
Red Hat OpenStack Platform 15

Advanced Overcloud Customization

Methods for configuring advanced features using Red Hat OpenStack Platform
director

Last Updated: 2021-01-21





Red Hat OpenStack Platform 15 Advanced Overcloud Customization

Methods for configuring advanced features using Red Hat OpenStack Platform director

OpenStack Team
rhos-docs@redhat.com



Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide explains how to configure certain advanced features for a Red Hat OpenStack Platform
enterprise environment using the Red Hat OpenStack Platform Director. This includes features
such as network isolation, storage configuration, SSL communication, and general configuration
methods.



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table of Contents

CHAPTER 1. INTRODUCTION

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES
2.1. HEAT TEMPLATES
2.2. ENVIRONMENT FILES
2.3. CORE OVERCLOUD HEAT TEMPLATES
2.4. PLAN ENVIRONMENT METADATA
2.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
2.6. USING CUSTOMIZED CORE HEAT TEMPLATES
2.7. JINJA2 RENDERING

CHAPTER 3. PARAMETERS
3.1. EXAMPLE 1: CONFIGURING THE TIME ZONE
3.2. EXAMPLE 2: ENABLING NETWORKING DISTRIBUTED VIRTUAL ROUTING (DVR)
3.3. EXAMPLE 3: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
3.4. EXAMPLE 4: ENABLING AND DISABLING PARAMETERS
3.5. EXAMPLE 5: ROLE-BASED PARAMETERS
3.6. IDENTIFYING PARAMETERS TO MODIFY

CHAPTER 4. CONFIGURATION HOOKS
4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
4.7. PUPPET: APPLYING CUSTOM MANIFESTS

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION
5.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE
5.2. RHSMVARS SUB-PARAMETERS
5.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
5.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT ROLES
5.5. SWITCHING TO THE RHSM COMPOSABLE SERVICE
5.6. RHEL-REGISTRATION TO RHSM MAPPINGS
5.7. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
5.8. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES
6.1. SUPPORTED ROLE ARCHITECTURE
6.2. ROLES

6.2.1. Examining the roles_data File
6.2.2. Creating a roles_data File
6.2.3. Supported Custom Roles
6.2.4. Creating a Custom Networker Role with ML2/OVN
6.2.5. Examining Role Parameters
6.2.6. Creating a New Role

6.3. COMPOSABLE SERVICES
6.3.1. Guidelines and Limitations
6.3.2. Examining Composable Service Architecture
6.3.3. Adding and Removing Services from Roles
6.3.4. Enabling Disabled Services

6

7
7
8
9

10
11

12
15

18
18
19
19
19
19

20

22
22
23
25
27
29
30
30

32
32
32
33
34
35
36
37
38

40
40
40
40
41

42
45
45
47
49
49
50
51
52

Table of Contents

1



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.3.5. Creating a Generic Node with No Services

CHAPTER 7. CONTAINERIZED SERVICES
7.1. CONTAINERIZED SERVICE ARCHITECTURE
7.2. CONTAINERIZED SERVICE PARAMETERS
7.3. PREPARING CONTAINER IMAGES
7.4. CONTAINER IMAGE PREPARATION PARAMETERS
7.5. LAYERING IMAGE PREPARATION ENTRIES
7.6. MODIFYING IMAGES DURING PREPARATION
7.7. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
7.8. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
7.9. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

CHAPTER 8. BASIC NETWORK ISOLATION
8.1. NETWORK ISOLATION
8.2. MODIFYING ISOLATED NETWORK CONFIGURATION
8.3. NETWORK INTERFACE TEMPLATES
8.4. DEFAULT NETWORK INTERFACE TEMPLATES
8.5. ENABLING BASIC NETWORK ISOLATION

CHAPTER 9. CUSTOM COMPOSABLE NETWORKS
9.1. COMPOSABLE NETWORKS
9.2. ADDING A COMPOSABLE NETWORK
9.3. INCLUDING A COMPOSABLE NETWORK IN A ROLE
9.4. ASSIGNING OPENSTACK SERVICES TO COMPOSABLE NETWORKS
9.5. ENABLING CUSTOM COMPOSABLE NETWORKS

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES
10.1. CUSTOM NETWORK ARCHITECTURE
10.2. RENDERING DEFAULT NETWORK INTERFACE TEMPLATES FOR CUSTOMIZATION
10.3. NETWORK INTERFACE ARCHITECTURE
10.4. NETWORK INTERFACE REFERENCE
10.5. EXAMPLE NETWORK INTERFACE LAYOUT
10.6. NETWORK INTERFACE TEMPLATE CONSIDERATIONS FOR CUSTOM NETWORKS
10.7. CUSTOM NETWORK ENVIRONMENT FILE
10.8. NETWORK ENVIRONMENT PARAMETERS
10.9. EXAMPLE CUSTOM NETWORK ENVIRONMENT FILE
10.10. ENABLING NETWORK ISOLATION WITH CUSTOM NICS

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION
11.1. CONFIGURING CUSTOM INTERFACES
11.2. CONFIGURING ROUTES AND DEFAULT ROUTES
11.3. CONFIGURING JUMBO FRAMES
11.4. CONFIGURING THE NATIVE VLAN FOR FLOATING IPS
11.5. CONFIGURING THE NATIVE VLAN ON A TRUNKED INTERFACE

CHAPTER 12. NETWORK INTERFACE BONDING
12.1. NETWORK INTERFACE BONDING AND LINK AGGREGATION CONTROL PROTOCOL (LACP)
12.2. OPEN VSWITCH BONDING OPTIONS
12.3. LINUX BONDING OPTIONS
12.4. GENERAL BONDING OPTIONS

CHAPTER 13. CONTROLLING NODE PLACEMENT
13.1. ASSIGNING SPECIFIC NODE IDS
13.2. ASSIGNING CUSTOM HOSTNAMES

53

54
54
54
55
56
59
59
60
60
61

62
62
63
64
65
66

68
68
69
70
71
71

73
73
74
74
75
83
86
87
87
91
91

93
93
94
95
96
96

98
98
98
99

100

102
102
103

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.3. ASSIGNING PREDICTABLE IPS
13.4. ASSIGNING PREDICTABLE VIRTUAL IPS

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS
14.1. INITIALIZING THE SIGNING HOST
14.2. CREATING A CERTIFICATE AUTHORITY
14.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
14.4. CREATING AN SSL/TLS KEY
14.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
14.6. CREATING THE SSL/TLS CERTIFICATE
14.7. ENABLING SSL/TLS
14.8. INJECTING A ROOT CERTIFICATE
14.9. CONFIGURING DNS ENDPOINTS
14.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
14.11. UPDATING SSL/TLS CERTIFICATES

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

15.1. ADD THE UNDERCLOUD TO THE CA
15.2. ADD THE UNDERCLOUD TO IDM
15.3. CONFIGURE OVERCLOUD DNS
15.4. CONFIGURE OVERCLOUD TO USE NOVAJOIN

CHAPTER 16. CONVERTING YOUR EXISTING DEPLOYMENT TO USE TLS
16.1. REQUIREMENTS
16.2. REVIEWING YOUR ENDPOINTS
16.3. APPLY WORKAROUND FOR KNOWN ISSUE
16.4. CONFIGURING ENDPOINTS TO USE TLS

16.4.1. Configuring undercloud integration for deployments using the same domain as IdM
16.4.2. Configuring overcloud integration for deployments that use the same domain as IdM, and retain the
existing public endpoint certificates
16.4.3. Configuring overcloud integration for deployments that use the same domain as IdM, and replace the
existing public endpoint certificates with an IdM generated certificate
16.4.4. Configuring undercloud integration for deployments that use an IdM subdomain
16.4.5. Configuring undercloud integration for deployments that use an IdM subdomain, and retain the existing
public endpoint certificates
16.4.6. Configuring undercloud integration for deployments that use an IdM subdomain, and replace the existing
public endpoint certificates with an IdM generated certificate

16.5. CHECKING TLS ENCRYPTION

CHAPTER 17. DEBUG MODES

CHAPTER 18. POLICIES

CHAPTER 19. STORAGE CONFIGURATION
19.1. CONFIGURING NFS STORAGE
19.2. CONFIGURING CEPH STORAGE
19.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER
19.4. CONFIGURING THE IMAGE IMPORT METHOD AND SHARED STAGING AREA

19.4.1. Creating and Deploying the glance-settings.yaml File
19.4.2. Controlling Image Web-Import Sources

19.4.2.1. Example
19.4.2.2. Default Image Import Blacklist and Whitelist Settings

19.4.3. Injecting Metadata on Image Import to Control Where VMs Launch
19.5. CONFIGURING CINDER BACK END FOR THE IMAGE SERVICE

103
106

107
107
107
107
108
108
109
109
110
111

112
113

114
114
114
116
116

118
118
118
119
119

120

121

122
123

125

126
127

129

130

131
131

133
133
134
134
135
136
136
136
137

Table of Contents

3



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

19.6. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES TO ATTACH TO ONE INSTANCE
19.7. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING
19.8. CONFIGURING THIRD PARTY STORAGE

CHAPTER 20. SECURITY ENHANCEMENTS
20.1. MANAGING THE OVERCLOUD FIREWALL
20.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
20.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
20.4. USING THE OPEN VSWITCH FIREWALL
20.5. USING SECURE ROOT USER ACCESS

CHAPTER 21. CONFIGURING MONITORING TOOLS

CHAPTER 22. CONFIGURING NETWORK PLUGINS
22.1. FUJITSU CONVERGED FABRIC (C-FABRIC)
22.2. FUJITSU FOS SWITCH

CHAPTER 23. CONFIGURING IDENTITY
23.1. REGION NAME

CHAPTER 24. OTHER CONFIGURATIONS
24.1. CONFIGURING THE KERNEL ON OVERCLOUD NODES
24.2. CONFIGURING EXTERNAL LOAD BALANCING
24.3. CONFIGURING IPV6 NETWORKING

138
139
139

140
140
141

142
143
143

145

146
146
146

148
148

149
149
149
149

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

4



Table of Contents

5



CHAPTER 1. INTRODUCTION
The Red Hat OpenStack Platform director provides a set of tools to provision and create a fully featured
OpenStack environment, also known as the Overcloud. The Director Installation and Usage Guide covers
the preparation and configuration of the Overcloud. However, a proper production-level Overcloud
might require additional configuration, including:

Basic network configuration to integrate the Overcloud into your existing network
infrastructure.

Network traffic isolation on separate VLANs for certain OpenStack network traffic types.

SSL configuration to secure communication on public endpoints

Storage options such as NFS, iSCSI, Red Hat Ceph Storage, and multiple third-party storage
devices.

Registration of nodes to the Red Hat Content Delivery Network or your internal Red Hat
Satellite 5 or 6 server.

Various system-level options.

Various OpenStack service options.

This guide provides instructions for augmenting your Overcloud through the director. At this point, the
director has registered the nodes and configured the necessary services for Overcloud creation. Now
you can customize your Overcloud using the methods in this guide.

NOTE

The examples in this guide are optional steps for configuring the Overcloud. These steps
are only required to provide the Overcloud with additional functionality. Use the steps
that apply to the needs of your environment.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

6

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/director_installation_and_usage/


CHAPTER 2. UNDERSTANDING HEAT TEMPLATES
The custom configurations in this guide use Heat templates and environment files to define certain
aspects of the Overcloud. This chapter provides a basic introduction to Heat templates so that you can
understand the structure and format of these templates in the context of the Red Hat OpenStack
Platform director.

2.1. HEAT TEMPLATES

The director uses Heat Orchestration Templates (HOT) as a template format for its Overcloud
deployment plan. Templates in HOT format are usually expressed in YAML format. The purpose of a
template is to define and create a stack, which is a collection of resources that Heat creates, and the
configuration of the resources. Resources are objects in OpenStack and can include compute
resources, network configuration, security groups, scaling rules, and custom resources.

NOTE

The Heat template file extension must be .yaml or .template, or it will not be treated as a
custom template resource.

The structure of a Heat template has three main sections:

Parameters

These are settings passed to Heat, which provide a way to customize a stack, and any default values
for parameters without passed values. These settings are defined in the parameters section of a
template.

Resources

These are the specific objects to create and configure as part of a stack. OpenStack contains a set of
core resources that span across all components. These are defined in the resources section of a
template.

Output

These are values passed from Heat after the creation of the stack. You can access these values
either through the Heat API or client tools. These are defined in the output section of a template.

Here is an example of a basic Heat template:

heat_template_version: 2013-05-23

description: > A very basic Heat template.

parameters:
  key_name:
    type: string
    default: lars
    description: Name of an existing key pair to use for the instance
  flavor:
    type: string
    description: Instance type for the instance to be created
    default: m1.small
  image:
    type: string
    default: cirros

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

7



    description: ID or name of the image to use for the instance

resources:
  my_instance:
    type: OS::Nova::Server
    properties:
      name: My Cirros Instance
      image: { get_param: image }
      flavor: { get_param: flavor }
      key_name: { get_param: key_name }

output:
  instance_name:
    description: Get the instance's name
    value: { get_attr: [ my_instance, name ] }

This template uses the resource type type: OS::Nova::Server to create an instance called 
my_instance with a particular flavor, image, and key. The stack can return the value of instance_name,
which is called My Cirros Instance.

When Heat processes a template it creates a stack for the template and a set of child stacks for
resource templates. This creates a hierarchy of stacks that descend from the main stack you define with
your template. You can view the stack hierarchy using this following command:

$ openstack stack list --nested

2.2. ENVIRONMENT FILES

An environment file is a special type of template that provides customization for your Heat templates.
This includes three key parts:

Resource Registry

This section defines custom resource names, linked to other Heat templates. This provides a method
to create custom resources that do not exist within the core resource collection. These are defined
in the resource_registry section of an environment file.

Parameters

These are common settings you apply to the top-level template’s parameters. For example, if you
have a template that deploys nested stacks, such as resource registry mappings, the parameters only
apply to the top-level template and not templates for the nested resources. Parameters are defined
in the parameters section of an environment file.

Parameter Defaults

These parameters modify the default values for parameters in all templates. For example, if you have
a Heat template that deploys nested stacks, such as resource registry mappings,the parameter
defaults apply to all templates. The parameter defaults are defined in the parameter_defaults
section of an environment file.

IMPORTANT

It is recommended to use parameter_defaults instead of parameters When creating
custom environment files for your Overcloud. This is so the parameters apply to all stack
templates for the Overcloud.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

8



An example of a basic environment file:

resource_registry:
  OS::Nova::Server::MyServer: myserver.yaml

parameter_defaults:
  NetworkName: my_network

parameters:
  MyIP: 192.168.0.1

For example, this environment file (my_env.yaml) might be included when creating a stack from a
certain Heat template (my_template.yaml). The my_env.yaml files creates a new resource type called 
OS::Nova::Server::MyServer. The myserver.yaml file is a Heat template file that provides an
implementation for this resource type that overrides any built-in ones. You can include the 
OS::Nova::Server::MyServer resource in your my_template.yaml file.

The MyIP applies a parameter only to the main Heat template that deploys along with this environment
file. In this example, it only applies to the parameters in my_template.yaml.

The NetworkName applies to both the main Heat template (in this example, my_template.yaml) and
the templates associated with resources included the main template, such as the 
OS::Nova::Server::MyServer resource and its myserver.yaml template in this example.

NOTE

The environment file extension must be .yaml or .template, or it will not be treated as a
custom template resource.

2.3. CORE OVERCLOUD HEAT TEMPLATES

The director contains a core Heat template collection for the Overcloud. This collection is stored in 
/usr/share/openstack-tripleo-heat-templates.

There are many Heat templates and environment files in this collection. However, the main files and
directories to note in this template collection are:

overcloud.j2.yaml

This is the main template file used to create the Overcloud environment. This file uses Jinja2 syntax
to iterate over certain sections in the template to create custom roles. The Jinja2 formatting is
rendered into YAML during the Overcloud deployment process.

overcloud-resource-registry-puppet.j2.yaml

This is the main environment file used to create the Overcloud environment. It provides a set of
configurations for Puppet modules stored on the Overcloud image. After the director writes the
Overcloud image to each node, Heat starts the Puppet configuration for each node using the
resources registered in this environment file. This file uses Jinja2 syntax to iterate over certain
sections in the template to create custom roles. The Jinja2 formatting is rendered into YAML during
the overcloud deployment process.

roles_data.yaml

A file that defines the roles in an overcloud and maps services to each role.

network_data.yaml

A file that defines the networks in an overcloud and their properties such as subnets, allocation pools,
and VIP status. The default network_data file contains the default networks: External, Internal Api,

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

9



Storage, Storage Management, Tenant, and Management. You can create a custom network_data
file and add it to your openstack overcloud deploy command with the -n option.

plan-environment.yaml

A file that defines the metadata for your overcloud plan. This includes the plan name, main template
to use, and environment files to apply to the overcloud.

capabilities-map.yaml

A mapping of environment files for an overcloud plan. Use this file to describe and enable
environment files through the director’s web UI. Custom environment files detected in the 
environments directory in an overcloud plan but not defined in the capabilities-map.yaml are listed
in the Other subtab of 2 Specify Deployment Configuration > Overall Settings on the web UI.

environments

Contains additional Heat environment files that you can use with your Overcloud creation. These
environment files enable extra functions for your resulting OpenStack environment. For example, the
directory contains an environment file for enabling Cinder NetApp backend storage (cinder-netapp-
config.yaml). Any environment files detected in this directory that are not defined in the 
capabilities-map.yaml file are listed in the Other subtab of 2 Specify Deployment Configuration >
Overall Settings in the director’s web UI.

network

A set of Heat templates to help create isolated networks and ports.

puppet

Templates mostly driven by configuration with puppet. The aforementioned overcloud-resource-
registry-puppet.j2.yaml environment file uses the files in this directory to drive the application of
the Puppet configuration on each node.

puppet/services

A directory containing Heat templates for all services in the composable service architecture.

extraconfig

Templates used to enable extra functionality.

firstboot

Provides example first_boot scripts that the director uses when initially creating the nodes.

2.4. PLAN ENVIRONMENT METADATA

A plan environment metadata file allows you to define metadata about your overcloud plan. This
information is used when importing and exporting your overcloud plan, plus used during the overcloud
creation from your plan.

A plan environment metadata file includes the following parameters:

version

The version of the template.

name

The name of the overcloud plan and the container in OpenStack Object Storage (swift) used to store
the plan files.

template

The core parent template to use for the overcloud deployment. This is most often overcloud.yaml,
which is the rendered version of the overcloud.yaml.j2 template.

environments

Defines a list of environment files to use. Specify the path of each environment file with the path

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

10



Defines a list of environment files to use. Specify the path of each environment file with the path
sub-parameter.

parameter_defaults

A set of parameters to use in your overcloud. This functions in the same way as the 
parameter_defaults section in a standard environment file.

passwords

A set of parameters to use for overcloud passwords. This functions in the same way as the 
parameter_defaults section in a standard environment file. Usually, the director automatically
populates this section with randomly generated passwords.

workflow_parameters

Allows you to provide a set of parameters to OpenStack Workflow (mistral) namespaces. You can
use this to calculate and automatically generate certain overcloud parameters.

The following is an example of the syntax of a plan environment file:

version: 1.0
name: myovercloud
description: 'My Overcloud Plan'
template: overcloud.yaml
environments:
- path: overcloud-resource-registry-puppet.yaml
- path: environments/containers-default-parameters.yaml
- path: user-environment.yaml
parameter_defaults:
  ControllerCount: 1
  ComputeCount: 1
  OvercloudComputeFlavor: compute
  OvercloudControllerFlavor: control
workflow_parameters:
  tripleo.derive_params.v1.derive_parameters:
    num_phy_cores_per_numa_node_for_pmd: 2

You can include the plan environment metadata file with the openstack overcloud deploy command
using the -p option. For example:

(undercloud) $ openstack overcloud deploy --templates \
  -p /my-plan-environment.yaml \
  [OTHER OPTIONS]

You can also view plan metadata for an existing overcloud plan using the following command:

(undercloud) $ openstack object save overcloud plan-environment.yaml --file -

2.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION

The deployment command (openstack overcloud deploy) uses the -e option to include an
environment file to customize your Overcloud. You can include as many environment files as necessary.
However, the order of the environment files is important as the parameters and resources defined in
subsequent environment files take precedence. For example, you might have two environment files:

environment-file-1.yaml

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

11



resource_registry:
  OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-1.yaml

parameter_defaults:
  RabbitFDLimit: 65536
  TimeZone: 'Japan'

environment-file-2.yaml

resource_registry:
  OS::TripleO::NodeExtraConfigPost: /home/stack/templates/template-2.yaml

parameter_defaults:
  TimeZone: 'Hongkong'

Then deploy with both environment files included:

$ openstack overcloud deploy --templates -e environment-file-1.yaml -e environment-file-2.yaml

In this example, both environment files contain a common resource type
(OS::TripleO::NodeExtraConfigPost) and a common parameter (TimeZone). The openstack 
overcloud deploy command runs through the following process:

1. Loads the default configuration from the core Heat template collection as per the --template
option.

2. Applies the configuration from environment-file-1.yaml, which overrides any common settings
from the default configuration.

3. Applies the configuration from environment-file-2.yaml, which overrides any common settings
from the default configuration and environment-file-1.yaml.

This results in the following changes to the default configuration of the Overcloud:

OS::TripleO::NodeExtraConfigPost resource is set to /home/stack/templates/template-
2.yaml as per environment-file-2.yaml.

TimeZone parameter is set to Hongkong as per environment-file-2.yaml.

RabbitFDLimit parameter is set to 65536 as per environment-file-1.yaml. environment-file-
2.yaml does not change this value.

This provides a method for defining custom configuration to the your Overcloud without values from
multiple environment files conflicting.

2.6. USING CUSTOMIZED CORE HEAT TEMPLATES

When creating the overcloud, the director uses a core set of Heat templates located in 
/usr/share/openstack-tripleo-heat-templates. If you want to customize this core template collection,
use a Git workflow to track changes and merge updates. Use the following git processes to help manage
your custom template collection:

Initializing a Custom Template Collection

Use the following procedure to create an initial Git repository containing the Heat template collection:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

12



1. Copy the template collection to the stack users directory. This example copies the collection to
the ~/templates directory:

$ cd ~/templates
$ cp -r /usr/share/openstack-tripleo-heat-templates .

2. Change to the custom template directory and initialize a Git repository:

$ cd openstack-tripleo-heat-templates
$ git init .

3. Stage all templates for the initial commit:

$ git add *

4. Create an initial commit:

$ git commit -m "Initial creation of custom core heat templates"

This creates an initial master branch containing the latest core template collection. Use this branch as
the basis for your custom branch and merge new template versions to this branch.

Creating a Custom Branch and Committing Changes

Use a custom branch to store your changes to the core template collection. Use the following procedure
to create a my-customizations branch and add customizations to it:

1. Create the my-customizations branch and switch to it:

$ git checkout -b my-customizations

2. Edit the files in the custom branch.

3. Stage the changes in git:

$ git add [edited files]

4. Commit the changes to the custom branch:

$ git commit -m "[Commit message for custom changes]"

This adds your changes as commits to the my-customizations branch. When the master branch
updates, you can rebase my-customizations off master, which causes git to add these commits on to
the updated template collection. This helps track your customizations and replay them on future
template updates.

Updating the Custom Template Collection:

When updating the undercloud, the openstack-tripleo-heat-templates package might also update.
When this occurs, use the following procedure to update your custom template collection:

1. Save the openstack-tripleo-heat-templates package version as an environment variable:

$ export PACKAGE=$(rpm -qv openstack-tripleo-heat-templates)

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

13



2. Change to your template collection directory and create a new branch for the updated
templates:

$ cd ~/templates/openstack-tripleo-heat-templates
$ git checkout -b $PACKAGE

3. Remove all files in the branch and replace them with the new versions:

$ git rm -rf *
$ cp -r /usr/share/openstack-tripleo-heat-templates/* .

4. Add all templates for the initial commit:

$ git add *

5. Create a commit for the package update:

$ git commit -m "Updates for $PACKAGE"

6. Merge the branch into master. If you use a Git management system (such as GitLab), use the
management workflow. If you use git locally, merge by switching to the master branch and run
the git merge command:

$ git checkout master
$ git merge $PACKAGE

The master branch now contains the latest version of the core template collection. You can now rebase
the my-customization branch from this updated collection.

Rebasing the Custom Branch

Use the following procedure to update the my-customization branch,:

1. Change to the my-customizations branch:

$ git checkout my-customizations

2. Rebase the branch off master:

$ git rebase master

This updates the my-customizations branch and replays the custom commits made to this branch.

If git reports any conflicts during the rebase, use this procedure:

1. Check which files contain the conflicts:

$ git status

2. Resolve the conflicts of the template files identified.

3. Add the resolved files:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

14



$ git add [resolved files]

4. Continue the rebase:

$ git rebase --continue

Deploying Custom Templates

Use the following procedure to deploy the custom template collection:

1. Ensure that you have switched to the my-customization branch:

git checkout my-customizations

2. Run the openstack overcloud deploy command with the --templates option to specify your
local template directory:

$ openstack overcloud deploy --templates /home/stack/templates/openstack-tripleo-heat-
templates [OTHER OPTIONS]

NOTE

The director uses the default template directory (/usr/share/openstack-tripleo-heat-
templates) if you specify the --templates option without a directory.

IMPORTANT

Red Hat recommends using the methods in Chapter 4, Configuration Hooks  instead of
modifying the Heat template collection.

2.7. JINJA2 RENDERING

The core Heat templates in /usr/share/openstack-tripleo-heat-templates contains a number of files
ending with a j2.yaml extension. These files contain Jinja2 template syntax and the director renders
these files to their static Heat template equivalents ending in .yaml. For example, the main 
overcloud.j2.yaml file renders into overcloud.yaml. The director uses the resulting overcloud.yaml
file.

The Jinja2-enabled Heat templates use Jinja2 syntax to create parameters and resources for iterative
values. For example, the overcloud.j2.yaml file contains the following snippet:

parameters:
...
{% for role in roles %}
  ...
  {{role.name}}Count:
    description: Number of {{role.name}} nodes to deploy
    type: number
    default: {{role.CountDefault|default(0)}}
  ...
{% endfor %}

When the director renders the Jinja2 syntax, the director iterates over the roles defined in the 

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

15



roles_data.yaml file and populates the {{role.name}}Count parameter with the name of the role. The
default roles_data.yaml file contains five roles and results in the the following parameters from our
example:

ControllerCount

ComputeCount

BlockStorageCount

ObjectStorageCount

CephStorageCount

A example rendered version of the parameter looks like this:

parameters:
  ...
  ControllerCount:
    description: Number of Controller nodes to deploy
    type: number
    default: 1
  ...

The director only renders Jinja2-enabled templates and environment files within the directory of your
core Heat templates. The following use cases demonstrate the correct method to render the Jinja2
templates.

Use case 1: Default core templates

Template directory: /usr/share/openstack-tripleo-heat-templates/

Environment file: /usr/share/openstack-tripleo-heat-templates/environments/network-
isolation.j2.yaml

The director uses the default core template location (--templates). The director renders the network-
isolation.j2.yaml file into network-isolation.yaml. When running the openstack overcloud deploy
command, use the -e option to include the name of rendered network-isolation.yaml file.

$ openstack ovecloud deploy --templates \
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml
    ...

Use case 2: Custom core templates

Template directory: /home/stack/tripleo-heat-templates

Environment file: /home/stack/tripleo-heat-templates/environments/network-isolation.j2.yaml

The director uses a custom core template location (--templates /home/stack/tripleo-heat-templates).
The director renders the network-isolation.j2.yaml file within the custom core templates into network-
isolation.yaml. When running the openstack overcloud deploy command, use the -e option to include
the name of rendered network-isolation.yaml file.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

16



$ openstack ovecloud deploy --templates /home/stack/tripleo-heat-templates \
    -e /home/stack/tripleo-heat-templates/environments/network-isolation.yaml
    ...

Use case 3: Incorrect usage

Template directory: /usr/share/openstack-tripleo-heat-templates/

Environment file: /home/stack/tripleo-heat-templates/environments/network-isolation.j2.yaml

This director uses a custom core template location (--templates /home/stack/tripleo-heat-templates).
However, the chosen network-isolation.j2.yaml is not located within the custom core templates, so it
will not render into network-isolation.yaml. This causes the deployment to fail.

CHAPTER 2. UNDERSTANDING HEAT TEMPLATES

17



CHAPTER 3. PARAMETERS
Each Heat template in the director’s template collection contains a parameters section. This section
defines all parameters specific to a particular overcloud service. This includes the following:

overcloud.j2.yaml - Default base parameters

roles_data.yaml - Default parameters for composable roles

deployment/*.yaml - Default parameters for specific services

You can modify the values for these parameters using the following method:

1. Create an environment file for your custom parameters.

2. Include your custom parameters in the parameter_defaults section of the environment file.

3. Include the environment file with the openstack overcloud deploy command.

The next few sections contain examples to demonstrate how to configure specific parameters for
services in the deployment directory.

3.1. EXAMPLE 1: CONFIGURING THE TIME ZONE

The Heat template for setting the time zone (deployment/time/timezone-baremetal-ansible.yaml)
contains a TimeZone parameter. If you leave the TimeZone parameter blank, the overcloud sets the
time zone to UTC by default. The director recognizes the standard time zone names defined in the time
zone database /usr/share/zoneinfo/. For example, if you want to set your time zone to Japan, examine
the contents of /usr/share/zoneinfo to locate a suitable entry:

$ ls /usr/share/zoneinfo/
Africa      Asia       Canada   Cuba   EST      GB       GMT-0      HST      iso3166.tab  Kwajalein  MST      
NZ-CHAT   posix       right      Turkey     UTC       Zulu
America     Atlantic   CET      EET    EST5EDT  GB-Eire  GMT+0      Iceland  Israel       Libya      
MST7MDT  Pacific   posixrules  ROC        UCT        WET
Antarctica  Australia  Chile    Egypt  Etc      GMT      Greenwich  Indian   Jamaica      MET        Navajo   
Poland    PRC         ROK        Universal  W-SU
Arctic      Brazil     CST6CDT  Eire   Europe   GMT0     Hongkong   Iran     Japan        Mexico     NZ       
Portugal  PST8PDT     Singapore  US         zone.tab

The output listed above includes time zone files and directories containing additional time zone files.
For example, Japan is an individual time zone file in this result, but Africa is a directory containing
additional time zone files:

$ ls /usr/share/zoneinfo/Africa/
Abidjan      Algiers  Bamako  Bissau       Bujumbura   Ceuta    Dar_es_Salaam  El_Aaiun  Harare        
Kampala   Kinshasa    Lome        Lusaka  Maseru     Monrovia  Niamey       Porto-Novo  Tripoli
Accra        Asmara   Bangui  Blantyre     Cairo       Conakry  Djibouti       Freetown  Johannesburg  
Khartoum  Lagos       Luanda      Malabo  Mbabane    Nairobi   Nouakchott   Sao_Tome    Tunis
Addis_Ababa  Asmera   Banjul  Brazzaville  Casablanca  Dakar    Douala         Gaborone  Juba          
Kigali    Libreville  Lubumbashi  Maputo  Mogadishu  Ndjamena  Ouagadougou  Timbuktu    
Windhoek

Add the entry in an environment file to set your time zone to Japan:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

18



parameter_defaults:
  TimeZone: 'Japan'

3.2. EXAMPLE 2: ENABLING NETWORKING DISTRIBUTED VIRTUAL
ROUTING (DVR)

The Heat template for the OpenStack Networking (neutron) API (deployment/neutron/neutron-api-
container-puppet.yaml) contains a parameter to enable and disable Distributed Virtual Routing (DVR).
The default for the parameter is false. To enable it, use the following in an environment file:

parameter_defaults:
  NeutronEnableDVR: true

3.3. EXAMPLE 3: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT

For certain configurations, you might need to increase the file descriptor limit for the RabbitMQ server.
The deployment/rabbitmq/rabbitmq-container-puppet.yaml Heat template allows you to set the 
RabbitFDLimit parameter to the limit you require. Add the following to an environment file:

parameter_defaults:
  RabbitFDLimit: 65536

3.4. EXAMPLE 4: ENABLING AND DISABLING PARAMETERS

You might need to initially set a parameter during a deployment, then disable the parameter for a future
deployment operation, such as updates or scaling operations. For example, to include a custom RPM
during the overcloud creation, include the following:

parameter_defaults:
  DeployArtifactURLs: ["http://www.example.com/myfile.rpm"]

To disable this parameter from a future deployment, it is not enough to remove the parameter. Instead,
you set the parameter to an empty value:

parameter_defaults:
  DeployArtifactURLs: []

This ensures the parameter is no longer set for subsequent deployments operations.

3.5. EXAMPLE 5: ROLE-BASED PARAMETERS

Use the [ROLE]Parameters parameters, replacing [ROLE] with a composable role, to set parameters
for a specific role.

For example, director configures logrotate on both Controller and Compute nodes. To set a different
different logrotate parameters for Controller and Compute nodes, create an environment file that
contains both the ‘ControllerParameters’ and ‘ComputeParameters’ parameter and set the logrotate
parameter for each specific role:

parameter_defaults:

CHAPTER 3. PARAMETERS

19



  ControllerParameters:
    LogrotateMaxsize: 10M
    LogrotatePurgeAfterDays: 30
  ComputeParameters:
    LogrotateMaxsize: 20M
    LogrotatePurgeAfterDays: 15

3.6. IDENTIFYING PARAMETERS TO MODIFY

Red Hat OpenStack Platform director provides many parameters for configuration. In some cases, you
might experience difficulty identifying a certain option to configure and the corresponding director
parameter. If there is an option you want to configure through the director, use the following workflow to
identify and map the option to a specific overcloud parameter:

1. Identify the option you aim to configure. Make a note of the service that uses the option.

2. Check the corresponding Puppet module for this option. The Puppet modules for Red Hat
OpenStack Platform are located under /etc/puppet/modules on the director node. Each
module corresponds to a particular service. For example, the keystone module corresponds to
the OpenStack Identity (keystone).

If the Puppet module contains a variable that controls the chosen option, move to the next
step.

If the Puppet module does not contain a variable that controls the chosen option, no
hieradata exists for this option. If possible, you can set the option manually after the
overcloud completes deployment.

3. Check the director’s core Heat template collection for the Puppet variable in the form of
hieradata. The templates in deployment/* usually correspond to the Puppet modules of the
same services. For example, the deployment/keystone/keystone-container-puppet.yaml
template provides hieradata to the keystone module.

If the Heat template sets hieradata for the Puppet variable, the template should also
disclose the director-based parameter to modify.

If the Heat template does not set hieradata for the Puppet variable, use the configuration
hooks to pass the hieradata using an environment file. See Section 4.5, “Puppet:
Customizing Hieradata for Roles” for more information on customizing hieradata.

Workflow Example

To change the notification format for OpenStack Identity (keystone), use the workflow and complete
the following steps:

1. Identify the OpenStack parameter to configure (notification_format).

2. Search the keystone Puppet module for the notification_format setting. For example:

$ grep notification_format /etc/puppet/modules/keystone/manifests/*

In this case, the keystone module manages this option using the 
keystone::notification_format variable.

3. Search the keystone service template for this variable. For example:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

20



$ grep "keystone::notification_format" /usr/share/openstack-tripleo-heat-
templates/deployment/keystone/keystone-container-puppet.yaml

The output shows the director using the KeystoneNotificationFormat parameter to set the 
keystone::notification_format hieradata.

The following table shows the eventual mapping:

Director Parameter Puppet Hieradata OpenStack Identity (keystone)
option

KeystoneNotificationFormat keystone::notification_forma
t

notification_format

You set the KeystoneNotificationFormat in an overcloud’s environment file which in turn sets the 
notification_format option in the keystone.conf file during the overcloud’s configuration.

CHAPTER 3. PARAMETERS

21



CHAPTER 4. CONFIGURATION HOOKS
The configuration hooks provide a method to inject your own configuration functions into the Overcloud
deployment process. This includes hooks for injecting custom configuration before and after the main
Overcloud services configuration and hook for modifying and including Puppet-based configuration.

4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION

The director provides a mechanism to perform configuration on all nodes upon the initial creation of the
Overcloud. The director achieves this through cloud-init, which you can call using the 
OS::TripleO::NodeUserData resource type.

In this example, update the nameserver with a custom IP address on all nodes. First, create a basic Heat
template (/home/stack/templates/nameserver.yaml) that runs a script to append each node’s 
resolv.conf with a specific nameserver. You can use the OS::TripleO::MultipartMime resource type to
send the configuration script.

heat_template_version: 2014-10-16

description: >
  Extra hostname configuration

resources:
  userdata:
    type: OS::Heat::MultipartMime
    properties:
      parts:
      - config: {get_resource: nameserver_config}

  nameserver_config:
    type: OS::Heat::SoftwareConfig
    properties:
      config: |
        #!/bin/bash
        echo "nameserver 192.168.1.1" >> /etc/resolv.conf

outputs:
  OS::stack_id:
    value: {get_resource: userdata}

Create an environment file (/home/stack/templates/firstboot.yaml) that registers your Heat template
as the OS::TripleO::NodeUserData resource type.

resource_registry:
  OS::TripleO::NodeUserData: /home/stack/templates/nameserver.yaml

To add the first boot configuration, add the environment file to the stack along with your other
environment files when first creating the Overcloud. For example:

$ openstack overcloud deploy --templates \
    ...
    -e /home/stack/templates/firstboot.yaml \
    ...

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

22



The -e applies the environment file to the Overcloud stack.

This adds the configuration to all nodes when they are first created and boot for the first time.
Subsequent inclusions of these templates, such as updating the Overcloud stack, does not run these
scripts.

IMPORTANT

You can only register the OS::TripleO::NodeUserData to one Heat template.
Subsequent usage overrides the Heat template to use.

4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD
ROLES

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PreConfig resources
to provide pre-configuration hooks on a per role basis. The director’s Heat template
collection requires dedicated use of these hooks, which means you should not use them
for custom use. Instead, use the OS::TripleO::*ExtraConfigPre hooks outlined below.

The Overcloud uses Puppet for the core configuration of OpenStack components. The director
provides a set of hooks to provide custom configuration for specific node roles after the first boot
completes and before the core configuration begins. These hooks include:

OS::TripleO::ControllerExtraConfigPre

Additional configuration applied to Controller nodes before the core Puppet configuration.

OS::TripleO::ComputeExtraConfigPre

Additional configuration applied to Compute nodes before the core Puppet configuration.

OS::TripleO::CephStorageExtraConfigPre

Additional configuration applied to Ceph Storage nodes before the core Puppet configuration.

OS::TripleO::ObjectStorageExtraConfigPre

Additional configuration applied to Object Storage nodes before the core Puppet configuration.

OS::TripleO::BlockStorageExtraConfigPre

Additional configuration applied to Block Storage nodes before the core Puppet configuration.

OS::TripleO::[ROLE]ExtraConfigPre

Additional configuration applied to custom nodes before the core Puppet configuration. Replace 
[ROLE] with the composable role name.

In this example, you first create a basic Heat template (/home/stack/templates/nameserver.yaml) that
runs a script to write to a node’s resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
  Extra hostname configuration

  parameters:
    server:
      type: json

CHAPTER 4. CONFIGURATION HOOKS

23



    nameserver_ip:
      type: string
    DeployIdentifier:
      type: string

resources:
  CustomExtraConfigPre:
    type: OS::Heat::SoftwareConfig
    properties:
      group: script
      config:
        str_replace:
          template: |
            #!/bin/sh
            echo "nameserver _NAMESERVER_IP_" > /etc/resolv.conf
          params:
            _NAMESERVER_IP_: {get_param: nameserver_ip}

  CustomExtraDeploymentPre:
    type: OS::Heat::SoftwareDeployment
    properties:
      server: {get_param: server}
      config: {get_resource: CustomExtraConfigPre}
      actions: ['CREATE','UPDATE']
      input_values:
        deploy_identifier: {get_param: DeployIdentifier}

outputs:
  deploy_stdout:
    description: Deployment reference, used to trigger pre-deploy on changes
    value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following parameters:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and Heat replaces 
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the 
CustomExtraConfigPre resource. Note the following:

The config parameter makes a reference to the CustomExtraConfigPre resource so Heat
knows what configuration to apply.

The server parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, apply the
configuration when the Overcloud is created. Possible actions include CREATE, UPDATE, 
DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the 
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

24



Create an environment file (/home/stack/templates/pre_config.yaml) that registers your Heat
template to the role-based resource type. For example, to apply only to Controller nodes, use the 
ControllerExtraConfigPre hook:

resource_registry:
  OS::TripleO::ControllerExtraConfigPre: /home/stack/templates/nameserver.yaml

parameter_defaults:
  nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \
    ...
    -e /home/stack/templates/pre_config.yaml \
    ...

This applies the configuration to all Controller nodes before the core configuration begins on either the
initial Overcloud creation or subsequent updates.

IMPORTANT

You can only register each resource to only one Heat template per hook. Subsequent
usage overrides the Heat template to use.

4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

The Overcloud uses Puppet for the core configuration of OpenStack components. The director
provides a hook to configure all node types after the first boot completes and before the core
configuration begins:

OS::TripleO::NodeExtraConfig

Additional configuration applied to all nodes roles before the core Puppet configuration.

In this example, create a basic Heat template (/home/stack/templates/nameserver.yaml) that runs a
script to append each node’s resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
  Extra hostname configuration

parameters:
  server:
    type: string
  nameserver_ip:
    type: string
  DeployIdentifier:
    type: string

resources:
  CustomExtraConfigPre:
    type: OS::Heat::SoftwareConfig

CHAPTER 4. CONFIGURATION HOOKS

25



    properties:
      group: script
      config:
        str_replace:
          template: |
            #!/bin/sh
            echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
          params:
            _NAMESERVER_IP_: {get_param: nameserver_ip}

  CustomExtraDeploymentPre:
    type: OS::Heat::SoftwareDeployment
    properties:
      server: {get_param: server}
      config: {get_resource: CustomExtraConfigPre}
      actions: ['CREATE','UPDATE']
      input_values:
        deploy_identifier: {get_param: DeployIdentifier}

outputs:
  deploy_stdout:
    description: Deployment reference, used to trigger pre-deploy on changes
    value: {get_attr: [CustomExtraDeploymentPre, deploy_stdout]}

In this example, the resources section contains the following parameters:

CustomExtraConfigPre

This defines a software configuration. In this example, we define a Bash script and Heat replaces 
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeploymentPre

This executes a software configuration, which is the software configuration from the 
CustomExtraConfigPre resource. Note the following:

The config parameter makes a reference to the CustomExtraConfigPre resource so Heat
knows what configuration to apply.

The server parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, we only apply
the configuration when the Overcloud is created. Possible actions include CREATE, 
UPDATE, DELETE, SUSPEND, and RESUME.

The input_values parameter contains a sub-parameter called deploy_identifier, which
stores the DeployIdentifier from the parent template. This parameter provides a timestamp
to the resource for each deployment update. This ensures the resource reapplies on
subsequent overcloud updates.

Next, create an environment file (/home/stack/templates/pre_config.yaml) that registers your heat
template as the OS::TripleO::NodeExtraConfig resource type.

resource_registry:
  OS::TripleO::NodeExtraConfig: /home/stack/templates/nameserver.yaml

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

26



parameter_defaults:
  nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \
    ...
    -e /home/stack/templates/pre_config.yaml \
    ...

This applies the configuration to all nodes before the core configuration begins on either the initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register the OS::TripleO::NodeExtraConfig to only one Heat template.
Subsequent usage overrides the Heat template to use.

4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES

IMPORTANT

Previous versions of this document used the OS::TripleO::Tasks::*PostConfig
resources to provide post-configuration hooks on a per role basis. The director’s Heat
template collection requires dedicated use of these hooks, which means you should not
use them for custom use. Instead, use the OS::TripleO::NodeExtraConfigPost hook
outlined below.

A situation might occur where you have completed the creation of your Overcloud but want to add
additional configuration to all roles, either on initial creation or on a subsequent update of the Overcloud.
In this case, you use the following post-configuration hook:

OS::TripleO::NodeExtraConfigPost

Additional configuration applied to all nodes roles after the core Puppet configuration.

In this example, you first create a basic heat template (/home/stack/templates/nameserver.yaml) that
runs a script to append each node’s resolv.conf with a variable nameserver.

heat_template_version: 2014-10-16

description: >
  Extra hostname configuration

parameters:
  servers:
    type: json
  nameserver_ip:
    type: string
  DeployIdentifier:
    type: string
  EndpointMap:
    default: {}

CHAPTER 4. CONFIGURATION HOOKS

27



    type: json

resources:
  CustomExtraConfig:
    type: OS::Heat::SoftwareConfig
    properties:
      group: script
      config:
        str_replace:
          template: |
            #!/bin/sh
            echo "nameserver _NAMESERVER_IP_" >> /etc/resolv.conf
          params:
            _NAMESERVER_IP_: {get_param: nameserver_ip}

  CustomExtraDeployments:
    type: OS::Heat::SoftwareDeploymentGroup
    properties:
      servers:  {get_param: servers}
      config: {get_resource: CustomExtraConfig}
      actions: ['CREATE','UPDATE']
      input_values:
        deploy_identifier: {get_param: DeployIdentifier}

In this example, the resources section contains the following:

CustomExtraConfig

This defines a software configuration. In this example, we define a Bash script and Heat replaces 
_NAMESERVER_IP_ with the value stored in the nameserver_ip parameter.

CustomExtraDeployments

This executes a software configuration, which is the software configuration from the 
CustomExtraConfig resource. Note the following:

The config parameter makes a reference to the CustomExtraConfig resource so Heat
knows what configuration to apply.

The servers parameter retrieves a map of the Overcloud nodes. This parameter is provided
by the parent template and is mandatory in templates for this hook.

The actions parameter defines when to apply the configuration. In this case, we apply the
configuration when the Overcloud is created. Possible actions include CREATE, UPDATE, 
DELETE, SUSPEND, and RESUME.

input_values contains a parameter called deploy_identifier, which stores the 
DeployIdentifier from the parent template. This parameter provides a timestamp to the
resource for each deployment update. This ensures the resource reapplies on subsequent
overcloud updates.

Create an environment file (/home/stack/templates/post_config.yaml) that registers your Heat
template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
  OS::TripleO::NodeExtraConfigPost: /home/stack/templates/nameserver.yaml

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

28



parameter_defaults:
  nameserver_ip: 192.168.1.1

To apply the configuration, add the environment file to the stack along with your other environment files
when creating or updating the Overcloud. For example:

$ openstack overcloud deploy --templates \
    ...
    -e /home/stack/templates/post_config.yaml \
    ...

This applies the configuration to all nodes after the core configuration completes on either initial
Overcloud creation or subsequent updates.

IMPORTANT

You can only register the OS::TripleO::NodeExtraConfigPost to only one Heat
template. Subsequent usage overrides the Heat template to use.

4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES

The Heat template collection contains a set of parameters to pass extra configuration to certain node
types. These parameters save the configuration as hieradata for the node’s Puppet configuration.
These parameters are:

ControllerExtraConfig

Configuration to add to all Controller nodes.

ComputeExtraConfig

Configuration to add to all Compute nodes.

BlockStorageExtraConfig

Configuration to add to all Block Storage nodes.

ObjectStorageExtraConfig

Configuration to add to all Object Storage nodes.

CephStorageExtraConfig

Configuration to add to all Ceph Storage nodes.

[ROLE]ExtraConfig

Configuration to add to a composable role. Replace [ROLE] with the composable role name.

ExtraConfig

Configuration to add to all nodes.

To add extra configuration to the post-deployment configuration process, create an environment file
that contains these parameters in the parameter_defaults section. For example, to increase the
reserved memory for Compute hosts to 1024 MB and set the VNC keymap to Japanese:

parameter_defaults:
  ComputeExtraConfig:
    nova::compute::reserved_host_memory: 1024
    nova::compute::vnc_keymap: ja

Include this environment file when running openstack overcloud deploy.

CHAPTER 4. CONFIGURATION HOOKS

29



IMPORTANT

You can only define each parameter once. Subsequent usage overrides previous values.

4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES

You can set Puppet hieradata for individual nodes using the Heat template collection. To accomplish
this, acquire the system UUID saved as part of the introspection data for a node:

$ openstack baremetal introspection data save 9dcc87ae-4c6d-4ede-81a5-9b20d7dc4a14 | jq 
.extra.system.product.uuid

This outputs a system UUID. For example:

"F5055C6C-477F-47FB-AFE5-95C6928C407F"

Use this system UUID in an environment file that defines node-specific hieradata and registers the 
per_node.yaml template to a pre-configuration hook. For example:

resource_registry:
  OS::TripleO::ComputeExtraConfigPre: /usr/share/openstack-tripleo-heat-
templates/puppet/extraconfig/pre_deploy/per_node.yaml
parameter_defaults:
  NodeDataLookup: '{"F5055C6C-477F-47FB-AFE5-95C6928C407F": 
{"nova::compute::vcpu_pin_set": [ "2", "3" ]}}'

Include this environment file when running openstack overcloud deploy.

The per_node.yaml template generates a set of heiradata files on nodes that correspond to each
system UUID and contains the hieradata you defined. If a UUID is not defined, the resulting hieradata file
is empty. In the previous example, the per_node.yaml template runs on all Compute nodes (as per the 
OS::TripleO::ComputeExtraConfigPre hook), but only the Compute node with system UUID 
F5055C6C-477F-47FB-AFE5-95C6928C407F receives hieradata.

This provides a method of tailoring each node to specific requirements.

For more information about NodeDataLookup, see section Mapping the Disk Layout to Non-
Homogeneous Ceph Storage Nodes of the Storage Guide.

4.7. PUPPET: APPLYING CUSTOM MANIFESTS

In certain circumstances, you might need to install and configure some additional components to your
Overcloud nodes. You can achieve this with a custom Puppet manifest that applies to nodes after the
main configuration completes. As a basic example, you might intend to install motd to each node. The
process for accomplishing this is to first create a Heat template
(/home/stack/templates/custom_puppet_config.yaml) that launches Puppet configuration.

heat_template_version: 2014-10-16

description: >
  Run Puppet extra configuration to set new MOTD

parameters:
  servers:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

30

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/#map_disk_layout_non-homogen_ceph


    type: json

resources:
  ExtraPuppetConfig:
    type: OS::Heat::SoftwareConfig
    properties:
      config: {get_file: motd.pp}
      group: puppet
      options:
        enable_hiera: True
        enable_facter: False

  ExtraPuppetDeployments:
    type: OS::Heat::SoftwareDeploymentGroup
    properties:
      config: {get_resource: ExtraPuppetConfig}
      servers: {get_param: servers}

This includes the /home/stack/templates/motd.pp within the template and passes it to nodes for
configuration. The motd.pp file itself contains the Puppet classes to install and configure motd.

Create an environment file (/home/stack/templates/puppet_post_config.yaml) that registers your
heat template as the OS::TripleO::NodeExtraConfigPost: resource type.

resource_registry:
  OS::TripleO::NodeExtraConfigPost: /home/stack/templates/custom_puppet_config.yaml

Include this environment file along with your other environment files when creating or updating the
Overcloud stack:

$ openstack overcloud deploy --templates \
    ...
    -e /home/stack/templates/puppet_post_config.yaml \
    ...

This applies the configuration from motd.pp to all nodes in the Overcloud.

CHAPTER 4. CONFIGURATION HOOKS

31



CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION
The director uses Ansible-based methods to register overcloud nodes to the Red Hat Customer Portal
or a Red Hat Satellite 6 server.

5.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE
SERVICE

The rhsm composable service provides a method to register overcloud nodes through Ansible. Each
role in the default roles_data file contains a OS::TripleO::Services::Rhsm resource, which is disabled
by default. To enable the service, register the resource to the rhsm composable service file:

resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/extraconfig/services/rhsm.yaml

The rhsm composable service accepts a RhsmVars parameter, which allows you to define multiple sub-
parameters relevant to your registration. For example:

parameter_defaults:
  RhsmVars:
    rhsm_repos:
      - rhel-8-for-x86_64-baseos-rpms
      - rhel-8-for-x86_64-appstream-rpms
      - rhel-8-for-x86_64-highavailability-rpms
      - ansible-2.8-for-rhel-8-x86_64-rpms
      - advanced-virt-for-rhel-8-x86_64-rpms
      - openstack-15-for-rhel-8-x86_64-rpms
      - rhceph-4-osd-for-rhel-8-x86_64-rpms
      - rhceph-4-mon-for-rhel-8-x86_64-rpms
      - rhceph-4-tools-for-rhel-8-x86_64-rpms
      - fast-datapath-for-rhel-8-x86_64-rpms
    rhsm_username: "myusername"
    rhsm_password: "p@55w0rd!"
    rhsm_org_id: "1234567"

You can also use the RhsmVars parameter in combination with role-specific parameters (e.g. 
ControllerParameters) to provide flexibility when enabling specific repositories for different nodes
types.

The next section is a list of sub-parameters available to use with the RhsmVars parameter for use with
the rhsm composable service.

5.2. RHSMVARS SUB-PARAMETERS

See the role documentation to learn about all Ansible parameters.

rhsm Description

rhsm_method Choose the registration method. Either portal, satellite, or disable.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

32

https://github.com/openstack/ansible-role-redhat-subscription/


rhsm_org_id The organization to use for registration. To locate this ID, run sudo 
subscription-manager orgs from the undercloud node. Enter your Red
Hat credentials when prompted, and use the resulting Key value.

rhsm_pool_ids The subscription pool ID to use. Use this if not auto-attaching subscriptions.
To locate this ID, run sudo subscription-manager list --available --all 
--matches="*OpenStack*" from the undercloud node, and use the
resulting Pool ID value.

rhsm_activation_key The activation key to use for registration. Does not work when rhsm_repos
is configured.

rhsm_autosubscribe Automatically attach compatible subscriptions to this system. Set to true to
enable.

rhsm_satellite_url The base URL of the Satellite server to register Overcloud nodes.

rhsm_repos A list of repositories to enable. Does not work when rhsm_activation_key
is configured.

rhsm_username The username for registration. If possible, use activation keys for registration.

rhsm_password The password for registration. If possible, use activation keys for registration.

rhsm_rhsm_proxy_host
name

The hostname for the HTTP proxy. For example: proxy.example.com.

rhsm_rhsm_proxy_port The port for HTTP proxy communication. For example: 8080.

rhsm_rhsm_proxy_user The username to access the HTTP proxy.

rhsm_rhsm_proxy_pass
word

The password to access the HTTP proxy.

rhsm Description

Now that you have an understanding of how the rhsm composable service works and how to configure
it, you can use the following procedures to configure your own registration details.

5.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE
SERVICE

Use the following procedure to create an environment file that enables and configures the rhsm
composable service. The director uses this environment file to register and subscribe your nodes.

Procedure

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION

33



1. Create an environment file (templates/rhsm.yml) to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/extraconfig/services/rhsm.yaml
parameter_defaults:
  RhsmVars:
    rhsm_repos:
      - rhel-8-for-x86_64-baseos-rpms
      - rhel-8-for-x86_64-appstream-rpms
      - rhel-8-for-x86_64-highavailability-rpms
      - ansible-2.8-for-rhel-8-x86_64-rpms
      - advanced-virt-for-rhel-8-x86_64-rpms
      - openstack-15-for-rhel-8-x86_64-rpms
      - rhceph-4-osd-for-rhel-8-x86_64-rpms
      - rhceph-4-mon-for-rhel-8-x86_64-rpms
      - rhceph-4-tools-for-rhel-8-x86_64-rpms
      - fast-datapath-for-rhel-8-x86_64-rpms
    rhsm_username: "myusername"
    rhsm_password: "p@55w0rd!"
    rhsm_org_id: "1234567"
    rhsm_pool_ids: "1a85f9223e3d5e43013e3d6e8ff506fd"
    rhsm_method: "portal"

The resource_registry associates the rhsm composable service with the 
OS::TripleO::Services::Rhsm resource, which is available on each role.

The RhsmVars variable passes parameters to Ansible for configuring your Red Hat registration.

3. Save the environment file.

You can also provide registration details to specific overcloud roles. The next section provides an
example of this.

5.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT
ROLES

You can apply the rhsm composable service on a per-role basis. For example, you can apply one set of
configuration to Controller nodes and a different set of configuration to Compute nodes.

Procedure

1. Create an environment file (templates/rhsm.yml) to store the configuration.

2. Include your configuration in the environment file. For example:

resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/extraconfig/services/rhsm.yaml
parameter_defaults:
  ControllerParameters:
    RhsmVars:
      rhsm_repos:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

34



        - rhel-8-for-x86_64-baseos-rpms
        - rhel-8-for-x86_64-appstream-rpms
        - rhel-8-for-x86_64-highavailability-rpms
        - ansible-2.8-for-rhel-8-x86_64-rpms
        - advanced-virt-for-rhel-8-x86_64-rpms
        - openstack-15-for-rhel-8-x86_64-rpms
        - rhceph-4-osd-for-rhel-8-x86_64-rpms
        - rhceph-4-mon-for-rhel-8-x86_64-rpms
        - rhceph-4-tools-for-rhel-8-x86_64-rpms
        - fast-datapath-for-rhel-8-x86_64-rpms
      rhsm_username: "myusername"
      rhsm_password: "p@55w0rd!"
      rhsm_org_id: "1234567"
      rhsm_pool_ids: "1a85f9223e3d5e43013e3d6e8ff506fd"
      rhsm_method: "portal"
  ComputeParameters:
    RhsmVars:
      rhsm_repos:
        - rhel-8-for-x86_64-baseos-rpms
        - rhel-8-for-x86_64-appstream-rpms
        - rhel-8-for-x86_64-highavailability-rpms
        - ansible-2.8-for-rhel-8-x86_64-rpms
        - advanced-virt-for-rhel-8-x86_64-rpms
        - openstack-15-for-rhel-8-x86_64-rpms
        - rhceph-4-tools-for-rhel-8-x86_64-rpms
      rhsm_username: "myusername"
      rhsm_password: "p@55w0rd!"
      rhsm_org_id: "1234567"
      rhsm_pool_ids: "1a85f9223e3d5e43013e3d6e8ff506fd"
      rhsm_method: "portal"

The resource_registry associates the rhsm composable service with the 
OS::TripleO::Services::Rhsm resource, which is available on each role.

Both ControllerParameters and ComputeParameters use their own RhsmVars parameter to
pass subscription details to their respective roles.

3. Save the environment file.

These procedures enable and configure rhsm on the overcloud. However, if you used the rhel-
registration method from previous Red Hat OpenStack Platform version, you must disable it and switch
to the Ansible-based method. Use the following procedure to switch from the old rhel-registration
method to the Ansible-based method.

5.5. SWITCHING TO THE RHSM COMPOSABLE SERVICE

The previous rhel-registration method runs a bash script to handle the overcloud registration. The
scripts and environment files for this method are located in the core Heat template collection at 
/usr/share/openstack-tripleo-heat-templates/extraconfig/pre_deploy/rhel-registration/.

Complete the following steps to switch from the rhel-registration method to the rhsm composable
service.

Procedure

1. Exclude the rhel-registration environment files from future deployments operations. In most

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION

35



1. Exclude the rhel-registration environment files from future deployments operations. In most
cases, exclude the following files:

rhel-registration/environment-rhel-registration.yaml

rhel-registration/rhel-registration-resource-registry.yaml

2. If you use a custom roles_data file, ensure that each role in your roles_data file contains the 
OS::TripleO::Services::Rhsm composable service. For example:

- name: Controller
  description: |
    Controller role that has all the controller services loaded and handles
    Database, Messaging and Network functions.
  CountDefault: 1
  ...
  ServicesDefault:
    ...
    - OS::TripleO::Services::Rhsm
    ...

3. Add the environment file for rhsm composable service parameters to future deployment
operations.

This method replaces the rhel-registration parameters with the rhsm service parameters and changes
the Heat resource that enables the service from:

resource_registry:
  OS::TripleO::NodeExtraConfig: rhel-registration.yaml

To:

resource_registry:
  OS::TripleO::Services::Rhsm: /usr/share/openstack-tripleo-heat-
templates/extraconfig/services/rhsm.yaml

You can also include the /usr/share/openstack-tripleo-heat-templates/environments/rhsm.yaml
environment file with your deployment to enable the service.

To help transition your details from the rhel-registration method to the rhsm method, use the following
table to map the your parameters and their values.

5.6. RHEL-REGISTRATION TO RHSM MAPPINGS

rhel-registration rhsm / RhsmVars

rhel_reg_method rhsm_method

rhel_reg_org rhsm_org_id

rhel_reg_pool_id rhsm_pool_ids

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

36



rhel_reg_activation_key rhsm_activation_key

rhel_reg_auto_attach rhsm_autosubscribe

rhel_reg_sat_url rhsm_satellite_url

rhel_reg_repos rhsm_repos

rhel_reg_user rhsm_username

rhel_reg_password rhsm_password

rhel_reg_http_proxy_host rhsm_rhsm_proxy_hostname

rhel_reg_http_proxy_port rhsm_rhsm_proxy_port

rhel_reg_http_proxy_username rhsm_rhsm_proxy_user

rhel_reg_http_proxy_password rhsm_rhsm_proxy_password

rhel-registration rhsm / RhsmVars

Now that you have configured the environment file for the rhsm service, you can include it with your
next overcloud deployment operation.

5.7. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE
SERVICE

This section shows how to apply your rhsm configuration to the overcloud.

Procedure

1. Include rhsm.yml environment file with the openstack overcloud deploy:

openstack overcloud deploy \
    <other cli args> \
    -e ~/templates/rhsm.yaml

This enables the Ansible configuration of the overcloud and the Ansible-based registration.

2. Wait until the overcloud deployment completes.

3. Check the subscription details on your overcloud nodes. For example, log into a Controller node
and run the following commands:

$ sudo subscription-manager status
$ sudo subscription-manager list --consumed

In addition to the director-based registration method, you can also manually register after deployment.

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION

37



5.8. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

You can perform manual Ansible-based registration on a deployed overcloud. You accomplish this using
the director’s dynamic inventory script to define node roles as host groups and then run a playbook
against them using ansible-playbook. The following example shows how to manually register Controller
nodes using a playbook.

Procedure

1. Create a playbook with that using the redhat_subscription modules to register your nodes. For
example, the following playbook applies to Controller nodes:

---
- name: Register Controller nodes
  hosts: Controller
  become: yes
  vars:
    repos:
      - rhel-8-for-x86_64-baseos-rpms
      - rhel-8-for-x86_64-appstream-rpms
      - rhel-8-for-x86_64-highavailability-rpms
      - ansible-2.8-for-rhel-8-x86_64-rpms
      - advanced-virt-for-rhel-8-x86_64-rpms
      - openstack-15-for-rhel-8-x86_64-rpms
      - rhceph-4-mon-for-rhel-8-x86_64-rpms
      - fast-datapath-for-rhel-8-x86_64-rpms
  tasks:
    - name: Register system
      redhat_subscription:
        username: myusername
        password: p@55w0rd!
        org_id: 1234567
        pool_ids: 1a85f9223e3d5e43013e3d6e8ff506fd
    - name: Disable all repos
      command: "subscription-manager repos --disable *"
    - name: Enable Controller node repos
      command: "subscription-manager repos --enable {{ item }}"
      with_items: "{{ repos }}"

This play contains three tasks:

Register the node using an activation key.

Disable any auto-enabled repositories.

Enable only the repositories relevant to the Controller node. The repositories are listed
with the repos variable.

2. After deploying the overcloud, you can run the following command so that Ansible executes the
playbook (ansible-osp-registration.yml) against your overcloud:

$ ansible-playbook -i /usr/bin/tripleo-ansible-inventory ansible-osp-registration.yml

This command does the following:

Runs the dynamic inventory script to get a list of host and their groups.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

38



Applies the playbook tasks to the nodes in the group defined in the playbook’s hosts
parameter, which in this case is the Controller group.

CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION

39



CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES
The Overcloud usually consists of nodes in predefined roles such as Controller nodes, Compute nodes,
and different storage node types. Each of these default roles contains a set of services defined in the
core Heat template collection on the director node. However, the architecture of the core Heat
templates provide methods to do the following tasks:

Create custom roles

Add and remove services from each role

This allows the possibility to create different combinations of services on different roles. This chapter
explores the architecture of custom roles, composable services, and methods for using them.

6.1. SUPPORTED ROLE ARCHITECTURE

The following architectures are available when using custom roles and composable services:

Architecture 1 - Default Architecture

Uses the default roles_data files. All controller services are contained within one Controller role.

Architecture 2 - Supported Standalone Roles

Use the predefined files in /usr/share/openstack-tripleo-heat-templates/roles to generate a
custom roles_data file`. See Section 6.2.3, “Supported Custom Roles” .

Architecture 3 - Custom Composable Services

Create your own roles and use them to generate a custom roles_data file. Note that only a limited
number of composable service combinations have been tested and verified and Red Hat cannot
support all composable service combinations.

6.2. ROLES

6.2.1. Examining the roles_data File

The Overcloud creation process defines its roles using a roles_data file. The roles_data file contains a
YAML-formatted list of the roles. The following is a shortened example of the roles_data syntax:

- name: Controller
  description: |
    Controller role that has all the controller services loaded and handles
    Database, Messaging and Network functions.
  ServicesDefault:
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephClient
    ...
- name: Compute
  description: |
    Basic Compute Node role
  ServicesDefault:
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephClient
    ...

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

40



The core Heat template collection contains a default roles_data file located at /usr/share/openstack-
tripleo-heat-templates/roles_data.yaml. The default file defines the following role types:

Controller

Compute

BlockStorage

ObjectStorage

CephStorage.

The openstack overcloud deploy command includes this file during deployment. You can override this
file with a custom roles_data file using the -r argument. For example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-custom.yaml

6.2.2. Creating a roles_data File

Although you can manually create a custom roles_data file, you can also automatically generate the file
using individual role templates. The director provides several commands to manage role templates and
automatically generate a custom roles_data file.

To list the default role templates, use the openstack overcloud roles list command:

$ openstack overcloud roles list
BlockStorage
CephStorage
Compute
ComputeHCI
ComputeOvsDpdk
Controller
...

To see the role’s YAML definition, use the openstack overcloud roles show command:

$ openstack overcloud roles show Compute

To generate a custom roles_data file, use the openstack overcloud roles generate command to join
multiple predefined roles into a single file. For example, the following command joins the Controller, 
Compute, and Networker roles into a single file:

$ openstack overcloud roles generate -o ~/roles_data.yaml Controller Compute Networker

The -o defines the name of the file to create.

This creates a custom roles_data file. However, the previous example uses the Controller and 
Networker roles, which both contain the same networking agents. This means the networking services
scale from Controller to the Networker role. The overcloud balances the load for networking services
between the Controller and Networker nodes.

To make this Networker role standalone, you can create your own custom Controller role, as well as any
other role needed. This allows you to generate a roles_data file from your own custom roles.

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

41



Copy the directory from the core Heat template collection to the stack user’s home directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

Add or modify the custom role files in this directory. Use the --roles-path option with any of the
aforementioned role sub-commands to use this directory as the source for your custom roles. For
example:

$ openstack overcloud roles generate -o my_roles_data.yaml \
  --roles-path ~/roles \
  Controller Compute Networker

This generates a single my_roles_data.yaml file from the individual roles in the ~/roles directory.

NOTE

The default roles collection also contains the ControllerOpenStack role, which does not
include services for Networker, Messaging, and Database roles. You can use the 
ControllerOpenStack combined with with the standalone Networker, Messaging, and 
Database roles.

6.2.3. Supported Custom Roles

The following table contains information about the available custom roles. You can find custom role
templates in the /usr/share/openstack-tripleo-heat-templates/roles directory.

Role Description File

BlockStorage OpenStack Block Storage (cinder) node. BlockStorage.yaml

CephAll Full standalone Ceph Storage node. Includes OSD,
MON, Object Gateway (RGW), Object Operations
(MDS), Manager (MGR), and RBD Mirroring.

CephAll.yaml

CephFile Standalone scale-out Ceph Storage file role. Includes
OSD and Object Operations (MDS).

CephFile.yaml

CephObject Standalone scale-out Ceph Storage object role.
Includes OSD and Object Gateway (RGW).

CephObject.yaml

CephStorage Ceph Storage OSD node role. CephStorage.yaml

ComputeAlt Alternate Compute node role. ComputeAlt.yaml

ComputeDVR DVR enabled Compute node role. ComputeDVR.yaml

ComputeHCI Compute node with hyper-converged infrastructure.
Includes Compute and Ceph OSD services.

ComputeHCI.yaml

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

42



ComputeInstanceHA Compute Instance HA node role. Use in conjunction
with the environments/compute-
instanceha.yaml` environment file.

ComputeInstanceHA
.yaml

ComputeLiquidio Compute node with Cavium Liquidio Smart NIC. ComputeLiquidio.ya
ml

ComputeOvsDpdkR
T

Compute OVS DPDK RealTime role. ComputeOvsDpdkR
T.yaml

ComputeOvsDpdk Compute OVS DPDK role. ComputeOvsDpdk.y
aml

ComputePPC64LE Compute role for ppc64le servers. ComputePPC64LE.y
aml

ComputeRealTime Compute role optimized for real-time behaviour.
When using this role, it is mandatory that an 
overcloud-realtime-compute image is available
and the role specific parameters IsolCpusList and 
NovaVcpuPinSet are set accordingly to the
hardware of the real-time compute nodes.

ComputeRealTime.y
aml

ComputeSriovRT Compute SR-IOV RealTime role. ComputeSriovRT.ya
ml

ComputeSriov Compute SR-IOV role. ComputeSriov.yaml

Compute Standard Compute node role. Compute.yaml

ControllerAllNovaSta
ndalone

Controller role that does not contain the database,
messaging, networking, and OpenStack Compute
(nova) control components. Use in combination with
the Database, Messaging, Networker, and 
Novacontrol roles.

ControllerAllNovaSta
ndalone.yaml

ControllerNoCeph Controller role with core Controller services loaded
but no Ceph Storage (MON) components. This role
handles database, messaging, and network functions
but not any Ceph Storage functions.

ControllerNoCeph.ya
ml

ControllerNovaStand
alone

Controller role that does not contain the OpenStack
Compute (nova) control component. Use in
combination with the Novacontrol role.

ControllerNovaStand
alone.yaml

Role Description File

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

43



ControllerOpenstack Controller role that does not contain the database,
messaging, and networking components. Use in
combination with the Database, Messaging, and 
Networker roles.

ControllerOpenstack
.yaml

ControllerStorageNf
s

Controller role with all core services loaded and uses
Ceph NFS. This roles handles database, messaging,
and network functions.

ControllerStorageNf
s.yaml

Controller Controller role with all core services loaded. This roles
handles database, messaging, and network functions.

Controller.yaml

Database Standalone database role. Database managed as a
Galera cluster using Pacemaker.

Database.yaml

HciCephAll Compute node with hyper-converged infrastructure
and all Ceph Storage services. Includes OSD, MON,
Object Gateway (RGW), Object Operations (MDS),
Manager (MGR), and RBD Mirroring.

HciCephAll.yaml

HciCephFile Compute node with hyper-converged infrastructure
and Ceph Storage file services. Includes OSD and
Object Operations (MDS).

HciCephFile.yaml

HciCephMon Compute node with hyper-converged infrastructure
and Ceph Storage block services. Includes OSD,
MON, and Manager.

HciCephMon.yaml

HciCephObject Compute node with hyper-converged infrastructure
and Ceph Storage object services. Includes OSD and
Object Gateway (RGW).

HciCephObject.yaml

IronicConductor Ironic Conductor node role. IronicConductor.ya
ml

Messaging Standalone messaging role. RabbitMQ managed with
Pacemaker.

Messaging.yaml

Networker 
(ML2/OVS)

Standalone networking role under ML2/OVS. Runs
OpenStack networking (neutron) agents on their
own. If your deployment uses the ML2/OVN
mechanism driver, see Creating a Custom Networker
Role with ML2/OVN.

Networker.yaml

Novacontrol Standalone nova-control role to run OpenStack
Compute (nova) control agents on their own.

Novacontrol.yaml

ObjectStorage Swift Object Storage node role. ObjectStorage.yaml

Role Description File

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

44



Telemetry Telemetry role with all the metrics and alarming
services.

Telemetry.yaml

Role Description File

6.2.4. Creating a Custom Networker Role with ML2/OVN

To deploy a custom networker role when your deployment uses the ML2/OVN mechanism driver, you
must use an environment file to set the parameter for the role on networker nodes and clear it on
controller nodes. Use an environment file such as neutron-ovn-dvr-ha.yaml.

Procedure

1. On controller nodes, clear OVNCMSOptions:

ControllerParameters:
    OVNCMSOptions: ""

2. On networker nodes, set OVNCMSOptions to 'enable-chassis-as-gw':

NetworkerParameters:
    OVNCMSOptions: "enable-chassis-as-gw"

6.2.5. Examining Role Parameters

Each role uses the following parameters:

name

(Mandatory) The name of the role, which is a plain text name with no spaces or special characters.
Check that the chosen name does not cause conflicts with other resources. For example, use 
Networker as a name instead of Network.

description

(Optional) A plain text description for the role.

tags

(Optional) A YAML list of tags that define role properties. Use this parameter to define the primary
role with both the controller and primary tags together:

- name: Controller
  ...
  tags:
    - primary
    - controller
  ...

IMPORTANT

If you do not tag the primary role, the first role defined becomes the primary role. Ensure
that this role is the Controller role.

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

45



networks

A YAML list or dictionary of networks to configure on the role. If using a YAML list, list each
composable network:

  networks:
    - External
    - InternalApi
    - Storage
    - StorageMgmt
    - Tenant

If using a dictionary, map each network to a specific subnet in your composable networks.

  networks:
    External:
      subnet: external_subnet
    InternalApi:
      subnet: internal_api_subnet
    Storage:
      subnet: storage_subnet
    StorageMgmt:
      subnet: storage_mgmt_subnet
    Tenant:
      subnet: tenant_subnet

Default networks include External, InternalApi, Storage, StorageMgmt, Tenant, and Management.

CountDefault

(Optional) Defines the default number of nodes to deploy for this role.

HostnameFormatDefault

(Optional) Defines the default hostname format for the role. The default naming convention uses
the following format:

[STACK NAME]-[ROLE NAME]-[NODE ID]

For example, the default Controller nodes are named:

overcloud-controller-0
overcloud-controller-1
overcloud-controller-2
...

disable_constraints

(Optional) Defines whether to disable OpenStack Compute (nova) and OpenStack Image Storage
(glance) constraints when deploying with the director. Used when deploying an overcloud with pre-
provisioned nodes. For more information, see "Configuring a Basic Overcloud using Pre-Provisioned
Nodes" in the Director Installation and Usage Guide .

update_serial

(Optional) Defines how many nodes to update simultaneously during the OpenStack update
options. In the default roles_data.yaml file:

The default is 1 for Controller, Object Storage, and Ceph Storage nodes.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

46

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/director_installation_and_usage/chap-configuring_basic_overcloud_requirements_on_pre_provisioned_nodes


The default is 25 for Compute and Block Storage nodes.

If you omit this parameter from a custom role, the default is 1.

ServicesDefault

(Optional) Defines the default list of services to include on the node. See Section 6.3.2, “Examining
Composable Service Architecture” for more information.

These parameters provide a means to create new roles and also define which services to include.

The openstack overcloud deploy command integrates the parameters from the roles_data file into
some of the Jinja2-based templates. For example, at certain points, the overcloud.j2.yaml Heat
template iterates over the list of roles from roles_data.yaml and creates parameters and resources
specific to each respective role.

The resource definition for each role in the overcloud.j2.yaml Heat template appears as the following
snippet:

  {{role.name}}:
    type: OS::Heat::ResourceGroup
    depends_on: Networks
    properties:
      count: {get_param: {{role.name}}Count}
      removal_policies: {get_param: {{role.name}}RemovalPolicies}
      resource_def:
        type: OS::TripleO::{{role.name}}
        properties:
          CloudDomain: {get_param: CloudDomain}
          ServiceNetMap: {get_attr: [ServiceNetMap, service_net_map]}
          EndpointMap: {get_attr: [EndpointMap, endpoint_map]}
...

This snippet shows how the Jinja2-based template incorporates the {{role.name}} variable to define
the name of each role as a OS::Heat::ResourceGroup resource. This in turn uses each name parameter
from the roles_data file to name each respective OS::Heat::ResourceGroup resource.

6.2.6. Creating a New Role

In this example, the aim is to create a new Horizon role to host the OpenStack Dashboard ( horizon)
only. In this situation, you create a custom roles directory that includes the new role information.

Create a custom copy of the default roles directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

Create a new file called ~/roles/Horizon.yaml and create a new Horizon role containing base and core
OpenStack Dashboard services. For example:

- name: Horizon
  CountDefault: 1
  HostnameFormatDefault: '%stackname%-horizon-%index%'
  ServicesDefault:
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::Kernel

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

47



    - OS::TripleO::Services::Ntp
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Sshd
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::FluentdClient
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::Apache
    - OS::TripleO::Services::Horizon

It is a good idea to set the CountDefault to 1 so that a default Overcloud always includes the Horizon
node.

If scaling the services in an existing overcloud, keep the existing services on the Controller role. If
creating a new overcloud and you want the OpenStack Dashboard to remain on the standalone role,
remove the OpenStack Dashboard components from the Controller role definition:

- name: Controller
  CountDefault: 1
  ServicesDefault:
    ...
    - OS::TripleO::Services::GnocchiMetricd
    - OS::TripleO::Services::GnocchiStatsd
    - OS::TripleO::Services::HAproxy
    - OS::TripleO::Services::HeatApi
    - OS::TripleO::Services::HeatApiCfn
    - OS::TripleO::Services::HeatApiCloudwatch
    - OS::TripleO::Services::HeatEngine
    # - OS::TripleO::Services::Horizon                # Remove this service
    - OS::TripleO::Services::IronicApi
    - OS::TripleO::Services::IronicConductor
    - OS::TripleO::Services::Iscsid
    - OS::TripleO::Services::Keepalived
    ...

Generate the new roles_data file using the roles directory as the source:

$ openstack overcloud roles generate -o roles_data-horizon.yaml \
  --roles-path ~/roles \
  Controller Compute Horizon

You might need to define a new flavor for this role so that you can tag specific nodes. For this example,
use the following commands to create a horizon flavor:

$ openstack flavor create --id auto --ram 6144 --disk 40 --vcpus 4 horizon
$ openstack flavor set --property "cpu_arch"="x86_64" --property "capabilities:boot_option"="local" --
property "capabilities:profile"="horizon" horizon
$ openstack flavor set --property resources:VCPU=0 --property resources:MEMORY_MB=0 --
property resources:DISK_GB=0 --property resources:CUSTOM_BAREMETAL=1 horizon

Tag nodes into the new flavor using the following command:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

48



$ openstack baremetal node set --property capabilities='profile:horizon,boot_option:local' 58c3d07e-
24f2-48a7-bbb6-6843f0e8ee13

Define the Horizon node count and flavor using the following environment file snippet:

parameter_defaults:
  OvercloudHorizonFlavor: horizon
  HorizonCount: 1

Include the new roles_data file and environment file when running the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-horizon.yaml -e 
~/templates/node-count-flavor.yaml

When the deployment completes, this creates a three-node Overcloud consisting of one Controller
node, one Compute node, and one Networker node. To view the Overcloud’s list of nodes, run the
following command:

$ openstack server list

6.3. COMPOSABLE SERVICES

6.3.1. Guidelines and Limitations

Note the following guidelines and limitations for the composable node architecture.

For services not managed by Pacemaker:

You can assign services to standalone custom roles.

You can create additional custom roles after the initial deployment and deploy them to scale
existing services.

For services managed by Pacemaker:

You can assign Pacemaker-managed services to standalone custom roles.

Pacemaker has a 16 node limit. If you assign the Pacemaker service
(OS::TripleO::Services::Pacemaker) to 16 nodes, subsequent nodes must use the Pacemaker
Remote service (OS::TripleO::Services::PacemakerRemote) instead. You cannot have the
Pacemaker service and Pacemaker Remote service on the same role.

Do not include the Pacemaker service (OS::TripleO::Services::Pacemaker) on roles that do
not contain Pacemaker-managed services.

You cannot scale up or scale down a custom role that contains 
OS::TripleO::Services::Pacemaker or OS::TripleO::Services::PacemakerRemote services.

General limitations:

You cannot change custom roles and composable services during the a major version upgrade.

You cannot modify the list of services for any role after deploying an Overcloud. Modifying the

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

49



You cannot modify the list of services for any role after deploying an Overcloud. Modifying the
service lists after Overcloud deployment can cause deployment errors and leave orphaned
services on nodes.

6.3.2. Examining Composable Service Architecture

The core Heat template collection contains two sets of composable service templates:

deployment contains the templates for key OpenStack Platform services.

puppet/services contains legacy templates for configuring composable services. In some cases,
the composable services use templates from this directory for compatibility. In most cases, the
composable services use the templates in the deployment directory.

Each template contains a description that identifies its purpose. For example, the deployment/time/ntp-
baremetal-puppet.yaml service template contains the following description:

description: >
  NTP service deployment using puppet, this YAML file
  creates the interface between the HOT template
  and the puppet manifest that actually installs
  and configure NTP.

These service templates are registered as resources specific to a Red Hat OpenStack Platform
deployment. This means you can call each resource using a unique Heat resource namespace defined in
the overcloud-resource-registry-puppet.j2.yaml file. All services use the OS::TripleO::Services
namespace for their resource type.

Some resources use the base composable service templates directly. For example:

resource_registry:
  ...
  OS::TripleO::Services::Ntp: deployment/time/ntp-baremetal-puppet.yaml
  ...

However, core services require containers and use the containerized service templates. For example, the
keystone containerized service uses the following resource:

resource_registry:
  ...
  OS::TripleO::Services::Keystone: deployment/keystone/keystone-container-puppet.yaml
  ...

These containerized templates usually reference other templates to include dependencies. For
example, the deployment/keystone/keystone-container-puppet.yaml template stores the output of
the base template in the ContainersCommon resource:

resources:
  ContainersCommon:
    type: ../containers-common.yaml

The containerized template can then incorporate functions and data from the containers-
common.yaml template.

The overcloud.j2.yaml Heat template includes a section of Jinja2-based code to define a service list

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

50



The overcloud.j2.yaml Heat template includes a section of Jinja2-based code to define a service list
for each custom role in the roles_data.yaml file:

{{role.name}}Services:
  description: A list of service resources (configured in the Heat
               resource_registry) which represent nested stacks
               for each service that should get installed on the {{role.name}} role.
  type: comma_delimited_list
  default: {{role.ServicesDefault|default([])}}

For the default roles, this creates the following service list parameters: ControllerServices, 
ComputeServices, BlockStorageServices, ObjectStorageServices, and CephStorageServices.

You define the default services for each custom role in the roles_data.yaml file. For example, the
default Controller role contains the following content:

- name: Controller
  CountDefault: 1
  ServicesDefault:
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CephMon
    - OS::TripleO::Services::CephExternal
    - OS::TripleO::Services::CephRgw
    - OS::TripleO::Services::CinderApi
    - OS::TripleO::Services::CinderBackup
    - OS::TripleO::Services::CinderScheduler
    - OS::TripleO::Services::CinderVolume
    - OS::TripleO::Services::Core
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::Keystone
    - OS::TripleO::Services::GlanceApi
    - OS::TripleO::Services::GlanceRegistry
...

These services are then defined as the default list for the ControllerServices parameter.

NOTE

You can also use an environment file to override the default list for the service
parameters. For example, you can define ControllerServices as a parameter_default in
an environment file to override the services list from the roles_data.yaml file.

6.3.3. Adding and Removing Services from Roles

The basic method of adding or removing services involves creating a copy of the default service list for a
node role and then adding or removing services. For example, you might aim to remove OpenStack
Orchestration (heat) from the Controller nodes. In this situation, create a custom copy of the default 
roles directory:

$ cp -r /usr/share/openstack-tripleo-heat-templates/roles ~/.

Edit the ~/roles/Controller.yaml file and modify the service list for the ServicesDefault parameter.
Scroll to the OpenStack Orchestration services and remove them:

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

51



    - OS::TripleO::Services::GlanceApi
    - OS::TripleO::Services::GlanceRegistry
    - OS::TripleO::Services::HeatApi            # Remove this service
    - OS::TripleO::Services::HeatApiCfn         # Remove this service
    - OS::TripleO::Services::HeatApiCloudwatch  # Remove this service
    - OS::TripleO::Services::HeatEngine         # Remove this service
    - OS::TripleO::Services::MySQL
    - OS::TripleO::Services::NeutronDhcpAgent

Generate the new roles_data file. For example:

$ openstack overcloud roles generate -o roles_data-no_heat.yaml \
  --roles-path ~/roles \
  Controller Compute Networker

Include this new roles_data file when running the openstack overcloud deploy command. For
example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data-no_heat.yaml

This deploys an Overcloud without OpenStack Orchestration services installed on the Controller nodes.

NOTE

You can also disable services in the roles_data file using a custom environment file.
Redirect the services to disable to the OS::Heat::None resource. For example:

resource_registry:
  OS::TripleO::Services::HeatApi: OS::Heat::None
  OS::TripleO::Services::HeatApiCfn: OS::Heat::None
  OS::TripleO::Services::HeatApiCloudwatch: OS::Heat::None
  OS::TripleO::Services::HeatEngine: OS::Heat::None

6.3.4. Enabling Disabled Services

Some services are disabled by default. These services are registered as null operations
(OS::Heat::None) in the overcloud-resource-registry-puppet.j2.yaml file. For example, the Block
Storage backup service (cinder-backup) is disabled:

  OS::TripleO::Services::CinderBackup: OS::Heat::None

To enable this service, include an environment file that links the resource to its respective Heat
templates in the puppet/services directory. Some services have predefined environment files in the 
environments directory. For example, the Block Storage backup service uses the 
environments/cinder-backup.yaml file, which contains the following:

resource_registry:
  OS::TripleO::Services::CinderBackup: ../puppet/services/pacemaker/cinder-backup.yaml
...

This overrides the default null operation resource and enables the service. Include this environment file
when running the openstack overcloud deploy command.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

52



$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-heat-
templates/environments/cinder-backup.yaml

TIP

For another example of how to enable disabled services, see the Installation section of the OpenStack
Data Processing guide. This section contains instructions on how to enable the OpenStack Data
Processing service (sahara) on the overcloud.

6.3.5. Creating a Generic Node with No Services

Red Hat OpenStack Platform provides the ability to create generic Red Hat Enterprise Linux 8 nodes
without any OpenStack services configured. This is useful when you need to host software outside of the
core Red Hat OpenStack Platform environment. For example, OpenStack Platform provides integration
with monitoring tools such as Kibana and Sensu (see Monitoring Tools Configuration Guide ). While Red
Hat does not provide support for the monitoring tools themselves, the director can create a generic Red
Hat Enterprise Linux 8 node to host these tools.

NOTE

The generic node still uses the base overcloud-full image rather than a base Red Hat
Enterprise Linux 8 image. This means the node has some Red Hat OpenStack Platform
software installed but not enabled or configured.

Creating a generic node requires a new role without a ServicesDefault list:

- name: Generic

Include the role in your custom roles_data file (roles_data_with_generic.yaml). Make sure to keep the
existing Controller and Compute roles.

You can also include an environment file (generic-node-params.yaml) to specify how many generic
Red Hat Enterprise Linux 8 nodes you require and the flavor when selecting nodes to provision. For
example:

parameter_defaults:
  OvercloudGenericFlavor: baremetal
  GenericCount: 1

Include both the roles file and the environment file when running the openstack overcloud deploy
command. For example:

$ openstack overcloud deploy --templates -r ~/templates/roles_data_with_generic.yaml -e 
~/templates/generic-node-params.yaml

This deploys a three-node environment with one Controller node, one Compute node, and one generic
Red Hat Enterprise Linux 8 node.

CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES

53

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/openstack_data_processing/#install
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/openstack_data_processing
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/monitoring_tools_configuration_guide


CHAPTER 7. CONTAINERIZED SERVICES
The director installs the core OpenStack Platform services as containers on the overcloud. This section
provides some background information on how containerized services work.

7.1. CONTAINERIZED SERVICE ARCHITECTURE

The director installs the core OpenStack Platform services as containers on the overcloud. The
templates for the containerized services are located in the /usr/share/openstack-tripleo-heat-
templates/deployment/.

All nodes using containerized services must enable the OS::TripleO::Services::Podman service. When
you create a roles_data.yaml file for your custom roles configuration, include the 
OS::TripleO::Services::Podman service with the base composable services, as the containerized
services. For example, the IronicConductor role uses the following role definition:

- name: IronicConductor
  description: |
    Ironic Conductor node role
  networks:
    InternalApi:
      subnet: internal_api_subnet
    Storage:
      subnet: storage_subnet
  HostnameFormatDefault: '%stackname%-ironic-%index%'
  ServicesDefault:
    - OS::TripleO::Services::Aide
    - OS::TripleO::Services::AuditD
    - OS::TripleO::Services::BootParams
    - OS::TripleO::Services::CACerts
    - OS::TripleO::Services::CertmongerUser
    - OS::TripleO::Services::Collectd
    - OS::TripleO::Services::Docker
    - OS::TripleO::Services::Fluentd
    - OS::TripleO::Services::IpaClient
    - OS::TripleO::Services::Ipsec
    - OS::TripleO::Services::IronicConductor
    - OS::TripleO::Services::IronicPxe
    - OS::TripleO::Services::Kernel
    - OS::TripleO::Services::LoginDefs
    - OS::TripleO::Services::MetricsQdr
    - OS::TripleO::Services::MySQLClient
    - OS::TripleO::Services::ContainersLogrotateCrond
    - OS::TripleO::Services::Podman
    - OS::TripleO::Services::Rhsm
    - OS::TripleO::Services::SensuClient
    - OS::TripleO::Services::Snmp
    - OS::TripleO::Services::Timesync
    - OS::TripleO::Services::Timezone
    - OS::TripleO::Services::TripleoFirewall
    - OS::TripleO::Services::TripleoPackages
    - OS::TripleO::Services::Tuned

7.2. CONTAINERIZED SERVICE PARAMETERS

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

54



Each containerized service template contains an outputs section that defines a data set passed to the
director’s OpenStack Orchestration (Heat) service. In addition to the standard composable service
parameters (see Section 6.2.5, “Examining Role Parameters”), the template contain a set of parameters
specific to the container configuration.

puppet_config

Data to pass to Puppet when configuring the service. In the initial overcloud deployment steps, the
director creates a set of containers used to configure the service before the actual containerized
service runs. This parameter includes the following sub-parameters:

config_volume - The mounted volume that stores the configuration.

puppet_tags - Tags to pass to Puppet during configuration. These tags are used in
OpenStack Platform to restrict the Puppet run to a particular configuration resource for a
service. For example, the OpenStack Identity (keystone) containerized service uses the 
keystone_config tag to run the keystone_config Puppet resource on the configuration
container.

step_config - The configuration data passed to Puppet. This is usually inherited from the
referenced composable service.

config_image - The container image used to configure the service.

kolla_config

A set of container-specific data that defines configuration file locations, directory permissions, and
the command to run on the container to launch the service.

docker_config

Tasks to run on the service’s configuration container. All tasks are grouped into the following steps to
help the director perform a staged deployment:

Step 1 - Load balancer configuration

Step 2 - Core services (Database, Redis)

Step 3 - Initial configuration of OpenStack Platform service

Step 4 - General OpenStack Platform services configuration

Step 5 - Service activation

host_prep_tasks

Preparation tasks for the bare metal node to accommodate the containerized service.

7.3. PREPARING CONTAINER IMAGES

The overcloud configuration requires initial registry configuration to determine where to obtain images
and how to store them. Complete the following steps to generate and customize an environment file for
preparing your container images.

Procedure

1. Log in to your undercloud host as the stack user.

2. Generate the default container image preparation file:

CHAPTER 7. CONTAINERIZED SERVICES

55



$ openstack tripleo container image prepare default \
  --local-push-destination \
  --output-env-file containers-prepare-parameter.yaml

This command includes the following additional options:

--local-push-destination sets the registry on the undercloud as the location for container
images. This means the director pulls the necessary images from the Red Hat Container
Catalog and pushes them to the registry on the undercloud. The director uses this registry
as the container image source. To pull directly from the Red Hat Container Catalog, omit
this option.

--output-env-file is an environment file name. The contents of this file include the
parameters for preparing your container images. In this case, the name of the file is 
containers-prepare-parameter.yaml.

NOTE

You can also use the same containers-prepare-parameter.yaml file to
define a container image source for both the undercloud and the overcloud.

3. Edit the containers-prepare-parameter.yaml and make the modifications to suit your
requirements.

7.4. CONTAINER IMAGE PREPARATION PARAMETERS

The default file for preparing your containers (containers-prepare-parameter.yaml) contains the 
ContainerImagePrepare Heat parameter. This parameter defines a list of strategies for preparing a set
of images:

parameter_defaults:
  ContainerImagePrepare:
  - (strategy one)
  - (strategy two)
  - (strategy three)
  ...

Each strategy accepts a set of sub-parameters that define which images to use and what to do with
them. The following table contains information about the sub-parameters you can use with each 
ContainerImagePrepare strategy:

Parameter Description

excludes List of image name substrings to exclude from a
strategy.

includes List of image name substrings to include in a
strategy. At least one image name must match an
existing image. All excludes are ignored if includes
is specified.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

56



modify_append_tag String to append to the tag for the destination image.
For example, if you pull an image with the tag 14.0-
89 and set the modify_append_tag to -hotfix, the
director tags the final image as 14.0-89-hotfix.

modify_only_with_labels A dictionary of image labels that filter the images to
modify. If an image matches the labels defined, the
director includes the image in the modification
process.

modify_role String of ansible role names to run during upload but
before pushing the image to the destination registry.

modify_vars Dictionary of variables to pass to modify_role.

push_destination The namespace of the registry to push images during
the upload process. When you specify a namespace
for this parameter, all image parameters use this
namespace too. If set to true, the 
push_destination is set to the undercloud registry
namespace. It is not recommended to set this
parameters to false in production environments. If
this is set to false or not provided and the remote
registry requires authentication, set the 
ContainerImageRegistryLogin parameter to 
true and provide the credentials with the 
ContainerImageRegistryCredentials
parameter.

pull_source The source registry from where to pull the original
container images.

set A dictionary of key: value definitions that define
where to obtain the initial images.

tag_from_label Defines the label pattern to tag the resulting images.
Usually sets to {version}-{release}.

Parameter Description

The set parameter accepts a set of key: value definitions. The following table contains information
about the keys:

Key Description

ceph_image The name of the Ceph Storage container image.

CHAPTER 7. CONTAINERIZED SERVICES

57



ceph_namespace The namespace of the Ceph Storage container
image.

ceph_tag The tag of the Ceph Storage container image.

name_prefix A prefix for each OpenStack service image.

name_suffix A suffix for each OpenStack service image.

namespace The namespace for each OpenStack service image.

neutron_driver The driver to use to determine which OpenStack
Networking (neutron) container to use. Use a null
value to set to the standard neutron-server
container. Set to ovn to use OVN-based containers.

tag The tag that the director uses to identify the images
to pull from the source registry. You usually keep this
key set to latest.

Key Description

The ContainerImageRegistryCredentials parameter maps a container registry to a username and
password to authenticate to that registry.

If a container registry requires a username and password, you can use 
ContainerImageRegistryCredentials to include their values with the following syntax:

  ContainerImagePrepare:
  - push_destination: 192.168.24.1:8787
    set:
      namespace: registry.redhat.io/...
      ...
  ContainerImageRegistryCredentials:
    registry.redhat.io:
      my_username: my_password

In the example, replace my_username and my_password with your authentication credentials. Instead
of using your individual user credentials, Red Hat recommends creating a registry service account and
using those credentials to access registry.redhat.io content. For more information, see "Red Hat
Container Registry Authentication".

The ContainerImageRegistryLogin parameter is used to control the registry login on the systems
being deployed. This must be set to true if push_destination is set to false or not used.

  ContainerImagePrepare:
  - set:
      namespace: registry.redhat.io/...
      ...
  ContainerImageRegistryCredentials:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

58

https://access.redhat.com/RegistryAuthentication


    registry.redhat.io:
      my_username: my_password
  ContainerImageRegistryLogin: true

7.5. LAYERING IMAGE PREPARATION ENTRIES

The value of the ContainerImagePrepare parameter is a YAML list. This means you can specify multiple
entries. The following example demonstrates two entries where the director uses the latest version of all
images except for the nova-api image, which uses the version tagged with 15.0-44:

ContainerImagePrepare:
- tag_from_label: "{version}-{release}"
  push_destination: true
  excludes:
  - nova-api
  set:
    namespace: registry.redhat.io/rhosp15-rhel8
    name_prefix: openstack-
    name_suffix: ''
    tag: latest
- push_destination: true
  includes:
  - nova-api
  set:
    namespace: registry.redhat.io/rhosp15-rhel8
    tag: 15.0-44

The includes and excludes entries control image filtering for each entry. The images that match the 
includes strategy take precedence over excludes matches. The image name must include the 
includes or excludes value to be considered a match.

7.6. MODIFYING IMAGES DURING PREPARATION

It is possible to modify images during image preparation, then immediately deploy with modified images.
Scenarios for modifying images include:

As part of a continuous integration pipeline where images are modified with the changes being
tested before deployment.

As part of a development workflow where local changes need to be deployed for testing and
development.

When changes need to be deployed but are not available through an image build pipeline. For
example, adding proprietry add-ons or emergency fixes.

To modify an image during preparation, invoke an Ansible role on each image that you want to modify.
The role takes a source image, makes the requested changes, and tags the result. The prepare
command can push the image to the destination registry and set the Heat parameters to refer to the
modified image.

The Ansible role tripleo-modify-image conforms with the required role interface, and provides the
behaviour necessary for the modify use-cases. Modification is controlled using modify-specific keys in
the ContainerImagePrepare parameter:

modify_role specifies the Ansible role to invoke for each image to modify.

CHAPTER 7. CONTAINERIZED SERVICES

59



modify_append_tag appends a string to the end of the source image tag. This makes it obvious
that the resulting image has been modified. Use this parameter to skip modification if the 
push_destination registry already contains the modified image. It is recommended to change 
modify_append_tag whenever you modify the image.

modify_vars is a dictionary of Ansible variables to pass to the role.

To select a use-case that the tripleo-modify-image role handles, set the tasks_from variable to the
required file in that role.

While developing and testing the ContainerImagePrepare entries that modify images, it is
recommended to run the image prepare command without any additional options to confirm the image
is modified as expected:

sudo openstack tripleo container image prepare \
  -e ~/containers-prepare-parameter.yaml

7.7. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES

The following example ContainerImagePrepare entry updates in all packages on the images using the
undercloud host’s dnf repository configuration:

ContainerImagePrepare:
- push_destination: true
  ...
  modify_role: tripleo-modify-image
  modify_append_tag: "-updated"
  modify_vars:
    tasks_from: yum_update.yml
    compare_host_packages: true
    yum_repos_dir_path: /etc/yum.repos.d
  ...

7.8. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES

You can install a directory of RPM files in your container images. This is useful for installing hotfixes,
local package builds, or any package not available through a package repository. For example, the
following ContainerImagePrepare entry installs some hotfix packages only on the nova-compute
image:

ContainerImagePrepare:
- push_destination: true
  ...
  includes:
  - nova-compute
  modify_role: tripleo-modify-image
  modify_append_tag: "-hotfix"
  modify_vars:
    tasks_from: rpm_install.yml
    rpms_path: /home/stack/nova-hotfix-pkgs
  ...

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

60



7.9. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

For maximum flexibility, you can specify a directory containing a Dockerfile to make the required
changes. When you invoke the tripleo-modify-image role, the role generates a Dockerfile.modified file
that changes the FROM directive and adds extra LABEL directives. The following example runs the
custom Dockerfile on the nova-compute image:

ContainerImagePrepare:
- push_destination: true
  ...
  includes:
  - nova-compute
  modify_role: tripleo-modify-image
  modify_append_tag: "-hotfix"
  modify_vars:
    tasks_from: modify_image.yml
    modify_dir_path: /home/stack/nova-custom
  ...

An example /home/stack/nova-custom/Dockerfile follows. After running any USER root directives, you
must switch back to the original image default user:

FROM registry.redhat.io/rhosp15-rhel8/openstack-nova-compute:latest

USER "root"

COPY customize.sh /tmp/
RUN /tmp/customize.sh

USER "nova"

CHAPTER 7. CONTAINERIZED SERVICES

61



CHAPTER 8. BASIC NETWORK ISOLATION
This chapter shows you how to configure the overcloud with the standard network isolation
configuration. This includes the following configurations:

The rendered environment file to enable network isolation (/usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml).

A copied environment file to configure network defaults (/usr/share/openstack-tripleo-heat-
templates/environments/network-environment.yaml).

A network_data file to define network settings such as IP ranges, subnets, and virtual IPs. This
example shows you how to create a copy of the default and edit it to suit your own network.

Templates to define your NIC layout for each node. The overcloud core template collection
contains a set of defaults for different use cases.

An environment file to enable NICs. This example uses a default file located in the 
environments directory.

Any additional environment files to customize your networking parameters.

The following content in this chapter shows how to define each of these aspects.

8.1. NETWORK ISOLATION

The overcloud assigns services to the provisioning network by default. However, the director can divide
overcloud network traffic into isolated networks. To use isolated networks, the overcloud contains an
environment file that enables this feature. The environments/network-isolation.j2.yaml file in the
director’s core Heat templates is a Jinja2 file that defines all ports and VIPs for each network in your
composable network file. When rendered, it results in a network-isolation.yaml file in the same location
with the full resource registry. For example:

resource_registry:
  # networks as defined in network_data.yaml
  OS::TripleO::Network::Storage: ../network/storage.yaml
  OS::TripleO::Network::StorageMgmt: ../network/storage_mgmt.yaml
  OS::TripleO::Network::InternalApi: ../network/internal_api.yaml
  OS::TripleO::Network::Tenant: ../network/tenant.yaml
  OS::TripleO::Network::External: ../network/external.yaml

  # Port assignments for the VIPs
  OS::TripleO::Network::Ports::StorageVipPort: ../network/ports/storage.yaml
  OS::TripleO::Network::Ports::StorageMgmtVipPort: ../network/ports/storage_mgmt.yaml
  OS::TripleO::Network::Ports::InternalApiVipPort: ../network/ports/internal_api.yaml
  OS::TripleO::Network::Ports::ExternalVipPort: ../network/ports/external.yaml
  OS::TripleO::Network::Ports::RedisVipPort: ../network/ports/vip.yaml

  # Port assignments by role, edit role definition to assign networks to roles.
  # Port assignments for the Controller
  OS::TripleO::Controller::Ports::StoragePort: ../network/ports/storage.yaml
  OS::TripleO::Controller::Ports::StorageMgmtPort: ../network/ports/storage_mgmt.yaml
  OS::TripleO::Controller::Ports::InternalApiPort: ../network/ports/internal_api.yaml
  OS::TripleO::Controller::Ports::TenantPort: ../network/ports/tenant.yaml
  OS::TripleO::Controller::Ports::ExternalPort: ../network/ports/external.yaml

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

62



  # Port assignments for the Compute
  OS::TripleO::Compute::Ports::StoragePort: ../network/ports/storage.yaml
  OS::TripleO::Compute::Ports::InternalApiPort: ../network/ports/internal_api.yaml
  OS::TripleO::Compute::Ports::TenantPort: ../network/ports/tenant.yaml

  # Port assignments for the CephStorage
  OS::TripleO::CephStorage::Ports::StoragePort: ../network/ports/storage.yaml
  OS::TripleO::CephStorage::Ports::StorageMgmtPort: ../network/ports/storage_mgmt.yaml

The first section of this file has the resource registry declaration for the OS::TripleO::Network::*
resources. By default, these resources use the OS::Heat::None resource type, which does not create
any networks. By redirecting these resources to the YAML files for each network, you enable the
creation of these networks.

The next several sections create the IP addresses for the nodes in each role. The controller nodes have
IPs on each network. The compute and storage nodes each have IPs on a subset of the networks.

Other functions of overcloud networking, such as Chapter 9, Custom composable networks  and
Chapter 10, Custom network interface templates rely on this network isolation environment file. As a
result, you need to include the name of the rendered file with your deployment commands. For example:

$ openstack overcloud deploy --templates \
    ...
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
    ...

8.2. MODIFYING ISOLATED NETWORK CONFIGURATION

The network_data file provides a method to configure the default isolated networks. This procedure
shows how to create a custom network_data file and configure it according to your network
requirements.

Procedure

1. Copy the default network_data file:

$ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml /home/stack/.

2. Edit the local copy of the network_data.yaml file and modify the parameters to suit your
networking requirements. For example, the Internal API network contains the following default
network details:

- name: InternalApi
  name_lower: internal_api
  vip: true
  vlan: 201
  ip_subnet: '172.16.2.0/24'
  allocation_pools: [{'start': '172.16.2.4', 'end': '172.16.2.250'}]

Edit the following for each network:

vlan defines the VLAN ID to use for this network.

CHAPTER 8. BASIC NETWORK ISOLATION

63



ip_subnet and ip_allocation_pools set the default subnet and IP range for the network..

gateway sets the gateway for the network. Used mostly to define the default route for the
External network, but can be used for other networks if necessary.

Include the custom network_data file with your deployment using the -n option. Without the -n option,
the deployment command uses the default network details.

8.3. NETWORK INTERFACE TEMPLATES

The overcloud network configuration requires a set of the network interface templates. These templates
are standard Heat templates in YAML format. Each role requires a NIC template so the director can
configure each node within that role correctly.

All NIC templates contain the same sections as standard Heat templates:

heat_template_version

The syntax version to use.

description

A string description of the template.

parameters

Network parameters to include in the template.

resources

Takes parameters defined in parameters and applies them to a network configuration script.

outputs

Renders the final script used for configuration.

The default NIC templates in /usr/share/openstack-tripleo-heat-templates/network/config take
advantage of Jinja2 syntax to help render the template. For example, the following snippet from the 
single-nic-vlans configuration renders a set of VLANs for each network:

{%- for network in networks if network.enabled|default(true) and network.name in role.networks %}
- type: vlan
  vlan_id:
    get_param: {{network.name}}NetworkVlanID
  addresses:
  - ip_netmask:
      get_param: {{network.name}}IpSubnet
{%- if network.name in role.default_route_networks %}

For default Compute nodes, this only renders network information for the Storage, Internal API, and
Tenant networks:

- type: vlan
  vlan_id:
    get_param: StorageNetworkVlanID
  device: bridge_name
  addresses:
  - ip_netmask:
      get_param: StorageIpSubnet
- type: vlan
  vlan_id:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

64



    get_param: InternalApiNetworkVlanID
  device: bridge_name
  addresses:
  - ip_netmask:
      get_param: InternalApiIpSubnet
- type: vlan
  vlan_id:
    get_param: TenantNetworkVlanID
  device: bridge_name
  addresses:
  - ip_netmask:
      get_param: TenantIpSubnet

Chapter 10, Custom network interface templates explores how to render the default Jinja2-based
templates to standard YAML versions, which you can use as a basis for customization.

8.4. DEFAULT NETWORK INTERFACE TEMPLATES

The director contains templates in /usr/share/openstack-tripleo-heat-templates/network/config/ to
suit most common network scenarios. The following table outlines each NIC template set and the
respective environment file to use to enable the templates.

NOTE

Each environment file for enabling NIC templates uses the suffix .j2.yaml. This is the
unrendered Jinja2 version. Ensure that you include the rendered file name, which only
uses the .yaml suffix, in your deployment.

NIC directory Description Environment file

single-nic-vlans Single NIC (nic1) with control
plane and VLANs attached to
default Open vSwitch bridge.

environments/net-single-nic-
with-vlans.j2.yaml

single-nic-linux-bridge-vlans Single NIC (nic1) with control
plane and VLANs attached to
default Linux bridge.

environments/net-single-nic-
linux-bridge-with-vlans

bond-with-vlans Control plane attached to nic1.
Default Open vSwitch bridge with
bonded NIC configuration (nic2
and nic3) and VLANs attached.

environments/net-bond-with-
vlans.yaml

CHAPTER 8. BASIC NETWORK ISOLATION

65



multiple-nics Control plane attached to nic1.
Assigns each sequential NIC to
each network defined in the 
network_data file. By default,
this is Storage to nic2, Storage
Management to nic3, Internal API
to nic4, Tenant to nic5 on the 
br-tenant bridge, and External to
nic6 on the default Open vSwitch
bridge.

environments/net-multiple-
nics.yaml

NIC directory Description Environment file

NOTE

Environment files exist for using no external network, for example, net-bond-with-vlans-
no-external.yaml, and using IPv6, for example, net-bond-with-vlans-v6.yaml. These are
provided for backwards compatibility and do not function with composable networks.

Each default NIC template set contains a role.role.j2.yaml template. This file uses Jinja2 to render
additional files for each composable role. For example, if your overcloud uses Compute, Controller, and
Ceph Storage roles, the deployment renders new templates based on role.role.j2.yaml, such as the
following templates:

compute.yaml

controller.yaml

ceph-storage.yaml.

8.5. ENABLING BASIC NETWORK ISOLATION

This procedure shows you how to enable basic network isolation using one of the default NIC templates.
In this case, it is the single NIC with VLANs template (single-nic-vlans).

Procedure

1. When running the openstack overcloud deploy command, ensure that you include the
rendered environment file names for the following files:

The custom network_data file.

The rendered file name of the default network isolation.

The rendered file name of the default network environment file.

The rendered file name of the default network interface configuration

Any additional environment files relevant to your configuration.

For example:

$ openstack overcloud deploy --templates \

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

66



    ...
    -n /home/stack/network_data.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/net-single-nic-with-vlans.yaml \
    ...

CHAPTER 8. BASIC NETWORK ISOLATION

67



CHAPTER 9. CUSTOM COMPOSABLE NETWORKS
This chapter follows on from the concepts and procedures outlined in Chapter 8, Basic network isolation
and shows you how to configure the overcloud with an additional composable network. This includes
configuration of the following files and templates:

The environment file to enable network isolation (/usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml).

The environment file to configure network defaults (/usr/share/openstack-tripleo-heat-
templates/environments/network-environment.yaml).

A custom network_data file to create additional networks outside of the defaults.

A custom roles_data file to assign custom networks to roles.

Templates to define your NIC layout for each node. The overcloud core template collection
contains a set of defaults for different use cases.

An environment file to enable NICs. This example uses a a default file located in the 
environments directory.

Any additional environment files to customize your networking parameters. This example uses
an environment file to customize OpenStack service mappings to composable networks.

The following content in this chapter shows you how to define each of these aspects.

9.1. COMPOSABLE NETWORKS

The overcloud uses the following pre-defined set of network segments by default:

Control Plane

Internal API

Storage

Storage Management

Tenant

External

Management (optional)

You can use Composable networks to add networks for various services. For example, if you have a
network dedicated to NFS traffic, you can present it to multiple roles.

Director supports the creation of custom networks during the deployment and update phases. These
additional networks can be used for ironic bare metal nodes, system management, or to create separate
networks for different roles. You can also use them to create multiple sets of networks for split
deployments where traffic is routed between networks.

A single data file (network_data.yaml) manages the list of networks to be deployed. Include this file
with your deployment command using the -n option. Without this option, the deployment uses the
default file (/usr/share/openstack-tripleo-heat-templates/network_data.yaml).

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

68



9.2. ADDING A COMPOSABLE NETWORK

This procedure shows you how to add an additional composable network to your overcloud.

Procedure

1. Copy the default network_data file:

$ cp /usr/share/openstack-tripleo-heat-templates/network_data.yaml /home/stack/.

2. Edit the local copy of the network_data.yaml file and add a section for your new network. For
example:

- name: StorageBackup
  name_lower: storage_backup
  vlan: 21
  vip: true
  ip_subnet: '172.21.1.0/24'
  allocation_pools: [{'start': '171.21.1.4', 'end': '172.21.1.250'}]
  gateway_ip: '172.21.1.1'

You can use the following parameters in your network_data file:

name

Sets the human readable name of the network. This parameter is the only mandatory parameter. You
can also use name_lower to normalize names for readability. For example, changing InternalApi to 
internal_api.

name_lower

Sets the lowercase version of the name, which the director maps to respective networks assigned to
roles in the roles_data file.

vlan

Sets the VLAN to use for this network.

vip: true

Creates a virtual IP address (VIP) on the new network. This IP is used as the target IP for services
listed in the service-to-network mapping parameter (ServiceNetMap). Note that VIPs are only used
by roles that use Pacemaker. The overcloud’s load-balancing service redirects traffic from these IPs
to their respective service endpoint.

ip_subnet

Sets the default IPv4 subnet in CIDR format.

allocation_pools

Sets the IP range for the IPv4 subnet

gateway_ip

Sets the gateway for the network.

routes

Adds additional routes to the network. Uses a JSON list containing each additional route. Each list
item contains a dictionary value mapping. The example demonstrates the syntax:

  routes: [{'destination':'10.0.0.0/16', 'nexthop':'10.0.2.254'}]

CHAPTER 9. CUSTOM COMPOSABLE NETWORKS

69



subnets

Creates additional routed subnets that fall within this network. This parameter accepts a dict value
containing the lowercase name of the routed subnet as the key and the previously mentioned vlan, 
ip_subnet, allocation_pools, and gateway_ip parameters as the value mapped to the subnet. The
following example demonstrates this layout:

- name: StorageBackup
  name_lower: storage_backup
  vlan: 200
  vip: true
  ip_subnet: '172.21.0.0/24'
  allocation_pools: [{'start': '171.21.0.4', 'end': '172.21.0.250'}]
  gateway_ip: '172.21.0.1'
  subnets:
    storage_backup_leaf1:
      vlan: 201
      ip_subnet: '172.21.1.0/24'
      allocation_pools: [{'start': '171.21.1.4', 'end': '172.21.1.250'}]
      gateway_ip: '172.19.1.254'

This mapping is often used in spine leaf deployments. For more information, see the "Spine Leaf
Networking" guide.

Include the custom network_data file with your deployment using the -n option. Without the -n option,
the deployment command uses the default set of networks.

9.3. INCLUDING A COMPOSABLE NETWORK IN A ROLE

You can assign composable networks to the roles defined in your environment. For example, you might
include a custom StorageBackup network with your Ceph Storage nodes.

This procedure shows you how to add composable networks to a role in your overcloud.

Procedure

1. If you do not already have a custom roles_data file, copy the default to your home directory:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml /home/stack/.

2. Edit the custom roles_data file.

3. Scroll to the role you want to add the composable network and add the network name to the list
of networks. For example, to add the network to the Ceph Storage role, use the following
snippet as a guide:

- name: CephStorage
  description: |
    Ceph OSD Storage node role
  networks:
    - Storage
    - StorageMgmt
    - StorageBackup

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

70

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/spine_leaf_networking/index


4. After adding custom networks to their respective roles, save the file.

When running the openstack overcloud deploy command, include the roles_data file using the -r
option. Without the -r option, the deployment command uses the default set of roles with their
respective assigned networks.

9.4. ASSIGNING OPENSTACK SERVICES TO COMPOSABLE
NETWORKS

Each OpenStack service is assigned to a default network type in the resource registry. These services
are then bound to IP addresses within the network type’s assigned network. Although the OpenStack
services are divided among these networks, the number of actual physical networks can differ as defined
in the network environment file. You can reassign OpenStack services to different network types by
defining a new network map in an environment file, for example, /home/stack/templates/service-
reassignments.yaml. The ServiceNetMap parameter determines the network types used for each
service.

For example, you can reassign the Storage Management network services to the Storage Backup
Network by modifying the highlighted sections:

parameter_defaults:
  ServiceNetMap:
    SwiftMgmtNetwork: storage_backup
    CephClusterNetwork: storage_backup

Changing these parameters to storage_backup places these services on the Storage Backup network
instead of the Storage Management network. This means you only need to define a set of 
parameter_defaults for the Storage Backup network and not the Storage Management network.

The director merges your custom ServiceNetMap parameter definitions into a pre-defined list of
defaults taken from ServiceNetMapDefaults and overrides the defaults. The director returns the full
list, including customizations back to ServiceNetMap, which is used to configure network assignments
for various services.

Service mappings apply to networks that use vip: true in the network_data file for nodes that use
Pacemaker. The overcloud’s load balancer redirects traffic from the VIPs to the specific service
endpoints.

NOTE

A full list of default services can be found in the ServiceNetMapDefaults parameter
within /usr/share/openstack-tripleo-heat-
templates/network/service_net_map.j2.yaml.

9.5. ENABLING CUSTOM COMPOSABLE NETWORKS

This procedure shows you how to enable custom composable networks using one of the default NIC
templates. In this case, it is the Single NIC with VLANs (single-nic-vlans).

Procedure

1. When you run the openstack overcloud deploy command, ensure that you include the
following files:

CHAPTER 9. CUSTOM COMPOSABLE NETWORKS

71



The custom network_data file.

The custom roles_data file with network-to-role assignments.

The rendered file name of the default network isolation.

The rendered file name of the default network environment file.

The rendered file name of the default network interface configuration.

Any additional environment files related to your network, such as the service reassignments.

For example:

$ openstack overcloud deploy --templates \
    ...
    -n /home/stack/network_data.yaml \
    -r /home/stack/roles_data.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/net-single-nic-with-vlans.yaml \
    -e /home/stack/templates/service-reassignments.yaml \
    ...

This example command deploys the composable networks, including your additional custom networks,
across nodes in your overcloud.

IMPORTANT

Remember that you must render the templates again if you are introducing a new custom
network, such as a management network. Simply adding the network name to the 
roles_data.yaml file is not sufficient.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

72



CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES
This chapter follows on from the concepts and procedures outlined in Chapter 8, Basic network isolation .
The purpose of this chapter is to demonstrate how to create a set of custom network interface template
to suit nodes in your environment. This includes:

The environment file to enable network isolation (/usr/share/openstack-tripleo-heat-
templates/environments/network-isolation.yaml).

The environment file to configure network defaults (/usr/share/openstack-tripleo-heat-
templates/environments/network-environment.yaml).

Templates to define your NIC layout for each node. The overcloud core template collection
contains a set of defaults for different use cases. In this situation, you will render a default a
basis for your custom templates.

A custom environment file to enable NICs. This example uses a custom environment file
(/home/stack/templates/custom-network-configuration.yaml) that references your custom
interface templates.

Any additional environment files to customize your networking parameters.

If using customizing your networks, a custom network_data file.

If creating additional or custom composable networks, a custom network_data file and a
custom roles_data file.

10.1. CUSTOM NETWORK ARCHITECTURE

The default NIC templates might not suit a specific network configuration. For example, you might want
to create your own custom NIC template that suits a specific network layout. You might aim to separate
the control services and data services on to separate NICs. In this situation, the service to NIC
assignments result in the following mapping:

NIC1 (Provisioning):

Provisioning / Control Plane

NIC2 (Control Group)

Internal API

Storage Management

External (Public API)

NIC3 (Data Group)

Tenant Network (VXLAN tunneling)

Tenant VLANs / Provider VLANs

Storage

External VLANs (Floating IP/SNAT)

NIC4 (Management)

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

73



Management

10.2. RENDERING DEFAULT NETWORK INTERFACE TEMPLATES FOR
CUSTOMIZATION

For the purposes of simplifying the configuration of custom interface templates, this procedure shows
you how to render the Jinja2 syntax of a default NIC template. This way you can use the rendered
templates as a basis for your custom configuration.

Procedure

1. Render a copy of the openstack-tripleo-heat-templates collection using the process-
templates.py script:

$ cd /usr/share/openstack-tripleo-heat-templates
$ ./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered

This converts all Jinja2 templates to their rendered YAML versions and saves the results to 
~/openstack-tripleo-heat-templates-rendered.

If using a custom network file or custom roles file, you can include these files using the -n and -r
options respectively. For example:

$ ./tools/process-templates.py -o ~/openstack-tripleo-heat-templates-rendered -n 
/home/stack/network_data.yaml -r /home/stack/roles_data.yaml

2. Copy the multiple NIC example:

$ cp -r ~/openstack-tripleo-heat-templates-rendered/network/config/multiple-nics/ 
~/templates/custom-nics/

3. You can edit the template set in custom-nics to suit your own network configuration.

10.3. NETWORK INTERFACE ARCHITECTURE

This section explores the architecture of the custom NIC templates in custom-nics and provides
recommendations on editing them.

Parameters

The parameters section contains all network configuration parameters for network interfaces. This
includes information such as subnet ranges and VLAN IDs. This section should remain unchanged as the
Heat template inherits values from its parent template. However, you can modify the values for some
parameters using a network environment file.

Resources

The resources section is where the main network interface configuration occurs. In most cases, the 
resources section is the only one that requires editing. Each resources section begins with the
following header:

resources:
  OsNetConfigImpl:
    type: OS::Heat::SoftwareConfig

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

74



    properties:
      group: script
      config:
        str_replace:
          template:
            get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
          params:
            $network_config:
              network_config:

This runs a script (run-os-net-config.sh) that creates a configuration file for os-net-config to use for
configuring network properties on a node. The network_config section contains the custom network
interface data sent to the run-os-net-config.sh script. You arrange this custom interface data in a
sequence based on the type of device.

IMPORTANT

If creating custom NIC templates, you must set the run-os-net-config.sh script location
to an absolute location for each NIC template. The script is located at 
/usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh on
the undercloud.

10.4. NETWORK INTERFACE REFERENCE

The following sections define the network interface types and the parameters used in each.

interface

Defines a single network interface. The configuration defines each interface using either the actual
interface name ("eth0", "eth1", "enp0s25") or a set of numbered interfaces ("nic1", "nic2", "nic3").

For example:

  - type: interface
    name: nic2

Table 10.1. interface options

Option Default Description

name  Name of the Interface

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses  A list of IP addresses assigned to
the interface

routes  A list of routes assigned to the
interface. See routes.

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

75



mtu 1500 The maximum transmission unit
(MTU) of the connection

primary False Defines the interface as the
primary interface

defroute True Use a default route provided by
the DHCP service. Only applies
when use_dhcp or 
use_dhcpv6 is enabled.

persist_mapping False Write the device alias
configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
interface

Option Default Description

vlan

Defines a VLAN. Use the VLAN ID and subnet passed from the parameters section.

For example:

  - type: vlan
    vlan_id:{get_param: ExternalNetworkVlanID}
    addresses:
      - ip_netmask: {get_param: ExternalIpSubnet}

Table 10.2. vlan options

Option Default Description

vlan_id  The VLAN ID

device  The parent device to attach the
VLAN. Use this parameter when
the VLAN is not a member of an
OVS bridge. For example, use this
parameter to attach the VLAN to
a bonded interface device.

use_dhcp False Use DHCP to get an IP address

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

76



use_dhcpv6 False Use DHCP to get a v6 IP address

addresses  A list of IP addresses assigned to
the VLAN

routes  A list of routes assigned to the
VLAN. See routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection

primary False Defines the VLAN as the primary
interface

defroute True Use a default route provided by
the DHCP service. Only applies
when use_dhcp or 
use_dhcpv6 is enabled.

persist_mapping False Write the device alias
configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
VLAN

Option Default Description

ovs_bond

Defines a bond in Open vSwitch to join two or more interfaces together. This helps with redundancy
and increases bandwidth.

For example:

          - type: ovs_bond
            name: bond1
            members:
            - type: interface
              name: nic2
            - type: interface
              name: nic3

Table 10.3. ovs_bond options

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

77



Option Default Description

name  Name of the bond

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses  A list of IP addresses assigned to
the bond

routes  A list of routes assigned to the
bond. See routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection

primary False Defines the interface as the
primary interface

members  A sequence of interface objects
to use in the bond

ovs_options  A set of options to pass to OVS
when creating the bond

ovs_extra  A set of options to to set as the
OVS_EXTRA parameter in the
bond’s network configuration file

defroute True Use a default route provided by
the DHCP service. Only applies
when use_dhcp or 
use_dhcpv6 is enabled.

persist_mapping False Write the device alias
configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
bond

ovs_bridge

Defines a bridge in Open vSwitch, which connects multiple interface, ovs_bond, and vlan objects
together. The external bridge also uses two special values for parameters:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

78



bridge_name, which is replaced with the external bridge name.

interface_name, which is replaced with the external interface.

For example:

      - type: ovs_bridge
        name: bridge_name
        addresses:
        - ip_netmask:
            list_join:
            - /
            - - {get_param: ControlPlaneIp}
              - {get_param: ControlPlaneSubnetCidr}
        members:
          - type: interface
            name: interface_name
      - type: vlan
        device: bridge_name
        vlan_id:
          {get_param: ExternalNetworkVlanID}
        addresses:
          - ip_netmask:
              {get_param: ExternalIpSubnet}

NOTE

The OVS bridge connects to the Neutron server in order to get configuration data. If the
OpenStack control traffic (typically the Control Plane and Internal API networks) is
placed on an OVS bridge, then connectivity to the Neutron server gets lost whenever
OVS is upgraded or the OVS bridge is restarted by the admin user or process. This will
cause some downtime. If downtime is not acceptable under these circumstances, then the
Control group networks should be placed on a separate interface or bond rather than on
an OVS bridge:

A minimal setting can be achieved, when you put the Internal API network on a
VLAN on the provisioning interface and the OVS bridge on a second interface.

If you want bonding, you need at least two bonds (four network interfaces). The
control group should be placed on a Linux bond (Linux bridge). If the switch does
not support LACP fallback to a single interface for PXE boot, then this solution
requires at least five NICs.

Table 10.4. ovs_bridge options

Option Default Description

name  Name of the bridge

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

79



addresses  A list of IP addresses assigned to
the bridge

routes  A list of routes assigned to the
bridge. See routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection

members  A sequence of interface, VLAN,
and bond objects to use in the
bridge

ovs_options  A set of options to pass to OVS
when creating the bridge

ovs_extra  A set of options to to set as the
OVS_EXTRA parameter in the
bridge’s  network configuration
file

defroute True Use a default route provided by
the DHCP service. Only applies
when use_dhcp or 
use_dhcpv6 is enabled.

persist_mapping False Write the device alias
configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
bridge

Option Default Description

linux_bond

Defines a Linux bond that joins two or more interfaces together. This helps with redundancy and
increases bandwidth. Make sure to include the kernel-based bonding options in the bonding_options
parameter.

For example:

      - type: linux_bond
        name: bond1
        members:
        - type: interface

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

80



          name: nic2
          primary: true
        - type: interface
          name: nic3
        bonding_options: "mode=802.3ad"

Note that nic2 uses primary: true. This ensures the bond uses the MAC address for nic2.

Table 10.5. linux_bond options

Option Default Description

name  Name of the bond

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses  A list of IP addresses assigned to
the bond

routes  A list of routes assigned to the
bond. See routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection

primary False Defines the interface as the
primary interface.

members  A sequence of interface objects
to use in the bond

bonding_options  A set of options when creating
the bond.

defroute True Use a default route provided by
the DHCP service. Only applies
when use_dhcp or 
use_dhcpv6 is enabled.

persist_mapping False Write the device alias
configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
bond

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

81



linux_bridge

Defines a Linux bridge, which connects multiple interface, linux_bond, and vlan objects together. The
external bridge also uses two special values for parameters:

bridge_name, which is replaced with the external bridge name.

interface_name, which is replaced with the external interface.

For example:

      - type: linux_bridge
        name: bridge_name
        addresses:
          - ip_netmask:
              list_join:
                - /
                - - {get_param: ControlPlaneIp}
                  - {get_param: ControlPlaneSubnetCidr}
        members:
          - type: interface
            name: interface_name
      - type: vlan
        device: bridge_name
        vlan_id:
          {get_param: ExternalNetworkVlanID}
        addresses:
          - ip_netmask:
              {get_param: ExternalIpSubnet}

Table 10.6. linux_bridge options

Option Default Description

name  Name of the bridge

use_dhcp False Use DHCP to get an IP address

use_dhcpv6 False Use DHCP to get a v6 IP address

addresses  A list of IP addresses assigned to
the bridge

routes  A list of routes assigned to the
bridge. See routes.

mtu 1500 The maximum transmission unit
(MTU) of the connection

members  A sequence of interface, VLAN,
and bond objects to use in the
bridge

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

82



defroute True Use a default route provided by
the DHCP service. Only applies
when use_dhcp or 
use_dhcpv6 is enabled.

persist_mapping False Write the device alias
configuration instead of the
system names

dhclient_args None Arguments to pass to the DHCP
client

dns_servers None List of DNS servers to use for the
bridge

Option Default Description

routes

Defines a list of routes to apply to a network interface, VLAN, bridge, or bond.

For example:

  - type: interface
    name: nic2
    ...
    routes:
      - ip_netmask: 10.1.2.0/24
        default: true
        next_hop:
          get_param: EC2MetadataIp

Option Default Description

ip_netmask None IP and netmask of the destination
network.

default False Sets this this route to a default
route. Equivalent to setting 
ip_netmask: 0.0.0.0/0.

next_hop None The IP address of the router used
to reach the destination network.

10.5. EXAMPLE NETWORK INTERFACE LAYOUT

The following snippet for a possible Controller node NIC template demonstrates how to configure the
custom network scenario to keep the control group apart from the OVS bridge:

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

83



resources:
  OsNetConfigImpl:
    type: OS::Heat::SoftwareConfig
    properties:
      group: script
      config:
        str_replace:
          template:
            get_file: /usr/share/openstack-tripleo-heat-templates/network/scripts/run-os-net-config.sh
          params:
            $network_config:
              network_config:

              # NIC 1 - Provisioning
              - type: interface
                name: nic1
                use_dhcp: false
                addresses:
                - ip_netmask:
                    list_join:
                    - /
                    - - get_param: ControlPlaneIp
                      - get_param: ControlPlaneSubnetCidr
                routes:
                - ip_netmask: 169.254.169.254/32
                  next_hop:
                    get_param: EC2MetadataIp

              # NIC 2 - Control Group
              - type: interface
                name: nic2
                use_dhcp: false
              - type: vlan
                device: nic2
                vlan_id:
                  get_param: InternalApiNetworkVlanID
                addresses:
                - ip_netmask:
                    get_param: InternalApiIpSubnet
              - type: vlan
                device: nic2
                vlan_id:
                  get_param: StorageMgmtNetworkVlanID
                addresses:
                - ip_netmask:
                    get_param: StorageMgmtIpSubnet
              - type: vlan
                device: nic2
                vlan_id:
                  get_param: ExternalNetworkVlanID
                addresses:
                - ip_netmask:
                    get_param: ExternalIpSubnet
                routes:
                - default: true
                  next_hop:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

84



                    get_param: ExternalInterfaceDefaultRoute

              # NIC 3 - Data Group
              - type: ovs_bridge
                name: bridge_name
                dns_servers:
                  get_param: DnsServers
                members:
                - type: interface
                  name: nic3
                  primary: true
                - type: vlan
                  vlan_id:
                    get_param: StorageNetworkVlanID
                  addresses:
                  - ip_netmask:
                      get_param: StorageIpSubnet
                - type: vlan
                  vlan_id:
                    get_param: TenantNetworkVlanID
                  addresses:
                  - ip_netmask:
                      get_param: TenantIpSubnet

                # NIC 4 - Management
                - type: interface
                  name: nic4
                  use_dhcp: false
                  addresses:
                  - ip_netmask: {get_param: ManagementIpSubnet}
                  routes:
                  - default: true
                    next_hop: {get_param: ManagementInterfaceDefaultRoute}

This template uses four network interfaces and assigns a number of tagged VLAN devices to the
numbered interfaces, nic1 to nic4. On nic3 it creates the OVS bridge that hosts the Storage and
Tenant networks. As a result, it creates the following layout:

NIC1 (Provisioning):

Provisioning / Control Plane

NIC2 (Control Group)

Internal API

Storage Management

External (Public API)

NIC3 (Data Group)

Tenant Network (VXLAN tunneling)

Tenant VLANs / Provider VLANs

Storage

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

85



External VLANs (Floating IP/SNAT)

NIC4 (Management)

Management

10.6. NETWORK INTERFACE TEMPLATE CONSIDERATIONS FOR
CUSTOM NETWORKS

When using composable networks, the process-templates.py script renders the static templates to
include networks and roles defined in your network_data and roles_data files. Check the rendered NIC
templates and ensure they contain:

A static file for each role, including custom roles.

Each static file for each role contains the correct network definitions.

Each static file requires all the parameter definitions for any custom networks even if the network is not
used on the role. Check to make sure the rendered templates contain these parameters. For example, if
a StorageBackup network is added to only the Ceph nodes, the parameters section in NIC
configuration templates for all roles must also include this definition:

parameters:
  ...
  StorageBackupIpSubnet:
    default: ''
    description: IP address/subnet on the external network
    type: string
  ...

You can also include the parameters definitions for VLAN IDs and/or gateway IP, if needed:

parameters:
  ...
  StorageBackupNetworkVlanID:
    default: 60
    description: Vlan ID for the management network traffic.
    type: number
  StorageBackupDefaultRoute:
   description: The default route of the storage backup network.
   type: string
  ...

The IpSubnet parameter for the custom network appears in the parameter definitions for each role.
However, since the Ceph role might be the only role that uses the StorageBackup network, only the
NIC configuration template for the Ceph role would make use of the StorageBackup parameters in the 
network_config section of the template.

      $network_config:
        network_config:
        - type: interface
          name: nic1
          use_dhcp: false

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

86



          addresses:
          - ip_netmask:
              get_param: StorageBackupIpSubnet

10.7. CUSTOM NETWORK ENVIRONMENT FILE

The custom network environment file (in this case, /home/stack/templates/custom-network-
configuration.yaml) is a Heat environment file that describes the Overcloud’s network environment
and points to the custom network interface configuration templates. You can define the subnets and
VLANs for your network along with IP address ranges. You can then customize these values for the local
environment.

The resource_registry section contains references to the custom network interface templates for each
node role. Each resource registered uses the following format:

OS::TripleO::[ROLE]::Net::SoftwareConfig: [FILE]

[ROLE] is the role name and [FILE] is the respective network interface template for that particular role.
For example:

resource_registry:
  OS::TripleO::Controller::Net::SoftwareConfig: /home/stack/templates/custom-nics/controller.yaml

The parameter_defaults section contains a list of parameters that define the network options for each
network type.

10.8. NETWORK ENVIRONMENT PARAMETERS

The following table is a list of parameters you can use in a network environment file’s 
parameter_defaults section to override the default parameter values in your NIC templates.

Parameter Description Type

ControlPlaneDefaultRoute The IP address of the router on
the Control Plane, which is used
as a default route for roles other
than the Controller nodes by
default. Set to the undercloud IP
if using IP masquerade instead of
a router.

string

ControlPlaneSubnetCidr The CIDR netmask of the IP
network used on the Control
Plane. If the Control Plane
network uses 192.168.24.0/24, the
CIDR is 24.

string (though is always a
number)

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

87



*NetCidr The full network and CIDR
netmask for a particular network.
The default is automatically set to
the network’s ip_subnet setting
in the network_data file. For
example: InternalApiNetCidr: 
172.16.0.0/24

string

*AllocationPools "The IP allocation range for a
particular network. The default is
automatically set to the network’s 
allocation_pools setting in the 
network_data file. For example: 
InternalApiAllocationPools: 
[{'start': '172.16.0.10', 'end': 
'172.16.0.200'}]

hash

*NetworkVlanID The node’s VLAN ID for on a
particular network. The default is
set automatically to the network’s 
vlan setting in the 
network_data file. For example: 
InternalApiNetworkVlanID: 
201

number

*InterfaceDefaultRoute The router address for a particular
network, which you can use as a
default route for roles or used for
routes to other networks. The
default is automatically set to the
network’s gateway_ip setting in
the network_data file. For
example: 
InternalApiInterfaceDefaultR
oute: 172.16.0.1

string

DnsServers A list of DNS servers added to
resolv.conf. Usually allows a
maximum of 2 servers.

comma delimited list

EC2MetadataIp The IP address of the metadata
server used to provision
overcloud nodes. Set to the IP
address of the undercloud on the
Control Plane.

string

Parameter Description Type

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

88



BondInterfaceOvsOptions The options for bonding
interfaces. For example: 
BondInterfaceOvsOptions: 
"bond_mode=balance-slb"

string

NeutronExternalNetworkBrid
ge

Legacy value for the name of the
external bridge to use for
OpeNStack Networking
(neutron). This value is empty by
default, which allows for multiple
physical bridges to be defined in
the NeutronBridgeMappings.
This should not normally be
overridden.

string

NeutronFlatNetworks Defines the flat networks to
configure in neutron plugins.
Defaults to "datacentre" to
permit external network creation.
For example: 
NeutronFlatNetworks: 
"datacentre"

string

NeutronBridgeMappings The logical to physical bridge
mappings to use. Defaults to
mapping the external bridge on
hosts (br-ex) to a physical name
(datacentre). You would refer to
the logical name when creating
OpenStack Networking (neutron)
provider networks or floating IP
networks. For example 
NeutronBridgeMappings: 
"datacentre:br-ex,tenant:br-
tenant"

string

NeutronPublicInterface Defines the interface to bridge
onto br-ex for network nodes
when not using network isolation.
Usually not used except in small
deployments with only two
networks. For example: 
NeutronPublicInterface: 
"eth0"

string

Parameter Description Type

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

89



NeutronNetworkType TThe tenant network type for
OpenStack Networking (neutron).
To specify multiple values, use a
comma separated list. The first
type specified is used until all
available networks are exhausted,
then the next type is used. For
example: 
NeutronNetworkType: 
"vxlan"

string

NeutronTunnelTypes The tunnel types for the neutron
tenant network. To specify
multiple values, use a comma
separated string. For example:
NeutronTunnelTypes: 'gre,vxlan'

string / comma separated list

NeutronTunnelIdRanges Ranges of GRE tunnel IDs to
make available for tenant network
allocation. For example: 
NeutronTunnelIdRanges 
"1:1000"

string

NeutronVniRanges Ranges of VXLAN VNI IDs to
make available for tenant network
allocation. For example: 
NeutronVniRanges: "1:1000"

string

NeutronEnableTunnelling Defines whether to enable or
completely disable all tunnelled
networks. Leave this enabled
unless you are sure you will never
want to create tunelled networks.
Defaults to enabled.

Boolean

NeutronNetworkVLANRange
s

The ML2 and Open vSwitch VLAN
mapping range to support.
Defaults to permitting any VLAN
on the datacentre physical
network. To specify multiple
values, use a comma separated
list. For example: 
NeutronNetworkVLANRange
s: 
"datacentre:1:1000,tenant:10
0:299,tenant:310:399"

string

Parameter Description Type

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

90



NeutronMechanismDrivers The mechanism drivers for the
neutron tenant network. Defaults
to "ovn". To specify multiple
values, use a comma-separated
string. For example: 
NeutronMechanismDrivers: 
'openvswitch,l2population'

string / comma separated list

Parameter Description Type

10.9. EXAMPLE CUSTOM NETWORK ENVIRONMENT FILE

The following is an example of an environment file to enable your NIC templates and set custom
parameters.

resource_registry:
  OS::TripleO::BlockStorage::Net::SoftwareConfig:
    /home/stack/templates/nic-configs/cinder-storage.yaml
  OS::TripleO::Compute::Net::SoftwareConfig:
    /home/stack/templates/nic-configs/compute.yaml
  OS::TripleO::Controller::Net::SoftwareConfig:
    /home/stack/templates/nic-configs/controller.yaml
  OS::TripleO::ObjectStorage::Net::SoftwareConfig:
    /home/stack/templates/nic-configs/swift-storage.yaml
  OS::TripleO::CephStorage::Net::SoftwareConfig:
    /home/stack/templates/nic-configs/ceph-storage.yaml

parameter_defaults:
  # Gateway router for the provisioning network (or Undercloud IP)
  ControlPlaneDefaultRoute: 192.0.2.254
  # The IP address of the EC2 metadata server. Generally the IP of the Undercloud
  EC2MetadataIp: 192.0.2.1
  # Define the DNS servers (maximum 2) for the overcloud nodes
  DnsServers: ["8.8.8.8","8.8.4.4"]
  NeutronExternalNetworkBridge: "''"

10.10. ENABLING NETWORK ISOLATION WITH CUSTOM NICS

This procedure show how to enable network isolation using custom NIC templates.

Procedure

1. When running the openstack overcloud deploy command, make sure to include:

The custom network_data file.

The rendered file name of the default network isolation.

The rendered file name of the default network environment file.

The custom environment network configuration that includes resource references to your
custom NIC templates.

CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES

91



Any additional environment files relevant to your configuration.

For example:

$ openstack overcloud deploy --templates \
    ...
    -n /home/stack/network_data.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
    -e /usr/share/openstack-tripleo-heat-templates/environments/network-environment.yaml \
    -e /home/stack/templates/custom-network-configuration.yaml \
    ...

Include the network-isolation.yaml file first, then the network-environment.yaml file. The
subsequent custom-network-configuration.yaml overrides the OS::TripleO::
[ROLE]::Net::SoftwareConfig resources from the previous two files..

If using composable networks, include the network_data and roles_data files with this
command.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

92



CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION
This chapter follows on from the concepts and procedures outlined in Chapter 10, Custom network
interface templates and provides some additional information to help configure parts of your overcloud
network.

11.1. CONFIGURING CUSTOM INTERFACES

Individual interfaces might require modification. The example below shows modifications required to use
the second NIC to connect to an infrastructure network with DHCP addresses, and to use the third and
fourth NICs for the bond:

network_config:
  # Add a DHCP infrastructure network to nic2
  - type: interface
    name: nic2
    use_dhcp: true
  - type: ovs_bridge
    name: br-bond
    members:
      - type: ovs_bond
        name: bond1
        ovs_options:
          get_param: BondInterfaceOvsOptions
        members:
          # Modify bond NICs to use nic3 and nic4
          - type: interface
            name: nic3
            primary: true
          - type: interface
            name: nic4

The network interface template uses either the actual interface name (eth0, eth1, enp0s25) or a set of
numbered interfaces (nic1, nic2, nic3). The network interfaces of hosts within a role do not have to be
exactly the same when using numbered interfaces (nic1, nic2, etc.) instead of named interfaces ( eth0, 
eno2, etc.). For example, one host might have interfaces em1 and em2, while another has eno1 and 
eno2, but you can refer to the NICs of both hosts as nic1 and nic2.

The order of numbered interfaces corresponds to the order of named network interface types:

ethX interfaces, such as eth0, eth1, etc. These are usually onboard interfaces.

enoX interfaces, such as eno0, eno1, etc. These are usually onboard interfaces.

enX interfaces, sorted alpha numerically, such as enp3s0, enp3s1, ens3, etc. These are usually
add-on interfaces.

The numbered NIC scheme only takes into account the interfaces that are live, for example, if they have
a cable attached to the switch. If you have some hosts with four interfaces and some with six interfaces,
you should use nic1 to nic4 and only plug four cables on each host.

You can hardcode physical interfaces to specific aliases. This allows you to be pre-determine which
physical NIC will map as nic1 or nic2 and so on. You can also map a MAC address to a specified alias.

NOTE

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION

93



NOTE

Normally, os-net-config only registers interfaces that are already connected in an UP
state. However, if you hardcode interfaces using a custom mapping file, the interface is
registered even if it is in a DOWN state.

Interfaces are mapped to aliases using an environment file. In this example, each node has predefined
entries for nic1 and nic2:

parameter_defaults:
  NetConfigDataLookup:
    node1:
      nic1: "em1"
      nic2: "em2"
    node2:
      nic1: "00:50:56:2F:9F:2E"
      nic2: "em2"

The resulting configuration is applied by os-net-config. On each node, you can see the applied
configuration under interface_mapping in /etc/os-net-config/mapping.yaml.

11.2. CONFIGURING ROUTES AND DEFAULT ROUTES

There are two ways to set the default route of a host. If the interface is using DHCP and the DHCP
server offers a gateway address, the system uses a default route for that gateway. Otherwise, you can
set a default route on an interface with a static IP.

Although the Linux kernel supports multiple default gateways, it only uses the one with the lowest
metric. If there are multiple DHCP interfaces, this can result in an unpredictable default gateway. In this
case, it is recommended to set defroute: false for interfaces other than the one using the default route.

For example, you might want a DHCP interface (nic3) to be the default route. Use the following YAML
to disable the default route on another DHCP interface (nic2):

# No default route on this DHCP interface
- type: interface
  name: nic2
  use_dhcp: true
  defroute: false
# Instead use this DHCP interface as the default route
- type: interface
  name: nic3
  use_dhcp: true

NOTE

The defroute parameter only applies to routes obtained through DHCP.

To set a static route on an interface with a static IP, specify a route to the subnet. For example, you can
set a route to the 10.1.2.0/24 subnet through the gateway at 172.17.0.1 on the Internal API network:

    - type: vlan
      device: bond1

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

94



      vlan_id:
        get_param: InternalApiNetworkVlanID
      addresses:
      - ip_netmask:
          get_param: InternalApiIpSubnet
      routes:
      - ip_netmask: 10.1.2.0/24
        next_hop: 172.17.0.1

11.3. CONFIGURING JUMBO FRAMES

The Maximum Transmission Unit (MTU) setting determines the maximum amount of data transmitted
with a single Ethernet frame. Using a larger value results in less overhead since each frame adds data in
the form of a header. The default value is 1500 and using a higher value requires the configuration of the
switch port to support jumbo frames. Most switches support an MTU of at least 9000, but many are
configured for 1500 by default.

The MTU of a VLAN cannot exceed the MTU of the physical interface. Ensure that you include the MTU
value on the bond and/or interface.

The Storage, Storage Management, Internal API, and Tenant networks all benefit from jumbo frames. In
testing, a project’s networking throughput demonstrated substantial improvement when using jumbo
frames in conjunction with VXLAN tunnels.

NOTE

It is recommended that the Provisioning interface, External interface, and any floating IP
interfaces be left at the default MTU of 1500. Connectivity problems are likely to occur
otherwise. This is because routers typically cannot forward jumbo frames across Layer 3
boundaries.

- type: ovs_bond
  name: bond1
  mtu: 9000
  ovs_options: {get_param: BondInterfaceOvsOptions}
  members:
    - type: interface
      name: nic3
      mtu: 9000
      primary: true
    - type: interface
      name: nic4
      mtu: 9000

# The external interface should stay at default
- type: vlan
  device: bond1
  vlan_id:
    get_param: ExternalNetworkVlanID
  addresses:
    - ip_netmask:
        get_param: ExternalIpSubnet
  routes:
    - ip_netmask: 0.0.0.0/0

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION

95



      next_hop:
        get_param: ExternalInterfaceDefaultRoute

# MTU 9000 for Internal API, Storage, and Storage Management
- type: vlan
  device: bond1
  mtu: 9000
  vlan_id:
    get_param: InternalApiNetworkVlanID
  addresses:
  - ip_netmask:
      get_param: InternalApiIpSubnet

11.4. CONFIGURING THE NATIVE VLAN FOR FLOATING IPS

Neutron uses a default empty string for its external bridge mapping. This maps the physical interface to
the br-int instead of using br-ex directly. This model allows multiple Floating IP networks using either
VLANs or multiple physical connections.

Use the NeutronExternalNetworkBridge parameter in the parameter_defaults section of your
network isolation environment file:

  parameter_defaults:
    # Set to "br-ex" when using floating IPs on the native VLAN
    NeutronExternalNetworkBridge: "''"

If you use only one Floating IP network on the native VLAN of a bridge, you can optionally set the
neutron external bridge. This results in the packets only having to traverse one bridge instead of two,
which might result in slightly lower CPU usage when passing traffic over the Floating IP network.

11.5. CONFIGURING THE NATIVE VLAN ON A TRUNKED INTERFACE

If a trunked interface or bond has a network on the native VLAN, the IP addresses are assigned directly
to the bridge and is no VLAN interface.

For example, if the External network is on the native VLAN, a bonded configuration looks like this:

network_config:
  - type: ovs_bridge
    name: bridge_name
    dns_servers:
      get_param: DnsServers
    addresses:
      - ip_netmask:
          get_param: ExternalIpSubnet
    routes:
      - ip_netmask: 0.0.0.0/0
        next_hop:
          get_param: ExternalInterfaceDefaultRoute
    members:
      - type: ovs_bond
        name: bond1
        ovs_options:
          get_param: BondInterfaceOvsOptions

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

96



        members:
          - type: interface
            name: nic3
            primary: true
          - type: interface
            name: nic4

NOTE

When moving the address (and possibly route) statements onto the bridge, remove the
corresponding VLAN interface from the bridge. Make the changes to all applicable roles.
The External network is only on the controllers, so only the controller template requires a
change. The Storage network on the other hand is attached to all roles, so if the Storage
network is on the default VLAN, all roles require modifications.

CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION

97



CHAPTER 12. NETWORK INTERFACE BONDING
This chapter defines some of the bonding options you can use in your custom network configuration.

12.1. NETWORK INTERFACE BONDING AND LINK AGGREGATION
CONTROL PROTOCOL (LACP)

You can bundle multiple physical NICs together to form a single logical channel known as a bond. Bonds
can be configured to provide redundancy for high availability systems or increased throughput.

Red Hat OpenStack Platform supports Linux bonds, Open vSwitch (OVS) kernel bonds, and OVS-
DPDK bonds.

The bonds can be used with the optional Link Aggregation Control Protocol (LACP). LACP is a
negotiation protocol that creates a dynamic bond for load balancing and fault tolerance.

On any network that interacts directly with virtual machine instances, Red Hat recommends the use of
OVS kernel bonds (bond type ovs_bond) or OVS-DPDK bonds (bond type ovs_dpdk_bond) with LACP.
However, do not combine OVS kernel bonds and OVS-DPDK bonds on the same node.

On control and storage networks, Red Hat recommends the use of Linux bonds with VLAN and LACP,
because OVS bonds carry the potential for control plane disruption that can occur when OVS or the
neutron agent is restarted for updates, hot fixes, and other events. The Linux bond/LACP/VLAN
configuration provides NIC management without the OVS disruption potential. Here is an example
configuration of a Linux bond with one VLAN.

params:
            $network_config:
              network_config:

              - type: linux_bond
                name: bond_api
                bonding_options: "mode=active-backup"
                use_dhcp: false
                dns_servers:
        `          get_param: DnsServers
                members:
                - type: interface
                  name: nic3
                  primary: true
                - type: interface
                  name: nic4

              - type: vlan
                vlan_id:
                  get_param: InternalApiNetworkVlanID
                device: bond_api
                addresses:
                - ip_netmask:
                    get_param: InternalApiIpSubnet

12.2. OPEN VSWITCH BONDING OPTIONS

The Overcloud provides networking through Open vSwitch (OVS). The following table describes

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

98



The Overcloud provides networking through Open vSwitch (OVS). The following table describes
support for OVS kernel and OVS-DPDK for bonded interfaces. The OVS/OVS-DPDK balance-tcp
mode is available as a technology preview only.

NOTE

This support requires Open vSwitch 2.11 or later.

OVS Bond mode Application Notes Compatible LACP
options

active-backup High availability (active-
passive)

 off

balance-slb Increased throughput
(active-active) Performance is

affected by
extra parsing
per packet.

There is a
potential for
vhost-user lock
contention.

active, passive, or off

balance-tcp (tech
preview only )

Not recommended
(active-active) Recirculation

needed for L4
hashing has a
performance
impact.

As with
balance-slb,
performance is
affected by
extra parsing
per packet and
there is a
potential for
vhost-user lock
contention.

LACP must be
enabled.

active or passive

You can configure a bonded interface in the network environment file using the
BondInterfaceOvsOptions parameter as shown in this example:

parameter_defaults:
  BondInterfaceOvsOptions: "bond_mode=balance-slb"

12.3. LINUX BONDING OPTIONS

You can use LACP with Linux bonding in your network interface templates. For example:

CHAPTER 12. NETWORK INTERFACE BONDING

99



      - type: linux_bond
        name: bond1
        members:
        - type: interface
          name: nic2
        - type: interface
          name: nic3
        bonding_options: "mode=802.3ad lacp_rate=[fast|slow] updelay=1000 miimon=100"

mode - enables LACP.

lacp_rate - defines whether LACP packets are sent every 1 second, or every 30 seconds.

updelay - defines the minimum amount of time that an interface must be active before it is
used for traffic (this helps mitigate port flapping outages).

miimon - the interval in milliseconds that is used for monitoring the port state using the driver’s
MIIMON functionality.

12.4. GENERAL BONDING OPTIONS

The following table provides some explanation of these options and some alternatives depending on
your hardware.

Table 12.1. Bonding Options

bond_mode=balance-slb Balances flows based on source MAC address and
output VLAN, with periodic rebalancing as traffic
patterns change. Bonding with balance-slb allows a
limited form of load balancing without the remote
switch’s knowledge or cooperation. SLB assigns each
source MAC and VLAN pair to a link and transmits all
packets from that MAC and VLAN through that link.
This mode uses a simple hashing algorithm based on
source MAC address and VLAN number, with
periodic rebalancing as traffic patterns change. This
mode is similar to mode 2 bonds used by the Linux
bonding driver. This mode can be used to provide
load balancing even when the switch is not
configured to use LACP.

bond_mode=active-backup This mode offers active/standby failover where the
standby NIC resumes network operations when the
active connection fails. Only one MAC address is
presented to the physical switch. This mode does not
require any special switch support or configuration,
and works when the links are connected to separate
switches. This mode does not provide load balancing.

lacp=[active|passive|off] Controls the Link Aggregation Control Protocol
(LACP) behavior. Only certain switches support
LACP. If your switch does not support LACP, use 
bond_mode=balance-slb or 
bond_mode=active-backup.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

100



other-config:lacp-fallback-ab=true Sets the LACP behavior to switch to
bond_mode=active-backup as a fallback.

other_config:lacp-time=[fast|slow] Set the LACP heartbeat to 1 second (fast) or 30
seconds (slow). The default is slow.

other_config:bond-detect-mode=
[miimon|carrier]

Set the link detection to use miimon heartbeats
(miimon) or monitor carrier (carrier). The default is
carrier.

other_config:bond-miimon-interval=100 If using miimon, set the heartbeat interval in
milliseconds.

other_config:bond_updelay=1000 Number of milliseconds a link must be up to be
activated to prevent flapping.

other_config:bond-rebalance-interval=10000 Milliseconds between rebalancing flows between
bond members. Set to zero to disable.

CHAPTER 12. NETWORK INTERFACE BONDING

101



CHAPTER 13. CONTROLLING NODE PLACEMENT
The default behavior for the director is to randomly select nodes for each role, usually based on their
profile tag. However, the director provides the ability to define specific node placement. This is a useful
method to:

Assign specific node IDs e.g. controller-0, controller-1, etc

Assign custom hostnames

Assign specific IP addresses

Assign specific Virtual IP addresses

NOTE

Manually setting predictable IP addresses, virtual IP addresses, and ports for a network
alleviates the need for allocation pools. However, it is recommended to retain allocation
pools for each network to ease with scaling new nodes. Make sure that any statically
defined IP addresses fall outside the allocation pools. For more information on setting
allocation pools, see Section 10.7, “Custom network environment file” .

13.1. ASSIGNING SPECIFIC NODE IDS

This procedure assigns node ID to specific nodes. Examples of node IDs include controller-0, controller-
1, compute-0, compute-1, and so forth.

The first step is to assign the ID as a per-node capability that the Compute scheduler matches on
deployment. For example:

openstack baremetal node set --property capabilities='node:controller-0,boot_option:local' <id>

This assigns the capability node:controller-0 to the node. Repeat this pattern using a unique continuous
index, starting from 0, for all nodes. Make sure all nodes for a given role (Controller, Compute, or each of
the storage roles) are tagged in the same way or else the Compute scheduler will not match the
capabilities correctly.

The next step is to create a Heat environment file (for example, scheduler_hints_env.yaml) that uses
scheduler hints to match the capabilities for each node. For example:

parameter_defaults:
  ControllerSchedulerHints:
    'capabilities:node': 'controller-%index%'

To use these scheduler hints, include the ` scheduler_hints_env.yaml` environment file with the 
overcloud deploy command during Overcloud creation.

The same approach is possible for each role via these parameters:

ControllerSchedulerHints for Controller nodes.

ComputeSchedulerHints for Compute nodes.

BlockStorageSchedulerHints for Block Storage nodes.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

102



ObjectStorageSchedulerHints for Object Storage nodes.

CephStorageSchedulerHints for Ceph Storage nodes.

[ROLE]SchedulerHints for custom roles. Replace [ROLE] with the role name.

NOTE

Node placement takes priority over profile matching. To avoid scheduling failures, use
the default baremetal flavor for deployment and not the flavors designed for profile
matching (compute, control, etc). For example:

$ openstack overcloud deploy ... --control-flavor baremetal --compute-flavor baremetal 
...

13.2. ASSIGNING CUSTOM HOSTNAMES

In combination with the node ID configuration in Section 13.1, “Assigning Specific Node IDs” , the director
can also assign a specific custom hostname to each node. This is useful when you need to define where a
system is located (e.g. rack2-row12), match an inventory identifier, or other situations where a custom
hostname is desired.

To customize node hostnames, use the HostnameMap parameter in an environment file, such as the `
scheduler_hints_env.yaml` file from Section 13.1, “Assigning Specific Node IDs” . For example:

parameter_defaults:
  ControllerSchedulerHints:
    'capabilities:node': 'controller-%index%'
  ComputeSchedulerHints:
    'capabilities:node': 'compute-%index%'
  HostnameMap:
    overcloud-controller-0: overcloud-controller-prod-123-0
    overcloud-controller-1: overcloud-controller-prod-456-0
    overcloud-controller-2: overcloud-controller-prod-789-0
    overcloud-compute-0: overcloud-compute-prod-abc-0

Define the HostnameMap in the parameter_defaults section, and set each mapping as the original
hostname that Heat defines using HostnameFormat parameters (e.g. overcloud-controller-0) and the
second value is the desired custom hostname for that node (e.g. overcloud-controller-prod-123-0).

Using this method in combination with the node ID placement ensures each node has a custom
hostname.

13.3. ASSIGNING PREDICTABLE IPS

For further control over the resulting environment, the director can assign Overcloud nodes with specific
IPs on each network as well. Use the environments/ips-from-pool-all.yaml environment file in the core
Heat template collection. Copy this file to the stack user’s templates directory.

$ cp /usr/share/openstack-tripleo-heat-templates/environments/ips-from-pool-all.yaml ~/templates/.

There are two major sections in the ips-from-pool-all.yaml file.

The first is a set of resource_registry references that override the defaults. These tell the director to

CHAPTER 13. CONTROLLING NODE PLACEMENT

103



The first is a set of resource_registry references that override the defaults. These tell the director to
use a specific IP for a given port on a node type. Modify each resource to use the absolute path of its
respective template. For example:

  OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/external_from_pool.yaml
  OS::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/internal_api_from_pool.yaml
  OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_from_pool.yaml
  OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/storage_mgmt_from_pool.yaml
  OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-tripleo-heat-
templates/network/ports/tenant_from_pool.yaml

The default configuration sets all networks on all node types to use pre-assigned IPs. To allow a
particular network or node type to use default IP assignment instead, simply remove the 
resource_registry entries related to that node type or network from the environment file.

The second section is parameter_defaults, where the actual IP addresses are assigned. Each node type
has an associated parameter:

ControllerIPs for Controller nodes.

ComputeIPs for Compute nodes.

CephStorageIPs for Ceph Storage nodes.

BlockStorageIPs for Block Storage nodes.

SwiftStorageIPs for Object Storage nodes.

[ROLE]IPs for custom roles. Replace [ROLE] with the role name.

Each parameter is a map of network names to a list of addresses. Each network type must have at least
as many addresses as there will be nodes on that network. The director assigns addresses in order. The
first node of each type receives the first address on each respective list, the second node receives the
second address on each respective lists, and so forth.

For example, if an Overcloud will contain three Ceph Storage nodes, the CephStorageIPs parameter
might look like:

CephStorageIPs:
  storage:
  - 172.16.1.100
  - 172.16.1.101
  - 172.16.1.102
  storage_mgmt:
  - 172.16.3.100
  - 172.16.3.101
  - 172.16.3.102

The first Ceph Storage node receives two addresses: 172.16.1.100 and 172.16.3.100. The second receives
172.16.1.101 and 172.16.3.101, and the third receives 172.16.1.102 and 172.16.3.102. The same pattern applies
to the other node types.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

104



To configure predictable IP addresses on the control plane, copy the /usr/share/openstack-tripleo-
heat-templates/environments/ips-from-pool-ctlplane.yaml file to the templates directory of the 
stack user:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/ips-from-pool-ctlplane.yaml 
~/templates/.

Configure the new ips-from-pool-ctlplane.yaml file with the following parameter example. You can
combine the control plane IP address declarations with the IP address declarations for other networks
and use only one file to declare the IP addresses for all networks on all roles. You can also use
predictable IP addresses for spine/leaf. Each node must have IP addresses from the correct subnet.

parameter_defaults:
  ControllerIPs:
    ctlplane:
    - 192.168.24.10
    - 192.168.24.11
    - 192.168.24.12
    internal_api:
    - 172.16.1.20
    - 172.16.1.21
    - 172.16.1.22
    external:
    - 10.0.0.40
    - 10.0.0.57
    - 10.0.0.104
  ComputeLeaf1IPs:
    ctlplane:
    - 192.168.25.100
    - 192.168.25.101
    internal_api:
    - 172.16.2.100
    - 172.16.2.101
  ComputeLeaf2IPs:
    ctlplane:
    - 192.168.26.100
    - 192.168.26.101
    internal_api:
    - 172.16.3.100
    - 172.16.3.101

Make sure the chosen IP addresses fall outside the allocation pools for each network defined in your
network environment file (see Section 10.7, “Custom network environment file” ). For example, make
sure the internal_api assignments fall outside of the InternalApiAllocationPools range. This avoids
conflicts with any IPs chosen automatically. Likewise, make sure the IP assignments do not conflict with
the VIP configuration, either for standard predictable VIP placement (see Section 13.4, “Assigning
Predictable Virtual IPs”) or external load balancing (see Section 24.2, “Configuring External Load
Balancing”).

IMPORTANT

CHAPTER 13. CONTROLLING NODE PLACEMENT

105



IMPORTANT

If an overcloud node is deleted, do not remove its entries in the IP lists. The IP list is
based on the underlying Heat indices, which do not change even if you delete nodes. To
indicate a given entry in the list is no longer used, replace the IP value with a value such as
DELETED or UNUSED. Entries should never be removed from the IP lists, only changed
or added.

To apply this configuration during a deployment, include the ips-from-pool-all.yaml environment file
with the openstack overcloud deploy command.

IMPORTANT

If using network isolation, include the ips-from-pool-all.yaml file after the network-
isolation.yaml file.

For example:

$ openstack overcloud deploy --templates \
  -e /usr/share/openstack-tripleo-heat-templates/environments/network-isolation.yaml \
  -e ~/templates/ips-from-pool-all.yaml \
  [OTHER OPTIONS]

13.4. ASSIGNING PREDICTABLE VIRTUAL IPS

In addition to defining predictable IP addresses for each node, the director also provides a similar ability
to define predictable Virtual IPs (VIPs) for clustered services. To accomplish this, edit the network
environment file from Section 10.7, “Custom network environment file”  and add the VIP parameters in
the parameter_defaults section:

parameter_defaults:
  ...
  # Predictable VIPs
  ControlFixedIPs: [{'ip_address':'192.168.201.101'}]
  InternalApiVirtualFixedIPs: [{'ip_address':'172.16.0.9'}]
  PublicVirtualFixedIPs: [{'ip_address':'10.1.1.9'}]
  StorageVirtualFixedIPs: [{'ip_address':'172.18.0.9'}]
  StorageMgmtVirtualFixedIPs: [{'ip_address':'172.19.0.9'}]
  RedisVirtualFixedIPs: [{'ip_address':'172.16.0.8'}]

Select these IPs from outside of their respective allocation pool ranges. For example, select an IP
address for InternalApiVirtualFixedIPs that is not within the InternalApiAllocationPools range.

This step is only for overclouds using the default internal load balancing configuration. If assigning VIPs
with an external load balancer, use the procedure in the dedicated External Load Balancing for the
Overcloud guide.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

106

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/external_load_balancing_for_the_overcloud


CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC
ENDPOINTS

By default, the overcloud uses unencrypted endpoints for its services. This means that the overcloud
configuration requires an additional environment file to enable SSL/TLS for its Public API endpoints.
The following chapter shows how to configure your SSL/TLS certificate and include it as a part of your
overcloud creation.

NOTE

This process only enables SSL/TLS for Public API endpoints. The Internal and Admin
APIs remain unencrypted.

This process requires network isolation to define the endpoints for the Public API.

14.1. INITIALIZING THE SIGNING HOST

The signing host is the host that generates and signs new certificates with a certificate authority. If you
have never created SSL certificates on the chosen signing host, you might need to initialize the host so
that it can sign new certificates.

The /etc/pki/CA/index.txt file contains records of all signed certificates. Check if this file exists. If it does
not exist, create an empty file:

$ sudo touch /etc/pki/CA/index.txt

The /etc/pki/CA/serial file identifies the next serial number to use for the next certificate to sign. Check
if this file exists. If the file does not exist, create a new file with a new starting value:

$ echo '1000' | sudo tee /etc/pki/CA/serial

14.2. CREATING A CERTIFICATE AUTHORITY

Normally you sign your SSL/TLS certificates with an external certificate authority. In some situations, you
might want to use your own certificate authority. For example, you might want to have an internal-only
certificate authority.

Generate a key and certificate pair to act as the certificate authority:

$ openssl genrsa -out ca.key.pem 4096
$ openssl req  -key ca.key.pem -new -x509 -days 7300 -extensions v3_ca -out ca.crt.pem

The openssl req command asks for certain details about your authority. Enter these details at the
prompt.

These commands create a certificate authority file called ca.crt.pem.

14.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS

For any external clients aiming to communicate using SSL/TLS, copy the certificate authority file to
each client that requires access to your Red Hat OpenStack Platform environment.

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

107



$ sudo cp ca.crt.pem /etc/pki/ca-trust/source/anchors/

After you copy the certificate authority file to each client, run the following command on each client to
add the certificate to the certificate authority trust bundle:

$ sudo update-ca-trust extract

For example, the undercloud requires a copy of the certificate authority file so that it can communicate
with the overcloud endpoints during creation.

14.4. CREATING AN SSL/TLS KEY

Run the following commands to generate the SSL/TLS key (server.key.pem) that you use at different
points to generate your undercloud or overcloud certificates:

$ openssl genrsa -out server.key.pem 2048

14.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST

This next procedure creates a certificate signing request for the overcloud. Copy the default OpenSSL
configuration file for customization.

$ cp /etc/pki/tls/openssl.cnf .

Edit the custom openssl.cnf file and set SSL parameters to use for the overcloud. An example of the
types of parameters to modify include:

[req]
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = Country Name (2 letter code)
countryName_default = AU
stateOrProvinceName = State or Province Name (full name)
stateOrProvinceName_default = Queensland
localityName = Locality Name (eg, city)
localityName_default = Brisbane
organizationalUnitName = Organizational Unit Name (eg, section)
organizationalUnitName_default = Red Hat
commonName = Common Name
commonName_default = 10.0.0.1
commonName_max = 64

[ v3_req ]
# Extensions to add to a certificate request
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
subjectAltName = @alt_names

[alt_names]

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

108



IP.1 = 10.0.0.1
DNS.1 = 10.0.0.1
DNS.2 = myovercloud.example.com

Set the commonName_default to one of the following:

If using an IP to access over SSL/TLS, use the Virtual IP for the Public API. Set this VIP using
the PublicVirtualFixedIPs parameter in an environment file. For more information, see
Section 13.4, “Assigning Predictable Virtual IPs” . If you are not using predictable VIPs, the
director assigns the first IP address from the range defined in the ExternalAllocationPools
parameter.

If using a fully qualified domain name to access over SSL/TLS, use the domain name instead.

Include the same Public API IP address as an IP entry and a DNS entry in the alt_names section. If also
using DNS, include the hostname for the server as DNS entries in the same section. For more
information about openssl.cnf, run man openssl.cnf.

Run the following command to generate certificate signing request (server.csr.pem):

$ openssl req -config openssl.cnf -key server.key.pem -new -out server.csr.pem

Make sure to include the SSL/TLS key you created in Section 14.4, “Creating an SSL/TLS Key”  for the -
key option.

Use the server.csr.pem file to create the SSL/TLS certificate in the next section.

14.6. CREATING THE SSL/TLS CERTIFICATE

Run the following command to create a certificate for your undercloud or overcloud:

$ sudo openssl ca -config openssl.cnf -extensions v3_req -days 3650 -in server.csr.pem -out 
server.crt.pem -cert ca.crt.pem -keyfile ca.key.pem

This command uses the following options:

The configuration file specifying the v3 extensions. Include the configuration file with the -
config option.

The certificate signing request from Section 14.5, “Creating an SSL/TLS Certificate Signing
Request” to generate and sign the certificate with a certificate authority. Include the certificate
signing request with the -in option.

The certificate authority you created in Section 14.2, “Creating a Certificate Authority” , which
signs the certificate. Include the certificate authority with the -cert option.

The certificate authority private key you created in Section 14.2, “Creating a Certificate
Authority”. Include the private key with the -keyfile option.

This command creates a new certificate named server.crt.pem. Use this certificate in conjunction with
the SSL/TLS key from Section 14.4, “Creating an SSL/TLS Key”  to enable SSL/TLS.

14.7. ENABLING SSL/TLS

Copy the enable-tls.yaml environment file from the Heat template collection:

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

109



$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-tls.yaml ~/templates/.

Edit this file and make the following changes for these parameters:

SSLCertificate

Copy the contents of the certificate file (server.crt.pem) into the SSLCertificate parameter. For
example:

parameter_defaults:
  SSLCertificate: |
    -----BEGIN CERTIFICATE-----
    MIIDgzCCAmugAwIBAgIJAKk46qw6ncJaMA0GCSqGS
    ...
    sFW3S2roS4X0Af/kSSD8mlBBTFTCMBAj6rtLBKLaQ
    -----END CERTIFICATE-----

IMPORTANT

The certificate contents require the same indentation level for all new lines.

SSLKey

Copy the contents of the private key (server.key.pem) into the SSLKey parameter. For
example:

parameter_defaults:
  ...
  SSLKey: |
    -----BEGIN RSA PRIVATE KEY-----
    MIIEowIBAAKCAQEAqVw8lnQ9RbeI1EdLN5PJP0lVO
    ...
    ctlKn3rAAdyumi4JDjESAXHIKFjJNOLrBmpQyES4X
    -----END RSA PRIVATE KEY-----

IMPORTANT

The private key contents require the same indentation level for all new lines.

14.8. INJECTING A ROOT CERTIFICATE

If the certificate signer is not in the default trust store on the overcloud image, you must inject the
certificate authority into the overcloud image. Copy the inject-trust-anchor-hiera.yaml environment
file from the heat template collection:

$ cp -r /usr/share/openstack-tripleo-heat-templates/environments/ssl/inject-trust-anchor-hiera.yaml 
~/templates/.

Edit this file and make the following changes for these parameters:

CAMap

Lists each certificate authority content (CA) to inject into the overcloud. The overcloud requires

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

110



Lists each certificate authority content (CA) to inject into the overcloud. The overcloud requires
both a CA files used to sign the certificates for the undercloud and the overcloud. Copy the contents
of the root certificate authority file (ca.crt.pem) into an entry. For example, your CAMap parameter
might look like the following:

parameter_defaults:
  CAMap:
    ...
    undercloud-ca:
      content: |
        -----BEGIN CERTIFICATE-----
        MIIDlTCCAn2gAwIBAgIJAOnPtx2hHEhrMA0GCS
        BAYTAlVTMQswCQYDVQQIDAJOQzEQMA4GA1UEBw
        UmVkIEhhdDELMAkGA1UECwwCUUUxFDASBgNVBA
        -----END CERTIFICATE-----
    overcloud-ca:
      content: |
        -----BEGIN CERTIFICATE-----
        MIIDBzCCAe+gAwIBAgIJAIc75A7FD++DMA0GCS
        BAMMD3d3dy5leGFtcGxlLmNvbTAeFw0xOTAxMz
        Um54yGCARyp3LpkxvyfMXX1DokpS1uKi7s6CkF
        -----END CERTIFICATE-----

IMPORTANT

The certificate authority contents require the same indentation level for all new lines.

You can also inject additional CAs with the CAMap parameter.

14.9. CONFIGURING DNS ENDPOINTS

If using a DNS hostname to access the overcloud through SSL/TLS, you will need to copy the custom-
domain.yaml file into /home/stack/templates. You can find this file in /usr/share/tripleo-heat-
templates/environments/predictable-placement/.

1. Configure the host and domain names for all fields, adding parameters for custom networks if
needed:

NOTE

It is not possible to redeploy with a TLS-everywhere architecture if this
environment file is not included in the initial deployment.

# title: Custom Domain Name
# description: |
#   This environment contains the parameters that need to be set in order to
#   use a custom domain name and have all of the various FQDNs reflect it.
parameter_defaults:
  # The DNS domain used for the hosts. This must match the overcloud_domain_name 
configured on the undercloud.
  # Type: string
  CloudDomain: localdomain

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

111



  # The DNS name of this cloud. E.g. ci-overcloud.tripleo.org
  # Type: string
  CloudName: overcloud.localdomain

  # The DNS name of this cloud's provisioning network endpoint. E.g. 'ci-
overcloud.ctlplane.tripleo.org'.
  # Type: string
  CloudNameCtlplane: overcloud.ctlplane.localdomain

  # The DNS name of this cloud's internal_api endpoint. E.g. 'ci-
overcloud.internalapi.tripleo.org'.
  # Type: string
  CloudNameInternal: overcloud.internalapi.localdomain

  # The DNS name of this cloud's storage endpoint. E.g. 'ci-overcloud.storage.tripleo.org'.
  # Type: string
  CloudNameStorage: overcloud.storage.localdomain

  # The DNS name of this cloud's storage_mgmt endpoint. E.g. 'ci-
overcloud.storagemgmt.tripleo.org'.
  # Type: string
  CloudNameStorageManagement: overcloud.storagemgmt.localdomain

2. Add a list of DNS servers to use under parameter defaults, in either a new or existing
environment file:

parameter_defaults:
  DnsServers: ["10.0.0.254"]
  ....

14.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION

The deployment command (openstack overcloud deploy) uses the -e option to add environment files.
Add the environment files from this section in the following order:

The environment file to enable SSL/TLS (enable-tls.yaml)

The environment file to set the DNS hostname (cloudname.yaml)

The environment file to inject the root certificate authority (inject-trust-anchor-hiera.yaml)

The environment file to set the public endpoint mapping:

If using a DNS name for accessing the public endpoints, use /usr/share/openstack-tripleo-
heat-templates/environments/ssl/tls-endpoints-public-dns.yaml

If using a IP address for accessing the public endpoints, use /usr/share/openstack-tripleo-
heat-templates/environments/ssl/tls-endpoints-public-ip.yaml

For example:

$ openstack overcloud deploy --templates [...] -e /home/stack/templates/enable-tls.yaml -e 
~/templates/cloudname.yaml -e ~/templates/inject-trust-anchor-hiera.yaml -e /usr/share/openstack-
tripleo-heat-templates/environments/ssl/tls-endpoints-public-dns.yaml

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

112



14.11. UPDATING SSL/TLS CERTIFICATES

If you need to update certificates in the future:

Edit the enable-tls.yaml file and update the SSLCertificate, SSLKey, and 
SSLIntermediateCertificate parameters.

If your certificate authority has changed, edit the inject-trust-anchor.yaml file and update the 
SSLRootCertificate parameter.

Once the new certificate content is in place, rerun your deployment command. For example:

$ openstack overcloud deploy --templates [...] -e /home/stack/templates/enable-tls.yaml -e 
~/templates/cloudname.yaml -e ~/templates/inject-trust-anchor.yaml -e /usr/share/openstack-tripleo-
heat-templates/environments/ssl/tls-endpoints-public-dns.yaml

CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS

113



CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC
ENDPOINTS WITH IDENTITY MANAGEMENT

You can enable SSL/TLS on certain overcloud endpoints. Due to the number of certificates required,
the director integrates with a Red Hat Identity Management (IdM) server to act as a certificate authority
and manage the overcloud certificates. This process involves using novajoin to enroll overcloud nodes
to the IdM server.

To check the status of TLS support across the OpenStack components, refer to the TLS Enablement
status matrix.

15.1. ADD THE UNDERCLOUD TO THE CA

Before deploying the overcloud, you must add the undercloud to the Certificate Authority (CA):

1. On the undercloud node, install the python3-novajoin package:

$ sudo dnf install python3-novajoin

2. On the undercloud node, run the novajoin-ipa-setup script, adjusting the values to suit your
deployment:

$ sudo /usr/libexec/novajoin-ipa-setup \
    --principal admin \
    --password <IdM admin password> \
    --server <IdM server hostname> \
    --realm <overcloud cloud domain (in upper case)> \
    --domain <overcloud cloud domain> \
    --hostname <undercloud hostname> \
    --precreate

In the following section, you will use the resulting One-Time Password (OTP) to enroll the
undercloud.

15.2. ADD THE UNDERCLOUD TO IDM

This procedure registers the undercloud with IdM and configures novajoin. Configure the following
settings in undercloud.conf (within the [DEFAULT] section):

1. The novajoin service is disabled by default. To enable it:

[DEFAULT]
enable_novajoin = true

2. You need set a One-Time Password (OTP) to register the undercloud node with IdM:

ipa_otp = <otp>

3. Set the overcloud’s domain name to be served by neutron’s DHCP server:

overcloud_domain_name = <domain>

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

114

https://access.redhat.com/articles/4039501


4. Set the appropriate hostname for the undercloud:

undercloud_hostname = <undercloud FQDN>

5. Set IdM as the nameserver for the undercloud:

undercloud_nameservers = <IdM IP>

6. For larger environments, you will need to review the novajoin connection timeout values. In 
undercloud.conf, add a reference to a new file called undercloud-timeout.yaml:

hieradata_override = /home/stack/undercloud-timeout.yaml

Add the following options to undercloud-timeout.yaml. You can specify the timeout value in
seconds, for example, 5:

nova::api::vendordata_dynamic_connect_timeout: <timeout value>
nova::api::vendordata_dynamic_read_timeout: <timeout value>

7. Save the undercloud.conf file.

8. Run the undercloud deployment command to apply the changes to your existing undercloud:

$ openstack undercloud install

Verification

1. Check the keytab files for a key entry for the undercloud:

 [root@undercloud-0 ~]# klist -kt
 Keytab name: FILE:/etc/krb5.keytab
 KVNO Timestamp           Principal
 ---- ------------------- ------------------------------------------------------
    1 04/28/2020 12:22:06 host/undercloud-0.redhat.local@REDHAT.LOCAL
    1 04/28/2020 12:22:06 host/undercloud-0.redhat.local@REDHAT.LOCAL

 [root@undercloud-0 ~]# klist -kt /etc/novajoin/krb5.keytab
 Keytab name: FILE:/etc/novajoin/krb5.keytab
 KVNO Timestamp           Principal
 ---- ------------------- ------------------------------------------------------
    1 04/28/2020 12:22:26 nova/undercloud-0.redhat.local@REDHAT.LOCAL
    1 04/28/2020 12:22:26 nova/undercloud-0.redhat.local@REDHAT.LOCAL

2. Test the system /etc/krb.keytab file with the host principle:

 [root@undercloud-0 ~]# kinit -k
 [root@undercloud-0 ~]# klist
 Ticket cache: KEYRING:persistent:0:0
 Default principal: host/undercloud-0.redhat.local@REDHAT.LOCAL

 Valid starting       Expires              Service principal
 05/04/2020 10:34:30  05/05/2020 10:34:30  krbtgt/REDHAT.LOCAL@REDHAT.LOCAL

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

115



 [root@undercloud-0 ~]# kdestroy
 Other credential caches present, use -A to destroy all

3. Test the novajoin /etc/novajoin/krb.keytab file with the nova principle:

 [root@undercloud-0 ~]# kinit -kt /etc/novajoin/krb5.keytab 'nova/undercloud-
0.redhat.local@REDHAT.LOCAL'
 [root@undercloud-0 ~]# klist
 Ticket cache: KEYRING:persistent:0:0
 Default principal: nova/undercloud-0.redhat.local@REDHAT.LOCAL

 Valid starting       Expires              Service principal
 05/04/2020 10:39:14  05/05/2020 10:39:14  krbtgt/REDHAT.LOCAL@REDHAT.LOCAL

15.3. CONFIGURE OVERCLOUD DNS

For automatic detection of your IdM environment, and easier enrollment, consider using IdM as your
DNS server:

1. Connect to your undercloud:

$ source ~/stackrc

2. Configure the control plane subnet to use IdM as the DNS name server:

$ openstack subnet set ctlplane-subnet --dns-nameserver  <idm_server_address>

3. Set the DnsServers parameter in an environment file to use your IdM server:

parameter_defaults:
  DnsServers: ["<idm_server_address>"]

This parameter is usually defined in a custom network-environment.yaml file.

15.4. CONFIGURE OVERCLOUD TO USE NOVAJOIN

1. To enable IdM integration, create a copy of the /usr/share/openstack-tripleo-heat-
templates/environments/predictable-placement/custom-domain.yaml environment file:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/predictable-
placement/custom-domain.yaml \
  /home/stack/templates/custom-domain.yaml

2. Edit the /home/stack/templates/custom-domain.yaml environment file and set the 
CloudDomain and CloudName* values to suit your deployment. For example:

parameter_defaults:
  CloudDomain: lab.local
  CloudName: overcloud.lab.local
  CloudNameInternal: overcloud.internalapi.lab.local

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

116



  CloudNameStorage: overcloud.storage.lab.local
  CloudNameStorageManagement: overcloud.storagemgmt.lab.local
  CloudNameCtlplane: overcloud.ctlplane.lab.local

3. Include the following environment files in the overcloud deployment process:

/usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml

/usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-everywhere-
endpoints-dns.yaml

/home/stack/templates/custom-domain.yaml
For example:

openstack overcloud deploy \
  --templates \
   -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-
tls.yaml \
   -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-everywhere-
endpoints-dns.yaml \
   -e /home/stack/templates/custom-domain.yaml \

As a result, the deployed overcloud nodes will be automatically enrolled with IdM.

4. This only sets TLS for the internal endpoints. For the external endpoints you can use the normal
means of adding TLS with the /usr/share/openstack-tripleo-heat-
templates/environments/ssl/enable-tls.yaml environment file (which must be modified to add
your custom certificate and key). Consequently, your openstack deploy command would be
similar to this:

openstack overcloud deploy \
  --templates \
  -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml \
  -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-everywhere-endpoints-
dns.yaml \
  -e /home/stack/templates/custom-domain.yaml \
  -e /home/stack/templates/enable-tls.yaml

5. Alternatively, you can also use IdM to issue your public certificates. In that case, you need to use
the /usr/share/openstack-tripleo-heat-templates/environments/services/haproxy-public-
tls-certmonger.yaml environment file. For example:

openstack overcloud deploy \
  --templates \
   -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/enable-internal-tls.yaml \
   -e /usr/share/openstack-tripleo-heat-templates/environments/ssl/tls-everywhere-endpoints-
dns.yaml \
   -e /home/stack/templates/custom-domain.yaml \
   -e /usr/share/openstack-tripleo-heat-templates/environments/services/haproxy-public-tls-
certmonger.yaml

CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT

117



CHAPTER 16. CONVERTING YOUR EXISTING DEPLOYMENT
TO USE TLS

You can configure your existing overcloud and undercloud endpoints to use TLS encryption. This
approach uses novajoin to integrate your deployment with Red Hat Identity Management (IdM),
allowing access to DNS, Kerberos, and certmonger. Each overcloud node uses a certmonger client to
retrieve certificates for each service.

For more information on TLS, see the Security and Hardening Guide .

16.1. REQUIREMENTS

You must have an existing IdM deployment, and it must also supply DNS services to the
OpenStack deployment.

The existing deployment must use FQDNs for public endpoints. Default configurations might
use IP address-based endpoints, and will consequently generate IP address-based certificates;
these must be changed to FQDNs before proceeding with these steps.

IMPORTANT

The overcloud and undercloud services will be unavailable for the duration of this
procedure.

16.2. REVIEWING YOUR ENDPOINTS

By default, your existing Red Hat OpenStack Platform overcloud does not encrypt certain endpoints
with TLS. For example, this output includes URLs that use http instead of https; these are not
encrypted:

+----------------------------------+-----------+--------------+--------------+---------+-----------+-------------------
-------------------------------------+
| ID                               | Region    | Service Name | Service Type | Enabled | Interface | URL                                                    
|
+----------------------------------+-----------+--------------+--------------+---------+-----------+-------------------
-------------------------------------+
| 0ad11e943e1f4ff988650cfba57b4031 | regionOne | nova         | compute      | True    | internal  | 
http://172.16.2.17:8774/v2.1                           |
| 1413eb9ef38a45b8bee1bee1b0dfe744 | regionOne | swift        | object-store | True    | public    | 
https://overcloud.lab.local:13808/v1/AUTH_%(tenant_id)s |
| 1a54f13f212044b0a20468861cd06f85 | regionOne | neutron      | network      | True    | public    | 
https://overcloud.lab.local:13696                       |
| 3477a3a052d2445697bb6642a8c26a91 | regionOne | placement    | placement    | True    | internal  
| http://172.16.2.17:8778/placement                      |
| 3f56445c0dd14721ac830d6afb2c2cd4 | regionOne | nova         | compute      | True    | admin     | 
http://172.16.2.17:8774/v2.1                           |
| 425b1773a55c4245bcbe3d051772ebba | regionOne | glance       | image        | True    | internal  | 
http://172.16.2.17:9292                                |
| 57cf09fa33ed446f8736d4228bdfa881 | regionOne | placement    | placement    | True    | public    | 
https://overcloud.lab.local:13778/placement             |
| 58600f3751e54f7e9d0a50ba618e4c54 | regionOne | glance       | image        | True    | public    | 
https://overcloud.lab.local:13292                       |
| 5c52f273c3284b068f2dc885c77174ca | regionOne | neutron      | network      | True    | internal  | 
http://172.16.2.17:9696                                |

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

118

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/security_and_hardening_guide/encryption_and_key_management


| 8792a4dd8bbb456d9dea4643e57c43dc | regionOne | nova         | compute      | True    | public    | 
https://overcloud.lab.local:13774/v2.1                  |
| 94bbea97580a4c4b844478aad5a85e84 | regionOne | keystone     | identity     | True    | public    | 
https://overcloud.lab.local:13000                       |
| acbf11b5c76d44198af49e3b78ffedcd | regionOne | swift        | object-store | True    | internal  | 
http://172.16.1.9:8080/v1/AUTH_%(tenant_id)s           |
| d4a1344f02a74f7ab0a50c5a7c13ca5c | regionOne | keystone     | identity     | True    | internal  | 
http://172.16.2.17:5000                                |
| d86c241dc97642419ddc12533447d73d | regionOne | placement    | placement    | True    | admin     
| http://172.16.2.17:8778/placement                      |
| de7d6c34533e4298a2752852427a7030 | regionOne | glance       | image        | True    | admin     | 
http://172.16.2.17:9292                                |
| e82086062ebd4d4b9e03c7f1544bdd3b | regionOne | swift        | object-store | True    | admin     | 
http://172.16.1.9:8080                                 |
| f8134cd9746247bca6a06389b563c743 | regionOne | keystone     | identity     | True    | admin     | 
http://192.168.24.6:35357                              |
| fe29177bd29545ca8fdc0c777a7cf03f | regionOne | neutron      | network      | True    | admin     | 
http://172.16.2.17:9696                                |
+----------------------------------+-----------+--------------+--------------+---------+-----------+-------------------
-------------------------------------+

The following sections explain how to encrypt these endpoints using TLS.

16.3. APPLY WORKAROUND FOR KNOWN ISSUE

There is currently a known issue for TLS Everywhere in-place upgrades, where overcloud nodes are
consequently unable to enroll in IdM. As a workaround, remove /etc/ipa/ca.crt/ from all overcloud nodes
before running the overcloud deploy. For more information, see
https://bugzilla.redhat.com/show_bug.cgi?id=1732564.

For example, the following script is one way of applying the workaround. You might need to amend this
to suit your deployment.

[stack@undercloud-0 ~]$ vi rm-ca.crt-dir.sh
#!/bin/bash

source /home/stack/stackrc
NODES=$(openstack server list -f value -c Networks|sed s/ctlplane=//g)

for NODE in $NODES
do
    ssh heat-admin@$NODE sudo rm -rf /etc/ipa/ca.crt/
Done

[stack@undercloud-0 ~]$ bash rm-ca.crt-dir.sh

16.4. CONFIGURING ENDPOINTS TO USE TLS

This section explains how to enable TLS endpoint encryption for an existing deployment, and then how
to check that the endpoints have been correctly configured.

When enabling TLS everywhere, there are different upgrade paths available, depending on how your
domains are structured. These examples use sample domain names to describe the upgrade paths:

Reuse the existing public endpoint certificates, and enable TLS everywhere on the internal and 

CHAPTER 16. CONVERTING YOUR EXISTING DEPLOYMENT TO USE TLS

119

https://bugzilla.redhat.com/show_bug.cgi?id=1732564


Reuse the existing public endpoint certificates, and enable TLS everywhere on the internal and 
admin endpoints where the overcloud domain ( lab.local) matches the IdM domain ( lab.local).

Allow IdM to issue new public endpoints certificates, and enable TLS everywhere on the internal
and admin endpoints where the overcloud domain ( lab.local) matches the IdM domain
(lab.local).

Reuse existing public endpoint certificates, and enable TLS everywhere on the internal and 
admin endpoints where the overcloud domain ( site1.lab.local) is a subdomain of the IdM
domain (lab.local).

Allow IdM to issue new public endpoints certificates, and enable TLS everywhere on the internal
and admin endpoints where the overcloud domain ( site1.lab.local) is a subdomain of the IdM
domain (lab.local).

The following procedures in this section explain how to configure this integration using the various
combinations described above.

16.4.1. Configuring undercloud integration for deployments using the same domain
as IdM

This procedure describes how to configure undercloud integration for deployments that use the same
domain as IdM.

Red Hat OpenStack Platform uses novajoin to integrate with Red Hat Identity Management (IdM),
which then issues and manages encryption certificates. In this procedure, you register the undercloud
with IdM, generate a token, enable the token in the undercloud configuration, then re-run the
undercloud and overcloud deployment scripts. For example:

1. Install python-novajoin for integration with IdM:

[stack@undercloud-0 ~]$ sudo yum install python-novajoin

2. Run the novajoin configuration script and supply the configuration details for your IdM
deployment. For example:

[stack@undercloud-0 ~]$ sudo novajoin-ipa-setup --principal admin --password 
ComplexRedactedPassword \
  --server ipa.lab.local --realm lab.local --domain lab.local \
  --hostname undercloud-0.lab.local --precreate
...
0Uvua6NyIWVkfCSTOmwbdAobsqGH2GONRJrW24MoQ4wg

This output includes a one time password (OTP) for IdM, which will be a different value for your
deployment.

3. Configure the undercloud to use novajoin, add the one-time password (OTP), use the IdM IP
address for DNS, and describe the overcloud domain. You will need to adjust this example for
your deployment:

[stack@undercloud ~]$ vi undercloud.conf
...
enable_novajoin = true
ipa_otp = 0Uvua6NyIWVkfCSTOmwbdAobsqGH2GONRJrW24MoQ4wg
undercloud_hostname = undercloud-0.lab.local

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

120



undercloud_nameservers = X.X.X.X
overcloud_domain_name = lab.local
...

4. Install the novajoin services in the undercloud:

[stack@undercloud ~]$ openstack undercloud install

5. Add the overcloud IP address to DNS. You will need to amend this example to suit your
deployment:
Note: Check the overcloud’s network-environment.yaml, and choose a VIP within each
network’s range.

[root@ipa ~]$ ipa dnsrecord-add lab.local overcloud --a-rec=10.0.0.101
[root@ipa ~]# ipa dnszone-add ctlplane.lab.local
[root@ipa ~]# ipa dnsrecord-add ctlplane.lab.local overcloud --a-rec 192.168.24.101
[root@ipa ~]# ipa dnszone-add internalapi.lab.local
[root@ipa ~]# ipa dnsrecord-add internalapi.lab.local overcloud --a-rec 172.17.1.101
[root@ipa ~]# ipa dnszone-add storage.lab.local
[root@ipa ~]# ipa dnsrecord-add storage.lab.local overcloud --a-rec 172.17.3.101
[root@ipa ~]# ipa dnszone-add storagemgmt.lab.local
[root@ipa ~]# ipa dnsrecord-add storagemgmt.lab.local overcloud --a-rec 172.17.4.101

6. Create a public_vip.yaml mapping for all the endpoints:

Parameter_defaults:
    PublicVirtualFixedIPs: [{'ip_address':'10.0.0.101'}]
    ControlFixedIPs: [{'ip_address':'192.168.24.101'}]
    InternalApiVirtualFixedIPs: [{'ip_address':'172.17.1.101'}]
    StorageVirtualFixedIPs: [{'ip_address':'172.17.3.101'}]
    StorageMgmtVirtualFixedIPs: [{'ip_address':'172.17.4.101'}]
    RedisVirtualFixedIPs: [{'ip_address':'172.17.1.102'}]

16.4.2. Configuring overcloud integration for deployments that use the same
domain as IdM, and retain the existing public endpoint certificates

1. Make sure the following parameters exist in your openstack overcloud deploy command (with
valid settings) and then re-run the deployment command:

` --ntp-server` - If not already set, specify the NTP server to suit your environment. The
IdM server should be running ntp.

cloud-names.yaml - Contains the FQDNs (not IPs) from the initial deployment command.

enable-tls.yaml - Contains the new overcloud certificate. For an example, see
https://github.com/openstack/tripleo-heat-
templates/blob/master/environments/ssl/enable-tls.yaml.

public_vip.yaml - The maps the endpoints to a specific ip so dns can match.

enable-internal-tls.yaml - Enables TLS for internal endpoints.

tls-everywhere-endpoints-dns.yaml - Configures TLS endpoints using DNS names. You
can review the contents of this file to check the configuration scope.

haproxy-internal-tls-certmonger.yaml - certmonger will manage the internal certs in

CHAPTER 16. CONVERTING YOUR EXISTING DEPLOYMENT TO USE TLS

121

https://github.com/openstack/tripleo-heat-templates/blob/master/environments/ssl/enable-tls.yaml


haproxy-internal-tls-certmonger.yaml - certmonger will manage the internal certs in
haproxy.

inject-trust-anchor.yaml - Adds the root certificate authority. This is only needed when the
certificates rely on a CA chain that is not already part of the common set used by default;
for example, when using self-signed.
For example:

[ stack@undercloud ~]$ openstack overcloud deploy \
...
  --ntp-server 10.13.57.78 \
  -e /home/stack/cloud-names.yaml \
  -e /home/stack/enable-tls.yaml \
  -e /home/stack/public_vip.yaml \
  -e <tripleo-heat-templates>/environments/ssl/enable-internal-tls.yaml \
  -e <tripleo-heat-templates>/environments/ssl/tls-everywhere-endpoints-dns.yaml \
  -e <tripleo-heat-templates>/environments/services/haproxy-internal-tls-certmonger.yaml 
\
  -e /home/stack/inject-trust-anchor.yaml
...

NOTE

Examples of these environment files can be found here:
https://github.com/openstack/tripleo-heat-
templates/tree/master/environments/ssl.

16.4.3. Configuring overcloud integration for deployments that use the same
domain as IdM, and replace the existing public endpoint certificates with an IdM
generated certificate

1. Make sure the following parameters exist in your openstack overcloud deploy command (with
valid settings) and then re-run the deployment command:

` --ntp-server` - If not already set, specify the NTP server to suit your environment. The
IdM server should be running ntp.

cloud-names.yaml - Contains the FQDNs (not IPs) from the initial deployment command.

enable-tls.yaml - Contains the new overcloud certificate. For an example, see
https://github.com/openstack/tripleo-heat-
templates/blob/master/environments/ssl/enable-tls.yaml.

public_vip.yaml - The maps the endpoints to a specific ip so dns can match.

enable-internal-tls.yaml - Enables TLS for internal endpoints.

tls-everywhere-endpoints-dns.yaml - Configures TLS endpoints using DNS names. You
can review the contents of this file to check the configuration scope.

haproxy-public-tls-certmonger.yaml - certmonger will manage the internal and public
certs in haproxy.

inject-trust-anchor.yaml - Adds the root certificate authority. This is only needed when the

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

122

https://github.com/openstack/tripleo-heat-templates/tree/master/environments/ssl
https://github.com/openstack/tripleo-heat-templates/blob/master/environments/ssl/enable-tls.yaml


inject-trust-anchor.yaml - Adds the root certificate authority. This is only needed when the
certificates rely on a CA chain that is not already part of the common set used by default;
for example, when using self-signed.
For example:

[ stack@undercloud ~]$ openstack overcloud deploy \
...
  --ntp-server 10.13.57.78 \
  -e /home/stack/cloud-names.yaml \
  -e /home/stack/enable-tls.yaml \
  -e /home/stack/public_vip.yaml \
  -e <tripleo-heat-templates>/environments/ssl/enable-internal-tls.yaml \
  -e <tripleo-heat-templates>/environments/ssl/tls-everywhere-endpoints-dns.yaml \
  -e <tripleo-heat-templates>/environments/services/haproxy-public-tls-certmonger.yaml \
  -e /home/stack/inject-trust-anchor.yaml
...

NOTE

Examples of these environment files can be found at
https://github.com/openstack/tripleo-heat-
templates/tree/master/environments/ssl.

NOTE

The template enable-internal-tls.j2.yaml is referenced as enable-internal-tls.yaml in
the overcloud deploy command.

In addition, the old public endpoint certificates in enable-tls.yaml will be replaced by
certmonger with haproxy-public-tls-certmonger.yaml, however, this file must still be
referenced in the upgrade process.

16.4.4. Configuring undercloud integration for deployments that use an IdM
subdomain

This procedure explains how to configure undercloud integration for deployments that use an IdM
subdomain.

Red Hat OpenStack Platform uses novajoin to integrate with Red Hat Identity Management (IdM),
which then issues and manages encryption certificates. In this procedure, you register the undercloud
with IdM, generate a token, enable the token in the undercloud configuration, then re-run the
undercloud and overcloud deployment scripts. For example:

1. Install python-novajoin for integration with IdM:

[stack@undercloud-0 ~]$

2. Run the novajoin configuration script and supply the configuration details for your IdM
deployment. For example:

[stack@undercloud-0 ~]$ sudo novajoin-ipa-setup --principal admin --password 
ComplexRedactedPassword \
  --server ipa.lab.local --realm lab.local --domain lab.local \

CHAPTER 16. CONVERTING YOUR EXISTING DEPLOYMENT TO USE TLS

123

https://github.com/openstack/tripleo-heat-templates/tree/master/environments/ssl


  --hostname undercloud-0.site1.lab.local --precreate
...
0Uvua6NyIWVkfCSTOmwbdAobsqGH2GONRJrW24MoQ4wg

This output includes a one time password (OTP) for IdM, which will be a different value for your
deployment.

3. Configure the undercloud to use novajoin, and add the OTP, IdM IP for DNS and NTP, and
overcloud domain:

[stack@undercloud ~]$ vi undercloud.conf
…
[DEFAULT]
undercloud_ntp_servers=X.X.X.X
hieradata_override = /home/stack/hiera_override.yaml
enable_novajoin = true
ipa_otp = 0Uvua6NyIWVkfCSTOmwbdAobsqGH2GONRJrW24MoQ4wg
undercloud_hostname = undercloud-0.site1.lab.local
undercloud_nameservers = X.X.X.X
overcloud_domain_name = site1.lab.local
...

4. Configure the undercloud to use novajoin, and add the OTP, IdM IP for DNS, and overcloud
domain:

[stack@undercloud-0 ~]$ vi hiera_override.yaml
nova::metadata::novajoin::api::ipa_domain: site1.lab.local
...

5. Install the novajoin services in the undercloud:

[stack@undercloud ~]$ openstack undercloud install

6. Add the overcloud IP address to DNS. You will need to amend this example to suit your
deployment:
Note: Check the overcloud’s network-environment.yaml, and choose a VIP within each
network’s range.

[root@ipa ~]$ ipa dnsrecord-add site1.lab.local overcloud --a-rec=10.0.0.101
[root@ipa ~]# ipa dnszone-add site1.ctlplane.lab.local
[root@ipa ~]# ipa dnsrecord-add site1.ctlplane.lab.local overcloud --a-rec 192.168.24.101
[root@ipa ~]# ipa dnszone-add site1.internalapi.lab.local
[root@ipa ~]# ipa dnsrecord-add site1.internalapi.lab.local overcloud --a-rec 172.17.1.101
[root@ipa ~]# ipa dnszone-add site1.storage.lab.local
[root@ipa ~]# ipa dnsrecord-add site1.storage.lab.local overcloud --a-rec 172.17.3.101
[root@ipa ~]# ipa dnszone-add site1.storagemgmt.lab.local
[root@ipa ~]# ipa dnsrecord-add site1.storagemgmt.lab.local overcloud --a-rec 172.17.4.101

7. Create a public_vip.yaml mapping for each of the endpoints. For example:

Parameter_defaults:
    PublicVirtualFixedIPs: [{'ip_address':'10.0.0.101'}]
    ControlFixedIPs: [{'ip_address':'192.168.24.101'}]
    InternalApiVirtualFixedIPs: [{'ip_address':'172.17.1.101'}]

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

124



    StorageVirtualFixedIPs: [{'ip_address':'172.17.3.101'}]
    StorageMgmtVirtualFixedIPs: [{'ip_address':'172.17.4.101'}]
    RedisVirtualFixedIPs: [{'ip_address':'172.17.1.102'}]

8. Create the extras.yaml mapping for each of the endpoints. For example:

parameter_defaults:
  MakeHomeDir: True
  IdMNoNtpSetup: false
  IdMDomain: redhat.local
  DnsSearchDomains: "site1.redhat.local,redhat.local"

16.4.5. Configuring undercloud integration for deployments that use an IdM
subdomain, and retain the existing public endpoint certificates

This procedure explains how to configure undercloud integration for deployments that use an IdM
subdomain, and still retain the existing public endpoint certificates.

1. Make sure the following parameters exist in your openstack overcloud deploy command (with
valid settings) and then re-run the deployment command:

` --ntp-server` - If not already set, specify the NTP server to suit your environment. The
IdM server should be running ntp.

cloud-names.yaml - Contains the FQDNs (not IPs) from the initial deployment command.

enable-tls.yaml - Contains the new overcloud certificate. For an example, see
https://github.com/openstack/tripleo-heat-
templates/blob/master/environments/ssl/enable-tls.yaml.

public_vip.yaml - Contains endpoint maps to a specific ip so dns can match.

`extras.yaml ` - Contains settings for pam to make home directorys on login, no ntp setup,
the base IdM domain, and the dns search for resolv.conf.

enable-internal-tls.yaml - Enables TLS for internal endpoints.

tls-everywhere-endpoints-dns.yaml - Configures TLS endpoints using DNS names. You
can review the contents of this file to check the configuration scope.

haproxy-internal-tls-certmonger.yaml - certmonger will manage the internal certs in
haproxy.

inject-trust-anchor.yaml - Adds the root certificate authority. This is only needed when the
certificates rely on a CA chain that is not already part of the common set used by default;
for example, when using self-signed.
For example:

[ stack@undercloud ~]$ openstack overcloud deploy \
...
  --ntp-server 10.13.57.78 \
  -e /home/stack/cloud-names.yaml \
  -e /home/stack/enable-tls.yaml \
  -e /home/stack/public_vip.yaml \
  -e /home/stack/extras.yaml \

CHAPTER 16. CONVERTING YOUR EXISTING DEPLOYMENT TO USE TLS

125

https://github.com/openstack/tripleo-heat-templates/blob/master/environments/ssl/enable-tls.yaml


  -e <tripleo-heat-templates>/environments/ssl/enable-internal-tls.yaml \
  -e <tripleo-heat-templates>/environments/ssl/tls-everywhere-endpoints-dns.yaml \
  -e <tripleo-heat-templates>/environments/services/haproxy-internal-tls-certmonger.yaml 
\
  -e /home/stack/inject-trust-anchor.yaml
...

NOTE

Examples of these environment files can be found here:
https://github.com/openstack/tripleo-heat-
templates/tree/master/environments/ssl.

16.4.6. Configuring undercloud integration for deployments that use an IdM
subdomain, and replace the existing public endpoint certificates with an IdM
generated certificate

This procedure explains how to configure undercloud integration for deployments that use an IdM
subdomain, and how to replace the existing public endpoint certificates with an IdM generated
certificate.

1. Make sure the following parameters exist in your openstack overcloud deploy command (with
valid settings) and then re-run the deployment command:

` --ntp-server` - If not already set, specify the NTP server to suit your environment. The
IdM server should be running ntp.

cloud-names.yaml - Contains the FQDNs (not IPs) from the initial deployment command.

enable-tls.yaml - Contains the new overcloud certificate. For an example, see
https://github.com/openstack/tripleo-heat-
templates/blob/master/environments/ssl/enable-tls.yaml.

public_vip.yaml - The maps the endpoints to a specific ip so dns can match.

`extras.yaml ` - Contains settings for pam to make home directorys on login, no ntp setup,
the base IdM domain, and the dns search for resolv.conf.

enable-internal-tls.yaml - Enables TLS for internal endpoints.

tls-everywhere-endpoints-dns.yaml - Configures TLS endpoints using DNS names. You
can review the contents of this file to check the configuration scope.

haproxy-public-tls-certmonger.yaml - certmonger will manage the internal and public
certs in haproxy.

inject-trust-anchor.yaml - Adds the root certificate authority. This is only needed when the
certificates rely on a CA chain that is not already part of the common set used by default;
for example, when using self-signed.
For example:

[ stack@undercloud ~]$ openstack overcloud deploy \
...
  --ntp-server 10.13.57.78 \
  -e /home/stack/cloud-names.yaml \

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

126

https://github.com/openstack/tripleo-heat-templates/tree/master/environments/ssl
https://github.com/openstack/tripleo-heat-templates/blob/master/environments/ssl/enable-tls.yaml


  -e /home/stack/enable-tls.yaml \
  -e /home/stack/public_vip.yaml \
  -e /home/stack/extras.yaml \
  -e <tripleo-heat-templates>/environments/ssl/enable-internal-tls.yaml \
  -e <tripleo-heat-templates>/environments/ssl/tls-everywhere-endpoints-dns.yaml \
  -e <tripleo-heat-templates>/environments/services/haproxy-public-tls-certmonger.yaml \
  -e /home/stack/inject-trust-anchor.yaml
...

NOTE

Examples of these environment files can be found here:
https://github.com/openstack/tripleo-heat-
templates/tree/master/environments/ssl.

NOTE

In this example, the template enable-internal-tls.j2.yaml is referenced as enable-
internal-tls.yaml in the overcloud deploy command. In addition, the old public endpoint
certificates in enable-tls.yaml will be replaced by certmonger using haproxy-public-tls-
certmonger.yaml, however, this file must still be referenced in the upgrade process.

16.5. CHECKING TLS ENCRYPTION

Once the overcloud re-deployment has completed, check that all endpoints are now encrypted with
TLS. In this example, all endpoints are configured to use https, indicating that they are using TLS
encryption:

+----------------------------------+-----------+--------------+----------------+---------+-----------+-----------------
----------------------------------------------+
| ID                               | Region    | Service Name | Service Type   | Enabled | Interface | URL                                                           
|
+----------------------------------+-----------+--------------+----------------+---------+-----------+-----------------
----------------------------------------------+
| 0fee4efdc4ae4310b6a139a25d9c0d9c | regionOne | neutron      | network        | True    | public    | 
https://overcloud.lab.local:13696                              |
| 220558ab1d2445139952425961a0c89a | regionOne | glance       | image          | True    | public    | 
https://overcloud.lab.local:13292                              |
| 24d966109ffa419da850da946f19c4ca | regionOne | placement    | placement      | True    | admin     | 
https://overcloud.internalapi.lab.local:8778/placement         |
| 27ac9e0d22804ee5bd3cd8c0323db49c | regionOne | nova         | compute        | True    | internal  | 
https://overcloud.internalapi.lab.local:8774/v2.1              |
| 31d376853bd241c2ba1a27912fc896c6 | regionOne | swift        | object-store   | True    | admin     | 
https://overcloud.storage.lab.local:8080                       |
| 350806234c784332bfb8615e721057e3 | regionOne | nova         | compute        | True    | admin     | 
https://overcloud.internalapi.lab.local:8774/v2.1              |
| 49c312f4db6748429d27c60164779302 | regionOne | keystone     | identity       | True    | public    | 
https://overcloud.lab.local:13000                              |
| 4e535265c35e486e97bb5a8bc77708b6 | regionOne | nova         | compute        | True    | public    | 
https://overcloud.lab.local:13774/v2.1                         |
| 5e93dd46b45f40fe8d91d3a5d6e847d3 | regionOne | keystone     | identity       | True    | admin     | 
https://overcloud.ctlplane.lab.local:35357                     |
| 6561984a90c742a988bf3d0acf80d1b6 | regionOne | swift        | object-store   | True    | public    | 
https://overcloud.lab.local:13808/v1/AUTH_%(tenant_id)s        |

CHAPTER 16. CONVERTING YOUR EXISTING DEPLOYMENT TO USE TLS

127

https://github.com/openstack/tripleo-heat-templates/tree/master/environments/ssl


| 76b8aad0bdda4313a02e4342e6a19fd6 | regionOne | placement    | placement      | True    | public    
| https://overcloud.lab.local:13778/placement                    |
| 96b004d5217c4d87a38cb780607bf9fb | regionOne | placement    | placement      | True    | internal  | 
https://overcloud.internalapi.lab.local:8778/placement         |
| 98489b4b107f4da596262b712c3fe883 | regionOne | glance       | image          | True    | internal  | 
https://overcloud.internalapi.lab.local:9292                   |
| bb7ab36f30b14b549178ef06ec74ff84 | regionOne | glance       | image          | True    | admin     | 
https://overcloud.internalapi.lab.local:9292                   |
| c1547f7bf9a14e9e85eaaaeea26413b7 | regionOne | neutron      | network        | True    | admin     | 
https://overcloud.internalapi.lab.local:9696                   |
| ca66f499ec544f42838eb78a515d9f1e | regionOne | keystone     | identity       | True    | internal  | 
https://overcloud.internalapi.lab.local:5000                   |
| df0181358c07431390bc66822176281d | regionOne | swift        | object-store   | True    | internal  | 
https://overcloud.storage.lab.local:8080/v1/AUTH_%(tenant_id)s |
| e420350ef856460991c3edbfbae917c1 | regionOne | neutron      | network        | True    | internal  | 
https://overcloud.internalapi.lab.local:9696                   |
+----------------------------------+-----------+--------------+----------------+---------+-----------+-----------------
----------------------------------------------+

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

128



CHAPTER 17. DEBUG MODES
You can enable and disable the DEBUG level logging mode for certain services in the overcloud. To
configure debug mode for a service, set the respective debug parameter.

For example, OpenStack Identity (keystone) uses the KeystoneDebug parameter. Create a 
debug.yaml environment file to store debug parameters and set the KeystoneDebug parameter in the
parameter_defaults section:

parameter_defaults:
  KeystoneDebug: True

After you have set the KeystoneDebug parameter to True, the 
/var/log/containers/keystone/keystone.log standard keystone log file is updated with DEBUG level
logs.

For a full list of debug parameters, see "Debug Parameters" in the Overcloud Parameters guide.

CHAPTER 17. DEBUG MODES

129

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/overcloud_parameters/debug-parameters


CHAPTER 18. POLICIES
You can configure access policies for certain services in the overcloud. To configure policies for a
service, set the respective policy parameter with a hash value containing the service’s policies. For
example:

OpenStack Identity (keystone) uses the KeystonePolicies parameter. Set this parameter in the
parameter_defaults section of an environment file:

parameter_defaults:
  KeystonePolicies: { keystone-context_is_admin: { key: context_is_admin, value: 'role:admin' 
} }

OpenStack Compute (nova) uses the NovaApiPolicies parameter. Set this parameter in the 
parameter_defaults section of an environment file:

parameter_defaults:
  NovaApiPolicies: { nova-context_is_admin: { key: 'compute:get_all', value: '@' } }

For a full list of policy parameters, see "Policy Parameters" in the Overcloud Parameters guide.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

130

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/overcloud_parameters/policy-parameters


CHAPTER 19. STORAGE CONFIGURATION
This chapter outlines several methods of configuring storage options for your Overcloud.

IMPORTANT

By default, the overcloud uses local ephemeral storage provided by OpenStack Compute
(nova) and LVM block storage provided by OpenStack Storage (cinder). However, these
options are not supported for enterprise-level overclouds. Instead, use one of the
storage options in this chapter.

19.1. CONFIGURING NFS STORAGE

This section describes how to configure the overcloud to use an NFS share. The installation and
configuration process is based on the modification of an existing environment file in the core heat
template collection.

IMPORTANT

Red Hat recommends that you use a certified storage back end and driver. Red Hat does
not recommend that you use NFS that comes from the generic NFS back end, because
its capabilities are limited when compared to a certified storage back end and driver. For
example, the generic NFS back end does not support features such as volume encryption
and volume multi-attach. For information about supported drivers, see the Red Hat
Ecosystem Catalog.

NOTE

There are several director heat parameters that control whether an NFS back end or a
NetApp NFS Block Storage back end supports a NetApp feature called NAS secure:

CinderNetappNasSecureFileOperations

CinderNetappNasSecureFilePermissions

CinderNasSecureFileOperations

CinderNasSecureFilePermissions

Red Hat does not recommend that you enable the feature, because it interferes with
normal volume operations. Director disables the feature by default, and Red Hat
OpenStack Platform does not support it.

NOTE

For Block Storage and Compute services, you must use NFS version 4.1 or later.

The core heat template collection contains a set of environment files in /usr/share/openstack-tripleo-
heat-templates/environments/. With these environment files you can create customized configuration
of some of the supported features in a director-created overcloud. This includes an environment file
designed to configure storage. This file is located at /usr/share/openstack-tripleo-heat-
templates/environments/storage-environment.yaml.

1. Copy the file to the stack user’s template directory:

CHAPTER 19. STORAGE CONFIGURATION

131

https://access.redhat.com/ecosystem/search/#/category/Software?sort=sortTitle asc&softwareCategories=Storage&ecosystem=Red Hat OpenStack Platform


$ cp /usr/share/openstack-tripleo-heat-templates/environments/storage-environment.yaml 
~/templates/.

2. Modify the following parameters:

CinderEnableIscsiBackend

Enables the iSCSI backend. Set to false.

CinderEnableRbdBackend

Enables the Ceph Storage backend. Set to false.

CinderEnableNfsBackend

Enables the NFS backend. Set to true.

NovaEnableRbdBackend

Enables Ceph Storage for Nova ephemeral storage. Set to false.

GlanceBackend

Define the back end to use for glance. Set to file to use file-based storage for images. The
overcloud saves these files in a mounted NFS share for glance.

CinderNfsMountOptions

The NFS mount options for the volume storage.

CinderNfsServers

The NFS share to mount for volume storage. For example, 192.168.122.1:/export/cinder.

GlanceNfsEnabled

When GlanceBackend is set to file, GlanceNfsEnabled enables images to be stored
through NFS in a shared location so that all Controller nodes have access to the images. If
disabled, the overcloud stores images in the file system of the Controller node. Set to true.

GlanceNfsShare

The NFS share to mount for image storage. For example, 192.168.122.1:/export/glance.

GlanceNfsOptions

The NFS mount options for the image storage.
The environment file contains parameters that configure different storage options for the
Red Hat OpenStack Platform Block Storage (cinder) and Image (glance) services. This
example demonstrates how to configure the overcloud to use an NFS share.

The options in the environment file should look similar to the following:

parameter_defaults:
  CinderEnableIscsiBackend: false
  CinderEnableRbdBackend: false
  CinderEnableNfsBackend: true
  NovaEnableRbdBackend: false
  GlanceBackend: 'file'

  CinderNfsMountOptions: 'rw,sync'
  CinderNfsServers: '192.0.2.230:/cinder'

  GlanceNfsEnabled: true
  GlanceNfsShare: '192.0.2.230:/glance'
  GlanceNfsOptions: 'rw,sync,context=system_u:object_r:glance_var_lib_t:s0'

These parameters are integrated as part of the heat template collection. Setting them as

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

132



These parameters are integrated as part of the heat template collection. Setting them as
shown in the example code creates two NFS mount points for the Block Storage and Image
services to use.

IMPORTANT

Include the context=system_u:object_r:glance_var_lib_t:s0 option in the 
GlanceNfsOptions parameter to allow the Image service to access the 
/var/lib directory. Without this SELinux content, the Image service cannot to
write to the mount point.

3. Include the file when you deploy the overcloud.

19.2. CONFIGURING CEPH STORAGE

The director provides two main methods for integrating Red Hat Ceph Storage into an Overcloud.

Creating an Overcloud with its own Ceph Storage Cluster

The director has the ability to create a Ceph Storage Cluster during the creation on the Overcloud.
The director creates a set of Ceph Storage nodes that use the Ceph OSD to store the data. In
addition, the director install the Ceph Monitor service on the Overcloud’s Controller nodes. This
means if an organization creates an Overcloud with three highly available controller nodes, the Ceph
Monitor also becomes a highly available service. For more information, see the Deploying an
Overcloud with Containerized Red Hat Ceph guide.

Integrating a Existing Ceph Storage into an Overcloud

If you already have an existing Ceph Storage Cluster, you can integrate this during an Overcloud
deployment. This means you manage and scale the cluster outside of the Overcloud configuration.
For more information, see the Integrating an Overcloud with an Existing Red Hat Ceph Cluster  guide.

19.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER

You can reuse an external Object Storage (swift) cluster by disabling the default Object Storage service
deployment on the controller nodes. Doing so disables both the proxy and storage services for Object
Storage and configures haproxy and keystone to use the given external Swift endpoint.

NOTE

User accounts on the external Object Storage (swift) cluster have to be managed by
hand.

You need the endpoint IP address of the external Object Storage cluster as well as the authtoken
password from the external Object Storage proxy-server.conf file. You can find this information by
using the openstack endpoint list command.

To deploy director with an external Swift cluster:

1. Create a new file named swift-external-params.yaml with the following content:

Replace EXTERNAL.IP:PORT with the IP address and port of the external proxy and

Replace AUTHTOKEN with the authtoken password for the external proxy on the 
SwiftPassword line.

CHAPTER 19. STORAGE CONFIGURATION

133

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/deploying_an_overcloud_with_containerized_red_hat_ceph/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/integrating_an_overcloud_with_an_existing_red_hat_ceph_cluster/


parameter_defaults:
  ExternalPublicUrl: 'https://EXTERNAL.IP:PORT/v1/AUTH_%(tenant_id)s'
  ExternalInternalUrl: 'http://192.168.24.9:8080/v1/AUTH_%(tenant_id)s'
  ExternalAdminUrl: 'http://192.168.24.9:8080'
  ExternalSwiftUserTenant: 'service'
  SwiftPassword: AUTHTOKEN

2. Save this file as swift-external-params.yaml.

3. Deploy the overcloud using these additional environment files.

openstack overcloud deploy --templates \
-e [your environment files]
-e /usr/share/openstack-tripleo-heat-templates/environments/swift-external.yaml
-e swift-external-params.yaml

19.4. CONFIGURING THE IMAGE IMPORT METHOD AND SHARED
STAGING AREA

The default settings for the OpenStack Image service (glance) are determined by the Heat templates
used when OpenStack is installed. The Image service Heat template is deployment/glance/glance-api-
container-puppet.yaml.

The interoperable image import allows two methods for image import:

web-download

glance-direct

The web-download method lets you import an image from a URL; the glance-direct method lets you
import an image from a local volume.

19.4.1. Creating and Deploying the glance-settings.yaml File

You use an environment file to configure the import parameters. These parameters override the default
values established in the Heat template. The example environment content provides parameters for the
interoperable image import.

parameter_defaults:
  # Configure NFS backend
  GlanceBackend: file
  GlanceNfsEnabled: true
  GlanceNfsShare: 192.168.122.1:/export/glance

  # Enable glance-direct import method
  GlanceEnabledImportMethods: glance-direct,web-download

  # Configure NFS staging area (required for glance-direct import method)
  GlanceStagingNfsShare: 192.168.122.1:/export/glance-staging

The GlanceBackend, GlanceNfsEnabled, and GlanceNfsShare parameters are defined in the Storage
Configuration section in the Advanced Overcloud Customization Guide .

Two new parameters for interoperable image import define the import method and a shared NFS

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

134

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/advanced_overcloud_customization/storage_configuration


Two new parameters for interoperable image import define the import method and a shared NFS
staging area.

GlanceEnabledImportMethods

Defines the available import methods, web-download (default) and glance-direct. This line is only
necessary if you wish to enable additional methods besides web-download.

GlanceStagingNfsShare

Configures the NFS staging area used by the glance-direct import method. This space can be shared
amongst nodes in a high-availability cluster setup. Requires GlanceNfsEnabled be set to true.

To configure the settings:

1. Create a new file called, for example, glance-settings.yaml. The contents of this file should be
similar to the example above.

2. Add the file to your OpenStack environment using the openstack overcloud deploy command:

$ openstack overcloud deploy --templates -e glance-settings.yaml

For additional information about using environment files, see the Including Environment Files in
Overcloud Creation section in the Advanced Overcloud Customization Guide .

19.4.2. Controlling Image Web-Import Sources

You can limit the sources of Web-import image downloads by adding URI blacklists and whitelists to the
optional glance-image-import.conf file.

You can whitelist or blacklist image source URIs at three levels:

scheme (allowed_schemes, disallowed_schemes)

host (allowed_hosts, disallowed_hosts)

port (allowed_ports, disallowed_ports)

If you specify both at any level, the whitelist is honored and the blacklist is ignored.

The Image service applies the following decision logic to validate image source URIs:

1. The scheme is checked.

a. Missing scheme: reject

b. If there’s a whitelist, and the scheme is not in it: reject. Otherwise, skip C and continue on to
2.

c. If there’s a blacklist, and the scheme is in it: reject.

2. The host name is checked.

a. Missing host name: reject

b. If there’s a whitelist, and the host name is not in it: reject. Otherwise, skip C and continue on
to 3.

c. If there’s a blacklist, and the host name is in it: reject.

CHAPTER 19. STORAGE CONFIGURATION

135

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/advanced_overcloud_customization/sect-understanding_heat_templates#sect-Including_Environment_Files_in_Overcloud_Creation


3. If there’s a port in the URI, the port is checked.

a. If there’s a whitelist, and the port is not in it: reject. Otherwise, skip B and continue on to 4.

b. If there’s a black list, and the port is in it: reject.

4. The URI is accepted as valid.

Note that if you allow a scheme, either by whitelisting it or by not blacklisting it, any URI that uses the
default port for that scheme by not including a port in the URI is allowed. If it does include a port in the
URI, the URI is validated according to the above rules.

19.4.2.1. Example

For instance, the default port for FTP is 21. Because ftp is a whitelisted scheme, this URL is allowed:
ftp://example.org/some/resource But because 21 is not in the port whitelist, this URL to the same
resource is rejected: ftp://example.org:21/some/resource

allowed_schemes = [http,https,ftp]
disallowed_schemes = []
allowed_hosts = []
disallowed_hosts = []
allowed_ports = [80,443]
disallowed_ports = []

[Including Environment Files in Overcloud Creation] section in the Advanced Overcloud Customization
Guide.

19.4.2.2. Default Image Import Blacklist and Whitelist Settings

The glance-image-import.conf file is an optional file. Here are the default settings for these options:

allowed_schemes - [http, https]

disallowed_schemes - empty list

allowed_hosts - empty list

disallowed_hosts - empty list

allowed_ports - [80, 443]

disallowed_ports - empty list

Thus if you use the defaults, end users will only be able to access URIs using the http or https scheme.
The only ports users will be able to specify are 80 and 443. (Users do not have to specify a port, but if
they do, it must be either 80 or 443.)

You can find the glance-image-import.conf file in the etc/ subdirectory of the Image service source
code tree. Make sure that you are looking in the correct branch for the OpenStack release you are
working with.

19.4.3. Injecting Metadata on Image Import to Control Where VMs Launch

End users can add images in the Image service and use these images to launch VMs. These user-

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

136

ftp://example.org/some/resource
ftp://example.org:21/some/resource


End users can add images in the Image service and use these images to launch VMs. These user-
provided (non-admin) images should be launched on a specific set of compute nodes. The assignment
of an instance to a compute node is controlled by image metadata properties.

The Image Property Injection plugin injects metadata properties to images on import. Specify the
properties by editing the [image_import_opts] and [inject_metadata_properties] sections of the glance-
image-import.conf file.

To enable the Image Property Injection plugin, add this line to the [image_import_opts] section:

[image_import_opts]
image_import_plugins = [inject_image_metadata]

To limit the metadata injection to images provided by a certain set of users, set the ignore_user_roles
parameter. For instance, the following configuration injects one value for property1 and two values for
property2 into images downloaded by by any non-admin user.

[DEFAULT]
[image_conversion]
[image_import_opts]
image_import_plugins = [inject_image_metadata]
[import_filtering_opts]
[inject_metadata_properties]
ignore_user_roles = admin
inject = PROPERTY1:value,PROPERTY2:value;another value

The parameter ignore_user_roles is a comma-separated list of Keystone roles that the plugin will
ignore. In other words, if the user making the image import call has any of these roles, the plugin will not
inject any properties into the image.

The parameter inject is a comma-separated list of properties and values that will be injected into the
image record for the imported image. Each property and value should be quoted and separated by a
colon (‘:’) as shown in the example above.

You can find the glance-image-import.conf file in the etc/ subdirectory of the Image service source
code tree. Make sure that you are looking in the correct branch for the OpenStack release you are
working with.

19.5. CONFIGURING CINDER BACK END FOR THE IMAGE SERVICE

The GlanceBackend parameter sets the back end that the Image service uses to store images. To
configure cinder as the Image service back end, add the following to the environment file:

parameter_defaults:
  GlanceBackend: cinder

If the cinder back end is enabled, the following parameters and values are set by default:

cinder_store_auth_address = http://172.17.1.19:5000/v3
cinder_store_project_name = service
cinder_store_user_name = glance
cinder_store_password = ****secret****

To use a custom user name, or any custom value for the cinder_store_ parameters, add the

CHAPTER 19. STORAGE CONFIGURATION

137



To use a custom user name, or any custom value for the cinder_store_ parameters, add the
ExtraConfig settings to parameter_defaults and pass the custom values. For example:

ExtraConfig:
    glance::config::api_config:
      glance_store/cinder_store_auth_address:
        value: "%{hiera('glance::api::authtoken::auth_url')}/v3"
      glance_store/cinder_store_user_name:
        value: <user-name>
      glance_store/cinder_store_password:
        value: "%{hiera('glance::api::authtoken::password')}"
      glance_store/cinder_store_project_name:
        value: "%{hiera('glance::api::authtoken::project_name')}"

19.6. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES
TO ATTACH TO ONE INSTANCE

By default, you can attach an unlimited number of storage devices to a single instance. To limit the
maximum number of devices, add the max_disk_devices_to_attach parameter to your Compute
environment file. The following example shows how to change the value of 
max_disk_devices_to_attach to "30":

parameter_defaults:
   ComputeExtraConfig:
          nova::config::nova_config:
            compute/max_disk_devices_to_attach:
                value: '30'

Guidelines and considerations

The number of storage disks supported by an instance depends on the bus that the disk uses.
For example, the IDE disk bus is limited to 4 attached devices.

Changing the max_disk_devices_to_attach on a Compute node with active instances can
cause rebuilds to fail if the maximum number is lower than the number of devices already
attached to instances. For example, if instance A has 26 devices attached and you change 
max_disk_devices_to_attach to 20, a request to rebuild instance A will fail.

During cold migration, the configured maximum number of storage devices is only enforced on
the source for the instance that you want to migrate. The destination is not checked before the
move. This means that if Compute node A has 26 attached disk devices, and Compute node B
has a configured maximum of 20 attached disk devices, a cold migration of an instance with 26
attached devices from Compute node A to Compute node B succeeds. However, a subsequent
request to rebuild the instance in Compute node B fails because 26 devices are already
attached which exceeds the configured maximum of 20.

The configured maximum is not enforced on shelved offloaded instances, as they have no
Compute node.

Attaching a large number of disk devices to instances can degrade performance on the
instance. You should tune the maximum number based on the boundaries of what your
environment can support.

Instances with machine type Q35 can attach a maximum of 500 disk devices.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

138



19.7. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING

Use the glance-api caching mechanism to store copies of images on your local machine and retrieve
them automatically to improve scalability. With Image service caching, the glance-api can run on
multiple hosts. This means that it does not need to retrieve the same image from back-end storage
multiple times. Image service caching does not affect any Image service operations.

To configure Image service caching with TripleO heat templates, complete the following steps.

Procedure

1. In an environment file, set the value of the GlanceCacheEnabled parameter to true, which
automatically sets the flavor value to keystone+cachemanagement in the glance-api.conf
heat template:

parameter_defaults:
    GlanceCacheEnabled: true

2. Include the environment file in the openstack overcloud deploy command when you redeploy
the overcloud.

19.8. CONFIGURING THIRD PARTY STORAGE

The director include a couple of environment files to help configure third-party storage providers. This
includes:

Dell EMC Storage Center

Deploys a single Dell EMC Storage Center back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellsc-config.yaml.

See the Dell Storage Center Back End Guide  for full configuration information.

Dell EMC PS Series

Deploys a single Dell EMC PS Series back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-dellps-config.yaml.

See the Dell EMC PS Series Back End Guide  for full configuration information.

NetApp Block Storage

Deploys a NetApp storage appliance as a back end for the Block Storage (cinder) service.
The environment file is located at /usr/share/openstack-tripleo-heat-
templates/environments/cinder-netapp-config.yaml.

See the NetApp Block Storage Back End Guide  for full configuration information.

CHAPTER 19. STORAGE CONFIGURATION

139

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/dell_storage_center_back_end_guide
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/dell_emc_ps_series_back_end_guide
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/netapp_block_storage_back_end_guide


CHAPTER 20. SECURITY ENHANCEMENTS
The following sections provide some suggestions to harden the security of your overcloud.

20.1. MANAGING THE OVERCLOUD FIREWALL

Each of the core OpenStack Platform services contains firewall rules in their respective composable
service templates. This automatically creates a default set of firewall rules for each overcloud node.

The overcloud Heat templates contain a set of parameters to help with additional firewall management:

ManageFirewall

Defines whether to automatically manage the firewall rules. Set to true to allow Puppet to
automatically configure the firewall on each node. Set to false if you want to manually manage the
firewall. The default is true.

PurgeFirewallRules

Defines whether to purge the default Linux firewall rules before configuring new ones. The default is 
false.

If ManageFirewall is set to true, you can create additional firewall rules on deployment. Set the 
tripleo::firewall::firewall_rules hieradata using a configuration hook (see Section 4.5, “Puppet:
Customizing Hieradata for Roles”) in an environment file for your overcloud. This hieradata is a hash
containing the firewall rule names and their respective parameters as keys, all of which are optional:

port

The port associated to the rule.

dport

The destination port associated to the rule.

sport

The source port associated to the rule.

proto

The protocol associated to the rule. Defaults to tcp.

action

The action policy associated to the rule. Defaults to accept.

jump

The chain to jump to. If present, it overrides action.

state

An Array of states associated to the rule. Defaults to ['NEW'].

source

The source IP address associated to the rule.

iniface

The network interface associated to the rule.

chain

The chain associated to the rule. Defaults to INPUT.

destination

The destination CIDR associated to the rule.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

140



The following example demonstrates the syntax of the firewall rule format:

ExtraConfig:
  tripleo::firewall::firewall_rules:
    '300 allow custom application 1':
      port: 999
      proto: udp
      action: accept
    '301 allow custom application 2':
      port: 8081
      proto: tcp
      action: accept

This applies two additional firewall rules to all nodes through ExtraConfig.

NOTE

Each rule name becomes the comment for the respective iptables rule. Note also each
rule name starts with a three-digit prefix to help Puppet order all defined rules in the final 
iptables file. The default OpenStack Platform rules use prefixes in the 000 to 200 range.

20.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL
(SNMP) STRINGS

The director provides a default read-only SNMP configuration for your overcloud. It is advisable to
change the SNMP strings to mitigate the risk of unauthorized users learning about your network devices.

NOTE

When you configure the ExtraConfig interface with a string parameter, you must use the
following syntax to ensure that Heat and Hiera do not interpret the string as a boolean
value: '"<VALUE>"'.

Set the following hieradata using the ExtraConfig hook in an environment file for your overcloud:

SNMP traditional access control settings

snmp::ro_community

IPv4 read-only SNMP community string. The default value is public.

snmp::ro_community6

IPv6 read-only SNMP community string. The default value is public.

snmp::ro_network

Network that is allowed to RO query the daemon. This value can be a string or an array. Default value
is 127.0.0.1.

snmp::ro_network6

Network that is allowed to RO query the daemon with IPv6. This value can be a string or an array.
The default value is ::1/128.

tripleo::profile::base::snmp::snmpd_config

Array of lines to add to the snmpd.conf file as a safety valve. The default value is []. See the SNMP
Configuration File web page for all available options.

CHAPTER 20. SECURITY ENHANCEMENTS

141

http://www.net-snmp.org/docs/man/snmpd.conf.html


For example:

parameter_defaults:
  ExtraConfig:
    snmp::ro_community: mysecurestring
    snmp::ro_community6: myv6securestring

This changes the read-only SNMP community string on all nodes.

SNMP view-based access control settings (VACM)

snmp::com2sec

IPv4 security name.

snmp::com2sec6

IPv6 security name.

For example:

parameter_defaults:
  ExtraConfig:
    snmp::com2sec: mysecurestring
    snmp::com2sec6: myv6securestring

This changes the read-only SNMP community string on all nodes.

For more information, see the snmpd.conf man page.

20.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY

If you enabled SSL/TLS in the overcloud (see Chapter 14, Enabling SSL/TLS on Overcloud Public
Endpoints), you might want to harden the SSL/TLS ciphers and rules used with the HAProxy
configuration. This helps avoid SSL/TLS vulnerabilities, such as the POODLE vulnerability.

Set the following hieradata using the ExtraConfig hook in an environment file for your overcloud:

tripleo::haproxy::ssl_cipher_suite

The cipher suite to use in HAProxy.

tripleo::haproxy::ssl_options

The SSL/TLS rules to use in HAProxy.

For example, you might aim to use the following cipher and rules:

Cipher: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-CHACHA20-
POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-
RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-
AES256-SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-
ECDSA-AES256-SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-
AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-
CBC3-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-
SHA256:AES256-GCM-SHA384:AES128-SHA256:AES256-SHA256:AES128-SHA:AES256-
SHA:DES-CBC3-SHA:!DSS

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

142

https://access.redhat.com/solutions/1291123


Rules: no-sslv3 no-tls-tickets

Create an environment file with the following content:

parameter_defaults:
  ExtraConfig:
    tripleo::haproxy::ssl_cipher_suite: ECDHE-ECDSA-CHACHA20-POLY1305:ECDHE-RSA-
CHACHA20-POLY1305:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-
SHA256:ECDHE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-
AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES128-
SHA256:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-
SHA384:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES256-SHA384:ECDHE-ECDSA-AES256-
SHA:ECDHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-AES128-SHA:DHE-RSA-
AES256-SHA256:DHE-RSA-AES256-SHA:ECDHE-ECDSA-DES-CBC3-SHA:ECDHE-RSA-DES-
CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-
SHA256:AES256-SHA256:AES128-SHA:AES256-SHA:DES-CBC3-SHA:!DSS
    tripleo::haproxy::ssl_options: no-sslv3 no-tls-tickets

NOTE

The cipher collection is one continuous line.

Include this environment file with your overcloud creation.

20.4. USING THE OPEN VSWITCH FIREWALL

You can configure security groups to use the Open vSwitch (OVS) firewall driver in Red Hat OpenStack
Platform director. The NeutronOVSFirewallDriver parameter allows you to specify which firewall driver
to use:

iptables_hybrid - Configures neutron to use the iptables/hybrid based implementation.

openvswitch - Configures neutron to use the OVS firewall flow-based driver.

The openvswitch firewall driver includes higher performance and reduces the number of interfaces and
bridges used to connect guests to the project network.

NOTE

The iptables_hybrid option is not compatible with OVS-DPDK.

Configure the NeutronOVSFirewallDriver parameter in the network-environment.yaml file:

NeutronOVSFirewallDriver : Configures the name of the firewall driver to use when
implementing security groups. Possible values depend on your system configuration. Examples
include: noop, openvswitch, iptables_hybrid. The default value, an empty string, equates to 
iptables_hybrid.

20.5. USING SECURE ROOT USER ACCESS

The overcloud image automatically contains hardened security for the root user. For example, each

NeutronOVSFirewallDriver: openvswitch

CHAPTER 20. SECURITY ENHANCEMENTS

143



The overcloud image automatically contains hardened security for the root user. For example, each
deployed overcloud node automatically disables direct SSH access to the root user. You can still access
the root user on overcloud nodes through the following method:

1. Log into the undercloud node’s stack user.

2. Each overcloud node has a heat-admin user account. This user account contains the
undercloud’s public SSH key, which provides SSH access without a password from the
undercloud to the overcloud node. On the undercloud node, log into the chosen overcloud node
through SSH using the heat-admin user.

3. Switch to the root user with sudo -i.

Reducing Root User Security

Some situations might require direct SSH access to the root user. In this case, you can reduce the SSH
restrictions on the root user for each overcloud node.

WARNING

This method is intended for debugging purposes only. It is not recommended for
use in a production environment.

The method uses the first boot configuration hook (see Section 4.1, “First Boot: Customizing First Boot
Configuration”). Place the following content in an environment file:

resource_registry:
  OS::TripleO::NodeUserData: /usr/share/openstack-tripleo-heat-
templates/firstboot/userdata_root_password.yaml

parameter_defaults:
  NodeRootPassword: "p@55w0rd!"

Note the following:

The OS::TripleO::NodeUserData resource refers to the a template that configures the root
user during the first boot cloud-init stage.

The NodeRootPassword parameter sets the password for the root user. Change the value of
this parameter to your desired password. Note the environment file contains the password as a
plain text string, which is considered a security risk.

Include this environment file with the openstack overcloud deploy command when creating your
overcloud.



Red Hat OpenStack Platform 15 Advanced Overcloud Customization

144



CHAPTER 21. CONFIGURING MONITORING TOOLS
Monitoring tools are an optional suite of tools that can be used for availability monitoring and
centralized logging. The availability monitoring allows you to monitor the functionality of all components,
while the centralized logging allows you to view all of the logs across your OpenStack environment in
one central place.

For more information about configuring monitoring tools, see the dedicated Monitoring Tools
Configuration Guide for full instructions.

CHAPTER 21. CONFIGURING MONITORING TOOLS

145

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/monitoring_tools_configuration_guide


CHAPTER 22. CONFIGURING NETWORK PLUGINS
The director includes environment files to help configure third-party network plugins:

22.1. FUJITSU CONVERGED FABRIC (C-FABRIC)

You can enable the Fujitsu Converged Fabric (C-Fabric) plugin using the environment file located at 
/usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-cfab.yaml.

1. Copy the environment file to your templates subdirectory:

$ cp /usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-cfab.yaml 
/home/stack/templates/

2. Edit the resource_registry to use an absolute path:

resource_registry:
  OS::TripleO::Services::NeutronML2FujitsuCfab: /usr/share/openstack-tripleo-heat-
templates/puppet/services/neutron-plugin-ml2-fujitsu-cfab.yaml

3. Review the parameter_defaults in /home/stack/templates/neutron-ml2-fujitsu-cfab.yaml:

NeutronFujitsuCfabAddress - The telnet IP address of the C-Fabric. (string)

NeutronFujitsuCfabUserName - The C-Fabric username to use. (string)

NeutronFujitsuCfabPassword - The password of the C-Fabric user account. (string)

NeutronFujitsuCfabPhysicalNetworks - List of <physical_network>:<vfab_id> tuples
that specify physical_network names and their corresponding vfab IDs.
(comma_delimited_list)

NeutronFujitsuCfabSharePprofile - Determines whether to share a C-Fabric pprofile
among neutron ports that use the same VLAN ID. (boolean)

NeutronFujitsuCfabPprofilePrefix - The prefix string for pprofile name. (string)

NeutronFujitsuCfabSaveConfig - Determines whether to save the configuration.
(boolean)

4. To apply the template to your deployment, include the environment file in the openstack 
overcloud deploy command. For example:

$ openstack overcloud deploy --templates -e /home/stack/templates/neutron-ml2-fujitsu-
cfab.yaml [OTHER OPTIONS] ...

22.2. FUJITSU FOS SWITCH

You can enable the Fujitsu FOS Switch plugin using the environment file located at 
/usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-fossw.yaml.

1. Copy the environment file to your templates subdirectory:

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

146



$ cp /usr/share/openstack-tripleo-heat-templates/environments/neutron-ml2-fujitsu-
fossw.yaml /home/stack/templates/

2. Edit the resource_registry to use an absolute path:

resource_registry:
  OS::TripleO::Services::NeutronML2FujitsuFossw: /usr/share/openstack-tripleo-heat-
templates/puppet/services/neutron-plugin-ml2-fujitsu-fossw.yaml

3. Review the parameter_defaults in /home/stack/templates/neutron-ml2-fujitsu-fossw.yaml:

NeutronFujitsuFosswIps - The IP addresses of all FOS switches. (comma_delimited_list)

NeutronFujitsuFosswUserName - The FOS username to use. (string)

NeutronFujitsuFosswPassword - The password of the FOS user account. (string)

NeutronFujitsuFosswPort - The port number to use for the SSH connection. (number)

NeutronFujitsuFosswTimeout - The timeout period of the SSH connection. (number)

NeutronFujitsuFosswUdpDestPort - The port number of the VXLAN UDP destination on
the FOS switches. (number)

NeutronFujitsuFosswOvsdbVlanidRangeMin - The minimum VLAN ID in the range that is
used for binding VNI and physical port. (number)

NeutronFujitsuFosswOvsdbPort - The port number for the OVSDB server on the FOS
switches. (number)

4. To apply the template to your deployment, include the environment file in the openstack 
overcloud deploy command. For example:

$ openstack overcloud deploy --templates -e /home/stack/templates/neutron-ml2-fujitsu-
fossw.yaml [OTHER OPTIONS] ...

CHAPTER 22. CONFIGURING NETWORK PLUGINS

147



CHAPTER 23. CONFIGURING IDENTITY
The director includes parameters to help configure Identity Service (keystone) settings:

23.1. REGION NAME

By default, your overcloud’s region will be named regionOne. You can change this by adding a 
KeystoneRegion entry your environment file. This setting cannot be changed post-deployment:

parameter_defaults:
  KeystoneRegion: 'SampleRegion'

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

148



CHAPTER 24. OTHER CONFIGURATIONS

24.1. CONFIGURING THE KERNEL ON OVERCLOUD NODES

OpenStack Platform director includes parameters that configure the kernel on overcloud nodes.

ExtraKernelModules

Kernel modules to load. The modules names are listed as a hash key with an empty value:

  ExtraKernelModules:
    <MODULE_NAME>: {}

ExtraKernelPackages

Kernel-related packages to install prior to loading the kernel modules from ExtraKernelModules.
The package names are listed as a hash key with an empty value.

  ExtraKernelPackages:
    <PACKAGE_NAME>: {}

ExtraSysctlSettings

Hash of sysctl settings to apply. Set the value of each parameter using the value key.

  ExtraSysctlSettings:
    <KERNEL_PARAMETER>:
      value: <VALUE>

This example shows the syntax of these parameters in an environment file:

parameter_defaults:
  ExtraKernelModules:
    iscsi_target_mod: {}
  ExtraKernelPackages:
    iscsi-initiator-utils: {}
  ExtraSysctlSettings:
    dev.scsi.logging_level:
      value: 1

24.2. CONFIGURING EXTERNAL LOAD BALANCING

An Overcloud uses multiple Controllers together as a high availability cluster, which ensures maximum
operational performance for your OpenStack services. In addition, the cluster provides load balancing
for access to the OpenStack services, which evenly distributes traffic to the Controller nodes and
reduces server overload for each node. It is also possible to use an external load balancer to perform this
distribution. For example, an organization might use their own hardware-based load balancer to handle
traffic distribution to the Controller nodes.

For more information about configuring external load balancing, see the dedicated External Load
Balancing for the Overcloud guide for full instructions.

24.3. CONFIGURING IPV6 NETWORKING

CHAPTER 24. OTHER CONFIGURATIONS

149

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html/external_load_balancing_for_the_overcloud


As a default, the Overcloud uses Internet Protocol version 4 (IPv4) to configure the service endpoints.
However, the Overcloud also supports Internet Protocol version 6 (IPv6) endpoints, which is useful for
organizations that support IPv6 infrastructure. The director includes a set of environment files to help
with creating IPv6-based Overclouds.

For more information about configuring IPv6 in the Overcloud, see the dedicated IPv6 Networking for
the Overcloud guide for full instructions.

Red Hat OpenStack Platform 15 Advanced Overcloud Customization

150

https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/15/html-single/ipv6_networking_for_the_overcloud

	Table of Contents
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. UNDERSTANDING HEAT TEMPLATES
	2.1. HEAT TEMPLATES
	2.2. ENVIRONMENT FILES
	2.3. CORE OVERCLOUD HEAT TEMPLATES
	2.4. PLAN ENVIRONMENT METADATA
	2.5. INCLUDING ENVIRONMENT FILES IN OVERCLOUD CREATION
	2.6. USING CUSTOMIZED CORE HEAT TEMPLATES
	2.7. JINJA2 RENDERING

	CHAPTER 3. PARAMETERS
	3.1. EXAMPLE 1: CONFIGURING THE TIME ZONE
	3.2. EXAMPLE 2: ENABLING NETWORKING DISTRIBUTED VIRTUAL ROUTING (DVR)
	3.3. EXAMPLE 3: CONFIGURING RABBITMQ FILE DESCRIPTOR LIMIT
	3.4. EXAMPLE 4: ENABLING AND DISABLING PARAMETERS
	3.5. EXAMPLE 5: ROLE-BASED PARAMETERS
	3.6. IDENTIFYING PARAMETERS TO MODIFY

	CHAPTER 4. CONFIGURATION HOOKS
	4.1. FIRST BOOT: CUSTOMIZING FIRST BOOT CONFIGURATION
	4.2. PRE-CONFIGURATION: CUSTOMIZING SPECIFIC OVERCLOUD ROLES
	4.3. PRE-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	4.4. POST-CONFIGURATION: CUSTOMIZING ALL OVERCLOUD ROLES
	4.5. PUPPET: CUSTOMIZING HIERADATA FOR ROLES
	4.6. PUPPET: CUSTOMIZING HIERADATA FOR INDIVIDUAL NODES
	4.7. PUPPET: APPLYING CUSTOM MANIFESTS

	CHAPTER 5. ANSIBLE-BASED OVERCLOUD REGISTRATION
	5.1. RED HAT SUBSCRIPTION MANAGER (RHSM) COMPOSABLE SERVICE
	5.2. RHSMVARS SUB-PARAMETERS
	5.3. REGISTERING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
	5.4. APPLYING THE RHSM COMPOSABLE SERVICE TO DIFFERENT ROLES
	5.5. SWITCHING TO THE RHSM COMPOSABLE SERVICE
	5.6. RHEL-REGISTRATION TO RHSM MAPPINGS
	5.7. DEPLOYING THE OVERCLOUD WITH THE RHSM COMPOSABLE SERVICE
	5.8. RUNNING ANSIBLE-BASED REGISTRATION MANUALLY

	CHAPTER 6. COMPOSABLE SERVICES AND CUSTOM ROLES
	6.1. SUPPORTED ROLE ARCHITECTURE
	6.2. ROLES
	6.2.1. Examining the roles_data File
	6.2.2. Creating a roles_data File
	6.2.3. Supported Custom Roles
	6.2.4. Creating a Custom Networker Role with ML2/OVN
	6.2.5. Examining Role Parameters
	6.2.6. Creating a New Role

	6.3. COMPOSABLE SERVICES
	6.3.1. Guidelines and Limitations
	6.3.2. Examining Composable Service Architecture
	6.3.3. Adding and Removing Services from Roles
	6.3.4. Enabling Disabled Services
	6.3.5. Creating a Generic Node with No Services


	CHAPTER 7. CONTAINERIZED SERVICES
	7.1. CONTAINERIZED SERVICE ARCHITECTURE
	7.2. CONTAINERIZED SERVICE PARAMETERS
	7.3. PREPARING CONTAINER IMAGES
	7.4. CONTAINER IMAGE PREPARATION PARAMETERS
	7.5. LAYERING IMAGE PREPARATION ENTRIES
	7.6. MODIFYING IMAGES DURING PREPARATION
	7.7. UPDATING EXISTING PACKAGES ON CONTAINER IMAGES
	7.8. INSTALLING ADDITIONAL RPM FILES TO CONTAINER IMAGES
	7.9. MODIFYING CONTAINER IMAGES WITH A CUSTOM DOCKERFILE

	CHAPTER 8. BASIC NETWORK ISOLATION
	8.1. NETWORK ISOLATION
	8.2. MODIFYING ISOLATED NETWORK CONFIGURATION
	8.3. NETWORK INTERFACE TEMPLATES
	8.4. DEFAULT NETWORK INTERFACE TEMPLATES
	8.5. ENABLING BASIC NETWORK ISOLATION

	CHAPTER 9. CUSTOM COMPOSABLE NETWORKS
	9.1. COMPOSABLE NETWORKS
	9.2. ADDING A COMPOSABLE NETWORK
	9.3. INCLUDING A COMPOSABLE NETWORK IN A ROLE
	9.4. ASSIGNING OPENSTACK SERVICES TO COMPOSABLE NETWORKS
	9.5. ENABLING CUSTOM COMPOSABLE NETWORKS

	CHAPTER 10. CUSTOM NETWORK INTERFACE TEMPLATES
	10.1. CUSTOM NETWORK ARCHITECTURE
	10.2. RENDERING DEFAULT NETWORK INTERFACE TEMPLATES FOR CUSTOMIZATION
	10.3. NETWORK INTERFACE ARCHITECTURE
	10.4. NETWORK INTERFACE REFERENCE
	10.5. EXAMPLE NETWORK INTERFACE LAYOUT
	10.6. NETWORK INTERFACE TEMPLATE CONSIDERATIONS FOR CUSTOM NETWORKS
	10.7. CUSTOM NETWORK ENVIRONMENT FILE
	10.8. NETWORK ENVIRONMENT PARAMETERS
	10.9. EXAMPLE CUSTOM NETWORK ENVIRONMENT FILE
	10.10. ENABLING NETWORK ISOLATION WITH CUSTOM NICS

	CHAPTER 11. ADDITIONAL NETWORK CONFIGURATION
	11.1. CONFIGURING CUSTOM INTERFACES
	11.2. CONFIGURING ROUTES AND DEFAULT ROUTES
	11.3. CONFIGURING JUMBO FRAMES
	11.4. CONFIGURING THE NATIVE VLAN FOR FLOATING IPS
	11.5. CONFIGURING THE NATIVE VLAN ON A TRUNKED INTERFACE

	CHAPTER 12. NETWORK INTERFACE BONDING
	12.1. NETWORK INTERFACE BONDING AND LINK AGGREGATION CONTROL PROTOCOL (LACP)
	12.2. OPEN VSWITCH BONDING OPTIONS
	12.3. LINUX BONDING OPTIONS
	12.4. GENERAL BONDING OPTIONS

	CHAPTER 13. CONTROLLING NODE PLACEMENT
	13.1. ASSIGNING SPECIFIC NODE IDS
	13.2. ASSIGNING CUSTOM HOSTNAMES
	13.3. ASSIGNING PREDICTABLE IPS
	13.4. ASSIGNING PREDICTABLE VIRTUAL IPS

	CHAPTER 14. ENABLING SSL/TLS ON OVERCLOUD PUBLIC ENDPOINTS
	14.1. INITIALIZING THE SIGNING HOST
	14.2. CREATING A CERTIFICATE AUTHORITY
	14.3. ADDING THE CERTIFICATE AUTHORITY TO CLIENTS
	14.4. CREATING AN SSL/TLS KEY
	14.5. CREATING AN SSL/TLS CERTIFICATE SIGNING REQUEST
	14.6. CREATING THE SSL/TLS CERTIFICATE
	14.7. ENABLING SSL/TLS
	14.8. INJECTING A ROOT CERTIFICATE
	14.9. CONFIGURING DNS ENDPOINTS
	14.10. ADDING ENVIRONMENT FILES DURING OVERCLOUD CREATION
	14.11. UPDATING SSL/TLS CERTIFICATES

	CHAPTER 15. ENABLING SSL/TLS ON INTERNAL AND PUBLIC ENDPOINTS WITH IDENTITY MANAGEMENT
	15.1. ADD THE UNDERCLOUD TO THE CA
	15.2. ADD THE UNDERCLOUD TO IDM
	15.3. CONFIGURE OVERCLOUD DNS
	15.4. CONFIGURE OVERCLOUD TO USE NOVAJOIN

	CHAPTER 16. CONVERTING YOUR EXISTING DEPLOYMENT TO USE TLS
	16.1. REQUIREMENTS
	16.2. REVIEWING YOUR ENDPOINTS
	16.3. APPLY WORKAROUND FOR KNOWN ISSUE
	16.4. CONFIGURING ENDPOINTS TO USE TLS
	16.4.1. Configuring undercloud integration for deployments using the same domain as IdM
	16.4.2. Configuring overcloud integration for deployments that use the same domain as IdM, and retain the existing public endpoint certificates
	16.4.3. Configuring overcloud integration for deployments that use the same domain as IdM, and replace the existing public endpoint certificates with an IdM generated certificate
	16.4.4. Configuring undercloud integration for deployments that use an IdM subdomain
	16.4.5. Configuring undercloud integration for deployments that use an IdM subdomain, and retain the existing public endpoint certificates
	16.4.6. Configuring undercloud integration for deployments that use an IdM subdomain, and replace the existing public endpoint certificates with an IdM generated certificate

	16.5. CHECKING TLS ENCRYPTION

	CHAPTER 17. DEBUG MODES
	CHAPTER 18. POLICIES
	CHAPTER 19. STORAGE CONFIGURATION
	19.1. CONFIGURING NFS STORAGE
	19.2. CONFIGURING CEPH STORAGE
	19.3. USING AN EXTERNAL OBJECT STORAGE CLUSTER
	19.4. CONFIGURING THE IMAGE IMPORT METHOD AND SHARED STAGING AREA
	19.4.1. Creating and Deploying the glance-settings.yaml File
	19.4.2. Controlling Image Web-Import Sources
	19.4.2.1. Example
	19.4.2.2. Default Image Import Blacklist and Whitelist Settings

	19.4.3. Injecting Metadata on Image Import to Control Where VMs Launch

	19.5. CONFIGURING CINDER BACK END FOR THE IMAGE SERVICE
	19.6. CONFIGURING THE MAXIMUM NUMBER OF STORAGE DEVICES TO ATTACH TO ONE INSTANCE
	19.7. IMPROVING SCALABILITY WITH IMAGE SERVICE CACHING
	19.8. CONFIGURING THIRD PARTY STORAGE

	CHAPTER 20. SECURITY ENHANCEMENTS
	20.1. MANAGING THE OVERCLOUD FIREWALL
	20.2. CHANGING THE SIMPLE NETWORK MANAGEMENT PROTOCOL (SNMP) STRINGS
	20.3. CHANGING THE SSL/TLS CIPHER AND RULES FOR HAPROXY
	20.4. USING THE OPEN VSWITCH FIREWALL
	20.5. USING SECURE ROOT USER ACCESS

	CHAPTER 21. CONFIGURING MONITORING TOOLS
	CHAPTER 22. CONFIGURING NETWORK PLUGINS
	22.1. FUJITSU CONVERGED FABRIC (C-FABRIC)
	22.2. FUJITSU FOS SWITCH

	CHAPTER 23. CONFIGURING IDENTITY
	23.1. REGION NAME

	CHAPTER 24. OTHER CONFIGURATIONS
	24.1. CONFIGURING THE KERNEL ON OVERCLOUD NODES
	24.2. CONFIGURING EXTERNAL LOAD BALANCING
	24.3. CONFIGURING IPV6 NETWORKING


