‘® redhat.

JBoss Enterprise Application Platform
6.3

Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Last Updated: 2017-10-16

JBoss Enterprise Application Platform 6.3 Development Guide

For Use with Red Hat JBoss Enterprise Application Platform 6

Legal Notice

Copyright © 2014 Red Hat, Inc..

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0

Unported License. If you distribute this document, or a modified version of it, you must provide

attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is areqgistered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is aregistered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book provides references and examples for Java EE 6 developers using Red Hat JBoss
Enterprise Application Platform 6 and its patch releases.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONSottt

1.1. INTRODUCTION
1.1.1. About Red Hat JBoss Enterprise Application Platform 6
1.2. PREREQUISITES
1.2.1. Become Familiar with Java Enterprise Edition 6
1.2.1.1. Overview of EE 6 Profiles
1.2.1.2. Java Enterprise Edition 6 Web Profile
1.2.1.3. Java Enterprise Edition 6 Full Profile
1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP 6
1.2.2.1. Modules
1.3. SET UP THE DEVELOPMENT ENVIRONMENT
1.3.1. Download and Install Red Hat JBoss Developer Studio
1.3.1.1. Setup Red Hat JBoss Developer Studio
1.3.1.2. Download Red Hat JBoss Developer Studio 7.1
1.3.1.3. Install Red Hat JBoss Developer Studio 7.1
1.3.1.4. Start Red Hat JBoss Developer Studio
1.3.1.5. Add the JBoss EAP Server Using Define New Server
1.4.RUN YOUR FIRST APPLICATION
1.4.1. Download the Quickstart Code Examples
1.4.1.1. Access the Quickstarts
1.4.2. Run the Quickstarts
1.4.2.1. Run the Quickstarts in Red Hat JBoss Developer Studio
1.4.2.2. Run the Quickstarts Using a Command Line
1.4.3. Review the Quickstart Tutorials
1.4.3.1. Explore the helloworld Quickstart
1.4.3.2. Explore the numberguess Quickstart
1.4.4. Replace the Default Welcome Web Application

CHAPTER 2. MAVEN GUIDE ... ittt ittt iiiiiteieeetnneennnecnnneens

2.1.LEARN ABOUT MAVEN
2.1.1. About the Maven Repository
2.1.2. About the Maven POM File
2.1.3. Minimum Requirements of a Maven POM File
2.1.4. About the Maven Settings File
2.2.INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY
2.2.1. Download and Install Maven
2.2.2. Install the JBoss EAP 6 Maven Repository
2.2.3. Install the JBoss EAP 6 Maven Repository Locally
2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd
2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository Manager
2.2.6. About Maven Repository Managers
2.3. USE THE MAVEN REPOSITORY
2.3.1. Configure the JBoss EAP Maven 6 Repository
2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings
2.3.3. Configure Maven for Use with Red Hat JBoss Developer Studio
2.3.4. Configure the JBoss EAP 6 Maven Repository Using the Project POM
2.3.5. Manage Project Dependencies
Supported Maven Artifacts
Dependency Management
JBoss JavaEE Specs Bom
JBoss EAP BOMs and Quickstarts

Table of Contents

............. 42

42
42
42
42
43
44
44
44
45
45
46
47
48
48
49
55
58
60
60

61

61
62

Development Guide

JBoss Client BOMs
2.4. UPGRADE THE MAVEN REPOSITORY
2.4.1. Apply a Patch to the Local Maven Repository

CHAPTER 3. CLASS LOADING AND MODULESitttttiiieiiinneetsoessnnssssssssssnsssssossssnnnass
3.1.INTRODUCTION
3.1.1. Overview of Class Loading and Modules
3.1.2. Class Loading
3.1.3. Modules
3.1.4. Module Dependencies
3.1.5. Class Loading in Deployments
3.1.6. Class Loading Precedence
3.1.7. Dynamic Module Naming
3.1.8. jboss-deployment-structure.xml
3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT
3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN
3.4. PREVENT A MODULE BEING IMPLICITLY LOADED
3.5.EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT
3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A DEPLOYMENT
3.6.1. Programmatically Load Classes and Resources in a Deployment
3.6.2. Programmatically Iterate Resources in a Deployment
3.7. CLASS LOADING AND SUBDEPLOYMENTS
3.7.1. Modules and Class Loading in Enterprise Archives
3.7.2. Subdeployment Class Loader Isolation
3.7.3. Disable Subdeployment Class Loader Isolation Within a EAR
3.8. REFERENCE
3.8.1. Implicit Module Dependencies
3.8.2. Included Modules
3.8.3. JBoss Deployment Structure Deployment Descriptor Reference

CHAPTER 4. VALVES .ttt ittt iiiieteiteteseeensosensosensscensscennscannncannns
4.1. ABOUT VALVES
4.2. ABOUT GLOBAL VALVES
4.3. ABOUT AUTHENTICATOR VALVES
4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE
4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR VALVE
4.6. CREATE A CUSTOM VALVE

CHAPTER 5. LOGGING FORDEVELOPERSiittiiiiiiiiiiiiiitiiitiietrinaerinnceennceenncecnnns
5.1.INTRODUCTION
5.1.1. About Logging
5.1.2. Application Logging Frameworks Supported By JBoss LogManager
5.1.3. About Log Levels
5.1.4. Supported Log Levels
5.1.5. Default Log File Locations
5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK
5.2.1. About JBoss Logging
5.2.2. Features of JBoss Logging
5.2.3. Add Logging to an Application with JBoss Logging
5.3. PER-DEPLOYMENT LOGGING
5.3.1. About Per-deployment Logging
5.3.2. Add Per-deployment Logging to an Application
5.3.3. Example logging.properties File
5.4. LOGGING PROFILES

63
64
64

66
66
66
66
66
67
68
69
69
70
70
72
73
74
76
76
78
80
80
81
81
82
82
86
86

87
87
87
87
87
89
90

92
92
92
92
92
92
93
94
94
94
94
97
97
97
97
98

5.4.1. About Logging Profiles
5.4.2. Specify a Logging Profile in an Application

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATIONccvviinnnnne.

6.1.INTRODUCTION
6.1.1. About Internationalization
6.1.2. About Localization
6.2. JBOSS LOGGING TOOLS
6.2.1. Overview
6.2.1.1. JBoss Logging Tools Internationalization and Localization
6.2.1.2. JBoss Logging Tools Quickstart
6.2.1.3. Message Logger
6.2.1.4. Message Bundle
6.2.1.5. Internationalized Log Messages
6.2.1.6. Internationalized Exceptions
6.2.1.7. Internationalized Messages
6.2.1.8. Translation Properties Files
6.2.1.9. JBoss Logging Tools Project Codes
6.2.1.10. JBoss Logging Tools Message Ids
6.2.2. Creating Internationalized Loggers, Messages and Exceptions
6.2.2.1. Create Internationalized Log Messages
6.2.2.2. Create and Use Internationalized Messages
6.2.2.3. Create Internationalized Exceptions
6.2.3. Localizing Internationalized Loggers, Messages and Exceptions
6.2.3.1. Generate New Translation Properties Files with Maven
6.2.3.2. Translate an Internationalized Logger, Exception or Message
6.2.4. Customizing Internationalized Log Messages
6.2.4.1. Add Message Ids and Project Codes to Log Messages
6.2.4.2. Specify the Log Level for a Message
6.2.4.3. Customize Log Messages with Parameters
6.2.4.4. Specify an Exception as the Cause of a Log Message
6.2.5. Customizing Internationalized Exceptions
6.2.5.1. Add Message Ids and Project Codes to Exception Messages
6.2.5.2. Customize Exception Messages with Parameters
6.2.5.3. Specify One Exception as the Cause of Another Exception
6.2.6. Reference
6.2.6.1. JBoss Logging Tools Maven Configuration
6.2.6.2. Translation Property File Format
6.2.6.3. JBoss Logging Tools Annotations Reference

CHAPTER 7. ENTERPRISE JAVABEANS ... ittt

7.1.INTRODUCTION

7.1.1. Overview of Enterprise JavaBeans

7.1.2. EJB 3.1 Feature Set

7.1.3.EJB 3.1 Lite

7.1.4.EJB 3.1 Lite Features

7.1.5. Enterprise Beans

7.1.6. Overview of Writing Enterprise Beans

7.1.7. Session Bean Business Interfaces
7.1.7.1. Enterprise Bean Business Interfaces
7.1.7.2. EJB Local Business Interfaces
7.1.7.3. EJB Remote Business Interfaces
7.1.7.4. EJB No-interface Beans

Table of Contents

100
100
100
100
100
100
100
101
101
101
101
101
102
102
102
102
102
104
105
106
106
107
108
108
109
10

m
12
12
13
14
16
16

17

17

...................... 19

19
19
19
120
120
120
121
121
121
121
121
122

Development Guide

7.2. CREATING ENTERPRISE BEAN PROJECTS
7.2.1. Create an EJB Archive Project Using Red Hat JBoss Developer Studio
7.2.2. Create an EJB Archive Project in Maven
7.2.3. Create an EAR Project containing an EJB Project
7.2.4. Add a Deployment Descriptor to an EJB Project
7.3. SESSION BEANS
7.3.1. Session Beans
7.3.2. Stateless Session Beans
7.3.3. Stateful Session Beans
7.3.4. Singleton Session Beans
7.3.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio
7.4. MESSAGE-DRIVEN BEANS
7.4.1. Message-Driven Beans
7.4.2. Resource Adapters
7.4.3. Create a JMS-based Message-Driven Bean in Red Hat JBoss Developer Studio
7.4.4. Enable EJB and MDB Property Substitution in an Application
7.5. INVOKING SESSION BEANS
7.5.1. Invoke a Session Bean Remotely using JNDI
7.5.2. About EJB Client Contexts
7.5.3. Considerations When Using a Single EJB Context
7.5.4. Using Scoped EJB Client Contexts
7.5.5. Configure EJBs Using a Scoped EJB Client Context
7.5.6. EJB Client Properties
7.6. CONTAINER INTERCEPTORS
7.6.1. About Container Interceptors
7.6.2. Create a Container Interceptor Class
7.6.3. Configure a Container Interceptor
7.6.4. Change the Security Context Identity
7.6.5. Pass Additional Security For EJB Authentication
7.6.6. Use a Client Side Interceptor in an Application
7.7. CLUSTERED ENTERPRISE JAVABEANS
7.7.1. About Clustered Enterprise JavaBeans (EJBs)
7.7.2. Standalone and In-server Client Configuration
7.7.3. Implementing a Custom Load Balancing Policy for EJB Calls
7.7.4. Transaction Behavior of EJB Invocations
7.8. REFERENCE
7.8.1. EJB JNDI Naming Reference
7.8.2. EJB Reference Resolution
7.8.3. Project dependencies for Remote EJB Clients
7.8.4. jboss-ejb3.xml Deployment Descriptor Reference

CHAPTER 8. JBOSS MBEAN SERVICES ... ittt ittt iiiiiieiteeeinneennseennsecnnsecnnns
8.1. WRITING JBOSS MBEAN SERVICES
8.2. ASTANDARD MBEAN EXAMPLE
8.3. DEPLOYING JBOSS MBEAN SERVICES

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS ... iiiiiiiiiitttiieennnnesssosssnnsssssosssnnnnss
9.1. SESSION REPLICATION
9.1.1. About HTTP Session Replication
9.1.2. About the Web Session Cache
9.1.3. Configure the Web Session Cache
9.1.4. Enable Session Replication in Your Application
9.2. HTTPSESSION PASSIVATION AND ACTIVATION

122
122
126
128
131
132
132
132
132
133
133
136
136
136
136
138
142
142
144
145
146
148
149
153
153
153
154
156
160
166
167
167
167
168
173
176
176
176
177
178

182
182
182
184

186
186
186
186
186
187
190

Table of Contents

9.2.1. About HTTP Session Passivation and Activation 190
9.2.2. Configure HttpSession Passivation in Your Application 191
9.3. COOKIE DOMAIN 192
9.3.1. About the Cookie Domain 192
9.3.2. Configure the Cookie Domain 193
9.4. IMPLEMENT AN HA SINGLETON 193
9.5. APACHE MOD_CLUSTER-MANAGER APPLICATION 199
9.5.1. About mod_cluster-manager Application 199
9.5.2. Exploring mod_cluster-manager Application 199
CHAPTER 10. Ol otittiiiiiiiiittteennnnaeeesoesssnassssossssnassssossssnsssssossssnsssssosssnnnsss 201
10.1. OVERVIEW OF CDI 201
10.1.1. Overview of CDI 201
10.1.2. About Contexts and Dependency Injection (CDI) 201
10.1.3. Benefits of CDI 201
10.1.4. About Type-safe Dependency Injection 201
10.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces 202
10.2. USE CDI 202
10.2.1. First Steps 202
10.2.1.1. Enable CDI 202
10.2.2. Use CDI to Develop an Application 203
10.2.2.1. Use CDI to Develop an Application 203
10.2.2.2. Use CDI with Existing Code 204
10.2.2.3. Exclude Beans From the Scanning Process 204
10.2.2.4. Use an Injection to Extend an Implementation 205
10.2.3. Ambiguous or Unsatisfied Dependencies 206
10.2.3.1. About Ambiguous or Unsatisfied Dependencies 206
10.2.3.2. About Qualifiers 206
10.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection 207
10.2.4. Managed Beans 208
10.2.4.1. About Managed Beans 208
10.2.4.2. Types of Classes That are Beans 209
10.2.4.3. Use CDI to Inject an Object Into a Bean 209
10.2.5. Contexts, Scopes, and Dependencies 211
10.2.5.1. Contexts and Scopes 211
10.2.5.2. Available Contexts 211
10.2.6. Bean Lifecycle 212
10.2.6.1. Manage the Lifecycle of a Bean 212
10.2.6.2. Use a Producer Method 213
10.2.7. Named Beans and Alternative Beans 214
10.2.7.1. About Named Beans 214
10.2.7.2. Use Named Beans 214
10.2.7.3. About Alternative Beans 215
10.2.7.4. Override an Injection with an Alternative 215
10.2.8. Stereotypes 216
10.2.8.1. About Stereotypes 216
10.2.8.2. Use Stereotypes 217
10.2.9. Observer Methods 218
10.2.9.1. About Observer Methods 218
10.2.9.2. Fire and Observe Events 218
10.2.10. Interceptors 219
10.2.10.1. About Interceptors 219
10.2.10.2. Use Interceptors with CDI 219

Development Guide

10.2.11. About Decorators 221
10.2.12. About Portable Extensions 221
10.2.13. Bean Proxies 222
10.2.13.1. About Bean Proxies 222
10.2.13.2. Use a Proxy in an Injection 222
CHAPTER 11. JAVA TRANSACTION API (JTA) 1 iiiiiiititiiiiiinneeeteoessnnsssssosssnnssssosssnnnnssss 224
11.1. OVERVIEW 224
11.1.1. Overview of Java Transactions APl (JTA) 224
11.2. TRANSACTION CONCEPTS 224
11.2.1. About Transactions 224
11.2.2. About ACID Properties for Transactions 224
11.2.3. About the Transaction Coordinator or Transaction Manager 225
11.2.4. About Transaction Participants 225
11.2.5. About Java Transactions API (JTA) 225
11.2.6. About Java Transaction Service (JTS) 226
11.2.7. About XA Datasources and XA Transactions 226
11.2.8. About XA Recovery 226
11.2.9. About the 2-Phase Commit Protocol 227
11.2.10. About Transaction Timeouts 227
11.2.11. About Distributed Transactions 227
11.2.12. About the ORB Portability API 228
11.2.13. About Nested Transactions 228
11.3. TRANSACTION OPTIMIZATIONS 229
11.3.1. Overview of Transaction Optimizations 229
11.3.2. About the LRCO Optimization for Single-phase Commit (1PC) 229
11.3.2.1. Commit Markable Resource 230
11.3.3. About the Presumed-Abort Optimization 232
11.3.4. About the Read-Only Optimization 232
11.4. TRANSACTION OUTCOMES 232
11.4.1. About Transaction Outcomes 232
11.4.2. About Transaction Commit 233
11.4.3. About Transaction Roll-Back 233
11.4.4. About Heuristic Outcomes 233
11.4.5. JBoss Transactions Errors and Exceptions 234
11.5. OVERVIEW OF JTA TRANSACTIONS 234
11.5.1. About Java Transactions API (JTA) 234
11.5.2. Lifecycle of a JTA Transaction 234
11.6. TRANSACTION SUBSYSTEM CONFIGURATION 235
11.6.1. Transactions Configuration Overview 235
11.6.2. Transactional Datasource Configuration 236
11.6.2.1. Configure Your Datasource to Use JTA Transaction API 236
11.6.2.2. Configure an XA Datasource 237
11.6.2.3. Log in to the Management Console 237
11.6.2.4. Create a Non-XA Datasource with the Management Interfaces 238
11.6.2.5. Configure Database Connection Validation Settings 239
11.6.2.6. Datasource Parameters 241
11.6.3. Transaction Logging 248
11.6.3.1. About Transaction Log Messages 248
11.6.3.2. Configure Logging for the Transaction Subsystem 249
11.6.3.3. Browse and Manage Transactions 250
11.7. USE JTA TRANSACTIONS 254
11.7.1. Transactions JTA Task Overview 255

Table of Contents

11.7.2. Control Transactions 255
11.7.3. Begin a Transaction 255
11.7.4. Nested Transactions 256
11.7.5. Commit a Transaction 257
11.7.6. Roll Back a Transaction 258
11.7.7. Handle a Heuristic Outcome in a Transaction 259
11.7.8. Transaction Timeouts 260
11.7.8.1. About Transaction Timeouts 260
11.7.8.2. Configure the Transaction Manager 261
11.7.9. JTA Transaction Error Handling 265
11.7.9.1. Handle Transaction Errors 265
11.8. ORB CONFIGURATION 266
11.8.1. About Common Object Request Broker Architecture (CORBA) 266
11.8.2. Configure the ORB for JTS Transactions 266
11.9. TRANSACTION REFERENCES 267
11.9.1. JBoss Transactions Errors and Exceptions 267
11.9.2. Limitations on JTA Transactions 267
11.9.3. JTA Transaction Example 268
11.9.4. APl Documentation for JBoss Transactions JTA 270
11.9.5. Limitations of the XA Recovery Process 270
CHAPTER 12. HIBERN ATEiittiiiiiiitettteesnnnasessossssnsssssossssnssssssssssnsssssosssnnnnss 272
12.1. ABOUT HIBERNATE CORE 272
12.2. JAVA PERSISTENCE API (JPA) 272
12.2.1. About JPA 272
12.2.2. Hibernate EntityManager 272
12.2.3. Getting Started 272
12.2.3.1. Create a JPA project in Red Hat JBoss Developer Studio 272
12.2.3.2. Create the Persistence Settings File in Red Hat JBoss Developer Studio 275
12.2.3.3. Example Persistence Settings File 276
12.2.3.4. Create the Hibernate Configuration File in Red Hat JBoss Developer Studio 277
12.2.3.5. Example Hibernate Configuration File 278
12.2.4. Configuration 279
12.2.4.1. Hibernate Configuration Properties 279
12.2.4.2. Hibernate JDBC and Connection Properties 280
12.2.4.3. Hibernate Cache Properties 282
12.2.4.4. Hibernate Transaction Properties 283
12.2.4.5. Miscellaneous Hibernate Properties 283
12.2.4.6. Hibernate SQL Dialects 285
12.2.5. Second-Level Caches 287
12.2.5.1. About Second-Level Caches 287
12.2.5.2. Configure a Second Level Cache for Hibernate 287
12.3. HIBERNATE ANNOTATIONS 288
12.3.1. Hibernate Annotations 288
12.4. HIBERNATE QUERY LANGUAGE 293
12.4.1. About Hibernate Query Language 293
12.4.2. HQL Statements 293
12.4.3. About the INSERT Statement 294
12.4.4. About the FROM Clause 295
12.4.5. About the WITH Clause 295
12.4.6. About Bulk Update, Insert and Delete 296
12.4.7. About Collection Member References 298
12.4.8. About Qualified Path Expressions 298

Development Guide

12.4.9. About Scalar Functions
12.4.10. HQL Standardized Functions
12.4.11. About the Concatenation Operation
12.4.12. About Dynamic Instantiation
12.4.13. About HQL Predicates
12.4.14. About Relational Comparisons
12.4.15. About the IN Predicate
12.4.16. About HQL Ordering
12.5. HIBERNATE SERVICES
12.5.1. About Hibernate Services
12.5.2. About Service Contracts
12.5.3. Types of Service Dependencies
12.5.4. The ServiceRegqistry
12.5.4.1. About the ServiceRegistry
12.5.5. Custom Services
12.5.5.1. About Custom Services
12.5.6. The Bootstrap Registry
12.5.6.1. About the Boot-strap Registry
12.5.6.2. Using BootstrapServiceRegistryBuilder
12.5.6.3. BootstrapRegistry Services
12.5.7. The SessionFactory Registry
12.5.7.1. SessionFactory Registry
12.5.7.2. SessionFactory Services
12.5.8. Integrators
12.5.8.1. Integrators
12.5.8.2. Integrator use-cases
12.6. BEAN VALIDATION
12.6.1. About Bean Validation
12.6.2. Hibernate Validator
12.6.3. Validation Constraints
12.6.3.1. About Validation Constraints
12.6.3.2. Create a Constraint Annotation in Red Hat JBoss Developer Studio
12.6.3.3. Create a New Java Class in Red Hat JBoss Developer Studio
12.6.3.4. Hibernate Validator Constraints
12.6.4. Configuration
12.6.4.1. Example Validation Configuration File
12.7. ENVERS
12.7.1. About Hibernate Envers
12.7.2. About Auditing Persistent Classes
12.7.3. Auditing Strategies
12.7.3.1. About Auditing Strategies
12.7.3.2. Set the Auditing Strateqy
12.7.4. Getting Started with Entity Auditing
12.7.4.1. Add Auditing Support to a JPA Entity
12.7.5. Configuration
12.7.5.1. Configure Envers Parameters
12.7.5.2. Enable or Disable Auditing at Runtime
12.7.5.3. Configure Conditional Auditing
12.7.5.4. Envers Configuration Properties
12.7.6. Queries
12.7.6.1. Retrieve Auditing Information
12.8. PERFORMANCE TUNING
12.8.1. Alternative Batch Loading Algorithms

300
300
301
301
302
303
305
306
307
307
307
307
308
308
308
308
310
310
310
310
3N
3N
3N
312
312
312
313
313
313
314
314
314
315
316
318
318
319
319
319
320
320
320
321
321
322
322
323
324
324
326
326
330
330

CHAPTER 13. JAX-RS WEB SERVICES

CHAPTER 14. JAX-WS WEB SERVICES

12.8.2. Second Level Caching of Object References for Non-mutable Data

13.1. ABOUT JAX-RS
13.2. ABOUT RESTEASY
13.3. ABOUT RESTFUL WEB SERVICES
13.4. RESTEASY DEFINED ANNOTATIONS
13.5. RESTEASY CONFIGURATION
13.5.1. RESTEasy Configuration Parameters
13.6. JAX-RS WEB SERVICE SECURITY
13.6.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
13.6.2. Secure a JAX-RS Web Service using Annotations
13.7. RESTEASY LOGGING
13.7.1. About JAX-RS Web Service Logging
13.7.2. Logging Categories Defined in RESTEasy
13.8. EXCEPTION HANDLING
13.8.1. Create an Exception Mapper
13.8.2. RESTEasy Internally Thrown Exceptions
13.9. RESTEASY INTERCEPTORS
13.9.1. Intercept JAX-RS Invocations
13.9.2. Bind an Interceptor to a JAX-RS Method
13.9.3. Register an Interceptor
13.9.4. Interceptor Precedence Families
13.9.4.1. About Interceptor Precedence Families
13.9.4.2. Define a Custom Interceptor Precedence Family
13.10. STRING BASED ANNOTATIONS
13.10.1. Convert String Based @*Param Annotations to Objects
13.11. CONFIGURE FILE EXTENSIONS
13.11.1. Map File Extensions to Media Types in the web.xml File
13.11.2. Map File Extensions to Languages in the web.xml File
13.11.3. RESTEasy Supported Media Types
13.12. RESTEASY JAVASCRIPT API
13.12.1. About the RESTEasy JavaScript API
13.12.2. Enable the RESTEasy JavaScript API Servlet
13.12.3. RESTEasy Javascript APl Parameters
13.12.4. Build AJAX Queries with the JavaScript API
13.12.5. REST.Request Class Members
13.13. RESTEASY ASYNCHRONOUS JOB SERVICE
13.13.1. About the RESTEasy Asynchronous Job Service
13.13.2. Enable the Asynchronous Job Service
13.13.3. Configure Asynchronous Jobs for RESTEasy
13.13.4. Asynchronous Job Service Configuration Parameters
13.14. RESTEASY JAXB
13.14.1. Create a JAXB Decorator
13.15. RESTEASY ATOM SUPPORT
13.15.1. About the Atom API and Provider
13.16. RESTEASY/SPRING INTEGRATION
13.16.1. RESTEasy/Spring integration

14.1. ABOUT JAX-WS WEB SERVICES
14.2. CONFIGURE THE WEBSERVICES SUBSYSTEM
14.3. JAX-WS WEB SERVICE ENDPOINTS

Table of Contents

331

.................... 333

333
333
333
333
335
336
337
337
339
339
339
339
340
340
340
342
342
344
345
345
345
346
347
347
351
351
351
352
353
353
353
354
354
355
356
356
356
357
358
360
360
361
361
361
361

.................... 363

363
364
367

Development Guide

CHAPTER 15. WEBSOCKETS

CHAPTER 16. IDENTITY WITHIN APPLICATIONS

10

14.3.1. About JAX-WS Web Service Endpoints
14.3.2. Write and Deploy a JAX-WS Web Service Endpoint

14.4. JAX-WS WEB SERVICE CLIENTS

14.4.1. Consume and Access a JAX-WS Web Service
14.4.2. Develop a JAX-WS Client Application

14.5. JAX-WS DEVELOPMENT REFERENCE

14.5.1. Enable Web Services Addressing (WS-Addressing)
14.5.2. JAX-WS Common API Reference

15.1. ABOUT WEBSOCKETS
15.2. CREATE A WEBSOCKET APPLICATION

16.1. FOUNDATIONAL CONCEPTS
16.1.1. About Encryption
16.1.2. About Security Domains
16.1.3. About SSL Encryption
16.1.4. About Declarative Security
16.2. ROLE-BASED SECURITY IN APPLICATIONS
16.2.1. About Application Security
16.2.2. About Authentication
16.2.3. About Authorization
16.2.4. About Security Auditing
16.2.5. About Security Mapping
16.2.6. Java Authentication and Authorization Service (JAAS)

16.2.7. About Java Authentication and Authorization Service (JAAS)

16.2.8. Use a Security Domain in Your Application
16.2.9. Use Role-Based Security In Servlets

16.2.10. Use A Third-Party Authentication System In Your Application

16.3. SECURITY REALMS

16.3.1. About Security Realms

16.3.2. Add a New Security Realm

16.3.3. Add a User to a Security Realm

16.4. EJB APPLICATION SECURITY

16.4.1. Security Identity
16.4.1.1. About EJB Security Identity
16.4.1.2. Set the Security Identity of an EJB

16.4.2. EJB Method Permissions
16.4.2.1. About EJB Method Permissions
16.4.2.2. Use EJB Method Permissions

16.4.3. EJB Security Annotations
16.4.3.1. About EJB Security Annotations
16.4.3.2. Use EJB Security Annotations

16.4.4. Remote Access to EJBs
16.4.4.1. About Remote Method Access
16.4.4.2. About Remoting Callbacks
16.4.4.3. About Remoting Server Detection
16.4.4.4. Configure the Remoting Subsystem
16.4.4.5. Use Security Realms with Remote EJB Clients
16.4.4.6. Add a New Security Realm
16.4.4.7. Add a User to a Security Realm
16.4.4.8. About Remote EJB Access Using SSL Encryption

367
369
37N
37N
376
381
382
383

387
387
387

394
394
394
394
394
395
395
395
396
396
396
396
397
397
398
400
403
409
409
410
41
41
411
41
412
413
413
413
416
416
416
417
418
419
419
420
428
429
429
430

16.5. JAX-RS APPLICATION SECURITY
16.5.1. Enable Role-Based Security for a RESTEasy JAX-RS Web Service
16.5.2. Secure a JAX-RS Web Service using Annotations
16.6. SECURE REMOTE PASSWORD PROTOCOL
16.6.1. About Secure Remote Password Protocol (SRP)
16.6.2. Configure Secure Remote Password (SRP) Protocol
16.7. PASSWORD VAULTS FOR SENSITIVE STRINGS
16.7.1. Password Vault System
16.7.2. Create a Java Keystore to Store Sensitive Strings
16.7.3. Mask the Keystore Password and Initialize the Password Vault
16.7.4. Configure JBoss EAP 6 to Use the Password Vault
16.7.5. Configure JBoss EAP 6 to Use a Custom Implementation of the Password Vault
16.7.6. Store and Retrieve Encrypted Sensitive Strings in the Java Keystore
16.7.7. Store and Resolve Sensitive Strings In Your Applications
16.8. JAVA AUTHORIZATION CONTRACT FOR CONTAINERS (JACC)
16.8.1. About Java Authorization Contract for Containers (JACC)
16.8.2. Configure Java Authorization Contract for Containers (JACC) Security
16.9. JAVA AUTHENTICATION SPI FOR CONTAINERS (JASPI)
16.9.1. About Java Authentication SPI for Containers (JASPI) Security
16.9.2. Configure Java Authentication SPI for Containers (JASPI) Security

CHAPTER17.SINGLE SIGN ON (SSO) ..iiiiiiiiiiii ittt ittt iiiienieennnns

17.1. ABOUT SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS

17.2. ABOUT CLUSTERED SINGLE SIGN ON (SSO) FOR WEB APPLICATIONS
17.3. CHOOSE THE RIGHT SSO IMPLEMENTATION

17.4. USE SINGLE SIGN ON (SSO) IN A WEB APPLICATION

17.5. ABOUT KERBEROS

17.6. ABOUT SPNEGO

17.7. ABOUT MICROSOFT ACTIVE DIRECTORY

Table of Contents

430
430
432
432
432
433
435
435
435
438
439
441
442
444
446
446
447
448
448
448

.............. 450

450
450
451
451
453
454
454

17.8. CONFIGURE KERBEROS OR MICROSOFT ACTIVE DIRECTORY DESKTOP SSO FOR WEB APPLICATIONS

17.9. CONFIGURE SPNEGO FALL BACK TO FORM AUTHENTICATION

CHAPTER 18. DEVELOPMENT SECURITY REFERENCESciiiiiiiiiiiiiiiinnnnn,

18.1. JBOSS-WEB.XML CONFIGURATION REFERENCE
18.2. EJB SECURITY PARAMETER REFERENCE

CHAPTER 19. SUPPLEMENTAL REFERENCES iiiiiiiiiiiiiiiiiiiiiiiiiiiiieennnns

19.1. TYPES OF JAVA ARCHIVES

APPENDIX A. REVISION HISTORY ittt iiiiiieiiieeinneennneenns

454
458

.............. 460

460
463

.............. 465

465

1

Development Guide

12

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

1.1.INTRODUCTION

1.1.1. About Red Hat JBoss Enterprise Application Platform 6

Red Hat JBoss Enterprise Application Platform 6 (JBoss EAP 6) is a middleware platform built on open
standards and compliant with the Java Enterprise Edition 6 specification. It integrates JBoss
Application Server 7 with high-availability clustering, messaging, distributed caching, and other
technologies.

JBoss EAP 6 includes a new, modular structure that allows service enabling only when required,
improving start-up speed.

The Management Console and Management Command Line Interface make editing XML configuration
files unnecessary and add the ability to script and automate tasks.

In addition, JBoss EAP 6 includes APIls and development frameworks for quickly developing secure and
scalable Java EE applications.

Report a bug

1.2. PREREQUISITES

1.2.1. Become Familiar with Java Enterprise Edition 6

1.2.1.1. Overview of EE 6 Profiles

Java Enterprise Edition 6 (EE 6) includes support for multiple profiles, or subsets of APIs. The only two
profiles that the EE 6 specification defines are the Full Profileand the Web Profile.

EE 6 Full Profile includes all APIs and specifications included in the EE 6 specification. EE 6 Web Profile
includes a subset of APIs which are useful to web developers.

JBoss EAP 6 is a certified implementation of the Java Enterprise Edition 6 Full Profile and Web Profile
specifications.

e Section1.2.1.2, “Java Enterprise Edition 6 Web Profile”
e Section1.2.1.3, “Java Enterprise Edition 6 Full Profile”

Report a bug

1.2.1.2. Java Enterprise Edition 6 Web Profile

The Web Profile is one of two profiles defined by the Java Enterprise Edition 6 specification. It is
designed for web application development. The other profile defined by the Java Enterprise Edition 6
specification is the Full Profile. See Section 1.2.1.3, “Java Enterprise Edition 6 Full Profile” for more
details.

Java EE 6 Web Profile Requirements

e Java Platform, Enterprise Edition 6

13

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+228-681277+%5BLatest%5D&comment=Title%3A+About+Red+Hat+JBoss+Enterprise+Application+Platform+6%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=228-681277+04+Jul+2014+04%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4488-591661+%5BLatest%5D&comment=Title%3A+Overview+of+EE+6+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4488-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

e Java Web Technologies

o

Servlet 3.0 (JSR 315)

JSP 2.2 and Expression Language (EL) 1.2
JavaServer Faces (JSF) 2.1 (JSR 314)

Java Standard Tag Library (JSTL) for JSP 1.2

Debugging Support for Other Languages 1.0 (JSR 45)

e Enterprise Application Technologies

o

o

Contexts and Dependency Injection (CDI) (JSR 299)
Dependency Injection for Java (JSR 330)

Enterprise JavaBeans 3.1 Lite (JSR 318)

Java Persistence API 2.0 (JSR 317)

Common Annotations for the Java Platform 1.1 (JSR 250)
Java Transaction API (JTA) 1.1 (JSR 907)

Bean Validation (JSR 303)

Report a bug

1.2.1.3. Java Enterprise Edition 6 Full Profile

The Java Enterprise Edition 6 (EE 6) specification defines a concept of profiles, and defines two of
them as part of the specification. Besides the items supported in the Java Enterprise Edition 6 Web
Profile (Section 1.2.1.2, “Java Enterprise Edition 6 Web Profile”), the Full Profile supports the following

APIs.

Items Included in the EE 6 Full Profile

e EJB 3.1 (not Lite) (JSR 318)

e Java EE Connector Architecture 1.6 (JSR 322)

e Java Message Service (JMS) API 1.1 (JSR 914)

e JavaMail 1.4 (JSR 919)

e Web Service Technologies

o Jax-RS RESTful Web Services 1.1 (JSR 311)

o

o JAX-WS Java API for XML-Based Web Services 2.2 (JSR 224)

Implementing Enterprise Web Services 1.3 (JSR 109)

o Java Architecture for XML Binding (JAXB) 2.2 (JSR 222)

14

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4489-591661+%5BLatest%5D&comment=Title%3A+Java+Enterprise+Edition+6+Web+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4489-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

o Web Services Metadata for the Java Platform (JSR 181)

Java APIs for XML-based RPC 1.1 (JSR 101)

o

o

Java APIs for XML Messaging 1.3 (JSR 67)

o

Java API for XML Registries (JAXR) 1.0 (JSR 93)

e Management and Security Technologies

o Java Authentication Service Provider Interface for Containers 1.0 (JSR 196)
o Java Authentication Contract for Containers 1.3 (JSR 115)

o Java EE Application Deployment 1.2 (JSR 88)

o J2EE Management 1.1 (JSR 77)

Report a bug

1.2.2. About Modules and the New Modular Class Loading System used in JBoss EAP
6

1.2.2.1. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules.
However the only difference between the two is how they are packaged. All modules provide the same
features.

Static Modules

Static Modules are predefined in the EAP_HOME /modules/ directory of the application server.
Each sub-directory represents one module and defines a main/ subdirectory that contains a
configuration file (module.xml) and any required JAR files. The name of the module is defined in
the module. xml file. All the application server provided APIs are provided as static modules,
including the Java EE APIs as well as other APIs such as JBoss Logging.

Example 1.1. Example module.xml file

<?xml version="1.0" encoding="UTF-8"?>
<module xmlns="urn:jboss:module:1.0" name="com.mysql">
<resources>
<resource-root path="mysqgl-connector-java-5.1.15.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

The module name, com.mysql, should match the directory structure for the module, excluding
the main/ subdirectory name.

15

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4490-706470+%5BLatest%5D&comment=Title%3A+Java+Enterprise+Edition+6+Full+Profile%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4490-706470+04+Sep+2014+14%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

The modules provided in JBoss EAP distributions are located in a system directory within the
JBOSS_HOME/modules directory. This keeps them separate from any modules provided by third
parties.

Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install
their modules within the system directory.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Users must ensure that custom modules are installed into the JBOSS_HOME/modules directory,
using a one directory per module layout. This ensures that custom versions of modules that already
exist in the system directory are loaded instead of the shipped versions. In this way, user provided
modules will take precedence over system modules.

If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss
EAP searches for modules, then the product will look for a system subdirectory structure within
one of the locations specified. A system structure must exist somewhere in the locations specified
with JBOSS_MODULEPATH.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR
deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name
of the deployed archive. Because deployments are loaded as modules, they can configure
dependencies and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that
has explicit or implicit dependencies.

Report a bug

1.3.SET UP THE DEVELOPMENT ENVIRONMENT

1.3.1. Download and Install Red Hat JBoss Developer Studio

1.3.1.1. Setup Red Hat JBoss Developer Studio

1. Section 1.3.1.2, “Download Red Hat JBoss Developer Studio 7.1”

2. Section 1.3.1.3, “Install Red Hat JBoss Developer Studio 7.1”

3. Section 1.3.1.4, “Start Red Hat JBoss Developer Studio”

4. Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”

Report a bug

1.3.1.2. Download Red Hat JBoss Developer Studio 7.1

1. Go to https://access.redhat.com/.

16

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4360-715834+%5BLatest%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-715834+10+Oct+2014+00%3A37+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4583-721148+%5BLatest%5D&comment=Title%3A+Setup+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4583-721148+31+Oct+2014+05%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://access.redhat.com/

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

2. Select Downloads from the menu at the top of the page.
3. Find Red Hat JBoss Developer Studio inthe list and click oniit.
4. Select the appropriate version and click Download.

Report a bug

1.3.1.3. Install Red Hat JBoss Developer Studio 7.1

Prerequisites:
Section 1.3.1.2, “Download Red Hat JBoss Developer Studio 7.1”

Procedure 1.1. Install Red Hat JBoss Developer Studio 7.1

1. Open a terminal.
2. Move into the directory containing the downloaded . jar file.

3. Run the following command to launch the GUl installer:
I java -jar jbdevstudio-build _version.jar

4. Click Next to start the installation process.
5. SelectI accept the terms of this license agreement and click Next.

6. Adjust the installation path and click Next.

NOTE

If the installation path folder does not exist, a prompt will appear. Click Ok to
create the folder.

e

7. Choose a JVM, or leave the default JVM selected, and click Next.

8. Add any application platforms available, and click Next.

9. Review the installation details, and click Next.
10. Click Next when the installation process is complete.

11. Configure the desktop shortcuts for Red Hat JBoss Developer Studio, and click Next.
12. Click Done.

Report a bug

1.3.1.4. Start Red Hat JBoss Developer Studio

Prerequisites:
Section 1.3.1.3, “Install Red Hat JBoss Developer Studio 7.1”

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4580-681215+%5BLatest%5D&comment=Title%3A+Download+Red+Hat+JBoss+Developer+Studio+7.1%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4580-681215+03+Jul+2014+23%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4581-681217+%5BLatest%5D&comment=Title%3A+Install+Red+Hat+JBoss+Developer+Studio+7.1%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4581-681217+03+Jul+2014+23%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Procedure 1.2. Command to start Red Hat JBoss Developer Studio
1. Open a terminal.
2. Change into the installation directory.

3. Run the following command to start Red Hat JBoss Developer Studio:

I [localhost]$./jbdevstudio
Report a bug

1.3.1.5. Add the JBoss EAP Server Using Define New Server

These instructions assume this is your first introduction to Red Hat JBoss Developer Studio 7.x and
you have not yet added any JBoss EAP servers. The procedure below adds the JBoss server using the
Define New Server wizard.

Procedure 1.3. Add the server
1. Open the Servers tab. If there is no Servers tab, add it to the panel as follows:
a. Click Window — Show View — Other....
b. Select Servers from the Server folder and click OK.

2. Click onthelink tocreate a new server orright-click within the blank Server panel and
select New — Server.

4t Servers 22 B Console [2! Problems Il Properties < Search < OpenShift

Mo servers are available. Click this link to create a new server...

Figure 1.1. Add a new server - No servers available

3. Expand JBoss Enterprise Middleware and choose JBoss Enterprise Application
Platform 6.1+. Click Next to create the JBoss runtime and define the server. The next time
you define a new server, this dialog displays a Server runtime environment selection
with the new runtime definition.

18

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4582-681218+%5BLatest%5D&comment=Title%3A+Start+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4582-681218+04+Jul+2014+00%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

New Server
Define a New Server
Choose the type of server to create

Download additional server adapters

Select the server type:
ype filter text]

-| [= JBoss Enterprise Middleware

£l JBoss Enterprise Application Platform 4.3
£l JBoss Enterprise Application Platform 5.x

£l JBoss Enterprise Application Platform 6.0

7 JBoss Enterprise Application Platform 6.1+

JBoss Enterprise Application Platform (EAP) 6.1+

l:l‘l 1
Server's host name: localhost
Server name: JBoss EAP 6.14 Runtime Server
® < Back MNext > Cancel Finish

Figure 1.2. Define a New Server

4. Enter a name, for example "JBoss EAP 6.3 Runtime". Under Home Directory, click Browse
and navigate to your JBoss EAP install location. Then click Next.

19

Development Guide

20

MNew Server

.- . .

®
@ . by Red Hat

|Boss Runtime

JBoss Enterprise Application Platform (EAP) 6.1+

A JBoss Server runtime references a JBoss installation directory.
It can be used to set up classpaths for projects which depend on this runtime,
as well as by a "server” which will be able to start and stop instances of JBoss.

Mame

JBoss EAP 6.3 Runtime

Home Directory Download and install runtime...

[/home/username/EAP/jboss-eap-6.3 Browse...
JRE

Default JRE for JavaSE-1.6 “ | | JRE
Configuration file: | standalone.xml Browse...

® < Back MNext > Cancel Finish

Figure 1.3. Add New Server Runtime Environment

NOTE

Some quickstarts require that you run the server with a different profile or
additional arguments. To deploy a quickstart that requires the full profile, you
must define a new server and add a Server Runtime Environment that
specifies standalone-full. xml for the Configuration file.Be sure to
give the new server a descriptive name.

5. On this screen you define the server behavior. You can start the server manually or let Red Hat
JBoss Developer Studio manage it for you. You can also define a remote server for deployment
and determine if you want to expose the management port for that server, for example, if you

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

need connect to it using JMX. In this example, we assume the server is local and you want Red

Hat JBoss Developer Studio to manage your server so you do not need to check anything.
Click Next.

MNew Server
e
Create a new |Boss Server .' B o

JBoss Enterprise Application Platform (EAP) 6.1+ ... by Red Hat

A JBoss Server manages starting and stopping instances of JBoss.

It manages command line arguments and keeps track of which modules have been deployed.
Runtime Information

If the runtime information below is incorrect, please press back, Installed Runtimes...,
and then Add to create a new runtime from a different location.

Home Directory /homefusername /EAF/iboss-eap-6.3
Execution Environment Java Platform, Standard Edition 6.0

JRE Default JRE for JavaSE-1.6

Server Behavior
| Server is externally managed. Assume server is started.
"~ Listen on all interfaces to allow remote web connections

| Expose your management port as the server's hostname

Local e

@ < Back Mext > Cancel Finish

Figure 1.4. Define the New JBoss Server Behavior

6. This screen allows you to configure existing projects for the new server. Because you do not
have any projects at this point, click Finish.

21

Development Guide

Mew Server

Add and Remove @
Modify the resources that are configured on the server =

Move resources to the right to configure them on the server

Available: Configured:

| Add = |

| < Remove |

| Add ALL >> |

| << Remowve AlL |

@ Emed vo) (i) (s

Figure 1.5. Modify resources for the new JBoss server

Result

The JBoss EAP Runtime Server is listed in the Servers tab.

22

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

2. Problems = Properties 4% Servers &2 & OpenShift Explorer E

+ § JBoss EAP 6.1+ Runtime Server [Stopped]

Figure 1.6. Server appears in the server list

Report a bug
1.4. RUN YOUR FIRST APPLICATION

1.4.1. Download the Quickstart Code Examples

1.4.1.1. Access the Quickstarts

Summary

JBoss EAP 6 comes with a series of quickstart examples designed to help users begin writing
applications using the Java EE 6 technologies.

Prerequisites

e Maven 3.0.0 or higher. For more information on installing Maven, refer to
http://maven.apache.org/download.html.

e Section 2.1.1, “About the Maven Repository”

e The JBoss EAP 6.3 Maven respository is available online, so it is not necessary to download
and install it locally. If you plan to use the online repository, you can skip to the next step. If
you prefer to install a local repository, see: Section 2.2.3, “Install the JBoss EAP 6 Maven
Repository Locally”.

e Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”

Procedure 1.4. Download the Quickstarts

1. Open a web browser and access this URL:

https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

2. Find "Quickstarts" in the list.
3. Click the Download button to download a Zip archive containing the examples.
4. Unzip the archive in a directory of your choosing.

Result

The JBoss EAP Quickstarts have been downloaded and unzipped. Refer to the README . md file in the
top-level directory of the Quickstart archive for instructions about deploying each quickstart.

Report a bug

23

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+26921-715085+%5BLatest%5D&comment=Title%3A+Add+the+JBoss+EAP+Server+Using+Define+New+Server%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=26921-715085+04+Oct+2014+02%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://maven.apache.org/download.html
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5720-606679+%5BLatest%5D&comment=Title%3A+Access+the+Quickstarts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5720-606679+27+Feb+2014+16%3A39+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

1.4.2. Run the Quickstarts

1.4.2.1. Run the Quickstarts in Red Hat JBoss Developer Studio

This section describes how to use Red Hat JBoss Developer Studio to deploy the quickstarts and run
the Arquillian tests.

Procedure 1.5. Import the quickstarts into Red Hat JBoss Developer Studio

Each quickstart ships with a POM (Project Object Model) file that contains project and configuration
information for the quickstart. Using this POM file, you can easily import the quickstart into Red Hat
JBoss Developer Studio.

IMPORTANT

If your quickstart project folder is located within the IDE workspace when you import it
into Red Hat JBoss Developer Studio, the IDE generates an invalid project name and
WAR archive name. Be sure your quickstart project folder is located outside the IDE
workspace before you begin!

1. If you have not yet done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository
Using the Maven Settings”.

2. Start Red Hat JBoss Developer Studio.
3. From the menu, select File = Import.

4. In the selection list, choose Maven — Existing Maven Projects, then click Next.

24

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Import

Select \:‘.I
Import Existing Maven Projects H

Select an import source:

type filter text ¥

+ [= General

+

= CV5S

+

= EJB
= Git

+

+

= Install

+

= Java EE

= Maven

% Check out Maven Projects from SCM

& Existing Maven Projects

(0, Install or deploy an artifact to a Maven repository

f—_L Materialize Maven Projects from SCM

® < Back || Mext = | | Cancel | | Finish

Figure 1.7. Import Existing Maven Projects

5. Browse to the directory of the quickstart you plan to test, for example the helloworld
quickstart, and click OK. The Projects list box is populated with the pom.xml file of the
selected quickstart project.

25

Development Guide

Import Maven Projects

Maven Projects

Select Maven projects

Root Directory: | /home/username/jboss-eap-quickstarts/hellowerld v ||| Browse..
Projects:
¥ /pom.xml org.jboss.quickstarts.eap:jboss-helloweorld:6.3.0.GA:war Select All
Deselect All |
elect Tr
B P, “|.| =1
Refresh

| Add project(s) to working set

Waorking set More

b Advanced

@ < Back MNext > . Cancel Finish

Figure 1.8. Select Maven Projects

6. Click Finish.

Procedure 1.6. Build and Deploy the helloworld quickstart

The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that the
JBoss server is configured and running correctly.

1. If you do not see a Servers tab or have not yet defined a server, follow the instructions here:
Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server” . If you plan to deploy a
quickstart that requires the full profile or additional startup arguments, be sure to create
the server runtime environment as noted in the quickstart instructions.

2. Right-click on the jboss-helloworld projectin the Project Explorer tab and select
Run As. You are provided with a list of choices. Select Run on Server.

T jposs-hellow Q=T .Y 4

Debug As > Properties Search J OpenShift Explorer

Run As > 1 Run on Server Shift+Alt+X R

Figure 1.9. Run As - Run on Server

3. Select JBoss EAP 6.1+ Runtime Server from the server list and click Next.

26

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Run On Server
Run On Server
Select which server to use

How do you want to select the server?

© Choose an existing server

" Manually define a new server

Select the server that you want to use:

Server State

-| = localhost

5 JBoss EAP 6.1+ Runtime Server E: Stopped

|
ype filter text]

JBoss Enterprise Application Platform (EAP) 6.1+ | Columns....

" Always use this server when running this project

| 1l | | | |
® < Back MNext > Cancel Finish

Figure 1.10. Run on Server

4. The next screen displays the resources that are configured on the server. The jboss-
helloworld quickstart is configured for you. Click Finish to deploy the quickstart.

27

Development Guide

Run On Server

Add and Remove g
Modify the resources that are configured on the server

Move resources to the right to configure them on the server

Available: Configured:

(% jboss-helloworld

® < Back Cancel Finish

Figure 1.11. Modify Resources Configured on the Server

5. Review the results.

o Inthe Server tab, the JBoss EAP 6.3 Runtime Server status changes to [Started,
Republish].

o The server Console tab shows messages detailing the JBoss EAP 6.3 server start and the
helloworld quickstart deployment.

o Ahelloworld tab appears displaying the URL http://localhost:8080/jboss-
helloworld/HelloWorld and the text "Hello World!".

o The following messages in the Console confirm deployment of the jboss-
helloworld.war file:

JBAS018210: Register web context: /jboss-helloworld

JBAS018559: Deployed "jboss-helloworld.war" (runtime-name
"jboss-helloworld.war")

28

http://localhost:8080/jboss-helloworld/HelloWorld

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS
The registered web context is appended tohttp://localhost:8080 to provide the URL
used to access the deployed application.

6. To verify the helloworld quickstart deployed successfully to the JBoss server, open a web
browser and access the application at this URL: http://localhost:8080/jboss-helloworld

Procedure 1.7. Run the bean-validation quickstart Arquillian tests

Some quickstarts do not provide a user interface layer and instead provide Arquillian tests to
demonstrate the code examples. The bean-validation quickstart is an example of a quickstart that

provides Arquillian tests.

1. Follow the procedure above to import the bean-validation quickstart into Red Hat JBoss
Developer Studio.

2. If you do not see aServers tab or have not yet defined a server, follow the instructions here:
Section 1.3.1.5, “Add the JBoss EAP Server Using Define New Server”

3. Right-click on the jboss-bean-validation projectinthe Project Explorer tab and
select Run As. You are provided with a list of choices. Select Maven Build.

4. In the Goals input field of the Edit Configuration dialog, type: clean test -Parq-
jbossas-remote

Then click Run.

29

http://localhost:8080/jboss-helloworld

Development Guide

30

Edit Configuration

Edit configuration and launch. @

Mame: bean-validation
E Main = JRE} tr:ﬁh Refresh] 'Ev Sourcew % Environment} =] Qommonw
Base directory:
/home/fusernamefjboss-eap-quickstarts/bean-validation
Browse Workspace... | Browse File System... | Variables...
Goals: |clean test —Parq—jbossas—remote| Select...
Profiles:
" Offline " Update Snapshots
" Debug Qutput | Skip Tests ' Non-recursive
| Resolve Workspace artifacts
1 ¥ | Threads
-Parameter Namt Value Add...
Edit
Apply Revert
@ Close Run

Figure 1.12. Edit Configuration
5. Review the results.

The server Console tab shows messages detailing the JBoss EAP server start and the output
of the bean-validation quickstart Arquillian tests.

Running
org.jboss.as.quickstarts.bean_validation.test.MemberValidationTest
Tests run: 5, Failures: O, Errors: 0, Skipped: 0, Time elapsed:
2.189 sec

Results

Tests run: 5, Failures: O, Errors: 0, Skipped: 0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

[INFO] =ccmomomonmioiiiieieaaiaciiiiicccicsccoaconoaaaiaaaans

Report a bug

1.4.2.2. Run the Quickstarts Using a Command Line

Procedure 1.8. Build and Deploy the Quickstarts Using a Command Line

You can easily build and deploy the quickstarts using a command line. Be aware that, when using a
command line, you are responsible for starting the JBoss server if it is required.

1. If you have not yet done so, Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository
Using the Maven Settings”.

2. Review the README . html file in the root directory of the quickstarts.

This file contains general information about system requirements, how to configure Maven,
how to add users, and how to run the Quickstarts. Be sure to read through it before you get
started.

It also contains a table listing the available quickstarts. The table lists each quickstart name
and the technologies it demonstrates. It gives a brief description of each quickstart and the
level of experience required to set it up. For more detailed information about a quickstart, click
on the quickstart name.

Some quickstarts are designed to enhance or extend other quickstarts. These are noted in the
Prerequisites column. If a quickstart lists prerequisites, you must install them first before
working with the quickstart.

Some quickstarts require the installation and configuration of optional components. Do not
install these components unless the quickstart requires them.

3. Run the helloworld quickstart.

The helloworld quickstart is one of the simplest quickstarts and is a good way to verify that
the JBoss server is configured and running correctly. Open the README . html file in the root
of the helloworld quickstart. It contains detailed instructions on how to build and deploy the
quickstart and access the running application

4. Run the other quickstarts.

Follow the instructions in the README . html file located in the root folder of each quickstart to
run the example.

Report a bug

1.4.3. Review the Quickstart Tutorials

1.4.3.1. Explore the helloworld Quickstart

Summary

31

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+27008-712998+%5BLatest%5D&comment=Title%3A+Run+the+Quickstarts+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=27008-712998+25+Sep+2014+23%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+7307-644728+%5BLatest%5D&comment=Title%3A+Run+the+Quickstarts+Using+a+Command+Line%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7307-644728+28+May+2014+03%3A26+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

The helloworld quickstart shows you how to deploy a simple Servlet to JBoss EAP 6. The business
logic is encapsulated in a service which is provided as a CDI (Contexts and Dependency Injection) bean
and injected into the Servlet. This quickstart is very simple. All it does is print "Hello World" onto a web
page. It is a good starting point to be sure you have configured and started your server properly.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README.html file at the root of the helloworld quickstart directory. Here we show you how to use
Red Hat JBoss Developer Studio to run the quickstart. This topic assumes you have installed Red Hat
JBoss Developer Studio, configured Maven, and imported and successfully run the helloworld
quickstart.

Prerequisites

e |Install Red Hat JBoss Developer Studio following the procedure here: Section 1.3.1.3, “Install
Red Hat JBoss Developer Studio 7.1”.

e Configure Maven for use with Red Hat JBoss Developer Studio following the procedure here:
Section 2.3.3, “Configure Maven for Use with Red Hat JBoss Developer Studio” .

e Follow the procedures here to import, build, and deploy the helloworld quickstart in Red Hat
JBoss Developer Studio: Section 1.4.2.1, “Run the Quickstarts in Red Hat JBoss Developer
Studio”

o Verify the helloworld quickstart was deployed successfully to JBoss EAP by opening a web
browser and accessing the application at this URL: http://localhost:8080/jboss-helloworld
Procedure 1.9. Examine the Directory Structure

The code for the hellowor1ld quickstart can be found in the QUICKSTART_HOME/helloworld
directory. The helloworld quickstart is comprised a Servlet and a CDI bean. It also includes an empty
beans.xml file which tells JBoss EAP 6 to look for beans in this application and to activate the CDI.

1. The beans. xml file is located in the WEB-INF/ folder in the src/main/webapp/ directory of
the quickstart.

2. The src/main/webapp/ directory also includes an index.html file which uses a simple
meta refresh to redirect the user's browser to the Servlet, which is located at
http://localhost:8080/jboss-helloworld/HelloWorld.

3. All the configuration files for this example are located in WEB-INF/, which can be found in the
src/main/webapp/ directory of the example.

4. Notice that the quickstart doesn't even need a web . xm1 file!

Procedure 1.10. Examine the Code

The package declaration and imports have been excluded from these listings. The complete listing is
available in the quickstart source code.

1. Review the HelloWorldServlet code
The HelloWorldServlet. java file is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This Servlet
sends the information to the browser.

I 42. @SuppressWarnings('"serial")

32

http://localhost:8080/jboss-helloworld
http://localhost:8080/jboss-helloworld/HelloWorld

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

43. (@WebServlet("/HellowWorld")
44, public class HelloWorldServlet extends HttpServlet {

45,

46. static String PAGE_HEADER = '"<html><head>
<title>helloworld</title></head><body>";

47 .

48. static String PAGE_FOOTER = "</body></html>";
49,

50. @Inject

51. HelloService helloService;

52.

53. @Ooverride

54, protected void doGet(HttpServletRequest req,
HttpServletResponse resp) throws ServletException, IOException {
55. resp.setContentType("text/html");

56. PrintWriter writer = resp.getWriter();
57. writer.println(PAGE_HEADER);

58. writer.println("<hi1>" +
helloService.createHelloMessage("World") + "</h1>");
59. writer.println(PAGE_FOOTER);

60. writer.close();

61. 3}

62.

63. }

Table 1.1. HelloWorldServlet Details

43 Before Java EE 6, an XML file was used to register Servlets. It is now much cleaner. All
you need to do is add the @WebServlet annotation and provide a mapping to a URL
used to access the servlet.

46-48 Every web page needs correctly formed HTML. This quickstart uses static Strings to write
the minimum header and footer output.

50-51 These lines inject the HelloService CDI bean which generates the actual message. As long
as we don't alter the API of HelloService, this approach allows us to alter the
implementation of HelloService at a later date without changing the view layer.

58 This line calls into the service to generate the message "Hello World", and write it out to
the HTTP request.

2. Review the HelloService code
The HelloService. javafile is located in the
src/main/java/org/jboss/as/quickstarts/helloworld/ directory. This service is
very simple. It returns a message. No XML or annotation registration is required.

public class HelloService {

String createHelloMessage(String name) {

33

Development Guide

return "Hello " + name + "!";

Report a bug

1.4.3.2. Explore the numberguess Quickstart

Summary

This quickstart shows you how to create and deploy a simple application to JBoss EAP 6. This
application does not persist any information. Information is displayed using a JSF view, and business
logic is encapsulated in two CDI (Contexts and Dependency Injection) beans. In the numberguess
quickstart, you get 10 attempts to guess a number between 1 and 100. After each attempt, you're told
whether your guess was too high or too low.

The code for the numberguess quickstart can be found in the QUICKSTART_HOME/numberguess
directory. The numberguess quickstart is comprised of a number of beans, configuration files and
Facelets (JSF) views, packaged as a WAR module.

Detailed instructions to build and deploy this quickstart using a command line can be found in the
README.html file at the root of the numberguess quickstart directory. Here we show you how to use
Red Hat JBoss Developer Studio to run the quickstart. This topic assumes you have installed Red Hat
JBoss Developer Studio, configured Maven, and imported and successfully run the numberguess
quickstart.

Prerequisites

e |Install Red Hat JBoss Developer Studio following the procedure here: Section 1.3.1.3, “Install
Red Hat JBoss Developer Studio 7.1”.

e Configure Maven for use with Red Hat JBoss Developer Studio following the procedure here:
Section 2.3.3, “Configure Maven for Use with Red Hat JBoss Developer Studio” .

e Follow the procedures here to import, build, and deploy the numberguess quickstart in Red
Hat JBoss Developer Studio: Section 1.4.2.1, “Run the Quickstarts in Red Hat JBoss Developer
Studio”

e Verify the numberguess quickstart was deployed successfully to JBoss EAP by opening a web
browser and accessing the application at this URL: http://localhost:8080/jboss-numberguess

Procedure 1.11. Examine the Configuration Files

All the configuration files for this example are located in WEB-INF/ directory which can be found in the
src/main/webapp/ directory of the quickstart.

1. Examine the faces-config.xml file.

This quickstart uses the JSF 2.0 version of faces-config.xml filename. A standardized
version of Facelets is the default view handler in JSF 2.0, so there's really nothing that you
have to configure. JBoss EAP 6 goes above and beyond Java EE here. It will automatically
configure the JSF for you if you include this configuration file. As a result, the configuration
consists of only the root element:

19. <faces-config version="2.0"
20. xmlns="http://java.sun.com/xml/ns/javaee"

34

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+7881-681224+%5BLatest%5D&comment=Title%3A+Explore+the+helloworld+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7881-681224+04+Jul+2014+00%3A08+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://localhost:8080/jboss-numberguess

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

21. xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
22. xsi:schemaLocation="

23. http://java.sun.com/xml/ns/javaee>

24. http://java.sun.com/xml/ns/javaee/web-
facesconfig_2_0.xsd">

25.

26. </faces-config>

2. Examine the beans.xml file.

There's also an empty beans . xml file, which tells JBoss EAP 6 to look for beans in this
application and to activate the CDI.

3. Thereis noweb . xml file

Notice that the quickstart doesn't even need a web . xm1l file!

Procedure 1.12. Examine the JSF Code

JSF uses the . xhtml file extension for source files, but serves up the rendered views with the .jsf
extension.

e Examine the home.xhtml code.

The home . xhtml file is located in the src/main/webapp/ directory.

19. <html xmlns="http://www.w3.0rg/1999/xhtml"

20. xmlns:ui="http://java.sun.com/jsf/facelets"

21. xmlns:h="http://java.sun.com/jsf/html"

22. xmlns:f="http://java.sun.com/jsf/core">

23.

24. <head>

25. <meta http-equiv="Content-Type" content="text/html; charset=iso-
8859-1" />

26. <title>Numberguess</title>

27. </head>

28.

29. <body>

30. <div id="content">

31. <h1>Guess a number...</hi1>

32. <h:form id="numberGuess">

33.

34. <!-- Feedback for the user on their guess -->
35. <div style="color: red">

36. <h:messages id="messages" globalOnly="false" />
37. <h:outputText id="Higher" value="Higher!"
38. rendered="#{game.number gt game.guess and
game.guess ne 0}" />

39. <h:outputText id="Lower" value="Lower!"

40. rendered="#{game.number 1t game.guess and
game.guess ne 0}" />

41, </div>

42

43. <!-- Instructions for the user -->

44, <div>

35

Development Guide

45. I'm thinking of a number between <span

46. id="numberGuess:smallest">#
{game.smallest} and <span

47. id="numberGuess:biggest">#{game.biggest}.
You have

48. #{game.remainingGuesses} guesses remaining.

49, </div>

50.

51. <!-- Input box for the users guess, plus a button to
submit, and reset -->

52. <!-- These are bound using EL to our CDI beans -->
53. <div>

54, Your guess:

55. <h:inputText id="inputGuess" value="#{game.guess}"
56. required="true" size="3"

57. disabled="#{game.number eq game.guess}"

58. validator="#{game.validateNumberRange}" />

59. <h:commandButton id="guessButton" value="Guess"
60. action="#{game.check}"

61. disabled="#{game.number eq game.guess}" />

62. </div>

63. <div>

64. <h:commandButton id="restartButton" value="Reset"
65. action="#{game.reset}" immediate="true" />

66. </div>

67. </h:form>

68.

69. </div>

70.

71. <br style='"clear: both" />

72.

73. </body>

74. </html>

Table 1.2. JSF Details

36-40 These are the messages which can be sent to the user: "Higher!" and "Lower!"

45-48 As the user guesses, the range of numbers they can guess gets smaller. This sentence

changes to make sure they know the number range of a valid guess.

55-58 This input field is bound to a bean property using a value expression.

58 A validator binding is used to make sure the user does not accidentally input a number

outside of the range in which they can guess. If the validator was not here, the user might
use up a guess on an out of bounds number.

59-61 There must be a way for the user to send their guess to the server. Here we bind to an

action method on the bean.

Procedure 1.13. Examine the Class Files

36

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

All of the numberguess quickstart source files can be found in the
src/main/java/org/jboss/as/quickstarts/numberguess/ directory. The package
declaration and imports have been excluded from these listings. The complete listing is available in the
quickstart source code.

1. Review the Random. java qualifier code.

A qualifier is used to remove ambiquity between two beans, both of which are eligible for
injection based on their type. For more information on qualifiers, refer to Section 10.2.3.3, “Use
a Qualifier to Resolve an Ambiguous Injection”

The @Random qualifier is used for injecting a random number.

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)

@Documented

@Qualifier

public @interface Random {

}

2. Review the MaxNumber . java qualifier code.

The @MaxNumberqualifier is used for injecting the maximum number allowed.

@Target({ TYPE, METHOD, PARAMETER, FIELD })
@Retention(RUNTIME)

@Documented

@Qualifier

public @interface MaxNumber {

}

3. Review the Generator. java code.

The Generator class is responsible for creating the random number via a producer method. It
also exposes the maximum possible number via a producer method. This class is application
scoped so you don't get a different random each time.

@SuppressWarnings("serial")
@ApplicationScoped
public class Generator implements Serializable {

private java.util.Random random = new
java.util.Random(System.currentTimeMillis());

private int maxNumber = 100;

java.util.Random getRandom() {
return random;

}

@Produces
@Random
int next() {

37

Development Guide

// a number between 1 and 100
return getRandom().nextInt(maxNumber - 1) + 1;

}

@Produces

@MaxNumber

int getMaxNumber() {
return maxNumber;

}

4. Review the Game. java code.

The session scoped class Game is the primary entry point of the application. It is responsible for
setting up or resetting the game, capturing and validating the user's quess, and providing
feedback to the user with a FacesMessage. It uses the post-construct lifecycle method to
initialize the game by retrieving a random number from the @Random Instance<Integer>
bean.

Notice the @Named annotation in the class. This annotation is only required when you want to
make the bean accessible to a JSF view via Expression Language (EL), in this case #{game}.

@SuppresswWarnings('"serial")

@Named

@SessionScoped

public class Game implements Serializable {

/**
* The number that the user needs to guess
*/

private int number;

/**
* The users latest guess
*/

private int guess;

/**
* The smallest number guessed so far (so we can track the valid
guess range).
*/
private int smallest;

/**
* The largest number guessed so far
*/

private int biggest;

/**
* The number of guesses remaining
*/

private int remainingGuesses;

/**

* The maximum number we should ask them to guess
*/

38

@Inject
@MaxNumber

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

private int maxNumber;

/**

* The random number to guess

*/
@Inject
@Random

Instance<Integer> randomNumber;

public Game() {

}

public int
return

}

public int
return

}

getNumber() {
number;

getGuess() {
guess;

public void setGuess(int guess) {
this.guess = guess;

}

public int
return

}

public int
return

}

public int
return

}

/**

* Check whether the current guess 1s correct, and update the
biggest/smallest guesses as needed. Give feedback to the user

getSmallest() {
smallest;

getBiggest() {
biggest;

getRemainingGuesses() {
remainingGuesses;

* if they are correct.

*/

public void check() {
if (guess > number) {
biggest = guess - 1;
} else if (guess < number) {
smallest = guess + 1;
} else if (guess == number) {

FacesContext.getCurrentInstance().addMessage(null, new
FacesMessage("Correct!"));

}

remainingGuesses--;

/**

39

Development Guide

* Reset the game, by putting all values back to their defaults,
and getting a new random number. We also call this method
* when the user starts playing for the first time using
{@linkplain PostConstruct @PostConstruct} to set the initial
* values.
*/
@PostConstruct
public void reset() {
this.smallest = 0;
this.guess = 0;
this.remainingGuesses = 10;
this.biggest = maxNumber;
this.number = randomNumber.get();

}

/**
* A JSF validation method which checks whether the guess is
valid. It might not be valid because there are no guesses left,
* or because the guess is not in range.
*
*/
public void validateNumberRange(FacesContext context,
UIComponent toValidate, Object value) {
if (remainingGuesses <= 0) {
FacesMessage message = new FacesMessage("No guesses

left!");
context.addMessage(tovValidate.getClientId(context),
message);
((UIInput) tovalidate).setValid(false);
return;
}

int input = (Integer) value;

if (input < smallest || input > biggest) {
((UIInput) tovalidate).setValid(false);

FacesMessage message = new FacesMessage("Invalid
guess");

context.addMessage(toValidate.getClientId(context),
message);

}
}

Report a bug

1.4.4. Replace the Default Welcome Web Application

JBoss EAP 6 includes a Welcome application, which displays when you open the URL of the server at
port 8080. You can replace this application with your own web application by following this procedure.

Procedure 1.14. Replace the Default Welcome Web Application With Your Own Web Application

1. Disable the Welcome application.

40

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+8023-681225+%5BLatest%5D&comment=Title%3A+Explore+the+numberguess+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8023-681225+04+Jul+2014+00%3A11+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 1. GET STARTED DEVELOPING APPLICATIONS

Use the Management CLI script EAP_HOME/bin/jboss-cli.sh to run the following
command. You may need to change the profile to modify a different managed domain profile,
or remove the /profile=default portion of the command for a standalone server.

/profile=default/subsystem=web/virtual-server=default-host:write-
attribute(name=enable-welcome-root, value=false)

. Configure your Web application to use the root context.

To configure your web application to use the root context (/) as its URL address, modify its
jboss-web.xml, which is located in the META-INF/ or WEB-INF/ directory. Replace its
<context-root> directive with one that looks like the following.

<jboss-web>
<context-root>/</context-root>
</jboss-web>

. Deploy your application.
Deploy your application to the server group or server you modified in the first step. The
application is now available on http://SERVER_URL : PORT/.

Report a bug

41

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+9017-591860+%5BLatest%5D&comment=Title%3A+Replace+the+Default+Welcome+Web+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9017-591860+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

CHAPTER 2. MAVEN GUIDE

2.1.LEARN ABOUT MAVEN

2.1.1. About the Maven Repository

Apache Maven is a distributed build automation tool used in Java application development to create,
manage, and build software projects. Maven uses standard configuration files called Project Object
Model, or POM, files to define projects and manage the build process. POMs describe the module and
component dependencies, build order, and targets for the resulting project packaging and output using
an XML file. This ensures that the project is built in a correct and uniform manner.

Maven achieves this by using a repository. A Maven repository stores Java libraries, plug-ins, and
other build artifacts. The default public repository is the Maven 2 Central Repository , but repositories
can be private and internal within a company with a goal to share common artifacts among
development teams. Repositories are also available from third-parties. JBoss EAP 6 includes a Maven
repository that contains many of the requirements that Java EE developers typically use to build
applications on JBoss EAP 6. To configure your project to use this repository, see Section 2.3.1,
“Configure the JBoss EAP Maven 6 Repository”.

Remote repositories are accessed using common protocols such as http:// for a repository on an
HTTP server or file:// for arepository on a file server.

For more information about Maven, see Welcome to Apache Maven.

For more information about Maven repositories, see Apache Maven Project - Introduction to
Repositories.

For more information about Maven POM files, see the Apache Maven Project POM Reference and
Section 2.1.2, “About the Maven POM File” .

Report a bug

2.1.2. About the Maven POM File

The Project Object Model, or POM, file is a configuration file used by Maven to build projects. It is an
XML file that contains information about the project and how to build it, including the location of the
source, test, and target directories, the project dependencies, plug-in repositories, and goals it can
execute. It can also include additional details about the project including the version, description,
developers, mailing list, license, and more. A pom. xml file requires some configuration options and will
default all others. See Section 2.1.3, “Minimum Requirements of a Maven POM File” for details.

The schema for the pom. xml file can be found at http://maven.apache.org/maven-v4_0_0.xsd.
For more information about POM files, see the Apache Maven Project POM Reference.

Report a bug

2.1.3. Minimum Requirements of a Maven POM File

Minimum requirements

The minimum requirements of a pom. xml file are as follows:

e project root

42

http://search.maven.org/#browse
http://maven.apache.org/
http://maven.apache.org/guides/introduction/introduction-to-repositories.html
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+1841-591649+%5BLatest%5D&comment=Title%3A+About+the+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=1841-591649+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://maven.apache.org/maven-v4_0_0.xsd
http://maven.apache.org/pom.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5721-591710+%5BLatest%5D&comment=Title%3A+About+the+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5721-591710+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 2. MAVEN GUIDE

e modelVersion

e groupld - the id of the project's group

e artifactld - the id of the artifact (project)

e version - the version of the artifact under the specified group

Sample pom.xml file

A basic pom. xml file might look like this:

<project>
<modelVersion>4.0.0</modelVersion>
<groupId>com.jboss.app</groupIld>
<artifactId>my-app</artifactId>
<version>1</version>

</project>

Report a bug

2.1.4. About the Maven Settings File

The Maven settings.xml file contains user-specific configuration information for Maven. It contains
information that should not be distributed with the pom. xm1l file, such as developer identity, proxy
information, local repository location, and other settings specific to a user.

There are two locations where the settings.xml can be found.

In the Maven install

The settings file can be found in the M2_HOME/conf/ directory. These settings are referred to as
global settings. The default Maven settings file is a template that can be copied and used as a
starting point for the user settings file.

In the user's install

The settings file can be found in the USER_HOME/ .m2/ directory. If both the Maven and user
settings.xml files exist, the contents are merged. Where there are overlaps, the user's
settings.xml file takes precedence.

The following is an example of a Maven settings. xml file:

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
http://maven.apache.org/xsd/settings-1.0.0.xsd">
<profiles>
<!-- Configure the JBoss EAP Maven repository -->
<profile>
<id>jboss-eap-maven-repository</id>
<repositories>
<repository>
<id>jboss-eap</id>
<url>file:///path/to/repo/jboss-eap-6.3-maven-repository</url>

43

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5723-591711+%5BLatest%5D&comment=Title%3A+Minimum+Requirements+of+a+Maven+POM+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5723-591711+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-eap-maven-plugin-repository</id>
<url>file:///path/to/repo/jboss-eap-6.3-maven-repository</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
</profiles>
<activeProfiles>
<!-- Optionally, make the repository active by default -->
<activeProfile>jboss-eap-maven-repository</activeProfile>
</activeProfiles>
</settings>

The schema for the settings.xml file can be found at http://maven.apache.org/xsd/settings-
1.0.0.xsd.

Report a bug

2.2. INSTALL MAVEN AND THE JBOSS MAVEN REPOSITORY

2.2.1. Download and Install Maven

If you plan to use Maven command line to build and deploy your applications to JBoss EAP, you must
download and install Maven. If you plan to use Red Hat JBoss Developer Studio to build and deploy
your applications, you can skip this procedure as Maven is distributed with Red Hat JBoss Developer
Studio.

1. Goto Apache Maven Project - Download Maven and download the latest distribution for your
operating system.

2. See the Maven documentation for information on how to download and install Apache Maven
for your operating system.

Report a bug

2.2.2. Install the JBoss EAP 6 Maven Repository

There are three ways to install the repository; on your local file system, on Apache Web Server, or with
a Maven repository manager.

44

http://maven.apache.org/xsd/settings-1.0.0.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5756-606642+%5BLatest%5D&comment=Title%3A+About+the+Maven+Settings+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5756-606642+27+Feb+2014+14%3A01+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://maven.apache.org/download.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+8896-681226+%5BLatest%5D&comment=Title%3A+Download+and+Install+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8896-681226+04+Jul+2014+00%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 2. MAVEN GUIDE

e Section 2.2.3, “Install the JBoss EAP 6 Maven Repository Locally”
e Section 2.2.4, “Install the JBoss EAP 6 Maven Repository for Use with Apache httpd”

e Section 2.2.5, “Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager”

Report a bug

2.2.3. Install the JBoss EAP 6 Maven Repository Locally

Summary

The JBoss EAP 6.3 Maven repository is available online, so it is not necessary to download and install it
locally. However, if you prefer to install the JBoss EAP Maven repository locally, there are three ways
to do it: on your local file system, on Apache Web Server, or with a Maven repository manager. This
example covers the steps to download the JBoss EAP 6 Maven Repository to the local file system. This
option is easy to configure and allows you to get up and running quickly on your local machine. It can
help you become familiar with using Maven for development but is not recommended for team
production environments.

Procedure 2.1. Download and Install the JBoss EAP 6 Maven Repository to the Local File System

1. Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.htmi?product=appplatform.

2. Find "Red Hat JBoss Enterprise Application Platform 6.3.0 Maven Repository" in the list.
3. Click the Download button to download a . zip file containing the repository.

4. Unzip the file on the local file system into a directory of your choosing.

5. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

This creates a Maven repository directory called jboss-eap-6.3.0.GA-maven-repository.

IMPORTANT

If you want to continue to use an older local repository, you must configure it separately
in the Maven settings.xml configuration file. Each local repository must be
configured within its own <repository> tag.

IMPORTANT

When downloading a new Maven repository, remove the cached repository/
subdirectory located under the .m2/directory before attempting to use the new Maven
repository.

Report a bug

2.2.4. Install the JBoss EAP 6 Maven Repository for Use with Apache httpd

There are three ways to install the repository; on your local file system, on Apache Web Server, or with

45

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+8321-591831+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8321-591831+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5707-699776+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Locally%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5707-699776+18+Aug+2014+22%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

a Maven repository manager. This example will cover the steps to download the JBoss EAP 6 Maven
Repository for use with Apache httpd. This option is good for multi-user and cross-team development
environments because any developer that can access the web server can also access the Maven
repository.

Prerequisites

You must configure Apache httpd. See Apache HTTP Server Project documentation for instructions.

Procedure 2.2. Download the JBoss EAP 6 Maven Repository ZIP archive

1.

5.

6.

Result

Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

. Find "Red Hat JBoss Enterprise Application Platform 6.3.0 Maven Repository" in the list.
. Click the Download button to download a . zip file containing the repository.

. Unzip the files in a directory that is web accessible on the Apache server.

Configure Apache to allow read access and directory browsing in the created directory.

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

This allows a multi-user environment to access the Maven repository on Apache httpd.

NOTE

If you're upgrading from a previous version of the repository, note that JBoss EAP
Maven Repository artifacts can be simply extracted into an existing JBoss product
Maven repository (such as JBoss EAP 6.1.0) without any conflicts. After the repository
archive has been extracted, the artifacts can be used with the existing Maven settings
for this repository.

Report a bug

2.2.5. Install the JBoss EAP 6 Maven Repository Using Nexus Maven Repository
Manager

There are three ways to install the repository; on your local file system, on Apache Web Server, or with
a Maven repository manager. This option is best if you have a licenses and already use a repository
manager because you can host the JBoss repository alongside your existing repositories. For more
information about Maven repository managers, see Section 2.2.6, “About Maven Repository
Managers”.

This example will cover the steps to install the JBoss EAP 6 Maven Repository using Sonatype Nexus
Maven Repository Manager. For more complete instructions, see Sonatype Nexus: Manage Artifacts.

Procedure 2.3. Download the JBoss EAP 6 Maven Repository ZIP archive

1.

2.

46

Open a web browser and access this URL:
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform.

Find "Red Hat JBoss Enterprise Application Platform 6.3.0 Maven Repository" in the list.

http://httpd.apache.org/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5722-606675+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+for+Use+with+Apache+httpd%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5722-606675+27+Feb+2014+16%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://www.sonatype.org/nexus/
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?product=appplatform

CHAPTER 2. MAVEN GUIDE

3. Click the Download button to download a .zip file containing the repository.

4. Unzip the files into a directory of your choosing on the server hosting Nexus.

Procedure 2.4. Add the JBoss EAP 6 Maven Repository using Nexus Maven Repository Manager

1. Loginto Nexus as an Administrator.

2. Select the Repositories section from the Views — Repositories menu to the left of your
repository manager.

3. Click the Add. . . dropdown, then select Hosted Repository.
4. Give the new repository a name and ID.

5. Enter the path on disk to the unzipped repository in the field Override Local Storage
Location.

6. Continue if you want the artifact to be available in a repository group. Do not continue with this
procedure if this is not what you want.

7. Select the repository group.
8. Click on the Configure tab.

9. Dragthe new JBoss Maven repository from the Available Repositories list tothe
Ordered Group Repositorieslist on the left.

NOTE

Note that the order of this list determines the priority for searching Maven
artifacts.

10. Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

Result

The repository is configured using Nexus Maven Repository Manager.

Report a bug

2.2.6. About Maven Repository Managers

A repository manager is a tool that allows you to easily manage Maven repositories. Repository
managers are useful in multiple ways:

e They provide the ability to configure proxies between your organization and remote Maven
repositories. This provides a number of benefits, including faster and more efficient
deployments and a better level of control over what is downloaded by Maven.

e They provide deployment destinations for your own generated artifacts, allowing collaboration
between different development teams across an organization.

For more information about Maven repository managers, see Apache Maven Project - The List of
Repository Managers.

47

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+7827-675494+%5BLatest%5D&comment=Title%3A+Install+the+JBoss+EAP+6+Maven+Repository+Using+Nexus+Maven+Repository+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=7827-675494+24+Jun+2014+04%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://maven.apache.org/repository-management.html

Development Guide

Commonly used Maven repository managers
Sonatype Nexus

See Sonatype Nexus: Manage Artifacts for more information about Nexus.

Artifactory

See Artifactory Open Source for more information about Artifactory.

Apache Archiva

See Apache Archiva: The Build Artifact Repository Manager for more information about Apache
Archiva.

Report a bug

2.3. USE THE MAVEN REPOSITORY

2.3.1. Configure the JBoss EAP Maven 6 Repository

Overview

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:
e You can configure the repositories in the Maven global or user settings.

e You can configure the repositories in the project's POM file.

Procedure 2.5. Configure Maven Settings to Use the JBoss EAP 6 Maven Repository

1. Configure the Maven repository using Maven settings
This is the recommended approach. Maven settings used with a repository manager or
repository on a shared server provide better control and manageability of projects. Settings
also provide the ability to use an alternative mirror to redirect all lookup requests for a specific
repository to your repository manager without changing the project files. For more information
about mirrors, see http://maven.apache.org/guides/mini/qguide-mirror-settings.htmil.

This method of configuration applies across all Maven projects, as long as the project POM file
does not contain repository configuration.

Section 2.3.2, “Configure the JBoss EAP 6 Maven Repository Using the Maven Settings” .

2. Configure the Maven repository using the project POM
This method of configuration is generally not recommended. If you decide to configure
repositories in your project POM file, plan carefully and be aware that it can slow down your
build and you may even end up with artifacts that are not from the expected repository.

48

http://www.sonatype.org/nexus/
http://www.jfrog.com/products.php
http://archiva.apache.org/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+8765-591847+%5BLatest%5D&comment=Title%3A+About+Maven+Repository+Managers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8765-591847+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://maven.apache.org/guides/mini/guide-mirror-settings.html

CHAPTER 2. MAVEN GUIDE

NOTE

In an Enterprise environment, where a repository manager is usually used,
Maven should query all artifacts for all projects using this manager. Because
Maven uses all declared repositories to find missing artifacts, if it can't find what
it's looking for, it will try and look for it in the repository central (defined in the
built-in parent POM). To override this central location, you can add a definition
with central so that the default repository central is now your repository
manager as well. This works well for established projects, but for clean or 'new’
projects it causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration.
Maven has to query these external repositories for missing artifacts. This not
only slows down your build, it also causes you to lose control over where your
artifacts are coming from and likely to cause broken builds.

This method of configuration overrides the global and user Maven settings for the configured
project.

Section 2.3.4, “Configure the JBoss EAP 6 Maven Repository Using the Project POM” .

Report a bug

2.3.2. Configure the JBoss EAP 6 Maven Repository Using the Maven Settings
There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

e You can modify the Maven settings. This directs Maven to use the configuration across all
projects.

e You can configure the project's POM file. This limits the configuration to the specific project.

This topic shows you how to direct Maven to use the JBoss EAP 6 Maven Repository across all projects
using the Maven settings. This is the recommended approach.

You can configure Maven to use either the online or a locally installed JBoss EAP 6 repository. If you
choose to use the online repository, you can use a preconfigured settings file or add the JBoss EAP 6
Maven profiles to the existing settings file. To use a local repository, you must download the repository
and configure the settings to point to your locally installed repository. The following procedures
describe how to configure Maven for JBoss EAP 6.

49

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+8418-591838+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+Maven+6+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8418-591838+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, see

Section 2.2.2, “Install the JBoss EAP 6 Maven Repository” . The following are examples
for each of the installation options:

File System
file:///path/to/repo/jboss-eap-6.x-maven-repository
Apache Web Server
http://intranet.acme.com/jboss-eap-6.x-maven-repository/
Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-
repository

You can configure Maven using either the Maven install global settings or the user install
settings. These instructions configure the user install settings as this is the most
common configuration.

Procedure 2.6. Configure Maven Using the Settings Shipped with the Quickstart Examples

The JBoss EAP 6 Quickstarts ship with a settings.xml file that is configured to use the online JBoss
EAP 6 Maven repository. This is the simplest approach.

1. This procedure overwrites the existing Maven settings file, so you must back up the existing
Maven settings.xml file.

a. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/ .m2/ directory.

m For Linux or Mac, thisis: ~/.m2/

m For Windows, this is: \Documents and Settings\USER_NAME\ .m2\ or
\Users\USER_NAME\ .m2\

b. If you have an existing USER_HOME/ .m2/settings.xml file, rename it or make a backup
copy so you can restore it later.

2. Download and unzip the quickstart examples that ship with JBoss EAP 6. For more
information, see Section 1.4.1.1, “Access the Quickstarts”

3. Copy the QUICKSTART_HOME/settings.xml file to the USER_HOME/ .m2/ directory.

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow
the procedure below entitled Refresh the Red Hat JBoss Developer Studio User Settings

Procedure 2.7. Manually Edit and Configure the Maven Settings To Use the Online JBoss EAP 6
Maven Repository

You can manually add the JBoss EAP 6 profiles to an existing Maven settings file.

1. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/ .m2/ directory.

50

CHAPTER 2. MAVEN GUIDE

o For Linux or Mac, thisis~/.m2/

o For Windows, this is \Documents and Settings\USER_NAME\ .m2\ or
\Users\USER_NAME\ .m2\

. Ifyou do not find a settings.xml file, copy the settings.xml file from the
USER_HOME/ .m2/conf/ directory into the USER_HOME/ .m2/ directory.

. Copy the following XML into the <profiles> element of the file.

<!-- Configure the JBoss GA Maven repository -->
<profile>
<id>jboss-ga-repository</id>
<repositories>
<repository>
<id>jboss-ga-repository</id>
<url>http://maven.repository.redhat.com/techpreview/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-ga-plugin-repository</id>
<url>http://maven.repository.redhat.com/techpreview/all</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>
<!-- Configure the JBoss Early Access Maven repository -->
<profile>
<id>jboss-earlyaccess-repository</id>
<repositories>
<repository>
<id>jboss-earlyaccess-repository</id>
<url>http://maven.repository.redhat.com/earlyaccess/all/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
<pluginRepositories>
<pluginRepository>
<id>jboss-earlyaccess-plugin-repository</id>

51

Development Guide

<url>http://maven.repository.redhat.com/earlyaccess/all/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>false</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>

Copy the following XML into the <activeProfiles> element of the settings.xml file.

<activeProfile>jboss-ga-repository</activeProfile>
<activeProfile>jboss-earlyaccess-repository</activeProfile>

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow
the procedure below entitled Refresh the Red Hat JBoss Developer Studio User Settings

Procedure 2.8. Configure the Settings to Use a Locally Installed JBoss EAP Repository

You can modify the settings to use the JBoss EAP 6 repository installed on the local file system.

1. Locate the Maven install directory for your operating system. It is usually installed in
USER_HOME/ .m2/ directory.

o For Linux or Mac, thisis~/.m2/

o For Windows, this is \Documents and Settings\USER_NAME\ .m2\ or
\Users\USER_NAME\ .m2\

2. If you do not find a settings.xml file, copy the settings.xml file from the
USER_HOME/ .m2/conf/ directory into the USER_HOME/ .m2/ directory.

3. Copy the following XML into the <profiles> element of the settings.xml file. Be sure to
change the <url> to the actual repository location.

<profile>
<id>jboss-eap-repository</id>
<repositories>
<repository>
<id>jboss-eap-repository</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.x-maven-repository</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>

52

CHAPTER 2. MAVEN GUIDE

<pluginRepositories>
<pluginRepository>
<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>
file:///path/to/repo/jboss-eap-6.x-maven-repository
</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>false</enabled>
<updatePolicy>never</updatePolicy>
</snapshots>
</pluginRepository>
</pluginRepositories>
</profile>

Copy the following XML into the <activeProfiles> element of the settings.xml file.
I <activeProfile>jboss-eap-repository</activeProfile>

4. If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, follow
the procedure below entitled Refresh the Red Hat JBoss Developer Studio User Settings

Procedure 2.9. Refresh the Red Hat JBoss Developer Studio User Settings

If you modify the settings.xml file while Red Hat JBoss Developer Studio is running, you must
refresh the user settings.

1. From the menu, choose Window — Preferences.
2. Inthe Preferences Window, expand Maven and choose User Settings.

3. Click the Update Settings button to refresh the Maven user settings in Red Hat JBoss
Developer Studio.

53

Development Guide

* He

Ins

] - % v v v

General

P
P Ant

I Data Management
I* Forge
FreeMarker Editor

HQL editor

Java

Java EE

Java Persistence
Javascript

JBoss Tools
Maven

P Plug-in Developme

Ip

tall/Update =

Archetypes
Discovery
Installations
Templates
User Interface

WTP integration

(<l

m ol |}|_

@

User Settings:

[,I'hDme,l'USEmamef.mzfsettings.xml] IB"DWEE---

|. Update Settings |

Local Repository (From merged user and global settings):

[,I'humefusemamef.mﬂrepnsitory H Reindex |
| Restore Defaults | | Apply |
|_ Cancel] | 0] 4 |

Figure 2.1. Update Maven User Settings

Report a bug

54

IMPORTANT

If your Maven repository contains outdated artifacts, you may encounter one of the
following Maven error messages when you build or deploy your project:

e Missing artifact ARTIFACT_NAME

e [ERROR] Failed to execute goal on project PROJECT_NAME; Could not resolve
dependencies for PROJECT_NAME

To resolve the issue, delete the cached version of your local repository to force a
download of the latest Maven artifacts. The cached repository is located in your
~/.m2/repository/ subdirectory on Linux, or the

%SystemDrive%\User sS\USERNAME\ .m2\repository\ subdirectory on Windows.

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5709-681227+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Maven+Settings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5709-681227+04+Jul+2014+00%3A18+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 2. MAVEN GUI

2.3.3. Configure Maven for Use with Red Hat JBoss Developer Studio

The artifacts and dependencies needed to build and deploy applications to Red Hat JBoss Enterprise
Application Platform are hosted on a public repository. You must direct Maven to use this repository
when you build your applications. This topic covers the steps to configure Maven if you plan to build
and deploy application using Red Hat JBoss Developer Studio.

DE

Maven is distributed with Red Hat JBoss Developer Studio, so it is not necessary to install it separately.

However, you must configure Maven for use by the Java EE Web Project wizard for deployments to
JBoss EAP. The procedure below demonstrates how to configure Maven for use with JBoss EAP by
editing the Maven configuration file from within Red Hat JBoss Developer Studio.

Procedure 2.10. Configure Maven in Red Hat JBoss Developer Studio

1. Click Window—Preferences, expand JBoss Tools and select JBoss Maven Integration.

JBoss Mawven Integration & v e -

When importing Maven projects configure the following:
& Seam
¥ Seam Runtime
¥ Seam Artifacts (view folder, model source folder, package " |
w JBoss Portlet Core facet
¥ JBoss JSF Portlet facet
¥ JBoss Seam Portlet facet
& CDI facet

¥ Hibernate

‘. Configure Maven Repositories...

Figure 2.2. JBoss Maven Integration Pane in the Preferences Window
2. Click Configure Maven Repositories.

3. Click Add Repository to configure the JBoss GA Tech Preview Maven repository. Complete
the Add Maven Repository dialog as follows:

a. SettheProfile ID,Repository ID,and Repository Name valuesto jboss-ga-
repository.

b. Setthe Repository URL value to
http://maven.repository.redhat.com/techpreview/all.

c. Click the Active by default checkbox to enable the Maven repository.

d. Click OK

55

Development Guide

Add Maven Repository
Add Maven Repository ~—"—L‘
Frofile

Profile ID: |ip055-ga-repository v | ¥ Active by default

Repository
ID: thos5-aa- -
jposs-ga-repository
MName: CCaTE s .
jposs-ga-repository

URL: http://maven.repository.redhat.com/techpreview/all

o Fecognize JBoss Maven Enterprise Repositories...

@:‘ Cancel QoK

Figure 2.3. Add Maven Repository - JBoss Tech Preview

4. Click Add Repository to configure the JBoss Early Access Maven repository. Complete the
Add Maven Repository dialog as follows:

a. SettheProfile ID,Repository ID,and Repository Name valuesto jboss-
earlyaccess-repository.

b. Setthe Repository URL value to
http://maven.repository.redhat.com/earlyaccess/all/.

c. Click the Active by default checkbox to enable the Maven repository.

d. Click OK

56

CHAPTER 2. MAVEN GUIDE

Add Maven Repository

Add Mawven Repository

™

v | r?ﬂ'|1ﬂ'u:‘ci1|.|n5: by defaul.t|

Profile

Profile 1D

jboss-earlyaccess-repository

‘Repository
1D

|boss-earlyaccess-repository

Name: |boss-earlyaccess-repository

URL:

http:/fmaven.repository.redhat.com/earlyaccess/all/

-':.. Recognize JBoss Maven Enterprise Repositories... |

@ |

Cancel | | Ok |

Figure 2.4. Add Maven Repository - JBoss Early Access

5. Review the repositories and click Finish.

57

Development Guide

Maven Repositories

Configure Maven Repositories ﬁ

User settings: /home/sgilda/. m2/settings.xml

Repositories

jboss-earlyaccess-plugin-repository-http://maven.repository.redhat.com/earlyaccess/all/ Remove
jboss-ga-repository-http://maven.repository.redhat.com/techpreview/all Remove All
Add Repository...|
Edit Repository...
Preview:

Old settings New settings

17 - -==settings xmlns="http://maven.apache.or <profile=

18 <id=jboss-ga-repository=</1d=

19 =profiles= <reposlitories=

20 <=/profiles= <repository=

21 <1d=jboss-ga- repository</id=

22 =activeProfiles= <name=]boss-ga- repesitory=</na

23 </factiveProfiles>

<url=http://maven.repository.

24 <layout=default</layout=
25 =/settings= <releases= =
26 <enabled=true</enabled=
= oo =
@ Cancel Finish

Figure 2.5. Review Maven Repositories

. You are prompted with the message "Are you sure you want to update the file

'MAVEN_HOME/settings.xml'?". Click Yes to update the settings. Click OK to close the dialog.

The JBoss EAP Maven repository is now configured for use with Red Hat JBoss Developer
Studio.

Report a bug

2.3.4. Configure the JBoss EAP 6 Maven Repository Using the Project POM

There are two approaches to direct Maven to use the JBoss EAP 6 Maven Repository in your project:

e You can modify the Maven settings.

e You can configure the project's POM file.

This task shows you how to configure a specific project to use the JBoss EAP 6 Maven Repository by
adding repository information to the project pom. xml. This configuration method supercedes and
overrides the global and user settings configurations.

58

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+27042-681228+%5BLatest%5D&comment=Title%3A+Configure+Maven+for+Use+with+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=27042-681228+04+Jul+2014+00%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 2. MAVEN GUIDE

This method of configuration is generally not recommended. If you decide to configure repositories in
your project POM file, plan carefully and be aware that it can slow down your build and you may even
end up with artifacts that are not from the expected repository.

NOTE

In an Enterprise environment, where a repository manager is usually used, Maven should
query all artifacts for all projects using this manager. Because Maven uses all declared
repositories to find missing artifacts, if it can't find what it's looking for, it will try and
look for it in the repository central (defined in the built-in parent POM). To override this
central location, you can add a definition with central so that the default repository
central is now your repository manager as well. This works well for established projects,
but for clean or 'new' projects it causes a problem as it creates a cyclic dependency.

Transitively included POMs are also an issue with this type of configuration. Maven has
to query these external repositories for missing artifacts. This not only slows down your
build, it also causes you to lose control over where your artifacts are coming from and
likely to cause broken builds.

NOTE

The URL of the repository will depend on where the repository is located; on the
filesystem, or web server. For information on how to install the repository, see:

Section 2.2.2, “Install the JBoss EAP 6 Maven Repository” . The following are examples
for each of the installation options:

File System
file:///path/to/repo/jboss-eap-6.x-maven-repository
Apache Web Server
http://intranet.acme.com/jboss-eap-6.x-maven-repository/
Nexus Repository Manager

https://intranet.acme.com/nexus/content/repositories/jboss-eap-6.x-maven-
repository

1. Open your project's pom. xml file in a text editor.

2. Add the following repository configuration. If there is already a <repositories>
configuration in the file, then add the <repository> element to it. Be sure to change the
<url> to the actual repository location.

<repositories>
<repository>
<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.3.0-maven-
repository/</url>
<layout>default</layout>
<releases>
<enabled>true</enabled>
<updatePolicy>never</updatePolicy>
</releases>
<snapshots>
<enabled>true</enabled>

59

Development Guide

<updatePolicy>never</updatePolicy>
</snapshots>
</repository>
</repositories>

3. Add the following plug-in repository configuration. If there is already a
<pluginRepositories> configuration in the file, then add the <pluginRepository>
element to it.

<pluginRepositories>
<pluginRepository>
<id>jboss-eap-repository-group</id>
<name>JBoss EAP Maven Repository</name>
<url>file:///path/to/repo/jboss-eap-6.3.0-maven-
repository/</url>
<releases>
<enabled>true</enabled>
</releases>
<snapshots>
<enabled>true</enabled>
</snapshots>
</pluginRepository>
</pluginRepositories>

Report a bug

2.3.5. Manage Project Dependencies

This topic describes the usage of Bill of Materials (BOM) POMs for Red Hat JBoss Enterprise
Application Platform 6.

A BOM is a Maven pom. xml (POM) file that specifies the versions of all runtime dependencies for a
given module. Version dependencies are listed in the dependency management section of the file.

A project uses a BOM by adding its groupId:artifactId:version(GAV) to the dependency
management section of the project pom. xml file and specifying the <scope>import</scope>and
<type>pom</type> element values.

NOTE

In many cases, dependencies in project POM files use the provided scope. This is
because these classes are provided by the application server at runtime and it is not
necessary to package them with the user application.

Supported Maven Artifacts

As part of the product build process, all runtime components of JBoss EAP are built from source in a
controlled environment. This helps to ensure that the binary artifacts do not contain any malicious
code, and that they can be supported for the life of the product. These artifacts can be easily identified
by the -redhat version qualifier, for example 1.0.0-redhat-1.

Adding a supported artifact to the build configuration pom. xml file ensures that the build is using the
correct binary artifact for local building and testing. Note that an artifact with a -redhat version is
not necessarily part of the supported public APIl, and may change in future revisions. For information

60

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4606-703718+%5BLatest%5D&comment=Title%3A+Configure+the+JBoss+EAP+6+Maven+Repository+Using+the+Project+POM%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4606-703718+27+Aug+2014+21%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 2. MAVEN GUIDE

about the public supported API, see the JavaDoc documentation included in the release.

For example, to use the supported version of hibernate, add something similar to the following to your
build configuration.

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-core</artifact>
<version>4.2.6.Final-redhat-1</version>
<scope>provided</scope>

</dependency>

Notice that the above example includes a value for the <version/> field. However, it is recommended
to use Maven dependency management for configuring dependency versions.

Dependency Management

Maven includes a mechanism for managing the versions of direct and transitive dependencies
throughout the build. For general information about using dependency management, see the Apache
Maven Project Introduction to the Dependency Mechanism.

Using one or more supported JBoss dependencies directly in your build does not guarantee that all
transitive dependencies of the build will be fully supported JBoss artifacts. It is common for Maven
builds to use a mix of artifact sources from the Maven central repository, the JBoss.org Maven
repository, and other Maven repositories.

Included with the JBoss EAP Maven repository is a dependency management BOM, which specifies all
supported JBoss EAP binary artifacts. This BOM can be used in a build to ensure that Maven will
prioritize supported JBoss EAP dependencies for all direct and transitive dependencies in the build. In
other words, transitive dependencies will be managed to the correct supported dependency version
where applicable. The version of this BOM matches the version of the JBoss EAP release.

<dependencyManagement>
<dependencies>

<dependency>
<groupId>org.jboss.bom</groupId>
<artifactId>eap6-supported-artifacts</artifactId>
<version>6.3.0.GA</version>
<type>pom</type>
<scope>import</scope>

</dependency>

</dependencies>
</dependencyManagement>

JBoss JavaEE Specs Bom
The jboss-javaee-6.0 BOM contains the Java EE Specification APl JARs used by JBoss EAP.

To use this BOM in a project, add a dependency for the GAV that contains the version of the JSP and
Servlet APl JARs needed to build and deploy the application.

The following example uses the 3.0.2.Final-redhat-x version of the jboss-javaee-6.06 BOM.

<dependencyManagement>
<dependencies>
<dependency>

61

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html

Development Guide

<groupId>org.jboss.spec</groupId>
<artifactId>jboss-javaee-6.0</artifactId>
<version>3.0.2.Final-redhat-x</version>

<type>pom</type>

<scope>import</scope>

</dependency>

</dependencies>

</dependencyManagement>

<dependencies>
<dependency>

<groupId>org.jboss.spec.javax.servlet</groupId>
<artifactId>jboss-servlet-api_3.0_spec</artifactId>
<scope>provided</scope>

</dependency>
<dependency>

<groupId>org.jboss.spec.javax.servlet.jsp</groupId>
<artifactId>jboss-jsp-api_2.2_spec</artifactId>
<scope>provided</scope>

</dependency>

</dependencies>

JBoss EAP BOMs and Quickstarts
The JBoss BOMs are located in the jboss-bom project at https://github.com/jboss-developer/jboss-

eap-boms.

The quickstarts provide the primary use case examples for the Maven repository. The following table
lists the Maven BOMs used by the quickstarts.

Table 2.1. JBoss BOMs Used by the Quickstarts

Maven artifactid Description

jboss-javaee-6.0-with-hibernate

jboss-javaee-6.0-with-
hibernate3

jboss-javaee-6.0-with-logging

jboss-javaee-6.0-with-osgi

jboss-javaee-6.0-with-resteasy

jboss-javaee-6.0-with-security

62

This BOM builds on the Java EE full profile BOM, adding Hibernate
Community projects including Hibernate ORM, Hibernate Search and
Hibernate Validator. It also provides tool projects such as Hibernate
JPA Model Gen and Hibernate Validator Annotation Processor.

This BOM builds on the Java EE full profile BOM, adding Hibernate
Community projects including Hibernate 3 ORM, Hibernate Entity
Manager (JPA 1.0) and Hibernate Validator.

This BOM builds on the Java EE full profile BOM, adding the JBoss
Logging Tools and Log4j framework.

This BOM builds on the Java EE full profile BOM, adding OSGI.

This BOM builds on the Java EE full profile BOM, adding RESTEasy

This BOM builds on the Java EE full profile BOM, adding Picketlink.

https://github.com/jboss-developer/jboss-eap-boms

CHAPTER 2. MAVEN GUIDE

Maven artifactid Description

jboss-javaee-6.0-with-tools This BOM builds on the Java EE full profile BOM, adding Arquillian to
the mix. It also provides a version of JUnit and TestNG recommended
for use with Arquillian.

jboss-javaee-6.0-with- This BOM includes a world class transaction manager. Use the JBossTS
transactions APIs to access its full capabilities.

The following example uses the 6.3.0.GA version of the jboss-javaee-6.0-with-hibernate
BOM.

<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.jboss.bom.eap</groupId>
<artifactId>jboss-javaee-6.0-with-hibernate</artifactId>
<version>6.3.0.GA</version>
<type>pom</type>
<scope>import</scope>
</dependency>

</dependencies>
</dependencyManagement>

<dependencies>
<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-core</artifactId>
<scope>provided</scope>
</dependency>

</dependencies>

JBoss Client BOMs
The JBoss EAP server build includes two client BOMs: jboss-as-ejb-client-bomand jboss-as-
jms-client-bom.

The client BOMs do not create a dependency management section or define dependencies. Instead,
they are an aggregate of other BOMs and are used to package the set of dependencies necessary for a
remote client use case.

The following example uses the 7.4.0.Final-redhat - x version of the jhoss-as-ejb-client-
bom client BOM.

<dependencies>
<dependency>
<groupId>org.jboss.as</groupId>
<artifactId>jboss-as-ejb-client-bom</artifactId>
<version>7.4.0.Final-redhat-x</version>
<type>pom</type>

63

Development Guide

</dependency>
|
</dependencies>

This example uses the 7.4.0.Final-redhat -x version of the jboss-as-jms-client-bom client
BOM.

<dependencies>
<dependency>
<groupId>org.jboss.as</groupId>
<artifactId>jboss-as-jms-client-bom</artifactId>
<version>7.4.0.Final-redhat-x</version>
<type>pom</type>
</dependency>

</dependencies>

For more information about Maven Dependencies and BOM POM files, see Apache Maven Project -
Introduction to the Dependency Mechanism.

Report a bug
2.4. UPGRADE THE MAVEN REPOSITORY

2.4.1. Apply a Patch to the Local Maven Repository

Summary

A Maven repository stores Java libraries, plug-ins, and other artifacts required to build and deploy
applications to JBoss EAP. The JBoss EAP repository is available online or as a downloaded ZIP file. If
you use the publicly hosted repository, updates are applied automatically for you. However, if you
download and install the Maven repository locally, you are responsible for applying any updates.
Whenever a patch is available for JBoss EAP, a corresponding patch is provided for the JBoss EAP
Maven repository. This patch is available in the form of an incremental ZIP file that is unzipped into the
existing local repository. The ZIP file contains new JAR and POM files. It does not overwrite any
existing JARs nor does it remove JARs, so there is no rollback requirement.

For more information about the JBoss EAP patching process, see the chapter entitled Patching and
Upgrading JBoss EAP 6 in the Installation Guidefor JBoss Enterprise Application Platform 6 located on
the Customer Portal at
https://access.redhat.com/site/documentation/JBoss_Enterprise_Apnplication_Platform/.

This task describes how to apply Maven updates to your locally installed Maven repository using the
unzip command.

Prerequisites

e Valid access and subscription to the Red Hat Customer Portal.

e The Red Hat JBoss Enterprise Application Platform 6.3.0 Maven Repository ZIP file,
downloaded and installed locally.

Procedure 2.11. Update the Maven Repository

64

http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+22363-656283+%5BLatest%5D&comment=Title%3A+Manage+Project+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=22363-656283+06+Jun+2014+04%3A04+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://access.redhat.com/site/documentation/JBoss_Enterprise_Apnplication_Platform/

CHAPTER 2. MAVEN GUIDE

1. Open a browser and log into https://access.redhat.com.
2. Select Downloads from the menu at the top of the page.
3. Find Red Hat JBoss Enterprise Application Platformin the list and click onit.

4. Select the correct version of JBoss EAP from the Version drop-down menu that appears on
this screen, then click on Patches.

5. Find Red Hat JBoss Enterprise Application Platform 6.3 CPx Incremental
Maven Repository inthe list and click Download.

6. You are prompted to save the ZIP file to a directory of your choice. Choose a directory and
save the file.

7. Locate the path to JBoss EAP Maven repository, referred to in the commands below as
EAP_MAVEN_REPOSITORY_PATH, for your operating system. For more information about how
to install the Maven repository on the local file system, see Section 2.2.3, “Install the JBoss
EAP 6 Maven Repository Locally”.

8. Unzip the Maven patch file directly into the installation directory of the JBoss EAP 6.3.x Maven
repository.

o For Linux, open a terminal and type the following command:

[standalone@localhost:9999 /] unzip -o jboss-eap-6.3.x-
incremental-maven-repository.zip -d EAP_MAVEN_REPOSITORY_PATH

o For Windows, use the Windows extraction utility to extract the ZIP file into the root of the
EAP_MAVEN_REPOSITORY_PATH directory.

Result

The locally installed Maven repository is updated with the latest patch.

Report a bug

65

https://access.redhat.com
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+28282-674350+%5BLatest%5D&comment=Title%3A+Apply+a+Patch+to+the+Local+Maven+Repository%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=28282-674350+19+Jun+2014+22%3A41+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

CHAPTER 3. CLASS LOADING AND MODULES

3.1.INTRODUCTION

3.1.1. Overview of Class Loading and Modules

JBoss EAP 6 uses a new modular class loading system for controlling the class paths of deployed
applications. This system provides more flexibility and control than the traditional system of
hierarchical class loaders. Developers have fine-grained control of the classes available to their
applications, and can configure a deployment to ignore classes provided by the application server in
favor of their own.

The modular class loader separates all Java classes into logical groups called modules. Each module
can define dependencies on other modules in order to have the classes from that module added to its
own class path. Because each deployed JAR and WAR file is treated as a module, developers can
control the contents of their application's class path by adding module configuration to their
application.

Report a bug

3.1.2. Class Loading

Class Loading is the mechanism by which Java classes and resources are loaded into the Java Runtime
Environment.

Report a bug

3.1.3. Modules

A Module is a logical grouping of classes used for class loading and dependency management. JBoss
EAP 6 identifies two different types of modules, sometimes called static and dynamic modules.
However the only difference between the two is how they are packaged. All modules provide the same
features.

Static Modules

Static Modules are predefined in the EAP_HOME /modules/ directory of the application server.
Each sub-directory represents one module and defines a main/ subdirectory that contains a
configuration file (module.xml) and any required JAR files. The name of the module is defined in
the module.xml file. All the application server provided APIs are provided as static modules,
including the Java EE APIs as well as other APIs such as JBoss Logging.

Example 3.1. Example module.xml file
<?xml version="1.0" encoding="UTF-8"?>
<resources>

<module xmlns="urn:jboss:module:1.0" name="com.mysql">
<resource-root path="mysqgl-connector-java-5.1.15.jar"/>
</resources>
<dependencies>
<module name="javax.api"/>
<module name="javax.transaction.api"/>
</dependencies>
</module>

66

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4352-593309+%5BLatest%5D&comment=Title%3A+Overview+of+Class+Loading+and+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4352-593309+24+Feb+2014+22%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4549-591667+%5BLatest%5D&comment=Title%3A+Class+Loading%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4549-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 3. CLASS LOADING AND MODULES

The module name, com.mysql, should match the directory structure for the module, excluding
the main/ subdirectory name.

The modules provided in JBoss EAP distributions are located in a system directory within the
JBOSS_HOME/modules directory. This keeps them separate from any modules provided by third
parties.

Any Red Hat provided layered products that layer on top of JBoss EAP 6.1 or later will also install
their modules within the system directory.

Creating custom static modules can be useful if many applications are deployed on the same server
that use the same third party libraries. Instead of bundling those libraries with each application, a
module containing these libraries can be created and installed by the JBoss administrator. The
applications can then declare an explicit dependency on the custom static modules.

Users must ensure that custom modules are installed into the JBOSS_HOME/modules directory,
using a one directory per module layout. This ensures that custom versions of modules that already
exist in the system directory are loaded instead of the shipped versions. In this way, user provided
modules will take precedence over system modules.

If you use the JBOSS_MODULEPATH environment variable to change the locations in which JBoss
EAP searches for modules, then the product will look for a system subdirectory structure within
one of the locations specified. A system structure must exist somewhere in the locations specified
with JBOSS_MODULEPATH.

Dynamic Modules

Dynamic Modules are created and loaded by the application server for each JAR or WAR
deployment (or subdeployment in an EAR). The name of a dynamic module is derived from the name
of the deployed archive. Because deployments are loaded as modules, they can configure
dependencies and be used as dependencies by other deployments.

Modules are only loaded when required. This usually only occurs when an application is deployed that
has explicit or implicit dependencies.

Report a bug

3.1.4. Module Dependencies

A module dependency is a declaration that one module requires the classes of another module in order
to function. Modules can declare dependencies on any number of other modules. When the application
server loads a module, the modular class loader parses the dependencies of that module and adds the
classes from each dependency to its class path. If a specified dependency cannot be found, the module
will fail to load.

Deployed applications (JAR and WAR) are loaded as dynamic modules and make use of dependencies
to access the APIs provided by JBoss EAP 6.

There are two types of dependencies: explicit and implicit.
Explicit dependencies are declared in configuration by the developer. Static modules can declare

dependencies in the modules.xml file. Dynamic modules can have dependencies declared in the
MANIFEST.MF or jboss-deployment-structure.xml deployment descriptors of the deployment.

67

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4360-715834+%5BLatest%5D&comment=Title%3A+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4360-715834+10+Oct+2014+00%3A37+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Explicit dependencies can be specified as optional. Failure to load an optional dependency will not
cause a module to fail to load. However if the dependency becomes available later it will NOT be added
to the module's class path. Dependencies must be available when the module is loaded.

Implicit dependencies are added automatically by the application server when certain conditions or
meta-data are found in a deployment. The Java EE 6 APIs supplied with JBoss EAP 6 are examples of
modules that are added by detection of implicit dependencies in deployments.

Deployments can also be configured to exclude specific implicit dependencies. This is done with the
jboss-deployment-structure.xml deployment descriptor file. This is commonly done when an
application bundles a specific version of a library that the application server will attempt to add as an
implicit dependency.

A module's class path contains only its own classes and that of it's immediate dependencies. A module
is not able to access the classes of the dependencies of one of its dependencies. However a module can
specify that an explicit dependency is exported. An exported dependency is provided to any module
that depends on the module that exports it.

Example 3.2. Module dependencies

Module A depends on Module B and Module B depends on Module C. Module A can access the
classes of Module B, and Module B can access the classes of Module C. Module A cannot access the
classes of Module C unless:

e Module A declares an explicit dependency on Module C, or

e Module B exports its dependency on Module C.

Report a bug

3.1.5. Class Loading in Deployments

For the purposes of classloading all deployments are treated as modules by JBoss EAP 6. These are
called dynamic modules. Class loading behavior varies according to the deployment type.
WAR Deployment

A WAR deployment is considered to be a single module. Classes in the WEB-INF/1ib directory are
treated the same as classes in WEB-INF/classes directory. All classes packaged in the war will
be loaded with the same class loader.

EAR Deployment

EAR deployments are made up more than one module. The definition of these modules follows
these rules:

1. The 1ib/ directory of the EAR is a single module called the parent module.

2. Each WAR deployment within the EAR is a single module.

3. Each EJB JAR deployment within the EAR is a single module.
Subdeployment modules (the WAR and JAR deployments within the EAR) have an automatic
dependency on the parent module. However they do not have automatic dependencies on each

other. This is called subdeployment isolation and can be disabled on a per deployment basis or for
the entire application server.

68

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5825-591714+%5BLatest%5D&comment=Title%3A+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5825-591714+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 3. CLASS LOADING AND MODULES

Explicit dependencies between subdeployment modules can be added by the same means as any
other module.

Report a bug

3.1.6. Class Loading Precedence

The JBoss EAP 6 modular class loader uses a precedence system to prevent class loading conflicts.
During deployment a complete list of packages and classes is created for each deployment and each of
its dependencies. The list is ordered according to the class loading precedence rules. When loading
classes at runtime, the class loader searches this list, and loads the first match. This prevents multiple
copies of the same classes and packages within the deployments class path from conflicting with each
other.
The class loader loads classes in the following order, from highest to lowest:
1. Implicit dependencies.
These are the dependencies that are added automatically by JBoss EAP 6, such as the JAVA
EE APIs. These dependencies have the highest class loader precedence because they contain

common functionality and APIs that are supplied by JBoss EAP 6.

Refer to Section 3.8.1, “Implicit Module Dependencies” for complete details about each implicit
dependency.

2. Explicit dependencies.

These are dependencies that are manually added in the application configuration. This can be
done using the application's MANIFEST . MF file or the new optional JBoss deployment
descriptor jboss-deployment-structure.xml file.

Refer to Section 3.2, “Add an Explicit Module Dependency to a Deployment” to learn how to
add explicit dependencies.

3. Local resources.

Class files packaged up inside the deployment itself, e.qg. from the WEB-INF/classes or WEB-
INF/1ib directories of a WAR file.

4. Inter-deployment dependencies.

These are dependencies on other deployments in a EAR deployment. This can include classes
in the 1ib directory of the EAR or classes defined in other EJB jars.

Report a bug

3.1.7. Dynamic Module Naming

All deployments are loaded as modules by JBoss EAP 6 and named according to the following
conventions.

1. Deployments of WAR and JAR files are named with the following format:

I deployment.DEPLOYMENT_NAME

69

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4550-591667+%5BLatest%5D&comment=Title%3A+Class+Loading+in+Deployments%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4550-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4561-591666+%5BLatest%5D&comment=Title%3A+Class+Loading+Precedence%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4561-591666+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

For example, inventory.war and store. jar will have the module names of
deployment.inventory.war and deployment.store. jar respectively.

2. Subdeployments within an Enterprise Archive are named with the following format:
I deployment.EAR_NAME . SUBDEPLOYMENT_NAME

For example, the subdeployment of reports.war within the enterprise archive
accounts.ear will have the module name of deployment.accounts.ear.reports.war.

Report a bug

3.1.8. jboss-deployment-structure.xml

jboss-deployment-structure.xml is a new optional deployment descriptor for JBoss EAP 6. This
deployment descriptor provides control over class loading in the deployment.

The XML schema for this deployment descriptor is in EAP_HOME/docs/schema/jboss-
deployment-structure-1_2.xsd

Report a bug

3.2. ADD AN EXPLICIT MODULE DEPENDENCY TO A DEPLOYMENT

This task shows how to add an explicit dependency to an application. Explicit module dependencies can
be added to applications to add the classes of those modules to the class path of the application at
deployment.

Some dependencies are automatically added to deployments by JBoss EAP 6. See Section 3.8.1,
“Implicit Module Dependencies” for details.

Prerequisites

1. You must already have a working software project that you want to add a module dependency
to.

2. You must know the name of the module being added as a dependency. See Section 3.8.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is

another deployment then see Section 3.1.7, “Dynamic Module Naming” to determine the
module name.

Dependencies can be configured using two different methods:
1. Adding entries to the MANIFEST . MF file of the deployment.

2. Adding entries to the jboss-deployment-structure.xml deployment descriptor.

Procedure 3.1. Add dependency configuration to MANIFEST.MF

Maven projects can be configured to create the required dependency entries in the MANIFEST . MF file.
See Section 3.3, “Generate MANIFEST.MF entries using Maven” .

1. Add MANIFEST.MF file

70

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4562-591666+%5BLatest%5D&comment=Title%3A+Dynamic+Module+Naming%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4562-591666+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4611-591668+%5BLatest%5D&comment=Title%3A+jboss-deployment-structure.xml%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4611-591668+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 3. CLASS LOADING AND MODULES

If the project has no MANIFEST . MF file, create a file called MANIFEST.MF. For a web
application (WAR) add this file to the META-INF directory. For an EJB archive (JAR) add it to
the META-INF directory.

2. Add dependencies entry
Add a dependencies entry to the MANIFEST . MF file with a comma-separated list of
dependency module names.

I Dependencies: org.javassist, org.apache.velocity

3. Optional: Make a dependency optional
A dependency can be made optional by appending optional to the module name in the
dependency entry.

I Dependencies: org.javassist optional, org.apache.velocity

4. Optional: Export a dependency
A dependency can be exported by appending export to the module name in the dependency
entry.

I Dependencies: org.javassist, org.apache.velocity export

Procedure 3.2. Add dependency configuration to jposs-deployment-structure.xml

1. Add jboss-deployment-structure.xml
If the application has no jboss-deployment -structure.xml file then create a new file
called jboss-deployment-structure.xml and add it to the project. This file is an XML file
with the root element of <jboss-deployment-structure>.

<jboss-deployment-structure>

</jboss-deployment-structure>

For a web application (WAR) add this file to the WEB- INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Add dependencies section
Create a<deployment> element within the document root and a <dependencies> element
within that.

3. Add module elements
Within the dependencies node, add a module element for each module dependency. Set the
name attribute to the name of the module.

I <module name="org.javassist" />

4. Optional: Make a dependency optional
A dependency can be made optional by adding the optional attribute to the module entry
with the value of true. The default value for this attribute is false.

I <module name="org.javassist" optional="true" />

I

Development Guide

5. Optional: Export a dependency
A dependency can be exported by adding the export attribute to the module entry with the
value of true. The default value for this attribute is false.

<module name="org.javassist" export="true" />

<module name="org.javassist" />
<module name="org.apache.velocity" export="true" />
</dependencies>

</deployment>

Example 3.3. jboss-deployment-structure.xml with two dependencies
<jboss-deployment-structure>
<deployment>
<dependencies>
</jboss-deployment-structure>

JBoss EAP 6 will add the classes from the specified modules to the class path of the application when it
is deployed.

Report a bug

3.3. GENERATE MANIFEST.MF ENTRIES USING MAVEN

Maven projects that use the Maven JAR, EJB or WAR packaging plug-ins can generate a MANIFEST.MF
file with a Dependencies entry. This does not automatically generate the list of dependencies, this
process only creates the MANIFEST . MF file with the details specified in the pom.xml.

Prerequisites

1. You must already have a working Maven project.

2. The Maven project must be using one of the JAR, EJB, or WAR plug-ins (maven-jar-plugin,
maven-ejb-plugin, maven-war-plugin).

3. You must know the name of the project's module dependencies. Refer to Section 3.8.2,
“Included Modules” for the list of static modules included with JBoss EAP 6. If the module is
another deployment, then refer to Section 3.1.7, “Dynamic Module Naming” to determine the
module name.

Procedure 3.3. Generate a MANIFEST.MF file containing module dependencies

1. Add Configuration
Add the following configuration to the packaging plug-in configuration in the project's
pom.xml file.

<configuration>
<archive>

72

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4551-714703+%5BLatest%5D&comment=Title%3A+Add+an+Explicit+Module+Dependency+to+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4551-714703+02+Oct+2014+15%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 3. CLASS LOADING AND MODULES

<manifestEntries>
<Dependencies></Dependencies>
</manifestEntries>
</archive>
</configuration>

2. List Dependencies
Add the list of the module dependencies in the <Dependencies> element. Use the same format
that is used when adding the dependencies to the MANIFEST . MF. Refer to Section 3.2, “Add an
Explicit Module Dependency to a Deployment” for details about that format.

I <Dependencies>org.javassist, org.apache.velocity</Dependencies>

3. Build the Project
Build the project using the Maven assembly goal.

I [Localhost]$ mvn assembly:assembly

When the project is built using the assembly goal, the final archive contains a MANIFEST . MF file with
the specified module dependencies.

Example 3.4. Configured Module Dependencies in pom.xml

The example here shows the WAR plug-in but it also works with the JAR and EJB plug-ins (maven-
jar-plugin and maven-ejb-plugin).

<artifactId>maven-war-plugin</artifactId>
<configuration>
<archive>
<manifestEntries>
<Dependencies>org.javassist,
org.apache.velocity</Dependencies>
</manifestEntries>
</archive>
</configuration>
</plugin>

<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
</plugins>

Report a bug

3.4. PREVENT A MODULE BEING IMPLICITLY LOADED

This task describes how to configure your application to exclude a list of module dependencies.

You can configure a deployable application to prevent implicit dependencies from being loaded. This is
commonly done when the application includes a different version of a library or framework than the
one that will be provided by the application server as an implicit dependency.

Prerequisites

73

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5828-591715+%5BLatest%5D&comment=Title%3A+Generate+MANIFEST.MF+entries+using+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5828-591715+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide
1. You must already have a working software project that you want to exclude an implicit

dependency from.

2. You must know the name of the module to exclude. Refer to Section 3.8.1, “Implicit Module
Dependencies” for a list of implicit dependencies and their conditions.

Procedure 3.4. Add dependency exclusion configuration to jboss-deployment-structure.xml

1. If the application has no jboss-deployment-structure.xml file, create a new file called
jboss-deployment -structure.xml and add it to the project. This file is an XML file with
the root element of <jboss-deployment-structure>.

<jboss-deployment-structure>

</jboss-deployment-structure>

For a web application (WAR) add this file to the WEB- INF directory. For an EJB archive (JAR)
add it to the META-INF directory.

2. Create a<deployment> element within the document root and an <exclusions> element
within that.

<deployment>
<exclusions>

</exclusions>
</deployment>

3. Within the exclusions element, add a <module> element for each module to be excluded. Set
the name attribute to the name of the module.

<module name="org.javassist" />

<deployment>
<exclusions>
<module name="org.javassist" />
<module name="org.dom4j" />
</exclusions>
</deployment>

<jboss-deployment-structure>
</jboss-deployment-structure>

‘ Example 3.5. Excluding two modules

Report a bug

3.5.EXCLUDE A SUBSYSTEM FROM A DEPLOYMENT

Summary

74

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4552-591667+%5BLatest%5D&comment=Title%3A+Prevent+a+Module+Being+Implicitly+Loaded%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4552-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 3. CLASS LOADING AND MODULES

This topic covers the steps required to exclude a subsystem from a deployment. This is done by editing
the jboss-deployment-structure.xml configuration file. Excluding a subsystem provides the
same effect as removing the subsystem, but it applies only to a single deployment.

Procedure 3.5. Exclude a Subsystem

1. Open the jboss-deployment-structure.xml file in a text editor.

2. Add the following XML inside the <deployment> tags:

<exclude-subsystems>
<subsystem name="SUBSYSTEM_NAME" />
</exclude-subsystems>

3. Save the jboss-deployment-structure.xml file.

Result

The subsystem has been successfully excluded. The subsystem's deployment unit processors will no
longer run on the deployment.

Example 3.6. Example jboss-deployment-structure.xml file.
<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
<ear-subdeployments-isolated>true</ear-subdeployments-isolated>
<deployment>

<exclude-subsystems>
<subsystem name="resteasy" />
</exclude-subsystems>
<exclusions>
<module name="org.javassist" />
</exclusions>
<dependencies>
<module name="deployment.javassist.proxy" />
<module name="deployment.myjavassist" />
<module name="myservicemodule" services="import"/>
</dependencies>
<resources>
<resource-root path="my-library.jar" />
</resources>
</deployment>
<sub-deployment name="myapp.war">
<dependencies>
<module name="deployment.myear.ear.myejbjar.jar" />
</dependencies>
<local-last value="true" />
</sub-deployment>
<module name="deployment.myjavassist" >
<resources>
<resource-root path="javassist.jar" >
<filter>
<exclude path="javassist/util/proxy" />
</filter>
</resource-root>
</resources>

75

Development Guide

</module>
<module name="deployment.javassist.proxy" >
<dependencies>

<module name="org.javassist" >
<imports>
<include path="javassist/util/proxy" />
<exclude path="/**" />
</imports>
</module>
</dependencies>
</module>
</jboss-deployment-structure>

Report a bug

3.6. USE THE CLASS LOADER PROGRAMMATICALLY IN A
DEPLOYMENT

3.6.1. Programmatically Load Classes and Resources in a Deployment

You can programmatically find or load classes and resources in your application code. The method you
choose will depend on a number of factors. This topic describes the methods available and provides
guidelines for when to use them.

Load a Class Using the Class.forName() Method

You can use the Class. forName() method to programmatically load and initialize classes. This
method has two signatures.

Class.forName(String className)

This signature takes only one parameter, the name of the class you need to load. With this
method signature, the class is loaded by the class loader of the current class and initializes the
newly loaded class by default.

Class.forName(String className, boolean initialize, ClassLoader loader)

This signature expects three parameters: the class name, a boolean value that specifies whether
to initialize the class, and the ClassLoader that should load the class.

The three argument signature is the recommended way to programmatically load a class. This
signature allows you to control whether you want the target class to be initialized upon load. It is
also more efficient to obtain and provide the class loader because the JVM does not need to
examine the call stack to determine which class loader to use. Assuming the class containing the
code is named CurrentClass, you can obtain the class's class loader using
CurrentClass.class.getClassLoader () method.

The following example provides the class loader to load and initialize the TargetClass class:

Example 3.7. Provide a class loader to load and initialize the TargetClass.

Class<?> targetClass = Class.forName("com.myorg.util.TargetClass",
true, CurrentClass.class.getClassLoader());

76

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+11440-591976+%5BLatest%5D&comment=Title%3A+Exclude+a+Subsystem+from+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=11440-591976+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 3. CLASS LOADING AND MODULES

Find All Resources with a Given Name

If you know the name and path of a resource, the best way to load it directly is to use the standard
JDK Class or ClassLoader API.

Load a Single Resource

To load a single resource located in the same directory as your class or another class in your
deployment, you can use the Class.getResourceAsStream() method.

Example 3.8. Load a single resource in your deployment.

InputStream inputStream =
CurrentClass.class.getResourceAsStream('"targetResourceName");

Load All Instances of a Single Resource

To load all instances of a single resource that are visible to your deployment's class loader, use
the Class.getClassLoader () .getResources(String resourceName) method, where
resourceName is the fully qualified path of the resource. This method returns an Enumeration
of all URL objects for resources accessible by the class loader with the given name. You can then
iterate through the array of URLs to open each stream using the openStream() method.

Example 3.9. Load all instances of a resource and iterate through the resulit.

Enumeration<URL> urls =
CurrentClass.class.getClassLoader().getResources("full/path/to/reso
urce");
while (urls.hasMoreElements()) {
URL url = urls.nextElement();
InputStream inputStream = null;
try {
inputStream = url.openStream();
// Process the inputStream

} catch(IOException ioException) {
// Handle the error
} finally {
if (inputStream != null) {
try {
inputStream.close();
} catch (Exception e) {
// ignore

}

(S

NOTE
Because the URL instances are loaded from local storage, it is not necessary to

use the openConnection() or other related methods. Streams are much
simpler to use and minimize the complexity of the code.

77

Development Guide

Load a Class File From the Class Loader

If a class has already been loaded, you can load the class file that corresponds to that class using
the following syntax:

Example 3.10. Load a class file for a class that has been loaded.

CurrentClass.class.getResourceAsStream(TargetClass.class.getSimpleNam

InputStream inputStream =
e() + ".class");

If the class is not yet loaded, you must use the class loader and translate the path:
‘ Example 3.11. Load a class file for a class that has not been loaded.

InputStream inputStream =
CurrentClass.class.getClassLoader().getResourceAsStream(className.rep

String className = '"com.myorg.util.TargetClass"
lace('.', '/') + ".class");

Report a bug

3.6.2. Programmatically Iterate Resources in a Deployment

The JBoss Modules library provides several APIs for iterating all deployment resources. The JavaDoc
for the JBoss Modules APl is located here: http://docs.jboss.org/jbossmodules/1.3.0.Final/api/. To use
these APIs, you must add the following dependency to the MANIFEST . MF:

I Dependencies: org.jboss.modules

It is important to note that while these APIs provide increased flexibility, they will also run much more
slowly than a direct path lookup.

This topic describes some of the ways you can programmatically iterate through resources in your
application code.

List Resources Within a Deployment and Within All Imports

There are times when it is not possible to look up resources by the exact path. For example, the
exact path may not be known or you may need to examine more than one file in a given path. In this
case, the JBoss Modules library provides several APIs for iterating all deployment resources. You
can iterate through resources in a deployment by utilizing one of two methods.

Iterate All Resources Found in a Single Module

The ModuleClassLoader.iterateResources() method iterates all the resources within
this module class loader. This method takes two arguments: the starting directory name to
search and a boolean that specifies whether it should recurse into subdirectories.

The following example demonstrates how to obtain the ModuleClassLoader and obtain the
iterator for resources in the bin/ directory, recursing into subdirectories.

Example 3.12. Find resources in the "bin" directory, recursing into subdirectories.

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
TargetClass.class.getClassLoader();

78

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+24376-632479+%5BLatest%5D&comment=Title%3A+Programmatically+Load+Classes+and+Resources+in+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24376-632479+21+Apr+2014+22%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://docs.jboss.org/jbossmodules/1.3.0.Final/api/

CHAPTER 3. CLASS LOADING AND MODULES

Iterator<Resource> mclResources =
moduleClassLoader.iterateResources("bin", true);

The resultant iterator may be used to examine each matching resource and query its name and
size (if available), open a readable stream, or acquire a URL for the resource.

Iterate All Resources Found in a Single Module and Imported Resources

The Module.iterateResources() method iterates all the resources within this module class
loader, including the resources that are imported into the module. This method returns a much
larger set than the previous method. This method requires an argument, which is a filter that
narrows the result to a specific pattern. Alternatively, PathFilters.acceptAll() can be supplied to
return the entire set.

| Example 3.13. Find the entire set of resources in this module, including imports.

TargetClass.class.getClassLoader();
Module module = moduleClassLoader.getModule();
Iterator<Resource> moduleResources =

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
module.iterateResources(PathFilters.acceptAll());

Find All Resources That Match a Pattern

If you need to find only specific resources within your deployment or within your deployment's full
import set, you need to filter the resource iteration. The JBoss Modules filtering APIs give you
several tools to accomplish this.

Examine the Full Set of Dependencies

If you need to examine the full set of dependencies, you can use the
Module.iterateResources() method's PathFilter parameter to check the name of each
resource for a match.

Examine Deployment Dependencies

If you need to look only within the deployment, use the
ModuleClassLoader.iterateResources() method. However, you must use additional
methods to filter the resultant iterator. The PathFilters.filtered() method can provide a
filtered view of a resource iterator this case. The PathFilters class includes many static
methods to create and compose filters that perform various functions, including finding child
paths or exact matches, or matching an Ant-style "glob" pattern.

Additional Code Examples For Filtering Resouces

The following examples demonstrate how to filter resources based on different criteria.

Example 3.14. Find all files named "messages.properties” in your deployment.

TargetClass.class.getClassLoader();
Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/messages.properties"),

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
moduleClassLoader.iterateResources("", true));

79

Development Guide

Example 3.15. Find all files named "messages.properties" in your deployment and imports.

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
TargetClass.class.getClassLoader();

Module module = moduleClassLoader.getModule();

Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.match("**/message.properties));

Example 3.16. Find all files inside any directory named "my-resources” in your deployment.

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
TargetClass.class.getClassLoader();

Iterator<Resource> mclResources =
PathFilters.filtered(PathFilters.match("**/my-resources/**"),
moduleClassLoader.iterateResources("", true));

Example 3.17. Find all files named "messages" or "errors" in your deployment and imports.

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
TargetClass.class.getClassLoader();

Module module = moduleClassLoader.getModule();

Iterator<Resource> moduleResources =
module.iterateResources(PathFilters.any(PathFilters.match("**/messages
"), PathFilters.match("**/errors"));

Example 3.18. Find all files in a specific package in your deployment.

ModuleClassLoader moduleClassLoader = (ModuleClasslLoader)
TargetClass.class.getClassLoader();

Iterator<Resource> mclResources =
moduleClassLoader.iterateResources("path/form/of/packagename",
false);

Report a bug

3.7. CLASS LOADING AND SUBDEPLOYMENTS

3.7.1. Modules and Class Loading in Enterprise Archives

Enterprise Archives (EAR) are not loaded as a single module like JAR or WAR deployments. They are
loaded as multiple unique modules.

The following rules determine what modules exist in an EAR.

80

e Each WAR and EJB JAR subdeployment is a module.

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+24377-592557+%5BLatest%5D&comment=Title%3A+Programmatically+Iterate+Resources+in+a+Deployment%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=24377-592557+24+Feb+2014+07%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 3. CLASS LOADING AND MODULES

e The contents of the 1ib/ directory in the root of the EAR archive is a module. This is called the
parent module.

These modules have the same behavior as any other module with the following additional implicit
dependencies:

e WAR subdeployments have implicit dependencies on the parent module and any EJB JAR
subdeployments.

e EJB JAR subdeployments have implicit dependencies on the parent module and any other EJB
JAR subdeployments.

IMPORTANT

No subdeployment ever gains an implicit dependency on a WAR subdeployment. Any
subdeployment can be configured with explicit dependencies on another
subdeployment as would be done for any other module.

The implicit dependencies described above occur because JBoss EAP 6 has subdeployment class
loader isolation disabled by default.

Subdeployment class loader isolation can be enabled if strict compatibility is required. This can be
enabled for a single EAR deployment or for all EAR deployments. The Java EE 6 specification
recommends that portable applications should not rely on subdeployments being able to access each
other unless dependencies are explicitly declared as Class-Path entries in the MANIFEST . MF file of
each subdeployment.

Report a bug

3.7.2. Subdeployment Class Loader Isolation

Each subdeployment in an Enterprise Archive (EAR) is a dynamic module with its own class loader. By
default a subdeployment can access the resources of other subdeployments.

If a subdeployment should not access the resources of other subdeployments (strict subdeployment
isolation is required) then this can be enabled.

Report a bug

3.7.3. Disable Subdeployment Class Loader Isolation Within a EAR

This task shows you how to disable Subdeployment class loader isolation in an EAR deployment by
using a special deployment descriptor in the EAR. This does not require any changes to be made to the
application server and does not affect any other deployments.

IMPORTANT

Even when subdeployment class loader isolation is disabled it is not possible to add a
WAR deployment as a dependency.

1. Add the deployment descriptor file
Add the jboss-deployment-structure.xml deployment descriptor file to the META-INF
directory of the EAR if it doesn't already exist and add the following content:

81

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4354-591660+%5BLatest%5D&comment=Title%3A+Modules+and+Class+Loading+in+Enterprise+Archives%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4354-591660+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4565-591666+%5BLatest%5D&comment=Title%3A+Subdeployment+Class+Loader+Isolation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4565-591666+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

<jboss-deployment-structure>

</jboss-deployment-structure>

2. Add the <ear-subdeployments-isolated> element
Add the <ear -subdeployments-isolated> element to the jhoss-deployment -
structure.xml file if it doesn't already exist with the content of false.

I <ear-subdeployments-isolated>false</ear-subdeployments-isolated>

Result:

Subdeployment class loader isolation will now be disabled for this EAR deployment. This means that
the subdeployments of the EAR will have automatic dependencies on each of the non-WAR
subdeployments.

Report a bug
3.8. REFERENCE

3.8.1. Implicit Module Dependencies

The following table lists the modules that are automatically added to deployments as dependencies
and the conditions that trigger the dependency.

Table 3.1. Implicit Module Dependencies

Subsystem Dependencies That Are Dependencies That Are Conditions That Trigger the
Responsibl Always Added Conditionally Added Addition of the
e for Dependency
Adding the
Dependenc
y
Core . .
Server e javax.api
e sun.jdk
e org.jboss.vfs
EE))
subsystem e javaee.api

82

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4566-591666+%5BLatest%5D&comment=Title%3A+Disable+Subdeployment+Class+Loader+Isolation+Within+a+EAR%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4566-591666+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Subsystem
Responsibl
e for

Dependencies That Are
Always Added

Adding the
Dependenc

)

EJB 3
subsystem

JAX-RS
(RESTEasy)
subsystem

e javax.xml.bind.api

CHAPTER 3. CLASS LOADING AND MODULES

Dependencies That Are
Conditionally Added

e javaee.api

e org.jboss.resteasy.r
esteasy-atom-
provider

e org.jboss.resteasy.r
esteasy-cdi

e org.jboss.resteasy.r
esteasy-jaxrs

e org.jboss.resteasy.r
esteasy-jaxb-
provider

e org.jboss.resteasy.r
esteasy-jackson-
provider

e org.jboss.resteasy.r
esteasy-jsapi

e org.jboss.resteasy.r
esteasy-multipart-
provider

e org.jboss.resteasy.
async-http-servlet-
30

Conditions That Trigger the
Addition of the
Dependency

The presence ofan ejb-
jar . xml file within a valid
location in the deployment,
as described in the Java EE
6 specification.

The presence of annotation-
based EJBs, for example:
@Stateless,
@stateful,
@MessageDriven

The presence of JAX-RS
annotations in the
deployment.

83

Development Guide

84

Subsystem Dependencies That Are
Responsibl Always Added

e for

Adding the

Dependenc

y

JCA

subsystem e javax.resource.api
JPA

(Hibernate) e javax.persistence.a
subsystem P!

Logging . .
subsystem e org.jboss.logging

e org.apache.log4j

e org.apache.commo
ns.logging

e org.slf4j

e org.jboss.logging.jul
-to-slf4j-stub

Dependencies That Are
Conditionally Added

e javax.jms.api
e javax.validation.api
e org.jboss.logging

e org.jboss.ironjacam
ar.api

e org.jboss.ironjacam
ar.impl

e org.hibernate.valid
ator

e javaee.api
e org.jboss.as.jpa

e org.hibernate

Conditions That Trigger the
Addition of the
Dependency

The deployment of a
resource adapter (RAR)
archive.

The presence of an
@PersistenceUnit or
@PersistenceContext
annotation, or a
<persistence-unit-
ref>or<persistence-
context-ref>elementin
a deployment descriptor.

JBoss EAP 6 maps
persistence provider names
to module names. If you
name a specific provider in
the persistence.xml
file, a dependency is added
for the appropriate module.
If this not the desired
behavior, you can exclude it
using a jboss-
deployment -
structure.xml file.

These dependencies are
always added unless the
add-logging-api-
dependencies attribute
is set to false.

Subsystem Dependencies That Are
Responsibl Always Added
e for

Adding the
Dependenc

)

SAR
subsystem

Security

subsystem e org.picketbox

Web
subsystem

Web
Services
subsystem

e org.jboss.ws.api

e org.jboss.ws.spi

Weld (CDI)
Subsystem

Report a bug

Dependencies That Are
Conditionally Added Addition of the

CHAPTER 3. CLASS LOADING AND MODULES

Conditions That Trigger the

Dependency

The deployment of a SAR

org.jboss.logging archive.

org.jboss.modules

The deployment of a WAR
archive. JavaServer Faces
(JSF) is added only if it is
used.

javaee.api
com.sun.jsf-impl

org.hibernate.valid
ator

org.jboss.as.web

org.jboss.logging

The presence of a
beans.xml file in the
deployment.

javax.persistence.a
pi

javaee.api
org.javassist

org.jboss.intercept
or

org.jboss.as.weld
org.jboss.logging
org.jboss.weld.core
org.jboss.weld.api

org.jboss.weld.spi

85

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4353-682489+%5BLatest%5D&comment=Title%3A+Implicit+Module+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4353-682489+09+Jul+2014+02%3A44+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

3.8.2. Included Modules

A table listing the JBoss EAP 6 included modules and whether they are supported can be found on the
Customer Portal at https://access.redhat.com/articles/1122333.

Report a bug

3.8.3. JBoss Deployment Structure Deployment Descriptor Reference

The key tasks that can be performed using this deployment descriptor are:
e Defining explicit module dependencies.
e Preventing specific implicit dependencies from loading.
e Defining additional modules from the resources of that deployment.
e Changing the subdeployment isolation behavior in that EAR deployment.
e Adding additional resource roots to a module in an EAR.

Report a bug

86

https://access.redhat.com/articles/1122333
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+3891-682454+%5BLatest%5D&comment=Title%3A+Included+Modules%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3891-682454+08+Jul+2014+23%3A49+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4614-591668+%5BLatest%5D&comment=Title%3A+JBoss+Deployment+Structure+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4614-591668+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 4. VALVES

CHAPTER 4. VALVES

4.1. ABOUT VALVES

A Valve is a Java class that gets inserted into the request processing pipeline for an application. It is
inserted in the pipeline before servlet filters. Valves can make changes to the request before passing it
on or perform other processing such as authentication or even canceling the request.

Valves can be configured at the server level or at the application level. The only difference is in how
they are configured and packaged.

e Global Valves are configured at the server level and apply to all applications deployed to the
server. Instructions to configure Global Valves are located in the Administration and
Configuration Guide for JBoss EAP.

e Valves configured at the application level are packaged with the application deployment and
only affect the specific application. Instructions to configure Valves at the application level are
located in the Development Guide for JBoss EAP.

Version 6.1.0 and later supports global valves.

Report a bug

4.2. ABOUT GLOBAL VALVES

A Global Valve is a valve that is inserted into the request processing pipeline of all deployed
applications. A valve is made global by being packaged and installed as a static module in JBoss EAP 6.
Global valves are configured in the web subsystem.

Only version 6.1.0 and later supports global valves.

For instructions on how to configure Global Valves, see the chapter entitled Global Valvesin the
Administration and Configuration Guide for JBoss EAP

Report a bug

4.3. ABOUT AUTHENTICATOR VALVES

An authenticator valve is a valve that authenticates the credentials of a request. Such valve is a sub-
class of org.apache.catalina.authenticator.AuthenticatorBase and overrides the
authenticate(Request request, Response response, LoginConfig config) method.

This can be used to implement additional authentication schemes.

Report a bug

4.4. CONFIGURE A WEB APPLICATION TO USE A VALVE

Valves that are not installed as global valves must be included with your application and configure in
the jboss-web.xml deployment descriptor.

87

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14168-672932+%5BLatest%5D&comment=Title%3A+About+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14168-672932+13+Jun+2014+02%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14169-717305+%5BLatest%5D&comment=Title%3A+About+Global+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14169-717305+18+Oct+2014+02%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14172-592104+%5BLatest%5D&comment=Title%3A+About+Authenticator+Valves%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14172-592104+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

IMPORTANT

Valves that are installed a global valves are automatically applied to all deployed
applications. For instructions on how to configure Global Valves, see the chapter
entitled Global Valvesin the Administration and Configuration Guide for JBoss EAP

Prerequisites

e The valve must be created and included in your application's classpath. This can be done by
either including it in the application's WAR file or any module that is added as a dependency.
Examples of such modules include a static module installed on the server or a JAR file in the
1lib/ directory of an EAR archive if the WAR is deployed in an EAR.

e The application must include a jboss-web.xml deployment descriptor.

Procedure 4.1. Configure an application for a local valve

1. Configure a Valve
Create avalve element containing the class-name child element in the application's
jboss-web.xml file. The class-name is the name of the valve class.

<valve>
<class-name>VALVE_CLASS NAME</class-name>
</valve>

name>org.jboss.security.negotiation.NegotiationAuthenticator</clas
s-name>

</valve>

Example 4.1. Example of a valve element configured in the jboss-web.xml file
<valve>
<class-

2. Configure a Custom Valve
If the valve has configurable parameters, add a param child element to the valve element for
each parameter, specifying the param-name and param-value for each.

ss-name>
<param>
<param-name>httpHeaderForSSOAuth</param-name>
<param-value>sm_ssoid, ct-remote-
user,HTTP_OBLIX_UID</param-value>
</param>
<param>
<param-name>sessionCookieForSSOAuth</param-name>

Example 4.2. Example of a custom valve element configured in the jboss-web.xml file
<param-value>SMSESSION, CTSESSION, ObSSOCookie</param-

<valve>
<class-
name>org.jboss.web.tomcat.security.GenericHeaderAuthenticator</cla

88

CHAPTER 4. VALVES
value>
</param>
</valve>

When the application is deployed, the valve will be enabled for the application with the specified
configuration.

<param>
<param-name>restrictedUserAgents</param-name>
<param-value>".*MS Web Services Client Protocol.*$</param-
value>
</param>

<valve>
<class-
name>org.jboss.samplevalves.RestrictedUserAgentsvValve</class-name>
</valve>

‘ Example 4.3. jboss-web.xml valve configuration

Report a bug

4.5. CONFIGURE A WEB APPLICATION TO USE AN AUTHENTICATOR
VALVE

Configuring an application to use an authenticator valve requires the valve to be installed and
configured (either local to the application or as a global valve) and the web . xm1 deployment
descriptor of the application to be configured. In the simplest case, the web . xml configuration is the
same as using BASIC authentication except the auth-method child element of 1login-configis set
to the name of the valve performing the configuration.

Prerequisites

e Authentication valve must already be created.

e |f the authentication valve is a global valve then it must already be installed and configured,
and you must know the name that it was configured as.

o You need to know the realm name of the security realm that the application will use.

If you do not know the valve or security realm name to use, ask your server administrator for this
information.

Procedure 4.2. Configure an Application to use an Authenticator Valve

1. Configure the valve
When using a local valve, it must be configured in the applications jboss-web.xml
deployment descriptor. Refer to Section 4.4, “Configure a Web Application to use a Valve” .

When using a global valve, this is unnecessary.

2. Add security configuration to web.xml

89

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14173-671788+%5BLatest%5D&comment=Title%3A+Configure+a+Web+Application+to+use+a+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14173-671788+13+Jun+2014+01%3A32+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Add the security configuration to the web.xml file for your application, using the standard
elements such as security-constraint, login-config, and security-role. In the login-config
element, set the value of auth-method to the name of the authenticator valve. The realm-name
element also needs to be set to the name of the JBoss security realm being used by the
application.

<login-config>
<auth-method>VALVE_NAME</auth-method>
<realm-name>REALM_NAME</realm-name>
</login-config>

When the application is deployed, the authentication of requests is handled by the configured
authentication valve.

Report a bug

4.6. CREATE A CUSTOM VALVE

A Valve is a Java class that gets inserted into the request processing pipeline for an application before
the application's servlet filters. This can be used to modify the request or perform any other behavior.
This task demonstrates the basic steps required for implementing a valve.

Procedure 4.3. Create a Custom Valve

1. Create the Valve class
Create a subclass of org.apache.catalina.valves.ValveBase.

package org.jboss.samplevalves;
import org.apache.catalina.valves.ValveBase;
import org.apache.catalina.connector.Request;

import org.apache.catalina.connector.Response;

public class RestrictedUserAgentsValve extends ValveBase {
}

2. Implement the invoke method
The invoke () method is called when this valve is executed in the pipeline. The request and

response objects are passed as parameters. Perform any processing and modification of the
request and response here.

public void invoke(Request request, Response response)

{
¥

3. Invoke the next pipeline step
The last thing the invoke method must do is invoke the next step of the pipeline and pass the
modified request and response objects along. This is done using the getNext () .invoke()
method

I getNext().invoke(request, response);

90

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14174-592104+%5BLatest%5D&comment=Title%3A+Configure+a+Web+Application+to+use+an+Authenticator+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14174-592104+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 4. VALVES

4. Optional: Specify parameters
If the valve must be configurable, enable this by adding a parameter. Do this by adding an
instance variable and a setter method for each parameter.

private String restrictedUserAgents = null;

public void setRestricteduserAgents(String mystring)

{
}

Example 4.4. Sample Custom Valve
package org.jboss.samplevalves;
import java.io.IOException;
import java.util.regex.Pattern;
import javax.servlet.ServletException;
import org.apache.catalina.valves.ValveBase;

this.restrictedUserAgents = mystring;

import org.apache.catalina.connector.Response;
public class RestrictedUserAgentsValve extends ValveBase
{

private String restrictedUserAgents = null;

public void setRestrictedUserAgents(String mystring)

{
}

import org.apache.catalina.connector.Request;
this.restrictedUserAgents = mystring;

public void invoke(Request request, Response response) throws
IOException, ServletException
{
String agent = request.getHeader("User-Agent");
System.out.println("user-agent: " + agent + " : " +
restrictedUserAgents);
if (Pattern.matches(restrictedUserAgents, agent))
{
System.out.println("user-agent: " + agent + " matches: " +
restrictedUserAgents);
response.addHeader ("Connection", '"close");
3

getNext().invoke(request, response);

}

(o

Report a bug

91

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14175-650656+%5BLatest%5D&comment=Title%3A+Create+a+Custom+Valve%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14175-650656+04+Jun+2014+01%3A00+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

CHAPTER 5. LOGGING FOR DEVELOPERS

5.1.INTRODUCTION

5.1.1. About Logging

Logging is the practice of recording a series of messages from an application that provide a record (or
log) of the application's activities.

Log messages provide important information for developers when debugging an application and for
system administrators maintaining applications in production.

Most modern logging frameworks in Java also include other details such as the exact time and the
origin of the message.

Report a bug

5.1.2. Application Logging Frameworks Supported By JBoss LogManager

JBoss LogManager supports the following logging frameworks:
e JBoss Logging - included with JBoss EAP 6
e Apache Commons Logging - http://commons.apache.org/logging/
e Simple Logging Facade for Java (SLF4J) - http://www.slf4j.org/
e Apache log4j - http://logging.apache.org/log4j/1.2/

e Java SE Logging (java.util.logging) -
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.htmi

Report a bug

5.1.3. About Log Levels

Log levels are an ordered set of enumerated values that indicate the nature and severity of a log
message. The level of a given log message is specified by the developer using the appropriate methods
of their chosen logging framework to send the message.

JBoss EAP 6 supports all the log levels used by the supported application logging frameworks. The
most commonly used six log levels are (in order of lowest to highest): TRACE, DEBUG, INFO, WARN,
ERROR and FATAL.

Log levels are used by log categories and handlers to limit the messages they are responsible for. Each
log level has an assigned numeric value which indicates its order relative to other log levels. Log
categories and handlers are assigned a log level and they only process log messages of that level or
higher. For example a log handler with the level of WARN will only record messages of the levels WARN,
ERROR and FATAL.

Report a bug

5.1.4. Supported Log Levels

92

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4576-591666+%5BLatest%5D&comment=Title%3A+About+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4576-591666+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/1.2/
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4496-591663+%5BLatest%5D&comment=Title%3A+Application+Logging+Frameworks+Supported+By+JBoss+LogManager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4496-591663+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+8869-591853+%5BLatest%5D&comment=Title%3A+About+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8869-591853+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 5. LOGGING FOR DEVELOPERS

Table 5.1. Supported Log Levels

Log Level VEINT) Description

FINEST 300 -

FINER 400 -

TRACE 400 Use for messages that provide detailed information about the running state of an
application. Log messages of TRACE are usually only captured when debugging an
application.

DEBUG 500 Use for messages that indicate the progress individual requests or activities of an
application. Log messages of DEBUG are usually only captured when debugging an
application.

FINE 500 -

CONFIG 700 -

INFO 800 Use for messages that indicate the overall progress of the application. Often used
for application startup, shutdown and other major lifecycle events.

WARN 900 Use to indicate a situation that is not in error but is not considered ideal. May

indicate circumstances that may lead to errors in the future.

WARNING 900 -

ERROR 1000 Use to indicate an error that has occurred that could prevent the current activity
or request from completing but will not prevent the application from running.

SEVERE 1000 -

FATAL 1100 Use to indicate events that could cause critical service failure and application
shutdown and possibly cause JBoss EAP 6 to shutdown.

Report a bug

5.1.5. Default Log File Locations

These are the log files that get created for the default logging configurations. The default configuration
writes the server log files using periodic log handlers

Table 5.2. Default Log File for a standalone server

Log File Description

EAP_HOME/standalone/log/server.log Server Log. Contains all server log messages,
including server startup messages.

93

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+8872-591853+%5BLatest%5D&comment=Title%3A+Supported+Log+Levels%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=8872-591853+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Log File Description

EAP_HOME/standalone/log/gc.log Garbage collection log. Contains details of all
garbage collection.

Table 5.3. Default Log Files for a managed domain

Log File Description

EAP_HOME/domain/log/host - Host Controller boot log. Contains log messages
controller.log related to the startup of the host controller.
EAP_HOME/domain/log/process- Process controller boot log. Contains log messages
controller.log related to the startup of the process controller.

EAP_HOME/domain/servers/SERVERNAME/ The server log for the named server. Contains all log
log/server.log messages for that server, including server startup
messages.

Report a bug

5.2. LOGGING WITH THE JBOSS LOGGING FRAMEWORK

5.2.1. About JBoss Logging

JBoss Logging is the application logging framework that is included in JBoss EAP 6.
JBoss Logging provide an easy way to add logging to an application. You add code to your application
that uses the framework to send log messages in a defined format. When the application is deployed to

an application server, these messages can be captured by the server and displayed and/or written to
file according to the server's configuration.

Report a bug

5.2.2. Features of JBoss Logging

e Provides an innovative, easy to use "typed" logger.

e Full support for internationalization and localization. Translators work with message bundles in
properties files while developers can work with interfaces and annotations.

e Build-time tooling to generate typed loggers for production, and runtime generation of typed
loggers for development.

Report a bug

5.2.3. Add Logging to an Application with JBoss Logging

To log messages from your application you create a Logger object (org. jboss.logging.Logger)
and call the appropriate methods of that object. This task describes the steps required to add support
for this to your application.

94

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4495-635317+%5BLatest%5D&comment=Title%3A+Default+Log+File+Locations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4495-635317+30+Apr+2014+23%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4575-591666+%5BLatest%5D&comment=Title%3A+About+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4575-591666+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4578-591669+%5BLatest%5D&comment=Title%3A+Features+of+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4578-591669+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 5. LOGGING FOR DEVELOPERS

Prerequisites

You must meet the following conditions before continuing with this task:

e If you are using Maven as your build system, the project must already be configured to include
the JBoss Maven Repository. Refer to Section 2.3.2, “Configure the JBoss EAP 6 Maven
Repository Using the Maven Settings”

e The JBoss Logging JAR files must be in the build path for your application. How you do this
depends on whether you build your application using Red Hat JBoss Developer Studio or with
Maven.

o When building using Red Hat JBoss Developer Studio this can be done selecting Project ->
Properties from the Red Hat JBoss Developer Studio menu, selecting Targeted Runtimes
and ensuring the runtime for JBoss EAP 6 is checked.

o When building using Maven this can be done by adding the following dependency
configuration to your project's pom. xml file.

<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>3.1.2.GA-redhat-1</version>
<scope>provided</scope>

</dependency>

You do not need to include the JARs in your built application because JBoss EAP 6 provides
them to deployed applications.

Once your project is setup correctly. You need to follow the following steps for each class that you
want to add logging to:

1. Add imports
Add the import statements for the JBoss Logging class namespaces that you will be using. At a
minimum you will need to import import org.jboss.logging.Logger.

I import org.jboss.logging.Logger;

2. Create a Logger object
Create aninstance of org. jboss.logging.Logger and initialize it by calling the static
method Logger .getLogger (Class). Red Hat recommends creating this as a single instance
variable for each class.

private static final Logger LOGGER =
Logger.getLogger(HellowWorld.class);

3. Add logging messages
Add calls to the methods of the Logger object to your code where you want it to send log
messages. The Logger object has many different methods with different parameters for
different types of messages. The easiest to use are:

debug(Object message)

95

Development Guide

info(Object message)
error(Object message)
trace(Object message)

fatal(Object message)

These methods send a log message with the corresponding log level and the message
parameter as a string.

I LOGGER.error("Configuration file not found.");

For the complete list of JBoss Logging methods refer to the org. jboss.logging package in
the JBoss EAP 6 API Documentation.

Example 5.1. Using JBoss Logging when opening a properties file

This example shows an extract of code from a class that loads customized configuration for an
application from a properties file. If the specified file is not found, a ERROR level log message is
recorded.

import org.jboss.logging.Logger;
public class LocalSystemConfig

private static final Logger LOGGER =

Logger.getLogger(LocalSystemConfig.class);

public Properties openCustomProperties(String configname) throws

CustomConfigFileNotFoundException

{

Properties props = new Properties();

try

{
LOGGER.info("Loading custom configuration from "+configname);
props.load(new FileInputStream(configname));

}

catch(IOException e) //catch exception in case properties file

does not exist

{

LOGGER.error("Custom configuration file ("+configname+") not

found. Using defaults.");

throw new CustomConfigFileNotFoundException(configname);

}

return props;

Report a bug

96

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4501-681231+%5BLatest%5D&comment=Title%3A+Add+Logging+to+an+Application+with+JBoss+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4501-681231+04+Jul+2014+00%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 5. LOGGING FOR DEVELOPERS

5.3. PER-DEPLOYMENT LOGGING

5.3.1. About Per-deployment Logging

Per-deployment logging allows a developer to configure in advance the logging configuration for their
application. When the application is deployed, logging begins according to the defined configuration.
The log files created through this configuration contain information only about the behavior of the
application.

This approach has advantages and disadvantages over using system-wide logging. An advantage is
that the administrator of the JBoss EAP instance does not need to configure logging. A disadvantage is
that the per-deployment logging configuration is read only on startup and so cannot be changed at
runtime.

Report a bug

5.3.2. Add Per-deployment Logging to an Application

To configure per-deployment logging, add the logging configuration file logging.properties into
the deployment. This configuration file is recommended because it can be used with any logging facade
as the JBoss Log Manager is the underlying log manager used.

If you are using Simple Logging Facade for Java (SLF4J) or Apache log4j,the
logging.properties configuration file is suitable. If you are using Apache log4j appenders then the
configuration file log4j . properties is required. The configuration file jboss-
logging.properties is supported only for legacy deployments.

Procedure 5.1. Add Configuration File to the Application

e The directory into which the configuration file is added depends on the deployment method:
EAR, WAR or JAR.

o EAR deployment
Copy the logging configuration file to the META-INF directory.

o WARor JAR deployment
Copy the logging configuration file to either the META-INF or WEB-INF/classes
directory.

Report a bug

5.3.3. Example logging.properties File

Additional loggers to configure (the root logger is always configured)
loggers=

Root logger configuration

logger.level=INFO

logger.handlers=FILE

A handler configuration
handler.FILE=org.jboss.logmanager.handlers.FileHandler
handler.FILE.level=ALL

handler.FILE.formatter=PATTERN

handler.FILE.properties=append, autoFlush, enabled, suffix, fileName

97

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+34418-707569+%5BLatest%5D&comment=Title%3A+About+Per-deployment+Logging%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34418-707569+09+Sep+2014+16%3A27+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+34424-665446+%5BLatest%5D&comment=Title%3A+Add+Per-deployment+Logging+to+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34424-665446+10+Jun+2014+03%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

handler.FILE.constructorProperties=fileName, append
handler.FILE.append=true

handler.FILE.autoFlush=true

handler.FILE.enabled=true
handler.FILE.fileName=${jboss.server.log.dir}/app.log

The formatter to use
formatter.PATTERN=0rg. jboss.logmanager.formatters.PatternFormatter
formatter .PATTERN.properties=pattern

formatter.PATTERN.constructorProperties=pattern
formatter .PATTERN.pattern=%d %-5p %C: %m%n

Report a bug

5.4. LOGGING PROFILES

5.4.1. About Logging Profiles

IMPORTANT

Logging profiles are only available in version 6.1.0 and later. They cannot be configured
using the management console.

Logging profiles are independent sets of logging configuration that can be assigned to deployed
applications. As with the reqular logging subsystem, a logging profile can define handlers, categories
and a root logger but cannot refer to configuration in other profiles or the main logging subsystem. The
design of logging profiles mimics the logging subsystem for ease of configuration.
The use of logging profiles allows administrators to create logging configuration that are specific to
one or more applications without affecting any other logging configuration. Because each profile is
defined in the server configuration, the logging configuration can be changed without requiring that
the affected applications be redeployed.
Each logging profile can have the following configuration:

e A unique name. This is required.

e Any number of log handlers.

e Any number of log categories.

e Up to oneroot logger.

An application can specify a logging profile to use in its MANIFEST . MF file, using the 1logging-
profile attribute.

Report a bug

5.4.2. Specify a Logging Profile in an Application

An application specifies the logging profile to use in its MANIFEST . MF file.

Prerequisites:

98

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+34426-665446+%5BLatest%5D&comment=Title%3A+Example+logging.properties+File%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=34426-665446+10+Jun+2014+03%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14116-648922+%5BLatest%5D&comment=Title%3A+About+Logging+Profiles%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14116-648922+02+Jun+2014+12%3A03+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 5. LOGGING FOR DEVELOPERS

1. You must know the name of the logging profile that has been setup on the server for this
application to use. Ask your server administrator for the name of the profile to use.

Procedure 5.2. Add Logging Profile configuration to an Application

e Edit MANIFEST.MF
If your application does not have a MANIFEST . MF file: create one with the following content,
replacing NAME with the required profile name.
Manifest-Version: 1.0
Logging-Profile: NAME

If your application already has a MANIFEST . MF file: add the following line to it, replacing NAME
with the required profile name.

I Logging-Profile: NAME

NOTE

If you are using Maven and the maven-war -plugin, you can put your MANIFEST.MF
fileinsrc/main/resources/META-INF/ and add the following configuration to your
pom. xml file.

<plugin>
<artifactId>maven-war-plugin</artifactId>
<configuration>
<archive>
<manifestFile>src/main/resources/META-
INF/MANIFEST.MF</manifestFile>
</archive>
</configuration>
</plugin>

When the application is deployed it will use the configuration in the specified logging profile for its log
messages.

Report a bug

99

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14120-647035+%5BLatest%5D&comment=Title%3A+Specify+a+Logging+Profile+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14120-647035+30+May+2014+14%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

6.1.INTRODUCTION

6.1.1. About Internationalization

Internationalization is the process of designing software so that it can be adapted to different
languages and regions without engineering changes.

Report a bug

6.1.2. About Localization

Localization is the process of adapting internationalized software for a specific region or language by
adding locale-specific components and translations of text.

Report a bug

6.2. JBOSS LOGGING TOOLS

6.2.1. Overview

6.2.1.1. JBoss Logging Tools Internationalization and Localization

JBoss Logging Tools is a Java API that provides support for the internationalization and localization of
log messages, exception messages, and generic strings. In addition to providing a mechanism for
translation, JBoss Logging tools also provides support for unique identifiers for each log message.

Internationalized messages and exceptions are created as method definitions inside of interfaces
annotated usingorg. jboss.logging annotations. It is not necessary to implement the interfaces,
JBoss Logging Tools does this at compile time. Once defined you can use these methods to log
messages or obtain exception objects in your code.

Internationalized logging and exception interfaces created with JBoss Logging Tools can be localized
by creating a properties file for each bundle containing the translations for a specific language and
region. JBoss Logging Tools can generate template property files for each bundle that can then be
edited by a translator.

JBoss Logging Tools creates an implementation of each bundle for each corresponding translations
property file in your project. All you have to do is use the methods defined in the bundles and JBoss
Logging Tools ensures that the correct implementation is invoked for your current regional settings.
Message ids and project codes are unique identifiers that are prepended to each log message. These
unique identifiers can be used in documentation to make it easy to find information about log
messages. With adequate documentation, the meaning of a log message can be determined from the
identifiers regardless of the language that the message was written in.

Report a bug

6.2.1.2. JBoss Logging Tools Quickstart

100

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4891-591677+%5BLatest%5D&comment=Title%3A+About+Internationalization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4891-591677+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4892-591677+%5BLatest%5D&comment=Title%3A+About+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4892-591677+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4890-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Internationalization+and+Localization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4890-591677+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

The JBoss Logging Tools quickstart, logging-tools, contains a simple Maven project that
demonstrates the features of JBoss Logging Tools. It has been used extensively in this documentation
for code samples.

Refer to this quickstart for a complete working demonstration of all the features described in this
documentation.

Report a bug

6.2.1.3. Message Logger

A Message Logger is an interface that is used to define internationalized log messages. A Message
Logger interface is annotated with @org. jboss.logging.MessageLogger.

Report a bug

6.2.1.4. Message Bundle

A message bundle is an interface that can be used to define generic translatable messages and
Exception objects with internationalized messages . A message bundle is not used for creating log
messages.

A message bundle interface is annotated with @org. jboss.logging.MessageBundle.

Report a bug

6.2.1.5. Internationalized Log Messages

Internationalized Log Messages are log messages created by defining a method in a Message Logger.
The method must be annotated with the @LogMessage and @Message annotations and specify the log
message using the value attribute of @Message. Internationalized log messages are localized by
providing translations in a properties file.

JBoss Logging Tools generates the required logging classes for each translation at compile time and
invokes the correct methods for the current locale at runtime.

Report a bug

6.2.1.6. Internationalized Exceptions

An internationalized exception is an exception object returned from a method defined in a message
bundle. Message bundle methods that return Java Exception objects can be annotated to define a
default exception message. The default message is replaced with a translation if one is found in a
matching properties file for the current locale. Internationalized exceptions can also have project
codes and message ids assigned to them.

Report a bug

6.2.1.7. Internationalized Messages

An internationalized message is a string returned from a method defined in a message bundle.
Message bundle methods that return Java String objects can be annotated to define the default
content of that String, known as the message. The default message is replaced with a translation if one
is found in a matching properties file for the current locale.

101

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+6715-591753+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Quickstart%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6715-591753+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+6716-591753+%5BLatest%5D&comment=Title%3A+Message+Logger%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6716-591753+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+6717-591753+%5BLatest%5D&comment=Title%3A+Message+Bundle%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6717-591753+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+6714-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6714-591753+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+6718-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6718-591753+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide
Report a bug

6.2.1.8. Translation Properties Files

Translation properties files are Java properties files that contain the translations of messages from
one interface for one locale, country, and variant. Translation properties files are used by the JBoss
Logging Tools to generated the classes that return the messages.

Report a bug

6.2.1.9. JBoss Logging Tools Project Codes

Project codes are strings of characters that identify groups of messages. They are displayed at the
beginning of each log message, prepended to the message Id. Project codes are defined with the
projectcCode attribute of the @MessageLogger annotation.

Report a bug

6.2.1.10. JBoss Logging Tools Message Ids

Message Ids are numbers, that when combined with a project code, uniquely identify a log message.
Message Ids are displayed at the beginning of each log message, appended to the project code for the
message. Message Ids are defined with the id attribute of the @Message annotation.

Report a bug
6.2.2. Creating Internationalized Loggers, Messages and Exceptions

6.2.2.1. Create Internationalized Log Messages

This task shows you how to use JBoss Logging Tools to create internationalized log messages by
creating MessagelLogger interfaces. It does not cover all optional features or the localization of those
log messages.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project. Refer to Section 6.2.6.1, “JBoss Logging Tools
Maven Configuration”.

2. The project must have the required maven configuration for JBoss Logging Tools.

Procedure 6.1. Create an Internationalized Log Message Bundle

1. Create an Message Logger interface
Add a Java interface to your project to contain the log message definitions. Name the interface
descriptively for the log messages that will be defined in it.

The log message interface has the following requirements:
o It must be annotated with @org. jboss.logging.MessageLogger.

o It must extendorg.jboss.logging.BasicLogger.

102

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+6719-591753+%5BLatest%5D&comment=Title%3A+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6719-591753+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+6720-591752+%5BLatest%5D&comment=Title%3A+Translation+Properties+Files%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6720-591752+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5148-591684+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Project+Codes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5148-591684+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5149-591684+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Message+Ids%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5149-591684+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

o The interface must define a field of that is a typed logger that implements this interface. Do
this with the getMessageLogger () method of org. jboss.logging.Logger.

package com.company.accounts.loggers;

import org.jboss.logging.BasiclLogger;
import org.jboss.logging.Logger;
import org.jboss.logging.MessagelLogger;

@MessagelLogger(projectCode="")
interface AccountsLogger extends BasiclLogger

{

AccountsLogger LOGGER = Logger.getMessagelLogger (
AccountsLogger.class,
AccountsLogger.class.getPackage().getName());

}

2. Add method definitions
Add a method definition to the interface for each log message. Name each method
descriptively for the log message that it represents.

Each method has the following requirements:
o The method must return void.
o It must be annotated with the @org. jboss.logging.LogMessage annotation.
o It must be annotated with the @org. jboss.logging.Message annotation.

o The value attribute of @org. jboss.logging.Message contains the default log message.
This is the message that is used if no translation is available.

@LogMessage
@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

The default log level is INFO.
3. Invoke the methods
Add the calls to the interface methods in your code where the messages must be logged from.

It is not necessary to create implementations of the interfaces, the annotation processor does
this for you when the project is compiled.

I AccountsLogger.LOGGER.customerQueryFailDBClosed();

The custom loggers are sub-classed from BasicLogger so the logging methods of
BasiclLogger (debug(), error() etc) can also be used. It is not necessary to create other
loggers to log non-internationalized messages.

I AccountsLogger.LOGGER.error("Invalid query syntax.");

RESULT: the project now supports one or more internationalized loggers that can now be localized.

Report a bug

103

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4898-591677+%5BLatest%5D&comment=Title%3A+Create+Internationalized+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4898-591677+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

6.2.2.2. Create and Use Internationalized Messages

This task shows you how to create internationalized messages and how to use them. This task does not
cover all optional features or the process of localizing those messages.

Refer to the logging-tools quickstart for a complete example.

Prerequisites

1. You have a working Maven project using the JBoss EAP 6 repository. Refer to Section 2.3.2,
“Configure the JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The required Maven configuration for JBoss Logging Tools has been added. Refer to
Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”.

Procedure 6.2. Create and Use Internationalized Messages

1. Create an interface for the exceptions

JBoss Logging Tools defines internationalized messages in interfaces. Name each interface
descriptively for the messages that will be defined in it.

The interface has the following requirements:
o It must be declared as public
o It must be annotated with @org. jboss.logging.MessageBundle.

o The interface must define a field that is a message bundle of the same type as the
interface.

@MessageBundle(projectCode="")
public interface GreetingMessageBundle

{
GreetingMessageBundle MESSAGES =

Messages.getBundle(GreetingMessageBundle.class);

}

2. Add method definitions
Add a method definition to the interface for each message. Name each method descriptively
for the message that it represents.

Each method has the following requirements:
o It must return an object of type String.
o It must be annotated with the @org. jboss.logging.Message annotation.

o The value attribute of @org. jboss.logging.Message must be set to the default
message. This is the message that is used if no translation is available.

@Message(value = "Hello world.")
String helloworldString();

3. Invoke methods
Invoke the interface methods in your application where you need to obtain the message.

104

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

I System.console.out.println(helloworldString());

RESULT: the project now supports internationalized message strings that can be localized.

Report a bug

6.2.2.3. Create Internationalized Exceptions

This task shows you how to create internationalized exceptions and how to use them. This task does
not cover all optional features or the process of localization of those exceptions.

Refer to the logging-tools quick start for a complete example.

For this task it is assumed that you already have a software project, that is being built in either Red Hat
JBoss Developer Studio or Maven, to which you want to add internationalized exceptions.

Procedure 6.3. Create and use Internationalized Exceptions

1. Add JBoss Logging Tools configuration
Add the required project configuration to support JBoss Logging Tools. Refer to
Section 6.2.6.1, “JBoss Logging Tools Maven Configuration”

2. Create an interface for the exceptions

JBoss Logging Tools defines internationalized exceptions in interfaces. Name each interface
descriptively for the exceptions that will be defined in it.

The interface has the following requirements:
o It must be declared as public.
o It must be annotated with @org. jboss.logging.MessageBundle.

o The interface must define a field that is a message bundle of the same type as the
interface.

@MessageBundle(projectCode="")
public interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS =

Messages.getBundle(ExceptionBundle.class);

}

3. Add method definitions
Add a method definition to the interface for each exception. Name each method descriptively

for the exception that it represents.
Each method has the following requirements:
o It must return an object of type Exceptionor a sub-type of Exception.

o It must be annotated with the @org. jboss.logging.Message annotation.

o The value attribute of @org. jboss.logging.Message must be set to the default
exception message. This is the message that is used if no translation is available.

105

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4900-591677+%5BLatest%5D&comment=Title%3A+Create+and+Use+Internationalized+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4900-591677+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

o Ifthe exception being returned has a constructor that requires parameters in addition to a
message string, then those parameters must be supplied in the method definition using the
@Param annotation. The parameters must be the same type and order as the constructor.

@VMessage(value = "The config file could not be opened.")
IOException configFileAccessError();

@Message(id = 13230, value = '"Date string '%s' was invalid.")
ParseException dateWasInvalid(String dateString, @Param int
errorOffset);

4. Invoke methods
Invoke the interface methods in your code where you need to obtain one of the exceptions. The
methods do not throw the exceptions, they return the exception object which you can then

throw.
try
{
propsInFile=new File(configname);
props.load(new FileInputStream(propsInFile));
}
catch(IOException ioex) //in case props file does not exist
{
throw ExceptionBundle.EXCEPTIONS.configFileAccessError();
}

RESULT: the project now supports internationalized exceptions that can be localized.

Report a bug
6.2.3. Localizing Internationalized Loggers, Messages and Exceptions

6.2.3.1. Generate New Translation Properties Files with Maven

Projects that are being built with Maven can generate empty translation property files for each
Message Logger and Message Bundle it contains. These files can then be used as new translation
property files.

The following procedure shows how to configure a Maven project to generate new translation property
files.

Refer to the logging-tools quick start for a complete example.

Prerequisites:

1. You must already have a working Maven project.
2. The project must already be configured for JBoss Logging Tools.

3. The project must contain one or more interfaces that define internationalized log messages or
exceptions.

Procedure 6.4. Generate New Translation Properties Files with Maven

106

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4899-681267+%5BLatest%5D&comment=Title%3A+Create+Internationalized+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4899-681267+04+Jul+2014+02%3A05+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

1. Add Maven configuration
Add the -AgenereatedTranslationFilePath compiler argument to the Maven compiler
plug-in configuration and assign it the path where the new files will be created.

<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>

<source>1.6</source>

<target>1.6</target>

<compilerArgument>

AgeneratedTranslationFilesPath=${project.basedir}/target/generated-
translation-files
</compilerArgument>
<showDeprecation>true</showDeprecation>
</configuration>
</plugin>

The above configuration will create the new files in the target/generated-translation-
files directory of your Maven project.

2. Build the project
Build the project using Maven.

I [Localhost]$ mvn compile

One properties files is created per interface annotated with @MessageBundle or @MessageLogger.
The new files are created in a subdirectory corresponding to the Java package that each interface is
declared in.

Each new file is named using the following syntax where InterfaceName is the name of the interface
that this file was generated for: InterfaceName .i18n_locale_COUNTRY_VARIANT.properties.

These files can now be copied into your project as the basis for new translations.

Report a bug

6.2.3.2. Translate an Internationalized Logger, Exception or Message

Logging and Exception messages defined in interfaces using JBoss Logging Tools can have
translations provided in properties files.

The following procedure shows how to create and use a translation properties file. It is assumed that
you already have a project with one or more interfaces defined for internationalized exceptions or log

messages.

Refer to the 1ogging-tools quick start for a complete example.

Prerequisites

1. You must already have a working Maven project.

2. The project must already be configured for JBoss Logging Tools.

107

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5127-591683+%5BLatest%5D&comment=Title%3A+Generate+New+Translation+Properties+Files+with+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5127-591683+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

3. The project must contain one or interfaces that define internationalized log messages or
exceptions.

4. The project must be configured to generate template translation property files.

Procedure 6.5. Translate an internationalized logger, exception or message

1. Generate the template properties files
Run the mvn compile command to create the template translation properties files.

2. Add the template file to your project
Copy the template for the interfaces that you want to translate from the directory where they
were created into the src/main/resources directory of your project. The properties files
must be in the same package as the interfaces they are translating.

3. Rename the copied template file
Rename the copy of the template file according to the translation it will contain. E.qg.
GreeterLogger.il8n_fr_FR.properties.

4. Translate the contents of the template.
Edit the new translation properties file to contain the appropriate translation.

Level: Logger.Level.INFO
Message: Hello message sent.
logHelloMessageSent=Bonjour message envoyeé.

Repeat steps two, three, and four for each translation of each bundle being performed.

RESULT: The project now contains translations for one or more message or logger bundles. Building
the project will generate the appropriate classes to log messages with the supplied translations. It is
not necessary to explicitly invoke methods or supply parameters for specific languages, JBoss
Logging Tools automatically uses the correct class for the current locale of the application server.

The source code of the generated classes can be viewed under target/generated-
sources/annotations/.

Report a bug
6.2.4. Customizing Internationalized Log Messages

6.2.4.1. Add Message Ids and Project Codes to Log Messages

This task shows how to add message ids and project codes to internationalized log messages created
using JBoss Logging Tools. A log message must have both a project code and message id for them to
be displayed in the log. If a message does not have both a project code and a message id, then neither is
displayed.

Refer to the 1ogging-tools quick start for a complete example.

Prerequisites

1. You must already have a project with internationalized log messages. Refer to Section 6.2.2.1,
“Create Internationalized Log Messages”.

108

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4901-591677+%5BLatest%5D&comment=Title%3A+Translate+an+Internationalized+Logger%2C+Exception+or+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4901-591677+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

2. You need to know what the project code you will be using is. You can use a single project code,
or define different ones for each interface.

Procedure 6.6. Add message Ids and Project Codes to Log Messages

1. Specify the project code for the interface.
Specify the project code using the projectCode attribute of the @MessageLogger annotation

attached to a custom logger interface. All messages that are defined in the interface will use
that project code.

@VMessagelLogger(projectCode="ACCNTS")
interface AccountsLogger extends BasiclLogger

{
¥

2. Specify Message Ids
Specify a message ID for each message using the id attribute of the @Message annotation
attached to the method that defines the message.

@LogMessage
@Message(id=43, value = "Customer query failed, Database not
available.") void customerQueryFailDBClosed();

The log messages that have both a message ID and project code have been associated with them will
prepend these to the logged message.

10:55:50,638 INFO [com.company.accounts.ejb] (MSC service thread 1-4)
ACCNTS000043: Customer query failed, Database not available.

Report a bug

6.2.4.2. Specify the Log Level for a Message

The default log level of a message defined by an interface by JBoss Logging Tools is INFO. A different
log level can be specified with the 1evel attribute of the @LogMessage annotation attached to the
logging method.

Procedure 6.7. Specify the log level for a message

1. Specify level attribute
Add the level attribute to the @LogMessage annotation of the log message method
definition.

2. Assignlog level
Assign the level attribute the value of the log level for this message. The valid values for
level are the six enumerated constants defined in org. jboss.logging.Logger.Level:
DEBUG, ERROR, FATAL, INFO, TRACE, and WARN.

Import org.jboss.logging.Logger.Level;

@LogMessage (level=Level.ERROR)

109

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5171-591685+%5BLatest%5D&comment=Title%3A+Add+Message+Ids+and+Project+Codes+to+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5171-591685+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

@Message(value = "Customer query failed, Database not available.")
void customerQueryFailDBClosed();

Invoking the logging method in the above sample will produce a log message at the level of ERROR.

10:55:50,638 ERROR [com.company.app.Main] (MSC service thread 1-4)
Customer query failed, Database not available.

Report a bug

6.2.4.3. Customize Log Messages with Parameters

Custom logging methods can define parameters. These parameters are used to pass additional
information to be displayed in the log message. Where the parameters appear in the log message is
specified in the message itself using either explicit or ordinary indexing.

Procedure 6.8. Customize log messages with parameters

1. Add parameters to method definition
Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the log message
References can use explicit or ordinary indexes.

o Touse ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the
second instance will insert the second parameter, and so on.

o To use explicit indexes, insert the characters %{#} in the message where #is the number
of the parameter you want to appear.

IMPORTANT

Using explicit indexes allows the parameter references in the message to be in a
different order than they are defined in the method. This is important for translated
messages which may require different ordering of parameters.

The number of parameters must match the number of references to the parameters in the specified
message or the code will not compile. A parameter marked with the @Cause annotation is not included
in the number of parameters.

Example 6.1. Message parameters using ordinary indexes

@Message(id=2, value='"Customer query failed, customerid:%s, user:%s")

@LogMessage (level=Logger.Level.DEBUG)
void customerLookupFailed(Long customerid, String username);

Example 6.2. Message parameters using explicit indexes

I @LogMessage (level=Logger.Level.DEBUG)

110

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5174-591685+%5BLatest%5D&comment=Title%3A+Specify+the+Log+Level+for+a+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5174-591685+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

{23")

@Message(id=2, value='"Customer query failed, customerid:%{1}, user:%
void customerLookupFailed(Long customerid, String username);

Report a bug

6.2.4.4. Specify an Exception as the Cause of a Log Message

JBoss Logging Tools allows one parameter of a custom logging method to be defined as the cause of
the message. This parameter must be of the type Throwable or any of its sub-classes and is marked
with the @Cause annotation. This parameter cannot be referenced in the log message like other
parameters and is displayed after the log message.

The following procedure shows how to update a logging method using the @Cause parameter to
indicate the "causing" exception. It is assumed that you have already created internationalized logging
messages to which you want to add this functionality.

Procedure 6.9. Specify an exception as the cause of a log message

1. Add the parameter
Add a parameter of the type Throwable or a sub-class to the method.

@LogMessage

@Message(id=404, value="Loading configuration failed. Config
file:%s")

void loadConfigFailed(Exception ex, File file);

2. Add the annotation
Add the @Cause annotation to the parameter.

import org.jboss.logging.Cause

@LogMessage
@Message(value = "Loading configuration failed. Config file: %s")
void loadConfigFailed(@Cause Exception ex, File file);

3. Invoke the method

When the method is invoked in your code, an object of the correct type must be passed and
will be displayed after the log message.

try

{
confFile=new File(filename);
props.load(new FileInputStream(confFile));

}
catch(Exception ex) //in case properties file cannot be read
{
ConfigLogger.LOGGER.loadConfigFailed(ex, filename);
}

Below is the output of the above code samples if the code threw an exception of type
FileNotFoundException.

m

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5172-591685+%5BLatest%5D&comment=Title%3A+Customize+Log+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5172-591685+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

10:50:14,675 INFO [com.company.app.Main] (MSC service thread 1-3)
Loading configuration failed. Config file: customised.properties
java.io.FileNotFoundException: customised.properties (No such file
or directory)

at java.io.FilelInputStream.open(Native Method)

at java.io.FileInputStream.<init>(FileInputStream.java:120)

at com.company.app.demo.Main.openCustomProperties(Main.java:70)

at com.company.app.Main.go(Main.java:53)

at com.company.app.Main.main(Main.java:43)

Report a bug
6.2.5. Customizing Internationalized Exceptions

6.2.5.1. Add Message Ids and Project Codes to Exception Messages

The following procedure shows the steps required to add message IDs and project codes to
internationalized Exception messages created using JBoss Logging Tools.

Message IDs and project codes are unique identifiers that are prepended to each message displayed by
internationalized exceptions. These identifying codes make it possible to create a reference of all the
exception messages for an application so that someone can lookup the meaning of an exception
message written in language that they do not understand.

Prerequisites

1. You must already have a project with internationalized exceptions. Refer to Section 6.2.2.3,
“Create Internationalized Exceptions”.

2. You need to know what the project code you will be using is. You can use a single project code,
or define different ones for each interface.

Procedure 6.10. Add message IDs and project codes to exception messages

1. Specify a project code
Specify the project code using the projectCode attribute of the @MessageBundle
annotation attached to a exception bundle interface. All messages that are defined in the
interface will use that project code.

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS =

Messages.getBundle(ExceptionBundle.class);

}

2. Specify message IDs
Specify a message id for each exception using the id attribute of the @Message annotation
attached to the method that defines the exception.

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

112

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5175-675496+%5BLatest%5D&comment=Title%3A+Specify+an+Exception+as+the+Cause+of+a+Log+Message%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5175-675496+24+Jun+2014+04%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

IMPORTANT

A message that has both a project code and message ID displays them prepended to the
message. If a message does not have both a project code and a message ID, neither is
displayed.

Example 6.3. Creating internationalized exceptions

This exception bundle interface has the project code of ACCTS, with a single exception method with

the id of 143.

@MessageBundle(projectCode="ACCTS")
interface ExceptionBundle

{
ExceptionBundle EXCEPTIONS =

Messages.getBundle(ExceptionBundle.class);

@Message(id=143, value = "The config file could not be opened.")
IOException configFileAccessError();

The exception object can be obtained and thrown using the following code.
I throw ExceptionBundle.EXCEPTIONS.configFileAccessError();
This would display an exception message like the following:

Exception in thread "main" java.io.IOException: ACCTS000143: The config
file could not be opened.

at com.company.accounts.Main.openCustomProperties(Main.java:78)

at com.company.accounts.Main.go(Main.java:53)

at com.company.accounts.Main.main(Main.java:43)

Report a bug

6.2.5.2. Customize Exception Messages with Parameters

Exception bundle methods that define exceptions can specify parameters to pass additional
information to be displayed in the exception message. Where the parameters appear in the exception
message is specified in the message itself using either explicit or ordinary indexing.

The following procedure shows the steps required to use method parameters to customize method
exceptions.

Procedure 6.11. Customize an exception message with parameters

1. Add parameters to method definition
Parameters of any type can be added to the method definition. Regardless of type, the String
representation of the parameter is what is displayed in the message.

2. Add parameter references to the exception message
References can use explicit or ordinary indexes.

113

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5191-591687+%5BLatest%5D&comment=Title%3A+Add+Message+Ids+and+Project+Codes+to+Exception+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5191-591687+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

o Touse ordinary indexes, insert the characters %s in the message string where you want
each parameter to appear. The first instance of %s will insert the first parameter, the
second instance will insert the second parameter, and so on.

o To use explicit indexes, insert the characters %{#} in the message where #is the number
of the parameter you want to appear.

Using explicit indexes allows the parameter references in the message to be in a different
order than they are defined in the method. This is important for translated messages which
may require different ordering of parameters.

IMPORTANT

The number of parameters must match the number of references to the parameters in
the specified message or the code will not compile. A parameter marked with the
@Cause annotation is not included in the number of parameters.

Example 6.4. Using ordinary indexes

@Message(id=143, value = "The config file %s could not be opened.™")
IOException configFileAccessError(File config);

Example 6.5. Using explicit indexes

@Message(id=143, value = "The config file %{1} could not be opened.")
IOException configFileAccessError(File config);

Report a bug

6.2.5.3. Specify One Exception as the Cause of Another Exception

Exceptions returned by exception bundle methods can have another exception specified as the
underlying cause. This is done by adding a parameter to the method and annotating the parameter
with @Cause. This parameter is used to pass the causing exception. This parameter cannot be
referenced in the exception message.

The following procedure shows how to update a method from an exception bundle using the @Cause

parameter to indicate the causing exception. It is assumed that you have already created an exception
bundle to which you want to add this functionality.

Procedure 6.12. Specify one exception as the cause of another exception

1. Add the parameter
Add the a parameter of the type Throwable or a sub-class to the method.

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError (Throwable cause, String msg);

2. Add the annotation
Add the @Cause annotation to the parameter.

114

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5195-591687+%5BLatest%5D&comment=Title%3A+Customize+Exception+Messages+with+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5195-591687+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION

import org.jboss.logging.Cause

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calculationError (@Cause Throwable cause, String
msg);

3. Invoke the method
Invoke the interface method to obtain an exception object. The most common use case is to
throw a new exception from a catch block using the caught exception as the cause.

try
{

}

catch(Exception ex)

{
throw ExceptionBundle.EXCEPTIONS.calculationError(

ex, "calculating payment due
per day");
}

Example 6.6. Specify one exception as the cause of another exception

This exception bundle defines a single method that returns an exception of type
ArithmeticException.

@MessageBundle(projectCode = "TPS")
interface CalcExceptionBundle

{
CalcExceptionBundle EXCEPTIONS =

Messages.getBundle(CalcExceptionBundle.class);

@Message(id=328, value = "Error calculating: %s.")
ArithmeticException calcError(@Cause Throwable cause, String value);

(o

This code snippet performs an operation that throws an exception because it attempts to divide an
integer by zero. The exception is caught and a new exception is created using the first one as the
cause.

int totalDue = 5;
int daysToPay = 0;
int amountPerDay;
try

{

}

catch (Exception ex)

{

amountPerDay = totalDue/daysToPay;

throw CalcExceptionBundle.EXCEPTIONS.calcError(ex, "payments per
day");
}

115

Development Guide

Exception in thread "main" java.lang.ArithmeticException: TPS000328:
Error calculating: payments per day.

at com.company.accounts.Main.go(Main.java:58)

at com.company.accounts.Main.main(Main.java:43)

Caused by: java.lang.ArithmeticException: / by zero

at com.company.accounts.Main.go(Main.java:54)

This is what the exception message looks like:
... 1 more

Report a bug
6.2.6. Reference

6.2.6.1. JBoss Logging Tools Maven Configuration

To build a Maven project that uses JBoss Logging Tools for internationalization you must make the
following changes to the project's configuration in the pom. xml file.

Refer to the logging-tools quick start for an example of a complete working pom.xml file.

1. JBoss Maven Repository must be enabled for the project. Refer to Section 2.3.2, “Configure
the JBoss EAP 6 Maven Repository Using the Maven Settings”.

2. The Maven dependencies for jboss-loggingand jboss-logging-processor mustbe
added. Both of dependencies are available in JBoss EAP 6 so the scope element of each can be
set to provided as shown.

<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging-processor</artifactId>
<version>1.0.0.Final</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupId>org.jboss.logging</groupId>
<artifactId>jboss-logging</artifactId>
<version>3.1.0.GA</version>
<scope>provided</scope>

</dependency>

3. The maven-compiler-plugin must be at least version 2.2 and be configured for target
and generated sources of 1. 6.

<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>

<source>1.6</source>

<target>1.6</target>
</configuration>

116

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5206-591686+%5BLatest%5D&comment=Title%3A+Specify+One+Exception+as+the+Cause+of+Another+Exception%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5206-591686+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 6. INTERNATIONALIZATION AND LOCALIZATION
I </plugin>
Report a bug

6.2.6.2. Translation Property File Format

The property files used for translations of messages in JBoss Logging Tools are standard Java
property files. The format of the file is the simple line-oriented, key=value pair format described in
the documentation for the java.util.Properties class,
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html.

The file name format has the following format:
I InterfaceName.il18n_locale_COUNTRY_VARIANT.properties

e InterfaceName is the name of the interface that the translations apply to.
e locale, COUNTRY, and VARIANT identify the regional settings that the translation applies to.

e locale and COUNTRY specify the language and country using the ISO-639 and 1ISO-3166
Language and Country codes respectively. COUNTRY is optional.

e VARIANT is an optional identifier that can be used to identify translations that only apply to a
specific operating system or browser.

The properties contained in the translation file are the names of the methods from the interface being
translated. The assigned value of the property is the translation. If a method is overloaded then this is
indicated by appending a dot and then the number of parameters to the name. Methods for translation
can only be overloaded by supplying a different number of parameters.

Example 6.7. Sample Translation Properties File

File name: GreeterService.i18n_fr_FR_POSIX.properties.

Message: Hello message sent.

Level: Logger.Level.INFO
logHelloMessageSent=Bonjour message envoyeé.

Report a bug

6.2.6.3. JBoss Logging Tools Annotations Reference

The following annotations are defined in JBoss Logging for use with internationalization and
localization of log messages, strings, and exceptions.

Table 6.1. JBoss Logging Tools Annotations

Annotation Target Description Attributes
@MessageBundle Interface Defines the interface as a projectCod
Message Bundle. e

17

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4896-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Maven+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4896-591677+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+6723-591752+%5BLatest%5D&comment=Title%3A+Translation+Property+File+Format%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=6723-591752+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Annotation Target
@MessagelLogger Interface
@Message Method
@LogMessage Method
@Cause Parameter
@Param Parameter

Report a bug

118

Description

Defines the interface as a
Message Logger.

Can be used in Message Bundles
and Message Loggers. In a
Message Logger it defines a
method as being a localized
logger. In a Message Bundle it
defines the method as being one
that returns a localized String or
Exception object.

Defines a method in a Message
Logger as being a logging
method.

Defines a parameter as being one
that passes an Exception as the
cause of either a Log message or
another Exception.

Defines a parameter as being one
that is passed to the constructor
of the Exception.

Attributes

projectCod
e

value, id

level
(default INFO)

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4895-591677+%5BLatest%5D&comment=Title%3A+JBoss+Logging+Tools+Annotations+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4895-591677+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

CHAPTER 7. ENTERPRISE JAVABEANS

7.1.INTRODUCTION

7.1.1. Overview of Enterprise JavaBeans

Enterprise JavaBeans (EJB) 3.1 is an API for developing distributed, transactional, secure and portable
Java EE applications through the use of server-side components called Enterprise Beans. Enterprise
Beans implement the business logic of an application in a decoupled manner that encourages reuse.
Enterprise JavaBeans 3.1 is documented as the Java EE specification JSR-318.

JBoss EAP 6 has full support for applications built using the Enterprise JavaBeans 3.1 specification.

Report a bug

7.1.2. EJB 3.1 Feature Set

The following features are supported in EJB 3.1
e Session Beans
e Message Driven Beans
e No-interface views
e localinterfaces
e remote interfaces
o JAX-WS web services
o JAX-RS web services
e Timer Service
e Asynchronous Calls
e |Interceptors
e RMI/IIOP interoperability
e Transaction support
e Security
e Embeddable API

The following features are supported in EJB 3.1 but are proposed for "pruning". This means that these
features may become optional in Java EE 7.

e Entity Beans (container and bean-managed persistence)
e EJB 2.1 Entity Bean client views

e EJB Query Language (EJB QL)

119

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4525-591667+%5BLatest%5D&comment=Title%3A+Overview+of+Enterprise+JavaBeans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4525-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

o JAX-RPC based Web Services (endpoints and client views)

Report a bug

7.1.3. EJB 3.1 Lite

EJB Lite is a sub-set of the EJB 3.1 specification. It provides a simpler version of the full EJB 3.1
specification as part of the Java EE 6 web profile.

EJB Lite simplifies the implementation of business logic in web applications with enterprise beans by:
1. Only supporting the features that make sense for web-applications, and
2. allowing EJBs to be deployed in the same WAR file as a web-application.

Report a bug

7.1.4. EJB 3.1 Lite Features

EJB Lite includes the following features:
e Stateless, stateful, and singleton session beans
e Local business interfaces and "no interface" beans
e |Interceptors
e Container-managed and bean-managed transactions
e Declarative and programmatic security
e Embeddable API
The following features of EJB 3.1 are specifically not included:
e Remote interfaces
o RMI-IIOP Interoperability
o JAX-WS Web Service Endpoints
e EJB Timer Service
o Asynchronous session bean invocations
e Message-driven beans

Report a bug

7.1.5. Enterprise Beans

Enterprise beans are server-side application components as defined in the Enterprise JavaBeans
(EJB) 3.1 specification, JSR-318. Enterprise beans are designed for the implementation of application
business logic in a decoupled manner to encourage reuse.

Enterprise beans are written as Java classes and annotated with the appropriate EJB annotations.
They can be deployed to the application server in their own archive (a JAR file) or be deployed as part

120

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4533-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Feature+Set%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4533-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4529-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Lite%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4529-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4531-591667+%5BLatest%5D&comment=Title%3A+EJB+3.1+Lite+Features%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4531-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

of a Java EE application. The application server manages the lifecycle of each enterprise bean and
provides services to them such as security, transactions, and concurrency management.

An enterprise bean can also define any number of business interfaces. Business interfaces provide
greater control over which of the bean's methods are available to clients and can also allow access to

clients running in remote JVMs.

There are three types of Enterprise Bean: Session beans, Message-driven beans and Entity beans.

IMPORTANT

Entity beans are now deprecated in EJB 3.1 and Red Hat recommends the use of JPA
entities instead. Red Hat only recommends the use of Entity beans for backwards
compatibility with legacy systems.

Report a bug

7.1.6. Overview of Writing Enterprise Beans

Enterprise beans are server-side components designed to encapsulate business logic in a manner
decoupled from any one specific application client. By implementing your business logic within
enterprise beans you will be able to reuse those beans in multiple applications.

Enterprise beans are written as annotated Java classes and do not have to implement any specific EJB
interfaces or be sub-classed from any EJB super classes to be considered an enterprise bean.

EJB 3.1 enterprise beans are packaged and deployed in Java archive (JAR) files. An enterprise bean
JAR file can be deployed to your application server, or included in an enterprise archive (EAR) file and
deployed with that application. It is also possible to deploy enterprise beans in a WAR file along side a
web application.

Report a bug
7.1.7. Session Bean Business Interfaces

7.1.7.1. Enterprise Bean Business Interfaces

An EJB business interface is a Java interface written by the bean developer which provides
declarations of the public methods of a session bean that are available for clients. Session beans can
implement any number of interfaces including none (a "no-interface" bean).

Business interfaces can be declared as local or remote interfaces but not both.

Report a bug

7.1.7.2. EJB Local Business Interfaces

An EJB local business interface declares the methods which are available when the bean and the client
are in the same JVM. When a session bean implements a local business interface only the methods
declared in that interface will be available to clients.

Report a bug

7.1.7.3. EJB Remote Business Interfaces

121

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5089-591681+%5BLatest%5D&comment=Title%3A+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5089-591681+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5090-626311+%5BLatest%5D&comment=Title%3A+Overview+of+Writing+Enterprise+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5090-626311+31+Mar+2014+15%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5096-591681+%5BLatest%5D&comment=Title%3A+Enterprise+Bean+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5096-591681+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5354-591693+%5BLatest%5D&comment=Title%3A+EJB+Local+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5354-591693+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

An EJB remote business interface declares the methods which are available to remote clients. Remote
access to a session bean that implements a remote interface is automatically provided by the EJB
container.

A remote client is any client running in a different JVM and can include desktop applications as well as
web applications, services and enterprise beans deployed to a different application server.

Local clients can access the methods exposed by a remote business interface. This is done using the
same methods as remote clients and incurs all the normal overhead of making a remote request.

Report a bug

7.1.7.4. EJB No-interface Beans

A session bean that does not implement any business interfaces is called a no-interface bean. All of the
public methods of no-interface beans are accessible to local clients.

A session bean that implements a business interface can also be written to expose a "no-interface"
view.

Report a bug

7.2. CREATING ENTERPRISE BEAN PROJECTS

7.2.1. Create an EJB Archive Project Using Red Hat JBoss Developer Studio

This task describes how to create an Enterprise JavaBeans (EJB) project in Red Hat JBoss Developer
Studio.

Prerequisites

e A server and server runtime for JBoss EAP 6 has been set up.

Procedure 7.1. Create an EJB Project in Red Hat JBoss Developer Studio

1. Create new project
To open the New EJB Project wizard, navigate to the File menu, select New, and then EJB
Project.

122

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5355-591693+%5BLatest%5D&comment=Title%3A+EJB+Remote+Business+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5355-591693+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5356-591693+%5BLatest%5D&comment=Title%3A+EJB+No-interface+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5356-591693+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

EJBE Project
€ Name cannot be empty.

Project name: | |

-Project location

Use default location

Location: | home/student/ workspace | | Erowse...

-Target runtime

| JBoss EAP 6.0 Runtime S | | New Runtime. ..

-EJB module version

{3

3.1

-Configuration

| Default Gonfiguration for JBoss EAP 6.0 Runtime S | | Modify...

A good starting point for working with JBoss EAP 6.0 Huntime runtime. Additional
facets can later be installed to add new functionality to the project.

-EAR membership
[] Add project to an EAR

EAR project name: |EAR b | |I‘-— Project... |
Working sets |
@ < Back || Mext | | Cancel | | Finist

Figure 7.1. New EJB Project wizard

2. Specify Details
Supply the following details:

o Project name.

As well as the being the name of the project that appears in Red Hat JBoss Developer
Studio this is also the default filename for the deployed JAR file.

o Project location.

123

Development Guide

The directory where the project's files will be saved. The default is a directory in the
current workspace.

o Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

o EJB module version. This is the version of the EJB specification that your enterprise beans
will comply with. Red Hat recommends using 3. 1.

o Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Java Build Configuration
This screen allows you to customize the directories will contain Java source files and the
directory where the built output is placed.

Leave this configuration unchanged and click Next.

4. EJB Module settings
Check the Generate ejb-jar.xml deployment descriptor checkbox if a deployment
descriptor is required. The deployment descriptor is optional in EJB 3.1 and can be added later
if required.

Click Finish and the project is created and will be displayed in the Project Explorer.

124

CHAPTER 7. ENTERPRISE JAVABEANS

File Edit Navigate Search Project Run Window He

| rav s o | Brev | 0|
r% Project Explorer 32 - = Type Hieramhﬂ =g
= ~

- 7 payment-arrangments

< (@) Deployment Descriptor: payment-arrangments
[Entity Beans (1.x-2.x)
3 Message-Driven Beans
L@ Session Beans
= A JAX-WS Web Services
(4% Service Endpoint Interfaces
= Web Services
< [ejbModule
v = META-INF
¥ ejb-jar.xml
MANIFEST.MF
P = JRE System Library [java-1.6.0-openjdk-1.6.0.0.x8¢
[» =i |Boss Enterprise Application Platform 6.x Runtime
=i EAR Libraries
P &= build

Figure 7.2. Newly created EJB Project in the Project Explorer

. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking on the server you want to deploy the built
artifact to in the server tab, and select "Add and Remove".

Select the resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

125

Development Guide

Add and Remove
Modify the resources that are configured on the server =]

Move resources to the right to configure them on the server

Available: Configured:

—

[Add >

Add All ==

If server is started, publish changes immediately

@ Cancel l [Finish

Figure 7.3. Add and Remove dialog

Result

You now have an EJB Project in Red Hat JBoss Developer Studio that can build and deploy to the
specified server.

If no enterprise beans are added to the project then Red Hat JBoss Developer Studio will display the
warning "An EJB module must contain one or more enterprise beans." This warning will disappear once
one or more enterprise beans have been added to the project.

Report a bug

7.2.2. Create an EJB Archive Project in Maven

This task demonstrates how to create a project using Maven that contains one or more enterprise
beans packaged in a JAR file.

Prerequisites:

e Maven is already installed.

e You understand the basic usage of Maven.

126

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5385-681233+%5BLatest%5D&comment=Title%3A+Create+an+EJB+Archive+Project+Using+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5385-681233+04+Jul+2014+00%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

Procedure 7.2. Create an EJB Archive project in Maven

1. Create the Maven project
An EJB project can be created using Maven's archetype system and the ejb-javaee6
archetype. To do this run the mvn command with parameters as shown:

mvn archetype:generate -
DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=ejb-javaee6

Maven will prompt you for the groupId, artifactId, version and package for your
project.

[localhost]$ mvn archetype:generate -
DarchetypeGroupId=org.codehaus.mojo.archetypes -
DarchetypeArtifactId=ejb-javaee6

[INFO] Scanning for projects...

[INFO]

=1
[INFO]

[INFO] >>> maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom >>>

[INFO]

[INFO] <<< maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom <<<

[INFO]

[INFO] --- maven-archetype-plugin:2.0:generate (default-cli) @
standalone-pom ---

[INFO] Generating project in Interactive mode

[INFO] Archetype [org.codehaus.mojo.archetypes:ejb-javaee6:1.5]
found in catalog remote

Define value for property 'groupId': : com.shinysparkly
Define value for property 'artifactId': : payment-arrangments
Define value for property 'version': 1.0-SNAPSHOT:

Define value for property 'package': com.shinysparkly:

Confirm properties configuration:
groupId: com.company

artifactId: payment-arrangments
version: 1.0-SNAPSHOT

package: com.company.collections

[INFO] =------c-cccemcamacececcccccacccaccccccacacecscaccccanac--
[INFO] Total time: 32.440s

[INFO] Finished at: Mon Oct 31 10:11:12 EST 2011

[INFO] Final Memory: 7M/81M

[INFO] == - o- oo oo mioaeoiiiiicocoaiciccocoaoccccacccccooanes

[localhost]$

127

Development Guide

2. Add your enterprise beans
Write your enterprise beans and add them to the project under the src/main/java directory
in the appropriate sub-directory for the bean's package.

3. Build the project
To build the project, run the mvn package command in the same directory as the pom.xml

file. This will compile the Java classes and package the JAR file. The built JAR file is named
artifactId-version.jar andis placedinthe target/ directory.

RESULT: You now have a Maven project that builds and packages a JAR file. This project can contain
enterprise beans and the JAR file can be deployed to an application server.

Report a bug

7.2.3. Create an EAR Project containing an EJB Project

This task describes how to create a new Enterprise Archive (EAR) project in Red Hat JBoss Developer
Studio that contains an EJB Project.

Prerequisites

e A server and server runtime for JBoss EAP 6 has been set up. Refer to Section 1.3.1.5, “Add the
JBoss EAP Server Using Define New Server”.

Procedure 7.3. Create an EAR Project containing an EJB Project

1. Open the New EAR Application Project Wizard
Navigate to the File menu, select New, then Project and the New Project wizard appears.
Select Java EE/Enterprise Application Project and click Next.

128

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5099-591683+%5BLatest%5D&comment=Title%3A+Create+an+EJB+Archive+Project+in+Maven%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5099-591683+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

EAR Application Project - g
PP] (_L

€ Name cannot be empty. |

Project name: | | |

-Project location

Use default location

. . q r = 1 I
Location: | home/student/workspace/Collections App | | Browse...

-Target runtime

| JBoss EAP 6.0 Runtime S | | New Runtime. ..

-EAR version

<

6.0

-Configuration

| Default Gonfiguration for JBoss EAP 6.0 Runtime S | | Modify...

A good starting point for working with JBoss EAP 6.0 Huntime runtime. Additional
facets can later be installed to add new functionality to the project.

-“Working sets

[| Add project to working sets

1A/ ol | . e —
\Warking sets: | - | | Select...

Figure 7.4. New EAR Application Project Wizard

2. Supply details
Supply the following details:

o Project name.

As well as the being the name of the project that appears in Red Hat JBoss Developer
Studio this is also the default filename for the deployed EAR file.

o Project location.

129

Development Guide

The directory where the project's files will be saved. The default is a directory in the
current workspace.

o Target Runtime.

This is the server runtime used for the project. This will need to be set to the same JBoss
EAP 6 runtime used by the server that you will be deploying to.

o EAR version.

This is the version of the Java Enterprise Edition specification that your project will
comply with. Red Hat recommends using 6.

o Configuration. This allows you to adjust the supported features in your project. Use the
default configuration for your selected runtime.

Click Next to continue.

3. Add a new EJB Module
New Modules can be added from the Enterprise Application page of the wizard. To add a
new EJB Project as a module follow the steps below:

a. Add new EJB Module
Click New Module, uncheck Create Default Modules checkbox, select the
Enterprise Java Bean and click Next. The New EJB Project wizard appears.

b. Create EJB Project
New EJB Project wizard is the same as the wizard used to create new standalone EJB
Projects and is described in Section 7.2.1, “Create an EJB Archive Project Using Red Hat
JBoss Developer Studio”.

The minimal details required to create the project are:
m Project name
m Target Runtime
m EJB Module version
m Configuration

All the other steps of the wizard are optional. Click Finish to complete creating the EJB
Project.

The newly created EJB project is listed in the Java EE module dependencies and the checkbox
is checked.

4. Optional: add an application.xml deployment descriptor
Check the Generate application.xml deployment descriptor checkboxif oneis
required.

5. Click Finish
Two new project will appear, the EJB project and the EAR project

6. Add Build Artifact to Server for Deployment
Open the Add and Remove dialog by right-clicking in the Servers tab on the server you
want to deploy the built artifact to in the server tab, and select Add and Remove.

130

CHAPTER 7. ENTERPRISE JAVABEANS

Select the EAR resource to deploy from the Available column and click the Add button. The
resource will be moved to the Configured column. Click Finish to close the dialog.

Add and Remove
Modify the resources that are configured on the server =]

Move resources to the right to configure them on the server
Available: Configured:

(& CollectionsAppE|B

=< Remove l

<<= Remove All

If server is started, publish changes immediately

@ Cancel l [Finish

Figure 7.5. Add and Remove dialog

Result

You now have an Enterprise Application Project with a member EJB Project. This will build and deploy
to the specified server as a single EAR deployment containing an EJB subdeployment.

Report a bug

7.2.4. Add a Deployment Descriptor to an EJB Project

An EJB deployment descriptor can be added to an EJB project that was created without one. To do
this, follow the procedure below.

Perquisites:

o You have a EJB Project in Red Hat JBoss Developer Studio to which you want to add an EJB
deployment descriptor.

Procedure 7.4. Add an Deployment Descriptor to an EJB Project

131

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5098-681236+%5BLatest%5D&comment=Title%3A+Create+an+EAR+Project+containing+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5098-681236+04+Jul+2014+00%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

1. Open the Project
Open the project in Red Hat JBoss Developer Studio.

2. Add Deployment Descriptor

Right-click on the Deployment Descriptor folder in the project view and select Generate
Deployment Descriptor Stub.

[+ Project Explorer £2 g % ¥ =0

=~ f';" payment-arrangement

b Deployment Descriptor: payment-arrangement

[A JAX-WS Web Services >
¥ (# ejbModule Import...
v (= META-INF Export >
MAMIFEST.MF
P =l JRE System Library [java-1.6.0-sun-1.6.0.29.x8
> =i JBoss Enterprise Application Platform 6.x Runt
=, EAR Libraries P
b = build Run As Ty
Debug As >
Profile As >

Figure 7.6. Adding a Deployment Descriptor

The new file,ejb-jar.xml, is created in ejbModule/META-INF/. Double-clicking on the
Deployment Descriptor folder in the project view will also open this file.

Report a bug

7.3. SESSION BEANS

7.3.1. Session Beans

Session Beans are Enterprise Beans that encapsulate a set of related business processes or tasks and
are injected into the classes that request them. There are three types of session bean: stateless,
stateful, and singleton.

Report a bug

7.3.2. Stateless Session Beans

Stateless session beans are the simplest yet most widely used type of session bean. They provide
business methods to client applications but do not maintain any state between method calls. Each
method is a complete task that does not rely on any shared state within that session bean. Because
there is no state, the application server is not required to ensure that each method call is performed on
the same instance. This makes stateless session beans very efficient and scalable.

Report a bug

7.3.3. Stateful Session Beans

132

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5386-681237+%5BLatest%5D&comment=Title%3A+Add+a+Deployment+Descriptor+to+an+EJB+Project%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5386-681237+04+Jul+2014+00%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4527-591667+%5BLatest%5D&comment=Title%3A+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4527-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5236-591689+%5BLatest%5D&comment=Title%3A+Stateless+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5236-591689+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

Stateful session beans are Enterprise Beans that provide business methods to client applications and
maintain conversational state with the client. They should be used for tasks that must be done in
several steps (method calls), each of which replies on the state of the previous step being maintained.
The application server ensures that each client receives the same instance of a stateful session bean
for each method call.

Report a bug

7.3.4. Singleton Session Beans

Singleton session beans are session beans that are instantiated once per application and every client
request for a singleton bean goes to the same instance. Singleton beans are an implementation of the
Singleton Design Pattern as described in the book Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides; published by Addison-
Wesley in 1994,

Singleton beans provide the smallest memory footprint of all the session bean types but must be
designed as thread-safe. EJB 3.1 provides container-managed concurrency (CMC) to allow developers
to implement thread safe singleton beans easily. However singleton beans can also be written using
traditional multi-threaded code (bean-managed concurrency or BMC) if CMC does not provide enough
flexibility.

Report a bug

7.3.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio

Red Hat JBoss Developer Studio has several wizards that can be used to quickly create enterprise
bean classes. The following procedure shows how to use the Red Hat JBoss Developer Studio wizards
to add a session bean to a project.

Prerequisites:

e You have a EJB or Dynamic Web Project in Red Hat JBoss Developer Studio to which you want
to add one or more session beans.

Procedure 7.5. Add Session Beans to a Project in Red Hat JBoss Developer Studio

1. Open the Project
Open the project in Red Hat JBoss Developer Studio.

2. Open the "Create EJB 3.x Session Bean" wizard
ToopentheCreate EJB 3.x Session Bean wizard, navigate to the File menu, select
New, and then Session Bean (EJB 3.x).

133

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5237-591689+%5BLatest%5D&comment=Title%3A+Stateful+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5237-591689+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5238-591689+%5BLatest%5D&comment=Title%3A+Singleton+Session+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5238-591689+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Create EJB 3.x Session Bean

Specify class file destination.

Project: payment-arrangement -

Source folder: |/payment-arrangement/e/bModule | Browse... |
Java package: | | Browse... |
Class name:

Superclass: | Browse... |
State type: Stateless -

Create business interface

[] Bemaote |

[] Local |

| No-interface View

[
|—.r

@

Figure 7.7. Create EJB 3.x Session Bean wizard

3. Specify class information
Supply the following details:

o Project
Verify the correct project is selected.

o Source folder

Cancel Finish

This is the folder that the Java source files will be created in. This should not usually need

to be changed.
o Package
Specify the package that the class belongs to.

o Class name

Specify the name of the class that will be the session bean.

134

o

CHAPTER 7. ENTERPRISE JAVABEANS

Superclass

The session bean class can inherit from a super class. Specify that here if your session has
a super class.

State type
Specify the state type of the session bean: stateless, stateful, or singleton.
Business Interfaces

By default the No-interface box is checked so no interfaces will be created. Check the
boxes for the interfaces you wish to define and adjust the names if necessary.

Remember that enterprise beans in a web archive (WAR) only support EJB 3.1 Lite and this
does not include remote business interfaces.

Click Next.

4. Session Bean Specific Information
You can enter in additional information here to further customize the session bean. It is not
required to change any of the information here.

Items that you can change are:

o

o

o

Bean name.

Mapped name.

Transaction type (Container managed or Bean managed).
Additional interfaces can be supplied that the bean must implement.

You can also specify EJB 2.x Home and Component interfaces if required.

5. Finish
Click Finish and the new session bean will be created and added to the project. The files for
any new business interfaces will also be created if they were specified.

RESULT: A new session bean is added to the project.

135

Development Guide

File Edit Source Refactor Navigate Search Project Run Window Help

=5 G| 0ovar Ggrev | PlY Bm o248 »n | | & e
[?5 Project Exp 22 . T2 Type Hiera] = 8| [J] InterestCalculator.java 2
<}==€> - package com.company.collections;
< {& payment-arrangement @ import javax.ejb.LocalBean;[]
b (@ Deployment Descriptor: payment-al o JHE
b A JAX-WS Web Services * Session Bean implementation class InterestCalculator
*f
~ @ejbModule @stateless
@LocalBean

~ f com.company.collections
P [J] InterestCalculatorLocal.java
P = META-INF

P =i)Boss Enterprise Application Platforr
=i EAR Libraries
P = build

P =i JRE System Library [java-1.6.0-open)

public class InterestCalculator implements InterestCalculatorLocal {

= ‘i**
* Default constructor.
*
= public InterestCalculator() {
// TODD Auto-generated constructor stub
1

Figure 7.8. New Session Bean in Red Hat JBoss Developer Studio

Report a bug

7.4. MESSAGE-DRIVEN BEANS

7.4.1. Message-Driven Beans

Message-driven Beans (MDBs) provide an event driven model for application development. The
methods of MDBs are not injected into or invoked from client code but are triggered by the receipt of
messages from a messaging service such as a Java Messaging Service (JMS) server. The Java EE 6
specification requires that JMS is supported but other messaging systems can be supported as well.

Report a bug

7.4.2. Resource Adapters

A resource adapter is a deployable Java EE component that provides communication between a Java
EE application and an Enterprise Information System (EIS) using the Java Connector Architecture
(JCA) specification. A resource adapter is often provided by EIS vendors to allow easy integration of
their products with Java EE applications.

An Enterprise Information System can be any other software system within an organization. Examples
include Enterprise Resource Planning (ERP) systems, database systems, e-mail servers and

proprietary messaging systems.

A resource adapter is packaged in a Resource Adapter Archive (RAR) file which can be deployed to
JBoss EAP 6. A RAR file may also be included in an Enterprise Archive (EAR) deployment.

Report a bug

7.4.3. Create a JMS-based Message-Driven Bean in Red Hat JBoss Developer Studio

This procedure shows how to add a JMS-based Message-Driven Bean to a project in Red Hat JBoss
Developer Studio. This procedure creates an EJB 3.x Message-Driven Bean that uses annotations.

136

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5440-681243+%5BLatest%5D&comment=Title%3A+Add+Session+Beans+to+a+Project+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5440-681243+04+Jul+2014+01%3A01+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4528-591667+%5BLatest%5D&comment=Title%3A+Message-Driven+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4528-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4516-591663+%5BLatest%5D&comment=Title%3A+Resource+Adapters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4516-591663+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

Prerequisites:
1. You must have an existing project open in Red Hat JBoss Developer Studio.
2. You must know the name and type of the JMS destination that the bean will be listening to.

3. Support for Java Messaging Service (JMS) must be enabled in the JBoss EAP 6 configuration
to which this bean will be deployed.

Procedure 7.6. Add a JMS-based Message-Driven Bean in Red Hat JBoss Developer Studio

1. Openthe Create EJB 3.x Message-Driven Bean Wizard
Go to File = New — Other. Select EJB/Message-Driven Bean (EJB 3.x) andclick the
Next button.

Create EJB 3.x Message-Driven Bean

Specify class file destination.

Project: lpayment—anangement - l

Source folder: /pay ment-arrangement/ejbModule | Browse... |
Java package: | | Browse... |
Class name:

Superclass: | Browse... |
Destination name:

| JMS
Destination type: [Queue ==
® < Back Cancel

Figure 7.9. Create EJB 3.x Message-Driven Bean Wizard

2. Specify class file destination details
There are three sets of details to specify for the bean class here: Project, Java class, and
message destination.

Project

o If multiple projects exist in the Workspace, ensure that the correct one is selected in

137

Development Guide

tne rroject menu.

o The folder where the source file for the new bean will be created is ejbModule under
the selected project's directory. Only change this if you have a specific requirement.

Java class

o The required fields are: Java package and class name.

o Itis not necessary to supply a Superclass unless the business logic of your
application requires it.

Message Destination

These are the details you must supply for a JMS-based Message-Driven Bean:

o Destination name. This is the queue or topic name that contains the messages that
the bean will respond to.

o By default the JMS checkbox is selected. Do not change this.

o SetDestination type to Queue or Topic as required.

Click the Next button.

3. Enter Message-Driven Bean specific information
The default values here are suitable for a JMS-based Message-Driven bean using Container-
managed transactions.

o Change the Transaction type to Bean if the Bean will use Bean-managed transactions.
o Change the Bean name if a different bean name than the class name is required.

o The JMS Message Listener interface will already be listed. You do not need to add or
remove any interfaces unless they are specific to your applications business logic.

o Leave the checkboxes for creating method stubs selected.
Click the Finish button.

Result: The Message-Driven Bean is created with stub methods for the default constructor and the
onMessage () method. A Red Hat JBoss Developer Studio editor window opened with the
corresponding file.

Report a bug

7.4.4. Enable EJB and MDB Property Substitution in an Application

A new feature in Red Hat JBoss Enterprise Application Platform allows you to enable property
substitution in EJBs and MDBs using the @ActivationConfigProperty and @Resource
annotations. Property substitution requires the following configuration and code changes.

e You must enable property substitution in the JBoss EAP server configuration file.

e You must define the system properties in the server configuration file or pass them as
arguments when you start the JBoss EAP server.

138

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5094-681244+%5BLatest%5D&comment=Title%3A+Create+a+JMS-based+Message-Driven+Bean+in+Red+Hat+JBoss+Developer+Studio%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5094-681244+04+Jul+2014+01%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

e You must modify the code to use the substitution variables.

Procedure 7.7. Implement Property Substitution in an MDB Application

The following code examples are based on the helloworld-mdb quickstart that ships with JBoss
EAP 6.3 or later. This topic shows you how to modify that quickstart to enable property substitution.

1. Configure the JBoss EAP server to enable property substitution.
The JBoss EAP server must be configured to enable property substitution. To do this, set the
<annotation-property-replacement> attribute in the ee subsystem of the server
configuration file to true.

a. Back up the server configuration file. The helloworld-mdb quickstart example requires
the full profile for a standalone server, so this is the
standalone/configuration/standalone-full.xml file. If you are running your
server in a managed domain, this is the domain/configuration/domain . xml file.

b. Start the JBoss EAP server with the full profile.

For Linux:

I EAP_HOME/bin/standalone.sh -c standalone-full.xml
For Windows:
I EAP_HOMEbin\standalone.bat -c standalone-full.xml
c. Launch the Management CLI using the command for your operating system.
For Linux:
I EAP_HOME/bin/jboss-cli.sh --connect
For Windows:

I EAP_HOME\bin\jboss-cli.bat --connect

d. Type the following command to enable annotation property substitution.

/subsystem=ee:write-attribute(name=annotation-property-
replacement, value=true)

e. You should see the following result:

I {"outcome" => "success"}

f. Review the changes to the JBoss EAP server configuration file. The ee subsystem should
now contain the following XML.

<subsystem xmlns="urn:jboss:domain:ee:1.2">
<spec-descriptor-property-replacement>false</spec-descriptor-

property-replacement>
<jboss-descriptor-property-replacement>true</jboss-

139

Development Guide

descriptor-property-replacement>

<annotation-property-replacement>true</annotation-property-

replacement>
</subsystem>

2. Define the system properties.
You can specify the system properties in the server configuration file or you can pass them as
command line arguments when you start the JBoss EAP server. System properties defined in
the server configuration file take precedence over those passed on the command line when
you start the server.

o Define the system properties in the server configuration file.

a. Start the JBoss EAP server and Management API as described in the previous step.

b. Use the following command syntax to configure a system property in the JBoss EAP
server:

I /system-property=PROPERTY_NAME :add(value=PROPERTY_VALUE)

For the helloworld-mdb quickstart, we configure the following system properties:

/system-
property=property.helloworldmdb.queue:add(value=java:/queue/HE
LLOWORLDMDBPropQueue)

/system-
property=property.helloworldmdb.topic:add(value=java:/topic/HE
LLOWORLDMDBPropTopic)

/system-
property=property.connection.factory:add(value=java:/Connectio
nFactory)

c. Review the changes to the JBoss EAP server configuration file. The following system
properties should now appear in the after the <extensions>.

<system-properties>
<property name="property.helloworldmdb.queue"
value="java:/queue/HELLOWORLDMDBPropQueue"/>
<property name="property.helloworldmdb.topic"
value="java:/topic/HELLOWORLDMDBPropTopic"/>
<property name="property.connection.factory"
value="java:/ConnectionFactory"/>
</system-properties>

o Passthe system properties as arguments on the command line when you start the JBoss
EAP server in the form of -DPROPERTY_NAME=PROPERTY_ VALUE. The following is an

example of how to pass the arguments for the system properties defined in the previous

step.

EAP_HOME/bin/standalone.sh -c standalone-full.xml -
Dproperty.helloworldmdb.queuejava:/queue/HELLOWORLDMDBPropQueue -
Dproperty.helloworldmdb.topic=java:/topic/HELLOWORLDMDBPropTopic
-Dproperty.connection.factory=java:/ConnectionFactory

140

CHAPTER 7. ENTERPRISE JAVABEANS

3. Modify the code to use the system property substitutions.
Replace hard-coded @ActivationConfigProperty and @Resource annotation values with
substitutions for the newly defined system properties. The following are examples of how to
change the helloworld-mdb quickstart to use the newly defined system property
substitutions within the annotations in the source code.

a. Change the @ActivationConfigProperty destination property valuein the
HelloWorldQueueMDB class to use the substitution for the system property. The
@MessageDriven annotation should now look like this:

@MessageDriven(name = "HelloWorldQueueMDB", activationConfig = {
@ActivationConfigProperty(propertyName = "destinationType",

propertyValue = "javax.jms.Queue"),
@ActivationConfigProperty(propertyName = "destination",

propertyValue = "${property.helloworldmdb.queue}"),
@ActivationConfigProperty(propertyName = "acknowledgeMode",

propertyValue = "Auto-acknowledge") })

b. Change the @ActivationConfigProperty destination property value in the
HelloWorldTopicMDB class to use the substitution for the system property. The
@MessageDriven annotation should now look like this:

@MessageDriven(name = "HelloWorldQTopicMDB", activationConfig = {
@ActivationConfigProperty(propertyName = "destinationType",

propertyValue = "javax.jms.Topic"),
@ActivationConfigProperty(propertyName = "destination",

propertyValue = "${property.helloworldmdb.topic}"),
@ActivationConfigProperty(propertyName = "acknowledgeMode",

propertyValue = "Auto-acknowledge") })

c. Change the @Resource annotations in the HellowWorldMDBServletClient class to use
the system property substitutions. The code should now look like this:

@Resource(mappedName = "${property.connection.factory}")
private ConnectionFactory connectionFactory;

@Resource(mappedName
private Queue queue;

"${property.helloworldmdb.queue}")

@Resource(mappedName
private Topic topic;

"${property.helloworldmdb.topic}")

d. Modify the hornetq-jms.xml file to use the system property substitution values.

<?xml version="1.0" encoding="UTF-8"?>
<messaging-deployment xmlns="urn:jboss:messaging-deployment:1.0">
<hornetqg-server>
<jms-destinations>
<jms-queue name="HELLOWORLDMDBQueue">
<entry name="${property.helloworldmdb.queue}"/>
</jms-queue>
<jms-topic name="HELLOWORLDMDBTopic'">
<entry name="${property.helloworldmdb.topic}"/>
</jms-topic>

141

Development Guide

</jms-destinations>
</hornetqg-server>
</messaging-deployment>

4. Deploy the application. The application will now use the values specified by the system
properties for the @Resource and @ActivationConfigProperty property values.

Report a bug

7.5. INVOKING SESSION BEANS

7.5.1. Invoke a Session Bean Remotely using JNDI

This task describes how to add support to a remote client for the invocation of session beans using
JNDI. The task assumes that the project is being built using Maven.

The ejb-remote quickstart contains working Maven projects that demonstrate this functionality. The
quickstart contains projects for both the session beans to deploy and the remote client. The code
samples below are taken from the remote client project.

This task assumes that the session beans do not require authentication.

! WARNING
Red Hat recommends that you explicitly disable SSL in favor of TLSv1.1 or TLSv1.2

in all affected packages.

Prerequisites

The following prerequisites must be satisfied before beginning:

e You must already have a Maven project created ready to use.

e Configuration for the JBoss EAP 6 Maven repository has already been added.

e The session beans that you want to invoke are already deployed.

e The deployed session beans implement remote business interfaces.

e The remote business interfaces of the session beans are available as a Maven dependency. If
the remote business interfaces are only available as a JAR file then it is recommended to add
the JAR to your Maven repository as an artifact. Refer to the Maven documentation for the

install:install-file goal for directions, http://maven.apache.org/plugins/maven-
install-plugin/usage.htmi

o You need to know the hostname and JNDI port of the server hosting the session beans.

To invoke a session bean from a remote client you must first configure the project correctly.

Procedure 7.8. Add Maven Project Configuration for Remote Invocation of Session Beans

142

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+30840-639225+%5BLatest%5D&comment=Title%3A+Enable+EJB+and+MDB+Property+Substitution+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30840-639225+09+May+2014+00%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://maven.apache.org/plugins/maven-install-plugin/usage.html

CHAPTER 7. ENTERPRISE JAVABEANS

1. Add the required project dependencies
The pom. xml for the project must be updated to include the necessary dependencies.

2. Add the jboss-ejb-client.properties file
The JBoss EJB client APl expects to find a file in the root of the project named jboss-ejb-
client.properties that contains the connection information for the JNDI service. Add this
file to the src/main/resources/ directory of your project with the following content.

In the following line,

set SSL_ENABLED to true for SSL

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLE

D=false

remote.connections=default

Uncomment the following

#
remote.connection
TLS=true
remote.connection
remote.connection
remote.connection

.default.

.default.
.default.
.default.

CY_NOANONYMOUS=false
Add any of the following SASL options if required

#

line to set SSL_STARTTLS to true
connect.options.org.xnio.Options
host=localhost

port = 4447
connect.options.org.xnio.Options

remote.connection.default.connect.options.org.xnio.Options
CY_NOANONYMOUS=false

#

remote.connection.default.connect.options.org.xnio.Options
CY_NOPLAINTEXT=false

#

remote.connection.default.connect.options.org.xnio.Options
LLOWED_MECHANISMS=JBOSS-LOCAL-USER

for SSL

.SSL_START

.SASL_POLI

.SASL_POLI

.SASL_POLI

.SASL_DISA

Change the host name and port to match your server. 4447 is the default port number. For a
secure connection, set the SSL_ENABLED line to true and uncomment the SSL_STARTTLS
line. The Remoting interface in the container supports secured and unsecured connections

using the same port.

3. Add dependencies for the remote business interfaces
Add the Maven dependencies to the pom. xml for the remote business interfaces of the

session beans.

<dependency>

<groupId>org.jboss.as.quickstarts</groupId>
<artifactId>jboss-ejb-remote-server-side</artifactId>

<type>ejb-client</type>

<version>${project.version}</version>

</dependency>

Now that the project has been configured correctly, you can add the code to access and invoke the

session beans.

Procedure 7.9. Obtain a Bean Proxy using JNDI and Invoke Methods of the Bean

1. Handle checked exceptions
Two of the methods used in the following code (InitialContext () and lookup()) have a

143

Development Guide

checked exception of type javax.naming.NamingException. These method calls must
either be enclosed in a try/catch block that catches NamingException or in a method that is
declared to throw NamingException. The ejb-remote quickstart uses the second
technique.

. Create a JNDI Context

A JNDI Context object provides the mechanism for requesting resources from the server.
Create a JNDI context using the following code:

final Hashtable jndiProperties = new Hashtable();
jndiProperties.put(Context.URL_PKG_PREFIXES,
"org.jboss.ejb.client.naming");

final Context context = new InitialContext(jndiProperties);

The connection properties for the JNDI service are read from the jboss-ejb-
client.propertiesfile.

. Use the JNDI Context's lookup() method to obtain a bean proxy

Invoke the 1lookup () method of the bean proxy and pass it the JNDI name of the session bean
you require. This will return an object that must be cast to the type of the remote business
interface that contains the methods you want to invoke.

final RemoteCalculator statelessRemoteCalculator =

(RemoteCalculator) context.lookup(
"ejb:/jboss-ejb-remote-server-side//CalculatorBean!" +
RemoteCalculator.class.getName());

Session bean JNDI names are defined using a special syntax. For more information, see
Section 7.8.1, “EJB JNDI Naming Reference” .

. Invoke methods

Now that you have a proxy bean object you can invoke any of the methods contained in the
remote business interface.

int a = 204;

int b = 340;

System.out.println("Adding " + a + " and " + b + " via the remote
stateless calculator deployed on the server");

int sum = statelessRemoteCalculator.add(a, b);
System.out.println("Remote calculator returned sum = " + sum);

The proxy bean passes the method invocation request to the session bean on the server,
where it is executed. The result is returned to the proxy bean which then returns it to the
caller. The communication between the proxy bean and the remote session bean is transparent
to the caller.

You should now be able to configure a Maven project to support invoking session beans on a remote
server and write the code invoke the session beans methods using a proxy bean retrieved from the
server using JNDI.

Report a bug

7.5.2. About EJB Client Contexts

144

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5719-724696+%5BLatest%5D&comment=Title%3A+Invoke+a+Session+Bean+Remotely+using+JNDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5719-724696+10+Nov+2014+14%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

JBoss EAP 6 introduced the EJB client API for managing remote EJB invocations. The JBoss EJB
client APl uses the EJBClientContext, which may be associated with and be used by one or more
threads concurrently. The means an EJBClientContext can potentially contain any number of EJB
receivers. An EJB receiver is a component that knows how to communicate with a server that is
capable of handling the EJB invocation. Typically, EJB remote applications can be classified into the
following:

e A remote client, which runs as a standalone Java application.
e A remote client, which runs within another JBoss EAP 6 instance.

Depending on the type of remote client, from an EJB client API point of view, there can potentially be
more than one EJBClientContext within a JVM.

While standalone applications typically have a single EJBClientContext that may be backed by any
number of EJB receivers, this isn't mandatory. If a standalone application has more than one
EJBClientContext, an EJB client context selector is responsible for returning the appropriate context.

In case of remote clients that run within another JBoss EAP 6 instance, each deployed application will
have a corresponding EJB client context. Whenever that application invokes another EJB, the
corresponding EJB client context is used to find the correct EJB receiver, which then handles the
invocation.

Report a bug

7.5.3. Considerations When Using a Single EJB Context

Summary

You must consider your application requirements when using a single EJB client context with
standalone remote clients. For more information about the different types of remote clients, refer to:
Section 7.5.2, “About EJB Client Contexts” .

Typical Process for a Remote Standalone Client with a Single EJB Client Context

A remote standalone client typically has just one EJB client context backed by any number of EJB
receivers. The following is an example of a standalone remote client application:

public class MyApplication {
public static void main(String args[]) {
final javax.naming.Context ctxOne = new
javax.naming.InitialContext();
final MyBeanInterface beanOne =
ctx0One.lookup("ejb:app/module/distinct/bean!interface");
beanOne.doSomething();

Remote client JNDI lookups are usually backed by a jboss-ejb-client.properties file, which is
used to set up the EJB client context and the EJB receivers. This configuration also includes the
security credentials, which are then used to create the EJB receiver that connects to the JBoss EAP 6
server. When the above code is invoked, the EJB client API looks for the EJB client context, which is
then used to select the EJB receiver that will receive and process the EJB invocation request. In this
case, there is just the single EJB client context, so that context is used by the above code to invoke
the bean. The procedure to invoke a session bean remotely using JNDI is described in greater detail
here: Section 7.5.1, “Invoke a Session Bean Remotely using JNDI” .

145

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14184-592104+%5BLatest%5D&comment=Title%3A+About+EJB+Client+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14184-592104+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Remote Standalone Client Requiring Different Credentials

A user application may want to invoke a bean more than once, but connect to the JBoss EAP 6 server
using different security credentials. The following is an example of a standalone remote client
application that invokes the same bean twice:

public class MyApplication {
public static void main(String args[]) {
// Use the "foo" security credential connect to the server and
invoke this bean instance
final javax.naming.Context ctxOne = new
javax.naming.InitialContext();
final MyBeanInterface beanOne =
ctx0One.lookup("ejb:app/module/distinct/bean!interface");
beanOne.doSomething();

// Use the "bar" security credential to connect to the server and
invoke this bean instance

final javax.naming.Context ctxTwo = new
javax.naming.InitialContext();

final MyBeanInterface beanTwo =
ctxTwo.lookup("ejb:app/module/distinct/bean!interface");

beanTwo.doSomething();

In this case, the application wants to connect to the same server instance to invoke the EJB hosted on
that server, but wants to use two different credentials while connecting to the server. Because the
client application has a single EJB client context, which can have only one EJB receiver for each server
instance, this means the above code uses just one credential to connect to the server and the code
does not execute as the application expects it to.

Solution

Scoped EJB client contexts offer a solution to this issue. They provide a way to have more control over
the EJB client contexts and their associated JNDI contexts, which are typically used for EJB
invocations. For more information about scoped EJB client contexts, refer to Section 7.5.4, “Using
Scoped EJB Client Contexts” and Section 7.5.5, “Configure EJBs Using a Scoped EJB Client Context” .

Report a bug

7.5.4. Using Scoped EJB Client Contexts

Summary

To invoke an EJB In earlier versions of JBoss EAP 6, you would typically create a JNDI context and
pass it the PROVIDER_URL, which would point to the target server. Any invocations done on EJB
proxies that were looked up using that JNDI context, would end up on that server. With scoped EJB
client contexts, user applications have control over which EJB receiver is used for a specific
invocation.

Use Scoped EJB Client Context in a Remote Standalone Client

Prior to the introduction of scoped EJB client contexts, the context was typically scoped to the client
application. Scoped client contexts now allow the EJB client contexts to be scoped with the JNDI

146

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14185-592104+%5BLatest%5D&comment=Title%3A+Considerations+When+Using+a+Single+EJB+Context%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14185-592104+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

contexts. The following is an example of a standalone remote client application that invokes the same
bean twice using a scoped EJB client context:

public class MyApplication {
public static void main(String args[]) {

// Use the "foo" security credential connect to the server and
invoke this bean instance

final Properties ejbClientContextPropsOne =
getPropsForEJBClientContextOne():

final javax.naming.Context ctxOne = new
javax.naming.InitialContext(ejbClientContextPropsOne);

final MyBeanInterface beanOne =
ctxOne.lookup("ejb:app/module/distinct/bean!interface");

beanOne.doSomething();

ctxOne.close();

// Use the "bar" security credential to connect to the server and
invoke this bean instance

final Properties ejbClientContextPropsTwo =
getPropsForEJBClientContextTwo():

final javax.naming.Context ctxTwo = new
javax.naming.InitialContext(ejbClientContextPropsTwo);

final MyBeanInterface beanTwo =
ctxTwo.lookup("ejb:app/module/distinct/bean!interface");

beanTwo.doSomething();

ctxTwo.close();

To use the scoped EJB client context, you configure EJB client properties programmatically and pass
the properties on context creation. The properties are the same set of properties that are used in the
standard jboss-ejb-client.properties file. To scope the EJB client context to the JNDI context,
you must also specify the org. jboss.ejb.client.scoped.context property and set its value to
true. This property notifies the EJB client API that it must create an EJB client context, which is
backed by EJB receivers, and that the created context is then scoped or visible only to the JNDI
context that created it. Any EJB proxies looked up or invoked using this JNDI context will only know of
the EJB client context associated with this JNDI context. Other JNDI contexts used by the application
to lookup and invoke EJBs will not know about the other scoped EJB client contexts.

JNDI contexts that do not pass the org. jboss.ejb.client.scoped.context property and aren't
scoped to an EJB client context will use the default behavior, which is to use the existing EJB client
context that is typically tied to the entire application.

Scoped EJB client contexts provide user applications with the flexibility that was associated with the

JNP based JNDI invocations in previous versions of JBoss EAP. It provides user applications with more
control over which JNDI context communicates to which server and how it connects to that server.

147

Development Guide

NOTE

With the scoped context, the underlying resources are no longer handled by the
container or the API, so you must close the InitialContext whenitis no longer
needed. When the InitialContext is closed, the resources are released immediately.
The proxies that are bound to it are no longer valid and any invocation will throw an
Exception. Failure to close the InitialContext may result in resource and
performance issues.

Report a bug

7.5.5. Configure EJBs Using a Scoped EJB Client Context

Summary

EJBs can be configured using a map-based scoped context. This is achieved by programmatically
populating a Properties map using the standard properties found in the jboss-ejb-
client.properties, specifying true for the org. jboss.ejb.client.scoped.context
property, and passing the properties on the InitialContext creation.

The benefit of using a scoped context is that it allows you to configure access without directly
referencing the EJB or importing JBoss classes. It also provides a way to configure and load balance a
host at runtime in a multithreaded environment.

Procedure 7.10. Configure an EJB Using a Map-Based Scoped Context

1. Set the Properties
Configure the EJB client properties programmatically, specifying the same set of properties
that are used in the standard jboss-ejb-client.properties file. To enable the scoped
context, you must specify theorg. jboss.ejb.client.scoped.context property and set
its value to true. The following is an example that configures the properties programmatically.

// Configure EJB Client properties for the InitialContext
Properties ejbClientContextProps = new Properties();
ejbClientContextProps.put(“remote.connections”, ”namel”);
ejbClientContextProps.put(“remote.connection.namel.host”,”localhost”
)

ejbClientContextProps.put(“remote.connection.namel.port”,”4447");

// Property to enable scoped EJB client context which will be tied
to the JNDI context
ejbClientContextProps.put("org.jboss.ejb.client.scoped.context",
”true");

2. Pass the Properties on the Context Creation
// Create the context using the configured properties
InitialContext ic = new InitialContext(ejbClientContextProps);

MySLSB bean = ic.lookup("ejb:myapp/ejb//MySLSBBean!" +
MySLSB.class.getName());

Additional Information

148

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14186-592104+%5BLatest%5D&comment=Title%3A+Using+Scoped+EJB+Client+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14186-592104+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

e Contexts generated by lookup EJB proxies are bound by this scoped context and use only the
relevant connection parameters. This makes it possible to create different contexts to access
data within a client application or to independently access servers using different logins.

e Inthe client, both the scoped InitialContext and the scoped proxy are passed to threads,
allowing each thread to work with the given context. It is also possible to pass the proxy to
multiple threads that can use it concurrently.

e The scoped context EJB proxy is serialized on the remote call and then deserialized on the
server. When it is deserialized, the scoped context information is removed and it returns to its
default state. If the deserialized proxy is used on the remote server, because it no longer has
the scoped context that was used when it was created, this can resultin an
EJBCLIENT000025 error or possibly call an unwanted target by using the EJB name.

Report a bug

7.5.6. EJB Client Properties

Summary

The following tables list properties that can be configured programmatically or in the jboss-ejb-

client.propertiesfile.

EJB Client Global Properties

The following table lists properties that are valid for the whole library within the same scope.

Table 7.1. Global Properties

Property Name Description

endpoint.name

remote.connectio
nprovider.create
.options.org.xni
0.0ptions.SSL_EN
ABLED

deployment . node.
selector

Name of the client endpoint. If not set, the default value is client -endpoint

This can be helpful to distinguish different endpoint settings because the thread
name contains this property.

Boolean value that specifies whether the SSL protocol is enabled for all
connections.

'@ WARNING
Red Hat recommends that you explicitly disable SSL in

favor of TLSv1.1 or TLSv1.2 in all affected packages.

The fully qualified name of the implementation of
org.jboss.ejb.client.DeploymentNodeSelector.

This is used to load balance the invocation for the EJBs.

149

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14110-592100+%5BLatest%5D&comment=Title%3A+Configure+EJBs+Using+a+Scoped+EJB+Client+Context%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14110-592100+24+Feb+2014+07%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Property Name Description

invocation. timeo The timeout for the EJB handshake or method invocation request/response
ut cycle. The value is in milliseconds.

The invocation of any method throws a
java.util.concurrent.TimeoutException if the execution takes
longer than the timeout period. The execution completes and the server is not
interrupted.

reconnect . tasks. The timeout for the background reconnect tasks. The value is in milliseconds.

timeout
If a number of connections are down, the next client EJB invocation will use an

algorithm to decide if a reconnect is necessary to find the right node.

org.jbhoss.ejb.cl Boolean value that specifies whether to enable the scoped EJB client context.
ient.scoped.cont The default value is false.

ext
If set to true, the EJB Client will use the scoped context that is tied to the JNDI

context. Otherwise the EJB client context will use the global selector in the JVM
to determine the properties used to call the remote EJB and host.

EJB Client Connection Properties

The connection properties start with the prefix remote.connection.CONNECTION_NAME where the
CONNECTION_NAME is a local identifier only used to uniquely identify the connection.

Table 7.2. Connection Properties

Property Name Description

remote.connectio A comma-separated list of active connection-names. Each connection is
ns configured by using this name.

remote.connectio The host name or IP for the connection.
n.CONNECTION_NAM
E .host

remote.connectio The port for the connection. The default value is 4447.
n.CONNECTION_NAM
E.port

remote.connectio The user name used to authenticate connection security.
n.CONNECTION_NAM
E .username

remote.connectio The password used to authenticate the user.
n.CONNECTION_NAM
E.password

150

CHAPTER 7. ENTERPRISE JAVABEANS

Property Name Description

remote.connectio The timeout period for the initial connection. After that, the reconnect task will
n.CONNECTION_NAM periodically check whether the connection can be established. The value is in

E.connect.timeou milliseconds.
t

remote.connectio Full qualified name of the CallbackHandler class. It will be used to establish
n.CONNECTION_NAM the connection and can not changed as long as the connection is open.

E.callback.handl

er.class

remote.connectio Integer value specifying the maximum number of outbound requests. The default
n.CONNECTION_NAM is 80.

E.

There is only one connection from the client (JVM) to the server to handle all

channel.options. invocations.
org.jbhoss.remoti
ng3.RemotingOpti
ons.MAX_OUTBOUND

_MESSAGES

remote.connectio Boolean value that determines whether credentials must be provided by the
n.CONNECTION_NAM client to connect successfully. The default value is true.

E.
If set to true, the client must provide credentials. If set tofalse, invocation is

connect.options. allowed as long as the remoting connector does not request a security realm.
org.xnio.Options

.SASL_POLICY_NOA

NONYMOUS

remote.connectio Disables certain SASL mechanisms used for authenticating during connection
n.CONNECTION_NAM creation.

E.
JBOSS_LOCAL_USER means the silent authentication mechanism, used when

connect.options. the client and server are on the same machine, is disabled.
org.xnio.Options

.SASL_DISALLOWED

_MECHANISMS

remote.connectio Boolean value that enables or disables the use of plain text messages during the
n.CONNECTION_NAM authentication. If using JAAS, it must be set to false to allow a plain text
E. password.

connect.options.
org.xnio.Options
.SASL_POLICY_NOP
LAINTEXT

151

Development Guide

Property Name Description

remote.connectio
n.CONNECTION_NAM
E.

connect.options.
org.xnio.Options
.SSL_ENABLED

remote.connectio
n.CONNECTION_NAM
E.

connect.options.
org.jbhoss.remoti
ng3.RemotingOpti
ons.HEARTBEAT_IN
TERVAL

Boolean value that specifies whether the SSL protocol is enabled for this
connection.

WARNING

Red Hat recommends that you explicitly disable SSL in
favor of TLSv1.1 or TLSv1.2 in all affected packages.

t automatic close, for example, in the case of a firewall. The value is in
milliseconds.

EJB Client Cluster Properties

If the initial connection connects to a clustered environment, the topology of the cluster is received
automatically and asynchronously. These properties are used to connect to each received member.
Each property starts with the prefix remote.cluster.CLUSTER_NAME where the CLUSTER_NAME

refers to the related to the servers Infinispan subsystem configuration.

Table 7.3. Cluster Properties

Property Name Description

remote.cluster.C
LUSTER NAME .

clusternode.sele
ctor

remote.cluster.C
LUSTER NAME .

channel.options.
org.jbhoss.remoti
ng3.RemotingOpti
ons.MAX_OUTBOUND
_MESSAGES

152

The fully qualified name of the implementation of
org.jbhoss.ejb.client.ClusterNodeSelector.

This class, rather than
org.jhoss.ejb.clientDeploymentNodeSelector,is used to load
balance EJB invocations in a clustered environment. If the cluster is completely
down, the invocation will fail withNo ejb receiver available.

Integer value specifying the maximum number of outbound requests that can be
made to the entire cluster.

CHAPTER 7. ENTERPRISE JAVABEANS

Property Name Description

remote.cluster.C Integer value specifying the maximum number of outbound requests that can be
LUSTER_NAME . made to this specific cluster-node.

node . NODE_NAME .
channel.options.
org.jbhoss.remoti
ng3.RemotingOpti
ons.MAX_OUTBOUND
_MESSAGES

Report a bug

7.6. CONTAINER INTERCEPTORS

7.6.1. About Container Interceptors

Standard Java EE interceptors, as defined by the JSR 318, Enterprise JavaBeans 3.1 specification, are
expected to run after the container has completed security context propagation, transaction
management, and other container provided invocation processing. This is a problem if the application
must intercept a call before a specific container interceptor is run.

Releases prior to JBoss EAP 6.0 provided a way to plug server side interceptors into the invocation
flow so you could run specific application logic before the container completed the invocation
processing. This feature was implemented in JBoss EAP 6.1. This implementation allows standard Java
EE interceptors to be used as container interceptors, meaning they use the same XSD elements that
are allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.

Positioning of the Container Interceptor in the Interceptor Chain

The container interceptors configured for an EJB are quaranteed to be run before the JBoss EAP
provided security interceptors, transaction management interceptors, and other server provided
interceptors. This allows specific application container interceptors to process or configure relevant
context data before the invocation proceeds.

Differences Between the Container Interceptor and the Java EE Interceptor API

Although container interceptors are modeled to be similar to Java EE interceptors, there are some
differences in the semantics of the API. For example, it is illegal for container interceptors to invoke
the javax.interceptor.InvocationContext.getTarget () method because these interceptors
are invoked long before the EJB components are setup or instantiated.

Report a bug

7.6.2. Create a Container Interceptor Class

Summary

Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.AroundInvoke to mark the method that is invoked during the invocation on
the bean.

The following is an example of a container interceptor class that marks the iAmAround method for
invocation:

153

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14113-724702+%5BLatest%5D&comment=Title%3A+EJB+Client+Properties%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14113-724702+10+Nov+2014+14%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://jcp.org/en/jsr/detail?id=318
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+13885-676196+%5BLatest%5D&comment=Title%3A+About+Container+Interceptors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13885-676196+24+Jun+2014+23%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

@AroundInvoke
private Object iAmAround(final InvocationContext invocationContext)
throws Exception {
return this.getClass().getName() + " " +

public class ClassLevelContainerInterceptor {
1nvocat10nContext proceed();

‘ Example 7.1. Container Interceptor Class Example

For an example of a container interceptor descriptor file configured to use this class, see the jboss-
ejb3.xml file described here: Section 7.6.3, “Configure a Container Interceptor”.

Report a bug

7.6.3. Configure a Container Interceptor

Summary

Container interceptors use the standard Java EE interceptor libraries, meaning they use the same XSD
elements that are allowed in ejb-jar.xml file for the 3.1 version of the ejb-jar deployment descriptor.
Because they are based on the standard Jave EE interceptor libraries, container interceptors may only
be configured using deployment descriptors. This was done by design so applications would not
require any JBoss specific annotation or other library dependencies. For more information about
container interceptors, refer to: Section 7.6.1, “About Container Interceptors”.

Procedure 7.11. Create the Descriptor File to Configure the Container Interceptor

1. Create a jboss-ejb3.xml file in the META-INF directory of the EJB deployment.
2. Configure the container interceptor elements in the descriptor file.

a. Usetheurn:container-interceptors:1.0 namespace to specify configuration of
container interceptor elements.

b. Use the <container-interceptors> element to specify the container interceptors.

c. Use the<interceptor-binding>elements to bind the container interceptor to the
EJBs. The interceptors can be bound in either of the following ways:

m Bind the interceptor to all the EJBs in the deployment using the * wildcard.
m Bind the interceptor at the individual bean level using the specific EJB name.

m Bind the interceptor at the specific method level for the EJBs.

NOTE

These elements are configured using the EJB 3.1 XSD in the same way it is
done for Java EE interceptors.

154

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+13887-621655+%5BLatest%5D&comment=Title%3A+Create+a+Container+Interceptor+Class%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13887-621655+15+Mar+2014+06%3A34+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

3. Review the following descriptor file for examples of the above elements.

Example 7.2. jboss-ejb3.xml

<jboss xmlns="http://www.jboss.com/xml/ns/javaee"
xmlns:jee="http://java.sun.com/xml/ns/javaee"
xmlns:ci ="urn:container-interceptors:1.0">

<jee:assembly-descriptor>
<ci:container-interceptors>
<!-- Default interceptor -->
<jee:interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Cont
ainerInterceptorOne</interceptor-class>
</jee:interceptor-binding>
<!-- Class level container-interceptor -->
<jee:interceptor-binding>
<ejb-name>AnotherFlowTrackingBean</ejb-name>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Clas
sLevelContainerInterceptor</interceptor-class>
</jee:interceptor-binding>
<!-- Method specific container-interceptor -->
<jee:interceptor-binding>
<ejb-name>AnotherFlowTrackingBean</ejb-name>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Meth
odSpecificContainerInterceptor</interceptor-class>

<method>
<method-
name>echowWithMethodSpecificContainerInterceptor</method-name>
</method>
</jee:interceptor-binding>
<!-- container interceptors in a specific order -->

<jee:interceptor-binding>
<ejb-name>AnotherFlowTrackingBean</ejb-name>
<interceptor-order>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Clas
sLevelContainerInterceptor</interceptor-class>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Meth
odSpecificContainerInterceptor</interceptor-class>
<interceptor-
class>org.jboss.as.test.integration.ejb.container.interceptor.Cont
ainerInterceptorOne</interceptor-class>
</interceptor-order>
<method>
<method-
name>echoInSpecificOrderOfContainerInterceptors</method-name>
</method>
</jee:interceptor-binding>
</ci:container-interceptors>

155

Development Guide

</jee:assembly-descriptor>
</jboss>

The XSD for the urn:container-interceptors:1.0 namespace is available at
EAP_HOME/docs/schema/jboss-ejb-container-interceptors_1_0.xsd.

Report a bug

7.6.4. Change the Security Context Identity

Summary

By default, when you make a remote call to an EJB deployed to the application server, the connection
to the server is authenticated and any request received over this connection is executed as the
identity that authenticated the connection. This is true for both client-to-server and server-to-server
calls. If you need to use different identities from the same client, you normally need to open multiple
connections to the server so that each one is authenticated as a different identity. Rather than open
multiple client connections, you can give permission to the authenticated user to execute a request as
a different user.

This topic describes how to switch identities on the existing client connection. The code examples are
abridged versions of the code in the quickstart. Refer to the ejb-security-interceptors
quickstart for a complete working example.

Procedure 7.12. Change the Identity of the Security Context

To change the identity of a secured connection, you must create the following 3 components.

1. Create the client side interceptor
The client side interceptor must implement the
org.jbhoss.ejb.client.EJBClientInterceptor interface. The interceptor must pass
the requested identity through the context data map, which can be obtained via a call to
EJBClientInvocationContext.getContextData(). The following is an example of client
side interceptor code:

public class ClientSecurityInterceptor implements
EJBClientInterceptor {

public void handleInvocation(EJBClientInvocationContext context)
throws Exception {
Principal currentPrincipal =
SecurityActions.securityContextGetPrincipal();

if (currentPrincipal != null) {
Map<String, Object> contextData =
context.getContextData();

contextData.put(ServerSecurityInterceptor.DELEGATED_USER_KEY,
currentPrincipal.getName());

}

context.sendRequest();

156

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+13886-606491+%5BLatest%5D&comment=Title%3A+Configure+a+Container+Interceptor%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13886-606491+27+Feb+2014+06%3A12+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

public Object handleInvocationResult(EJBClientInvocationContext
context) throws Exception {
return context.getResult();

}

User applications can insert the interceptor into the interceptor chain in the
EJBClientContext in one of the following ways:

o Programmatically
With this approach, you call the
org.jbhoss.ejb.client.EJBClientContext.registerInterceptor(int order,
EJBClientInterceptor interceptor) method and pass the order and the
interceptor instance. The order determines where this client interceptor is placed in
the interceptor chain.

o ServiceLoader Mechanism
With this approach, you create a META -
INF/services/org.jboss.ejb.client.EJBClientInterceptor file and place or
package it in the classpath of the client application. The rules for the file are dictated by
the Java ServiceLoader Mechanism. This file is expected to contain a separate line for
each fully qualified class name of the EJB client interceptor implementation. The EJB
client interceptor classes must be available in the classpath. EJB client interceptors added
using the ServiceLoader mechanism are added to the end of the client interceptor
chain, in the order they are found in the classpath. The ejb-security-interceptors
quickstart uses this approach.

2. Create and configure the server side container interceptor
Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.AroundInvoke to mark the method that will be invoked during the
invocation on the bean. For more information about container interceptors, refer to:
Section 7.6.1, “About Container Interceptors”.

a. Create the container interceptor
This interceptor receives the InvocationContext with the identity and requests the
switch to that new identity. The following is an abridged version of the actual code
example:

public class ServerSecurityInterceptor {

private static final Logger logger =
Logger.getLogger(ServerSecurityInterceptor.class);

static final String DELEGATED_USER_KEY =
ServerSecurityInterceptor.class.getName() + ".DelegationUser";

@AroundInvoke
public Object aroundInvoke(final InvocationContext
invocationContext) throws Exception {
Principal desiredUser = null;
UserPrincipal connectionUser = null;

Map<String, Object> contextData =

invocationContext.getContextData();
if (contextData.containsKey(DELEGATED_USER_KEY)) {

157

http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

Development Guide

158

desiredUser = new SimplePrincipal((String)
contextData.get (DELEGATED_USER_KEY));

Collection<Principal> connectionPrincipals =
SecurityActions.getConnectionPrincipals();

if (connectionPrincipals != null) {
for (Principal current : connectionPrincipals) {
if (current instanceof UserPrincipal) {
connectionUser = (UserPrincipal)
current;
break;

}

} else {
throw new IllegalStateException('"Delegation user
requested but no user on connection found.");

}
}

ContextStateCache stateCache = null;
try {
if (desiredUser != null && connectionUser != null
&&
(desiredUser.getName().equals(connectionUser.getName()) ==
false)) {
// The final part of this check is to verify
that the change does actually indicate a change in user.
try {
// We have been requested to use an
authentication token
// so now we attempt the switch.
stateCache =
SecurityActions.pushIdentity(desiredUser, new
OuterUserCredential(connectionUser));
} catch (Exception e) {
logger.error("Failed to switch security
context for user", e);
// Don't propagate the exception stacktrace
back to the client for security reasons
throw new EJBAccessException("Unable to
attempt switching of user.");
}
}

return invocationContext.proceed();
} finally {
// switch back to original context
if (stateCache != null) {
SecurityActions.popldentity(stateCache);;

}

CHAPTER 7. ENTERPRISE JAVABEANS

b. Configure the container interceptor
For information on how to configure server side container interceptors, refer to:
Section 7.6.3, “Configure a Container Interceptor”.

3. Create the JAAS LoginModule
This component is responsible for verifying that user is allowed to execute requests as the
requested identity. The following abridged code examples show the methods that peform the
login and validation:

@SuppresswWarnings("unchecked")
@Override
public boolean login() throws LoginException {
if (super.login() == true) {
log.debug("super.login()==true");
return true;

}

// Time to see if this is a delegation request.
NameCallback ncb = new NameCallback("Username:");
ObjectCallback ocb = new ObjectCallback("Password:");

try {
callbackHandler.handle(new Callback[] { ncb, ocb });

} catch (Exception e) {
if (e instanceof RuntimeException) {
throw (RuntimeException) e;
}
return false; // If the CallbackHandler can not handle
the required callbacks then no chance.

}

String name = ncb.getName();
Object credential = ocb.getCredential();

if (credential instanceof OuterUserCredential) {
// This credential type will only be seen for a
delegation request, if not seen then the request is not for us.

if (delegationAcceptable(name, (OuterUserCredential)
credential)) {

identity = new SimplePrincipal(name);
if (getUseFirstPass()) {
String userName = identity.getName();
if (log.isDebugEnabled())
log.debug("Storing username '" + userName +
"' and empty password");
// Add the username and an empty password to
the shared state map

sharedState.put("javax.security.auth.login.name", identity);
sharedState.put("javax.security.auth.login.password", "");
}

loginOk = true;
return true;

159

Development Guide

}

return false; // Attempted login but not successful.

}

protected boolean delegationAcceptable(String requestedUser,
OuterUserCredential connectionUser) {
if (delegationMappings == null) {
return false;

}

String[] allowedMappings =
loadPropertyValue(connectionUser.getName(),
connectionUser.getRealm());

if (allowedMappings.length == 1 &&

"*!" equals(allowedMappings[1])) {
// A wild card mapping was found.
return true;

}

for (String current : allowedMappings) {

if (requestedUser.equals(current)) {
return true;

}
}

return false;

Seethe ejb-security-interceptors quickstart README. html file for complete instructions and
more detailed information about the code.

Report a bug

7.6.5. Pass Additional Security For EJB Authentication

Summary

By default, when you make a remote call to an EJB deployed to the application server, the connection
to the server is authenticated and any request received over this connection is executed using the
credentials that authenticated the connection. Authentication at the connection level is dependent on
the capabilities of the underlying SASL (Simple Authentication and Security Layer) mechanisms.
Rather than write custom SASL mechanisms, you can open and authenticate a connection to the
server, then later add additional security tokens prior to invoking an EJB. This topic describes how to
pass additional information on the existing client connection for EJB authentication.

The code examples below are for demonstration purposes only. They present only one possible
approach and must be customized to suit the exact needs of the application. The password is
exchanged using the SASL mechanism. If SASL DIGEST-MD5 Authentication is used, the password is
still hashed with a challenge and not sent in the clear. The remaining tokens, however are sent in the
clear. If those tokens contain any sensitive information, you may want to enable encryption for the
connection.

Procedure 7.13. Pass Security Information for EJB Authentication

To supply an additional security token for an authenticated connection, you must create the following
3 components.

160

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+13166-665343+%5BLatest%5D&comment=Title%3A+Change+the+Security+Context+Identity%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=13166-665343+07+Jun+2014+05%3A38+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

1. Create the client side interceptor
This interceptor must implement the org. jboss.ejb.client.EJBClientInterceptor.
The interceptor is expected to pass the additional security token through the context data
map, which can be obtained via a call to
EJBClientInvocationContext.getContextData(). The following is an example of client
side interceptor code that creates an additional security token:

public class ClientSecurityInterceptor implements
EJBClientInterceptor {

public void handleInvocation(EJBClientInvocationContext context)
throws Exception {
Principal currentPrincipal =
SecurityActions.securityContextGetPrincipal();

if (currentPrincipal != null) {
Map<String, Object> contextData =
context.getContextData();

contextData.put(ServerSecurityInterceptor.DELEGATED_USER_KEY,
currentPrincipal.getName());

}

context.sendRequest();

}

public Object handleInvocationResult(EJBClientInvocationContext
context) throws Exception {
return context.getResult();

}

For information on how to plug the client interceptor into an application, refer to Section 7.6.6,
“Use a Client Side Interceptor in an Application”.

2. Create and configure the server side container interceptor
Container interceptor classes are simple Plain Old Java Objects (POJOs). They use the
@javax.annotation.AroundInvoke to mark the method that is invoked during the
invocation on the bean. For more information about container interceptors, refer to:
Section 7.6.1, “About Container Interceptors”.

a. Create the container interceptor
This interceptor retrieves the security authentication token from the context and passes it
to the JAAS (Java Authentication and Authorization Service) domain for verification. The
following is an example of container interceptor code:

public class ServerSecurityInterceptor {

private static final Logger logger =
Logger.getLogger(ServerSecurityInterceptor.class);

static final String DELEGATED_USER_KEY =
ServerSecurityInterceptor.class.getName() + ".DelegationUser";

161

Development Guide

162

@AroundInvoke
public Object aroundInvoke(final InvocationContext
invocationContext) throws Exception {
Principal desiredUser = null;
UserPrincipal connectionUser = null;

Map<String, Object> contextData =
invocationContext.getContextData();
if (contextData.containsKey(DELEGATED_USER_KEY)) {
desiredUser = new SimplePrincipal((String)
contextData.get (DELEGATED_USER_KEY));

Collection<Principal> connectionPrincipals =
SecurityActions.getConnectionPrincipals();

if (connectionPrincipals != null) {
for (Principal current : connectionPrincipals) {
if (current instanceof UserPrincipal) {
connectionUser = (UserPrincipal)
current;
break;

}

} else {
throw new IllegalStateException('"Delegation user
requested but no user on connection found.");
}
}

ContextStateCache stateCache = null;
try {
if (desiredUser != null && connectionUser != null
&&
(desiredUser.getName().equals(connectionUser.getName()) ==
false)) {
// The final part of this check is to verify
that the change does actually indicate a change in user.
try {
// We have been requested to use an
authentication token
// so now we attempt the switch.
stateCache =
SecurityActions.pushIdentity(desiredUser, new
OuterUserCredential(connectionUser));
} catch (Exception e) {
logger.error("Failed to switch security
context for user", e);
// Don't propagate the exception stacktrace
back to the client for security reasons
throw new EJBAccessException("Unable to
attempt switching of user.");
}
}

CHAPTER 7. ENTERPRISE JAVABEANS

return invocationContext.proceed();
} finally {
// switch back to original context
if (stateCache != null) {
SecurityActions.popldentity(stateCache);;

}

b. Configure the container interceptor

For information on how to configure server side container interceptors, refer to:
Section 7.6.3, “Configure a Container Interceptor”.

3. Create the JAAS LoginModule
This custom module performs the authentication using the existing authenticated connection
information plus any additional security token. The following is a shortened example of code
that uses the additional security token and performs the authentication. The complete code
example can be viewed in the ejb-security-interceptors quickstart that ships with
JBoss EAP 6.3 or later.

public class DelegationLoginModule extends AbstractServerLoginModule

{

private static final String DELEGATION_PROPERTIES =
"delegationProperties";

private static final String DEFAULT_DELEGATION_PROPERTIES =
"delegation-mapping.properties";

private Properties delegationMappings;
private Principal identity;

@override
public void initialize(Subject subject, CallbackHandler
callbackHandler, Map<String, ?> sharedState, Map<String, ?> options)
{
addvalidoptions(new String[] { DELEGATION_PROPERTIES });
super.initialize(subject, callbackHandler, sharedState,
options);

String propertiesName;
if (options.containsKey(DELEGATION_PROPERTIES)) {
propertiesName = (String)
options.get (DELEGATION_PROPERTIES);
} else {
propertiesName = DEFAULT_DELEGATION_PROPERTIES;
}
try {
delegationMappings = loadProperties(propertiesName);
} catch (IOException e) {
throw new
IllegalArgumentException(String.format("Unable to load properties
'"%s'", propertiesName), e);

}

163

Development Guide

}

@SuppresswWarnings("unchecked")
@override
public boolean login() throws LoginException {
if (super.login() == true) {
log.debug("super.login()==true");
return true;

}

// Time to see if this is a delegation request.
NameCallback ncb = new NameCallback("Username:");
ObjectCallback ocb = new ObjectCallback("Password:");

try {
callbackHandler.handle(new Callback[] { ncb, ocb });

} catch (Exception e) {
if (e instanceof RuntimeException) {
throw (RuntimeException) e;

}
return false; // If the CallbackHandler can not handle

the required callbacks then no chance.

}

String name = ncb.getName();
Object credential = ocb.getCredential();

if (credential instanceof OuterUserCredential) {
// This credential type will only be seen for a
delegation request, if not seen then the request is not for us.

if (delegationAcceptable(name, (OuterUserCredential)
credential)) {

identity = new SimplePrincipal(name);
if (getUseFirstPass()) {
String userName = identity.getName();
if (log.isDebugEnabled())
log.debug("Storing username '" + userName +

"' and empty password");
// Add the username and an empty password to
the shared state map

sharedState.put("javax.security.auth.login.name", identity);
sharedState.put("javax.security.auth.login.password", "");
}

loginOk = true;
return true;

}

return false; // Attempted login but not successful.

164

CHAPTER 7. ENTERPRISE JAVABEANS

4. Add the Custom LoginModule to the Chain
You must add the new custom LoginModule to the correct location the chain so that it is
invoked in the correct order. In this example, the SaslPlusLoginModule must be chained
before the LoginModule that loads the roles with the password-stacking option set.

o Configure the LoginModule Order using the Management CLI
The following is an example of Management CLI commands that chain the custom
SaslPlusLoginModule before the RealmDirect LoginModule that sets the password-
stacking option.

/subsystem=security/security-domain=quickstart-domain:add(cache-
type=default)

/subsystem=security/security-domain=quickstart-
domain/authentication=classic:add
/subsystem=security/security-domain=quickstart-
domain/authentication=classic/login-
module=DelegationLoginModule:add(code=org.jboss.as.quickstarts.ej
b_security_plus.SaslPlusLoginModule, flag=optional, module-options=
{password-stacking=useFirstPass})
/subsystem=security/security-domain=quickstart-
domain/authentication=classic/login-
module=RealmDirect:add(code=RealmDirect, flag=required, module-
options={password-stacking=useFirstPass})

For more information about the Management CLI, refer to the chapter entitled
Management Interfacesin the Administration and Configuration Guidefor JBoss EAP 6
located on the Customer Portal at
https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

o Configure the LoginModule Order Manually
The following is an example of XML that configures the LoginModule order in the
security subsystem of the server configuration file. The custom
SaslPlusLoginModule must precede the RealmDirect LoginModule so that it can
verify the remote user before the user roles are loaded and the password-stacking
option is set.

<security-domain name="quickstart-domain" cache-type="default'">
<authentication>
<login-module
code="org.jboss.as.quickstarts.ejb_security_plus.SaslPlusLoginMod
ule" flag="required">
<module-option name="password-stacking"
value="useFirstPass"/>
</login-module>
<login-module code="RealmDirect" flag="required">
<module-option name="password-stacking"
value="useFirstPass"/>
</login-module>
</authentication>
</security-domain>

5. Create the Remote Client
In the following code example, assume the additional-secret.properties file accessed
by the JAAS LoginModule above contains the following property:

165

https://access.redhat.com/site/documentation/JBoss_Enterprise_Application_Platform/

Development Guide

I quickstartUser=7f5cc521-5061-4a5b-b814-bdc37f021acc

The following code demonstrates how create the security token and set it before the EJB call.
The secret token is hard-coded for demonstration purposes only. This client simply prints the
results to the console.

import static
org.jboss.as.quickstarts.ejb_security_plus.EJBUtil.lookupSecuredEJB;

public class RemoteClient {

/**
* @param args
*/
public static void main(String[] args) throws Exception {
SimplePrincipal principal = new
SimplePrincipal("quickstartUser");
Object credential = new
PasswordPlusCredential("quickstartPwdl1!".toCharArray(), "7f5cc521-
5061-4a5b-b814-bdc37f021acc");

SecurityActions.securityContextSetPrincipalCredential(principal,
credential);
SecuredEJBRemote secured = lookupSecuredEJB();

System.out.println(secured.getPrincipalInformation());

Report a bug

7.6.6. Use a Client Side Interceptor in an Application

Summary

You can plug a client-side interceptor into an application programmatically or using a ServiceLoader
mechanism. The following procedure describes the two methods.

Procedure 7.14. Plug the Interceptor into

166

o Programmatically

With this approach, you call the
org.jbhoss.ejb.client.EJBClientContext.registerInterceptor(int order,
EJBClientInterceptor interceptor) APl and passthe order and the
interceptor instance. The order is used to determine where exactly in the client
interceptor chain this interceptor is placed.

ServiceLoader Mechanism

With this approach, you create a META -
INF/services/org.jboss.ejb.client.EJBClientInterceptor file and place or
package it in the classpath of the client application. The rules for the file are dictated by
the Java ServiceLoader Mechanism. This file is expected to contain a separate line for
each fully qualified class name of the EJB client interceptor implementation. The EJB

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14139-621647+%5BLatest%5D&comment=Title%3A+Pass+Additional+Security+For+EJB+Authentication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14139-621647+15+Mar+2014+02%3A28+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://docs.oracle.com/javase/6/docs/api/java/util/ServiceLoader.html

CHAPTER 7. ENTERPRISE JAVABEANS

client interceptor classes must be available in the classpath. EJB client interceptors added
using the ServiceLoader mechanism are added to the end of the client interceptor
chain, in the order they are found in the classpath. The ejb-security-interceptors
quickstart uses this approach.

Report a bug

7.7.CLUSTERED ENTERPRISE JAVABEANS

7.7.1. About Clustered Enterprise JavaBeans (EJBs)

EJB components can be clustered for high-availability scenarios. They use different protocols than
HTTP components, so they are clustered in different ways. EJB 2 and 3 stateful and stateless beans
can be clustered.

For information on singletons, refer here: Section 9.4, “Implement an HA Singleton”.

NOTE

EJB 2 entity beans cannot be clustered in EAP 6 and henceforth. This is a migration
issue.

Report a bug

7.7.2. Standalone and In-server Client Configuration

To connect an EJB client to a clustered EJB application, you need to expand the existing configuration
in standalone EJB client or In-server EJB client to include cluster connection configuration. The
jboss-ejb-client.properties for standalone EJB client, or even jboss-ejb-client.xml file
for a server-side application must be expanded to include a cluster configuration.

The following example shows connection configuration for a standalone EJB client. The following
example only shows the additional cluster configuration. The next example (Configuring jboss-ejb-
client.xml file) shows the complete configuration:

remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYM
ous=false
remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false
remote.cluster.ejb.username=test

remote.clusters=ejb
remote.cluster.ejb.password=password

| Example 7.3. Standalone client with jboss-ejb-client.properties configuration

If an application uses the remote-outbound-connection, you need to configure jboss-ejb-
client.xml file and add cluster configuration as shown in the following example:

Example 7.4. Client application which is deployed in another EAP 6 instance (Configuring jboss-
ejb-client.xml file)

xsi:noNamespaceSchemalLocation="jboss-ejb-client_1_2.xsd">

<jboss-ejb-client xmlns:xsi="urn:jboss:ejb-client:1.2"
<client-context>

167

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+14138-621657+%5BLatest%5D&comment=Title%3A+Use+a+Client+Side+Interceptor+in+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=14138-621657+15+Mar+2014+06%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4663-680486+%5BLatest%5D&comment=Title%3A+About+Clustered+Enterprise+JavaBeans+%28EJBs%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4663-680486+01+Jul+2014+15%3A46+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

<ejb-receivers>
<!-- this is the connection to access the app-one -->
<remoting-ejb-receiver outbound-connection-ref="remote-ejb-
connection-1" />
<!-- this is the connection to access the app-two -->
<remoting-ejb-receiver outbound-connection-ref="remote-ejb-
connection-2" />
</ejb-receivers>

<!-- 1if an outbound connection connects to a cluster; a list of members
is provided after successful connection.
To connect to this node this cluster element must be defined. -->
<clusters>
<!-- cluster of remote-ejb-connection-1 -->

<cluster name="ejb" security-realm="ejb-security-realm-1"
username="quickuser1'">
<connection-creation-options>
<property name="org.xnio.Options.SSL_ENABLED" value="false"
/>
<property name="org.xnio.Options.SASL_POLICY_NOANONYMOUS"
value="false" />
</connection-creation-options>
</cluster>
</clusters>
</client-context>
</jboss-ejb-client>

NOTE

For a secure connection you need to add the credentials to cluster configuration in
order to avoid an authentication exception.

Report a bug

7.7.3. Implementing a Custom Load Balancing Policy for EJB Calls

It is possible to implement a custom/alternate load balancing policy so that servers for the application
do not handle the same amount of EJB calls in general or for a specific time period.

You can implement Al1ClusterNodeSelector for EJB calls. The node selection behavior of
AllClusterNodeSelector is similar to default selector except that A11ClusterNodeSelector
uses all available cluster nodes even in case of a large cluster (number of nodes>20). If an unconnected
cluster node is returned it is opened automatically. The following example shows
AllClusterNodeSelector implementation:

168

package org.jboss.as.quickstarts.ejb.clients.selector;

import java.util.Arrays;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.LlLogger;

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+40832-683919+%5BLatest%5D&comment=Title%3A+Standalone+and+In-server+Client+Configuration%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40832-683919+11+Jul+2014+19%3A30+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

import org.jboss.ejb.client.ClusterNodeSelector;

public class AllClusterNodeSelector implements ClusterNodeSelector {
private static final Logger LOGGER =

Logger.getLogger(AllClusterNodeSelector.class.getName());

@Override
public String selectNode(final String clusterName, final String[]
connectedNodes, final String[] availableNodes) {
if(LOGGER.isLoggable(Level.FINER)) {
LOGGER.finer ("INSTANCE "+this+ " : cluster:"+clusterName+"
connected:"+Arrays.deepToString(connectedNodes)+"
available:"+Arrays.deepToString(availableNodes));

}

if (availableNodes.length == 1) {
return availableNodes[0];
}
final Random random = new Random();
final int randomSelection = random.nextInt(availableNodes.length);
return availableNodes[randomSelection];

You can also implement the SimpleLoadFactorNodeSelector for EJB calls. Load balancing in
SimpleLoadFactorNodeSelector happens based on aload factor. The load factor (2/3/4) is
calculated based on the names of nodes (A/B/C) irrespective of the load on each node. The following
example shows SimpleLoadFactorNodeSelector implementation:

package org.jboss.as.quickstarts.ejb.clients.selector;

import java.util.ArraylList;
import java.util.Arrays;

import java.util.Collection;
import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.logging.Level;
import java.util.logging.LlLogger;

import org.jboss.ejb.client.DeploymentNodeSelector;
public class SimpleLoadFactorNodeSelector implements
DeploymentNodeSelector {

private static final Logger LOGGER =
Logger.getLogger (SimpleLoadFactorNodeSelector.class.getName());

private final Map<String, List<String>[]> nodes = new HashMap<String,
List<String>[]>();

private final Map<String, Integer> cursor = new HashMap<String, Integer>

();
private ArraylList<String> calculateNodes(Collection<String>
eligibleNodes) {
ArraylList<String> nodelList = new ArrayList<String>();

for (String string : eligibleNodes) {
if(string.contains("A") || string.contains("2")) {

169

Development Guide

nodelList.add(string);
nodelList.add(string);

} else if(string.contains("B") || string.contains("3")) {
nodelList.add(string);
nodelList.add(string);
nodelList.add(string);

} else if(string.contains("C") || string.contains("4")) {
nodelList.add(string);
nodelList.add(string);
nodelList.add(string);
nodelList.add(string);

}

}

return nodelList;

}

@SuppresswWarnings("unchecked")
private void checkNodeNames(String[] eligibleNodes, String key) {
if(!'nodes.containsKey(key) || nodes.get(key)[0].size() !=
eligibleNodes.length || !nodes.get(key)
[0].containsAll(Arrays.aslList(eligibleNodes))) {
// must be synchronized as the client might call it concurrent
synchronized (nodes) {
if(!'nodes.containsKey(key) || nodes.get(key)[0].size() !=
eligibleNodes.length || !nodes.get(key)
[0].containsAll(Arrays.aslList(eligibleNodes))) {
ArraylList<String> nodelList = new ArraylList<String>();
nodelList.addAll(Arrays.asList(eligibleNodes));

nodes.put(key, new List[] { nodeList, calculateNodes(nodelList)

private synchronized String nextNode(String key) {
Integer c = cursor.get(key);
List<String> nodelList = nodes.get(key)[1];

if(c == null || ¢ >= nodeList.size()) {
¢ = Integer.valueOf(0);
}

String node = nodelList.get(c);
cursor.put(key, Integer.valueOf(c + 1));

return node;

}

@override
public String selectNode(String[] eligibleNodes, String appName, String
moduleName, String distinctName) {
if (LOGGER.isLoggable(Level.FINER)) {
LOGGER.finer ("INSTANCE " + this + " : nodes:" +
Arrays.deepToString(eligibleNodes) + " appName:" + appName + "
moduleName:" + moduleName

170

CHAPTER 7. ENTERPRISE JAVABEANS

+ " distinctName:" + distinctName);

}

// 1f there is only one there is no sense to choice
if (eligibleNodes.length == 1) {

return eligibleNodes[0];
}

final String key = appName + "|" + moduleName + "|" + distinctName;

checkNodeNames(eligibleNodes, key);
return nextNode(key);

Configuration with jboss-ejb-client.properties

You need to add the property remote.cluster.ejb.clusternode.selector with the name of
your implementation class (A11ClusterNodeSelector or SimpleLoadFactorNodeSelector).
The selector will see all configured servers which are available at the invocation time. The following
example uses Al1ClusterNodeSelector as the deployment node selector:

remote.clusters=ejb
remote.cluster.ejb.clusternode.selector=org.jboss.as.quickstarts.ejb.clien
ts.selector.AllClusterNodeSelector
remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOANONYMOU
S=false
remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED=false
remote.cluster.ejb.username=test

remote.cluster.ejb.password=password

remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABLED=fals
e

remote.connections=one, two

remote.connection.one.host=1localhost

remote.connection.one.port = 4447
remote.connection.one.connect.options.org.xnio.Options.SASL_POLICY_NOANONY
MoOuUS=false

remote.connection.one.username=user

remote.connection.one.password=useri123
remote.connection.two.host=1localhost

remote.connection.two.port = 4547
remote.connection.two.connect.options.org.xnio.Options.SASL_POLICY_NOANONY
MOUS=false

Using JBoss ejb-client API

You need to add the property remote.cluster.ejb.clusternode.selector to the list for the
PropertiesBasedEJBClientConfiguration constructor. The following example uses
AllClusterNodeSelector as the deployment node selector:

Properties p = new Properties();

p.put("remote.clusters", "ejb");
p.put("remote.cluster.ejb.clusternode.selector",
"org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSelector");
p.put("remote.cluster.ejb.connect.options.org.xnio.Options.SASL_POLICY_NOA
NONYMOUS", "false");

17

Development Guide

p.put("remote.cluster.ejb.connect.options.org.xnio.Options.SSL_ENABLED",
"false");

p.put("remote.cluster.ejb.username", '"test"),
p.put("remote.cluster.ejb.password", "password");

p.put("remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABL
ED", "false");

p.put("remote.connections", "one, two");
p.put("remote.connection.one.port", "4447");
p.put("remote.connection.one.host", "localhost");
p.put("remote.connection.two.port", "4547");
p.put("remote.connection.two.host", "localhost");

EJBClientConfiguration cc = new PropertiesBasedEJBClientConfiguration(p);
ContextSelector<kEJBClientContext> selector = new
ConfigBasedEJBClientContextSelector(cc);
EJBClientContext.setSelector(selector);

p = new Properties();
p.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
InitialContext context = new InitialContext(p);

Server application side configuration with jboss-ejb-client.xml

To use the load balancing policy for server to server communication; package the class together with
the application and configure it within the jboss-ejb-client.xml settings(located in META-INF
folder). The following example uses A11ClusterNodeSelector as the deployment node selector:

172

<jboss-ejb-client xmlns:xsi="urn:jboss:ejb-client:1.2"
xsi:noNamespaceSchemalLocation="jboss-ejb-client_1_2.xsd">
<client-context>
<ejb-receivers>
<!-- this is the connection to access the app -->
<remoting-ejb-receiver outbound-connection-ref="remote-ejb-
connection-1" />
</ejb-receivers>

<!-- 1if an outbound connection connect to a cluster a list of members 1is
provided after successful connection.
To connect to this node this cluster element must be defined.
-->
<clusters>
<!-- cluster of remote-ejb-connection-1 -->
<cluster name="ejb" security-realm="ejb-security-realm-1"
username="test" cluster-node-
selector="org.jboss.as.quickstarts.ejb.clients.selector.AllClusterNodeSele
ctor">
<connection-creation-options>
<property name="org.xnio.Options.SSL_ENABLED" value="false" />
<property name="org.xnio.Options.SASL_POLICY_NOANONYMOUS"
value="false" />
</connection-creation-options>
</cluster>
</clusters>
</client-context>
</jboss-ejb-client>

CHAPTER 7. ENTERPRISE JAVABEANS

To use the above configuration with security, you will need to add ejb-security-realm-1 to client-
server configuration. The following example shows the CLI commands for adding security realm (ejb-
security-realm-1) the value is the base64 encoded password for the user "test™":

core-service=management/security-realm=ejb-security-realm-1:add()
core-service=management/security-realm=ejb-security-realm-1/server-
identity=secret:add(value=cXVpY2sxMjMr)

NOTE

If you are using standalone mode use the start option -Djboss.node.name= or the
server configuration file standalone.xml to configure the server name (server

name=""). Ensure that the server name is unique. In domain mode, the controller
automatically validates that the names are unique.

Report a bug

7.7.4. Transaction Behavior of EJB Invocations

Server to Server Invocations

Transaction attributes for distributed EAP applications need to be handled in a way as if the
application is called on the same server. To discontinue a transaction, the destination method must be
marked REQUIRES_NEW using different interfaces.

NOTE

EAP 6 doesn't require Java Transaction Services (JTS) for transaction propagation on
server-to-server EJB invocations if both servers are EAP 6. JBoss EJB client API library
handles it itself.

Client Side Invocations

To invoke EJB session beans with an EAP 6 standalone client, the client must have a reference to the
InitialContext object while the EJB proxies or UserTransaction are used. It is also important to
keep the InitialContext object open while EJB proxies or UserTransaction are being used.
Control of the connections will be inside the classes created by the InitialContext with the
properties.

The following example shows EJB client API which holds a reference to the InitialContext object:
package org.jboss.as.quickstarts.ejb.multi.server;
import java.util.Date;
import java.util.Properties;
import java.util.logging.Level;

import java.util.logging.LlLogger;

import javax.naming.Context;
import javax.naming.InitialContext;

import org.jboss.as.quickstarts.ejb.multi.server.app.MainApp;
import org.jboss.ejb.client.ContextSelector;

173

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+40838-685568+%5BLatest%5D&comment=Title%3A+Implementing+a+Custom+Load+Balancing+Policy+for+EJB+Calls%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40838-685568+16+Jul+2014+21%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

import org.jboss.ejb.client.EJBClientConfiguration;

import org.jboss.ejb.client.EJBClientContext;

import org.jboss.ejb.client.PropertiesBasedEJBClientConfiguration;

import org.jboss.ejb.client.remoting.ConfigBasedEJBClientContextSelector;

public class Client {

/**

* @param args no args needed

* @throws Exception

*/

public static void main(String[] args) throws Exception {

// suppress output of client messages
Logger.getLogger("org.jboss").setLevel(Level.OFF);
Logger.getLogger("org.xnio").setLevel(Level.OFF);

Properties p = new Properties();

p.put("remote.connectionprovider.create.options.org.xnio.Options.SSL_ENABL
ED", "false");
p.put("remote.connections", "one");
p.put("remote.connection.one.port", "4447");
p.put("remote.connection.one.host", "localhost");
p.put("remote.connection.one.username", '"quickuser");
p.put("remote.connection.one.password", "quick-123");

EJBClientConfiguration cc = new
PropertiesBasedEJBClientConfiguration(p);

ContextSelector<kEJBClientContext> selector = new
ConfigBasedEJBClientContextSelector(cc);

EJBClientContext.setSelector(selector);

Properties props = new Properties();

props.put(Context.URL_PKG_PREFIXES,
"org.jboss.ejb.client.naming");

InitialContext context = new InitialContext(props);

final String rcal = "ejb:jboss-ejb-multi-server-app-main/ejb//" +
("MainAppBean") + "!" + MainApp.class.getName();

final MainApp remote = (MainApp) context.lookup(rcal);

final String result = remote.invokeAll("Client call at "+new
Date());

System.out.println("InvokeAll succeed: "+result);

174

CHAPTER 7. ENTERPRISE JAVABEANS

NOTE

Obtaining aUserTransaction reference on the client is unsupported for scenarios
with a scoped EJB client context and for invocations which use the remote -naming
protocol. This is because in these scenarios, InitialContext encapsulates its own
EJB client context instance; which cannot be accessed using the static methods of the
EJBClient class. When EJBClient.getUserTransaction() is called, it returns a
transaction from default (global) EJB client context (which might not be initialized) and
not from the desired one.

UserTransaction reference on the Client Side

The following example shows how to get UserTransaction reference on a standalone client:

import org.jboss.ejb.client.EJBClient;
import javax.transaction.UserTransaction;

Context context=null;

UserTransaction tx=null;

try {
Properties props = new Properties();
// REMEMBER: there must be a jboss-ejb-client.properties with the

connection parameter

// in the clients classpath
props.put(Context.URL_PKG_PREFIXES, "org.jboss.ejb.client.naming");
context = new InitialContext(props);
System.out.println("\n\tGot initial Context: "+context);
tx=EJBClient.getUserTransaction("yourServerName");
System.out.println("UserTransaction = "+tx.getStatus());
tx.begin();
// do some work

}catch (Exception e) {
e.printStackTrace();
tx.rollback();

}finally{
if(context !'= null) {

context.close();
}
}

NOTE

To get UserTransaction reference on the client side; start your server with the
following system property -Djboss.node . name=yourServerName and then use it on
client side as following:

I tx=EJBClient.getUserTransaction("yourServerName");

Replace "yourServerName" with the name of your server. If a user transaction is started
on a node all invocations are sticky on the node and the node must have all the needed
EJBs. It is not possible to use UserTransaction with remote-naming protocol and
scoped-context.

175

Development Guide

Report a bug

7.8. REFERENCE

7.8.1. EJB JNDI Naming Reference

The JNDI lookup name for a session bean has the syntax of:

I ejb:<appName>/<moduleName>/<distinctName>/<beanName>'<viewClassName>?
stateful

<appName>

If the session bean's JAR file has been deployed within an enterprise archive (EAR) then this is the
name of that EAR. By default, the name of an EAR is its filename without the . ear suffix. The
application name can also be overridden in its application. xml file. If the session bean is not
deployed in an EAR then leave this blank.

<moduleName>

The module name is the name of the JAR file that the session bean is deployed in. By the default,
the name of the JAR file is its filename without the . jar suffix. The module name can also be
overridden in the JAR's ejb-jar.xml file.

<distinctName>

JBoss EAP 6 allows each deployment to specify an optional distinct name. If the deployment does
not have a distinct name then leave this blank.

<beanName>

The bean name is the classname of the session bean to be invoked.

<viewClassName>

The view class name is the fully qualified classname of the remote interface. This includes the
package name of the interface.

?stateful

The ?stateful suffix is required when the JNDI name refers to a stateful session bean. It is not
included for other bean types.

Report a bug

7.8.2. EJB Reference Resolution

This section covers how JBoss implements @EJB and @Resource. Please note that XML always
overrides annotations but the same rules apply.

Rules for the @EJB annotation

e The @EJB annotation also has a mappedName () attribute. The specification leaves this as
vendor specific metadata, but JBoss recognizes mappedName () as the global JNDI name of
the EJB you are referencing. If you have specified a mappedName (), then all other attributes

176

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+40839-689415+%5BLatest%5D&comment=Title%3A+Transaction+Behavior+of+EJB+Invocations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=40839-689415+31+Jul+2014+15%3A02+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5119-591683+%5BLatest%5D&comment=Title%3A+EJB+JNDI+Naming+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5119-591683+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

are ignored and this global JNDI name is used for binding.

e If you specify @EJB with no attributes defined:

@EJB
ProcessPayment myEjbref;

Then the following rules apply:

o The EJB jar of the referencing bean is searched for an EJB with the interface used in the
@EJB injection. If there are more than one EJB that publishes same business interface,
then an exception is thrown. If there is only one bean with that interface then that one is
used.

o Search the EAR for EJBs that publish that interface. If there are duplicates, then an
exception is thrown. Otherwise the matching bean is returned.

o Search globally in JBoss runtime for an EJB of that interface. Again, if duplicates are
found, an exception is thrown.

e @EJB.beanName () corresponds to <ejb-1ink>. If the beanName () is defined, then use the
same algorithm as @EJB with no attributes defined except use the beanName () as a key in the
search. An exception to this rule is if you use the ejb-link '#' syntax. The '#' syntax allows you
to put a relative path to ajar in the EAR where the EJB you are referencing is located. Refer to
the EJB 3.1 specification for more details.

Report a bug

7.8.3. Project dependencies for Remote EJB Clients

Maven projects that include the invocation of session beans from remote clients require the following
dependencies from the JBoss EAP 6 Maven repository.

Table 7.4. Maven dependencies for Remote EJB Clients

GrouplD ArtifactiD

org.jboss.spec jboss-javaee-6.0

org.jboss.as jboss-as-ejb-client-bom
org.jboss.spec.javax.transaction jboss-transaction-api_1.1_spec
org.jboss.spec.javax.ejb jboss-ejb-api_3.1_spec
org.jboss jboss-ejb-client

org.jboss.xnio xnio-api

org.jboss.xnio xnio-nio

org.jboss.remoting3 jboss-remoting

177

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4543-591667+%5BLatest%5D&comment=Title%3A+EJB+Reference+Resolution%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4543-591667+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

GrouplD ArtifactiD

org.jboss.sasl jboss-sasl

org.jboss.marshalling jboss-marshalling-river

With the exception of jboss-javaee-6.0 and jbhoss-as-ejb-client-bom, these dependencies
must be added to the <dependencies> section of the pom. xm1 file.

The jboss-javaee-6.0 and jboss-as-ejb-client-bom dependencies should be added to the
<dependencyManagement> section of your pom.xml with the scope of import.

NOTE

The artifactID's versions are subject to change. Refer to the Maven repository for
the relevant version.

-

<dependencyManagement>
<dependencies>

<dependency>
<groupId>org.jboss.spec</groupIld>
<artifactId>jboss-javaee-6.0</artifactId>
<version>3.0.0.Final-redhat-1</version>
<type>pom</type>
<scope>import</scope>

</dependency>

<dependency>
<groupId>org.jboss.as</groupId>
<artifactId>jboss-as-ejb-client-bom</artifactId>
<version>7.1.1.Final-redhat-1</version>
<type>pom</type>
<scope>import</scope>

</dependency>

</dependencies>
</dependencyManagement>

Refer to ejb-remote/client/pom.xml in the quickstart files for a complete example of dependency
configuration for remote session bean invocation.

Report a bug

7.8.4. jboss-ejb3.xml Deployment Descriptor Reference

jboss-ejb3.xmlis a custom deployment descriptor that can be used in either EJB JAR or WAR
archives. In an EJB JAR archive it must be located in the META-INF/ directory. In a WAR archive it
must be located in the WEB-INF/ directory.

The format is similar to ejb-jar.xml, using some of the same namespaces and providing some other

additional namespaces. The contents of jboss-ejbh3.xml are merged with the contents of ejb-
jar.xml, with the jboss-ejb3.xml items taking precedence.

178

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+5726-606308+%5BLatest%5D&comment=Title%3A+Project+dependencies+for+Remote+EJB+Clients%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=5726-606308+26+Feb+2014+13%3A45+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 7. ENTERPRISE JAVABEANS

This document only covers the additional non-standard namespaces used by jboss-ejb3.xml. Refer
to http://java.sun.com/xml/ns/javaee/ for documentation on the standard namespaces.

The root namespaceis http://www. jboss.com/xml/ns/javaee.

Assembly descriptor namespaces

The following namespaces can all be used in the <assembly-descriptor>element. They can be
used to apply their configuration to a single bean, or to all beans in the deployment by using * as the
ejb-name.

The clustering namespace: urn:clustering:1.0

I xmlns:c="urn:clustering:1.0"

This allows you to mark EJB's as clustered. It is the deployment descriptor equivalent to
@org.jboss.ejb3.annotation.Clustered.

<c:clustering>
<ejb-name>DDBasedClusteredSFSB</ejb-name>
<c:clustered>true</c:clustered>
</c:clustering>

The security namespace (urn:security)
I xmlns:s="urn:security"
This allows you to set the security domain and the run-as principal for an EJB.
<s:security>
<ejb-name>*</ejb-name>
<s:security-domain>myDomain</s:security-domain>

<s:run-as-principal>myPrincipal</s:run-as-principal>
</s:security>

The resource adapter namespace: urn:resource-adapter-binding
I xmlns:r="urn:resource-adapter-binding"
This allows you to set the resource adapter for a Message-Driven Bean.
<r:resource-adapter-binding>
<ejb-name>*</ejb-name>

<r:resource-adapter-name>myResourceAdapter</r:resource-adapter-name>
</r:resource-adapter-binding>

The IIOP namespace: urn:iiop
I xmlns:u="urn:iiop"

The IIOP namespace is where [IOP settings are configured.

179

http://java.sun.com/xml/ns/javaee/

Development Guide

The pool namespace: urn:ejb-pool:1.0
I xmlns:p="urn:ejb-pool:1.0"

This allows you to select the pool that is used by the included stateless session beans or Message-
Driven Beans. Pools are defined in the server configuration.

<p:pool>
<ejb-name>*</ejb-name>
<p:bean-instance-pool-ref>my-pool</p:bean-instance-pool-ref>
</p:pool>

The cache namespace: urn:ejb-cache:1.0
I xmlns:c="urn:ejb-cache:1.0"

This allows you to select the cache that is used by the included stateful session beans. Caches are
defined in the server configuration.

<c:cache>
<ejb-name>*</ejb-name>
<c:cache-ref>my-cache</c:cache-ref>
</c:cache>

Example 7.5. Example jboss-ejb3.xml file
<?xml version="1.1" encoding="UTF-8"?>
<jboss:ejb-jar xmlns:jboss="http://www.jboss.com/xml/ns/javaee"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

xmlns:c="urn:clustering:1.0"

xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-ejb3-2_0.xsd
http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-
jar_3_1.xsd"
version="3.1"
impl-version="2.0">
<enterprise-beans>
<message-driven>
<ejb-name>ReplyingMDB</ejb-name>
<ejb-
class>org.jboss.as.test.integration.ejb.mdb.messagedestination.ReplyingM
DB</ejb-class>
<activation-config>
<activation-config-property>
<activation-config-property-
name>destination</activation-config-property-name>
<activation-config-property-
value>java:jboss/mdbtest/messageDestinationQueue
</activation-config-property-value>
</activation-config-property>
</activation-config>

180

CHAPTER 7. ENTERPRISE JAVABEANS

<c:clustering>
<ejb-name>DDBasedClusteredSFSB</ejb-name>
<c:clustered>true</c:clustered>
</c:clustering>
</assembly-descriptor>

</message-driven>

</enterprise-beans>

<assembly-descriptor>
</jboss:ejb-jar>

Report a bug

181

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+9019-591860+%5BLatest%5D&comment=Title%3A+jboss-ejb3.xml+Deployment+Descriptor+Reference%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9019-591860+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

CHAPTER 8. JBOSS MBEAN SERVICES

8.1. WRITING JBOSS MBEAN SERVICES

Writing a custom MBean service that relies on a JBoss service requires the service interface method
pattern. JBoss MBean service interface method pattern consists of a set of life cycle operations which
inform an MBean service when it can create, start, stop, and destroy itself.

You can manage the dependency state using any of the following approaches:

e If you want specific methods to be called on your MBean, declare those methods in your
MBean interface. This approach allows your MBean implementation to avoid dependencies on
JBoss specific classes

e |f you are not bothered about dependencies on JBoss specific classes then you may have your
MBean interface extend the ServiceMBean interface and ServiceMBeanSupport class. The
ServiceMBeanSupport class provides implementations of the service lifecycle methods like
create, start and stop. To handle a specific event like the start()event, you need to
override startService () method provided by the ServiceMBeanSupport class.

Report a bug

8.2. ASTANDARD MBEAN EXAMPLE

This section develops two sample MBean services packaged together in a service archive (. sar).

ConfigServiceMBean interface declares specific methods like the start, getTimeout and stop
methods to start, hold and stop the MBean correctly without using any JBoss specific classes.
ConfigService class implements ConfigServiceMBean interface and consequently implements
the methods used within that interface.

PlainThread class extends ServiceMBeanSupport class and implements PlainThreadMBean
interface. PlainThread starts a thread and uses ConfigServiceMBean.getTimeout() to
determine how long the thread should sleep.

Example 8.1. Sample MBean services
package org.jboss.example.mbean.support;
public interface ConfigServiceMBean {

int getTimeout();
void start();
void stop();
3
package org.jboss.example.mbean.support;

public class ConfigService implements ConfigServiceMBean {
int timeout;

182

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+30497-633356+%5BLatest%5D&comment=Title%3A+Writing+JBoss+MBean+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30497-633356+24+Apr+2014+10%3A57+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 8.JBOSS MBEAN SERVICES

@Ooverride
public int getTimeout() {
return timeout;

}

@Ooverride
public void start() {
//Create a random number between 3000 and 6000 milliseconds
timeout = (int)Math.round(Math.random() * 3000) + 3000;
System.out.println("Random timeout set to " + timeout + "
seconds");

}

@Override
public void stop() {
timeout = 0;

}
}

package org.jboss.example.mbean.support;
import org.jboss.system.ServiceMBean;

public interface PlainThreadMBean extends ServiceMBean {
void setConfigService(ConfigServiceMBean configServiceMBean);

}

package org.jboss.example.mbean.support;
import org.jboss.system.ServiceMBeanSupport;

public class PlainThread extends ServiceMBeanSupport implements
PlainThreadMBean {

private ConfigServiceMBean configService;
private Thread thread,;
private volatile boolean done;

@Ooverride
public void setConfigService(ConfigServiceMBean configService) {
this.configService = configService;

}

@Ooverride
protected void startService() throws Exception {
System.out.println("Starting Plain Thread MBean");
done = false;
thread = new Thread(new Runnable() {
@Ooverride
public void run() {
try {
while (!done) {
System.out.println("Sleeping....");
Thread.sleep(configService.getTimeout());

183

Development Guide

System.out.println("Slept!");
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
1)
thread.start();
}

}

@Ooverride

protected void stopService() throws Exception {
System.out.println("Stopping Plain Thread MBean");
done = true;

}

The jboss-service.xml descriptor shows how ConfigService class is injected into
PlainThread class using inject tag. The inject tag establishes a dependency between
PlainThreadMBean and ConfigServiceMBean and thus allows PlainThreadMBean use
ConfigServiceMBean easily.

Example 8.2. JBoss-service.xml Service Descriptor
<server xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="urn:jboss:service:7.0 jboss-

service_7_0.xsd"
xmlns="urn:jboss:service:7.0">

<mbean code="org.jboss.example.mbean.support.ConfigService"
name="jboss.support:name=ConfigBean"/>

<mbean code="org.jboss.example.mbean.support.PlainThread"
name="jboss.support:name=ThreadBean">

<attribute name="configService">

<inject bean="jboss.support:name=ConfigBean"/>

</attribute>

</mbean>
</server>
After writing the sample MBeans you can package the classes and the jboss-service.xml
descriptor in the META- INF folder of a service archive (.sar).

Report a bug

8.3. DEPLOYING JBOSS MBEAN SERVICES

To build and deploy the sample MBeans (ServiceMBeanTest.sar)in Domain mode use the
following commands:

I [domain@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar

184

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+30498-635265+%5BLatest%5D&comment=Title%3A+A+Standard+MBean+Example%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30498-635265+30+Apr+2014+18%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 8.JBOSS MBEAN SERVICES

[domain@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar --all-
server-groups

To build and deploy the sample MBeans (ServiceMBeanTest.sar) in Standalone mode use the
following command:

I [standalone@localhost:9999 /] deploy ~/Desktop/ServiceMBeanTest.sar
To undeploy the sample MBeans use the following command:
I [standalone@localhost:9999 /] undeploy ServiceMBeanTest.sar

Report a bug

185

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+30548-634331+%5BLatest%5D&comment=Title%3A+Deploying+JBoss+MBean+Services%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30548-634331+29+Apr+2014+16%3A14+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS

9.1. SESSION REPLICATION

9.1.1. About HTTP Session Replication

Session replication ensures that client sessions of distributable applications are not disrupted by
failovers by nodes in a cluster. Each node in the cluster shares information about ongoing sessions, and
can take them over if the originally-involved node disappears.

Session replication is the mechanism by which mod_cluster, mod_jk, mod_proxy, ISAPI, and NSAPI
clusters provide high availability.

Report a bug

9.1.2. About the Web Session Cache

The web session cache can be configured when you use any of the HA profiles, including the
standalone-ha.xml profile, or the managed domain profiles ha or full-ha. The most commonly
configured elements are the cache mode and the number of cache owners for a distributed cache.
Cache Mode

The cache mode can either be REPL (the default) or DIST.

REPL

The REPL mode replicates the entire cache to every other node in the cluster. This is the safest
option, but introduces more overhead.

DIST

The DIST mode is similar to the buddy mode provided in previous implementations. It reduces
overhead by distributing the cache to the number of nodes specified in the owners parameter. This
number of owners defaults to 2.

Owners

The owners parameter controls how many cluster nodes hold replicated copies of the session. The
default is 2.

Report a bug

9.1.3. Configure the Web Session Cache

The web session cache defaults to REPL. If you wish to use DIST mode, run the following two
commands in the Management CLI. If you use a different profile, change the profile name in the
commands. If you use a standalone server, remove the /profile=ha portion of the commands.

Procedure 9.1. Configure the Web Session Cache

1. Change the default cache mode to DIST.

186

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4686-591671+%5BLatest%5D&comment=Title%3A+About+HTTP+Session+Replication%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4686-591671+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+12554-592028+%5BLatest%5D&comment=Title%3A+About+the+Web+Session+Cache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=12554-592028+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS

attribute(name=default-cache, value=dist)

I /profile=ha/subsystem=infinispan/cache-container=web/:write-

2. Set the number of owners for a distributed cache.
The following command sets 5 owners. The default is 2.

/profile=ha/subsystem=infinispan/cache-container=web/distributed-
cache=dist/:write-attribute(name=owners, value=5)

3. Change the default cache mode back to REPL.

attribute(name=default-cache, value=repl)

I /profile=ha/subsystem=infinispan/cache-container=web/:write-

4. Restart the Server
After changing the web cache mode, you must restart the server.

Result

Your server is configured for session replication. To use session replication in your own applications,
refer to the following topic: Section 9.1.4, “Enable Session Replication in Your Application” .

Report a bug

9.1.4. Enable Session Replication in Your Application

Summary

To take advantage of JBoss EAP 6 High Availability (HA) features, you must configure your application
to be distributable. This procedure shows how to do that, and then explains some of the advanced
configuration options you can use.

Procedure 9.2. Make your Application Distributable

1. Required: Indicate that your application is distributable.
If your application is not marked as distributable, its sessions will never be distributed. Add the
<distributable/> element inside the <web-app>tag of your application's web.xml
descriptor file. Here is an example.

<?xml version="1.0"?>

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

<distributable/>

</web-app>

‘ Example 9.1. Minimum Configuration for a Distributable Application

187

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+12555-592028+%5BLatest%5D&comment=Title%3A+Configure+the+Web+Session+Cache%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=12555-592028+24+Feb+2014+07%3A56+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

2. Modify the default replication behavior if desired.
If you want to change any of the values affecting session replication, you can override them
inside a<replication-config> element which is a child element of the <jboss-web>
element of your application's jboss-web.xml file. For a given element, only include it if you
want to override the defaults. The following example lists all of the default settings, and is
followed by a table which explains the most commonly changed options.

Example 9.2. Default <replication-config>Values
<!DOCTYPE jboss-web PUBLIC
"-//JBoss//DTD Web Application 5.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web>

<replication-config>
<cache-name>custom-session-cache</cache-name>
<replication-trigger>SET</replication-trigger>
<replication-granularity>ATTRIBUTE</replication-
granularity>
<use-jk>false</use-jk>
<max-unreplicated-interval>30</max-unreplicated-interval>
<snapshot-mode>INSTANT</snapshot-mode>
<snapshot-interval>1000</snapshot-interval>
<session-notification-
policy>com.example.CustomSessionNotificationPolicy</session-
notification-policy>
</replication-config>

</jboss-web>

Table 9.1. Common Options for session Replication

Description

188

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS

Description

<replication-trigger> Controls which conditions should trigger session data replication across
the cluster. This option is necessary because after a mutable object
stored as a session attribute is accessed from the session, the container
has no clear way to know if the object has been modified and needs to
be replicated, unless method setAttribute() is called directly.

Valid Values for<replication-trigger>

SET_AND_GET

This is the safest but worst-performing option. Session data is
always replicated, even if its content has only been accessed, and
not modified. This setting is preserved for legacy purposes only. To
get the same behavior with better performance, you may, instead of
using this setting, set <max-unreplicated-interval>to 0.

SET_AND_NON_PRIMITIVE_GET

The default value. Session data is only replicated if an object of a
non-primitive type is accessed. This means that the object is not of
a well-known Java type such as Integer,Long, or String.

SET

This option assumes that the application will explicitly call
setAttributeon the session when the data needs to be

replicated. It prevents unnecessary replication and can benefit
overall performance, but is inherently unsafe.

Regardless of the setting, you can always trigger session replication by
calling setAttribute().

<replication- Determines the granularity of data that is replicated. It defaults to
granularity> SESSION, but can be set toATTRIBUTE instead, to increase

performance on sessions where most attributes remain unchanged.

The following options rarely need to be changed.

Table 9.2. Less Commonly Changed Options for Session Replication

Description

<use-jk> Whether to assume that a load balancer such as mod_cluster,
mod_jk, ormod_proxy is in use. The default isfalse. If set totrue,
the container examines the session ID associated with each request
and replaces the jvmRoute portion of the session ID if there is a
failover.

189

Development Guide

Description

<max-unreplicated-
interval>

<snapshot-mode>

<snapshot-interval>

<session-notification-
policy>

Report a bug

The maximum interval (in seconds) to wait after a session was accessed
before triggering a replication of a session's timestamp, even if it is
considered to be unchanged. This ensures that cluster nodes are aware
of each session's timestamp and that an unreplicated session will not
expire incorrectly during a failover. It also ensures that you can rely on
a correct value for calls to method
HttpSession.getLastAccessedTime ()during a failover.

By default, no value is specified. A value of @ causes the timestamp to
be replicated whenever the session is accessed. A value of -1 causes
the timestamp to be replicated only if other activity during the request
triggers a replication. A positive value greater than
HttpSession.getMaxInactiveInterval() istreatedasa
misconfiguration and converted to 0.

Specifies when sessions are replicated to other nodes. The default is
INSTANT and the other possible value isINTERVAL.

In INSTANT mode, changes are replicated at the end of a request, by
means of the request processing thread. The <snhapshot -
interval> optionis ignored.

In INTERVAL mode, a background task runs at the interval specified by
<snhapshot-interval>, and replicates modified sessions.

The interval, in milliseconds, at which modified sessions should be
replicated when using INTERVAL for the value of<snapshot -
mode>.

The fully-qualified class name of the implementation of interface
ClusteredSessionNotificationPolicy which governs
whether servlet specification notifications are emitted to any
registered Ht tpSessionListener,
HttpSessionAttributelListener,or
HttpSessionBindingListener.

9.2. HTTPSESSION PASSIVATION AND ACTIVATION

9.2.1. About HTTP Session Passivation and Activation

Passivation is the process of controlling memory usage by removing relatively unused sessions from
memory while storing them in persistent storage.

Activation is when passivated data is retrieved from persisted storage and put back into memory.

Passivation occurs at three different times in a HTTP session’s lifetime:

e When the container requests the creation of a new session, if the number of currently active
session exceeds a configurable limit, the server attempts to passivate some sessions to make

room for the new one.

190

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4687-707088+%5BLatest%5D&comment=Title%3A+Enable+Session+Replication+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4687-707088+08+Sep+2014+13%3A58+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS

e Periodically, at a configured interval, a background task checks to see if sessions should be
passivated.

e When a web application is deployed and a backup copy of sessions active on other servers is
acquired by the newly deploying web application's session manager, sessions may be
passivated.

A session is passivated if it meets the following conditions:
e The session has not been in use for longer than a configurable maximum idle time.

e The number of active sessions exceeds a configurable maximum and the session has not been
in use for longer than a configurable minimum idle time.

Sessions are always passivated using a Least Recently Used (LRU) algorithm.

Report a bug

9.2.2. Configure HttpSession Passivation in Your Application

Overview

HttpSession passivation is configured in your application's WEB_INF/jboss-web.xml or
META_INF/jboss-web.xml file.

Example 9.3. Example jboss-web.xml File
<!DOCTYPE jboss-web PUBLIC
"-//JBoss//DTD Web Application 5.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_5_0.dtd">

<jboss-web version="6.0"
xmlns="http://www.jboss.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee

http://www.jboss.org/j2ee/schema/jboss-web_6_0.xsd">

<max-active-sessions>20</max-active-sessions>
<passivation-config>
<use-session-passivation>true</use-session-passivation>
<passivation-min-idle-time>60</passivation-min-idle-time>
<passivation-max-idle-time>600</passivation-max-idle-time>
</passivation-config>

</jboss-web>

Passivation Configuration Elements

<max-active-sessions>

The maximum number of active sessions allowed. If the number of sessions managed by the session
manager exceeds this value and passivation is enabled, the excess will be passivated based on the
configured <passivation-min-idle-time>. Then, if the number of active sessions still exceeds

191

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4689-591671+%5BLatest%5D&comment=Title%3A+About+HTTP+Session+Passivation+and+Activation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4689-591671+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

this limit, attempts to create new sessions will fail. The default value of -1 sets no limit on the
maximum number of active sessions.

<passivation-config>

This element holds the rest of the passivation configuration parameters, as child elements.

<passivation-config> Child Elements

<use-session-passivation>

Whether or not to use session passivation. The default value is false.

<passivation-min-idle-time>

The minimum time, in seconds, that a session must be inactive before the container will consider
passivating it in order to reduce the active session count to conform to value defined by max-
active-sessions. The default value of -1 disables passivating sessions before <passivation-max-
idle-time> has elapsed. Neither a value of -1 nor a high value are recommended if <max-active-
sessions>is set.

<passivation-max-idle-time>

The maximum time, in seconds, that a session can be inactive before the container attempts to
passivate it to save memory. Passivation of such sessions takes place regardless of whether the
active session count exceeds <max-active-sessions>. This value should be less than the
<session-timeout> settingin the web.xml. The default value of -1 disables passivation based
on maximum inactivity.

NOTE

The total number of sessions in memory includes sessions replicated from other cluster
nodes that are not being accessed on this node. Take this into account when setting
<max-active-sessions>. The number of sessions replicated from other nodes also
depends on whether REPL or DIST cache mode is enabled. In REPL cache mode, each
session is replicated to each node. In DIST cache mode, each session is replicated only
to the number of nodes specified by the owners parameter. See Section 9.1.2, “About
the Web Session Cache” and Section 9.1.3, “Configure the Web Session Cache” for
information on configuring session cache modes.

For example, consider an eight node cluster, where each node handles requests from
100 users. With REPL cache mode, each node would store 800 sessions in memory. With
DIST cache mode enabled, and the default owners setting of 2, each node stores 200
sessions in memory.

Report a bug

9.3. COOKIE DOMAIN

9.3.1. About the Cookie Domain

The cookie domainrefers to the set of hosts able to read a cookie from the client browser which is
accessing your application. It is a configuration mechanism to minimize the risk of third parties

192

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4690-706780+%5BLatest%5D&comment=Title%3A+Configure+HttpSession+Passivation+in+Your+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4690-706780+05+Sep+2014+15%3A03+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS

accessing information your application stores in browser cookies.

The default value for the cookie domain is /. This means that only the issuing host can read the

contents of a cookie. Setting a specific cookie domain makes the contents of the cookie available to a
wider range of hosts. To set the cookie domain, refer to Section 9.3.2, “Configure the Cookie Domain”.

Report a bug

9.3.2. Configure the Cookie Domain

To enable your SSO valve to share a SSO context, configure the cookie domain in the valve
configuration. The following configuration would allow applications on http://appl.xyz.comand
http://app2.xyz.comto share an SSO context, even if these applications run on different servers
in a cluster or the virtual host with which they are associated has multiple aliases.

Example 9.4. Example Cookie Domain Configuration

<Valve
className="org.jboss.web.tomcat.service.sso.ClusteredSingleSign0On"
cookieDomain="xyz.com" />

Report a bug

9.4. IMPLEMENT AN HA SINGLETON

Summary

The following procedure demonstrates how to deploy of a Service that is wrapped with the
SingletonService decorator and used as a cluster-wide singleton service. The service activates a
scheduled timer, which is started only once in the cluster.

Procedure 9.3. Implement an HA Singleton Service

1. Write the HA singleton service application.
The following is a simple example of a Service that is wrapped with the SingletonService
decorator to be deployed as a singleton service. A complete example can be found in the
cluster-ha-singleton quickstart that ships with Red Hat JBoss Enterprise Application
Platform 6. This quickstart contains all the instructions to build and deploy the application.

a. Create a service.
The following listing is an example of a service:

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import java.util.Date;
import java.util.concurrent.atomic.AtomicBoolean;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import org.jboss.logging.Logger;

import org.jboss.msc.service.Service;
import org.jboss.msc.service.ServiceName;

193

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4697-591671+%5BLatest%5D&comment=Title%3A+About+the+Cookie+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4697-591671+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4698-591671+%5BLatest%5D&comment=Title%3A+Configure+the+Cookie+Domain%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4698-591671+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

194

import org.jboss.msc.service.StartContext;
import org.jboss.msc.service.StartException;
import org.jboss.msc.service.StopContext;

/**
* @author Wolf-Dieter Fink
*/
public class HATimerService implements Service<String> {
private static final Logger LOGGER =
Logger.getLogger (HATimerService.class);
public static final ServiceName SINGLETON_SERVICE_NAME =
ServiceName.JB0SS.append("quickstart", "ha", "singleton",
"timer");

/**
* A flag whether the service is started.
*/
private final AtomicBoolean started = new
AtomicBoolean(false);

/**
* @return the name of the server node
*/
public String getValue() throws IllegalStateException,
IllegalArgumentException {
LOGGER.infof ("%s is %s at %s",
HATimerService.class.getSimpleName(), (started.get() ? "started"
"not started"), System.getProperty("jboss.node.name"));
return "";

}

public void start(StartContext arg®) throws StartException {
if (!started.compareAndSet(false, true)) {
throw new StartException("The service is still
started!");
}
LOGGER.info("Start HASingleton timer service '" +
this.getClass().getName() + "'");

final String node =
System.getProperty("jboss.node.name");
try {
InitialContext ic = new InitialContext();
((Scheduler) ic.lookup('"global/jboss-cluster-ha-
singleton-
service/SchedulerBean'!org.jboss.as.quickstarts.cluster.hasingleto
n.service.ejb.Scheduler")).initialize("HASingleton timer @" +
node + " " + new Date());
} catch (NamingException e) {
throw new StartException("Could not initialize
timer", e);
}
}

public void stop(StopContext arg@) {

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS

if (!started.compareAndSet(true, false)) {

LOGGER.warn("The service '" +
this.getClass().getName() + "' is not active!");
} else {

LOGGER.info("Stop HASingleton timer service '" +
this.getClass().getName() + "'");
try {
InitialContext ic = new InitialContext();
((Scheduler) ic.lookup("global/jboss-cluster-ha-
singleton-
service/SchedulerBean'!org.jboss.as.quickstarts.cluster.hasingleto
n.service.ejb.Scheduler")).stop();
} catch (NamingException e) {
LOGGER.error("Could not stop timer", e);

}

b. Create an activator that installs the Service as a clustered singleton.

The following listing is an example of a Service activator that installs the
HATimerService as a clustered singleton service:

package org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import org.jboss.as.clustering.singleton.SingletonService;
import org.jboss.logging.Logger;

import org.jboss.msc.service.DelegatingServiceContainer;
import org.jboss.msc.service.ServiceActivator;

import org.jboss.msc.service.ServiceActivatorContext;
import org.jboss.msc.service.ServiceController;

/**

* Service activator that installs the HATimerService as a
clustered singleton service

* during deployment.

*

* @author Paul Ferraro

*/
public class HATimerServiceActivator implements ServiceActivator

{
private final Logger log = Logger.getLogger(this.getClass());

@Ooverride
public void activate(ServiceActivatorContext context) {
log.info("HATimerService will be installed!");

HATimerService service = new HATimerService();
SingletonService<String> singleton = new
SingletonService<String>(service,
HATimerService.SINGLETON_SERVICE_NAME);
/*
* To pass a chain of election policies to the singleton,
for example,
* to tell JGroups to prefer running the singleton on a

195

Development Guide

node with a
* particular name, uncomment the following line:
*/

// singleton.setElectionPolicy(new
PreferredSingletonElectionPolicy(new
SimpleSingletonElectionPolicy(), new
NamePreference("node2/cluster'")));

singleton.build(new
DelegatingServiceContainer(context.getServiceTarget(),
context.getServiceRegistry()))
.setInitialMode(ServiceController.Mode.ACTIVE)
.install()

NOTE

The above code example uses a class,
org.jhoss.as.clustering.singleton.SingletonService,thatis
part of the JBoss EAP private API. A public APl will become available in the
EAP 7 release and the private class will be deprecated, but this classes will
be maintained and available for the duration of the EAP 6.x release cycle.

c. Create a ServiceActivator File
Create a file namedorg. jboss.msc.service.ServiceActivator in the application's
resources/META-INF/services/ directory. Add a line containing the fully qualified
name of the ServiceActivator class created in the previous step.

org.jboss.as.quickstarts.cluster.hasingleton.service.ejb.HATimerS
erviceActivator

d. Create a Singleton bean that implements a timer to be used as a cluster-wide singleton
timer.

This Singleton bean must not have a remote interface and you must not reference its local
interface from another EJB in any application. This prevents a lookup by a client or other
component and ensures the SingletonService has total control of the Singleton.

i. Create the Scheduler interface

package
org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

/**

* @author Wolf-Dieter
Fink

*/

public interface Scheduler {

void initialize(String info);

196

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS

void stop();

ii. Create the Singleton bean that implements the cluster-wide singleton timer.

package
org.jboss.as.quickstarts.cluster.hasingleton.service.ejb;

import javax.annotation.Resource;
import javax.ejb.ScheduleExpression;
import javax.ejb.Singleton;

import javax.ejb.Timeout;

import javax.ejb.Timer;

import javax.ejb.TimerConfig;

import javax.ejb.TimerService;

import org.jboss.logging.Logger;

/**
* A simple example to demonstrate a implementation of a
cluster-wide singleton timer.
*
* @author Wolf-Dieter
Fink
*/
@Singleton
public class SchedulerBean implements Scheduler {
private static Logger LOGGER =
Logger.getLogger(SchedulerBean.class);
@Resource
private TimerService timerService;

@Timeout
public void scheduler(Timer timer) {
LOGGER.info("HASingletonTimer: Info=" +
timer.getInfo());

}

@Override
public void initialize(String info) {
ScheduleExpression sexpr = new ScheduleExpression();
// set schedule to every 10 seconds for demonstration
sexpr.hour("*").minute("*").second("0/10");
// persistent must be false because the timer is
started by the HASingleton service
timerService.createCalendarTimer (sexpr, new
TimerConfig(info, false));

}

@Override
public void stop() {
LOGGER.info("Stop all existing HASingleton timers");
for (Timer timer : timerService.getTimers()) {
LOGGER. trace("Stop HASingleton timer: " +

197

Development Guide

198

timer.getInfo());
timer.cancel();

}

2. Start each JBoss EAP 6 instance with clustering enabled.

To enable clustering for standalone servers, you must start each server with the HA profile,
using a unique node name and port offset for each instance.

o For Linux, use the following command syntax to start the servers:

EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml -
Djboss.node.name=UNIQUE_NODE_NAME -Djboss.socket.binding.port-
offset=PORT_OFFSET

$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml
-Djboss.node.name=nodel
$ EAP_HOME/bin/standalone.sh --server-config=standalone-ha.xml

Example 9.5. Start multiple standalone servers on Linux
-Djboss.node.name=node2 -Djboss.socket.binding.port-offset=100

o For Microsoft Windows, use the following command syntax to start the servers:

Djboss.node.name=UNIQUE_NODE_NAME -Djboss.socket.binding.port-

EAP_HOME\bin\standalone.bat --server-config=standalone-ha.xml -
offset=PORT_OFFSET

Example 9.6. Start multiple standalone servers on Microsoft Windows

C:> EAP_HOME\bin\standalone.bat --server-config=standalone-
ha.xml -Djboss.node.name=nodel

C:> EAP_HOME\bin\standalone.bat --server-config=standalone-
ha.xml -Djboss.node.name=node2 -Djboss.socket.binding.port-
offset=100

' NOTE

If you prefer not to use command line arguments, you can configure the

standalone-ha.xml file for each server instance to bind on a separate
interface.

3. Deploy the application to the servers

The following Maven command deploys the application to a standalone server running on the
default ports.

I mvn clean install jboss-as:deploy

CHAPTER 9. CLUSTERING IN WEB APPLICATIONS

To deploy to additional servers, pass the server name. if it is on a different host, pass the host
name and port number on the command line:

mvn clean package jboss-as:deploy -Djboss-as.hostname=localhost -
Djboss-as.port=10099

See the cluster-ha-singleton quickstart that ships with JBoss EAP 6 for Maven
configuration and deployment details.

Report a bug

9.5. APACHE MOD_CLUSTER-MANAGER APPLICATION

9.5.1. About mod_cluster-manager Application

The mod_cluster-manager application is an administration web page which is available on Apache
HTTP Server. It is used for monitoring the connected worker nodes and performing various
administration tasks like enabling/disabling contexts and configuring the load-balancing properties of
worker nodes in a cluster.

Report a bug

9.5.2. Exploring mod_cluster-manager Application

The mod_cluster-manager application can be used for performing various administration tasks on
worker nodes.

The figure shown below represents the mod_cluster-manager application web page with annotations
to highlight important components and administration options on the page.

mod_cluster/1.2.8.Final 1

Auto Refresh show DUMP output show INFO output

2
Node jboss-eap-6.3 (ajp://192.168.122.204:8009):

Enable Contexts Disable Contexts Stop Context 7
Balancer: qacluster, LBGroup: ,Flushpackets: Off Flushwait: 10000,Ping: 10000000,Smax: 1, Ttl: 60000000,Status: OK Elected: 3,Read: 39, Transferred: 0,Connected: 0,Load: 99

Virtual Host 1: 4

Contexts:

5 6

sclusterbench, Status: ENABLED Request: O Disable Stop

Aliases:

example, com
localhost
default-host

3
Node jboss-eap-6.3-2 (ajp://192.168.122.204:8110):

Enable Contexts Disable Contexts Stop Context:
Balancer: gqacluster LBGroup: ,Flushpackets: Off Flushwait: 10000,Ping: 10000000,Smax: 1, Ttl: 60000000,Status: OK Elected: 1 ,Read: 15, Transferred: 0,Connected: 0,Load: 99

8 9
Virtual Host 1:

Contexts:

sclusterbench, Status: ENABLED Request: O Disable Stop

Aliases:

default-host
localhost
exanple. com

Figure 9.1. mod_cluster Administration Web Page

The annotations are explained below:

199

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+9154-720999+%5BLatest%5D&comment=Title%3A+Implement+an+HA+Singleton%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9154-720999+30+Oct+2014+13%3A44+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+31323-644221+%5BLatest%5D&comment=Title%3A+About+mod_cluster-manager+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=31323-644221+27+May+2014+09%3A18+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

[1] mod_cluster/1.2.8.Final: This denotes the version of the mod_cluster native library

[2] ajp://192.168.122.204:8099: This denotes the protocol used (either one of AJP,
HTTP, HTTPS), hostname or IP address of the worker node and the port

[3] jboss-eap-6.3-2: This denotes the worker node's JVMRoute.
[4] Virtual Host 1:This denotes the virtual host(s) configured on the worker node

[5] Disable :Thisis an administration option which can be used to disable the creation of
new sessions on the particular context. However the ongoing sessions do not get disabled and
remain intact

[6] Stop :Thisis an administration option which can be used to stop the routing of session
requests to the context. The remaining sessions will failover to another node unless the
property sticky-session-force is set to "true"

[7] Enable Contexts Disable Contexts Stop Contexts: These denote operations
which can be performed on the whole node. Selecting one of these options affects all the
contexts of a node in all its virtual hosts.

[8] Load balancing group (LBGroup): The load-balancing-group property is set
in the mod_cluster subsystem in EAP configuration to group all worker nodes into custom load
balancing groups. Load balancing group (LBGroup) is an informational field which gives
information about all set load balancing groups. If this field is not set, then all worker nodes are
grouped into a single default load balancing group

NOTE

This is only an informational field and thus cannot be used to set 1load-
balancing-group property. The property has to be set in mod_cluster
subsystem in EAP configuration.

[9] Load (value):This indicates the load factor on the worker node. The load factor(s) are
evaluated as below:

-load > 0 : A load factor with value 1 indicates that the worker
node is overloaded. A load factor of 100 denotes a free and not-
loaded node.

-load = 0 :A load factor of value 0 indicates that the worker node
is in a standby mode. This means that no session requests will be
routed to this node until and unless the other worker nodes are

unavailable

-load = -1 : A load factor of value -1 indicates that the worker
node 1is in an error state.

-load = -2 : A load factor of value -2 indicates that the worker

node is undergoing CPing/CPong and is in a transition state

Report a bug

200

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+31324-661207+%5BLatest%5D&comment=Title%3A+Exploring+mod_cluster-manager+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=31324-661207+06+Jun+2014+14%3A07+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

CHAPTER10.CDI

10.1. OVERVIEW OF CDI

10.1.1. Overview of CDI

e Section10.1.2, “About Contexts and Dependency Injection (CDI)”
e Section10.1.5, “Relationship Between Weld, Seam 2, and JavaServer Faces”
e Section 10.1.3, “Benefits of CDI”

Report a bug

10.1.2. About Contexts and Dependency Injection (CDI)

Contexts and Dependency Injection (CDI) is a specification designed to enable EJB 3.0 components "to
be used as Java Server Faces (JSF) managed beans, unifying the two component models and enabling
a considerable simplification to the programming model for web-based applications in Java." The
preceding quote is taken from the JSR-299 specification, which can be found at
http://www.jcp.org/en/jsr/detail?id=299.

JBoss EAP 6 includes Weld, which is the reference implementation of JSR-299. For more information,
about type-safe dependency injection, see Section 10.1.4, “About Type-safe Dependency Injection”.

Report a bug

10.1.3. Benefits of CDI

e CDI simplifies and shrinks your code base by replacing big chunks of code with annotations.

e CDlis flexible, allowing you to disable and enable injections and events, use alternative beans,
and inject non-CDI objects easily.

e Itis easy to use your old code with CDI. You only need to include a beans.xmlin your META-
INF/ or WEB-INF/ directory. The file can be empty.

e CDI simplifies packaging and deployments and reduces the amount of XML you need to add to
your deployments.

e CDI provides lifecycle management via contexts. You can tie injections to requests, sessions,
conversations, or custom contexts.

e CDI provides type-safe dependency injection, which is safer and easier to debug than string-
based injection.

e CDIl decouples interceptors from beans.
e CDI provides complex event notification.

Report a bug

10.1.4. About Type-safe Dependency Injection

201

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4436-591662+%5BLatest%5D&comment=Title%3A+Overview+of+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4436-591662+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://www.jcp.org/en/jsr/detail?id=299
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4437-591662+%5BLatest%5D&comment=Title%3A+About+Contexts+and+Dependency+Injection+%28CDI%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4437-591662+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4447-591664+%5BLatest%5D&comment=Title%3A+Benefits+of+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4447-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Before JSR-299 and CDI, the only way to inject dependencies in Java was to use strings. This was
prone to errors. CDIl introduces the ability to inject dependencies in a type-safe way.

For more information about CDI, refer to Section 10.1.2, “About Contexts and Dependency Injection
(coi)”.

Report a bug

10.1.5. Relationship Between Weld, Seam 2, and JavaServer Faces

The goal of Seam 2was to unify Enterprise Java Beans (EJBs) and JavaServer Faces (JSF) managed
beans.

JavaServer Faces (JSF)implements JSR-314. It is an API for building server-side user interfaces. JBoss
Web Framework Kit includes RichFaces, which is an implementation of JavaServer Faces and AJAX.

Weld is the reference implementation of Contexts and Dependency Injection (CDI) which is defined in
JSR-299. Weld was inspired by Seam 2 and other dependency injection frameworks. Weld is included
in JBoss EAP 6.

Report a bug

10.2. USE CDI

10.2.1. First Steps

10.2.1.1. Enable CDI

Summary

Contexts and Dependency Injection (CDI) is one of the core technologies in JBoss EAP 6, and is
enabled by default. If for some reason it is disabled and you need to enable it, follow this procedure.

Procedure 10.1. Enable CDI in JBoss EAP 6

1. Check to see if the CDI subsystem details are commented out of the configuration file.
A subsystem can be disabled by commenting out the relevant section of the domain.xml or
standalone.xml configuration files, or by removing the relevant section altogether.

To find the CDI subsystem in EAP_HOME/domain/configuration/domain.xml or
EAP_HOME/standalone/configuration/standalone.xml, search them for the following
string. If it exists, it is located inside the <extensions> section.

I <extension module="org.jboss.as.weld"/>

The following line must also be present in the profile you are using. Profiles are in individual
<profile> elements within the <profiles> section.

I <subsystem xmlns="urn:jboss:domain:weld:1.0"/>

2. Before editing any files, stop JBoss EAP 6.
JBoss EAP 6 modifies the configuration files during the time it is running, so you must stop the
server before you edit the configuration files directly.

202

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4438-591662+%5BLatest%5D&comment=Title%3A+About+Type-safe+Dependency+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4438-591662+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4445-591664+%5BLatest%5D&comment=Title%3A+Relationship+Between+Weld%2C+Seam+2%2C+and+JavaServer+Faces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4445-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

3.

4.

5.

Result

CHAPTER 10.CDI

Edit the configuration file to restore the CDI subsystem.
If the CDI subsystem was commented out, remove the comments.

If it was removed entirely, restore it by adding this line to the file in a new line directly above
the </extensions> tag:

I <extension module="org.jboss.as.weld"/>
You also need to add the following line to the relevant profile in the <profiles> section.

I <subsystem xmlns="urn:jboss:domain:weld:1.0"/>

Restart JBoss EAP 6.
Start JBoss EAP 6 with your updated configuration.

JBoss EAP 6 starts with the CDI subsystem enabled.

Report a bug

10.2.2. Use CDI to Develop an Application

10.2.2.1. Use CDI to Develop an Application

Introduction

Contexts and Dependency Injection (CDI) gives you tremendous flexibility in developing applications,
reusing code, adapting your code at deployment or run-time, and unit testing. JBoss EAP 6 includes
Weld, the reference implementation of CDI. These tasks show you how to use CDI in your enterprise
applications.

Section 10.2.1.1, “Enable CDI”

Section 10.2.2.2, “Use CDI with Existing Code”

Section 10.2.2.3, “Exclude Beans From the Scanning Process”
Section 10.2.2.4, “Use an Injection to Extend an Implementation”
Section 10.2.3.3, “Use a Qualifier to Resolve an Ambiguous Injection”
Section 10.2.7.4, “Override an Injection with an Alternative”
Section 10.2.7.2, “Use Named Beans”

Section 10.2.6.1, “Manage the Lifecycle of a Bean”

Section 10.2.6.2, “Use a Producer Method”

Section 10.2.10.2, “Use Interceptors with CDI”

Section 10.2.8.2, “Use Stereotypes”

Section 10.2.9.2, “Fire and Observe Events”

203

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4451-591664+%5BLatest%5D&comment=Title%3A+Enable+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4451-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide
Report a bug

10.2.2.2. Use CDI with Existing Code

Almost every concrete Java class that has a constructor with no parameters, or a constructor
designated with the annotation @Inject, is a bean. The only thing you need to do before you can start
injecting beans is create a file called beans.xml in the META-INF/ or WEB-INF/ directory of your
archive. The file can be empty.

Procedure 10.2. Use legacy beans in CDI applications

1. Package your beans into an archive.
Package your beans into a JAR or WAR archive.

2. Include a beans. xml file in your archive.
Place a beans.xml file into your JAR archive's META-INF/ or your WAR archive's WEB-INF/
directory. The file can be empty.

Result:

You can use these beans with CDI. The container can create and destroy instances of your beans and
associate them with a designated context, inject them into other beans, use them in EL expressions,

specialize them with qualifier annotations, and add interceptors and decorators to them, without any
modifications to your existing code. In some circumstances, you may need to add some annotations.

Report a bug

10.2.2.3. Exclude Beans From the Scanning Process

Summary

One of the features of Weld, the JBoss EAP 6 implementation of CDI, is the ability to exclude classes in
your archive from scanning, having container lifecycle events fired, and being deployed as beans. This
is not part of the JSR-299 specification.

Example 10.1. Exclude packages from your bean

The following example has several <weld:exclude> tags.
1. The first one excludes all Swing classes.
2. The second excludes Google Web Toolkit classes if Google Web Toolkit is not installed.

3. The third excludes classes which end in the string Blether (using a regular expression), if
the system property verbosity is set to low.

4. The fourth excludes Java Server Faces (JSF) classes if Wicket classes are present and the
viewlayer system property is not set.

<beans xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:weld="http://jboss.org/schema/weld/beans"
xsi:schemaLocation="
http://java.sun.com/xml/ns/javaee

<?xml version="1.0" encoding="UTF-8"?>
http://docs. jboss.org/cdi/beans_1_0.xsd

204

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4454-591664+%5BLatest%5D&comment=Title%3A+Use+CDI+to+Develop+an+Application%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4454-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4452-591664+%5BLatest%5D&comment=Title%3A+Use+CDI+with+Existing+Code%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4452-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

<!-- Don't include GWT support if GWT is not installed -->
<weld:exclude name="com.acme.gwt.**">

<weld:if-class-available name="!com.google.GWT"/>
</weld:exclude>

http://jboss.org/schema/weld/beans
http://jboss.org/schema/weld/beans_1_1.xsd">
<weld:scan>
<!-- Don't deploy the classes for the swing app! -->
<weld:exclude name='"com.acme.swing.**" />
<Il--
Exclude classes which end in Blether if the system property
verbosity is set to low
i.e.

java ... -Dverbosity=Iow
-->
<weld:exclude pattern="A(.*)Blether$">
<weld:if-system-property name="verbosity" value="low"/>
</weld:exclude>

<I--
Don't include JSF support if Wicket classes are present,
and the viewlayer system
property 1is not set
-->
<weld:exclude name="com.acme.jsf.**">
<weld:if-class-available name="org.apache.wicket.wWicket"/>
<weld:if-system-property name="!viewlayer"/>
</weld:exclude>
</weld:scan>
</beans>

The formal specification of Weld-specific configuration options can be found at
http://jboss.org/schema/weld/beans_1_1.xsd.

Report a bug

10.2.2.4. Use an Injection to Extend an Implementation

Summary

You can use an injection to add or change a feature of your existing code. This example shows you how
to add a translation ability to an existing class. The translation is a hypothetical feature and the way it
is implemented in the example is pseudo-code, and only provided for illustration.

The example assumes you already have a Welcome class, which has a method buildPhrase. The
buildPhrase method takes as an argument the name of a city, and outputs a phrase like "Welcome to
Boston." Your goal is to create a version of the Welcome class which can translate the greeting into a
different language.

I Example 10.2. Inject a Translator Bean Into the Welcome Class

205

http://jboss.org/schema/weld/beans_1_1.xsd
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4453-591664+%5BLatest%5D&comment=Title%3A+Exclude+Beans+From+the+Scanning+Process%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4453-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

The following pseudo-code injects a hypothetical Translator object into the Welcome class. The
Translator object may be an EJB stateless bean or another type of bean, which can translate
sentences from one language to another. In this instance, the Translator is used to translate the
entire greeting, without actually modifying the original Welcome class at all. The Translator is
injected before the buildPhrase method is implemented.

The code sample below is an example Translating Welcome class.

public class TranslatingWelcome extends Welcome {
@Inject Translator translator;

public String buildPhrase(String city) {
return translator.translate("Welcome to " + city + "!");

}

Report a bug
10.2.3. Ambiguous or Unsatisfied Dependencies

10.2.3.1. About Ambiguous or Unsatisfied Dependencies

Ambiguous dependencies exist when the container is unable to resolve an injection to exactly one
bean.

Unsatisfied dependencies exist when the container is unable to resolve an injection to any bean at all.
The container takes the following steps to try to resolve dependencies:

1. It resolves the qualifier annotations on all beans that implement the bean type of an injection
point.

2. It filters out disabled beans. Disabled beans are @Alternative beans which are not explicitly
enabled.

In the event of an ambiguous or unsatisfied dependency, the container aborts deployment and throws
an exception.

To fix an ambiguous dependency, see Section 10.2.3.3, “Use a Qualifier to Resolve an Ambiguous
Injection”.

Report a bug

10.2.3.2. About Qualifiers

A qualifier is an annotation which ties a bean to a bean type. It allows you to specify exactly which bean
you mean to inject. Qualifiers have a retention and a target, which are defined as in the example below.

Example 10.3. Define the @Synchronous and @Asynchronous Qualifiers

I @Qualifier

206

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4457-591664+%5BLatest%5D&comment=Title%3A+Use+an+Injection+to+Extend+an+Implementation%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4457-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4477-591661+%5BLatest%5D&comment=Title%3A+About+Ambiguous+or+Unsatisfied+Dependencies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4477-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

public @interface Synchronous {}

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})

@Retention(RUNTIME)
@Target ({TYPE, METHOD, FIELD, PARAMETER})
| public @interface Asynchronous {}

Example 10.4. Use the @Synchronous and @Asynchronous Qualifiers

@Synchronous
public class SynchronousPaymentProcessor implements PaymentProcessor {

public void process(Payment payment) { ... }

}

@Asynchronous
public class AsynchronousPaymentProcessor implements PaymentProcessor {

public void process(Payment payment) { ... }

Report a bug

10.2.3.3. Use a Qualifier to Resolve an Ambiguous Injection

Summary

This task shows an ambiguous injection and removes the ambiguity with a qualifier. Read more about
ambiguous injections at Section 10.2.3.1, “About Ambiguous or Unsatisfied Dependencies” .

Example 10.5. Ambiguous injection

You have two implementations of Welcome, one which translates and one which does not. In that
situation, the injection below is ambiguous and needs to be specified to use the translating
Welcome.

public class Greeter {
private Welcome welcome;

@Inject
void init(Welcome welcome) {
this.welcome = welcome;

}

207

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4478-591661+%5BLatest%5D&comment=Title%3A+About+Qualifiers%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4478-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Procedure 10.3. Resolve an Ambiguous Injection with a Qualifier

1. Create a qualifier annotation called @Translating.

@Qualifier

@Retention(RUNTIME)

@Target ({TYPE, METHOD, FIELD, PARAMETERS})
public @interface Translating{}

2. Annotate your translating Welcome with the @Translating annotation.

@Translating
public class TranslatingWelcome extends Welcome {
@Inject Translator translator;
public String buildPhrase(String city) {
return translator.translate("Welcome to " + city + "!");

}

3. Request the translating Welcome in your injection.

You must request a qualified implementation explicitly, similar to the factory method pattern.
The ambiqguity is resolved at the injection point.

public class Greeter {
private Welcome welcome;
@Inject
void init(@Translating Welcome welcome) {
this.welcome = welcome;
3
public void welcomeVisitors() {
System.out.println(welcome.buildPhrase("San Francisco"));
3
3

Result

The TranslatingWelcome is used, and there is no ambiguity.

Report a bug
10.2.4. Managed Beans

10.2.4.1. About Managed Beans

Prior to Java EE 6, there was no clear definition of the term bean in the Java EE platform. There were
several concepts referred to as beans in the Java EE specifications, including EJB beans and JSF
managed beans. Third-party frameworks such as Spring and Seam introduced their own ideas of what
defined a bean.

Java EE 6 established a common definition in the Managed Beans specification. Managed Beans are

defined as container-managed objects with minimal programming restrictions, otherwise known by the
acronym POJO (Plain Old Java Object). They support a small set of basic services, such as resource

208

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4458-591664+%5BLatest%5D&comment=Title%3A+Use+a+Qualifier+to+Resolve+an+Ambiguous+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4458-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

injection, lifecycle callbacks and interceptors. Companion specifications, such as EJB and CDI, build on
this basic model.

With very few exceptions, almost every concrete Java class that has a constructor with no parameters
(or a constructor designated with the annotation @Inject) is a bean. This includes every JavaBean
and every EJB session bean. The only requirement to enable the mentioned services in beans is that
they reside in an archive (a JAR, or a Java EE module such as a WAR or EJB JAR) that contains a
special marker file: META-INF/beans.xml.

Report a bug

10.2.4.2. Types of Classes That are Beans

A managed bean is a Java class. The basic lifecycle and semantics of a managed bean are defined by
the Managed Beans specification. You can explicitly declare a managed bean by annotating the bean
class @ManagedBean, but in CDI you do not need to. According to the specification, the CDI container
treats any class that satisfies the following conditions as a managed bean:

e [tis not a non-static inner class.
e Itis aconcrete class, or is annotated @Decorator.

e |tis not annotated with an EJB component-defining annotation or declared as an EJB bean
classinejb-jar.xml.

e It does notimplement interface javax.enterprise.inject.spi.Extension.
e It has either a constructor with no parameters, or a constructor annotated with @Inject.

The unrestricted set of bean types for a managed bean contains the bean class, every superclass and
all interfaces it implements directly or indirectly.

If a managed bean has a public field, it must have the default scope @Dependent.

Report a bug

10.2.4.3. Use CDI to Inject an Object Into a Bean

When your deployment archive includes a META-INF/beans.xml or WEB-INF/beans.xml file, each
object in your deployment can be injected using CDI.

This procedure introduces the main ways to inject objects into other objects.

1. Inject an object into any part of a bean with the @Inject annotation.
To obtain an instance of a class, within your bean, annotate the field with @Inject.

@InJect TextTranslator textTranslator;

Example 10.6. Injecting a TextTranslator instance into a TranslateController
| public class TranslateController {

2. Use your injected object's methods

209

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4439-686949+%5BLatest%5D&comment=Title%3A+About+Managed+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4439-686949+22+Jul+2014+14%3A52+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4482-591661+%5BLatest%5D&comment=Title%3A+Types+of+Classes+That+are+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4482-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

You can use your injected object's methods directly. Assume that TextTranslator has a
method translate.

public void translate() {

// in TranslateController class
translation = textTranslator.translate(inputText);

| Example 10.7. Use your injected object's methods

3. Useinjection in the constructor of a bean
You can inject objects into the constructor of a bean, as an alternative to using a factory or
service locator to create them.

Example 10.8. Using injection in the constructor of a bean
public class TextTranslator {
private SentenceParser sentenceParser;
private Translator sentenceTranslator;

@Inject

TextTranslator(SentenceParser sentenceParser, Translator
sentenceTranslator) {

this.sentenceParser = sentenceParser;

this.sentenceTranslator = sentenceTranslator;

// Methods of the TextTranslator class

4. Use the Instance(<T>) interface to get instances programmatically.
The Instance interface can return an instance of TextTranslator when parameterized with
the bean type.

| Example 10.9. Obtaining an instance programmatically

‘ @Inject Instance<TextTranslator> textTranslatorInstance;

210

CHAPTER 10.CDI

public void translate() {
textTranslatorInstance.get().translate(inputText);
}

Result:

When you inject an object into a bean all of the object's methods and properties are available to your
bean. If you inject into your bean's constructor, instances of the injected objects are created when your
bean's constructor is called, unless the injection refers to an instance which already exists. For
instance, a new instance would not be created if you inject a session-scoped bean during the lifetime of
the session.

Report a bug
10.2.5. Contexts, Scopes, and Dependencies

10.2.5.1. Contexts and Scopes

A context, in terms of CDI, is a storage area which holds instances of beans associated with a specific
scope.

A scope is the link between a bean and a context. A scope/context combination may have a specific
lifecycle. Several pre-defined scopes exist, and you can create your own scopes. Examples of pre-
defined scopes are @RequestScoped, @SessionScoped, and @ConversationScope.

Report a bug

10.2.5.2. Available Contexts

Table 10.1. Available contexts

Context Description

@Dependent The bean is bound to the lifecycle of the bean
holding the reference.

@ApplicationScoped Bound to the lifecycle of the application.
@RequestScoped Bound to the lifecycle of the request.
@SessionScoped Bound to the lifecycle of the session.
@ConversationScoped Bound to the lifecycle of the conversation. The

conversation scope is between the lengths of the
request and the session, and is controlled by the
application.

211

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4563-591666+%5BLatest%5D&comment=Title%3A+Use+CDI+to+Inject+an+Object+Into+a+Bean%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4563-591666+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4440-591662+%5BLatest%5D&comment=Title%3A+Contexts+and+Scopes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4440-591662+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Context Description

Custom scopes If the above contexts do not meet your needs, you
can define custom scopes.

Report a bug
10.2.6. Bean Lifecycle

10.2.6.1. Manage the Lifecycle of a Bean

Summary

This task shows you how to save a bean for the life of a request. Several other scopes exist, and you
can define your own scopes.

The default scope for an injected bean is @Dependent. This means that the bean's lifecycle is
dependent upon the lifecycle of the bean which holds the reference. For more information, see
Section 10.2.5.1, “Contexts and Scopes”.

Procedure 10.4. Manage Bean Lifecycles

1. Annotate the bean with the scope corresponding to your desired scope.

@RequestScoped
@Named ("greeter™")
public class GreeterBean {
private Welcome welcome;
private String city; // getter & setter not shown
@Inject void init(Welcome welcome) {
this.welcome = welcome;
}
public void welcomeVisitors() {
System.out.println(welcome.buildPhrase(city));
3
}

2. When your bean is used in the JSF view, it holds state.

<h:form>
<h:inputText value="#{greeter.city}"/>
<h:commandButton value="Welcome visitors" action="#
{greeter.welcomeVisitors}"/>
</h:form>

Result:

Your bean is saved in the context relating to the scope that you specify, and lasts as long as the scope
applies.

e Section10.2.13.1, “About Bean Proxies”

e Section10.2.13.2, “Use a Proxy in an Injection”

212

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4484-591661+%5BLatest%5D&comment=Title%3A+Available+Contexts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4484-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

Report a bug

10.2.6.2. Use a Producer Method

Summary

This task shows how to use producer methods to produce a variety of different objects which are not
beans for injection.

Example 10.10. Use a producer method instead of an alternative, to allow polymorphism after
deployment

The @Preferred annotation in the example is a qualifier annotation. For more information about
qualifiers, refer to: Section 10.2.3.2, “About Qualifiers”.

@SessionScoped
public class Preferences implements Serializable {
private PaymentStrategyType paymentStrategy;

@Produces @Preferred
public PaymentStrategy getPaymentStrategy() {
switch (paymentStrategy) {
case CREDIT_CARD: return new CreditCardPaymentStrategy();
case CHECK: return new CheckPaymentStrategy();
default: return null;

The following injection point has the same type and qualifier annotations as the producer method,
so it resolves to the producer method using the usual CDI injection rules. The producer method is
called by the container to obtain an instance to service this injection point.

I @Inject @Preferred PaymentStrategy paymentStrategy;

Example 10.11. Assign a scope to a producer method

The default scope of a producer method is @Dependent. If you assign a scope to a bean, it is bound
to the appropriate context. The producer method in this example is only called once per session.

@Produces @Preferred @SessionScoped
public PaymentStrategy getPaymentStrategy() {

}

Example 10.12. Use an injection inside a producer method

Objects instantiated directly by an application cannot take advantage of dependency injection and
do not have interceptors. However, you can use dependency injection into the producer method to
obtain bean instances.

I @Produces @Preferred @SessionScoped

213

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4462-591664+%5BLatest%5D&comment=Title%3A+Manage+the+Lifecycle+of+a+Bean%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4462-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

ccps,
CheckPaymentStrategy cps)

{
switch (paymentStrategy) {
case CREDIT_CARD: return ccps;
case CHEQUE: return cps;
default: return null;
}

}

If you inject a request-scoped bean into a session-scoped producer, the producer method promotes
the current request-scoped instance into session scope. This is almost certainly not the desired

‘ public PaymentStrategy getPaymentStrategy(CreditCardPaymentStrategy
behavior, so use caution when you use a producer method in this way.

NOTE

The scope of the producer method is not inherited from the bean that declares the
producer method.

Result
Producer methods allow you to inject non-bean objects and change your code dynamically.

Report a bug
10.2.7. Named Beans and Alternative Beans

10.2.7.1. About Named Beans

A bean is named by using the @Named annotation. Naming a bean allows you to use it directly in Java
Server Faces (JSF).

The @Named annotation takes an optional parameter, which is the bean name. If this parameter is
omitted, the lower-cased bean name is used as the name.

Report a bug

10.2.7.2. Use Named Beans

1. Use the @Named annotation to assign a name to a bean.

@Named ("greeter™")
public class GreeterBean {
private Welcome welcome;

@Inject
void init (Welcome welcome) {
this.welcome = welcome;

}

public void welcomeVisitors() {

214

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4463-591664+%5BLatest%5D&comment=Title%3A+Use+a+Producer+Method%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4463-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4480-591661+%5BLatest%5D&comment=Title%3A+About+Named+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4480-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

System.out.println(welcome.buildPhrase("San Francisco"));

}
¥

The bean name itself is optional. If it is omitted, the bean is named after the class name, with
the first letter decapitalized. In the example above, the default name would be greeterBean.

2. Use the named bean in a JSF view.
<h:form>
<h:commandButton value="Welcome visitors" action="#

{greeter.welcomeVisitors}"/>
</h:form>

Result:

Your named bean is assigned as an action to the control in your JSF view, with a minimum of coding.

Report a bug

10.2.7.3. About Alternative Beans

Alternatives are beans whose implementation is specific to a particular client module or deployment
scenario.

Example 10.13. Defining Alternatives

This alternative defines a mock implementation of both @Synchronous PaymentProcessor and
@Asynchronous PaymentProcessor, all in one:

@Alternative @Synchronous @Asynchronous
public class MockPaymentProcessor implements PaymentProcessor {

public void process(Payment payment) { ... }

By default, @Alternative beans are disabled. They are enabled for a specific bean archive by editing its
beans . xml file.

Report a bug

10.2.7.4. Override an Injection with an Alternative

Summary

Alternative beans let you override existing beans. They can be thought of as a way to plugin a class
which fills the same role, but functions differently. They are disabled by default. This task shows you
how to specify and enable an alternative.

Procedure 10.5. Override an Injection

215

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4461-591664+%5BLatest%5D&comment=Title%3A+Use+Named+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4461-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4479-591661+%5BLatest%5D&comment=Title%3A+About+Alternative+Beans%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4479-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

This task assumes that you already have a TranslatingWelcome class in your project, but you want
to override it with a "mock" TranslatingWelcome class. This would be the case for a test deployment,
where the true Translator bean cannot be used.

1. Define the alternative.

@Alternative
@Translating
public class MockTranslatingWelcome extends Welcome {
public String buildPhrase(string city) {
return "Bienvenue A " + city + "!");

}
¥

2. Substitute the alternative.
To activate the substitute implementation, add the fully-qualified class name to your META -
INF/beans.xml or WEB-INF/beans.xml file.

<beans>
<alternatives>
<class>com.acme.MockTranslatingWelcome</class>
</alternatives>
</beans>

Result
The alternative implementation is now used instead of the original one.

Report a bug

10.2.8. Stereotypes

10.2.8.1. About Stereotypes
In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows you to identify such a role and declare some common metadata for beans with that rolein a
central place.
A stereotype encapsulates any combination of:

e default scope

e aset of interceptor bindings
A stereotype may also specify either of these two scenarios:

e all beans with the stereotype have defaulted bean EL names

e all beans with the stereotype are alternatives

A bean may declare zero, one or multiple stereotypes. Stereotype annotations may be applied to a
bean class or producer method or field.

A stereotype is an annotation, annotated @Stereotype, that packages several other annotations.

216

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4460-591664+%5BLatest%5D&comment=Title%3A+Override+an+Injection+with+an+Alternative%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4460-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

A class that inherits a scope from a stereotype may override that stereotype and specify a scope
directly on the bean.

In addition, if a stereotype has a @Named annotation, any bean it is placed on has a default bean name.
The bean may override this name if the @Named annotation is specified directly on the bean. For more
information about named beans, see Section 10.2.7.1, “About Named Beans”.

Report a bug

10.2.8.2. Use Stereotypes

Summary

Without stereotypes, annotations can become cluttered. This task shows you how to use stereotypes
to reduce the clutter and streamline your code. For more information about what stereotypes are, see
Section 10.2.8.1, “About Stereotypes”.

Example 10.14. Annotation clutter
@Secure
@Transactional
@RequestScoped

@Named
public class AccountManager {
public boolean transfer(Account a, Account b) {

}

(o

Procedure 10.6. Define and Use Stereotypes

1. Define the stereotype,

@Secure

@Transactional

@RequestScoped

@Named

@Stereotype

@Retention(RUNTIME)

@Target(TYPE)

public @interface BusinessComponent {

}...

2. Use the stereotype.

@BusinessComponent
public class AccountManager {
public boolean transfer(Account a, Account b) {

}
¥

217

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4481-591661+%5BLatest%5D&comment=Title%3A+About+Stereotypes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4481-591661+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide
Result:
Stereotypes streamline and simplify your code.

Report a bug
10.2.9. Observer Methods

10.2.9.1. About Observer Methods

Observer methods receive notifications when events occur.

CDI provides transactional observer methods, which receive event notifications during the before
completion or after completion phase of the transaction in which the event was fired.

Report a bug

10.2.9.2. Fire and Observe Events
Example 10.15. Fire an event
This code shows an event being injected and used in a method.
@Inject Event<wWithdrawal> event;

public boolean transfer(Account a, Account b) {

public class AccountManager {
event.fire(new Withdrawal(a));

You can annotate your event injection with a qualifier, to make it more specific. For more
information about qualifiers, see Section 10.2.3.2, “About Qualifiers”.

@Inject @Suspicious Event <Withdrawal> event;
public boolean transfer(Account a, Account b) {

Example 10.16. Fire an event with a qualifier
public class AccountManager {
event.fire(new Withdrawal(a));

Example 10.17. Observe an event

To observe an event, use the @0bserves annotation.

I public class AccountObserver {

218

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4465-591664+%5BLatest%5D&comment=Title%3A+Use+Stereotypes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4465-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4441-591662+%5BLatest%5D&comment=Title%3A+About+Observer+Methods%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4441-591662+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

void checkTran(@Observes Withdrawal w) {

}
}

Example 10.18. Observe a qualified event

You can use qualifiers to observe only specific types of events. For more information about
qualifiers, see Section 10.2.3.2, “About Qualifiers”.

public class AccountObserver {
void checkTran(@0Observes @Suspicious Withdrawal w) {

}
}

Report a bug
10.2.10. Interceptors

10.2.10.1. About Interceptors

Interceptors are defined as part of the Enterprise JavaBeans specification, which can be found at
http://jcp.org/aboutJava/communityprocess/final/jsr318/. Interceptors allow you to add functionality
to the business methods of a bean without modifying the bean's method directly. The interceptor is
executed before any of the business methods of the bean.

CDI enhances this functionality by allowing you to use annotations to bind interceptors to beans.

Interception points

business method interception

A business method interceptor applies to invocations of methods of the bean by clients of the bean.

lifecycle callback interception

A lifecycle callback interceptor applies to invocations of lifecycle callbacks by the container.

timeout method interception

A timeout method interceptor applies to invocations of the EJB timeout methods by the container.

Report a bug

10.2.10.2. Use Interceptors with CDI

Example 10.19. Interceptors without CDI

Without CDI, interceptors have two problems.

e The bean must specify the interceptor implementation directly.

219

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4466-591664+%5BLatest%5D&comment=Title%3A+Fire+and+Observe+Events%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4466-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://jcp.org/aboutJava/communityprocess/final/jsr318/
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4442-591662+%5BLatest%5D&comment=Title%3A+About+Interceptors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4442-591662+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

This makes adding or removing interceptors on an application-wide basis time-consuming
and error-prone.

@Interceptors({
SecurityInterceptor.class,
TransactionInterceptor.class,
LoggingInterceptor.class

1)

@Stateful public class BusinessComponent {

(o

| e Every bean in the application must specify the full set of interceptors in the correct order.

Procedure 10.7. Use interceptors with CDI

1. Define the interceptor binding type.

@InterceptorBinding
@Retention(RUNTIME)
@Target({TYPE, METHOD})
public @interface Secure {}

2. Mark the interceptor implementation.

@Secure
@Interceptor
public class SecurityInterceptor {
@AroundInvoke
public Object aroundInvoke(InvocationContext ctx) throws Exception

{

// enforce security ...
return ctx.proceed();

}

3. Use the interceptor in your business code.

@Secure
public class AccountManager {
public boolean transfer(Account a, Account b) {

}
¥

4. Enable the interceptor in your deployment, by adding it to META-INF/beans.xml or WEB-
INF/beans.xml.

<beans>
<interceptors>
<class>com.acme.SecurityInterceptor</class>
<class>com.acme.TransactionInterceptor</class>
</interceptors>

220

CHAPTER 10.CDI

I </beans>

The interceptors are applied in the order listed.

Result:

CDI simplifies your interceptor code and makes it easier to apply to your business code.

Report a bug

10.2.11. About Decorators

A decorator intercepts invocations from a specific Java interface, and is aware of all the semantics
attached to that interface. Decorators are useful for modeling some kinds of business concerns, but do
not have the generality of interceptors. They are a bean, or even an abstract class, that implements the
type it decorates, and are annotated with @Decorator.

Example 10.20. Example Decorator
@Decorator
public abstract class LargeTransactionDecorator

implements Account {
@Inject @Delegate @Any Account account;
@PersistenceContext EntityManager em;

public void withdraw(BigDecimal amount) {

}

public void deposit(BigDecimal amount);

(o

}

Report a bug

10.2.12. About Portable Extensions

CDlis intended to be a foundation for frameworks, extensions and integration with other technologies.
Therefore, CDI exposes a set of SPIs for the use of developers of portable extensions to CDI. Extensions
can provide the following types of functionality:

e integration with Business Process Management engines

e integration with third-party frameworks such as Spring, Seam, GWT or Wicket

221

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4464-591664+%5BLatest%5D&comment=Title%3A+Use+Interceptors+with+CDI%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4464-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4443-591664+%5BLatest%5D&comment=Title%3A+About+Decorators%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4443-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

e new technology based upon the CDI programming model

According to the JSR-299 specification, a portable extension may integrate with the container in the
following ways:

e Providing its own beans, interceptors and decorators to the container
e Injecting dependencies into its own objects using the dependency injection service
e Providing a context implementation for a custom scope

e Augmenting or overriding the annotation-based metadata with metadata from some other
source

Report a bug

10.2.13. Bean Proxies

10.2.13.1. About Bean Proxies

A proxy is a subclass of a bean, which is generated at runtime. It is injected at bean creation time, and
dependent scoped beans can be injected from it, because the lifecycles of the dependent beans are
tied to proxy. Proxies are used as a substitute for dependency injection, and solve two different
problems.

Problems of dependency injection, which are solved by using proxies

e Performance - Proxies are much faster than dependency injection, so you can use them in
beans which need good performance.

e Thread safety - Proxies forward requests to the correct bean instance, even when multiple
threads access a bean at the same time. Dependency injection does not guarantee thread
safety.

Types of classes that cannot be proxied

e Primitive types or array types
e Classes that are final or have final methods
e Classes which have a non-private default constructor

Report a bug

10.2.13.2. Use a Proxy in an Injection

Overview

A proxy is used for injection when the lifecycles of the beans are different from each other. The proxy
is a subclass of the bean that is created at run-time, and overrides all the non-private methods of the
bean class. The proxy forwards the invocation onto the actual bean instance.

In this example, the PaymentProcessor instance is not injected directly into Shop. Instead, a proxy is
injected, and when the processPayment () method is called, the proxy looks up the current
PaymentProcessor beaninstance and calls the processPayment () method on it.

222

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4444-591664+%5BLatest%5D&comment=Title%3A+About+Portable+Extensions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4444-591664+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4584-591669+%5BLatest%5D&comment=Title%3A+About+Bean+Proxies%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4584-591669+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 10.CDI

(o

}
@ApplicationScoped
public class Shop
{

@Inject
PaymentProcessor paymentProcessor;

public void buyStuff()
{

}

paymentProcessor.processPayment (100);

(o

Example 10.21. Proxy Injection
@ConversationScoped
class PaymentProcessor
{ public void processPayment(int amount)
‘ System.out.println("I'm taking $" + amount);

Fore more information about proxies, including which types of classes can be proxied, refer to
Section 10.2.13.1, “About Bean Proxies”.

Report a bug

223

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4585-591669+%5BLatest%5D&comment=Title%3A+Use+a+Proxy+in+an+Injection%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4585-591669+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

CHAPTER 11. JAVA TRANSACTION API (JTA)

11.1. OVERVIEW

11.1.1. Overview of Java Transactions API (JTA)

Introduction

These topics provide a foundational understanding of the Java Transactions API (JTA).
e Section11.2.5, “About Java Transactions APl (JTA)”
e Section11.5.2, “Lifecycle of a JTA Transaction”
e Section11.9.3,“JTA Transaction Example”

Report a bug
11.2. TRANSACTION CONCEPTS

11.2.1. About Transactions

A transaction consists of two or more actions which must either all succeed or all fail. A successful
outcome is a commit, and a failed outcome is a roll-back. In a roll-back, each member's state is reverted
to its state before the transaction attempted to commit.

The typical standard for a well-designed transaction is that it is Atomic, Consistent, Isolated, and Durable
(ACID).

Report a bug

11.2.2. About ACID Properties for Transactions

ACID is an acronym which stands for Atomicity, Consistency, Isolation, and Durability. This
terminology is usually used in the context of databases or transactional operations.

ACID Definitions

Atomicity

For a transaction to be atomic, all transaction members must make the same decision. Either they
all commit, or they all roll back. If atomicity is broken, what results is termed a heuristic outcome.

Consistency

Consistency means that data written to the database is guaranteed to be valid data, in terms of the
database schema. The database or other data source must always be in a consistent state. One
example of an inconsistent state would be a field in which half of the data is written before an
operation aborts. A consistent state would be if all the data were written, or the write were rolled
back when it could not be completed.

Isolation

Isolation means that data being operated on by a transaction must be locked before modification,
to prevent processes outside the scope of the transaction from modifying the data.

224

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4377-591665+%5BLatest%5D&comment=Title%3A+Overview+of+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4377-591665+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4268-591658+%5BLatest%5D&comment=Title%3A+About+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4268-591658+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

Durability

Durability means that in the event of an external failure after transaction members have been
instructed to commit, all members will be able to continue committing the transaction when the
failure is resolved. This failure may be related to hardware, software, network, or any other involved
system.

Report a bug

11.2.3. About the Transaction Coordinator or Transaction Manager

The terms Transaction Coordinator and Transaction Manager are mostly interchangeable in terms of
transactions with JBoss EAP 6. The term Transaction Coordinator is usually used in the context of
distributed transactions.

In JTA transactions, The Transaction Manager runs within JBoss EAP 6 and communicates with
transaction participants during the two-phase commitprotocol.

The Transaction Manager tells transaction participants whether to commit or roll back their data,
depending on the outcome of other transaction participants. In this way, it ensures that transactions
adhere to the ACID standard.

In JTS transactions, the Transaction Coordinator manages interactions between transaction managers
on different servers.

e Section11.2.4, “About Transaction Participants”
e Section11.2.2, “About ACID Properties for Transactions”
e Section 11.2.9, “About the 2-Phase Commit Protocol”

Report a bug

11.2.4. About Transaction Participants

A transaction participant is any process within a transaction, which has the ability to commit or roll
back state. This may be a database or other application. Each participant of a transaction
independently decides whether it is able to commit or roll back its state, and only if all participants can
commit, does the transaction as a whole succeed. Otherwise, each participant rolls back its state, and
the transaction as a whole fails. The Transaction Manager coordinates the commit or rollback
operations and determines the outcome of the transaction.

e Section11.2.1, “About Transactions”
e Section 11.2.3, “About the Transaction Coordinator or Transaction Manager”

Report a bug

11.2.5. About Java Transactions API (JTA)

Java Transactions API (JTA) is part of Java Enterprise Edition specification. It is defined in JSR-907.

Implementation of JTA is done using Transaction manager, which is covered by project Narayana for
JBoss EAP application server. Transaction manager allows application to assign various resources, for
example, database or JMS brokers, through a single global transaction. The global transaction is
referred as XA transaction. Only resources with XA capabilities can be included in a transaction.

225

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4271-591658+%5BLatest%5D&comment=Title%3A+About+ACID+Properties+for+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4271-591658+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4269-591658+%5BLatest%5D&comment=Title%3A+About+the+Transaction+Coordinator+or+Transaction+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4269-591658+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4270-591658+%5BLatest%5D&comment=Title%3A+About+Transaction+Participants%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4270-591658+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

In this document, JTA refers to Java Transaction API, this term is used to indicate how the transaction
manager processes the transactions. Transaction manager works in JTA transactions mode, the data
is shared via memory and transaction context is transferred by remote EJB calls. In JTS mode, the
data is shared by sending Common Object Request Broker Architecture (CORBA)messages and
transaction context is transferred by IIOP calls. Both modes support distribution of transaction over
multiple EAP servers.

Annotations is a method for creating and controlling transactions within your code.
e Section11.2.7, “About XA Datasources and XA Transactions”
e Section 11.2.11, “About Distributed Transactions”
e Section 11.8.2, “Configure the ORB for JTS Transactions”

Report a bug

11.2.6. About Java Transaction Service (JTS)

Java Transaction Service (JTS)is a is a mapping of the OTS to Java. Java applications use the JTA API to
manage transactions. JTA then interacts with a JTS transaction implementation when Transaction
manager is switched to JTS mode. To use special JTS capabilities, for example, nested transaction, you
need to manually use the JTS API.

JTS works over IIOP protocol. Transaction managers that use JTS, communicate with each other using
a process called an Object Request Broker (ORB), using a communication standard called Common
Object Request Broker Architecture (CORBA).

Using JTA API from an application standpoint, a JTS transaction behaves in the same way as a JTA
transaction.

NOTE
The implementation of JTS included in JBoss EAP 6 supports distributed JTS
transactions across multiple JBoss EAP 6 servers. The difference between distributed

JTS transactions and fully-compliant JTS transactions is the interoperability with
external third-party ORBs. This feature is unsupported with JBoss EAP 6.

e Section 11.2.3, “About the Transaction Coordinator or Transaction Manager”

Report a bug

11.2.7. About XA Datasources and XA Transactions

An XA datasource is a datasource which can participate in an XA global transaction.
An XA transaction is a transaction which can span multiple resources. It involves a coordinating
transaction manager, with one or more databases or other transactional resources, all involved in a

single global transaction.

Report a bug

11.2.8. About XA Recovery

The Java Transaction API (JTA) allows distributed transactions across multiple X/Open XA resources.

226

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4300-697973+%5BLatest%5D&comment=Title%3A+About+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4300-697973+13+Aug+2014+16%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4318-697974+%5BLatest%5D&comment=Title%3A+About+Java+Transaction+Service+%28JTS%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4318-697974+13+Aug+2014+16%3A59+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4286-591656+%5BLatest%5D&comment=Title%3A+About+XA+Datasources+and+XA+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4286-591656+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

XA stands for Extended Architecture which was developed by the X/Open Group to define a transaction
which uses more than one back-end data store. The XA standard describes the interface between a
global Transaction Manager (TM) and a local resource manager. XA allows multiple resources, such as
application servers, databases, caches, and message queues, to participate in the same transaction,
while preserving atomicity of the transaction. Atomicity means that if one of the participants fails to
commit its changes, the other participants abort the transaction, and restore their state to the same
status as before the transaction occurred.

XA Recoveryis the process of ensuring that all resources affected by a transaction are updated or
rolled back, even if any of the resources are transaction participants crash or become unavailable.
Within the scope of JBoss EAP 6, the Transaction subsystem provides the mechanisms for XA
Recovery to any XA resources or subsystems which use them, such as XA datasources, JMS message
queues, and JCA resource adapters.

XA Recovery happens without user intervention. In the event of an XA Recovery failure, errors are
recorded in the log output. Contact Red Hat Global Support Services if you need assistance.

Report a bug

11.2.9. About the 2-Phase Commit Protocol

The Two-phase commit protocol (2PC) refers to an algorithm to determine the outcome of a
transaction.

Phase 1

In the first phase, the transaction participants notify the transaction coordinator whether they are able
to commit the transaction or must roll back.

Phase 2

In the second phase, the transaction coordinator makes the decision about whether the overall
transaction should commit or roll back. If any one of the participants cannot commit, the transaction
must roll back. Otherwise, the transaction can commit. The coordinator directs the transactions about
what to do, and they notify the coordinator when they have done it. At that point, the transaction is
finished.

Report a bug

11.2.10. About Transaction Timeouts

In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a
transaction can be long-running. Transaction participants need to lock parts of datasources when they
commit, and the transaction manager needs to wait to hear back from each transaction participant
before it can direct them all whether to commit or roll back. Hardware or network failures can cause
resources to be locked indefinitely.

Transaction timeouts can be associated with transactions in order to control their lifecycle. If a
timeout threshold passes before the transaction commits or rolls back, the timeout causes the
transaction to be rolled back automatically.

You can configure default timeout values for the entire transaction subsystem, or you disable default
timeout values, and specify timeouts on a per-transaction basis.

Report a bug

11.2.11. About Distributed Transactions

227

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4821-591676+%5BLatest%5D&comment=Title%3A+About+XA+Recovery%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4821-591676+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4272-591658+%5BLatest%5D&comment=Title%3A+About+the+2-Phase+Commit+Protocol%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4272-591658+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4378-591665+%5BLatest%5D&comment=Title%3A+About+Transaction+Timeouts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4378-591665+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

A distributed transaction, is a transaction with participants on multiple JBoss EAP 6 servers. Java
Transaction Service (JTS) specification mandates that JTS transactions be able to be distributed across
application servers from different vendors (transaction distribution among servers from different
vendors is not a supported feature). Java Transaction APl (JTA) does not define that but JBoss EAP 6
supports distributed JTA transactions among JBoss EAP6 servers.

NOTE

In other app server vendor documentation, you can find that term distributed
transaction means XA transaction. In context of JBoss EAP 6 documentation, the
distributed transaction refers transactions distributed among several application
servers. Transaction which consists from different resources (for example, database
resource and jms resource) are referred as XA transactions in this document. For more
information, refer Section 11.2.6, “About Java Transaction Service (JTS)” and

Section 11.2.7, “About XA Datasources and XA Transactions”.

Report a bug

11.2.12. About the ORB Portability API

The Object Request Broker (ORB) is a process which sends and receives messages to transaction
participants, coordinators, resources, and other services distributed across multiple application
servers. An ORB uses a standardized Interface Description Language (IDL) to communicate and
interpret messages. Common Object Request Broker Architecture (CORBA)is the IDL used by the ORB in
JBoss EAP 6.

The main type of service which uses an ORB is a system of distributed Java Transactions, using the
Java Transaction Service (JTS) protocol. Other systems, especially legacy systems, may choose to use
an ORB for communication, rather than other mechanisms such as remote Enterprise JavaBeans or
JAX-WS or JAX-RS Web Services.

The ORB Portability APl provides mechanisms to interact with an ORB. This API provides methods for
obtaining a reference to the ORB, as well as placing an application into a mode where it listens for
incoming connections from an ORB. Some of the methods in the API are not supported by all ORBs. In
those cases, an exception is thrown.

The API consists of two different classes:

ORB Portability API Classes

e com.arjuna.orbportability.orb
e com.arjuna.orbportability.oa

Refer to the JBoss EAP 6 Javadocs bundle on the Red Hat Customer Portal for specific details about
the methods and properties included in the ORB Portability API.

Report a bug

11.2.13. About Nested Transactions

Nested transactions are transactions where some participants are also transactions.

Benefits of Nested Transactions

228

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4279-687031+%5BLatest%5D&comment=Title%3A+About+Distributed+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4279-687031+22+Jul+2014+19%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4320-591659+%5BLatest%5D&comment=Title%3A+About+the+ORB+Portability+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4320-591659+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

Fault Isolation

If a subtransaction rolls back, perhaps because an object it is using fails, the enclosing transaction
does not need to roll back.

Modularity

If a transaction is already associated with a call when a new transaction begins, the new transaction
is nested within it. Therefore, if you know that an object requires transactions, you can create them
within the object. If the object's methods are invoked without a client transaction, then the object's
transactions are top-level. Otherwise, they are nested within the scope of the client's transactions.
Likewise, a client does not need to know whether an object is transactional. It can begin its own
transaction.

Nested Transactions are only supported as part of the Java Transaction Service (JTS) API, and not part
of the Java Transaction API (JTA). Attempting to nest (non-distributed) JTA transactions results in an
exception.

Modifying JBoss EAP 6 configuration of transaction subsystem to use JTS does not indicate that
nested transaction will be used or activated. If you need to use them, you have to directly use ORB API
as JTA API does not provide any method to start the nested transaction.

Report a bug

11.3. TRANSACTION OPTIMIZATIONS

11.3.1. Overview of Transaction Optimizations

Introduction

The Transactions subsystem of JBoss EAP 6 includes several optimizations which you can take
advantage of in your applications.

e Section 11.3.2, “About the LRCO Optimization for Single-phase Commit (1PC)”
e Section 11.3.3, “About the Presumed-Abort Optimization”
e Section 11.3.4, “About the Read-Only Optimization”

Report a bug

11.3.2. About the LRCO Optimization for Single-phase Commit (1PC)

Although the 2-phase commit protocol (2PC) is more commonly encountered with transactions, some
situations do not require, or cannot accommodate, both phases. In these cases, you can use the single
phase commit (1PC) protocol. One situation where this might happen is when a non-XA-aware
datasource needs to participate in the transaction.

In these situations, an optimization known as the Last Resource Commit Optimization (LRCO)is
employed. The single-phase resource is processed last in the prepare phase of the transaction, and an
attempt is made to commit it. If the commit succeeds, the transaction log is written and the remaining
resources go through the 2PC. If the last resource fails to commit, the transaction is rolled back.

While this protocol allows for most transactions to complete normally, certain types of error can cause
an inconsistent transaction outcome. Therefore, use this approach only as a last resort.

229

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4287-687477+%5BLatest%5D&comment=Title%3A+About+Nested+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4287-687477+23+Jul+2014+16%3A16+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4274-591656+%5BLatest%5D&comment=Title%3A+Overview+of+Transaction+Optimizations%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4274-591656+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Where a single local TX datasource is used in a transaction, the LRCO is automatically applied to it.
e Section11.2.9, “About the 2-Phase Commit Protocol”

Report a bug

11.3.2.1. Commit Markable Resource

Summary

Configuring access to a resource manager via the Commit Markable Resource (CMR) interface ensures
that a 1PC resource manager can be reliably enlisted in a 2PC transaction. It is an implementation of
the LRCO algorithm, which makes non-XA resource fully recoverable.

Previously, adding 1PC resources to a 2PC transaction was achieved via the LRCO method, however
there is a window of failure in LRCO. Following the procedure below for adding 1PC resources to a 2PC
transaction via the LRCO method:

1. Prepare 2PC

2. Commit LRCO

3. Write tx log

4, Commit 2PC

If the procedure crashes between steps 2 and step 3, you cannot commit the 2PC. CMR eliminates this
restriction and allows 1PC to be reliably enlisted in a 2PC transaction.

Restrictions

A transaction may contain only one CMR resource.
Prerequisites

You must have a table created for which the following SQL would work:

SELECT xid,actionuid FROM _tableName_ WHERE transactionManagerID IN
(String[])

DELETE FROM _tableName_ WHERE xid IN (byte[[]])

INSERT INTO _tableName_ (xid, transactionManagerID, actionuid) VALUES
(byte[],String, byte[])

Example 11.1. Some examples of the SQL query

Sybase:

CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64),
actionuid varbinary(28))

Oracle:

CREATE TABLE xids (xid RAW(144), transactionManagerID varchar(64),
actionuid RAW(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

IBM:

230

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+IDs%3A%0A4273-591656+%5BLatest%5D&comment=Title%3A+About+the+LRCO+Optimization+for+Single-phase+Commit+%281PC%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

CREATE TABLE xids (xid VARCHAR(255) for bit data not null,
transactionManagerID

varchar(64), actionuid VARCHAR(255) for bit data not null)
CREATE UNIQUE INDEX index_xid ON xids (xid)

SQL Server:

CREATE TABLE xids (xid varbinary(144), transactionManagerID varchar(64),
actionuid varbinary(28))
CREATE UNIQUE INDEX index_xid ON xids (xid)

Postgres:

CREATE TABLE xids (xid bytea, transactionManagerID varchar(64),
actionuid bytea)
CREATE UNIQUE INDEX index_xid ON xids (xid)

Enabling a resource manager as CMR

By default, the CMR feature is disabled for datasources. To enable it, you must create or modify the
datasource configuration and ensure that the connectible attribute is set to true. An example
configuration entry in the datasources section of a server xml configuration file could be as follows:

<datasource enabled="true" jndi-
name="java:jboss/datasources/ConnectableDS" pool-name="ConnectableDS"
jta="true" use-java-context="true" spy="false" use-ccm="true"
connectable="true"/>

NOTE

This feature is not applicable to XA datasources.

You can also enable a resource manager as CMR using CLI as follows:

/subsystem=datasources/data-source=ConnectableDS:add(enabled="true", jndi-
name="java:jboss/datasources/ConnectableDS", jta="true", use-java-
context="true", spy="false", use-ccm="true", connectable="true",
connection-url="validConnectionURL", driver-name="h2")

Updating an existing resource to use the new CMR feature

If you only need to update an existing resource to use the new CMR feature, then simply modifiy the
connectable attribute:

/subsystem=datasources/data-source=ConnectableDS:write-
attribute(name=connectable, value=true)

Identifying CMR capable datasources

The transaction subsystem identifies the datasources that are CMR capable through an entry to the
transaction subsystem config section as shown below:

231

Development Guide

<subsystem xmlns="urn:jboss:domain:transactions:3.0">

<commit-markable-resources>
<commit-markable-resource jndi-
name="java:jboss/datasources/ConnectableDS">
<xid-location name="xids" batch-size="100" immediate-
cleanup="false"/>
</commit-markable-resource>

</commit-markable-resources>
</subsystem>

NOTE

You must restart the server after adding the CMR.

Report a bug

11.3.3. About the Presumed-Abort Optimization

If a transaction is going to roll back, it can record this information locally and notify all enlisted
participants. This notification is only a courtesy, and has no effect on the transaction outcome. After all
participants have been contacted, the information about the transaction can be removed.

If a subsequent request for the status of the transaction occurs there will be no information available.
In this case, the requester assumes that the transaction has aborted and rolled back. This presumed-
abort optimization means that no information about participants needs to be made persistent until the
transaction has decided to commit, since any failure prior to this point will be assumed to be an abort
of the transaction.

Report a bug

11.3.4. About the Read-Only Optimization

When a participant is asked to prepare, it can indicate to the coordinator that it has not modified any
data during the transaction. Such a participant does not need to be informed about the outcome of the
transaction, since the fate of the participant has no affect on the transaction. This read-only participant
can be omitted from the second phase of the commit protocol.

Report a bug

11.4. TRANSACTION OUTCOMES

11.4.1. About Transaction Outcomes

There are three possible outcomes for a transaction.

Roll-back

If any transaction participant cannot commit, or the transaction coordinator cannot direct
participants to commit, the transaction is rolled back. See Section 11.4.3, “About Transaction Roll-
Back” for more information.

232

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+30533-683888+%5BLatest%5D&comment=Title%3A+Commit+Markable+Resource%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=30533-683888+11+Jul+2014+17%3A20+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4275-591656+%5BLatest%5D&comment=Title%3A+About+the+Presumed-Abort+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4275-591656+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4277-591656+%5BLatest%5D&comment=Title%3A+About+the+Read-Only+Optimization%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4277-591656+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

Commit

If every transaction participant can commit, the transaction coordinator directs them to do so. See
Section 11.4.2, “About Transaction Commit” for more information.

Heuristic outcome

If some transaction participants commit and others roll back. it is termed a heuristic outcome.
Heuristic outcomes require human intervention. See Section 11.4.4, “About Heuristic Outcomes”
for more information.

Report a bug

11.4.2. About Transaction Commit

When a transaction participant commits, it makes its new state durable. The new state is created by
the participant doing the work involved in the transaction. The most common example is when a
transaction member writes records to a database.

After commit, information about the transaction is removed from the transaction coordinator, and the
newly-written state is now the durable state.

Report a bug

11.4.3. About Transaction Roll-Back

A transaction participant rolls back by restoring its state to reflect the state before the transaction
began. After a roll-back, the state is the same as if the transaction had never been started.

Report a bug

11.4.4. About Heuristic Outcomes

A heuristic outcome, or non-atomic outcome, is a transaction anomaly. It refers to a situation where
some transaction participants committed their state, and others rolled back. A heuristic outcome
causes state to be inconsistent.

Heuristic outcomes typically happen during the second phase of the 2-phase commit (2PC) protocol.
They are often caused by failures to the underlying hardware or communications subsystems of the
underlying servers.

There are four different types of heuristic outcome.

Heuristic rollback

The commit operation failed because some or all of the participants unilaterally rolled back the
transaction.

Heuristic commit

An attempted rollback operation failed because all of the participants unilaterally committed. This
may happen if, for example, the coordinator is able to successfully prepare the transaction but then
decides to roll it back because of a failure on its side, such as a failure to update its log. In the
interim, the participants may decide to commit.

Heuristic mixed

233

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4283-591656+%5BLatest%5D&comment=Title%3A+About+Transaction+Outcomes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4283-591656+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4282-591656+%5BLatest%5D&comment=Title%3A+About+Transaction+Commit%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4282-591656+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4281-591656+%5BLatest%5D&comment=Title%3A+About+Transaction+Roll-Back%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4281-591656+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Some participants committed and others rolled back.

Heuristic hazard

The outcome of some of the updates is unknown. For the ones that are known, they have either all
committed or all rolled back.

Heuristic outcomes can cause loss of integrity to the system, and usually require human intervention
to resolve. Do not write code which relies on them.
e Section 11.2.9, “About the 2-Phase Commit Protocol”

Report a bug

11.4.5. JBoss Transactions Errors and Exceptions

For details about exceptions thrown by methods of the UserTransaction class, see the
UserTransaction API specification at
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html.

Report a bug

11.5. OVERVIEW OF JTA TRANSACTIONS

11.5.1. About Java Transactions API (JTA)

Java Transactions API (JTA) is part of Java Enterprise Edition specification. It is defined in JSR-907.

Implementation of JTA is done using Transaction manager, which is covered by project Narayana for
JBoss EAP application server. Transaction manager allows application to assign various resources, for
example, database or JMS brokers, through a single global transaction. The global transaction is
referred as XA transaction. Only resources with XA capabilities can be included in a transaction.

In this document, JTA refers to Java Transaction API, this term is used to indicate how the transaction
manager processes the transactions. Transaction manager works in JTA transactions mode, the data
is shared via memory and transaction context is transferred by remote EJB calls. In JTS mode, the
data is shared by sending Common Object Request Broker Architecture (CORBA)messages and
transaction context is transferred by IIOP calls. Both modes support distribution of transaction over
multiple EAP servers.

Annotations is a method for creating and controlling transactions within your code.
e Section11.2.7, “About XA Datasources and XA Transactions”
e Section 11.2.11, “About Distributed Transactions”
e Section 11.8.2, “Configure the ORB for JTS Transactions”

Report a bug

11.5.2. Lifecycle of a JTA Transaction

When a resource asks to participate in a transaction, a chain of events is set in motion. The Transaction
Manager is a process that lives within the application server and manages transactions. Transaction
participants are objects which participate in a transaction. Resources are datasources, JMS connection

234

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4285-591656+%5BLatest%5D&comment=Title%3A+About+Heuristic+Outcomes%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4285-591656+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4299-689191+%5BLatest%5D&comment=Title%3A+JBoss+Transactions+Errors+and+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4299-689191+30+Jul+2014+16%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4300-697973+%5BLatest%5D&comment=Title%3A+About+Java+Transactions+API+%28JTA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4300-697973+13+Aug+2014+16%3A43+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

factories, or other JCA connections.

1. Your application starts a new transaction

To begin a transaction, your application obtains an instance of class UserTransaction from
JNDI or, if it is an EJB, from an annotation. The UserTransaction interface includes
methods for beginning, committing, and rolling back top-level transactions. Newly-created
transactions are automatically associated with their invoking thread. Nested transactions are
not supported in JTA, so all transactions are top-level transactions.

CallingUserTransaction.begin() using annotations starts a transaction when an EJB
method is called (driven by TransactionAttribute rules). Any resource that is used after that
point is associated with the transaction. If more than one resource is enlisted, your transaction
becomes an XA transaction, and participates in the two-phase commit protocol at commit
time.

NOTE

The UserTransaction object is used only for BMT transactions. In CMT, the
UserTransaction object is not permitted.

. Your application modifies its state.

In the next step, your application performs its work and makes changes to its state.

. Your application decides to commit or roll back

When your application has finished changing its state, it decides whether to commit or roll
back. It calls the appropriate method. It calls UserTransaction.commit () or
UserTransaction.rollback().

. The transaction manager removes the transaction from its records.

After the commit or rollback completes, the transaction manager cleans up its records and
removes information about your transaction from the transaction log.

Failure recovery

Failure recovery happens automatically. If a resource, transaction participant, or the application server
become unavailable, the Transaction Manager handles recovery when the underlying failure is resolved
and the resource is available again.

Section 11.2.1, “About Transactions”

Section 11.2.3, “About the Transaction Coordinator or Transaction Manager”
Section 11.2.4, “About Transaction Participants”

Section 11.2.9, “About the 2-Phase Commit Protocol”

Section 11.2.7, “About XA Datasources and XA Transactions”

Report a bug

11.6. TRANSACTION SUBSYSTEM CONFIGURATION

11.6.1. Transactions Configuration Overview

Introduction

235

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4301-697936+%5BLatest%5D&comment=Title%3A+Lifecycle+of+a+JTA+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4301-697936+13+Aug+2014+01%3A21+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

The following procedures show you how to configure the transactions subsystem of JBoss EAP 6.
e Section 11.6.2.1, “Configure Your Datasource to Use JTA Transaction API”
e Section11.6.2.2, “Configure an XA Datasource”
e Section 11.7.8.2, “Configure the Transaction Manager”
e Section 11.6.3.2, “Configure Logging for the Transaction Subsystem”

Report a bug
11.6.2. Transactional Datasource Configuration

11.6.2.1. Configure Your Datasource to Use JTA Transaction API

Summary

This task shows you how to enable Java Transaction API (JTA) on your datasource.

Prerequisites

You must meet the following conditions before continuing with this task:

o Your database or other resource must support Java Transaction API. If in doubt, consult the
documentation for your database or other resource.

o Create a datasource. Refer to Section 11.6.2.4, “Create a Non-XA Datasource with the
Management Interfaces”.

e Stop JBoss EAP 6.

e Have access to edit the configuration files directly, in a text editor.

Procedure 11.1. Configure the Datasource to use Java Transaction API

1. Open the configuration file in a text editor.
Depending on whether you run JBoss EAP 6 in a managed domain or standalone server, your
configuration file will be in a different location.

o Managed domain
The default configuration file for a managed domain is in
EAP_HOME/domain/configuration/domain.xml for Red Hat Enterprise Linux, and
EAP_HOME\domain\configuration\domain.xml for Microsoft Windows Server.

o Standalone server
The default configuration file for a standalone server is in
EAP_HOME/standalone/configuration/standalone.xml for Red Hat Enterprise
Linux, and EAP_HOME\standalone\configuration\standalone.xml for Microsoft
Windows Server.

2. Locate the <datasource> tag that corresponds to your datasource.
The datasource will have the jndi-name attribute set to the one you specified when you
created it. For example, the ExampleDS datasource looks like this:

236

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4374-591665+%5BLatest%5D&comment=Title%3A+Transactions+Configuration+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4374-591665+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

<datasource jndi-name="java:jboss/datasources/ExampleDS" pool-
name="H2DS" enabled="true" jta="true" use-java-context="true" use-
ccm="true">

3. Set the jta attribute to true.

Add the following to the contents of your <datasource> tag, as they appear in the previous
step: jta="true"

4. Save the configuration file.
Save the configuration file and exit the text editor.

5. Start JBoss EAP 6.
Relaunch the JBoss EAP 6 server.

Result:

JBoss EAP 6 starts, and your datasource is configured to use Java Transaction API.

Report a bug

11.6.2.2. Configure an XA Datasource

Prerequisites

In order to add an XA Datasource, you need to log into the Management Console. See Section 11.6.2.3,
“Log in to the Management Console” for more information.

1. Add a new datasource.
Add a new datasource to JBoss EAP 6. Follow the instructions in Section 11.6.2.4, “Create a
Non-XA Datasource with the Management Interfaces”, but click the XA Datasource tab at
the top.

2. Configure additional properties as appropriate.
All datasource parameters are listed in Section 11.6.2.6, “Datasource Parameters”.

Result

Your XA Datasource is configured and ready to use.

Report a bug

11.6.2.3. Log in to the Management Console

Prerequisites

o You must create an administrative user. For complete instructions, see Add the User for the
Management Interfaces in the Administration and Configuration Guidefor JBoss Enterprise
Application Platform.

JBoss EAP 6 must be running.

1. Navigate to the Management Console start page

Launch your web browser and navigate to the Management Console in your web browser at
http://localhost:9990/console/App.html

237

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4295-687034+%5BLatest%5D&comment=Title%3A+Configure+Your+Datasource+to+Use+JTA+Transaction+API%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4295-687034+22+Jul+2014+19%3A33+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4303-591659+%5BLatest%5D&comment=Title%3A+Configure+an+XA+Datasource%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4303-591659+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://localhost:9990/console/App.html

Development Guide

NOTE

Port 9990 is predefined as the Management Console socket binding.

2. Enter the username and password of the account that you created previously to log in to the
Management Console login screen.

Authentication Required

A username and password are being requested by http://localhost:9990. The site says:

-

o "ManagementRealm"
User Name:

Password:

Cancel OK

Figure 11.1. Log in screen for the Management Console

Result

Once logged in, you are redirected to the following address and the the Management Console landing
page appears: http://localhost:9990/console/App.html#home

Report a bug

11.6.2.4. Create a Non-XA Datasource with the Management Interfaces

Summary

This topic covers the steps required to create a non-XA datasource, using either the Management
Console or the Management CLI.

Prerequisites

e The JBoss EAP 6 server must be running.

NOTE

Prior to version 10.2 of the Oracle datasource, the <no-tx-separate-pools/> parameter
was required, as mixing non-transactional and transactional connections would result in
an error. This parameter may no longer be required for certain applications.

Procedure 11.2. Create a Datasource using either the Management CLI or the Management Console
e o Management CLI

a. Launch the CLI tool and connect to your server.

b. Run the following command to create a non-XA datasource, configuring the variables
as appropriate:

data-source add --name=DATASOURCE_NAME --jndi-name=JNDI_NAME -
-driver-name=DRIVER_NAME --connection-url=CONNECTION_URL

238

http://localhost:9990/console/App.html#home
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+3569-690410+%5BLatest%5D&comment=Title%3A+Log+in+to+the+Management+Console%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=3569-690410+05+Aug+2014+10%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

c. Enable the datasource:

I data-source enable --name=DATASOURCE_NAME

o Management Console

a. Login to the Management Console.
b. Navigate to the Datasources panel in the Management Console
i. Selectthe Configuration tab from the top of the console.
ii. For Domain mode only, select a profile from the drop-down box in the top left.

iii. Expand the Subsystems menu on the left of the console, then expand the
Connector menu.

iv. Select Datasources from the menu on the left of the console.
c. Create a new datasource

i. Click Add at the top of the Datasources panel.

ii. Enter the new datasource attributes in the Create Datasource wizard and
proceed with the Next button.

iii. Enter the JDBC driver details in the Create Datasource wizard and click Next
to continue.

iv. Enter the connection settings in the Create Datasource wizard.

v. Click the Test Connection button to test the connection to the datasource and
verify the settings are correct.

vi. Click Done to finish

Result

The non-XA datasource has been added to the server. It is now visible in either the standalone.xml
or domain.xml file, as well as the management interfaces.

Report a bug

11.6.2.5. Configure Database Connection Validation Settings

Overview

Database maintenance, network problems, or other outage events may cause JBoss EAP 6 to lose the
connection to the database. You enable database connection validation using the <validation>
element within the <datasource> section of the server configuration file. Follow the steps below to
configure the datasource settings to enable database connection validation in JBoss EAP 6.

Procedure 11.3. Configure Database Connection Validation Settings

1. Choose a Validation Method
Select one of the following validation methods.

239

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4805-634537+%5BLatest%5D&comment=Title%3A+Create+a+Non-XA+Datasource+with+the+Management+Interfaces%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4805-634537+30+Apr+2014+00%3A51+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

240

o <validate-on-match>true</validate-on-match>

When the <validate-on-match> optionis set to true, the database connectionis
validated every time it is checked out from the connection pool using the validation
mechanism specified in the next step.

If a connection is not valid, a warning is written to the log and it retrieves the next
connection in the pool. This process continues until a valid connection is found. If you
prefer not to cycle through every connection in the pool, you can use the <use-fast -
fail> option. If a valid connection is not found in the pool, a new connection is created. If
the connection creation fails, an exception is returned to the requesting application.

This setting results in the quickest recovery but creates the highest load on the database.
However, this is the safest selection if the minimal performance hit is not a concern.

<background-validation>true</background-validation>

When the <background-validation> optionis set to true,itis used in combination
with the <background-validation-millis> value to determine how often
background validation runs. The default value for the <background-validation-
millis> parameter is O milliseconds, meaning it is disabled by default. This value should
not be set to the same value as your <idle-timeout-minutes> setting.

It is a balancing act to determine the optimum <background-validation-millis>
value for a particular system. The lower the value, the more frequently the pool is
validated and the sooner invalid connections are removed from the pool. However, lower
values take more database resources. Higher values result in less frequent connection
validation checks and use less database resources, but dead connections are undetected
for longer periods of time.

NOTE

If the <validate-on-match> optionis setto true, the <background-
validation> option should be set to false. The reverse is also true. If the
<background-validation> optionis setto true,the <validate-on-
match> option should be set to false.

2. Choose a Validation Mechanism
Select one of the following validation mechanisms.

o Specify a <valid-connection-checker> Class Name
This is the preferred mechanism as it optimized for the particular RDBMS in use. JBoss
EAP 6 provides the following connection checkers:

org.jboss.jca.adapters.jdbc.extensions.db2.DB2ValidConnectionChecker
org.jboss.jca.adapters.jdbc.extensions.mssql.MSSQLValidConnectionChecker
org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLReplicationValidConnectionChecker
org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLValidConnectionChecker
org.jboss.jca.adapters.jdbc.extensions.novendor.JDBC4ValidConnectionChecker
org.jboss.jca.adapters.jdbc.extensions.novendor.NullValidConnectionChecker

org.jboss.jca.adapters.jdbc.extensions.oracle.OracleValidConnectionChecker

CHAPTER 11. JAVA TRANSACTION API (JTA)

m org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLValidConnectionChecker
m org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseValidConnectionChecker

o Specify SQL for <check-valid-connection-sqgl>
You provide the SQL statement used to validate the connection.

The following is an example of how you might specify a SQL statement to validate a
connection for Oracle:

<check-valid-connection-sqgl>select 1 from dual</check-valid-
connection-sql>

For MySQL or PostgreSQL, you might specify the following SQL statement:

I <check-valid-connection-sql>select 1</check-valid-connection-sql>

3. Set the <exception-sorter> Class Name
When an exception is marked as fatal, the connection is closed immediately, even if the
connection is participating in a transaction. Use the exception sorter class option to properly
detect and clean up after fatal connection exceptions. JBoss EAP 6 provides the following
exception sorters:

o org.jboss.jca.adapters.jdbc.extensions.db2.DB2ExceptionSorter

o org.jboss.jca.adapters.jdbc.extensions.informix.InformixExceptionSorter

o org.jboss.jca.adapters.jdbc.extensions.mysql.MySQLExceptionSorter

o org.jboss.jca.adapters.jdbc.extensions.novendor.NullExceptionSorter

o org.jboss.jca.adapters.jdbc.extensions.oracle.OracleExceptionSorter

o org.jboss.jca.adapters.jdbc.extensions.postgres.PostgreSQLExceptionSorter
o org.jboss.jca.adapters.jdbc.extensions.sybase.SybaseExceptionSorter

Report a bug

11.6.2.6. Datasource Parameters

Table 11.1. Datasource parameters common to non-XA and XA datasources

Parameter Description

jndi-name The unique JNDI name for the datasource.

pool-name The name of the management pool for the
datasource.

enabled Whether or not the datasource is enabled.

use-java-context Whether to bind the datasource to global JNDI.

241

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+41672-707039+%5BLatest%5D&comment=Title%3A+Configure+Database+Connection+Validation+Settings%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=41672-707039+08+Sep+2014+10%3A42+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Parameter Description

spy Enable spy functionality on the JDBC layer. This
logs all JDBC traffic to the datasource. Note that the
logging category jboss. jdbc . spy must also be
set to the log level DEBUG in the logging subsystem.

use-ccm Enable the cached connection manager.

new-connection-sql A SQL statement which executes when the
connection is added to the connection pool.
transaction-isolation One of the following:
e TRANSACTION_READ_UNCOMMITTED
e TRANSACTION_READ_COMMITTED
e TRANSACTION_REPEATABLE_READ
e TRANSACTION_SERIALIZABLE

o TRANSACTION_NONE

url-selector-strategy-class-name A class that implements interface
org.jhoss.jca.adapters.jdbc.URLSelec
torStrategy.

security Contains child elements which are security settings.

See Table 11.6, “Security parameters”.

validation Contains child elements which are validation
settings. See Table 11.7, “Validation parameters”.

timeout Contains child elements which are timeout settings.
See Table 11.8, “Timeout parameters”.

statement Contains child elements which are statement
settings. See Table 11.9, “Statement parameters”.

Table 11.2. Non-XA datasource parameters

Parameter Description

jta Enable JTA integration for non-XA datasources.
Does not apply to XA datasources.

connection-url The JDBC driver connection URL.

driver-class The fully-qualified name of the JDBC driver class.

242

CHAPTER 11. JAVA TRANSACTION API (JTA)

Parameter Description

connection-property Arbitrary connection properties passed to the
method Driver.connect (url, props).Each
connection-property specifies a string name/value
pair. The property name comes from the name, and
the value comes from the element content.

pool Contains child elements which are pooling settings.
See Table 11.4, “Pool parameters common to non-XA
and XA datasources”.

url-delimiter The delimiter for URLs in a connection-url for High
Availability (HA) clustered databases.

Table 11.3. XA datasource parameters

Parameter Description

xa-datasource-property A property to assign to implementation class
XADataSource. Specified by name=value. If a
setter method exists, in the format setName, the
property is set by calling a setter method in the
format of setName(value).

xa-datasource-class The fully-qualified name of the implementation class
javax.sql.XADataSource.

driver A unique reference to the classloader module which
contains the JDBC driver. The accepted format is
driverName# majorVersion.minorVersion.

xa-pool Contains child elements which are pooling settings.
See Table 11.4, “Pool parameters common to non-XA
and XA datasources” and Table 11.5, “XA pool
parameters”.

recovery Contains child elements which are recovery
settings. See Table 11.10, “Recovery parameters”.

Table 11.4. Pool parameters common to non-XA and XA datasources

Parameter Description

min-pool-size The minimum number of connections a pool holds.
max-pool-size The maximum number of connections a pool can
hold.

243

Development Guide

Parameter Description

prefill Whether to try to prefill the connection pool. An
empty element denotes a true value. The default is
false.

use-strict-min Whether the pool-size is strict. Defaults to false.

flush-strategy Whether the pool is flushed in the case of an error.

Valid values are:
e FailingConnectionOnly
e IdleConnections
e EntirePool

The default is FailingConnectionOnly.

allow-multiple-users Specifies if multiple users will access the datasource
through the getConnection(user, password) method,
and whether the internal pool type accounts for this
behavior.

Table 11.5. XA pool parameters

Parameter Description

is-same-rm-override Whether the
javax.transaction.xa.XAResource.isSa
meRM(XAResource) class returns true or

false.

interleaving Whether to enable interleaving for XA connection
factories.

no-tx-separate-pools Whether to create separate sub-pools for each

context. This is required for Oracle datasources,
which do not allow XA connections to be used both
inside and outside of a JTA transaction.

Using this option will cause your total pool size to be
twice max-pool-size, because two actual pools
will be created.

pad-xid Whether to pad the Xid.

wrap-xa-resource Whether to wrap the XAResource in an
org.jhoss.tm.XAResourceWrapper
instance.

Table 11.6. Security parameters

244

CHAPTER 11. JAVA TRANSACTION API (JTA)

Parameter Description

user-name The username to use to create a new connection.
password The password to use to create a new connection.
security-domain Contains the name of a JAAS security-manager

which handles authentication. This name correlates
to the application-policy/name attribute of the JAAS
login configuration.

reauth-plugin Defines a reauthentication plug-in to use to
reauthenticate physical connections.

Table 11.7. Validation parameters

Parameter Description

valid-connection-checker An implementation of interface
org.jhoss.jca.adaptors.jdbc.ValidCon
nectionChecker which provides a
SQLException.isValidConnection(Conne
ction e) method to validate a connection. An
exception means the connection is destroyed. This
overrides the parameter check-valid-
connection-sqlifitis present.

check-valid-connection-sql An SQL statement to check validity of a pool
connection. This may be called when a managed
connection is taken from a pool for use.

validate-on-match Indicates whether connection level validation is
performed when a connection factory attempts to
match a managed connection for a given set.

Specifying "true" for validate-on-matchis
typically not done in conjunction with specifying
"true" for background-validation.
Validate-on-match is needed when a client
must have a connection validated prior to use. This
parameter is false by default.

background-validation Specifies that connections are validated on a
background thread. Background validation is a
performance optimization when not used with
validate-on-match.Ifvalidate-on-match
is true, using background-validation could
result in redundant checks. Background validation
does leave open the opportunity for a bad
connection to be given to the client for use (a
connection goes bad between the time of the
validation scan and prior to being handed to the
client), so the client application must account for
this possibility.

245

Development Guide

Parameter Description

background-validation-millis The amount of time, in milliseconds, that background
validation runs.

use-fast-fail If true, fail a connection allocation on the first
attempt, if the connection is invalid. Defaults to
false.

stale-connection-checker Aninstance of

org.jhoss.jca.adapters.jdbc.StaleCon
nectionChecker which provides a Boolean
isStaleConnection(SQLException e)
method. If this method returns true, the exception
is wrapped in an
org.jhoss.jca.adapters.jdbc.StaleCon
nectionException, which is a subclass of
SQLException.

exception-sorter An instance of
org.jhoss.jca.adapters.jdbc.Exceptio
nSorter which provides a Boolean
isExceptionFatal(SQLException e)
method. This method validates whether an
exception is broadcast to all instances of
javax.resource.spi.ConnectionEventLi
stener asaconnectionErrorOccurred
message.

Table 11.8. Timeout parameters

Parameter Description

use-try-lock Uses tryLock() instead of lock (). This attempts
to obtain the lock for the configured number of
seconds, before timing out, rather than failing
immediately if the lock is unavailable. Defaults to 60
seconds. As an example, to set a timeout of 5
minutes, set <use-try-lock>300</use-try-
lock>.

blocking-timeout-millis The maximum time, in milliseconds, to block while
waiting for a connection. After this time is exceeded,
an exception is thrown. This blocks only while
waiting for a permit for a connection, and does not
throw an exception if creating a new connection
takes a long time. Defaults to 30000, which is 30
seconds.

246

CHAPTER 11. JAVA TRANSACTION API (JTA)

Parameter Description

idle-timeout-minutes

set-tx-query-timeout

query-timeout

allocation-retry

allocation-retry-wait-millis

xa-resource-timeout

Table 11.9. Statement parameters

The maximum time, in minutes, before an idle
connection is closed. The actual maximum time
depends upon the idleRemover scan time, which is
half of the smallest idle-timeout-minutes of
any pool.

Whether to set the query timeout based on the time
remaining until transaction timeout. Any configured
query timeout is used if no transaction exists.
Defaults to false.

Timeout for queries, in seconds. The default is no
timeout.

The number of times to retry allocating a connection
before throwing an exception. The default is 0, so an
exception is thrown upon the first failure.

How long, in milliseconds, to wait before retrying to
allocate a connection. The default is 5000, which is
5 seconds.

If non-zero, this value is passed to method
XAResource.setTransactionTimeout.

Parameter Description

track-statements

prepared-statement-cache-size

Whether to check for unclosed statements when a
connection is returned to a pool and a statement is
returned to the prepared statement cache. If false,
statements are not tracked.

Valid values

e true:statements and result sets are
tracked, and a warning is issued if they are
not closed.

o Talse: neither statements or result sets
are tracked.

e howarn:statements are tracked but no
warning is issued. This is the default.

The number of prepared statements per connection,
in a Least Recently Used (LRU) cache.

247

Development Guide

Parameter Description

share-prepared-statements Whether asking for the same statement twice
without closing it uses the same underlying prepared
statement. The default is false.

Table 11.10. Recovery parameters

Parameter Description

recover-credential A username/password pair or security domain to
use for recovery.

recover-plugin An implementation of the
org.jhoss.jca.core.spi.recoveryRecov
eryPlugin class, to be used for recovery.

Report a bug
11.6.3. Transaction Logging

11.6.3.1. About Transaction Log Messages

To track transaction status while keeping the log files readable, use the DEBUG log level for the
transaction logger. For detailed debugging, use the TRACE log level. Refer to Section 11.6.3.2,
“Configure Logging for the Transaction Subsystem” for information on configuring the transaction
logger.

The transaction manager can generate a lot of logging information when configured to log in the TRACE
log level. Following are some of the most commonly-seen messages. This list is not comprehensive, so
you may see other messages than these.

Table 11.11. Transaction State Change

Transaction Begin When a transaction begins, the following code is
executed:

com.arjuna.ats.arjuna.coordinator
.BasicAction: :Begin:1342

tsLogger.logger.trace("BasicActio
n::Begin() for action-id "+
get_uid());

248

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+2772-712280+%5BLatest%5D&comment=Title%3A+Datasource+Parameters%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=2772-712280+23+Sep+2014+16%3A29+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

Transaction Commit When a transaction commits, the following code is
executed:

com.arjuna.ats.arjuna.coordinator
.BasicAction: :End:1342

tsLogger.logger.trace("BasicActio
n::eEnd() for action-id "+
get_uid());

Transaction Rollback When a transaction rolls back, the following code is
executed:

com.arjuna.ats.arjuna.coordinator
.BasicAction: :Abort:1575

tsLogger.logger.trace("BasicActio
n::Abort() for action-id "+
get_uid());

Transaction Timeout When a transaction times out, the following code is
executed:

com.arjuna.ats.arjuna.coordinator
.TransactionReaper::doCancellatio
ns:349

tsLogger.logger.trace("Reaper
Worker " + Thread.currentThread()
+ " attempting to cancel " +
e._control.get_uid());

You will then see the same thread rolling back the
transaction as shown above.

Report a bug

11.6.3.2. Configure Logging for the Transaction Subsystem

Summary

Use this procedure to control the amount of information logged about transactions, independent of
other logging settings in JBoss EAP 6. The main procedure shows how to do this in the web-based
Management Console. The Management CLI command is given afterward.

Procedure 11.4. Configure the Transaction Logger Using the Management Console

1. Navigate to the Logging configuration area.
In the Management Console, click the Configuration tab. If you use a managed domain,
choose the server profile you wish to configure, from the Profile selection box at the top
left.

249

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+9018-591860+%5BLatest%5D&comment=Title%3A+About+Transaction+Log+Messages%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=9018-591860+24+Feb+2014+07%3A55+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

Expand the Core menu, and select Logging.

2. Edit the com.arjuna attributes.
Select the Log Categories tab. Select com.arjuna and lick Edit in the Details section.
This is where you can add class-specific logging information. The com. ar juna class is already
present. You can change the log level and whether to use parent handlers.

Log Level

The log level is WARN by default. Because transactions can produce a large quantity of
logging output, the meaning of the standard logging levels is slightly different for the
transaction logger. In general, messages tagged with levels at a lower severity than the
chosen level are discarded.

Transaction Logging Levels, from Most to Least Verbose

o TRACE
o DEBUG
o INFO

o WARN

o ERROR

o FAILURE

Use Parent Handlers

Whether the logger should send its output to its parent logger. The default behavior is true.

3. Changes take effect immediately.

Report a bug

11.6.3.3. Browse and Manage Transactions

The management CLI supports the ability to browse and manipulate transaction records. This
functionality is provided by the interaction between the Transaction Manager and the management
API of JBoss EAP 6.

The Transaction Manager stores information about each pending transaction and the participants
involved the transaction, in a persistent storage called the object store. The management APl exposes
the object store as a resource called the 1og-store. An APl operation called probe reads the
transaction logs and creates a node for each log. You can call the probe command manually, whenever
you need to refresh the 1log-store. It is normal for transaction logs to appear and disappear quickly.

Example 11.2. Refresh the Log Store

This command refreshes the log store for server groups which use the profile defaultina
managed domain. For a standalone server, remove the profile=default from the command.

I /profile=default/subsystem=transactions/log-store=log-store/:probe

250

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4311-632600+%5BLatest%5D&comment=Title%3A+Configure+Logging+for+the+Transaction+Subsystem%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4311-632600+22+Apr+2014+11%3A48+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

Example 11.3. View All Prepared Transactions

To view all prepared transactions, first refresh the log store (see Example 11.2, “Refresh the Log
Store”), then run the following command, which functions similarly to a filesystem 1ls command.

1s /profile=default/subsystem=transactions/log-store=log-
store/transactions

Each transaction is shown, along with its unique identifier. Individual operations can be run against
an individual transaction (see Manage a Transaction).

Manage a Transaction

View a transaction's attributes.

To view information about a transaction, such as its JNDI name, EIS product name and version, or
its status, use the : read-resource CLI command.

/profile=default/subsystem=transactions/log-store=1og-
store/transactions=0\:ffff7fOOOEO1\:-b66efc2\:4f9e618f\:9:read-resource

View the participants of a transaction.

Each transaction log contains a child element called participants. Use the read-resource CLI
command on this element to see the participants of the transaction. Participants are identified by
their JNDI names.

/profile=default/subsystem=transactions/log-store=1log-
store/transactions=0\: ffff7feOEOO1\: -
b66efc2\:4r9e6f8f\:9/participants=java\:\/JmsXA:read-resource

The result may look similar to this:

{
"outcome" => "success",
"result" => {
"eis-product-name" => "HornetQ",
"eis-product-version" => "2.0",
"jndi-name" => "java:/JImsXA",
"status" => "HEURISTIC",
"type" => "/StateManager/AbstractRecord/XAResourceRecord"
3
3

The outcome status shown here is in a HEURISTIC state and is eligible for recover. See Recover a
transaction. for more details.

Delete a transaction.

Each transaction log supports a : delete operation, to delete the transaction log representing the
transaction.

/profile=default/subsystem=transactions/log-store=1log-
store/transactions=0\: ffff7fPOEO01\: -b66efc2\:4f9e6f8f\:9:delete

251

Development Guide

Recover a transaction.

Each transaction log supports recovery via the : recover CLI command.

Recovery of Heuristic Transactions and Participants

e |[f the transaction's status is HEURISTIC, the recovery operation changes the state to
PREPARE and triggers a recovery.

e |f one of the transaction's participants is heuristic, the recovery operation tries to replay
the commit operation. If successful, the participant is removed from the transaction log.
You can verify this by re-running the : probe operation on the 1log-store and checking
that the participant is no longer listed. If this is the last participant, the transaction is also
deleted.

Refresh the status of a transaction which needs recovery.

If a transaction needs recovery, you can use the :refresh CLI command to be sure it still requires
recovery, before attempting the recovery.

/profile=default/subsystem=transactions/log-store=1og-
store/transactions=0\:ffff7fo00001\: -
b66efc2\:4f9e6f8f\:9/participants=2:refresh

View Transaction Statistics

If Transaction Manager statistics are enabled, you can view statistics about the Transaction Manager
and transaction subsystem. See Section 11.7.8.2, “Configure the Transaction Manager” for information
about how to enable Transaction Manager statistics.

You can view statistics either via the management console or the management CLI. In the
management console, transaction statistics are available via Runtime — Status — Subsystems —
Transactions. Transaction statistics are available for each server in a managed domain. To view the
status of a different server, select Change Server in the left-hand menu and select the server from

the list.

The following table shows each available statistic, its description, and the management CLI command
to view the statistic.

Table 11.12. Transaction Subsystem Statistics

Statistic Description CLI Command
Total The total number of transactions
processed by the Transaction /host=master/server=

Manager on this server.
anager on this serve server-

one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-

transactions, include
-defaults=true)

252

Statistic

Committed

Aborted

Timed Out

Heuristics

In-Flight Transactions

CHAPTER 11. JAVA TRANSACTION API (JTA)

Description

The number of committed
transactions processed by the
Transaction Manager on this
server.

The number of aborted
transactions processed by the
Transaction Manager on this
server.

The number of timed out
transactions processed by the
Transaction Manager on this
server.

Not available in the Management
Console. Number of transactions
in a heuristic state.

Not available in the Management
Console. Number of transactions
which have begun but not yet
terminated.

CLI Command

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-committed-
transactions, include
-defaults=true)

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-aborted-
transactions, include
-defaults=true)

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-timed-out-
transactions, include
-defaults=true)

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-

heuristics, include-
defaults=true)

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-inflight-
transactions, include
-defaults=true)

253

Development Guide

Statistic Description

The number of failed transactions
whose failure origin was an
application.

Failure Origin - Applications

The number of failed transactions
whose failure origin was a
resource.

Failure Origin - Resources

Participant ID The ID of the participant.

List of all transactions The complete list of transactions.

Report a bug

11.7. USE JTA TRANSACTIONS

254

CLI Command

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-application-
rollbacks, include-
defaults=true)

/host=master/server=
server-
one/subsystem=transa
ctions/:read-
attribute(name=numbe
r-of-resource-
rollbacks, include-
defaults=true)

/host=master/server=
server-
one/subsystem=transa
ctions/log-
store=log-
store/transactions=0
\:ffff7fo00001\: -
b66efc2\:4f9e6f8f\:9
:read-children-
names(child-
type=participants)

/host=master/server=
server-
one/subsystem=transa
ctions/log-
store=log-
store:read-children-
names(child-
type=transactions)

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4312-712277+%5BLatest%5D&comment=Title%3A+Browse+and+Manage+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4312-712277+23+Sep+2014+16%3A19+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

11.7.1. Transactions JTA Task Overview

Introduction

The following procedures are useful when you need to use transactions in your application.
e Section11.7.2, “Control Transactions”
e Section 11.7.3, “Begin a Transaction”
e Section 11.7.5, “Commit a Transaction”
e Section 11.7.6, “Roll Back a Transaction”
e Section 11.7.7, “Handle a Heuristic Outcome in a Transaction”
e Section 11.7.8.2, “Configure the Transaction Manager”
e Section 11.7.9.1, “Handle Transaction Errors”

Report a bug

11.7.2. Control Transactions

Introduction

This list of procedures outlines the different ways to control transactions in your applications which
use JTA or JTS APIs.

e Section 11.7.3, “Begin a Transaction”

e Section 11.7.5, “Commit a Transaction”

e Section 11.7.6, “Roll Back a Transaction”

e Section 11.7.7, “Handle a Heuristic Outcome in a Transaction”

Report a bug

11.7.3. Begin a Transaction

This procedure shows how to begin a new JTA transaction, or how to participate in a distributed
transaction using the Java Transaction Service (JTS) protocol. For more information about distributed
transactions, refer About Distributed Transactions section.

1. Get aninstance of UserTransaction.
You can get the instance using JNDI, injection, or an EJB's context, if the EJB uses bean-

managed transactions, by means of a
@TransactionManagement (TransactionManagementType.BEAN) annotation.
o JNDI

I new InitialContext().lookup("java:comp/UserTransaction'")

o Injection

I @Resource UserTransaction userTransaction;

255

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4375-591665+%5BLatest%5D&comment=Title%3A+Transactions+JTA+Task+Overview%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4375-591665+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4313-591659+%5BLatest%5D&comment=Title%3A+Control+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4313-591659+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

o Context

m |n astateless/stateful bean:

@Resource SessionContext ctx;
ctx.getUserTransaction();

® |namessage-driven bean:

@Resource MessageDrivenContext ctx;
ctx.getUserTransaction()

2. Call UserTransaction.begin() after you connect to your datasource.

try {
System.out.println("\nCreating connection to database: "+url);
stmt = conn.createStatement(); // non-tx statement

try {
System.out.println("Starting top-level transaction.");

userTransaction.begin();
stmtx = conn.createStatement(); // will be a tx-statement

Participate in an existing transaction using the JTS API.

One of the benefits of EJBs is that the container manages all of the transactions. If you have set up the
ORB and activated JTS transactions, the container will manage distributed transactions for you.

Result:

The transaction begins. All uses of your datasource until you commit or roll back the transaction are
transactional.

NOTE

For a full example, see Section 11.9.3, “JTA Transaction Example”.
Report a bug

11.7.4. Nested Transactions

Nested transactions allow an application to create a transaction that is embedded in an existing
transaction. In this model, multiple subtransactions can be embedded recursively in a transaction.
Subtransactions can be committed or rolled back without committing or rolling back the parent
transaction. However, the results of a commit operation are contingent upon the commitment of all the
transaction's ancestors.

For implementation specific information, refer JBossTS JTS Development guide at
https://docs.jboss.org/jbosstm/latest/quides/narayana-jts-development_guide.

256

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4304-697972+%5BLatest%5D&comment=Title%3A+Begin+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4304-697972+13+Aug+2014+16%3A15+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://docs.jboss.org/jbosstm/latest/guides/narayana-jts-development_guide

CHAPTER 11. JAVA TRANSACTION API (JTA)

Nested transactions are only supported when you use distributed transactions, with the JTS API. In
addition, many database vendors do not support nested transactions, so consult your database vendor
before you add nested transactions to your application.

Report a bug

11.7.5. Commit a Transaction

This procedure shows how to commit a transaction using the Java Transaction API (JTA). This API is
used for both local transactions and distributed transactions. Distributed transactions are managed by
the Java Transaction Server (JTS) and require configuration of an Object Request Broker (ORB). For
more information on ORB configuration, refer to the ORB Configuration section of the Administration
and Configuration Guide.

Prerequisites

You must begin a transaction before you can commit it. For information on how to begin a transaction,
refer to Section 11.7.3, “Begin a Transaction”.

1. Call the commit () method on the UserTransaction.
When you call the commit () method on the UserTransaction, the Transaction Manager
attempts to commit the transaction.

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
EntityManager entityManager =
entityManagerFactory.createEntityManager();

try {
userTransaction.begin():
<!-- Perform some data manipulation using entityManager -->

// Commit the transaction
userTransaction.commit();
} catch (Exception ex) {
<!-- Log message or notify Web page -->
try {
userTransaction.rollback();
} catch (SystemException se) {
throw new RuntimeException(se);
}
throw new RuntimeException(e);
} finally {
entityManager.close();

}

2. If you use Container Managed Transactions (CMT), you do not need to manually commit.
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

@PersistenceContext
private EntityManager em;

257

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4308-691517+%5BLatest%5D&comment=Title%3A+Nested+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4308-691517+08+Aug+2014+19%3A23+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

@TransactionAttribute(TransactionAttributeType.REQUIRED)
public void updateTable(String key, String value)
<!-- Perform some data manipulation using entityManager -->

Result

Your datasource commits and your transaction ends, or an exception is thrown.

NOTE

For a full example, see Section 11.9.3, “JTA Transaction Example”.

-

Report a bug

11.7.6. Roll Back a Transaction

This procedure shows how to roll back a transaction using the Java Transaction API (JTA). This APl is
used for both local transactions and distributed transactions. Distributed transactions are managed by
the Java Transaction Server (JTS) and require configuration of an Object Request Broker (ORB). For
more information on ORB configuration, refer to the ORB Configuration section of the Administration
and Configuration Guide.

Prerequisites

You must begin a transaction before you can roll it back. For information on how to begin a transaction,
refer to Section 11.7.3, “Begin a Transaction”.

1. Callthe rollback() method on the UserTransaction.
When you call the rollback() method on the UserTransaction, the Transaction Manager
attempts to roll back the transaction and return the data to its previous state.

@Inject
private UserTransaction userTransaction;

public void updateTable(String key, String value)
EntityManager entityManager =
entityManagerFactory.createEntityManager();

try {
userTransaction.begin():
<!-- Perform some data manipulation using entityManager -->

// Commit the transaction
userTransaction.commit();
} catch (Exception ex) {
<!-- Log message or notify Web page -->
try {
userTransaction.rollback();
} catch (SystemException se) {
throw new RuntimeException(se);

}

throw new RuntimeException(e);

258

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4305-697969+%5BLatest%5D&comment=Title%3A+Commit+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4305-697969+13+Aug+2014+15%3A13+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

} finally {
entityManager.close();

}

2. If you use Container Managed Transactions (CMT), you do not need to manually roll back
the transaction.
If you configure your bean to use Container Managed Transactions, the container will manage
the transaction lifecycle for you based on annotations you configure in the code.

Result

Your transaction is rolled back by the Transaction Manager.

NOTE

For a full example, see Section 11.9.3, “JTA Transaction Example”.

Report a bug

11.7.7. Handle a Heuristic Outcome in a Transaction

This procedure shows how to handle a heuristic outcome in a JTA transaction, whether it is local or
distributed, using the Java Transaction Service (JTS). To use distributed transactions, you need to
configure the ORB. Refer to the ORB Configuration section of the Administration and Configuration Guide
for more information on ORB configuration.

Heuristic transaction outcomes are uncommon and usually have exceptional causes. The word heuristic
means "by hand", and that is the way that these outcomes usually have to be handled. Refer to

Section 11.4.4, “About Heuristic Outcomes” for more information about heuristic transaction
outcomes.

Procedure 11.5. Handle a heuristic outcome in a transaction

1. Determine the cause
The over-arching cause of a heuristic outcome in a transaction is that a resource manager
promised it could commit or roll-back, and then failed to fulfill the promise. This could be due
to a problem with a third-party component, the integration layer between the third-party
component and JBoss EAP 6, or JBoss EAP 6 itself.

By far, the most common two causes of heuristic errors are transient failures in the
environment and coding errors in the code dealing with resource managers.

2. Fix transient failures in the environment
Typically, if there is a transient failure in your environment, you will know about it before you
find out about the heuristic error. This could be a network outage, hardware failure, database
failure, power outage, or a host of other things.

If you experienced the heuristic outcome in a test environment, during stress testing, it
provides information about weaknesses in your environment.

259

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4306-591659+%5BLatest%5D&comment=Title%3A+Roll+Back+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4306-591659+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

'E WARNING
JBoss EAP 6 will automatically recover transactions that were in a non-

heuristic state at the time of the failure, but it does not attempt to recover
heuristic transactions.

3. Contact resource manager vendors

If you have no obvious failure in your environment, or the heuristic outcome is easily
reproducible, it is probably a coding error. Contact third-party vendors to find out if a solution
is available. If you suspect the problem is in the transaction manager of JBoss EAP 6 itself,
contact Red Hat Global Support Services.

. In a test environment, delete the logs and restart JBoss EAP 6.

In a test environment, or if you do not care about the integrity of the data, deleting the
transaction logs and restarting JBoss EAP 6 gets rid of the heuristic outcome. The transaction
logs are located in EAP_HOME/standalone/data/tx-object-store/ for a standalone
server, or EAP_HOME/domain/servers/SERVER_NAME/data/tx-object-storeina
managed domain, by default. In the case of a managed domain, SERVER_NAME refers to the
name of the individual server participating in a server group.

NOTE

The location of the transaction log also depends on the object store in use and
the values set for the oject-store-relative-to and object-store-path
parameters. For file system logs (such as a standard shadow and HornetQ logs)
the default direction location is used, but when using a JDBC object store, the
transaction logs are stored in a database.

. Resolve the outcome by hand

The process of resolving the transaction outcome by hand is very dependent on the exact
circumstance of the failure. Typically, you need to take the following steps, applying them to
your situation:

a. ldentify which resource managers were involved.

b. Examine the state in the transaction manager and the resource managers.

c. Manually force log cleanup and data reconciliation in one or more of the involved
components.

The details of how to perform these steps are out of the scope of this documentation.

Report a bug

11.7.8. Transaction Timeouts

11.7.8.1. About Transaction Timeouts

In order to preserve atomicity and adhere to the ACID standard for transactions, some parts of a

260

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4307-591659+%5BLatest%5D&comment=Title%3A+Handle+a+Heuristic+Outcome+in+a+Transaction%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4307-591659+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

transaction can be long-running. Transaction participants need to lock parts of datasources when they
commit, and the transaction manager needs to wait to hear back from each transaction participant
before it can direct them all whether to commit or roll back. Hardware or network failures can cause
resources to be locked indefinitely.

Transaction timeouts can be associated with transactions in order to control their lifecycle. If a
timeout threshold passes before the transaction commits or rolls back, the timeout causes the
transaction to be rolled back automatically.

You can configure default timeout values for the entire transaction subsystem, or you disable default
timeout values, and specify timeouts on a per-transaction basis.

Report a bug

11.7.8.2. Configure the Transaction Manager

You can configure the Transaction Manager (TM) using the web-based Management Console or the
command-line Management CLI. For each command or option given, the assumption is made that you
are running JBoss EAP 6 as a Managed Domain. If you use a Standalone Server or you want to modify a
different profile than default, you may need to modify the steps and commands in the following
ways.

Notes about the Example Commands

e For the Management Console, the default profile is the one which is selected when you first
log into the console. If you need to modify the Transaction Manager's configurationin a
different profile, select your profile instead of default, in each instruction.

Similarly, substitute your profile for the default profile in the example CLI commands.

e |f you use a Standalone Server, only one profile exists. Ignore any instructions to choose a
specific profile. In CLI commands, remove the /profile=default portion of the sample
commands.

NOTE

In order for the TM options to be visible in the Management Console or Management CLI,
the transactions subsystem must be enabled. It is enabled by default, and required
for many other subsystems to function properly, so it is very unlikely that it would be
disabled.

Configure the TM Using the Management Console

To configure the TM using the web-based Management Console, select the Configuration tab from
the top of the screen. If you use a managed domain, choose the correct profile from the Profile
selection box at the top left. Expand the Container menu and select Transactions.

Most options are shown in the Transaction Manager configuration page. The Recovery options are
hidden by default. Click the Recovery tab to see the recovery options. Click Edit to edit any of the
options. Changes take effect immediately.

Click the Need Help? label to display in-line help text.

Configure the TM using the Management CLI

261

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4378-591665+%5BLatest%5D&comment=Title%3A+About+Transaction+Timeouts%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4378-591665+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

In the Management CLI, you can configure the TM using a series of commands. The commands all begin
with /profile=default/subsystem=transactions/ for a managed domain with profile

default, or /subsystem=transactions for a Standalone Server.

IMPORTANT

store.

Table 11.13. TM Configuration Options

Option

Enable Statistics

Default Timeout

Object Store Path

Object Store Path Relative To

262

Description

Whether to enable transaction
statistics. These statistics can be
viewed in the Management
Console in the Subsystem
Metrics section of the
Runtime tab.

The default transaction timeout.
This defaults to 300 seconds.
You can override this
programmatically, on a per-
transaction basis.

A relative or absolute filesystem
path where the TM object store
stores data. By default relative to
theobject-store-
relative-to parameter's
value.

References a global path
configuration in the domain
model. The default value is the
data directory for JBoss EAP 6,
which is the value of the property
jboss.server.data.dir,
and defaults to
EAP_HOME/domain/data/
for a Managed Domain, or
EAP_HOME/standalone/dat
a/ for a Standalone Server
instance. The value of the object
store object-store-path
TM attribute is relative to this
path.

HornetQ does not allow multiple instances to share a message log store. If you are
configuring multiple instances of HornetQ, each instance must have its own message log

CLI Command

/profile=default/subsys
tem=transactions/:write
-attribute(name=enable-
statistics,value=true)

/profile=default/subsys
tem=transactions/:write
attribute(name=default-
timeout, value=300)

/profile=default/subsys
tem=transactions/:write
-attribute(name=object-
store-path, value=tx-
object-store)

/profile=default/subsys
tem=transactions/:write
-attribute(name=object-
store-relative-
to,value=jboss.server.d
ata.dir)

CHAPTER 11. JAVA TRANSACTION API (JTA)

Option Description CLI Command

Socket Binding Specifies the name of the socket /profile=default/subsys
binding used by the Transaction tem=transactions/:write
Manager for recovery and -attribute(name=socket-
generating transaction binding, value=txn-

identifiers, when the socket-
based mechanism is used. Refer
to process-id-socket-
max-ports for more
information on unique identifier
generation. Socket bindings are
specified per server group in the
Server tab of the Management

recovery-environment)

Console.

Recovery Listener Whether or not the Transaction /profile=default/subsys
Recovery process should listen tem=transactions/:write
on a network socket. Defaults to -
false. attribute(name=recovery

-listener,value=false)

The following options are for advanced use and can only be modified using the Management CLI. Be
cautious when changing them from the default configuration. Contact Red Hat Global Support Services
for more information.

Table 11.14. Advanced TM Configuration Options

Option Description CLI Command
jts Whether to use Java Transaction /profile=default/subsys
Service (JTS) transactions. tem=transactions/:write
Defaults to false, which uses -
JTA transactions only. attribute(name=jts, valu
e=false)

263

Development Guide

Option

node-identifier

process-id-socket-max-ports

process-id-uuid

264

Description

The node identifier for the
Transaction Manager. This option
is required in the following
situations:

e ForJTStoJTS
communications

e When two Transaction
Managers access shared
resource managers

e When two Transaction
Managers access shared
object stores

Thenode-identifier must
be unique for each Transaction
Manager as it is required to
enforce data integrity during
recovery. The node -
identifier must also be
unique for JTA because multiple
nodes may interact with the same
resource manager or share a
transaction object store.

The Transaction Manager creates
a unique identifier for each
transaction log. Two different
mechanisms are provided for
generating unique identifiers: a
socket-based mechanism and a
mechanism based on the process
identifier of the process.

In the case of the socket-based
identifier, a socket is opened and
its port number is used for the
identifier. If the port is already in
use, the next port is probed, until
a free oneis found. The
process-id-socket-max-
ports represents the maximum
number of sockets the TM will try
before failing. The default value is
10.

Set to true to use the process
identifier to create a unique
identifier for each transaction.
Otherwise, the socket-based
mechanism is used. Defaults to
true. Refertoprocess-id-
socket -max-ports for more
information.

CLI Command

/profile=default/subsys
tem=transactions/:write
-attribute(name=node-
identifier,value=1)

/profile=default/subsys
tem=transactions/:write
attribute(name=process-
id-socket-max-
ports,value=10)

/profile=default/subsys
tem=transactions/:write
attribute(name=process-
id-uuid, value=true)

CHAPTER 11. JAVA TRANSACTION API (JTA)

Option Description CLI Command

use-hornetg-store Use HornetQ's journaled storage /profile=default/subsys
mechanisms instead of file-based tem=transactions/:write
storage, for the transaction logs. -attribute(name=use-
This is disabled by default, but hornetq-
can improve I/0O performance. It store,value=false)

is not recommended for JTS
transactions on separate
Transaction Managers. When
changing this option, the server
has to be restarted using the
shutdown command for the
change to take effect.

Report a bug
11.7.9. JTA Transaction Error Handling

11.7.9.1. Handle Transaction Errors

Transaction errors are challenging to solve because they are often dependent on timing. Here are
some common errors and ideas for troubleshooting them.

NOTE

These guidelines do not apply to heuristic errors. If you experience heuristic errors,
refer to Section 11.7.7, “Handle a Heuristic Outcome in a Transaction” and contact Red
Hat Global Support Services for assistance.

e

The transaction timed out but the business logic thread did not notice

This type of error often manifests itself when Hibernate is unable to obtain a database connection for
lazy loading. If it happens frequently, you can lengthen the timeout value. Refer to Section 11.7.8.2,
“Configure the Transaction Manager”.

If that is not feasible, you may be able to tune your external environment to perform more quickly, or
restructure your code to be more efficient. Contact Red Hat Global Support Services if you still have
trouble with timeouts.

The transaction is already running on a thread, or you receive a NotSupportedException
exception

The NotSupportedException exception usually indicates that you attempted to nest a JTA
transaction, and this is not supported. If you were not attempting to nest a transaction, it is likely that
another transaction was started in a thread pool task, but finished the task without suspending or
ending the transaction.

Applications typically use UserTransaction, which handles this automatically. If so, there may be a
problem with a framework.

If your code does use TransactionManager or Transaction methods directly, be aware of the
following behavior when committing or rolling back a transaction. If your code uses
TransactionManager methods to control your transactions, committing or rolling back a transaction

265

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4310-686439+%5BLatest%5D&comment=Title%3A+Configure+the+Transaction+Manager%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4310-686439+22+Jul+2014+09%3A53+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

disassociates the transaction from the current thread. However, if your code uses Transaction

methods, the transaction may not be associated with the running thread, and you need to disassociate
it from its threads manually, before returning it to the thread pool.

You are unable to enlist a second local resource

This error happens if you try to enlist a second non-XA resource into a transaction. If you need multiple
resources in a transaction, they must be XA.

Report a bug

11.8. ORB CONFIGURATION

11.8.1. About Common Object Request Broker Architecture (CORBA)

Common Object Request Broker Architecture (CORBA)is a standard that enables applications and
services to work together even when they are written in multiple, otherwise-incompatible, languages
or hosted on separate platforms. CORBA requests are brokered by a server-side component called an
Object Request Broker (ORB). JBoss EAP 6 provides an ORB instance, by means of the JacORB
component.

The ORB is used internally for Java Transaction Service (JTS)transactions, and is also available for use
by your own applications.

Report a bug

11.8.2. Configure the ORB for JTS Transactions

In a default installation of JBoss EAP 6, the ORB is disabled. You can enable the ORB using the
command-line Management CLI.

NOTE

In a managed domain, the JacORB subsystem is available in full and full-ha profiles
only. In a standalone server, it is available when you use the standalone-full.xml or
standalone-full-ha.xml configurations.

Procedure 11.6. Configure the ORB using the Management Console

1. View the profile settings.
Select Configuration from the top of the management console. If you use a managed
domain, select either the full or full-ha profile from the selection box at the top left.

2. Modify the Initializers Settings
Expand the Subsystems menu. Expand the Container menu and select JacORB.

In the form that appears in the main screen, select the Initializers tab and click the Edit
button.

Enable the security interceptors by setting the value of Security to on.

To enable the ORB for JTS, set the Transaction Interceptors value to on, rather than
the default spec.

266

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4376-591665+%5BLatest%5D&comment=Title%3A+Handle+Transaction+Errors%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4376-591665+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4979-591675+%5BLatest%5D&comment=Title%3A+About+Common+Object+Request+Broker+Architecture+%28CORBA%29%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4979-591675+24+Feb+2014+07%3A54+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

CHAPTER 11. JAVA TRANSACTION API (JTA)

Refer to the Need Help? link in the form for detailed explanations about these values. Click
Save when you have finished editing the values.

3. Advanced ORB Configuration
Refer to the other sections of the form for advanced configuration options. Each section

includes a Need Help? link with detailed information about the parameters.

Configure the ORB using the Management CLI

You can configure each aspect of the ORB using the Management CLI. The following commands
configure the initializers to the same values as the procedure above, for the Management Console. This
is the minimum configuration for the ORB to be used with JTS.

These commands are configured for a managed domain using the full profile. If necessary, change
the profile to suit the one you need to configure. If you use a standalone server, omit the
/profile=full portion of the commands.

Example 11.4. Enable the Security Interceptors

I /profile=full/subsystem=jacorb/:write-attribute(name=security, value=on)

Example 11.5. Enable Transactions in the JacORB Subsystem

/profile=full/subsystem=jacorb/:write-
attribute(name=transactions, value=on)

Example 11.6. Enable JTS in the Transaction Subsystem

/profile=full/subsystem=transactions:write-
attribute(name=jts,value=true)

NOTE

For JTS activation, the server must be restarted as reload is not enough.

Report a bug
11.9. TRANSACTION REFERENCES

11.9.1. JBoss Transactions Errors and Exceptions

For details about exceptions thrown by methods of the UserTransaction class, see the
UserTransaction API specification at
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html.

Report a bug
11.9.2. Limitations on JTA Transactions

267

https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4981-665628+%5BLatest%5D&comment=Title%3A+Configure+the+ORB+for+JTS+Transactions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4981-665628+10+Jun+2014+16%3A25+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html
https://bugzilla.redhat.com/enter_bug.cgi?cf_environment=Build+Name%3A+22816%2C+Development+Guide-6.3-1%0ABuild+Date%3A+18-11-2014+15%3A56%3A42%0ATopic+ID%3A+4299-689191+%5BLatest%5D&comment=Title%3A+JBoss+Transactions+Errors+and+Exceptions%0A%0ADescribe+the+issue%3A%0A%0A%0ASuggestions+for+improvement%3A%0A%0A%0AAdditional+information%3A&cf_build_id=4299-689191+30+Jul+2014+16%3A47+en-US+%5BLatest%5D&product=JBoss+Enterprise+Application+Platform+6&component=Documentation&version=6.3.0

Development Guide

JTA transactions cannot be distribution aware across multiple instances of JBoss EAP 6. For this
behavior, use JTS transactions.

To use JTS transactions, you need to configure the ORB, which includes enabling transactions in the
JacORB subsystem, then configure the JTS subsystem.

e Section 11.8.2, “Configure the ORB for JTS Transactions”

Report a bug

11.9.3. JTA Transaction Example

This example illustrates how to begin, commit, and roll bac