
Red Hat Quay 3.6

Deploy Red Hat Quay on OpenShift with the
Quay Operator

Deploy Red Hat Quay on OpenShift with Quay Operator

Last Updated: 2022-11-21

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay
Operator

Deploy Red Hat Quay on OpenShift with Quay Operator

Legal Notice

Copyright © 2022 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Deploy Red Hat Quay on an OpenShift Cluster with the Red Hat Quay Operator

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY OPERATOR
1.1. QUAYREGISTRY API
1.2. QUAY OPERATOR COMPONENTS
1.3. USING MANAGED COMPONENTS
1.4. USING UNMANAGED COMPONENTS FOR DEPENDENCIES
1.5. CONFIG BUNDLE SECRET
1.6. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT

1.6.1. OpenShift cluster
1.6.2. Resource Requirements
1.6.3. Object Storage

CHAPTER 2. INSTALLING THE QUAY OPERATOR FROM OPERATORHUB

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT
3.1. PRE-CONFIGURING QUAY FOR AUTOMATION

3.1.1. Allowing the API to create the first user
3.1.2. Enabling general API access
3.1.3. Adding a super user
3.1.4. Restricting user creation
3.1.5. Suggested configuration for automation
3.1.6. Deploying the Operator using the initial configuration

3.2. CONFIGURING OBJECT STORAGE
3.2.1. Unmanaged storage

3.2.1.1. AWS S3 storage
3.2.1.2. Google cloud storage
3.2.1.3. Azure storage
3.2.1.4. NooBaa unmanaged storage

3.2.2. Managed storage
3.2.2.1. About The Standalone Object Gateway

3.2.2.1.1. Create A Standalone Object Gateway
3.3. CONFIGURING THE DATABASE

3.3.1. Using an existing Postgres database
3.3.2. Database configuration

3.3.2.1. Database URI
3.3.2.2. Database connection arguments

3.3.2.2.1. PostgreSQL SSL connection arguments
3.3.2.2.2. MySQL SSL connection arguments

3.3.3. Using the managed PostgreSQL
3.4. CONFIGURING TLS AND ROUTES

3.4.1. Creating the config bundle secret with TLS cert, key pair:
3.5. CONFIGURING OTHER COMPONENTS

3.5.1. Using external Redis
3.5.1.1. Redis configuration fields

3.5.1.1.1. Build logs
3.5.1.1.2. User events
3.5.1.1.3. Example redis configuration

3.5.2. Disabling the Horizontal Pod Autoscaler
3.5.3. Disabling Route Component
3.5.4. Unmanaged monitoring
3.5.5. Unmanaged mirroring

5

6
6
6
7
7
8
8
8
8
8

10

13
13
13
13
14
14
14
14
15
15
15
15
15
16
16
17
17
19
19
19

20
20
20
21
21
21
22
22
22
23
23
24
24
24
25
26
26

Table of Contents

1

. .

. .

. .

. .

. .

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR
4.1. DEPLOYING RED HAT QUAY FROM THE COMMAND LINE

4.1.1. Viewing created components using the command line
4.1.2. Horizontal Pod Autoscaling (HPA)
4.1.3. Using the API to create the first user

4.1.3.1. Invoking the API
4.1.3.2. Using the OAuth token

4.1.3.2.1. Create organization
4.1.3.2.2. Get organization details

4.1.4. Monitoring and debugging the deployment process
4.2. DEPLOYING RED HAT QUAY FROM THE OPENSHIFT CONSOLE

4.2.1. Using the Quay UI to create the first user

CHAPTER 5. CONFIGURING QUAY ON OPENSHIFT USING THE COMMAND LINE AND API
5.1. DETERMINING QUAYREGISTRY ENDPOINTS AND SECRETS
5.2. DOWNLOADING THE EXISTING CONFIGURATION
5.3. USING THE CONFIG BUNDLE TO CONFIGURE CUSTOM SSL CERTS
5.4. VOLUME SIZE OVERRIDES

CHAPTER 6. USING THE CONFIG TOOL TO RECONFIGURE QUAY ON OPENSHIFT
6.1. ACCESSING THE CONFIG EDITOR

6.1.1. Retrieving the config editor credentials
6.1.2. Logging in to the config editor
6.1.3. Changing configuration

6.2. MONITORING RECONFIGURATION IN THE UI
6.2.1. QuayRegistry resource
6.2.2. Events

6.3. ACCESSING UPDATED INFORMATION AFTER RECONFIGURATION
6.3.1. Accessing the updated config tool credentials in the UI
6.3.2. Accessing the updated config.yaml in the UI

6.4. CUSTOM SSL CERTIFICATES UI
6.5. EXTERNAL ACCESS TO THE REGISTRY

CHAPTER 7. QUAY OPERATOR FEATURES
7.1. CONSOLE MONITORING AND ALERTING

7.1.1. Dashboard
7.1.2. Metrics
7.1.3. Alerting

7.2. MANUALLY UPDATING THE VULNERABILITY DATABASES FOR CLAIR IN AN AIR-GAPPED OPENSHIFT
CLUSTER

7.2.1. Obtaining clairctl
7.2.2. Retrieving the Clair config

7.2.2.1. Clair on OpenShift config
7.2.2.2. Standalone Clair config

7.2.3. Exporting the updaters bundle
7.2.4. Configuring access to the Clair database in the air-gapped OpenShift cluster
7.2.5. Importing the updaters bundle into the air-gapped environment

7.3. FIPS READINESS AND COMPLIANCE

CHAPTER 8. ADVANCED CONCEPTS
8.1. DEPLOYING QUAY ON INFRASTRUCTURE NODES

8.1.1. Label and taint nodes for infrastructure use
8.1.2. Create a Project with node selector and toleration
8.1.3. Install the Quay Operator in the namespace

27
27
28
28
29
29
30
30
30
31

34
34

37
37
38
40
41

42
42
42
43
44
45
45
47
48
48
48
49
49

50
50
50
51

53

53
54
54
54
55
55
55
56
56

57
57
57
58
58

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

2

. .

. .

8.1.4. Create the registry
8.2. ENABLING MONITORING WHEN OPERATOR IS INSTALLED IN A SINGLE NAMESPACE

8.2.1. Creating a cluster monitoring config map
8.2.2. Creating a user-defined workload monitoring config map
8.2.3. Enable monitoring for user-defined projects
8.2.4. Create a Service object to expose Quay metrics
8.2.5. Create a ServiceMonitor object
8.2.6. View the metrics in OpenShift

8.3. RESIZING MANAGED STORAGE
8.3.1. Resize Noobaa PVC
8.3.2. Add Another Storage Pool

8.4. CUSTOMIZING DEFAULT OPERATOR IMAGES
8.4.1. Environment Variables
8.4.2. Applying Overrides to a Running Operator

8.5. AWS S3 CLOUDFRONT

CHAPTER 9. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM
DEPLOYMENT

9.1. BACKING UP RED HAT QUAY
9.2. RESTORING RED HAT QUAY

CHAPTER 10. UPGRADING THE QUAY OPERATOR OVERVIEW
10.1. OPERATOR LIFECYCLE MANAGER
10.2. UPGRADING THE QUAY OPERATOR

10.2.1. Upgrading Quay
10.2.2. Notes on upgrading directly from 3.3.z or 3.4.z to 3.6

10.2.2.1. Upgrading with edge routing enabled
10.2.2.2. Upgrading with custom TLS certificate/key pairs without Subject Alternative Names
10.2.2.3. Configuring Clair v4 when upgrading from 3.3.z or 3.4.z to 3.6 using the Quay Operator

10.2.3. Changing the update channel for an Operator
10.2.4. Manually approving a pending Operator upgrade

10.3. UPGRADING A QUAYREGISTRY
10.4. ENABLING FEATURES IN QUAY 3.6

10.4.1. Console monitoring and alerting
10.4.2. OCI and Helm support

10.5. UPGRADING A QUAYECOSYSTEM
10.5.1. Reverting QuayEcosystem Upgrade
10.5.2. Supported QuayEcosystem Configurations for Upgrades

ADDITIONAL RESOURCES

58
59
59
60
60
61

62
62
63
63
64
64
64
65
65

66
66
69

73
73
73
73
74
74
74
75
75
75
76
76
76
76
76
77
77
78

Table of Contents

3

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

4

PREFACE
Red Hat Quay is an enterprise-quality container registry. Use Red Hat Quay to build and store container
images, then make them available to deploy across your enterprise.

The Red Hat Quay Operator provides a simple method to deploy and manage Red Hat Quay on an
OpenShift cluster.

As of Red Hat Quay 3.4.0, the Operator has been completely re-written to provide an improved out of
the box experience as well as support for more Day 2 operations. As a result the new Operator is simpler
to use and is more opinionated. The key differences from earlier versions of the Operator are:

The QuayEcosystem custom resource has been replaced with the QuayRegistry custom
resource

The default installation options produces a fully supported Quay environment with all managed
dependencies (database, caches, object storage, etc) supported for production use (some
components may not be highly available)

A new robust validation library for Quay’s configuration which is shared by the Quay application
and config tool for consistency

Object storage can now be managed by the Operator using the ObjectBucketClaim
Kubernetes API (Red Hat OpenShift Data Foundation can be used to provide a supported
implementation of this API on OpenShift)

Customization of the container images used by deployed pods for testing and development
scenarios

PREFACE

5

CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY
OPERATOR

This document outlines the steps for configuring, deploying, managing and upgrading Red Hat Quay on
OpenShift using the Red Hat Quay Operator.

It shows you how to:

Install the Red Hat Quay Operator

Configure object storage, either managed or unmanaged

Configure other unmanaged components, if required, including database, Redis, routes, TLS,
etc.

Deploy the Red Hat Quay registry on OpenShift using the Operator

Use advanced features supported by the Operator

Upgrade the registry by upgrading the Operator

1.1. QUAYREGISTRY API

The Quay Operator provides the QuayRegistry custom resource API to declaratively manage Quay
container registries on the cluster. Use either the OpenShift UI or a command-line tool to interact with
this API.

Creating a QuayRegistry will result in the Operator deploying and configuring all necessary
resources needed to run Quay on the cluster.

Editing a QuayRegistry will result in the Operator reconciling the changes and
creating/updating/deleting objects to match the desired configuration.

Deleting a QuayRegistry will result in garbage collection of all previously created resources and
the Quay container registry will no longer be available.

The QuayRegistry API is fairly simple, and the fields are outlined in the following sections.

1.2. QUAY OPERATOR COMPONENTS

Quay is a powerful container registry platform and as a result, has a significant number of dependencies.
These include a database, object storage, Redis, and others. The Quay Operator manages an
opinionated deployment of Quay and its dependencies on Kubernetes. These dependencies are treated
as components and are configured through the QuayRegistry API.

In the QuayRegistry custom resource, the spec.components field configures components. Each
component contains two fields: kind - the name of the component, and managed - boolean whether
the component lifecycle is handled by the Operator. By default (omitting this field), all components are
managed and will be autofilled upon reconciliation for visibility:

spec:
 components:
 - managed: true
 kind: clair
 - managed: true

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

6

1.3. USING MANAGED COMPONENTS

Unless your QuayRegistry custom resource specifies otherwise, the Operator will use defaults for the
following managed components:

postgres: For storing the registry metadata, uses a version of Postgres 10 from the Software
Collections

redis: Handles Quay builder coordination and some internal logging

objectstorage: For storing image layer blobs, utilizes the ObjectBucketClaim Kubernetes API
which is provided by Noobaa/RHOCS

clair: Provides image vulnerability scanning

horizontalpodautoscaler: Adjusts the number of Quay pods depending on memory/cpu
consumption

mirror: Configures repository mirror workers (to support optional repository mirroring)

route: Provides an external entrypoint to the Quay registry from outside OpenShift

monitoring: Features include a Grafana dashboard, access to individual metrics, and alerting to
notify for frequently restarting Quay pods

tls: Configures whether Red Hat Quay or OpenShift handles TLS

The Operator will handle any required configuration and installation work needed for Red Hat Quay to
use the managed components. If the opinionated deployment performed by the Quay Operator is
unsuitable for your environment, you can provide the Operator with unmanaged resources (overrides)
as described in the following sections.

1.4. USING UNMANAGED COMPONENTS FOR DEPENDENCIES

If you have existing components such as Postgres, Redis or object storage that you would like to use
with Quay, you first configure them within the Quay configuration bundle (config.yaml) and then
reference the bundle in your QuayRegistry (as a Kubernetes Secret) while indicating which components
are unmanaged.

NOTE

 kind: postgres
 - managed: true
 kind: objectstorage
 - managed: true
 kind: redis
 - managed: true
 kind: horizontalpodautoscaler
 - managed: true
 kind: route
 - managed: true
 kind: mirror
 - managed: true
 kind: monitoring
 - managed: true
 kind: tls

CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY OPERATOR

7

https://www.softwarecollections.org/en/

NOTE

The Quay config editor can also be used to create or modify an existing config bundle
and simplifies the process of updating the Kubernetes Secret, especially for multiple
changes. When Quay’s configuration is changed via the config editor and sent to the
Operator, the Quay deployment will be updated to reflect the new configuration.

1.5. CONFIG BUNDLE SECRET

The spec.configBundleSecret field is a reference to the metadata.name of a Secret in the same
namespace as the QuayRegistry. This Secret must contain a config.yaml key/value pair. This
config.yaml file is a Quay config YAML file. This field is optional, and will be auto-filled by the Operator
if not provided. If provided, it serves as the base set of config fields which are later merged with other
fields from any managed components to form a final output Secret, which is then mounted into the
Quay application pods.

1.6. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT

Before you begin the deployment of Red Hat Quay Operator on OpenShift, you should consider the
following.

1.6.1. OpenShift cluster

You need a privileged account to an OpenShift 4.5 or later cluster on which to deploy the Red Hat Quay
Operator. That account must have the ability to create namespaces at the cluster scope.

1.6.2. Resource Requirements

Each Red Hat Quay application pod has the following resource requirements:

8Gi of memory

2000 millicores of CPU.

The Red Hat Quay Operator will create at least one application pod per Red Hat Quay deployment it
manages. Ensure your OpenShift cluster has sufficient compute resources for these requirements.

1.6.3. Object Storage

By default, the Red Hat Quay Operator uses the ObjectBucketClaim Kubernetes API to provision
object storage. Consuming this API decouples the Operator from any vendor-specific implementation.
Red Hat OpenShift Data Foundation provides this API via its NooBaa component, which will be used in
this example.

Red Hat Quay can be manually configured to use any of the following supported cloud storage options:

Amazon S3 (see S3 IAM Bucket Policy for details on configuring an S3 bucket policy for Red Hat
Quay)

Azure Blob Storage

Google Cloud Storage

Ceph Object Gateway (RADOS)

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

8

https://access.redhat.com/solutions/3680151

OpenStack Swift

CloudFront + S3

CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY OPERATOR

9

CHAPTER 2. INSTALLING THE QUAY OPERATOR FROM
OPERATORHUB

1. Using the OpenShift console, Select Operators → OperatorHub, then select the Red Hat Quay
Operator. If there is more than one, be sure to use the Red Hat certified Operator and not the
community version.

2. The Installation page outlines the features and prerequisites:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

10

3. Select Install. The Operator Installation page appears.

CHAPTER 2. INSTALLING THE QUAY OPERATOR FROM OPERATORHUB

11

4. The following choices are available for customizing the installation:

Update Channel: Choose the update channel, for example, stable-3.6 for the latest release.

Installation Mode: Choose All namespaces on the cluster if you want the Operator to be
available cluster-wide. Choose A specific namespace on the cluster if you want it
deployed only within a single namespace. It is recommended that you install the Operator
cluster-wide. If you choose a single namespace, the monitoring component will not be
available by default.

Approval Strategy: Choose to approve either automatic or manual updates. Automatic
update strategy is recommended.

5. Select Install.

6. After a short time, you will see the Operator installed successfully in the Installed Operators
page.

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

12

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT
The Operator can manage all the Red Hat Quay components when deploying on OpenShift, and this is
the default configuration. Alternatively, you can manage one or more components externally yourself,
where you want more control over the set up, and then allow the Operator to manage the remaining
components.

The standard pattern for configuring unmanaged components is:

1. Create a config.yaml configuration file with the appropriate settings

2. Create a Secret using the configuration file

$ oc create secret generic --from-file config.yaml=./config.yaml config-bundle-secret

3. Create a QuayRegistry YAML file quayregistry.yaml, identifying the unmanaged components
and also referencing the created Secret, for example:

quayregistry.yaml

4. Deploy the registry using the YAML file:

oc create -f quayregistry.yaml

3.1. PRE-CONFIGURING QUAY FOR AUTOMATION

Quay has a number of configuration options that support automation. These options can be set before
deployment, to minimize the need to interact with the user interface.

3.1.1. Allowing the API to create the first user

Set the config option FEATURE_USER_INITIALIZE to true, so that you can use the API
/api/v1/user/initialize to create the first user. This API endpoint does not require authentication, unlike
all other registry API calls which require an OAuth token which is generated by an OAuth application in an
existing organization.

Once you have deployed Quay, you can use the API to create a user, for example, quayadmin, provided
no other users have already been created. For more information, see the section on Creating the first
user using the API

3.1.2. Enabling general API access

Set the config option BROWSER_API_CALLS_XHR_ONLY to false, to allow general access to the

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: objectstorage
 managed: false

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT

13

Set the config option BROWSER_API_CALLS_XHR_ONLY to false, to allow general access to the
Quay registry API.

3.1.3. Adding a super user

While you cannot create a user until after deployment, it is convenient to ensure that first user is an
administrator with full permissions. It is easier to configure this in advance, using the SUPER_USER
configuration object.

3.1.4. Restricting user creation

Once you have configured a super user, you can restrict the ability to create new users to the super user
group. Set the FEATURE_USER_CREATION to false to restrict user creation.

3.1.5. Suggested configuration for automation

Create a config.yaml configuration file that includes the appropriate settings:

config.yaml

3.1.6. Deploying the Operator using the initial configuration

1. Create a Secret using the configuration file

$ oc create secret generic --from-file config.yaml=./config.yaml init-config-bundle-secret

2. Create a QuayRegistry YAML file quayregistry.yaml, identifying the unmanaged components
and also referencing the created Secret, for example:

quayregistry.yaml

3. Deploy the registry:

$ oc create -f quayregistry.yaml

4. Create the first user, quayadmin, using the API

...
FEATURE_USER_INITIALIZE: true
BROWSER_API_CALLS_XHR_ONLY: false
SUPER_USERS:
- quayadmin
FEATURE_USER_CREATION: false
...

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: init-config-bundle-secret

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

14

3.2. CONFIGURING OBJECT STORAGE

You need to configure object storage before installing Red Hat Quay, irrespective of whether you are
allowing the Operator to manage the storage or managing it yourself.

If you want the Operator to be responsible for managing storage, see the section on Managed storage
for information on installing and configuring the NooBaa / RHOCS Operator.

If you are using a separate storage solution, set objectstorage as unmanaged when configuring the
Operator. See the following section. Unmanaged storage, for details of configuring existing storage.

3.2.1. Unmanaged storage

Some configuration examples for unmanaged storage are provided in this section for convenience. See
the Red Hat Quay configuration guide for full details for setting up object storage.

3.2.1.1. AWS S3 storage

3.2.1.2. Google cloud storage

3.2.1.3. Azure storage

DISTRIBUTED_STORAGE_CONFIG:
 s3Storage:
 - S3Storage
 - host: s3.us-east-2.amazonaws.com
 s3_access_key: ABCDEFGHIJKLMN
 s3_secret_key: OL3ABCDEFGHIJKLMN
 s3_bucket: quay_bucket
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - s3Storage

DISTRIBUTED_STORAGE_CONFIG:
 googleCloudStorage:
 - GoogleCloudStorage
 - access_key: GOOGQIMFB3ABCDEFGHIJKLMN
 bucket_name: quay-bucket
 secret_key: FhDAYe2HeuAKfvZCAGyOioNaaRABCDEFGHIJKLMN
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - googleCloudStorage

DISTRIBUTED_STORAGE_CONFIG:
 azureStorage:
 - AzureStorage
 - azure_account_name: azure_account_name_here
 azure_account_key: azure_account_key_here
 azure_container: azure_container_here
 sas_token: some/path/
 storage_path: /datastorage/registry

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT

15

3.2.1.4. NooBaa unmanaged storage

1. Create a NooBaa Object Bucket Claim in the console at Storage → Object Bucket Claims.

2. Retrieve the Object Bucket Claim Data details including the Access Key, Bucket Name, Endpoint
(hostname) and Secret Key.

3. Create a config.yaml configuration file, using the information for the Object Bucket Claim:

3.2.2. Managed storage

If you want the Operator to manage object storage for Quay, your cluster needs to be capable of
providing object storage via the ObjectBucketClaim API. Using the Red Hat OpenShift Data
Foundation (ODF) Operator, there are two supported options available:

A standalone instance of the Multi-Cloud Object Gateway backed by a local Kubernetes
PersistentVolume storage

Not highly available

Included in the Quay subscription

Does not require a separate subscription for ODF

A production deployment of ODF with scale-out Object Service and Ceph

Highly available

Requires a separate subscription for ODF

To use the standalone instance option, continue reading below. For production deployment of ODF,
please refer to the official documentation.

NOTE

DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - azureStorage

DISTRIBUTED_STORAGE_CONFIG:
 default:
 - RHOCSStorage
 - access_key: WmrXtSGk8B3nABCDEFGH
 bucket_name: my-noobaa-bucket-claim-8b844191-dc6c-444e-9ea4-87ece0abcdef
 hostname: s3.openshift-storage.svc.cluster.local
 is_secure: true
 port: "443"
 secret_key: X9P5SDGJtmSuHFCMSLMbdNCMfUABCDEFGH+C5QD
 storage_path: /datastorage/registry
DISTRIBUTED_STORAGE_DEFAULT_LOCATIONS: []
DISTRIBUTED_STORAGE_PREFERENCE:
 - default

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/

NOTE

Object storage disk space is allocated automatically by the Operator with 50 GiB. This
number represents a usable amount of storage for most small to medium Red Hat Quay
installations but may not be sufficient for your use cases. Resizing the RHOCS volume is
currently not handled by the Operator. See the section below on resizing managed
storage for more details.

3.2.2.1. About The Standalone Object Gateway

As part of a Red Hat Quay subscription, users are entitled to use the Multi-Cloud Object Gateway
(MCG) component of the Red Hat OpenShift Data Foundation Operator (formerly known as OpenShift
Container Storage Operator). This gateway component allows you to provide an S3-compatible object
storage interface to Quay backed by Kubernetes PersistentVolume-based block storage. The usage is
limited to a Quay deployment managed by the Operator and to the exact specifications of the MCG
instance as documented below.

Since Red Hat Quay does not support local filesystem storage, users can leverage the gateway in
combination with Kubernetes PersistentVolume storage instead, to provide a supported deployment. A
PersistentVolume is directly mounted on the gateway instance as a backing store for object storage
and any block-based StorageClass is supported.

By the nature of PersistentVolume, this is not a scale-out, highly available solution and does not replace
a scale-out storage system like Red Hat OpenShift Data Foundation (ODF). Only a single instance of
the gateway is running. If the pod running the gateway becomes unavailable due to rescheduling,
updates or unplanned downtime, this will cause temporary degradation of the connected Quay
instances.

3.2.2.1.1. Create A Standalone Object Gateway

To install the ODF (formerly known as OpenShift Container Storage) Operator and configure a single
instance Multi-Cloud Gateway service, follow these steps:

1. Open the OpenShift console and select Operators → OperatorHub, then select the OpenShift
Data Foundation Operator.

2. Select Install. Accept all default options and select Install again.

3. Within a minute, the Operator will install and create a namespace openshift-storage. You can
confirm it has completed when the Status column is marked Succeeded.

When the installation of the ODF Operator is complete, you are prompted to create a storage
system. Do not follow this instruction. Instead, create NooBaa object storage as outlined the
following steps.

4. Create NooBaa object storage. Save the following YAML to a file called noobaa.yaml.

apiVersion: noobaa.io/v1alpha1
kind: NooBaa
metadata:
 name: noobaa
 namespace: openshift-storage
spec:
 dbResources:
 requests:
 cpu: '0.1'

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT

17

1

2

 memory: 1Gi
 dbType: postgres
 coreResources:
 requests:
 cpu: '0.1'
 memory: 1Gi

This will create a single instance deployment of the Multi-cloud Object Gateway .

5. Apply the configuration with the following command:

$ oc create -n openshift-storage -f noobaa.yaml
noobaa.noobaa.io/noobaa created

6. After a couple of minutes, you should see that the MCG instance has finished provisioning
(PHASE column will be set to Ready):

$ oc get -n openshift-storage noobaas noobaa -w
NAME MGMT-ENDPOINTS S3-ENDPOINTS IMAGE
PHASE AGE
noobaa [https://10.0.32.3:30318] [https://10.0.32.3:31958] registry.redhat.io/ocs4/mcg-
core-
rhel8@sha256:56624aa7dd4ca178c1887343c7445a9425a841600b1309f6deace37ce6b8678d
Ready 3d18h

7. Next, configure a backing store for the gateway. Save the following YAML to a file called
noobaa-pv-backing-store.yaml.

noobaa-pv-backing-store.yaml

The overall capacity of the object storage service, adjust as needed

The StorageClass to use for the PersistentVolumes requested, delete this property to
use the cluster default

8. Apply the configuration with the following command:

apiVersion: noobaa.io/v1alpha1
kind: BackingStore
metadata:
 finalizers:
 - noobaa.io/finalizer
 labels:
 app: noobaa
 name: noobaa-pv-backing-store
 namespace: openshift-storage
spec:
 pvPool:
 numVolumes: 1
 resources:
 requests:
 storage: 50Gi 1
 storageClass: STORAGE-CLASS-NAME 2
 type: pv-pool

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

18

$ oc create -f noobaa-pv-backing-store.yaml
backingstore.noobaa.io/noobaa-pv-backing-store created

This creates the backing store configuration for the gateway. All images in Quay will be stored
as objects through the gateway in a PersistentVolume created by the above configuration.

9. Finally, run the following command to make the PersistentVolume backing store the default
for all ObjectBucketClaims issued by the Operator.

$ oc patch bucketclass noobaa-default-bucket-class --patch '{"spec":{"placementPolicy":
{"tiers":[{"backingStores":["noobaa-pv-backing-store"]}]}}}' --type merge -n openshift-storage

This concludes the setup of the Multi-Cloud Object Gateway instance for Red Hat Quay. Note that this
configuration cannot be run in parallel on a cluster with Red Hat OpenShift Data Foundation installed.

3.3. CONFIGURING THE DATABASE

3.3.1. Using an existing Postgres database

1. Create a configuration file config.yaml with the necessary database fields:

config.yaml:

2. Create a Secret using the configuration file:

$ kubectl create secret generic --from-file config.yaml=./config.yaml config-bundle-secret

3. Create a QuayRegistry YAML file quayregistry.yaml which marks the postgres component as
unmanaged and references the created Secret:

quayregistry.yaml

4. Deploy the registry as detailed in the following sections.

3.3.2. Database configuration

You configure the connection to the database using the required DB_URI field and optional connection
arguments in the DB_CONNECTION_ARGS structure. Some key-value pairs defined under

DB_URI: postgresql://test-quay-database:postgres@test-quay-database:5432/test-quay-
database

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: postgres
 managed: false

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT

19

DB_CONNECTION_ARGS are generic while others are database-specific. In particular, SSL
configuration depends on the database you are deploying, and examples for PostgreSQL and MySQL
are given below.

3.3.2.1. Database URI

Table 3.1. Database URI

Field Type Description

DB_URI
(Required)

String The URI for accessing the
database, including any
credentials

Example:

postgresql://quayuser:quaypass@quay-server.example.com:5432/quay

3.3.2.2. Database connection arguments

Table 3.2. Database connection arguments

Field Type Description

DB_CONNECTION_ARGS Object Optional connection arguments
for the database, such as
timeouts and SSL

 .autorollback Boolean Whether to use thread-local
connections

Should ALWAYS be true

 .threadlocals Boolean Whether to use auto-rollback
connections

Should ALWAYS be true

3.3.2.2.1. PostgreSQL SSL connection arguments

A sample PostgreSQL SSL configuration is given below:

DB_CONNECTION_ARGS:
 sslmode: verify-ca
 sslrootcert: /path/to/cacert

The sslmode option determines whether or with what priority a secure SSL TCP/IP connection will be
negotiated with the server. There are six modes:

disable: only try a non-SSL connection

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

20

allow: first try a non-SSL connection; if that fails, try an SSL connection

prefer: (default) first try an SSL connection; if that fails, try a non-SSL connection

require: only try an SSL connection. If a root CA file is present, verify the certificate in the same
way as if verify-ca was specified

verify-ca: only try an SSL connection, and verify that the server certificate is issued by a trusted
certificate authority (CA)

verify-full: only try an SSL connection, verify that the server certificate is issued by a trusted
CA and that the requested server host name matches that in the certificate

More information on the valid arguments for PostgreSQL is available at
https://www.postgresql.org/docs/current/libpq-connect.html.

3.3.2.2.2. MySQL SSL connection arguments

A sample MySQL SSL configuration follows:

DB_CONNECTION_ARGS:
 ssl:
 ca: /path/to/cacert

Information on the valid connection arguments for MySQL is available at
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html.

3.3.3. Using the managed PostgreSQL

Recommendations:

Database backups should be performed regularly using either the supplied tools on the
Postgres image or your own backup infrastructure. The Operator does not currently ensure the
Postgres database is backed up.

Restoring the Postgres database from a backup must be done using Postgres tools and
procedures. Be aware that your Quay Pods should not be running while the database restore is
in progress.

Database disk space is allocated automatically by the Operator with 50 GiB. This number
represents a usable amount of storage for most small to medium Red Hat Quay installations but
may not be sufficient for your use cases. Resizing the database volume is currently not handled
by the Operator.

3.4. CONFIGURING TLS AND ROUTES

Support for OpenShift Container Platform Edge-Termination Routes has been added by way of a new
managed component, tls. This separates the route component from TLS and allows users to configure
both separately. EXTERNAL_TLS_TERMINATION: true is the opinionated setting. Managed tls means
that the default cluster wildcard cert is used. Unmanaged tls means that the user provided cert/key pair
will be injected into the Route.

ssl.cert and ssl.key are now moved to a separate, persistent Secret, which ensures that the cert/key
pair is not re-generated upon every reconcile. These are now formatted as edge routes and mounted to
the same directory in the Quay container.

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT

21

https://www.postgresql.org/docs/current/libpq-connect.html
https://dev.mysql.com/doc/refman/8.0/en/connecting-using-uri-or-key-value-pairs.html

Multiple permutations are possible when configuring TLS and Routes, but the following rules apply:

If TLS is managed, then route must also be managed

If TLS is unmanaged then you must supply certs, either with the config tool or directly in the
config bundle

The following table outlines the valid options:

Table 3.3. Valid configuration options for TLS and routes

Option Route TLS Certs provided Result

My own load
balancer handles
TLS

Managed Managed No Edge Route with default
wildcard cert

Red Hat Quay
handles TLS

Managed Unmanaged Yes Passthrough route with
certs mounted inside the
pod

Red Hat Quay
handles TLS

Unmanaged Unmanaged Yes Certificates are set inside
the quay pod but route
must be created manually

NOTE

Red Hat Quay 3.6 does not support builders when TLS is managed by the Operator.

3.4.1. Creating the config bundle secret with TLS cert, key pair:

To add your own TLS cert and key, include them in the config bundle secret as follows:

3.5. CONFIGURING OTHER COMPONENTS

3.5.1. Using external Redis

If you wish to use an external Redis database, set the component as unmanaged in the QuayRegistry
instance:

1. Create a configuration file config.yaml with the necessary redis fields:

$ oc create secret generic --from-file config.yaml=./config.yaml --from-file ssl.cert=./ssl.cert --from-file
ssl.key=./ssl.key config-bundle-secret

BUILDLOGS_REDIS:
 host: quay-server.example.com
 password: strongpassword
 port: 6379

USER_EVENTS_REDIS:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

22

2. Create a Secret using the configuration file

$ oc create secret generic --from-file config.yaml=./config.yaml config-bundle-secret

3. Create a QuayRegistry YAML file quayregistry.yaml which marks redis component as
unmanaged and references the created Secret:

4. Deploy the registry

3.5.1.1. Redis configuration fields

3.5.1.1.1. Build logs

Table 3.4. Build logs configuration

Field Type Description

BUILDLOGS_REDIS
(Required)

Object Redis connection details for build
logs caching

 .host
 (Required)

String The hostname at which Redis is
accessible

Example:
quay-server.example.com

 .port
 (Required)

Number The port at which Redis is
accessible

Example:
6379

 .password String The port at which Redis is
accessible

Example:
strongpassword

 host: quay-server.example.com
 password: strongpassword
 port: 6379

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: redis
 managed: false

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT

23

3.5.1.1.2. User events

Table 3.5. User events config

Field Type Description

USER_EVENTS_REDIS
(Required)

Object Redis connection details for user
event handling

 .host
 (Required)

String The hostname at which Redis is
accessible

Example:
quay-server.example.com

 .port
 (Required)

Number The port at which Redis is
accessible

Example:
6379

 .password String The port at which Redis is
accessible

Example:
strongpassword

3.5.1.1.3. Example redis configuration

BUILDLOGS_REDIS:
 host: quay-server.example.com
 password: strongpassword
 port: 6379

USER_EVENTS_REDIS:
 host: quay-server.example.com
 password: strongpassword
 port: 6379

3.5.2. Disabling the Horizontal Pod Autoscaler

HorizontalPodAutoscalers have been added to the Clair, Quay, and Mirror pods, so that they now
automatically scale during load spikes.

As HPA is configured by default to be managed, the number of pods for Quay, Clair and repository
mirroring is set to two. This facilitates the avoidance of downtime when updating / reconfiguring Quay
via the Operator or during rescheduling events.

If you wish to disable autoscaling or create your own HorizontalPodAutoscaler, simply specify the
component as unmanaged in the QuayRegistry instance:

apiVersion: quay.redhat.com/v1

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

24

3.5.3. Disabling Route Component

To prevent the Operator from creating a Route:

1. Mark the component as unmanaged in the QuayRegistry:

2. Specify that you want Quay to handle TLS in the configuration, by editing the config.yaml file:

config.yaml

If you do not configure the unmanaged Route correctly, you will see an error similar to the
following:

NOTE

kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: horizontalpodautoscaler
 managed: false

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: route
 managed: false

...
EXTERNAL_TLS_TERMINATION: false
...
SERVER_HOSTNAME: example-registry-quay-quay-enterprise.apps.user1.example.com
...
PREFERRED_URL_SCHEME: https
...

{
 {
 "kind":"QuayRegistry",
 "namespace":"quay-enterprise",
 "name":"example-registry",
 "uid":"d5879ba5-cc92-406c-ba62-8b19cf56d4aa",
 "apiVersion":"quay.redhat.com/v1",
 "resourceVersion":"2418527"
 },
 "reason":"ConfigInvalid",
 "message":"required component `route` marked as unmanaged, but `configBundleSecret` is
missing necessary fields"
}

CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT

25

NOTE

Disabling the default Route means you are now responsible for creating a Route,
Service, or Ingress in order to access the Quay instance and that whatever DNS you use
must match the SERVER_HOSTNAME in the Quay config.

3.5.4. Unmanaged monitoring

If you install the Quay Operator in a single namespace, the monitoring component is automatically set to
'unmanaged'. To enable monitoring in this scenario, see the section Section 8.2, “Enabling monitoring
when Operator is installed in a single namespace”.

To disable monitoring explicitly:

3.5.5. Unmanaged mirroring

To disable mirroring explicitly:

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: monitoring
 managed: false

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: mirroring
 managed: false

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

26

CHAPTER 4. DEPLOYING QUAY USING THE QUAY
OPERATOR

The Operator can be deployed from the command line or from the OpenShift console, but the
fundamental steps are the same.

4.1. DEPLOYING RED HAT QUAY FROM THE COMMAND LINE

1. Create a namespace, for example, quay-enterprise.

2. Create a secret for the config bundle, if you want to pre-configure any aspects of the
deployment

3. Create a QuayRegistry custom resource in a file called quayregistry.yaml

a. For a minimal deployment, using all the defaults:

quayregistry.yaml:

b. If you want to have some components unmanaged, add this information in the spec field.
For example, a minimal deployment might look like:

quayregistry.yaml:

c. If you have created a config bundle, for example, init-config-bundle-secret, reference it in
the quayregistry.yaml file:

quayregistry.yaml:

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry
 namespace: quay-enterprise
spec:
 components:
 - kind: clair
 managed: false
 - kind: horizontalpodautoscaler
 managed: false
 - kind: mirror
 managed: false
 - kind: monitoring
 managed: false

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR

27

4. Create the QuayRegistry in specified namespace:

5. See the section Monitoring and debugging the deployment process for information on how to
track the progress of the deployment.

6. Wait until the status.registryEndpoint is populated.

4.1.1. Viewing created components using the command line

Use the oc get pods command to view the deployed components:

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
example-registry-clair-app-5ffc9f77d6-jwr9s 1/1 Running 0 3m42s
example-registry-clair-app-5ffc9f77d6-wgp7d 1/1 Running 0 3m41s
example-registry-clair-postgres-54956d6d9c-rgs8l 1/1 Running 0 3m5s
example-registry-quay-app-79c6b86c7b-8qnr2 1/1 Running 4 3m42s
example-registry-quay-app-79c6b86c7b-xk85f 1/1 Running 4 3m41s
example-registry-quay-app-upgrade-5kl5r 0/1 Completed 4 3m50s
example-registry-quay-config-editor-597b47c995-svqrl 1/1 Running 0 3m42s
example-registry-quay-database-b466fc4d7-tfrnx 1/1 Running 2 3m42s
example-registry-quay-mirror-6d9bd78756-6lj6p 1/1 Running 0 2m58s
example-registry-quay-mirror-6d9bd78756-bv6gq 1/1 Running 0 2m58s
example-registry-quay-postgres-init-dzbmx 0/1 Completed 0 3m43s
example-registry-quay-redis-8bd67b647-skgqx 1/1 Running 0 3m42s

4.1.2. Horizontal Pod Autoscaling (HPA)

A default deployment shows the following running pods:

Two pods for the Quay application itself (example-registry-quay-app-*`)

One Redis pod for Quay logging (example-registry-quay-redis-*)

One database pod for PostgreSQL used by Quay for metadata storage (example-registry-
quay-database-*)

One pod for the Quay config editor (example-registry-quay-config-editor-*)

Two Quay mirroring pods (example-registry-quay-mirror-*)

Two pods for the Clair application (example-registry-clair-app-*)

 name: example-registry
 namespace: quay-enterprise
spec:
 configBundleSecret: init-config-bundle-secret

$ oc create -f quayregistry.yaml

$ oc get quayregistry -n quay-enterprise example-registry -o jsonpath="
{.status.registryEndpoint}" -w

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

28

One PostgreSQL pod for Clair (example-registry-clair-postgres-*)

As HPA is configured by default to be managed, the number of pods for Quay, Clair and repository
mirroring is set to two. This facilitates the avoidance of downtime when updating / reconfiguring Quay
via the Operator or during rescheduling events.

4.1.3. Using the API to create the first user

When using the API to create the first user, the following conditions must be met:

The config option FEATURE_USER_INITIALIZE must be set to true

No users can already exist in the database

For more information on pre-configuring the deployment, see the section Pre-configuring Quay for
automation

4.1.3.1. Invoking the API

Using the status.registryEndpoint URL, invoke the /api/v1/user/initialize API, passing in the username,
password and email address. You can also request an OAuth token by specifying "access_token": true.

If successful, the method returns an object with the username, email and encrypted password. If a user
already exists in the database, an error is returned:

The password must be at least 8 characters and contain no whitespace:

$ oc get hpa -n quay-enterprise
NAME REFERENCE TARGETS MINPODS MAXPODS
REPLICAS AGE
example-registry-clair-app Deployment/example-registry-clair-app 16%/90%, 0%/90% 2
10 2 13d
example-registry-quay-app Deployment/example-registry-quay-app 31%/90%, 1%/90% 2
20 2 13d
example-registry-quay-mirror Deployment/example-registry-quay-mirror 27%/90%, 0%/90% 2
20 2 13d

$ curl -X POST -k https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/user/initialize --header 'Content-Type: application/json' --
data '{ "username": "quayadmin", "password":"quaypass123", "email": "quayadmin@example.com",
"access_token": true}'

{"access_token":"6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED",
"email":"quayadmin@example.com","encrypted_password":"1nZMLH57RIE5UGdL/yYpDOHLqiNCgi
mb6W9kfF8MjZ1xrfDpRyRs9NUnUuNuAitW","username":"quayadmin"}

$ curl -X POST -k https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/user/initialize --header 'Content-Type: application/json' --
data '{ "username": "quayuser2", "password":"quaypass123", "email": "quayuser2@example.com"}'

{"message":"Cannot initialize user in a non-empty database"}

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR

29

4.1.3.2. Using the OAuth token

You can now invoke the rest of the Quay API specifying the returned OAuth code. For example, to get a
list of the current users:

In this instance, the details for the quayadmin user are returned as it is the only user that has been
created so far.

4.1.3.2.1. Create organization

To create an organization, use a POST call to api/v1/organization/ endpoint:

4.1.3.2.2. Get organization details

 $ curl -X POST -k https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/user/initialize --header 'Content-Type: application/json' --
data '{ "username": "quayadmin", "password":"pass123", "email": "quayadmin@example.com"}'

{"message":"Failed to initialize user: Invalid password, password must be at least 8 characters and
contain no whitespace."}

$ curl -X GET -k -H "Authorization: Bearer
6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED" https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/superuser/users/

{
 "users": [
 {
 "kind": "user",
 "name": "quayadmin",
 "username": "quayadmin",
 "email": "quayadmin@example.com",
 "verified": true,
 "avatar": {
 "name": "quayadmin",
 "hash": "3e82e9cbf62d25dec0ed1b4c66ca7c5d47ab9f1f271958298dea856fb26adc4c",
 "color": "#e7ba52",
 "kind": "user"
 },
 "super_user": true,
 "enabled": true
 }
]
}

$ curl -X POST -k --header 'Content-Type: application/json' -H "Authorization: Bearer
6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED" https://example-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/organization/ --data '{"name": "testorg", "email":
"testorg@example.com"}'

"Created"

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

30

To retrieve the details of the organization you created:

4.1.4. Monitoring and debugging the deployment process

Red Hat Quay 3.6 provides new functionality to troubleshoot problems during the deployment phase.
The status in the QuayRegistry object can help you monitor the health of the components during the
deployment an help you debug any problems that may arise:

$ oc get quayregistry -n quay-enterprise -o yaml

Immediately after deployment, the QuayRegistry object will show the basic configuration:

$ curl -X GET -k --header 'Content-Type: application/json' -H "Authorization: Bearer
6B4QTRSTSD1HMIG915VPX7BMEZBVB9GPNY2FC2ED" https://min-registry-quay-quay-
enterprise.apps.docs.quayteam.org/api/v1/organization/testorg

{
 "name": "testorg",
 "email": "testorg@example.com",
 "avatar": {
 "name": "testorg",
 "hash": "5f113632ad532fc78215c9258a4fb60606d1fa386c91b141116a1317bf9c53c8",
 "color": "#a55194",
 "kind": "user"
 },
 "is_admin": true,
 "is_member": true,
 "teams": {
 "owners": {
 "name": "owners",
 "description": "",
 "role": "admin",
 "avatar": {
 "name": "owners",
 "hash": "6f0e3a8c0eb46e8834b43b03374ece43a030621d92a7437beb48f871e90f8d90",
 "color": "#c7c7c7",
 "kind": "team"
 },
 "can_view": true,
 "repo_count": 0,
 "member_count": 1,
 "is_synced": false
 }
 },
 "ordered_teams": [
 "owners"
],
 "invoice_email": false,
 "invoice_email_address": null,
 "tag_expiration_s": 1209600,
 "is_free_account": true
}

apiVersion: v1

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR

31

Use the oc get pods command to view the current state of the deployed components:

$ oc get pods -n quay-enterprise

NAME READY STATUS RESTARTS AGE
example-registry-clair-app-86554c6b49-ds7bl 0/1 ContainerCreating 0 2s
example-registry-clair-app-86554c6b49-hxp5s 0/1 Running 1 17s
example-registry-clair-postgres-68d8857899-lbc5n 0/1 ContainerCreating 0 17s
example-registry-quay-app-upgrade-h2v7h 0/1 ContainerCreating 0 9s
example-registry-quay-config-editor-5f646cbcb7-lbnc2 0/1 ContainerCreating 0 17s
example-registry-quay-database-66f495c9bc-wqsjf 0/1 ContainerCreating 0 17s
example-registry-quay-mirror-854c88457b-d845g 0/1 Init:0/1 0 2s
example-registry-quay-mirror-854c88457b-fghxv 0/1 Init:0/1 0 17s
example-registry-quay-postgres-init-bktdt 0/1 Terminating 0 17s
example-registry-quay-redis-f9b9d44bf-4htpz 0/1 ContainerCreating 0 17s

While the deployment is in progress, the QuayRegistry object will show the current status. In this
instance, database migrations are taking place, and other components are waiting until this completes.

items:
- apiVersion: quay.redhat.com/v1
 kind: QuayRegistry
 metadata:
 creationTimestamp: "2021-09-14T10:51:22Z"
 generation: 3
 name: example-registry
 namespace: quay-enterprise
 resourceVersion: "50147"
 selfLink: /apis/quay.redhat.com/v1/namespaces/quay-enterprise/quayregistries/example-registry
 uid: e3fc82ba-e716-4646-bb0f-63c26d05e00e
 spec:
 components:
 - kind: postgres
 managed: true
 - kind: clair
 managed: true
 - kind: redis
 managed: true
 - kind: horizontalpodautoscaler
 managed: true
 - kind: objectstorage
 managed: true
 - kind: route
 managed: true
 - kind: mirror
 managed: true
 - kind: monitoring
 managed: true
 - kind: tls
 managed: true
 configBundleSecret: example-registry-config-bundle-kt55s
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

32

When the deployment process finishes successfully, the status in the QuayRegistry object shows no
unhealthy components:

 status:
 conditions:
 - lastTransitionTime: "2021-09-14T10:52:04Z"
 lastUpdateTime: "2021-09-14T10:52:04Z"
 message: all objects created/updated successfully
 reason: ComponentsCreationSuccess
 status: "False"
 type: RolloutBlocked
 - lastTransitionTime: "2021-09-14T10:52:05Z"
 lastUpdateTime: "2021-09-14T10:52:05Z"
 message: running database migrations
 reason: MigrationsInProgress
 status: "False"
 type: Available
 configEditorCredentialsSecret: example-registry-quay-config-editor-credentials-btbkcg8dc9
 configEditorEndpoint: https://example-registry-quay-config-editor-quay-
enterprise.apps.docs.quayteam.org
 lastUpdated: 2021-09-14 10:52:05.371425635 +0000 UTC
 unhealthyComponents:
 clair:
 - lastTransitionTime: "2021-09-14T10:51:32Z"
 lastUpdateTime: "2021-09-14T10:51:32Z"
 message: 'Deployment example-registry-clair-postgres: Deployment does not have minimum
availability.'
 reason: MinimumReplicasUnavailable
 status: "False"
 type: Available
 - lastTransitionTime: "2021-09-14T10:51:32Z"
 lastUpdateTime: "2021-09-14T10:51:32Z"
 message: 'Deployment example-registry-clair-app: Deployment does not have minimum
availability.'
 reason: MinimumReplicasUnavailable
 status: "False"
 type: Available
 mirror:
 - lastTransitionTime: "2021-09-14T10:51:32Z"
 lastUpdateTime: "2021-09-14T10:51:32Z"
 message: 'Deployment example-registry-quay-mirror: Deployment does not have minimum
availability.'
 reason: MinimumReplicasUnavailable
 status: "False"
 type: Available

 status:
 conditions:
 - lastTransitionTime: "2021-09-14T10:52:36Z"
 lastUpdateTime: "2021-09-14T10:52:36Z"
 message: all registry component healthchecks passing
 reason: HealthChecksPassing
 status: "True"
 type: Available
 - lastTransitionTime: "2021-09-14T10:52:46Z"
 lastUpdateTime: "2021-09-14T10:52:46Z"

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR

33

4.2. DEPLOYING RED HAT QUAY FROM THE OPENSHIFT CONSOLE

1. Create a namespace, for example, quay-enterprise.

2. Select Operators → Installed Operators, then select the Quay Operator to navigate to the
Operator detail view.

3. Click 'Create Instance' on the 'Quay Registry' tile under 'Provided APIs'.

4. Optionally change the 'Name' of the QuayRegistry. This will affect the hostname of the
registry. All other fields have been populated with defaults.

5. Click 'Create' to submit the QuayRegistry to be deployed by the Quay Operator.

6. You should be redirected to the QuayRegistry list view. Click on the QuayRegistry you just
created to see the details view.

7. Once the 'Registry Endpoint' has a value, click it to access your new Quay registry via the UI. You
can now select 'Create Account' to create a user and sign in.

4.2.1. Using the Quay UI to create the first user

NOTE

This procedure assumes that the FEATURE_USER_CREATION config option has not
been set to false. If it is false, then the Create Account functionality on the UI will be
disabled, and you will have to use the API to create the first user.

1. In the OpenShift console, navigate to Operators → Installed Operators, with the appropriate
namespace / project.

2. Click on the newly installed QuayRegistry, to view the details:

 message: all objects created/updated successfully
 reason: ComponentsCreationSuccess
 status: "False"
 type: RolloutBlocked
 configEditorCredentialsSecret: example-registry-quay-config-editor-credentials-hg7gg7h57m
 configEditorEndpoint: https://example-registry-quay-config-editor-quay-
enterprise.apps.docs.quayteam.org
 currentVersion: 3.6.0
 lastUpdated: 2021-09-14 10:52:46.104181633 +0000 UTC
 registryEndpoint: https://example-registry-quay-quay-enterprise.apps.docs.quayteam.org
 unhealthyComponents: {}

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

34

3. Once the Registry Endpoint has a value, navigate to this URL in your browser

4. Select 'Create Account' in the Quay registry UI to create a user

5. Enter details for username, password, email and click Create Account

CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR

35

6. You are automatically logged in to the Quay registry

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

36

CHAPTER 5. CONFIGURING QUAY ON OPENSHIFT USING
THE COMMAND LINE AND API

Once deployed, you can configure the Quay application by editing the Quay configuration bundle secret
spec.configBundleSecret and you can also change the managed status of components in the
spec.components object of the QuayRegistry resource

The Operator does not watch the spec.configBundleSecret resource for changes, so it is
recommended that configuration changes be made to a new Secret resource and that the
spec.configBundleSecret field is updated to reflect the change. In the event there are issues with the
new configuration, it is simple to revert the value of spec.configBundleSecret to the older Secret.

The procedure for changing the configuration involves:

1. Determining the current endpoints and secrets

2. Downloading the existing configuration bundle, if Red Hat Quay has already been deployed on
OpenShift

3. Creating or updating the config.yaml configuration file

4. Assembling any SSL certs required for Quay, or custom SSL certs needed for services

5. Creating a new config bundle secret, using the config file and any certs

6. Creating or updating the registry, referencing the new config bundle secret and specifying any
over-rides for managing components

7. Monitoring the deployment to ensure successful completion and that the configuration changes
have taken effect

Alternatively, you can use the config editor UI to configure the Quay application, as described in the
section Chapter 6, Using the config tool to reconfigure Quay on OpenShift .

5.1. DETERMINING QUAYREGISTRY ENDPOINTS AND SECRETS

You can examine the QuayRegistry resource, using oc describe quayregistry or oc get quayregistry -
o yaml, to determine the current endpoints and secrets:

$ oc get quayregistry example-registry -n quay-enterprise -o yaml

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 ...
 name: example-registry
 namespace: quay-enterprise
 ...
spec:
 components:
 ...
 configBundleSecret: example-registry-quay-config-bundle-fjpnm
status:
 configEditorCredentialsSecret: example-registry-quay-config-editor-credentials-kk55dc7299
 configEditorEndpoint: https://example-registry-quay-config-editor-quay-

CHAPTER 5. CONFIGURING QUAY ON OPENSHIFT USING THE COMMAND LINE AND API

37

The relevant fields are:

registryEndpoint: The URL for your registry, for browser access to the registry UI, and for the
registry API endpoint

configBundleSecret: The config bundle secret, containing the config.yaml file and any SSL
certs

configEditorEndpoint: The URL for the config editor tool, for browser access to the config
tool, and for the configuration API

configEditorCredentialsSecret: The secret containing the username (typically quayconfig)
and the password for the config editor tool

To determine the username and password for the config editor tool:

1. Retrieve the secret:

2. Decode the username:

$ echo 'cXVheWNvbmZpZw==' | base64 --decode

quayconfig

3. Decode the password:

$ echo 'SkZwQkVKTUN0a1BUZmp4dA==' | base64 --decode

JFpBEJMCtkPTfjxt

5.2. DOWNLOADING THE EXISTING CONFIGURATION

There are a number of methods for accessing the current configuration:

1. Using the config editor endpoint, specifying the username and password for the config editor:

enterprise.apps.docs.quayteam.org
 currentVersion: 3.6.0
 lastUpdated: 2021-09-21 11:18:13.285192787 +0000 UTC
 registryEndpoint: https://example-registry-quay-quay-enterprise.apps.docs.quayteam.org
 unhealthyComponents: {}

$ oc get secret -n quay-enterprise example-registry-quay-config-editor-credentials-
kk55dc7299 -o yaml

apiVersion: v1
data:
 password: SkZwQkVKTUN0a1BUZmp4dA==
 username: cXVheWNvbmZpZw==
kind: Secret

$ curl -k -u quayconfig:JFpBEJMCtkPTfjxt https://example-registry-quay-config-editor-quay-
enterprise.apps.docs.quayteam.org/api/v1/config

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

38

2. Using the config bundle secret

a. Get the secret data:

b. Decode the data:

{
 "config.yaml": {
 "ALLOW_PULLS_WITHOUT_STRICT_LOGGING": false,
 "AUTHENTICATION_TYPE": "Database",
 ...
 "USER_RECOVERY_TOKEN_LIFETIME": "30m"
 },
 "certs": {
 "extra_ca_certs/service-ca.crt":
"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURVVENDQWptZ0F3SUJBZ0lJRE9k
WFhuUXFjMUF3RFFZSktvWklodmNOQVFFTEJRQXdOakUwTURJR0ExVUUKQXd3cmIzQ
mxibk5vYVdaMExYTmxjblpwWTJVdGMyVnlkbWx1WnkxemFXZHVaWEpBTVRZek1UYzNPRE
V3TXpBZQpGdzB5TVRBNU1UWXdOelF4TkRKYUZ..."
 }
}

$ oc get secret -n quay-enterprise example-registry-quay-config-bundle-jkfhs -o
jsonpath='{.data}'

{
 "config.yaml":
"QUxMT1dfUFVMTFNfV0lUSE9VVF9TVFJJQ1RfTE9HR0lORzogZmFsc2UKQVVUSEVO
VElDQVRJT05fVFlQRTogRGF0YWJhc2UKQVZBVEFSX0tJTkQ6IGxvY2FsCkRBVEFCQ
VNFX1NFQ1JFVF9LRVk6IHhlOEc1VDBNbkllaGxNQzNkTjd3MWR5WWxwVmo0a0R2enl
xZ3l6Ulp5ZjFpODBmWWU3VDUxU1FPZ3hXelpocFlqYlVxNzRKaDllVVVEVWpyCkRFR
...
OgotIDJ3ClRFQU1fUkVTWU5DX1NUQUxFX1RJTUU6IDYwbQpURVNUSU5HOiBmYWx
zZQpVU0VSX1JFQ09WRVJZX1RPS0VOX0xJRkVUSU1FOiAzMG0K",
 "extra_ca_cert_service-ca.crt":
"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURVVENDQWptZ0F3SUJBZ0lJR
E9kWFhuUXFjMUF3RFFZSktvWklodmNOQVFFTEJRQXdOakUwTURJR0ExVUUKQXd3
cmIzQmxibk5vYVdaMExYTmxjblpwWTJVdGMyVnlkbWx1WnkxemFXZHVaWEpBTVRZek1
UYzNPREV3TXpBZQpGdzB5TVRBNU1UWXdOelF4TkRKYUZ3MHl
...
XSW1jaApkQXZTWGpFUnZOZEZzN3pHK1VzTmZwN0ZIQkJVWkY4L2RZNWJCR2Mw
WTVaY0J6bFNjQT09Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0K"
}

$ echo 'QUxMT1dfUFVMTFN...U1FOiAzMG0K' | base64 --decode

ALLOW_PULLS_WITHOUT_STRICT_LOGGING: false
AUTHENTICATION_TYPE: Database
...
TAG_EXPIRATION_OPTIONS:
- 2w
TEAM_RESYNC_STALE_TIME: 60m
TESTING: false
USER_RECOVERY_TOKEN_LIFETIME: 30m

CHAPTER 5. CONFIGURING QUAY ON OPENSHIFT USING THE COMMAND LINE AND API

39

5.3. USING THE CONFIG BUNDLE TO CONFIGURE CUSTOM SSL
CERTS

You can configure custom SSL certs either before initial deployment or after Red Hat Quay is deployed
on OpenShift, by creating a new config bundle secret. If you are adding the cert(s) to an existing
deployment, you must include the complete existing config.yaml in the new config bundle secret, even
if you are not making any configuration changes.

1. Create the secret using embedded data or using files:

a. Embed the configuration details directly in the Secret resource YAML file, for example:

custom-ssl-config-bundle.yaml

Next, create the secret from the YAML file:

$ oc create -f custom-ssl-config-bundle.yaml

b. Alternatively, you can create files containing the desired information, and then create the
secret from those files:

$ oc create secret generic custom-ssl-config-bundle-secret \
 --from-file=config.yaml \
 --from-file=extra_ca_cert_my-custom-ssl.crt=my-custom-ssl.crt

2. Create or update the QuayRegistry YAML file quayregistry.yaml, referencing the created
Secret, for example:

quayregistry.yaml

apiVersion: v1
kind: Secret
metadata:
 name: custom-ssl-config-bundle-secret
 namespace: quay-enterprise
data:
 config.yaml: |
 ALLOW_PULLS_WITHOUT_STRICT_LOGGING: false
 AUTHENTICATION_TYPE: Database
 ...
 extra_ca_cert_my-custom-ssl.crt: |
 -----BEGIN CERTIFICATE-----
 MIIDsDCCApigAwIBAgIUCqlzkHjF5i5TXLFy+sepFrZr/UswDQYJKoZIhvcNAQEL

BQAwbzELMAkGA1UEBhMCSUUxDzANBgNVBAgMBkdBTFdBWTEPMA0GA1UEBwwG
R0FM

 -----END CERTIFICATE-----

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: example-registry

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

40

3. Deploy or update the registry using the YAML file:

oc apply -f quayregistry.yaml

5.4. VOLUME SIZE OVERRIDES

As of Red Hat Quay v3.6.2, you can specify the desired size of storage resources provisioned for
managed components. The default size for Clair and Quay PostgreSQL databases is 50Gi. You can now
choose a large enough capacity upfront, either for performance reasons or in the case where your
storage backend does not have resize capability.

In the following example, the volume size for the Clair and the Quay PostgreSQL databases has been
set to 70Gi:

 namespace: quay-enterprise
spec:
 configBundleSecret: custom-ssl-config-bundle-secret

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 name: quay-example
 namespace: quay-enterprise
spec:
 configBundleSecret: config-bundle-secret
 components:
 - kind: objectstorage
 managed: false
 - kind: route
 managed: true
 - kind: tls
 managed: false
 - kind: clair
 managed: true
 overrides:
 volumeSize: 70Gi
 - kind: postgres
 managed: true
 overrides:
 volumeSize: 70Gi

CHAPTER 5. CONFIGURING QUAY ON OPENSHIFT USING THE COMMAND LINE AND API

41

CHAPTER 6. USING THE CONFIG TOOL TO RECONFIGURE
QUAY ON OPENSHIFT

6.1. ACCESSING THE CONFIG EDITOR

In the Details section of the QuayRegistry screen, the endpoint for the config editor is available, along
with a link to the secret containing the credentials for logging into the config editor:

6.1.1. Retrieving the config editor credentials

1. Click on the link for the config editor secret:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

42

2. In the Data section of the Secret details screen, click Reveal values to see the credentials for
logging in to the config editor:

6.1.2. Logging in to the config editor

Browse to the config editor endpoint and then enter the username, typically quayconfig, and the
corresponding password to access the config tool:

CHAPTER 6. USING THE CONFIG TOOL TO RECONFIGURE QUAY ON OPENSHIFT

43

6.1.3. Changing configuration

In this example of updating the configuration, a superuser is added via the config editor tool:

1. Add an expiration period, for example 4w, for the time machine functionality:

2. Select Validate Configuration Changes to ensure that the changes are valid

3. Apply the changes by pressing the Reconfigure Quay button:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

44

4. The config tool notifies you that the change has been submitted to Quay:

NOTE

Reconfiguring Red Hat Quay using the config tool UI can lead to the registry being
unavailable for a short time, while the updated configuration is applied.

6.2. MONITORING RECONFIGURATION IN THE UI

6.2.1. QuayRegistry resource

After reconfiguring the Operator, you can track the progress of the redeployment in the YAML tab for
the specific instance of QuayRegistry, in this case, example-registry:

CHAPTER 6. USING THE CONFIG TOOL TO RECONFIGURE QUAY ON OPENSHIFT

45

Each time the status changes, you will be prompted to reload the data to see the updated version.
Eventually, the Operator will reconcile the changes, and there will be no unhealthy components
reported.

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

46

6.2.2. Events

The Events tab for the QuayRegistry shows some events related to the redeployment:

CHAPTER 6. USING THE CONFIG TOOL TO RECONFIGURE QUAY ON OPENSHIFT

47

Streaming events, for all resources in the namespace that are affected by the reconfiguration, are
available in the OpenShift console under Home → Events:

6.3. ACCESSING UPDATED INFORMATION AFTER
RECONFIGURATION

6.3.1. Accessing the updated config tool credentials in the UI

Since a new pod has been created for the config tool, a new secret will have been created, and you will
need to use the updated password when you next attempt to login:

6.3.2. Accessing the updated config.yaml in the UI

Use the config bundle to access the updated config.yaml file.

1. On the QuayRegistry details screen, click on the Config Bundle Secret

2. In the Data section of the Secret details screen, click Reveal values to see the config.yaml file

3. Check that the change has been applied. In this case, 4w should be in the list of
TAG_EXPIRATION_OPTIONS:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

48

6.4. CUSTOM SSL CERTIFICATES UI

The config tool can be used to load custom certificates to facilitate access to resources such as external
databases. Select the custom certs to be uploaded, ensuring that they are in PEM format, with an
extension .crt.

The config tool also displays a list of any uploaded certificates. Once you upload your custom SSL cert,
it will appear in the list:

6.5. EXTERNAL ACCESS TO THE REGISTRY

When running on OpenShift, the Routes API is available and will automatically be used as a managed
component. After creating the QuayRegistry, the external access point can be found in the status block
of the QuayRegistry:

...
SERVER_HOSTNAME: example-quay-openshift-operators.apps.docs.quayteam.org
SETUP_COMPLETE: true
SUPER_USERS:
- quayadmin
TAG_EXPIRATION_OPTIONS:
- 2w
- 4w
...

status:
 registryEndpoint: some-quay.my-namespace.apps.mycluster.com

CHAPTER 6. USING THE CONFIG TOOL TO RECONFIGURE QUAY ON OPENSHIFT

49

CHAPTER 7. QUAY OPERATOR FEATURES

7.1. CONSOLE MONITORING AND ALERTING

Red Hat Quay 3.6 provides support for monitoring Quay instances that were deployed using the
Operator, from inside the OpenShift console. The new monitoring features include a Grafana
dashboard, access to individual metrics, and alerting to notify for frequently restarting Quay pods.

NOTE

To enable the monitoring features, the Operator must be installed in "all namespaces"
mode.

7.1.1. Dashboard

In the OpenShift console, navigate to Monitoring → Dashboards and search for the dashboard of your
desired Quay registry instance:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

50

The dashboard shows various statistics including:

The number of Organizations, Repositories, Users and Robot accounts

CPU Usage and Max Memory Usage

Rates of Image Pulls and Pushes, and Authentication requests

API request rate

Latencies

7.1.2. Metrics

You can see the underlying metrics behind the Quay dashboard, by accessing Monitoring → Metrics in
the UI. In the Expression field, enter the text quay_ to see the list of metrics available:

CHAPTER 7. QUAY OPERATOR FEATURES

51

Select a sample metric, for example, quay_org_rows:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

52

This metric shows the number of organizations in the registry, and it is directly surfaced in the dashboard
as well.

7.1.3. Alerting

An alert is raised if the Quay pods restart too often. The alert can be configured by accessing the
Alerting rules tab from Monitoring → Alerting in the consol UI and searching for the Quay-specific alert:

Select the QuayPodFrequentlyRestarting rule detail to configure the alert:

7.2. MANUALLY UPDATING THE VULNERABILITY DATABASES FOR
CLAIR IN AN AIR-GAPPED OPENSHIFT CLUSTER

Clair utilizes packages called updaters that encapsulate the logic of fetching and parsing different
vulnerability databases. Clair supports running updaters in a different environment and importing the
results. This is aimed at supporting installations that disallow the Clair cluster from talking to the
Internet directly.

To manually update the vulnerability databases for Clair in an air-gapped OpenShift cluster, use the

CHAPTER 7. QUAY OPERATOR FEATURES

53

To manually update the vulnerability databases for Clair in an air-gapped OpenShift cluster, use the
following steps:

Obtain the clairctl program

Retrieve the Clair config

Use clairctl to export the updaters bundle from a Clair instance that has access to the internet

Update the Clair config in the air-gapped OpenShift cluster to allow access to the Clair
database

Transfer the updaters bundle from the system with internet access, to make it available inside
the air-gapped environment

Use clairctl to import the updaters bundle into the Clair instance for the air-gapped OpenShift
cluster

7.2.1. Obtaining clairctl

To obtain the clairctl program from a Clair deployment in an OpenShift cluster, use the oc cp
command, for example:

$ oc -n quay-enterprise cp example-registry-clair-app-64dd48f866-6ptgw:/usr/bin/clairctl ./clairctl
$ chmod u+x ./clairctl

For a standalone Clair deployment, use the podman cp command, for example:

$ sudo podman cp clairv4:/usr/bin/clairctl ./clairctl
$ chmod u+x ./clairctl

7.2.2. Retrieving the Clair config

7.2.2.1. Clair on OpenShift config

To retrieve the configuration file for a Clair instance deployed using the OpenShift Operator, retrieve
and decode the config secret using the appropriate namespace, and save it to file, for example:

$ kubectl get secret -n quay-enterprise example-registry-clair-config-secret -o "jsonpath=
{$.data['config\.yaml']}" | base64 -d > clair-config.yaml

An excerpt from a Clair configuration file is shown below:

clair-config.yaml

http_listen_addr: :8080
introspection_addr: ""
log_level: info
indexer:
 connstring: host=example-registry-clair-postgres port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable
 scanlock_retry: 10
 layer_scan_concurrency: 5
 migrations: true

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

54

7.2.2.2. Standalone Clair config

For standalone Clair deployments, the config file is the one specified in CLAIR_CONF environment
variable in the podman run command, for example:

sudo podman run -d --rm --name clairv4 \
 -p 8081:8081 -p 8089:8089 \
 -e CLAIR_CONF=/clair/config.yaml -e CLAIR_MODE=combo \
 -v /etc/clairv4/config:/clair:Z \
 registry.redhat.io/quay/clair-rhel8:v3.6.8

7.2.3. Exporting the updaters bundle

From a Clair instance that has access to the internet, use clairctl with the appropriate configuration file
to export the updaters bundle:

$./clairctl --config ./config.yaml export-updaters updates.gz

7.2.4. Configuring access to the Clair database in the air-gapped OpenShift cluster

Use kubectl to determine the Clair database service:

$ kubectl get svc -n quay-enterprise

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
example-registry-clair-app ClusterIP 172.30.224.93 <none>
80/TCP,8089/TCP 4d21h

 scanner:
 package: {}
 dist: {}
 repo: {}
 airgap: false
matcher:
 connstring: host=example-registry-clair-postgres port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable
 max_conn_pool: 100
 indexer_addr: ""
 migrations: true
 period: null
 disable_updaters: false
notifier:
 connstring: host=example-registry-clair-postgres port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable
 migrations: true
 indexer_addr: ""
 matcher_addr: ""
 poll_interval: 5m
 delivery_interval: 1m
 ...

CHAPTER 7. QUAY OPERATOR FEATURES

55

example-registry-clair-postgres ClusterIP 172.30.246.88 <none> 5432/TCP
4d21h
...

Forward the Clair database port so that it is accessible from the local machine, for example:

$ kubectl port-forward -n quay-enterprise service/example-registry-clair-postgres 5432:5432

Update the Clair configuration file, replacing the value of the host in the multiple connstring
fields with localhost, for example:

clair-config.yaml

NOTE

As an alternative to using kubectl port-forward, you can use kubefwd instead. With this
method, there is no need to modify the connstring field in the Clair configuration file to
use localhost.

7.2.5. Importing the updaters bundle into the air-gapped environment

After transferring the updaters bundle to the air-gapped environment, use clairctl to import the bundle
into the Clair database deployed by the OpenShift Operator:

$./clairctl --config ./clair-config.yaml import-updaters updates.gz

7.3. FIPS READINESS AND COMPLIANCE

FIPS (the Federal Information Processing Standard developed by the National Institute of Standards
and Technology, NIST) is regarded as the gold standard for securing and encrypting sensitive data,
particularly in heavily regulated areas such as banking, healthcare and the public sector. Red Hat
Enterprise Linux and Red Hat OpenShift Container Platform support this standard by providing a FIPS
mode in which the system would only allow usage of certain, FIPS-validated cryptographic modules, like
openssl. This ensures FIPS compliance.

Red Hat Quay supports running on RHEL and OCP in FIPS mode in production since version 3.5.
Furthermore, Red Hat Quay itself also commits to exclusively using cryptography libraries that are
validated or are in the process of being validated by NIST. Red Hat Quay 3.5 has pending FIPS 140-2
validation based on the RHEL 8.3 cryptography libraries. As soon as that validation is finalized, Red Hat
Quay will be officially FIPS compliant.

 ...
 connstring: host=localhost port=5432 dbname=postgres user=postgres
password=postgres sslmode=disable
 ...

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

56

CHAPTER 8. ADVANCED CONCEPTS

8.1. DEPLOYING QUAY ON INFRASTRUCTURE NODES

By default, Quay-related pods are placed on arbitrary worker nodes when using the Operator to deploy
the registry. The OpenShift Container Platform documentation shows how to use machine sets to
configure nodes to only host infrastructure components (see https://docs.openshift.com/container-
platform/4.7/machine_management/creating-infrastructure-machinesets.html).

If you are not using OCP MachineSet resources to deploy infra nodes, this section shows you how to
manually label and taint nodes for infrastructure purposes.

Once you have configured your infrastructure nodes, either manually or using machine sets, you can
then control the placement of Quay pods on these nodes using node selectors and tolerations.

8.1.1. Label and taint nodes for infrastructure use

In the cluster used in this example, there are three master nodes and six worker nodes:

$ oc get nodes
NAME STATUS ROLES AGE VERSION
user1-jcnp6-master-0.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-master-1.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-master-2.c.quay-devel.internal Ready master 3h30m v1.20.0+ba45583
user1-jcnp6-worker-b-65plj.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583
user1-jcnp6-worker-b-jr7hc.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583
user1-jcnp6-worker-c-jrq4v.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal Ready worker 3h22m v1.20.0+ba45583
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal Ready worker 3h21m v1.20.0+ba45583

Label the final three worker nodes for infrastructure use:

$ oc label node --overwrite user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal node-
role.kubernetes.io/infra=
$ oc label node --overwrite user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal node-
role.kubernetes.io/infra=
$ oc label node --overwrite user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal node-
role.kubernetes.io/infra=

Now, when you list the nodes in the cluster, the last 3 worker nodes will have an added role of infra:

$ oc get nodes
NAME STATUS ROLES AGE VERSION
user1-jcnp6-master-0.c.quay-devel.internal Ready master 4h14m v1.20.0+ba45583
user1-jcnp6-master-1.c.quay-devel.internal Ready master 4h15m v1.20.0+ba45583
user1-jcnp6-master-2.c.quay-devel.internal Ready master 4h14m v1.20.0+ba45583
user1-jcnp6-worker-b-65plj.c.quay-devel.internal Ready worker 4h6m v1.20.0+ba45583
user1-jcnp6-worker-b-jr7hc.c.quay-devel.internal Ready worker 4h5m v1.20.0+ba45583
user1-jcnp6-worker-c-jrq4v.c.quay-devel.internal Ready worker 4h5m v1.20.0+ba45583
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal Ready infra,worker 4h6m v1.20.0+ba45583
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal Ready infra,worker 4h6m v1.20.0+ba45583
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal Ready infra,worker 4h6m v1.20.0+ba45583

With an infra node being assigned as a worker, there is a chance that user workloads could get

CHAPTER 8. ADVANCED CONCEPTS

57

https://docs.openshift.com/container-platform/4.7/machine_management/creating-infrastructure-machinesets.html

With an infra node being assigned as a worker, there is a chance that user workloads could get
inadvertently assigned to an infra node. To avoid this, you can apply a taint to the infra node and then
add tolerations for the pods you want to control.

$ oc adm taint nodes user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule
$ oc adm taint nodes user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule
$ oc adm taint nodes user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal node-
role.kubernetes.io/infra:NoSchedule

8.1.2. Create a Project with node selector and toleration

If you have already deployed Quay using the Quay Operator, remove the installed operator and any
specific namespace(s) you created for the deployment.

Create a Project resource, specifying a node selector and toleration as shown in the following example:

quay-registry.yaml

kind: Project
apiVersion: project.openshift.io/v1
metadata:
 name: quay-registry
 annotations:
 openshift.io/node-selector: 'node-role.kubernetes.io/infra='
 scheduler.alpha.kubernetes.io/defaultTolerations: >-
 [{"operator": "Exists", "effect": "NoSchedule", "key":
 "node-role.kubernetes.io/infra"}
]

Use the oc apply command to create the project:

$ oc apply -f quay-registry.yaml
project.project.openshift.io/quay-registry created

Any subsequent resources created in the quay-registry namespace should now be scheduled on the
dedicated infrastructure nodes.

8.1.3. Install the Quay Operator in the namespace

When installing the Quay Operator, specify the appropriate project namespace explicitly, in this case
quay-registry. This will result in the operator pod itself landing on one of the three infrastructure nodes:

$ oc get pods -n quay-registry -o wide
NAME READY STATUS RESTARTS AGE IP NODE

quay-operator.v3.4.1-6f6597d8d8-bd4dp 1/1 Running 0 30s 10.131.0.16 user1-jcnp6-
worker-d-h5tv2.c.quay-devel.internal

8.1.4. Create the registry

Create the registry as explained earlier, and then wait for the deployment to be ready. When you list the

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

58

Create the registry as explained earlier, and then wait for the deployment to be ready. When you list the
Quay pods, you should now see that they have only been scheduled on the three nodes that you have
labelled for infrastructure purposes:

$ oc get pods -n quay-registry -o wide
NAME READY STATUS RESTARTS AGE IP NODE

example-registry-clair-app-789d6d984d-gpbwd 1/1 Running 1 5m57s 10.130.2.80
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal
example-registry-clair-postgres-7c8697f5-zkzht 1/1 Running 0 4m53s 10.129.2.19
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-app-56dd755b6d-glbf7 1/1 Running 1 5m57s 10.129.2.17
user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-config-editor-7bf9bccc7b-dpc6d 1/1 Running 0 5m57s
10.131.0.23 user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal
example-registry-quay-database-8dc7cfd69-dr2cc 1/1 Running 0 5m43s 10.129.2.18
 user1-jcnp6-worker-c-pwxfp.c.quay-devel.internal
example-registry-quay-mirror-78df886bcc-v75p9 1/1 Running 0 5m16s 10.131.0.24
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal
example-registry-quay-postgres-init-8s8g9 0/1 Completed 0 5m54s 10.130.2.79
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal
example-registry-quay-redis-5688ddcdb6-ndp4t 1/1 Running 0 5m56s 10.130.2.78
user1-jcnp6-worker-d-m9gg4.c.quay-devel.internal
quay-operator.v3.4.1-6f6597d8d8-bd4dp 1/1 Running 0 22m 10.131.0.16
user1-jcnp6-worker-d-h5tv2.c.quay-devel.internal

8.2. ENABLING MONITORING WHEN OPERATOR IS INSTALLED IN A
SINGLE NAMESPACE

When Red Hat Quay Operator is installed in a single namespace, the monitoring component is
unmanaged. To configure monitoring, you need to enable it for user-defined namespaces in OpenShift
Container Platform. For more information, see the OCP documentation for Configuring the monitoring
stack and Enabling monitoring for user-defined projects.

The following steps show you how to configure monitoring for Quay, based on the OCP documentation.

8.2.1. Creating a cluster monitoring config map

1. Check whether the cluster-monitoring-config ConfigMap object exists:

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

Error from server (NotFound): configmaps "cluster-monitoring-config" not found

2. If the ConfigMap object does not exist:

a. Create the following YAML manifest. In this example, the file is called cluster-monitoring-
config.yaml:

$ cat cluster-monitoring-config.yaml

apiVersion: v1
kind: ConfigMap
metadata:

CHAPTER 8. ADVANCED CONCEPTS

59

https://docs.openshift.com/container-platform/4.7/monitoring/configuring-the-monitoring-stack.html
https://docs.openshift.com/container-platform/4.7/monitoring/enabling-monitoring-for-user-defined-projects.html

 name: cluster-monitoring-config
 namespace: openshift-monitoring
data:
 config.yaml: |

b. Create the ConfigMap object:

$ oc apply -f cluster-monitoring-config.yaml configmap/cluster-monitoring-config created

$ oc -n openshift-monitoring get configmap cluster-monitoring-config

NAME DATA AGE
cluster-monitoring-config 1 12s

8.2.2. Creating a user-defined workload monitoring config map

1. Check whether the user-workload-monitoring-config ConfigMap object exists:

$ oc -n openshift-user-workload-monitoring get configmap user-workload-monitoring-config

Error from server (NotFound): configmaps "user-workload-monitoring-config" not found

2. If the ConfigMap object does not exist:

a. Create the following YAML manifest. In this example, the file is called user-workload-
monitoring-config.yaml:

$ cat user-workload-monitoring-config.yaml

apiVersion: v1
kind: ConfigMap
metadata:
 name: user-workload-monitoring-config
 namespace: openshift-user-workload-monitoring
data:
 config.yaml: |

b. Create the ConfigMap object:

$ oc apply -f user-workload-monitoring-config.yaml

configmap/user-workload-monitoring-config created

8.2.3. Enable monitoring for user-defined projects

1. Check whether monitoring for user-defined projects is running:

$ oc get pods -n openshift-user-workload-monitoring

No resources found in openshift-user-workload-monitoring namespace.

2. Edit the cluster-monitoring-config ConfigMap:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

60

$ oc -n openshift-monitoring edit configmap cluster-monitoring-config

3. Set enableUserWorkload: true to enable monitoring for user-defined projects on the cluster:

4. Save the file to apply the changes and then check that the appropriate pods are running:

$ oc get pods -n openshift-user-workload-monitoring

NAME READY STATUS RESTARTS AGE
prometheus-operator-6f96b4b8f8-gq6rl 2/2 Running 0 15s
prometheus-user-workload-0 5/5 Running 1 12s
prometheus-user-workload-1 5/5 Running 1 12s
thanos-ruler-user-workload-0 3/3 Running 0 8s
thanos-ruler-user-workload-1 3/3 Running 0 8s

8.2.4. Create a Service object to expose Quay metrics

1. Create a YAML file for the Service object:

$ cat quay-service.yaml

apiVersion: v1
kind: Service
metadata:
 annotations:
 labels:
 quay-component: monitoring
 quay-operator/quayregistry: example-registry
 name: example-registry-quay-metrics
 namespace: quay-enterprise
spec:
 ports:
 - name: quay-metrics
 port: 9091
 protocol: TCP
 targetPort: 9091
 selector:
 quay-component: quay-app
 quay-operator/quayregistry: example-registry
 type: ClusterIP

apiVersion: v1
data:
 config.yaml: |
 enableUserWorkload: true
kind: ConfigMap
metadata:
 annotations:

CHAPTER 8. ADVANCED CONCEPTS

61

2. Create the Service object:

$ oc apply -f quay-service.yaml

service/example-registry-quay-metrics created

8.2.5. Create a ServiceMonitor object

Configure OpenShift Monitoring to scrape the metrics by creating a ServiceMonitor resource.

1. Create a YAML file for the ServiceMonitor resource:

$ cat quay-service-monitor.yaml

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
 labels:
 quay-operator/quayregistry: example-registry
 name: example-registry-quay-metrics-monitor
 namespace: quay-enterprise
spec:
 endpoints:
 - port: quay-metrics
 namespaceSelector:
 any: true
 selector:
 matchLabels:
 quay-component: monitoring

2. Create the ServiceMonitor:

$ oc apply -f quay-service-monitor.yaml

servicemonitor.monitoring.coreos.com/example-registry-quay-metrics-monitor created

8.2.6. View the metrics in OpenShift

You can access the metrics in the OpenShift console under Monitoring → Metrics. In the Expression
field, enter the text quay_ to see the list of metrics available:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

62

For example, if you have added users to your registry, select the quay-users_rows metric:

8.3. RESIZING MANAGED STORAGE

The Quay Operator creates default object storage using the defaults provided by RHOCS when creating
a NooBaa object (50 Gib). There are two ways to extend this storage; you can resize an existing PVC or
add more PVCs to a new storage pool.

8.3.1. Resize Noobaa PVC

1. Log into the OpenShift console and select Storage → Persistent Volume Claims.

2. Select the PersistentVolumeClaim named like noobaa-default-backing-store-noobaa-pvc-*.

3. From the Action menu, select Expand PVC.

4. Enter the new size of the Persistent Volume Claim and select Expand.

After a few minutes (depending on the size of the PVC), the expanded size should reflect in the PVC’s

CHAPTER 8. ADVANCED CONCEPTS

63

After a few minutes (depending on the size of the PVC), the expanded size should reflect in the PVC’s
Capacity field.

NOTE

Expanding CSI volumes is a Technology Preview feature only. For more information, see
https://access.redhat.com/documentation/en-
us/openshift_container_platform/4.6/html/storage/expanding-persistent-volumes.

8.3.2. Add Another Storage Pool

1. Log into the OpenShift console and select Networking → Routes. Make sure the openshift-
storage project is selected.

2. Click on the Location field for the noobaa-mgmt Route.

3. Log into the Noobaa Management Console.

4. On the main dashboard, under Storage Resources, select Add Storage Resources.

5. Select Deploy Kubernetes Pool

6. Enter a new pool name. Click Next.

7. Choose the number of Pods to manage the pool and set the size per node. Click Next.

8. Click Deploy.

After a few minutes, the additional storage pool will be added to the Noobaa resources and available for
use by Red Hat Quay.

8.4. CUSTOMIZING DEFAULT OPERATOR IMAGES

NOTE

Using this mechanism is not supported for production Quay environments and is strongly
encouraged only for development/testing purposes. There is no guarantee your
deployment will work correctly when using non-default images with the Quay Operator.

In certain circumstances, it may be useful to override the default images used by the Operator. This can
be done by setting one or more environment variables in the Quay Operator ClusterServiceVersion.

8.4.1. Environment Variables

The following environment variables are used in the Operator to override component images:

Environment Variable Component

RELATED_IMAGE_COMPONENT_QUAY base

RELATED_IMAGE_COMPONENT_CLAIR clair

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

64

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.6/html/storage/expanding-persistent-volumes

RELATED_IMAGE_COMPONENT_POSTGRE
S

postgres and clair databases

RELATED_IMAGE_COMPONENT_REDIS redis

NOTE

Override images must be referenced by manifest (@sha256:), not by tag (:latest).

8.4.2. Applying Overrides to a Running Operator

When the Quay Operator is installed in a cluster via the Operator Lifecycle Manager (OLM), the
managed component container images can be easily overridden by modifying the
ClusterServiceVersion object, which is OLM’s representation of a running Operator in the cluster. Find
the Quay Operator’s ClusterServiceVersion either by using a Kubernetes UI or kubectl/oc:

$ oc get clusterserviceversions -n <your-namespace>

Using the UI, oc edit, or any other method, modify the Quay ClusterServiceVersion to include the
environment variables outlined above to point to the override images:

JSONPath: spec.install.spec.deployments[0].spec.template.spec.containers[0].env

Note that this is done at the Operator level, so every QuayRegistry will be deployed using these same
overrides.

8.5. AWS S3 CLOUDFRONT

If you use AWS S3 CloudFront for backend registry storage, specify the private key as shown in the
following example:

$ oc create secret generic --from-file config.yaml=./config_awss3cloudfront.yaml --from-file default-
cloudfront-signing-key.pem=./default-cloudfront-signing-key.pem test-config-bundle

- name: RELATED_IMAGE_COMPONENT_QUAY
 value:
quay.io/projectquay/quay@sha256:c35f5af964431673f4ff5c9e90bdf45f19e38b8742b5903d41c10cc7f63
39a6d
- name: RELATED_IMAGE_COMPONENT_CLAIR
 value:
quay.io/projectquay/clair@sha256:70c99feceb4c0973540d22e740659cd8d616775d3ad1c1698ddf71d
0221f3ce6
- name: RELATED_IMAGE_COMPONENT_POSTGRES
 value: centos/postgresql-10-
centos7@sha256:de1560cb35e5ec643e7b3a772ebaac8e3a7a2a8e8271d9e91ff023539b4dfb33
- name: RELATED_IMAGE_COMPONENT_REDIS
 value: centos/redis-32-
centos7@sha256:06dbb609484330ec6be6090109f1fa16e936afcf975d1cbc5fff3e6c7cae7542

CHAPTER 8. ADVANCED CONCEPTS

65

https://docs.openshift.com/container-platform/4.6/operators/understanding/olm/olm-understanding-olm.html

CHAPTER 9. BACKING UP AND RESTORING RED HAT QUAY
ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

Use the content within this section to back up and restore Red Hat Quay on an OpenShift Container
Platform deployment.

9.1. BACKING UP RED HAT QUAY

This procedure is exclusively for OpenShift Container Platform and NooBaa deployments.

Prerequisites

A Red Hat Quay deployment on OpenShift Container Platform.

Procedure

1. Backup the QuayRegistry custom resource by exporting it:

2. Edit the resulting quayregistry.yaml and remove the status section and the following metadata
fields:

3. Backup the managed keys secret:

NOTE

If you are running a version older than Red Hat Quay 3.7.0, this step can be
skipped. Some secrets are automatically generated while deploying Quay for the
first time. These are stored in a secret called <quay-registry-name>-quay-
registry-managed-secret-keys in the QuayRegistry namespace.

4. Edit the the resulting managed-secret-keys.yaml file and remove all owner references. Your
managed-secret-keys.yaml file should look similar to the following:

$ oc get quayregistry <quay-registry-name> -n <quay-namespace> -o yaml > quay-
registry.yaml

 metadata.creationTimestamp
 metadata.finalizers
 metadata.generation
 metadata.resourceVersion
 metadata.uid

$ oc get secret -n <quay-namespace> <quay-registry-name>-quay-registry-managed-secret-
keys -o yaml > managed-secret-keys.yaml

apiVersion: v1
kind: Secret
type: Opaque
metadata:
 name: <quayname>-quay-registry-managed-secret-keys
 namespace: <quay-namespace>
data:

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

66

All information under the data property should remain the same.

5. Backup the current Quay configuration:

6. Backup the /conf/stack/config.yaml file mounted inside of the Quay pods:

7. Scale down the Quay the Quay Operator:

8. Scale down the Quay namespace:

9. Wait for the registry-quay-app pods to disappear. You can check their status by running the
following command:

Example output:

10. Identify the Quay PostgreSQL pod name:

Exampe output:

quayregistry-quay-database-59f54bb7-58xs7

1. Obtain the Quay database name:

 CONFIG_EDITOR_PW: <redacted>
 DATABASE_SECRET_KEY: <redacted>
 DB_ROOT_PW: <redacted>
 DB_URI: <redacted>
 SECRET_KEY: <redacted>
 SECURITY_SCANNER_V4_PSK: <redacted>

$ oc get secret -n <quay-namespace> $(oc get quayregistry <quay-registry-name> -n
<quay-namespace> -o jsonpath='{.spec.configBundleSecret}') -o yaml > config-bundle.yaml

$ oc exec -it quay-pod-name -- cat /conf/stack/config.yaml > quay-config.yaml

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-operator-namespace>
|awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace> -l quay-
component=quay -o jsonpath='{.items[0].metadata.name}') -n <quay-namespace>

$ oc get pods -n <quay-namespace>

registry-quay-config-editor-77847fc4f5-nsbbv 1/1 Running 0 9m1s
registry-quay-database-66969cd859-n2ssm 1/1 Running 0 6d1h
registry-quay-mirror-758fc68ff7-5wxlp 1/1 Running 0 8m29s
registry-quay-mirror-758fc68ff7-lbl82 1/1 Running 0 8m29s
registry-quay-redis-7cc5f6c977-956g8 1/1 Running 0 5d21h

$ oc get pod -l quay-component=postgres -n <quay-namespace> -o
jsonpath='{.items[0].metadata.name}'

CHAPTER 9. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

67

2. Download a backup database:

3. Decode and export the AWS_ACCESS_KEY_ID:

4. Decode and export the AWS_SECRET_ACCESS_KEY_ID:

5. Create a new directory and copy all blobs to it:

NOTE

You can also use rclone or sc3md instead of the AWS command line utility.

1. Scale up the Quay the Quay Operator:

2. Scale up the Quay namespace:

3. Check the status of the Operator:

Example output:

$ oc -n <quay-namespace> rsh $(oc get pod -l app=quay -o NAME -n <quay-namespace>
|head -n 1) cat /conf/stack/config.yaml|awk -F"/" '/^DB_URI/ {print $4}'
quayregistry-quay-database

$ oc exec quayregistry-quay-database-59f54bb7-58xs7 -- /usr/bin/pg_dump -C quayregistry-
quay-database > backup.sql

$ export AWS_ACCESS_KEY_ID=$(oc get secret -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.AWS_ACCESS_KEY_ID}' |base64 -d)

$ export AWS_SECRET_ACCESS_KEY=$(oc get secret -l app=noobaa -n <quay-
namespace> -o jsonpath='{.items[0].data.AWS_SECRET_ACCESS_KEY}' |base64 -d)

$ mkdir blobs

$ aws s3 sync --no-verify-ssl --endpoint https://$(oc get route s3 -n openshift-storage -o
jsonpath='{.spec.host}') s3://$(oc get cm -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.BUCKET_NAME}') ./blobs

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-operator-namespace>
|awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-namespace> -l quay-
component=quay -o jsonpath='{.items[0].metadata.name}') -n <quay-namespace>

$ oc get quayregistry <quay-registry-name> -n <quay-namespace> -o yaml

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 ...

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

68

https://rclone.org/
https://s3tools.org/s3cmd

9.2. RESTORING RED HAT QUAY

This procedure is used to restore Red Hat Quay when the Red Hat Quay Operator manages the
database. It should be performed after a backup of your Quay registry has been performed.

Prerequisites

Red Hat Quay is deployed on OpenShift Container Platform using the Quay Operator.

Your Red Hat Quay database has been backed up.

Procedure

1. Restore the backed up Quay configuration and the randomly generated keys:

NOTE

If you receive the error Error from server (AlreadyExists): error when creating
"./config-bundle.yaml": secrets "config-bundle-secret" already exists, you
must delete your exist resource with $ oc delete Secret config-bundle-secret -
n <quay-namespace> and recreate it with $ oc create -f ./config-bundle.yaml.

2. Restore the QuayRegistry custom resource:

3. Scale down the Quay the Quay Operator:

 name: example-registry
 namespace: <quay-namespace>
 ...
spec:
 components:
 - kind: quay
 managed: true
 ...
 - kind: clairpostgres
 managed: true
 configBundleSecret: init-config-bundle-secret
status:
 configEditorCredentialsSecret: example-registry-quay-config-editor-credentials-fg2gdgtm24
 configEditorEndpoint: https://example-registry-quay-config-editor-quay-
enterprise.apps.docs.gcp.quaydev.org
 currentVersion: 3.7.0
 lastUpdated: 2022-05-11 13:28:38.199476938 +0000 UTC
 registryEndpoint: https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org
 0 5d21h

$ oc create -f ./config-bundle.yaml

$ oc create -f ./managed-secret-keys.yaml

$ oc create -f ./quay-registry.yaml

CHAPTER 9. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

69

4. Scale down the Quay namespace:

5. Identify your Quay database pod:

Example output:

quayregistry-quay-database-59f54bb7-58xs7

6. Upload the backup by copying it from the local environment and into the pod:

$ oc cp ./backup.sql -n <quay-namespace> registry-quay-database-66969cd859-
n2ssm:/tmp/backup.sql

7. Open a remote terminal to the database:

8. Enter psql:

9. You can list the database by running the following command:

postgres=# \l

Example output:

10. Drop the database:

postgres=# DROP DATABASE "quayregistry-quay-database";

Example output:

DROP DATABASE

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-operator-namespace>
|awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc scale --replicas=0 deployment $(oc get deployment -n <quay-namespace> -l quay-
component=quay -o jsonpath='{.items[0].metadata.name}') -n <quay-namespace>

$ oc get pod -l quay-component=postgres -n <quay-namespace> -o
jsonpath='{.items[0].metadata.name}'

$ oc rsh -n <quay-namespace> registry-quay-database-66969cd859-n2ssm

bash-4.4$ psql

 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access
privileges
----------------------------+----------------------------+----------+------------+------------+---------------

postgres | postgres | UTF8 | en_US.utf8 | en_US.utf8 |
quayregistry-quay-database | quayregistry-quay-database | UTF8 | en_US.utf8 |
en_US.utf8 |

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

70

11. Exit the postgres CLI to re-enter bash-4.4:

\q

12. Redirect your PostgreSQL database to your backup database:

13. Exit bash:

sh-4.4$ exit

14. Export the AWS_ACCESS_KEY_ID:

15. Export the AWS_SECRET_ACCESS_KEY:

16. Upload all blobs to the bucket by running the following command:

17. Scale up the Quay the Quay Operator:

18. Scale up the Quay namespace:

19. Check the status of the Operator and ensure it has come back online:

Example output:

sh-4.4$ psql < /tmp/backup.sql

$ export AWS_ACCESS_KEY_ID=$(oc get secret -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.AWS_ACCESS_KEY_ID}' |base64 -d)

$ export AWS_SECRET_ACCESS_KEY=$(oc get secret -l app=noobaa -n <quay-
namespace> -o jsonpath='{.items[0].data.AWS_SECRET_ACCESS_KEY}' |base64 -d)

$ aws s3 sync --no-verify-ssl --endpoint https://$(oc get route s3 -n openshift-storage -o
jsonpath='{.spec.host}') ./blobs s3://$(oc get cm -l app=noobaa -n <quay-namespace> -o
jsonpath='{.items[0].data.BUCKET_NAME}')

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-operator-namespace>
|awk '/^quay-operator/ {print $1}') -n <quay-operator-namespace>

$ oc scale --replicas=1 deployment $(oc get deployment -n <quay-namespace> -l quay-
component=quay -o jsonpath='{.items[0].metadata.name}') -n <quay-namespace>

$ oc get quayregistry -n <quay-namespace> <registry-name> -o yaml

apiVersion: quay.redhat.com/v1
kind: QuayRegistry
metadata:
 ...
 name: example-registry
 namespace: quay-enterprise
 ...

CHAPTER 9. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT

71

spec:
 components:
 - kind: quay
 managed: true
 ...
 - kind: clairpostgres
 managed: true
 configBundleSecret: init-config-bundle-secret
status:
 configEditorCredentialsSecret: example-registry-quay-config-editor-credentials-fg2gdgtm24
 configEditorEndpoint: https://example-registry-quay-config-editor-quay-
enterprise.apps.docs.gcp.quaydev.org
 currentVersion: 3.7.0
 lastUpdated: 2022-05-11 13:28:38.199476938 +0000 UTC
 registryEndpoint: https://example-registry-quay-quay-enterprise.apps.docs.gcp.quaydev.org
 0 5d21h

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

72

CHAPTER 10. UPGRADING THE QUAY OPERATOR OVERVIEW
The Quay Operator follows a synchronized versioning scheme, which means that each version of the
Operator is tied to the version of Quay and the components that it manages. There is no field on the
QuayRegistry custom resource which sets the version of Quay to deploy; the Operator only knows how
to deploy a single version of all components. This scheme was chosen to ensure that all components
work well together and to reduce the complexity of the Operator needing to know how to manage the
lifecycles of many different versions of Quay on Kubernetes.

10.1. OPERATOR LIFECYCLE MANAGER

The Quay Operator should be installed and upgraded using the Operator Lifecycle Manager (OLM).
When creating a Subscription with the default approvalStrategy: Automatic, OLM will automatically
upgrade the Quay Operator whenever a new version becomes available.

WARNING

When the Quay Operator is installed via Operator Lifecycle Manager, it may be
configured to support automatic or manual upgrades. This option is shown on the
Operator Hub page for the Quay Operator during installation. It can also be found
in the Quay Operator Subscription object via the approvalStrategy field.
Choosing Automatic means that your Quay Operator will automatically be
upgraded whenever a new Operator version is released. If this is not desirable, then
the Manual approval strategy should be selected.

10.2. UPGRADING THE QUAY OPERATOR

The standard approach for upgrading installed Operators on OpenShift is documented at Upgrading
installed Operators.

NOTE

In general, Red Hat Quay only supports upgrading from one minor version to the next, for
example, 3.4 → 3.5. However, for 3.6, multiple upgrade paths are supported:

3.3.z → 3.6

3.4.z → 3.6

3.5.z → 3.6

For users on standalone deployments of Quay wanting to upgrade to 3.6, see the Standalone upgrade
guide.

10.2.1. Upgrading Quay

To update Quay from one minor version to the next, for example, 3.4 → 3.5, you need to change the
update channel for the Quay Operator.

CHAPTER 10. UPGRADING THE QUAY OPERATOR OVERVIEW

73

https://docs.openshift.com/container-platform/3.6/operators/understanding/olm/olm-understanding-olm.html
https://docs.openshift.com/container-platform/4.7/operators/admin/olm-upgrading-operators.html
https://access.redhat.com/documentation/en-us/red_hat_quay/3.6/html-single/upgrade_red_hat_quay/index#standalone_upgrade

For z stream upgrades, for example, 3.4.2 → 3.4.3, updates are released in the major-minor channel that
the user initially selected during install. The procedure to perform a z stream upgrade depends on the
approvalStrategy as outlined above. If the approval strategy is set to Automatic, the Quay Operator
will upgrade automatically to the newest z stream. This results in automatic, rolling Quay updates to
newer z streams with little to no downtime. Otherwise, the update must be manually approved before
installation can begin.

10.2.2. Notes on upgrading directly from 3.3.z or 3.4.z to 3.6

10.2.2.1. Upgrading with edge routing enabled

Previously, when running a 3.3.z version of Red Hat Quay with edge routing enabled, users were
unable to upgrade to 3.4.z versions of Red Hat Quay. This has been resolved with the release of
Red Hat Quay 3.6.

When upgrading from 3.3.z to 3.6, if tls.termination is set to none in your Red Hat Quay 3.3.z
deployment, it will change to HTTPS with TLS edge termination and use the default cluster
wildcard certificate. For example:

10.2.2.2. Upgrading with custom TLS certificate/key pairs without Subject Alternative
Names

There is an issue for customers using their own TLS certificate/key pairs without Subject Alternative
Names (SANs) when upgrading from Red Hat Quay 3.3.4 to Red Hat Quay 3.6 directly. During the
upgrade to Red Hat Quay 3.6, the deployment is blocked, with the error message from the Quay
Operator pod logs indicating that the Quay TLS certificate must have SANs.

If possible, you should regenerate your TLS certificates with the correct hostname in the SANs. A
possible workaround involves defining an environment variable in the quay-app, quay-upgrade and
quay-config-editor pods after upgrade to enable CommonName matching:

 GODEBUG=x509ignoreCN=0

The GODEBUG=x509ignoreCN=0 flag enables the legacy behavior of treating the CommonName field
on X.509 certificates as a host name when no SANs are present. However, this workaround is not
recommended, as it will not persist across a redeployment.

10.2.2.3. Configuring Clair v4 when upgrading from 3.3.z or 3.4.z to 3.6 using the Quay

apiVersion: redhatcop.redhat.io/v1alpha1
kind: QuayEcosystem
metadata:
 name: quay33
spec:
 quay:
 imagePullSecretName: redhat-pull-secret
 enableRepoMirroring: true
 image: quay.io/quay/quay:v3.3.4-2
 ...
 externalAccess:
 hostname: quayv33.apps.devcluster.openshift.com
 tls:
 termination: none
 database:
...

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

74

10.2.2.3. Configuring Clair v4 when upgrading from 3.3.z or 3.4.z to 3.6 using the Quay
Operator

To set up Clair v4 on a new Red Hat Quay deployment on OpenShift, it is highly recommended to use
the Quay Operator. By default, the Quay Operator will install or upgrade a Clair deployment along with
your Red Hat Quay deployment and configure Clair security scanning automatically.

For instructions on setting up Clair v4 on OpenShift, see Setting Up Clair on a Red Hat Quay OpenShift
deployment.

10.2.3. Changing the update channel for an Operator

The subscription of an installed Operator specifies an update channel, which is used to track and receive
updates for the Operator. To upgrade the Quay Operator to start tracking and receiving updates from a
newer channel, change the update channel in the Subscription tab for the installed Quay Operator. For
subscriptions with an Automatic approval strategy, the upgrade begins automatically and can be
monitored on the page that lists the Installed Operators.

10.2.4. Manually approving a pending Operator upgrade

If an installed Operator has the approval strategy in its subscription set to Manual, when new updates are
released in its current update channel, the update must be manually approved before installation can
begin. If the Quay Operator has a pending upgrade, this status will be displayed in the list of Installed
Operators. In the Subscription tab for the Quay Operator, you can preview the install plan and review
the resources that are listed as available for upgrade. If satisfied, click Approve and return to the page
that lists Installed Operators to monitor the progress of the upgrade.

The following image shows the Subscription tab in the UI, including the update Channel, the Approval
strategy, the Upgrade status and the InstallPlan:

The list of Installed Operators provides a high-level summary of the current Quay installation:

CHAPTER 10. UPGRADING THE QUAY OPERATOR OVERVIEW

75

https://access.redhat.com/documentation/en-us/red_hat_quay/3.6/html-single/manage_red_hat_quay/index#clair-openshift

10.3. UPGRADING A QUAYREGISTRY

When the Quay Operator starts, it immediately looks for any QuayRegistries it can find in the
namespace(s) it is configured to watch. When it finds one, the following logic is used:

If status.currentVersion is unset, reconcile as normal.

If status.currentVersion equals the Operator version, reconcile as normal.

If status.currentVersion does not equal the Operator version, check if it can be upgraded. If it
can, perform upgrade tasks and set the status.currentVersion to the Operator’s version once
complete. If it cannot be upgraded, return an error and leave the QuayRegistry and its
deployed Kubernetes objects alone.

10.4. ENABLING FEATURES IN QUAY 3.6

10.4.1. Console monitoring and alerting

The support for monitoring Quay 3.6 in the OpenShift console requires that the Operator is installed in
all namespaces. If you previously installed the Operator in a specific namespace, delete the Operator
itself and reinstall it for all namespaces once the upgrade has taken place.

10.4.2. OCI and Helm support

Support for Helm and some OCI artifacts is now enabled by default in Red Hat Quay 3.6. If you want to
explicitly enable the feature, for example, if you are upgrading from a version where it is not enabled by
default, you need to reconfigure your Quay deployment to enable the use of OCI artifacts using the
following properties:

10.5. UPGRADING A QUAYECOSYSTEM

Upgrades are supported from previous versions of the Operator which used the QuayEcosystem API
for a limited set of configurations. To ensure that migrations do not happen unexpectedly, a special label
needs to be applied to the QuayEcosystem for it to be migrated. A new QuayRegistry will be created
for the Operator to manage, but the old QuayEcosystem will remain until manually deleted to ensure
that you can roll back and still access Quay in case anything goes wrong. To migrate an existing
QuayEcosystem to a new QuayRegistry, follow these steps:

1. Add "quay-operator/migrate": "true" to the metadata.labels of the QuayEcosystem.

$ oc edit quayecosystem <quayecosystemname>

FEATURE_GENERAL_OCI_SUPPORT: true

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

76

2. Wait for a QuayRegistry to be created with the same metadata.name as your
QuayEcosystem. The QuayEcosystem will be marked with the label "quay-
operator/migration-complete": "true".

3. Once the status.registryEndpoint of the new QuayRegistry is set, access Quay and confirm all
data and settings were migrated successfully.

4. When you are confident everything worked correctly, you may delete the QuayEcosystem and
Kubernetes garbage collection will clean up all old resources.

10.5.1. Reverting QuayEcosystem Upgrade

If something goes wrong during the automatic upgrade from QuayEcosystem to QuayRegistry, follow
these steps to revert back to using the QuayEcosystem:

1. Delete the QuayRegistry using either the UI or kubectl:

2. If external access was provided using a Route, change the Route to point back to the original
Service using the UI or kubectl.

NOTE

If your QuayEcosystem was managing the Postgres database, the upgrade process will
migrate your data to a new Postgres database managed by the upgraded Operator. Your
old database will not be changed or removed but Quay will no longer use it once the
migration is complete. If there are issues during the data migration, the upgrade process
will exit and it is recommended that you continue with your database as an unmanaged
component.

10.5.2. Supported QuayEcosystem Configurations for Upgrades

The Quay Operator will report errors in its logs and in status.conditions if migrating a QuayEcosystem
component fails or is unsupported. All unmanaged components should migrate successfully because no
Kubernetes resources need to be adopted and all the necessary values are already provided in Quay’s
config.yaml.

Database

Ephemeral database not supported (volumeSize field must be set).

Redis

Nothing special needed.

External Access

Only passthrough Route access is supported for automatic migration. Manual migration required for
other methods.

metadata:
 labels:
 quay-operator/migrate: "true"

$ kubectl delete -n <namespace> quayregistry <quayecosystem-name>

CHAPTER 10. UPGRADING THE QUAY OPERATOR OVERVIEW

77

LoadBalancer without custom hostname: After the QuayEcosystem is marked with label
"quay-operator/migration-complete": "true", delete the metadata.ownerReferences field
from existing Service before deleting the QuayEcosystem to prevent Kubernetes from
garbage collecting the Service and removing the load balancer. A new Service will be created
with metadata.name format <QuayEcosystem-name>-quay-app. Edit the spec.selector of
the existing Service to match the spec.selector of the new Service so traffic to the old load
balancer endpoint will now be directed to the new pods. You are now responsible for the old
Service; the Quay Operator will not manage it.

LoadBalancer/NodePort/Ingress with custom hostname: A new Service of type
LoadBalancer will be created with metadata.name format <QuayEcosystem-name>-quay-
app. Change your DNS settings to point to the status.loadBalancer endpoint provided by the
new Service.

Clair

Nothing special needed.

Object Storage

QuayEcosystem did not have a managed object storage component, so object storage will always be
marked as unmanaged. Local storage is not supported.

Repository Mirroring

Nothing special needed.

ADDITIONAL RESOURCES

For more details on the Red Hat Quay Operator, see the upstream quay-operator project.

Red Hat Quay 3.6 Deploy Red Hat Quay on OpenShift with the Quay Operator

78

https://github.com/quay/quay-operator/

	Table of Contents
	PREFACE
	CHAPTER 1. INTRODUCTION TO THE RED HAT QUAY OPERATOR
	1.1. QUAYREGISTRY API
	1.2. QUAY OPERATOR COMPONENTS
	1.3. USING MANAGED COMPONENTS
	1.4. USING UNMANAGED COMPONENTS FOR DEPENDENCIES
	1.5. CONFIG BUNDLE SECRET
	1.6. PREREQUISITES FOR RED HAT QUAY ON OPENSHIFT
	1.6.1. OpenShift cluster
	1.6.2. Resource Requirements
	1.6.3. Object Storage

	CHAPTER 2. INSTALLING THE QUAY OPERATOR FROM OPERATORHUB
	CHAPTER 3. CONFIGURING QUAY BEFORE DEPLOYMENT
	3.1. PRE-CONFIGURING QUAY FOR AUTOMATION
	3.1.1. Allowing the API to create the first user
	3.1.2. Enabling general API access
	3.1.3. Adding a super user
	3.1.4. Restricting user creation
	3.1.5. Suggested configuration for automation
	3.1.6. Deploying the Operator using the initial configuration

	3.2. CONFIGURING OBJECT STORAGE
	3.2.1. Unmanaged storage
	3.2.1.1. AWS S3 storage
	3.2.1.2. Google cloud storage
	3.2.1.3. Azure storage
	3.2.1.4. NooBaa unmanaged storage

	3.2.2. Managed storage
	3.2.2.1. About The Standalone Object Gateway

	3.3. CONFIGURING THE DATABASE
	3.3.1. Using an existing Postgres database
	3.3.2. Database configuration
	3.3.2.1. Database URI
	3.3.2.2. Database connection arguments

	3.3.3. Using the managed PostgreSQL

	3.4. CONFIGURING TLS AND ROUTES
	3.4.1. Creating the config bundle secret with TLS cert, key pair:

	3.5. CONFIGURING OTHER COMPONENTS
	3.5.1. Using external Redis
	3.5.1.1. Redis configuration fields

	3.5.2. Disabling the Horizontal Pod Autoscaler
	3.5.3. Disabling Route Component
	3.5.4. Unmanaged monitoring
	3.5.5. Unmanaged mirroring

	CHAPTER 4. DEPLOYING QUAY USING THE QUAY OPERATOR
	4.1. DEPLOYING RED HAT QUAY FROM THE COMMAND LINE
	4.1.1. Viewing created components using the command line
	4.1.2. Horizontal Pod Autoscaling (HPA)
	4.1.3. Using the API to create the first user
	4.1.3.1. Invoking the API
	4.1.3.2. Using the OAuth token

	4.1.4. Monitoring and debugging the deployment process

	4.2. DEPLOYING RED HAT QUAY FROM THE OPENSHIFT CONSOLE
	4.2.1. Using the Quay UI to create the first user

	CHAPTER 5. CONFIGURING QUAY ON OPENSHIFT USING THE COMMAND LINE AND API
	5.1. DETERMINING QUAYREGISTRY ENDPOINTS AND SECRETS
	5.2. DOWNLOADING THE EXISTING CONFIGURATION
	5.3. USING THE CONFIG BUNDLE TO CONFIGURE CUSTOM SSL CERTS
	5.4. VOLUME SIZE OVERRIDES

	CHAPTER 6. USING THE CONFIG TOOL TO RECONFIGURE QUAY ON OPENSHIFT
	6.1. ACCESSING THE CONFIG EDITOR
	6.1.1. Retrieving the config editor credentials
	6.1.2. Logging in to the config editor
	6.1.3. Changing configuration

	6.2. MONITORING RECONFIGURATION IN THE UI
	6.2.1. QuayRegistry resource
	6.2.2. Events

	6.3. ACCESSING UPDATED INFORMATION AFTER RECONFIGURATION
	6.3.1. Accessing the updated config tool credentials in the UI
	6.3.2. Accessing the updated config.yaml in the UI

	6.4. CUSTOM SSL CERTIFICATES UI
	6.5. EXTERNAL ACCESS TO THE REGISTRY

	CHAPTER 7. QUAY OPERATOR FEATURES
	7.1. CONSOLE MONITORING AND ALERTING
	7.1.1. Dashboard
	7.1.2. Metrics
	7.1.3. Alerting

	7.2. MANUALLY UPDATING THE VULNERABILITY DATABASES FOR CLAIR IN AN AIR-GAPPED OPENSHIFT CLUSTER
	7.2.1. Obtaining clairctl
	7.2.2. Retrieving the Clair config
	7.2.2.1. Clair on OpenShift config
	7.2.2.2. Standalone Clair config

	7.2.3. Exporting the updaters bundle
	7.2.4. Configuring access to the Clair database in the air-gapped OpenShift cluster
	7.2.5. Importing the updaters bundle into the air-gapped environment

	7.3. FIPS READINESS AND COMPLIANCE

	CHAPTER 8. ADVANCED CONCEPTS
	8.1. DEPLOYING QUAY ON INFRASTRUCTURE NODES
	8.1.1. Label and taint nodes for infrastructure use
	8.1.2. Create a Project with node selector and toleration
	8.1.3. Install the Quay Operator in the namespace
	8.1.4. Create the registry

	8.2. ENABLING MONITORING WHEN OPERATOR IS INSTALLED IN A SINGLE NAMESPACE
	8.2.1. Creating a cluster monitoring config map
	8.2.2. Creating a user-defined workload monitoring config map
	8.2.3. Enable monitoring for user-defined projects
	8.2.4. Create a Service object to expose Quay metrics
	8.2.5. Create a ServiceMonitor object
	8.2.6. View the metrics in OpenShift

	8.3. RESIZING MANAGED STORAGE
	8.3.1. Resize Noobaa PVC
	8.3.2. Add Another Storage Pool

	8.4. CUSTOMIZING DEFAULT OPERATOR IMAGES
	8.4.1. Environment Variables
	8.4.2. Applying Overrides to a Running Operator

	8.5. AWS S3 CLOUDFRONT

	CHAPTER 9. BACKING UP AND RESTORING RED HAT QUAY ON AN OPENSHIFT CONTAINER PLATFORM DEPLOYMENT
	9.1. BACKING UP RED HAT QUAY
	9.2. RESTORING RED HAT QUAY

	CHAPTER 10. UPGRADING THE QUAY OPERATOR OVERVIEW
	10.1. OPERATOR LIFECYCLE MANAGER
	10.2. UPGRADING THE QUAY OPERATOR
	10.2.1. Upgrading Quay
	10.2.2. Notes on upgrading directly from 3.3.z or 3.4.z to 3.6
	10.2.2.1. Upgrading with edge routing enabled
	10.2.2.2. Upgrading with custom TLS certificate/key pairs without Subject Alternative Names
	10.2.2.3. Configuring Clair v4 when upgrading from 3.3.z or 3.4.z to 3.6 using the Quay Operator

	10.2.3. Changing the update channel for an Operator
	10.2.4. Manually approving a pending Operator upgrade

	10.3. UPGRADING A QUAYREGISTRY
	10.4. ENABLING FEATURES IN QUAY 3.6
	10.4.1. Console monitoring and alerting
	10.4.2. OCI and Helm support

	10.5. UPGRADING A QUAYECOSYSTEM
	10.5.1. Reverting QuayEcosystem Upgrade
	10.5.2. Supported QuayEcosystem Configurations for Upgrades

	ADDITIONAL RESOURCES

