
Red Hat OpenStack Platform 15

Transitioning to Containerized Services

A basic guide to working with OpenStack Platform containerized services

Last Updated: 2021-01-21





Red Hat OpenStack Platform 15 Transitioning to Containerized Services

A basic guide to working with OpenStack Platform containerized services

OpenStack Team
rhos-docs@redhat.com



Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides some basic information to help users get accustomed working with OpenStack
Platform services running in containers.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. CONTAINERIZED SERVICES AND KOLLA

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES
2.1. PREPARING CONTAINER IMAGES
2.2. CONTAINER IMAGE PREPARATION PARAMETERS
2.3. LAYERING IMAGE PREPARATION ENTRIES
2.4. MODIFYING IMAGES DURING PREPARATION
2.5. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
2.6. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
2.7. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
2.8. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

CHAPTER 3. INSTALLING THE UNDERCLOUD WITH CONTAINERS
3.1. CONFIGURING THE DIRECTOR
3.2. DIRECTOR CONFIGURATION PARAMETERS
3.3. INSTALLING THE DIRECTOR
3.4. PERFORMING A MINOR UPDATE OF A CONTAINERIZED UNDERCLOUD

CHAPTER 4. DEPLOYING AND UPDATING AN OVERCLOUD WITH CONTAINERS
4.1. DEPLOYING AN OVERCLOUD
4.2. UPDATING AN OVERCLOUD

CHAPTER 5. WORKING WITH CONTAINERIZED SERVICES
5.1. MANAGING CONTAINERIZED SERVICES
5.2. TROUBLESHOOTING CONTAINERIZED SERVICES

CHAPTER 6. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES
6.1. SYSTEMD SERVICES AND CONTAINERIZED SERVICES
6.2. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG LOCATIONS
6.3. SYSTEMD CONFIGURATION VS CONTAINERIZED CONFIGURATION

3
3

4
4
4
7
7
8
8
9
9

13
13
13
18
19

20
20
20

21
21

24

26
26
28
30

Table of Contents

1



Red Hat OpenStack Platform 15 Transitioning to Containerized Services

2



CHAPTER 1. INTRODUCTION
Past versions of Red Hat OpenStack Platform used services managed with Systemd. However, more
recent version of OpenStack Platform now use containers to run services. Some administrators might
not have a good understanding of how containerized OpenStack Platform services operate, and so this
guide aims to help you understand OpenStack Platform container images and containerized services.
This includes:

How to obtain and modify container images

How to manage containerized services in the overcloud

Understanding how containers differ from Systemd services

The main goal is to help you gain enough knowledge of containerized OpenStack Platform services to
transition from a Systemd-based environment to a container-based environment.

1.1. CONTAINERIZED SERVICES AND KOLLA

Each of the main Red Hat OpenStack Platform services run in containers. This provides a method of
keep each service within its own isolated namespace separated from the host. This means:

The deployment of services is performed by pulling container images from the Red Hat Custom
Portal and running them.

The management functions, like starting and stopping services, operate through the podman
command.

Upgrading containers require pulling new container images and replacing the existing containers
with newer versions.

Red Hat OpenStack Platform uses a set of containers built and managed with the kolla toolset.

CHAPTER 1. INTRODUCTION

3



CHAPTER 2. OBTAINING AND MODIFYING CONTAINER
IMAGES

A containerized overcloud requires access to a registry with the required container images. This chapter
provides information on how to prepare the registry and your undercloud and overcloud configuration to
use container images for Red Hat OpenStack Platform.

2.1. PREPARING CONTAINER IMAGES

The overcloud configuration requires initial registry configuration to determine where to obtain images
and how to store them. Complete the following steps to generate and customize an environment file for
preparing your container images.

Procedure

1. Log in to your undercloud host as the stack user.

2. Generate the default container image preparation file:

$ openstack tripleo container image prepare default \
  --local-push-destination \
  --output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

--local-push-destination sets the registry on the undercloud as the location for container
images. This means the director pulls the necessary images from the Red Hat Container
Catalog and pushes them to the registry on the undercloud. The director uses this registry
as the container image source. To pull directly from the Red Hat Container Catalog, omit
this option.

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images. In this case, the name of the file is 
containers-prepare-parameter.yaml.

NOTE

You can also use the same containers-prepare-parameter.yaml file to
define a container image source for both the undercloud and the overcloud.

3. Edit the containers-prepare-parameter.yaml and make the modifications to suit your
requirements.

2.2. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the 
ContainerImagePrepare Heat parameter. This parameter defines a list of strategies for preparing a set
of images:

parameter_defaults:
  ContainerImagePrepare:
  - (strategy one)

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

4



  - (strategy two)
  - (strategy three)
  ...

Each strategy accepts a set of sub-parameters that define which images to use and what to do with
them. The following table contains information about the sub-parameters you can use with each 
ContainerImagePrepare strategy:

Parameter Description

excludes List of image name substrings to exclude from a
strategy.

includes List of image name substrings to include in a
strategy. At least one image name must match an
existing image. All excludes are ignored if includes
is specified.

modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 14.0-
89 and set the modify_append_tag to -hotfix, the
director tags the final image as 14.0-89-hotfix.

modify_only_with_labels A dictionary of image labels that filter the images to
modify. If an image matches the labels defined, the
director includes the image in the modification
process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

push_destination The namespace of the registry to push images during
the upload process. When you specify a namespace
for this parameter, all image parameters use this
namespace too. If set to true, the 
push_destination is set to the undercloud registry
namespace. It is not recommended to set this
parameters to false in production environments. If
this is set to false or not provided and the remote
registry requires authentication, set the 
ContainerImageRegistryLogin parameter to 
true and provide the credentials with the 
ContainerImageRegistryCredentials
parameter.

pull_source The source registry from where to pull the original
container images.

set A dictionary of key: value definitions that define
where to obtain the initial images.

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

5



tag_from_label Defines the label pattern to tag the resulting images.
Usually sets to {version}-{release}.

Parameter Description

The set parameter accepts a set of key: value definitions. The following table contains information
about the keys:

Key Description

ceph_image The name of the Ceph Storage container image.

ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

name_prefix A prefix for each OpenStack service image.

name_suffix A suffix for each OpenStack service image.

namespace The namespace for each OpenStack service image.

neutron_driver The driver to use to determine which OpenStack
Networking (neutron) container to use. Use a null
value to set to the standard neutron-server
container. Set to ovn to use OVN-based containers.

tag The tag that the director uses to identify the images
to pull from the source registry. You usually keep this
key set to latest.

The ContainerImageRegistryCredentials parameter maps a container registry to a username and
password to authenticate to that registry.

If a container registry requires a username and password, you can use 
ContainerImageRegistryCredentials to include their values with the following syntax:

  ContainerImagePrepare:
  - push_destination: 192.168.24.1:8787
    set:
      namespace: registry.redhat.io/...
      ...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      my_username: my_password

In the example, replace my_username and my_password with your authentication credentials. Instead
of using your individual user credentials, Red Hat recommends creating a registry service account and

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

6



using those credentials to access registry.redhat.io content. For more information, see "Red Hat
Container Registry Authentication".

The ContainerImageRegistryLogin parameter is used to control the registry login on the systems
being deployed. This must be set to true if push_destination is set to false or not used.

  ContainerImagePrepare:
  - set:
      namespace: registry.redhat.io/...
      ...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      my_username: my_password
  ContainerImageRegistryLogin: true

2.3. LAYERING IMAGE PREPARATION ENTRIES

The value of the ContainerImagePrepare parameter is a YAML list. This means you can specify multiple
entries. The following example demonstrates two entries where the director uses the latest version of all
images except for the nova-api image, which uses the version tagged with 15.0-44:

ContainerImagePrepare:
- tag_from_label: "{version}-{release}"
  push_destination: true
  excludes:
  - nova-api
  set:
    namespace: registry.redhat.io/rhosp15-rhel8
    name_prefix: openstack-
    name_suffix: ''
    tag: latest
- push_destination: true
  includes:
  - nova-api
  set:
    namespace: registry.redhat.io/rhosp15-rhel8
    tag: 15.0-44

The includes and excludes entries control image filtering for each entry. The images that match the 
includes strategy take precedence over excludes matches. The image name must include the 
includes or excludes value to be considered a match.

2.4. MODIFYING IMAGES DURING PREPARATION

It is possible to modify images during image preparation, then immediately deploy with modified images.
Scenarios for modifying images include:

As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

As part of a development workflow where local changes need to be deployed for testing and
development.

When changes need to be deployed but are not available through an image build pipeline. For

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

7

https://access.redhat.com/RegistryAuthentication


When changes need to be deployed but are not available through an image build pipeline. For
example, adding proprietry add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.
The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the Heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface, and provides the
behaviour necessary for the modify use-cases. Modification is controlled using modify-specific keys in
the ContainerImagePrepare parameter:

modify_role specifies the Ansible role to invoke for each image to modify.

modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the 
push_destination registry already contains the modified image. It is recommended to change 
modify_append_tag whenever you modify the image.

modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use-case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, it is
recommended to run the image prepare command without any additional options to confirm the image
is modified as expected:

sudo openstack tripleo container image prepare \
  -e ~/containers-prepare-parameter.yaml

2.5. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES

The following example ContainerImagePrepare entry updates in all packages on the images using the
undercloud host’s dnf repository configuration:

ContainerImagePrepare:
- push_destination: true
  ...
  modify_role: tripleo-modify-image
  modify_append_tag: "-updated"
  modify_vars:
    tasks_from: yum_update.yml
    compare_host_packages: true
    yum_repos_dir_path: /etc/yum.repos.d
  ...

2.6. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package not available through a package repository. For example, the
following ContainerImagePrepare entry installs some hotfix packages only on the nova-compute
image:

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

8



ContainerImagePrepare:
- push_destination: true
  ...
  includes:
  - nova-compute
  modify_role: tripleo-modify-image
  modify_append_tag: "-hotfix"
  modify_vars:
    tasks_from: rpm_install.yml
    rpms_path: /home/stack/nova-hotfix-pkgs
  ...

2.7. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

For maximum flexibility, you can specify a directory containing a Dockerfile to make the required
changes. When you invoke the tripleo-modify-image role, the role generates a Dockerfile.modified file
that changes the FROM directive and adds extra LABEL directives. The following example runs the
custom Dockerfile on the nova-compute image:

ContainerImagePrepare:
- push_destination: true
  ...
  includes:
  - nova-compute
  modify_role: tripleo-modify-image
  modify_append_tag: "-hotfix"
  modify_vars:
    tasks_from: modify_image.yml
    modify_dir_path: /home/stack/nova-custom
  ...

An example /home/stack/nova-custom/Dockerfile follows. After running any USER root directives, you
must switch back to the original image default user:

FROM registry.redhat.io/rhosp15-rhel8/openstack-nova-compute:latest

USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

2.8. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

Red Hat Satellite 6 offers registry synchronization capabilities. This provides a method to pull multiple
images into a Satellite server and manage them as part of an application life cycle. The Satellite also acts
as a registry for other container-enabled systems to use. For more details information on managing
container images, see "Managing Container Images" in the Red Hat Satellite 6 Content Management
Guide.

The examples in this procedure use the hammer command line tool for Red Hat Satellite 6 and an
example organization called ACME. Substitute this organization for your own Satellite 6 organization.

NOTE

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

9

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html/content_management_guide/managing_container_images


NOTE

This procedure requires authentication credentials to access container images from 
registry.redhat.io. Instead of using your individual user credentials, Red Hat
recommends creating a registry service account and using those credentials to access 
registry.redhat.io content. For more information, see "Red Hat Container Registry
Authentication".

Procedure

1. Create a list of all container images:

$ sudo podman search --limit 1000 "registry.redhat.io/rhosp15-rhel8" | awk '{ print $2 }' | grep 
-v beta | sed "s/registry.redhat.io\///g" | tail -n+2 > satellite_images

2. Copy the satellite_images_names file to a system that contains the Satellite 6 hammer tool.
Alternatively, use the instructions in the Hammer CLI Guide  to install the hammer tool to the
undercloud.

3. Run the following hammer command to create a new product ( OSP15 Containers) in your
Satellite organization:

$ hammer product create \
  --organization "ACME" \
  --name "OSP15 Containers"

This custom product will contain our images.

4. Add the base container image to the product:

$ hammer repository create \
  --organization "ACME" \
  --product "OSP15 Containers" \
  --content-type docker \
  --url https://registry.redhat.io \
  --docker-upstream-name rhosp15-rhel8/openstack-base \
  --upstream-username USERNAME \
  --upstream-password PASSWORD \
  --name base

5. Add the overcloud container images from the satellite_images file.

$ while read IMAGE; do \
  IMAGENAME=$(echo $IMAGE | cut -d"/" -f2 | sed "s/openstack-//g" | sed "s/:.*//g") ; \
  hammer repository create \
  --organization "ACME" \
  --product "OSP15 Containers" \
  --content-type docker \
  --url https://registry.redhat.io \
  --docker-upstream-name $IMAGE \
  --upstream-username USERNAME \
  --upstream-password PASSWORD \
  --name $IMAGENAME ; done < satellite_images_names

6. Add the Ceph Storage 4 container image:

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

10

https://access.redhat.com/RegistryAuthentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.2/html-single/hammer_cli_guide/


$ hammer repository create \
  --organization "ACME" \
  --product "OSP15 Containers" \
  --content-type docker \
  --url https://registry.redhat.io \
  --docker-upstream-name rhceph-beta/rhceph-4-rhel8 \
  --upstream-username USERNAME \
  --upstream-password PASSWORD \
  --name rhceph-4-rhel8

7. Synchronize the container images:

$ hammer product synchronize \
  --organization "ACME" \
  --name "OSP15 Containers"

Wait for the Satellite server to complete synchronization.

NOTE

Depending on your configuration, hammer might ask for your Satellite server
username and password. You can configure hammer to automatically login using
a configuration file. For more information, see the "Authentication" section in the
Hammer CLI Guide .

8. If your Satellite 6 server uses content views, create a new content view version to incorporate
the images and promote it along environments in your application life cycle. This largely
depends on how you structure your application lifecycle. For example, if you have an
environment called production in your lifecycle and you want the container images available in
that environment, create a content view that includes the container images and promote that
content view to the production environment. For more information, see "Managing Container
Images with Content Views".

9. Check the available tags for the base image:

$ hammer docker tag list --repository "base" \
  --organization "ACME" \
  --environment "production" \
  --content-view "myosp15" \
  --product "OSP15 Containers"

This command displays tags for the OpenStack Platform container images within a content view
for an particular environment.

10. Return to the undercloud and generate a default environment file for preparing images using
your Satellite server as a source. Run the following example command to generate the
environment file:

(undercloud) $ openstack tripleo container image prepare default \
  --output-env-file containers-prepare-parameter.yaml

--output-env-file is an environment file name. The contents of this file will include the
parameters for preparing your container images for the undercloud. In this case, the name
of the file is containers-prepare-parameter.yaml.

CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES

11

https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html-single/hammer_cli_guide/#sect-CLI_Guide-Authentication
https://access.redhat.com/documentation/en-us/red_hat_satellite/6.3/html/content_management_guide/managing_container_images#managing_container_images_with_content_views


11. Edit the containers-prepare-parameter.yaml file and modify the following parameters:

namespace - The URL and port of the registry on the Satellite server. The default registry
port on Red Hat Satellite is 5000.

name_prefix - The prefix is based on a Satellite 6 convention. This differs depending on
whether you use content views:

If you use content views, the structure is [org]-[environment]-[content view]-
[product]-. For example: acme-production-myosp15-osp15_containers-.

If you do not use content views, the structure is [org]-[product]-. For example: acme-
osp15_containers-.

ceph_namespace, ceph_image, ceph_tag - If using Ceph Storage, include the additional
parameters to define the Ceph Storage container image location. Note that ceph_image
now includes a Satellite-specific prefix. This prefix is the same value as the name_prefix
option.

The following example environment file contains Satellite-specific parameters:

parameter_defaults:
  ContainerImagePrepare:
  - push_destination: true
    set:
      ceph_image: acme-production-myosp15-osp15_containers-rhceph-4
      ceph_namespace: satellite.example.com:5000
      ceph_tag: latest
      name_prefix: acme-production-myosp15-osp15_containers-
      name_suffix: ''
      namespace: satellite.example.com:5000
      neutron_driver: null
      tag: latest
      ...
    tag_from_label: '{version}-{release}'

Use this environment file when creating both your undercloud and overcloud.

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

12



CHAPTER 3. INSTALLING THE UNDERCLOUD WITH
CONTAINERS

This chapter provides info on how to create a container-based undercloud and keep it updated.

3.1. CONFIGURING THE DIRECTOR

The director installation process requires certain settings in the undercloud.conf configuration file,
which the director reads from the stack user’s home directory. This procedure demonstrates how to use
the default template as a foundation for your configuration.

Procedure

1. Copy the default template to the stack user’s home directory:

[stack@director ~]$ cp \
  /usr/share/python-tripleoclient/undercloud.conf.sample \
  ~/undercloud.conf

2. Edit the undercloud.conf file. This file contains settings to configure your undercloud. If you
omit or comment out a parameter, the undercloud installation uses the default value.

3.2. DIRECTOR CONFIGURATION PARAMETERS

The following list contains information about parameters for configuring the undercloud.conf file. Keep
all parameters within their relevant sections to avoid errors.

Defaults

The following parameters are defined in the [DEFAULT] section of the undercloud.conf file:

additional_architectures

A list of additional (kernel) architectures that an overcloud supports. Currently the overcloud
supports ppc64le architecture.

NOTE

When enabling support for ppc64le, you must also set ipxe_enabled to False

certificate_generation_ca

The certmonger nickname of the CA that signs the requested certificate. Use this option only if you
have set the generate_service_certificate parameter. If you select the local CA, certmonger
extracts the local CA certificate to /etc/pki/ca-trust/source/anchors/cm-local-ca.pem and adds the
certificate to the trust chain.

clean_nodes

Defines whether to wipe the hard drive between deployments and after introspection.

cleanup

Cleanup temporary files. Set this to False to leave the temporary files used during deployment in
place after the command is run. This is useful for debugging the generated files or if errors occur.

container_cli

CHAPTER 3. INSTALLING THE UNDERCLOUD WITH CONTAINERS

13



The CLI tool for container management. Leave this parameter set to podman since Red Hat
Enterprise Linux 8 only supports podman.

container_healthcheck_disabled

Disables containerized service health checks. It is recommended to keep health checks enabled and
leave this option set to false.

container_images_file

Heat environment file with container image information. This can either be:

Parameters for all required container images

Or the ContainerImagePrepare parameter to drive the required image preparation. Usually
the file containing this parameter is named containers-prepare-parameter.yaml.

container_insecure_registries

A list of insecure registries for podman to use. Use this parameter if you want to pull images from
another source, such as a private container registry. In most cases, podman has the certificates to
pull container images from either the Red Hat Container Catalog or from your Satellite server if the
undercloud is registered to Satellite.

container_registry_mirror

An optional registry-mirror configured that podman uses.

custom_env_files

Additional environment file to add to the undercloud installation.

deployment_user

The user installing the undercloud. Leave this parameter unset to use the current default user
(stack).

discovery_default_driver

Sets the default driver for automatically enrolled nodes. Requires enable_node_discovery enabled
and you must include the driver in the enabled_hardware_types list.

enable_ironic; enable_ironic_inspector; enable_mistral; enable_tempest; enable_validations;
enable_zaqar

Defines the core services to enable for director. Leave these parameters set to true.

enable_node_discovery

Automatically enroll any unknown node that PXE-boots the introspection ramdisk. New nodes use
the fake_pxe driver as a default but you can set discovery_default_driver to override. You can also
use introspection rules to specify driver information for newly enrolled nodes.

enable_novajoin

Defines whether to install the novajoin metadata service in the Undercloud.

enable_routed_networks

Defines whether to enable support for routed control plane networks.

enable_swift_encryption

Defines whether to enable Swift encryption at-rest.

enable_telemetry

Defines whether to install OpenStack Telemetry services (gnocchi, aodh, panko) in the undercloud.
Set enable_telemetry parameter to true if you want to install and configure telemetry services
automatically. The default value is false, which disables telemetry on the undercloud. This parameter
is required if using other products that consume metrics data, such as Red Hat CloudForms.

enabled_hardware_types

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

14



A list of hardware types to enable for the undercloud.

generate_service_certificate

Defines whether to generate an SSL/TLS certificate during the undercloud installation, which is used
for the undercloud_service_certificate parameter. The undercloud installation saves the resulting
certificate /etc/pki/tls/certs/undercloud-[undercloud_public_vip].pem. The CA defined in the 
certificate_generation_ca parameter signs this certificate.

heat_container_image

URL for the heat container image to use. Leave unset.

heat_native

Use native heat templates. Leave as true.

hieradata_override

Path to hieradata override file that configures Puppet hieradata on the director, providing custom
configuration to services beyond the undercloud.conf parameters. If set, the undercloud installation
copies this file to the /etc/puppet/hieradata directory and sets it as the first file in the hierarchy. See
Configuring hieradata on the undercloud for details on using this feature.

inspection_extras

Defines whether to enable extra hardware collection during the inspection process. This parameter
requires python-hardware or python-hardware-detect package on the introspection image.

inspection_interface

The bridge the director uses for node introspection. This is a custom bridge that the director
configuration creates. The LOCAL_INTERFACE attaches to this bridge. Leave this as the default 
br-ctlplane.

inspection_runbench

Runs a set of benchmarks during node introspection. Set this parameter to true to enable the
benchmarks. This option is necessary if you intend to perform benchmark analysis when inspecting
the hardware of registered nodes.

ipa_otp

Defines the one time password to register the Undercloud node to an IPA server. This is required
when enable_novajoin is enabled.

ipxe_enabled

Defines whether to use iPXE or standard PXE. The default is true, which enables iPXE. Set to false
to set to standard PXE.

local_interface

The chosen interface for the director’s Provisioning NIC. This is also the device the director uses for
DHCP and PXE boot services. Change this value to your chosen device. To see which device is
connected, use the ip addr command. For example, this is the result of an ip addr command:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP qlen 
1000
    link/ether 52:54:00:75:24:09 brd ff:ff:ff:ff:ff:ff
    inet 192.168.122.178/24 brd 192.168.122.255 scope global dynamic eth0
       valid_lft 3462sec preferred_lft 3462sec
    inet6 fe80::5054:ff:fe75:2409/64 scope link
       valid_lft forever preferred_lft forever
3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noop state DOWN
    link/ether 42:0b:c2:a5:c1:26 brd ff:ff:ff:ff:ff:ff

In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently not

CHAPTER 3. INSTALLING THE UNDERCLOUD WITH CONTAINERS

15

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/director_installation_and_usage/index#configuring-hieradata-on-the-undercloud


In this example, the External NIC uses eth0 and the Provisioning NIC uses eth1, which is currently not
configured. In this case, set the local_interface to eth1. The configuration script attaches this
interface to a custom bridge defined with the inspection_interface parameter.

local_ip

The IP address defined for the director’s Provisioning NIC. This is also the IP address that the
director uses for DHCP and PXE boot services. Leave this value as the default 192.168.24.1/24
unless you use a different subnet for the Provisioning network, for example, if it conflicts with an
existing IP address or subnet in your environment.

local_mtu

MTU to use for the local_interface. Do not exceed 1500 for the undercloud.

local_subnet

The local subnet to use for PXE boot and DHCP interfaces. The local_ip address should reside in
this subnet. The default is ctlplane-subnet.

net_config_override

Path to network configuration override template. If you set this parameter, the undercloud uses a
JSON format template to configure the networking with os-net-config. The undercloud ignores the
network parameters set in undercloud.conf. See /usr/share/python-
tripleoclient/undercloud.conf.sample for an example.

networks_file

Networks file to override for heat.

output_dir

Directory to output state, processed heat templates, and Ansible deployment files.

overcloud_domain_name

The DNS domain name to use when deploying the overcloud.

NOTE

When configuring the overcloud, the CloudDomain parameter must be set to a
matching value. Set this parameter in an environment file when you configure your
overcloud.

roles_file

The roles file to override for undercloud installation. It is highly recommended to leave unset so that
the director installation uses the default roles file.

scheduler_max_attempts

Maximum number of times the scheduler attempts to deploy an instance. This value must be greater
or equal to the number of bare metal nodes that you expect to deploy at once to work around
potential race condition when scheduling.

service_principal

The Kerberos principal for the service using the certificate. Use this parameter only if your CA
requires a Kerberos principal, such as in FreeIPA.

subnets

List of routed network subnets for provisioning and introspection. See Subnets for more information.
The default value includes only the ctlplane-subnet subnet.

templates

Heat templates file to override.

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

16



undercloud_admin_host

The IP address or hostname defined for director Admin API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_debug

Sets the log level of undercloud services to DEBUG. Set this value to true to enable.

undercloud_enable_selinux

Enable or disable SELinux during the deployment. It is highly recommended to leave this value set to 
true unless you are debugging an issue.

undercloud_hostname

Defines the fully qualified host name for the undercloud. If set, the undercloud installation configures
all system host name settings. If left unset, the undercloud uses the current host name, but the user
must configure all system host name settings appropriately.

undercloud_log_file

The path to a log file to store the undercloud install/upgrade logs. By default, the log file is install-
undercloud.log within the home directory. For example, /home/stack/install-undercloud.log.

undercloud_nameservers

A list of DNS nameservers to use for the undercloud hostname resolution.

undercloud_ntp_servers

A list of network time protocol servers to help synchronize the undercloud date and time.

undercloud_public_host

The IP address or hostname defined for director Public API endpoints over SSL/TLS. The director
configuration attaches the IP address to the director software bridge as a routed IP address, which
uses the /32 netmask.

undercloud_service_certificate

The location and filename of the certificate for OpenStack SSL/TLS communication. Ideally, you
obtain this certificate from a trusted certificate authority. Otherwise, generate your own self-signed
certificate.

undercloud_timezone

Host timezone for the undercloud. If you specify no timezone, director uses the existing timezone
configuration.

undercloud_update_packages

Defines whether to update packages during the undercloud installation.

Subnets

Each provisioning subnet is a named section in the undercloud.conf file. For example, to create a
subnet called ctlplane-subnet, use the following sample in your undercloud.conf file:

[ctlplane-subnet]
cidr = 192.168.24.0/24
dhcp_start = 192.168.24.5
dhcp_end = 192.168.24.24
inspection_iprange = 192.168.24.100,192.168.24.120
gateway = 192.168.24.1
masquerade = true

You can specify as many provisioning networks as necessary to suit your environment.

CHAPTER 3. INSTALLING THE UNDERCLOUD WITH CONTAINERS

17



gateway

The gateway for the overcloud instances. This is the undercloud host, which forwards traffic to the
External network. Leave this as the default 192.168.24.1 unless you use a different IP address for the
director or want to use an external gateway directly.

NOTE

The director configuration also enables IP forwarding automatically using the relevant 
sysctl kernel parameter.

cidr

The network that the director uses to manage overcloud instances. This is the Provisioning network,
which the undercloud neutron service manages. Leave this as the default 192.168.24.0/24 unless you
use a different subnet for the Provisioning network.

masquerade

Defines whether to masquerade the network defined in the cidr for external access. This provides
the Provisioning network with a degree of network address translation (NAT) so that the
Provisioning network has external access through the director.

dhcp_start; dhcp_end

The start and end of the DHCP allocation range for overcloud nodes. Ensure this range contains
enough IP addresses to allocate your nodes.

dhcp_exclude

IP addresses to exclude in the DHCP allocation range.

host_routes

Host routes for the Neutron-managed subnet for the Overcloud instances on this network. This also
configures the host routes for the local_subnet on the undercloud.

inspection_iprange

A range of IP address that the director’s introspection service uses during the PXE boot and
provisioning process. Use comma-separated values to define the start and end of this range. For
example, 192.168.24.100,192.168.24.120. Make sure this range contains enough IP addresses for
your nodes and does not conflict with the range for dhcp_start and dhcp_end.

Modify the values for these parameters to suit your configuration. When complete, save the file.

3.3. INSTALLING THE DIRECTOR

Complete the following procedure to install the director and perform some basic post-installation tasks.

Procedure

1. Run the following command to install the director on the undercloud:

[stack@director ~]$ openstack undercloud install

This launches the director’s configuration script. The director installs additional packages and
configures its services according to the configuration in the undercloud.conf. This script takes
several minutes to complete.

The script generates two files when complete:

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

18



undercloud-passwords.conf - A list of all passwords for the director’s services.

stackrc - A set of initialization variables to help you access the director’s command line
tools.

2. The script also starts all OpenStack Platform service containers automatically. Check the
enabled containers using the following command:

[stack@director ~]$ sudo podman ps

3. To initialize the stack user to use the command line tools, run the following command:

[stack@director ~]$ source ~/stackrc

The prompt now indicates OpenStack commands authenticate and execute against the
undercloud;

(undercloud) [stack@director ~]$

The director installation is complete. You can now use the director’s command line tools.

3.4. PERFORMING A MINOR UPDATE OF A CONTAINERIZED
UNDERCLOUD

The director provides commands to update the packages on the undercloud node. This allows you to
perform a minor update within the current version of your OpenStack Platform environment.

Procedure

1. Log into the director as the stack user.

2. Run dnf to upgrade the director’s main packages:

$ sudo dnf update -y python3-tripleoclient* openstack-tripleo-common openstack-tripleo-
heat-templates

3. The director uses the openstack undercloud upgrade command to update the undercloud
environment. Run the command:

$ openstack undercloud upgrade

4. Wait until the undercloud upgrade process completes.

5. Reboot the undercloud to update the operating system’s kernel and other system packages:

$ sudo reboot

6. Wait until the node boots.

CHAPTER 3. INSTALLING THE UNDERCLOUD WITH CONTAINERS

19



CHAPTER 4. DEPLOYING AND UPDATING AN OVERCLOUD
WITH CONTAINERS

This chapter provides info on how to create a container-based overcloud and keep it updated.

4.1. DEPLOYING AN OVERCLOUD

This procedure demonstrates how to deploy an overcloud with minimum configuration. The result will be
a basic two-node overcloud (1 Controller node, 1 Compute node).

Procedure

1. Source the stackrc file:

$ source ~/stackrc

2. Run the deploy command and include the file containing your overcloud image locations
(usually overcloud_images.yaml):

(undercloud) $ openstack overcloud deploy --templates \
  -e /home/stack/templates/overcloud_images.yaml \
  --ntp-server pool.ntp.org

3. Wait until the overcloud completes deployment.

4.2. UPDATING AN OVERCLOUD

For information on updating a containerized overcloud, see the Keeping Red Hat OpenStack Platform
Updated guide.

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

20

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/keeping_red_hat_openstack_platform_updated/


CHAPTER 5. WORKING WITH CONTAINERIZED SERVICES
This chapter provides some examples of commands to manage containers and how to troubleshoot your
OpenStack Platform containers

5.1. MANAGING CONTAINERIZED SERVICES

OpenStack Platform runs services in containers on the undercloud and overcloud nodes. In certain
situations, you might need to control the individual services on a host. This section contains information
about some common commands you can run on a node to manage containerized services.

Listing containers and images

To list running containers, run the following command:

$ sudo podman ps

To include stopped or failed containers in the command output, add the --all option to the command:

$ sudo podman ps --all

To list container images, run the following command:

$ sudo podman images

Inspecting container properties

To view the properties of a container or container images, use the podman inspect command. For
example, to inspect the keystone container, run the following command:

$ sudo podman inspect keystone

Managing containers with Systemd services

Previous versions of OpenStack Platform managed containers with Docker and its daemon. In
OpenStack Platform 15, the Systemd services interface manages the lifecycle of the containers. Each
container is a service and you run these commands to run specific operations for each container.

NOTE

It is not recommended to use the Podman CLI to stop, start, and restart containers
because Systemd applies a restart policy. Use Systemd service commands instead.

To check a container status, run the systemctl status command:

$ sudo systemctl status tripleo_keystone
● tripleo_keystone.service - keystone container
   Loaded: loaded (/etc/systemd/system/tripleo_keystone.service; enabled; vendor preset: disabled)
   Active: active (running) since Fri 2019-02-15 23:53:18 UTC; 2 days ago
 Main PID: 29012 (podman)
   CGroup: /system.slice/tripleo_keystone.service
           └─29012 /usr/bin/podman start -a keystone

CHAPTER 5. WORKING WITH CONTAINERIZED SERVICES

21



To stop a container, run the systemctl stop command:

$ sudo systemctl stop tripleo_keystone

To start a container, run the systemctl start command:

$ sudo systemctl start tripleo_keystone

To restart a container, run the systemctl restart command:

$ sudo systemctl restart tripleo_keystone

As no daemon monitors the containers status, Systemd automatically restarts most containers in these
situations:

Clean exit code or signal, such as running podman stop command.

Unclean exit code, such as the podman container crashing after a start.

Unclean signals.

Timeout if the container takes more than 1m 30s to start.

For more information about Systemd services, see the systemd.service documentation.

NOTE

Any changes to the service configuration files within the container revert after restarting
the container. This is because the container regenerates the service configuration based
on files on the node’s local file system in /var/lib/config-data/puppet-generated/. For
example, if you edit /etc/keystone/keystone.conf within the keystone container and
restart the container, the container regenerates the configuration using /var/lib/config-
data/puppet-generated/keystone/etc/keystone/keystone.conf on the node’s local file
system, which overwrites any the changes made within the container before the restart.

Monitoring podman containers with Systemd timers

The Systemd timers interface manages container health checks. Each container has a timer that runs a
service unit that executes health check scripts.

To list all OpenStack Platform containers timers, run the systemctl list-timers command and limit the
output to lines containing tripleo:

$ sudo systemctl list-timers | grep tripleo
Mon 2019-02-18 20:18:30 UTC  1s left       Mon 2019-02-18 20:17:26 UTC  1min 2s ago  
tripleo_nova_metadata_healthcheck.timer            tripleo_nova_metadata_healthcheck.service
Mon 2019-02-18 20:18:33 UTC  4s left       Mon 2019-02-18 20:17:03 UTC  1min 25s ago 
tripleo_mistral_engine_healthcheck.timer           tripleo_mistral_engine_healthcheck.service
Mon 2019-02-18 20:18:34 UTC  5s left       Mon 2019-02-18 20:17:23 UTC  1min 5s ago  
tripleo_keystone_healthcheck.timer                 tripleo_keystone_healthcheck.service
Mon 2019-02-18 20:18:35 UTC  6s left       Mon 2019-02-18 20:17:13 UTC  1min 15s ago 
tripleo_memcached_healthcheck.timer                tripleo_memcached_healthcheck.service
(...)

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

22

https://www.freedesktop.org/software/systemd/man/systemd.service.html


To check the status of a specific container timer, run the systemctl status command for the
healthcheck service:

$ sudo systemctl status tripleo_keystone_healthcheck.service
● tripleo_keystone_healthcheck.service - keystone healthcheck
   Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.service; disabled; vendor 
preset: disabled)
   Active: inactive (dead) since Mon 2019-02-18 20:22:46 UTC; 22s ago
  Process: 115581 ExecStart=/usr/bin/podman exec keystone /openstack/healthcheck (code=exited, 
status=0/SUCCESS)
 Main PID: 115581 (code=exited, status=0/SUCCESS)

Feb 18 20:22:46 undercloud.localdomain systemd[1]: Starting keystone healthcheck...
Feb 18 20:22:46 undercloud.localdomain podman[115581]: {"versions": {"values": [{"status": "stable", 
"updated": "2019-01-22T00:00:00Z", "..."}]}]}}
Feb 18 20:22:46 undercloud.localdomain podman[115581]: 300 192.168.24.1:35357 0.012 seconds
Feb 18 20:22:46 undercloud.localdomain systemd[1]: Started keystone healthcheck.

To stop, start, restart, and show the status of a container timer, run the relevant systemctl command
against the .timer Systemd resource. For example, to check the status of the 
tripleo_keystone_healthcheck.timer resource, run the following command:

$ sudo systemctl status tripleo_keystone_healthcheck.timer
● tripleo_keystone_healthcheck.timer - keystone container healthcheck
   Loaded: loaded (/etc/systemd/system/tripleo_keystone_healthcheck.timer; enabled; vendor preset: 
disabled)
   Active: active (waiting) since Fri 2019-02-15 23:53:18 UTC; 2 days ago

If the healthcheck service is disabled but the timer for that service is present and enabled, it means that
the check is currently timed out, but will be run according to timer. There is always a possibility to start
the check manually.

NOTE

The podman ps command does not show the container health status.

Checking container logs

OpenStack Platform 15 introduces a new logging directory: /var/log/containers/stdout. It contains all
the containers standard output (stdout) and standard errors (stderr) consolidated in one single file per
container.

Paunch and the container-puppet.py script configure podman containers to push their outputs to the 
/var/log/containers/stdout directory, which creates a collection of all logs, even for the deleted
containers, such as container-puppet-* containers.

The host also applies log rotation to this directory, which prevents huge files and disk space issues.

In case a container is replaced, the new one outputs to the same log file, since podman is instructed to
use the container name instead of container ID.

You can also check the logs for a containerized service using the podman logs command. For example,
to view the logs for the keystone container, run the following command:

$ sudo podman logs keystone

CHAPTER 5. WORKING WITH CONTAINERIZED SERVICES

23



Accessing containers

To enter the shell for a containerized service, use the podman exec command to launch /bin/bash. For
example, to enter the shell for the keystone container, run the following command:

$ sudo podman exec -it keystone /bin/bash

To enter the shell for the keystone container as the root user, run the following command:

$ sudo podman exec --user 0 -it <NAME OR ID> /bin/bash

To exit from the container, run the following command:

# exit

5.2. TROUBLESHOOTING CONTAINERIZED SERVICES

If a containerized service fails during or after overcloud deployment, use the following recommendations
to determine the root cause for the failure:

NOTE

Before running these commands, check that you are logged into an overcloud node and
not running these commands on the undercloud.

Checking the container logs

Each container retains standard output from its main process. This output acts as a log to help
determine what actually occurs during a container run. For example, to view the log for the keystone
container, use the following command:

$ sudo podman logs keystone

In most cases, this log provides the cause of a container’s failure.

Inspecting the container

In some situations, you might need to verify information about a container. For example, use the
following command to view keystone container data:

$ sudo podman inspect keystone

This provides a JSON object containing low-level configuration data. You can pipe the output to the jq
command to parse specific data. For example, to view the container mounts for the keystone container,
run the following command:

$ sudo podman inspect keystone | jq .[0].Mounts

You can also use the --format option to parse data to a single line, which is useful for running commands
against sets of container data. For example, to recreate the options used to run the keystone container,
use the following inspect command with the --format option:

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

24



$ sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range .Mounts}} -v 
{{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}' keystone

NOTE

The --format option uses Go syntax to create queries.

Use these options in conjunction with the podman run command to recreate the container for
troubleshooting purposes:

$ OPTIONS=$( sudo podman inspect --format='{{range .Config.Env}} -e "{{.}}" {{end}} {{range 
.Mounts}} -v {{.Source}}:{{.Destination}}{{if .Mode}}:{{.Mode}}{{end}}{{end}} -ti {{.Config.Image}}' 
keystone )
$ sudo podman run --rm $OPTIONS /bin/bash

Running commands in the container

In some cases, you might need to obtain information from within a container through a specific Bash
command. In this situation, use the following podman command to execute commands within a running
container. For example, to run a command in the keystone container:

$ sudo podman exec -ti keystone <COMMAND>

NOTE

The -ti options run the command through an interactive pseudoterminal.

Replace <COMMAND> with your desired command. For example, each container has a health check
script to verify the service connection. You can run the health check script for keystone with the
following command:

$ sudo podman exec -ti keystone /openstack/healthcheck

To access the container’s shell, run podman exec using /bin/bash as the command:

$ sudo podman exec -ti keystone /bin/bash

Exporting a container

When a container fails, you might need to investigate the full contents of the file. In this case, you can
export the full file system of a container as a tar archive. For example, to export the keystone
container’s file system, run the following command:

$ sudo podman export keystone -o keystone.tar

This command create the keystone.tar archive, which you can extract and explore.

CHAPTER 5. WORKING WITH CONTAINERIZED SERVICES

25



CHAPTER 6. COMPARING SYSTEMD SERVICES TO
CONTAINERIZED SERVICES

This chapter provides some reference material to show how containerized services differ from Systemd
services.

6.1. SYSTEMD SERVICES AND CONTAINERIZED SERVICES

The following table shows the correlation between Systemd-based services and the podman containers
controlled with the Systemd services.

Component Systemd service Containers

OpenStack
Image Storage
(glance)

tripleo_glance_api.service glance_api

HAProxy tripleo_haproxy.service haproxy

OpenStack
Orchestration
(heat)

tripleo_heat_api.service

tripleo_heat_api_cfn.service

tripleo_heat_api_cron.service

tripleo_heat_engine.service

heat_api

heat_api_cfn

heat_api_cron

heat_engine

OpenStack
Bare Metal
(ironic)

tripleo_ironic_api.service

tripleo_ironic_conductor.service

tripleo_ironic_inspector.service

tripleo_ironic_inspector_dnsmasq.service

tripleo_ironic_neutron_agent.service

tripleo_ironic_pxe_http.service

tripleo_ironic_pxe_tftp.service

tripleo_iscsid.service

ironic_api

ironic_conductor

ironic_inspector

ironic_inspector_dnsmasq

ironic_neutron_agent

ironic_pxe_http

ironic_pxe_tftp

iscsid

Keepalived tripleo_keepalived.service keepalived

OpenStack
Identity
(keystone)

tripleo_keystone.service

tripleo_keystone_cron.service

keystone

keystone_cron

Logrotate tripleo_logrotate_crond.service logrotate_crond

Memcached tripleo_memcached.service memcached

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

26



OpenStack
Workflow
(mistral)

tripleo_mistral_api.service

tripleo_mistral_engine.service

tripleo_mistral_event_engine.service

tripleo_mistral_executor.service

mistral_api

mistral_engine

mistral_event_engine

mistral_executor

MySQL tripleo_mysql.service mysql

OpenStack
Networking
(neutron)

tripleo_neutron_api.service

tripleo_neutron_dhcp.service

tripleo_neutron_l3_agent.service

tripleo_neutron_ovs_agent.service

neutron-dnsmasq-qdhcp-
[UUID]

neutron_api

neutron_dhcp

neutron_l3_agent

neutron_ovs_agent

OpenStack
Compute
(nova)

tripleo_nova_api.service

tripleo_nova_api_cron.service

tripleo_nova_compute.service

tripleo_nova_conductor.service

tripleo_nova_metadata.service

tripleo_nova_placement.service

tripleo_nova_scheduler.service

nova_api

nova_api_cron

nova_compute

nova_conductor

nova_metadata

nova_placement

nova_scheduler

RabbitMQ tripleo_rabbitmq.service rabbitmq

OpenStack
Object Storage
(swift)

tripleo_swift_account_reaper.service

tripleo_swift_account_server.service

tripleo_swift_container_server.service

tripleo_swift_container_updater.service

tripleo_swift_object_expirer.service

tripleo_swift_object_server.service

tripleo_swift_object_updater.service

tripleo_swift_proxy.service

tripleo_swift_rsync.service

swift_account_reaper

swift_account_server

swift_container_server

swift_container_updater

swift_object_expirer

swift_object_server

swift_object_updater

swift_proxy

swift_rsync

Component Systemd service Containers

CHAPTER 6. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

27



OpenStack
Messaging
(zaqar)

tripleo_zaqar.service

tripleo_zaqar_websocket.service

zaqar

zaqar_websocket

Component Systemd service Containers

6.2. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG
LOCATIONS

The following table shows Systemd-based OpenStack logs and their equivalents for containers. All
container-based log locations are available on the physical host and are mounted to the container.

OpenStack service Systemd service logs Container logs

aodh /var/log/aodh/ /var/log/containers/aodh/

/var/log/containers/httpd/aod
h-api/

ceilometer /var/log/ceilometer/ /var/log/containers/ceilomete
r/

cinder /var/log/cinder/ /var/log/containers/cinder/

/var/log/containers/httpd/cin
der-api/

glance /var/log/glance/ /var/log/containers/glance/

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

28



gnocchi /var/log/gnocchi/ /var/log/containers/gnocchi/

/var/log/containers/httpd/gno
cchi-api/

heat /var/log/heat/ /var/log/containers/heat/

/var/log/containers/httpd/hea
t-api/

/var/log/containers/httpd/hea
t-api-cfn/

horizon /var/log/horizon/ /var/log/containers/horizon/

/var/log/containers/httpd/hori
zon/

keystone /var/log/keystone/ /var/log/containers/keystone

/var/log/containers/httpd/key
stone/

databases /var/log/mariadb/

/var/log/mongodb/

/var/log/mysqld.log

/var/log/containers/mysql/

neutron /var/log/neutron/ /var/log/containers/neutron/

/var/log/containers/httpd/neu
tron-api/

nova /var/log/nova/ /var/log/containers/nova/

/var/log/containers/httpd/nov
a-api/

/var/log/containers/httpd/nov
a-placement/

panko  /var/log/containers/panko/

/var/log/containers/httpd/pan
ko-api/

rabbitmq /var/log/rabbitmq/ /var/log/containers/rabbitmq/

redis /var/log/redis/ /var/log/containers/redis/

OpenStack service Systemd service logs Container logs

CHAPTER 6. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

29



swift /var/log/swift/ /var/log/containers/swift/

OpenStack service Systemd service logs Container logs

6.3. SYSTEMD CONFIGURATION VS CONTAINERIZED
CONFIGURATION

The following table shows Systemd-based OpenStack configuration and their equivalents for
containers. All container-based configuration locations are available on the physical host, are mounted
to the container, and are merged (via kolla) into the configuration within each respective container.

OpenStack service Systemd service configuration Container configuration

aodh /etc/aodh/ /var/lib/config-data/puppet-
generated/aodh/

ceilometer /etc/ceilometer/ /var/lib/config-data/puppet-
generated/ceilometer/etc/ceil
ometer/

cinder /etc/cinder/ /var/lib/config-data/puppet-
generated/cinder/etc/cinder/

glance /etc/glance/ /var/lib/config-data/puppet-
generated/glance_api/etc/gla
nce/

gnocchi /etc/gnocchi/ /var/lib/config-data/puppet-
generated/gnocchi/etc/gnocc
hi/

haproxy /etc/haproxy/ /var/lib/config-data/puppet-
generated/haproxy/etc/hapro
xy/

heat /etc/heat/ /var/lib/config-data/puppet-
generated/heat/etc/heat/

/var/lib/config-data/puppet-
generated/heat_api/etc/heat/

/var/lib/config-data/puppet-
generated/heat_api_cfn/etc/h
eat/

horizon /etc/openstack-dashboard/ /var/lib/config-data/puppet-
generated/horizon/etc/opens
tack-dashboard/

Red Hat OpenStack Platform 15 Transitioning to Containerized Services

30



keystone /etc/keystone/ /var/lib/config-data/puppet-
generated/keystone/etc/keys
tone/

databases /etc/my.cnf.d/

/etc/my.cnf

/var/lib/config-data/puppet-
generated/mysql/etc/my.cnf.
d/

neutron /etc/neutron/ /var/lib/config-data/puppet-
generated/neutron/etc/neutr
on/

nova /etc/nova/ /var/lib/config-data/puppet-
generated/nova/etc/nova/

/var/lib/config-data/puppet-
generated/nova_placement/e
tc/nova/

panko  /var/lib/config-data/puppet-
generated/panko/etc/panko

rabbitmq /etc/rabbitmq/ /var/lib/config-data/puppet-
generated/rabbitmq/etc/rabbi
tmq/

redis /etc/redis/

/etc/redis.conf

/var/lib/config-data/puppet-
generated/redis/etc/redis/

/var/lib/config-data/puppet-
generated/redis/etc/redis.co
nf

swift /etc/swift/ /var/lib/config-data/puppet-
generated/swift/etc/swift/

/var/lib/config-data/puppet-
generated/swift_ringbuilder/
etc/swift/

OpenStack service Systemd service configuration Container configuration

CHAPTER 6. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES

31


	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. CONTAINERIZED SERVICES AND KOLLA

	CHAPTER 2. OBTAINING AND MODIFYING CONTAINER IMAGES
	2.1. PREPARING CONTAINER IMAGES
	2.2. CONTAINER IMAGE PREPARATION PARAMETERS
	2.3. LAYERING IMAGE PREPARATION ENTRIES
	2.4. MODIFYING IMAGES DURING PREPARATION
	2.5. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
	2.6. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
	2.7. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE
	2.8. PREPARING A SATELLITE SERVER FOR CONTAINER IMAGES

	CHAPTER 3. INSTALLING THE UNDERCLOUD WITH CONTAINERS
	3.1. CONFIGURING THE DIRECTOR
	3.2. DIRECTOR CONFIGURATION PARAMETERS
	3.3. INSTALLING THE DIRECTOR
	3.4. PERFORMING A MINOR UPDATE OF A CONTAINERIZED UNDERCLOUD

	CHAPTER 4. DEPLOYING AND UPDATING AN OVERCLOUD WITH CONTAINERS
	4.1. DEPLOYING AN OVERCLOUD
	4.2. UPDATING AN OVERCLOUD

	CHAPTER 5. WORKING WITH CONTAINERIZED SERVICES
	5.1. MANAGING CONTAINERIZED SERVICES
	5.2. TROUBLESHOOTING CONTAINERIZED SERVICES

	CHAPTER 6. COMPARING SYSTEMD SERVICES TO CONTAINERIZED SERVICES
	6.1. SYSTEMD SERVICES AND CONTAINERIZED SERVICES
	6.2. SYSTEMD LOG LOCATIONS VS CONTAINERIZED LOG LOCATIONS
	6.3. SYSTEMD CONFIGURATION VS CONTAINERIZED CONFIGURATION


