
OpenShift Container Platform 3.10

Ansible Playbook Bundle Development Guide

Developing with Ansible Playbook Bundle (APB)

Last Updated: 2018-09-21

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development
Guide

Developing with Ansible Playbook Bundle (APB)

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide outlines the design concepts and workflow of APB

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. ABOUT THIS GUIDE
1.2. DESIGN OVERVIEW
1.3. WORKFLOW

1.3.1. Preparation
1.3.1.1. APB Initialization
1.3.1.2. APB Spec File
1.3.1.3. Actions

1.3.2. Build
1.3.3. Deploy

CHAPTER 2. CLI TOOLING
2.1. OVERVIEW
2.2. INSTALLING THE TOOL

2.2.1. Prerequisites
2.2.1.1. Docker Daemon
2.2.1.2. Access Permissions

2.2.2. Installing via RPM
2.2.3. Verifying the Installation

2.3. TYPICAL WORKFLOWS
2.3.1. Local Registry
2.3.2. Remote Registry

2.4. APB CREATION COMMANDS
2.4.1. init

Description
Usage
Arguments
Options
Examples

2.4.2. prepare
Description
Usage
Options
Examples

2.4.3. build
Description
Usage
Options
Examples

2.4.4. push
Description
Usage
Options
Examples

2.4.5. test
Description
Usage
Options
Examples

2.5. BROKER UTILITY COMMANDS
2.5.1. list

5
5
5
5
5
5
6
6
7
7

11
11
11
11
11
11
12
12
12
12
13
13
13
13
13
13
13
14
15
15
15
15
15
16
16
16
16
16
16
16
17
17
17
18
18
18
18
18
18
18

Table of Contents

1

. .

Description
Usage
Options
Examples

2.5.2. bootstrap
Description
Usage
Options
Examples

2.5.3. remove
Description
Usage
Options
Examples

2.5.4. relist
Description
Usage
Options
Examples

2.6. OTHER COMMANDS
2.6.1. help

Description
Usage
Examples

CHAPTER 3. WRITING APBS
3.1. WRITING APBS: GETTING STARTED

3.1.1. Overview
3.1.2. Before You Begin
3.1.3. Creating Your First APB
3.1.4. Adding Actions

3.1.4.1. Provision
3.1.4.1.1. Creating a Deploying Configuration
3.1.4.1.2. Creating a Service
3.1.4.1.3. Creating a Route

3.1.4.2. Deprovision
3.1.4.2.1. Bind

3.1.4.2.1.1. Preparation
3.1.4.2.1.2. Executing From the UI

3.1.4.2.2. Test
3.1.4.2.2.1. Writing a Test Action
3.1.4.2.2.2. Writing a Verify Role
3.1.4.2.2.3. Saving Test Results
3.1.4.2.2.4. Running a Test Action

3.2. WRITING APBS: REFERENCE
3.2.1. Overview
3.2.2. Directory Structure
3.2.3. APB Spec File

3.2.3.1. Top-level Structure
3.2.3.2. Metadata
3.2.3.3. Plans
3.2.3.4. Plan Metadata
3.2.3.5. Parameters

18
18
18
19
19
19
19
19
20
20
20
20
20
20
21
21
21
21
21
21
21
22
22
22

23
23
23
23
23
25
26
28
30
31
32
33
33
37
42
42
43
44
44
45
45
45
45
46
47
47
47
48

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

2

3.2.3.6. APB Spec Versioning
3.2.3.6.1. Major Version
3.2.3.6.2. Minor Version

3.2.4. Dockerfile
3.2.5. APB Actions (Playbooks)
3.2.6. Working With Common Resources

3.2.6.1. Service
3.2.6.2. Deployment Configuration
3.2.6.3. Route
3.2.6.4. Persistent Volume

3.2.7. Optional Variables
3.2.8. Working with Remote Clusters

3.2.8.1. Pushing APBs
3.2.8.2. Running APBs

3.2.9. Working With the Restricted SCC
3.2.10. Using a ConfigMap Within an APB
3.2.11. Customizing Error Messages

49
49
49
49
50
50
51
51
52
52
53
54
54
57
58
58
59

Table of Contents

3

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

4

CHAPTER 1. INTRODUCTION

1.1. ABOUT THIS GUIDE

This guide outlines the design concepts and workflow of Ansible Playbook Bundles (APBs), shows how
to install and use the apb CLI tooling, and provides a tutorial and reference material on writing your own
APBs.

1.2. DESIGN OVERVIEW

An APB is a lightweight application definition that borrows several concepts from the Nulecule and
Atomicapp projects, namely the concept of a short-lived container with the sole purpose of orchestrating
the deployment of the intended application. For the case of APBs, this short-lived container is the APB
itself: a container with an Ansible runtime environment plus any files required to assist in orchestration,
such as playbooks, roles, and extra dependencies.

The OpenShift Ansible broker (OAB) is an implementation of the Open Service Broker (OSB) API that
manages applications defined by APBs. The OAB is supported and deployed by default starting in
OpenShift Container Platform 3.7.

Specification of an APB is intended to be lightweight, consisting of several named playbooks and a
metadata file to capture information such as parameters to pass into the application.

1.3. WORKFLOW

The APB workflow is broken up into the following steps:

1. Preparation

a. APB initialization

b. APB spec file

c. Actions (provision, deprovision, bind, unbind)

2. Build

3. Deploy

1.3.1. Preparation

You must prepare your APB’s directory structure and spec file before you can build and deploy it. The
Getting Started topic provides a step by step tutorial on creating your first APB, while the following
sections briefly cover this workflow.

1.3.1.1. APB Initialization

The apb init command creates the required skeleton directory structure and a few required files (for
example, the apb.yml spec file) for the APB.

The following shows an example directory structure of an APB:

Directory Structure

CHAPTER 1. INTRODUCTION

5

https://github.com/ansibleplaybookbundle/ansible-playbook-bundle
https://github.com/projectatomic/nulecule
http://www.projectatomic.io/docs/atomicapp/
https://www.ansible.com/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#arch-ansible-service-broker

1

2

example-apb/
├── Dockerfile
├── apb.yml
└── roles/
│ └── example-apb-openshift
│ ├── defaults
│ │ └── main.yml
│ └── tasks
│ └── main.yml
└── playbooks/
 └── provision.yml
 └── deprovision.yml
 └── bind.yml
 └── unbind.yml

1.3.1.2. APB Spec File

An APB spec file (apb.yml) must be edited for your specific application. For example, the default spec
file after running apb init looks as follows:

The metadata field is optional and used when integrating with the OpenShift Container Platform
service catalog.

For APBs that do not have any parameters, the parameters field should be blank.

NOTE

See the Reference topic for a fully-defined example APB spec file.

1.3.1.3. Actions

The following are the actions for an APB. At a minimum, an APB must implement the provision and
deprovision actions:

provision.yml

Playbook called to handle installing application to the cluster.

deprovision.yml

Playbook called to handle uninstalling.

version: 1.0
name: my-test-apb
description: This is a sample application generated by apb init
bindable: False
async: optional

metadata: 1
 displayName: my-test
plans:
 - name: default
 description: This default plan deploys my-test-apb
 free: True
 metadata: {}

 parameters: [] 2

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

6

bind.yml

Playbook to grant access to another service to use this service, such as generating credentials.

unbind.yml

Playbook to revoke access to this service.

test.yml

(Optional) Playbook to test that the APB is vaild.

The required named playbooks correspond to methods defined by the OSB API. For example, when the
OAB needs to provision an APB it will execute provision.yml.

After the required named playbooks have been generated, the files can be used directly to test
management of the application. A developer may want to work with this directory of files, make tweaks,
run, repeat until they are happy with the behavior. They can test the playbooks by invoking Ansible
directly with the playbook and any required variables.

1.3.2. Build

The build step is responsible for building a container image from the named playbooks for distribution.
Packaging combines a base image containing an Ansible runtime with Ansible artifacts and any
dependencies required to run the playbooks.

The result is a container image with an ENTRYPOINT set to take in several arguments, one of which is
the method to execute, such as provision and deprovision.

Figure 1.1. APB Build

1.3.3. Deploy

Deploying an APB means invoking the container and passing in the name of the playbook to execute
along with any required variables. It is possible to invoke the APB directly without going through the
OAB. Each APB is packaged so its ENTRYPOINT will invoke Ansible when run. The container is intended
to be short-lived, coming up to execute the Ansible playbook for managing the application then exiting.

In a typical APB deploy, the APB container will provision an application by running the provision.yml
playbook, which executes an Ansible role. The role is responsible for creating the OpenShift Container
Platform resources, perhaps through calling oc create commands or leveraging Ansible modules. The
end result is that the APB runs Ansible to talk to OpenShift Container Platform to orchestrate the
provisioning of the intended application.

The following diagrams illustrate this deployment flow in two phases: a user discovering a list of available
APBs and then requesting their chosen APB be provisioned to their project:

CHAPTER 1. INTRODUCTION

7

Figure 1.2. Listing Available APBs

 An OpenShift Container Platform user is interested in provisioning a service into their project, so
they interact with the service catalog by accessing the OpenShift Container Platform UI (web console or
CLI) to discover any APBs that are already available.

 The service catalog requests a list of APBs from the OAB to show the user.

 The OAB searches all configured container registries (the cluster’s OpenShift Container Registry or
any other remote registry) for any APBs (images with a specific label, for example LABEL=apb-1.0).

 The OAB returns the discovered list to the service catalog, to be viewed by the user in the
OpenShift Container Platform UI.

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

8

Figure 1.3. Deploying a Chosen APB

 The user now chooses an APB from the discovered list provided by the service catalog.

 The service catalog communicates with the OAB that the user has requested use of the chosen
APB.

 The OAB initiates the image pull from the appropriate container registry.

 After the image is pulled, the OAB defers the logic for orchestrating the application to the APB. The
service is deployed by running the APB container with a few parameters. To do so, the following
command is issued against the OpenShift Container Platform cluster in a temporary namespace:

$ oc run $IMAGE $METHOD $VARS ansible-playbook ${METHOD}.yaml ${VARS}

To break this command down further:

1. The oc run command runs the APB image.

2. In the short-lived container that is created as a result, Ansible is launched using the ansible-
playbook command, which runs the appropriate playbook (for example, provision.yaml) to
execute the requested action. This creates OpenShift Container Platform resources in the user’s
project.

3. The container exits at the end of the run, and the temporary namespace is removed.

CHAPTER 1. INTRODUCTION

9

 As a result, the user views via the OpenShift Container Platform UI that their requested service has
been successfully provisioned in their project.

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

10

CHAPTER 2. CLI TOOLING

2.1. OVERVIEW

The apb CLI tool helps Ansible Playbook Bundle (APB) authors create, build, and publish their APBs to
container registries. It enforces best practices and takes care of the details so they should be easy to
deploy.

2.2. INSTALLING THE TOOL

2.2.1. Prerequisites

2.2.1.1. Docker Daemon

The docker daemon must be correctly installed and running on the system.

2.2.1.2. Access Permissions

The apb tool requires you to be logged in as a tokened cluster user; the default system:admin system
user is not sufficient because it does not have a token that can be used for the tool’s authentication. In
addition, there are a number of local roles (project-scoped) and cluster roles (cluster-wide) that must
exist to permit the full breadth of the apb tool’s functions (see Cluster and Local RBAC).

The easiest option is to ensure the user has the cluster-admin cluster role. To add this role to another
user, you can run the following as a user that already has such permissions (for example, the
system:admin default system user):

WARNING

This is effectively cluster root and should only be used in a development setting.

$ oc adm policy add-cluster-role-to-user cluster-admin <user>
$ oc login -u <user> <openshift_server>

If you would like a more strictly permissioned environment, an OpenShift template is provided that by
default will permission a user called developer. The template must be run by a user with sufficient
permissions to create the various roles. The developer user does not have such permissions, but the
system:admin user is sufficient.

To run the template:

1. Download the openshift-permissions.template.yaml file locally.

2. Run the following command:

$ oc process -f openshift-permissions.template.yaml \
 -p BROKER_NAMESPACE=openshift-ansible-service-broker \

CHAPTER 2. CLI TOOLING

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#cluster-and-local-rbac
https://raw.githubusercontent.com/ansibleplaybookbundle/ansible-playbook-bundle/master/templates/openshift-permissions.template.yaml

1

 -p GLOBAL_IMAGE_PROJECT=default \

 [-p USER=<your_desired_user>] \ 1
 | oc create -f -

By default, the template will permission the developer user. You can optionally use the -p
flag to override this default value with your desired user.

2.2.2. Installing via RPM

The APB CLI tool is provided by the apb package, which is available from the rhel-7-server-ose-
3.7-rpms channel:

$ sudo yum install apb

2.2.3. Verifying the Installation

Run apb help to make sure the tool is installed correctly:

$ apb help
usage: apb [-h] [--debug] [--project BASE_PATH]
 {init,help,prepare,push,bootstrap,list,remove,build} ...

APB tooling for assisting in building and packaging APBs.

optional arguments:
 -h, --help show this help message and exit
 --debug Enable debug output
 --project BASE_PATH, -p BASE_PATH
 Specify a path to your project. Defaults to CWD.

subcommand:
 {init,help,prepare,push,bootstrap,list,remove,build}
 init Initialize the directory for APB development
 help Display this help message
 prepare Prepare an ansible-container project for APB
packaging
 push Push local APB spec to an OAB
 bootstrap Tell OAB to reload APBs from the
 container repository
 list List APBs from the target OAB
 remove Remove APBs from the target OAB
 build Build and package APB container

2.3. TYPICAL WORKFLOWS

2.3.1. Local Registry

In order to use the OpenShift Container Registry to source APBs, you must have configured the
OpenShift Ansible broker to use the local_openshift type registry adapter. See the config section for
more information.

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

12

https://github.com/openshift/ansible-service-broker/blob/master/docs/config.md#local-openshift-registry

$ apb init my-new-apb
$ cd my-new-apb
$ apb build
$ apb push
$ apb list

If you are using a namespace other than the default openshift namespace to host your APBs, then
you can use the following command:

$ apb push --namespace <namespace>

2.3.2. Remote Registry

OAB can also be configured to use a remote registry and organization such as
docker.io/ansibleplaybookbundle or your own personal account. In order to use this for developing
APBs, you can build and push to your remote registry and then bootstrap to reload your APBs:

$ apb init my-new-apb
$ cd my-new-apb
$ apb build --tag docker.io/my-org/my-new-apb
$ docker push docker.io/my-org/my-new-apb
$ apb bootstrap
$ apb list

2.4. APB CREATION COMMANDS

2.4.1. init

Description
Initializes a directory structure for a new APB. Also creates example files for the new APB with sensible
defaults.

Usage

$ apb init [OPTIONS] NAME

Arguments
NAME: Name of the APB and directory to be created.

Options

Option, Shorthand Description

--help, -h Show help message

--force Force re-init and overwrite the directory

--async
{required,optional,unsupported}

Specify asynchronous operation on application.
Usually defaulted to optional.

--bindable Generate an application with bindable settings

CHAPTER 2. CLI TOOLING

13

https://github.com/openshift/ansible-service-broker/blob/master/docs/config.md#dockerhub-registry
https://hub.docker.com/u/ansibleplaybookbundle/

--skip-provision Do not generate provision playbook and role

--skip-deprovision Do not generate deprovision playbook and role

--skip-bind Do not generate bind playbook and role

--skip-unbind Do not generate unbind playbook and role

--skip-roles Do not generate any roles

Option, Shorthand Description

NOTE

Async bind and unbind is an experimental feature and is not supported or enabled by
default.

Examples
Create directory my-new-apb :

$ apb init my-new-apb
my-new-apb/
├── apb.yml
├── Dockerfile
├── playbooks
│ ├── deprovision.yml
│ └── provision.yml
└── roles
├── deprovision-my-new-apb
│ └── tasks
│ └── main.yml
└── provision-my-new-apb
└── tasks
└── main.yml

Create directory my-new-apb , but skip generating deprovision playbook and roles:

$ apb init my-new-apb --skip-deprovision
my-new-apb/
├── apb.yml
├── Dockerfile
├── playbooks
│ └── provision.yml
└── roles
└── provision-my-new-apb
└── tasks
└── main.yml

Create directory my-new-apb , overwriting any old versions. The APB will be configured to be bindable
and set async to optional:

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

14

$ apb init my-new-apb --force --bindable --async optional
my-new-apb/
├── apb.yml
├── Dockerfile
├── playbooks
│ ├── bind.yml
│ ├── deprovision.yml
│ ├── provision.yml
│ └── unbind.yml
└── roles
├── bind-my-new-apb
│ └── tasks
│ └── main.yml
├── deprovision-my-new-apb
│ └── tasks
│ └── main.yml
├── provision-my-new-apb
│ └── tasks
│ └── main.yml
└── unbind-my-new-apb
└── tasks
└── main.yml

2.4.2. prepare

Description
Compiles the APB into base64 encoding and writes it as a label to the Dockerfile.

This will allow the OAB to read the APB metadata from the registry without downloading the images. This
command must be run from inside the APB directory. Running the build command will automatically
run prepare as well, meaning you generally do not need to run prepare by itself.

Usage

$ apb prepare [OPTIONS]

Options

Option, Shorthand Description

--help, -h Show help message

--dockerfile DOCKERFILE, -f
DOCKERFILE

Writes the APB spec to the target file name instead
of a file named Dockerfile

Examples
Writes the label for the spec field in the Dockerfile:

$ apb prepare

Writes the label for the spec field in Dockerfile-custom:

$ apb prepare --dockerfile Dockerfile-custom

CHAPTER 2. CLI TOOLING

15

2.4.3. build

Description
Builds the image for the APB.

Similar to running apb prepare and docker build with a tag.

Usage

$ apb build [OPTIONS]

Options

Option, Shorthand Description

--help, -h Show help message

--tag TAG Sets the tag of the built image to a string in the
format <registry>/<org>/<name>

--registry Registry portion of the tag of the image (e.g.,
docker.io)

--org, -o User or organization portion of the tag of the image

Examples
Build the image and use the name field from apb.yml as the tag:

$ apb build

Build the image and use the tag docker.io/my-org/my-new-apb:

$ apb build --tag docker.io/my-org/my-new-apb

Build the image and use the tag docker.io/my-org/<my-apb-name>:

$ apb build --registry docker.io --org my-org

Build the image using the file Dockerfile-custom as the Dockerfile definition:

$ apb build --dockerfile Dockerfile-custom

2.4.4. push

Description
Uploads the APB to an OpenShift Container Registry or a broker mock registry where it will be read by
the OAB.

When using the broker’s mock registry, the spec is uploaded and will be displayed in OpenShift
Container Platform, but OpenShift Container Platform will pull the image from the registry normally.
Usually that means the registry where oc cluster up was performed.

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

16

When using the OpenShift Container Registry, the image is uploaded to OpenShift Container Platform
directly.

Usage

$ apb push [OPTIONS]

Options

Option, Shorthand Description

--help, -h Show help message

--broker BROKER_URL Route to the OAB

--namespace NAMESPACE Namespace to push to the OpenShift Container
Registry

--openshift, -o Use the OpenShift Container Registry

--dockerfile DOCKERFILE, -f
DOCKERFILE

Dockerfile to build internal registry image. Usually
defaults to Dockerfile but can be set to any file
name.

--secure Use secure connection to OAB

--username USERNAME Basic authentication user name to be used in broker
communication

--password PASSWORD Basic authentication password to be used in broker
communication

--no-relist Do not relist the catalog after pushing an APB to the
broker

--broker-name Name of the ServiceBroker Kubernetes resource

Examples
Push to the OAB development endpoint:

$ apb push

Push to the local OpenShift Container Registry:

$ apb push

Push to the local OpenShift Container Registry under namespace myproject:

$ apb push --namespace myproject

CHAPTER 2. CLI TOOLING

17

2.4.5. test

Description
Runs the APB unit tests.

Usage

$ apb test [OPTIONS]

Options

Option, Shorthand Description

--help, -h Show help message

--tag TAG Sets the tag of the built image to a string in the
format <registry>/<org>/<name>

Examples
Run the tests:

$ apb test

Run the tests but use a specific tag on the built image:

$ apb test --tag docker.io/my-org/my-new-apb

2.5. BROKER UTILITY COMMANDS

2.5.1. list

Description
Lists all the APBs the broker has loaded.

Usage

$ apb list [OPTIONS]

Options

Option, Shorthand Description

--help, -h Show help message

--broker BROKER_URL Route to the OAB

--secure Use secure connection to OAB

--verbose, -v Output verbose spec information from OAB

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

18

--output {yaml,json}, -o
{yaml,json}

Specify verbose output format in yaml (default) or
json

--username BASIC_AUTH_USERNAME, -u
BASIC_AUTH_USERNAME

Specify the basic authentication user name to be
used

--password BASIC_AUTH_PASSWORD, -p
BASIC_AUTH_PASSWORD

Specify the basic authentication password to be used

Option, Shorthand Description

Examples
Basic list of APBs including name, ID, and description:

$ apb list

List verbose, easily readable specs:

$ apb list -v

List all the JSON output:

$ apb list -v -o json

2.5.2. bootstrap

Description
Requests the OAB to reload all APBs from the registries.

Usage

$ apb bootstrap [OPTIONS]

Options

Option, Shorthand Description

--help, -h Show help message

--broker BROKER_URL Route to the OAB

--secure Use secure connection to OAB

--no-relist Do not relist the catalog after bootstrapping the
broker

--username BASIC_AUTH_USERNAME, -u
BASIC_AUTH_USERNAME

Specify the basic authentication user name to be
used

CHAPTER 2. CLI TOOLING

19

--password BASIC_AUTH_PASSWORD, -p
BASIC_AUTH_PASSWORD

Specify the basic authentication password to be used

--broker-name BROKER_NAME Name of the ServiceBroker Kubernetes resource

Option, Shorthand Description

Examples
Basic reload of APBs:

$ apb bootstrap

2.5.3. remove

Description
Removes one (or all) APBs from the OAB.

Usage

$ apb remove [OPTIONS]

Options

Option, Shorthand Description

--help, -h Show help message

--broker BROKER_URL Route to the OAB

--secure Use secure connection to OAB

--all Remove all stored APBs

--id ID ID of APB to remove

--secure Use secure connection to OAB

--username BASIC_AUTH_USERNAME, -u
BASIC_AUTH_USERNAME

Specify the basic authentication user name to be
used

--password BASIC_AUTH_PASSWORD, -p
BASIC_AUTH_PASSWORD

Specify the basic authentication password to be used

--no-relist Do not relist the catalog after deletion

Examples
Remove an APB using an ID:

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

20

$ apb remove --id ca91b61da8476984f18fc13883ae2fdb

NOTE

If you need an ID of an APB, use:

$ apb list
ID NAME
DESCRIPTION
ca91b61da8476984f18fc13883ae2fdb dh-etherpad-apb Note
taking web application

Remove all APBs:

$ apb remove --all

2.5.4. relist

Description
Forces service catalog to relist the provided services to match the broker.

Usage

$ apb relist [OPTIONS]

Options

Option, Shorthand Description

--help, -h Show help message

--broker-name BROKER_NAME Name of the ServiceBroker Kubernetes resource

--secure Use secure connection to OAB

--username BASIC_AUTH_USERNAME, -u
BASIC_AUTH_USERNAME

Specify the basic authentication user name to be
used

--password BASIC_AUTH_PASSWORD, -p
BASIC_AUTH_PASSWORD

Specify the basic authentication password to be used

Examples

$ apb relist

2.6. OTHER COMMANDS

2.6.1. help

CHAPTER 2. CLI TOOLING

21

Description
Displays a help message.

Usage

$ apb help

Examples

$ apb help

$ apb -h

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

22

CHAPTER 3. WRITING APBS

3.1. WRITING APBS: GETTING STARTED

3.1.1. Overview

In this tutorial, you will walk through the creation of some sample Ansible Playbook Bundles (APBs). You
will create actions for them to allow provision, deprovision, bind, and unbind. You can find more
information about the design of APBs in the Design topic. More in-depth information about writing APBs
is available in the Reference topic.

NOTE

For the remainder of this tutorial, substitute your own information for items marked in
brackets; for example, <host>:<port> might need to be replaced with
172.17.0.1.nip.io:8443.

3.1.2. Before You Begin

Before getting started creating your own APBs, you must set up your development environment:

1. Ensure you have access to an OpenShift Container Platform cluster. The cluster should be
running both the service catalog and the OpenShift Ansible broker (OAB), which is supported
starting with OpenShift Container Platform 3.7.

2. Install the APB tools as documented in the CLI Tooling topic. To verify, you can run the apb
help command and check for a valid response.

3. If you are developing against an OpenShift Container Platform cluster that exists on a remote
host or you do not have access to the docker daemon, see Working with Remote Clusters for
alternative steps when using the apb push and apb run commands described in this guide.

3.1.3. Creating Your First APB

In this tutorial, you will create an APB for a containerized hello world application. You will work through a
basic APB that will mirror the APB hello-world-apb.

1. Your first task is to initialize the APB using the apb CLI tool. This creates the skeleton for your
APB. The command for this is simple:

$ apb init my-test-apb

After initialization, you will see the following file structure:

my-test-apb/
├── apb.yml
├── Dockerfile
├── playbooks
│ ├── deprovision.yml
│ └── provision.yml
└── roles
 ├── deprovision-my-test-apb
 │ └── tasks

CHAPTER 3. WRITING APBS

23

https://hub.docker.com/r/ansibleplaybookbundle/hello-world/
https://github.com/ansibleplaybookbundle/hello-world-apb

Two files were created at the root directory: an apb.yml (the APB spec file) and a Dockerfile.
These are the minimum files required for any APB. For more information about the APB spec
file, see the Reference topic. There is also an explanation of what you can do in the Dockerfile.

apb.yml

Dockerfile

FROM ansibleplaybookbundle/apb-base

LABEL "com.redhat.apb.spec"=\

COPY playbooks /opt/apb/actions
COPY roles /opt/ansible/roles
RUN chmod -R g=u /opt/{ansible,apb}
USER apb

2. In the Dockerfile, there are two updates to make:

a. Change the FROM directive to use the image from the Red Hat Container Catalog. The first
line should now read:

FROM openshift3/apb-base

b. Update com.redhat.apb.spec in the LABEL instruction with a base64 encoded version of
apb.yml. To do this, run apb prepare:

$ cd my-test-apb
$ apb prepare

This updates the Dockerfile as follows:

Dockerfile

FROM openshift3/apb-base

 │ └── main.yml
 └── provision-my-test-apb
 └── tasks
 └── main.yml

version: 1.0
name: my-test-apb
description: This is a sample application generated by apb init
bindable: False
async: optional
metadata:
 displayName: my-test
plans:
 - name: default
 description: This default plan deploys my-test-apb
 free: True
 metadata: {}
 parameters: []

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

24

LABEL "com.redhat.apb.spec"=\
"dmVyc2lvbjogMS4wCm5hbWU6IG15LXRlc3QtYXBiCmRlc2NyaXB0aW9uOiBUaGlz
IGlzIGEgc2Ft\
cGxlIGFwcGxpY2F0aW9uIGdlbmVyYXRlZCBieSBhcGIgaW5pdApiaW5kYWJsZTogR
mFsc2UKYXN5\
bmM6IG9wdGlvbmFsCm1ldGFkYXRhOgogIGRpc3BsYXlOYW1lOiBteS10ZXN0CnBsY
W5zOgogIC0g\
bmFtZTogZGVmYXVsdAogICAgZGVzY3JpcHRpb246IFRoaXMgZGVmYXVsdCBwbGFuI
GRlcGxveXMg\
bXktdGVzdC1hcGIKICAgIGZyZWU6IFRydWUKICAgIG1ldGFkYXRhOiB7fQogICAgc
GFyYW1ldGVy\
czogW10="

COPY playbooks /opt/apb/actions
COPY roles /opt/ansible/roles
RUN chmod -R g=u /opt/{ansible,apb}
USER apb

3. At this point, you have a fully formed APB that you can build. If you skipped using apb
prepare, the apb build command will still prepare the APB before building the image:

$ apb build

4. You can now push the new APB image to the local OpenShift Container Registry:

$ apb push

5. Querying the OAB will now show your new APB listed:

$ apb list
ID NAME DESCRIPTION
< ------------ ID -------------> dh-my-test-apb This is a sample
application generated by apb init

Similarly, visiting the OpenShift Container Platform web console will now display the new APB
named my-test-apb in the service catalog under the All and Other tabs.

3.1.4. Adding Actions

The brand new APB created in the last section does not do much in its current state. For that, you must
add some actions. The actions supported are:

provision

deprovision

bind

unbind

test

You will add each of these actions in the following sections. But before beginning:

CHAPTER 3. WRITING APBS

25

1

2

1. Ensure that you are logged in to your OpenShift Container Platform cluster via the oc CLI. This
will ensure the apb tool can interact with OpenShift Container Platform and the OAB:

oc login <cluster_host>:<port> -u <user_name> -p <password>

2. Log in to the OpenShift Container Platform web console and verify your APB listed in the
catalog:

Figure 3.1. OpenShift Container Platform Web Console

3. Create a project named getting-started where you will deploy OpenShift Container Platform
resources. You can create it using the web console or CLI:

$ oc new-project getting-started

3.1.4.1. Provision

During the apb init process, two parts of the provision task were stubbed out. The playbook,
playbooks/provision.yml, and the associated role in roles/provision-my-test-apb:

Inspect this playbook.

Edit this role.

The playbooks/provision.yml file is the Ansible playbook that will be run when the provision action is
called from the OAB. You can change the playbook, but for now you can just leave the code as is.

my-test-apb
├── apb.yml
├── Dockerfile
├── playbooks

│ └── provision.yml 1
└── roles
 └── provision-my-test-apb
 └── tasks

 └── main.yml 2

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

26

playbooks/provision.yml

The playbook will execute on localhost and execute the role provision-my-test-apb. This playbook
works on its local container created by the service broker. The ansible.kubernetes-modules role allow
you to use the kubernetes-modules to create your OpenShift Container Platform resources. The asb-
modules provide additional functionality for use with the OAB.

Currently, there are no tasks in the role. The contents of the roles/provision-my-test-
apb/tasks/main.yml only contains comments showing common resource creation tasks. ou can
currently execute the provision task, but since there are no tasks to perform, it would simply launch the
APB container and exit without deploying anything.

You can try this now by clicking on the my-test APB and deploying it to the getting-started project using
the web console:

Figure 3.2. Provisioning my-test

When the provision is executing, a new namespace is created with the name dh-my-test-apb-prov-
<random>. In development mode, it will persist, but usually this namespace would be deleted after
successful completion. If the APB fails provisioning, the namespace will persist by default.

- name: my-test-apb playbook to provision the application
 hosts: localhost
 gather_facts: false
 connection: local
 roles:
 - role: ansible.kubernetes-modules
 install_python_requirements: no
 - role: ansibleplaybookbundle.asb-modules
 - role: provision-my-test-apb
 playbook_debug: false

CHAPTER 3. WRITING APBS

27

https://github.com/ansible/ansible-kubernetes-modules
https://github.com/fusor/ansible-asb-modules

By looking at the pod resources, you can see the log for the execution of the APB. To view the pod’s
logs:

1. Find the namespaces by either using the web console to view all namespaces and sort by
creation date, or using the following command:

$ oc get ns
NAME STATUS AGE
ansible-service-broker Active 1h
default Active 1h
dh-my-test-apb-prov-<random> Active 4m

2. Switch to the project:

$ oc project dh-my-test-apb-prov-<random>
Now using project "dh-my-test-apb-prov-<random>" on server "
<cluster_host>:<port>".

3. Get the pod name:

$ oc get pods
NAME READY STATUS RESTARTS AGE
<apb_pod_name> 0/1 Completed 0 3m

4. View the logs:

$ oc logs -f <apb_pod_name>
...
+ ansible-playbook /opt/apb/actions/provision.yml --extra-vars
'{"_apb_plan_id":"default","namespace":"getting-started"}'
PLAY [my-test-apb playbook to provision the application]

TASK [ansible.kubernetes-modules : Install latest openshift client]

skipping: [localhost]
TASK [ansibleplaybookbundle.asb-modules : debug]

skipping: [localhost]
PLAY RECAP
**
*
localhost : ok=0 changed=0 unreachable=0
failed=0

3.1.4.1.1. Creating a Deploying Configuration

At the minimum, your APB should deploy the application pods. You can do this by specifying a
deployment configuration:

1. One of the first tasks that is commented out in the provision-my-test-apb/tasks/main.yml file is
the creation of the deployment configuration. You can uncomment it or paste the following:

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

28

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#deployments-and-deployment-configurations

1

2

3

4

5

NOTE

Normally, you would replace the image: value with your own application image.

Designates which namespace the deployment configuration should be in.

Used to help organize, group, and select objects.

Specifies that you only want one pod.

The selector section is a labels query over pods.

This containers section specifies a container with a hello-world application running on
port 8080 on TCP. The image is stored at docker.io/ansibleplaybookbundle/hello-world.

For more information, Writing APBs: Reference has more detail, and you can see the ansible-
kubernetes-modules documentation for a full accounting of all fields.

2. Build and push the APB:

$ apb build
$ apb push

3. Provision the APB using the web console.

4. After provisioning, there will be a new running pod and a new deployment configuration. Verify
by checking your OpenShift Container Platform resources:

$ oc project getting-started
$ oc get all
NAME REVISION DESIRED CURRENT TRIGGERED BY
dc/my-test 1 1 1 config

- name: create deployment config
 openshift_v1_deployment_config:
 name: my-test

 namespace: '{{ namespace }}' 1

 labels: 2
 app: my-test
 service: my-test

 replicas: 1 3

 selector: 4
 app: my-test
 service: my-test
 spec_template_metadata_labels:
 app: my-test
 service: my-test

 containers: 5
 - env:
 image: docker.io/ansibleplaybookbundle/hello-world:latest
 name: my-test
 ports:
 - container_port: 8080
 protocol: TCP

CHAPTER 3. WRITING APBS

29

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#namespaces
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#pods
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#labels
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#containers
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#docker-images
https://hub.docker.com/r/ansibleplaybookbundle/hello-world/
https://github.com/ansible/ansible-kubernetes-modules/blob/master/library/openshift_v1_deployment_config.py

NAME DESIRED CURRENT READY AGE
rc/my-test-1 1 1 1 35s

NAME READY STATUS RESTARTS AGE
po/my-test-1-2pw4t 1/1 Running 0 33s

You will also be able to see the deployed application in the web console on the project’s
Overview page.

The only way to use this pod in its current state is to use:

$ oc describe pods/<pod_name>

to find its IP address and access it directly. If there were multiple pods, they would be accessed
separately. To treat them like a single host, you need to create a service, described in the next section.

TIP

To clean up before moving on and allow you to provision again, you can delete the getting-started
project and recreate it or create a new one.

3.1.4.1.2. Creating a Service

You will want to use multiple pods, load balance them, and create a service so that a user can access
them as a single host:

1. Modify the provision-my-test-apb/tasks/main.yml file and add the following:

The selector section will allow the my-test service to include the correct pods. The ports will
take the target port from the pods (8080) and expose them as a single port for the service (80).
Notice the application was running on 8080 but has now been made available on the default
HTTP port of 80.

The name field of the port allows you to specify this port in the future with other resources. More
information is available in the k8s_v1_service module.

2. Build and push the APB:

- name: create my-test service
 k8s_v1_service:
 name: my-test
 namespace: '{{ namespace }}'
 labels:
 app: my-test
 service: my-test
 selector:
 app: my-test
 service: my-test
 ports:
 - name: web
 port: 80
 target_port: 8080

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#services
https://github.com/ansible/ansible-kubernetes-modules/blob/master/library/k8s_v1_service.py

$ apb build
$ apb push

3. Provision the APB using the web console.

After provisioning, you will see a new service in the web console or CLI. In the web console, you can
click on the new service under Networking in the application on the Overview page or under
Applications → Services. The service’s IP address will be shown which you can use to access the load
balanced application.

To view the service information from the command line, you can do the following:

$ oc project getting-started
$ oc get services
$ oc describe services/my-test

The describe command will show the IP address to access the service. However, using an IP address
for users to access your application is not generally what you want. Instead, you should create a route,
described in the next section.

TIP

To clean up before moving on and allow you to provision again, you can delete the getting-started
project and recreate it or create a new one.

3.1.4.1.3. Creating a Route

You can expose external access to your application through a reliable named route:

1. Modify the provision-my-test-apb/tasks/main.yml file and adding the following:

The to_name is the name of the target service. The spec_port_target_port refers to the
name of the target service’s port. More information is available in the openshift_v1_route
module.

2. Build and push the APB:

$ apb build
$ apb push

3. Provision the APB using the web console.

- name: create my-test route
 openshift_v1_route:
 name: my-test
 namespace: '{{ namespace }}'
 labels:
 app: my-test
 service: my-test
 to_name: my-test
 spec_port_target_port: web

CHAPTER 3. WRITING APBS

31

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-core-concepts-routes
https://github.com/ansible/ansible-kubernetes-modules/blob/master/library/openshift_v1_route.py

1

2

After provisioning, you will see the new route created. On the web console’s Overview page for the
getting-started project, you will now see an active and clickable route link listed on the application.
Clicking on the route or visiting the URL will bring up the hello-world application.

You can also view the route information from the CLI:

$ oc project getting-started

$ oc get routes
NAME HOST/PORT PATH SERVICES
PORT TERMINATION WILDCARD
my-test my-test-getting-started.172.17.0.1.nip.io my-test
web None

$ oc describe routes/my-test
Name: my-test
Namespace: getting-started
...

At this point, your my-test application is fully functional, load balanced, scalable, and accessible. You
can compare your finished APB to the hello-world APB in the hello-world-apb example repository.

3.1.4.2. Deprovision

For the deprovision task, you must destroy all provisioned resources, usually in reverse order from how
they were created.

To add the deprovision action, you need a deprovision.yml file under playbooks/ directory and related
tasks in the roles/deprovision-my-test-apb/tasks/main.yml. Both these files should already be created
for you:

Inspect this file.

Edit this file.

The content of the deprovision.yml file looks the same as the provision task, except it is calling a
different role:

playbooks/deprovision.yml

my-test-apb/
├── apb.yml
├── Dockerfile
├── playbooks

│ └── deprovision.yml 1
└── roles
 └── deprovision-my-test-apb
 └── tasks

 └── main.yml 2

- name: my-test-apb playbook to deprovision the application
 hosts: localhost
 gather_facts: false
 connection: local

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

32

https://github.com/ansibleplaybookbundle/hello-world-apb

Edit that role in the file roles/deprovision-my-test-apb/tasks/main.yml. By uncommenting the tasks,
the resulting file without comments should look like the following:

In the provision.yml file created earlier, you created a deployment configuration, service, then route.
For the deprovision action, you should delete the resources in reverse order. You can do so by
identifying the resource by namespace and name, and then marking it as state: absent.

To run the deprovision template, click on the menu on the list of Deployed Services and select Delete.

3.1.4.2.1. Bind

From the previous sections, you learned how to deploy a standalone application. However, in most
cases applications will need to communicate with other applications, and often with a data source. In the
following sections, you will create a PostgreSQL database that the hello-world application deployed
from my-test-apb can use.

3.1.4.2.1.1. Preparation

For a good starting point, create the necessary files for provision and deprovisioning PostgreSQL.

NOTE

A more in-depth example can be found at the PostgreSQL example APB.

1. Initialize the APB using the --bindable option:

$ apb init my-pg-apb --bindable

This creates the normal APB file structure with a few differences:

 roles:
 - role: ansible.kubernetes-modules
 install_python_requirements: no
 - role: ansibleplaybookbundle.asb-modules
 - role: deprovision-my-test-apb
 playbook_debug: false

- openshift_v1_route:
 name: my-test
 namespace: '{{ namespace }}'
 state: absent

- k8s_v1_service:
 name: my-test
 namespace: '{{ namespace }}'
 state: absent

- openshift_v1_deployment_config:
 name: my-test
 namespace: '{{ namespace }}'
 state: absent

my-pg-apb/

├── apb.yml 1

CHAPTER 3. WRITING APBS

33

https://github.com/ansibleplaybookbundle/rhscl-postgresql-apb

1

2

3

4

5

6

bindable flag set to true

New file

New file

New empty file

Encoded binding credentials

New empty file

In addition to the normal files, new playbooks bind.yml, unbind.yml, and their associated roles
have been stubbed out. The bind.yml and unbind.yml files are both empty and, because you
are using the default binding behavior, will remain empty.

2. Edit the apb.yml file. Notice the setting bindable: true. In addition to those changes, you
must add some parameters to the apb.yml for configuring PostgreSQL. They will be available
fields in the web console when provisioning your new APB:

├── Dockerfile
├── playbooks

│ ├── bind.yml 2
│ ├── deprovision.yml
│ ├── provision.yml

│ └── unbind.yml 3
└── roles
 ├── bind-my-pg-apb
 │ └── tasks

 │ └── main.yml 4
 ├── deprovision-my-pg-apb
 │ └── tasks
 │ └── main.yml
 ├── provision-my-pg-apb
 │ └── tasks

 │ └── main.yml 5
 └── unbind-my-pg-apb
 └── tasks

 └── main.yml 6

version: 1.0
name: my-pg-apb
description: This is a sample application generated by apb init
bindable: True
async: optional
metadata:
 displayName: my-pg
plans:
 - name: default
 description: This default plan deploys my-pg-apb
 free: True
 metadata: {}
 # edit the parameters and add the ones below.
 parameters:
 - name: postgresql_database

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

34

The playbooks/provision.yml will look like the following:

The playbooks/deprovision.yml will look like the following:

3. Edit the roles/provision-my-pg-apb/tasks/main.yml file. This file mirrors your hello-world
application in many respects, but adds a persistent volume (PV) to save data between restarts
and various configuration options for the deployment configuration.
In addition, a new task has been added at the very bottom after the provision tasks. To save the
credentials created during the provision process, you must encode them for retrieval by the
OAB. The new task, using the module asb_encode_binding, will do so for you.

You can safely delete everything in that file and replace it with the following:

 title: PostgreSQL Database Name
 type: string
 default: admin
 - name: postgresql_user
 title: PostgreSQL User
 type: string
 default: admin
 - name: postgresql_password
 title: PostgreSQL Password
 type: string
 default: admin

- name: my-pg-apb playbook to provision the application
 hosts: localhost
 gather_facts: false
 connection: local
 roles:
 - role: ansible.kubernetes-modules
 install_python_requirements: no
 - role: ansibleplaybookbundle.asb-modules
 - role: provision-my-pg-apb
 playbook_debug: false

- name: my-pg-apb playbook to deprovision the application
 hosts: localhost
 gather_facts: false
 connection: local
 roles:
 - role: ansible.kubernetes-modules
 install_python_requirements: no
 - role: deprovision-my-pg-apb
 playbook_debug: false

New persistent volume claim
- name: create volumes
 k8s_v1_persistent_volume_claim:
 name: my-pg
 namespace: '{{ namespace }}'
 state: present
 access_modes:
 - ReadWriteOnce
 resources_requests:

CHAPTER 3. WRITING APBS

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#persistent-volume-claims

 storage: 1Gi

- name: create deployment config
 openshift_v1_deployment_config:
 name: my-pg
 namespace: '{{ namespace }}'
 labels:
 app: my-pg
 service: my-pg
 replicas: 1
 selector:
 app: my-pg
 service: my-pg
 spec_template_metadata_labels:
 app: my-pg
 service: my-pg
 containers:
 - env:
 - name: POSTGRESQL_PASSWORD
 value: '{{ postgresql_password }}'
 - name: POSTGRESQL_USER
 value: '{{ postgresql_user }}'
 - name: POSTGRESQL_DATABASE
 value: '{{ postgresql_database }}'
 image: docker.io/centos/postgresql-94-centos7
 name: my-pg
 ports:
 - container_port: 5432
 protocol: TCP
 termination_message_path: /dev/termination-log
 volume_mounts:
 - mount_path: /var/lib/pgsql/data
 name: my-pg
 working_dir: /
 volumes:
 - name: my-pg
 persistent_volume_claim:
 claim_name: my-pg
 test: false
 triggers:
 - type: ConfigChange

- name: create service
 k8s_v1_service:
 name: my-pg
 namespace: '{{ namespace }}'
 state: present
 labels:
 app: my-pg
 service: my-pg
 selector:
 app: my-pg
 service: my-pg
 ports:
 - name: port-5432
 port: 5432

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

36

The encode bind credentials task will make available several fields as environment
variables: DB_TYPE, DB_HOST, DB_PORT, DB_USER, DB_PASSWORD, and DB_NAME. This is the
default behavior when the bind.yml file is left empty. Any application (such as hello-world) can
use these environment variables to connect to the configured database after performing a bind
operation.

4. Edit the roles/deprovision-my-pg-apb/tasks/main.yml and uncomment the following lines so
that the created resources will be deleted during deprovisioning:

5. Finally, build and push your APB:

$ apb build
$ apb push

At this point, the APB can create a fully functional PostgreSQL database to your cluster. You can test it
out in the next section.

3.1.4.2.1.2. Executing From the UI

To test your application, you can bind a hello-world application to the provisioned PostgreSQL
database. You can use the application previously created in the Provision section of this tutorial, or you
can use the hello-world-apb:

1. First, provision my-test-apb.

 protocol: TCP
 target_port: 5432

New encoding task makes credentials available to future bind
operations
- name: encode bind credentials
 asb_encode_binding:
 fields:
 DB_TYPE: postgres
 DB_HOST: my-pg
 DB_PORT: "5432"
 DB_USER: "{{ postgresql_user }}"
 DB_PASSWORD: "{{ postgresql_password }}"
 DB_NAME: "{{ postgresql_database }}"

- k8s_v1_service:
 name: my-pg
 namespace: '{{ namespace }}'
 state: absent

- openshift_v1_deployment_config:
 name: my-pg
 namespace: '{{ namespace }}'
 state: absent

- k8s_v1_persistent_volume_claim:
 name: my-pg
 namespace: '{{ namespace }}'
 state: absent

CHAPTER 3. WRITING APBS

37

https://github.com/ansibleplaybookbundle/hello-world-apb

2. Then, provision my-pg-apb and select the option to Create a secret:

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

38

3. Now, if you have not already done so, navigate to the project. You can see both your hello-
world application and your PostgreSQL database. If you did not select to create a binding at
provision time, you can also do so here with the Create binding link.

4. After you the binding has been created, you must add the secret created by the binding into the
application. First, navigate to the secrets on the Resources → Secrets page:

CHAPTER 3. WRITING APBS

39

5. Add the secret as environment variables:

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

40

6. After this addition, you can return to the Overview page. The my-test application may still be
redeploying from the configuration change. If so, wait until you can click on the route to view the
application:

CHAPTER 3. WRITING APBS

41

After clicking the route, you will see the hello-world application has detected and connected to
the my-pg database:

3.1.4.2.2. Test

Test actions are intended to check that an APB passes a basic sanity check before publishing to the
service catalog. They are not meant to test a live service. OpenShift Container Platform provides the
ability to test a live service using liveness and readiness probes, which you can add when provisioning.

The actual implementation of your test is left to you as the APB author. The following sections provide
guidance and best practices.

3.1.4.2.2.1. Writing a Test Action

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/developer_guide/#dev-guide-application-health

1

2

3

4

To create a test action for your APB:

Include a playbooks/test.yml file.

Include defaults for the test in the playbooks/vars/ directory.

To orchestrate the testing of an APB, you should use the include_vars and include_role modules in
your test.yml file:

test.yml

Load the Ansible Kubernetes modules.

Include the default values needed for provision from the test role.

Include the provision role to run.

Include the verify role to run. See Writing a Verify Role.

3.1.4.2.2.2. Writing a Verify Role

A verify role allows you to determine if the provision has failed or succeeded. The verify_<name> role
should be in the roles/ directory. This should be a normal Ansible role.

my-apb/
├── ...
├── playbooks/
 ├── test.yml
 └── vars/
 └── test_defaults.yml

- name: test media wiki abp
 hosts: localhost
 gather_facts: false
 connection: local

 roles:

 - role: ansible.kubernetes-modules 1
 install_python_requirements: no

 post_tasks:

 - name: Load default variables for testing 2
 include_vars: test_defaults.yaml
 - name: create project for namespace
 openshift_v1_project:
 name: '{{ namespace }}'

 - name: Run the provision role. 3
 include_role:
 name: provision-mediawiki-apb

 - name: Run the verify role. 4
 include_role:
 name: verify-mediawiki-apb

my-apb/

CHAPTER 3. WRITING APBS

43

http://docs.ansible.com/ansible/latest/include_vars_module.html
http://docs.ansible.com/ansible/latest/include_role_module.html
http://docs.ansible.com/ansible/latest/playbooks_reuse_roles.html

An example task in the main.yml file could look like:

3.1.4.2.2.3. Saving Test Results

The asb_save_test_result module can also be used in the verify role, allowing the APB to save test
results so that the apb test command can return them. The APB pod will stay alive for the tool to
retrieve the test results.

For example, adding asb_save_test_result usage to the previous main.yml example:

3.1.4.2.2.4. Running a Test Action

After you have defined your test action, you can use the CLI tooling to run the test:

$ apb test

├── ...
└── roles/
 ├── ...
 └── verify_<name>
 ├── defaults
 └── defaults.yml
 └── tasks
 └── main.yml

 - name: url check for media wiki
 uri:
 url: "http://{{ route.route.spec.host }}"
 return_content: yes
 register: webpage
 failed_when: webpage.status != 200

 - name: url check for media wiki
 uri:
 url: "http://{{ route.route.spec.host }}"
 return_content: yes
 register: webpage

 - name: Save failure for the web page
 asb_save_test_result:
 fail: true
 msg: "Could not reach route and retrieve a 200 status code. Recieved
status - {{ webpage.status }}"
 when: webpage.status != 200

 - fail:
 msg: "Could not reach route and retrieve a 200 status code. Recieved
status - {{ webpage.status }}"
 when: webpage.status != 200

 - name: Save test pass
 asb_save_test_result:
 fail: false
 when: webpage.status == 200

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

44

The test action will:

build the image,

start up a pod as if it was being run by the service broker, and

retrieve the test results if any were saved.

The status of pod after execution has finished will determine the status of the test. If the pod is in an error
state, then something failed and the command reports that the test was unsuccessful.

3.2. WRITING APBS: REFERENCE

3.2.1. Overview

While the Getting Started topic provides a step by step walkthrough on creating your first Ansible
Playbook Bundle (APB), this topic provides more in-depth reference material. The fundamental
components that make up an APB are explained in further detail to help an experienced APB developer
get a better understanding of each individual component within an APB.

For completed APB examples, you can browse APBs in the ansibleplaybookbundle organization on
GitHub.

3.2.2. Directory Structure

The following shows an example directory structure of an APB:

3.2.3. APB Spec File

The APB spec file is located at apb.yml and is where the outline of your application is declared. The
following is an example APB spec:

example-apb/
├── Dockerfile
├── apb.yml
└── roles/
│ └── example-apb-openshift
│ ├── defaults
│ │ └── main.yml
│ └── tasks
│ └── main.yml
└── playbooks/
 └── provision.yml
 └── deprovision.yml
 └── bind.yml
 └── unbind.yml

 version: 1.0
 name: example-apb
 description: A short description of what this APB does
 bindable: True

 async: optional 1
 metadata:
 documentationUrl: <link_to_documentation>

CHAPTER 3. WRITING APBS

45

https://github.com/ansibleplaybookbundle

1 Async bind and unbind is an experimental feature and is not supported or enabled by default.

3.2.3.1. Top-level Structure

Field Description

version Version of the APB spec. See APB Spec Versioning
for details.

name Name of the APB. Names must be valid ASCII and
may contain lowercase letters, digits, underscores,
periods, and dashes. See Docker’s guidelines for
valid tag names.

description Short description of this APB.

bindable Boolean option of whether or not this APB can be
bound to. Accepted fields are true or false.

metadata Dictionary field declaring relevant metadata
information.

plans A list of plans that can be deployed. See Plans for
details.

 imageUrl: <link_to_url_of_image>
 dependencies: ['<registry>/<organization>/<dependency_name_1>',
'<registry>/<organization>/<dependency_name_2>']
 displayName: Example App (APB)
 longDescription: A longer description of what this APB does
 providerDisplayName: "Red Hat, Inc."
 plans:
 - name: default
 description: A short description of what this plan does
 free: true
 metadata:
 displayName: Default
 longDescription: A longer description of what this plan deploys
 cost: $0.00
 parameters:
 - name: parameter_one
 required: true
 default: foo_string
 type: string
 title: Parameter One
 maxlength: 63
 - name: parameter_two
 required: true
 default: true
 title: Parameter Two
 type: boolean

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

46

https://docs.docker.com/engine/reference/commandline/tag/#extended-description

3.2.3.2. Metadata

Field Description

documentationUrl URL to the application’s documentation.

imageUrl URL to an image which will be displayed in the web
console for the service catalog.

dependencies List of images which are consumed from within the
APB.

displayName The name that will be displayed in the web console
for this APB.

longDescription Longer description that will be displayed when the
APB is clicked in the web console.

providerDisplayName Name of who is providing this APB for consumption.

3.2.3.3. Plans

Plans are declared as a list. This section explains what each field in a plan describes.

Field Description

name Unique name of plan to deploy. This will be displayed
when the APB is clicked from the service catalog.

description Short description of what will be deployed from this
plan.

free Boolean field to determine if this plan is free or not.
Accepted fields are true or false.

metadata Dictionary field declaring relevant plan metadata
information. See Plan Metadata for details.

parameters List of parameter dictionaries used as input to the
APB. See Parameters for details.

3.2.3.4. Plan Metadata

Field Description

displayName Name to display for the plan in the web console.

CHAPTER 3. WRITING APBS

47

longDescription Longer description of what this plan deploys.

cost How much the plan will cost to deploy. Accepted field
is $x.yz.

Field Description

3.2.3.5. Parameters

Each item in the parameters section can have several fields. The name field is required. The order of
the parameters will be displayed in sequential order in the form in the OpenShift Container Platform web
console.

Field Description

name Unique name of the parameter passed into the APB.

title Displayed label in the web console.

type Data type of the parameters as specified by link json-
schema, such as string, number, int,
boolean, or enum. Default input field type in the
web console will be assigned if no display_type
is assigned.

required Whether or not the parameter is required for APB
execution. Required field in the web console.

default Default value assigned to the parameter.

display_type Display type for the web console. For example, you
can override a string input as a password to hide it
in the web console. Accepted fields include text,
textarea, password, checkbox, or select.

parameters:
 - name: my_param
 title: My Parameter
 type: enum
 enum: ['X', 'Y', 'Z']
 required: True
 default: X
 display_type: select
 display_group: Group 1

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

48

http://json-schema.org/

display_group Will cause a parameter to display in groups with
adjacent parameters with matching
display_group fields. In the above example,
adding another field below with display_group:
Group 1 will visually group them together in the
web console under the heading Group 1.

Field Description

When using a long list of parameters, it can be useful to use a shared parameter list. For an example of
this, see the rhscl-postgresql-apb.

3.2.3.6. APB Spec Versioning

The APB spec uses semantic versioning with the format of x.y where x is a major release and y is a
minor release.

The current spec version is 1.0.

3.2.3.6.1. Major Version

The APB spec will increment the major version whenever an API breaking change is introduced to the
spec. Some examples include:

Introduction or deletion of a required field.

Changing the YAML format.

New features.

3.2.3.6.2. Minor Version

The APB spec will increment the minor version whenever a non-breaking change is introduced to the
spec. Some examples include:

Introduction or deletion of an optional field.

Spelling change.

Introduction of new options to an existing field.

3.2.4. Dockerfile

The Dockerfile is what is used to actually build the APB image. As a result, sometimes you will need to
customize it for your own needs. For example, if running a playbook that requires interactions with
PostgreSQL, you may want to install the required packages by adding the yum install command:

FROM ansibleplaybookbundle/apb-base
MAINTAINER Ansible Playbook Bundle Community

CHAPTER 3. WRITING APBS

49

https://github.com/ansibleplaybookbundle/rhscl-postgresql-apb/blob/master/apb.yml#L4

LABEL "com.redhat.apb.spec"=\
"<------------base64-encoded-spec------------>"

COPY roles /opt/ansible/roles
COPY playbooks /opt/apb/actions
RUN chmod -R g=u /opt/{ansible,apb}

INSTALL THE REQUIRED PACKAGES
RUN yum -y install python-boto postgresql && yum clean all

USER apb

3.2.5. APB Actions (Playbooks)

An action for an APB is the command that the APB is run with. The standard actions that are supported
are:

provision

deprovision

bind

unbind

test

For an action to be valid, there must be a valid file in the playbooks/ directory named <action>.yml.
These playbooks can do anything, which also means that you can technically create any action you
would like. For example, the mediawiki-apb has playbook creating an update action.

Most APBs will normally have a provision action to create resources and a deprovision action to destroy
the resources when deleting the service.

The bind and unbind actions are used when the coordinates of one service needs to be made available
to another service. This is often the case when creating a data service and making it available to an
application. Currently, the coordinates are made available during the provision.

To properly make your coordinates available to another service, use the asb_encode_binding module.
This module should be called at the end of the APB’s provision role, and it will return bind credentials to
the OpenShift Ansible broker (OAB):

3.2.6. Working With Common Resources

This section describes a list of common OpenShift Container Platform resources that are created when
developing APBs. See the Ansible Kubernetes Module for a full list of available resource modules.

- name: encode bind credentials
 asb_encode_binding:
 fields:
 EXAMPLE_FIELD: foo
 EXAMPLE_FIELD2: foo2

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

50

https://github.com/ansibleplaybookbundle/mediawiki-apb/blob/master/playbooks/update.yml
https://github.com/ansible/ansible-kubernetes-modules/tree/master/library

3.2.6.1. Service

The following is a sample Ansible task to create a service named hello-world. The namespace variable
in an APB will be provided by the OAB when launched from the web console.

Provision

Deprovision

3.2.6.2. Deployment Configuration

The following is a sample Ansible task to create a deployment configuration for the image
docker.io/ansibleplaybookbundle/hello-world which maps to service hello-world.

Provision

- name: create hello-world service
 k8s_v1_service:
 name: hello-world
 namespace: '{{ namespace }}'
 labels:
 app: hello-world
 service: hello-world
 selector:
 app: hello-world
 service: hello-world
 ports:
 - name: web
 port: 8080
 target_port: 8080

- k8s_v1_service:
 name: hello-world
 namespace: '{{ namespace }}'
 state: absent

- name: create deployment config
 openshift_v1_deployment_config:
 name: hello-world
 namespace: '{{ namespace }}'
 labels:
 app: hello-world
 service: hello-world
 replicas: 1
 selector:
 app: hello-world
 service: hello-world
 spec_template_metadata_labels:
 app: hello-world
 service: hello-world
 containers:
 - env:
 image: docker.io/ansibleplaybookbundle/hello-world:latest
 name: hello-world
 ports:

CHAPTER 3. WRITING APBS

51

Deprovision

3.2.6.3. Route

The following is an example of creating a route named hello-world which maps to the service hello-
world.

Provision

Deprovision

3.2.6.4. Persistent Volume

The following is an example of creating a persistent volume claim (PVC) resource and deployment
configuration that uses it.

Provision

In addition to the resource, add your volume to the deployment configuration declaration:

 - container_port: 8080
 protocol: TCP

- openshift_v1_deployment_config:
 name: hello-world
 namespace: '{{ namespace }}'
 state: absent

- name: create hello-world route
 openshift_v1_route:
 name: hello-world
 namespace: '{{ namespace }}'
 spec_port_target_port: web
 labels:
 app: hello-world
 service: hello-world
 to_name: hello-world

- openshift_v1_route:
 name: hello-world
 namespace: '{{ namespace }}'
 state: absent

Persistent volume resource
- name: create volume claim
 k8s_v1_persistent_volume_claim:
 name: hello-world-db
 namespace: '{{ namespace }}'
 state: present
 access_modes:
 - ReadWriteOnce
 resources_requests:
 storage: 1Gi

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

52

Deprovision

3.2.7. Optional Variables

You can add optional variables to an APB by using environment variables. To pass variables into an
APB, you must escape the variable substitution in your .yml files.

For example, consider the following roles/provision-etherpad-apb/tasks/main.yml file in the etherpad-
apb:

Variables for the APB are defined in the roles/provision-etherpad-apb/defaults/main.yml file:

- name: create hello-world-db deployment config
 openshift_v1_deployment_config:
 name: hello-world-db

 volumes:
 - name: hello-world-db
 persistent_volume_claim:
 claim_name: hello-world-db
 test: false
 triggers:
 - type: ConfigChange

- openshift_v1_deployment_config:
 name: hello-world-db
 namespace: '{{ namespace }}'
 state: absent

- k8s_v1_persistent_volume_claim:
 name: hello-world-db
 namespace: '{{ namespace }}'
 state: absent

- name: create mariadb deployment config
 openshift_v1_deployment_config:
 name: mariadb
 namespace: '{{ namespace }}'
 ...
 - env:
 - name: MYSQL_ROOT_PASSWORD
 value: '{{ mariadb_root_password }}'
 - name: MYSQL_DATABASE
 value: '{{ mariadb_name }}'
 - name: MYSQL_USER
 value: '{{ mariadb_user }}'
 - name: MYSQL_PASSWORD
 value: '{{ mariadb_password }}'

playbook_debug: no
mariadb_root_password: "{{ lookup('env','MYSQL_ROOT_PASSWORD') |
default('admin', true) }}"
mariadb_name: "{{ lookup('env','MYSQL_DATABASE') | default('etherpad',
true) }}"

CHAPTER 3. WRITING APBS

53

https://github.com/ansibleplaybookbundle/etherpad-apb

3.2.8. Working with Remote Clusters

When developing APBs, there are a few factors which could prevent the developer from using the full
development lifecycle that the apb tooling offers. Primarily, these factors are:

Developing against an OpenShift Container Platform cluster that exists on a remote host.

Developing APBs on a machine that does not have access to the docker daemon.

If a developer meets any of these criteria, use the following workflow to publish images to the internal
OpenShift Container Platform registry so that the broker can bootstrap the image (the process of loading
APB specs into the broker). The following sections show how to do these steps with the apb tooling and
without.

3.2.8.1. Pushing APBs

To use the apb push command when working with a remote OpenShift Container Platform cluster:

1. Ensure the base64-encoded APB spec is a label in the Dockerfile. This is usually done using the
apb prepare command. If you do not have the apb tooling installed, you can run:

$ cat apb.yml | base64

This will return the base64-encoded apb.yml, which you can copy and paste into the Dockerfile
under the LABEL "com.redhat.apb.spec" like:

LABEL "com.redhat.apb.spec"=\
"dmVyc2lvbjogMS4wCm5hbWU6IG1lZGlhd2lraS1hcGIKZGVzY3JpcHRpb246IE1lZGl
hd2lraSBh\
cGIgaW1wbGVtZW50YXRpb24KYmluZGFibGU6IEZhbHNlCmFzeW5jOiBvcHRpb25hbApt
ZXRhZGF0\
YToKICBkb2N1bWVudGF0aW9uVXJsOiBodHRwczovL3d3dy5tZWRpYXdpa2kub3JnL3dp
a2kvRG9j\
dW1lbnRhdGlvbgogIGxvbmdEZXNjcmlwdGlvbjogQW4gYXBiIHRoYXQgZGVwbG95cyBN
ZWRpYXdp\
a2kgMS4yMwogIGRlcGVuZGVuY2llczogWydkb2NrZXIuaW8vYW5zaWJsZXBsYXlib29r
YnVuZGxl\
L21lZGlhd2lraTEyMzpsYXRlc3QnXQogIGRpc3BsYXlOYW1lOiBNZWRpYXdpa2kgKEFQ
QilmZGZk\
CiAgY29uc29sZS5vcGVuc2hpZnQuaW8vaWNvbkNsYXNzOiBpY29uLW1lZGlhd2lraQog
IHByb3Zp\
ZGVyRGlzcGxheU5hbWU6ICJSZWQgSGF0LCBJbmMuIgpwbGFuczoKICAtIG5hbWU6IGRl
ZmF1bHQK\

mariadb_user: "{{ lookup('env','MYSQL_USER') | default('etherpad', true)
}}"
mariadb_password: "{{ lookup('env','MYSQL_PASSWORD') | default('admin',
true) }}"
etherpad_admin_password: "{{ lookup('env','ETHERPAD_ADMIN_PASSWORD') |
default('admin', true) }}"
etherpad_admin_user: "{{ lookup('env','ETHERPAD_ADMIN_USER') |
default('etherpad', true) }}"
etherpad_db_host: "{{ lookup('env','ETHERPAD_DB_HOST') |
default('mariadb', true) }}"
state: present

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

54

ICAgIGRlc2NyaXB0aW9uOiBBbiBBUEIgdGhhdCBkZXBsb3lzIE1lZGlhV2lraQogICAg
ZnJlZTog\
VHJ1ZQogICAgbWV0YWRhdGE6CiAgICAgIGRpc3BsYXlOYW1lOiBEZWZhdWx0CiAgICAg
IGxvbmdE\
ZXNjcmlwdGlvbjogVGhpcyBwbGFuIGRlcGxveXMgYSBzaW5nbGUgbWVkaWF3aWtpIGlu
c3RhbmNl\
IHdpdGhvdXQgYSBEQgogICAgICBjb3N0OiAkMC4wMAogICAgcGFyYW1ldGVyczoKICAg
ICAgLSBu\
YW1lOiBtZWRpYXdpa2lfZGJfc2NoZW1hCiAgICAgICAgZGVmYXVsdDogbWVkaWF3aWtp
CiAgICAg\
ICAgdHlwZTogc3RyaW5nCiAgICAgICAgdGl0bGU6IE1lZGlhd2lraSBEQiBTY2hlbWEK
ICAgICAg\
ICBwYXR0ZXJuOiAiXlthLXpBLVpfXVthLXpBLVowLTlfXSokIgogICAgICAgIHJlcXVp
cmVkOiBU\
cnVlCiAgICAgIC0gbmFtZTogbWVkaWF3aWtpX3NpdGVfbmFtZQogICAgICAgIGRlZmF1
bHQ6IE1l\
ZGlhV2lraQogICAgICAgIHR5cGU6IHN0cmluZwogICAgICAgIHRpdGxlOiBNZWRpYXdp
a2kgU2l0\
ZSBOYW1lCiAgICAgICAgcGF0dGVybjogIl5bYS16QS1aXSskIgogICAgICAgIHJlcXVp
cmVkOiBU\
cnVlCiAgICAgICAgdXBkYXRhYmxlOiBUcnVlCiAgICAgIC0gbmFtZTogbWVkaWF3aWtp
X3NpdGVf\
bGFuZwogICAgICAgIGRlZmF1bHQ6IGVuCiAgICAgICAgdHlwZTogc3RyaW5nCiAgICAg
ICAgdGl0\
bGU6IE1lZGlhd2lraSBTaXRlIExhbmd1YWdlCiAgICAgICAgcGF0dGVybjogIl5bYS16
XXsyLDN9\
JCIKICAgICAgICByZXF1aXJlZDogVHJ1ZQogICAgICAtIG5hbWU6IG1lZGlhd2lraV9h
ZG1pbl91\
c2VyCiAgICAgICAgZGVmYXVsdDogYWRtaW4KICAgICAgICB0eXBlOiBzdHJpbmcKICAg
ICAgICB0\
aXRsZTogTWVkaWF3aWtpIEFkbWluIFVzZXIgKENhbm5vdCBiZSB0aGUgc2FtZSB2YWx1
ZSBhcyBB\
ZG1pbiBVc2VyIFBhc3N3b3JkKQogICAgICAgIHJlcXVpcmVkOiBUcnVlCiAgICAgIC0g
bmFtZTog\
bWVkaWF3aWtpX2FkbWluX3Bhc3MKICAgICAgICB0eXBlOiBzdHJpbmcKICAgICAgICB0
aXRsZTog\
TWVkaWF3aWtpIEFkbWluIFVzZXIgUGFzc3dvcmQKICAgICAgICByZXF1aXJlZDogVHJ1
ZQogICAg\
ICAgIGRpc3BsYXlfdHlwZTogcGFzc3dvcmQK"

2. Populate the internal OpenShift Container Platform registry with your built APB image.
This is normally handled by the apb push command. In order to build your image without using
the docker CLI, you can take advantage of the S2I functionality of OpenShift Container
Platform.

By default, the OAB is configured to look for published APBs in the openshift project, which is a
global namespace that exposes its images and image streams to be available to any
authenticated user on the cluster. You can take advantage of this by using the oc new-app
command in the openshift project to build your image:

$ oc new-app <path_to_bundle_source> \
 --name <bundle_name> \
 -n openshift

After a couple of minutes, you should see your image in the internal registry:

CHAPTER 3. WRITING APBS

55

1

$ oc get images | grep <bundle_name>

sha256:b2dcb4b95e178e9b7ac73e5ee0211080c10b24260f76cfec30b89e74e8ee6
742
172.30.1.1:5000/openshift/<bundle_name>@sha256:b2dcb4b95e178e9b7ac73
e5ee0211080c10b24260f76cfec30b89e74e8ee6742

3. Bootstrap the OAB. This is normally also handled by the apb push or apb bootstrap
command. The apb bootstrap command is preferable for this step because it will also relist
the service catalog without having to wait five to ten minutes.
If you do not have the apb tooling installed, you can alternatively perform the following:

a. Get the route name for the broker:

$ oc get route -n openshift-ansible-service-broker

NAME HOST/PORT
PATH SERVICES PORT TERMINATION WILDCARD
asb-1338 asb-1338-openshift-ansible-service-
broker.172.17.0.1.nip.io asb port-1338
reencrypt None

b. Get the list of supported paths for the broker:

$ curl -H "Authorization: Bearer $(oc whoami -t)" -k \
 https://asb-1338-openshift-ansible-service-
broker.172.17.0.1.nip.io/

 {
 "paths": [
 "/apis",

 "/ansible-service-broker/", 1
 "/healthz",
 "/healthz/ping",
 "/healthz/poststarthook/generic-apiserver-start-
informers",
 "/metrics"
]
 }

This path provides the v2/bootstrap and v2/catalog paths.

c. Curl the v2/bootstrap path using the value found from the previous step:

$ curl -H "Authorization: Bearer $(oc whoami -t)" -k -X POST \
 https://asb-1338-openshift-ansible-service-

broker.172.17.0.1.nip.io/ansible-service-broker/v2/bootstrap 1

{
 "spec_count": 38,
 "image_count": 109
}

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

56

1 Replace ansible-service-broker if it differs from the value found in the previous
step.

NOTE

The oc whoami -t command should return a token and the authenticated
user must have permissions as described in Access Permissions.

4. Verify the new APB exists in the OAB. This is normally the functionality of the apb list
command. If you do not have the apb tooling installed, you can alternatively perform the
following:

a. Curl the v2/catalog path using the route and supported path name gathered from the
previous v2/bootstrap step:

$ curl -H "Authorization: Bearer $(oc whoami -t)" -k \
 https://asb-1338-openshift-ansible-service-
broker.172.17.0.1.nip.io/ansible-service-broker/v2/catalog

You should see a list of all bootstrapped APB specs and one that is labeled
localregistry-<bundle_name>. Use |grep <bundle_name> to help find it, since the
output is in JSON.

3.2.8.2. Running APBs

Due to the limitations when working with remote clusters, you may want the same functionality as the
apb run command without having to rely on the apb push command being successful. This is
because apb run implicitly performs apb push first before attempting to provision the application.

In order to work around this:

1. Follow the steps described in Pushing APBs to push your image onto the internal OpenShift
Container Platform registry. After the image exists, you should be able to see it with:

$ oc get images | grep <bundle_name>

sha256:bfaa73a5e15bf90faec343c7d5f8cc4f952987afdbc3f11a24c54c037528d
2ed
172.30.1.1:5000/openshift/<bundle_name>@sha256:bfaa73a5e15bf90faec34
3c7d5f8cc4f952987afdbc3f11a24c54c037528d2ed

2. To provision, use the oc run command to launch the APB:

$ oc new-project <target_namespace>
$ oc create serviceaccount apb
$ oc create rolebinding apb --clusterrole=admin --serviceaccount=
<target_namespace>:apb
$ oc run <pod_name> \
 --env="POD_NAME=<pod_name>" \
 --env="POD_NAMESPACE=<target_namespace>" \

 --image=<pull_spec> \ 1
 --restart=Never \
 --attach=true \

CHAPTER 3. WRITING APBS

57

1

 --serviceaccount=apb \
 -- <action> -e namespace=<target_namespace> -e
cluster=openshift

Use the pull specification for the image shown when running oc get images from the
previous step, since the registry will determine the fully-qualified domain name (FQDN).

3.2.9. Working With the Restricted SCC

When building an OpenShift Container Platform image, it is important that you do not have your
application running as the root user when at all possible. When running under the restriced security
context, the application image is launched with a random UID. This causes problems if your application
folder is owned by the root user.

A good way to work around this is to add a user to the root group and make the application folder owned
by the root group. See OpenShift Container Platform-Specific Guidelines for details on supporting
arbitrary user IDs.

The following is a Dockerfile example of a node application running in /usr/src. This command would
be run after the application is installed in /usr/src and the associated environment variables set:

ENV USER_NAME=haste \
 USER_UID=1001 \
 HOME=/usr/src

RUN useradd -u ${USER_UID} -r -g 0 -M -d /usr/src -b /usr/src -s
/sbin/nologin -c "<username> user" ${USER_NAME} \
 && chown -R ${USER_NAME}:0 /usr/src \
 && chmod -R g=u /usr/src /etc/passwd
USER 1001

3.2.10. Using a ConfigMap Within an APB

There is a temporary workaround for creating ConfigMaps from Ansible due to a bug in the Ansible
modules.

One common use case for ConfigMaps is when the parameters of an APB will be used within a
configuration file of an application or service. The ConfigMap module allows you to mount a ConfigMap
into a pod as a volume, which can be used to store the configuration file. This approach allows you to
also leverage the power of Ansible’s template module to create a ConfigMap out of APB paramters.

The following is an example of creating a ConfigMap from a Jinja template mounted into a pod as a
volume:

- name: Create hastebin config from template
 template:
 src: config.js.j2
 dest: /tmp/config.js

- name: Create hastebin configmap
 shell: oc create configmap haste-config --from-file=haste-
config=/tmp/config.js

<snip>

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

58

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/creating_images/#openshift-specific-guidelines

3.2.11. Customizing Error Messages

A default error message is returned in the web console when a provision call fails. For example:

Error occurred during provision. Please contact administrator if the issue
persists.

To provide more information for troubleshooting purposes should a failure occur, you can write custom
error messages for your APB that the web console can check for and return to the user.

Kubernetes allows pods to log fatal events to a termination log. The log file location is set by the
terminationMessagePath field in a pod’s specification and defaults to /dev/termination-log.

Starting in OpenShift Container Platform 3.10, the broker now checks this termination log for any
messages that have been written to the file and passes the content to the service catalog. The web
console then displays any such messages found in the event of a failure.

- name: create deployment config
 openshift_v1_deployment_config:
 name: hastebin
 namespace: '{{ namespace }}'
 labels:
 app: hastebin
 service: hastebin
 replicas: 1
 selector:
 app: hastebin
 service: hastebin
 spec_template_metadata_labels:
 app: hastebin
 service: hastebin
 containers:
 - env:
 image: docker.io/dymurray/hastebin:latest
 name: hastebin
 ports:
 - container_port: 7777
 protocol: TCP
 volumeMounts:
 - mountPath: /usr/src/haste-server/config
 name: config
 - env:
 image: docker.io/modularitycontainers/memcached:latest
 name: memcached
 ports:
 - container_port: 11211
 protocol: TCP
 volumes:
 - name: config
 configMap:
 name: haste-config
 items:
 - key: haste-config
 path: config.js

CHAPTER 3. WRITING APBS

59

NOTE

See Kubernetes documentation for more details on pod termination messages.

The following is an example of how this can be done in an APB utilizing a CloudFormation template:

- name: Writing Termination Message
 shell: echo "[CloudFormation Error] - {{ ansible_failed_result.msg }}" >
/dev/termination-log

- fail: msg="[APB Failed Plain - '{{ _apb_plan_id }}'] "

If an error occurs, this example custom message is written to the default termination log path before it
fails the pod.

OpenShift Container Platform 3.10 Ansible Playbook Bundle Development Guide

60

https://kubernetes.io/docs/tasks/debug-application-cluster/determine-reason-pod-failure/

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT THIS GUIDE
	1.2. DESIGN OVERVIEW
	1.3. WORKFLOW
	1.3.1. Preparation
	1.3.1.1. APB Initialization
	1.3.1.2. APB Spec File
	1.3.1.3. Actions

	1.3.2. Build
	1.3.3. Deploy

	CHAPTER 2. CLI TOOLING
	2.1. OVERVIEW
	2.2. INSTALLING THE TOOL
	2.2.1. Prerequisites
	2.2.1.1. Docker Daemon
	2.2.1.2. Access Permissions

	2.2.2. Installing via RPM
	2.2.3. Verifying the Installation

	2.3. TYPICAL WORKFLOWS
	2.3.1. Local Registry
	2.3.2. Remote Registry

	2.4. APB CREATION COMMANDS
	2.4.1. init
	Description
	Usage
	Arguments
	Options
	Examples

	2.4.2. prepare
	Description
	Usage
	Options
	Examples

	2.4.3. build
	Description
	Usage
	Options
	Examples

	2.4.4. push
	Description
	Usage
	Options
	Examples

	2.4.5. test
	Description
	Usage
	Options
	Examples

	2.5. BROKER UTILITY COMMANDS
	2.5.1. list
	Description
	Usage
	Options
	Examples

	2.5.2. bootstrap
	Description
	Usage
	Options
	Examples

	2.5.3. remove
	Description
	Usage
	Options
	Examples

	2.5.4. relist
	Description
	Usage
	Options
	Examples

	2.6. OTHER COMMANDS
	2.6.1. help
	Description
	Usage
	Examples

	CHAPTER 3. WRITING APBS
	3.1. WRITING APBS: GETTING STARTED
	3.1.1. Overview
	3.1.2. Before You Begin
	3.1.3. Creating Your First APB
	3.1.4. Adding Actions
	3.1.4.1. Provision
	3.1.4.2. Deprovision

	3.2. WRITING APBS: REFERENCE
	3.2.1. Overview
	3.2.2. Directory Structure
	3.2.3. APB Spec File
	3.2.3.1. Top-level Structure
	3.2.3.2. Metadata
	3.2.3.3. Plans
	3.2.3.4. Plan Metadata
	3.2.3.5. Parameters
	3.2.3.6. APB Spec Versioning

	3.2.4. Dockerfile
	3.2.5. APB Actions (Playbooks)
	3.2.6. Working With Common Resources
	3.2.6.1. Service
	3.2.6.2. Deployment Configuration
	3.2.6.3. Route
	3.2.6.4. Persistent Volume

	3.2.7. Optional Variables
	3.2.8. Working with Remote Clusters
	3.2.8.1. Pushing APBs
	3.2.8.2. Running APBs

	3.2.9. Working With the Restricted SCC
	3.2.10. Using a ConfigMap Within an APB
	3.2.11. Customizing Error Messages

