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PREFACE
Red Hat Quay container image registries let you store container images in a central location. As a
regular user of a Red Hat Quay registry, you can create repositories to organize your images and
selectively add read (pull) and write (push) access to the repositories you control. A user with
administrative privileges can perform a broader set of tasks, such as the ability to add users and control
default settings.

This guide assumes you have a Red Hat Quay deployed and are ready to start setting it up and using it.
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CHAPTER 1. USERS AND ORGANIZATIONS IN RED HAT QUAY
Before you begin creating repositories to hold your container images in Red Hat Quay, you should
consider how you want to organize those repositories. Every repository in a Red Hat Quay instance must
be associated with either an Organization or a User.

1.1. RED HAT QUAY TENANCY MODEL

Organizations provide a way of sharing repositories under a common namespace that does not
belong to a single user, but rather to many users in a shared setting (such as a company).

Teams provide a way for an organization to delegate permissions (both global and on specific
repositories) to sets or groups of users

Users can log in to a registry through the Quay web UI or a client (such as podman login). Each
users automatically gets a user namespace, for example, quay-
server.example.com/user/<username>

Super users have enhanced access and privileges via the Super User Admin Panel in the user
interface and through Super User API calls that are not visible or accessible to normal users

Robot accounts provide automated access to repositories for non-human users such as
pipeline tools and are similar in nature to OpenShift service accounts. Permissions can be
granted to a robot account in a repository by adding that account like any other user or team.

1.2. CREATING USER ACCOUNTS

To create a new user for your Red Hat Quay instance:

1. Log in to Red Hat Quay as the superuser (quay by default).

2. Select your account name from the upper right corner of the home page and choose Super User
Admin Panel.

3. Select the Users icon from the left column.

4. Select the Create User button.

5. Enter the new user’s Username and Email address, then select the Create User button.

6. Back on the Users page, select the Options icon to the right of the new Username. A drop-down

CHAPTER 1. USERS AND ORGANIZATIONS IN RED HAT QUAY
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6. Back on the Users page, select the Options icon to the right of the new Username. A drop-down
menu appears, as shown in the following figure:

7. Choose Change Password from the menu.

8. Add the new password and verify it, then select the Change User Password button.

The new user can now use that username and password to log in via the web ui or through some
container client.

1.3. CREATING ORGANIZATION ACCOUNTS

Any user can create their own organization to share repositories of container images. To create a new
organization:

1. While logged in as any user, select the plus sign (+) from the upper right corner of the home
page and choose New Organization.

2. Type the name of the organization. The name must be alphanumeric, all lower case, and
between 2 and 255 characters long

3. Select Create Organization. The new organization appears, ready for you to begin adding
repositories, teams, robot accounts and other features from icons on the left column. The
following figure shows an example of the new organization’s page with the settings tab selected.
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CHAPTER 2. CREATING A REPOSITORY
A repository provides a central location for storing a related set of container images. There are two ways
to create a repository in Red Hat Quay: via a push (from docker or podman) and via the Red Hat Quay
UI. These are essentially the same, whether you are using Quay.io or your own instance of Red Hat Quay.

2.1. CREATING AN IMAGE REPOSITORY VIA THE UI

To create a repository in the Red Hat Quay UI under a user account: . Log in to the user account through
the web UI. . Click the + icon in the top right of the header on the home page (or other page related to
the user) and choose New Repository, as shown in the following figure:

+ 

1. On the Create New Repository page that appears

Add the new repository name to your user name

Click Repository Description and type a description of the repository

In Repository Visibility, select whether you want the repository to be public or private

Click the Create Repository button.

The new repository is created, starting out empty. A docker pull command you could use to pull an image
from this repository (minus the image name) appears on the screen.

To create a repository in the Red Hat Quay UI under an organization:

1. Log in as a user that has Admin or Write permission to the organization.

2. From the Repositories view, select the organization name from the right column under Users
and Organizations. The page for the organization appears, similar to the page shown in Figure
2.x:

3. Click +Create New Repository in the upper-right part of the page.

4. On the Create New Repository page that appears:

Add the new repository name to the organization name

Click Repository Description and type a description of the repository

In Repository Visibility, select whether you want the repository to be public or private

Click the Create Repository button.

The new repository is created, starting out empty. A docker pull command you could use to pull an image
from this repository (minus the image name) appears on the screen.
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2.2. CREATING AN IMAGE REPOSITORY VIA DOCKER OR PODMAN

Assuming you have the proper credentials, pushing an image to a repository that does not yet exist in
your Red Hat Quay instance will create that repository as it pushes the image to that repository. Either
the docker or podman commands will work for these examples.

1. Tag the image: With an image available from docker or podman on your local system, tag that
image with the new repository name and image name. Here are examples for pushing images to
Quay.io or your own Red Hat Quay setup (for example, reg.example.com). For the examples,
replace namespace with your Red Hat Quay user name or organization and repo_name with the
name of the repository you want to create:

# sudo podman tag myubi-minimal quay.io/namespace/repo_name
# sudo podman tag myubi-standard reg.example.com/namespace/repo_name

2. Push to the appropriate registry. For example:

# sudo podman push quay.io/namespace/repo_name
# sudo podman push reg.example.com/namespace/repo_name

NOTE

To create an application repository, follow the same procedure you did for creating a
container image repository.

CHAPTER 2. CREATING A REPOSITORY
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CHAPTER 3. MANAGING ACCESS TO REPOSITORIES
As a Red Hat Quay user, you can create your own repositories and make them accessible to other users
on your Red Hat Quay instance. As an alternative, you can create organizations to allow access to
repositories based on teams. In both user and organization repositories, you can allow access to those
repositories by creating credentials associated with robot accounts. Robot accounts make it easy for a
variety of container clients (such as docker or podman) to access your repos, without requiring that the
client have a Red Hat Quay user account.

3.1. ALLOWING ACCESS TO USER REPOSITORIES

When you create a repository in a user namespace, you can add access to that repository to user
accounts or through robot accounts.

3.1.1. Allowing user access to a user repository

To allow access to a repository associated with a user account, do the following:

1. Log into your Red Hat Quay user account.

2. Select a repository under your user namespace to which you want to share access.

3. Select the Settings icon from the left column.

4. Type the name of the user to which you want to grant access to your repository. The user name
should appear as you type, as shown in the following figure:

5. In the permissions box, select one of the following:

Read - Allows the user to view the repository and pull from it.

Write - Allows the user to view the repository, as well as pull images from or push images to
the repository.

Admin - Allows all administrative settings to the repository, as well as all Read and Write
permissions.

6. Select the Add Permission button. The user now has the assigned permission.

To remove the user permissions to the repository, select the Options icon to the right of the user entry,
then select Delete Permission.
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3.2. ALLOWING ROBOT ACCESS TO A USER REPOSITORY

Robot accounts are used to set up automated access to the repositories in your Red Hat Quay registry.
They are similar to OpenShift service accounts. When you set up a robot account, you:

Generate credentials that are associated with the robot account

Identify repositories and images that the robot can push images to or pull images from

Copy and paste generated credentials to use with different container clients (such as Docker,
podman, Kubernetes, Mesos and others) to access each defined repository

Keep in mind that each robot account is limited to a single user namespace or organization. So, for
example, the robot could provide access to all repositories accessible to a user jsmith, but not to any
that are not in the user’s list of repositories.

The following procedure steps you through setting up a robot account to allow access to your
repositories.

1. Select Robot icon: From the Repositories view, select the Robot icon from the left column.

2. Create Robot account: Select the Create Robot Account button.

3. Set Robot name: Enter the name and description, then select the Create robot account button.
The robot name becomes a combination of your user name, plus the robot name you set (for
example, jsmith+myrobot)

4. Add permission to the robot account: From the Add permissions screen for the robot account,
define the repositories you want the robot to access as follows:

Put a check mark next to each repository the robot can access

For each repository, select one of the following, and click Add permissions:

None - Robot has no permission to the repository

Read - Robot can view and pull from the repository

Write - Robot can read (pull) from and write (push) to the repository

Admin - Full access to pull from and push to the repository, plus the ability to do
administrative tasks associated with the repository

Select the Add permissions button to apply the settings

5. Get credentials to access repositories via the robot: Back on the Robot Accounts page, select
the Robot account name to see credential information for that robot.

6. Get the token: Select Robot Token, as shown in the following figure, to see the token that was
generated for the robot. If you want to reset the token, select Regenerate Token.
It is important to understand that regenerating a token makes any previous tokens for this robot
invalid.
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7. Get credentials: Once you are satisfied with the generated token, get the resulting credentials in
the following ways:

Kubernetes Secret: Select this to download credentials in the form of a Kubernetes pull
secret yaml file.

rkt Configuration: Select this to download credentials for the rkt container runtime in the
form of a json file.

Docker Login: Select this to copy a full docker login command line that includes the
credentials.

Docker Configuration: Select this to download a file to use as a Docker config.json file, to
permanently store the credentials on your client system.

Mesos Credentials: Select this to download a tarball that provides the credentials that can
be identified in the uris field of a Mesos configuration file.

3.3. ALLOWING ACCESS TO ORGANIZATION REPOSITORIES

Once you have created an organization, you can associate a set of repositories directly to that
organization. To add access to the repositories in that organization, you can add Teams (sets of users
with the same permissions) and individual users. Essentially, an organization has the same ability to
create repositories and robot accounts as a user does, but an organization is intended to set up shared
repositories through groups of users (in teams or individually).

Other things to know about organizations:

You cannot have an organization in another organization. To subdivide an organization, you use
teams.

Organizations can’t contain users directly. You must first add a team, then add one or more
users to each team.

Teams can be set up in organizations as just members who use the repos and associated images
or as administrators with special privileges for managing the organization

3.3.1. Adding a Team to an organization

When you create a team for your organization you can select the team name, choose which repositories
to make available to the team, and decide the level of access to the team.
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1. From the Organization view, select the Teams and Membership icon from the left column. You
will see that an owners Team exists with Admin privilege for the user who created the
Organization.

2. Select Create New Team. You are prompted for the new team name to be associated with the
organization. Type the team name, which must start with a lowercase letter, with the rest of the
team name as any combination of lowercase letters and numbers (no capitals or special
characters allowed).

3. Select the Create team button. The Add permissions window appears, displaying a list of
repositories in the organization.

4. Check each repository you want the team to be able to access. Then select one of the following
permissions for each:

Read - Team members are able to view and pull images

Write - Team members can view, pull, and push images

Admin - Team members have full read/write privilege, plus the ability to do administrative
tasks related to the repository

5. Select Add permissions to save the repository permissions for the team.

3.3.2. Setting a Team role

After you have added a team, you can set the role of that team within the organization. From the Teams
and Membership screen within the organization, select the TEAM ROLE drop-down menu, as shown in
the following figure:

For the selected team, choose one of the following roles:

Member - Inherits all permissions set for the team

Creator - All member permissions, plus the ability to create new repositories

Admin - Full administrative access to the organization, including the ability to create teams, add
members, and set permissions.
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3.3.3. Adding users to a Team

As someone with Admin privilege to an organization, you can add users and robots to a team. When you
add a user, it sends an email to that user. The user remains pending until that user accepts the invitation.

To add users or robots to a team, start from the organization’s screen and do the following:

1. Select the team you want to add users or robots to.

2. In the Team Members box, type one of the following:

A username from an account on the Red Hat Quay registry

The email address for a user account on the registry

The name of a robot account. The name must be in the form of orgname+robotname

3. In the case of the robot account, it is immediately added to the team. For a user account, an
invitation to join is mailed to the user. Until the user accepts that invitation, the user remains in
the INVITED TO JOIN state.

Next, the user accepts the email invitation to join the team. The next time the user logs in to the Red
Hat Quay instance, the user moves from the INVITED TO JOIN list to the MEMBERS list for the
organization.
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CHAPTER 4. WORKING WITH TAGS
Tags provide a way to identify the version of an image, as well as offering a means of naming the same
image in different ways. Besides an image’s version, an image tag can identify its uses (such as devel,
testing, or prod) or the fact that it is the most recent version (latest).

From the Tags tab of an image repository, you can view, modify, add, move, delete, and see the history
of tags. You also can fetch command-lines you can use to download (pull) a specific image (based on its
name and tag) using different commands.

4.1. VIEWING AND MODIFYING TAGS

The tags of a repository can be viewed and modified in the tags panel of the repository page, found by
clicking on the Tags tab.

4.1.1. Adding a new tag to a tagged image

A new tag can be added to a tagged image by clicking on the gear icon next to the tag and choosing 
Add New Tag. Red Hat Quay will confirm the addition of the new tag to the image.

4.1.2. Moving a tag

Moving a tag to a different image is accomplished by performing the same operation as adding a new
tag, but giving an existing tag name. Red Hat Quay will confirm that you want the tag moved, rather than
added.

4.1.3. Deleting a tag

A specific tag and all its images can be deleted by clicking on the tag’s gear icon and choosing Delete 
Tag. This will delete the tag and any images unique to it. Images will not be deleted until no tag
references them either directly or indirectly through a parent child relationship.

4.1.4. Viewing tag history and going back in time

4.1.4.1. Viewing tag history

To view the image history for a tag, click on the View Tags History menu item located under the 
Actions menu. The page shown will display each image to which the tag pointed in the past and when it
pointed to that image.
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4.1.4.2. Going back in time

To revert the tag to a previous image, find the history line where your desired image was overwritten,
and click on the Restore link.

4.1.5. Fetching an image by tag or digest

From the Tags tab, you can view different ways of pulling images from the clients that are ready to use
those images.

1. Select a particular repository/image

2. Select Tags in the left column

3. Select the Fetch Tag icon for a particular image/tag combination

4. When the Fetch Tag pop-up appears, select the Image format box to see a drop-down menu
that shows different ways that are available to pull the image. The selections offer full command
lines for pulling a specific container image to the local system:

You can select to pull a regular of an image by tag name or by digest name using the docker command. .
Choose the type of pull you want, then select Copy Command. The full command-line is copied into
your clipboard. These two commands show a docker pull by tag and by digest:

docker pull quay.io/cnegus/whatever:latest
docker pull 
quay.io/cnegus/whatever@sha256:e02231a6aa8ba7f5da3859a359f99d77e371cb47e643ce78e101958
782581fb9

Paste the command into a command-line shell on a system that has the docker command and service
available, and press Enter. At this point, the container image is ready to run on your local system.

On RHEL and Fedora systems, you can substitute podman for docker to pull and run the selected
image.

4.2. TAG EXPIRATION

Images can be set to expire from a Red Hat Quay repository at a chosen date and time using a feature
called tag expiration. Here are a few things to know about about tag expiration:

When a tag expires, the tag is deleted from the repository. If it is the last tag for a specific image,
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When a tag expires, the tag is deleted from the repository. If it is the last tag for a specific image,
the image is set to be deleted.

Expiration is set on a per-tag basis, not for a repository on the whole.

When a tag expires or is deleted, it is not immediately removed from the registry. The value of
Time Machine (in User settings) defines when the deleted tag is actually removed and garbage
collected. By default, that value is 14 days. Up until that time, a tag can be repointed to an
expired or deleted image.

The Red Hat Quay superuser has no special privilege related to deleting expired images from
user repositories. There is no central mechanism for the superuser to gather information and act
on user repositories. It is up to the owners of each repository to manage expiration and ultimate
deletion of their images.

Tag expiration can be set in different ways:

By setting the quay.expires-after= LABEL in the Dockerfile when the image is created. This
sets a time to expire from when the image is built.

By choosing the expiration date from the EXPIRES column for the repository tag and selecting
a specific date and time to expire.

The following figure shows the Options entry for changing tag expiration and the EXPIRES field for
when the tag expires. Hover over the EXPIRES field to see the expiration date and time that is currently
set.

4.2.1. Setting tag expiration from a Dockerfile

Adding a label like quay.expires-after=20h via the Dockerfile LABEL command will cause a tag to
automatically expire after the time indicated. The time values could be something like 1h, 2d, 3w for
hours, days, and weeks, respectively, from the time the image is built.

4.2.2. Setting tag expiration from the repository

On the Repository Tag page there is a UI column titled EXPIRES that indicates when a tag will expire.
Users can set this by clicking on the time that it will expire or by clicking the Settings button (gear icon)
on the right and choosing Change Expiration.

Choose the date and time when prompted and select Change Expiration. The tag will be set to be
deleted from the repository when the expiration time is reached.
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4.3. SECURITY SCANNING

By clicking the on the vulnerability or fixable count next to a tab you can jump into the security scanning
information for that tag. There you can find which CVEs your image is susceptible to, and what
remediation options you may have available.

Keep in mind that image scanning only lists vulnerabilities found by the Clair image scanner. What each
user does about the vulnerabilities that are uncovered is completely up to that user. The Red Hat Quay
superuser does not act on those vulnerabilities found.
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CHAPTER 5. VIEWING AND EXPORTING LOGS
Activity logs are gathered for all repositories and namespaces (users and organizations) in Red Hat
Quay. There are multiple ways of accessing log files, including:

Viewing logs through the web UI

Exporting logs so they can be saved externally.

Accessing log entries via the API

To access logs, you must have Admin privilege to the selected repository or namespace.

NOTE

A maximum of 100 log results are available at a time via the API. To gather more results
that that, you must use the log exporter feature described in this chapter.

5.1. VIEWING LOGS

To view log entries for a repository or namespace from the web UI, do the following:

1. Select a repository or namespace (organization or user) for which you have Admin privileges.

2. Select the Usage Logs icon from the left column. A Usage Logs screen appears, like the one
shown in the following figure:

3. From the Usage Logs page, you can:

Set the date range for viewing log entries by adding dates to the From and to boxes. By
default, the most recent one week of log entries is displayed.

Type a string into the Filter Logs box to display log entries that container the given string.

Toggle the arrow to the left of any log entry to see more or less text associated with that
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Toggle the arrow to the left of any log entry to see more or less text associated with that
log entry.

5.2. EXPORTING REPOSITORY LOGS

To be able to grab a larger number of log files and save them outside of the Red Hat Quay database, you
can use the Export Logs feature. Here are a few things you should know about using Export Logs:

You can choose a range of dates for the logs you want to gather from a repository.

You can request that the logs be sent to you via an email attachment or directed to a callback
URL.

You need Admin privilege to the repository or namespace to export logs

A maximum of 30 days of log data can be exported at a time

Export Logs only gathers log data that was previously produced. It does not stream logging
data.

Your Red Hat Quay instance must be configured for external storage for this feature (local
storage will not work).

Once the logs are gathered and available, you should immediately copy that data if you want to
save it. By default, the data expires in an hour.

To use the Export Logs feature:

1. Select a repository for which you have Admin privileges.

2. Select the Usage Logs icon from the left column. A Usage Logs screen appears.

3. Choose the From and to date range of the log entries you want to gather.

4. Select the Export Logs button. An Export Usage Logs pop-up appears, as shown

5. Enter the email address or callback URL you want to receive the exported logs. For the callback
URL, you could use a URL to a place such as webhook.site.

6. Select Start Logs Export. This causes Red Hat Quay to begin gathering the selected log entries.
Depending on the amount of logging data being gathered, this can take anywhere from one
minute to an hour to complete.

7. When the log export is completed you will either:
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Receive an email, alerting you to the availability of your requested exported log entries.

See a successful status of your log export request from the webhook URL. A link to the
exported data will be available for you to select to download the logs.

Keep in mind that the URL points to a location in your Red Hat Quay external storage and is set to expire
within an hour. So make sure you copy the exported logs before that expiration time if you intend to
keep them.
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CHAPTER 6. AUTOMATICALLY BUILDING DOCKERFILES
WITH BUILD WORKERS

Red Hat Quay supports building Dockerfiles using a set of worker nodes on OpenShift or Kubernetes.
Build triggers, such as GitHub webhooks can be configured to automatically build new versions of your
repositories when new code is committed. This document will walk you through enabling builds with your
Red Hat Quay installation and setting up one or more OpenShift/K8s clusters to accept builds from Red
Hat Quay. With Red Hat Quay 3.4, the underlying Build Manager has been completely re-written as part
of Red Hat Quay’s migration from Python 2 to Python 3. As a result, builder nodes are now dynamically
created as Kubernetes Jobs versus builder nodes that ran continuously in Red Hat Quay 3.3 and earlier.
This greatly simplifies how Red Hat Quay manages builds and provides the same mechanism quay.io
utilizes to handle thousands of container image builds daily. Customers who are currently running static
(“Enterprise” builders under Red Hat Quay 3.3) will be required to migrate to a Kubernetes-based build
mechanism.

6.1. ARCHITECTURE OVERVIEW

The Red Hat Quay Build system is designed for scalability (since it is used to host all builds at quay.io).
The Build Manager component of Red Hat Quay provides an orchestration layer that tracks build
requests and ensures that a Build Executor (OpenShift/K8s cluster) will carry out each request. Each
build is handled by a Kubernetes Job which launches a small virtual machine to completely isolate and
contain the image build process. This ensures that container builds do not affect each other or the
underlying build system. Multiple Executors can be configured to ensure that builds are performed even
in the event of infrastructure failures. Red Hat Quay will automatically send builds to a different
Executor if it detects that one Executor is having difficulties.

NOTE

The upstream version of Red Hat Quay provides instructions on how to configure an
AWS/EC2 based Executor. This configuration is not supported for Red Hat Quay
customers.

6.1.1. Build manager

The build manager is responsible for the lifecycle of scheduled build. Operations requiring updating the
build queue, build phase and running jobs’ status is handled by the build manager.

6.1.2. Build workers’ control plane

Build jobs are run on separate worker nodes, and are scheduled on separate control planes (executor).
Currently, Red Hat Quay supports running jobs on AWS and Kubernetes. Builds are executed using
quay.io/quay/quay-builder. On AWS, builds are scheduled on EC2 instances. On k8s, the builds are
scheduled as job resources.

6.1.3. Orchestrator

The orchestrator is used to store the state of currently running build jobs, and publish events for the
build manager to consume. e.g expiry events. Currently, the supported orchestrator backend is Redis.

6.2. OPENSHIFT REQUIREMENTS

Red Hat Quay builds are supported on Kubernetes and OpenShift 4.5 and higher. A bare metal (non-
virtualized) worker node is required since build pods require the ability to run kvm virtualization. Each
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build is done in an ephemeral virtual machine to ensure complete isolation and security while the build is
running. In addition, your OpenShift cluster should permit the ServiceAccount associated with Red Hat
Quay builds to run with the necessary SecurityContextConstraint to support privileged containers.

6.3. ORCHESTRATOR REQUIREMENTS

The Red Hat Quay builds need access to a Redis instance to track build status information. It is
acceptable to use the same Redis instance already deployed with your Red Hat Quay installation. All
build queues are managed in the Red Hat Quay database so there is no need for a highly available Redis
instance.

6.4. SETTING UP RED HAT QUAY BUILDERS WITH OPENSHIFT

6.4.1. Prepare OpenShift for Red Hat Quay Builds

There are several actions that are needed on an OpenShift cluster before it can accept builds from Red
Hat Quay.

1. Create a project where builds will be run (e.g. ‘builder’)

$ oc new-project builder

2. Create a ServiceAccount in this Project that will be used to run builds. Ensure that it has
sufficient privileges to create Jobs and Pods. Copy the ServiceAccount’s token for use later.

$ oc create sa -n builder quay-builder
$ oc policy add-role-to-user -n builder edit system:serviceaccount:builder:quay-builder
$ oc sa get-token -n builder quay-builder

3. Identify the URL for the OpenShift cluster’s API server. This can be found from the OpenShift
Console.

4. Identify a worker node label to be used when scheduling build Jobs. Because build pods need to
run on bare metal worker nodes, typically these are identified with specific labels. Check with
your cluster administrator to determine exactly which node label should be used.

5. If the cluster is using a self-signed certificate, get the kube apiserver’s CA to add to Red Hat
Quay’s extra certs.

a. Get the name of the secret containing the CA:

$ oc get sa openshift-apiserver-sa --namespace=openshift-apiserver -o json | jq 
'.secrets[] | select(.name | contains("openshift-apiserver-sa-token"))'.name

b. Get the ca.crt key value from the secret in the Openshift console. The value should begin
with “-----BEGIN CERTIFICATE-----”

c. Import the CA in Red Hat Quay using the ConfigTool. Ensure the name of this file matches 
K8S_API_TLS_CA.

6. Create the necessary security contexts/role bindings for the ServiceAccount:

apiVersion: security.openshift.io/v1
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kind: SecurityContextConstraints
metadata:
  name: quay-builder
priority: null
readOnlyRootFilesystem: false
requiredDropCapabilities: null
runAsUser:
  type: RunAsAny
seLinuxContext:
  type: RunAsAny
seccompProfiles:
- '*'
supplementalGroups:
  type: RunAsAny
volumes:
- '*'
allowHostDirVolumePlugin: true
allowHostIPC: true
allowHostNetwork: true
allowHostPID: true
allowHostPorts: true
allowPrivilegeEscalation: true
allowPrivilegedContainer: true
allowedCapabilities:
- '*'
allowedUnsafeSysctls:
- '*'
defaultAddCapabilities: null
fsGroup:
  type: RunAsAny
---
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
  name: quay-builder-scc
  namespace: builder
rules:
- apiGroups:
  - security.openshift.io
  resourceNames:
  - quay-builder
  resources:
  - securitycontextconstraints
  verbs:
  - use
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: quay-builder-scc
  namespace: builder
subjects:
- kind: ServiceAccount
  name: quay-builder
roleRef:
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  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: quay-builder-scc

6.4.2. Enable Builders and add Build Configuration to Red Hat Quay’s Configuration
Bundle

1. Ensure that you’ve got Builds enabled in your Red Hat Quay configuration.

FEATURE_BUILD_SUPPORT: True

1. Add the following to your Red Hat Quay configuration bundle, replacing each value with a value
specific to your installation.

NOTE

Currently only the Build feature itself can be enabled via the Red Hat Quay Config Tool.
The actual configuration of the Build Manager and Executors must be done manually in
the config.yaml file.

BUILD_MANAGER:
- ephemeral
- ALLOWED_WORKER_COUNT: 1
  ORCHESTRATOR_PREFIX: buildman/production/
  ORCHESTRATOR:
    REDIS_HOST: quay-redis-host
    REDIS_PASSWORD: quay-redis-password
    REDIS_SSL: true
    REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
  EXECUTORS:
  - EXECUTOR: kubernetes
    BUILDER_NAMESPACE: builder
    K8S_API_SERVER: api.openshift.somehost.org:6443
    K8S_API_TLS_CA: /conf/stack/extra_ca_cert_build_cluster.crt
    VOLUME_SIZE: 8G
    KUBERNETES_DISTRIBUTION: openshift
    CONTAINER_MEMORY_LIMITS: 5120Mi
    CONTAINER_CPU_LIMITS: 1000m
    CONTAINER_MEMORY_REQUEST: 3968Mi
    CONTAINER_CPU_REQUEST: 500m
    NODE_SELECTOR_LABEL_KEY: beta.kubernetes.io/instance-type
    NODE_SELECTOR_LABEL_VALUE: n1-standard-4
    CONTAINER_RUNTIME: podman
    SERVICE_ACCOUNT_NAME: *****
    SERVICE_ACCOUNT_TOKEN: *****
    QUAY_USERNAME: quay-username
    QUAY_PASSWORD: quay-password
    WORKER_IMAGE: <registry>/quay-quay-builder
    WORKER_TAG: some_tag
    BUILDER_VM_CONTAINER_IMAGE: <registry>/quay-quay-builder-qemu-rhcos:v3.4.0
    SETUP_TIME: 180
    MINIMUM_RETRY_THRESHOLD: 0
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Each configuration field is explained below.

ALLOWED_WORKER_COUNT

Defines how many Build Workers are instantiated per Red Hat Quay Pod. Typically this is ‘1’.

ORCHESTRATOR_PREFIX

Defines a unique prefix to be added to all Redis keys (useful to isolate Orchestrator values from
other Redis keys).

REDIS_HOST

Hostname for your Redis service.

REDIS_PASSWORD

Password to authenticate into your Redis service.

REDIS_SSL

Defines whether or not your Redis connection uses SSL.

REDIS_SKIP_KEYSPACE_EVENT_SETUP

By default, Red Hat Quay does not set up the keyspace events required for key events at runtime.
To do so, set REDIS_SKIP_KEYSPACE_EVENT_SETUP to false.

EXECUTOR

Starts a definition of an Executor of this type. Valid values are ‘kubernetes’ and ‘ec2’

BUILDER_NAMESPACE

Kubernetes namespace where Red Hat Quay builds will take place

K8S_API_SERVER

Hostname for API Server of OpenShift cluster where builds will take place

K8S_API_TLS_CA

The filepath in the Quay container of the build cluster’s CA certificate for the Quay app to trust when
making API calls.

KUBERNETES_DISTRIBUTION

Indicates which type of Kubernetes is being used. Valid values are ‘openshift’ and ‘k8s’.

CONTAINER_*

Define the resource requests and limits for each build pod.

NODE_SELECTOR_*

Defines the node selector label name/value pair where build Pods should be scheduled.

CONTAINER_RUNTIME

Specifies whether the builder should run docker or podman. Customers using Red Hat’s quay-
builder image should set this to podman.

SERVICE_ACCOUNT_NAME/SERVICE_ACCOUNT_TOKEN

Defines the Service Account name/token that will be used by build Pods.

QUAY_USERNAME/QUAY_PASSWORD

Defines the registry credentials needed to pull the Red Hat Quay build worker image that is specified
in the WORKER_IMAGE field. Customers should provide a Red Hat Service Account credential as
defined in the section "Creating Registry Service Accounts" against registry.redhat.io in the article at
https://access.redhat.com/RegistryAuthentication.

    SSH_AUTHORIZED_KEYS:
    - ssh-rsa 12345 someuser@email.com
    - ssh-rsa 67890 someuser2@email.com
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WORKER_IMAGE

Image reference for the Red Hat Quay builder image. registry.redhat.io/quay/quay-builder

WORKER_TAG

Tag for the builder image desired. The latest version is v3.4.0.

BUILDER_VM_CONTAINER_IMAGE

The full reference to the container image holding the internal VM needed to run each Red Hat Quay
build (registry.redhat.io/quay/quay-builder-qemu-rhcos:v3.4.0).

SETUP_TIME

Specifies the number of seconds at which a build times out if it has not yet registered itself with the
Build Manager (default is 500 seconds). Builds that time out are attempted to be restarted three
times. If the build does not register itself after three attempts it is considered failed.

MINIMUM_RETRY_THRESHOLD

This setting is used with multiple Executors; it indicates how many retries are attempted to start a
build before a different Executor is chosen. Setting to 0 means there are no restrictions on how
many tries the build job needs to have. This value should be kept intentionally small (three or less) to
ensure failovers happen quickly in the event of infrastructure failures. E.g Kubernetes is set as the
first executor and EC2 as the second executor. If we want the last attempt to run a job to always be
executed on EC2 and not Kubernetes, we would set the Kubernetes executor’s 
MINIMUM_RETRY_THRESHOLD to 1 and EC2’s MINIMUM_RETRY_THRESHOLD to 0 (defaults to
0 if not set). In this case, kubernetes’ MINIMUM_RETRY_THRESHOLD > retries_remaining(1) would
evaluate to False, thus falling back to the second executor configured

SSH_AUTHORIZED_KEYS

List of ssh keys to bootstrap in the ignition config. This allows other keys to be used to ssh into the
EC2 instance or QEMU VM

6.5. OPENSHIFT ROUTES LIMITATION

NOTE

This section only applies if you are using the Quay Operator on OpenShift with managed 
route component.

Due to a limitation of OpenShift Routes to only be able to serve traffic to a single port, additional steps
are required to set up builds. Ensure that your kubectl or oc CLI tool is configured to work with the
cluster where the Quay Operator is installed and that your QuayRegistry exists (not necessarily the
same as the bare metal cluster where your builders run).

Ensure that HTTP/2 ingress is enabled on the OpenShift cluster by following these steps.

The Quay Operator will create a Route which directs gRPC traffic to the build manager server
running inside the existing Quay pod(s). If you want to use a custom hostname (such as a
subdomain like builder.registry.example.com), ensure that you create a CNAME record with
your DNS provider which points to the status.ingress[0].host of the created Route:

$ kubectl get -n <namespace> route <quayregistry-name>-quay-builder -o jsonpath=
{.status.ingress[0].host}

Using the OpenShift UI or CLI, update the Secret referenced by spec.configBundleSecret of
the QuayRegistry with the build cluster CA certificate (name the key 
extra_ca_cert_build_cluster.cert), and update the config.yaml entry with the correct values
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referenced in the builder config above (depending on your build executor) along with the 
BUILDMAN_HOSTNAME field:

The extra configuration field is explained below:

BUILDMAN_HOSTNAME

The externally accessible server hostname which the build jobs use to communicate back to the build
manager. Default is the same as SERVER_HOSTNAME. For OpenShift Route, it is either 
status.ingress[0].host or the CNAME entry if using a custom hostname. BUILDMAN_HOSTNAME
needs to include the port number, e.g somehost:443 for Openshift Route, as the gRPC client used
to communicate with the build manager does not infer any port if omitted.

6.6. TROUBLESHOOTING BUILDS

The builder instances started by the build manager are ephemeral. This means that they will either get
shut down by Red Hat Quay} on timeouts/failure or garbage collected by the control plane (EC2/K8s).
This means that in order to get the builder logs, one needs to do so while the builds are running.

6.6.1. DEBUG config flag

A DEBUG flag can be set in order to prevent the builder instances from getting cleaned up after
completion/failure. To do so, in the desired executor configuration, set DEBUG to true. For example:

When set to true, DEBUG will prevent the build nodes from shutting down after the quay-builder service
is done or fails, and will prevent the build manager from cleaning up the instances (terminating EC2
instances or deleting k8s jobs). This will allow debugging builder node issues, and should not be set in a
production environment. The lifetime service will still exist. i.e The instance will still shutdown after
approximately 2 hours (EC2 instances will terminate, k8s jobs will complete) Setting DEBUG will also
affect ALLOWED_WORKER_COUNT, as the unterminated instances/jobs will still count towards the
total number of running workers. This means the existing builder workers will need to manually be
deleted if ALLOWED_WORKER_COUNT is reached to be able to schedule new builds.

BUILD_MANAGER:
- ephemeral
- ALLOWED_WORKER_COUNT: 1
  ORCHESTRATOR_PREFIX: buildman/production/
  ORCHESTRATOR:
    REDIS_HOST: quay-redis-host
    REDIS_PASSWORD: quay-redis-password
    REDIS_SSL: true
    REDIS_SKIP_KEYSPACE_EVENT_SETUP: false
  EXECUTORS:
  - EXECUTOR: kubernetes
    BUILDER_NAMESPACE: builder
    BUILDMAN_HOSTNAME: <build-manager-hostname>
    ...

  EXECUTORS:
    - EXECUTOR: ec2
      DEBUG: true
      ...
    - EXECUTOR: kubernetes
      DEBUG: true
      ...
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Use the followings steps:

1. The guest VM forwards its SSH port (22) to its host’s (the pod) port 2222. Port forward the
builder pod’s port 2222 to a port on localhost. e.g

$ kubectl port-forward <builder pod> 9999:2222

2. SSH into the VM running inside the container using a key set from SSH_AUTHORIZED_KEYS:

$ ssh -i /path/to/ssh/key/set/in/ssh_authorized_keys -p 9999 core@localhost

3. Get the quay-builder service logs:

$ systemctl status quay-builder
$ journalctl -f -u quay-builder

Step 2-3 can also be done in a single SSH command:

$ ssh -i /path/to/ssh/key/set/in/ssh_authorized_keys -p 9999 core@localhost ‘systemctl 
status quay-builder’
$ ssh -i /path/to/ssh/key/set/in/ssh_authorized_keys -p 9999 core@localhost ‘journalctl -f 
-u quay-builder’

6.7. SETTING UP GITHUB BUILDS (OPTIONAL)

If your organization plans to have builds be conducted via pushes to GitHub (or GitHub Enterprise),
continue with Creating an OAuth application in GitHub .
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CHAPTER 7. BUILDING DOCKERFILES
Red Hat Quay supports the ability to build Dockerfiles on our build fleet and push the resulting image to
the repository.

7.1. VIEWING AND MANAGING BUILDS

Repository Builds can be viewed and managed by clicking the Builds tab in the Repository View.

7.2. MANUALLY STARTING A BUILD

To manually start a repository build, click the + icon in the top right of the header on any repository page
and choose New Dockerfile Build. An uploaded Dockerfile, .tar.gz, or an HTTP URL to either can be
used for the build.

NOTE

You will not be able to specify the Docker build context when manually starting a build.

7.3. BUILD TRIGGERS

Repository builds can also be automatically triggered by events such as a push to an SCM (GitHub,
BitBucket or GitLab) or via a call to a webhook .

7.3.1. Creating a new build trigger

To setup a build trigger, click the Create Build Trigger button on the Builds view page and follow the
instructions of the dialog. You will need to grant Red Hat Quay access to your repositories in order to
setup the trigger and your account requires admin access on the SCM repository .

7.3.2. Manually triggering a build trigger

To trigger a build trigger manually, click the icon next to the build trigger and choose Run Now.

7.3.3. Build Contexts

When building an image with Docker, a directory is specified to become the build context. This holds true
for both manual builds and build triggers because the builds conducted by Red Hat Quay are no
different from running docker build on your own machine.

Red Hat Quay build contexts are always the specified subdirectory from the build setup and fallback to
the root of the build source if none is specified. When a build is triggered, Red Hat Quay build workers
clone the git repository to the worker machine and enter the build context before conducting a build.

For builds based on tar archives, build workers extract the archive and enter the build context. For
example:

example
├── .git
├── Dockerfile
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├── file
└── subdir
    └── Dockerfile

Imagine the example above is the directory structure for a GitHub repository called "example". If no
subdirectory is specified in the build trigger setup or while manually starting a build, the build will operate
in the example directory.

If subdir is specified to be the subdirectory in the build trigger setup, only the Dockerfile within it is
visible to the build. This means that you cannot use the ADD command in the Dockerfile to add file,
because it is outside of the build context.

Unlike the Docker Hub, the Dockerfile is part of the build context on Red Hat Quay. Thus, it must not
appear in the .dockerignore file.
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CHAPTER 8. SETTING UP A CUSTOM GIT TRIGGER
A Custom Git Trigger is a generic way for any git server to act as a build trigger. It relies solely on SSH
keys and webhook endpoints; everything else is left to the user to implement.

8.1. CREATING A TRIGGER

Creating a Custom Git Trigger is similar to the creation of any other trigger with a few subtle
differences:

It is not possible for Red Hat Quay to automatically detect the proper robot account to use with
the trigger. This must be done manually in the creation process.

There are extra steps after the creation of the trigger that must be done in order to use the
trigger. These steps are detailed below.

8.2. POST TRIGGER-CREATION SETUP

Once a trigger has been created, there are 2 additional steps required before the trigger can be used:

Provide read access to the SSH public key  generated when creating the trigger.

Setup a webhook that POSTs to the Red Hat Quay endpoint to trigger a build.

The key and the URL are both available at all times by selecting View Credentials from the gear located
in the trigger listing.

8.2.1. SSH public key access
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Depending on the Git server setup, there are various ways to install the SSH public key that Red Hat
Quay generates for a custom git trigger. For example, Git documentation describes a small server setup
in which simply adding the key to $HOME/.ssh/authorize_keys would provide access for builders to
clone the repository. For any git repository management software that isn’t officially supported, there is
usually a location to input the key often labeled as Deploy Keys.

8.2.2. Webhook

In order to automatically trigger a build, one must POST a JSON payload to the webhook URL with the
following format:

{
  "commit": "1c002dd",                                   // required
  "ref": "refs/heads/master",                            // required
  "default_branch": "master",                            // required
  "commit_info": {                                       // optional
    "url": "gitsoftware.com/repository/commits/1234567", // required
    "message": "initial commit",                         // required
    "date": "timestamp",                                 // required
    "author": {                                          // optional
      "username": "user",                                // required
      "avatar_url": "gravatar.com/user.png",             // required
      "url": "gitsoftware.com/users/user"                // required
    },
    "committer": {                                       // optional
      "username": "user",                                // required
      "avatar_url": "gravatar.com/user.png",             // required
      "url": "gitsoftware.com/users/user"                // required
    }
  }
}

NOTE

This request requires a Content-Type header containing application/json in order to be
valid.

Once again, this can be accomplished in various ways depending on the server setup, but for most cases
can be done via a post-receive git hook.
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CHAPTER 9. SKIPPING A SOURCE CONTROL-TRIGGERED
BUILD

To specify that a commit should be ignored by the Red Hat Quay build system, add the text [skip build]
or [build skip] anywhere in the commit message.
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CHAPTER 10. SET UP GITHUB BUILD TRIGGER TAGS
Red Hat Quay supports using GitHub or GitHub Enterprise as a trigger to building images. If you have
not yet done so, go ahead and enable build support in Red Hat Quay .

10.1. UNDERSTANDING TAG NAMING FOR BUILD TRIGGERS

Prior to Red Hat Quay 3.3, how images created from build triggers were named was limited. Images built
by build triggers were named:

With the branch or tag whose change invoked the trigger

With a latest tag for images that used the default branch

As of Red Hat Quay 3.3 and later, you have more flexibility in how you set image tags. The first thing you
can do is enter custom tags, to have any string of characters assigned as a tag for each built image.
However, as an alternative, you could use the following tag templates to to tag images with information
from each commit:

${commit_info.short_sha}: The commit’s short SHA

${commit_info.date}: The timestamp for the commit

${commit_info.author}: The author from the commit

${commit_info.committer}: The committer of the commit

${parsed_ref.branch}: The branch name

The following procedure describes how you set up tagging for build triggers.

10.2. SETTING TAG NAMES FOR BUILD TRIGGERS

Follow these steps to configure custom tags for build triggers:

1. From the repository view, select the Builds icon from the left navigation.

2. Select the Create Build Trigger menu, and select the type of repository push you want (GitHub,
Bitbucket, GitLab, or Custom Git repository push). For this example, GitHub Repository Push is
chosen, as illustrated in the following figure.
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3. When the Setup Build Trigger page appears, select the repository and namespace in which you
want the trigger set up.

4. Under Configure Trigger, select either Trigger for all branches and tags  or Trigger only on
branches and tags matching a regular expression. Then select Continue. The Configure Tagging
section appears, as shown in the following figure:

5. Scroll down to Configure Tagging and select from the following options:

Tag manifest with the branch or tag name: Check this box to use the name of the branch
or tag in which the commit occurred as the tag used on the image. This is enabled by
default.

Add latest tag if on default branch: Check this box to use the latest tag for the image if it
is on the default branch for the repository. This is enabled by default.

Add custom tagging templates: Enter a custom tag or a template into the Enter a tag
template box. There are multiple tag templates you can enter here, as described earlier in
this section. They include ways of using short SHA, timestamps, author name, committer,
and branch name from the commit as tags.

6. Select Continue. You are prompted to select the directory build context for the Docker build.
The build context directory identifies the location of the directory containing the Dockerfile,
along with other files needed when the build is triggered. Enter "/" if the Dockerfile is in the root
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of the git repository.

7. Select Continue. You are prompted to add an optional Robot Account. Do this if you want to pull
a private base image during the build process. The robot account would need access to the
build.

8. Select Continue to complete the setup of the build trigger.

If you were to return to the Repository Builds page for the repository, the build triggers you set up will be
listed under the Build Triggers heading.
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CHAPTER 11. CREATING AN OAUTH APPLICATION IN GITHUB
You can authorize your registry to access a GitHub account and its repositories by registering it as a
GitHub OAuth application.

11.1. CREATE NEW GITHUB APPLICATION

1. Log into GitHub (Enterprise)

2. Visit the Applications page under your organization’s settings.

3. Click Register New Application. The Register a new OAuth application configuration screen is
displayed:

4. Set Homepage URL: Enter the Quay Enterprise URL as the Homepage URL

NOTE

If using public GitHub, the Homepage URL entered must be accessible by your
users. It can still be an internal URL.

5. Set Authorization callback URL: Enter
https://{$RED_HAT_QUAY_URL}/oauth2/github/callback as the Authorization callback URL.

6. Save your settings by clicking the Register application button. The new new application’s
summary is shown:

7. Record the Client ID and Client Secret shown for the new application.
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CHAPTER 12. REPOSITORY NOTIFICATIONS
Quay supports adding notifications to a repository for various events that occur in the repository’s
lifecycle. To add notifications, click the Settings tab while viewing a repository and select Create 
Notification. From the When this event occurs field, select the items for which you want to receive
notifications:

After selecting an event, further configure it by adding how you will be notified of that event.

NOTE

Adding notifications requires repository admin permission.

The following are examples of repository events.

12.1. REPOSITORY EVENTS

12.1.1. Repository Push

A successful push of one or more images was made to the repository:

{
  "name": "repository",
  "repository": "dgangaia/test",
  "namespace": "dgangaia",
  "docker_url": "quay.io/dgangaia/test",
  "homepage": "https://quay.io/repository/dgangaia/repository",
  "updated_tags": [
    "latest"
  ]
}

12.1.2. Dockerfile Build Queued

Here is a sample response for a Dockerfile build has been queued into the build system. The response
can differ based on the use of optional attributes.

{
  "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
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  "trigger_kind": "github",                                                       //Optional
  "name": "test",
  "repository": "dgangaia/test",
  "namespace": "dgangaia",
  "docker_url": "quay.io/dgangaia/test",
  "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",                           //Optional
  "docker_tags": [
    "master",
    "latest"
  ],
  "repo": "test",
  "trigger_metadata": {
    "default_branch": "master",
    "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
    "ref": "refs/heads/master",
    "git_url": "git@github.com:dgangaia/test.git",
    "commit_info": {                                                             //Optional
      "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
      "date": "2019-03-06T12:48:24+11:00",
      "message": "adding 5",
      "author": {                                                                //Optional
        "username": "dgangaia",
        "url": "https://github.com/dgangaia",                                    //Optional
        "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"    //Optional
      },
      "committer": {
        "username": "web-flow",
        "url": "https://github.com/web-flow",
        "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
      }
    }
  },
  "is_manual": false,
  "manual_user": null,
  "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2"
}

12.1.3. Dockerfile Build Started

Here is an example of a Dockerfile build being started by the build system. The response can differ
based on some attributes being optional.

{
  "build_id": "a8cc247a-a662-4fee-8dcb-7d7e822b71ba",
  "trigger_kind": "github",                                                     //Optional
  "name": "test",
  "repository": "dgangaia/test",
  "namespace": "dgangaia",
  "docker_url": "quay.io/dgangaia/test",
  "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",                         //Optional
  "docker_tags": [
    "master",
    "latest"
  ],
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  "build_name": "50bc599",
  "trigger_metadata": {                                                         //Optional
    "commit": "50bc5996d4587fd4b2d8edc4af652d4cec293c42",
    "ref": "refs/heads/master",
    "default_branch": "master",
    "git_url": "git@github.com:dgangaia/test.git",
    "commit_info": {                                                            //Optional
      "url": "https://github.com/dgangaia/test/commit/50bc5996d4587fd4b2d8edc4af652d4cec293c42",
      "date": "2019-03-06T14:10:14+11:00",
      "message": "test build",
      "committer": {                                                            //Optional
        "username": "web-flow",
        "url": "https://github.com/web-flow",                                   //Optional
        "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"   //Optional
      },
      "author": {                                                               //Optional
        "username": "dgangaia",
        "url": "https://github.com/dgangaia",                                   //Optional
        "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"   //Optional
      }
    }
  },
  "homepage": "https://quay.io/repository/dgangaia/test/build/a8cc247a-a662-4fee-8dcb-
7d7e822b71ba"
}

12.1.4. Dockerfile Build Successfully Completed

Here is a sample response of a Dockerfile build that has been successfully completed by the build
system.

NOTE

This event will occur simultaneously with a Repository Push event for the built image(s)

{
  "build_id": "296ec063-5f86-4706-a469-f0a400bf9df2",
  "trigger_kind": "github",                                                       //Optional
  "name": "test",
  "repository": "dgangaia/test",
  "namespace": "dgangaia",
  "docker_url": "quay.io/dgangaia/test",
  "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",                           //Optional
  "docker_tags": [
    "master",
    "latest"
  ],
  "build_name": "b7f7d2b",
  "image_id": "sha256:0339f178f26ae24930e9ad32751d6839015109eabdf1c25b3b0f2abf8934f6cb",
  "trigger_metadata": {
    "commit": "b7f7d2b948aacbe844ee465122a85a9368b2b735",
    "ref": "refs/heads/master",
    "default_branch": "master",
    "git_url": "git@github.com:dgangaia/test.git",
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    "commit_info": {                                                              //Optional
      "url": "https://github.com/dgangaia/test/commit/b7f7d2b948aacbe844ee465122a85a9368b2b735",
      "date": "2019-03-06T12:48:24+11:00",
      "message": "adding 5",
      "committer": {                                                              //Optional
        "username": "web-flow",
        "url": "https://github.com/web-flow",                                     //Optional
        "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"                                                        
//Optional
      },
      "author": {                                                                 //Optional
        "username": "dgangaia",
        "url": "https://github.com/dgangaia",                                     //Optional
        "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"     //Optional
      }
    }
  },
  "homepage": "https://quay.io/repository/dgangaia/test/build/296ec063-5f86-4706-a469-
f0a400bf9df2",
  "manifest_digests": [
    
"quay.io/dgangaia/test@sha256:2a7af5265344cc3704d5d47c4604b1efcbd227a7a6a6ff73d6e4e08a27f
d7d99",
    
"quay.io/dgangaia/test@sha256:569e7db1a867069835e8e97d50c96eccafde65f08ea3e0d5debaf16e25
45d9d1"
  ]
}

12.1.5. Dockerfile Build Failed

A Dockerfile build has failed

{
  "build_id": "5346a21d-3434-4764-85be-5be1296f293c",
  "trigger_kind": "github",                                                       //Optional
  "name": "test",
  "repository": "dgangaia/test",
  "docker_url": "quay.io/dgangaia/test",
  "error_message": "Could not find or parse Dockerfile: unknown instruction: GIT",
  "namespace": "dgangaia",
  "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",                           //Optional
  "docker_tags": [
    "master",
    "latest"
  ],
  "build_name": "6ae9a86",
  "trigger_metadata": {                                                           //Optional
    "commit": "6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
    "ref": "refs/heads/master",
    "default_branch": "master",
    "git_url": "git@github.com:dgangaia/test.git",
    "commit_info": {                                                              //Optional
      "url": "https://github.com/dgangaia/test/commit/6ae9a86930fc73dd07b02e4c5bf63ee60be180ad",
      "date": "2019-03-06T14:18:16+11:00",
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      "message": "failed build test",
      "committer": {                                                              //Optional
        "username": "web-flow",
        "url": "https://github.com/web-flow",                                     //Optional
        "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"     //Optional
      },
      "author": {                                                                 //Optional
        "username": "dgangaia",
        "url": "https://github.com/dgangaia",                                     //Optional
        "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"     //Optional
      }
    }
  },
  "homepage": "https://quay.io/repository/dgangaia/test/build/5346a21d-3434-4764-85be-
5be1296f293c"
}

12.1.6. Dockerfile Build Cancelled

A Dockerfile build was cancelled

{
  "build_id": "cbd534c5-f1c0-4816-b4e3-55446b851e70",
  "trigger_kind": "github",
  "name": "test",
  "repository": "dgangaia/test",
  "namespace": "dgangaia",
  "docker_url": "quay.io/dgangaia/test",
  "trigger_id": "38b6e180-9521-4ff7-9844-acf371340b9e",
  "docker_tags": [
    "master",
    "latest"
  ],
  "build_name": "cbce83c",
  "trigger_metadata": {
    "commit": "cbce83c04bfb59734fc42a83aab738704ba7ec41",
    "ref": "refs/heads/master",
    "default_branch": "master",
    "git_url": "git@github.com:dgangaia/test.git",
    "commit_info": {
      "url": "https://github.com/dgangaia/test/commit/cbce83c04bfb59734fc42a83aab738704ba7ec41",
      "date": "2019-03-06T14:27:53+11:00",
      "message": "testing cancel build",
      "committer": {
        "username": "web-flow",
        "url": "https://github.com/web-flow",
        "avatar_url": "https://avatars3.githubusercontent.com/u/19864447?v=4"
      },
      "author": {
        "username": "dgangaia",
        "url": "https://github.com/dgangaia",
        "avatar_url": "https://avatars1.githubusercontent.com/u/43594254?v=4"
      }
    }
  },
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  "homepage": "https://quay.io/repository/dgangaia/test/build/cbd534c5-f1c0-4816-b4e3-
55446b851e70"
}

12.1.7. Vulnerability Detected

A vulnerability was detected in the repository

{
  "repository": "dgangaia/repository",
  "namespace": "dgangaia",
  "name": "repository",
  "docker_url": "quay.io/dgangaia/repository",
  "homepage": "https://quay.io/repository/dgangaia/repository",

  "tags": ["latest", "othertag"],

  "vulnerability": {
    "id": "CVE-1234-5678",
    "description": "This is a bad vulnerability",
    "link": "http://url/to/vuln/info",
    "priority": "Critical",
    "has_fix": true
  }
}

12.2. NOTIFICATION ACTIONS

12.2.1. Quay Notification

A notification will be added to the Quay.io notification area. The notification area can be found by
clicking on the bell icon in the top right of any Quay.io page.

Quay.io notifications can be setup to be sent to a User, Team, or the organization as a whole.

12.2.2. E-mail

An e-mail will be sent to the specified address describing the event that occurred.

NOTE

All e-mail addresses will have to be verified on a per-repository basis

12.2.3. Webhook POST

An HTTP POST call will be made to the specified URL with the event’s data (see above for each event’s
data format).

When the URL is HTTPS, the call will have an SSL client certificate set from Quay.io. Verification of this
certificate will prove the call originated from Quay.io. Responses with status codes in the 2xx range are
considered successful. Responses with any other status codes will be considered failures and result in a
retry of the webhook notification.
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12.2.4. Flowdock Notification

Posts a message to Flowdock.

12.2.5. Hipchat Notification

Posts a message to HipChat.

12.2.6. Slack Notification

Posts a message to Slack.
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CHAPTER 13. USING THE RED HAT QUAY API
Red Hat Quay provides a full OAuth 2, RESTful API that:

Is available from endpoints of each Red Hat Quay instance from the URL
https://<yourquayhost>/api/v1

Lets you connect to endpoints, via a browser, to get, delete, post, and put Red Hat Quay
settings by enabling the Swagger UI

Can be accessed by applications that make API calls and use OAuth tokens

Sends and receives data as JSON

The following text describes how to access the Red Hat Quay API and use it to view and modify setting
in your Red Hat Quay cluster. Appendix A lists and describes API endpoints.

13.1. ACCESSING THE QUAY API FROM QUAY.IO

If you don’t have your own Red Hat Quay cluster running yet, you can explore the Red Hat Quay API
available from Quay.io from your web browser:

https://docs.quay.io/api/swagger/

The API Explorer that appears shows Quay.io API endpoints. You will not see superuser API endpoints
or endpoints for Red Hat Quay features that are not enabled on Quay.io (such as Repository Mirroring).

From API Explorer, you can get, and sometimes change, information on:

Billing, subscriptions, and plans

Repository builds and build triggers

Error messages and global messages

Repository images, manifests, permissions, notifications, vulnerabilities, and image signing

Usage logs

Organizations, members and OAuth applications

User and robot accounts

and more…

Select to open an endpoint to view the Model Schema for each part of the endpoint. Open an endpoint,
enter any required parameters (such as a repository name or image), then select the Try it out! button
to query or change settings associated with a Quay.io endpoint.

13.2. CREATE OAUTH ACCESS TOKEN

To create an OAuth access token so you can access the API for your organization:

1. Log in to Red Hat Quay and select your Organization (or create a new one).
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2. Select the Applications icon from the left navigation.

3. Select Create New Application and give the new application a name when prompted.

4. Select the new application.

5. Select Generate Token from the left navigation.

6. Select the checkboxes to set the scope of the token and select Generate Access Token.

7. Review the permissions you are allowing and select Authorize Application to approve it.

8. Copy the newly generated token to use to access the API.

13.3. ACCESSING YOUR QUAY API FROM A WEB BROWSER

By enabling Swagger, you can access the API for your own Red Hat Quay instance through a web
browser. This URL exposes the Red Hat Quay API explorer via the Swagger UI and this URL:

https://<yourquayhost>/api/v1/discovery.

That way of accessing the API does not include superuser endpoints that are available on Red Hat Quay
installations. Here is an example of accessing a Red Hat Quay API interface running on the local system
by running the swagger-ui container image:

# export SERVER_HOSTNAME=<yourhostname>
# sudo podman run -p 8888:8080 -e API_URL=https://$SERVER_HOSTNAME:8443/api/v1/discovery 
docker.io/swaggerapi/swagger-ui

With the swagger-ui container running, open your web browser to localhost port 8888 to view API
endpoints via the swagger-ui container.

To avoid errors in the log such as "API calls must be invoked with an X-Requested-With header if called
from a browser," add the following line to the config.yaml on all nodes in the cluster and restart Red Hat
Quay:

BROWSER_API_CALLS_XHR_ONLY: false

13.4. ACCESSING THE RED HAT QUAY API FROM THE COMMAND LINE

You can use the curl command to GET, PUT, POST, or DELETE settings via the API for your Red Hat
Quay cluster. Replace <token> with the OAuth access token you created earlier to get or change
settings in the following examples.

13.4.1. Get superuser information

$ curl -X GET -H "Authorization: Bearer <token_here>" \
    "https://<yourquayhost>/api/v1/superuser/users/"

For example:

$ curl -X GET -H "Authorization: Bearer mFCdgS7SAIoMcnTsHCGx23vcNsTgziAa4CmmHIsg" 
http://quay-server:8080/api/v1/superuser/users/ | jq
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13.4.2. Creating a superuser using the API

Configure a superuser name, as described in the Deploy Quay book:

Use the configuration editor UI or

Edit the config.yaml file directly, with the option of using the configuration API to validate
(and download) the updated configuration bundle

Create the user account for the superuser name:

Obtain an authorization token as detailed above, and use curl to create the user:

$ curl -H "Content-Type: application/json"  -H "Authorization: Bearer 
Fava2kV9C92p1eXnMawBZx9vTqVnksvwNm0ckFKZ" -X POST --data '{
 "username": "quaysuper",
 "email": "quaysuper@example.com"
}'  http://quay-server:8080/api/v1/superuser/users/ | jq

The returned content includes a generated password for the new user account:

Now, when you request the list of users , it will show quaysuper as a superuser:

{
  "users": [
    {
      "kind": "user",
      "name": "quayadmin",
      "username": "quayadmin",
      "email": "quayadmin@example.com",
      "verified": true,
      "avatar": {
        "name": "quayadmin",
        "hash": "357a20e8c56e69d6f9734d23ef9517e8",
        "color": "#5254a3",
        "kind": "user"
      },
      "super_user": true,
      "enabled": true
    }
  ]
}

{
  "username": "quaysuper",
  "email": "quaysuper@example.com",
  "password": "EH67NB3Y6PTBED8H0HC6UVHGGGA3ODSE",
  "encrypted_password": 
"fn37AZAUQH0PTsU+vlO9lS0QxPW9A/boXL4ovZjIFtlUPrBz9i4j9UDOqMjuxQ/0HTfy38go
KEpG8zYXVeQh3lOFzuOjSvKic2Vq7xdtQsU="
}

$ curl -X GET -H "Authorization: Bearer mFCdgS7SAIoMcnTsHCGx23vcNsTgziAa4CmmHIsg" 
http://quay-server:8080/api/v1/superuser/users/ | jq
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13.4.3. Directory synchronization

To enable directory synchronization for the team newteam in organization testadminorg, where the
corresponding group name in LDAP is ldapgroup:

$ curl -X POST -H "Authorization: Bearer 9rJYBR3v3pXcj5XqIA2XX6Thkwk4gld4TCYLLWDF" \
       -H "Content-type: application/json" \
       -d '{"group_dn": "cn=ldapgroup,ou=Users"}' \
       http://quay1-server:8080/api/v1/organization/testadminorg/team/newteam/syncing

To disable synchronization for the same team:

$ curl -X DELETE -H "Authorization: Bearer 9rJYBR3v3pXcj5XqIA2XX6Thkwk4gld4TCYLLWDF" \
       http://quay1-server:8080/api/v1/organization/testadminorg/team/newteam/syncing

13.4.4. Create a repository build via API

In order to build a repository from the specified input and tag the build with custom tags, users can use

{
  "users": [
  {
      "kind": "user",
      "name": "quayadmin",
      "username": "quayadmin",
      "email": "quayadmin@example.com",
      "verified": true,
      "avatar": {
        "name": "quayadmin",
        "hash": "357a20e8c56e69d6f9734d23ef9517e8",
        "color": "#5254a3",
        "kind": "user"
      },
      "super_user": true,
      "enabled": true
    },
    {
      "kind": "user",
      "name": "quaysuper",
      "username": "quaysuper",
      "email": "quaysuper@example.com",
      "verified": true,
      "avatar": {
        "name": "quaysuper",
        "hash": "c0e0f155afcef68e58a42243b153df08",
        "color": "#969696",
        "kind": "user"
      },
      "super_user": true,
      "enabled": true
    }
  ]
}
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In order to build a repository from the specified input and tag the build with custom tags, users can use
requestRepoBuild endpoint. It takes the following data:

{
"docker_tags": [
   "string"
],
"pull_robot": "string",
"subdirectory": "string",
"archive_url": "string"
}

The archive_url parameter should point to a tar or zip archive that includes the Dockerfile and other
required files for the build. The file_id parameter was apart of our older build system. It cannot be used
anymore. If Dockerfile is in a sub-directory it needs to be specified as well.

The archive should be publicly accessible. OAuth app should have "Administer Organization" scope
because only organization admins have access to the robots' account tokens. Otherwise, someone could
get robot permissions by simply granting a build access to a robot (without having access themselves),
and use it to grab the image contents. In case of errors, check the json block returned and ensure the
archive location, pull robot, and other parameters are being passed correctly. Click "Download logs" on
the top-right of the individual build’s page to check the logs for more verbose messaging.

13.4.5. Create an org robot

$ curl -X PUT https://quay.io/api/v1/organization/{orgname}/robots/{robot shortname} \
   -H 'Authorization: Bearer <token>''

13.4.6. Trigger a build

$ curl -X POST https://quay.io/api/v1/repository/YOURORGNAME/YOURREPONAME/build/ \
   -H 'Authorization: Bearer <token>'

Python with requests

import requests
r = requests.post('https://quay.io/api/v1/repository/example/example/image', headers={'content-type': 
'application/json', 'Authorization': 'Bearer <redacted>'}, data={[<request-body-contents>})
print(r.text)

13.4.7. Create a private repository

$ curl -X POST https://quay.io/api/v1/repository \
    -H 'Authorization: Bearer {token}' \
    -H 'Content-Type: application/json' \
    -d '{"namespace":"yournamespace", "repository":"yourreponame",
    "description":"descriptionofyourrepo", "visibility": "private"}' | jq
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