
Red Hat OpenStack Platform 15

Networking with Open Virtual Network

OpenStack Networking with OVN

Last Updated: 2020-06-17

Red Hat OpenStack Platform 15 Networking with Open Virtual Network

OpenStack Networking with OVN

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

A Cookbook for using OVN for OpenStack Networking Tasks.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OPEN VIRTUAL NETWORK (OVN)
1.1. QUICK STEPS: DEPLOYING CONTAINERIZED OVN ON THE OVERCLOUD
1.2. OVN ARCHITECTURE

CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT
2.1. THE OVN-CONTROLLER ON COMPUTE NODES
2.2. THE OVN COMPOSABLE SERVICE
2.3. HIGH AVAILABILITY WITH PACEMAKER AND DVR
2.4. LAYER 3 HIGH AVAILABILITY WITH OVN

CHAPTER 3. DEPLOYING OVN WITH DIRECTOR
3.1. DEPLOYING OVN WITH DVR
3.2. DEPLOYING THE OVN METADATA AGENT ON COMPUTE NODES

3.2.1. Troubleshooting Metadata issues
3.3. DEPLOYING INTERNAL DNS WITH OVN

CHAPTER 4. MONITORING OVN
4.1. MONITORING OVN LOGICAL FLOWS
4.2. MONITORING OPENFLOWS

3
3
3

5
5
5
5
6

8
8
8
9
9

10
10
12

Table of Contents

1

Red Hat OpenStack Platform 15 Networking with Open Virtual Network

2

CHAPTER 1. OPEN VIRTUAL NETWORK (OVN)
Open Virtual Network (OVN) is an Open vSwitch-based software-defined networking (SDN) solution
for supplying network services to instances. OVN provides platform-agnostic support for the full
OpenStack Networking API. OVN allows you to programmatically connect groups of guest instances
into private L2 and L3 networks. OVN uses a standard approach to virtual networking that is capable of
extending to other Red Hat platforms and solutions.

This release of the Red Hat OpenStack Platform (RHOSP) does not provide a supported migration from
the ML2/OVS mechanism driver to the ML2/OVN mechanism driver. This RHPOSP release does not
support the OpenStack community migration strategy. Migration support is planned for a future RHOSP
release.

NOTE

The minimum Open vSwitch (OVS) version required is OVS 2.9.

OVN uses Python 3.6 packages by default.

This section describes the steps required to deploy OVN using director.

NOTE

OVN is supported only in an HA environment. We recommend that you deploy OVN with
distributed virtual routing (DVR).

1.1. QUICK STEPS: DEPLOYING CONTAINERIZED OVN ON THE
OVERCLOUD

If you are already familiar with OVN, you can use this quick step to deploy OVN with DVR in an HA
configuration on the overcloud:

$ openstack overcloud deploy \
 --templates /usr/share/openstack-tripleo-heat-templates \
 ...
-e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-dvr-ha.yaml

1.2. OVN ARCHITECTURE

The OVN architecture replaces the OVS ML2 plugin with the OVN Modular Layer 2 (ML2) plugin to
support the Networking API. OVN provides robust networking services for the Red Hat OpenStack
platform.

The OVN architecture consists of the following components and services:

OVN ML2 plugin

Translates the OpenStack-specific networking configuration into the platform-agnostic OVN logical
networking configuration. This plugin typically runs on the Controller node.

OVN Northbound (NB) database (ovn-nb)

Stores the logical OVN networking configuration from the OVN ML2 plugin. This database typically
runs on the Controller node and listens on TCP port 6641.

CHAPTER 1. OPEN VIRTUAL NETWORK (OVN)

3

OVN Northbound service (ovn-northd)

Converts the logical networking configuration from the OVN NB database to the logical data path
flows and populates these on the OVN Southbound database. This service typically runs on the
Controller node.

OVN Southbound (SB) database (ovn-sb)

Stores the converted logical data path flows. This database typically runs on the Controller node and
listens on TCP port 6642.

OVN controller (ovn-controller)

Connects to the OVN SB database and acts as the open vSwitch controller to control and monitor
network traffic. Runs on all Compute and gateway nodes where
OS::Tripleo::Services::OVNController is defined.

OVN metadata agent (ovn-metadata-agent)

Spawns the haproxy instances for managing the OVS interfaces, network namespaces and HAProxy
processes used to proxy metadata API requests. Runs on all Compute and gateway nodes where
OS::TripleO::Services::OVNMetadataAgent is defined.

Red Hat OpenStack Platform 15 Networking with Open Virtual Network

4

CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT
Deploy OVN in HA deployments only. We recommend you deploy with distributed virtual routing (DVR)
enabled.

NOTE

To use OVN, your director deployment must use Generic Network Virtualization
Encapsulation (Geneve), and not VXLAN. Geneve allows OVN to identify the network
using the 24-bit Virtual Network Identifier (VNI) field and an additional 32-bit Type
Length Value (TLV) to specify both the source and destination logical ports. You should
account for this larger protocol header when you determine your MTU setting.

DVR HA with OVN

Deploy OVN with DVR in an HA environment. OVN is supported only in an HA environment. The
neutron-ovn-dvr-ha.yaml environment file configures the required DVR-specific parameters for
deployments using OVN in an HA environment.

2.1. THE OVN-CONTROLLER ON COMPUTE NODES

The ovn-controller service runs on each Compute node and connects to the OVN SB database server
to retrieve the logical flows. The ovn-controller translates these logical flows into physical OpenFlow
flows and adds the flows to the OVS bridge (br-int). To communicate with ovs-vswitchd and install the
OpenFlow flows, the ovn-controller connects to the local ovsdb-server (that hosts conf.db) using the
UNIX socket path that was passed when ovn-controller was started (for example
unix:/var/run/openvswitch/db.sock).

The ovn-controller service expects certain key-value pairs in the external_ids column of the
Open_vSwitch table; puppet-ovn uses puppet-vswitch to populate these fields. Below are the key-
value pairs that puppet-vswitch configures in the external_ids column:

hostname=<HOST NAME>
ovn-encap-ip=<IP OF THE NODE>
ovn-encap-type=geneve
ovn-remote=tcp:OVN_DBS_VIP:6642

2.2. THE OVN COMPOSABLE SERVICE

The director has a composable service for OVN named ovn-dbs with two profiles: the base profile and
the pacemaker HA profile. The OVN northbound and southbound databases are hosted by the ovsdb-
server service. Similarly, the ovsdb-server process runs alongside ovs-vswitchd to host the OVS
database (conf.db).

NOTE

The schema file for the NB database is located in /usr/share/openvswitch/ovn-
nb.ovsschema , and the SB database schema file is in /usr/share/openvswitch/ovn-
sb.ovsschema.

2.3. HIGH AVAILABILITY WITH PACEMAKER AND DVR

In addition to the required HA profile, Red Hat recommends that you deploy OVN with DVR to ensure

CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT

5

In addition to the required HA profile, Red Hat recommends that you deploy OVN with DVR to ensure
the availability of networking services. With the HA profile enabled, the OVN database servers start on
all the Controllers, and pacemaker then selects one controller to serve in the master role.

The ovsdb-server service does not currently support active-active mode. It does support HA with the
master-slave mode, which is managed by Pacemaker using the resource agent Open Cluster Framework
(OCF) script. Having ovsdb-server run in master mode allows write access to the database, while all the
other slave ovsdb-server services replicate the database locally from the master, and do not allow write
access.

The YAML file for this profile is the tripleo-heat-templates/environments/services/neutron-ovn-dvr-
ha.yaml file. When enabled, the OVN database servers are managed by Pacemaker, and puppet-tripleo
creates a pacemaker OCF resource named ovn:ovndb-servers.

The OVN database servers are started on each Controller node, and the controller owning the virtual IP
address (OVN_DBS_VIP) runs the OVN DB servers in master mode. The OVN ML2 mechanism driver
and ovn-controller then connect to the database servers using the OVN_DBS_VIP value. In the event
of a failover, Pacemaker moves the virtual IP address (OVN_DBS_VIP) to another controller, and also
promotes the OVN database server running on that node to master.

2.4. LAYER 3 HIGH AVAILABILITY WITH OVN

OVN supports Layer 3 high availability (L3 HA) without any special configuration. OVN automatically
schedules the router port to all available gateway nodes that can act as an L3 gateway on the specified
external network. OVN L3 HA uses the gateway_chassis column in the OVN Logical_Router_Port
table. Most functionality is managed by OpenFlow rules with bundled active_passive outputs. The ovn-
controller handles the Address Resolution Protocol (ARP) responder and router enablement and
disablement. Gratuitous ARPs for FIPs and router external addresses are also periodically sent by the
ovn-controller.

NOTE

L3HA uses OVN to balance the routers back to the original gateway nodes to avoid any
nodes becoming a bottleneck.

BFD monitoring

OVN uses the Bidirectional Forwarding Detection (BFD) protocol to monitor the availability of the
gateway nodes. This protocol is encapsulated on top of the Geneve tunnels established from node to
node.

Each gateway node monitors all the other gateway nodes in a star topology in the deployment. Gateway
nodes also monitor the compute nodes to let the gateways enable and disable routing of packets and
ARP responses and announcements.

Each compute node uses BFD to monitor each gateway node and automatically steers external traffic,
such as source and destination Network Address Translation (SNAT and DNAT), through the active
gateway node for a given router. Compute nodes do not need to monitor other compute nodes.

NOTE

External network failures are not detected as would happen with an ML2-OVS
configuration.

L3 HA for OVN supports the following failure modes:

Red Hat OpenStack Platform 15 Networking with Open Virtual Network

6

The gateway node becomes disconnected from the network (tunneling interface).

ovs-vswitchd stops (ovs-switchd is responsible for BFD signaling)

ovn-controller stops (ovn-controller removes itself as a registered node).

NOTE

This BFD monitoring mechanism only works for link failures, not for routing failures.

CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT

7

CHAPTER 3. DEPLOYING OVN WITH DIRECTOR
The following events are triggered when you deploy OVN on the Red Hat OpenStack Platform:

1. Enables the OVN ML2 plugin and generates the necessary configuration options.

2. Deploys the OVN databases and the ovn-northd service on the controller node(s).

3. Deploys ovn-controller on each Compute node.

4. Deploys neutron-ovn-metadata-agent on each Compute node.

3.1. DEPLOYING OVN WITH DVR

NOTE

This guide deploys OVN with DVR in an HA environment.

To deploy OVN with DVR in an HA environment:

1. Verify that the value for OS::TripleO::Compute::Net::SoftwareConfig in the
environments/services/neutron-ovn-dvr-ha.yaml file is the same as the
OS::TripleO::Controller::Net::SoftwareConfig value in use. This can normally be found in the
network environment file in use when deploying the overcloud, for example, in the
environments/net-multiple-nics.yaml file. This creates the appropriate external network
bridge on the Compute node.

NOTE

If customizations have been made to the network configuration of the Compute
node, it may be necessary to add the appropriate configuration to those files
instead.

2. Configure a Networking port for the Compute node on the external network by modifying
OS::TripleO::Compute::Ports::ExternalPort to an appropriate value, such as
OS::TripleO::Compute::Ports::ExternalPort: ../network/ports/external.yaml

3. Include environments/services/neutron-ovn-dvr-ha.yaml as an environment file when deploying
the overcloud. For example:

$ openstack overcloud deploy \
 --templates /usr/share/openstack-tripleo-heat-templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-dvr-
ha.yaml

For production environments (or test environments that require special customization, such as network
isolation or dedicated NICs, you can use the example environments as a guide. Pay special attention to
the bridge mapping type parameters used, for example, by OVS and any reference to external facing
bridges.

3.2. DEPLOYING THE OVN METADATA AGENT ON COMPUTE NODES

Red Hat OpenStack Platform 15 Networking with Open Virtual Network

8

The OVN metadata agent is configured in the tripleo-heat-templates/deployment/ovn/ovn-metadata-
container-puppet.yaml file and included in the default Compute role through
OS::TripleO::Services::OVNMetadataAgent. As such, the OVN metadata agent with default
parameters is deployed as part of the OVN deployment. See Chapter 3, Deploying OVN with director .

OpenStack guest instances access the Networking metadata service available at the link-local IP
address: 169.254.169.254. The neutron-ovn-metadata-agent has access to the host networks where the
Compute metadata API exists. Each HAProxy is in a network namespace that is not able to reach the
appropriate host network. HaProxy adds the necessary headers to the metadata API request and then
forwards the request to the neutron-ovn-metadata-agent over a UNIX domain socket.

The OVN Networking service creates a unique network namespace for each virtual network that enables
the metadata service. Each network accessed by the instances on the Compute node has a
corresponding metadata namespace (ovnmeta-<net_uuid>).

3.2.1. Troubleshooting Metadata issues

You can use metadata namespaces for troubleshooting to access the local instances on the Compute
node. To troubleshoot metadata namespace issues, run the following command as root on the Compute
node:

ip netns exec ovnmeta-fd706b96-a591-409e-83be-33caea824114 ssh
USER@INSTANCE_IP_ADDRESS

USER@INSTANCE_IP_ADDRESS is the user name and IP address for the local instance you want to
troubleshoot.

3.3. DEPLOYING INTERNAL DNS WITH OVN

To deploy internal DNS with OVN:

1. Enable DNS with the NeutronPluginExtensions parameter:

parameter_defaults:
 NeutronPluginExtensions: "dns"

2. Set the DNS domain before you deploy the overcloud:

 NeutronDnsDomain: "mydns-example.org"

3. Deploy the overcloud:

$ openstack overcloud deploy \
 --templates /usr/share/openstack-tripleo-heat-templates \
 ...
 -e /usr/share/openstack-tripleo-heat-templates/environments/services/neutron-ovn-dvr-
ha.yaml

CHAPTER 3. DEPLOYING OVN WITH DIRECTOR

9

CHAPTER 4. MONITORING OVN
You can use the ovn-trace command to monitor and troubleshoot OVN logical flows, and you can use
the ovs-ofctl dump-flows command to monitor and troubleshoot OpenFlows.

4.1. MONITORING OVN LOGICAL FLOWS

OVN uses logical flows that are tables of flows with a priority, match, and actions. These logical flows are
distributed to the ovn-controller running on each Compute node. You can use the ovn-sbctl lflow-list
command on the Controller node to view the full set of logical flows, as shown in this example.

$ ovn-sbctl --db=tcp:172.17.1.10:6642 lflow-list
 Datapath: "sw0" (d7bf4a7b-e915-4502-8f9d-5995d33f5d10) Pipeline: ingress
 table=0 (ls_in_port_sec_l2), priority=100 , match=(eth.src[40]), action=(drop;)
 table=0 (ls_in_port_sec_l2), priority=100 , match=(vlan.present), action=(drop;)
 table=0 (ls_in_port_sec_l2), priority=50 , match=(inport == "sw0-port1" && eth.src ==
{00:00:00:00:00:01}), action=(next;)
 table=0 (ls_in_port_sec_l2), priority=50 , match=(inport == "sw0-port2" && eth.src ==
{00:00:00:00:00:02}), action=(next;)
 table=1 (ls_in_port_sec_ip), priority=0 , match=(1), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port1" && eth.src ==
00:00:00:00:00:01 && arp.sha == 00:00:00:00:00:01), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port1" && eth.src ==
00:00:00:00:00:01 && ip6 && nd && ((nd.sll == 00:00:00:00:00:00 || nd.sll == 00:00:00:00:00:01) ||
((nd.tll == 00:00:00:00:00:00 || nd.tll == 00:00:00:00:00:01)))), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port2" && eth.src ==
00:00:00:00:00:02 && arp.sha == 00:00:00:00:00:02), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=90 , match=(inport == "sw0-port2" && eth.src ==
00:00:00:00:00:02 && ip6 && nd && ((nd.sll == 00:00:00:00:00:00 || nd.sll == 00:00:00:00:00:02) ||
((nd.tll == 00:00:00:00:00:00 || nd.tll == 00:00:00:00:00:02)))), action=(next;)
 table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "sw0-port1" && (arp || nd)), action=
(drop;)
 table=2 (ls_in_port_sec_nd), priority=80 , match=(inport == "sw0-port2" && (arp || nd)), action=
(drop;)
 table=2 (ls_in_port_sec_nd), priority=0 , match=(1), action=(next;)
 table=3 (ls_in_pre_acl), priority=0 , match=(1), action=(next;)
 table=4 (ls_in_pre_lb), priority=0 , match=(1), action=(next;)
 table=5 (ls_in_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)
 table=5 (ls_in_pre_stateful), priority=0 , match=(1), action=(next;)
 table=6 (ls_in_acl), priority=0 , match=(1), action=(next;)
 table=7 (ls_in_qos_mark), priority=0 , match=(1), action=(next;)
 table=8 (ls_in_lb), priority=0 , match=(1), action=(next;)
 table=9 (ls_in_stateful), priority=100 , match=(reg0[1] == 1), action=(ct_commit(ct_label=0/1);
next;)
 table=9 (ls_in_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_lb;)
 table=9 (ls_in_stateful), priority=0 , match=(1), action=(next;)
 table=10(ls_in_arp_rsp), priority=0 , match=(1), action=(next;)
 table=11(ls_in_dhcp_options), priority=0 , match=(1), action=(next;)
 table=12(ls_in_dhcp_response), priority=0 , match=(1), action=(next;)
 table=13(ls_in_l2_lkup), priority=100 , match=(eth.mcast), action=(outport = "_MC_flood";
output;)
 table=13(ls_in_l2_lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:01), action=(outport
= "sw0-port1"; output;)
 table=13(ls_in_l2_lkup), priority=50 , match=(eth.dst == 00:00:00:00:00:02), action=(outport
= "sw0-port2"; output;)

Red Hat OpenStack Platform 15 Networking with Open Virtual Network

10

 Datapath: "sw0" (d7bf4a7b-e915-4502-8f9d-5995d33f5d10) Pipeline: egress
 table=0 (ls_out_pre_lb), priority=0 , match=(1), action=(next;)
 table=1 (ls_out_pre_acl), priority=0 , match=(1), action=(next;)
 table=2 (ls_out_pre_stateful), priority=100 , match=(reg0[0] == 1), action=(ct_next;)
 table=2 (ls_out_pre_stateful), priority=0 , match=(1), action=(next;)
 table=3 (ls_out_lb), priority=0 , match=(1), action=(next;)
 table=4 (ls_out_acl), priority=0 , match=(1), action=(next;)
 table=5 (ls_out_qos_mark), priority=0 , match=(1), action=(next;)
 table=6 (ls_out_stateful), priority=100 , match=(reg0[1] == 1), action=(ct_commit(ct_label=0/1);
next;)
 table=6 (ls_out_stateful), priority=100 , match=(reg0[2] == 1), action=(ct_lb;)
 table=6 (ls_out_stateful), priority=0 , match=(1), action=(next;)
 table=7 (ls_out_port_sec_ip), priority=0 , match=(1), action=(next;)
 table=8 (ls_out_port_sec_l2), priority=100 , match=(eth.mcast), action=(output;)
 table=8 (ls_out_port_sec_l2), priority=50 , match=(outport == "sw0-port1" && eth.dst ==
{00:00:00:00:00:01}), action=(output;)
 table=8 (ls_out_port_sec_l2), priority=50 , match=(outport == "sw0-port2" && eth.dst ==
{00:00:00:00:00:02}), action=(output;)

Key differences between OVN and OpenFlow include:

OVN ports are logical entities that reside somewhere on a network, not physical ports on a single
switch.

OVN gives each table in the pipeline a name in addition to its number. The name describes the
purpose of that stage in the pipeline.

The OVN match syntax supports complex Boolean expressions.

The actions supported in OVN logical flows extend beyond those of OpenFlow. You can
implement higher level features, such as DHCP, in the OVN logical flow syntax.

ovn-trace

The ovn-trace command can simulate how a packet travels through the OVN logical flows, or help you
determine why a packet is dropped. Provide the ovn-trace command with the following parameters:

DATAPATH

The logical switch or logical router where the simulated packet starts.

MICROFLOW

The simulated packet, in the syntax used by the ovn-sb database.

This example displays the --minimal output option on a simulated packet and shows that the packet
reaches its destination:

$ ovn-trace --minimal sw0 'inport == "sw0-port1" && eth.src == 00:00:00:00:00:01 && eth.dst ==
00:00:00:00:00:02'
 # reg14=0x1,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x0000
 output("sw0-port2");

In more detail, the --summary output for this same simulated packet shows the full execution pipeline:

$ ovn-trace --summary sw0 'inport == "sw0-port1" && eth.src == 00:00:00:00:00:01 && eth.dst ==
00:00:00:00:00:02'
reg14=0x1,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x0000

CHAPTER 4. MONITORING OVN

11

ingress(dp="sw0", inport="sw0-port1") {
 outport = "sw0-port2";
 output;
 egress(dp="sw0", inport="sw0-port1", outport="sw0-port2") {
 output;
 /* output to "sw0-port2", type "" */;
 };
};

The example output shows:

The packet enters the sw0 network from the sw0-port1 port and runs the ingress pipeline.

The outport variable is set to sw0-port2 indicating that the intended destination for this packet
is sw0-port2.

The packet is output from the ingress pipeline, which brings it to the egress pipeline for sw0
with the outport variable set to sw0-port2.

The output action is executed in the egress pipeline, which outputs the packet to the current
value of the outport variable, which is sw0-port2.

See the ovn-trace man page for complete details.

4.2. MONITORING OPENFLOWS

You can use ovs-ofctl dump-flows command to monitor the OpenFlow flows on a logical switch in your
network.

$ ovs-ofctl dump-flows br-int
NXST_FLOW reply (xid=0x4):
 cookie=0x0, duration=72.132s, table=0, n_packets=0, n_bytes=0, idle_age=72,
priority=10,in_port=1,dl_src=00:00:00:00:00:01 actions=resubmit(,1)
 cookie=0x0, duration=60.565s, table=0, n_packets=0, n_bytes=0, idle_age=60,
priority=10,in_port=2,dl_src=00:00:00:00:00:02 actions=resubmit(,1)
 cookie=0x0, duration=28.127s, table=0, n_packets=0, n_bytes=0, idle_age=28, priority=0
actions=drop
 cookie=0x0, duration=13.887s, table=1, n_packets=0, n_bytes=0, idle_age=13, priority=0,in_port=1
actions=output:2
 cookie=0x0, duration=4.023s, table=1, n_packets=0, n_bytes=0, idle_age=4, priority=0,in_port=2
actions=output:1

Red Hat OpenStack Platform 15 Networking with Open Virtual Network

12

	Table of Contents
	CHAPTER 1. OPEN VIRTUAL NETWORK (OVN)
	1.1. QUICK STEPS: DEPLOYING CONTAINERIZED OVN ON THE OVERCLOUD
	1.2. OVN ARCHITECTURE

	CHAPTER 2. PLANNING YOUR OVN DEPLOYMENT
	2.1. THE OVN-CONTROLLER ON COMPUTE NODES
	2.2. THE OVN COMPOSABLE SERVICE
	2.3. HIGH AVAILABILITY WITH PACEMAKER AND DVR
	2.4. LAYER 3 HIGH AVAILABILITY WITH OVN

	CHAPTER 3. DEPLOYING OVN WITH DIRECTOR
	3.1. DEPLOYING OVN WITH DVR
	3.2. DEPLOYING THE OVN METADATA AGENT ON COMPUTE NODES
	3.2.1. Troubleshooting Metadata issues

	3.3. DEPLOYING INTERNAL DNS WITH OVN

	CHAPTER 4. MONITORING OVN
	4.1. MONITORING OVN LOGICAL FLOWS
	4.2. MONITORING OPENFLOWS

