
JBoss Enterprise Application Platform
Common Criteria Certification 5

Hibernate Annotations Reference Guide

for Use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Last Updated: 2017-11-20

JBoss Enterprise Application Platform Common Criteria Certification 5
Hibernate Annotations Reference Guide

for Use with JBoss Enterprise Application Platform 5 Common Criteria Certification
Edition 5.1.0

Red Hat Documentation Group

Legal Notice

Copyright © 2011 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

The Hibernate Annotations Reference Guide for JBoss Enterprise Application Platform 5.1.0.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. SETTING UP AN ANNOTATIONS PROJECT
1.1. REQUIREMENTS
1.2. CONFIGURATION
1.3. PROPERTIES
1.4. LOGGING

CHAPTER 2. ENTITY BEANS
2.1. INTRO
2.2. MAPPING WITH EJB3/JPA ANNOTATIONS

2.2.1. Declaring an entity bean
2.2.1.1. Defining the table
2.2.1.2. Versioning for optimistic locking

2.2.2. Mapping simple properties
2.2.2.1. Declaring basic property mappings
2.2.2.2. Declaring column attributes
2.2.2.3. Embedded objects (aka components)
2.2.2.4. Non-annotated property defaults

2.2.3. Mapping identifier properties
2.2.4. Mapping inheritance

2.2.4.1. Table per class
2.2.4.2. Single table per class hierarchy
2.2.4.3. Joined subclasses
2.2.4.4. Inherit properties from superclasses

2.2.5. Mapping entity bean associations/relationships
2.2.5.1. One-to-one
2.2.5.2. Many-to-one
2.2.5.3. Collections

2.2.5.3.1. Overview
2.2.5.3.2. One-to-many
2.2.5.3.3. Many-to-many

2.2.5.4. Transitive persistence with cascading
2.2.5.5. Association fetching

2.2.6. Mapping composite primary and foreign keys
2.2.7. Mapping secondary tables

2.3. MAPPING QUERIES
2.3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries
2.3.2. Mapping native queries

2.4. HIBERNATE ANNOTATION EXTENSIONS
2.4.1. Entity
2.4.Identifier. Identifier

2.4.Identifier.1. Generators
2.4.Identifier.2. @NaturalId

2.4.3. Property
2.4.3.1. Access type
2.4.3.2. Formula
2.4.3.3. Type
2.4.3.4. Index
2.4.3.5. @Parent
2.4.3.6. Generated properties
2.4.3.7. @Target

3

4
4
4
5
6

7
7
7
7
7
8
8
8

10
11
13
13
16
17
17
18
18
20
20
21
22
23
24
27
28
29
29
31
32
32
33
37
37
39
39
40
41
41
42
42
43
43
44
44

Table of Contents

1

. .

. .

. .

2.4.3.8. Optimistic lock
2.4.4. Inheritance
2.4.5. Single Association related annotations

2.4.5.1. Lazy options and fetching modes
2.4.5.2. @Any

2.4.6. Collection related annotations
2.4.6.1. Enhance collection settings
2.4.6.2. Extra collection types

2.4.6.2.1. List
2.4.6.2.2. Map
2.4.6.2.3. Bidirectional association with indexed collections
2.4.6.2.4. Bag with primary key
2.4.6.2.5. Collection of element or composite elements
2.4.6.2.6. @ManyToAny

2.4.7. Cascade
2.4.8. Cache
2.4.9. Filters
2.4.10. Queries
2.4.11. Custom SQL for CRUD operations
2.4.12. Tuplizer

CHAPTER 3. OVERRIDING METADATA THROUGH XML
3.1. PRINCIPLES

3.1.1. Global level metadata
3.1.2. Entity level metadata
3.1.3. Property level metadata
3.1.4. Association level metadata

CHAPTER 4. ADDITIONAL MODULES
4.1. HIBERNATE VALIDATOR

4.1.1. Description
4.1.2. Integration with Hibernate Annotations

4.2. HIBERNATE SEARCH
4.2.1. Description
4.2.2. Integration with Hibernate Annotations

APPENDIX A. REVISION HISTORY

45
45
45
46
47
48
48
49
49
49
50
51
51
53
54
55
55
56
57
58

60
60
60
60
64
65

66
66
66
66
67
67
67

68

Hibernate Annotations Reference Guide

2

PREFACE
Hibernate, like all other object/relational mapping tools, requires metadata that governs the
transformation of data from one representation to the other. In Hibernate 2.x mapping metadata is most
of the time declared in XML text files. Alternatively XDoclet can be used utilizing Javadoc source code
annotations together with a compile time preprocessor.

The same kind of annotation support is now available in the standard JDK, although more powerful and
with better tools support. IntelliJ IDEA and Eclipse for example, support auto-completion and syntax
highlighting of JDK 5.0 annotations which are compiled into the bytecode and read at runtime using
reflection. No external XML files are needed.

The EJB3 specification recognizes the interest and the success of the transparent object/relational
mapping paradigm. It standardizes the basic APIs and the metadata needed for any object/relational
persistence mechanism. Hibernate EntityManager implements the programming interfaces and lifecycle
rules as defined by the EJB3 persistence specification and together with Hibernate Annotations offers a
complete (and standalone) EJB3 persistence solution on top of the mature Hibernate core. You may use
a combination of all three together, annotations without EJB3 programming interfaces and lifecycle, or
even pure native Hibernate, depending on the business and technical needs of your project. At all times
you cann fall back to Hibernate native APIs, or if required, even to native JDBC and SQL.

PREFACE

3

CHAPTER 1. SETTING UP AN ANNOTATIONS PROJECT

1.1. REQUIREMENTS

This release requires Hibernate Core 3.3 and above.

This release is known to work on Hibernate Core 3.3.2.GA.

Make sure you have JDK 5.0 installed or above. You can of course continue using XDoclet and
get some of the benefits of annotation-based metadata with older JDK versions. Note that this
document only describes JDK 5.0 annotations and you have to refer to the XDoclet
documentation for more information.

1.2. CONFIGURATION

First, set up your classpath (after you have created a new project in your favorite IDE):

Copy all Hibernate3 core and required 3rd party library files (see lib/README.txt in Hibernate).

Copy hibernate-annotations.jar, lib/hibernate-comons-annotations.jar and
lib/ejb3-persistence.jar from the Hibernate Annotations distribution to your classpath as
well.

If you wish to use Hibernate Validator, download it from the Hibernate website and add hibernate-
validator.jar in your classpath.

If you wish to use Hibernate Search, download it from the Hibernate website and add hibernate-
search.jar and lucene-core-x.y.z.jar in your classpath.

We also recommend a small wrapper class to startup Hibernate in a static initializer block, known as
HibernateUtil. You might have seen this class in various forms in other areas of the Hibernate
documentation. For Annotation support you have to enhance this helper class as follows:

package hello;

import org.hibernate.*;
import org.hibernate.cfg.*;
import test.*;
import test.animals.Dog;

public class HibernateUtil {

private static final SessionFactory sessionFactory;

 static {
 try {

 sessionFactory = new AnnotationConfiguration()
 configure().buildSessionFactory();
 } catch (Throwable ex) {
 // Log exception!
 throw new ExceptionInInitializerError(ex);
 }
 }

Hibernate Annotations Reference Guide

4

http://validator.hibernate.org
http://search.hibernate.org

Interesting here is the use of AnnotationConfiguration. The packages and annotated classes are
declared in your regular XML configuration file (usually hibernate.cfg.xml). Here is the equivalent of
the above declaration:

Note that you can mix the hbm.xml use and the new annotation one. The resource element can be either
an hbm file or an EJB3 XML deployment descriptor. The distinction is transparent for your configuration
process.

Alternatively, you can define the annotated classes and packages using the programmatic API

You can also use the Hibernate EntityManager which has its own configuration mechanism. Please refer
to this project documentation for more details.

There is no other difference in the way you use Hibernate APIs with annotations, except for this startup
routine change or in the configuration file. You can use your favorite configuration method for other
properties (hibernate.properties, hibernate.cfg.xml, programmatic APIs, etc). You can even
mix annotated persistent classes and classic hbm.cfg.xml declarations with the same
SessionFactory. You can however not declare a class several times (whether annotated or through
hbm.xml). You cannot mix configuration strategies (hbm vs annotations) in a mapped entity hierarchy
either.

To ease the migration process from hbm files to annotations, the configuration mechanism detects the
mapping duplication between annotations and hbm files. HBM files are then prioritized over annotated
metadata on a class to class basis. You can change the priority using
hibernate.mapping.precedence property. The default is hbm, class, changing it to class,
hbm will prioritize the annotated classes over hbm files when a conflict occurs.

1.3. PROPERTIES

 public static Session getSession()
 throws HibernateException {
 return sessionFactory.openSession();
 }
}

<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

 <hibernate-configuration>
 <session-factory>
 <mapping package="test.animals"/> <mapping
class="test.Flight"/> <mapping class="test.Sky"/> <mapping
class="test.Person"/> <mapping class="test.animals.Dog"/>
 <mapping resource="test/animals/orm.xml"/>
 </session-factory>
 </hibernate-configuration>

 sessionFactory = new AnnotationConfiguration()
.addPackage("test.animals") //the fully qualified package name
.addAnnotatedClass(Flight.class) .addAnnotatedClass(Sky.class)
.addAnnotatedClass(Person.class) .addAnnotatedClass(Dog.class)
.addResource("test/animals/orm.xml")
 configure()..buildSessionFactory();

CHAPTER 1. SETTING UP AN ANNOTATIONS PROJECT

5

Asides from the Hibernate core properties, Hibernate Annotations reacts to the following one

1.4. LOGGING

Hibernate Annotations utilizes Simple Logging Facade for Java (SLF4J) in order to log various system
events. SLF4J can direct your logging output to several logging frameworks (NOP, Simple, log4j version
1.2, JDK 1.4 logging, JCL or logback) depending on your chosen binding. In order to setup logging
properly you will need slf4j-api.jar in your classpath together with the jar file for your preferred
binding - slf4j-log4j12.jar in the case of Log4J. See the SLF4J documentation for more detail.

The logging categories interesting for Hibernate Annotations are:

Table 1.1. Hibernate Annotations Log Categories

Category Function

org.hibernate.cfg Log all configuration related events (not only
annotations).

For further category configuration refer to the Logging in the Hibernate Core documentation.

Hibernate Annotations Reference Guide

6

http://www.slf4j.org/
http://www.slf4j.org/manual.html
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-logging

CHAPTER 2. ENTITY BEANS

2.1. INTRO

This section covers EJB 3.0 (aka Java Persistence) entity annotations and Hibernate-specific extensions.

2.2. MAPPING WITH EJB3/JPA ANNOTATIONS

EJB3 entities are plain POJOs. Actually they represent the exact same concept as the Hibernate
persistent entities. Their mappings are defined through JDK 5.0 annotations (an XML descriptor syntax
for overriding is defined in the EJB3 specification). Annotations can be split in two categories, the logical
mapping annotations (allowing you to describe the object model, the class associations, etc.) and the
physical mapping annotations (describing the physical schema, tables, columns, indexes, etc). We will
mix annotations from both categories in the following code examples.

EJB3 annotations are in the javax.persistence.* package. Most JDK 5 compliant IDE (like Eclipse,
IntelliJ IDEA and Netbeans) can autocomplete annotation interfaces and attributes for you (even without
a specific "EJB3" module, since EJB3 annotations are plain JDK 5 annotations).

For more and runnable concrete examples read the JBoss EJB 3.0 tutorial or review the Hibernate
Annotations test suite. Most of the unit tests have been designed to represent a concrete example and
be a inspiration source.

2.2.1. Declaring an entity bean

Every bound persistent POJO class is an entity bean and is declared using the @Entity annotation (at
the class level):

@Entity declares the class as an entity bean (i.e. a persistent POJO class), @Id declares the identifier
property of this entity bean. The other mapping declarations are implicit. This configuration by exception
concept is central to the new EJB3 specification and a major improvement. The class Flight is mapped to
the Flight table, using the column id as its primary key column.

Depending on whether you annotate fields or methods, the access type used by Hibernate will be field
or property. The EJB3 spec requires that you declare annotations on the element type that will be
accessed, i.e. the getter method if you use property access, the field if you use field access. Mixing
EJB3 annotations in both fields and methods should be avoided. Hibernate will guess the access type
from the position of @Id or @EmbeddedId.

2.2.1.1. Defining the table

@Entity
public class Flight implements Serializable {
 Long id;

 @Id
 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }
}

CHAPTER 2. ENTITY BEANS

7

@Table is set at the class level; it allows you to define the table, catalog, and schema names for your
entity bean mapping. If no @Table is defined the default values are used: the unqualified class name of
the entity.

The @Table element also contains a schema and a catalog attributes, if they need to be defined. You
can also define unique constraints to the table using the @UniqueConstraint annotation in
conjunction with @Table (for a unique constraint bound to a single column, refer to @Column).

A unique constraint is applied to the tuple month, day. Note that the columnNames array refers to the
logical column names.

2.2.1.2. Versioning for optimistic locking

You can add optimistic locking capability to an entity bean using the @Version annotation:

The version property will be mapped to the OPTLOCK column, and the entity manager will use it to detect
conflicting updates (preventing lost updates you might otherwise see with the last-commit-wins strategy).

The version column may be a numeric (the recommended solution) or a timestamp as per the EJB3
spec. Hibernate support any kind of type provided that you define and implement the appropriate
UserVersionType.

The application must not alter the version number set up by Hibernate in any way. To artificially increase
the version number, check in Hibernate Entity Manager's reference documentation LockMode.WRITE

2.2.2. Mapping simple properties

2.2.2.1. Declaring basic property mappings

Every non static non transient property (field or method) of an entity bean is considered persistent,
unless you annotate it as @Transient. Not having an annotation for your property is equivalent to the
appropriate @Basic annotation. The @Basic annotation allows you to declare the fetching strategy for a
property:

@Entity
@Table(name="tbl_sky")
public class Sky implements Serializable {
...

@Table(name="tbl_sky",
 uniqueConstraints = {@UniqueConstraint(columnNames={"month", "day"})}
)

@Entity
public class Flight implements Serializable {
...
 @Version
 @Column(name="OPTLOCK")
 public Integer getVersion() { ... }
}

public transient int counter; //transient property

Hibernate Annotations Reference Guide

8

counter, a transient field, and lengthInMeter, a method annotated as @Transient, and will be
ignored by the entity manager. name, length, and firstname properties are mapped persistent and
eagerly fetched (the default for simple properties). The detailedComment property value will be lazily
fetched from the database once a lazy property of the entity is accessed for the first time. Usually you
don't need to lazy simple properties (not to be confused with lazy association fetching).

NOTE

To enable property level lazy fetching, your classes have to be instrumented: bytecode is
added to the original one to enable such feature, please refer to the Hibernate reference
documentation. If your classes are not instrumented, property level lazy loading is silently
ignored.

The recommended alternative is to use the projection capability of EJB-QL or Criteria queries.

EJB3 support property mapping of all basic types supported by Hibernate (all basic Java types , their
respective wrappers and serializable classes). Hibernate Annotations support out of the box Enum type
mapping either into a ordinal column (saving the enum ordinal) or a string based column (saving the
enum string representation): the persistence representation, defaulted to ordinal, can be overriden
through the @Enumerated annotation as shown in the note property example.

In core Java APIs, the temporal precision is not defined. When dealing with temporal data you might
want to describe the expected precision in database. Temporal data can have DATE, TIME, or
TIMESTAMP precision (ie the actual date, only the time, or both). Use the @Temporal annotation to fine
tune that.

@Lob indicates that the property should be persisted in a Blob or a Clob depending on the property type:
java.sql.Clob, Character[], char[] and java.lang.String will be persisted in a Clob.
java.sql.Blob, Byte[], byte[] and serializable type will be persisted in a Blob.

private String firstname; //persistent property

@Transient
String getLengthInMeter() { ... } //transient property

String getName() {... } // persistent property

@Basic
int getLength() { ... } // persistent property

@Basic(fetch = FetchType.LAZY)
String getDetailedComment() { ... } // persistent property

@Temporal(TemporalType.TIME)
java.util.Date getDepartureTime() { ... } // persistent property

@Enumerated(EnumType.STRING)
Starred getNote() { ... } //enum persisted as String in database

@Lob
public String getFullText() {
 return fullText;
}

@Lob

CHAPTER 2. ENTITY BEANS

9

If the property type implements java.io.Serializable and is not a basic type, and if the property is
not annotated with @Lob, then the Hibernate serializable type is used.

2.2.2.2. Declaring column attributes

The column(s) used for a property mapping can be defined using the @Column annotation. Use it to
override default values (see the EJB3 specification for more information on the defaults). You can use
this annotation at the property level for properties that are:

not annotated at all

annotated with @Basic

annotated with @Version

annotated with @Lob

annotated with @Temporal

annotated with @org.hibernate.annotations.CollectionOfElements (for Hibernate
only)

The name property is mapped to the flight_name column, which is not nullable, has a length of 50 and
is not updatable (making the property immutable).

This annotation can be applied to regular properties as well as @Id or @Version properties.

public byte[] getFullCode() {
 return fullCode;
}

@Entity
public class Flight implements Serializable {
...
@Column(updatable = false, name = "flight_name", nullable = false,
length=50)
public String getName() { ... }

@Column(

 name="columnName";

 boolean unique() default false;

 boolean nullable() default true;

 boolean insertable() default true;

 boolean updatable() default true;

 String columnDefinition() default "";

Hibernate Annotations Reference Guide

10

name (optional): the column name (default to the property name)

unique (optional): set a unique constraint on this column or not (default false)

nullable (optional): set the column as nullable (default true).

insertable (optional): whether or not the column will be part of the insert statement (default true)

updatable (optional): whether or not the column will be part of the update statement (default true)

columnDefinition (optional): override the sql DDL fragment for this particular column (non portable)

table (optional): define the targeted table (default primary table)

length (optional): column length (default 255)

precision (optional): column decimal precision (default 0)

scale (optional): column decimal scale if useful (default 0)

2.2.2.3. Embedded objects (aka components)

It is possible to declare an embedded component inside an entity and even override its column mapping.
Component classes have to be annotated at the class level with the @Embeddable annotation. It is
possible to override the column mapping of an embedded object for a particular entity using the
@Embedded and @AttributeOverride annotation in the associated property:

 String table() default "";

 int length() default 255;

 int precision() default 0; // decimal precision
 int scale() default 0; // decimal scale

@Entity
public class Person implements Serializable {

 // Persistent component using defaults
 Address homeAddress;

 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="iso2", column =
@Column(name="bornIso2")),
 @AttributeOverride(name="name", column =

CHAPTER 2. ENTITY BEANS

11

A embeddable object inherit the access type of its owning entity (note that you can override that using
the Hibernate specific @AccessType annotations (see Section 2.4, “Hibernate Annotation Extensions”).

The Person entity bean has two component properties, homeAddress and bornIn. homeAddress
property has not been annotated, but Hibernate will guess that it is a persistent component by looking for
the @Embeddable annotation in the Address class. We also override the mapping of a column name (to
bornCountryName) with the @Embedded and @AttributeOverride annotations for each mapped
attribute of Country. As you can see, Country is also a nested component of Address, again using
auto-detection by Hibernate and EJB3 defaults. Overriding columns of embedded objects of embedded
objects is currently not supported in the EJB3 spec, however, Hibernate Annotations supports it through
dotted expressions.

Hibernate Annotations supports one more feature that is not explicitly supported by the EJB3
specification. You can annotate a embedded object with the @MappedSuperclass annotation to make
the superclass properties persistent (see @MappedSuperclass for more informations).

@Column(name="bornCountryName"))
 })
 Country bornIn;
 ...
}

@Embeddable
public class Address implements Serializable {
 String city;
 Country nationality; //no overriding here
}

@Embeddable
public class Country implements Serializable {
 private String iso2;
 @Column(name="countryName") private String name;

 public String getIso2() { return iso2; }
 public void setIso2(String iso2) { this.iso2 = iso2; }

 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 ...
}

 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name="city", column =
@Column(name="fld_city")),
 @AttributeOverride(name="nationality.iso2", column =
@Column(name="nat_Iso2")),
 @AttributeOverride(name="nationality.name", column =
@Column(name="nat_CountryName"))
 //nationality columns in homeAddress are overridden
 })
 Address homeAddress;

Hibernate Annotations Reference Guide

12

While not supported by the EJB3 specification, Hibernate Annotations allows you to use association
annotations in an embeddable object (ie @*ToOne nor @*ToMany). To override the association columns
you can use @AssociationOverride.

If you want to have the same embeddable object type twice in the same entity, the column name
defaulting will not work: at least one of the columns will have to be explicit. Hibernate goes beyond the
EJB3 spec and allows you to enhance the defaulting mechanism through the NamingStrategy.
DefaultComponentSafeNamingStrategy is a small improvement over the default
EJB3NamingStrategy that allows embedded objects to be defaulted even if used twice in the same
entity.

2.2.2.4. Non-annotated property defaults

If a property is not annotated, the following rules apply:

If the property is of a single type, it is mapped as @Basic

Otherwise, if the type of the property is annotated as @Embeddable, it is mapped as
@Embedded

Otherwise, if the type of the property is Serializable, it is mapped as @Basic in a column holding
the object in its serialized version

Otherwise, if the type of the property is java.sql.Clob or java.sql.Blob, it is mapped as @Lob with
the appropriate LobType

2.2.3. Mapping identifier properties

The @Id annotation lets you define which property is the identifier of your entity bean. This property can
be set by the application itself or be generated by Hibernate (preferred). You can define the identifier
generation strategy thanks to the @GeneratedValue annotation:

AUTO - either identity column, sequence or table depending on the underlying DB

TABLE - table holding the id

IDENTITY - identity column

SEQUENCE - sequence

Hibernate provides more id generators than the basic EJB3 ones. Check Section 2.4, “Hibernate
Annotation Extensions” for more informations.

The following example shows a sequence generator using the SEQ_STORE configuration (see below)

The next example uses the identity generator:

The AUTO generator is the preferred type for portable applications (across several DB vendors). The

@Id @GeneratedValue(strategy=GenerationType.SEQUENCE,
generator="SEQ_STORE")
public Integer getId() { ... }

@Id @GeneratedValue(strategy=GenerationType.IDENTITY)
public Long getId() { ... }

CHAPTER 2. ENTITY BEANS

13

identifier generation configuration can be shared for several @Id mappings with the generator attribute.
There are several configurations available through @SequenceGenerator and @TableGenerator.
The scope of a generator can be the application or the class. Class-defined generators are not visible
outside the class and can override application level generators. Application level generators are defined
at XML level (see Chapter 3, Overriding metadata through XML):

If JPA XML (like META-INF/orm.xml) is used to define thegenerators, EMP_GEN and SEQ_GEN are
application level generators. EMP_GEN defines a table based id generator using the hilo algorithm with a
max_lo of 20. The hi value is kept in a table "GENERATOR_TABLE". The information is kept in a row
where pkColumnName "key" is equals to pkColumnValue "EMP" and column valueColumnName "hi"
contains the the next high value used.

SEQ_GEN defines a sequence generator using a sequence named my_sequence. The allocation size
used for this sequence based hilo algorithm is 20. Note that this version of Hibernate Annotations does
not handle initialValue in the sequence generator. The default allocation size is 50, so if you want to
use a sequence and pickup the value each time, you must set the allocation size to 1.

NOTE

Package level definition is no longer supported by the EJB 3.0 specification. However,
you can use the @GenericGenerator at the package level (see Section 2.4.Identifier,
“Identifier”).

The next example shows the definition of a sequence generator in a class scope:

<table-generator name="EMP_GEN"
 table="GENERATOR_TABLE"
 pk-column-name="key"
 value-column-name="hi"
 pk-column-value="EMP"
 allocation-size="20"/>

//and the annotation equivalent

@javax.persistence.TableGenerator(
 name="EMP_GEN",
 table="GENERATOR_TABLE",
 pkColumnName = "key",
 valueColumnName = "hi"
 pkColumnValue="EMP",
 allocationSize=20
)

<sequence-generator name="SEQ_GEN"
 sequence-name="my_sequence"
 allocation-size="20"/>

//and the annotation equivalent

@javax.persistence.SequenceGenerator(
 name="SEQ_GEN",
 sequenceName="my_sequence",
 allocationSize=20
)

Hibernate Annotations Reference Guide

14

This class will use a sequence named my_sequence and the SEQ_STORE generator is not visible in
other classes. Note that you can check the Hibernate Annotations tests in the
org.hibernate.test.annotations.id package for more examples.

You can define a composite primary key through several syntaxes:

annotate the component property as @Id and make the component class @Embeddable

annotate the component property as @EmbeddedId

annotate the class as @IdClass and annotate each property of the entity involved in the primary
key with @Id

While quite common to the EJB2 developer, @IdClass is likely new for Hibernate users. The composite
primary key class corresponds to multiple fields or properties of the entity class, and the names of
primary key fields or properties in the primary key class and those of the entity class must match and
their types must be the same. Let's look at an example:

@Entity
@javax.persistence.SequenceGenerator(
 name="SEQ_STORE",
 sequenceName="my_sequence"
)
public class Store implements Serializable {
 private Long id;

 @Id @GeneratedValue(strategy=GenerationType.SEQUENCE,
generator="SEQ_STORE")
 public Long getId() { return id; }
}

@Entity
@IdClass(FootballerPk.class)
public class Footballer {
 //part of the id key
 @Id public String getFirstname() {
 return firstname;
 }

 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 //part of the id key
 @Id public String getLastname() {
 return lastname;
 }

 public void setLastname(String lastname) {
 this.lastname = lastname;
 }

 public String getClub() {
 return club;
 }

CHAPTER 2. ENTITY BEANS

15

As you may have seen, @IdClass points to the corresponding primary key class.

While not supported by the EJB3 specification, Hibernate allows you to define associations inside a
composite identifier. Simply use the regular annotations for that

2.2.4. Mapping inheritance

EJB3 supports the three types of inheritance:

 public void setClub(String club) {
 this.club = club;
 }

 //appropriate equals() and hashCode() implementation
}

@Embeddable
public class FootballerPk implements Serializable {
 //same name and type as in Footballer
 public String getFirstname() {
 return firstname;
 }

 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 //same name and type as in Footballer
 public String getLastname() {
 return lastname;
 }

 public void setLastname(String lastname) {
 this.lastname = lastname;
 }

 //appropriate equals() and hashCode() implementation
}

@Entity
@AssociationOverride(name="id.channel", joinColumns =
@JoinColumn(name="chan_id"))
public class TvMagazin {
 @EmbeddedId public TvMagazinPk id;
 @Temporal(TemporalType.TIME) Date time;
}

@Embeddable
public class TvMagazinPk implements Serializable {
 @ManyToOne
 public Channel channel;
 public String name;
 @ManyToOne
 public Presenter presenter;
}

Hibernate Annotations Reference Guide

16

Table per Class Strategy: the <union-class> element in Hibernate

Single Table per Class Hierarchy Strategy: the <subclass> element in Hibernate

Joined Subclass Strategy: the <joined-subclass> element in Hibernate

The chosen strategy is declared at the class level of the top level entity in the hierarchy using the
@Inheritance annotation.

NOTE

Annotating interfaces is currently not supported.

2.2.4.1. Table per class

This strategy has many drawbacks (esp. with polymorphic queries and associations) explained in the
EJB3 spec, the Hibernate reference documentation, Hibernate in Action, and many other places.
Hibernate work around most of them implementing this strategy using SQL UNION queries. It is
commonly used for the top level of an inheritance hierarchy:

This strategy support one to many associations provided that they are bidirectional. This strategy does
not support the IDENTITY generator strategy: the id has to be shared across several tables.
Consequently, when using this strategy, you should not use AUTO nor IDENTITY.

2.2.4.2. Single table per class hierarchy

All properties of all super- and subclasses are mapped into the same table, instances are distinguished
by a special discriminator column:

Plane is the superclass, it defines the inheritance strategy InheritanceType.SINGLE_TABLE. It also
defines the discriminator column through the @DiscriminatorColumn annotation, a discriminator
column can also define the discriminator type. Finally, the @DiscriminatorValue annotation defines
the value used to differentiate a class in the hierarchy. All of these attributes have sensible default
values. The default name of the discriminator column is DTYPE. The default discriminator value is the
entity name (as defined in @Entity.name) for DiscriminatorType.STRING. A320 is a subclass; you only
have to define discriminator value if you don't want to use the default value. The strategy and the
discriminator type are implicit.

@Entity
@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable {

@Entity
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
 name="planetype",
 discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }

@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }

CHAPTER 2. ENTITY BEANS

17

@Inheritance and @DiscriminatorColumn should only be defined at the top of the entity hierarchy.

2.2.4.3. Joined subclasses

The @PrimaryKeyJoinColumn and @PrimaryKeyJoinColumns annotations define the primary
key(s) of the joined subclass table:

All of the above entities use the JOINED strategy, the Ferry table is joined with the Boat table using the
same primary key names. The AmericaCupClass table is joined with Boat using the join condition
Boat.id = AmericaCupClass.BOAT_ID.

2.2.4.4. Inherit properties from superclasses

This is sometimes useful to share common properties through a technical or a business superclass
without including it as a regular mapped entity (ie no specific table for this entity). For that purpose you
can map them as @MappedSuperclass.

In database, this hierarchy will be represented as an Order table having the id, lastUpdate and
lastUpdater columns. The embedded superclass property mappings are copied into their entity
subclasses. Remember that the embeddable superclass is not the root of the hierarchy though.

NOTE

Properties from superclasses not mapped as @MappedSuperclass are ignored.

@Entity
@Inheritance(strategy=InheritanceType.JOINED)
public class Boat implements Serializable { ... }

@Entity
public class Ferry extends Boat { ... }

@Entity
@PrimaryKeyJoinColumn(name="BOAT_ID")
public class AmericaCupClass extends Boat { ... }

@MappedSuperclass
public class BaseEntity {
 @Basic
 @Temporal(TemporalType.TIMESTAMP)
 public Date getLastUpdate() { ... }
 public String getLastUpdater() { ... }
 ...
}

@Entity class Order extends BaseEntity {
 @Id public Integer getId() { ... }
 ...
}

Hibernate Annotations Reference Guide

18

NOTE

The access type (field or methods), is inherited from the root entity, unless you use the
Hibernate annotation @AccessType

NOTE

The same notion can be applied to @Embeddable objects to persist properties from their
superclasses. You also need to use @MappedSuperclass to do that (this should not be
considered as a standard EJB3 feature though)

NOTE

It is allowed to mark a class as @MappedSuperclass in the middle of the mapped
inheritance hierarchy.

NOTE

Any class in the hierarchy non annotated with @MappedSuperclass nor @Entity will be
ignored.

You can override columns defined in entity superclasses at the root entity level using the
@AttributeOverride annotation.

@MappedSuperclass
public class FlyingObject implements Serializable {

 public int getAltitude() {
 return altitude;
 }

 @Transient
 public int getMetricAltitude() {
 return metricAltitude;
 }

 @ManyToOne
 public PropulsionType getPropulsion() {
 return metricAltitude;
 }
 ...
}

@Entity
@AttributeOverride(name="altitude", column = @Column(name="fld_altitude")
)
@AssociationOverride(name="propulsion", joinColumns =
@JoinColumn(name="fld_propulsion_fk"))
public class Plane extends FlyingObject {
 ...
}

CHAPTER 2. ENTITY BEANS

19

The altitude property will be persisted in an fld_altitude column of table Plane and the
propulsion association will be materialized in a fld_propulsion_fk foreign key column.

You can define @AttributeOverride(s) and @AssociationOverride(s) on @Entity classes,
@MappedSuperclass classes and properties pointing to an @Embeddable object.

2.2.5. Mapping entity bean associations/relationships

2.2.5.1. One-to-one

You can associate entity beans through a one-to-one relationship using @OneToOne. There are three
cases for one-to-one associations: either the associated entities share the same primary keys values, a
foreign key is held by one of the entities (note that this FK column in the database should be constrained
unique to simulate one-to-one multiplicity), or a association table is used to store the link between the 2
entities (a unique constraint has to be defined on each fk to ensure the one to one multiplicity)

First, we map a real one-to-one association using shared primary keys:

The one to one is marked as true by using the @PrimaryKeyJoinColumn annotation.

In the following example, the associated entities are linked through a foreign key column:

@Entity
public class Body {
 @Id
 public Long getId() { return id; }

 @OneToOne(cascade = CascadeType.ALL)
 @PrimaryKeyJoinColumn
 public Heart getHeart() {
 return heart;
 }
 ...
}

@Entity
public class Heart {
 @Id
 public Long getId() { ...}
}

@Entity
public class Customer implements Serializable {
 @OneToOne(cascade = CascadeType.ALL)
 @JoinColumn(name="passport_fk")
 public Passport getPassport() {
 ...
 }

@Entity
public class Passport implements Serializable {
 @OneToOne(mappedBy = "passport")

Hibernate Annotations Reference Guide

20

A Customer is linked to a Passport, with a foreign key column named passport_fk in the
Customer table. The join column is declared with the @JoinColumn annotation which looks like the
@Column annotation. It has one more parameters named referencedColumnName. This parameter
declares the column in the targeted entity that will be used to the join. Note that when using
referencedColumnName to a non primary key column, the associated class has to be
Serializable. Also note that the referencedColumnName to a non primary key column has to be
mapped to a property having a single column (other cases might not work).

The association may be bidirectional. In a bidirectional relationship, one of the sides (and only one) has
to be the owner: the owner is responsible for the association column(s) update. To declare a side as not
responsible for the relationship, the attribute mappedBy is used. mappedBy refers to the property name
of the association on the owner side. In our case, this is passport. As you can see, you don't have to
(must not) declare the join column since it has already been declared on the owners side.

If no @JoinColumn is declared on the owner side, the defaults apply. A join column(s) will be created in
the owner table and its name will be the concatenation of the name of the relationship in the owner side,
_ (underscore), and the name of the primary key column(s) in the owned side. In this example
passport_id because the property name is passport and the column id of Passport is id.

The third possibility (using an association table) is very exotic.

A Customer is linked to a Passport through a association table named CustomerPassports ; this
association table has a foreign key column named passport_fk pointing to the Passport table
(materialized by the inverseJoinColumn, and a foreign key column named customer_fk pointing to
the Customer table materialized by the joinColumns attribute.

You must declare the join table name and the join columns explicitly in such a mapping.

2.2.5.2. Many-to-one

Many-to-one associations are declared at the property level with the annotation @ManyToOne:

 public Customer getOwner() {
 ...
}

@Entity
public class Customer implements Serializable {
 @OneToOne(cascade = CascadeType.ALL)
 @JoinTable(name = "CustomerPassports", joinColumns =
@JoinColumn(name="customer_fk"), inverseJoinColumns =
@JoinColumn(name="passport_fk")
)
 public Passport getPassport() {
 ...
 }

@Entity
public class Passport implements Serializable {
 @OneToOne(mappedBy = "passport")
 public Customer getOwner() {
 ...
}

CHAPTER 2. ENTITY BEANS

21

The @JoinColumn attribute is optional, the default value(s) is like in one to one, the concatenation of the
name of the relationship in the owner side, _ (underscore), and the name of the primary key column in
the owned side. In this example company_id because the property name is company and the column id
of Company is id.

@ManyToOne has a parameter named targetEntity which describes the target entity name. You
usually don't need this parameter since the default value (the type of the property that stores the
association) is good in almost all cases. However this is useful when you want to use interfaces as the
return type instead of the regular entity.

You can also map a many to one association through an association table. This association table
described by the @JoinTable annotation will contains a foreign key referencing back the entity table
(through @JoinTable.joinColumns) and a foreign key referencing the target entity table (through
@JoinTable.inverseJoinColumns).

2.2.5.3. Collections

@Entity()
public class Flight implements Serializable {
 @ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
 @JoinColumn(name="COMP_ID")
 public Company getCompany() {
 return company;
 }
 ...
}

@Entity()
public class Flight implements Serializable {
 @ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.MERGE},
targetEntity=CompanyImpl.class)
 @JoinColumn(name="COMP_ID")
 public Company getCompany() {
 return company;
 }
 ...
}

public interface Company {
 ...

@Entity()
public class Flight implements Serializable {
 @ManyToOne(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
 @JoinTable(name="Flight_Company", joinColumns =
@JoinColumn(name="FLIGHT_ID"), inverseJoinColumns =
@JoinColumn(name="COMP_ID"))
 public Company getCompany() {
 return company;
 }
 ...
}

Hibernate Annotations Reference Guide

22

2.2.5.3.1. Overview

You can map Collection, List (ie ordered lists, not indexed lists), Map and Set. The EJB3
specification describes how to map an ordered list (ie a list ordered at load time) using
@javax.persistence.OrderBy annotation: this annotation takes into parameter a list of comma
separated (target entity) properties to order the collection by (eg firstname asc, age desc), if the
string is empty, the collection will be ordered by id. For true indexed collections, please refer to the
Section 2.4, “Hibernate Annotation Extensions”. EJB3 allows you to map Maps using as a key one of the
target entity property using @MapKey(name="myProperty") (myProperty is a property name in the
target entity). When using @MapKey (without property name), the target entity primary key is used. The
map key uses the same column as the property pointed out: there is no additional column defined to hold
the map key, and it does make sense since the map key actually represent a target property. Be aware
that once loaded, the key is no longer kept in sync with the property, in other words, if you change the
property value, the key will not change automatically in your Java model (for true map support please
refers to Section 2.4, “Hibernate Annotation Extensions”). Many people confuse <map> capabilities and
@MapKey ones. These are two different features. @MapKey still has some limitations, please check the
forum or the JIRA tracking system for more informations.

Hibernate has several notions of collections.

Table 2.1. Collections semantics

Semantic java representation annotations

Bag semantic java.util.List

java.util.Collection

@org.hibernate.annotations.Colle
ctionOfElements

or @OneToMany

or @ManyToMany

Bag semantic with primary key
(without the limitations of Bag
semantic)

java.util.List, java.util.Collection (@org.hibernate.annotations.Colle
ctionOfElements or @OneToMany
or @ManyToMany) and
@CollectionId

List semantic java.util.List (@org.hibernate.annotations.Colle
ctionOfElements or @OneToMany
or @ManyToMany) and
@org.hibernate.annotations.Index
Column

Set semantic java.util.Set @org.hibernate.annotations.Colle
ctionOfElements or @OneToMany
or @ManyToMany

Map semantic java.util.Map (@org.hibernate.annotations.Colle
ctionOfElements or @OneToMany
or @ManyToMany) and (nothing
or
@org.hibernate.annotations.MapK
ey/MapKeyManyToMany for true
map support, OR
@javax.persistence.MapKey

CHAPTER 2. ENTITY BEANS

23

Collection of primitive, core type or embedded objects is not supported by the EJB3 specification.
Hibernate Annotations allows them however (see Section 2.4, “Hibernate Annotation Extensions”).

So City has a collection of Streets that are ordered by streetName (of Street) when the collection
is loaded. Software has a map of Versions which key is the Version codeName.

Unless the collection is a generic, you will have to define targetEntity. This is a annotation attribute
that take the target entity class as a value.

2.2.5.3.2. One-to-many

One-to-many associations are declared at the property level with the annotation @OneToMany. One to
many associations may be bidirectional.

@Entity public class City {
 @OneToMany(mappedBy="city")
 @OrderBy("streetName")
 public List<Street> getStreets() {
 return streets;
 }
...
}

@Entity public class Street {
 public String getStreetName() {
 return streetName;
 }

 @ManyToOne
 public City getCity() {
 return city;
 }
 ...
}

@Entity
public class Software {
 @OneToMany(mappedBy="software")
 @MapKey(name="codeName")
 public Map<String, Version> getVersions() {
 return versions;
 }
...
}

@Entity
@Table(name="tbl_version")
public class Version {
 public String getCodeName() {...}

 @ManyToOne
 public Software getSoftware() { ... }
...
}

Hibernate Annotations Reference Guide

24

2.2.5.3.2.1. Bidirectional

Since many to one are (almost) always the owner side of a bidirectional relationship in the EJB3 spec,
the one to many association is annotated by @OneToMany(mappedBy=...)

Troop has a bidirectional one to many relationship with Soldier through the troop property. You don't
have to (must not) define any physical mapping in the mappedBy side.

To map a bidirectional one to many, with the one-to-many side as the owning side, you have to remove
the mappedBy element and set the many to one @JoinColumn as insertable and updatable to false.
This solution is obviously not optimized and will produce some additional UPDATE statements.

2.2.5.3.2.2. Unidirectional

A unidirectional one to many using a foreign key column in the owned entity is not that common and not
really recommended. We strongly advise you to use a join table for this kind of association (as explained
in the next section). This kind of association is described through a @JoinColumn

@Entity
public class Troop {
 @OneToMany(mappedBy="troop")
 public Set<Soldier> getSoldiers() {
 ...
}

@Entity
public class Soldier {
 @ManyToOne
 @JoinColumn(name="troop_fk")
 public Troop getTroop() {
 ...
}

@Entity
public class Troop {
 @OneToMany
 @JoinColumn(name="troop_fk") //we need to duplicate the physical
information
 public Set<Soldier> getSoldiers() {
 ...
}

@Entity
public class Soldier {
 @ManyToOne
 @JoinColumn(name="troop_fk", insertable=false, updatable=false)
 public Troop getTroop() {
 ...
}

@Entity
public class Customer implements Serializable {
 @OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
 @JoinColumn(name="CUST_ID")
 public Set<Ticket> getTickets() {

CHAPTER 2. ENTITY BEANS

25

Customer describes a unidirectional relationship with Ticket using the join column CUST_ID.

2.2.5.3.2.3. Unidirectional with join table

A unidirectional one to many with join table is much preferred. This association is described through an
@JoinTable.

Trainer describes a unidirectional relationship with Monkey using the join table TrainedMonkeys,
with a foreign key trainer_id to Trainer (joinColumns) and a foreign key monkey_id to Monkey
(inversejoinColumns).

2.2.5.3.2.4. Defaults

Without describing any physical mapping, a unidirectional one to many with join table is used. The table
name is the concatenation of the owner table name, _, and the other side table name. The foreign key
name(s) referencing the owner table is the concatenation of the owner table, _, and the owner primary
key column(s) name. The foreign key name(s) referencing the other side is the concatenation of the
owner property name, _, and the other side primary key column(s) name. A unique constraint is added to
the foreign key referencing the other side table to reflect the one to many.

 ...
}

@Entity
public class Ticket implements Serializable {
 ... //no bidir
}

@Entity
public class Trainer {
 @OneToMany
 @JoinTable(
 name="TrainedMonkeys",
 joinColumns = @JoinColumn(name="trainer_id"),
 inverseJoinColumns = @JoinColumn(name="monkey_id")
)
 public Set<Monkey> getTrainedMonkeys() {
 ...
}

@Entity
public class Monkey {
 ... //no bidir
}

@Entity
public class Trainer {
 @OneToMany
 public Set<Tiger> getTrainedTigers() {
 ...
}

@Entity
public class Tiger {
 ... //no bidir

Hibernate Annotations Reference Guide

26

Trainer describes a unidirectional relationship with Tiger using the join table Trainer_Tiger, with a
foreign key trainer_id to Trainer (table name, _, trainer id) and a foreign key trainedTigers_id
to Monkey (property name, _, Tiger primary column).

2.2.5.3.3. Many-to-many

2.2.5.3.3.1. Definition

A many-to-many association is defined logically using the @ManyToMany annotation. You also have to
describe the association table and the join conditions using the @JoinTable annotation. If the
association is bidirectional, one side has to be the owner and one side has to be the inverse end (ie. it will
be ignored when updating the relationship values in the association table):

We've already shown the many declarations and the detailed attributes for associations. We'll go deeper
in the @JoinTable description, it defines a name, an array of join columns (an array in annotation is
defined using { A, B, C }), and an array of inverse join columns. The latter ones are the columns of the
association table which refer to the Employee primary key (the "other side").

As seen previously, the other side must not describe the physical mapping: a simple mappedBy
argument containing the owner side property name bind the two.

}

@Entity
public class Employer implements Serializable {
 @ManyToMany(

targetEntity=org.hibernate.test.metadata.manytomany.Employee.class,
 cascade={CascadeType.PERSIST, CascadeType.MERGE}
)
 @JoinTable(
 name="EMPLOYER_EMPLOYEE",
 joinColumns=@JoinColumn(name="EMPER_ID"),
 inverseJoinColumns=@JoinColumn(name="EMPEE_ID")
)
 public Collection getEmployees() {
 return employees;
 }
 ...
}

@Entity
public class Employee implements Serializable {
 @ManyToMany(
 cascade = {CascadeType.PERSIST, CascadeType.MERGE},
 mappedBy = "employees",
 targetEntity = Employer.class
)
 public Collection getEmployers() {
 return employers;
 }
}

CHAPTER 2. ENTITY BEANS

27

2.2.5.3.3.2. Default values

As any other annotations, most values are guessed in a many to many relationship. Without describing
any physical mapping in a unidirectional many to many the following rules applied. The table name is the
concatenation of the owner table name, _ and the other side table name. The foreign key name(s)
referencing the owner table is the concatenation of the owner table name, _ and the owner primary key
column(s). The foreign key name(s) referencing the other side is the concatenation of the owner property
name, _, and the other side primary key column(s). These are the same rules used for a unidirectional
one to many relationship.

A Store_City is used as the join table. The Store_id column is a foreign key to the Store table. The
implantedIn_id column is a foreign key to the City table.

Without describing any physical mapping in a bidirectional many to many the following rules applied. The
table name is the concatenation of the owner table name, _ and the other side table name. The foreign
key name(s) referencing the owner table is the concatenation of the other side property name, _, and the
owner primary key column(s). The foreign key name(s) referencing the other side is the concatenation of
the owner property name, _, and the other side primary key column(s). These are the same rules used
for a unidirectional one to many relationship.

A Store_Customer is used as the join table. The stores_id column is a foreign key to the Store
table. The customers_id column is a foreign key to the Customer table.

2.2.5.4. Transitive persistence with cascading

@Entity
public class Store {
 @ManyToMany(cascade = CascadeType.PERSIST)
 public Set<City> getImplantedIn() {
 ...
 }
}

@Entity
public class City {
 ... //no bidirectional relationship
}

@Entity
public class Store {
 @ManyToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
 public Set<Customer> getCustomers() {
 ...
 }
}

@Entity
public class Customer {
 @ManyToMany(mappedBy="customers")
 public Set<Store> getStores() {
 ...
 }
}

Hibernate Annotations Reference Guide

28

You probably have noticed the cascade attribute taking an array of CascadeType as a value. The
cascade concept in EJB3 is very is similar to the transitive persistence and cascading of operations in
Hibernate, but with slightly different semantics and cascading types:

CascadeType.PERSIST: cascades the persist (create) operation to associated entities persist()
is called or if the entity is managed

CascadeType.MERGE: cascades the merge operation to associated entities if merge() is called
or if the entity is managed

CascadeType.REMOVE: cascades the remove operation to associated entities if delete() is
called

CascadeType.REFRESH: cascades the refresh operation to associated entities if refresh() is
called

CascadeType.ALL: all of the above

NOTE

CascadeType.ALL also covers Hibernate specific operations like save-update, lock etc...
Check Section 2.4.7, “Cascade” for more information

Please refer to the chapter 6.3 of the EJB3 specification for more information on cascading and
create/merge semantics.

2.2.5.5. Association fetching

You have the ability to either eagerly or lazily fetch associated entities. The fetch parameter can be set
to FetchType.LAZY or FetchType.EAGER. EAGER will try to use an outer join select to retrieve the
associated object, while LAZY will only trigger a select when the associated object is accessed for the
first time. @OneToMany and @ManyToMany associations are defaulted to LAZY and @OneToOne and
@ManyToOne are defaulted to EAGER. For more information about static fetching, check Section 2.4.5.1,
“Lazy options and fetching modes”.

The recommanded approach is to use LAZY onn all static fetching definitions and override this choice
dynamically through JPA-QL. JPA-QL has a fetch keyword that allows you to override laziness when
doing a particular query. This is very useful to improve performance and is decided on a use case to use
case basis.

2.2.6. Mapping composite primary and foreign keys

Composite primary keys use a embedded class as the primary key representation, so you'd use the @Id
and @Embeddable annotations. Alternatively, you can use the @EmbeddedId annotation. Note that the
dependent class has to be serializable and implements equals()/hashCode(). You can also use
@IdClass as described in Section 2.2.3, “Mapping identifier properties”.

@Entity
public class RegionalArticle implements Serializable {

 @Id
 public RegionalArticlePk getPk() { ... }
}

CHAPTER 2. ENTITY BEANS

29

or alternatively

@Embeddable inherit the access type of its owning entity unless the Hibernate specific annotation
@AccessType is used. Composite foreign keys (if not using the default sensitive values) are defined on
associations using the @JoinColumns element, which is basically an array of @JoinColumn. It is
considered a good practice to express referencedColumnNames explicitly. Otherwise, Hibernate will
suppose that you use the same order of columns as in the primary key declaration.

@Embeddable
public class RegionalArticlePk implements Serializable { ... }

@Entity
public class RegionalArticle implements Serializable {

 @EmbeddedId
 public RegionalArticlePk getPk() { ... }
}

public class RegionalArticlePk implements Serializable { ... }

@Entity
public class Parent implements Serializable {
 @Id
 public ParentPk id;
 public int age;

 @OneToMany(cascade=CascadeType.ALL)
 @JoinColumns ({
 @JoinColumn(name="parentCivility", referencedColumnName =
"isMale"),
 @JoinColumn(name="parentLastName", referencedColumnName =
"lastName"),
 @JoinColumn(name="parentFirstName", referencedColumnName =
"firstName")
 })
 public Set<Child> children; //unidirectional
 ...
}

@Entity
public class Child implements Serializable {
 @Id @GeneratedValue
 public Integer id;

 @ManyToOne
 @JoinColumns ({
 @JoinColumn(name="parentCivility", referencedColumnName =
"isMale"),
 @JoinColumn(name="parentLastName", referencedColumnName =
"lastName"),
 @JoinColumn(name="parentFirstName", referencedColumnName =
"firstName")

Hibernate Annotations Reference Guide

30

Note the explicit usage of the referencedColumnName.

2.2.7. Mapping secondary tables

You can map a single entity bean to several tables using the @SecondaryTable or
@SecondaryTables class level annotations. To express that a column is in a particular table, use the
table parameter of @Column or @JoinColumn.

In this example, name will be in MainCat. storyPart1 will be in Cat1 and storyPart2 will be in
Cat2. Cat1 will be joined to MainCat using the cat_id as a foreign key, and Cat2 using id (ie the
same column name, the MainCat id column has). Plus a unique constraint on storyPart2 has been

 })
 public Parent parent; //unidirectional
}

@Embeddable
public class ParentPk implements Serializable {
 String firstName;
 String lastName;
 ...
}

@Entity
@Table(name="MainCat")
@SecondaryTables({ @SecondaryTable(name="Cat1", pkJoinColumns={
@PrimaryKeyJoinColumn(name="cat_id", referencedColumnName="id")),
@SecondaryTable(name="Cat2", uniqueConstraints=
{@UniqueConstraint(columnNames={"storyPart2"})}) })
public class Cat implements Serializable {

 private Integer id;
 private String name;
 private String storyPart1;
 private String storyPart2;

 @Id @GeneratedValue
 public Integer getId() {
 return id;
 }

 public String getName() {
 return name;
 }

 @Column(table="Cat1")
 public String getStoryPart1() {
 return storyPart1;
 }

 @Column(table="Cat2")
 public String getStoryPart2() {
 return storyPart2;
 }

CHAPTER 2. ENTITY BEANS

31

set.

Check out the JBoss EJB 3 tutorial or the Hibernate Annotations unit test suite for more examples.

2.3. MAPPING QUERIES

2.3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries

You can map EJBQL/HQL queries using annotations. @NamedQuery and @NamedQueries can be
defined at the class level or in a JPA XML file. However their definitions are global to the session
factory/entity manager factory scope. A named query is defined by its name and the actual query string.

You can also provide some hints to a query through an array of QueryHint through a hints attribute.

The availabe Hibernate hints are

Table 2.2. Query hints

hint description

org.hibernate.cacheable Whether the query should interact with the second
level cache (default to false)

org.hibernate.cacheRegion Cache region name (default used otherwise)

org.hibernate.timeout Query timeout

<entity-mappings>
 <named-query name="plane.getAll">
 <query>select p from Plane p</query>
 </named-query>
 ...
</entity-mappings>
...

@Entity
@NamedQuery(name="night.moreRecentThan", query="select n from Night n
where n.date >= :date")
public class Night {
 ...
}

public class MyDao {
 doStuff() {
 Query q = s.getNamedQuery("night.moreRecentThan");
 q.setDate("date", aMonthAgo);
 List results = q.list();
 ...
 }
 ...
}

Hibernate Annotations Reference Guide

32

org.hibernate.fetchSize resultset fetch size

org.hibernate.flushMode Flush mode used for this query

org.hibernate.cacheMode Cache mode used for this query

org.hibernate.readOnly Entities loaded by this query should be in read only
mode or not (default to false)

org.hibernate.comment Query comment added to the generated SQL

hint description

2.3.2. Mapping native queries

You can also map a native query (ie a plain SQL query). To achieve that, you need to describe the SQL
resultset structure using @SqlResultSetMapping (or @SqlResultSetMappings if you plan to define
several resultset mappings). Like @NamedQuery, a @SqlResultSetMapping can be defined at class
level or in a JPA XML file. However its scope is global to the application.

As we will see, a resultSetMapping parameter is defined in @NamedNativeQuery, it represents the
name of a defined @SqlResultSetMapping. The resultset mapping declares the entities retrieved by
this native query. Each field of the entity is bound to an SQL alias (or column name). All fields of the
entity including the ones of subclasses and the foreign key columns of related entities have to be present
in the SQL query. Field definitions are optional provided that they map to the same column name as the
one declared on the class property.

In the above example, the night&area named query use the joinMapping result set mapping. This

@NamedNativeQuery(name="night&area", query="select night.id nid,
night.night_duration, "
 + " night.night_date, area.id aid, night.area_id, area.name "
 + "from Night night, Area area where night.area_id = area.id",
resultSetMapping="joinMapping")
@SqlResultSetMapping(name="joinMapping", entities={

@EntityResult(entityClass=org.hibernate.test.annotations.query.Night.class
, fields = {
 @FieldResult(name="id", column="nid"),
 @FieldResult(name="duration", column="night_duration"),
 @FieldResult(name="date", column="night_date"),
 @FieldResult(name="area", column="area_id"),
 discriminatorColumn="disc"
 }),

@EntityResult(entityClass=org.hibernate.test.annotations.query.Area.class,
fields = {
 @FieldResult(name="id", column="aid"),
 @FieldResult(name="name", column="name")
 })
 }
)

CHAPTER 2. ENTITY BEANS

33

mapping returns 2 entities, Night and Area, each property is declared and associated to a column
name, actually the column name retrieved by the query. Let's now see an implicit declaration of the
property / column.

In this example, we only describe the entity member of the result set mapping. The property / column
mappings is done using the entity mapping values. In this case the model property is bound to the
model_txt column. If the association to a related entity involve a composite primary key, a
@FieldResult element should be used for each foreign key column. The @FieldResult name is
composed of the property name for the relationship, followed by a dot ("."), followed by the name or the
field or property of the primary key.

@Entity
 @SqlResultSetMapping(name="implicit",
entities=@EntityResult(entityClass=org.hibernate.test.annotations.query.Sp
aceShip.class)) @NamedNativeQuery(name="implicitSample", query="select *
from SpaceShip", resultSetMapping="implicit")
public class SpaceShip {
 private String name;
 private String model;
 private double speed;

 @Id
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @Column(name="model_txt")
 public String getModel() {
 return model;
 }

 public void setModel(String model) {
 this.model = model;
 }

 public double getSpeed() {
 return speed;
 }

 public void setSpeed(double speed) {
 this.speed = speed;
 }
}

@Entity
@SqlResultSetMapping(name="compositekey",

entities=@EntityResult(entityClass=org.hibernate.test.annotations.query.Sp
aceShip.class,
 fields = {
 @FieldResult(name="name", column = "name"),

Hibernate Annotations Reference Guide

34

 @FieldResult(name="model", column = "model"),
 @FieldResult(name="speed", column = "speed"),
 @FieldResult(name="captain.firstname", column = "firstn"),
@FieldResult(name="captain.lastname", column = "lastn"),
 @FieldResult(name="dimensions.length", column =
"length"),
 @FieldResult(name="dimensions.width", column =
"width")
 }),
 columns = { @ColumnResult(name = "surface"),
 @ColumnResult(name = "volume") })

@NamedNativeQuery(name="compositekey",
 query="select name, model, speed, lname as lastn, fname as firstn,
length, width, length * width as surface from SpaceShip",
 resultSetMapping="compositekey")
})
public class SpaceShip {
 private String name;
 private String model;
 private double speed;
 private Captain captain;
 private Dimensions dimensions;

 @Id
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 @ManyToOne(fetch= FetchType.LAZY)
 @JoinColumns({
 @JoinColumn(name="fname", referencedColumnName = "firstname"),
 @JoinColumn(name="lname", referencedColumnName = "lastname")
 })
 public Captain getCaptain() {
 return captain;
 }

 public void setCaptain(Captain captain) {
 this.captain = captain;
 }

 public String getModel() {
 return model;
 }

 public void setModel(String model) {
 this.model = model;
 }

 public double getSpeed() {
 return speed;

CHAPTER 2. ENTITY BEANS

35

NOTE

If you look at the dimension property, you'll see that Hibernate supports the dotted
notation for embedded objects (you can even have nested embedded objects). EJB3
implementations do not have to support this feature, we do :-)

If you retrieve a single entity and if you use the default mapping, you can use the resultClass
attribute instead of resultSetMapping:

In some of your native queries, you'll have to return scalar values, for example when building report

 }

 public void setSpeed(double speed) {
 this.speed = speed;
 }

 public Dimensions getDimensions() {
 return dimensions;
 }

 public void setDimensions(Dimensions dimensions) {
 this.dimensions = dimensions;
 }
}

@Entity
@IdClass(Identity.class)
public class Captain implements Serializable {
 private String firstname;
 private String lastname;

 @Id
 public String getFirstname() {
 return firstname;
 }

 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 @Id
 public String getLastname() {
 return lastname;
 }

 public void setLastname(String lastname) {
 this.lastname = lastname;
 }
}

@NamedNativeQuery(name="implicitSample", query="select * from SpaceShip",
resultClass=SpaceShip.class)
public class SpaceShip {

Hibernate Annotations Reference Guide

36

queries. You can map them in the @SqlResultsetMapping through @ColumnResult. You actually
can even mix, entities and scalar returns in the same native query (this is probably not that common
though).

An other query hint specific to native queries has been introduced: org.hibernate.callable which
can be true or false depending on whether the query is a stored procedure or not.

2.4. HIBERNATE ANNOTATION EXTENSIONS

Hibernate 3.1 offers a variety of additional annotations that you can mix/match with your EJB 3 entities.
They have been designed as a natural extension of EJB3 annotations.

To empower the EJB3 capabilities, hibernate provides specific annotations that match hibernate
features. The org.hibernate.annotations package contains all these annotations extensions.

2.4.1. Entity

You can fine tune some of the actions done by Hibernate on entities beyond what the EJB3 spec offers.

@org.hibernate.annotations.Entity adds additional metadata that may be needed beyond what
is defined in the standard @Entity

mutable: whether this entity is mutable or not

dynamicInsert: allow dynamic SQL for inserts

dynamicUpdate: allow dynamic SQL for updates

selectBeforeUpdate: Specifies that Hibernate should never perform an SQL UPDATE unless it
is certain that an object is actually modified.

polymorphism: whether the entity polymorphism is of PolymorphismType.IMPLICIT (default) or
PolymorphismType.EXPLICIT

optimisticLock: optimistic locking strategy (OptimisticLockType.VERSION,
OptimisticLockType.NONE, OptimisticLockType.DIRTY or OptimisticLockType.ALL)

NOTE

@javax.persistence.Entity is still mandatory, @org.hibernate.annotations.Entity is not a
replacement.

Here are some additional Hibernate annotation extensions

@org.hibernate.annotations.BatchSize allows you to define the batch size when fetching
instances of this entity (eg. @BatchSize(size=4)). When loading a given entity, Hibernate will then
load all the uninitialized entities of the same type in the persistence context up to the batch size.

@SqlResultSetMapping(name="scalar",
columns=@ColumnResult(name="dimension")) @NamedNativeQuery(name="scalar",
query="select length*width as dimension from SpaceShip",
resultSetMapping="scalar")

CHAPTER 2. ENTITY BEANS

37

@org.hibernate.annotations.Proxy defines the laziness attributes of the entity. lazy (default to
true) define whether the class is lazy or not. proxyClassName is the interface used to generate the proxy
(default is the class itself).

@org.hibernate.annotations.Where defines an optional SQL WHERE clause used when
instances of this class is retrieved.

@org.hibernate.annotations.Check defines an optional check constraints defined in the DDL
statetement.

@OnDelete(action=OnDeleteAction.CASCADE) on joined subclasses: use a SQL cascade delete
on deletion instead of the regular Hibernate mechanism.

@Table(appliesTo="tableName", indexes = { @Index(name="index1", columnNames=
{"column1", "column2"}) }) creates the defined indexes on the columns of table tableName.
This can be applied on the primary table or any secondary table. The @Tables annotation allows your to
apply indexes on different tables. This annotation is expected where @javax.persistence.Table or
@javax.persistence.SecondaryTable(s) occurs.

NOTE

@org.hibernate.annotations.Table is a complement, not a replacement to
@javax.persistence.Table. Especially, if you want to change the default name of a
table, you must use @javax.persistence.Table, not
@org.hibernate.annotations.Table.

@org.hibernate.annotations.Table can also be used to define the following elements of
secondary tables:

fetch: If set to JOIN, the default, Hibernate will use an inner join to retrieve a secondary table
defined by a class or its superclasses and an outer join for a secondary table defined by a
subclass. If set to select then Hibernate will use a sequential select for a secondary table
defined on a subclass, which will be issued only if a row turns out to represent an instance of the
subclass. Inner joins will still be used to retrieve a secondary defined by the class and its
superclasses.

inverse: If true, Hibernate will not try to insert or update the properties defined by this join.
Default to false.

optional: If enabled (the default), Hibernate will insert a row only if the properties defined by
this join are non-null and will always use an outer join to retrieve the properties.

foreignKey: defines the Foreign Key name of a secondary table pointing back to the primary
table.

@Immutable marks an entity or collection as immutable. An immutable entity may not be updated by the
application. This allows Hibernate to make some minor performance optimizations. Updates to an
immutable entity will be ignored, but no exception is thrown. @Immutable must be used on root entities
only. @Immutable placed on a collection makes the collection immutable, meaning additions and
deletions to and from the collection are not allowed. A HibernateException is thrown in this case.

@Persister lets you define your own custom persistence strategy. You may, for example, specify your
own subclass of org.hibernate.persister.EntityPersister or you might even provide a
completely new implementation of the interface org.hibernate.persister.ClassPersister that

Hibernate Annotations Reference Guide

38

implements persistence via, for example, stored procedure calls, serialization to flat files or LDAP.

2.4.Identifier. Identifier

Hibernate Annotations goes beyond the Java Persistence specification when defining identifiers.

2.4.Identifier.1. Generators

@org.hibernate.annotations.GenericGenerator and
@org.hibernate.annotations.GenericGenerators allows you to define an
Hibernate specific id generator.

strategy is the short name of an Hibernate3 generator strategy or the fully qualified class name of an
IdentifierGenerator implementation. You can add some parameters through the parameters
attribute.

@Entity
@BatchSize(size=5)
@org.hibernate.annotations.Entity(
 selectBeforeUpdate = true,
 dynamicInsert = true, dynamicUpdate = true,
 optimisticLock = OptimisticLockType.ALL,
 polymorphism = PolymorphismType.EXPLICIT)
@Where(clause="1=1")
@org.hibernate.annotations.Table(appliesTo="Forest", indexes = {
@Index(name="idx", columnNames = { "name", "length" }) })
@Persister(impl=MyEntityPersister.class)
public class Forest { ... }

@Entity
@Inheritance(
 strategy=InheritanceType.JOINED
)
public class Vegetable { ... }

@Entity
@OnDelete(action=OnDeleteAction.CASCADE)
public class Carrot extends Vegetable { ... }

@Id @GeneratedValue(generator="system-uuid")
@GenericGenerator(name="system-uuid", strategy = "uuid")
public String getId() {

@Id @GeneratedValue(generator="hibseq")
@GenericGenerator(name="hibseq", strategy = "seqhilo",
 parameters = {
 @Parameter(name="max_lo", value = "5"),
 @Parameter(name="sequence", value="heybabyhey")
 }
)
public Integer getId() {

CHAPTER 2. ENTITY BEANS

39

Contrary to their standard counterpart, @GenericGenerator and @GenericGenerators can be used
in package level annotations, making them application level generators (just like if they were in a JPA
XML file).

2.4.Identifier.2. @NaturalId

While not used as identifier property, some (group of) properties represent natural identifier of an entity.
This is especially true when the schema uses the recommended approach of using surrogate primary
key even if a natural business key exists. Hibernate allows to map such natural properties and reuse
them in a Criteria query. The natural identifier is composed of all the properties marked
@NaturalId.

Note that the group of properties representing the natural identifier have to be unique (Hibernate will
generate a unique constraint if the database schema is generated).

@GenericGenerators(
 {
 @GenericGenerator(
 name="hibseq",
 strategy = "seqhilo",
 parameters = {
 @Parameter(name="max_lo", value = "5"),
 @Parameter(name="sequence", value="heybabyhey")
 }
),
 @GenericGenerator(...)
 }
)
package org.hibernate.test.model

@Entity
public class Citizen {
 @Id
 @GeneratedValue
 private Integer id;
 private String firstname;
 private String lastname;

 @NaturalId
 @ManyToOne
 private State state;

 @NaturalId
 private String ssn;
 ...
}

//and later on query
List results = s.createCriteria(Citizen.class)
 .add(Restrictions.naturalId().set("ssn", "1234").set(
"state", ste))
 .list();

Hibernate Annotations Reference Guide

40

2.4.3. Property

2.4.3.1. Access type

The access type is guessed from the position of @Id or @EmbeddedId in the entity hierarchy. Sub-
entities, embedded objects and mapped superclass inherit the access type from the root entity.

In Hibernate, you can override the access type to:

use a custom access type strategy

fine tune the access type at the class level or at the property level

An @AccessType annotation has been introduced to support this behavior. You can define the access
type on

an entity

a superclass

an embeddable object

a property

The access type is overriden for the annotated element, if overriden on a class, all the properties of the
given class inherit the access type. For root entities, the access type is considered to be the default one
for the whole hierarchy (overridable at class or property level).

If the access type is marked as "property", the getters are scanned for annotations, if the access type is
marked as "field", the fields are scanned for annotations. Otherwise the elements marked with @Id or
@embeddedId are scanned.

You can override an access type for a property, but the element to annotate will not be influenced: for
example an entity having access type field, can annotate a field with @AccessType("property"),
the access type will then be property for this attribute, the the annotations still have to be carried on the
field.

If a superclass or an embeddable object is not annotated, the root entity access type is used (even if an
access type has been define on an intermediate superclass or embeddable object). The russian doll
principle does not apply.

@Entity
public class Person implements Serializable {
 @Id @GeneratedValue //access type field
 Integer id;

 @Embedded
 @AttributeOverrides({
 @AttributeOverride(name = "iso2", column = @Column(name =
"bornIso2")),
 @AttributeOverride(name = "name", column = @Column(name =
"bornCountryName"))
 })
 Country bornIn;
}

CHAPTER 2. ENTITY BEANS

41

2.4.3.2. Formula

Sometimes, you want the Database to do some computation for you rather than in the JVM, you might
also create some kind of virtual column. You can use a SQL fragment (aka formula) instead of mapping a
property into a column. This kind of property is read only (its value is calculated by your formula
fragment).

The SQL fragment can be as complex as you want and even include subselects.

2.4.3.3. Type

@org.hibernate.annotations.Type overrides the default hibernate type used: this is generally not
necessary since the type is correctly inferred by Hibernate. Please refer to the Hibernate reference guide
for more informations on the Hibernate types.

@org.hibernate.annotations.TypeDef and @org.hibernate.annotations.TypeDefs
allows you to declare type definitions. These annotations can be placed at the class or package level.
Note that these definitions are be global for the session factory (even when defined at the class level).
Type definitions have to be defined before any usage. If the type is used on a single entity, you can
plance the definition on the entity itself. Otherwise, it is recommended to place the definition a the
package level since the entity processing order is not guaranteed.

NOTE

Package level annotations are placed in a file named package-info.java in the
appropriate package. Place your annotations before the package declaration.

@Embeddable
@AccessType("property") //override access type for all properties in
Country
public class Country implements Serializable {
 private String iso2;
 private String name;

 public String getIso2() {
 return iso2;
 }

 public void setIso2(String iso2) {
 this.iso2 = iso2;
 }

 @Column(name = "countryName")
 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }
}

@Formula("obj_length * obj_height * obj_width")
public long getObjectVolume()

Hibernate Annotations Reference Guide

42

When using composite user type, you will have to express column definitions. The @Columns has been
introduced for that purpose.

2.4.3.4. Index

You can define an index on a particular column using the @Index annotation on a one column property,
the columnNames attribute will then be ignored

2.4.3.5. @Parent

//in org/hibernate/test/annotations/entity/package-info.java
@TypeDefs(
 {
 @TypeDef(
 name="caster",
 typeClass = CasterStringType.class,
 parameters = {
 @Parameter(name="cast", value="lower")
 }
)
 }
)
package org.hibernate.test.annotations.entity;

//in org/hibernate/test/annotations/entity/Forest.java
public class Forest {
 @Type(type="caster")
 public String getSmallText() {
 ...
}

@Type(type="org.hibernate.test.annotations.entity.MonetaryAmountUserType")
@Columns(columns = {
 @Column(name="r_amount"),
 @Column(name="r_currency")
})
public MonetaryAmount getAmount() {
 return amount;
}

public class MonetaryAmount implements Serializable {
 private BigDecimal amount;
 private Currency currency;
 ...
}

@Column(secondaryTable="Cat1")
@Index(name="story1index")
public String getStoryPart1() {
 return storyPart1;
}

CHAPTER 2. ENTITY BEANS

43

When inside an embeddable object, you can define one of the properties as a pointer back to the owner
element.

2.4.3.6. Generated properties

Some properties are generated at insert or update time by your database. Hibernate can deal with such
properties and triggers a subsequent select to read these properties.

Annotate your property as @Generated You have to make sure your insertability or updatability does
not conflict with the generation strategy you have chosen. When GenerationTime.INSERT is chosen, the
property must not contains insertable columns, when GenerationTime.ALWAYS is chosen, the property
must not contains insertable nor updatable columns.

@Version properties cannot be @Generated(INSERT) by design, it has to be either NEVER or
ALWAYS.

2.4.3.7. @Target

Sometimes, the type guessed by reflection is not the one you want Hibernate to use. This is especially
true on components when an interface is used. You can use @Target to bypass the reflection guessing
mechanism (very much like the targetEntity attribute available on associations.

@Entity
public class Person {
 @Embeddable public Address address;
 ...
}

@Embeddable
public class Address {
 @Parent public Person owner;
 ...
}

person == person.address.owner

@Entity
public class Antenna {
 @Id public Integer id;
 @Generated(GenerationTime.ALWAYS) @Column(insertable = false,
updatable = false)
 public String longitude;

 @Generated(GenerationTime.INSERT) @Column(insertable = false)
 public String latitude;
}

 @Embedded
 @Target(OwnerImpl.class)
 public Owner getOwner() {
 return owner;
 }

Hibernate Annotations Reference Guide

44

2.4.3.8. Optimistic lock

It is sometimes useful to avoid increasing the version number even if a given property is dirty (particularly
collections). You can do that by annotating the property (or collection) with
@OptimisticLock(excluded=true).

More formally, specifies that updates to this property do not require acquisition of the optimistic lock.

2.4.4. Inheritance

SINGLE_TABLE is a very powerful strategy but sometimes, and especially for legacy systems, you
cannot add an additional discriminator column. For that purpose Hibernate has introduced the notion of
discriminator formula: @DiscriminatorFormula is a replacement of @DiscriminatorColumn and
use a SQL fragment as a formula for discriminator resolution (no need to have a dedicated column).

By default, when querying the top entities, Hibernate does not put a restriction clause on the
discriminator column. This can be inconvenient if this column contains values not mapped in your
hierarchy (through @DiscriminatorValue). To work around that you can use
@ForceDiscriminator (at the class level, next to @DiscriminatorColumn). Hibernate will then list
the available values when loading the entities.

You can define the foreign key name generated by Hibernate for subclass tables in the JOINED
inheritance strategy.

The foreign key from the Document table to the File table will be named FK_DOCU_FILE.

2.4.5. Single Association related annotations

By default, when Hibernate cannot resolve the association because the expected associated element is
not in database (wrong id on the association column), an exception is raised by Hibernate. This might be
inconvenient for legacy and badly maintained schemas. You can ask Hibernate to ignore such elements
instead of raising an exception using the @NotFound annotation. This annotation can be used on a
@OneToOne (with FK), @ManyToOne, @OneToMany or @ManyToMany association.

@Entity
@DiscriminatorFormula("case when forest_type is null then 0 else
forest_type end")
public class Forest { ... }

@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public abstract class File { ... }

@Entity
@ForeignKey(name = "FK_DOCU_FILE")
public class Document extends File {

@Entity
public class Child {
 ...
 @ManyToOne
 @NotFound(action=NotFoundAction.IGNORE)

CHAPTER 2. ENTITY BEANS

45

Sometimes you want to delegate to your database the deletion of cascade when a given entity is deleted.

In this case Hibernate generates a cascade delete constraint at the database level.

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can override
the constraint name by use @ForeignKey.

2.4.5.1. Lazy options and fetching modes

EJB3 comes with the fetch option to define lazy loading and fetching modes, however Hibernate has a
much more option set in this area. To fine tune the lazy loading and fetching strategies, some additional
annotations have been introduced:

@LazyToOne: defines the lazyness option on @ManyToOne and @OneToOne associations.
LazyToOneOption can be PROXY (ie use a proxy based lazy loading), NO_PROXY (use a
bytecode enhancement based lazy loading - note that build time bytecode processing is
necessary) and FALSE (association not lazy)

@LazyCollection: defines the lazyness option on @ManyToMany and @OneToMany
associations. LazyCollectionOption can be TRUE (the collection is lazy and will be loaded when
its state is accessed), EXTRA (the collection is lazy and all operations will try to avoid the
collection loading, this is especially useful for huge collections when loading all the elements is
not necessary) and FALSE (association not lazy)

@Fetch: defines the fetching strategy used to load the association. FetchMode can be SELECT
(a select is triggered when the association needs to be loaded), SUBSELECT (only available for
collections, use a subselect strategy - please refers to the Hibernate Reference Documentation

 public Parent getParent() { ... }
 ...
}

@Entity
public class Child {
 ...
 @ManyToOne
 @OnDelete(action=OnDeleteAction.CASCADE)
 public Parent getParent() { ... }
 ...
}

@Entity
public class Child {
 ...
 @ManyToOne
 @ForeignKey(name="FK_PARENT")
 public Parent getParent() { ... }
 ...
}

alter table Child add constraint FK_PARENT foreign key (parent_id)
references Parent

Hibernate Annotations Reference Guide

46

for more information) or JOIN (use a SQL JOIN to load the association while loading the owner
entity). JOIN overrides any lazy attribute (an association loaded through a JOIN strategy cannot
be lazy).

The Hibernate annotations overrides the EJB3 fetching options.

Table 2.3. Lazy and fetch options equivalent

Annotations Lazy Fetch

@[One|Many]ToOne]
(fetch=FetchType.LAZY)

@LazyToOne(PROXY) @Fetch(SELECT)

@[One|Many]ToOne]
(fetch=FetchType.EAGER)

@LazyToOne(FALSE) @Fetch(JOIN)

@ManyTo[One|Many]
(fetch=FetchType.LAZY)

@LazyCollection(TRUE) @Fetch(SELECT)

@ManyTo[One|Many]
(fetch=FetchType.EAGER)

@LazyCollection(FALSE) @Fetch(JOIN)

2.4.5.2. @Any

The @Any annotation defines a polymorphic association to classes from multiple tables. This type of
mapping always requires more than one column. The first column holds the type of the associated entity.
The remaining columns hold the identifier. It is impossible to specify a foreign key constraint for this kind
of association, so this is most certainly not meant as the usual way of mapping (polymorphic)
associations. You should use this only in very special cases (eg. audit logs, user session data, etc).

The @Any annotation describes the column holding the metadata information. To link the value of the
metadata information and an actual entity type, The @AnyDef and @AnyDefs annotations are used.

idType represents the target entities identifier property type and metaType the metadata type (usually
String).

 @Any(metaColumn = @Column(name = "property_type"),
fetch=FetchType.EAGER)
 @AnyMetaDef(
 idType = "integer",
 metaType = "string",
 metaValues = {
 @MetaValue(value = "S", targetEntity = StringProperty.class
),
 @MetaValue(value = "I", targetEntity = IntegerProperty.class
)
 })
 @JoinColumn(name = "property_id")
 public Property getMainProperty() {
 return mainProperty;
 }

CHAPTER 2. ENTITY BEANS

47

Note that @AnyDef can be mutualized and reused. It is recommended to place it as a package metadata
in this case.

2.4.6. Collection related annotations

2.4.6.1. Enhance collection settings

It is possible to set

the batch size for collections using @BatchSize

the where clause, using @Where (applied on the target entity) or @WhereJoinTable (applied on
the association table)

the check clause, using @Check

the SQL order by clause, using @OrderBy

the delete cascade strategy through @OnDelete(action=OnDeleteAction.CASCADE)

the collection immutability using @Immutable: if set specifies that the elements of the collection
never change (a minor performance optimization in some cases)

a custom collection persister (ie the persistence strategy used) using @Persister: the class
must implement org.hibernate.persister.collectionCollectionPersister

You can also declare a sort comparator. Use the @Sort annotation. Expressing the comparator type you
want between unsorted, natural or custom comparator. If you want to use your own comparator
implementation, you'll also have to express the implementation class using the comparator attribute.
Note that you need to use either a SortedSet or a SortedMap interface.

//on a package
@AnyMetaDef(name="property"
 idType = "integer",
 metaType = "string",
 metaValues = {
 @MetaValue(value = "S", targetEntity = StringProperty.class),
 @MetaValue(value = "I", targetEntity = IntegerProperty.class)
 })
package org.hibernate.test.annotations.any;

//in a class
 @Any(metaDef="property", metaColumn = @Column(name = "property_type"
), fetch=FetchType.EAGER)
 @JoinColumn(name = "property_id")
 public Property getMainProperty() {
 return mainProperty;
 }

 @OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
 @JoinColumn(name="CUST_ID")
 @Sort(type = SortType.COMPARATOR, comparator = TicketComparator.class)
 @Where(clause="1=1")
 @OnDelete(action=OnDeleteAction.CASCADE)

Hibernate Annotations Reference Guide

48

Please refer to the previous descriptions of these annotations for more informations.

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can override
the constraint name by use @ForeignKey. Note that this annotation has to be placed on the owning
side of the relationship, inverseName referencing to the other side constraint.

2.4.6.2. Extra collection types

2.4.6.2.1. List

Beyond EJB3, Hibernate Annotations supports true List and Array. Map your collection the same way
as usual and add the @IndexColumn. This annotation allows you to describe the column that will hold
the index. You can also declare the index value in DB that represent the first element (aka as base
index). The usual value is 0 or 1.

NOTE

If you forgot to set @IndexColumn, the bag semantic is applied. If you want the bag
semantic without the limitations of it, consider using @CollectionId.

2.4.6.2.2. Map

Hibernate Annotations also supports true Map mappings, if @javax.persistence.MapKey is not set,
hibernate will map the key element or embeddable object in its/their own columns. To override the
default columns, you can use @org.hibernate.annotations.MapKey if your key is a basic type
(defaulted to mapkey) or an embeddable object, or you can use
@org.hibernate.annotations.MapKeyManyToMany if your key is an entity.

 public SortedSet<Ticket> getTickets() {
 return tickets;
 }

@Entity
public class Woman {
 ...
 @ManyToMany(cascade = {CascadeType.ALL})
 @ForeignKey(name = "TO_WOMAN_FK", inverseName = "TO_MAN_FK")
 public Set<Man> getMens() {
 return mens;
 }
}

alter table Man_Woman add constraint TO_WOMAN_FK foreign key (woman_id)
references Woman
alter table Man_Woman add constraint TO_MAN_FK foreign key (man_id)
references Man

@OneToMany(cascade = CascadeType.ALL)
@IndexColumn(name = "drawer_position", base=1)
public List<Drawer> getDrawers() {
 return drawers;
}

CHAPTER 2. ENTITY BEANS

49

Both @org.hibernate.annotations.MapKey and
@org.hibernate.annotations.MapKeyManyToMany allows you to override the target element to
be used. This is especially useful if your collection does not use generics (or if you use interfaces).

2.4.6.2.3. Bidirectional association with indexed collections

A bidirectional association where one end is an indexed collection (ie. represented as a @IndexColumn,
@org.hibernate.annotations.MapKey or
@org.hibernate.annotations.MapKeyManyToMany) requires special consideration. If a property
on the associated class explicitly maps the indexed value, the use of mappedBy is permitted:

But, if there is no such property on the child class, we can't think of the association as truly bidirectional
(there is information available at one end of the association that is not available at the other end: the
index). In this case, we can't map the collection as mappedBy. Instead, we could use the following
mapping:

 @CollectionOfElements(targetElement = SizeImpl.class)
 @MapKeyManyToMany(targetEntity = LuggageImpl.class)
 private Map<Luggage, Size> sizePerLuggage = new HashMap<Luggage, Size>
();

@Entity
public class Parent {
 @OneToMany(mappedBy="parent")
 @org.hibernate.annotations.IndexColumn(name="order")
 private List<Child> children;
 ...
}

@Entity
public class Child {
 ...
 //the index column is mapped as a property in the associated entity
 @Column(name="order")
 private int order;

 @ManyToOne
 @JoinColumn(name="parent_id", nullable=false)
 private Parent parent;
 ...
}

@Entity
public class Parent {
 @OneToMany
 @org.hibernate.annotations.IndexColumn(name="order")
 @JoinColumn(name="parent_id", nullable=false)
 private List<Child> children;
 ...
}

@Entity
public class Child {
 ...

Hibernate Annotations Reference Guide

50

Note that in this mapping, the collection-valued end of the association is responsible for updating the
foreign key.

2.4.6.2.4. Bag with primary key

Another interesting feature is the ability to define a surrogate primary key to a bag collection. This
remove pretty much all of the drawbacks of bags: update and removal are efficient, more than one
EAGER bag per query or per entity. This primary key will be contained in a additional column of your
collection table but will not be visible to the Java application. @CollectionId is used to mark a collection
as id bag, it also allow to override the primary key column(s), the primary key type and the generator
strategy. The strategy can be identity, or any defined generator name of your application.

2.4.6.2.5. Collection of element or composite elements

Hibernate Annotations also supports collections of core types (Integer, String, Enums, ...), collections of
embeddable objects and even arrays of primitive types. This is known as collection of elements.

A collection of elements has to be annotated as @CollectionOfElements (as a replacement of
@OneToMany) To define the collection table, the @JoinTable annotation is used on the association
property, joinColumns defines the join columns between the entity primary table and the collection
table (inverseJoincolumn is useless and should be left empty). For collection of core types or array of
primitive types, you can override the element column definition using a @Column on the association
property. You can also override the columns of a collection of embeddable object using
@AttributeOverride. To reach the collection element, you need to append "element" to the attribute
override name (eg "element" for core types, or "element.serial" for the serial property of an embeddable
element). To reach the index/key of a collection, append "key" instead.

 @ManyToOne
 @JoinColumn(name="parent_id", insertable=false, updatable=false,
nullable=false)
 private Parent parent;
 ...
}

@Entity
@TableGenerator(name="ids_generator", table="IDS")
public class Passport {
 ...

 @ManyToMany(cascade = CascadeType.ALL)
 @JoinTable(name="PASSPORT_VISASTAMP")
 @CollectionId(columns = @Column(name="COLLECTION_ID"),
type=@Type(type="long"), generator = "ids_generator")
 private Collection<Stamp> visaStamp = new ArrayList();
 ...
}

@Entity
public class Boy {
 private Integer id;
 private Set<String> nickNames = new HashSet<String>();
 private int[] favoriteNumbers;
 private Set<Toy> favoriteToys = new HashSet<Toy>();
 private Set<Character> characters = new HashSet<Character>();

CHAPTER 2. ENTITY BEANS

51

 @Id @GeneratedValue
 public Integer getId() {
 return id;
 }

 @CollectionOfElements public Set<String> getNickNames() {
 return nickNames;
 }

 @CollectionOfElements @JoinTable(name="BoyFavoriteNumbers",
joinColumns = @JoinColumn(name="BoyId")) @Column(name="favoriteNumber",
nullable=false)
 @IndexColumn(name="nbr_index")
 public int[] getFavoriteNumbers() {
 return favoriteNumbers;
 }

 @CollectionOfElements @AttributeOverride(name="element.serial",
column=@Column(name="serial_nbr"))
 public Set<Toy> getFavoriteToys() {
 return favoriteToys;
 }

 @CollectionOfElements public Set<Character> getCharacters() {
 return characters;
 }
 ...
}

public enum Character {
 GENTLE,
 NORMAL,
 AGGRESSIVE,
 ATTENTIVE,
 VIOLENT,
 CRAFTY
}

@Embeddable
public class Toy {
 public String name;
 public String serial;
 public Boy owner;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getSerial() {
 return serial;
 }

Hibernate Annotations Reference Guide

52

On a collection of embeddable objects, the embeddable object can have a property annotated with
@Parent. This property will then point back to the entity containing the collection.

NOTE

Previous versions of Hibernate Annotations used the @OneToMany to mark a collection of
elements. Due to semantic inconsistencies, we've introduced the annotation
@CollectionOfElements. Marking collections of elements the old way still work but is
considered deprecated and is going to be unsupported in future releases

2.4.6.2.6. @ManyToAny

@ManyToAny allows polymorphic associations to classes from multiple tables. This type of mapping
always requires more than one column. The first column holds the type of the associated entity. The
remaining columns hold the identifier. It is impossible to specify a foreign key constraint for this kind of
association, so this is most certainly not meant as the usual way of mapping (polymorphic) associations.
You should use this only in very special cases (eg. audit logs, user session data, etc).

 public void setSerial(String serial) {
 this.serial = serial;
 }

 @Parent
 public Boy getOwner() {
 return owner;
 }

 public void setOwner(Boy owner) {
 this.owner = owner;
 }

 public boolean equals(Object o) {
 if (this == o) return true;
 if (o == null || getClass() != o.getClass()) return false;

 final Toy toy = (Toy) o;

 if (!name.equals(toy.name)) return false;
 if (!serial.equals(toy.serial)) return false;

 return true;
 }

 public int hashCode() {
 int result;
 result = name.hashCode();
 result = 29 * result + serial.hashCode();
 return result;
 }
}

 @ManyToAny(
 metaColumn = @Column(name = "property_type"))
 @AnyMetaDef(

CHAPTER 2. ENTITY BEANS

53

Like @Any, @ManyToAny can use named @AnyDefs, see Section 2.4.5.2, “@Any” for more info.

2.4.7. Cascade

Hibernate offers more operations than the Java Persistence specification. You can use the @Cascade
annotation to cascade the following operations:

PERSIST

MERGE

REMOVE

REFRESH

DELETE

SAVE_UPDATE

REPLICATE

DELETE_ORPHAN

LOCK

EVICT

This is especially useful for SAVE_UPDATE (which is the operation cascaded at flush time if you use plain
Hibernate Annotations - Hibernate EntityManager cascade PERSIST at flush time as per the
specification). DELETE_ORPHAN applies only to @OneToMany associations, and indicates that the
delete()/remove() operation should be applied to any child object that is removed from the
association. In other words, if a child is dereferenced by a persistent parent and if DELETE_ORPHAN is
used, the "orphaned" child is deleted.

It is recommended to use @Cascade to compliment @*To*(cascade=...) as shown in the previous
example.

 idType = "integer",
 metaType = "string",
 metaValues = {
 @MetaValue(value = "S", targetEntity = StringProperty.class
),
 @MetaValue(value = "I", targetEntity = IntegerProperty.class
) })
 @Cascade({ org.hibernate.annotations.CascadeType.ALL })
 @JoinTable(name = "obj_properties", joinColumns = @JoinColumn(name =
"obj_id"),
 inverseJoinColumns = @JoinColumn(name = "property_id"))
 public List<Property> getGeneralProperties() {

@OneToMany(cascade = {CascadeType.PERSIST, CascadeType.MERGE})
@Cascade({org.hibernate.annotations.CascadeType.SAVE_UPDATE,
org.hibernate.annotations.CascadeType.DELETE_ORPHAN})
public Collection<Employer> getEmployers()

Hibernate Annotations Reference Guide

54

2.4.8. Cache

In order to optimize your database accesses, you can activate the so called second level cache of
Hibernate. This cache is configurable on a per entity and per collection basis.

@org.hibernate.annotations.Cache defines the caching strategy and region of a given second
level cache. This annotation can be applied on the root entity (not the sub entities), and on the
collections.

usage: the given cache concurrency strategy (NONE, READ_ONLY, NONSTRICT_READ_WRITE,
READ_WRITE, TRANSACTIONAL)

region (optional): the cache region (default to the fqcn of the class or the fq role name of the collection)

include (optional): all to include all properties, non-lazy to only include non lazy properties (default all).

2.4.9. Filters

Hibernate has the ability to apply arbitrary filters on top of your data. Those filters are applied at runtime
on a given session. First, you need to define them.

@org.hibernate.annotations.FilterDef or @FilterDefs define filter definition(s) used by
filter(s) using the same name. A filter definition has a name() and an array of parameters(). A parameter
will allow you to adjust the behavior of the filter at runtime. Each parameter is defined by a @ParamDef
which has a name and a type. You can also define a defaultCondition() parameter for a given
@FilterDef to set the default condition to use when none are defined in each individual @Filter. A
@FilterDef(s) can be defined at the class or package level.

We now need to define the SQL filter clause applied to either the entity load or the collection load.
@Filter is used and placed either on the entity or the collection element

@Entity
@Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
public class Forest { ... }

 @OneToMany(cascade=CascadeType.ALL, fetch=FetchType.EAGER)
 @JoinColumn(name="CUST_ID")
 @Cache(usage = CacheConcurrencyStrategy.NONSTRICT_READ_WRITE)
 public SortedSet<Ticket> getTickets() {
 return tickets;
 }

@Cache(

 CacheConcurrencyStrategy usage();

 String region() default "";

 String include() default "all";
)

CHAPTER 2. ENTITY BEANS

55

When the collection use an association table as a relational representation, you might want to apply the
filter condition to the association table itself or to the target entity table. To apply the constraint on the
target entity, use the regular @Filter annotation. However, if you want to target the association table,
use the @FilterJoinTable annotation.

2.4.10. Queries

Since Hibernate has more features on named queries than the one defined in the EJB3 specification,
@org.hibernate.annotations.NamedQuery,
@org.hibernate.annotations.NamedQueries,
@org.hibernate.annotations.NamedNativeQuery and
@org.hibernate.annotations.NamedNativeQueries have been introduced. They add some
attributes to the standard version and can be used as a replacement:

flushMode: define the query flush mode (Always, Auto, Commit or Manual)

cacheable: whether the query should be cached or not

cacheRegion: cache region used if the query is cached

fetchSize: JDBC statement fetch size for this query

timeout: query time out

callable: for native queries only, to be set to true for stored procedures

comment: if comments are activated, the comment seen when the query is sent to the database.

cacheMode: Cache interaction mode (get, ignore, normal, put or refresh)

readOnly: whether or not the elements retrievent from the query are in read only mode.

Those hints can be set in a standard @javax.persistence.NamedQuery annotations through the
detyped @QueryHint. Another key advantage is the ability to set those annotations at a package level.

@Entity
@FilterDef(name="minLength", parameters=@ParamDef(name="minLength",
type="integer"))
@Filters({
 @Filter(name="betweenLength", condition=":minLength <= length and
:maxLength >= length"),
 @Filter(name="minLength", condition=":minLength <= length")
})
public class Forest { ... }

 @OneToMany
 @JoinTable
 //filter on the target entity table
 @Filter(name="betweenLength", condition=":minLength <= length and
:maxLength >= length")
 //filter on the association table
 @FilterJoinTable(name="security", condition=":userlevel >=
requiredLevel")
 public Set<Forest> getForests() { ... }

Hibernate Annotations Reference Guide

56

2.4.11. Custom SQL for CRUD operations

Hibernate gives you the ability to override every single SQL statement generated. We have seen native
SQL query usage already, but you can also override the SQL statement used to load or change the state
of entities.

@SQLInsert, @SQLUpdate, @SQLDelete, @SQLDeleteAll respectively override the INSERT
statement, UPDATE statement, DELETE statement, DELETE statement to remove all entities.

If you expect to call a store procedure, be sure to set the callable attribute to true
(@SQLInsert(callable=true, ...)).

To check that the execution happens correctly, Hibernate allows you to define one of those three
strategies:

NONE: no check is performed: the store procedure is expected to fail upon issues

COUNT: use of rowcount to check that the update is successful

PARAM: like COUNT but using an output parameter rather that the standard mechanism

To define the result check style, use the check parameter
(@SQLUpdate(check=ResultCheckStyle.COUNT, ...)).

You can also override the SQL load statement by a native SQL query or a HQL query. You just have to
refer to a named query with the @Loader annotation.

You can use the exact same set of annotations to override the collection related statements.

The parameters order is important and is defined by the order Hibernate handle properties. You can see
the expected order by enabling debug logging for the org.hibernate.persister.entity level.
With this level enabled Hibernate will print out the static SQL that is used to create, update, delete etc.

@Entity
@Table(name="CHAOS")
@SQLInsert(sql="INSERT INTO CHAOS(size, name, nickname, id)
VALUES(?,upper(?),?,?)") @SQLUpdate(sql="UPDATE CHAOS SET size = ?, name
= upper(?), nickname = ? WHERE id = ?") @SQLDelete(sql="DELETE CHAOS
WHERE id = ?") @SQLDeleteAll(sql="DELETE CHAOS") @Loader(namedQuery =
"chaos")
@NamedNativeQuery(name="chaos", query="select id, size, name, lower(
nickname) as nickname from CHAOS where id= ?", resultClass = Chaos.class)
public class Chaos {
 @Id
 private Long id;
 private Long size;
 private String name;
 private String nickname;

@OneToMany
@JoinColumn(name="chaos_fk")
@SQLInsert(sql="UPDATE CASIMIR_PARTICULE SET chaos_fk = ? where id = ?")
@SQLDelete(sql="UPDATE CASIMIR_PARTICULE SET chaos_fk = null where id =
?")
private Set<CasimirParticle> particles = new HashSet<CasimirParticle>();

CHAPTER 2. ENTITY BEANS

57

entities. (To see the expected sequence, remember to not include your custom SQL through annotations
as that will override the Hibernate generated static sql.)

Overriding SQL statements for secondary tables is also possible using
@org.hibernate.annotations.Table and either (or all) attributes sqlInsert, sqlUpdate,
sqlDelete:

The previous example also show that you can give a comment to a given table (promary or secondary):
This comment will be used for DDL generation.

2.4.12. Tuplizer

org.hibernate.tuple.Tuplizer, and its sub-interfaces, are responsible for managing a particular
representation of a piece of data, given that representation's org.hibernate.EntityMode. If a given
piece of data is thought of as a data structure, then a tuplizer is the thing which knows how to create such
a data structure and how to extract values from and inject values into such a data structure. For
example, for the POJO entity mode, the correpsonding tuplizer knows how create the POJO through its
constructor and how to access the POJO properties using the defined property accessors. There are two
high-level types of Tuplizers, represented by the org.hibernate.tuple.EntityTuplizer and
org.hibernate.tuple.ComponentTuplizer interfaces. EntityTuplizers are responsible for
managing the above mentioned contracts in regards to entities, while ComponentTuplizers do the
same for components. Check the Hibernate reference documentation for more information.

To define tuplixer in annotations, simply use the @Tuplizer annotation on the according element

@Entity
@SecondaryTables({
 @SecondaryTable(name = "`Cat nbr1`"),
 @SecondaryTable(name = "Cat2"})
@org.hibernate.annotations.Tables({
 @Table(appliesTo = "Cat", comment = "My cat table"),
 @Table(appliesTo = "Cat2", foreignKey =
@ForeignKey(name="FK_CAT2_CAT"), fetch = FetchMode.SELECT,
 sqlInsert=@SQLInsert(sql="insert into Cat2(storyPart2, id)
values(upper(?), ?)"))
})
public class Cat implements Serializable {

@Entity
@Tuplizer(impl = DynamicEntityTuplizer.class)
public interface Cuisine {
 @Id
 @GeneratedValue
 public Long getId();
 public void setId(Long id);

 public String getName();
 public void setName(String name);

 @Tuplizer(impl = DynamicComponentTuplizer.class)
 public Country getCountry();
 public void setCountry(Country country);

}

Hibernate Annotations Reference Guide

58

CHAPTER 2. ENTITY BEANS

59

CHAPTER 3. OVERRIDING METADATA THROUGH XML
The primary target for metadata in EJB3 is annotations, but the EJB3 specification provides a way to
override or replace the annotation defined metadata through an XML deployment descriptor. In the
current release only pure EJB3 annotations overriding are supported. If you wish to use Hibernate
specific features in some entities, you'll have to either use annotations or fallback to hbm files. You can
of course mix and match annotated entities and entities describes in hbm files.

The unit test suite shows some additional XML file samples.

3.1. PRINCIPLES

The XML deployment descriptor structure has been designed to reflect the annotations one. So if you
know the annotations structure, using the XML schema will be straightforward for you.

You can define one ot more XML files describing your metadata, these files will be merged by the
overriding engine.

3.1.1. Global level metadata

You can define global level metadata available for all XML files. You must not define these metadata
more than once per deployment.

xml-mapping-metadata-complete means that all entity, mapped-superclasses and embeddable
metadata should be picked up from XML (ie ignore annotations).

schema / catalog will override all default definitions of schema and catalog in the metadata (both
XML and annotations).

cascade-persist means that all associations have PERSIST as a cascade type. We recommend you
to not use this feature.

3.1.2. Entity level metadata

You can either define or override metadata informations on a given entity.

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings
 xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
orm_1_0.xsd"
 version="1.0">

 <persistence-unit-metadata>
 <xml-mapping-metadata-complete/>
 <persistence-unit-defaults>
 <schema>myschema</schema>
 <catalog>mycatalog</catalog>
 <cascade-persist/>
 </persistence-unit-defaults>
 </persistence-unit-metadata>

Hibernate Annotations Reference Guide

60

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings

 xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
orm_1_0.xsd"
 version="1.0">

 <package>org.hibernate.test.annotations.reflection</package>

 <entity class="Administration" access="PROPERTY" metadata-

complete="true">
 <table name="tbl_admin">

 <unique-constraint>
 <column-name>firstname</column-name>
 <column-name>lastname</column-name>
 </unique-constraint>
 </table>
 <secondary-table name="admin2">

 <primary-key-join-column name="admin_id" referenced-column-
name="id"/>
 <unique-constraint>
 <column-name>address</column-name>
 </unique-constraint>
 </secondary-table>
 <id-class class="SocialSecurityNumber"/>

 <inheritance strategy="JOINED"/>

 <sequence-generator name="seqhilo" sequence-name="seqhilo"/>

 <table-generator name="table" table="tablehilo"/>

 ...
 </entity>

 <entity class="PostalAdministration">
 <primary-key-join-column name="id"/>

CHAPTER 3. OVERRIDING METADATA THROUGH XML

61

entity-mappings: entity-mappings is the root element for all XML files. You must declare the xml
schema, the schema file is included in the hibernate-annotations.jar file, no internet access will be
processed by Hibernate Annotations.

package (optional): default package used for all non qualified class names in the given deployment
descriptor file.

entity: describes an entity.

metadata-complete defines whether the metadata description for this element is complete or not (in
other words, if annotations present at the class level should be considered or not).

An entity has to have a class attribute referring to the java class the metadata applies on.

You can overrides entity name through the name attribute, if none is defined and if an @Entity.name
is present, then it is used (provided that metadata complete is not set).

For metadata complete (see below) element, you can define an access (either FIELD or PROPERTY
(default)). For non medatada complete element, if access is not defined, the @Id position will lead
position, if access is defined, the value is used.

table: you can declare table properties (name, schema, catalog), if none is defined, the java annotation
is used.

You can define one or several unique constraints as seen in the example

secondary-table: defines a secondary table very much like a regular table except that you can
define the primary key / foreign key column(s) through the primary-key-join-column element.
On non metadata complete, annotation secondary tables are used only if there is no secondary-
table definition, annotations are ignored otherwise.

id-class: defines the id class in a similar way @IdClass does

inheritance: defines the inheritance strategy (JOINED, TABLE_PER_CLASS, SINGLE_TABLE),
Available only at the root entity level

sequence-generator: defines a sequence generator

table-generator: defines a table generator

primary-key-join-column: defines the primary key join column for sub entities when JOINED
inheritance strategy is used

 ...
 </entity>
</entity-mappings>

<?xml version="1.0" encoding="UTF-8"?>

<entity-mappings
 xmlns="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Hibernate Annotations Reference Guide

62

discriminator-value / discriminator-column: defines the discriminator value and the
column holding it when the SINGLE_TABLE inheritance strategy is chosen

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence/orm
orm_1_0.xsd"
 version="1.0">

 <package>org.hibernate.test.annotations.reflection</package>
 <entity class="Music" access="PROPERTY" metadata-complete="true">
 <discriminator-value>Generic</discriminator-value>

 <discriminator-column length="34"/>
 ...
 </entity>

 <entity class="PostalAdministration">
 <primary-key-join-column name="id"/>
 <named-query name="adminById">

 <query>select m from Administration m where m.id = :id</query>
 <hint name="org.hibernate.timeout" value="200"/>
 </named-query>
 <named-native-query name="allAdmin" result-set-mapping="adminrs">

 <query>select *, count(taxpayer_id) as taxPayerNumber
 from Administration, TaxPayer
 where taxpayer_admin_id = admin_id group by ...</query>
 <hint name="org.hibernate.timeout" value="200"/>
 </named-native-query>
 <sql-result-set-mapping name="adminrs">

 <entity-result entity-class="Administration">
 <field-result name="name" column="fld_name"/>
 </entity-result>
 <column-result name="taxPayerNumber"/>
 </sql-result-set-mapping>
 <attribute-override name="ground">

 <column name="fld_ground" unique="true" scale="2"/>
 </attribute-override>
 <association-override name="referer">
 <join-column name="referer_id" referenced-column-name="id"/>
 </association-override>
 ...
 </entity>
</entity-mappings>

CHAPTER 3. OVERRIDING METADATA THROUGH XML

63

named-query: defines named queries and possibly the hints associated to them. Those definitions are
additive to the one defined in annotations, if two definitions have the same name, the XML one has
priority.

named-native-query: defines an named native query and its sql result set mapping. Alternatively,
you can define the result-class. Those definitions are additive to the one defined in annotations, if
two definitions have the same name, the XML one has priority.

sql-result-set-mapping: describes the result set mapping structure. You can define both entity
and column mappings. Those definitions are additive to the one defined in annotations, if two definitions
have the same name, the XML one has priority

attribute-override / association-override: defines a column or join column overriding.
This overriding is additive to the one defined in annotations

Same applies for <embeddable> and <mapped-superclass>.

3.1.3. Property level metadata

You can of course define XML overriding for properties. If metadata complete is defined, then additional
properties (ie at the Java level) will be ignored. Otherwise, once you start overriding a property, all
annotations on the given property are ignored. All property level metadata resides in
entity/attributes, mapped-superclass/attributes or embeddable/attributes.

You can override a property through id, embedded-id, version, embedded and basic. Each of
these elements can have subelements accordingly: lob, temporal, enumerated, column.

 <attributes>
 <id name="id">
 <column name="fld_id"/>
 <generated-value generator="generator" strategy="SEQUENCE"/>
 <temporal>DATE</temporal>
 <sequence-generator name="generator" sequence-name="seq"/>
 </id>
 <version name="version"/>
 <embedded name="embeddedObject">
 <attribute-override name"subproperty">
 <column name="my_column"/>
 </attribute-override>
 </embedded>
 <basic name="status" optional="false">
 <enumerated>STRING</enumerated>
 </basic>
 <basic name="serial" optional="true">
 <column name="serialbytes"/>
 <lob/>
 </basic>
 <basic name="terminusTime" fetch="LAZY">
 <temporal>TIMESTAMP</temporal>
 </basic>
 </attributes>

Hibernate Annotations Reference Guide

64

3.1.4. Association level metadata

You can define XML overriding for associations. All association level metadata behave in
entity/attributes, mapped-superclass/attributes or embeddable/attributes.

You can override an association through one-to-many, one-to-one, many-to-one, and many-to-
many. Each of these elements can have subelements accordingly: join-table (which can have
join-columns and inverse-join-columns), join-columns, map-key, and order-by. mapped-
by and target-entity can be defined as attributes when it makes sense. Once again the structure is
reflects the annotations structure. You can find all semantic informations in the chapter describing
annotations.

 <attributes>
 <one-to-many name="players" fetch="EAGER">
 <map-key name="name"/>
 <join-column name="driver"/>
 <join-column name="number"/>
 </one-to-many>
 <many-to-many name="roads" target-entity="Administration">
 <order-by>maxSpeed</order-by>
 <join-table name="bus_road">
 <join-column name="driver"/>
 <join-column name="number"/>
 <inverse-join-column name="road_id"/>
 <unique-constraint>
 <column-name>driver</column-name>
 <column-name>number</column-name>
 </unique-constraint>
 </join-table>
 </many-to-many>
 <many-to-many name="allTimeDrivers" mapped-by="drivenBuses">
 </attributes>

CHAPTER 3. OVERRIDING METADATA THROUGH XML

65

CHAPTER 4. ADDITIONAL MODULES
Hibernate Annotations mainly focus on persistence metadata. The project also have a nice integration
with two Hibernate modules.

4.1. HIBERNATE VALIDATOR

4.1.1. Description

Annotations are a very convenient and elegant way to specify invariant constraints for a domain model.
You can, for example, express that a property should never be null, that the account balance should be
strictly positive, etc. These domain model constraints are declared in the bean itself by annotating its
properties. A validator can then read them and check for constraint violations. The validation mechanism
can be executed in different layers in your application without having to duplicate any of these rules
(presentation layer, data access layer). Following the DRY principle, Hibernate Validator has been
designed for that purpose.

Hibernate Validator works at two levels. First, it is able to check in-memory instances of a class for
constraint violations. Second, it can apply the constraints to the Hibernate metamodel and incorporate
them into the generated database schema.

Each constraint annotation is associated to a validator implementation responsible for checking the
constraint on the entity instance. A validator can also (optionally) apply the constraint to the Hibernate
metamodel, allowing Hibernate to generate DDL that expresses the constraint. With the appropriate
event listener, you can execute the checking operation on inserts and updates done by Hibernate.
Hibernate Validator is not limited to use with Hibernate. You can easily use it anywhere in your
application.

When checking instances at runtime, Hibernate Validator returns information about constraint violations
in an array of InvalidValue s. Among other information, the InvalidValue contains an error
description message that can embed the parameter values bundle with the annotation (eg. length limit),
and message strings that may be externalized to a ResourceBundle .

4.1.2. Integration with Hibernate Annotations

If Hibernate Validator (hibernate-validator.jar) is available in the classpath, Hibernate
Annotations will integrate in two ways:

Constraints will be applied to the Data Definition Language. In other words, the database
schema will reflect the constraints (provided that you use the hbm2ddl tool).

Before an entity change is applied to the database (insert or update), the entity is validated.
Validation errors, if any, will be carried over through an InvalidStateException.

For entities free of validation rules, the runtime performance cost is null.

To disable constraint propagation to DDL, set up hibernate.validator.apply_to_ddl to false in
the configuration file. Such a need is very uncommon and not recommended.

To disable pre-entity change validation, set up hibernate.validator.autoregister_listeners
to false in the configuration file. Such a need is very uncommon and not recommended.

Check the Hibernate Validator reference documentation for more information.

Hibernate Annotations Reference Guide

66

4.2. HIBERNATE SEARCH

4.2.1. Description

Full text search engines like Apache Lucene are a very powerful technology to bring free text/efficient
queries to applications. If suffers several mismatches when dealing with a object domain model (keeping
the index up to date, mismatch between the index structure and the domain model, querying mismatch...)
Hibernate Search indexes your domain model thanks to a few annotations, takes care of the database /
index synchronization and brings you back regular managed objects from free text queries. Hibernate
Search is using Apache Lucene under the cover.

4.2.2. Integration with Hibernate Annotations

Hibernate Search integrates with Hibernate Annotations transparently provided that hibernate-search.jar
is present in the classpath. If you do not wish to automatically register Hibernate Search event listeners,
you can set hibernate.search.autoregister_listeners to false. Such a need is very
uncommon and not recommended.

Check the Hibernate Search reference documentation for more information.

CHAPTER 4. ADDITIONAL MODULES

67

http://lucene.apache.org

APPENDIX A. REVISION HISTORY

Revision 5.1.0-110.33.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 5.1.0-110.33 July 24 2012 Ruediger Landmann
Rebuild for Publican 3.0

Revision 5.1-0 Wed Sep 15 2010 Laura Bailey
Changed version number in line with new versioning requirements.

Revised for JBoss Enterprise Application Platform 5.1.0.GA.

Hibernate Annotations Reference Guide

68

	Table of Contents
	PREFACE
	CHAPTER 1. SETTING UP AN ANNOTATIONS PROJECT
	1.1. REQUIREMENTS
	1.2. CONFIGURATION
	1.3. PROPERTIES
	1.4. LOGGING

	CHAPTER 2. ENTITY BEANS
	2.1. INTRO
	2.2. MAPPING WITH EJB3/JPA ANNOTATIONS
	2.2.1. Declaring an entity bean
	2.2.1.1. Defining the table
	2.2.1.2. Versioning for optimistic locking

	2.2.2. Mapping simple properties
	2.2.2.1. Declaring basic property mappings
	2.2.2.2. Declaring column attributes
	2.2.2.3. Embedded objects (aka components)
	2.2.2.4. Non-annotated property defaults

	2.2.3. Mapping identifier properties
	2.2.4. Mapping inheritance
	2.2.4.1. Table per class
	2.2.4.2. Single table per class hierarchy
	2.2.4.3. Joined subclasses
	2.2.4.4. Inherit properties from superclasses

	2.2.5. Mapping entity bean associations/relationships
	2.2.5.1. One-to-one
	2.2.5.2. Many-to-one
	2.2.5.3. Collections
	2.2.5.4. Transitive persistence with cascading
	2.2.5.5. Association fetching

	2.2.6. Mapping composite primary and foreign keys
	2.2.7. Mapping secondary tables

	2.3. MAPPING QUERIES
	2.3.Mapping JPAQL/HQL queries. Mapping JPAQL/HQL queries
	2.3.2. Mapping native queries

	2.4. HIBERNATE ANNOTATION EXTENSIONS
	2.4.1. Entity
	2.4.Identifier. Identifier
	2.4.Identifier.1. Generators
	2.4.Identifier.2. @NaturalId

	2.4.3. Property
	2.4.3.1. Access type
	2.4.3.2. Formula
	2.4.3.3. Type
	2.4.3.4. Index
	2.4.3.5. @Parent
	2.4.3.6. Generated properties
	2.4.3.7. @Target
	2.4.3.8. Optimistic lock

	2.4.4. Inheritance
	2.4.5. Single Association related annotations
	2.4.5.1. Lazy options and fetching modes
	2.4.5.2. @Any

	2.4.6. Collection related annotations
	2.4.6.1. Enhance collection settings
	2.4.6.2. Extra collection types

	2.4.7. Cascade
	2.4.8. Cache
	2.4.9. Filters
	2.4.10. Queries
	2.4.11. Custom SQL for CRUD operations
	2.4.12. Tuplizer

	CHAPTER 3. OVERRIDING METADATA THROUGH XML
	3.1. PRINCIPLES
	3.1.1. Global level metadata
	3.1.2. Entity level metadata
	3.1.3. Property level metadata
	3.1.4. Association level metadata

	CHAPTER 4. ADDITIONAL MODULES
	4.1. HIBERNATE VALIDATOR
	4.1.1. Description
	4.1.2. Integration with Hibernate Annotations

	4.2. HIBERNATE SEARCH
	4.2.1. Description
	4.2.2. Integration with Hibernate Annotations

	APPENDIX A. REVISION HISTORY

