& RedHat

OpenShift Container Platform 3.10

Cluster Administration

OpenShift Container Platform 3.10 Cluster Administration

Last Updated: 2019-12-16

OpenShift Container Platform 3.10 Cluster Administration

OpenShift Container Platform 3.10 Cluster Administration

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

OpenShift Cluster Administration topics cover the day to day tasks for managing your OpenShift
cluster and other advanced configuration topics.

Table of Contents

Table of Contents

CHAPTER 1. OVERVIEW Lttt ettt ettt ettt e et aateeaaeeaneeeanaenaneennneenneenns 14
CHAPTER 2. MANAGING NODES ...ttt iittttitttitt et eeateeeateeaeeeaneeaneeeaneenaneenaneeaneenns 15
2.1. OVERVIEW 15
2.2. LISTING NODES 15
2.3. VIEWING NODES 18
2.4. ADDING HOSTS 19
Procedure 19
2.5.DELETING NODES 21
2.6. UPDATING LABELS ON NODES 21
2.7.LISTING PODS ON NODES 21
2.8. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE 22
2.9. EVACUATING PODS ON NODES 22
2.10. REBOOTING NODES 23
2.10.1. Infrastructure nodes 23
2.10.2. Using pod anti-affinity 24
2.10.3. Handling nodes running routers 25
2.11. MODIFYING NODES 25
2.11.1. Configuring Node Resources 27
2.11.2. Setting maximum pods per node 28
2.12. RESETTING DOCKER STORAGE 29
CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTScvvivvvnnnn.. 31
3.1. OVERVIEW 31
3.2. RESTORING A CLUSTER 31
Procedure 31
3.3. RESTORING A MASTER HOST BACKUP 31
Procedure 31
3.4. RESTORING A NODE HOST BACKUP 32
Procedure 33
3.5.RESTORING ETCD 34
3.5.1. Restoring etcd v2 & v3 data 34
Procedure 34
3.5.1.1. Fix the peerURLS parameter 36
3.5.1.1.1. Procedure 36

3.5.2. Restoring etcd v3 snapshot 36
Procedure 36
3.5.3. Restoring etcd on a static pod 37
3.6. ADDING AN ETCD NODE 38
3.6.1. Adding a new etcd host using Ansible 38
Procedure 38
3.6.2. Manually adding a new etcd host 39
Procedure 39
Modify the current etcd cluster 39
Modify the new etcd host 42
Modify each OpenShift Container Platform master 44

3.7. BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK ONLINE 45
Procedure 45
3.8. RESTORING A PROJECT 45
Procedure 46
3.9. RESTORING APPLICATION DATA 46

OpenShift Container Platform 3.10 Cluster Administration

Procedure
3.10. RESTORING PERSISTENT VOLUME CLAIMS
3.10.1. Restoring files to an existing PVC
Procedure
3.10.2. Restoring data to a new PVC
Procedure

CHAPTER 4. REPLACING AMAS T TER HOST .ottt ittt ittt et tnneneeeannnaaeennnnns
4.1. DEPRECATING A MASTER HOST
Procedure
4.2. ADDING HOSTS
Procedure
4.3.SCALING ETCD
Prerequisites
4.3.1. Adding a new etcd host using Ansible
Procedure
4.3.2. Manually adding a new etcd host
Procedure
Modify the current etcd cluster
Modify the new etcd host
Modify each OpenShift Container Platform master

CHAPTERS. MANAGING USERS .. i i e e et
5.1. OVERVIEW
5.2. CREATING A USER
5.3. VIEWING USER AND IDENTITY LISTS
5.4. CREATING GROUPS
5.5. MANAGING USER AND GROUP LABELS
5.6. DELETING A USER

CHAPTER 6. MANAGING PROUJEC TS 1.t ttttiitttit ettt teiteeaeeeateeaneeeaneennneeaneesaneennneenn
6.1. OVERVIEW
6.2. SELF-PROVISIONING PROJECTS
6.2.1. Modifying the Template for New Projects
6.2.2. Disabling Self-provisioning
6.3. USING NODE SELECTORS
6.3.1. Setting the Cluster-wide Default Node Selector
6.3.2. Setting the Project-wide Node Selector
6.3.3. Developer-specified Node Selectors
6.4. LIMITING NUMBER OF SELF-PROVISIONED PROJECTS PER USER

CHAPTER 7. MANAGING POD S .ttt ettt et eaeetee e aaaeeeeseannneeseaannnneenennn,
7.]. OVERVIEW
7.2.VIEWING PODS
7.3. LIMITING RUN-ONCE POD DURATION
7.3.1. Configuring the RunOnceDuration Plug-in
7.3.2. Specifying a Custom Duration per Project
7.3.2.1. Deploying an Egress Router Pod
7.3.2.2. Deploying an Egress Router Service
7.3.3. Limiting Pod Access with Egress Firewall
7.3.3.1. Configuring Pod Access Limits
7.4. LIMITING THE BANDWIDTH AVAILABLE TO PODS
7.5.SETTING POD DISRUPTION BUDGETS
7.6. INJECTING INFORMATION INTO PODS USING POD PRESETS

46
47
47
47
47
48

50
50

51
52
53
54
55
55
56
56
56
59

61

63
63
63
63
64
64
65

66
66
66
67
68
68
69
69
70

72
72
72
72
72
73
73
74
75
75
76
77
78

Table of Contents

7.7. CONFIGURING CRITICAL PODS 79
CHAPTER 8. MANAGING NETWORKING ...ttt tite et eeienaneeaneeraneennnennn 80
8.1. OVERVIEW 80
8.2. MANAGING POD NETWORKS 80
8.2.1. Joining Project Networks 80
8.3. ISOLATING PROJECT NETWORKS 80
8.3.1. Making Project Networks Global 80
8.4. DISABLING HOST NAME COLLISION PREVENTION FOR ROUTES AND INGRESS OBJECTS 81
8.5. CONTROLLING EGRESS TRAFFIC 82
8.6. USING AN EGRESS FIREWALL TO LIMIT ACCESS TO EXTERNAL RESOURCES 82
8.6.1. Using an Egress Router to Allow External Resources to Recognize Pod Traffic 84
8.6.1.1. Deploying an Egress Router Pod in Redirect Mode 86
8.6.1.2. Redirecting to Multiple Destinations 87
8.6.1.3. Using a ConfigMap to specify EGRESS_DESTINATION 89
8.6.1.4. Deploying an Egress Router HTTP Proxy Pod 90
8.6.1.5. Deploying an Egress Router DNS Proxy Pod 92
8.6.1.6. Enabling Failover for Egress Router Pods 94
8.6.2. Using iptables Rules to Limit Access to External Resources 95
8.7. ENABLING STATIC IPS FOR EXTERNAL PROJECT TRAFFIC 96
8.8. ENABLING MULTICAST 97
8.9. ENABLING NETWORKPOLICY 98
8.9.1. Using NetworkPolicy Efficiently 99
8.9.2. NetworkPolicy and Routers 100
8.9.3. Setting a Default NetworkPolicy for New Projects 101
8.10. ENABLING HTTP STRICT TRANSPORT SECURITY 102
8.11. TROUBLESHOOTING THROUGHPUT ISSUES 103
CHAPTER 9. CONFIGURING SERVICE ACCOUNT S .. iiitiiitiit e eateeieeaneeraneennneennnns 104
9.1. OVERVIEW 104
9.2. USER NAMES AND GROUPS 104
9.3. MANAGING SERVICE ACCOUNTS 105
9.4. ENABLING SERVICE ACCOUNT AUTHENTICATION 105
9.5. MANAGED SERVICE ACCOUNTS 106
9.6. INFRASTRUCTURE SERVICE ACCOUNTS 106
9.7. SERVICE ACCOUNTS AND SECRETS 107
CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL (RBAC) ...iiuitiiiiiiriiennneennnens 108
10.1. OVERVIEW 108
10.2. VIEWING ROLES AND BINDINGS 108
10.2.1. Viewing cluster roles 108
10.2.2. Viewing cluster role bindings N2
10.2.3. Viewing local roles and bindings 16
10.3. MANAGING ROLE BINDINGS n7
10.4. CREATING A LOCAL ROLE 119
10.5. CREATING A CLUSTER ROLE 120
10.6. CLUSTER AND LOCAL ROLE BINDINGS 120
10.7. UPDATING POLICY DEFINITIONS 120
CHAPTER 1. IMAGE POLICY ottt ittt et ettt ettt et et eaeeanneeaneenaneennneenn 122
11.1. OVERVIEW 122
11.2. CONFIGURING REGISTRIES ALLOWED FOR IMPORT 122
11.3. CONFIGURING THE IMAGEPOLICY ADMISSION PLUG-IN 123
11.4. USING AN ADMISSION CONTROLLER TO ALWAYS PULL IMAGES 125

OpenShift Container Platform 3.10 Cluster Administration

11.5. TESTING THE IMAGEPOLICY ADMISSION PLUG-IN 126
CHAPTER 12, IMAGE SIGNATURES ...ttt ettt eaeeaneeeaeennneeaneeeaneennneenn 128
12.1. OVERVIEW 128
12.2. SIGNING IMAGES USING ATOMIC CLI 128
12.3. VERIFYING IMAGE SIGNATURES USING OPENSHIFT CLI 129
12.4. ACCESSING IMAGE SIGNATURES USING REGISTRY API 130
12.4.1. Writing Image Signatures via API 130
12.4.2. Reading Image Signatures via AP 130
12.4.3. Importing Image Signatures Automatically from Signature Stores 131
CHAPTER 13. SCOPED TOKENS .ttt ittt ettt et eanteeaeeeaneennneeaneeeaneeenneennnens 133
13.1. OVERVIEW 133
13.2. EVALUATION 133
13.3. USER SCOPES 133
13.4. ROLE SCOPE 133
CHAPTER 14. MONITORING IMAGES .. ittt ittt e ettt et eanneeanneeaneeenneennnens 134
14.1. OVERVIEW 134
14.2. VIEWING IMAGES STATISTICS 134
14.3. VIEWING IMAGESTREAMS STATISTICS 134
14.4. PRUNING IMAGES 135
CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS ..ottt iiiieieennnens 136
15.1. OVERVIEW 136
15.2. LISTING SECURITY CONTEXT CONSTRAINTS 136
15.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT 136
15.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS 137
15.5. DELETING SECURITY CONTEXT CONSTRAINTS 138
15.6. UPDATING SECURITY CONTEXT CONSTRAINTS 139
15.6.1. Example Security Context Constraints Settings 139
15.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS 140
15.8. HOW DO I? 140
15.8.1. Grant Access to the Privileged SCC 140
15.8.2. Grant a Service Account Access to the Privileged SCC 141
15.8.3. Enable Images to Run with USER in the Dockerfile 141
15.8.4. Enable Container Images that Require Root 141
15.8.5. Use --mount-host on the Registry 142
15.8.6. Provide Additional Capabilities 142
15.8.7. Modify Cluster Default Behavior 142
15.8.8. Use the hostPath Volume Plug-in 143
15.8.9. Ensure That Admission Attempts to Use a Specific SCC First 143
15.8.10. Add an SCC to a User, Group, or Project 143
CHAPTER 16. SCHEDULING ..ottt ittt ittt ettt et ea e et eeaeeanneeanneeaneeenneennnens 145
16.1. OVERVIEW 145
16.1.1. Overview 145
16.1.2. Default scheduling 145
16.1.3. Advanced scheduling 145
16.1.4. Custom scheduling 145
16.2. DEFAULT SCHEDULING 145
16.2.1. Overview 145
16.2.2. Generic Scheduler 145
16.2.3. Filter the Nodes 146

16.2.3.1. Prioritize the Filtered List of Nodes
16.2.3.2. Select the Best Fit Node
16.2.4. Scheduler Policy
16.2.4.1. Modifying Scheduler Policy
16.2.5. Available Predicates
16.2.5.1. Static Predicates
16.2.5.1.1. Default Predicates
16.2.5.1.2. Other Static Predicates
16.2.5.2. General Predicates
Non-critical general predicates
Essential general predicates
16.2.5.3. Configurable Predicates
16.2.6. Available Priorities
16.2.6.1. Static Priorities
16.2.6.1.1. Default Priorities
16.2.6.1.2. Other Static Priorities
16.2.6.2. Configurable Priorities
16.2.7. Use Cases
16.2.7.1. Infrastructure Topological Levels
16.2.7.2. Affinity
16.2.7.3. Anti Affinity
16.2.8. Sample Policy Configurations
16.3. DESCHEDULING
16.3.1. Overview
16.3.2. Creating a Cluster Role
16.3.3. Creating Descheduler Policies
16.3.3.1. Removing Duplicate Pods
16.3.3.2. Creating a Low Node Utilization Policy
16.3.3.3. Remove Pods Violating Inter-Pod Anti-Affinity
16.3.4. Create a Configuration Map for the Descheduler Policy
16.3.5. Create the Job Specification
16.3.6. Run the Descheduler
16.4. CUSTOM SCHEDULING
16.4.1. Overview
16.4.2. Deploying the Scheduler
16.5. CONTROLLING POD PLACEMENT
16.5.1. Overview
16.5.2. Constraining Pod Placement Using Node Name
16.5.3. Constraining Pod Placement Using a Node Selector
16.5.4. Control Pod Placement to Projects
16.6. ADVANCED SCHEDULING
16.6.1. Overview
16.6.2. Using Advanced Scheduling
16.7. ADVANCED SCHEDULING AND NODE AFFINITY
16.7.1. Overview
16.7.2. Configuring Node Affinity
16.7.2.1. Configuring a Required Node Affinity Rule
16.7.2.2. Configuring a Preferred Node Affinity Rule
16.7.3. Examples
16.7.3.1. Node Affinity with Matching Labels
16.7.3.2. Node Affinity with No Matching Labels
16.8. ADVANCED SCHEDULING AND POD AFFINITY AND ANTI-AFFINITY
16.8.1. Overview

Table of Contents

146
146
146
148
149
149
149
150

151

151

151

151
153
153
154
154
155
156
157
157
157
157
160
160

161
162
163
163
164
165
165
166
166
166
166
167
167
168
168
169
172
172
173
173
173
174
176
177
177
177
178
179
179

OpenShift Container Platform 3.10 Cluster Administration

16.8.2. Configuring Pod Affinity and Anti-affinity 179
16.8.2.1. Configuring an Affinity Rule 181
16.8.2.2. Configuring an Anti-affinity Rule 182

16.8.3. Examples 183
16.8.3.1. Pod Affinity 183
16.8.3.2. Pod Anti-affinity 184
16.8.3.3. Pod Affinity with no Matching Labels 185

16.9. ADVANCED SCHEDULING AND NODE SELECTORS 185
16.9.1. Overview 185
16.9.2. Configuring Node Selectors 186

16.10. ADVANCED SCHEDULING AND TAINTS AND TOLERATIONS 187

16.10.1. Overview 187

16.10.2. Taints and Tolerations 187
16.10.2.1. Using Multiple Taints 189

16.10.3. Adding a Taint to an Existing Node 189

16.10.4. Adding a Toleration to a Pod 190
16.10.4.1. Using Toleration Seconds to Delay Pod Evictions 190

16.10.4.1.1. Setting a Default Value for Toleration Seconds 191

16.10.5. Preventing Pod Eviction for Node Problems 192

16.10.6. Daemonsets and Tolerations 193

16.10.7. Examples 193
16.10.7.1. Dedicating a Node for a User 193
16.10.7.2. Binding a User to a Node 193
16.10.7.3. Nodes with Special Hardware 194

CHAPTER 17. SETTING QU O T AS .ottt ittt ettt ettt et aateeaneeeaneennneeaneeeaneeenneennnens 195
17.1. OVERVIEW 195
17.2. RESOURCES MANAGED BY QUOTA 195
17.3. QUOTA SCOPES 197
17.4. QUOTA ENFORCEMENT 198
17.5. REQUESTS VERSUS LIMITS 198
17.6. SAMPLE RESOURCE QUOTA DEFINITIONS 199
17.7. CREATING A QUOTA 202

17.7.1. Creating Object Count Quotas 202

17.8. VIEWING A QUOTA 203

17.9. CONFIGURING QUOTA SYNCHRONIZATION PERIOD 203

17.10. ACCOUNTING FOR QUOTA IN DEPLOYMENT CONFIGURATIONS 204

17.11. REQUIRE EXPLICIT QUOTA TO CONSUME A RESOURCE 204

17.12. KNOWN ISSUES 205

CHAPTER 18. SETTING MULTI-PROJECT QUOT AS ..ttt et eeat et eanteraneennneennnns 206
18.1. OVERVIEW 206
18.2. SELECTING PROJECTS 206
18.3. VIEWING APPLICABLE CLUSTERRESOURCEQUOTAS 207
18.4. SELECTION GRANULARITY 208

CHAPTER19. SETTING LIMIT RANGES ...ttt ittt eit et e et eeneeeaneennneennens 209
19.1. OVERVIEW 209

19.1.1. Container Limits 21

19.1.2. Pod Limits 212

19.1.3. Image Limits 213

19.1.4. Image Stream Limits 213
19.1.4.1. Counting of Image References 214

19.1.5. PersistentVolumeClaim Limits 214

Table of Contents

19.2. CREATING A LIMIT RANGE 215
19.3. VIEWING LIMITS 215
19.4. DELETING LIMITS 216
CHAPTER 20. PRUNING OBUE C TS ... ittttttiiitttttteiiteeeeenneeeeseannneeeesesnnneeseeannneeesenns 217
20.1. OVERVIEW 217
20.2. BASIC PRUNE OPERATIONS 217
20.3. PRUNING GROUPS 217
20.4. PRUNING DEPLOYMENTS 218
20.5. PRUNING BUILDS 218
20.6. PRUNING IMAGES 219
20.6.1. Image prune conditions 221
20.6.2. Using secure or insecure connections 222
20.6.3. Image pruning problems 223
Images not being pruned 223

Using a secure connection against insecure registry 224
20.6.3.1. Using an insecure connection against a secured registry 224

Using the wrong certificate authority 224

20.7. HARD PRUNING THE REGISTRY 225
20.8. PRUNING CRON JOBS 227
CHAPTER 21. EXTENDING THE KUBERNETES API WITH CUSTOM RESOURCES 229
21.1. KUBERNETES CUSTOM RESOURCE DEFINITIONS 229
21.2. CREATING A CUSTOM RESOURCE DEFINITION 229
Procedure 229
21.3. CREATING CLUSTER ROLES FOR THE CUSTOM RESOURCE DEFINITION 231
Prerequisites 231
Procedure 231
21.4. CREATING CUSTOM OBJECTS FROM A CRD 232
Prerequisites 232
Procedure 232
21.5. MANAGING CUSTOM OBJECTS 233
Prerequisites 233
Procedure 233
CHAPTER 22. GARBAGE COLLECTION ..ttt ittt ettt eeaaeeeeeennneeenannnneeennns 235
22.1. OVERVIEW 235
22.2. CONTAINER GARBAGE COLLECTION 235
22.2.1. Detecting Containers for Deletion 236
22.3. IMAGE GARBAGE COLLECTION 236
22.3.1. Detecting Images for Deletion 237
CHAPTER 23. ALLOCATING NODE RESOURCES ittt e iiie e eeeineeennns 238
23.1. OVERVIEW 238
23.2. CONFIGURING NODES FOR ALLOCATED RESOURCES 238
23.3. COMPUTING ALLOCATED RESOURCES 239
23.4.VIEWING NODE ALLOCATABLE RESOURCES AND CAPACITY 239
23.5. SYSTEM RESOURCES REPORTED BY NODE 239
23.6. NODE ENFORCEMENT 240
23.7. EVICTION THRESHOLDS 241
23.8. SCHEDULER 242
CHAPTER 24. OPAQUE INTEGER RESOURCES ... i ittt ettt eeenneeennns 243
24.1. OVERVIEW 243

OpenShift Container Platform 3.10 Cluster Administration

24.2. CREATING OPAQUE INTEGER RESOURCES

CHAPTER 25. NODE PROBLEM DETECTOR ... o i

25.1. OVERVIEW

25.2. EXAMPLE NODE PROBLEM DETECTOR OUTPUT

25.3. INSTALLING THE NODE PROBLEM DETECTOR

25.4. CUSTOMIZING DETECTED CONDITIONS

25.5. VERIFYING THAT THE NODE PROBLEM DETECTOR IS RUNNING
25.6. UNINSTALL THE NODE PROBLEM DETECTOR

CHAPTER 26. OVERCOMMITTING ... i

26.1. OVERVIEW
26.2. REQUESTS AND LIMITS
26.2.1. Tune Buffer Chunk Limit
26.3. COMPUTE RESOURCES
26.3.1.CPU
26.3.2. Memory
26.3.3. Ephemeral storage
26.4. QUALITY OF SERVICE CLASSES
26.5. CONFIGURING MASTERS FOR OVERCOMMITMENT
26.6. CONFIGURING NODES FOR OVERCOMMITMENT
26.6.1. Reserving Memory Across Quality of Service Tiers
26.6.2. Enforcing CPU Limits
26.6.3. Reserving Resources for System Processes
26.6.4. Kernel Tunable Flags
26.6.5. Disabling Swap Memory

CHAPTER 27. ASSIGNING UNIQUE EXTERNAL IPS FOR INGRESS TRAFFIC

27.1. OVERVIEW

27.2. RESTRICTIONS

27.3. CONFIGURING THE CLUSTER TO USE UNIQUE EXTERNAL IPS
27.3.1. Configuring an Ingress IP for a Service

27.4. ROUTING THE INGRESS CIDR FOR DEVELOPMENT OR TESTING
27.4.1. Service externallPs

CHAPTER 28. HANDLING OUT OF RESOURCEERRORSooiiiiiiiiat,

28.1. OVERVIEW
28.2. CONFIGURING EVICTION POLICIES
28.2.1. Using the Node Configuration to Create a Policy
28.2.2. Understanding Eviction Signals
28.2.3. Understanding Eviction Thresholds
28.2.3.1. Understanding Hard Eviction Thresholds
28.2.3.1.1. Default Hard Eviction Thresholds
28.2.3.2. Understanding Soft Eviction Thresholds
28.3. CONFIGURING THE AMOUNT OF RESOURCE FOR SCHEDULING
28.4. CONTROLLING NODE CONDITION OSCILLATION
28.5. RECLAIMING NODE-LEVEL RESOURCES
With Imagefs
Without Imagefs
28.6. UNDERSTANDING POD EVICTION
28.6.1. Understanding Quality of Service and Out of Memory Killer
28.7. UNDERSTANDING THE POD SCHEDULER AND OOR CONDITIONS
28.8. EXAMPLE SCENARIO
28.9. RECOMMENDED PRACTICE

243

246
247
247
248
251
251

252
252
252
252
253
253
253
254
254
255
256
256
257
257
258
258

260
260
261
261
262
262

264
264
265
266
268
269
269
269
270

271

271

271
272
272
273
273
274
275

Table of Contents

28.9.1. DaemonSets and Out of Resource Handling 275
CHAPTER 29. MONITORING AND DEBUGGING ROUTERSttt iei i enneennnns 276
29.1. OVERVIEW 276
29.2. VIEWING STATISTICS 276
29.3. DISABLING STATISTICS VIEW 276
29.4. VIEWING LOGS 276
29.5. VIEWING THE ROUTER INTERNALS 277
CHAPTER 30. HIGH AV AL ABILITY ittt ettt et ettt e e et et e et eaneeeaneennneennnns 278
30.1. OVERVIEW 278
30.2. CONFIGURING IP FAILOVER 279
30.2.1. Virtual IP Addresses 280
30.2.2. Check and Notify Scripts 280
30.2.3. VRRP Preemption 282
30.2.4. Keepalived Multicast 282
30.2.5. Command Line Options and Environment Variables 283
30.2.6. VRRP ID Offset 285
30.2.7. Configuring IP failover for more than 254 addresses 285
30.2.8. Configuring a Highly-available Service 286
30.2.8.1. Deploy IP Failover Pod 287
30.2.9. Dynamically Updating Virtual IPs for a Highly-available Service 288
30.3. CONFIGURING SERVICE EXTERNALIP AND NODEPORT 289
30.4. HIGH AVAILABILITY FOR INGRESSIP 289
CHAPTER Bl IP T ABLES ittt ittt ettt ettt et e e e et e eaneennneeaneeraneesaneennens 290
31.1. OVERVIEW 290
31.2. IPTABLES 290
31.3. IPTABLES.SERVICE 290
CHAPTER 32. SECURING BUILDS BY STRATEGY .. .tttittttitttiitteiteeatennneeaneeraneeenneennnns 292
32.1. OVERVIEW 292
32.2. DISABLING A BUILD STRATEGY GLOBALLY 292
32.3. RESTRICTING BUILD STRATEGIES TO A USER GLOBALLY 293
32.4. RESTRICTING BUILD STRATEGIES TO A USER WITHIN A PROJECT 294
CHAPTER 33. RESTRICTING APPLICATION CAPABILITIESUSINGSECCOMP cciivivinnnnnn.. 295
33.1. OVERVIEW 295
33.2. ENABLING SECCOMP 295
33.3. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR SECCOMP 295
33.4. CONFIGURING OPENSHIFT CONTAINER PLATFORM FOR A CUSTOM SECCOMP PROFILE 296
CHAPTER B4, SY ST LS ittt ittt ettt ettt et ee et aaaeeaneeeaneennneeaneesaneesnneennnns 297
34.1. OVERVIEW 297
34.2. UNDERSTANDING SYSCTLS 297
34.3. NAMESPACED VERSUS NODE-LEVEL SYSCTLS 297
34.4. SAFE VERSUS UNSAFE SYSCTLS 298
34.5. ENABLING UNSAFE SYSCTLS 298
34.6. SETTING SYSCTLS FOR A POD 299
CHAPTER 35. ENCRYPTING DATA AT DATASTORE LAYER ..ttt ittt ei e eieeineennnns 300
35.1. OVERVIEW 300
35.2. CONFIGURATION AND DETERMINING WHETHER ENCRYPTION IS ALREADY ENABLED 300
35.3. UNDERSTANDING THE ENCRYPTION CONFIGURATION 300
35.3.1. Available Providers 301

OpenShift Container Platform 3.10 Cluster Administration

35.4. ENCRYPTING DATA

35.5. VERIFYING THAT DATA IS ENCRYPTED
35.6. ENSURE ALL SECRETS ARE ENCRYPTED
35.7.ROTATING A DECRYPTION KEY

35.8. DECRYPTING DATA

CHAPTER 36. ENCRYPTING TRAFFIC BETWEEN NODES WITH IPSEC

36.1. OVERVIEW
36.2. ENCRYPTING HOSTS
Prerequisites
36.2.1. Configuring certificates for IPsec
36.2.2. Creating the libreswan IPsec policy
36.2.2.1. Configuring the opportunistic group
36.2.2.2. Configuring the explicit connection
36.3. CONFIGURING THE IPSEC FIREWALL
36.4. STARTING AND ENABLING IPSEC
36.5. OPTIMIZING IPSEC
36.6. TROUBLESHOOTING

CHAPTER 37. BUILDING DEPENDENCY TREES ...

37.1. OVERVIEW
37.2. USAGE

CHAPTER 38. REPLACING AFAILEDETCDMEMBER ...,

38.1. REMOVING A FAILED ETCD NODE
Procedure
38.2. ADDING AN ETCD MEMBER
38.2.1. Adding a new etcd host using Ansible
Procedure
38.2.2. Manually adding a new etcd host
Procedure
Modify the current etcd cluster
Modify the new etcd host
Modify each OpenShift Container Platform master

CHAPTER 39. RESTORINGETCD QUORUM i

39.1. RESTORING ETCD QUORUM FOR SEPARATE SERVICES
39.1.1. Backing up etcd
39.1.1.1. Backing up etcd configuration files
Procedure
39.1.1.2. Backing up etcd data
Prerequisites
Procedure
39.1.2. Removing an etcd host
Procedure
Procedure
39.1.3. Creating a single-node etcd cluster
Procedure
39.1.4. Adding etcd nodes after restoring
Procedure
39.2. RESTORING ETCD QUORUM FOR STATIC PODS
Procedure

CHAPTER 40. TROUBLESHOOTING OPENSHIFTSDNoooiiiiiiiian,

10

302
303
303
304
304

312
312
312
312
312
312
313
313
313
316
318

321
321
321
321
321
321
322
324
324
324
326
326
327
327
328
328

40.1. OVERVIEW
40.2. NOMENCLATURE
40.3. DEBUGGING EXTERNAL ACCESS TO AN HTTP SERVICE
40.4. DEBUGGING THE ROUTER
40.5. DEBUGGING A SERVICE
40.6. DEBUGGING NODE TO NODE NETWORKING
40.7. DEBUGGING LOCAL NETWORKING
40.7.1. The Interfaces on a Node
40.7.2. SDN Flows Inside a Node
40.7.3. Debugging Steps
40.7.3.1.1s IP Forwarding Enabled?
40.7.3.2. Are your routes correct?
40.7.4.1s the Open vSwitch configured correctly?
40.7.4.1. Is the iptables configuration correct?
40.7.4.2. 1s your external network correct?
40.8. DEBUGGING VIRTUAL NETWORKING
40.8.1. Builds on a Virtual Network are Failing
40.9. DEBUGGING POD EGRESS
40.10. READING THE LOGS
40.11. DEBUGGING KUBERNETES
40.12. FINDING NETWORK ISSUES USING THE DIAGNOSTICS TOOL
40.13. MISCELLANEOUS NOTES
40.13.1. Other clarifications on ingress
40.13.2. TLS Handshake Timeout
40.13.3. Other debugging notes

CHAPTER 41. DIAGNOSTICS TOOL ...ttt

411. OVERVIEW
41.2. USING THE DIAGNOSTICS TOOL
41.3. RUNNING DIAGNOSTICS IN A SERVER ENVIRONMENT
41.4. RUNNING DIAGNOSTICS IN A CLIENT ENVIRONMENT
415. ANSIBLE-BASED HEALTH CHECKS

41.5.1. Running Health Checks via ansible-playbook

41.5.2. Running Health Checks via Docker CLI

CHAPTER 42. IDLING APPLICATIONS ... i

42.1. OVERVIEW

42.2. IDLING APPLICATIONS
42.2.1.1dling Single Services
42.2.2.1dling Multiple Services

42.3. UNIDLING APPLICATIONS

CHAPTER 43. ANALYZING CLUSTER CAPACITY ...t

43.1. OVERVIEW
43.2. RUNNING CLUSTER CAPACITY ANALYSIS ON THE COMMAND LINE
43.3. RUNNING CLUSTER CAPACITY AS A JOB INSIDE OF A POD

CHAPTER 44. DISABLING FEATURES USING FEATURE GATES

44.1. DISABLING FEATURES FOR A CLUSTER
44.2. DISABLING FEATURES FOR A NODE
44.2.1. List of Feature Gates

CHAPTER 45. KURYRSDN ADMINISTRATION

45.1. OVERVIEW

Table of Contents

329
329
330

331
332
333
334
334
335
335
335
335
336
337
337
337
337
338
338
338
339
339
339
339
339

.................... 341

341

341
343
344
344
347
347

349
349
349
349
349

.................... 351

351
351
352

................... 355

355
356
356

1

OpenShift Container Platform 3.10 Cluster Administration

45.1.1. Orphaned OpenStack Resources 361

12

Table of Contents

13

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 1. OVERVIEW

These Cluster Administration topics cover the day-to-day tasks for managing your OpenShift Container
Platform cluster and other advanced configuration topics.

14

CHAPTER 2. MANAGING NODES

CHAPTER 2. MANAGING NODES

2.1. OVERVIEW
You can manage nodes in your instance using the CLI.

When you perform node management operations, the CLI interacts with node objects that are
representations of actual node hosts. The master uses the information from node objects to validate
nodes with health checks.

2.2.LISTING NODES

To list all nodes that are known to the master:

$ oc get nodes

NAME STATUS ROLES AGE VERSION
master.example.com Ready master 7h v1.9.1+a0ce1bc657
nodei.example.com Ready compute 7h v1.9.1+a0ce1bc657
node2.example.com Ready compute 7h v1.9.1+a0ce1bc657

To list all nodes with information on a project’s pod deployment with node information

$ oc get nodes -o wide

NAME STATUS ROLES AGE VERSION EXTERNAL-IP OS-IMAGE
KERNEL-VERSION CONTAINER-RUNTIME

ip-172-18-0-39.ec2.internal Ready infra 1d v1.10.0+b81c8f8 54.172.185.130 Red Hat
Enterprise Linux Server 7.5 (Maipo) 3.10.0-862.el7.x86_64 docker://1.13.1
ip-172-18-10-95.ec2.internal Ready master 1d v1.10.0+b81c8f8 54.88.22.81 Red Hat
Enterprise Linux Server 7.5 (Maipo) 3.10.0-862.el7.x86_64 docker://1.13.1
ip-172-18-8-35.ec2.internal Ready compute 1d v1.10.0+b81c8f8 34.230.50.57 Red Hat
Enterprise Linux Server 7.5 (Maipo) 3.10.0-862.el7.x86_64 docker://1.13.1

To list only information about a single node, replace <nodes with the full node name:

I $ oc get node <node>

The STATUS column in the output of these commands can show nodes with the following conditions:

Table 2.1. Node Conditions

Condition Description

Ready The node is passing the health checks performed from the master by returning
StatusOK.

NotReady The node is not passing the health checks performed from the master.

SchedulingDisabled Pods cannot be scheduled for placement on the node.

15

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#node
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#node-object-definition
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#master
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#node

OpenShift Container Platform 3.10 Cluster Administration

NOTE

The STATUS column can also show Unknown for a node if the CLI cannot find any node
condition.

To get more detailed information about a specific node, including the reason for the current condition:

I $ oc describe node <node>

For example:

$ oc describe node node1.example.com

Name: nodeil.example.com ﬂ
Roles: compute
Labels: beta.kubernetes.io/arch=amd64 6

beta.kubernetes.io/os=linux
kubernetes.io/hostname=m01.example.com
node-role.kubernetes.io/compute=true
node-role.kubernetes.io/infra=true
node-role.kubernetes.io/master=true
zone=default

Annotations: volumes.kubernetes.io/controller-managed-attach-detach=true ﬂ
CreationTimestamp: Thu, 24 May 2018 11:46:56 -0400
Taints: <none>
Unschedulable: false
Conditions:

Type Status LastHeartbeatTime LastTransitionTime Reason
Message

OutOfDisk False Tue, 17 Jul 2018 11:47:30 -0400 Tue, 10 Jul 2018 15:45:16 -0400
KubeletHasSufficientDisk kubelet has sufficient disk space available

MemoryPressure False Tue, 17 Jul 2018 11:47:30 -0400 Tue, 10 Jul 2018 15:45:16 -0400
KubeletHasSufficientMemory kubelet has sufficient memory available

DiskPressure False Tue, 17 Jul 2018 11:47:30 -0400 Tue, 10 Jul 2018 16:03:54 -0400
KubeletHasNoDiskPressure kubelet has no disk pressure

Ready True Tue, 17 Jul 2018 11:47:30 -0400 Mon, 16 Jul 2018 15:10:25 -0400
KubeletReady kubelet is posting ready status

PIDPressure False Tue, 17 Jul 2018 11:47:30 -0400 Thu, 05 Jul 2018 10:06:51 -0400
KubeletHasSufficientPID kubelet has sufficient PID available
Addresses:

InternallP: 192.168.122.248

Hostname: nodel.example.com
Capacity: 6

cpu: 2

hugepages-2Mi: 0

memory: 8010336Ki

pods: 40
Allocatable:
cpu: 2

hugepages-2Mi: 0
memory: 7907936Ki
pods: 40

System Info: Q

16

CHAPTER 2. MANAGING NODES

Machine ID: b3adb9acbc49fc1f9a7d6

System UUID: B3ADB9A-BOCB-C49FC1F9A7D6

Boot ID: 9359d15aec9-81a20aef5876

Kernel Version: 3.10.0-693.21.1.el7.x86_64

OS Image: OpenShift Enterprise

Operating System: linux

Architecture: amde4

Container Runtime Version: docker://1.13.1

Kubelet Version: v1.10.0+b81c8f8

Kube-Proxy Version: v1.10.0+b81c8f8

ExternallD: node1.example.com

Non-terminated Pods: (14 in total) @

Namespace Name CPU Requests CPU Limits Memory
Requests Memory Limits

default docker-registry-2-w252| 100m (5%) 0(0%) 256Mi (3%) 0
(0%)

default registry-console-2-dpnc9 0 (0%) 0(0%) 0 (0%) 0 (0%)
default router-2-5snb2 100m (5%) 0(0%) 256Mi (3%) 0
(0%)

kube-service-catalog apiserver-jh6gt 0 (0%) 0(0%) 0 (0%) 0
(0%)

kube-service-catalog controller-manager-z4t5j 0 (0%) 0(0%) 0 (0%) 0
(0%)

kube-system master-api-m01.example.com 0 (0%) 0(0%) 0 (0%)

0 (0%)

kube-system master-controllers-m01.example.com 0 (0%) 0(0%) 0(0%)

0 (0%)

kube-system master-etcd-m01.example.com 0 (0%) 0(0%) 0 (0%)

0 (0%)

openshift-ansible-service-broker asb-1-hnn5t 0 (0%) 0(0%) 0 (0%) 0
(0%)

openshift-node sync-dvhvs 0 (0%) 0(0%) 0(0%) 0 (0%)
openshift-sdn ovs-zjs5k 100m (5%) 200m (10%) 300Mi (3%)
400Mi (5%)

openshift-sdn sdn-zr4cb 100m (5%) 0(0%) 200Mi (2%) 0
(0%)

openshift-template-service-broker apiserver-s9n7t 0 (0%) 0(0%) 0(0%)

0 (0%)

openshift-web-console webconsole-785689b664-q7s9j 100m (5%) 0(0%) 100Mi

(1%) 0 (0%)

Allocated resources:
(Total limits may be over 100 percent, i.e., overcommitted.)
CPU Requests CPU Limits Memory Requests Memory Limits

500m (25%) 200m (10%) 1112Mi (14%) 400Mi (5%)
Events:
Type Reason Age From Message

Normal NodeHasSufficientPID 6d (x5 over 6d) kubelet, m01.example.com Node
mO01.example.com status is now: NodeHasSufficientPID

Normal NodeAllocatableEnforced 6d kubelet, m01.example.com Updated Node
Allocatable limit across pods

Normal NodeHasSufficientMemory 6d (x6 over 6d) kubelet, m01.example.com Node
mO01.example.com status is now: NodeHasSufficientMemory

Normal NodeHasNoDiskPressure 6d (x6 over 6d) kubelet, m01.example.com Node

17

OpenShift Container Platform 3.10 Cluster Administration

mO01.example.com status is now: NodeHasNoDiskPressure
Normal NodeHasSufficientDisk 6d (x6 over 6d) kubelet, m01.example.com Node
mO01.example.com status is now: NodeHasSufficientDisk

Normal NodeHasSufficientPID 6d kubelet, m01.example.com Node
mO01.example.com status is now: NodeHasSufficientPID
Normal Starting 6d kubelet, m01.example.com Starting kubelet.

The name of the node.

The role of the node, either master, compute, or infra.
The labels applied to the node.

The annotations applied to the node.

The taints applied to the node.

Node conditions.

The IP address and host name of the node.

The pod resources and allocatable resources.

Information about the node host.

090090290000

The pods on the node.

The events reported by the node.

2.3. VIEWING NODES

You can display usage statistics about nodes, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

To view the usage statistics:

$ oc adm top nodes
NAME CPU(cores) CPU% MEMORY(bytes) MEMORY%

node-1 297m 29% 4263Mi 55%
node-0 55m 5% 1201 Mi 15%
infra-1 85m 8% 1319Mi 17%
infra-0 182m 18% 2524 Mi 32%
master-0 178m 8% 2584 Mi 16%

To view the usage statistics for nodes with labels:
I $ oc adm top node --selector="

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

NOTE

You must have cluster-reader permission to view the usage statistics.

18

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#configuring-node-host-labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-events

CHAPTER 2. MANAGING NODES

NOTE

Metrics must be installed to view the usage statistics.

2.4. ADDING HOSTS

You can add new hosts to your cluster by running the scaleup.yml playbook. This playbook queries the
master, generates and distributes new certificates for the new hosts, and then runs the configuration
playbooks on only the new hosts. Before running the scaleup.yml playbook, complete all prerequisite
host preparation steps.

IMPORTANT

The scaleup.yml playbook configures only the new host. It does not update NO_PROXY
in master services, and it does not restart master services.

You must have an existing inventory file,for example /etc/ansible/hosts, that is representative of your
current cluster configuration in order to run the scaleup.yml playbook. If you previously used the
atomic-openshift-installer command to run your installation, you can check ~/.config/openshift/hosts
for the last inventory file that the installer generated and use that file as your inventory file. You can
modify this file as required. You must then specify the file location with -i when you run the ansible-
playbook.

IMPORTANT

See the cluster limits section for the recommended maximum number of nodes.

Procedure

1. Ensure you have the latest playbooks by updating the atomic-openshift-utils package:
I # yum update atomic-openshift-utils

2. Edit your /etc/ansible/hosts file and add new_<host_type> to the [OSEv3:children] section:
For example, to add a new node host, add new_nodes:

[OSEv3:children]
masters

nodes
new_nodes

To add new master hosts, add new_masters.

3. Create a [new_<host_type>] section to specify host information for the new hosts. Format this
section like an existing section, as shown in the following example of adding a new node:

[nodes]

master[1:3].example.com

node1.example.com openshift_node_group_name="node-config-compute'
node2.example.com openshift_node_group_name="node-config-compute'
infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#preparing-for-advanced-installations-origin
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits

OpenShift Container Platform 3.10 Cluster Administration

20

[new_nodes]
node3.example.com openshift_node_group_name="node-config-infra'

See Configuring Host Variables for more options.

When adding new masters, add hosts to both the [new_masters] section and the [new_nodes]
section to ensure that the new master host is part of the OpenShift SDN.

[masters]
master[1:2].example.com

[new_masters]
master3.example.com

[nodes]

master[1:2].example.com

node1.example.com openshift_node_group_name="node-config-compute'

node2.example.com openshift_node_group_name="node-config-compute'

infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

[new_nodes]
master3.example.com

IMPORTANT

If you label a master host with the node-role.kubernetes.io/infra=true label and
have no other dedicated infrastructure nodes, you must also explicitly mark the
host as schedulable by adding openshift_schedulable=true to the entry.
Otherwise, the registry and router pods cannot be placed anywhere.

4. Run the scaleup.yml playbook. If your inventory file is located somewhere other than the default
of /etc/ansible/hosts, specify the location with the -i option.

® F[or additional nodes:

ansible-playbook [-i /path/to/file] \
/usr/share/ansible/openshift-ansible/playbooks/openshift-node/scaleup.yml

® F[or additional masters:

ansible-playbook [-i /path/to/file] \
/usr/share/ansible/openshift-ansible/playbooks/openshift-master/scaleup.yml

5. Set the node label to logging-infra-fluentd=true, if you deployed the EFK stack in your cluster.
I # oc label node/new-node.example.com logging-infra-fluentd=true

6. After the playbook runs, verify the installation.

7. Move any hosts that you defined in the [new_<host_type>] section to their appropriate section.
By moving these hosts, subsequent playbook runs that use this inventory file treat the nodes
correctly. You can keep the empty [new_<host_type>] section. For example, when adding new

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#advanced-host-variables
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#advanced-verifying-the-installation

CHAPTER 2. MANAGING NODES

nodes:

[nodes]

master[1:3].example.com

node1.example.com openshift_node_group_name="node-config-compute'
node2.example.com openshift_node_group_name="node-config-compute'
node3.example.com openshift_node_group_name="node-config-compute'
infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

[new_nodes]

2.5. DELETING NODES

When you delete a node using the CLI, the node object is deleted in Kubernetes, but the pods that exist
on the node itself are not deleted. Any bare pods not backed by a replication controller would be
inaccessible to OpenShift Container Platform, pods backed by replication controllers would be
rescheduled to other available nodes, and local manifest pods would need to be manually deleted.

To delete a node from the OpenShift Container Platform cluster:
1. Evacuate pods from the node you are preparing to delete.

2. Delete the node object:
I $ oc delete node <node>

3. Check that the node has been removed from the node list:
I $ oc get nodes

Pods should now be only scheduled for the remaining nodes that are in Ready state.

4. If you want to uninstall all OpenShift Container Platform content from the node host, including
all pods and containers, continue to Uninstalling Nodes and follow the procedure using the
uninstall.yml playbook. The procedure assumes general understanding of the cluster installation
process using Ansible.

2.6. UPDATING LABELS ON NODES
To add or update labels on a node:

I $ oc label node <node> <key_1>=<value_1> ... <key_n>=<value_n>

To see more detailed usage:

I $ oc label -h

2.7.LISTING PODS ON NODES

To list all or selected pods on one or more nodes:

21

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#node-configuration-files
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#uninstalling-nodes-advanced
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#install-config-
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#labels

OpenShift Container Platform 3.10 Cluster Administration

$ oc adm manage-node <node1> <node2> \
--list-pods [--pod-selector=<pod_selector>] [-0 json|yaml]

To list all or selected pods on selected nodes:

$ oc adm manage-node --selector=<node_selector> \
--list-pods [--pod-selector=<pod_selector>] [-0 json|yaml]

2.8. MARKING NODES AS UNSCHEDULABLE OR SCHEDULABLE
By default, healthy nodes with a Ready status are marked as schedulable, meaning that new pods are
allowed for placement on the node. Manually marking a node as unschedulable blocks any new pods

from being scheduled on the node. Existing pods on the node are not affected.

To mark a node or nodes as unschedulable:

I $ oc adm manage-node <node1> <node2> --schedulable=false

For example:

$ oc adm manage-node node1.example.com --schedulable=false
NAME LABELS STATUS
nodei.example.com kubernetes.io/hosthame=node1.example.com Ready,SchedulingDisabled

To mark a currently unschedulable node or nodes as schedulable:

I $ oc adm manage-node <node1> <node2> --schedulable

Alternatively, instead of specifying specific node names (e.g., <node1> <node2>), you can use the --
selector=<node_selector> option to mark selected nodes as schedulable or unschedulable.

2.9. EVACUATING PODS ON NODES

Evacuating pods allows you to migrate all or selected pods from a given node. Nodes must first be
marked unschedulable to perform pod evacuation.

Only pods backed by a replication controller can be evacuated; the replication controllers create new
pods on other nodes and remove the existing pods from the specified node(s). Bare pods, meaning
those not backed by a replication controller, are unaffected by default. You can evacuate a subset of
pods by specifying a pod-selector. Pod selector is based on labels, so all the pods with the specified
label will be evacuated.

To evacuate all or selected pods on a node:

I $ oc adm drain <node> [--pod-selector=<pod_selector>]

You can force deletion of bare pods by using the --force option. When set to true, deletion continues
even if there are pods not managed by a replication controller, ReplicaSet, job, daemonset, or
StatefulSet:

I $ oc adm drain <node> --force=true

22

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#replication-controllers

CHAPTER 2. MANAGING NODES

You can use --grace-period to set a period of time in seconds for each pod to terminate gracefully. If
negative, the default value specified in the pod is used:

I $ oc adm drain <node> --grace-period=-1

You can use --ignore-daemonsets and set it to true to ignore daemonset-managed pods:

I $ oc adm drain <node> --ignore-daemonsets=true

You can use --timeout to set the length of time to wait before giving up. A value of 0 sets an infinite
length of time:

I $ oc adm drain <node> --timeout=5s

You can use --delete-local-data and set it to true to continue deletion even if there are pods using
emptyDir (local data that is deleted when the node is drained):

I $ oc adm drain <node> --delete-local-data=true

To list objects that will be migrated without actually performing the evacuation, use the --dry-run
option and set it to true:

I $ oc adm drain <node> --dry-run=true

Instead of specifying a specific node name, you can use the --selector=<node_selectors option to
evacuate pods on nodes that match the selector.

2.10. REBOOTING NODES

To reboot a node without causing an outage for applications running on the platform, it is important to
first evacuate the pods. For pods that are made highly available by the routing tier, nothing else needs to
be done. For other pods needing storage, typically databases, it is critical to ensure that they can remain
in operation with one pod temporarily going offline. While implementing resiliency for stateful pods is
different for each application, in all cases it is important to configure the scheduler to use node anti-
affinity to ensure that the pods are properly spread across available nodes.

Another challenge is how to handle nodes that are running critical infrastructure such as the router or
the registry. The same node evacuation process applies, though it is important to understand certain
edge cases.

2.10.1. Infrastructure nodes

Infrastructure nodes are nodes that are labeled to run pieces of the OpenShift Container Platform
environment. Currently, the easiest way to manage node reboots is to ensure that there are at least
three nodes available to run infrastructure. The scenario below demonstrates a common mistake that
can lead to service interruptions for the applications running on OpenShift Container Platform when
only two nodes are available.

® Node Ais marked unschedulable and all pods are evacuated.

® The registry pod running on that node is now redeployed on node B. This means node B is now
running both registry pods.

23

OpenShift Container Platform 3.10 Cluster Administration

® Node B is now marked unschedulable and is evacuated.

® The service exposing the two pod endpoints on node B, for a brief period of time, loses all
endpoints until they are redeployed to node A.

The same process using three infrastructure nodes does not result in a service disruption. However, due
to pod scheduling, the last node that is evacuated and brought back in to rotation is left running zero
registries. The other two nodes will run two and one registries respectively. The best solution is to rely
on pod anti-affinity. This is an alpha feature in Kubernetes that is available for testing now, but is not yet
supported for production workloads.

2.10.2. Using pod anti-affinity

Pod anti-affinity is slightly different than node anti-affinity. Node anti-affinity can be violated if there
are no other suitable locations to deploy a pod. Pod anti-affinity can be set to either required or
preferred.

apiVersion: vi
kind: Pod
metadata:
name: with-pod-antiaffinity
spec:
affinity:
podAntiAffinity: €
preferredDuringSchedulinglgnoredDuringExecution: g
- weight: 100 @)
podAffinityTerm:
labelSelector:
matchExpressions:
- key: docker-registry ﬂ
operator: In
values:
- default
topologyKey: kubernetes.io/hostname

Stanza to configure pod anti-affinity.
Defines a preferred rule.
Specifies a weight for a preferred rule. The node with the highest weight is preferred.

Description of the pod label that determines when the anti-affinity rule applies. Specify a key and
value for the label.

® 0009

The operator represents the relationship between the label on the existing pod and the set of
values in the matchExpression parameters in the specification for the new pod. Can be In, Notin,
Exists, or DoesNotEXxist.

This example assumes the Docker registry pod has a label of docker-registry=default. Pod anti-affinity
can use any Kubernetes match expression.

The last required step is to enable the MatchinterPodAffinity scheduler predicate in

/etc/origin/master/scheduler.json. With this in place, if only two infrastructure nodes are available and
one is rebooted, the Docker registry pod is prevented from running on the other node. oc get pods

24

CHAPTER 2. MANAGING NODES

reports the pod as unready until a suitable node is available. Once a node is available and all pods are
back in ready state, the next node can be restarted.
2.10.3. Handling nodes running routers

In most cases, a pod running an OpenShift Container Platform router will expose a host port. The
PodFitsPorts scheduler predicate ensures that no router pods using the same port can run on the same
node, and pod anti-affinity is achieved. If the routers are relying on IP failover for high availability, there
is nothing else that is needed. For router pods relying on an external service such as AWS Elastic Load
Balancing for high availability, it is that service's responsibility to react to router pod restarts.

In rare cases, a router pod might not have a host port configured. In those cases, it is important to follow
the recommended restart process for infrastructure nodes.

2.11. MODIFYING NODES

During installation, OpenShift Container Platform creates a configmap in the openshift-node project
for each type of node group:

® node-config-master

® node-config-infra

® node-config-compute

® node-config-all-in-one

® node-config-master-infra
To make configuration changes to an existing node, edit the appropriate configuration map. A sync pod
on each node watches for changes in the configuration maps. During installation, the sync pods are
created by using sync Daemonsets, and a /etc/origin/node/node-config.yaml file, where the node
configuration parameters reside, is added to each node. When a sync pod detects configuration map

change, it updates the node-config.yaml on all nodes in that node group and restarts the appropriate
nodes.

$ oc get cm -n openshift-node

NAME DATA AGE
node-config-all-in-one 1 1d
node-config-compute 1 1d
node-config-infra 1 1d
node-config-master 1 1d
node-config-master-infra 1 1d

Sample configuration map for the node-config-compute group

apiVersion: vi

authConfig: ﬂ
authenticationCacheSize: 1000
authenticationCacheTTL: 5m
authorizationCacheSize: 1000
authorizationCacheTTL: 5m

dnsBindAddress: 127.0.0.1:53

dnsDomain: cluster.local

dnsIP: 0.0.0.0 (2]

25

OpenShift Container Platform 3.10 Cluster Administration

dnsNameservers: null
dnsRecursiveResolvConf: /etc/origin/node/resolv.conf
dockerConfig:
dockerShimRootDirectory: /var/lib/dockershim
dockerShimSocket: /var/run/dockershim.sock
execHandlerName: native
enableUnidling: true
imageConfig:
format: registry.reg-aws.openshift.com/openshift3/ose-${component}:${version}
latest: false
iptablesSyncPeriod: 30s
kind: NodeConfig
kubeletArguments:
bootstrap-kubeconfig:
- /etc/origin/node/bootstrap.kubeconfig
cert-dir:
- /etc/origin/node/certificates
cloud-config:
- /etc/origin/cloudprovider/aws.conf
cloud-provider:
- aws
enable-controller-attach-detach:
- 'true’
feature-gates:
- RotateKubeletClientCertificate=true,RotateKubeletServerCertificate=true
node-labels:
- node-role.kubernetes.io/compute=true
pod-manifest-path:
- /etc/origin/node/pods ﬂ
rotate-certificates:
- 'true’
masterClientConnectionOverrides:
acceptContentTypes: application/vnd.kubernetes.protobuf,application/json
burst: 40
contentType: application/vnd.kubernetes.protobuf
gps: 20
masterKubeConfig: node.kubeconfig
networkConfig: 6
mtu: 8951
networkPluginName: redhat/openshift-ovs-subnet G
servinglnfo:
bindAddress: 0.0.0.0:10250
bindNetwork: tcp4
clientCA: client-ca.crt
volumeConfig:
localQuota:
perFSGroup: null 6
volumeDirectory: /var/lib/origin/openshift.local.volumes

ﬂ Authentication and authorization configuration options.
9 IP address prepended to a pod’s /etc/resolv.conf.

9 Key value pairs that are passed directly to the Kubelet that match the Kubelet's command line
arguments.

26

https://kubernetes.io/docs/admin/kubelet/

CHAPTER 2. MANAGING NODES

The path to the pod manifest file or directory. A directory must contain one or more manifest files.
OpenShift Container Platform uses the manifest files to create pods on the node.

The pod network settings on the node.

Software defined network (SDN) plug-in. Set to redhat/openshift-ovs-subnet for the ovs-subnet
plug-in; redhat/openshift-ovs-multitenant for the ovs-multitenant plug-in; or redhat/openshift-
ovs-networkpolicy for the ovs-networkpolicy plug-in.

Certificate information for the node.

Optional: PEM-encoded certificate bundle. If set, a valid client certificate must be presented and

validated against the certificate authorities in the specified file before the request headers are
checked for user names.

Q9 o0 O

NOTE

Do not manually modify the /etc/origin/node/node-config.yaml file.

2.11.1. Configuring Node Resources

You can configure node resources by adding kubelet arguments to the node configuration map.

1. Edit the configuration map:

I $ oc edit cm node-config-compute -n openshift-node

2. Add the kubeletArguments section and specify your options:

kubeletArguments:
max-pods: ﬂ
-"40"
resolv-conf: g
- "/etc/resolv.conf"
image-gc-high-threshold: e
- "90"
image-gc-low-threshold: ﬂ
- "80"
kube-api-gps: 6
-"20"
kube-api-burst: G
-"40"

Maximum number of pods that can run on this kubelet .

Resolver configuration file used as the basis for the container DNS resolution
configuration.

The percent of disk usage after which image garbage collection is always run. Default: 90%

o0 09

The percent of disk usage before which image garbage collection is never run. Lowest disk
usage to garbage collect to. Default: 80%

27

OpenShift Container Platform 3.10 Cluster Administration

6 The Queries per Second (QPS) to use while talking with the Kubernetes API server.

6 The burst to use while talking with the Kubernetes APl server.

To view all available kubelet options:

I $ hyperkube kubelet -h

2.11.2. Setting maximum pods per node

NOTE

See the Cluster Limits page for the maximum supported limits for each version of
OpenShift Container Platform.

In the /etc/origin/node/node-config.yaml file, two parameters control the maximum number of pods
that can be scheduled to a node: pods-per-core and max-pods. When both options are in use, the lower
of the two limits the number of pods on a node. Exceeding these values can result in:

® |ncreased CPU utilization on both OpenShift Container Platform and Docker.

® Slow pod scheduling.

® Potential out-of-memory scenarios (depends on the amount of memory in the node).

® Exhausting the pool of IP addresses.

® Resource overcommitting, leading to poor user application performance.

NOTE

In Kubernetes, a pod that is holding a single container actually uses two containers. The
second container is used to set up networking prior to the actual container starting.
Therefore, a system running 10 pods will actually have 20 containers running.

pods-per-core sets the number of pods the node can run based on the number of processor cores on
the node. For example, if pods-per-core is set to 10 on a node with 4 processor cores, the maximum
number of pods allowed on the node will be 40.

kubeletArguments:
pods-per-core:
- |l1 Oll

NOTE

Setting pods-per-core to O disables this limit.

max-pods sets the number of pods the node can run to a fixed value, regardless of the properties of the
node. Cluster Limits documents maximum supported values for max-pods.

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/scaling_and_performance_guide/#scaling-performance-current-cluster-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/scaling_and_performance_guide/#scaling-performance-current-cluster-limits

CHAPTER 2. MANAGING NODES

kubeletArguments:
max-pods:
- ll250ll

Using the above example, the default value for pods-per-core is 10 and the default value for max-pods
is 250. This means that unless the node has 25 cores or more, by default, pods-per-core will be the
limiting factor.

2.12. RESETTING DOCKER STORAGE

As you download Docker images and run and delete containers, Docker does not always free up mapped
disk space. As a result, over time you can run out of space on a node, which might prevent OpenShift
Container Platform from being able to create new pods or cause pod creation to take several minutes.

For example, the following shows pods that are still in the ContainerCreating state after six minutes
and the events log shows a FailedSync event.

$ oc get pod

NAME READY STATUS RESTARTS AGE
cakephp-mysql-persistent-1-build 0/1 ContainerCreating 0 6m

mysql-1-9767d 0/1 ContainerCreating 0 2m

mysql-1-deploy 0/1 ContainerCreating 0 6m

$ oc get events

LASTSEEN FIRSTSEEN COUNT NAME KIND SUBOBJECT
TYPE REASON SOURCE MESSAGE

6m 6m 1 cakephp-mysql-persistent-1-build Pod

Normal Scheduled default-scheduler Successfully assigned
cakephp-mysql-persistent-1-build to ip-172-31-71-195.us-east-2.compute.internal

2m 5m 4 cakephp-mysql-persistent-1-build Pod

Warning FailedSync kubelet, ip-172-31-71-195.us-east-2.compute.internal Error
syncing pod

2m 4m 4 cakephp-mysql-persistent-1-build Pod

Normal SandboxChanged kubelet, ip-172-31-71-195.us-east-2.compute.internal Pod

sandbox changed, it will be killed and re-created.

One solution to this problem is to reset Docker storage to remove artifacts not needed by Docker.
On the node where you want to restart Docker storage:

1. Run the following command to mark the node as unschedulable:
I $ oc adm manage-node <node> --schedulable=false

2. Run the following command to shut down Docker and the atomic-openshift-node service:
I $ systemctl stop docker atomic-openshift-node

3. Run the following command to remove the local volume directory:
I $ rm -rf /var/lib/origin/openshift.local.volumes

This command clears the local image cache. As a result, images, including ose-* images, will
need to be re-pulled. This might result in slower pod start times while the image store recovers.

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#events-reference

OpenShift Container Platform 3.10 Cluster Administration

4. Remove the /var/lib/docker directory:
I $ rm -rf /var/lib/docker

5. Run the following command to reset the Docker storage:
I $ docker-storage-setup --reset

6. Run the following command to recreate the Docker storage:
I $ docker-storage-setup

7. Recreate the /var/lib/docker directory:
I $ mkdir /var/lib/docker

8. Run the following command to restart Docker and the atomic-openshift-node service:
I $ systemctl start docker atomic-openshift-node

9. Restart the node service by rebooting the host:
I # systemctl restart atomic-openshift-node.service

10. Run the following command to mark the node as schedulable:

I $ oc adm manage-node <node> --schedulable=true

30

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

CHAPTER 3. RESTORING OPENSHIFT CONTAINER
PLATFORM COMPONENTS

3.1. OVERVIEW

In OpenShift Container Platform, you can restore your cluster and its components by recreating cluster
elements, including nodes and applications, from separate storage.

To restore a cluster, you must first back it up.

IMPORTANT

The following process describes a generic way of restoring applications and the
OpenShift Container Platform cluster. It cannot take into account custom requirements.
You might need to take additional actions to restore your cluster.

3.2. RESTORING A CLUSTER

To restore a cluster, first reinstall OpenShift Container Platform.

Procedure

1. Reinstall OpenShift Container Platform in the same way that you originally installed OpenShift
Container Platform.

2. Run all of your custom post-installation steps, such as changing services outside of the control
of OpenShift Container Platform or installing extra services like monitoring agents.

3.3. RESTORING A MASTER HOST BACKUP

After creating a backup of important master host files, if they become corrupted or accidentally
removed, you can restore the files by copying the files back to master, ensuring they contain the proper
content, and restarting the affected services.

Procedure

1. Restore the /etc/origin/master/master-config.yamil file:

MYBACKUPDIR=*/backup/$(hostname)/$(date +%Y%m%d)*

cp /etc/origin/master/master-config.yaml /etc/origin/master/master-config.yaml.old
cp /backup/$(hostname)/$(date +%Y%m%d)/origin/master/master-config.yami
/etc/origin/master/master-config.yaml

master-restart api

master-restart controllers

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/day_two_operations_guide/#day_two_environment_backup
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#install-planning

OpenShift Container Platform 3.10 Cluster Administration

' WARNING
A Restarting the master services can lead to downtime. However, you can

remove the master host from the highly available load balancer pool, then
perform the restore operation. Once the service has been properly
restored, you can add the master host back to the load balancer pool.

NOTE

Perform a full reboot of the affected instance to restore the iptables
configuration.

2. If you cannot restart OpenShift Container Platform because packages are missing, reinstall the
packages.

a. Getthe list of the current installed packages:

I $ rpom -ga | sort > /tmp/current_packages.txt

b. View the differences between the package lists:
$ diff /tmp/current_packages.txt $§{MYBACKUPDIR}/packages.txt

> ansible-2.4.0.0-5.el7.noarch
c. Reinstall the missing packages:

I # yum reinstall -y <packages> ﬂ

ﬂ Replace <packages> with the packages that are different between the package lists.

3. Restore a system certificate by copying the certificate to the /etc/pki/ca-trust/source/anchors/
directory and execute the update-ca-trust:

$ MYBACKUPDIR=*/backup/$(hostname)/$(date +%Y%m%d)*

$ sudo cp ${MYBACKUPDIR}/external_certificates/my_company.crt /etc/pki/ca-
trust/source/anchors/

$ sudo update-ca-trust

NOTE

Always ensure the user ID and group ID are restored when the files are copied
back, as well as the SELinux context.

3.4.RESTORING A NODE HOST BACKUP

32

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

After creating a backup of important node host files, if they become corrupted or accidentally removed,

you can restore the file by copying back the file, ensuring it contains the proper content and restart the
affected services.

Procedure

1. Restore the /etc/origin/node/node-config.yaml file:
MYBACKUPDIR=/backup/$(hostname)/$(date +%Y%m%d)
cp /etc/origin/node/node-config.yaml /etc/origin/node/node-config.yaml.old
cp /backup/$(hostname)/$(date +%Y%m%d)/etc/origin/node/node-config.yaml

/etc/origin/node/node-config.yaml
reboot

' WARNING
A Restarting the services can lead to downtime. See Node maintenance, for tips on

how to ease the process.

NOTE

Perform a full reboot of the affected instance to restore the iptables configuration.

1. If you cannot restart OpenShift Container Platform because packages are missing, reinstall the
packages.

a. Getthe list of the current installed packages:
I $ rpom -ga | sort > /tmp/current_packages.txt
b. View the differences between the package lists:

$ diff /tmp/current_packages.txt $§{MYBACKUPDIR}/packages.txt

> ansible-2.4.0.0-5.el7.noarch
c. Reinstall the missing packages:

I # yum reinstall -y <packages> ﬂ

ﬂ Replace <packages> with the packages that are different between the package lists.

2. Restore a system certificate by copying the certificate to the /etc/pki/ca-trust/source/anchors/
directory and execute the update-ca-trust:

$ MYBACKUPDIR=*/backup/$(hostname)/$(date +%Y%m%d)*

$ sudo cp ${MYBACKUPDIR}/etc/pki/ca-trust/source/anchors/my_company.crt /etc/pki/ca-
trust/source/anchors/

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/day_two_operations_guide/#day-two-guide-node-maintenance

OpenShift Container Platform 3.10 Cluster Administration

I $ sudo update-ca-trust

NOTE

Always ensure proper user ID and group ID are restored when the files are copied
back, as well as the SELinux context.

3.5.RESTORING ETCD

The restore procedure for etcd configuration files replaces the appropriate files, then restarts the
service or static pod.

If an etcd host has become corrupted and the /etc/etcd/eted.conf file is lost, restore it using:

$ ssh master-0

cp /backup/yesterday/master-0-files/etcd.conf /etc/etcd/etcd.conf
restorecon -Rv /etc/etcd/etcd.conf

systemctl restart etcd.service

In this example, the backup file is stored in the /backup/yesterday/master-0-files/etcd.conf path where
it can be used as an external NFS share, S3 bucket, or other storage solution.

NOTE

If you run etcd as a static pod, follow only the steps in that section. If you run etcd as a
separate service on either master or standalone nodes, follow the steps to restore v2 or
v3 data as required.

3.5.1. Restoring etcd v2 & v3 data

The following process restores healthy data files and starts the etcd cluster as a single node, then adds
the rest of the nodes if an etcd cluster is required.

Procedure

1. Stop all etcd services by removing the etcd pod definition and rebooting the host:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/
reboot

2. To ensure the proper backup is restored, delete the etcd directories:

® To back up the current etcd data before you delete the directory, run the following
command:

mv /var/lib/etcd /var/lib/etcd.old
mkdir /var/lib/etcd
restorecon -Rv /var/lib/etcd/

® Or, to delete the directory and the etcd, data, run the following command:

I # rm -Rf /var/lib/etcd/*

34

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

NOTE

In an all-in-one cluster, the etcd data directory is located in the
/var/lib/origin/openshift.local.etcd directory.

3. Restore a healthy backup data file to each of the etcd nodes. Perform this step on all etcd
hosts, including master hosts collocated with etcd.

cp -R /backup/etcd-xxx/* /var/lib/etcd/
mv /var/lib/etcd/db /var/lib/etcd/member/snap/db
chcon -R --reference /backup/etcd-xxx/* /var/lib/etcd/

4. Run the etcd service on each host, forcing a new cluster.
This creates a custom file for the etcd service, which overwrites the execution command adding
the --force-new-cluster option:

mkdir -p /etc/systemd/system/etcd.service.d/
echo "[Service]" > /etc/systemd/system/etcd.service.d/temp.conf
echo "ExecStart=" >> /etc/systemd/system/etcd.service.d/temp.conf
sed -n '/ExecStart/s/"$/ --force-new-cluster"/p' \
/usr/lib/systemd/system/etcd.service \
>> /etc/systemd/system/etcd.service.d/temp.conf

systemctl daemon-reload
master-restart etcd

5. Check for error messages:

I $ master-logs etcd etcd

6. Check for health status:

etcdctl2 cluster-health
member 5ee217d17301 is healthy: got healthy result from https://192.168.55.8:2379
cluster is healthy

7. Restart the etcd service in cluster mode:

rm -f /etc/systemd/system/etcd.service.d/temp.conf
systemctl daemon-reload
master-restart etcd

8. Check for health status and member list:

etcdctl2 cluster-health
member 5ee217d17301 is healthy: got healthy result from https://192.168.55.8:2379
cluster is healthy

etcdctl2 member list
5ee217d17301: name=master-0.example.com peerURLs=http://localhost:2380
clientURLs=https://192.168.55.8:2379 isLeader=true

9. After the first instance is running, you can restore the rest of your etcd servers.

35

OpenShift Container Platform 3.10 Cluster Administration

3.5.1.1. Fix the peerURLS parameter

After restoring the data and creating a new cluster, the peerURLs parameter shows localhost instead
of the IP where etcd is listening for peer communication:

etcdctl2 member list
5ee217d17301: name=master-0.example.com peerURLs=http://*localhost*:2380
clientURLs=https://192.168.55.8:2379 isLeader=true

3.5.1.1.1. Procedure

1. Get the member ID using etcdctl member list:

I “etcdctl member list’

2. Getthe IP where etcd listens for peer communication:
I $ ss -l4n | grep 2380

3. Update the member information with that IP:

etcdctl2 member update 5ee217d17301 https://192.168.55.8:2380
Updated member with ID 5ee217d17301 in cluster

4. To verify, check that the IP is in the member list:

$ etcdctl2 member list
5ee217d17301: name=master-0.example.com peerURLs=https://*192.168.55.8*:2380
clientURLs=https://192.168.55.8:2379 isLeader=true

3.5.2. Restoring etcd v3 snapshot

The restore procedure for v3 data is similar to the restore procedure for the v2 data.

Snapshot integrity may be optionally verified at restore time. If the snapshot is taken with etcdctl
shapshot save, it will have an integrity hash that is checked by etcdctl shapshot restore. If the
snapshot is copied from the data directory, there is no integrity hash and it will only restore by using --
skip-hash-check.

IMPORTANT

The procedure to restore the data must be performed on a single etcd host. You can then
add the rest of the nodes to the cluster.

Procedure

1. Stop all etcd services by removing the etcd pod definition and rebooting the host:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/
reboot

36

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

2. Clear all old data, because etcdctl recreates it in the node where the restore procedure is going
to be performed:

I # rm -Rf /var/lib/etcd

3. Run the snapshot restore command, substituting the values from the /etc/etcd/etcd.conf file:

etcdctl3 snapshot restore /backup/etcd-xxxxxx/backup.db \
--data-dir /var/lib/etcd \
--name master-0.example.com \
--initial-cluster "master-0.example.com=https://192.168.55.8:2380" \
--initial-cluster-token "etcd-cluster-1"\
--initial-advertise-peer-urls https://192.168.55.8:2380 \
--skip-hash-check=true

2017-10-03 08:55:32.440779 | | mvcc: restore compact to 1041269

2017-10-03 08:55:32.468244 | | etcdserver/membership: added member 40bef1f6¢c79b3163
[https://192.168.55.8:2380] to cluster 26841ebcf610583c¢

4. Restore permissions and selinux context to the restored files:

I # restorecon -Rv /var/lib/etcd

5. Start the etcd service:

I # systemctl start etcd

6. Check for any error messages:

I # master-logs etcd etcd

3.5.3. Restoring etcd on a static pod

Before restoring etcd on a static pod:
® etcdctl binaries must be available or, in containerized installations, the rhel7/etcd container

must be available.
You can obtain etcd by running the following commands:

$ git clone https://github.com/coreos/etcd.git
$ cd etcd
$./build

To restore etcd on a static pod:

1. If the pod is running, stop the etcd pod by moving the pod manifest YAML file to another
directory:

I $ mv /etc/origin/node/pods/etcd.yaml .
2. Clear all old data:

I $ rm -rf /var/lib/eted

37

OpenShift Container Platform 3.10 Cluster Administration

You use the etcdctl to recreate the data in the node where you restore the pod.

3. Restore the etcd snapshot to the mount path for the etcd pod:

$ export ETCDCTL_API=3

$ etcdctl snapshot restore /etc/etcd/backup/etcd/snapshot.db
--data-dir /var/lib/etcd/
--name ip-172-18-3-48.ec2.internal
--initial-cluster "ip-172-18-3-48.ec2.internal=https://172.18.3.48:2380"
--initial-cluster-token "etcd-cluster-1"
--initial-advertise-peer-urls https://172.18.3.48:2380
--skip-hash-check=true

Obtain the values for your cluster from the $/backup_files/etcd.conf file.

4. Setrequired permissions and selinux context on the data directory:

I $ restorecon -Rv /var/lib/etcd/

5. Restart the etcd pod by moving the pod manifest YAML file to the required directory:

I $ mv etcd.yaml /etc/origin/node/pods/.

3.6. ADDING AN ETCD NODE

After you restore etcd, you can add more etcd nodes to the cluster. You can either add an etcd host by
using an Ansible playbook or by manual steps.

3.6.1. Adding a new etcd host using Ansible

Procedure

1. In the Ansible inventory file, create a new group named [new_etcd] and add the new host. Then,
add the new_etcd group as a child of the [OSEvV3] group:

[OSEv3:children]
masters
nodes

... [OUTPUT ABBREVIATED] ...
[etcd]
master-0.example.com

master-1.example.com
master-2.example.com

[new_etcd] 9
etcd0.example.com 6

MAdd these lines.

38

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

2. From the host that installed OpenShift Container Platform and hosts the Ansible inventory file,
run the etcd scaleup playbook:

$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openshift-
etcd/scaleup.yml

3. After the playbook runs, modify the inventory file to reflect the current status by moving the
new etcd host from the [new_etecd] group to the [eted] group:

[OSEv3:children]
masters

nodes

etcd

new_etcd

... [OUTPUT ABBREVIATED] ...

[etcd]
master-0.example.com
master-1.example.com
master-2.example.com
etcd0.example.com

4. If you use Flannel, modify the flanneld service configuration on every OpenShift Container
Platform host, located at /etc/sysconfig/flanneld, to include the new etcd host:

FLANNEL_ETCD_ENDPOINTS=https://master-0.example.com:2379,https://master-
1.example.com:2379,https://master-2.example.com:2379,https://etcd0.example.com:2379

5. Restart the flanneld service:

I # systemctl restart flanneld.service

3.6.2. Manually adding a new etcd host

If you do not run etcd as static pods on master nodes, you might need to add another etcd host.

Procedure

Modify the current etcd cluster

To create the etcd certificates, run the openssl command, replacing the values with those from your
environment.

1. Create some environment variables:

export NEW_ETCD_HOSTNAME="*etcd0.example.com™*"
export NEW_ETCD_IP="192.168.55.21"

export CN=$NEW_ETCD_HOSTNAME

export SAN="IP:${NEW_ETCD_IP}, DNS:${NEW_ETCD_HOSTNAME}"
export PREFIX="/etc/etcd/generated_certs/etcd-$CN/"

export OPENSSLCFG="/etc/etcd/ca/openssl.cnf"

39

OpenShift Container Platform 3.10 Cluster Administration

NOTE

The custom openssl extensions used as eted_v3_ca_* include the $SAN
environment variable as subjectAltName. See /etc/etcd/ca/openssl.cnf for
more information.

2. Create the directory to store the configuration and certificates:

I # mkdir -p ${PREFIX}

3. Create the server certificate request and sign it: (server.csr and server.crt)

openssl req -new -config ${OPENSSLCFG} \
-keyout ${PREFIX}server.key \
-out ${PREFIX}server.csr \
-regexts etcd_v3_req -batch -nodes \
-subj /CN=$CN

openssl ca -name etcd_ca -config ${OPENSSLCFG} \
-out ${PREFIX}server.crt \
-in ${PREFIX}server.csr\
-extensions etcd_v3_ca_server -batch

4. Create the peer certificate request and sign it: (peer.csr and peer.crt)

openssl req -new -config ${OPENSSLCFG} \
-keyout ${PREFIX}peer.key \
-out ${PREFIX}peer.csr \
-regexts etcd_v3_req -batch -nodes \
-subj /CN=$CN

openssl ca -name etcd_ca -config ${OPENSSLCFG} \
-out ${PREFIX}peer.crt \
-in ${PREFIX}peer.csr \
-extensions etcd_v3_ca_peer -batch

5. Copy the current etcd configuration and ca.crt files from the current node as examples to
modify later:

cp /etc/etcd/etcd.conf ${PREFIX}
cp /etc/etcd/ca.crt ${PREFIX}

6. While still on the surviving etcd host, add the new host to the cluster. To add additional etcd
members to the cluster, you must first adjust the default localhost peerin the peerURLs value
for the first member:

a. Getthe member ID for the first member using the member list command:

etcdctl --cert-file=/etc/etcd/peer.crt \
--key-file=/etc/etcd/peer.key \
--ca-file=/etc/etcd/ca.crt \
--peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://172.18.0.75:2379"
{1
member list

40

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

Ensure that you specify the URLs of only active etcd members in the --peers
parameter value.

b. Obtain the IP address where etcd listens for cluster peers:

I $ ss -14n | grep 2380

c. Update the value of peerURLs using the etcdctl member update command by passing the
member ID and IP address obtained from the previous steps:

etcdctl --cert-file=/etc/etcd/peer.crt \
--key-file=/etc/etcd/peer.key \
--ca-file=/etc/etcd/ca.crt \
--peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://172.18.0.75:2379"
\
member update 511b7fb6cc0001 https://172.18.1.18:2380

d. Re-run the member list command and ensure the peer URLs no longer include localhost.

7. Add the new host to the etcd cluster. Note that the new host is not yet configured, so the status
stays as unstarted until the you configure the new host.

' WARNING
A You must add each member and bring it online one at a time. When you add

each additional member to the cluster, you must adjust the peerURLs list
for the current peers. The peerURLs list grows by one for each member
added. The etcdctl member add command outputs the values that you
must set in the etcd.conf file as you add each member, as described in the
following instructions.

etcdctl -C https://${CURRENT_ETCD_HOST}:2379 \
--ca-file=/etc/etcd/ca.crt \
--cert-file=/etc/etcd/peer.crt \
--key-file=/etc/etcd/peer.key member add ${NEW_ETCD_HOSTNAME}
https://${NEW_ETCD_1P}:2380 ﬂ

Added member named 10.3.9.222 with ID 4e1db163a21d7651 to cluster

ETCD_NAME="<NEW_ETCD_HOSTNAME>"
ETCD_INITIAL_CLUSTER="<NEW_ETCD_HOSTNAME>=https://<NEW_HOST_|P>:2380,
<CLUSTERMEMBER1_NAME>=https:/<CLUSTERMEMBER2_IP>:2380,
<CLUSTERMEMBER2_NAME>=https:/<CLUSTERMEMBER2_IP>:2380,
<CLUSTERMEMBERS3_NAME>=https:/<CLUSTERMEMBERS_IP>:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

In this line, 10.3.9.222 is a label for the etcd member. You can specify the host name, IP
address, or a simple name.

41

OpenShift Container Platform 3.10 Cluster Administration

8. Update the sample ${PREFIX}/etcd.conf file.
a. Replace the following values with the values generated in the previous step:
e ETCD_NAME
e ETCD_INITIAL_CLUSTER
e ETCD_INITIAL_CLUSTER_STATE

b. Modify the following variables with the new host IP from the output of the previous step.
You can use ${NEW_ETCD _IP} as the value.

ETCD_LISTEN_PEER_URLS
ETCD_LISTEN_CLIENT_URLS
ETCD_INITIAL_ADVERTISE_PEER_URLS
ETCD_ADVERTISE_CLIENT_URLS

c. If you previously used the member system as an etcd node, you must overwrite the current
values in the /etc/etcd/etcd.conffile.

d. Check the file for syntax errors or missing IP addresses, otherwise the etcd service might
fail:

I # vi ${PREFIX}/etcd.conf

9. On the node that hosts the installation files, update the [eted] hosts group in the
/etc/ansible/hosts inventory file. Remove the old etcd hosts and add the new ones.

10. Create a tgz file that contains the certificates, the sample configuration file, and the caand
copy it to the new host:

tar -czvf /etc/etcd/generated_certs/${CN}.tgz -C ${PREFIX} .
scp /etc/etcd/generated_certs/${CN}.tgz ${CN}:/tmp/

Modify the new etcd host

1. Install iptables-services to provide iptables utilities to open the required ports for etcd:
I # yum install -y iptables-services

2. Create the OS_FIREWALL_ALLOW firewall rules to allow etcd to communicate:
® Port 2379/tcp for clients

® Port 2380/tcp for peer communication

systemctl enable iptables.service --now

iptables -N OS_FIREWALL_ALLOW

iptables -t filter -1 INPUT -j OS_FIREWALL_ALLOW

iptables -A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport 2379 -j
ACCEPT

iptables -A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport 2380 -j
ACCEPT

iptables-save | tee /etc/sysconfig/iptables

42

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

NOTE
In this example, a new chain OS_FIREWALL_ALLOW is created, which is the

standard naming the OpenShift Container Platform installer uses for firewall
rules.

' WARNING
A If the environment is hosted in an laaS environment, modify the

security groups for the instance to allow incoming traffic to those ports
as well.

. Install etcd:
I # yum install -y etcd

Ensure version etcd-2.3.7-4.el7.x86_64 or greater is installed,

. Ensure the etcd service is not running by removing the etcd pod definition:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/

. Remove any etcd configuration and data:

rm -Rf /etc/etcd/*
rm -Rf /var/lib/etcd/*

. Extract the certificates and configuration files:

I # tar xzvf /tmp/etcd0.example.com.tgz -C /etc/etcd/

. Start etcd on the new host:

I # systemctl enable etcd --now

. Verify that the host is part of the cluster and the current cluster health:

e |f you use the v2 etcd api, run the following command:

etcdctl --cert-file=/etc/etcd/peer.crt \
--key-file=/etc/etcd/peer.key \
--ca-file=/etc/etcd/ca.crt \
--peers="https://*master-0.example.com*:2379,\
https://*master-1.example.com*:2379,\
https://*master-2.example.com*:2379,\
https://*etcd0.example.com*:2379™
cluster-health
member 5ee217d19001 is healthy: got healthy result from https://192.168.55.12:2379

43

OpenShift Container Platform 3.10 Cluster Administration

member 2a529ba1840722c0 is healthy: got healthy result from https://192.168.55.8:2379
member 8b8904727bf526a5 is healthy: got healthy result from
https://192.168.55.21:2379

member ed4f0efd277d7599 is healthy: got healthy result from https://192.168.55.13:2379
cluster is healthy

e |f you use the v3 etcd api, run the following command:

ETCDCTL_API=3 etcdctl --cert="/etc/etcd/peer.crt" \
--key=/etc/etcd/peer.key \
--cacert="/etc/etcd/ca.crt" \
--endpoints="https://*master-0.example.com*:2379,\
https://*master-1.example.com*:2379,\
https://*master-2.example.com*:2379,\
https://*etcd0.example.com*:2379™
endpoint health
https://master-0.example.com:2379 is healthy: successfully committed proposal: took =
5.011358ms
https://master-1.example.com:2379 is healthy: successfully committed proposal: took =
1.305173ms
https://master-2.example.com:2379 is healthy: successfully committed proposal: took =
1.388772ms
https://etcd0.example.com:2379 is healthy: successfully committed proposal: took =
1.498829ms

Modify each OpenShift Container Platform master

44

1. Modify the master configuration in the etcClientinfo section of the /etc/origin/master/master-
config.yaml file on every master. Add the new etcd host to the list of the etcd servers
OpenShift Container Platform uses to store the data, and remove any failed etcd hosts:

etcdClientInfo:

ca: master.etcd-ca.crt

certFile: master.etcd-client.crt

keyFile: master.etcd-client.key

urls:
- https://master-0.example.com:2379
- https://master-1.example.com:2379
- https://master-2.example.com:2379
- https://etcd0.example.com:2379

2. Restart the master APl service:

® On every master:

master-restart api
master-restart controllers

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

' WARNING
A The number of etcd nodes must be odd, so you must add at least two

hosts.

3. If you use Flannel, modify the flanneld service configuration located at /etc/sysconfig/flanneld
on every OpenShift Container Platform host to include the new etcd host:

FLANNEL_ETCD_ENDPOINTS=https://master-0.example.com:2379,https://master-
1.example.com:2379,https://master-2.example.com:2379,https://etcd0.example.com:2379

4. Restart the flanneld service:

I # systemctl restart flanneld.service

3.7.BRINGING OPENSHIFT CONTAINER PLATFORM SERVICES BACK
ONLINE

After you finish your changes, bring OpenShift Container Platform back online.

Procedure

1. On each OpenShift Container Platform master, restore your master and node configuration
from backup and enable and restart all relevant services:

cp ${MYBACKUPDIR}/etc/origin/node/pods/* /etc/origin/node/pods/

cp ${MYBACKUPDIR}/etc/origin/master/master.env /etc/origin/master/master.env
cp ${MYBACKUPDIR}/etc/origin/master/master-config.yaml.<timestamp>
/etc/origin/master/master-config.yaml

cp ${MYBACKUPDIR}/etc/origin/node/node-config.yaml.<timestamp>
/etc/origin/node/node-config.yaml

cp ${MYBACKUPDIR}/etc/origin/master/scheduler.json.<timestamp>
/etc/origin/master/scheduler.json

master-restart api

master-restart controllers

2. On each OpenShift Container Platform node, update the node configuration maps as needed,
and enable and restart the atomic-openshift-node service:

cp /etc/origin/node/node-config.yaml.<timestamp> /etc/origin/node/node-config.yaml
systemctl enable atomic-openshift-node
systemctl start atomic-openshift-node

3.8. RESTORING A PROJECT

To restore a project, create the new project, then restore any exported files by running oc create -f
pods.json. However, restoring a project from scratch requires a specific order because some objects
depend on others. For example, you must create the configmaps before you create any pods.

45

OpenShift Container Platform 3.10 Cluster Administration

Procedure

1. If the project was exported as a single file, import it by running the following commands:

$ oc new-project <projectname>

$ oc create -f project.yaml

$ oc create -f secret.yaml

$ oc create -f serviceaccount.yaml
$ oc create -f pvc.yaml

$ oc create -f rolebindings.yaml

' WARNING
A Some resources, such as pods and default service accounts, can fail to be

created.

3.9. RESTORING APPLICATION DATA

You can restore application data by using the oc rsync command, assuming rsync is installed within the
container image. The Red Hat rhel7 base image contains rsync. Therefore, all images that are based on
rhel7 contain it as well. See Troubleshooting and Debugging CLI Operations - rsync.

' WARNING
A This is a generic restoration of application data and does not take into account

application-specific backup procedures, for example, special export and import
procedures for database systems.

Other means of restoration might exist depending on the type of the persistent volume you use, for
example, Cinder, NFS, or Gluster.

Procedure

Example of restoring a Jenkins deployment’s application data

1. Verify the backup:

$ Is -la /tmp/jenkins-backup/

total 8

drwxrwxr-x. 3 user user 20 Sep 6 11:14.
drwxrwxrwt. 17 root root 4096 Sep 6 11:16 ..
drwxrwsrwx. 12 user user 4096 Sep 6 11:14 jenkins

2. Use the oc rsync tool to copy the data into the running pod:

46

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cli_reference/#cli-operations-rsync

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS
I $ oc rsync /tmp/jenkins-backup/jenkins jenkins-1-37nux:/var/lib

NOTE

Depending on the application, you may be required to restart the application.

3. Optionally, restart the application with new data:
I $ oc delete pod jenkins-1-37nux

Alternatively, you can scale down the deployment to O, and then up again:

$ oc scale --replicas=0 dc/jenkins
$ oc scale --replicas=1 dc/jenkins

3.10. RESTORING PERSISTENT VOLUME CLAIMS

This topic describes two methods for restoring data. The first involves deleting the file, then placing the
file back in the expected location. The second example shows migrating persistent volume claims. The
migration would occur in the event that the storage needs to be moved or in a disaster scenario when
the backend storage no longer exists.

Check with the restore procedures for the specific application on any steps required to restore data to
the application.

3.10.1. Restoring files to an existing PVC

Procedure

1. Delete the file:

$ oc rsh demo-2-fxx6d

sh-4.2$ Is */opt/app-root/src/uploaded/*

lost+found ocp_sop.txt

sh-4.2$ *rm -rf /opt/app-root/src/uploaded/ocp_sop.txt*
sh-4.2$ *Is /opt/app-root/src/uploaded/*

lost+found

2. Replace the file from the server that contains the rsync backup of the files that were in the pvc:

I $ oc rsync uploaded demo-2-fxx6d:/opt/app-root/src/

3. Validate that the file is back on the pod by using oc rsh to connect to the pod and view the
contents of the directory:

$ oc rsh demo-2-fxx6d

sh-4.2$ *Is /opt/app-root/src/uploaded/*
lost+found ocp_sop.txt

3.10.2. Restoring data to a new PVC

The following steps assume that a new pvc has been created.

47

OpenShift Container Platform 3.10 Cluster Administration

Procedure

48

1. Overwrite the currently defined claim-name:

$ oc volume dc/demo --add --name=persistent-volume \
--type=persistentVolumeClaim --claim-name=filestore \ --mount-path=/opt/app-
root/src/uploaded --overwrite

2. Validate that the pod is using the new PVC:

$ oc describe dc/demo
Name: demo
Namespace: test
Created: 3 hours ago
Labels: app=demo
Annotations: openshift.io/generated-by=0penShiftNewApp
Latest Version: 3
Selector: app=demo,deploymentconfig=demo
Replicas: 1
Triggers: Config, Image(demo@latest, auto=true)
Strategy: Rolling
Template:
Labels: app=demo
deploymentconfig=demo
Annotations: openshift.io/container.demo.image.entrypoint=["container-
entrypoint","/bin/sh","-c","$STI_SCRIPTS_PATH/usage"]
openshift.io/generated-by=0OpenShiftNewApp
Containers:
demo:

Image: docker-
registry.default.svc:5000/test/demo@sha256:0a9f2487a0d95d51511e49d20dc9ff6f3504361935
968b0c83fch98a7a8c381a

Port: 8080/TCP

Volume Mounts:

/opt/app-root/src/uploaded from persistent-volume (rw)

Environment Variables: <none>

Volumes:
persistent-volume:

Type: PersistentVolumeClaim (a reference to a PersistentVolumeClaim in the same
namespace)

ClaimName: filestore

ReadOnly: false
...omitted...

3. Now that the deployement configuration uses the new pve, run oc rsync to place the files onto
the new pvc:

$ oc rsync uploaded demo-3-2b8gs:/opt/app-root/src/
sending incremental file list

uploaded/

uploaded/ocp_sop.txt

uploaded/lost+found/

sent 181 bytes received 39 bytes 146.67 bytes/sec
total size is 32 speedup is 0.15

CHAPTER 3. RESTORING OPENSHIFT CONTAINER PLATFORM COMPONENTS

4. Validate that the file is back on the pod by using oc¢ rsh to connect to the pod and view the
contents of the directory:

$ oc rsh demo-3-2b8gs

sh-4.2$ |s /opt/app-root/src/uploaded/
lost+found ocp_sop.txt

49

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 4. REPLACING A MASTER HOST

You can replace a failed master host.

First, remove the failed master host from your cluster, and then add a replacement master host. If the
failed master host ran etcd, scale up etcd by adding etcd to the new master host.

IMPORTANT

You must complete all sections of this topic.

4.1. DEPRECATING A MASTER HOST

Master hosts run important services, such as the OpenShift Container Platform API and controllers
services. In order to deprecate a master host, these services must be stopped.

The OpenShift Container Platform API service is an active/active service, so stopping the service does
not affect the environment as long as the requests are sent to a separate master server. However, the
OpenShift Container Platform controllers service is an active/passive service, where the services use
etcd to decide the active master.

Deprecating a master host in a multi-master architecture includes removing the master from the load
balancer pool to avoid new connections attempting to use that master. This process depends heavily on
the load balancer used. The steps below show the details of removing the master from haproxy. In the
event that OpenShift Container Platform is running on a cloud provider, or using a F5 appliance, see the
specific product documents to remove the master from rotation.

Procedure

1. Remove the backend section in the /etc/haproxy/haproxy.cfg configuration file. For example,
if deprecating a master named master-0.example.com using haproxy, ensure the host name is
removed from the following:

backend mgmt8443
balance source
mode tcp
MASTERS 8443
server master-1.example.com 192.168.55.12:8443 check
server master-2.example.com 192.168.55.13:8443 check

2. Then, restart the haproxy service.
I $ sudo systemctl restart haproxy

3. Once the master is removed from the load balancer, disable the APl and controller services by
moving definition files out of the static pods dir /etc/origin/node/pods:

mkdir -p /etc/origin/node/pods/disabled
mv /etc/origin/node/pods/controller.yaml /etc/origin/node/pods/disabled/:
+

4. Because the master host is a schedulable OpenShift Container Platform node, follow the steps
in the Deprecating a node host section.

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/day_two_operations_guide/#deprecating-node_deprecating-etcd

CHAPTER 4. REPLACING A MASTER HOST

5. Remove the master host from the [masters] and [nodes] groups in the /etc/ansible/hosts
Ansible inventory file to avoid issues if running any Ansible tasks using that inventory file.

' WARNING
A Deprecating the first master host listed in the Ansible inventory file requires

extra precautions.

The /etc/origin/master/ca.serial.txt file is generated on only the first
master listed in the Ansible host inventory. If you deprecate the first master
host, copy the /etc/origin/master/ca.serial.txt file to the rest of master
hosts before the process.

6. The kubernetes service includes the master host IPs as endpoints. To verify that the master has
been properly deprecated, review the kubernetes service output and see if the deprecated
master has been removed:

$ oc describe svc kubernetes -n default

Name: kubernetes

Namespace: default

Labels: component=apiserver
provider=kubernetes

Annotations: <none>

Selector: <none>

Type: ClusterlP

IP: 10.111.0.1

Port: https 443/TCP

Endpoints: 192.168.55.12:8443,192.168.55.13:8443

Port: dns 53/UDP

Endpoints: 192.168.55.12:8053,192.168.55.13:8053

Port: dns-tcp 53/TCP

Endpoints: 192.168.55.12:8053,192.168.55.13:8053

Session Affinity: ClientIP

Events: <none>

After the master has been successfully deprecated, the host where the master was previously
running can be safely deleted.

4.2. ADDING HOSTS

You can add new hosts to your cluster by running the scaleup.yml playbook. This playbook queries the
master, generates and distributes new certificates for the new hosts, and then runs the configuration
playbooks on only the new hosts. Before running the scaleup.yml playbook, complete all prerequisite
host preparation steps.

IMPORTANT

The scaleup.yml playbook configures only the new host. It does not update NO_PROXY
in master services, and it does not restart master services.

51

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#preparing-for-advanced-installations-origin

OpenShift Container Platform 3.10 Cluster Administration

You must have an existing inventory file,for example /etc/ansible/hosts, that is representative of your
current cluster configuration in order to run the scaleup.yml playbook. If you previously used the
atomic-openshift-installer command to run your installation, you can check ~/.config/openshift/hosts
for the last inventory file that the installer generated and use that file as your inventory file. You can
modify this file as required. You must then specify the file location with -i when you run the ansible-
playbook.

IMPORTANT

See the cluster limits section for the recommended maximum number of nodes.

Procedure

1. Ensure you have the latest playbooks by updating the atomic-openshift-utils package:

I # yum update atomic-openshift-utils

2. Edit your /etc/ansible/hosts file and add new_<host_type> to the [OSEv3:children] section:
For example, to add a new node host, add new_nodes:

[OSEv3:children]
masters

nodes
new_nodes

To add new master hosts, add new_masters.

3. Create a [new_<host_type>] section to specify host information for the new hosts. Format this
section like an existing section, as shown in the following example of adding a new node:

[nodes]

master[1:3].example.com

node1.example.com openshift_node_group_name="node-config-compute'
node2.example.com openshift_node_group_name="node-config-compute'
infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

[new_nodes]
node3.example.com openshift_node_group_name="node-config-infra'

See Configuring Host Variables for more options.

When adding new masters, add hosts to both the [new_masters] section and the [new_nodes]
section to ensure that the new master host is part of the OpenShift SDN.

[masters]
master[1:2].example.com

[new_masters]
master3.example.com

[nodes]

master[1:2].example.com
node1.example.com openshift_node_group_name="node-config-compute'

52

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/scaling_and_performance_guide/#scaling-performance-cluster-limits
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#advanced-host-variables

CHAPTER 4. REPLACING A MASTER HOST

node2.example.com openshift_node_group_name="node-config-compute'
infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

[new_nodes]
master3.example.com

IMPORTANT

If you label a master host with the node-role.kubernetes.io/infra=true label and
have no other dedicated infrastructure nodes, you must also explicitly mark the
host as schedulable by adding openshift_schedulable=true to the entry.
Otherwise, the registry and router pods cannot be placed anywhere.

4. Run the scaleup.yml playbook. If your inventory file is located somewhere other than the default
of /etc/ansible/hosts, specify the location with the -i option.

® F[or additional nodes:

ansible-playbook [-i /path/to/file] \
/usr/share/ansible/openshift-ansible/playbooks/openshift-node/scaleup.yml

® F[or additional masters:

ansible-playbook [-i /path/to/file] \
/ust/share/ansible/openshift-ansible/playbooks/openshift-master/scaleup.yml

5. Set the node label to logging-infra-fluentd=true, if you deployed the EFK stack in your cluster.

I # oc label node/new-node.example.com logging-infra-fluentd=true

6. After the playbook runs, verify the installation.

7. Move any hosts that you defined in the [new_<host_type>] section to their appropriate section.
By moving these hosts, subsequent playbook runs that use this inventory file treat the nodes
correctly. You can keep the empty [new_<host_type>] section. For example, when adding new
nodes:

[nodes]

master[1:3].example.com

node1.example.com openshift_node_group_name="node-config-compute'
node2.example.com openshift_node_group_name="node-config-compute'
node3.example.com openshift_node_group_name="node-config-compute'
infra-node1.example.com openshift_node_group_name="node-config-infra’
infra-node2.example.com openshift_node_group_name="node-config-infra’

[new_nodes]

4.3. SCALING ETCD

You can scale the etcd cluster vertically by adding more resources to the etcd hosts or horizontally by
adding more etcd hosts.

53

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#advanced-verifying-the-installation

OpenShift Container Platform 3.10 Cluster Administration

NOTE

Due to the voting system etcd uses, the cluster must always contain an odd number of
members.

Having a cluster with an odd number of etcd hosts can account for fault tolerance. Having
an odd number of etcd hosts does not change the number needed for a quorum but
increases the tolerance for failure. For example, with a cluster of three members, quorum
is two, which leaves a failure tolerance of one. This ensures the cluster continues to
operate if two of the members are healthy.

Having an in-production cluster of three etcd hosts is recommended.

The new host requires a fresh Red Hat Enterprise Linux version 7 dedicated host. The etcd storage
should be located on an SSD disk to achieve maximum performance and on a dedicated disk mounted in
/var/lib/etcd.

Prerequisites

1. Before you add a new etcd host, perform a backup of both etcd configuration and data to
prevent data loss.

2. Check the current etcd cluster status to avoid adding new hosts to an unhealthy cluster.

e |f you use the v2 etcd api, run this command:

etcdctl --cert-file=/etc/etcd/peer.crt \

--key-file=/etc/etcd/peer.key \

--ca-file=/etc/etcd/ca.crt \

--peers="https://*master-0.example.com*:2379,\

https://*master-1.example.com*:2379,\

https://*master-2.example.com*:2379"\

cluster-health
member 5ee217d19001 is healthy: got healthy result from https://192.168.55.12:2379
member 2a529ba1840722c0 is healthy: got healthy result from https://192.168.55.8:2379
member ed4f0efd277d7599 is healthy: got healthy result from https://192.168.55.13:2379
cluster is healthy

e |f you use the v3 etcd api, run this command:

ETCDCTL_API=3 etcdctl --cert="/etc/etcd/peer.crt" \
--key=/etc/etcd/peer.key \
--cacert="/etc/etcd/ca.crt" \
--endpoints="https://*master-0.example.com*:2379,\
https://*master-1.example.com*:2379,\
https://*master-2.example.com*:2379"
endpoint health
https://master-0.example.com:2379 is healthy: successfully committed proposal: took =
5.011358ms
https://master-1.example.com:2379 is healthy: successfully committed proposal: took =
1.305173ms
https://master-2.example.com:2379 is healthy: successfully committed proposal: took =
1.388772ms

3. Before running the scaleup playbook, ensure the new host is registered to the proper Red Hat
software channels:

54

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/day_two_operations_guide/#backing-up-etcd_environment-backup

CHAPTER 4. REPLACING A MASTER HOST

subscription-manager register \
--username="*<username>"* --password="<password>*

subscription-manager attach --pool=*<poolid>*

subscription-manager repos --disable="*"

subscription-manager repos \
--enable=rhel-7-server-rpms \
--enable=rhel-7-server-extras-rpms

etcd is hosted in the rhel-7-server-extras-rpms software channel.

4. Upgrade etcd and iptables on the current etcd nodes:

I # yum update etcd iptables-services

5. Back up the /etc/etcd configuration for the etcd hosts.

6. If the new etcd members will also be OpenShift Container Platform nodes, add the desired
number of hosts to the cluster.

7. The rest of this procedure assumes you added one host, but if you add multiple hosts, perform
all steps on each host.

4.3.1. Adding a new etcd host using Ansible

Procedure

1. In the Ansible inventory file, create a new group named [new_etcd] and add the new host. Then,
add the new_etcd group as a child of the [OSEvV3] group:

[OSEv3:children]
masters

nodes

etcd

new_etcd ﬂ

... [OUTPUT ABBREVIATED] ...
[etcd]
master-0.example.com

master-1.example.com
master-2.example.com

[new_etcd] 9
etcd0.example.com 6

MAdd these lines.

2. From the host that installed OpenShift Container Platform and hosts the Ansible inventory file,
run the etcd scaleup playbook:

$ ansible-playbook /usr/share/ansible/openshift-ansible/playbooks/openshift-
etcd/scaleup.yml

55

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-adding-hosts-to-cluster

OpenShift Container Platform 3.10 Cluster Administration

3. After the playbook runs, modify the inventory file to reflect the current status by moving the
new etcd host from the [new_etecd] group to the [eted] group:

[OSEv3:children]
masters

nodes

etcd

new_etcd

... [OUTPUT ABBREVIATED] ...

[etcd]
master-0.example.com
master-1.example.com
master-2.example.com
etcd0.example.com

4. If you use Flannel, modify the flanneld service configuration on every OpenShift Container
Platform host, located at /etc/sysconfig/flanneld, to include the new etcd host:

FLANNEL_ETCD_ENDPOINTS=https://master-0.example.com:2379,https://master-
1.example.com:2379,https://master-2.example.com:2379,https://etcd0.example.com:2379

5. Restart the flanneld service:

I # systemctl restart flanneld.service

4.3.2. Manually adding a new etcd host

If you do not run etcd as static pods on master nodes, you might need to add another etcd host.

Procedure

Modify the current etcd cluster

To create the etcd certificates, run the openssl command, replacing the values with those from your
environment.

1. Create some environment variables:

export NEW_ETCD_HOSTNAME="*etcd0.example.com™*"
export NEW_ETCD_IP="192.168.55.21"

export CN=$NEW_ETCD_HOSTNAME

export SAN="IP:${NEW_ETCD_IP}, DNS:${NEW_ETCD_HOSTNAME}"
export PREFIX="/etc/etcd/generated_certs/etcd-$CN/"

export OPENSSLCFG="/etc/etcd/ca/openssl.cnf"

NOTE

The custom openssl extensions used as eted_v3_ca_* include the $SAN
environment variable as subjectAltName. See /etc/etcd/ca/openssl.cnf for
more information.

2. Create the directory to store the configuration and certificates:

56

CHAPTER 4. REPLACING A MASTER HOST

I # mkdir -p ${PREFIX}
3. Create the server certificate request and sign it: (server.csr and server.crt)

openssl req -new -config ${OPENSSLCFG} \
-keyout ${PREFIX}server.key \
-out ${PREFIX}server.csr \
-regexts etcd_v3_req -batch -nodes \
-subj /CN=$CN

openssl ca -name etcd_ca -config ${OPENSSLCFG} \
-out ${PREFIX}server.crt \
-in ${PREFIX}server.csr\
-extensions etcd_v3_ca_server -batch

4. Create the peer certificate request and sign it: (peer.csr and peer.crt)

openssl req -new -config ${OPENSSLCFG} \
-keyout ${PREFIX}peer.key \
-out ${PREFIX}peer.csr \
-regexts etcd_v3_req -batch -nodes \
-subj /CN=$CN

openssl ca -name etcd_ca -config ${OPENSSLCFG} \
-out ${PREFIX}peer.crt \
-in ${PREFIX}peer.csr \
-extensions etcd_v3_ca_peer -batch

5. Copy the current etcd configuration and ca.crt files from the current node as examples to
modify later:

cp /etc/etcd/etcd.conf ${PREFIX}
cp /etc/etcd/ca.crt ${PREFIX}

6. While still on the surviving etcd host, add the new host to the cluster. To add additional etcd
members to the cluster, you must first adjust the default localhost peerin the peerURLs value
for the first member:

a. Getthe member ID for the first member using the member list command:

etcdctl --cert-file=/etc/etcd/peer.crt \
--key-file=/etc/etcd/peer.key \
--ca-file=/etc/etcd/ca.crt \
--peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://172.18.0.75:2379"
\
member list

ﬂ Ensure that you specify the URLs of only active etcd members in the --peers
parameter value.

b. Obtain the IP address where etcd listens for cluster peers:

I $ ss -14n | grep 2380

57

OpenShift Container Platform 3.10 Cluster Administration

c. Update the value of peerURLs using the etcdctl member update command by passing the
member ID and IP address obtained from the previous steps:

etcdctl --cert-file=/etc/etcd/peer.crt \
--key-file=/etc/etcd/peer.key \
--ca-file=/etc/etcd/ca.crt \
--peers="https://172.18.1.18:2379,https://172.18.9.202:2379,https://172.18.0.75:2379"
\
member update 511b7fb6cc0001 https://172.18.1.18:2380

d. Re-run the member list command and ensure the peer URLs no longer include localhost.

7. Add the new host to the etcd cluster. Note that the new host is not yet configured, so the status
stays as unstarted until the you configure the new host.

' WARNING
A You must add each member and bring it online one at a time. When you add

each additional member to the cluster, you must adjust the peerURLs list
for the current peers. The peerURLs list grows by one for each member
added. The etcdctl member add command outputs the values that you
must set in the etcd.conf file as you add each member, as described in the
following instructions.

etcdctl -C https://${CURRENT_ETCD_HOST}:2379 \
--ca-file=/etc/etcd/ca.crt \
--cert-file=/etc/etcd/peer.crt \
--key-file=/etc/etcd/peer.key member add ${NEW_ETCD_HOSTNAME}
https://${NEW_ETCD_IP}:2380 ﬂ

Added member named 10.3.9.222 with ID 4e1db163a21d7651 to cluster

ETCD_NAME="<NEW_ETCD_HOSTNAME>"
ETCD_INITIAL_CLUSTER="<NEW_ETCD_HOSTNAME>=https://<NEW_HOST_|P>:2380,
<CLUSTERMEMBER1_NAME>=https:/<CLUSTERMEMBER2_IP>:2380,
<CLUSTERMEMBER2_NAME>=https:/<CLUSTERMEMBER2_IP>:2380,
<CLUSTERMEMBERS3_NAME>=https:/<CLUSTERMEMBERS_|P>:2380"
ETCD_INITIAL_CLUSTER_STATE="existing"

In this line, 10.3.9.222 is a label for the etcd member. You can specify the host name, IP
address, or a simple name.

8. Update the sample ${PREFIX}/etcd.conf file.
a. Replace the following values with the values generated in the previous step:

e ETCD_NAME

e ETCD_INITIAL_CLUSTER

58

CHAPTER 4. REPLACING A MASTER HOST

e ETCD_INITIAL_CLUSTER_STATE

b. Modify the following variables with the new host IP from the output of the previous step.
You can use ${NEW_ETCD IP} as the value.

ETCD_LISTEN_PEER_URLS
ETCD_LISTEN_CLIENT_URLS
ETCD_INITIAL_ADVERTISE_PEER_URLS
ETCD_ADVERTISE_CLIENT_URLS

c. If you previously used the member system as an etcd node, you must overwrite the current
values in the /etc/etcd/etcd.conffile.

d. Check the file for syntax errors or missing IP addresses, otherwise the etcd service might
fail:

I # vi ${PREFIX}/etcd.conf

9. On the node that hosts the installation files, update the [eted] hosts group in the
/etc/ansible/hosts inventory file. Remove the old etcd hosts and add the new ones.

10. Create a tgz file that contains the certificates, the sample configuration file, and the caand
copy it to the new host:

tar -czvf /etc/etcd/generated_certs/${CN}.tgz -C ${PREFIX} .
scp /etc/etcd/generated_certs/${CN}.tgz ${CN}:/tmp/

Modify the new etcd host

1. Install iptables-services to provide iptables utilities to open the required ports for etcd:
I # yum install -y iptables-services

2. Create the OS_FIREWALL_ALLOW firewall rules to allow etcd to communicate:
® Port 2379/tcp for clients

® Port 2380/tcp for peer communication

systemctl enable iptables.service --now

iptables -N OS_FIREWALL_ALLOW

iptables -t filter -l INPUT -j OS_FIREWALL_ALLOW

iptables -A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport 2379 -j

ACCEPT
iptables -A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport 2380 -j

ACCEPT
iptables-save | tee /etc/sysconfig/iptables

NOTE

In this example, a new chain OS_FIREWALL_ALLOW is created, which is the
standard naming the OpenShift Container Platform installer uses for firewall
rules.

59

OpenShift Container Platform 3.10 Cluster Administration

60

' WARNING
A If the environment is hosted in an laaS environment, modify the

security groups for the instance to allow incoming traffic to those ports
as well.

. Install etcd:

I # yum install -y etcd

Ensure version etcd-2.3.7-4.el7.x86_64 or greater is installed,

. Ensure the etcd service is not running by removing the etcd pod definition:

mkdir -p /etc/origin/node/pods-stopped
mv /etc/origin/node/pods/* /etc/origin/node/pods-stopped/

. Remove any etcd configuration and data:

rm -Rf /etc/etcd/*
rm -Rf /var/lib/etcd/*

. Extract the certificates and configuration files:

I # tar xzvf /tmp/etcd0.example.com.tgz -C /etc/etcd/

. Start etcd on the new host:

I # systemctl enable etcd --now

. Verify that the host is part of the cluster and the current cluster health:

e |f you use the v2 etcd api, run the following command:

etcdctl --cert-file=/etc/etcd/peer.crt \
--key-file=/etc/etcd/peer.key \
--ca-file=/etc/etcd/ca.crt \
--peers="https://*master-0.example.com*:2379,\
https://*master-1.example.com*:2379,\
https://*master-2.example.com*:2379,\
https://*etcd0.example.com™:2379™"
cluster-health

member 5ee217d19001 is healthy: got healthy result from https://192.168.55.12:2379

member 2a529ba1840722¢c0 is healthy: got healthy result from https://192.168.55.8:2379

member 8b8904727bf526a5 is healthy: got healthy result from
https://192.168.55.21:2379

member ed4f0efd277d7599 is healthy: got healthy result from https://192.168.55.13:2379

cluster is healthy

CHAPTER 4. REPLACING A MASTER HOST

e |f you use the v3 etcd api, run the following command:

ETCDCTL_API=3 etcdctl --cert="/etc/etcd/peer.crt" \
--key=/etc/etcd/peer.key \
--cacert="/etc/etcd/ca.crt" \
--endpoints="https://*master-0.example.com*:2379,\
https://*master-1.example.com*:2379,\
https://*master-2.example.com*:2379,\
https://*etcd0.example.com*:2379™
endpoint health
https://master-0.example.com:2379 is healthy: successfully committed proposal: took =
5.011358ms
https://master-1.example.com:2379 is healthy: successfully committed proposal: took =
1.305173ms
https://master-2.example.com:2379 is healthy: successfully committed proposal: took =
1.388772ms
https://etcd0.example.com:2379 is healthy: successfully committed proposal: took =
1.498829ms

Modify each OpenShift Container Platform master

1. Modify the master configuration in the etcClientinfo section of the /etc/origin/master/master-
config.yaml file on every master. Add the new etcd host to the list of the etcd servers
OpenShift Container Platform uses to store the data, and remove any failed etcd hosts:

etcdClientInfo:

ca: master.etcd-ca.crt

certFile: master.etcd-client.crt

keyFile: master.etcd-client.key

urls:
- https://master-0.example.com:2379
- https://master-1.example.com:2379
- https://master-2.example.com:2379
- https://etcd0.example.com:2379

2. Restart the master APl service:

® On every master:

master-restart api
master-restart controllers

' WARNING
A The number of etcd nodes must be odd, so you must add at least two

hosts.

3. If you use Flannel, modify the flanneld service configuration located at /etc/sysconfig/flanneld
on every OpenShift Container Platform host to include the new etcd host:

61

OpenShift Container Platform 3.10 Cluster Administration

FLANNEL_ETCD_ENDPOINTS=https://master-0.example.com:2379,https://master-
1.example.com:2379,https://master-2.example.com:2379,https://etcd0.example.com:2379

4. Restart the flanneld service:

I # systemctl restart flanneld.service

62

CHAPTER 5. MANAGING USERS

CHAPTER 5. MANAGING USERS

5.1. OVERVIEW

A user is an entity that interacts with the OpenShift Container Platform API. These can be a developer
for developing applications or an administrator for managing the cluster. Users can be assigned to
groups, which set the permissions applied to all the group’s members. For example, you can give API
access to a group, which give all members of the group API access.

This topic describes the management of user accounts, including how new user accounts are created in
OpenShift Container Platform and how they can be deleted.

5.2. CREATING A USER

The process for creating a user depends on the configured identity provider. By default, OpenShift
Container Platform uses the DenyAll identity provider, which denies access for all user names and
passwords.

The following process creates a new user, then adds a role to the user:

1. Create the user account depending on your identity provider. This can depend on the
mappingmethod used as part of the identity provider configuration.

2. Give the new user the desired role:

oc create clusterrolebinding <clusterrolebinding_name> \
--clusterrole=<role> --user=<user>

Where the --clusterrole option is the desired cluster role. For example, to give the new user
cluster-admin privileges, which gives the user access to everything within a cluster:

oc create clusterrolebinding registry-controller \
--clusterrole=cluster-admin --user=admin

For an explanation and list of roles, see the Cluster Roles and Local Roles section of the
Architecture Guide.

As a cluster administrator, you can also manage the access level of each user.

NOTE

Depending on the identity provider, and on the defined group structure, some roles may
be given to users automatically. See the Synching groups with LDAP section for more
information.

5.3. VIEWING USER AND IDENTITY LISTS

OpenShift Container Platform user configuration is stored in several locations within OpenShift
Container Platform. Regardless of the identity provider, OpenShift Container Platform internally stores
details like role-based access control (RBAC) information and group membership. To completely
remove user information, this data must be removed in addition to the user account.

63

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-core-concepts-projects-and-users
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#identity-providers_parameters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#identity-providers_parameters
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-syncing-groups-with-ldap

OpenShift Container Platform 3.10 Cluster Administration

In OpenShift Container Platform, two object types contain user data outside the identification provider:
user and identity.

To get the current list of users:

$ oc get user
NAME UID FULL NAME IDENTITIES
demo 75e4b80c-dbf1-11e5-8dc6-0e81e52cc949 htpasswd_auth:demo

To get the current list of identities:

$ oc get identity

NAME IDP NAME IDP USER NAME USER NAME USER UID
htpasswd_auth:demo htpasswd_auth demo demo 75e4b80c-dbf1-11e5-8dc6-
0e81e52cc949

Note the matching UID between the two object types. If you attempt to change the authentication
provider after starting to use OpenShift Container Platform, the user names that overlap will not work
because of the entries in the identity list, which will still point to the old authentication method.

5.4. CREATING GROUPS

While a user is an entity making requests to OpenShift Container Platform, users can be organized into
one or more groups made up from a set of users. Groups are useful for managing many users at one
time, such as for authorization policies, or to grant permissions to multiple users at once.

If your organization is using LDAP, you can synchronize any LDAP records to OpenShift Container
Platform so that you can configure groups on one place. This presumes that information about your
users is in an LDAP server. See the Synching groups with LDAP section for more information.

If you are not using LDAP, you can use the following procedure to manually create groups.

To create a new group:
I # oc adm groups new <group_name> <useri> <user2>
For example, to create the west groups and in it place the john and betty users:

I # oc adm groups new west john betty

To verify that the group has been created, and list the users associated with the group, run the
following:

oc get groups
NAME USERS
west john, betty

Next steps:

® Managing role bindings

5.5. MANAGING USER AND GROUP LABELS

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-syncing-groups-with-ldap

CHAPTER 5. MANAGING USERS

To add a label to a user or group:

I $ oc label user/<user_name> <label _name>

For example, if the user name is theuser and the label is level=gold:

I $ oc label user/theuser level=gold

To remove the label:

I $ oc label user/<user_name> <label _name>-

To show labels for a user or group:

I $ oc describe user/<user_name>

5.6. DELETING A USER
To delete a user:

1. Delete the user record:

$ oc delete user demo
user "demo" deleted

2. Delete the user identity.
The identity of the user is related to the identification provider you use. Get the provider name
from the user record in oc get user.

In this example, the identity provider name is htpasswd_auth. The command is:

oc delete identity htpasswd_auth:demo
identity "htpasswd_auth:demo" deleted

If you skip this step, the user will not be able to log in again.

After you complete these steps, a new account will be created in OpenShift Container Platform when
the user logs in again.

If your intention is to prevent the user from being able to log in again (for example, if an employee has
left the company and you want to permanently delete the account), you can also remove the user from

your authentication back end (like htpasswd, kerberos, or others) for the configured identity provider.

For example, if you are using htpasswd, delete the entry in the htpasswd file that is configured for
OpenShift Container Platform with the user name and password.

For external identification management like Lightweight Directory Access Protocol (LDAP) or Red Hat
Identity Management (IdM), use the user management tools to remove the user entry.

65

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 6. MANAGING PROJECTS

6.1. OVERVIEW
In OpenShift Container Platform, projects are used to group and isolate related objects. As an

administrator, you can give developers access to certain projects, allow them to create their own, and
give them administrative rights within individual projects.

6.2. SELF-PROVISIONING PROJECTS
You can allow developers to create their own projects. There is an endpoint that will provision a project

according to a template. The web console and oc new-project command use this endpoint when a
developer creates a new project.

6.2.1. Modifying the Template for New Projects

The APl server automatically provisions projects based on the template that is identified by the
projectRequestTemplate parameter of the master-config.yaml file. If the parameter is not defined, the
API server creates a default template that creates a project with the requested name, and assigns the
requesting user to the "admin” role for that project.

To create your own custom project template:

1. Start with the current default project template:

I $ oc adm create-bootstrap-project-template -o yaml > template.yami

2. Use a text editor to modify the template.yaml file by adding objects or modifying existing
objects.

3. Load the template:

I $ oc create -f template.yaml -n default

4. Modify the master-config.yaml file to reference the loaded template:

projectConfig:
projectRequestTemplate: "default/project-request”

When a project request is submitted, the API substitutes the following parameters into the template:

Parameter Description

PROJECT_NAME The name of the project. Required.
PROJECT_DISPLAYNAME The display name of the project. May be empty.
PROJECT_DESCRIPTION The description of the project. May be empty.

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-templates
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-projects
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#master-node-config-project-config

CHAPTER 6. MANAGING PROJECTS

Parameter Description

PROJECT_ADMIN_USER The username of the administrating user.

PROJECT_REQUESTING_USER The username of the requesting user.

Access to the APl is granted to developers with the self-provisioner role and the self-provisioners
cluster role binding. This role is available to all authenticated developers by default.

6.2.2. Disabling Self-provisioning

You can prevent an authenticated user group from self-provisioning new projects.

1. Login as a user with cluster-admin privileges.

2. Review the self-provisionersclusterrolebinding usage. Run the following command, then review
the subjects in the self-provisioners section.

$ oc describe clusterrolebinding.rbac self-provisioners

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: self-provisioner
Subjects:
Kind Name Namespace

Group system:authenticated:oauth

3. Remove the self-provisioner cluster role from the group system:authenticated:oauth.

If the self-provisioners cluster role binding binds only the self-provisioner role to the
system:authenticated:oauth group, run the following command:

I $ oc patch clusterrolebinding.rbac self-provisioners -p '{"subjects": null}’

If the self-provisioners clusterrolebinding binds the self-provisioner role to more users,
groups, or serviceaccounts than the system:authenticated:oauth group, run the following
command:

$ oc adm policy remove-cluster-role-from-group self-provisioner
system:authenticated:oauth

4. Set the projectRequestMessage parameter value in the master-config.yaml file to instruct
developers how to request a new project. This parameter value is a string that will be presented
to a user in the web console and command line when the user attempts to self-provision a
project. You might use one of the following messages:

To request a project, contact your system administrator at projecthame@example.com.

67

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles

OpenShift Container Platform 3.10 Cluster Administration

® Torequest a new project, fill out the project request form located at
https://internal.example.com/openshift-project-request.

Example YAML file

projectConfig:
ProjectRequestMessage: "message”

5. Edit the self-provisioners cluster role binding to prevent automatic updates to the role.
Automatic updates reset the cluster roles to the default state.

® To update the role binding from the command line:

i. Run the following command:

I $ oc edit clusterrolebinding.rbac self-provisioners

ii. Inthe displayed role binding, set the rbac.authorization.kubernetes.io/autoupdate
parameter value to false, as shown in the following example:

apiVersion: authorization.openshift.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "false”

® To update the role binding by using a single command:

$ oc patch clusterrolebinding.rbac self-provisioners -p { "metadata”: { "annotations": {
"rbac.authorization.kubernetes.io/autoupdate”: "false" } } }'

6.3. USING NODE SELECTORS

Node selectors are used in conjunction with labeled nodes to control pod placement.

NOTE

Labels can be assigned during cluster installation, or added to a node after installation .

6.3.1. Setting the Cluster-wide Default Node Selector

As a cluster administrator, you can set the cluster-wide default node selector to restrict pod placement
to specific nodes.

Edit the master configuration file at /etc/origin/master/master-config.yaml and add a value for a
default node selector. This is applied to the pods created in all projects without a specified
nodeSelector value:

projectConfig:

68

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#configuring-node-host-labels

CHAPTER 6. MANAGING PROJECTS

I defaultNodeSelector: "type=user-node,region=east"

Restart the OpenShift service for the changes to take effect:

master-restart api
master-restart controllers

6.3.2. Setting the Project-wide Node Selector

To create an individual project with a node selector, use the --node-selector option when creating a
project. For example, if you have an OpenShift Container Platform topology with multiple regions, you
can use a node selector to restrict specific OpenShift Container Platform projects to only deploy pods
onto nodes in a specific region.

The following creates a new project named myproject and dictates that pods be deployed onto nodes
labeled user-node and east:

$ oc adm new-project myproject \
--node-selector="type=user-node,region=east’'

Once this command is run, this becomes the administrator-set node selector for all pods contained in
the specified project.

NOTE

While the new-project subcommand is available for both oc adm and oc, the cluster
administrator and developer commands respectively, creating a new project with a node
selector is only available with the oc adm command. The new-project subcommand is
not available to project developers when self-provisioning projects.

Using the oc adm new-project command adds an annotation section to the project. You can edit a
project, and change the openshift.io/node-selector value to override the default:

metadata:
annotations:
openshift.io/node-selector: type=user-node,region=east

You can also override the default value for an existing project namespace by using the following
command:

oc patch namespace myproject -p \
'{"metadata":{"annotations":{"openshift.io/node-selector":"node-role.kubernetes.io/infra=true"}}}'

If openshift.io/node-selector is set to an empty string (oc adm new-project --node-selector=""), the
project will not have an administrator-set node selector, even if the cluster-wide default has been set.
This means that, as a cluster administrator, you can set a default to restrict developer projects to a
subset of nodes and still enable infrastructure or other projects to schedule the entire cluster.

6.3.3. Developer-specified Node Selectors

69

OpenShift Container Platform 3.10 Cluster Administration

OpenShift Container Platform developers can set a node selector on their pod configuration if they wish
to restrict nodes even further. This will be in addition to the project node selector, meaning that you can
still dictate node selector values for all projects that have a node selector value.

For example, if a project has been created with the above annotation (openshift.io/node-selector:
type=user-node,region=east) and a developer sets another node selector on a pod in that project, for
example clearance=classified, the pod will only ever be scheduled on nodes that have all three labels
(type=user-node, region=east, and clearance=classified). If they set region=west on a pod, their
pods would be demanding nodes with labels region=east and region=west, which cannot work. The
pods will never be scheduled, because labels can only be set to one value.

6.4. LIMITING NUMBER OF SELF-PROVISIONED PROJECTS PER USER

The number of self-provisioned projects requested by a given user can be limited with the
ProjectRequestLimitadmission control plug-in.

IMPORTANT

If your project request template was created in OpenShift Container Platform 3.1 or
earlier using the process described in Modifying the Template for New Projects, then the
generated template does not include the annotation openshift.io/requester:
${PROJECT_REQUESTING_USERY}, which is used for the ProjectRequestLimitConfig.
You must add the annotation.

In order to specify limits for users, a configuration must be specified for the plug-in within the master
configuration file (/etc/origin/master/master-config.yaml). The plug-in configuration takes a list of
user label selectors and the associated maximum project requests.

Selectors are evaluated in order. The first one matching the current user will be used to determine the
maximum number of projects. If a selector is not specified, a limit applies to all users. If a maximum
number of projects is not specified, then an unlimited number of projects are allowed for a specific
selector.

The following configuration sets a global limit of 2 projects per user while allowing 10 projects for users
with a label of levelzadvanced and unlimited projects for users with a label of level=admin.

admissionConfig:
pluginConfig:
ProjectRequestLimit:
configuration:
apiVersion: v1
kind: ProjectRequestLimitConfig
limits:
- selector:
level: admin ﬂ
- selector:
level: advanced 9
maxProjects: 10
- maxProjects: 2

For selector levelzadmin, no maxProjects is specified. This means that users with this label will
not have a maximum of project requests.

For selector levelzadvanced, a maximum number of 10 projects will be allowed.

o

70

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#assigning-pods-to-specific-nodes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-admission-controllers

CHAPTER 6. MANAGING PROJECTS

For the third entry, no selector is specified. This means that it will be applied to any user that
doesn't satisfy the previous two rules. Because rules are evaluated in order, this rule should be

NOTE

Managing User and Group Labels provides further guidance on how to add, remove, or
show labels for users and groups.

Once your changes are made, restart OpenShift Container Platform for the changes to take effect.

master-restart api
master-restart controllers

71

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 7. MANAGING PODS

7.1. OVERVIEW

This topic describes the management of pods, including limiting their run-once duration, and how much
bandwidth they can use.

7.2. VIEWING PODS

You can display usage statistics about pods, which provide the runtime environments for containers.
These usage statistics include CPU, memory, and storage consumption.

To view the usage statistics:

$ oc adm top pods

NAME CPU(cores) MEMORY (bytes)
hawkular-cassandra-1-pgx6l 219m 1240Mi
hawkular-metrics-rddnv 20m 1765Mi
heapster-n94r4 3m 37Mi

To view the usage statistics for pods with labels:

I $ oc adm top pod --selector="

You must choose the selector (label query) to filter on. Supports =, ==, and !=.

NOTE

You must have cluster-reader permission to view the usage statistics.

NOTE

Metrics must be installed to view the usage statistics.

7.3. LIMITING RUN-ONCE POD DURATION

OpenShift Container Platform relies on run-once pods to perform tasks such as deploying a pod or
performing a build. Run-once pods are pods that have a RestartPolicy of Never or OnFailure.

The cluster administrator can use the RunOnceDuration admission control plug-in to force a limit on
the time that those run-once pods can be active. Once the time limit expires, the cluster will try to
actively terminate those pods. The main reason to have such a limit is to prevent tasks such as builds to
run for an excessive amount of time.

7.3.1. Configuring the RunOnceDuration Plug-in

The plug-in configuration should include the default active deadline for run-once pods. This deadline is
enforced globally, but can be superseded on a per-project basis.

admissionConfig:
pluginConfig:
RunOnceDuration:

72

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#pods

CHAPTER 7. MANAGING PODS

configuration:
apiVersion: v1
kind: RunOnceDurationConfig
activeDeadlineSecondsOverride: 3600 ﬂ

ﬂ Specify the global default for run-once pods in seconds.

7.3.2. Specifying a Custom Duration per Project

In addition to specifying a global maximum duration for run-once pods, an administrator can add an
annotation (openshift.io/active-deadline-seconds-override) to a specific project to override the global
default.

® Foranew project, define the annotation in the project specification.yam!/ file.

apiVersion: vi
kind: Project
metadata:
annotations:
openshift.io/active-deadline-seconds-override: "1000" ﬂ
name: myproject

Overrides the default active deadline seconds for run-once pods to 1000 seconds. Note
that the value of the override must be specified in string form.

® Foran existing project,

o Run oc edit and add the openshift.io/active-deadline-seconds-override: 1000 annotation
in the editor.

I $ oc edit namespace <project-name>

Or

o Use the oc patch command:

$ oc patch namespace <project_name> -p '{"metadata":{"annotations":
{"openshift.io/active-deadline-seconds-override":"1000"}}}'

7.3.2.1. Deploying an Egress Router Pod

labels:
name: egress-1
annotations:

Example 7.1. Example Pod Definition for an Egress Router
pod.network.openshift.io/assign-macvlan: "true"

apiVersion: v1

kind: Pod

metadata:
name: egress-1

73

OpenShift Container Platform 3.10 Cluster Administration

spec:
containers:
- name: egress-router
image: openshift3/ose-egress-router
securityContext:
privileged: true
env:
- name: EGRESS_SOURCE @)
value: 192.168.12.99
- name: EGRESS_GATEWAYQ
value: 192.168.12.1
- name: EGRESS_DESTINATION 6
value: 203.0.113.25
nodeSelector:

site: springfield-1 ﬂ

IP address on the node subnet reserved by the cluster administrator for use by this pod.

Same value as the default gateway used by the node itself.

Connections to the pod are redirected to 203.0.113.25, with a source IP address of 192.168.12.99

The pod will only be deployed to nodes with the label site springfield-1.

0009

The pod.network.openshift.io/assign-macvlan annotation creates a Macvlan network interface on
the primary network interface, and then moves it into the pod’s network name space before starting the
egress-router container.

NOTE

Preserve the quotation marks around "true". Omitting them will result in errors.

The pod contains a single container, using the openshift3/ose-egress-routerimage, and that container
is run privileged so that it can configure the Macvlan interface and set up iptables rules.

The environment variables tell the egress-router image what addresses to use; it will configure the
Macvlan interface to use EGRESS_SOURCE as its IP address, with EGRESS_GATEWAY as its
gateway.

NAT rules are set up so that connections to any TCP or UDP port on the pod'’s cluster IP address are
redirected to the same port on EGRESS_DESTINATION.

If only some of the nodes in your cluster are capable of claiming the specified source IP address and

using the specified gateway, you can specify a nodeName or nodeSelector indicating which nodes are
acceptable.

7.3.2.2. Deploying an Egress Router Service

Though not strictly necessary, you normally want to create a service pointing to the egress router:

apiVersion: v1
kind: Service

74

CHAPTER 7. MANAGING PODS

metadata:
name: egress-1
spec:
ports:
- name: http
port: 80
- name: https
port: 443
type: ClusterlP
selector:
name: egress-1

Your pods can now connect to this service. Their connections are redirected to the corresponding ports
on the external server, using the reserved egress IP address.

7.3.3. Limiting Pod Access with Egress Firewall

As an OpenShift Container Platform cluster administrator, you can use egress policy to limit the external
addresses that some or all pods can access from within the cluster, so that:

® A pod can only talk to internal hosts, and cannot initiate connections to the public Internet.
Or,

® A pod canonly talk to the public Internet, and cannot initiate connections to internal hosts
(outside the cluster).
Or,

® A pod cannot reach specified internal subnets/hosts that it should have no reason to contact.

For example, you can configure projects with different egress policies, allowing <project A> access to a
specified IP range, but denying the same access to <project B>.

CAUTION

You must have the ovs-multitenant plug-in enabled in order to limit pod access via egress policy.

Project administrators can neither create EgressNetworkPolicy objects, nor edit the ones you create in
their project. There are also several other restrictions on where EgressNetworkPolicy can be created:

1. The default project (and any other project that has been made global via oc adm pod-network
make-projects-global) cannot have egress policy.

2. If you merge two projects together (via oc adm pod-network join-projects), then you cannot
use egress policy in any of the joined projects.

3. No project may have more than one egress policy object.

Violating any of these restrictions will result in broken egress policy for the project, and may cause all
external network traffic to be dropped.

7.3.3.1. Configuring Pod Access Limits

To configure pod access limits, you must use the o¢ command or the REST API. You can use oc¢
[create|replace|delete] to manipulate EgressNetworkPolicy objects. The api/swagger-spec/oapi-
vljson file has API-level details on how the objects actually work.

75

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-sdn

OpenShift Container Platform 3.10 Cluster Administration

To configure pod access limits:
1. Navigate to the project you want to affect.

2. Create a JSON file for the pod limit policy:
I # oc create -f <policy>.json

3. Configure the JSON file with policy details. For example:

{
"kind": "EgressNetworkPolicy",

"apiVersion": "v1",
"metadata”: {
"name": "default"
b
"spec": {
"egress": [
{
"type": "Allow",
"to": {
"cidrSelector": "1.2.3.0/24"
!

"type": "Allow",
lltoll: {
"dnsName": "www.foo.com"

}

lltypell: llDenyll,
lltoll: {
"cidrSelector": "0.0.0.0/0"

When the example above is added in a project, it allows traffic to IP range 1.2.3.0/24 and
domain name www.foo.com, but denies access to all other external IP addresses. (Traffic to
other pods is not affected because the policy only applies to external traffic.)

The rules in an EgressNetworkPolicy are checked in order, and the first one that matches
takes effect. If the three rules in the above example were reversed, then traffic would not be
allowed to 1.2.3.0/24 and www.foo.com because the 0.0.0.0/0 rule would be checked first, and
it would match and deny all traffic.

Domain name updates are reflected within 30 minutes. In the above example, suppose
www.foo.com resolved to 10.11.12.13, but later it was changed to 20.21.22.23. Then,
OpenShift Container Platform will take up to 30 minutes to adapt to these DNS updates.

7.4. LIMITING THE BANDWIDTH AVAILABLE TO PODS

76

CHAPTER 7. MANAGING PODS

You can apply quality-of-service traffic shaping to a pod and effectively limit its available bandwidth.
Egress traffic (from the pod) is handled by policing, which simply drops packets in excess of the
configured rate. Ingress traffic (to the pod) is handled by shaping queued packets to effectively handle
data. The limits you place on a pod do not affect the bandwidth of other pods.

To limit the bandwidth on a pod:

1. Write an object definition JSON file, and specify the data traffic speed using
kubernetes.io/ingress-bandwidth and kubernetes.io/egress-bandwidth annotations. For
example, to limit both pod egress and ingress bandwidth to 10M/s:

Limited Pod Object Definition

{
"kind": "Pod",
"spec": {
"containers": [
{
"image": "openshift/hello-openshift",
"name": "hello-openshift"
}
]
b
"apiVersion": "v1",
"metadata”: {

"name": "iperf-slow",

"annotations": {
"kubernetes.io/ingress-bandwidth": "10M",
"kubernetes.io/egress-bandwidth": "10M"

}

}
}

2. Create the pod using the object definition:

I oc create -f <file_or_dir_path>

7.5.SETTING POD DISRUPTION BUDGETS

A pod disruption budget is part of the Kubernetes API, which can be managed with oc commands like
other object types. They allow the specification of safety constraints on pods during operations, such as
draining a node for maintenance.

NOTE

Starting in OpenShift Container Platform 3.6, pod disruption budgets are now fully
supported.

PodDisruptionBudget is an AP object that specifies the minimum number or percentage of replicas
that must be up at a time. Setting these in projects can be helpful during node maintenance (such as
scaling a cluster down or a cluster upgrade) and is only honored on voluntary evictions (not on node
failures).

A PodDisruptionBudget object’s configuration consists of the following key parts:

77

http://kubernetes.io/docs/admin/disruptions/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cli_reference/#object-types

OpenShift Container Platform 3.10 Cluster Administration

® Alabel selector, which is a label query over a set of pods.

® An availability level, which specifies the minimum number of pods that must be available
simultaneously.

The following is an example of a PodDisruptionBudget resource:

apiVersion: policy/vibetai 0
kind: PodDisruptionBudget
metadata:

name: my-pdb
spec:

selector:

matchLabels:
foo: bar
minAvailable: 2 @)

Q PodDisruptionBudget is part of the policy/vibetal API group.

9 A label query over a set of resources. The result of matchLabels and matchExpressions are
logically conjoined.

9 The minimum number of pods that must be available simultaneously. This can be either an integer
or a string specifying a percentage (for example, 20%).

If you created a YAML file with the above object definition, you could add it to project with the following:
I $ oc create -f </path/to/file> -n <project_name>
You can check for pod disruption budgets across all projects with the following:

$ oc get poddisruptionbudget --all-namespaces

NAMESPACE NAME MIN-AVAILABLE SELECTOR
another-project another-pdb 4 bar=foo
test-project my-pdb 2 foo=bar

The PodDisruptionBudget is considered healthy when there are at least minAvailable pods running in
the system. Every pod above that limit can be evicted.

7.6.INJECTING INFORMATION INTO PODS USING POD PRESETS

A pod preset is an object that injects user-specified information into pods as they are created.

IMPORTANT

As of OpenShift Container Platform 3.7, pod presets are no longer supported.

Using pod preset objects you can inject:
® secret objects

o ConfigMap objects

78

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-secrets
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#consuming-configmap-in-pods

CHAPTER 7. MANAGING PODS

® storage volumes
® container volume mounts
® environment variables

Developers only need make sure the pod labels match the label selector on the PodPreset in order to
add all that information to the pod. The label on a pod associates the pod with one or more pod preset
objects that have a matching label selectors.

Using pod presets, a developer can provision pods without needing to know the details about the
services the pod will consume. An administrator can keep configuration items of a service invisible from
a developer without preventing the developer from deploying pods. For example, an administrator can
create a pod preset that provides the name, user name, and password for a database through a secret
and the database port through environment variables. The pod developer only needs to know the label
to use to include all the information in pods. A developer can also create pod presets and perform all the
same tasks. For example, the developer can create a preset that injects environment variable
automatically into multiple pods.

NOTE

- The Pod Preset feature is available only if the Service Catalog has been installed.

You can exclude specific pods from being injected using the
podpreset.admission.kubernetes.io/exclude: "true" parameter in the pod specification. See the
example pod specification.

For more information, see Injecting Information into Pods Using Pod Presets.

7.7. CONFIGURING CRITICAL PODS

There are a number of core components, such as Heapster and DNS, that are critical to a fully functional
cluster, but, run on a regular cluster node rather than the master. A cluster may stop working properly if
a critical add-on is evicted. You can make a pod critical by adding the
scheduler.alpha.kubernetes.io/critical-pod annotation to the pod specification so that the
descheduler will not remove these pods.

spec:
template:
metadata:
name: critical-pod
annotations:
scheduler.alpha.kubernetes.io/critical-pod: "true"

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-volumes
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#services
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-service-catalog
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#sample-pod-spec-exclude-preset
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-pod-presets

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 8. MANAGING NETWORKING

8.1. OVERVIEW

This topic describes the management of the overall cluster network, including project isolation and
outbound traffic control.

Pod-level networking features, such as per-pod bandwidth limits, are discussed in Managing Pods.

8.2. MANAGING POD NETWORKS

When your cluster is configured to use the ovs-multitenant SDN plug-in, you can manage the separate
pod overlay networks for projects using the administrator CLI. See the Configuring the SDN section for
plug-in configuration steps, if necessary.

8.2.1. Joining Project Networks

To join projects to an existing project network:

I $ oc adm pod-network join-projects --to=<project1> <project2> <project3>

In the above example, all the pods and services in <project2> and <project3> can now access any pods
and services in <project1> and vice versa. Services can be accessed either by IP or fully-qualified DNS

name (<service>.<pod_namespaces.svc.cluster.local). For example, to access a service named dbin
a project myproject, use db.myproject.svc.cluster.local.

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option.

To verify the networks you have joined together:

I $ oc get netnamespaces

Then look at the NETID column. Projects in the same pod-network will have the same NetID.

8.3.ISOLATING PROJECT NETWORKS

To isolate the project network in the cluster and vice versa, run:

I $ oc adm pod-network isolate-projects <project1> <project2>

In the above example, all of the pods and services in <project1> and <project2> can not access any
pods and services from other non-global projects in the cluster and vice versa.

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option.

8.3.1. Making Project Networks Global

To allow projects to access all pods and services in the cluster and vice versa:

I $ oc adm pod-network make-projects-global <project1> <project2>

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-networking
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-sdn
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-sdn

CHAPTER 8. MANAGING NETWORKING

In the above example, all the pods and services in <project1> and <project2> can now access any pods
and services in the cluster and vice versa.

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option.

8.4. DISABLING HOST NAME COLLISION PREVENTION FOR ROUTES
AND INGRESS OBJECTS

In OpenShift Container Platform, host name collision prevention for routes and ingress objects is
enabled by default. This means that users without the cluster-admin role can set the host name in a
route or ingress object only on creation and cannot change it afterwards. However, you can relax this
restriction on routes and ingress objects for some or all users.

' WARNING
A Because OpenShift Container Platform uses the object creation timestamp to

determine the oldest route or ingress object for a given host name, a route or
ingress object can hijack a host name of a newer route if the older route changes its
host name, or if an ingress object is introduced.

As an OpenShift Container Platform cluster administrator, you can edit the host name in a route even
after creation. You can also create a role to allow specific users to do so:

I $ oc create clusterrole route-editor --verb=update --resource=routes.route.openshift.io/custom-host

You can then bind the new role to a user:

I $ oc adm policy add-cluster-role-to-user route-editor user

You can also disable host name collision prevention for ingress objects. Doing so lets users without the
cluster-admin role edit a host name for ingress objects after creation. This is useful to OpenShift
Container Platform installations that depend upon Kubernetes behavior, including allowing the host
names in ingress objects be edited.

1. Add the following to the master.yaml file:

admissionConfig:
pluginConfig:
openshift.io/IngressAdmission:
configuration:
apiVersion: v1
allowHostnameChanges: true
kind: IngressAdmissionConfig
location: ™"

2. Restart the master services for the changes to take effect:

81

OpenShift Container Platform 3.10 Cluster Administration

$ master-restart api
$ master-restart controllers

8.5. CONTROLLING EGRESS TRAFFIC

As a cluster administrator you can allocate a number of static IP addresses to a specific node at the host
level. If an application developer needs a dedicated IP address for their application service, they can
request one during the process they use to ask for firewall access. They can then deploy an egress
router from the developer’s project, using a nodeSelector in the deployment configuration to ensure
that the pod lands on the host with the pre-allocated static IP address.

The egress pod’s deployment declares one of the source IPs, the destination IP of the protected
service, and a gateway IP to reach the destination. After the pod is deployed, you can create a service to
access the egress router pod, then add that source IP to the corporate firewall. The developer then has
access information to the egress router service that was created in their project, for example,
service.project.cluster.domainname.com.

When the developer needs to access the external, firewalled service, they can call out to the egress
router pod’s service (service.project.cluster.domainname.com) in their application (for example, the
JDBC connection information) rather than the actual protected service URL.

You can also assign static IP addresses to projects, ensuring that all outgoing external connections from
the specified project have recognizable origins. This is different from the default egress router, which is
used to send traffic to specific destinations.

See the Enabling Fixed IPs for External Project Traffic section for more information.
As an OpenShift Container Platform cluster administrator, you can control egress traffic in these ways:

Firewall

Using an egress firewall allows you to enforce the acceptable outbound traffic policies, so that
specific endpoints or IP ranges (subnets) are the only acceptable targets for the dynamic endpoints
(pods within OpenShift Container Platform) to talk to.

Router

Using an egress router allows you to create identifiable services to send traffic to certain
destinations, ensuring those external destinations treat traffic as though it were coming from a
known source. This helps with security, because it allows you to secure an external database so that
only specific pods in a namespace can talk to a service (the egress router), which proxies the traffic
to your database.

iptables

In addition to the above OpenShift Container Platform-internal solutions, it is also possible to create
iptables rules that will be applied to outgoing traffic. These rules allow for more possibilities than the
egress firewall, but cannot be limited to particular projects.

8.6. USING AN EGRESS FIREWALL TO LIMIT ACCESS TO EXTERNAL
RESOURCES

As an OpenShift Container Platform cluster administrator, you can use egress firewall policy to limit the
external IP addresses that some or all pods can access from within the cluster. Egress firewall policy

supports the following scenarios:

® A pod can only connect to internal hosts, and cannot initiate connections to the public Internet.

82

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-integrating-external-services

CHAPTER 8. MANAGING NETWORKING

® A pod can only connect to the public Internet, and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

® A pod cannot reach specified internal subnets or hosts that should be unreachable.
Egress policies can be set by specifying an IP address range in CIDR format or by specifying a DNS
name. For example, you can allow <project_A> access to a specified IP range but deny the same access

to <project_Bs>. Alternatively, you can restrict application developers from updating from (Python) pip
mirrors, and force updates to only come from approved sources.

CAUTION

You must have the ovs-multitenant or ovs-networkpolicy plug-in enabled in order to limit pod access
via egress policy.

If you are using the ovs-networkpolicy plug-in, egress policy is compatible with only one policy per
project, and will not work with projects that share a network, such as global projects.

Project administrators can neither create EgressNetworkPolicy objects, nor edit the ones you create in
their project. There are also several other restrictions on where EgressNetworkPolicy can be created:

® The default project (and any other project that has been made global via oc adm pod-network
make-projects-global) cannot have egress policy.

e |f you merge two projects together (via oc adm pod-network join-projects), then you cannot
use egress policy in any of the joined projects.

® No project may have more than one egress policy object.

Violating any of these restrictions results in broken egress policy for the project, and may cause all
external network traffic to be dropped.

Use the oc command or the REST API to configure egress policy. You can use oc
[create|replace|delete] to manipulate EgressNetworkPolicy objects. The api/swagger-spec/oapi-
vljson file has API-level details on how the objects actually work.

To configure egress policy:

1. Navigate to the project you want to affect.

2. Create a JSON file with the policy configuration you want to use, as in the following example:

"kind": "EgressNetworkPolicy",
"apiVersion": "v1",

"metadata”: {
"name": "default"
2
"spec": {
"egress": [
{
"type": "Allow",
"to": {

"cidrSelector": "1.2.3.0/24"

}
b

83

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#migrating-between-sdn-plugins

OpenShift Container Platform 3.10 Cluster Administration

{
"type": "Allow",
"to": {
"dnsName": "www.foo.com"
}
b
{
"type": "Deny",
"to": {
"cidrSelector": "0.0.0.0/0"
}

When the example above is added to a project, it allows traffic to IP range 1.2.3.0/24 and
domain name www.foo.com, but denies access to all other external IP addresses. Traffic to
other pods is not affected because the policy only applies to external traffic.

The rules in an EgressNetworkPolicy are checked in order, and the first one that matches
takes effect. If the three rules in the above example were reversed, then traffic would not be
allowed to 1.2.3.0/24 and www.foo.com because the 0.0.0.0/0 rule would be checked first, and
it would match and deny all traffic.

Domain name updates are polled based on the TTL (time to live) value of the domain returned
by the local non-authoritative servers. The pod should also resolve the domain from the same
local nameservers when necessary, otherwise the IP addresses for the domain perceived by the
egress network policy controller and the pod will be different, and the egress network policy may
not be enforced as expected. Since egress network policy controller and pod are
asynchronously polling the same local nameserver, there could be a race condition where pod
may get the updated IP before the egress controller. Due to this current limitation, domain

name usage in EgressNetworkPolicy is only recommended for domains with infrequent IP
address changes.

NOTE

The egress firewall always allows pods access to the external interface of the node the
pod is on for DNS resolution. If your DNS resolution is not handled by something on the
local node, then you will need to add egress firewall rules allowing access to the DNS
server's IP addresses if you are using domain names in your pods.

1. Use the JSON file to create an EgressNetworkPolicy object:

I $ oc create -f <policy>.json

CAUTION
Exposing services by creating routes will ignore EgressNetworkPolicy. Egress network policy service
endpoint filtering is done at the node kubeproxy. When the router is involved, kubeproxy is bypassed

and egress network policy enforcement is not applied. Administrators can prevent this bypass by limiting
access to create routes.

8.6.1. Using an Egress Router to Allow External Resources to Recognize Pod Traffic

84

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#creating-routes

CHAPTER 8. MANAGING NETWORKING

The OpenShift Container Platform egress router runs a service that redirects traffic to a specified
remote server, using a private source IP address that is not used for anything else. The service allows
pods to talk to servers that are set up to only allow access from whitelisted IP addresses.

IMPORTANT

The egress router is not intended for every outgoing connection. Creating large numbers
of egress routers can push the limits of your network hardware. For example, creating an
egress router for every project or application could exceed the number of local MAC
addresses that the network interface can handle before falling back to filtering MAC
addresses in software.

IMPORTANT

Currently, the egress router is not compatible with Amazon AWS, Azure Cloud, or any
other cloud platform that does not support layer 2 manipulations due to their
incompatibility with macvlan traffic.

Deployment Considerations

The Egress router adds a second IP address and MAC address to the node’s primary network interface.
If you are not running OpenShift Container Platform on bare metal, you may need to configure your
hypervisor or cloud provider to allow the additional address.

Red Hat OpenStack Platform

If you are deploying OpenShift Container Platform on Red Hat OpenStack Platform, you need to
whitelist the IP and MAC addresses on your OpenStack environment, otherwise communication will
fail:

neutron port-update $neutron_port_uuid \
--allowed_address_pairs list=true \
type=dict mac_address=<mac_address>,ip_address=<ip_address>

Red Hat Enterprise Virtualization

If you are using Red Hat Enterprise Virtualization, you should set
EnableMACAnNtiSpoofingFilterRules to false.

VMware vSphere

If you are using VMware vSphere, see the VMWare documentation for securing vSphere standard
switches. View and change VMWare vSphere default settings by selecting the host's virtual switch
from the vSphere Web Client.
Specifically, ensure that the following are enabled:
® MAC Address Changes
® Forged Transits
® Promiscuous Mode Operation

Egress Router Modes

The egress router can run in three different modes: redirect mode, HTTP proxy mode and DNS proxy
mode. Redirect mode works for all services except for HTTP and HTTPS. For HTTP and HTTPS services,

85

https://access.redhat.com/solutions/2803331
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Virtualization/3.2/html/Administration_Guide/Red_Hat_Enterprise_Virtualization_Manager_configuration_options_explanations_limitations_and_best_practices.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-3507432E-AFEA-4B6B-B404-17A020575358.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-942BD3AA-731B-4A05-8196-66F2B4BF1ACB.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-7DC6486F-5400-44DF-8A62-6273798A2F80.html
https://docs.vmware.com/en/VMware-vSphere/6.0/com.vmware.vsphere.security.doc/GUID-92F3AB1F-B4C5-4F25-A010-8820D7250350.html

OpenShift Container Platform 3.10 Cluster Administration

use HTTP proxy mode. For TCP-based services with IP addresses or domain names, use DNS proxy
mode.

8.6.1.1. Deploying an Egress Router Pod in Redirect Mode

In redirect mode, the egress router sets up iptables rules to redirect traffic from its own IP address to
one or more destination IP addresses. Client pods that want to make use of the reserved source IP
address must be modified to connect to the egress router rather than connecting directly to the

destination IP.

86

2]

1. Create a pod configuration using the following:

apiVersion: v1i
kind: Pod
metadata:
name: egress-1
labels:
name: egress-1
annotations:
pod.network.openshift.io/assign-macvlan: "true"
spec:
initContainers:
- name: egress-router
image: registry.access.redhat.com/openshift3/ose-egress-router
securityContext:
privileged: true
env:
- name: EGRESS_SOURCE @)
value: 192.168.12.99/24
- name: EGRESS_GATEWAY 6
value: 192.168.12.1
- name: EGRESS_DESTINATION ﬂ
value: 203.0.113.25
- name: EGRESS_ROUTER_MODE 9
value: init
containers:
- name: egress-router-wait
image: registry.access.redhat.com/openshift3/ose-pod
nodeSelector:

site: springfield-1 G

ﬂ Creates a Macvlan network interface on the primary network interface, and moves it into
the pod's network project before starting the egress-router container. Preserve the
quotation marks around "true". Omitting them results in errors. To create the Macvlan
interface on a network interface other than the primary one, set the annotation value to

the name of that interface. For example, eth1.

EGRESS_GATEWAY variable and no other hosts on the subnet.

9 Same value as the default gateway used by the node.

IP address from the physical network that the node is on and is reserved by the cluster
administrator for use by this pod. Optionally, you can include the subnet length, the /24
suffix, so that a proper route to the local subnet can be set up. If you do not specify a
subnet length, then the egress router can access only the host specified with the

CHAPTER 8. MANAGING NETWORKING

Q The external server to direct traffic to. Using this example, connections to the pod are
redirected to 203.0.113.25, with a source IP address of 192.168.12.99.

9 This tells the egress router image that it is being deployed as an "init container”. Previous
versions of OpenShift Container Platform (and the egress router image) did not support
this mode and had to be run as an ordinary container.

6 The pod is only deployed to nodes with the label site=springfield-1.

2. Create the pod using the above definition:
I $ oc create -f <pod_name>.json

To check to see if the pod has been created:
I $ oc get pod <pod_name>

3. Ensure other pods can find the pod'’s IP address by creating a service to point to the egress
router:

apiVersion: vi
kind: Service
metadata:
name: egress-1
spec:
ports:
- name: http
port: 80
- name: https
port: 443
type: ClusterIP
selector:
name: egress-1

Your pods can now connect to this service. Their connections are redirected to the
corresponding ports on the external server, using the reserved egress IP address.

The egress router setup is performed by an "init container” created from the openshift3/ose-egress-
routerimage, and that container is run privileged so that it can configure the Macvlan interface and set
up iptables rules. After it finishes setting up the iptables rules, it exits and the openshift3/ose-pod
container will run (doing nothing) until the pod is killed.

The environment variables tell the egress-routerimage what addresses to use; it will configure the
Macvlan interface to use EGRESS_SOURCE as its IP address, with EGRESS_GATEWAY as its

gateway.

NAT rules are set up so that connections to any TCP or UDP port on the pod's cluster IP address are
redirected to the same port on EGRESS_DESTINATION.

If only some of the nodes in your cluster are capable of claiming the specified source IP address and
using the specified gateway, you can specify a nodeName or nodeSelector indicating which nodes are
acceptable.

8.6.1.2. Redirecting to Multiple Destinations

87

OpenShift Container Platform 3.10 Cluster Administration

In the previous example, connections to the egress pod (or its corresponding service) on any port are
redirected to a single destination IP. You can also configure different destination IPs depending on the

port:

apiVersion: vi
kind: Pod
metadata:
name: egress-multi
labels:
name: egress-multi
annotations:
pod.network.openshift.io/assign-macvlan: "true"
spec:
initContainers:
- name: egress-router
image: registry.access.redhat.com/openshift3/ose-egress-router
securityContext:
privileged: true
env:
- name: EGRESS_SOURCE @)
value: 192.168.12.99/24
- name: EGRESS_GATEWAY
value: 192.168.12.1
- name: EGRESS_DESTINATION g
value: |
80 tcp 203.0.113.25
8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443
203.0.113.27
- name: EGRESS_ROUTER_MODE
value: init
containers:
- name: egress-router-wait
image: registry.access.redhat.com/openshift3/ose-pod

ﬂ IP address from the physical network that the node is on and is reserved by the cluster
administrator for use by this pod. Optionally, you can include the subnet length, the /24 suffix, so
that a proper route to the local subnet can be set up. If you do not specify a subnet length, then the
egress router can access only the host specified with the EGRESS_GATEWAY variable and no

other hosts on the subnet.

EGRESS_DESTINATION uses YAML syntax for its values, and can be a multi-line string. See the
following for more information.

Each line of EGRESS_DESTINATION can be one of three types:

® <port> <protocol> <IP_address> - This says that incoming connections to the given <port>
should be redirected to the same port on the given <IP_address>. <protocols is either tcp or
udp. In the example above, the first line redirects traffic from local port 80 to port 80 on

203.0.113.25.
® <port> <protocol> <IP_address> <remote_port> - As above, except that the connection is

redirected to a different <remote_port> on <IP_address>. In the example above, the second
and third lines redirect local ports 8080 and 8443 to remote ports 80 and 443 on 203.0.113.26.

88

CHAPTER 8. MANAGING NETWORKING

o <fallback_IP_address> - If the last line of EGRESS_DESTINATION is a single IP address, then
any connections on any other port will be redirected to the corresponding port on that IP
address (eg, 203.0.113.27 in the example above). If there is no fallback IP address then
connections on other ports would simply be rejected.)

8.6.1.3. Using a ConfigMap to specify EGRESS_DESTINATION

For a large or frequently-changing set of destination mappings, you can use a ConfigMap to externally
maintain the list, and have the egress router pod read it from there. This comes with the advantage of
project administrators being able to edit the ConfigMap, whereas they may not be able to edit the Pod
definition directly, because it contains a privileged container.

1. Create a file containing the EGRESS_DESTINATION data:

$ cat my-egress-destination.txt
Egress routes for Project "Test", version 3

80 tcp 203.0.113.25

8080 tcp 203.0.113.26 80
8443 tcp 203.0.113.26 443

Fallback
203.0.113.27

Note that you can put blank lines and comments into this file

2. Create a ConfigMap object from the file:

$ oc delete configmap egress-routes --ignore-not-found
$ oc create configmap egress-routes \
--from-file=destination=my-egress-destination.txt

Here egress-routes is the name of the ConfigMap object being created and my-egress-
destination.txt is the name of the file the data is being read from.

3. Create a egress router pod definition as above, but specifying the ConfigMap for
EGRESS_DESTINATION in the environment section:

env:
- name: EGRESS_SOURCE @)
value: 192.168.12.99/24
- name: EGRESS_GATEWAY
value: 192.168.12.1
- name: EGRESS_DESTINATION
valueFrom:
configMapKeyRef:
name: egress-routes
key: destination
- name: EGRESS_ROUTER_MODE
value: init

89

OpenShift Container Platform 3.10 Cluster Administration

o IP address from the physical network that the node is on and is reserved by the cluster
administrator for use by this pod. Optionally, you can include the subnet length, the /24
suffix, so that a proper route to the local subnet can be set up. If you do not specify a
subnet length, then the egress router can access only the host specified with the
EGRESS_GATEWAY variable and no other hosts on the subnet.

NOTE

The egress router does not automatically update when the ConfigMap changes. Restart
the pod to get updates.

8.6.1.4. Deploying an Egress Router HTTP Proxy Pod

In HTTP proxy mode, the egress router runs as an HTTP proxy on port 8080. This only works for clients
talking to HTTP or HTTPS-based services, but usually requires fewer changes to the client pods to get
them to work. Programs can be told to use an HTTP proxy by setting an environment variable.

1. Create the pod using the following as an example:

apiVersion: vi
kind: Pod
metadata:
name: egress-http-proxy
labels:
name: egress-http-proxy
annotations:
pod.network.openshift.io/assign-macvlan: "true"
spec:
initContainers:
- name: egress-router-setup
image: registry.access.redhat.com/openshift3/ose-egress-router
securityContext:
privileged: true
env:
- name: EGRESS_SOURCE @)
value: 192.168.12.99/24
- name: EGRESS_GATEWAY 6
value: 192.168.12.1
- name: EGRESS_ROUTER_MODE ﬂ
value: http-proxy
containers:
- name: egress-router-proxy
image: registry.access.redhat.com/openshift3/ose-egress-http-proxy
env:
- name: EGRESS_HTTP_PROXY_DESTINATION 6
value: |
I*.example.com
1192.168.1.0/24

*

ﬂ Creates a Macvlan network interface on the primary network interface, then moves it into
the pod's network project before starting the egress-router container. Preserve the
quotation marks around "true". Omitting them results in errors.

90

CHAPTER 8. MANAGING NETWORKING

IP address from the physical network that the node is on and is reserved by the cluster
administrator for use by this pod. Optionally, you can include the subnet length, the /24

Same value as the default gateway used by the node itself.

This tells the egress router image that it is being deployed as part of an HTTP proxy, and so
it should not set up iptables redirecting rules.

A string or YAML multi-line string specifying how to configure the proxy. Note that this is
specified as an environment variable in the HTTP proxy container, not with the other
environment variables in the init container.

® 00 o

You can specify any of the following for the EGRESS_HTTP_PROXY_DESTINATION value.
You can also use *, meaning "allow connections to all remote destinations". Each line in the
configuration specifies one group of connections to allow or deny:

® AnIP address (eg, 192.168.1.1) allows connections to that IP address.
® A CIDRrange (eg, 192.168.1.0/24) allows connections to that CIDR range.
® A host name (eg, www.example.com) allows proxying to that host.

® A domain name preceded by *. (eg, *.example.com) allows proxying to that domain and all
of its subdomains.

e Al followed by any of the above denies connections rather than allowing them

e |[f the last line is *, then anything that hasn't been denied will be allowed. Otherwise, anything
that hasn't been allowed will be denied.

2. Ensure other pods can find the pod'’s IP address by creating a service to point to the egress
router:

apiVersion: vi
kind: Service
metadata:
name: egress-1
spec:
ports:
- name: http-proxy
port: 8080
type: ClusterIP
selector:
name: egress-1

ﬂ Ensure the http port is always set to 8080.

3. Configure the client pod (not the egress proxy pod) to use the HTTP proxy by setting the
http_proxy or https_proxy variables:

env:
- name: http_proxy
value: http://egress-1:8080/ ﬂ

o1

OpenShift Container Platform 3.10 Cluster Administration

- name: https_proxy
value: http://egress-1:8080/

ﬂ The service created in step 2.

NOTE

Using the http_proxy and https_proxy environment variables is not necessary
for all setups. If the above does not create a working setup, then consult the
documentation for the tool or software you are running in the pod.

You can also specify the EGRESS_HTTP_PROXY_DESTINATION using a ConfigMap, similarly to the
redirecting egress router example above.

8.6.1.5. Deploying an Egress Router DNS Proxy Pod

In DNS proxy mode, the egress router runs as a DNS proxy for TCP-based services from its own IP
address to one or more destination IP addresses. Client pods that want to make use of the reserved,
source IP address must be modified to connect to the egress router rather than connecting directly to
the destination IP. This ensures that external destinations treat traffic as though it were coming from a

known source.

1. Create the pod using the following as an example:

apiVersion: vi
kind: Pod
metadata:
name: egress-dns-proxy
labels:
name: egress-dns-proxy
annotations:
pod.network.openshift.io/assign-macvlan: "true"
spec:
initContainers:
- name: egress-router-setup
image: registry.access.redhat.com/openshift3/ose-egress-router
securityContext:
privileged: true
env:
- name: EGRESS_SOURCE @)
value: 192.168.12.99/24
- name: EGRESS_GATEWAY 6
value: 192.168.12.1
- name: EGRESS_ROUTER_MODE ﬂ
value: dns-proxy
containers:
- name: egress-dns-proxy
image: registry.access.redhat.com/openshift3/ose-egress-dns-proxy
env:
- name: EGRESS_DNS_PROXY_DEBUG 6
value: "1"
- name: EGRESS_DNS_PROXY_DESTINATION G

92

CHAPTER 8. MANAGING NETWORKING

value: |
Egress routes for Project "Foo", version 5

80 203.0.113.25
100 example.com
8080 203.0.113.26 80

8443 foobar.com 443

Q Using pod.network.openshift.io/assign-macvlan annotation creates a Macvlan network
interface on the primary network interface, then moves it into the pod’s network name
space before starting the egress-router-setup container. Preserve the quotation marks
around "true". Omitting them results in errors.

9 IP address from the physical network that the node is on and is reserved by the cluster
administrator for use by this pod. Optionally, you can include the subnet length, the /24
suffix, so that a proper route to the local subnet can be set up. If you do not specify a
subnet length, then the egress router can access only the host specified with the
EGRESS_GATEWAY variable and no other hosts on the subnet.

Same value as the default gateway used by the node itself.

This tells the egress router image that it is being deployed as part of a DNS proxy, and so it

should not set up iptables redirecting rules.
g Optional. Setting this variable will display DNS proxy log output on stdout.

This uses the YAML syntax for a multi-line string. See below for details.

NOTE

Each line of EGRESS_DNS_ PROXY_DESTINATION can be set in one of two
ways:

® <port> <remote_address> - This says that incoming connections to the
given <port> should be proxied to the same TCP port on the given
<remote_address>. <remote_address> can be an IP address or DNS name.
In case of DNS name, DNS resolution is done at runtime. In the example
above, the first line proxies TCP traffic from local port 80 to port 80 on
203.0.113.25. The second line proxies TCP traffic from local port 100 to port
100 on example.com.

® <port> <remote_address> <remote_port> - As above, except that the
connection is proxied to a different <remote_port> on <remote_address>.
In the example above, the third line proxies local port 8080 to remote port
80 on 203.0.113.26 and the fourth line proxies local port 8443 to remote port
443 on foobar.com.

. Ensure other pods can find the pod'’s IP address by creating a service to point to the egress
router:

apiVersion: vi
kind: Service

93

OpenShift Container Platform 3.10 Cluster Administration

You can also specify the EGRESS_DNS_PROXY_DESTINATION using a ConfigMap, similarly to the

metadata:

name: egress-dns-svc

spec:

ports:

- hame: con1
protocol: TCP
port: 80
targetPort: 80

- hame: con2
protocol: TCP
port: 100
targetPort: 100

- name: con3
protocol: TCP
port: 8080
targetPort: 8080

- name: con4
protocol: TCP
port: 8443
targetPort: 8443

type: ClusterlP

selector:
name: egress-dns-proxy

Pods can now connect to this service. Their connections are proxied to the corresponding ports
on the external server, using the reserved egress IP address.

redirecting egress router example above.

8.6.1.6. Enabling Failover for Egress Router Pods

Using a replication controller, you can ensure that there is always one copy of the egress router pod in

order to prevent downtime.

94

1. Create a replication controller configuration file using the following:

apiVersion: vi
kind: ReplicationController
metadata:
name: egress-demo-controller
spec:
replicas: 1 ﬂ
selector:
name: egress-demo
template:
metadata:
name: egress-demo
labels:
name: egress-demo
annotations:

pod.network.openshift.io/assign-macvlan: "true"

spec:
initContainers:
- name: egress-demo-init

image: registry.access.redhat.com/openshift3/ose-egress-router

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-configmaps

CHAPTER 8. MANAGING NETWORKING

env:
- name: EGRESS_SOURCE @
value: 192.168.12.99/24
- name: EGRESS_GATEWAY
value: 192.168.12.1
- name: EGRESS_DESTINATION
value: 203.0.113.25
- name: EGRESS_ROUTER_MODE
value: init
securityContext:
privileged: true
containers:
- name: egress-demo-wait
image: registry.access.redhat.com/openshift3/ose-pod
nodeSelector:
site: springfield-1

ﬂ Ensure replicas is set to 1, because only one pod can be using a given EGRESS_SOURCE
value at any time. This means that only a single copy of the router will be running, on a
node with the label site=springfield-1.

9 IP address from the physical network that the node is on and is reserved by the cluster
administrator for use by this pod. Optionally, you can include the subnet length, the /24
suffix, so that a proper route to the local subnet can be set up. If you do not specify a
subnet length, then the egress router can access only the host specified with the
EGRESS_GATEWAY variable and no other hosts on the subnet.

2. Create the pod using the definition:

I $ oc create -f <replication_controller>.json
3. To verify, check to see if the replication controller pod has been created:

I $ oc describe rc <replication_controller>

8.6.2. Using iptables Rules to Limit Access to External Resources

Some cluster administrators may want to perform actions on outgoing traffic that do not fit within the
model of EgressNetworkPolicy or the egress router. In some cases, this can be done by creating
iptables rules directly.

For example, you could create rules that log traffic to particular destinations, or to prevent more than a
certain number of outgoing connections per second.

OpenShift Container Platform does not provide a way to add custom iptables rules automatically, but it
does provide a place where such rules can be added manually by the administrator. Each node, on
startup, will create an empty chain called OPENSHIFT-ADMIN-OUTPUT-RULES in the filter table
(assuming that the chain does not already exist). Any rules added to that chain by an administrator will
be applied to all traffic going from a pod to a destination outside the cluster (and not to any other
traffic).

There are a few things to watch out for when using this functionality:

95

OpenShift Container Platform 3.10 Cluster Administration

1. Itis up to you to ensure that rules get created on each node; OpenShift Container Platform

does not provide any way to make that happen automatically.

2. The rules are not applied to traffic that exits the cluster via an egress router, and they run after

EgressNetworkPolicy rules are applied (and so will not see traffic that is denied by an
EgressNetworkPolicy).

3. The handling of connections from pods to nodes or pods to the master is complicated, because

nodes have both "external" IP addresses and "internal” SDN IP addresses. Thus, some pod-to-
node/master traffic may pass through this chain, but other pod-to-node/master traffic may
bypass it.

8.7. ENABLING STATIC IPS FOR EXTERNAL PROJECT TRAFFIC

As a cluster administrator, you can assign specific, static IP addresses to projects, so that traffic is
externally easily recognizable. This is different from the default egress router, which is used to send
traffic to specific destinations.

Recognizable IP traffic increases cluster security by ensuring the origin is visible. Once enabled, all
outgoing external connections from the specified project will share the same, fixed source IP, meaning
that any external resources can recognize the traffic.

Unlike the egress router, this is subject to EgressNetworkPolicy firewall rules.

To enable static source IPs:

96

1. Update the NetNamespace with the desired IP:

I $ oc patch netnamespace <project_name> -p '{"egressIPs": ["<IP_address>"]}'

For example, to assign the MyProject project to an IP address of 192.168.1.100:

I $ oc patch netnamespace MyProject -p '{"egressIPs": ['192.168.1.100"]}'

The egresslIPs field is an array. While in earlier releases it could only contain a single IP address,
as of OpenShift Container Platform version 3.10 egresslIPs can be set to two or more IP
addresses on different nodes to provide high availability. If multiple egress IP addresses are set,
pods use the first IP in the list for egress, but if the node hosting that IP address fails, pods will
switch to using the next IP in the list after a short delay.

. Manually assign the egress IP to the desired node hosts. Set the egressIPs field on the

HostSubnet object on the node host. Include as many IPs as you want to assign to that node
host:

$ oc patch hostsubnet <node_name> -p \
'{"egressIPs": ['<IP_address_1>", "<IP_address_2>"]}'

For example, to say that node1 should have the egress IPs 192.168.1.100, 192.168.1.101, and
192.168.1.102:

$ oc patch hostsubnet node1 -p \
'{"egresslIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

CHAPTER 8. MANAGING NETWORKING

IMPORTANT

Egress IPs are implemented as additional IP addresses on the primary network
interface, and must be in the same subnet as the node’s primary IP. Additionally,
any external IPs should not be configured in any Linux network configuration files,
such as ifcfg-ethO.

Allowing additional IP addresses on the primary network interface might require
extra configuration when using some cloud or VM solutions.

If the above is enabled for a project, all egress traffic from that project will be routed to the node
hosting that egress IP, then connected (using NAT) to that IP address. If egressIPs is set on a
NetNamespace, but there is no node hosting that egress IP, then egress traffic from the namespace will
be dropped.

8.8. ENABLING MULTICAST

IMPORTANT

At this time, multicast is best used for low bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform pods is disabled by default. If you are using the
ovs-multitenant or ovs-networkpolicy plugin, you can enable multicast on a per-project basis by
setting an annotation on the project’s corresponding nethamespace object:

$ oc annotate netnamespace <namespace> \
netnamespace.network.openshift.io/multicast-enabled=true

Disable multicast by removing the annotation:

$ oc annotate netnamespace <namespace> \
netnamespace.network.openshift.io/multicast-enabled-

When using the ovs-multitenant plugin:

1. In anisolated project, multicast packets sent by a pod will be delivered to all other pods in the
project.

2. If you have joined networks together, you will need to enable multicast in each project’s
netnamespace in order for it to take effect in any of the projects. Multicast packets sent by a
pod in a joined network will be delivered to all pods in all of the joined-together networks.

3. To enable multicast in the default project, you must also enable it in the kube-service-catalog
project and all other projects that have been made global. Global projects are not "global” for
purposes of multicast; multicast packets sent by a pod in a global project will only be delivered
to pods in other global projects, not to all pods in all projects. Likewise, pods in global projects
will only receive multicast packets sent from pods in other global projects, not from all pods in all
projects.

When using the ovs-networkpolicy plugin:

97

OpenShift Container Platform 3.10 Cluster Administration

1. Multicast packets sent by a pod will be delivered to all other pods in the project, regardless of
NetworkPolicy objects. (Pods may be able to communicate over multicast even when they can't
communicate over unicast.)

2. Multicast packets sent by a pod in one project will never be delivered to pods in any other
project, even if there are NetworkPolicy objects allowing communication between the to
projects.

8.9. ENABLING NETWORKPOLICY

The ovs-subnet and ovs-multitenant plug-ins have their own legacy models of network isolation and
do not support Kubernetes NetworkPolicy. However, NetworkPolicy support is available by using the
ovs-networkpolicy plug-in.

NOTE

The v1 NetworkPolicy features are available only in OpenShift Container Platform. This
means that egress policy types, IPBlock, and combining podSelector and
namespaceSelector are not available in OpenShift Container Platform.

NOTE

Do not apply NetworkPolicy features on default OpenShift Container Platform projects,
because they can disrupt communication with the cluster.

In a cluster configured to use the ovs-networkpolicy plug-in, network isolation is controlled entirely by
NetworkPolicy objects. By default, all pods in a project are accessible from other pods and network
endpoints. To isolate one or more pods in a project, you can create NetworkPolicy objects in that
project to indicate the allowed incoming connections. Project administrators can create and delete
NetworkPolicy objects within their own project.

Pods that do not have NetworkPolicy objects pointing to them are fully accessible, whereas, pods that
have one or more NetworkPolicy objects pointing to them are isolated. These isolated pods only accept
connections that are accepted by at least one of their NetworkPolicy objects.

Following are a few sample NetworkPolicy object definitions supporting different scenarios:

e Deny All Traffic
To make a project "deny by default" add a NetworkPolicy object that matches all pods but
accepts no traffic.

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: deny-by-default
spec:
podSelector:
ingress: []

® Only Accept connections from pods within project
To make pods accept connections from other pods in the same project, but reject all other
connections from pods in other projects:

I kind: NetworkPolicy

98

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-configuring-sdn
https://github.com/kubernetes/community/blob/master/contributors/design-proposals/network/network-policy.md

CHAPTER 8. MANAGING NETWORKING

apiVersion: networking.k8s.io/v1
metadata:

name: allow-same-namespace
spec:

podSelector:

ingress:

- from:

- podSelector: {}

® Only allow HTTP and HTTPS traffic based on pod labels
To enable only HTTP and HTTPS access to the pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-http-and-https
spec:
podSelector:
matchLabels:
role: frontend
ingress:
- ports:
- protocol: TCP
port: 80
- protocol: TCP
port: 443

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from pods in the same namespace, and connections on ports 80 and 443 from pods in any
namespace.

8.9.1. Using NetworkPolicy Efficiently

NetworkPolicy objects allow you to isolate pods that are differentiated from one another by labels,
within a namespace.

It is inefficient to apply NetworkPolicy objects to large numbers of individual pods in a single
namespace. Pod labels do not exist at the IP level, so NetworkPolicy objects generate a separate OVS
flow rule for every single possible link between every pod selected with podSelector.

For example, if the spec podSelector and the ingress podSelector within a NetworkPolicy object
each match 200 pods, then 40000 (200*200) OVS flow rules are generated. This might slow down the

machine.

To reduce the amount of OVS flow rules, use namespaces to contain groups of pods that need to be
isolated.

NetworkPolicy objects that select a whole namespace, by using namespaceSelectors or empty
podSelectors, only generate a single OVS flow rule that matches the VXLAN VNID of the namespace.

99

OpenShift Container Platform 3.10 Cluster Administration

Keep the pods that do not need to be isolated in their original namespace, and move the pods that
require isolation into one or more different namespaces.

Create additional targeted cross-namespace policies to allow the specific traffic that you do want to
allow from the isolated pods.

8.9.2. NetworkPolicy and Routers

When using the ovs-multitenant plug-in, traffic from the routers is automatically allowed into all
namespaces. This is because the routers are usually in the default namespace, and all namespaces allow
connections from pods in that namespace. With the ovs-networkpolicy plug-in, this does not happen
automatically. Therefore, if you have a policy that isolates a namespace by default, you need to take
additional steps to allow routers to access it.

One option is to create a policy for each service, allowing access from all sources. for example,

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-to-database-service
spec:
podSelector:
matchLabels:
role: database
ingress:
- ports:
- protocol: TCP
port: 5432

This allows routers to access the service, but will also allow pods in other users' namespaces to access it
as well. This should not cause any issues, as those pods can normally access the service by using the
public router.

Alternatively, you can create a policy allowing full access from the default namespace, as in the ovs-
multitenant plug-in:

1. Add alabel to the default namespace.

IMPORTANT

If you labeled the default project with the default label in a previous procedure,
then skip this step. The cluster administrator role is required to add labels to
namespaces.

I $ oc label namespace default name=default

2. Create policies allowing connections from that namespace.

NOTE

Perform this step for each namespace you want to allow connections into. Users
with the Project Administrator role can create policies.

100

CHAPTER 8. MANAGING NETWORKING

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:

name: allow-from-default-namespace
spec:

podSelector:

ingress:

- from:

- namespaceSelector:
matchLabels:
name: default

8.9.3. Setting a Default NetworkPolicy for New Projects

The cluster administrators can modify the default project template to enable automatic creation of
default NetworkPolicy objects (one or more), whenever a new project is created. To do this:

1. Create a custom project template and configure the master to use it, as described in Modifying
the Template for New Projects.

2. Label the default project with the default label:

IMPORTANT

If you labeled the default project with the default label in a previous procedure,
then skip this step. The cluster administrator role is required to add labels to
namespaces.

I $ oc label namespace default name=default

3. Edit the template to include the desired NetworkPolicy objects:

I $ oc edit template project-request -n default

NOTE

To include NetworkPolicy objects into existing template, use the oc edit
command. Currently, it is not possible to use oc patch to add objects to a
Template resource.

a. Add each default policy as an element in the objects array:

objects:

- apiVersion: networking.k8s.io/v1

kind: NetworkPolicy
metadata:

name: allow-from-same-namespace
spec:

podSelector:

ingress:

- from:

101

OpenShift Container Platform 3.10 Cluster Administration

- podSelector: {}
- apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-from-default-namespace
spec:
podSelector:
ingress:
- from:
- namespaceSelector:
matchLabels:
name: default

8.10. ENABLING HTTP STRICT TRANSPORT SECURITY

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which ensures that only
HTTPS traffic is allowed on the host. Any HTTP requests are dropped by default. This is useful for
ensuring secure interactions with websites, or to offer a secure application for the user’s benefit.

When HSTS is enabled, HSTS adds a Strict Transport Security header to HTTPS responses from the
site. You can use the insecureEdgeTerminationPolicy value in a route to redirect to send HTTP to
HTTPS. However, when HSTS is enabled, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect. This is not required to be supported by the
client, and can be disabled by setting max-age=0.

IMPORTANT

HSTS works only with secure routes (either edge terminated or re-encrypt). The
configuration is ineffective on HTTP or passthrough routes.

To enable HSTS to a route, add the haproxy.router.openshift.io/hsts_header value to the edge
terminated or re-encrypt route:

apiVersion: vi
kind: Route
metadata:
annotations:
haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload

IMPORTANT

Ensure there are no spaces and no other values in the parameters in the
haproxy.router.openshift.io/hsts_header value. Only max-age is required.

The required max-age parameter indicates the length of time, in seconds, the HSTS policy is in effect
for. The client updates max-age whenever a response with a HSTS header is received from the host.
When max-age times out, the client discards the policy.

The optional includeSubDomains parameter tells the client that all subdomains of the host are to be
treated the same as the host.

If max-age is greater than O, the optional preload parameter allows external services to include this site

102

CHAPTER 8. MANAGING NETWORKING

in their HSTS preload lists. For example, sites such as Google can construct a list of sites that have
preload set. Browsers can then use these lists to determine which sites to only talk to over HTTPS, even
before they have interacted with the site. Without preload set, they need to have talked to the site over
HTTPS to get the header.

8.11. TROUBLESHOOTING THROUGHPUT ISSUES

Sometimes applications deployed through OpenShift Container Platform can cause network throughput
issues such as unusually high latency between specific services.

Use the following methods to analyze performance issues if pod logs do not reveal any cause of the
problem:

® Use a packet analyzer, such as ping or tcpdump to analyze traffic between a pod and its node.
For example, run the tcpdump tool on each pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to/from a pod. Latency can occur in OpenShift Container Platform if a
node interface is overloaded with traffic from other pods, storage devices, or the data plane.

I $ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> ﬂ

podip is the IP address for the pod. Run the following command to get the IP address of
the pods:

I # oc get pod <podname> -0 wide
tcpdump generates a file at /tmp/dump.pcap containing all traffic between these two pods.
Ideally, run the analyzer shortly before the issue is reproduced and stop the analyzer shortly

after the issue is finished reproducing to minimize the size of the file. You can also run a packet
analyzer between the nodes (eliminating the SDN from the equation) with:

I # tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

® Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Run the tool from the pods first, then from the nodes to attempt to locate any
bottlenecks. The iperf3 tool is included as part of RHEL 7.

For information on installing and using iperf3, see this Red Hat Solution.

103

http://www.tcpdump.org/
https://access.redhat.com/solutions/33103

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 9. CONFIGURING SERVICE ACCOUNTS

9.1. OVERVIEW
When a person uses the OpenShift Container Platform CLI or web console, their API token
authenticates them to the OpenShift Container Platform API. However, when a regular user’s
credentials are not available, it is common for components to make API calls independently. For
example:

® Replication controllers make API calls to create or delete pods.

® Applications inside containers can make API calls for discovery purposes.

® External applications can make API calls for monitoring or integration purposes.

Service accounts provide a flexible way to control APl access without sharing a regular user’s credentials.

9.2. USER NAMES AND GROUPS

Every service account has an associated user name that can be granted roles, just like a regular user. The
user name is derived from its project and name:

I system:serviceaccount:<project>:<name>

For example, to add the view role to the robot service account in the top-secret project:

I $ oc policy add-role-to-user view system:serviceaccount:top-secret:robot

IMPORTANT

If you want to grant access to a specific service account in a project, you can use the -z
flag. From the project to which the service account belongs, use the -z flag and specify
the <serviceaccount_names. This is highly recommended, as it helps prevent typos and
ensures that access is granted only to the specified service account. For example:

I $ oc policy add-role-to-user <role_name> -z <serviceaccount_name>

If not in the project, use the -n option to indicate the project namespace it applies to, as
shown in the examples below.

Every service account is also a member of two groups:

system:serviceaccount
Includes all service accounts in the system.
system:serviceaccount:<project>

Includes all service accounts in the specified project.

For example, to allow all service accounts in all projects to view resources in the top-secret project:

I $ oc policy add-role-to-group view system:serviceaccount -n top-secret

104

CHAPTER 9. CONFIGURING SERVICE ACCOUNTS

To allow all service accounts in the managers project to edit resources in the top-secret project:

I $ oc policy add-role-to-group edit system:serviceaccount:managers -n top-secret

9.3. MANAGING SERVICE ACCOUNTS

Service accounts are API objects that exist within each project. To manage service accounts, you can
use the oc command with the sa or serviceaccount object type or use the web console.

To get a list of existing service accounts in the current project:

$ oc get sa

NAME SECRETS AGE
builder 2 2d

default 2 2d
deployer 2 2d

To create a new service account:

$ oc create sa robot
serviceaccount "robot" created

As soon as a service account is created, two secrets are automatically added to it:

® an APl token

® credentials for the OpenShift Container Registry

These can be seen by describing the service account:

$ oc describe sa robot
Name: robot
Namespace: projecti
Labels: <none>
Annotations: <none>

Image pull secrets: robot-dockercfg-gzbhb

Mountable secrets: robot-token-f4khf
robot-dockercfg-qzbhb

Tokens: robot-token-f4khf
robot-token-z8h44

The system ensures that service accounts always have an API token and registry credentials.

9.4. ENABLING SERVICE ACCOUNT AUTHENTICATION

The generated API token and registry credentials do not expire, but they can be revoked by deleting the
secret. When the secret is deleted, a new one is automatically generated to take its place.

Service accounts authenticate to the API using tokens signed by a private RSA key. The authentication
layer verifies the signature using a matching public RSA key.

105

OpenShift Container Platform 3.10 Cluster Administration

To enable service account token generation, update the serviceAccountConfig stanza in the
/etc/origin/master/master-config.yml file on the master to specify a privateKeyFile (for signing), and
a matching public key file in the publicKeyFiles list:

-

serviceAccountConfig:

masterCA: ca.crt ﬂ

privateKeyFile: serviceaccount.private.key 9
publicKeyFiles:

- serviceaccount.public.key 6

CA file used to validate the APl server's serving certificate.
Private RSA key file (for token signing).

Public RSA key files (for token verification). If private key files are provided, then the public key
component is used. Multiple public key files can be specified, and a token will be accepted if it can
be validated by one of the public keys. This allows rotation of the signing key, while still accepting
tokens generated by the previous signer.

9.5. MANAGED SERVICE ACCOUNTS

Service accounts are required in each project to run builds, deployments, and other pods. The
managedNames setting in the /etc/origin/master/master-config.yml file on the master controls
which service accounts are automatically created in every project:

O o9

o

serviceAccountConfig:

managedNames: ﬂ
- builder @)
- deployer G

- default @)

List of service accounts to automatically create in every project.

A builder service account in each project is required by build pods, and is given the system:image-
builder role, which allows pushing images to any image stream in the project using the internal
container registry.

A deployer service account in each project is required by deployment pods, and is given the
system:deployer role, which allows viewing and modifying replication controllers and pods in the

project.

A default service account is used by all other pods unless they specify a different service account.

All service accounts in a project are given the system:image-puller role, which allows pulling images
from any image stream in the project using the internal container registry.

9.6. INFRASTRUCTURE SERVICE ACCOUNTS

106

CHAPTER 9. CONFIGURING SERVICE ACCOUNTS

Several infrastructure controllers run using service account credentials. The following service accounts
are created in the OpenShift Container Platform infrastructure project (openshift-infra) at server
start, and given the following roles cluster-wide:

Service Account Description

replication-controller Assigned the system:replication-controller role

deployment-controller Assigned the system:deployment-controller role

build-controller Assigned the system:build-controller role. Additionally, the build-controller
service account is included in the privileged security context constraint in order to
create privileged build pods.

To configure the project where those service accounts are created, set the
openshiftinfrastructureNamespace field in the /etc/origin/master/master-config.yml file on the
master:

policyConfig:

openshiftinfrastructureNamespace: openshift-infra

9.7. SERVICE ACCOUNTS AND SECRETS

Set the limitSecretReferences field in the /etc/origin/master/master-config.yml file on the master to
true to require pod secret references to be whitelisted by their service accounts. Set its value to false to
allow pods to reference any secret in the project.

serviceAccountConfig:

limitSecretReferences: false

107

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL
(RBAC)

10.1. OVERVIEW

You can use the CLI to view RBAC resources and the administrator CLI to manage the roles and
bindings.

10.2. VIEWING ROLES AND BINDINGS

Roles can be used to grant various levels of access both cluster-wide as well as at the project-scope.
Users and groups can be associated with, or bound to, multiple roles at the same time. You can view
details about the roles and their bindings using the oc describe command.

Users with the cluster-admindefault cluster role bound cluster-wide can perform any action on any
resource. Users with the admin default cluster role bound locally can manage roles and bindings in that
project.

NOTE

Review a full list of verbs in the Evaluating Authorization section.

10.2.1. Viewing cluster roles

To view the cluster roles and their associated rule sets:

$ oc describe clusterrole.rbac
Name: admin
Labels: <none>
Annotations: openshift.io/description=A user that has edit rights within the project and can change the
project's membership.
rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
Resources Non-Resource URLs Resource Names Verbs
appliedclusterresourcequotas [] [] [get list watch]
appliedclusterresourcequotas.quota.openshift.io [] [] [get list watch]
bindings 1 [[get list watch]
buildconfigs [1 [] [create delete deletecollection get list patch update watch]
buildconfigs.build.openshift.io [] [] [create delete deletecollection get list patch update watch]
buildconfigs/instantiate [] [] [create]
buildconfigs.build.openshift.io/instantiate [] [] [create]
buildconfigs/instantiatebinary [] [] [create]
buildconfigs.build.openshift.io/instantiatebinary [] [] [create]
buildconfigs/webhooks [] [] [create delete deletecollection get list patch update watch]
buildconfigs.build.openshift.io/webhooks [] [] [create delete deletecollection get list patch update
watch]
buildlogs [1 [] [create delete deletecollection get list patch update watch]
buildlogs.build.openshift.io [] [] [create delete deletecollection get list patch update watch]
builds [1 [[create delete deletecollection get list patch update watch]
builds.build.openshift.io [] [] [create delete deletecollection get list patch update watch]
builds/clone [[] [create]
builds.build.openshift.io/clone [] [] [create]

108

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-authorization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#cluster-and-local-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#cluster-and-local-rbac
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#users-and-groups
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#evaluating-authorization

CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL (RBAC)

builds/details [] [] [update]

builds.build.openshift.io/details [] [] [update]

builds/log 1 [[get list watch]

builds.build.openshift.io/log [] [] [get list watch]

configmaps [1 [l [create delete deletecollection get list patch update watch]

cronjobs.batch [] [] [create delete deletecollection get list patch update watch]
daemonsets.extensions [] [] [get list watch]

deploymentconfigrollbacks [] [] [create]

deploymentconfigrollbacks.apps.openshift.io [] [] [create]

deploymentconfigs [] [] [create delete deletecollection get list patch update watch]
deploymentconfigs.apps.openshift.io [] [] [create delete deletecollection get list patch update
watch]

deploymentconfigs/instantiate [] [] [create]

deploymentconfigs.apps.openshift.io/instantiate [] [] [create]

deploymentconfigs/log [] [] [get list watch]

deploymentconfigs.apps.openshift.io/log [] [] [get list watch]

deploymentconfigs/rollback [] [] [create]

deploymentconfigs.apps.openshift.io/rollback [] [] [create]

deploymentconfigs/scale [] [] [create delete deletecollection get list patch update watch]
deploymentconfigs.apps.openshift.io/scale [] [] [create delete deletecollection get list patch
update watch]

deploymentconfigs/status [] [] [get list watch]

deploymentconfigs.apps.openshift.io/status [] [] [get list watch]

deployments.apps [[] [create delete deletecollection get list patch update watch]
deployments.extensions [] [] [create delete deletecollection get list patch update watch]
deployments.extensions/rolloack [] [] [create delete deletecollection get list patch update watch]
deployments.apps/scale [] [] [create delete deletecollection get list patch update watch]
deployments.extensions/scale [] [] [create delete deletecollection get list patch update watch]
deployments.apps/status [] [] [create delete deletecollection get list patch update watch]
endpoints [1 1[I [create delete deletecollection get list patch update watch]

events 1 [] [get list watch]

horizontalpodautoscalers.autoscaling [] [] [create delete deletecollection get list patch update
watch]

horizontalpodautoscalers.extensions [] [] [create delete deletecollection get list patch update
watch]

imagestreamimages [] [] [create delete deletecollection get list patch update watch]
imagestreamimages.image.openshift.io [] [] [create delete deletecollection get list patch update
watch]

imagestreamimports [] [] [create]

imagestreamimports.image.openshift.io [] [] [create]

imagestreammappings [] [] [create delete deletecollection get list patch update watch]
imagestreammappings.image.openshift.io [] [] [create delete deletecollection get list patch update
watch]

imagestreams [1 [] [create delete deletecollection get list patch update watch]
imagestreams.image.openshift.io [] [] [create delete deletecollection get list patch update watch]
imagestreams/layers [] [] [get update]

imagestreams.image.openshift.io/layers [] [] [get update]

imagestreams/secrets [] [] [create delete deletecollection get list patch update watch]
imagestreams.image.openshift.io/secrets [] [] [create delete deletecollection get list patch update
watch]

imagestreams/status [] [] [get list watch]

imagestreams.image.openshift.io/status [] [] [get list watch]

imagestreamtags [] [] [create delete deletecollection get list patch update watch]
imagestreamtags.image.openshift.io [] [] [create delete deletecollection get list patch update
watch]

jenkins.build.openshift.io [] [] [admin edit view]

109

OpenShift Container Platform 3.10 Cluster Administration

jobs.batch [1 [] [create delete deletecollection get list patch update watch]

limitranges 1 [] [get list watch]

localresourceaccessreviews [] [] [create]
localresourceaccessreviews.authorization.openshift.io [] [] [create]
localsubjectaccessreviews [] [] [create]

localsubjectaccessreviews.authorization.k8s.io [] [] [create]
localsubjectaccessreviews.authorization.openshift.io [| [] [create]

namespaces 1 [] [get list watch]

namespaces/status [[] [get list watch]

networkpolicies.extensions [] [] [create delete deletecollection get list patch update watch]
persistentvolumeclaims [] [] [create delete deletecollection get list patch update watch]
pods [1 [] [create delete deletecollection get list patch update watch]

pods/attach [1 [] [create delete deletecollection get list patch update watch]

pods/exec [1 [] [create delete deletecollection get list patch update watch]

pods/log 1 [] [get list watch]

pods/portforward [] [] [create delete deletecollection get list patch update watch]
pods/proxy [1 [] [create delete deletecollection get list patch update watch]

pods/status 1 [[get list watch]

podsecuritypolicyreviews [[] [create]

podsecuritypolicyreviews.security.openshift.io [] [] [create]
podsecuritypolicyselfsubjectreviews [] [] [create]
podsecuritypolicyselfsubjectreviews.security.openshift.io [[] [create]
podsecuritypolicysubjectreviews [] [] [create]
podsecuritypolicysubjectreviews.security.openshift.io [] [] [create]

processedtemplates [] [] [create delete deletecollection get list patch update watch]
processedtemplates.template.openshift.io [] [] [create delete deletecollection get list patch update
watch]

projects [1 [[delete get patch update]

projects.project.openshift.io [] [] [delete get patch update]

replicasets.extensions [] [] [create delete deletecollection get list patch update watch]
replicasets.extensions/scale [] [] [create delete deletecollection get list patch update watch]
replicationcontrollers [] [] [create delete deletecollection get list patch update watch]
replicationcontrollers/scale [] [] [create delete deletecollection get list patch update watch]
replicationcontrollers.extensions/scale [] [] [create delete deletecollection get list patch update
watch]

replicationcontrollers/status [] [] [get list watch]

resourceaccessreviews [] [] [create]

resourceaccessreviews.authorization.openshift.io [] [] [create]

resourcequotas [] [] [get list watch]

resourcequotas/status [] [] [get list watch]

resourcequotausages [] [] [get list watch]

rolebindingrestrictions [[] [get list watch]

rolebindingrestrictions.authorization.openshift.io [] [] [get list watch]

rolebindings [l [] [create delete deletecollection get list patch update watch]
rolebindings.authorization.openshift.io [] [] [create delete deletecollection get list patch update
watch]

rolebindings.rbac.authorization.k8s.io [] [] [create delete deletecollection get list patch update
watch]

roles [1 1[I [create delete deletecollection get list patch update watch]
roles.authorization.openshift.io [] [] [create delete deletecollection get list patch update watch]
roles.rbac.authorization.k8s.io [] [] [create delete deletecollection get list patch update watch]
routes [1 [] [create delete deletecollection get list patch update watch]
routes.route.openshift.io [] [] [create delete deletecollection get list patch update watch]
routes/custom-host [] [] [create]

routes.route.openshift.io/custom-host [[] [create]

routes/status I [[get list watch update]

110

CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL (RBAC)

routes.route.openshift.io/status [] [] [get list watch update]

scheduledjobs.batch [] [] [create delete deletecollection get list patch update watch]

secrets [1 [] [create delete deletecollection get list patch update watch]

serviceaccounts [] [] [create delete deletecollection get list patch update watch impersonate]

services [l [l [create delete deletecollection get list patch update watch]

services/proxy [] [] [create delete deletecollection get list patch update watch]

statefulsets.apps [] [] [create delete deletecollection get list patch update watch]

subjectaccessreviews [] [] [create]

subjectaccessreviews.authorization.openshift.io [] [] [create]

subjectrulesreviews [] [] [create]

subjectrulesreviews.authorization.openshift.io [] [] [create]

templateconfigs [] [] [create delete deletecollection get list patch update watch]

templateconfigs.template.openshift.io [] [] [create delete deletecollection get list patch update
watch]

templateinstances [] [] [create delete deletecollection get list patch update watch]

templateinstances.template.openshift.io [] [] [create delete deletecollection get list patch update
watch]

templates [1 [] [create delete deletecollection get list patch update watch]

templates.template.openshift.io [] [] [create delete deletecollection get list patch update watch]

Name: basic-user

Labels: <none>

Annotations: openshift.io/description=A user that can get basic information about projects.
rbac.authorization.kubernetes.io/autoupdate=true

PolicyRule:
Resources Non-Resource URLs Resource Names Verbs

clusterroles [] [] [get list]
clusterroles.authorization.openshift.io [] [] [get list]
clusterroles.rbac.authorization.k8s.io [] [] [get list watch]
projectrequests [] [] [list]
projectrequests.project.openshift.io [[] [list]

projects [] [] [list watch]

projects.project.openshift.io [] [] [list watch]
selfsubjectaccessreviews.authorization.k8s.io [| [] [create]
selfsubjectrulesreviews [] [] [create]
selfsubjectrulesreviews.authorization.openshift.io [] [] [create]
storageclasses.storage.k8s.io [] [] [get list]

users [[~] [get]

users.user.openshift.io [] [~] [gel]

Name: cluster-admin
Labels: <none>
Annotations: authorization.openshift.io/system-only=true

openshift.io/description=A super-user that can perform any action in the cluster. When granted to a
user within a project, they have full control over quota and membership and can perform every
action...

rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:

Resources Non-Resource URLs Resource Names Verbs

1 01
=00

m

OpenShift Container Platform 3.10 Cluster Administration

Name: cluster-debugger
Labels: <none>
Annotations: authorization.openshift.io/system-only=true
rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
Resources Non-Resource URLs Resource Names Verbs

[/debug/pprof] [] [get]
[/debug/pprof/*] [] [get]
[/metrics] [] [get]

Name: cluster-reader
Labels: <none>
Annotations: authorization.openshift.io/system-only=true
rbac.authorization.kubernetes.io/autoupdate=true
PolicyRule:
Resources Non-Resource URLs Resource Names Verbs

[1 11 [get]

apiservices.apiregistration.k8s.io [[] [get list watch]
apiservices.apiregistration.k8s.io/status [] [] [get list watch]
appliedclusterresourcequotas [] [] [get list watch]

10.2.2. Viewing cluster role bindings

To view the current set of cluster role bindings, which show the users and groups that are bound to
various roles:

$ oc describe clusterrolebinding.rbac

Name: admin

Labels: <none>

Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:

Kind: ClusterRole

Name: admin

Subjects:

Kind Name Namespace

ServiceAccount template-instance-controller openshift-infra

Name: basic-users
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: basic-user
Subjects:
Kind Name Namespace

Group system:authenticated

12

CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL (RBAC)

Name: cluster-admin

Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:

Kind: ClusterRole

Name: cluster-admin
Subjects:

Kind Name Namespace

ServiceAccount pvinstaller default

Group system:masters

Name: cluster-admins
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: cluster-admin
Subjects:
Kind Name Namespace
Group system:cluster-admins
User system:admin

Name: cluster-readers
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: cluster-reader
Subjects:
Kind Name Namespace

Group system:cluster-readers

Name: cluster-status-binding
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: cluster-status
Subjects:
Kind Name Namespace
Group system:authenticated
Group system:unauthenticated

Name: registry-registry-role
Labels: <none>
Annotations: <none>

13

OpenShift Container Platform 3.10 Cluster Administration

Role:

Kind: ClusterRole

Name: system:registry
Subjects:

Kind Name Namespace

ServiceAccount registry default

Name: router-router-role
Labels: <none>
Annotations: <none>
Role:

Kind: ClusterRole

Name: system:router
Subjects:

Kind Name Namespace

ServiceAccount router default

Name: self-access-reviewers
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: self-access-reviewer
Subjects:
Kind Name Namespace
Group system:authenticated
Group system:unauthenticated

Name: self-provisioners
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: self-provisioner
Subjects:
Kind Name Namespace

Group system:authenticated:oauth

Name: system:basic-user

Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:

Kind: ClusterRole

Name: system:basic-user
Subjects:

Kind Name Namespace

Group system:authenticated

14

CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL (RBAC)

Group system:unauthenticated

Name: system:build-strategy-docker-binding
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: system:build-strategy-docker
Subjects:
Kind Name Namespace

Group system:authenticated

Name: system:build-strategy-jenkinspipeline-binding
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: system:build-strategy-jenkinspipeline
Subjects:
Kind Name Namespace

Group system:authenticated

Name: system:build-strategy-source-binding
Labels: <none>
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:
Kind: ClusterRole
Name: system:build-strategy-source
Subjects:
Kind Name Namespace

Group system:authenticated

Name: system:controller:attachdetach-controller
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:

Kind: ClusterRole

Name: system:controller:attachdetach-controller
Subjects:

Kind Name Namespace

ServiceAccount attachdetach-controller kube-system

Name: system:controller:certificate-controller
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true
Role:

Kind: ClusterRole

115

OpenShift Container Platform 3.10 Cluster Administration

Name: system:controller:certificate-controller
Subjects:
Kind Name Namespace

ServiceAccount certificate-controller kube-system

Name: system:controller:cronjob-controller
Labels: kubernetes.io/bootstrapping=rbac-defaults
Annotations: rbac.authorization.kubernetes.io/autoupdate=true

10.2.3. Viewing local roles and bindings

All of the default cluster roles can be bound locally to users or groups.
Custom local roles can be created.
The local role bindings are also viewable.

To view the current set of local role bindings, which show the users and groups that are bound to various
roles:

I $ oc describe rolebinding.rbac

By default, the current project is used when viewing local role bindings. Alternatively, a project can be
specified with the -n flag. This is useful for viewing the local role bindings of another project, if the user
already has the admindefault cluster role in it.

$ oc describe rolebinding.rbac -n joe-project
Name: admin
Labels: <none>
Annotations: <none>
Role:
Kind: ClusterRole
Name: admin
Subjects:
Kind Name Namespace

User joe

Name: system:deployers
Labels: <none>
Annotations: <none>

Role:

Kind: ClusterRole

Name: system:deployer
Subjects:

Kind Name Namespace

ServiceAccount deployer joe-project

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles

CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL (RBAC)

Name: system:image-builders
Labels: <none>
Annotations: <none>

Role:

Kind: ClusterRole

Name: system:image-builder
Subjects:

Kind Name Namespace

ServiceAccount builder joe-project

Name: system:image-pullers
Labels: <none>
Annotations: <none>

Role:

Kind: ClusterRole

Name: system:image-puller
Subjects:

Kind Name Namespace

Group system:serviceaccounts:joe-project

10.3. MANAGING ROLE BINDINGS

Adding, or binding, a role to users or groups gives the user or group the relevant access granted by the
role. You can add and remove roles to and from users and groups using oc adm policy commands.

When managing a user or group'’s associated roles for local role bindings using the following operations,
a project may be specified with the -n flag. If it is not specified, then the current project is used.

Table 10.1. Local role binding operations

Command Description

$ oc adm policy who-can <verbs <resource> Indicates which users can perform an action on a
resource.

$ oc adm policy add-role-to-user <role> Binds a given role to specified users in the current

<username> project.

$ oc adm policy remove-role-from-user Removes a given role from specified users in the

<role> <usernames current project.

$ oc adm policy remove-user <usernames Removes specified users and all of their roles in the

current project.

$ oc adm policy add-role-to-group <role> Binds a given role to specified groups in the current
<groupname> project.

$ oc adm policy remove-role-from-group Removes a given role from specified groups in the
<role> <groupname> current project.

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#users-and-groups

OpenShift Container Platform 3.10 Cluster Administration

Command Description

$ oc adm policy remove-group <groupname> Removes specified groups and all of their roles in the
current project.

--rolebinding-name= Can be used with oc adm policy commands to
retain the rolebinding name assigned to a user or

group.

You can also manage cluster role bindings using the following operations. The -n flag is not used for
these operations because cluster role bindings use non-namespaced resources.

Table 10.2. Cluster role binding operations

Command Description

$ oc adm policy add-cluster-role-to-user Binds a given role to specified users for all projects in

<role> <username> the cluster.

$ oc adm policy remove-cluster-role-from- Removes a given role from specified users for all

user <role> <username> projects in the cluster.

$ oc adm policy add-cluster-role-to-group Binds a given role to specified groups for all projects

<role> <groupname> in the cluster.

$ oc adm policy remove-cluster-role-from- Removes a given role from specified groups for all

group <role> <groupnames projects in the cluster.

--rolebinding-name= Can be used with oc adm policy commands to
retain the rolebinding name assigned to a user or
group.

For example, you can add the admin role to the alice user in joe-project by running:
I $ oc adm policy add-role-to-user admin alice -n joe-project
You can then view the local role bindings and verify the addition in the output:

$ oc describe rolebinding.rbac -n joe-project
Name: admin
Labels: <none>
Annotations: <none>
Role:
Kind: ClusterRole
Name: admin
Subjects:
Kind Name Namespace

User joe

18

CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL (RBAC)
User alice ﬂ

Name: system:deployers
Labels: <none>
Annotations: <none>

Role:

Kind: ClusterRole

Name: system:deployer
Subjects:

Kind Name Namespace

ServiceAccount deployer joe-project

Name: system:image-builders
Labels: <none>
Annotations: <none>
Role:

Kind: ClusterRole

Name: system:image-builder
Subjects:

Kind Name Namespace

ServiceAccount builder joe-project

Name: system:image-pullers
Labels: <none>
Annotations: <none>
Role:

Kind: ClusterRole

Name: system:image-puller
Subjects:

Kind Name Namespace

Group system:serviceaccounts:joe-project

ﬂ The alice user has been added to the admins RoleBinding.

10.4. CREATING A LOCAL ROLE
You can create a local role for a project and then bind it to a user.

1. To create alocal role for a project, run the following command:
I $ oc create role <name> --verb=<verb> --resource=<resource> -n <project>

In this command, specify: * <hname>, the local role’s name * <verbs, a comma-separated list of
the verbs to apply to the role * <resources, the resources that the role applies to * <projects,
the project name

+ For example, to create a local role that allows a user to view pods in the blue project, run the
following command:

19

OpenShift Container Platform 3.10 Cluster Administration
+

I $ oc create role podview --verb=get --resource=pod -n blue
2. To bind the new role to a user, run the following command:

I $ oc adm policy add-role-to-user podview user2 --role-namespace=blue -n blue

10.5. CREATING A CLUSTER ROLE

To create a cluster role, run the following command:

I $ oc create clusterrole <name> --verb=<verb> --resource=<resource>

In this command, specify:
® <names>, the local role’s name
® <verb>, a comma-separated list of the verbs to apply to the role
® <resource>, the resources that the role applies to

For example, to create a cluster role that allows a user to view pods, run the following command:

I $ oc create clusterrole podviewonly --verb=get --resource=pod

10.6. CLUSTER AND LOCAL ROLE BINDINGS

A cluster role binding is a binding that exists at the cluster level. A role binding exists at the project level.
The cluster role view must be bound to a user using a local role binding for that user to view the project.
Create local roles only if a cluster role does not provide the set of permissions needed for a particular
situation.

Some cluster role names are initially confusing. You can bind the cluster-admin to a user, using a local
role binding, making it appear that this user has the privileges of a cluster administrator. This is not the
case. Binding the cluster-admin to a certain project is more like a super administrator for that project,
granting the permissions of the cluster role admin, plus a few additional permissions like the ability to
edit rate limits. This can appear confusing especially via the web console Ul, which does not list cluster
role bindings that are bound to true cluster administrators. However, it does list local role bindings that
you can use to locally bind cluster-admin.

10.7. UPDATING POLICY DEFINITIONS

During a cluster upgrade, and on every restart of any master, the default cluster roles are automatically
reconciled to restore any missing permissions.

If you customized default cluster roles and want to ensure a role reconciliation does not modify them:

1. Protect each role from reconciliation:

$ oc annotate clusterrole.rbac <role_name> --overwrite
rbac.authorization.kubernetes.io/autoupdate=false

120

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles

CHAPTER 10. MANAGING ROLE-BASED ACCESS CONTROL (RBAC)

' WARNING
A You must manually update the roles that contain this setting to include any

new or required permissions after upgrading.

. Generate a default bootstrap policy template file:

I $ oc adm create-bootstrap-policy-file --filename=policy.json

NOTE

The contents of the file vary based on the OpenShift Container Platform version,
- but the file contains only the default policies.

. Update the policy.json file to include any cluster role customizations.

. Use the policy file to automatically reconcile roles and role bindings that are not reconcile
protected:

I $ oc auth reconcile -f policy.json
. Reconcile security context constraints:

oc adm policy reconcile-sccs \
--additive-only=true \
--confirm

121

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 1. IMAGE POLICY

11.1. OVERVIEW

You can control which images can be imported, tagged, and run in a cluster. There are two facilities for
this purpose.

Allowed Registries for import is an image policy configuration that allows you to restrict image origins to
particular set of external registries. This set of rules is applied to any image being imported or tagged
into any image stream. Therefore any image referencing registry not matched by the rule set will be
rejected.

ImagePolicy admission plug-in lets you specify which images are allowed to be run on your cluster. This
is currently considered beta. It allows you to control:

® |mage sources: which registries can be used to pull images

® Image resolution: force pods to run with immutable digests to ensure the image does not
change due to are-tag

® Container image label restrictions limits or requires labels on an image

® |mage annotation restrictions: limits or requires the annotations on an image in the integrated
container registry

11.2. CONFIGURING REGISTRIES ALLOWED FOR IMPORT

You can configure registries allowed for import in master-config.yaml under
imagePolicyConfig:allowedRegistriesForlmport section as demonstrated in the following example. If
the setting is not present, all images are allowed, which is the default.

Example 11.1. Example Configuration of Registries Allowed for Import

imagePolicyConfig:
allowedRegistriesForimport:

domainName: registry.access.redhat.com ﬂ

domainName: *.mydomain.com
insecure: true 9

domainName: local.registry.corp:5000 6

Allow any image from the specified secure registry.

®9

Allow any image from any insecure registry hosted on any sub-domain of mydomain.com. The
mydomain.com is not whitelisted.

9 Allow any image from the given registry with port specified.

Each rule is composed of the following attributes:

122

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#master-config-image-policy-config

CHAPTER 11. IMAGE POLICY

e domainName: is a hostname optionally terminated by :<port> suffix where special wildcard
characters (?, *) are recognized. The former matches a sequence of characters of any length
while the later matches exactly one character. The wildcard characters can be present both
before and after : separator. The wildcards apply only to the part before or after the separator
regardless of separator’s presence.

® insecure: is a boolean used to decide which ports are matched if the :<port> part is missing
from domainName. If true, the domainName will match registries with :80 suffix or unspecified
port as long as the insecure flag is used during import. If false, registries with :443 suffix or
unspecified port will be matched.

If a rule should match both secure and insecure ports of the same domain, the rule must be listed twice
(once with insecure=true and once with insecure=false.

Unqualified images references are qualified to docker.io before any rule evaluation. To whitelist them,
use domainName: docker.io.

domainName: * rule matches any registry hostname, but port is still restricted to 443. To match
arbitrary registry serving on arbitrary port, use domainName: *:*.

Based on the rules established in Example Configuration of Registries Allowed for Import :

e oc tag --insecure reg.mydomain.com/app:v1 app:v1 is whitelisted by the handling of the
mydomain.com rule

® oc import-image --from reg1.mydomain.com:80/foo foo:latest will be also whitelisted

® oc tag local.registry.corp/bar bar:latest will be rejected because the port does not match
5000 in the third rule

Rejected image imports will generate error messages similar to the following text:

The ImageStream "bar" is invalid:

* spec.tags[latest].from.name: Forbidden: registry "local.registry.corp” not allowed by whitelist:
"local.registry.corp:5000", "*.mydomain.com:80", "registry.access.redhat.com:443"

* status.tagsllatest].items[0].dockerimageReference: Forbidden: registry "local.registry.corp” not
allowed by whitelist: "local.registry.corp:5000", "*.mydomain.com:80",
"registry.access.redhat.com:443"

11.3. CONFIGURING THE IMAGEPOLICY ADMISSION PLUG-IN

To configure which images can run on your cluster, configure the ImagePolicy Admission plug-in in the
master-config.yaml file. You can set one or more rules as required.

® Rejectimages with a particular annotation
Use this rule to reject all images that have a specific annotation set on them. The following
rejects all images using the images.openshift.io/deny-execution annotation:

- name: execution-denied
onResources:
- resource: pods
- resource: builds
reject: true
matchimageAnnotations:

123

OpenShift Container Platform 3.10 Cluster Administration

- key: images.openshift.io/deny-execution ﬂ
value: "true"
skipOnResolutionFailure: true

If a particular image has been deemed harmful, administrators can set this annotation to
flag those images.

e Enable user to run images from Docker Hub
Use this rule to allow users to use images from Docker Hub:

- name: allow-images-from-dockerhub
onResources:
- resource: pods
- resource: builds
matchRegistries:
- docker.io

Following is an example configuration for setting multiple ImagePolicy addmission plugin rules in the
master-config.yamil file:

Annotated Example File

admissionConfig:
pluginConfig:
openshift.io/ImagePolicy:
configuration:
kind: ImagePolicyConfig
apiVersion: v1
resolvelmages: AttemptRewrite ﬂ
executionRules:
- name: execution-denied
Reject all images that have the annotation images.openshift.io/deny-execution set to true.
This annotation may be set by infrastructure that wishes to flag particular images as
dangerous
onResources: 6
- resource: pods
- resource: builds

reject: true ﬂ

matchlmageAnnotations: 9

- key: images.openshift.io/deny-execution
value: "true"

skipOnResolutionFailure: true G

name: allow-images-from-internal-registry

allows images from the internal registry and tries to resolve them

onResources:

- resource: pods

- resource: builds

matchintegratedRegistry: true

name: allow-images-from-dockerhub

onResources:

- resource: pods

- resource: builds

matchRegistries:

124

O @ 99090906006 O O

CHAPTER 11. IMAGE POLICY

- docker.io
resolutionRules: ﬂ
- targetResource:
resource: pods
localNames: true
policy: AttemptRewrite
- targetResource:
group: batch
resource: jobs
localNames: true
policy: AttemptRewrite

Try to resolve images to an immutable image digest and update the image pull specification in the
pod.

Array of rules to evaluate against incoming resources. If you only have reject: true rules, the default
is allow all. If you have any accept rule, that is reject: false in any of the rules, the default behaviour
of the ImagePolicy switches to deny-all.

Indicates which resources to enforce rules upon. If nothing is specified, the default is pods.
Indicates that if this rule matches, the pod should be rejected.

List of annotations to match on the image object’s metadata.

If you are not able to resolve the image, do not fail the pod.

Array of rules allowing use of image streams in Kubernetes resources. The default configuration
allows pods, replicationcontrollers, replicasets, statefulsets, daemonsets, deployments, and jobs to

use same-project image stream tag references in their image fields.

Identifies the group and resource to which this rule applies. If resource is *, this rule will apply to all
resources in that group.

LocalNames will allow single segment names (for example, ruby:2.5) to be interpreted as
namespace-local image stream tags, but only if the resource or target image stream has local
name resolution enabled.

NOTE

If you normally rely on infrastructure images being pulled using a default registry prefix
(such as docker.io or registry.access.redhat.com), those images will not match to any
matchRegistries value since they will have no registry prefix. To ensure infrastructure
images have a registry prefix that can match your image policy, set the
imageConfig.format value in your master-config.yaml file.

11.4. USING AN ADMISSION CONTROLLER TO ALWAYS PULL IMAGES

After an image is pulled to a node, any Pod on that node from any user can use the image without an
authorization check against the image. To ensure that Pods do not use images for which they do not
have credentials, use the AlwaysPulllmages admission controller.

125

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#using-is-with-k8s
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#master-config-image-config

OpenShift Container Platform 3.10 Cluster Administration

This admission controller modifies every new Pod to force the image pull policy to Always, ensuring
that private images can only be used by those who have the credentials to pull them, even if the Pod
specification uses an image pull policy of Never.

To enable the AlwaysPulllmages admission controller:

1. Add the following to the master-config.yaml:

admissionConfig:
pluginConfig:
AlwaysPullimages: @)
configuration:
kind: DefaultAdmissionConfig
apiVersion: v1
disable: false

ﬂ Admission plug-in name.

9 Specify false to indicate that the plug-in should be enabled.

2. Restart master services running in control plane static Pods using the master-restart command:

$ master-restart api
$ master-restart controllers

1.5. TESTING THE IMAGEPOLICY ADMISSION PLUG-IN

1. Use the openshift/image-policy-check to test your configuration.
For example, use the information above, then test like this:

I oc import-image openshift/image-policy-check:latest --confirm
2. Create a pod using this YAML. The pod should be created.

apiVersion: v1
kind: Pod
metadata:
generateName: test-pod
spec:
containers:
- image: docker.io/openshift/image-policy-check:latest
name: first

3. Create another pod pointing to a different registry. The pod should be rejected.

apiVersion: v1
kind: Pod
metadata:
generateName: test-pod
spec:
containers:
- image: different-registry/openshift/image-policy-check:latest
name: first

126

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-admission-controllers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#image-pull-policy

CHAPTER 11. IMAGE POLICY

4. Create a pod pointing to the internal registry using the imported image. The pod should be
created and if you look at the image specification, you should see a digest in place of the tag.

apiVersion: v1
kind: Pod
metadata:
generateName: test-pod
spec:
containers:
- image: <internal registry IP>:5000/<namespace>/image-policy-check:latest
name: first

5. Create a pod pointing to the internal registry using the imported image. The pod should be
created and if you look at the image specification, you should see the tag unmodified.

apiVersion: v1
kind: Pod
metadata:
generateName: test-pod
spec:
containers:
- image: <internal registry IP>:5000/<namespace>/image-policy-check:v1
name: first

6. Get the digest from oc get istag/image-policy-check:latest and use it for oc annotate
images/<digest> images.openshift.io/deny-execution=true. For example:

$ oc annotate
images/sha256:09ce3d8b5b63595ffca6636¢c7daefb1ab615a7c0e3f8eab8e5db044a9340d6ba8
images.openshift.io/deny-execution=true

7. Create this pod again, and you should see the pod rejected:

apiVersion: v1
kind: Pod
metadata:
generateName: test-pod
spec:
containers:
- image: <internal registry IP>:5000/<namespace>/image-policy-check:latest
name: first

127

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 12. IMAGE SIGNATURES

12.1. OVERVIEW

Container image signing on Red Hat Enterprise Linux (RHEL) systems provides a means of:
® Validating where a container image came from,
® Checking that the image has not been tampered with, and
® Setting policies to determine which validated images can be pulled to a host.

For a more complete understanding of the architecture of container image signing on RHEL systems,
see the Container Image Signing Integration Guide.

The OpenShift Container Registry allows the ability to store signatures via REST API. The oc CLI can be
used to verify image signatures, with their validated displayed in the web console or CLI.

NOTE

Initial support for storing image signatures was added in OpenShift Container Platform
3.3. Initial support for verifying image signatures was added in OpenShift Container
Platform 3.6.

12.2. SIGNING IMAGES USING ATOMIC CLI

OpenShift Container Platform does not automate image signing. Signing requires a developer’s private
GPG key, typically stored securely on a workstation. This document describes that workflow.

The atomic command line interface (CLI), version 1.12.5 or greater, provides commands for signing
container images, which can be pushed to an OpenShift Container Registry. The atomic CLI is available
on Red Hat-based distributions: RHEL, Centos, and Fedora. The atomic CLlI is pre-installed on RHEL
Atomic Host systems. For information on installing the atomic package on a RHEL host, see Enabling
Image Signature Support.

IMPORTANT

The atomic CLI uses the authenticated credentials from oc login. Be sure to use the
same user on the same host for both atomic and oc commands. For example, if you
execute atomic CLI as sudo, be sure to log in to OpenShift Container Platform using
sudo oc login.

In order to attach the signature to the image, the user must have the image-signer cluster role. Cluster
administrators can add this using:

I $ oc adm policy add-cluster-role-to-user system:image-signer <user_name>
Images may be signed at push time:
I $ atomic push [--sign-by <gpg_key_id>] --type atomic <image>

Signatures are stored in OpenShift Container Platform when the atomic transport type argument is
specified. See Signature Transports for more information.

128

https://access.redhat.com/articles/2750891#architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/installing_clusters/#enabling-image-signature-support
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/container_security_guide/#security-deployment-signature-transports

CHAPTER 12. IMAGE SIGNATURES

For full details on how to set up and perform image signing using the atomic CLI, see the RHEL Atomic
Host Managing Containers: Signing Container Images documentation or the atomic push --help output
for argument details.

A specific example workflow of working with the atomic CLI and an OpenShift Container Registry is
documented in the Container Image Signing Integration Guide.

12.3. VERIFYING IMAGE SIGNATURES USING OPENSHIFT CLI

You can verify the signatures of an image imported to an OpenShift Container Registry using the oc
adm verify-image-signature command. This command verifies if the image identity contained in the
image signature can be trusted by using the public GPG key to verify the signature itself then match the
provided expected identity with the identity (the pull spec) of the given image.

By default, this command uses the public GPG keyring located in $§GNUPGHOME/pubring.gpg,
typically in path ~/.gnupg. By default, this command does not save the result of the verification back to
the image object. To do so, you must specify the --save flag, as shown below.

NOTE

In order to verify the signature of an image, the user must have the image-auditor cluster
role. Cluster administrators can add this using:

I $ oc adm policy add-cluster-role-to-user system:image-auditor <user_name>

IMPORTANT

Using the --save flag on already verified image together with invalid GPG key or invalid
expected identity causes the saved verification status and all signatures to be removed,
and the image will become unverified.

In order to avoid deleting all signatures by mistake, you can run the command without the
--save flag first and check the logs for potential issues.

To verify an image signature use the following format:
I $ oc adm verify-image-signature <image> --expected-identity=<pull_spec> [--save] [options]

The <pull_spec> can be found by describing the image stream. The <image> may be found by
describing the image stream tag. See the following example command output.

Example Image Signature Verification

$ oc describe is nodejs -n openshift

Name: nodejs
Namespace: openshift
Created: 2 weeks ago
Labels: <none>

Annotations: openshift.io/display-name=Node.js
openshift.io/image.dockerRepositoryCheck=2017-07-05T18:24:01Z
Docker Pull Spec: 172.30.1.1:5000/0penshift/nodejs

129

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux_atomic_host/7/html/managing_containers/signing_container_images
https://access.redhat.com/articles/2750891#working-with-openshift-and-atomic-registry

OpenShift Container Platform 3.10 Cluster Administration

$ oc describe istag nodejs:latest -n openshift
Image Name: sha256:2bba968aedb7dd2aafe5fa8c7453f5ac36a0b9639f1bf5b03f95de325238b288

$ oc adm verify-image-signature \
sha256:2bba968aedb7dd2aafe5fa8c7453f5ac36a0b9639f1bf5b03f95de325238b288 \
--expected-identity 172.30.1.1:5000/openshift/nodejs:latest \
--public-key /etc/pki/rpm-gpg/RPM-GPG-KEY-redhat-release \
--save

12.4. ACCESSING IMAGE SIGNATURES USING REGISTRY API

The OpenShift Container Registry provides an extensions endpoint that allows you to write and read
image signatures. The image signatures are stored in the OpenShift Container Platform key-value store
via the Docker Registry API.

NOTE
This endpoint is experimental and not supported by the upstream Docker Registry

project. See the upstream API documentation for general information about the Docker
Registry API.

12.4.1. Writing Image Signatures via API

In order to add a new signature to the image, you can use the HTTP PUT method to send a JSON
payload to the extensions endpoint:

I PUT /extensions/v2/<namespace>/<namex>/signatures/<digest>

$ curl -X PUT --data @signature.json http://<user>:
<token>@-<registry_endpoint>:5000/extensions/v2/<namespace>/<name>/signatures/sha256:
<digest>

The JSON payload with the signature content should have the following structure:

{

"version": 2,
"type": "atomic",
"name":

"sha256:4028782c08eae4a8c9a28bf661c0a8d1c2fc8e19dbaae2b018b21011197e1484@cddeb7006d9
14716e2728000746a0b23",
"content": "<cryptographic_signature>"

}

The name field contains the name of the image signature, which must be unique and in the format
<digest>@<names>. The <digest> represents an image name and the <names> is the name of the
signature. The signature name must be 32 characters long. The <cryptographic_signature> must
follow the specification documented in the containers/image library.

12.4.2. Reading Image Signatures via API

Assuming a signed image has already been pushed into the OpenShift Container Registry, you can read
the signatures using the following command:

130

https://docs.docker.com/registry/spec/api/
https://github.com/containers/image/blob/master/docs/atomic-signature.md#the-cryptographic-signature

CHAPTER 12. IMAGE SIGNATURES

I GET /extensions/v2/<namespace>/<name>/signatures/<digest>

$ curl http://<user>:
<token>@-<registry_endpoint>:5000/extensions/v2/<namespace>/<name>/signatures/sha256:
<digest>

The <namespaces represents the OpenShift Container Platform project name or registry repository
name and the <name> refers to the name of the image repository. The digest represents the SHA-256
checksum of the image.

If the given image contains the signature data, the output of the command above should produce
following JSON response:

{

"signatures": [

{
"version": 2,
"type": "atomic",
"name":

"sha256:4028782c08eae4a8c9a28bf661c0a8d1c2fc8e19dbaae2b018b21011197e1484@cddeb7006d9
14716e2728000746a0b23",
"content": "<cryptographic_signature>"
}
]
}

The name field contains the name of the image signature, which must be unique and in the format
<digest>@<names>. The <digest> represents an image name and the <names> is the name of the
signature. The signature name must be 32 characters long. The <cryptographic_signature> must
follow the specification documented in the containers/image library.

12.4.3. Importing Image Signatures Automatically from Signature Stores

OpenShift Container Platform can automatically import image signatures if a signature store is
configured on all OpenShift Container Platform master nodes through the registries configuration
directory.

The registries configuration directory contains the configuration for various registries (servers storing
remote container images) and for the content stored in them. The single directory ensures that the
configuration does not have to be provided in command-line options for each command, so that it can
be shared by all the users of the containers/image.

The default registries configuration directory is located in the
/etc/containers/registries.d/default.yaml file.

A sample configuration that will cause image signatures to be imported automatically for all Red Hat
images:

docker:
registry.access.redhat.com:
sigstore: https://access.redhat.com/webassets/docker/content/sigstore ﬂ

ﬂ Defines the URL of a signature store. This URL is used for reading existing signatures.

131

https://github.com/containers/image/blob/master/docs/atomic-signature.md#the-cryptographic-signature

OpenShift Container Platform 3.10 Cluster Administration

NOTE

Signatures imported automatically by OpenShift Container Platform will be unverified by
default and will have to be verified by image administrators.

For more details about the registries configuration directory, see Registries Configuration Directory.

132

https://github.com/containers/image/blob/master/docs/registries.d.md

CHAPTER 13. SCOPED TOKENS

CHAPTER 13. SCOPED TOKENS

13.1. OVERVIEW

A user may want to give another entity the power to act as they have, but only in a limited way. For
example, a project administrator may want to delegate the power to create pods. One way to do this is
to create a scoped token.

A scoped token is a token that identifies as a given user, but is limited to certain actions by its scope.
Right now, only a cluster-admin can create scoped tokens.

13.2. EVALUATION

Scopes are evaluated by converting the set of scopes for a token into a set of PolicyRules. Then, the
request is matched against those rules. The request attributes must match at least one of the scope
rules to be passed to the "normal" authorizer for further authorization checks.

13.3. USER SCOPES

User scopes are focused on getting information about a given user. They are intent-based, so the rules
are automatically created for you:

user:full - Allows full read/write access to the APl with all of the user’s permissions.

e user:info - Allows read-only access to information about the user: name, groups, and so on.
e user:check-access - Allows access to self-localsubjectaccessreviews and self-
subjectaccessreviews. These are the variables where you pass an empty user and groups in

your request object.

e user:list-projects - Allows read-only access to list the projects the user has access to.

13.4. ROLE SCOPE

The role scope allows you to have the same level of access as a given role filtered by namespace.

e role:<cluster-role name>:<namespace or * for all> - Limits the scope to the rules specified
by the cluster-role, but only in the specified namespace .

NOTE

Caveat: This prevents escalating access. Even if the role allows access to
resources like secrets, rolebindings, and roles, this scope will deny access to
those resources. This helps prevent unexpected escalations. Many people do not
think of a role like edit as being an escalating role, but with access to a secret it is.

® role:<cluster-role name>:<namespace or * for all>:! - This is similar to the example above,
except that including the bang causes this scope to allow escalating access.

133

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 14. MONITORING IMAGES

14.1. OVERVIEW

You can monitor images and nodes in your instance using the CLI.

14.2. VIEWING IMAGES STATISTICS

You can display usage statistics about all of the images that OpenShift Container Platform manages. In
other words, all the images pushed to the internal registry either directly or through a build.

To view the usage statistics:

$ oc adm top images

NAME IMAGESTREAMTAG PARENTS USAGE

METADATA STORAGE

sha256:80c985739a78b openshift/python (3.5) yes
303.12MiB

sha256:64461b5111fc7 openshift/ruby (2.2) yes

234.33MiB

sha256:0e19a0290ddc1 test/ruby-ex (latest) sha256:64461b5111fc71ec Deployment: ruby-ex-
1/test yes 150.65MiB

sha256:a968c61adad58 test/django-ex (latest) sha256:80c985739a78b760 Deployment: django-
ex-1/test yes 186.07MiB

The command displays the following information:
® |mage D
® Project, name, and tag of the accompanying ImageStreamTag
® Potential parents of the image, listed by their IDs
e |nformation about where the image is used
e Flaginforming whether the image contains proper Docker metadata information

® Size of theimage

14.3. VIEWING IMAGESTREAMS STATISTICS
You can display usage statistics about ImageStreams.

To view the usage statistics:

$ oc adm top imagestreams

NAME STORAGE IMAGES LAYERS
openshift/python 1.21GiB 4 36
openshift/ruby 717.76MiB 3 27
test/ruby-ex 150.65MiB 1 10
test/django-ex 186.07MiB 1 10

The command displays the following information:

134

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#image-streams
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#access-pushing-and-pulling-images
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-how-builds-work

CHAPTER 14. MONITORING IMAGES

® Project and name of the ImageStream
® Size of the entire ImageStream stored in the internal Red Hat Container Registry
® Number of images this particular ImageStream is pointing to

® Number of layers ImageStream consists of

14.4. PRUNING IMAGES

The information returned from the previous commands is helpful when performing image pruning.

135

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-registry-overview

OpenShift Container Platform 3.10 Cluster Administration

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

15.1. OVERVIEW

Security context constraints allow administrators to control permissions for pods. To learn more about
this APl type, see the security context constraints (SCCs) architecture documentation. You can manage
SCCs in your instance as normal APl objects using the CLI.

NOTE

You must have cluster-admin privileges to manage SCCs.

IMPORTANT

Do not modify the default SCCs. Customizing the default SCCs can lead to issues when
upgrading. Instead, create new SCCs.

15.2. LISTING SECURITY CONTEXT CONSTRAINTS

To get a current list of SCCs:

$ oc get scc

NAME PRIV CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
PRIORITY READONLYROOTFS VOLUMES

anyuid false] MustRunAs RunAsAny RunAsAny RunAsAny 10 false
[configMap downwardAPI emptyDir persistentVolumeClaim secret]

hostaccess false] MustRunAs MustRunAsRange MustRunAs RunAsAny <none>
false [configMap downwardAPI emptyDir hostPath persistentVolumeClaim secret]
hostmount-anyuid false |[] MustRunAs RunAsAny RunAsAny RunAsAny <nonex>
false [configMap downwardAP| emptyDir hostPath nfs persistentVolumeClaim secret]
hostnetwork false] MustRunAs MustRunAsRange MustRunAs MustRunAs <none>
false [configMap downwardAPI emptyDir persistentVolumeClaim secret]

nonroot false] MustRunAs MustRunAsNonRoot RunAsAny RunAsAny <nonex>
false [configMap downwardAPI emptyDir persistentVolumeClaim secret]

privileged true [*] RunAsAny RunAsAny RunAsAny RunAsAny <none>
false "]

restricted false] MustRunAs MustRunAsRange MustRunAs RunAsAny <none>
false [configMap downwardAPI emptyDir persistentVolumeClaim secret]

15.3. EXAMINING A SECURITY CONTEXT CONSTRAINTS OBJECT

You can view information about a particular SCC, including which users, service accounts, and groups
the SCC is applied to.

For example, to examine the restricted SCC:

136

$ oc describe scc restricted
Name: restricted
Priority: <none>
Access:
Users: <none> ﬂ

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#security-context-constraints
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-core-concepts-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/cli_reference/#cli-reference-index
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#roles

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

Groups: system:authenticatedg
Settings:
Allow Privileged: false
Default Add Capabilities: <none>
Required Drop Capabilities: KILL,MKNOD,SYS_CHROOT,SETUID,SETGID
Allowed Capabilities: <none>
Allowed Seccomp Profiles: <none>
Allowed Volume Types:
configMap,downwardAPIl,emptyDir,persistentVolumeClaim,projected,secret
Allow Host Network: false
Allow Host Ports: false
Allow Host PID: false
Allow Host IPC: false
Read Only Root Filesystem: false
Run As User Strategy: MustRunAsRange
UID: <none>
UID Range Min: <none>
UID Range Max: <none>
SELinux Context Strategy: MustRunAs
User: <none>
Role: <none>
Type: <none>
Level: <none>
FSGroup Strategy: MustRunAs
Ranges: <none>
Supplemental Groups Strategy: RunAsAny
Ranges: <none>

ﬂ Lists which users and service accounts the SCC is applied to.

9 Lists which groups the SCC is applied to.

NOTE

In order to preserve customized SCCs during upgrades, do not edit settings on the
default SCCs other than priority, users, groups, labels, and annotations.

15.4. CREATING NEW SECURITY CONTEXT CONSTRAINTS

To create a new SCC:
1. Define the SCC in a JSON or YAML file:

Security Context Constraint Object Definition

kind: SecurityContextConstraints
apiVersion: v1
metadata:

name: scc-admin
allowPrivilegedContainer: true
runAsUser:

type: RunAsAny
seLinuxContext:

type: RunAsAny

137

OpenShift Container Platform 3.10 Cluster Administration

fsGroup:
type: RunAsAny
supplementalGroups:
type: RunAsAny
users:
- my-admin-user
groups:
- my-admin-group

Optionally, you can add drop capabilities to an SCC by setting the requiredDropCapabilities
field with the desired values. Any specified capabilities will be dropped from the container. For
example, to create an SCC with the KILL, MKNOD, and SYS_CHROOT required drop
capabilities, add the following to the SCC object:

requiredDropCapabilities:
- KILL

- MKNOD

- SYS_CHROOT

You can see the list of possible values in the Docker documentation.

TIP

Because capabilities are passed to the Docker, you can use a special ALL value to drop all
possible capabilities.

2. Then, run oc create passing the file to create it:

$ oc create -f scc_admin.yaml
securitycontextconstraints "scc-admin” created

3. Verify that the SCC was created:

$ oc get scc scc-admin

NAME PRIV ~ CAPS SELINUX RUNASUSER FSGROUP SUPGROUP
PRIORITY READONLYROOTFS VOLUMES

scc-admin true] RunAsAny RunAsAny RunAsAny RunAsAny <none> false
[awsElasticBlockStore azureDisk azureFile cephFS cinder configMap downwardAPI
emptyDir fc flexVolume flocker gcePersistentDisk gitRepo glusterfs iscsi nfs
persistentVolumeClaim photonPersistentDisk quobyte rbd secret vsphere]

15.5. DELETING SECURITY CONTEXT CONSTRAINTS

To delete an SCC:

I $ oc delete scc <scc_name>

NOTE

If you delete a default SCC, it will be regenerated upon restart.

138

https://docs.docker.com/engine/reference/run/#runtime-privilege-and-linux-capabilities

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

15.6. UPDATING SECURITY CONTEXT CONSTRAINTS

To update an existing SCC:

I $ oc edit scc <scc_name>

NOTE

In order to preserve customized SCCs during upgrades, do not edit settings on the
default SCCs other than priority, users, and groups.

15.6.1. Example Security Context Constraints Settings

Without Explicit runAsUser Setting

apiVersion: v1
kind: Pod
metadata:
name: security-context-demo
spec:
securityContext: ﬂ
containers:
- name: sec-ctx-demo
image: gcr.io/google-samples/node-hello:1.0

ﬂ When a container or pod does not request a user ID under which it should be run, the effective UID
depends on the SCC that emits this pod. Because restricted SCC is granted to all authenticated
users by default, it will be available to all users and service accounts and used in most cases. The
restricted SCC uses MustRunAsRange strategy for constraining and defaulting the possible
values of the securityContext.runAsUser field. The admission plug-in will look for the
openshift.io/sa.scc.uid-range annotation on the current project to populate range fields, as it
does not provide this range. In the end, a container will have runAsUser equal to the first value of
the range that is hard to predict because every project has different ranges. See Understanding
Pre-allocated Values and Security Context Constraints for more information.

With Explicit runAsUser Setting

apiVersion: v1
kind: Pod
metadata:
name: security-context-demo
spec:
securityContext:
runAsUser: 1000 @)
containers:
- name: sec-ctx-demo
image: gcr.io/google-samples/node-hello:1.0

ﬂ A container or pod that requests a specific user ID will be accepted by OpenShift Container
Platform only when a service account or a user is granted access to a SCC that allows such a user
ID. The SCC can allow arbitrary IDs, an ID that falls into a range, or the exact user ID specific to the
request.

139

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#understanding-pre-allocated-values-and-security-context-constraints

OpenShift Container Platform 3.10 Cluster Administration

This works with SELinux, fsGroup, and Supplemental Groups. See Volume Security for more
information.

15.7. UPDATING THE DEFAULT SECURITY CONTEXT CONSTRAINTS

Default SCCs will be created when the master is started if they are missing. To reset SCCs to defaults,
or update existing SCCs to new default definitions after an upgrade you may:

1. Delete any SCC you would like to be reset and let it be recreated by restarting the master

2. Use the oc adm policy reconcile-sccs command
The oc adm policy reconcile-sccs command will set all SCC policies to the default values but retain
any additional users, groups, labels, and annotations as well as priorities you may have already set. To
view which SCCs will be changed you may run the command with no options or by specifying your

preferred output with the -o <formats> option.

After reviewing it is recommended that you back up your existing SCCs and then use the --confirm
option to persist the data.

NOTE

If you would like to reset priorities and grants, use the --additive-only=false option.

NOTE

If you have customized settings other than priority, users, groups, labels, or annotations in
an SCC, you will lose those settings when you reconcile.

15.8. HOW DO I?

The following describe common scenarios and procedures using SCCs.

15.8.1. Grant Access to the Privileged SCC

In some cases, an administrator might want to allow users or groups outside the administrator group
access to create more privileged pods. To do so, you can:

1. Determine the user or group you would like to have access to the SCC.

' WARNING
A Granting access to a user only works when the user directly creates a pod.

For pods created on behalf of a user, in most cases by the system itself,
access should be given to a service accountunder which related
controller is operated upon. Examples of resources that create pods on
behalf of a user are Deployments, StatefulSets, DaemonSets, etc.

2. Run:

140

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-persistent-storage-pod-security-context

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

$ oc adm policy add-scc-to-user <scc_name> <user_name>
$ oc adm policy add-scc-to-group <scc_name> <group_name>

For example, to allow the e2e-user access to the privileged SCC, run:
I $ oc adm policy add-scc-to-user privileged e2e-user
3. Modify SecurityContext of a container to request a privileged mode.

15.8.2. Grant a Service Account Access to the Privileged SCC

First, create a service account. For example, to create service account mysvcacct in project myproject:

I $ oc create serviceaccount mysvcacct -n myproject

Then, add the service account to the privileged SCC.

I $ oc adm policy add-scc-to-user privileged system:serviceaccount:myproject:mysvcacct

Then, ensure that the resource is being created on behalf of the service account. To do so, set the
spec.serviceAccountName field to a service account name. Leaving the service account name blank
will result in the default service account being used.

Then, ensure that at least one of the pod'’s containers is requesting a privileged mode in the security
context.

15.8.3. Enable Images to Run with USER in the Dockerfile

To relax the security in your cluster so that images are not forced to run as a pre-allocated UID, without
granting everyone access to the privileged SCC:

1. Grant all authenticated users access to the anyuid SCC:

I $ oc adm policy add-scc-to-group anyuid system:authenticated

' WARNING
A This allows images to run as the root UID if no USER is specified in the Dockerfile.

15.8.4. Enable Container Images that Require Root

Some container images (examples: postgres and redis) require root access and have certain
expectations about how volumes are owned. For these images, add the service account to the anyuid
SCC.

I $ oc adm policy add-scc-to-user anyuid system:serviceaccount:myproject:mysvcacct

141

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-service-accounts

OpenShift Container Platform 3.10 Cluster Administration

15.8.5. Use --mount-host on the Registry

It is recommended that persistent storage using PersistentVolume and PersistentVolumeClaim
objects be used for registry deployments. If you are testing and would like to instead use the oc adm
registry command with the --mount-host option, you must first create a new service account for the
registry and add it to the privileged SCC. See the Administrator Guide for full instructions.

15.8.6. Provide Additional Capabilities

In some cases, an image may require capabilities that Docker does not provide out of the box. You can
provide the ability to request additional capabilities in the pod specification which will be validated
against an SCC.

IMPORTANT

This allows images to run with elevated capabilities and should be used only if necessary.
You should not edit the default restricted SCC to enable additional capabilities.

When used in conjunction with a non-root user, you must also ensure that the file that requires the
additional capability is granted the capabilities using the setcap command. For example, in the
Dockerfile of the image:

I setcap cap_net_raw,cap_net_admin+p /usr/bin/ping

Further, if a capability is provided by default in Docker, you do not need to modify the pod specification
to request it. For example, NET_RAW is provided by default and capabilities should already be set on
ping, therefore no special steps should be required to run ping.
To provide additional capabilities:

1. Create a new SCC

2. Add the allowed capability using the allowedCapabilities field.

3. When creating the pod, request the capability in the securityContext.capabilities.add field.

15.8.7. Modify Cluster Default Behavior

When you grant access to the anyuid SCC for everyone, your cluster:
® Does not pre-allocate UIDs
® Allows containers to run as any user
® Prevents privileged containers

I $ oc adm policy add-scc-to-group anyuid system:authenticated

To modify your cluster so that it does not pre-allocate UIDs and does not allow containers to run as root,
grant access to the nonroot SCC for everyone:

I $ oc adm policy add-scc-to-group nonroot system:authenticated

142

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-storage
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-registry-overview
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#storage-for-the-registry

CHAPTER 15. MANAGING SECURITY CONTEXT CONSTRAINTS

' WARNING
A Be very careful with any modifications that have a cluster-wide impact. When you

grant an SCC to all authenticated users, as in the previous example, or modify an
SCC that applies to all users, such as the restricted SCC, it also affects Kubernetes
and OpenShift Container Platform components, including the web console and
integrated docker registry. Changes made with these SCCs can cause these
components to stop functioning.

Instead, create a custom SCC and target it to only specific users or groups. This way

potential issues are confined to the affected users or groups and do not impact
critical cluster components.

15.8.8. Use the hostPath Volume Plug-in

To relax the security in your cluster so that pods are allowed to use the hostPath volume plug-in
without granting everyone access to more privileged SCCs such as privileged, hostaccess, or
hostmount-anyuid, perform the following actions:

1. Create a new SCC named hostpath

2. Set the allowHostDirVolumePlugin parameter to true for the new SCC:

I $ oc patch scc hostpath -p '{"allowHostDirVolumePlugin": true}'

3. Grant access to this SCC to all users:
I $ oc adm policy add-scc-to-group hostpath system:authenticated

Now, all the pods that request hostPath volumes are admitted by the hostpath SCC.

15.8.9. Ensure That Admission Attempts to Use a Specific SCC First

You may control the sort ordering of SCCs in admission by setting the Priority field of the SCCs. See
the SCC Prioritization section for more information on sorting.

15.8.10. Add an SCC to a User, Group, or Project

Before adding an SCC to a user or group, you can first use the sce-review option to check if the user or
group can create a pod. See the Authorization topic for more information.

SCCs are not granted directly to a project. Instead, you add a service account to an SCC and either
specify the service account name on your pod or, when unspecified, run as the default service account.

To add an SCC to a user:

I $ oc adm policy add-scc-to-user <scc_name> <user_name>

To add an SCC to a service account:

143

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#scc-prioritization
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-authorization

OpenShift Container Platform 3.10 Cluster Administration

$ oc adm policy add-scc-to-user <scc_name> \
system:serviceaccount:<serviceaccount_namespace>:<serviceaccount_name>

If you are currently in the project to which the service account belongs, you can use the -z flag and just
specify the <serviceaccount_names.

I $ oc adm policy add-scc-to-user <scc_name> -z <serviceaccount_name>

IMPORTANT

Usage of the -z flag as described above is highly recommended, as it helps prevent typos
and ensures that access is granted only to the specified service account. If not in the
project, use the -n option to indicate the project namespace it applies to.

To add an SCC to a group:

I $ oc adm policy add-scc-to-group <scc_name> <group_name>

To add an SCC to all service accounts in a namespace:

$ oc adm policy add-scc-to-group <scc_name> \
system:serviceaccounts:<serviceaccount_namespace>

144

CHAPTER 16. SCHEDULING

CHAPTER 16. SCHEDULING

16.1. OVERVIEW

16.1.1. Overview

Pod scheduling is an internal process that determines placement of new pods onto nodes within the
cluster.

The scheduler code has a clean separation that watches new pods as they get created and identifies the
most suitable node to host them. It then creates bindings (pod to node bindings) for the pods using the
master API.

16.1.2. Default scheduling

OpenShift Container Platform comes with a default scheduler that serves the needs of most users. The
default scheduler uses both inherent and customizable tools to determine the best fit for a pod.

For information on how the default scheduler determines pod placement and available customizable
parameters, see Default Scheduling.

16.1.3. Advanced scheduling

In situations where you might want more control over where new pods are placed, the OpenShift
Container Platform advanced scheduling features allow you to configure a pod so that the pod is
required to (or has a preference to) run on a particular node or alongside a specific pod. Advanced
scheduling also allows you to prevent pods from being placed on a node or with another pod.

For information about advanced scheduling, see Advanced Scheduling.

16.1.4. Custom scheduling

OpenShift Container Platform also allows you to use your own or third-party schedulers by editing the
pod specification.

For more information, see Custom Schedulers.

16.2. DEFAULT SCHEDULING

16.2.1. Overview

The default OpenShift Container Platform pod scheduler is responsible for determining placement of
new pods onto nodes within the cluster. It reads data from the pod and tries to find a node thatis a

good fit based on configured policies. It is completely independent and exists as a standalone/pluggable
solution. It does not modify the pod and just creates a binding for the pod that ties the pod to the
particular node.

16.2.2. Generic Scheduler

The existing generic scheduler is the default platform-provided scheduler engine that selects a node to
host the pod in a three-step operation:

145

OpenShift Container Platform 3.10 Cluster Administration

1. The scheduler filters out inappropriate nodes using predicates .
2. The scheduler prioritizes the filtered list of nodes.

3. The scheduler selects the highest priority node for the pod.

16.2.3. Filter the Nodes

The available nodes are filtered based on the constraints or requirements specified. This is done by
running each node through the list of filter functions called predicates.

16.2.3.1. Prioritize the Filtered List of Nodes

This is achieved by passing each node through a series of priority functions that assign it a score
between O - 10, with O indicating a bad fit and 10 indicating a good fit to host the pod. The scheduler
configuration can also take in a simple weight (positive numeric value) for each priority function. The
node score provided by each priority function is multiplied by the weight (default weight for most
priorities is 1) and then combined by adding the scores for each node provided by all the priorities. This
weight attribute can be used by administrators to give higher importance to some priorities.

16.2.3.2. Select the Best Fit Node

The nodes are sorted based on their scores and the node with the highest score is selected to host the
pod. If multiple nodes have the same high score, then one of them is selected at random.

16.2.4. Scheduler Policy

The selection of the predicate and priorities defines the policy for the scheduler.

The scheduler configuration file is a JSON file that specifies the predicates and priorities the scheduler
will consider.

In the absence of the scheduler policy file, the default configuration file,
/etc/origin/master/scheduler.json, gets applied.

IMPORTANT

The predicates and priorities defined in the scheduler configuration file completely
override the default scheduler policy. If any of the default predicates and priorities are
required, you must explicitly specify the functions in the scheduler configuration file.

Default scheduler configuration file

{
"apiVersion": "v1",
"kind": "Policy",
"predicates": [
{
"name": "NoVolumeZoneConflict"
b
{
"name": "MaxEBSVolumeCount"
b
{

146

}
],

"name"; "MaxGCEPDVolumeCount"

"name"; "MaxAzureDiskVolumeCount"

"name": "MatchinterPodAffinity"

"name": "NoDiskConflict"

"name": "GeneralPredicates"

"name"; "PodToleratesNodeTaints"

"name": "CheckNodeMemoryPressure"

"name"; "CheckNodeDiskPressure"

"argument": {
"serviceAffinity": {
"labels": [
"region”
]
}
b

"name": "Region”

"priorities™: [

{

"name": "SelectorSpreadPriority",
"weight": 1

"name": "InterPodAffinityPriority",
"weight": 1

"name": "LeastRequestedPriority",
"weight": 1

"name": "BalancedResourceAllocation”,
"weight": 1

"name": "NodePreferAvoidPodsPriority",
"weight": 10000

CHAPTER 16. SCHEDULING

147

OpenShift Container Platform 3.10 Cluster Administration

{
"name": "NodeAffinityPriority",
"weight": 1
g
{
"name": "TaintTolerationPriority",
"weight": 1
b
{
"argument": {
"serviceAntiAffinity": {
"label": "zone"
}
b
"name": "Zone",
"weight": 2
}

16.2.4.1. Modifying Scheduler Policy

The scheduler policy is defined in a file on the master, named /etc/origin/master/scheduler.json by
default, unless overridden by the kubernetesMasterConfig.schedulerConfigFile field in the master
configuration file.

Sample modified scheduler configuration file

kind: "Policy"
version: "v1"
"predicates": [
{
"name": "PodFitsResources”
b
{
"name": "NoDiskConflict"
b
{
"name": "MatchNodeSelector"
b
{
"name": "HostName"
b
{
"argument": {
"serviceAffinity": {
"labels": [
"region”
]
}
b
"name": "Region”
}
1,
"priorities": [

148

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#master-configuration-files

CHAPTER 16. SCHEDULING

{
"name": "LeastRequestedPriority",
"weight": 1
2
{
"name": "BalancedResourceAllocation”,
"weight": 1
2
{
"name": "ServiceSpreadingPriority",
"weight": 1
2
{
"argument": {
"serviceAntiAffinity": {
"label": "zone"
}
2
"name": "Zone",
"weight": 2
}

To modify the scheduler policy:
1. Edit the scheduler configuration file to configure the desired default predicates and priorities.
You can create a custom configuration, or use and modify one of the sample policy
configurations.

2. Add any configurable predicates and configurable priorities you require.

3. Restart the OpenShift Container Platform for the changes to take effect.

master-restart api
master-restart controllers

16.2.5. Available Predicates

Predicates are rules that filter out unqualified nodes.
There are several predicates provided by default in OpenShift Container Platform. Some of these

predicates can be customized by providing certain parameters. Multiple predicates can be combined to
provide additional filtering of nodes.

16.2.5.1. Static Predicates

These predicates do not take any configuration parameters or inputs from the user. These are specified
in the scheduler configuration using their exact name.

16.2.5.1.1. Default Predicates

The default scheduler policy includes the following predicates:

NoVolumeZoneConflict checks that the volumes a pod requests are available in the zone.

149

OpenShift Container Platform 3.10 Cluster Administration

I {"name" : "NoVolumeZoneConflict"}

MaxEBSVolumeCount checks the maximum number of volumes that can be attached to an AWS
instance.

I {"name" : "MaxEBSVolumeCount"}

MaxGCEPDVolumeCount checks the maximum number of Google Compute Engine (GCE) Persistent
Disks (PD).

I {"name" : "MaxGCEPDVolumeCount"}

MatchinterPodAffinity checks if the pod affinity/antiaffinity rules permit the pod.

I {"name" : "MatchlInterPodAffinity"}

NoDiskConflict checks if the volume requested by a pod is available.

I {"name" : "NoDiskConflict"}

PodToleratesNodeTaints checks if a pod can tolerate the node taints.

I {"name" : "PodToleratesNodeTaints"}

CheckNodeMemoryPressure checks if a pod can be scheduled on a node with a memory pressure
condition.

I {"name" : "CheckNodeMemoryPressure"}

16.2.5.1.2. Other Static Predicates

OpenShift Container Platform also supports the following predicates:

CheckNodeDiskPressure checks if a pod can be scheduled on a node with a disk pressure condition.

I {"name" : "CheckNodeDiskPressure"}

CheckVolumeBinding evaluates if a pod can fit based on the volumes, it requests, for both bound and
unbound PVCs. * For PVCs that are bound, the predicate checks that the corresponding PV’s node
affinity is satisfied by the given node. * For PVCs that are unbound, the predicate searched for available
PVs that can satisfy the PVC requirements and that the PV node affinity is satisfied by the given node.

The predicate returns true if all bound PVCs have compatible PVs with the node, and if all unbound
PVCs can be matched with an available and node-compatible PV.

I {"name" : "CheckVolumeBinding"}

The CheckVolumeBinding predicate must be enabled in non-default schedulers.

CheckNodeCondition checks if a pod can be scheduled on a node reporting out of disk, network
unavailable, or not ready conditions.

150

CHAPTER 16. SCHEDULING

I {"name" : "CheckNodeCondition"}
PodToleratesNodeNoExecuteTaints checks if a pod tolerations can tolerate a node NoExecute taints.
I {"name" : "PodToleratesNodeNoExecuteTaints"}

CheckNodeLabelPresence checks if all of the specified labels exist on a node, regardless of their value.

I {"name" : "CheckNodelLabelPresence"}

checkServiceAffinity checks that ServiceAffinity labels are homogeneous for pods that are scheduled
on a node.

I {"name" : "checkServiceAffinity"}

MaxAzureDiskVolumeCount checks the maximum number of Azure Disk Volumes.

I {"name" : "MaxAzureDiskVolumeCount"}

16.2.5.2. General Predicates

The following general predicates check whether non-critical predicates and essential predicates pass.
Non-critical predicates are the predicates that only non-critical pods need to pass and essential
predicates are the predicates that all pods need to pass.

The default scheduler policy includes the general predicates.

Non-critical general predicates

PodFitsResources determines a fit based on resource availability (CPU, memory, GPU, and so forth).
The nodes can declare their resource capacities and then pods can specify what resources they require.
Fit is based on requested, rather than used resources.

I {"name" : "PodFitsResources"}

Essential general predicates
PodFitsHostPorts determines if a node has free ports for the requested pod ports (absence of port
conflicts).

I {"name" : "PodFitsHostPorts"}

HostName determines fit based on the presence of the Host parameter and a string match with the
name of the host.

I {"name" : "HostName"}

MatchNodeSelector determines fit based on node selector (nodeSelector) queries defined in the pod.

I {"name" : "MatchNodeSelector"}

16.2.5.3. Configurable Predicates

151

OpenShift Container Platform 3.10 Cluster Administration

You can configure these predicates in the scheduler configuration, by default
/etc/origin/master/scheduler.json, to add labels to affect how the predicate functions.

Since these are configurable, multiple predicates of the same type (but different configuration
parameters) can be combined as long as their user-defined names are different.

For information on using these priorities, see Modifying Scheduler Policy .

ServiceAffinity places pods on nodes based on the service running on that pod. Placing pods of the
same service on the same or co-located nodes can lead to higher efficiency.

This predicate attempts to place pods with specific labels in its node selector on nodes that have the
same label.

If the pod does not specify the labels in its node selector, then the first pod is placed on any node based
on availability and all subsequent pods of the service are scheduled on nodes that have the same label
values as that node.

"predicates";[
{
"name":"<name>",
"argument™:{
"serviceAffinity":{
"labels"[
"<label>"

ﬂ Specify a name for the predicate.

9 Specify a label to match.

For example:

"name":"ZoneAffinity",
"argument™:{
"serviceAffinity":{
"labels™[
"rack"
]
}
}

For example. if the first pod of a service had a node selector rack was scheduled to a node with label
region=rack, all the other subsequent pods belonging to the same service will be scheduled on nodes
with the same region=rack label. For more information, see Controlling Pod Placement.

Multiple-level labels are also supported. Users can also specify all pods for a service to be scheduled on
nodes within the same region and within the same zone (under the region).

152

CHAPTER 16. SCHEDULING

The labelsPresence parameter checks whether a particular node has a specific label. The labels create
node groups that the LabelPreference priority uses. Matching by label can be useful, for example,
where nodes have their physical location or status defined by labels.

"predicates";[

{

"name":"<name>",
"argument™:{
"labelsPresence™:{
"labels™[

],
"presence": true 6

Specify a name for the predicate.
Specify a label to match.

Specify whether the labels are required, either true or false.

09

e For presence:false, if any of the requested labels are present in the node labels, the pod
cannot be scheduled. If the labels are not present, the pod can be scheduled.

e For presence:true, if all of the requested labels are present in the node labels, the pod can
be scheduled. If all of the labels are not present, the pod is not scheduled.

For example:

"name":"RackPreferred",
"argument™:{
"labelsPresence":{
"labels"[
"rack”,
"region”
1,
"presence": true
}
}

16.2.6. Available Priorities

Priorities are rules that rank remaining nodes according to preferences.
A custom set of priorities can be specified to configure the scheduler. There are several priorities
provided by default in OpenShift Container Platform. Other priorities can be customized by providing

certain parameters. Multiple priorities can be combined and different weights can be given to each in
order to impact the prioritization.

16.2.6.1. Static Priorities

153

OpenShift Container Platform 3.10 Cluster Administration

Static priorities do not take any configuration parameters from the user, except weight. A weight is
required to be specified and cannot be O or negative.

These are specified in the scheduler configuration, by default /etc/origin/master/scheduler.json.

16.2.6.1.1. Default Priorities

The default scheduler policy includes the following priorities. Each of the priority function has a weight
of 1 except NodePreferAvoidPodsPriority, which has a weight of 10000.

SelectorSpreadPriority looks for services, replication controllers (RC), replication sets (RS), and
stateful sets that match the pod, then finds existing pods that match those selectors. The scheduler
favors nodes that have fewer existing matching pods. Then, it schedules the pod on a node with the
smallest number of pods that match those selectors as the pod being scheduled.

I {"name" : "SelectorSpreadPriority", "weight" : 1}

InterPodAffinityPriority computes a sum by iterating through the elements of
weightedPodAffinityTerm and adding weight to the sum if the corresponding PodAffinityTerm is
satisfied for that node. The node(s) with the highest sum are the most preferred.

I {"name" : "InterPodAffinityPriority", "weight" : 1}

LeastRequestedPriority favors nodes with fewer requested resources. It calculates the percentage of
memory and CPU requested by pods scheduled on the node, and prioritizes nodes that have the
highest available/remaining capacity.

I {"name" : "LeastRequestedPriority", "weight" : 1}

BalancedResourceAllocation favors nodes with balanced resource usage rate. It calculates the
difference between the consumed CPU and memory as a fraction of capacity, and prioritizes the nodes
based on how close the two metrics are to each other. This should always be used together with
LeastRequestedPriority.

I {"name" : "BalancedResourceAllocation", "weight" : 1}

NodePreferAvoidPodsPriority ignores pods that are owned by a controller other than a replication
controller.

I {"name" : "NodePreferAvoidPodsPriority", "weight" : 10000}

NodeAffinityPriority prioritizes nodes according to node affinity scheduling preferences
I {"name" : "NodeAffinityPriority", "weight" : 1}

TaintTolerationPriority prioritizes nodes that have a fewer number of intolerable taints on them for a
pod. An intolerable taint is one which has key PreferNoSchedule.

I {"name" : "TaintTolerationPriority", "weight" : 1}

16.2.6.1.2. Other Static Priorities

OpenShift Container Platform also supports the following priorities:

154

CHAPTER 16. SCHEDULING

EqualPriority gives an equal weight of 1 to all nodes, if no priority configurations are provided. We
recommend using this priority only for testing environments.

I {"name" : "EqualPriority", "weight" : 1}
MostRequestedPriority prioritizes nodes with most requested resources. It calculates the percentage

of memory and CPU requested by pods scheduled on the node, and prioritizes based on the maximum
of the average of the fraction of requested to capacity.

I {"name" : "MostRequestedPriority", "weight" : 1}

ImageLocalityPriority prioritizes nodes that already have requested pod container’s images.
I {"name" : "ImageLocalityPriority", "weight" : 1}

ServiceSpreadingPriority spreads pods by minimizing the number of pods belonging to the same
service onto the same machine.

I {"name" : "ServiceSpreadingPriority", "weight" : 1}

16.2.6.2. Configurable Priorities

You can configure these priorities in the scheduler configuration, by default
/etc/origin/master/scheduler.json, to add labels to affect how the priorities.

The type of the priority function is identified by the argument that they take. Since these are
configurable, multiple priorities of the same type (but different configuration parameters) can be
combined as long as their user-defined names are different.

For information on using these priorities, see Modifying Scheduler Policy .

ServiceAntiAffinity takes a label and ensures a good spread of the pods belonging to the same service
across the group of nodes based on the label values. It gives the same score to all nodes that have the
same value for the specified label. It gives a higher score to nodes within a group with the least
concentration of pods.

"priorities":[
{
"name":"<name>",
"weight" : 1 g
"argument™:{
"serviceAntiAffinity":{
"label":[

ﬂ Specify a name for the priority.

9 Specify a weight. Enter a non-zero positive value.

155

OpenShift Container Platform 3.10 Cluster Administration
9 Specify a label to match.

For example:

"name":"RackSpread", 0
"weight" : 1 9
"argument™:{
"serviceAntiAffinity":{
"label": "rack"

}
}

ﬂ Specify a name for the priority.
9 Specify a weight. Enter a non-zero positive value.

9 Specify a label to match.

NOTE

In some situations using ServiceAntiAffinity based on custom labels does not spread pod
as expected. See this Red Hat Solution .

*The labelPreference parameter gives priority based on the specified label. If the label is present on a
node, that node is given priority. If no label is specified, priority is given to nodes that do not have a label.

"priorities":[
{

"name":"<name>",

"weight" : 1, 9

"argument™:{

"labelPreference":{

"label": "<label>",
"presence"”: true ﬂ

}
}
}
]

Specify a name for the priority.
Specify a weight. Enter a non-zero positive value.
Specify a label to match.

Specify whether the label is required, either true or false.

- -

16.2.7. Use Cases

One of the important use cases for scheduling within OpenShift Container Platform is to support
flexible affinity and anti-affinity policies.

156

https://access.redhat.com/solutions/3432401

CHAPTER 16. SCHEDULING

16.2.7.1. Infrastructure Topological Levels

Administrators can define multiple topological levels for their infrastructure (nodes) by specifying labels
on nodes (e.g., region=r1, zone=z1, rack=s1).

These label names have no particular meaning and administrators are free to name their infrastructure
levels anything (eg, city/building/room). Also, administrators can define any number of levels for their
infrastructure topology, with three levels usually being adequate (such as: regions — zones — racks).
Administrators can specify affinity and anti-affinity rules at each of these levels in any combination.

16.2.7.2. Affinity

Administrators should be able to configure the scheduler to specify affinity at any topological level, or
even at multiple levels. Affinity at a particular level indicates that all pods that belong to the same
service are scheduled onto nodes that belong to the same level. This handles any latency requirements
of applications by allowing administrators to ensure that peer pods do not end up being too
geographically separated. If no node is available within the same affinity group to host the pod, then the
pod is not scheduled.

If you need greater control over where the pods are scheduled, see Using Node Affinity and Using Pod
Affinity and Anti-affinity. These advanced scheduling features allow administrators to specify which
node a pod can be scheduled on and to force or reject scheduling relative to other pods.

16.2.7.3. Anti Affinity

Administrators should be able to configure the scheduler to specify anti-affinity at any topological level,
or even at multiple levels. Anti-affinity (or 'spread’) at a particular level indicates that all pods that
belong to the same service are spread across nodes that belong to that level. This ensures that the
application is well spread for high availability purposes. The scheduler tries to balance the service pods
across all applicable nodes as evenly as possible.

If you need greater control over where the pods are scheduled, see Using Node Affinity and Using Pod
Affinity and Anti-affinity. These advanced scheduling features allow administrators to specify which
node a pod can be scheduled on and to force or reject scheduling relative to other pods.

16.2.8. Sample Policy Configurations

The configuration below specifies the default scheduler configuration, if it were to be specified via the
scheduler policy file.

kind: "Policy"
version: "v1"
predicates:

- name: "RegionZoneAffinity" ﬂ
argument:
serviceAffinity: @)
labels: 6
- "region”
- "zone"
priorities:

- name: "RackSpread” ﬂ
weight: 1

157

OpenShift Container Platform 3.10 Cluster Administration

argument:
serviceAntiAffinity: @
label: "rack" G

The name for the predicate.
The type of predicate.

The labels for the predicate.
The name for the priority.
The type of priority.

The labels for the priority.

QD000

In all of the sample configurations below, the list of predicates and priority functions is truncated to
include only the ones that pertain to the use case specified. In practice, a complete/meaningful
scheduler policy should include most, if not all, of the default predicates and priorities listed above.

The following example defines three topological levels, region (affinity) = zone (affinity) = rack (anti-
affinity):

kind: "Policy"
version: "v1"
predicates:

- name: "RegionZoneAffinity"
argument:
serviceAffinity:
labels:
- "region”
- "zone"
priorities:

- name: "RackSpread"
weight: 1
argument:
serviceAntiAffinity:
label: "rack"

The following example defines three topological levels, city (affinity) = building (anti-affinity) = room
(anti-affinity):

kind: "Policy"
version: "v1"
predicates:

- name: "CityAffinity"
argument:
serviceAffinity:
labels:
- "city"
priorities:

158

CHAPTER 16. SCHEDULING

- name: "BuildingSpread"
weight: 1
argument:
serviceAntiAffinity:
label: "building"
- name: "RoomSpread"
weight: 1
argument:
serviceAntiAffinity:
label: "room"

The following example defines a policy to only use nodes with the 'region’ label defined and prefer
nodes with the 'zone' label defined:

kind: "Policy"
version: "v1"
predicates:

- name: "RequireRegion"
argument:
labelsPresence:
labels:
- "region”
presence: true
priorities:

- name: "ZonePreferred"
weight: 1
argument:
labelPreference:
label: "zone"
presence: true

The following example combines both static and configurable predicates and also priorities:

kind: "Policy"
version: "v1"
predicates:

- name: "RegionAffinity"
argument:
serviceAffinity:
labels:
- "region”
- name: "RequireRegion"
argument:
labelsPresence:
labels:
- "region”
presence: true
- name: "BuildingNodesAvoid"
argument:
labelsPresence:
labels:
- "building"

159

OpenShift Container Platform 3.10 Cluster Administration

presence: false
- name: "PodFitsPorts"
- name: "MatchNodeSelector"
priorities:

- name: "ZoneSpread"
weight: 2
argument:
serviceAntiAffinity:
label: "zone"
- name: "ZonePreferred"
weight: 1
argument:
labelPreference:
label: "zone"
presence: true
- name: "ServiceSpreadingPriority"
weight: 1

16.3. DESCHEDULING

16.3.1. Overview

Descheduling involves evicting pods based on specific policies so that the pods can be rescheduled
onto more appropriate nodes.

Your cluster can benefit from descheduling and rescheduling already-running pods for various reasons:
® Nodes are under- or over-utilized.

® Pod and node affinity requirements, such as taints or labels, have changed and the original
scheduling decisions are no longer appropriate for certain nodes.

® Node failure requires pods to be moved.
® New nodes are added to clusters.

The descheduler does not schedule replacement of evicted pods. The scheduler automatically performs
this task for the evicted pods.

It is important to note that there are a number of core components, such as Heapster and DNS, that are
critical to a fully functional cluster, but, run on a regular cluster node rather than the master. A cluster
may stop working properly if the component is evicted. To prevent the descheduler from removing
these pods, configure the pod as a critical pod by adding the scheduler.alpha.kubernetes.io/critical-
pod annotation to the pod specification.

NOTE

The descheduler job is considered a critical pod, which prevents the descheduler pod
from being evicted by the descheduler.

The descheduler job and descheduler pod are created in the kube-system project, which is created by
default.

160

CHAPTER 16. SCHEDULING

IMPORTANT

The descheduler is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs), might not be
functionally complete, and Red Hat does not recommend to use them for production.
These features provide early access to upcoming product features, enabling customers
to test functionality and provide feedback during the development process.

For more information on Red Hat Technology Preview features support scope, see
https://access.redhat.com/support/offerings/techpreview/.

The descheduler does not evict the following types of pods:
® Critical pods (with the scheduler.alpha.kubernetes.io/critical-pod annotation).

® Pods (static and mirror pods or pods in standalone mode) not associated with a Replica Set,
Replication Controller, Deployment, or Job (because these pods are not recreated).

® Pods associated with DaemonSets.
® Pods with local storage.

® Pods subject to Pod Disruption Budget (PDB) are not evicted if descheduling violates the PDB.
The pods can be evicted using an eviction policy.

NOTE

Best efforts pods are evicted before Burstable and Guaranteed pods.

The following sections describe the process to configure and run the descheduler:
1. Createarole.
2. Define the descheduling behavior in a policy file.
3. Create a configuration map to reference the policy file .
4. Create the descheduler job configuration.

5. Run the descheduler job.

16.3.2. Creating a Cluster Role

To configure the necessary permissions for the descheduler to work in a pod:

1. Create a cluster role with the following rules:

kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/vibetat
metadata:
name: descheduler-cluster-role
rules:
- apiGroups: ["]
resources: ["'nodes"]
verbs: ["get", "watch", "list"] 0

161

https://access.redhat.com/support/of