
OpenShift Container Platform 4.1

Networking

Configuring and managing cluster networking

Last Updated: 2020-04-02

OpenShift Container Platform 4.1 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your OpenShift Container
Platform cluster network, including DNS, ingress, and the Pod network.

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING NETWORKING
1.1. OPENSHIFT CONTAINER PLATFORM DNS

CHAPTER 2. ACCESSING HOSTS
2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE
CLUSTER

CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
3.1. CLUSTER NETWORK OPERATOR
3.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
3.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
3.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
3.5. CLUSTER NETWORK OPERATOR CUSTOM RESOURCE (CR)

CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
4.1. DNS OPERATOR
4.2. VIEW THE DEFAULT DNS
4.3. DNS OPERATOR STATUS
4.4. DNS OPERATOR LOGS

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
5.1. THE INGRESS CONFIGURATION ASSET
5.2. INGRESS CONTROLLER CONFIGURATION PARAMETERS

5.2.1. Ingress controller endpoint publishing strategy
5.3. VIEW THE DEFAULT INGRESS CONTROLLER
5.4. VIEW INGRESS OPERATOR STATUS
5.5. VIEW INGRESS CONTROLLER LOGS
5.6. VIEW INGRESS CONTROLLER STATUS
5.7. SETTING A CUSTOM DEFAULT CERTIFICATE
5.8. SCALING AN INGRESS CONTROLLER
5.9. CONFIGURING INGRESS CONTROLLER SHARDING BY USING ROUTE LABELS
5.10. CONFIGURING INGRESS CONTROLLER SHARDING BY USING NAMESPACE LABELS

CHAPTER 6. MANAGING MULTIPLE NETWORKS
6.1. OVERVIEW
6.2. CNI CONFIGURATIONS
6.3. CREATING ADDITIONAL NETWORK INTERFACES

6.3.1. Creating a CNI configuration for an additional interface as a CR
6.3.2. Managing the CRs for additional interfaces
6.3.3. Creating an annotated Pod that uses the CR

6.3.3.1. Attaching multiple interfaces to a Pod
6.3.4. Viewing the interface configuration in a running Pod

6.4. CONFIGURING ADDITIONAL INTERFACES USING HOST DEVICES
6.5. CONFIGURING SR-IOV

6.5.1. Supported Devices
6.5.2. Creating SR-IOV plug-ins and daemonsets
6.5.3. Configuring additional interfaces using SR-IOV

CHAPTER 7. CONFIGURING NETWORK POLICY WITH OPENSHIFT SDN
7.1. ABOUT NETWORK POLICY
7.2. EXAMPLE NETWORKPOLICY OBJECT
7.3. CREATING A NETWORKPOLICY OBJECT
7.4. DELETING A NETWORKPOLICY OBJECT

5
5

6

6

7
7
7
8
8
8

10
10
10
11
11

12
12
12
14
14
15
15
15
15
17
17
18

20
20
20
21
21
22
22
23
24
24
26
26
26
30

32
32
34
35
35

Table of Contents

1

. .

. .

7.5. VIEWING NETWORKPOLICY OBJECTS
7.6. CONFIGURING MULTITENANT ISOLATION USING NETWORKPOLICY
7.7. CREATING DEFAULT NETWORK POLICIES FOR A NEW PROJECT

7.7.1. Modifying the template for new projects
7.7.2. Adding network policy objects to the new project template

CHAPTER 8. OPENSHIFT SDN
8.1. ABOUT OPENSHIFT SDN
8.2. CONFIGURING EGRESS IPS FOR A PROJECT

8.2.1. Egress IP address assignment for project egress traffic
8.2.1.1. Considerations when using automatically assigned egress IP addresses
8.2.1.2. Considerations when using manually assigned egress IP addresses

8.2.2. Configuring automatically assigned egress IP addresses for a namespace
8.2.3. Configuring manually assigned egress IP addresses for a namespace

8.3. CONFIGURING AN EGRESS FIREWALL TO CONTROL ACCESS TO EXTERNAL IP ADDRESSES
8.3.1. How an egress firewall works in a project

8.3.1.1. Limitations of an egress firewall
8.3.1.2. Matching order for egress network policy rules
8.3.1.3. How Domain Name Server (DNS) resolution works

8.3.2. EgressNetworkPolicy custom resource (CR) object
8.3.2.1. EgressNetworkPolicy rules
8.3.2.2. Example EgressNetworkPolicy CR object

8.3.3. Creating an egress firewall policy object
8.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

8.4.1. Editing an EgressNetworkPolicy object
8.4.2. EgressNetworkPolicy custom resource (CR) object

8.4.2.1. EgressNetworkPolicy rules
8.4.2.2. Example EgressNetworkPolicy CR object

8.5. REMOVING AN EGRESS FIREWALL FROM A PROJECT
8.5.1. Removing an EgressNetworkPolicy object

8.6. USING MULTICAST
8.6.1. About multicast
8.6.2. Enabling multicast between Pods
8.6.3. Disabling multicast between Pods

8.7. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
8.7.1. Joining projects
8.7.2. Isolating a project
8.7.3. Disabling network isolation for a project

8.8. CONFIGURING KUBE-PROXY
8.8.1. About iptables rules synchronization
8.8.2. Modifying the kube-proxy configuration
8.8.3. kube-proxy configuration parameters

CHAPTER 9. CONFIGURING ROUTES
9.1. ROUTE CONFIGURATION

9.1.1. Configuring route timeouts
9.1.2. Enabling HTTP strict transport security
9.1.3. Troubleshooting throughput issues
9.1.4. Using cookies to keep route statefulness

9.1.4.1. Annotating a route with a cookie
9.1.5. Route-specific annotations

9.2. SECURED ROUTES
9.2.1. Creating a re-encrypt route with a custom certificate

36
36
38
38
39

41
41
41
41

42
42
42
44
45
45
46
46
46
47
47
47
48
49
49
49
50
50
51
51
51
51
52
52
53
53
53
54
54
54
54
56

57
57
57
57
58
58
59
59
61
61

OpenShift Container Platform 4.1 Networking

2

. .

9.2.2. Creating an edge route with a custom certificate

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC
10.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
10.2. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER

10.2.1. Using Ingress Controllers and routes
10.2.2. Creating a project and service
10.2.3. Exposing the service by creating a route
10.2.4. Configuring ingress controller sharding by using route labels
10.2.5. Configuring ingress controller sharding by using namespace labels
10.2.6. Additional resources

10.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
10.3.1. Using a load balancer to get traffic into the cluster
10.3.2. Creating a project and service
10.3.3. Exposing the service by creating a route
10.3.4. Creating a load balancer service

10.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A SERVICE EXTERNAL IP
10.4.1. Using a service external IP to get traffic into the cluster
10.4.2. Creating a project and service
10.4.3. Exposing the service by creating a route

10.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
10.5.1. Using a NodePort to get traffic into the cluster
10.5.2. Creating a project and service
10.5.3. Exposing the service by creating a route

63

65
65
65
65
66
67
68
68
69
69
69
70
71
72
73
73
74
75
76
76
76
77

Table of Contents

3

OpenShift Container Platform 4.1 Networking

4

CHAPTER 1. UNDERSTANDING NETWORKING
Kubernetes ensures that Pods are able to network with each other, and allocates each Pod an IP
address from an internal network. This ensures all containers within the Pod behave as if they were on
the same host. Giving each Pod its own IP address means that Pods can be treated like physical hosts or
virtual machines in terms of port allocation, networking, naming, service discovery, load balancing,
application configuration, and migration.

1.1. OPENSHIFT CONTAINER PLATFORM DNS

If you are running multiple services, such as front-end and back-end services for use with multiple Pods,
environment variables are created for user names, service IPs, and more so the front-end Pods can
communicate with the back-end services. If the service is deleted and recreated, a new IP address can
be assigned to the service, and requires the front-end Pods to be recreated to pick up the updated
values for the service IP environment variable. Additionally, the back-end service must be created
before any of the front-end Pods to ensure that the service IP is generated properly, and that it can be
provided to the front-end Pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port.

CHAPTER 1. UNDERSTANDING NETWORKING

5

CHAPTER 2. ACCESSING HOSTS
Learn how to create a bastion host to access OpenShift Container Platform instances and access the
master nodes with secure shell (SSH) access.

2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN
INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

The OpenShift Container Platform installer does not create any public IP addresses for any of the
Amazon Elastic Compute Cloud (Amazon EC2) instances that it provisions for your OpenShift
Container Platform cluster. In order to be able to SSH to your OpenShift Container Platform hosts, you
must follow this procedure.

Procedure

1. Create a security group that allows SSH access into the virtual private cloud (VPC) created by
the openshift-install command.

2. Create an Amazon EC2 instance on one of the public subnets the installer created.

3. Associate a public IP address with the Amazon EC2 instance that you created.
Unlike with the OpenShift Container Platform installation, you should associate the Amazon EC2
instance you created with an SSH keypair. It does not matter what operating system you choose
for this instance, as it will simply serve as an SSH bastion to bridge the internet into your
OpenShift Container Platform cluster’s VPC. The Amazon Machine Image (AMI) you use does
matter. With Red Hat Enterprise Linux CoreOS, for example, you can provide keys via Ignition,
like the installer does.

4. Once you provisioned your Amazon EC2 instance and can SSH into it, you must add the SSH
key that you associated with your OpenShift Container Platform installation. This key can be
different from the key for the bastion instance, but does not have to be.

NOTE

Direct SSH access is only recommended for disaster recovery. When the
Kubernetes API is responsive, run privileged pods instead.

5. Run oc get nodes, inspect the output, and choose one of the nodes that is a master. The host
name looks similar to ip-10-0-1-163.ec2.internal.

6. From the bastion SSH host you manually deployed into Amazon EC2, SSH into that master host.
Ensure that you use the same SSH key you specified during the installation:

$ ssh -i <ssh-key-path> core@<master-hostname>

OpenShift Container Platform 4.1 Networking

6

CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

The Cluster Network Operator (CNO) deploys and manages the cluster network components on an
OpenShift Container Platform cluster, including the Container Network Interface (CNI) Software
Defined Networking (SDN) plug-in selected for the cluster during installation.

3.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OpenShift SDN plug-in, or a different SDN plug-in if selected during cluster
installation, using a DaemonSet.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

$ oc get -n openshift-network-operator deployment/network-operator

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

2. Run the following command to view the state of the Cluster Network Operator:

$ oc get clusteroperator/network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.1.0 True False False 50m

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

3.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

Use the oc describe command to view the cluster network configuration:

$ oc describe network.config/cluster

Name: cluster
Namespace:
Labels: <none>
Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
 Self Link: /apis/config.openshift.io/v1/networks/cluster

CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

7

1

2

Spec: 1
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Status: 2
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cluster Network MTU: 8951
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Events: <none>

The Spec field displays the configured state of the cluster network.

The Status field displays the current state of the cluster network configuration.

3.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

Run the following command to view the status of the Cluster Network Operator:

$ oc describe clusteroperators/network

3.4. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

Run the following command to view the logs of the Cluster Network Operator:

$ oc logs --namespace=openshift-network-operator deployment/network-operator

3.5. CLUSTER NETWORK OPERATOR CUSTOM RESOURCE (CR)

The cluster network configuration in the Network.operator.openshift.io custom resource (CR) stores
the configuration settings for the Cluster Network Operator (CNO).

The following CR displays the default configuration for the CNO and explains both the parameters you
can configure and valid parameter values:

Cluster Network Operator CR

OpenShift Container Platform 4.1 Networking

8

1

2

3

4

5

6

7

8

9

10

A list specifying the blocks of IP addresses from which Pod IPs are allocated and the subnet prefix
length assigned to each individual node.

A block of IP addresses for services. The OpenShift SDN Container Network Interface (CNI) plug-
in supports only a single IP address block for the service network.

The Software Defined Networking (SDN) plug-in being used. OpenShift SDN is the only plug-in
supported in OpenShift Container Platform 4.1.

OpenShift SDN specific configuration parameters.

The isolation mode for the OpenShift SDN CNI plug-in.

MTU for the VXLAN overlay network. This value is normally configured automatically.

The port to use for all VXLAN packets. The default value is 4789.

The parameters for this object specify the Kubernetes network proxy (kube-proxy) configuration.

The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h
and are described in the Go time package documentation.

The minimum duration before refreshing iptables rules. This parameter ensures that the refresh
does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time
package

apiVersion: operator.openshift.io/v1
kind: Network
spec:
 clusterNetwork: 1
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork: 2
 - 172.30.0.0/16
 defaultNetwork:
 type: OpenShiftSDN 3
 openshiftSDNConfig: 4
 mode: NetworkPolicy 5
 mtu: 1450 6
 vxlanPort: 4789 7
 kubeProxyConfig: 8
 iptablesSyncPeriod: 30s 9
 proxyArguments:
 iptables-min-sync-period: 10
 - 30s

CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

9

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in OpenShift.

4.1. DNS OPERATOR

The DNS Operator implements the dns API from the operator.openshift.io API group. The operator
deploys CoreDNS using a DaemonSet, creates a Service for the DaemonSet, and configures the kubelet
to instruct pods to use the CoreDNS Service IP for name resolution.

Procedure

The DNS Operator is deployed during installation as a Kubernetes Deployment.

1. Use the oc get command to view the Deployment status:

$ oc get -n openshift-dns-operator deployment/dns-operator
NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

ClusterOperator is the Custom Resource object which holds the current state of an operator.
This object is used by operators to convey their state to the rest of the cluster.

2. Use the oc get command to view the state of the DNS Operator:

$ oc get clusteroperator/dns
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
dns 4.1.0-0.11 True False False 92m

AVAILABLE, PROGRESSING and DEGRADED provide information about the status of the
operator. AVAILABLE is True when at least 1 pod from the CoreDNS DaemonSet is reporting
an Available status condition.

4.2. VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default. It cannot be
customized, replaced, or supplemented with additional dnses.

Procedure

1. Use the oc describe command to view the default dns:

$ oc describe dns.operator/default
Name: default
Namespace:
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS
...
Status:

OpenShift Container Platform 4.1 Networking

10

1

2

 Cluster Domain: cluster.local 1
 Cluster IP: 172.30.0.10 2
...

The Cluster Domain field is the base DNS domain used to construct fully qualified Pod and
Service domain names.

The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the Service CIDR range.

2. To find the Service CIDR of your cluster, use the oc get command:

$ oc get networks.config/cluster -o jsonpath='{$.status.serviceNetwork}'
[172.30.0.0/16]

NOTE

Configuration of the CoreDNS Corefile or Kubernetes plugin is not supported.

4.3. DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

$ oc describe clusteroperators/dns

4.4. DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.

Procedure

View the logs of the DNS Operator:

$ oc logs --namespace=openshift-dns-operator deployment/dns-operator

CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

11

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The Ingress Operator implements the ingresscontroller API and is the component responsible for
enabling external access to OpenShift Container Platform cluster services. The operator makes this
possible by deploying and managing one or more HAProxy-based Ingress Controllers to handle routing.
You can use the Ingress Operator to route traffic by specifying OpenShift Container Platform Route
and Kubernetes Ingress resources.

5.1. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

The OpenShift API server operator uses the domain from the cluster Ingress configuration as
the domain used when generating a default host for a Route resource that does not specify an
explicit host.

5.2. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.openshiftdemos.com

OpenShift Container Platform 4.1 Networking

12

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

domain domain is a DNS name serviced by the Ingress controller and is used to
configure multiple features:

For the LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the desired number of Ingress controller replicas. If not set, the
default value is 2.

endpointPublishingStr
ategy

endpointPublishingStrategy is used to publish the Ingress controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

AWS: LoadBalancerService (with external scope)

Azure: LoadBalancerService (with external scope)

GCP: LoadBalancerService (with external scope)

Other: HostNetwork.

The endpointPublishingStrategy value cannot be updated.

defaultCertificate The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

Parameter Description

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

13

namespaceSelector namespaceSelector is used to filter the set of namespaces serviced by the
Ingress controller. This is useful for implementing shards.

routeSelector routeSelector is used to filter the set of Routes serviced by the Ingress
controller. This is useful for implementing shards.

nodePlacement nodePlacement enables explicit control over the scheduling of the Ingress
controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

nodePlacement:
 nodeSelector:
 matchLabels:
 beta.kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
 operator: Exists

Parameter Description

NOTE

All parameters are optional.

5.2.1. Ingress controller endpoint publishing strategy

An Ingress controller with the HostNetwork endpoint publishing strategy can have only one Pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each Pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another Pod on the same node is using those ports.

5.3. VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

OpenShift Container Platform 4.1 Networking

14

Procedure

View the default Ingress Controller:

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

5.4. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

View your Ingress Operator status:

$ oc describe clusteroperators/ingress

5.5. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

View your Ingress Controller logs:

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator

5.6. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

View the status of an Ingress Controller:

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

5.7. SETTING A CUSTOM DEFAULT CERTIFICATE

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority and valid for the Ingress domain.

You must have an IngressController CR. You may use the default one:

$ oc --namespace openshift-ingress-operator get ingresscontrollers
NAME AGE
default 10m

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

15

WARNING

If the default certificate is replaced, it must be signed by a public certificate
authority already included in the CA bundle as provided by the container userspace.

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

2. Update the IngressController CR to reference the new certificate secret:

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
 --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

3. Verify the update was effective:

$ oc get --namespace openshift-ingress-operator ingresscontrollers/default \
 --output jsonpath='{.spec.defaultCertificate}'

The output should look like:

map[name:custom-certs-default]

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator will update the Ingress
Controller’s deployment to use the custom certificate.

OpenShift Container Platform 4.1 Networking

16

5.8. SCALING AN INGRESS CONTROLLER

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. oc commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

Procedure

1. View the current number of available replicas for the default IngressController:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'
2

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge
ingresscontroller.operator.openshift.io/default patched

3. Verify that the default IngressController scaled to the number of replicas that you specified:

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'
3

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

5.9. CONFIGURING INGRESS CONTROLLER SHARDING BY USING
ROUTE LABELS

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

17

 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

2. Apply the Ingress Controller router-internal.yaml file:

oc apply -f router-internal.yaml

The Ingress Controller selects routes in any namespace that have the label type: sharded.

5.10. CONFIGURING INGRESS CONTROLLER SHARDING BY USING
NAMESPACE LABELS

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}

OpenShift Container Platform 4.1 Networking

18

kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

2. Apply the Ingress Controller router-internal.yaml file:

oc apply -f router-internal.yaml

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

19

CHAPTER 6. MANAGING MULTIPLE NETWORKS

6.1. OVERVIEW

Multus CNI provides the capability to attach multiple network interfaces to Pods in OpenShift Container
Platform. This gives you flexibility when you must configure Pods that deliver network functionality, such
as switching or routing.

Multus CNI is useful in situations where network isolation is needed, including data plane and control
plane separation. Isolating network traffic is useful for the following performance and security reasons:

Performance

You can send traffic along two different planes in order to manage how much traffic is along each
plane.

Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

All of the Pods in the cluster will still use the cluster-wide default network to maintain connectivity
across the cluster. Every Pod has an eth0 interface which is attached to the cluster-wide Pod network.
You can view the interfaces for a Pod using the oc exec -it <pod_name> -- ip a command. If you add
additional network interfaces using Multus CNI, they will be named net1, net2, …, netN.

To attach additional network interfaces to a Pod, you must create configurations which define how the
interfaces are attached. Each interface is specified using a Custom Resource (CR) that has a
NetworkAttachmentDefinition type. A CNI configuration inside each of these CRs defines how that
interface will be created. Multus CNI is a CNI plug-in that can call other CNI plug-ins. This allows the use
of other CNI plug-ins to create additional network interfaces. For high performance networking, use the
SR-IOV Device Plugin with Multus CNI.

Execute the following steps to attach additional network interfaces to Pods:

1. Create a CNI configuration as a custom resource.

2. Annotate the Pod with the configuration name.

3. Verify that the attachment was successful by viewing the status annotation.

6.2. CNI CONFIGURATIONS

CNI configurations are JSON data with only a single required field, type. The configuration in the
additional field is free-form JSON data, which allows CNI plug-ins to make the configurations in the
form that they require. Different CNI plug-ins use different configurations. See the documentation
specific to the CNI plug-in that you want to use.

An example CNI configuration:

{
 "cniVersion": "0.3.0", 1
 "type": "loopback", 2
 "additional": "<plugin-specific-json-data>" 3
}

OpenShift Container Platform 4.1 Networking

20

1

2

3

cniVersion: Specifies the CNI version that is used. The CNI plug-in uses this information to check
whether it is using a valid version.

type: Specifies which CNI plug-in binary to call on disk. In this example, the loopback binary is
specified, Therefore, it creates a loopback-type network interface.

additional: The <information> value provided in the code above is an example. Each CNI plug-in
specifies the configuration parameters it needs in JSON. These are specific to the CNI plug-in
binary that is named in the type field.

6.3. CREATING ADDITIONAL NETWORK INTERFACES

Additional interfaces for Pods are defined in CNI configurations that are stored as Custom Resources
(CRs). These CRs can be created, listed, edited, and deleted using the oc tool.

The following procedure configures a macvlan interface on a Pod. This configuration might not apply to
all production environments, but you can use the same procedure for other CNI plug-ins.

6.3.1. Creating a CNI configuration for an additional interface as a CR

NOTE

If you want to attach an additional interface to a Pod, the CR that defines the interface
must be in the same project (namespace) as the Pod.

1. Create a project to store CNI configurations as CRs and the Pods that will use the CRs.

$ oc new-project multinetwork-example

2. Create the CR that will define an additional network interface. Create a YAML file called
macvlan-conf.yaml with the following contents:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition 1
metadata:
 name: macvlan-conf 2
spec:
 config: '{ 3
 "cniVersion": "0.3.0",
 "type": "macvlan",
 "master": "eth0",
 "mode": "bridge",
 "ipam": {
 "type": "host-local",
 "subnet": "192.168.1.0/24",
 "rangeStart": "192.168.1.200",
 "rangeEnd": "192.168.1.216",
 "routes": [
 { "dst": "0.0.0.0/0" }
],

CHAPTER 6. MANAGING MULTIPLE NETWORKS

21

1

2

3

kind: NetworkAttachmentDefinition. This is the name for the CR where this configuration
will be stored. It is a custom extension of Kubernetes that defines how networks are
attached to Pods.

name maps to the annotation, which is used in the next step.

config: The CNI configuration is packaged in the config field.

The configuration is specific to a plug-in, which enables macvlan. Note the type line in the CNI
configuration portion. Aside from the IPAM (IP address management) parameters for
networking, in this example the master field must reference a network interface that resides on
the node(s) hosting the Pod(s).

3. Run the following command to create the CR:

$ oc create -f macvlan-conf.yaml

NOTE

This example is based on a macvlan CNI plug-in. Note that in AWS environments,
macvlan traffic might be filtered and, therefore, might not reach the desired destination.

6.3.2. Managing the CRs for additional interfaces

You can manage the CRs for additional interfaces using the oc CLI.

Use the following command to list the CRs for additional interfaces:

$ oc get network-attachment-definitions.k8s.cni.cncf.io

Use the following command to delete CRs for additional interfaces:

$ oc delete network-attachment-definitions.k8s.cni.cncf.io macvlan-conf

6.3.3. Creating an annotated Pod that uses the CR

To create a Pod that uses the additional interface, use an annotation that refers to the CR. Create a
YAML file called samplepod.yaml for a Pod with the following contents:

 "gateway": "192.168.1.1"
 }
 }'

apiVersion: v1
kind: Pod
metadata:
 name: samplepod
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-conf 1
spec:
 containers:

OpenShift Container Platform 4.1 Networking

22

1

1

2

3

The annotations field contains k8s.v1.cni.cncf.io/networks: macvlan-conf, which correlates to
the name field in the CR defined earlier.

Run the following command to create the samplepod Pod:

$ oc create -f samplepod.yaml

To verify that an additional network interface has been created and attached to the Pod, use the
following command to list the IPv4 address information:

$ oc exec -it samplepod -- ip -4 addr

Three interfaces are listed in the output:

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN qlen 1000 1
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
3: eth0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UP link-
netnsid 0 2
 inet 10.244.1.4/24 scope global eth0
 valid_lft forever preferred_lft forever
4: net1@if2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state
UNKNOWN link-netnsid 0 3
 inet 192.168.1.203/24 scope global net1
 valid_lft forever preferred_lft forever

lo: A loopback interface.

eth0: The interface that connects to the cluster-wide default network.

net1: The new interface that you just created.

6.3.3.1. Attaching multiple interfaces to a Pod

To attach more than one additional interface to a Pod, specify multiple names, in comma-delimited
format, in the annotations field in the Pod definition.

The following annotations field in a Pod definition specifies different CRs for the additional interfaces:

The following annotations field in a Pod definition specifies the same CR for the additional interfaces:

 - name: samplepod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools

 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-conf, tertiary-conf, quaternary-conf

 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-conf, macvlan-conf

CHAPTER 6. MANAGING MULTIPLE NETWORKS

23

1

2

3

4

5

6.3.4. Viewing the interface configuration in a running Pod

After the Pod is running, you can review the configurations of the additional interfaces created. To view
the sample Pod from the earlier example, execute the following command.

$ oc describe pod samplepod

The metadata section of the output contains a list of annotations, which are displayed in JSON format:

name refers to the custom resource name, macvlan-conf.

interface refers to the name of the interface in the Pod.

ips is a list of IP addresses as assigned to the Pod.

mac is the MAC address of the interface.

dns refers DNS for the interface.

The first annotation, k8s.v1.cni.cncf.io/networks: macvlan-conf, refers to the CR created in the
example. This annotation was specified in the Pod definition.

The second annotation is k8s.v1.cni.cncf.io/networks-status. There are two interfaces listed under
k8s.v1.cni.cncf.io/networks-status.

The first interface describes the interface for the default network, openshift-sdn. This
interface is created as eth0. It is used for communications within the cluster.

The second interface is the additional interface that you created, net1. The output above lists
some key values that were configured when the interface was created, for example, the IP
addresses that were assigned to the Pod.

6.4. CONFIGURING ADDITIONAL INTERFACES USING HOST DEVICES

Annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-conf
 k8s.v1.cni.cncf.io/networks-status:
 [{
 "name": "openshift-sdn",
 "ips": [
 "10.131.0.10"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-conf", 1
 "interface": "net1", 2
 "ips": [3
 "192.168.1.200"
],
 "mac": "72:00:53:b4:48:c4", 4
 "dns": {} 5
 }]

OpenShift Container Platform 4.1 Networking

24

The host-device plug-in connects an existing network device on a node directly to a Pod.

The code below creates a dummy device using a dummy module to back a virtual device, and assigns the
dummy device name to exampledevice0.

$ modprobe dummy
$ lsmod | grep dummy
$ ip link add exampledevice0 type dummy

Procedure

1. To connect the dummy network device to a Pod, label the host, so that you can assign a Pod to
the node where the device exists.

$ oc label nodes <your-worker-node-name> exampledevice=true
$ oc get nodes --show-labels

2. Create a YAML file called hostdevice-example.yaml for a custom resource to refer to this
configuration:

3. Run the following command to create the hostdevice-example CR:

$ oc create -f hostdevice-example.yaml

4. Create a YAML file for a Pod which refers to this name in the annotation. Include nodeSelector
to assign the Pod to the machine where you created the alias.

5. Run the following command to create the hostdevicesamplepod Pod:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: hostdevice-example
spec:
 config: '{
 "cniVersion": "0.3.0",
 "type": "host-device",
 "device": "exampledevice0"
 }'

apiVersion: v1
kind: Pod
metadata:
 name: hostdevicesamplepod
 annotations:
 k8s.v1.cni.cncf.io/networks: hostdevice-example
spec:
 containers:
 - name: hostdevicesamplepod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools
 nodeSelector:
 exampledevice: "true"

CHAPTER 6. MANAGING MULTIPLE NETWORKS

25

$ oc create -f hostdevicesamplepod.yaml

6. View the additional interface that you created:

$ oc exec hostdevicesamplepod -- ip a

IMPORTANT

SR-IOV multinetwork support is a Technology Preview feature only. Technology Preview
features are not supported with Red Hat production service level agreements (SLAs) and
might not be functionally complete. Red Hat does not recommend using them in
production. These features provide early access to upcoming product features, enabling
customers to test functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

6.5. CONFIGURING SR-IOV

OpenShift Container Platform includes the capability to use SR-IOV hardware on OpenShift Container
Platform nodes, which enables you to attach SR-IOV virtual function (VF) interfaces to Pods in addition
to other network interfaces.

Two components are required to provide this capability: the SR-IOV network device plug-in and the SR-
IOV CNI plug-in.

The SR-IOV network device plug-in is a Kubernetes device plug-in for discovering, advertising,
and allocating SR-IOV network virtual function (VF) resources. Device plug-ins are used in
Kubernetes to enable the use of limited resources, typically in physical devices. Device plug-ins
give the Kubernetes scheduler awareness of which resources are exhausted, allowing Pods to be
scheduled to worker nodes that have sufficient resources available.

The SR-IOV CNI plug-in plumbs VF interfaces allocated from the SR-IOV device plug-in
directly into a Pod.

6.5.1. Supported Devices

The following Network Interface Card (NIC) models are supported in OpenShift Container Platform:

Intel XXV710-DA2 25G card with vendor ID 0x8086 and device ID 0x158b

Mellanox MT27710 Family [ConnectX-4 Lx] 25G card with vendor ID 0x15b3 and device ID
0x1015

Mellanox MT27800 Family [ConnectX-5] 100G card with vendor ID 0x15b3 and device ID
0x1017

NOTE

For Mellanox cards, ensure that SR-IOV is enabled in the firmware before provisioning
VFs on the host.

6.5.2. Creating SR-IOV plug-ins and daemonsets

OpenShift Container Platform 4.1 Networking

26

https://access.redhat.com/support/offerings/techpreview/

NOTE

The creation of SR-IOV VFs is not handled by the SR-IOV device plug-in and SR-IOV
CNI. To provision SR-IOV VF on hosts, you must configure it manually.

To use the SR-IOV network device plug-in and SR-IOV CNI plug-in, run both plug-ins in daemon mode
on each node in your cluster.

1. Create a YAML file for the openshift-sriov namespace with the following contents:

2. Run the following command to create the openshift-sriov namespace:

$ oc create -f openshift-sriov.yaml

3. Create a YAML file for the sriov-device-plugin service account with the following contents:

4. Run the following command to create the sriov-device-plugin service account:

$ oc create -f sriov-device-plugin.yaml

5. Create a YAML file for the sriov-cni service account with the following contents:

6. Run the following command to create the sriov-cni service account:

$ oc create -f sriov-cni.yaml

7. Create a YAML file for the sriov-device-plugin DaemonSet with the following contents:

NOTE

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov
 labels:
 name: openshift-sriov
 openshift.io/run-level: "0"
 annotations:
 openshift.io/node-selector: ""
 openshift.io/description: "Openshift SR-IOV network components"

apiVersion: v1
kind: ServiceAccount
metadata:
 name: sriov-device-plugin
 namespace: openshift-sriov

apiVersion: v1
kind: ServiceAccount
metadata:
 name: sriov-cni
 namespace: openshift-sriov

CHAPTER 6. MANAGING MULTIPLE NETWORKS

27

NOTE

The SR-IOV network device plug-in daemon, when launched, will discover all the
configured SR-IOV VFs (of supported NIC models) on each node and advertise
discovered resources. The number of available SR-IOV VF resources that are
capable of being allocated can be reviewed by describing a node with the oc
describe node <node-name> command. The resource name for the SR-IOV VF
resources is openshift.io/sriov. When no SR-IOV VFs are available on the node,
a value of zero is displayed.

kind: DaemonSet
apiVersion: apps/v1
metadata:
 name: sriov-device-plugin
 namespace: openshift-sriov
 annotations:
 kubernetes.io/description: |
 This daemon set launches the SR-IOV network device plugin on each node.
spec:
 selector:
 matchLabels:
 app: sriov-device-plugin
 updateStrategy:
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: sriov-device-plugin
 component: network
 type: infra
 openshift.io/component: network
 spec:
 hostNetwork: true
 nodeSelector:
 beta.kubernetes.io/os: linux
 tolerations:
 - operator: Exists
 serviceAccountName: sriov-device-plugin
 containers:
 - name: sriov-device-plugin
 image: quay.io/openshift/ose-sriov-network-device-plugin:v4.0.0
 args:
 - --log-level=10
 securityContext:
 privileged: true
 volumeMounts:
 - name: devicesock
 mountPath: /var/lib/kubelet/
 readOnly: false
 - name: net
 mountPath: /sys/class/net
 readOnly: true
 volumes:
 - name: devicesock
 hostPath:

OpenShift Container Platform 4.1 Networking

28

8. Run the following command to create the sriov-device-plugin DaemonSet:

oc create -f sriov-device-plugin.yaml

9. Create a YAML file for the sriov-cni DaemonSet with the following contents:

10. Run the following command to create the sriov-cni DaemonSet:

$ oc create -f sriov-cni.yaml

 path: /var/lib/kubelet/
 - name: net
 hostPath:
 path: /sys/class/net

kind: DaemonSet
apiVersion: apps/v1
metadata:
 name: sriov-cni
 namespace: openshift-sriov
 annotations:
 kubernetes.io/description: |
 This daemon set launches the SR-IOV CNI plugin on SR-IOV capable worker nodes.
spec:
 selector:
 matchLabels:
 app: sriov-cni
 updateStrategy:
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: sriov-cni
 component: network
 type: infra
 openshift.io/component: network
 spec:
 nodeSelector:
 beta.kubernetes.io/os: linux
 tolerations:
 - operator: Exists
 serviceAccountName: sriov-cni
 containers:
 - name: sriov-cni
 image: quay.io/openshift/ose-sriov-cni:v4.0.0
 securityContext:
 privileged: true
 volumeMounts:
 - name: cnibin
 mountPath: /host/opt/cni/bin
 volumes:
 - name: cnibin
 hostPath:
 path: /var/lib/cni/bin

CHAPTER 6. MANAGING MULTIPLE NETWORKS

29

1

2

6.5.3. Configuring additional interfaces using SR-IOV

1. Create a YAML file for the Custom Resource (CR) with SR-IOV configuration. The name field in
the following CR has the value sriov-conf.

k8s.v1.cni.cncf.io/resourceName annotation is set to openshift.io/sriov.

type is set to sriov.

2. Run the following command to create the sriov-conf CR:

$ oc create -f sriov-conf.yaml

3. Create a YAML file for a Pod which references the name of the NetworkAttachmentDefinition
and requests one openshift.io/sriov resource:

4. Run the following command to create the sriovsamplepod Pod:

apiVersion: "k8s.cni.cncf.io/v1"
kind: NetworkAttachmentDefinition
metadata:
 name: sriov-conf
 annotations:
 k8s.v1.cni.cncf.io/resourceName: openshift.io/sriov 1
spec:
 config: '{
 "type": "sriov", 2
 "name": "sriov-conf",
 "ipam": {
 "type": "host-local",
 "subnet": "10.56.217.0/24",
 "routes": [{
 "dst": "0.0.0.0/0"
 }],
 "gateway": "10.56.217.1"
 }
 }'

apiVersion: v1
kind: Pod
metadata:
 name: sriovsamplepod
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-conf
spec:
 containers:
 - name: sriovsamplepod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools
 resources:
 requests:
 openshift.io/sriov: '1'
 limits:
 openshift.io/sriov: '1'

OpenShift Container Platform 4.1 Networking

30

$ oc create -f sriovsamplepod.yaml

5. View the additional interface by executing the ip command:

$ oc exec sriovsamplepod -- ip a

CHAPTER 6. MANAGING MULTIPLE NETWORKS

31

CHAPTER 7. CONFIGURING NETWORK POLICY WITH
OPENSHIFT SDN

7.1. ABOUT NETWORK POLICY

In a cluster using a Kubernetes Container Network Interface (CNI) plug-in that supports Kubernetes
network policy, network isolation is controlled entirely by NetworkPolicy Custom Resource (CR) objects.
In OpenShift Container Platform 4.1, OpenShift SDN supports using NetworkPolicy in its default
network isolation mode.

NOTE

The Kubernetes v1 NetworkPolicy features are available in OpenShift Container Platform
except for egress policy types and IPBlock.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by NetworkPolicy object rules.

By default, all Pods in a project are accessible from other Pods and network endpoints. To isolate one or
more Pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a Pod is matched by selectors in one or more NetworkPolicy objects, then the Pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A Pod that is not selected
by any NetworkPolicy objects is fully accessible.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all Pods but
accepts no traffic:

Only allow connections from the OpenShift Container Platform Ingress Controller:
To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector:
 ingress: []

apiVersion: networking.k8s.io/v1

OpenShift Container Platform 4.1 Networking

32

If the Ingress Controller is configured with endpointPublishingStrategy: HostNetwork, then
the Ingress Controller Pod runs on the host network. When running on the host network, the
traffic from the Ingress Controller is assigned the netid:0 Virtual Network ID (VNID). The netid
for the namespace that is associated with the Ingress Operator is different, so the matchLabel
in the allow-from-openshift-ingress network policy does not match traffic from the default
Ingress Controller. Because the default namespace is assigned the netid:0 VNID, you can allow
traffic from the default Ingress Controller by labeling your default namespace with
network.openshift.io/policy-group: ingress.

Only accept connections from Pods within a project:
To make Pods accept connections from other Pods in the same project, but reject all other
connections from Pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on Pod labels:
To enable only HTTP and HTTPS access to the Pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP
 port: 80
 - protocol: TCP
 port: 443

CHAPTER 7. CONFIGURING NETWORK POLICY WITH OPENSHIFT SDN

33

1

2

Accept connections by using both namespace and Pod selectors:
To match network traffic by combining namespace and Pod selectors, you can use a
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the Pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from Pods in the same namespace, and connections on ports 80 and 443 from Pods in any
namespace.

7.2. EXAMPLE NETWORKPOLICY OBJECT

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector describing the Pods the policy applies to. The policy object can only select Pods in the

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

OpenShift Container Platform 4.1 Networking

34

3

4

1

A selector describing the Pods the policy applies to. The policy object can only select Pods in the
project that the NetworkPolicy object is defined.

A selector matching the Pods that the policy object allows ingress traffic from. The selector will
match Pods in any project.

A list of one or more destination ports to accept traffic on.

7.3. CREATING A NETWORKPOLICY OBJECT

To define granular rules describing Ingress network traffic allowed for projects in your cluster, you can
create NetworkPolicy objects.

Prerequisites

A cluster using the OpenShift SDN network plug-in with mode: NetworkPolicy set. This mode
is the default for OpenShift SDN.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

1. Create a policy rule:

a. Create a <policy-name>.yaml file where <policy-name> describes the policy rule.

b. In the file you just created define a policy object, such as in the following example:

Specify a name for the policy object.

2. Run the following command to create the policy object:

$ oc create -f <policy-name>.yaml -n <project>

In the following example, a new NetworkPolicy object is created in a project named project1:

$ oc create -f default-deny.yaml -n project1
networkpolicy "default-deny" created

7.4. DELETING A NETWORKPOLICY OBJECT

You can delete a NetworkPolicy object.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: <policy-name> 1
spec:
 podSelector:
 ingress: []

CHAPTER 7. CONFIGURING NETWORK POLICY WITH OPENSHIFT SDN

35

1

Prerequisites

A cluster using the OpenShift SDN network plug-in with mode: NetworkPolicy set. This mode
is the default for OpenShift SDN.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

To delete a NetworkPolicy object, run the following command:

$ oc delete networkpolicy -l name=<policy-name> 1

Specify the name of the NetworkPolicy object to delete.

7.5. VIEWING NETWORKPOLICY OBJECTS

You can list the NetworkPolicy objects in your cluster.

Prerequisites

A cluster using the OpenShift SDN network plug-in with mode: NetworkPolicy set. This mode
is the default for OpenShift SDN.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

To view NetworkPolicy objects defined in your cluster, run the following command:

$ oc get networkpolicy

7.6. CONFIGURING MULTITENANT ISOLATION USING
NETWORKPOLICY

You can configure your project to isolate it from Pods and Services in other projects.

Prerequisites

A cluster using the OpenShift SDN network plug-in with mode: NetworkPolicy set. This mode
is the default for OpenShift SDN.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster.

Procedure

OpenShift Container Platform 4.1 Networking

36

1

2

1. Create the following files containing NetworkPolicy object definitions:

a. A file named allow-from-openshift-ingress.yaml containing the following:

b. A file named allow-from-openshift-monitoring.yaml containing the following:

2. For each policy file, run the following command to create the NetworkPolicy object:

$ oc apply -f <policy-name>.yaml \ 1
 -n <project> 2

Replace <policy-name> with the filename of the file containing the policy.

Replace <project> with the name of the project to apply the NetworkPolicy object to.

3. If the default Ingress Controller configuration has the spec.endpointPublishingStrategy:
HostNetwork value set, you must apply a label to the default OpenShift Container Platform
namespace to allow network traffic between the Ingress Controller and the project:

a. Determine if your default Ingress Controller uses the HostNetwork endpoint publishing
strategy:

$ oc get --namespace openshift-ingress-operator ingresscontrollers/default \
 --output jsonpath='{.status.endpointPublishingStrategy.type}'

b. If the previous command reports the endpoint publishing strategy as HostNetwork, set a

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring
 podSelector: {}
 policyTypes:
 - Ingress

CHAPTER 7. CONFIGURING NETWORK POLICY WITH OPENSHIFT SDN

37

b. If the previous command reports the endpoint publishing strategy as HostNetwork, set a
label on the default namespace:

$ oc label namespace default 'network.openshift.io/policy-group=ingress'

4. Optional: Confirm that the NetworkPolicy object exists in your current project by running the
following command:

$ oc get networkpolicy <policy-name> -o yaml

In the following example, the allow-from-openshift-ingress NetworkPolicy object is displayed:

$ oc get networkpolicy allow-from-openshift-ingress -o yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
 namespace: project1
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

7.7. CREATING DEFAULT NETWORK POLICIES FOR A NEW PROJECT

As a cluster administrator, you can modify the new project template to automatically include
NetworkPolicy objects when you create a new project.

7.7.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified

OpenShift Container Platform 4.1 Networking

38

4. The project template must be created in the openshift-config namespace. Load your modified
template:

$ oc create -f template.yaml -n openshift-config

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Global Configuration to view all configuration resources.

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

$ oc edit project.config.openshift.io/cluster

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

7.7.2. Adding network policy objects to the new project template

As a cluster administrator, you can add network policy objects to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy CRs specified in the
template in the project.

Prerequisites

A cluster using the OpenShift SDN network plug-in with mode: NetworkPolicy set. This mode
is the default for OpenShift SDN.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: <template_name>

CHAPTER 7. CONFIGURING NETWORK POLICY WITH OPENSHIFT SDN

39

1

1. Edit the default template for a new project by running the following command:

$ oc edit template <project_template> -n openshift-config

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects:

3. Optional: Create a new project to confirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:

$ oc new-project <project> 1

Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

$ oc get networkpolicy
NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s
allow-from-same-namespace <none> 7s

objects:
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-same-namespace
 spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-openshift-ingress
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress
...

OpenShift Container Platform 4.1 Networking

40

CHAPTER 8. OPENSHIFT SDN

8.1. ABOUT OPENSHIFT SDN

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a unified
cluster network that enables communication between Pods across the OpenShift Container Platform
cluster. This Pod network is established and maintained by the OpenShift SDN, which configures an
overlay network using Open vSwitch (OVS).

OpenShift SDN provides three SDN modes for configuring the Pod network:

The network policy mode allows project administrators to configure their own isolation policies
using NetworkPolicy objects. NetworkPolicy is the default mode in OpenShift Container
Platform 4.1.

The multitenant mode provides project-level isolation for Pods and Services. Pods from
different projects cannot send packets to or receive packets from Pods and Services of a
different project. You can disable isolation for a project, allowing it to send network traffic to all
Pods and Services in the entire cluster and receive network traffic from those Pods and
Services.

The subnet mode provides a flat Pod network where every Pod can communicate with every
other Pod and Service. The network policy mode provides the same functionality as the subnet
mode.

8.2. CONFIGURING EGRESS IPS FOR A PROJECT

As a cluster administrator, you can configure the OpenShift SDN network provider to assign one or
more egress IP addresses to a project.

8.2.1. Egress IP address assignment for project egress traffic

By configuring an egress IP address for a project, all outgoing external connections from the specified
project will share the same, fixed source IP address. External resources can recognize traffic from a
particular project based on the egress IP address. An egress IP address assigned to a project is different
from the egress router, which is used to send traffic to specific destinations.

Egress IP addresses are implemented as additional IP addresses on the primary network interface of the
node and must be in the same subnet as the node’s primary IP address.

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

Allowing additional IP addresses on the primary network interface might require extra
configuration when using some cloud or VM solutions.

You can assign egress IP addresses to namespaces by setting the egressIPs parameter of the
NetNamespace resource. After an egress IP is associated with a project, OpenShift SDN allows you to
assign egress IPs to hosts in two ways:

In the automatically assigned approach, an egress IP address range is assigned to a node.

CHAPTER 8. OPENSHIFT SDN

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/networking/#configuring-networkpolicy

In the manually assigned approach, a list of one or more egress IP address is assigned to a node.

Namespaces that request an egress IP address are matched with nodes that can host those egress IP
addresses, and then the egress IP addresses are assigned to those nodes. If the egressIPs parameter is
set on a NetNamespace resource, but no node hosts that egress IP address, then egress traffic from
the namespace will be dropped.

High availability of nodes is automatic. If a node that hosts an egress IP address is unreachable and
there are nodes that are able to host that egress IP address, then the egress IP address will move to a
new node. When the unreachable node comes back online, the egress IP address automatically moves
to balance egress IP addresses across nodes.

IMPORTANT

You cannot use manually assigned and automatically assigned egress IP addresses on
the same nodes. If you manually assign egress IP addresses from an IP address range, you
must not make that range available for automatic IP assignment.

8.2.1.1. Considerations when using automatically assigned egress IP addresses

When using the automatic assignment approach for egress IP addresses the following considerations
apply:

You set the egressCIDRs parameter of each node’s HostSubnet resource to indicate the
range of egress IP addresses that can be hosted by a node. OpenShift Container Platform sets
the egressIPs parameter of the HostSubnet resource based on the IP address range you
specify.

Only a single egress IP address per namespace is supported when using the automatic
assignment mode.

If the node hosting the namespace’s egress IP address is unreachable, OpenShift Container Platform
will reassign the egress IP address to another node with a compatible egress IP address range. The
automatic assignment approach works best for clusters installed in environments with flexibility in
associating additional IP addresses with nodes.

8.2.1.2. Considerations when using manually assigned egress IP addresses

When using the manual assignment approach for egress IP addresses the following considerations apply:

You set the egressIPs parameter of each node’s HostSubnet resource to indicate the IP
addresses that can be hosted by a node.

Multiple egress IP addresses per namespace are supported.

When a namespace has multiple egress IP addresses, if the node hosting the first egress IP address is
unreachable, OpenShift Container Platform will automatically switch to using the next available egress
IP address until the first egress IP address is reachable again.

This approach is recommended for clusters installed in public cloud environments, where there can be
limitations on associating additional IP addresses with nodes.

8.2.2. Configuring automatically assigned egress IP addresses for a namespace

In OpenShift Container Platform you can enable automatic assignment of an egress IP address for a

OpenShift Container Platform 4.1 Networking

42

1

2

1

2

In OpenShift Container Platform you can enable automatic assignment of an egress IP address for a
specific namespace across one or more nodes.

Prerequisites

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Update the NetNamespace resource with the egress IP address using the following JSON:

 $ oc patch netnamespace <project_name> --type=merge -p \ 1
 '{
 "egressIPs": [
 "<ip_address>" 2
]
 }'

Specify the name of the project.

Specify a single egress IP address. Using multiple IP addresses is not supported.

For example, to assign project1 to an IP address of 192.168.1.100 and project2 to an IP address
of 192.168.1.101:

$ oc patch netnamespace project1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100"]}'
$ oc patch netnamespace project2 --type=merge -p \
 '{"egressIPs": ["192.168.1.101"]}'

2. Indicate which nodes can host egress IP addresses by setting the egressCIDRs parameter for
each host using the following JSON:

$ oc patch hostsubnet <node_name> --type=merge -p \ 1
 '{
 "egressCIDRs": [
 "<ip_address_range_1>", "<ip_address_range_2>" 2
]
 }'

Specify a node name.

Specify one or more IP address ranges in CIDR format.

For example, to set node1 and node2 to host egress IP addresses in the range 192.168.1.0 to
192.168.1.255:

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'
$ oc patch hostsubnet node2 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'

CHAPTER 8. OPENSHIFT SDN

43

1

2

OpenShift Container Platform automatically assigns specific egress IP addresses to available
nodes in a balanced way. In this case, it assigns the egress IP address 192.168.1.100 to node1 and
the egress IP address 192.168.1.101 to node2 or vice versa.

8.2.3. Configuring manually assigned egress IP addresses for a namespace

In OpenShift Container Platform you can associate one or more egress IP addresses with a namespace.

Prerequisites

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Update the NetNamespace resource by specifying the following JSON object with the desired
IP addresses:

$ oc patch netnamespace <project> --type=merge -p \ 1
 '{
 "egressIPs": [2
 "<ip_address>"
]
 }'

Specify the name of the project.

Specify one or more egress IP addresses. The egressIPs parameter is an array.

For example, to assign the project1 project to an IP address of 192.168.1.100:

$ oc patch netnamespace project1 --type=merge \
 -p '{"egressIPs": ["192.168.1.100"]}'

You can set egressIPs to two or more IP addresses on different nodes to provide high
availability. If multiple egress IP addresses are set, pods use the first IP in the list for egress, but
if the node hosting that IP address fails, pods switch to using the next IP in the list after a short
delay.

2. Manually assign the egress IP to the node hosts. Set the egressIPs parameter on the
HostSubnet object on the node host. Using the following JSON, include as many IPs as you
want to assign to that node host:

$ oc patch hostsubnet <node_name> --type=merge -p \ 1
 '{
 "egressIPs": [2
 "<ip_address_1>",
 "<ip_address_N>"
]
 }'

OpenShift Container Platform 4.1 Networking

44

1

2

Specify the name of the project.

Specify one or more egress IP addresses. The egressIPs field is an array.

For example, to specify that node1 should have the egress IPs 192.168.1.100, 192.168.1.101,
and 192.168.1.102:

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

In the previous example, all egress traffic for project1 will be routed to the node hosting the
specified egress IP, and then connected (using NAT) to that IP address.

8.3. CONFIGURING AN EGRESS FIREWALL TO CONTROL ACCESS TO
EXTERNAL IP ADDRESSES

As a cluster administrator, you can create an egress firewall for a project that will restrict egress traffic
leaving your OpenShift Container Platform cluster.

8.3.1. How an egress firewall works in a project

As an OpenShift Container Platform cluster administrator, you can use an egress firewall to limit the
external hosts that some or all Pods can access from within the cluster. An egress firewall supports the
following scenarios:

A Pod can only connect to internal hosts and cannot initiate connections to the public Internet.

A Pod can only connect to the public Internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A Pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A Pod can connect to only specific external hosts.

You configure an egress firewall policy by creating an EgressNetworkPolicy Custom Resource (CR)
object and specifying an IP address range in CIDR format or by specifying a DNS name. For example,
you can allow one project access to a specified IP range but deny the same access to a different project.
Or you can restrict application developers from updating from Python pip mirrors, and force updates to
come only from approved sources.

IMPORTANT

You must have OpenShift SDN configured to use either the network policy or multitenant
modes to configure egress firewall policy.

If you use network policy mode, egress policy is compatible with only one policy per
namespace and will not work with projects that share a network, such as global projects.

CAUTION

CHAPTER 8. OPENSHIFT SDN

45

CAUTION

Egress firewall rules do not apply to traffic that goes through routers. Any user with permission to create
a Route CR object can bypass egress network policy rules by creating a route that points to a forbidden
destination.

8.3.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressNetworkPolicy object.

The default project cannot use egress network policy.

When using the OpenShift SDN network provider in multitenant mode, the following limitations
apply:

Global projects cannot use an egress firewall. You can make a project global by using the oc
adm pod-network make-projects-global command.

Projects merged by using the oc adm pod-network join-projects command cannot use an
egress firewall in any of the joined projects.

Violating any of these restrictions results in broken egress network policy for the project, and may cause
all external network traffic to be dropped.

8.3.1.2. Matching order for egress network policy rules

The egress network policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a Pod applies. Any subsequent rules are ignored for
that connection.

8.3.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on the TTL (time to live) value of the domain returned
by the local non-authoritative servers.

The Pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the Pod can be
different. If the IP addresses for a host name differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and Pods asynchronously poll the same local name server,
the Pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressNetworkPolicy
objects is only recommended for domains with infrequent IP address changes.

NOTE

OpenShift Container Platform 4.1 Networking

46

1

2

1

2

3

4

NOTE

The egress firewall always allows Pods access to the external interface of the node that
the Pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
Pods.

8.3.2. EgressNetworkPolicy custom resource (CR) object

The following YAML describes an EgressNetworkPolicy CR object:

Specify a name for your egress firewall policy.

Specify a collection of one or more egress network policy rules as described in the following
section.

8.3.2.1. EgressNetworkPolicy rules

The following YAML describes an egress firewall rule object. The egress key expects an array of one or
more objects.

Specify the type of rule. The value must be either Allow or Deny.

Specify a value for either the cidrSelector key or the dnsName key for the rule. You cannot use
both keys in a rule.

Specify an IP address range in CIDR format.

Specify a domain name.

8.3.2.2. Example EgressNetworkPolicy CR object

The following example defines several egress firewall policy rules:

kind: EgressNetworkPolicy
apiVersion: v1
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns-name> 4

kind: EgressNetworkPolicy

CHAPTER 8. OPENSHIFT SDN

47

1

2

The name for the policy object.

A collection of egress firewall policy rule objects.

8.3.3. Creating an egress firewall policy object

As a OpenShift Container Platform cluster administrator, you can create an egress firewall policy object
for a project.

IMPORTANT

If the project already has an EgressNetworkPolicy object defined, you must edit the
existing policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OpenShift SDN network provider plug-in.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

a. Create a <policy-name>.yaml file where <policy-name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object:

$ oc create -f <policy-name>.yaml -n <project>

In the following example, a new EgressNetworkPolicy object is created in a project named
project1:

$ oc create -f default-rules.yaml -n project1
egressnetworkpolicy.network.openshift.io/default-rules created

apiVersion: v1
metadata:
 name: default-rules 1
spec:
 egress: 2
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Allow
 to:
 dnsName: www.example.com
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

OpenShift Container Platform 4.1 Networking

48

1

2

3

3. Optional: Save the <policy-name>.yaml so that you can make changes later.

8.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

8.4.1. Editing an EgressNetworkPolicy object

As a OpenShift Container Platform cluster administrator, you can update the egress firewall for a
project.

Prerequisites

A cluster using the OpenShift SDN network plug-in.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster as a cluster administrator.

Procedure

To edit an existing egress network policy object for a project, complete the following steps:

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

$ oc get -n <project> egressnetworkpolicy

2. Optionally, if you did not save a copy of the EgressNetworkPolicy object when you created the
egress network firewall, enter the following command to create a copy.

$ oc get -n <project> \ 1
 egressnetworkpolicy <name> \ 2
 -o yaml > <filename>.yaml 3

Replace <project> with the name of the project

Replace <name> with the name of the object.

Replace <filename> with the name of the file to save the YAML.

3. Enter the following command to replace the EgressNetworkPolicy object. Replace <filename>
with the name of the file containing the updated EgressNetworkPolicy object.

$ oc replace -f <filename>.yaml

8.4.2. EgressNetworkPolicy custom resource (CR) object

The following YAML describes an EgressNetworkPolicy CR object:

kind: EgressNetworkPolicy
apiVersion: v1

CHAPTER 8. OPENSHIFT SDN

49

1

2

1

2

3

4

1

Specify a name for your egress firewall policy.

Specify a collection of one or more egress network policy rules as described in the following
section.

8.4.2.1. EgressNetworkPolicy rules

The following YAML describes an egress firewall rule object. The egress key expects an array of one or
more objects.

Specify the type of rule. The value must be either Allow or Deny.

Specify a value for either the cidrSelector key or the dnsName key for the rule. You cannot use
both keys in a rule.

Specify an IP address range in CIDR format.

Specify a domain name.

8.4.2.2. Example EgressNetworkPolicy CR object

The following example defines several egress firewall policy rules:

The name for the policy object.

metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns-name> 4

kind: EgressNetworkPolicy
apiVersion: v1
metadata:
 name: default-rules 1
spec:
 egress: 2
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Allow
 to:
 dnsName: www.example.com
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

OpenShift Container Platform 4.1 Networking

50

2 A collection of egress firewall policy rule objects.

8.5. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

8.5.1. Removing an EgressNetworkPolicy object

As a OpenShift Container Platform cluster administrator, you can remove an egress firewall from a
project.

Prerequisites

A cluster using the OpenShift SDN network plug-in.

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster as a cluster administrator.

Procedure

To remove an egress network policy object for a project, complete the following steps:

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

$ oc get -n <project> egressnetworkpolicy

2. Enter the following command to delete the EgressNetworkPolicy object. Replace <project>
with the name of the project and <name> with the name of the object.

$ oc delete -n <project> egressnetworkpolicy <name>

8.6. USING MULTICAST

8.6.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform Pods is disabled by default. If you are using the
OpenShift SDN network plug-in, you can enable multicast on a per-project basis.

When using the OpenShift SDN network plug-in in networkpolicy isolation mode:

Multicast packets sent by a Pod will be delivered to all other Pods in the project, regardless of

CHAPTER 8. OPENSHIFT SDN

51

1

1

Multicast packets sent by a Pod will be delivered to all other Pods in the project, regardless of
NetworkPolicy objects. Pods might be able to communicate over multicast even when they
cannot communicate over unicast.

Multicast packets sent by a Pod in one project will never be delivered to Pods in any other
project, even if there are NetworkPolicy objects that allow communication between the projects.

When using the OpenShift SDN network plug-in in multitenant isolation mode:

Multicast packets sent by a Pod will be delivered to all other Pods in the project.

Multicast packets sent by a Pod in one project will be delivered to Pods in other projects only if
each project is joined together and multicast is enabled in each joined project.

8.6.2. Enabling multicast between Pods

You can enable multicast between Pods for your project.

Prerequisites

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project:

$ oc annotate netnamespace <namespace> \ 1
 netnamespace.network.openshift.io/multicast-enabled=true

The namespace for the project you want to enable multicast for.

8.6.3. Disabling multicast between Pods

You can disable multicast between Pods for your project.

Prerequisites

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

$ oc annotate netnamespace <namespace> \ 1
 netnamespace.network.openshift.io/multicast-enabled-

The namespace for the project you want to disable multicast for.

OpenShift Container Platform 4.1 Networking

52

8.7. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN

When your cluster is configured to use the multitenant isolation mode for the OpenShift SDN CNI plug-
in, each project is isolated by default. Network traffic is not allowed between Pods or services in
different projects in multitenant isolation mode.

You can change the behavior of multitenant isolation for a project in two ways:

You can join one or more projects, allowing network traffic between Pods and services in
different projects.

You can disable network isolation for a project. It will be globally accessible, accepting network
traffic from Pods and services in all other projects. A globally accessible project can access
Pods and services in all other projects.

Prerequisites

You must have a cluster configured to use the OpenShift SDN Container Network Interface
(CNI) plug-in in multitenant isolation mode.

8.7.1. Joining projects

You can join two or more projects to allow network traffic between Pods and services in different
projects.

Prerequisites

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Use the following command to join projects to an existing project network:

$ oc adm pod-network join-projects --to=<project1> <project2> <project3>

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

2. Optional: Run the following command to view the pod networks that you have joined together:

$ oc get netnamespaces

Projects in the same pod-network have the same network ID in the NETID column.

8.7.2. Isolating a project

You can isolate a project so that Pods and services in other projects cannot access its Pods and
services.

Prerequisites

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

CHAPTER 8. OPENSHIFT SDN

53

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

To isolate the projects in the cluster, run the following command:

$ oc adm pod-network isolate-projects <project1> <project2>

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

8.7.3. Disabling network isolation for a project

You can disable network isolation for a project.

Prerequisites

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command for the project:

$ oc adm pod-network make-projects-global <project1> <project2>

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

8.8. CONFIGURING KUBE-PROXY

The Kubernetes network proxy (kube-proxy) runs on each node and is managed by the Cluster Network
Operator (CNO). kube-proxy maintains network rules for forwarding connections for endpoints
associated with services.

8.8.1. About iptables rules synchronization

The synchronization period determines how frequently the Kubernetes network proxy (kube-proxy)
syncs the iptables rules on a node.

A sync begins when either of the following events occurs:

An event occurs, such as service or endpoint is added to or removed from the cluster.

The time since the last sync exceeds the sync period defined for kube-proxy.

8.8.2. Modifying the kube-proxy configuration

You can modify the Kubernetes network proxy configuration for your cluster.

Prerequisites

OpenShift Container Platform 4.1 Networking

54

Install the OpenShift Command-line Interface (CLI), commonly known as oc.

Log in to a running cluster with the cluster-admin role.

Procedure

1. Edit the Network.operator.openshift.io Custom Resource (CR) by running the following
command:

$ oc edit network.operator.openshift.io cluster

2. Modify the kubeProxyConfig parameter in the CR with your changes to the kube-proxy
configuration, such as in the following example CR:

3. Save the file and exit the text editor.
The syntax is validated by the oc command when you save the file and exit the editor. If your
modifications contain a syntax error, the editor opens the file and displays an error message.

4. Run the following command to confirm the configuration update:

$ oc get networks.operator.openshift.io -o yaml

The command returns output similar to the following example:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period: ["30s"]

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: Network
 metadata:
 name: cluster
 spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 defaultNetwork:
 type: OpenShiftSDN
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 30s
 serviceNetwork:
 - 172.30.0.0/16
 status: {}
kind: List

CHAPTER 8. OPENSHIFT SDN

55

5. Optional: Run the following command to confirm that the Cluster Network Operator accepted
the configuration change:

$ oc get clusteroperator network
NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.1.0-0.9 True False False 1m

The AVAILABLE field is True when the configuration update is applied successfully.

8.8.3. kube-proxy configuration parameters

You can modify the following kubeProxyConfig parameters:

Table 8.1. Parameters

Parameter Description Values Default

iptablesSyncPer
iod

The refresh period for
iptables rules.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package
documentation.

30s

proxyArgument
s.iptables-min-
sync-period

The minimum duration before
refreshing iptables rules. This
parameter ensures that the
refresh does not happen too
frequently.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package

30s

OpenShift Container Platform 4.1 Networking

56

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

1

CHAPTER 9. CONFIGURING ROUTES

9.1. ROUTE CONFIGURATION

9.1.1. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

9.1.2. Enabling HTTP strict transport security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which ensures that only
HTTPS traffic is allowed on the host. Any HTTP requests are dropped by default. This is useful for
ensuring secure interactions with websites, or to offer a secure application for the user’s benefit.

When HSTS is enabled, HSTS adds a Strict Transport Security header to HTTPS responses from the
site. You can use the insecureEdgeTerminationPolicy value in a route to redirect to send HTTP to
HTTPS. However, when HSTS is enabled, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect. This is not required to be supported by the
client, and can be disabled by setting max-age=0.

IMPORTANT

HSTS works only with secure routes (either edge terminated or re-encrypt). The
configuration is ineffective on HTTP or passthrough routes.

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge terminated or re-encrypt route:

apiVersion: v1

CHAPTER 9. CONFIGURING ROUTES

57

1

2

3

1

max-age is the only required parameter. It measures the length of time, in seconds, that
the HSTS policy is in effect. The client updates max-age whenever a response with a HSTS
header is received from the host. When max-age times out, the client discards the policy.

includeSubDomains is optional. When included, it tells the client that all subdomains of
the host are to be treated the same as the host.

preload is optional. When max-age is greater than 0, then including preload in
haproxy.router.openshift.io/hsts_header allows external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, before they have interacted with the site. Without preload
set, browsers must have interacted with the site over HTTPS to get the header.

9.1.3. Troubleshooting throughput issues

Sometimes applications deployed through OpenShift Container Platform can cause network throughput
issues such as unusually high latency between specific services.

Use the following methods to analyze performance issues if Pod logs do not reveal any cause of the
problem:

Use a packet analyzer, such as ping or tcpdump to analyze traffic between a Pod and its node.
For example, run the tcpdump tool on each Pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to and from a Pod. Latency can occur in OpenShift Container Platform if a
node interface is overloaded with traffic from other Pods, storage devices, or the data plane.

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

podip is the IP address for the Pod. Run the oc get pod <pod_name> -o wide command
to get the IP address of a Pod.

tcpdump generates a file at /tmp/dump.pcap containing all traffic between these two Pods.
Ideally, run the analyzer shortly before the issue is reproduced and stop the analyzer shortly
after the issue is finished reproducing to minimize the size of the file. You can also run a packet
analyzer between the nodes (eliminating the SDN from the equation) with:

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Run the tool from the Pods first, then from the nodes, to locate any bottlenecks.

For information on installing and using iperf, see this Red Hat Solution .

9.1.4. Using cookies to keep route statefulness

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by

kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

OpenShift Container Platform 4.1 Networking

58

http://www.tcpdump.org/
https://access.redhat.com/solutions/33103

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by
ensuring all traffic hits the same endpoint. However, if the endpoint Pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

OpenShift Container Platform can use cookies to configure session persistence. The Ingress controller
selects an endpoint to handle any user requests, and creates a cookie for the session. The cookie is
passed back in the response to the request and the user sends the cookie back with the next request in
the session. The cookie tells the Ingress Controller which endpoint is handling the session, ensuring that
client requests use the cookie so that they are routed to the same Pod.

9.1.4.1. Annotating a route with a cookie

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. By deleting the cookie it can force the next
request to re-choose an endpoint. So, if a server was overloaded it tries to remove the requests from
the client and redistribute them.

Procedure

1. Annotate the route with the desired cookie name:

$ oc annotate route <route_name> router.openshift.io/<cookie_name>="-
<cookie_annotation>"

For example, to annotate the cookie name of my_cookie to the my_route with the annotation
of my_cookie_annotation:

$ oc annotate route my_route router.openshift.io/my_cookie="-my_cookie_annotation"

2. Save the cookie, and access the route:

$ curl $my_route -k -c /tmp/my_cookie

9.1.5. Route-specific annotations

The Ingress Controller can set the default options for all the routes it exposes. An individual route can
override some of these defaults by providing specific configurations in its annotations.

Table 9.1. Route annotations

Variable Description Environment variable used as
default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are
source, roundrobin, and
leastconn.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use
ROUTER_LOAD_BALANCE_
ALGORITHM.

CHAPTER 9. CONFIGURING ROUTES

59

haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
true or TRUE, the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

router.openshift.io/cookie_n
ame

Specifies an optional cookie to
use for this route. The name must
consist of any combination of
upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router. Note:
if there are multiple pods, each
can have this many connections.
But if you have multiple routers,
there is no coordination among
them, each may connect this
many times. If not set, or set to 0,
there is no limit.

haproxy.router.openshift.io/r
ate-limit-connections

Setting true or TRUE to enables
rate limiting functionality.

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections shared by an IP
address.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which an IP
address can make HTTP requests.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which an IP
address can make TCP
connections.

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

Variable Description Environment variable used as
default

OpenShift Container Platform 4.1 Networking

60

1

haproxy.router.openshift.io/i
p_whitelist

Sets a whitelist for the route.

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

Variable Description Environment variable used as
default

NOTE

Environment variables can not be edited.

A route setting custom timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If the unit is not
provided, ms is the default.

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

9.2. SECURED ROUTES

The following sections describe how to create re-encrypt and edge routes with custom certificates.

9.2.1. Creating a re-encrypt route with a custom certificate

You can configure a secure route using reencrypt TLS termination with a custom certificate by using the
oc create route command.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

apiVersion: v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms 1
...

CHAPTER 9. CONFIGURING ROUTES

61

You must have a Service resource that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

$ openssl rsa -in password_protected_tls.key -out tls.key

Procedure

This procedure creates a Route resource with a custom certificate and reencrypt TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You must also specify a destination CA certificate to enable the Ingress Controller to trust the
service’s certificate. You may also specify a CA certificate if needed to complete the certificate chain.
Substitute the actual path names for tls.crt, tls.key, cacert.crt, and (optionally) ca.crt. Substitute the
name of the Service resource that you want to expose for frontend. Substitute the appropriate host
name for www.example.com.

Create a secure Route resource using reencrypt TLS termination and a custom certificate:

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

apiVersion: v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: reencrypt
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 destinationCACertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Container Platform 4.1 Networking

62

See oc create route reencrypt --help for more options.

9.2.2. Creating an edge route with a custom certificate

You can configure a secure route using edge TLS termination with a custom certificate by using the oc
create route command. With an edge route, the Ingress Controller terminates TLS encryption before
forwarding traffic to the destination Pod. The route specifies the TLS certificate and key that the
Ingress Controller uses for the route.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a Service resource that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

$ openssl rsa -in password_protected_tls.key -out tls.key

Procedure

This procedure creates a Route resource with a custom certificate and edge TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You may also specify a CA certificate if needed to complete the certificate chain. Substitute
the actual path names for tls.crt, tls.key, and (optionally) ca.crt. Substitute the name of the Service
resource that you want to expose for frontend. Substitute the appropriate host name for
www.example.com.

Create a secure Route resource using edge TLS termination and a custom certificate.

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

apiVersion: v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend

CHAPTER 9. CONFIGURING ROUTES

63

See oc create route edge --help for more options.

 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

OpenShift Container Platform 4.1 Networking

64

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC

10.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

OpenShift Container Platform provides the following methods for communicating from outside the
cluster with services running in the cluster.

The methods are recommended, in order or preference:

If you have HTTP/HTTPS, use an Ingress Controller.

If you have a TLS-encrypted protocol other than HTTPS. For example, for TLS with the SNI
header, use an Ingress Controller.

Otherwise, use a Load Balancer, an External IP, or a NodePort.

Method Purpose

Use an Ingress Controller Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS (for example,
TLS with the SNI header).

Automatically assign an external IP using a load
balancer service

Allows traffic to non-standard ports through an IP
address assigned from a pool.

Manually assign an external IP to a service Allows traffic to non-standard ports through a
specific IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

10.2. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS
CONTROLLER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses an Ingress Controller.

10.2.1. Using Ingress Controllers and routes

The Ingress Operator manages Ingress Controllers and wildcard DNS.

Using an Ingress Controller is the most common way to allow external access to an OpenShift Container
Platform cluster.

An Ingress Controller is configured to accept external requests and proxy them based on the configured
routes. This is limited to HTTP, HTTPS using SNI, and TLS using SNI, which is sufficient for web
applications and services that work over TLS with SNI.

Work with your administrator to configure an Ingress Controller to accept external requests and proxy
them based on the configured routes.

The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC

65

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/networking/#configuring-ingress-cluster-traffic-nodeport

The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can
work with the edge Ingress Controller without having to contact the administrators.

When a set of routes is created in various projects, the overall set of routes is available to the set of
Ingress Controllers. Each Ingress Controller admits routes from the set of routes. By default, all Ingress
Controllers admit all routes.

The Ingress Controller:

Has two replicas by default, which means it should be running on two worker nodes.

Can be scaled up to have more replicas on more nodes.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

10.2.2. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Procedure

1. Log in to OpenShift Container Platform.

2. Create a new project for your service:

$ oc new-project <project_name>

For example:

$ oc new-project myproject

3. Use the oc new-app command to create a service. For example:

OpenShift Container Platform 4.1 Networking

66

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.redhat.io/openshift3/mysql-55-rhel7

4. Run the following command to see that the new service is created:

$ oc get svc -n openshift-ingress
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-default LoadBalancer 172.30.16.119 52.230.228.163
80:30745/TCP,443:32561/TCP 2d6h
router-internal-default ClusterIP 172.30.101.15 <none>
80/TCP,443/TCP,1936/TCP 2d6h

By default, the new service does not have an external IP address.

10.2.3. Exposing the service by creating a route

You can expose the service as a route using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

$ oc project project1

3. Run the following command to expose the route:

$ oc expose service <service_name>

For example:

$ oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. Use a tool, such as cURL, to make sure you can reach the service using the cluster IP address for
the service:

$ curl <pod_ip>:<port>

For example:

$ curl 172.30.131.89:3306

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connected to the
service.

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC

67

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

10.2.4. Configuring ingress controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

2. Apply the Ingress Controller router-internal.yaml file:

oc apply -f router-internal.yaml

The Ingress Controller selects routes in any namespace that have the label type: sharded.

10.2.5. Configuring ingress controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress

OpenShift Container Platform 4.1 Networking

68

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

2. Apply the Ingress Controller router-internal.yaml file:

oc apply -f router-internal.yaml

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

10.2.6. Additional resources

The Ingress Operator manages wildcard DNS. For more information, see Ingress Operator in
OpenShift Container Platform, Installing a cluster on bare metal , and Installing a cluster on
vSphere.

10.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD
BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a load balancer.

10.3.1. Using a load balancer to get traffic into the cluster

If you do not need a specific external IP address, you can configure a load balancer service to allow
external access to an OpenShift Container Platform cluster.

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.1/html-single/installing/#installing-vsphere

A load balancer service allocates a unique IP. The load balancer has a single edge router IP, which can be
a virtual IP (VIP), but is still a single machine for initial load balancing.

NOTE

If a pool is configured, it is done at the infrastructure level, not by a cluster administrator.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

10.3.2. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Procedure

1. Log in to OpenShift Container Platform.

2. Create a new project for your service:

$ oc new-project <project_name>

For example:

$ oc new-project myproject

3. Use the oc new-app command to create a service. For example:

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.redhat.io/openshift3/mysql-55-rhel7

OpenShift Container Platform 4.1 Networking

70

4. Run the following command to see that the new service is created:

$ oc get svc -n openshift-ingress
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-default LoadBalancer 172.30.16.119 52.230.228.163
80:30745/TCP,443:32561/TCP 2d6h
router-internal-default ClusterIP 172.30.101.15 <none>
80/TCP,443/TCP,1936/TCP 2d6h

By default, the new service does not have an external IP address.

10.3.3. Exposing the service by creating a route

You can expose the service as a route using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

$ oc project project1

3. Run the following command to expose the route:

$ oc expose service <service_name>

For example:

$ oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. Use a tool, such as cURL, to make sure you can reach the service using the cluster IP address for
the service:

$ curl <pod_ip>:<port>

For example:

$ curl 172.30.131.89:3306

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connected to the
service.

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC

71

1

2

3

4

MySQL [(none)]>

10.3.4. Creating a load balancer service

Use the following procedure to create a load balancer service.

Prerequisites

Make sure that the project and service you want to expose exist.

Procedure

To create a load balancer service:

1. Log into OpenShift Container Platform.

2. Load the project where the service you want to expose is located.

$ oc project project1

3. Open a text file on the master node and paste the following text, editing the file as needed:

Example 10.1. Sample load balancer configuration file

apiVersion: v1
kind: Service
metadata:
 name: egress-2 1
spec:
 ports:
 - name: db
 port: 3306 2
 loadBalancerIP:
 type: LoadBalancer 3
 selector:
 name: mysql 4

Enter a descriptive name for the load balancer service.

Enter the same port that the service you want to expose is listening on.

Enter loadbalancer as the type.

Enter the name of the service.

4. Save and exit the file.

5. Run the following command to create the service:

oc create -f <file-name>

For example:

OpenShift Container Platform 4.1 Networking

72

oc create -f mysql-lb.yaml

6. Execute the following command to view the new service:

$ oc get svc
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
egress-2 LoadBalancer 172.30.22.226 ad42f5d8b303045-487804948.example.com
3306:30357/TCP 15m

The service has an external IP address automatically assigned if there is a cloud provider
enabled.

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the public
IP address:

$ curl <public-ip>:<port>

++ For example:

$ curl 172.29.121.74:3306

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connecting with the
service:

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

10.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A SERVICE
EXTERNAL IP

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a service external IP.

10.4.1. Using a service external IP to get traffic into the cluster

One method to expose a service is to assign an external IP address directly to the service you want to
make accessible from outside the cluster.

The external IP address that you use must be provisioned on your infrastructure platform and attached
to a cluster node.

With an external IP on the service, OpenShift Container Platform sets up sets up NAT rules to allow
traffic arriving at any cluster node attached to that IP address to be sent to one of the internal pods.
This is similar to the internal service IP addresses, but the external IP tells OpenShift Container Platform

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC

73

that this service should also be exposed externally at the given IP. The administrator must assign the IP
address to a host (node) interface on one of the nodes in the cluster. Alternatively, the address can be
used as a virtual IP (VIP).

These IPs are not managed by OpenShift Container Platform and administrators are responsible for
ensuring that traffic arrives at a node with this IP.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

10.4.2. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Procedure

1. Log in to OpenShift Container Platform.

2. Create a new project for your service:

$ oc new-project <project_name>

For example:

$ oc new-project myproject

3. Use the oc new-app command to create a service. For example:

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.redhat.io/openshift3/mysql-55-rhel7

OpenShift Container Platform 4.1 Networking

74

4. Run the following command to see that the new service is created:

$ oc get svc -n openshift-ingress
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-default LoadBalancer 172.30.16.119 52.230.228.163
80:30745/TCP,443:32561/TCP 2d6h
router-internal-default ClusterIP 172.30.101.15 <none>
80/TCP,443/TCP,1936/TCP 2d6h

By default, the new service does not have an external IP address.

10.4.3. Exposing the service by creating a route

You can expose the service as a route using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

$ oc project project1

3. Run the following command to expose the route:

$ oc expose service <service_name>

For example:

$ oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

4. Use a tool, such as cURL, to make sure you can reach the service using the cluster IP address for
the service:

$ curl <pod_ip>:<port>

For example:

$ curl 172.30.131.89:3306

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connected to the
service.

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC

75

MySQL [(none)]>

10.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a NodePort.

10.5.1. Using a NodePort to get traffic into the cluster

Use a NodePort-type Service resource to expose a service on a specific port on all nodes in the cluster.
The port is specified in the Service resource’s .spec.ports[*].nodePort field.

IMPORTANT

Using NodePorts requires additional port resources.

A NodePort exposes the service on a static port on the node’s IP address. NodePorts are in the 30000
to 32767 range by default, which means a NodePort is unlikely to match a service’s intended port. For
example, port 8080 may be exposed as port 31020 on the node.

The administrator must ensure the external IP addresses are routed to the nodes.

NodePorts and external IPs are independent and both can be used concurrently.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

10.5.2. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

OpenShift Container Platform 4.1 Networking

76

Procedure

1. Log in to OpenShift Container Platform.

2. Create a new project for your service:

$ oc new-project <project_name>

For example:

$ oc new-project myproject

3. Use the oc new-app command to create a service. For example:

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.redhat.io/openshift3/mysql-55-rhel7

4. Run the following command to see that the new service is created:

$ oc get svc -n openshift-ingress
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
router-default LoadBalancer 172.30.16.119 52.230.228.163
80:30745/TCP,443:32561/TCP 2d6h
router-internal-default ClusterIP 172.30.101.15 <none>
80/TCP,443/TCP,1936/TCP 2d6h

By default, the new service does not have an external IP address.

10.5.3. Exposing the service by creating a route

You can expose the service as a route using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

$ oc project project1

3. Run the following command to expose the route:

$ oc expose service <service_name>

For example:

$ oc expose service mysql-55-rhel7
route "mysql-55-rhel7" exposed

CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC

77

4. Use a tool, such as cURL, to make sure you can reach the service using the cluster IP address for
the service:

$ curl <pod_ip>:<port>

For example:

$ curl 172.30.131.89:3306

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connected to the
service.

If you have a MySQL client, log in with the standard CLI command:

$ mysql -h 172.30.131.89 -u admin -p
Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

OpenShift Container Platform 4.1 Networking

78

	Table of Contents
	CHAPTER 1. UNDERSTANDING NETWORKING
	1.1. OPENSHIFT CONTAINER PLATFORM DNS

	CHAPTER 2. ACCESSING HOSTS
	2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

	CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	3.1. CLUSTER NETWORK OPERATOR
	3.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
	3.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
	3.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
	3.5. CLUSTER NETWORK OPERATOR CUSTOM RESOURCE (CR)

	CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	4.1. DNS OPERATOR
	4.2. VIEW THE DEFAULT DNS
	4.3. DNS OPERATOR STATUS
	4.4. DNS OPERATOR LOGS

	CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	5.1. THE INGRESS CONFIGURATION ASSET
	5.2. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	5.2.1. Ingress controller endpoint publishing strategy

	5.3. VIEW THE DEFAULT INGRESS CONTROLLER
	5.4. VIEW INGRESS OPERATOR STATUS
	5.5. VIEW INGRESS CONTROLLER LOGS
	5.6. VIEW INGRESS CONTROLLER STATUS
	5.7. SETTING A CUSTOM DEFAULT CERTIFICATE
	5.8. SCALING AN INGRESS CONTROLLER
	5.9. CONFIGURING INGRESS CONTROLLER SHARDING BY USING ROUTE LABELS
	5.10. CONFIGURING INGRESS CONTROLLER SHARDING BY USING NAMESPACE LABELS

	CHAPTER 6. MANAGING MULTIPLE NETWORKS
	6.1. OVERVIEW
	6.2. CNI CONFIGURATIONS
	6.3. CREATING ADDITIONAL NETWORK INTERFACES
	6.3.1. Creating a CNI configuration for an additional interface as a CR
	6.3.2. Managing the CRs for additional interfaces
	6.3.3. Creating an annotated Pod that uses the CR
	6.3.3.1. Attaching multiple interfaces to a Pod

	6.3.4. Viewing the interface configuration in a running Pod

	6.4. CONFIGURING ADDITIONAL INTERFACES USING HOST DEVICES
	6.5. CONFIGURING SR-IOV
	6.5.1. Supported Devices
	6.5.2. Creating SR-IOV plug-ins and daemonsets
	6.5.3. Configuring additional interfaces using SR-IOV

	CHAPTER 7. CONFIGURING NETWORK POLICY WITH OPENSHIFT SDN
	7.1. ABOUT NETWORK POLICY
	7.2. EXAMPLE NETWORKPOLICY OBJECT
	7.3. CREATING A NETWORKPOLICY OBJECT
	7.4. DELETING A NETWORKPOLICY OBJECT
	7.5. VIEWING NETWORKPOLICY OBJECTS
	7.6. CONFIGURING MULTITENANT ISOLATION USING NETWORKPOLICY
	7.7. CREATING DEFAULT NETWORK POLICIES FOR A NEW PROJECT
	7.7.1. Modifying the template for new projects
	7.7.2. Adding network policy objects to the new project template

	CHAPTER 8. OPENSHIFT SDN
	8.1. ABOUT OPENSHIFT SDN
	8.2. CONFIGURING EGRESS IPS FOR A PROJECT
	8.2.1. Egress IP address assignment for project egress traffic
	8.2.1.1. Considerations when using automatically assigned egress IP addresses
	8.2.1.2. Considerations when using manually assigned egress IP addresses

	8.2.2. Configuring automatically assigned egress IP addresses for a namespace
	8.2.3. Configuring manually assigned egress IP addresses for a namespace

	8.3. CONFIGURING AN EGRESS FIREWALL TO CONTROL ACCESS TO EXTERNAL IP ADDRESSES
	8.3.1. How an egress firewall works in a project
	8.3.1.1. Limitations of an egress firewall
	8.3.1.2. Matching order for egress network policy rules
	8.3.1.3. How Domain Name Server (DNS) resolution works

	8.3.2. EgressNetworkPolicy custom resource (CR) object
	8.3.2.1. EgressNetworkPolicy rules
	8.3.2.2. Example EgressNetworkPolicy CR object

	8.3.3. Creating an egress firewall policy object

	8.4. EDITING AN EGRESS FIREWALL FOR A PROJECT
	8.4.1. Editing an EgressNetworkPolicy object
	8.4.2. EgressNetworkPolicy custom resource (CR) object
	8.4.2.1. EgressNetworkPolicy rules
	8.4.2.2. Example EgressNetworkPolicy CR object

	8.5. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	8.5.1. Removing an EgressNetworkPolicy object

	8.6. USING MULTICAST
	8.6.1. About multicast
	8.6.2. Enabling multicast between Pods
	8.6.3. Disabling multicast between Pods

	8.7. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
	8.7.1. Joining projects
	8.7.2. Isolating a project
	8.7.3. Disabling network isolation for a project

	8.8. CONFIGURING KUBE-PROXY
	8.8.1. About iptables rules synchronization
	8.8.2. Modifying the kube-proxy configuration
	8.8.3. kube-proxy configuration parameters

	CHAPTER 9. CONFIGURING ROUTES
	9.1. ROUTE CONFIGURATION
	9.1.1. Configuring route timeouts
	9.1.2. Enabling HTTP strict transport security
	9.1.3. Troubleshooting throughput issues
	9.1.4. Using cookies to keep route statefulness
	9.1.4.1. Annotating a route with a cookie

	9.1.5. Route-specific annotations

	9.2. SECURED ROUTES
	9.2.1. Creating a re-encrypt route with a custom certificate
	9.2.2. Creating an edge route with a custom certificate

	CHAPTER 10. CONFIGURING INGRESS CLUSTER TRAFFIC
	10.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
	10.2. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
	10.2.1. Using Ingress Controllers and routes
	10.2.2. Creating a project and service
	10.2.3. Exposing the service by creating a route
	10.2.4. Configuring ingress controller sharding by using route labels
	10.2.5. Configuring ingress controller sharding by using namespace labels
	10.2.6. Additional resources

	10.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
	10.3.1. Using a load balancer to get traffic into the cluster
	10.3.2. Creating a project and service
	10.3.3. Exposing the service by creating a route
	10.3.4. Creating a load balancer service

	10.4. CONFIGURING INGRESS CLUSTER TRAFFIC USING A SERVICE EXTERNAL IP
	10.4.1. Using a service external IP to get traffic into the cluster
	10.4.2. Creating a project and service
	10.4.3. Exposing the service by creating a route

	10.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
	10.5.1. Using a NodePort to get traffic into the cluster
	10.5.2. Creating a project and service
	10.5.3. Exposing the service by creating a route

