2.2. Overriding source-to-image builder image scripts
	2.5.2.3. Source-to-image environment variables
	2.5.2.4. Ignoring source-to-image source files
	2.5.2.5. Creating images from source code with source-to-image
	2.5.2.6. Using build volumes

	2.5.3. Custom build
	2.5.3.1. Using FROM image for custom builds
	2.5.3.2. Using secrets in custom builds
	2.5.3.3. Using environment variables for custom builds
	2.5.3.4. Using custom builder images

	2.5.4. Pipeline build
	2.5.4.1. Understanding OpenShift Container Platform pipelines
	2.5.4.2. Providing the Jenkins file for pipeline builds
	2.5.4.3. Using environment variables for pipeline builds
	2.5.4.4. Pipeline build tutorial

	2.5.5. Adding secrets with web console
	2.5.6. Enabling pulling and pushing

	2.6. CUSTOM IMAGE BUILDS WITH BUILDAH
	2.6.1. Prerequisites
	2.6.2. Creating custom build artifacts
	2.6.3. Build custom builder image
	2.6.4. Use custom builder image

	2.7. PERFORMING AND CONFIGURING BASIC BUILDS
	2.7.1. Starting a build
	2.7.1.1. Re-running a build
	2.7.1.2. Streaming build logs
	2.7.1.3. Setting environment variables when starting a build
	2.7.1.4. Starting a build with source

	2.7.2. Canceling a build
	2.7.2.1. Canceling multiple builds
	2.7.2.2. Canceling all builds
	2.7.2.3. Canceling all builds in a given state

	2.7.3. Editing a BuildConfig
	2.7.4. Deleting a BuildConfig
	2.7.5. Viewing build details
	2.7.6. Accessing build logs
	2.7.6.1. Accessing BuildConfig logs
	2.7.6.2. Accessing BuildConfig logs for a given version build
	2.7.6.3. Enabling log verbosity

	2.8. TRIGGERING AND MODIFYING BUILDS
	2.8.1. Build triggers
	2.8.1.1. Webhook triggers
	2.8.1.2. Using image change triggers
	2.8.1.3. Identifying the image change trigger of a build
	2.8.1.4. Configuration change triggers

	2.8.2. Build hooks
	2.8.2.1. Configuring post commit build hooks
	2.8.2.2. Using the CLI to set post commit build hooks

	2.9. PERFORMING ADVANCED BUILDS
	2.9.1. Setting build resources
	2.9.2. Setting maximum duration
	2.9.3. Assigning builds to specific nodes
	2.9.4. Chained builds
	2.9.5. Pruning builds
	2.9.6. Build run policy

	2.10. USING RED HAT SUBSCRIPTIONS IN BUILDS
	2.10.1. Creating an image stream tag for the Red Hat Universal Base Image
	2.10.2. Adding subscription entitlements as a build secret
	2.10.3. Running builds with Subscription Manager
	2.10.3.1. Docker builds using Subscription Manager

	2.10.4. Running builds with Red Hat Satellite subscriptions
	2.10.4.1. Adding Red Hat Satellite configurations to builds
	2.10.4.2. Docker builds using Red Hat Satellite subscriptions

	2.10.5. Running entitled builds using SharedSecret objects
	2.10.6. Additional resources

	2.11. SECURING BUILDS BY STRATEGY
	2.11.1. Disabling access to a build strategy globally
	2.11.2. Restricting build strategies to users globally
	2.11.3. Restricting build strategies to a user within a project

	2.12. BUILD CONFIGURATION RESOURCES
	2.12.1. Build controller configuration parameters
	2.12.2. Configuring build settings

	2.13. TROUBLESHOOTING BUILDS
	2.13.1. Resolving denial for access to resources
	2.13.2. Service certificate generation failure

	2.14. SETTING UP ADDITIONAL TRUSTED CERTIFICATE AUTHORITIES FOR BUILDS
	2.14.1. Adding certificate authorities to the cluster
	2.14.2. Additional resources

	CHAPTER 3. PIPELINES
	3.1. ABOUT RED HAT OPENSHIFT PIPELINES

	CHAPTER 4. GITOPS
	4.1. ABOUT RED HAT OPENSHIFT GITOPS
	4.1.1. Key features
	4.1.2. Additional resources

	CHAPTER 5. JENKINS
	5.1. CONFIGURING JENKINS IMAGES
	5.1.1. Configuration and customization
	5.1.1.1. OpenShift Container Platform OAuth authentication
	5.1.1.2. Jenkins authentication

	5.1.2. Jenkins environment variables
	5.1.3. Providing Jenkins cross project access
	5.1.4. Jenkins cross volume mount points
	5.1.5. Customizing the Jenkins image through source-to-image
	5.1.6. Configuring the Jenkins Kubernetes plugin
	5.1.7. Jenkins permissions
	5.1.8. Creating a Jenkins service from a template
	5.1.9. Using the Jenkins Kubernetes plugin
	5.1.10. Jenkins memory requirements
	5.1.11. Additional resources

	5.2. JENKINS AGENT
	5.2.1. Jenkins agent images
	5.2.2. Jenkins agent environment variables
	5.2.3. Jenkins agent memory requirements
	5.2.4. Jenkins agent Gradle builds
	5.2.5. Jenkins agent pod retention

	5.3. MIGRATING FROM JENKINS TO OPENSHIFT PIPELINES OR TEKTON
	5.3.1. Comparison of Jenkins and OpenShift Pipelines concepts
	5.3.1.1. Jenkins terminology
	5.3.1.2. OpenShift Pipelines terminology
	5.3.1.3. Mapping of concepts

	5.3.2. Migrating a sample pipeline from Jenkins to OpenShift Pipelines
	5.3.2.1. Jenkins pipeline
	5.3.2.2. OpenShift Pipelines pipeline

	5.3.3. Migrating from Jenkins plugins to Tekton Hub tasks
	5.3.4. Extending OpenShift Pipelines capabilities using custom tasks and scripts
	5.3.5. Comparison of Jenkins and OpenShift Pipelines execution models
	5.3.6. Examples of common use cases
	5.3.6.1. Running a Maven pipeline in Jenkins and OpenShift Pipelines
	5.3.6.2. Extending the core capabilities of Jenkins and OpenShift Pipelines by using plugins
	5.3.6.3. Sharing reusable code in Jenkins and OpenShift Pipelines

	5.3.7. Additional resources

	5.4. IMPORTANT CHANGES TO OPENSHIFT JENKINS IMAGES
	5.4.1. Relocation of OpenShift Jenkins images
	5.4.2. Customizing the Jenkins image stream tag
	5.4.3. Additional resources

