
Red Hat OpenStack Platform 10

OpenDaylight and Red Hat OpenStack
Installation and Configuration Guide

Install and Configure OpenDaylight using Red Hat OpenStack Platform

Last Updated: 2019-03-05

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack
Installation and Configuration Guide

Install and Configure OpenDaylight using Red Hat OpenStack Platform

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information on Red Hat OpenDaylight installation and configuration.

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. OVERVIEW
1.1. WHAT IS OPENDAYLIGHT?
1.2. HOW DOES OPENDAYLIGHT WORK WITH OPENSTACK?

1.2.1. The default neutron architecture
1.2.2. Networking architecture based on OpenDaylight

1.3. WHAT IS RED HAT OPENSTACK PLATFORM DIRECTOR AND HOW IS IT DESIGNED?
1.3.1. Red Hat OpenStack Platform director and OpenDaylight
1.3.2. Network isolation in Red Hat OpenStack Platform director
1.3.3. Network and firewall configuration

CHAPTER 2. PREPARE FOR OPENDAYLIGHT INSTALLATION
2.1. WHAT ARE THE MINIMUM HARDWARE REQUIREMENTS?

2.1.1. Compute Node Requirements
2.1.2. Controller Node Requirements

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

CHAPTER 4. CONFIGURE AND DEPLOY OPENDAYLIGHT WITH RED HAT OPENSTACK PLATFORM 10
4.1. CONFIGURE AND RUN THE DEPLOYMENT

4.1.1. Configure the OpenDaylight API Service
4.1.2. Configure the OpenDaylight OVS Service
4.1.3. Using Neutron Metadata Service with OpenDaylight
4.1.4. Configure Network and NIC template

4.2. INSTALL OPENDAYLIGHT IN CUSTOM ROLE

CHAPTER 5. TEST THE DEPLOYMENT
5.1. PERFORM A BASIC TEST

5.1.1. Create a new network for testing
5.1.2. Set up networking in the test environment
5.1.3. Test the connectivity
5.1.4. Create devices

5.2. PERFORM ADVANCED TESTS
5.2.1. Connect to overcloud nodes
5.2.2. Test OpenDaylight
5.2.3. Test Open vSwitch
5.2.4. Verify the Open vSwitch configuration on Compute nodes.
5.2.5. Verify neutron configuration

CHAPTER 6. DEBUGGING
6.1. LOCATE THE LOGS

6.1.1. Access OpenDaylight logs
6.1.2. Access OpenDaylight logs through karaf shell
6.1.3. Access OpenStack Networking logs

6.2. DEBUG NETWORKING ERRORS
6.2.1. Advanced debugging using OpenFlow flows
6.2.2. Packet traverse in OpenFlow

CHAPTER 7. MODEL INSTALLATION SCENARIO
7.1. PHYSICAL TOPOLOGY
7.2. PLANNING PHYSICAL NETWORK ENVIRONMENT
7.3. PLANNING NIC CONNECTIVITY

4

5
5
5
5
5
5
6
7

10

12
12
12
12

14

16
16
17
17
18
18
20

22
22
22
23
24
24
25
25
25
27
28
28

30
30
30
30
30
30
32
33

34
34
34
34

Table of Contents

1

. .

7.4. PLANNING NETWORKS, VLANS AND IPS
7.5. OPENDAYLIGHT CONFIGURATION FILES REFERENCE

7.5.1. The extra_env.yaml file
7.5.2. The undercloud.conf file
7.5.3. The network-environment.yaml file
7.5.4. The controller.yaml file
7.5.5. The compute.yaml file

7.6. DIRECTOR CONFIGURATION FILES REFERENCES
7.6.1. The neutron.conf file
7.6.2. The ml2_conf.ini file

CHAPTER 8. WHERE CAN I FIND MORE INFORMATION ABOUT RED HAT OPENSTACK PLATFORM AND
OPENDAYLIGHT?

35
36
37
37
37
39
42
44
44
45

46

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

2

Table of Contents

3

PREFACE
This document describes how to deploy Red Hat OpenStack Platform 10 to use the OpenDaylight
software-defined network (SDN) controller. The OpenDaylight controller is used as a drop-in
replacement for the neutron ML2/OVS plug-in and its L2 and L3 agents, and provides network
virtualization within the Red Hat OpenStack environment.

NOTE

The OpenDaylight solution provided with Red Hat OpenStack Platform 10 is available as
technology preview. For more information on the support scope for features marked as
technology previews, see Technology Preview Features Support Scope.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

4

https://access.redhat.com/support/offerings/techpreview/

CHAPTER 1. OVERVIEW

1.1. WHAT IS OPENDAYLIGHT?

The OpenDaylight platform is a Java-based programmable SDN controller that can be used for network
virtualization for OpenStack environments. The controller architecture consists of separated northbound
and southbound interfaces. For OpenStack integration purposes, the main northbound interface uses the
NeutronNorthbound project, which communicates with neutron, the OpenStack Networking service. The
southbound OpenDaylight projects, the OVSDB and the OpenFlow plug-ins, are used to communicate
with the Open vSwitch (OVS) control and the data plane. The main OpenDaylight project that translates
the neutron configuration into network virtualization is the NetVirt project.

1.2. HOW DOES OPENDAYLIGHT WORK WITH OPENSTACK?

1.2.1. The default neutron architecture

The neutron reference architecture uses a series of agents to manage networks within OpenStack.
These agents are provided to neutron as different plug-ins. The core plug-ins are used to manage the
Layer 2 overlay technologies and data plane types. The service plug-ins are used to manage network
operations for Layer 3 or higher in the OSI model, such as firewall, DHCP, routing and NAT.

By default, Red Hat OpenStack Platform uses the Modular Layer 2 (ML2) core plug-in with the OVS
mechanism driver, that provides an agent to configure OVS on each Compute and Controller node. The
service plug-ins, the DHCP agent, the metadata agent, along with the L3 agent, run on controllers.

1.2.2. Networking architecture based on OpenDaylight

OpenDaylight integrates with the ML2 core plug-in by providing its own driver called networking-odl.
This eliminates the necessity to use the OVS agent on every node. OpenDaylight is able to program
each OVS instance across the environment directly, without any per-node agents. For Layer 3 services,
neutron is configured to use the OpenDaylight L3 plug-in. This approach reduces the number of agents
on multiple nodes that handle routing and network address translation (NAT), because OpenDaylight
can handle the distributed virtual routing functionality by programming the data plane directly. The
neutron DHCP and metadata agents are still used for managing DHCP and metadata (cloud-init)
requests.

NOTE

OpenDaylight is able to provide DHCP services. However, when deploying the current
Red Hat OpenStack Platform director architecture, using the neutron DHCP agent
provides High Availability (HA) and support for the VM instance metadata (cloud-init),
and therefore Red Hat recommends you deploy the neutron DHCP agent rather than rely
on OpenDaylight for such functionality.

1.3. WHAT IS RED HAT OPENSTACK PLATFORM DIRECTOR AND HOW
IS IT DESIGNED?

The Red Hat OpenStack Platform director is a toolset for installing and managing a complete OpenStack
environment. It is primarily based on the OpenStack TripleO (OpenStack-On-OpenStack) program.

The project uses OpenStack components to install a fully operational OpenStack environment. It also
includes new OpenStack components that provision and control bare metal systems to work as

CHAPTER 1. OVERVIEW

5

https://wiki.opendaylight.org/view/NeutronNorthbound:Main
https://wiki.opendaylight.org/view/NetVirt
https://wiki.openstack.org/wiki/TripleO

OpenStack nodes. With this approach, you can install a complete Red Hat OpenStack Platform
environment, that is both lean and robust.

The Red Hat OpenStack Platform director uses two main concepts: an undercloud and an overcloud.
The undercloud installs and configures the overcloud. For more information about the Red Hat
OpenStack Platform director architecture, see the Director Installation and Usage guide.

Figure 1.1. OpenStack Platform Director — undercloud and overcloud

1.3.1. Red Hat OpenStack Platform director and OpenDaylight

Red Hat OpenStack Platform director 10 introduces the new feature of composable services and custom
roles. They form isolated resources, that can be included and enabled per role, when they are needed.
Custom roles enable users to create their own roles, independent from the default controller and
Compute roles. In other words, users now have the option to choose which OpenStack services they will
deploy, and which node will host them.

Two new services have been added for OpenDaylight integration:

The OpenDaylightApi service for running the OpenDaylight SDN controller, and

The OpenDaylightOvs service for configuring OVS on each node to properly communicate with
OpenDaylight.

By default, the OpenDaylightApi service is configured to run on the controller role, while the
OpenDaylightOvs service is configured to run on controller and Compute roles.

NOTE

In Red Hat OpenStack Platform 10 only a single instance of OpenDaylight is supported. In
a deployment with multiple overcloud controllers, the OpenDaylightApi service will be
applied to each controller role, however only the first controller will actually enable
OpenDaylight.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

6

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/director-installation-and-usage/

Figure 1.2. OpenDaylight and OpenStack — base architecture

1.3.2. Network isolation in Red Hat OpenStack Platform director

Red Hat OpenStack Platform director is capable of configuring individual services to specific, predefined
network types. These network traffic types include:

IPMI The network used for the power management of nodes. This network must
be set up before the installation of the undercloud.

CHAPTER 1. OVERVIEW

7

Provisioning (ctlplane) The director uses this network traffic type to deploy new nodes over the
DHCP and PXE boot and orchestrates the installation of OpenStack
Platform on the overcloud bare metal servers. The network must be set up
before the installation of the undercloud. Alternatively, operating system
images can be deployed directly by ironic. In that case, the PXE boot is not
necessary.

Internal API (internal_api) The Internal API network is used for communication between the OpenStack
services using API communication, RPC messages, and database
communication, as well as for internal communication behind the load
balancer.

Tenant (tenant) neutron provides each tenant with their own networks using either VLANs
(where each tenant network is a network VLAN), or overlay tunnels. Network
traffic is isolated within each tenant network. If tunneling is used, multiple
tenant networks can use the same IP address range without any conflicts.

NOTE

While both Generic Routing Encapsulation (GRE) and Virtual eXtensible Local Area
Network (VXLAN) are available in the codebase, VXLAN is the recommended tunneling
protocol to use with OpenDaylight. VXLAN is defined in RFC 7348. The rest of this
document is focused on VXLAN whenever tunneling is used.

Storage (storage) Block Storage, NFS, iSCSI, and others. Ideally, this would be isolated to an
entirely separate switch fabric for performance reasons.

Storage Management
(storage_mgmt)

OpenStack Object Storage (swift) uses this network to synchronize data
objects between participating the replica nodes. The proxy service acts as
an intermediary interface between user requests and the underlying storage
layer. The proxy receives incoming requests and locates the necessary
replica to retrieve the requested data. Services that use a Ceph backend
connect over the Storage Management Network, since they do not interact
with Ceph directly but rather use the frontend service. Note that the RBD
driver is an exception, as this traffic connects directly to Ceph.

External/Public API This API hosts the OpenStack Dashboard (horizon) for graphical system
management, the public APIs for OpenStack services, and performs SNAT
for incoming traffic going to the instances. If the external network uses
private IP addresses (as per RFC-1918), then further NAT must be
performed for any traffic coming in from the internet.

Floating IPs Allows incoming traffic to reach instances using 1-to-1 IPv4 address
mapping between the floating IP address and the fixed IP address, assigned
to the instance in the tenant network. A common configuration is to combine
the external and the floating IPs network instead of maintaining a separate
one.

Management Provides access for system administration functions such as SSH access,
DNS traffic, and NTP traffic. This network also acts as a gateway for non-
controller nodes.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

8

https://tools.ietf.org/html/rfc7348

In a typical Red Hat OpenStack Platform installation, the number of network types often exceeds the
number of physical network links. In order to connect all the networks to the proper hosts, the overcloud
may use the 802.1q VLAN tagging to deliver more than one network per interface. Most of the networks
are isolated subnets but some require a Layer 3 gateway to provide routing for Internet access or
infrastructure network connectivity.

For OpenDaylight, the relevant networks include Internal API, Tenant, and External services, that are
mapped to each network inside of the ServiceNetMap. By default, the ServiceNetMap maps the
OpenDaylightApi network to the Internal API network. This configuration means that northbound traffic
to neutron as well as southbound traffic to OVS are isolated to the Internal API network.

As OpenDaylight uses a distributed routing architecture, each Compute node should be connected to the
Floating IP network. By default, Red Hat OpenStack Platform director assumes that the External network
will run on the physical neutron network data centre, which is mapped to the OVS bridge br-ex.
Therefore, you must include the br-ex bridge in the default configuration of the Compute node NIC
templates.

CHAPTER 1. OVERVIEW

9

Figure 1.3. OpenDaylight and OpenStack — Network isolation example

1.3.3. Network and firewall configuration

On some deployments, such as those where restrictive firewalls are in place, you might need to
configure the firewall manually in order to enable OpenStack and OpenDaylight service traffic.

By default, OpenDaylight Northbound uses the 8080 and 8181 ports. In order not to conflict with the swift
service, that also uses the 8080 port, the OpenDaylight ports are set to 8081 and 8181 when installed
with Red Hat OpenStack Platform director. The Southbound, in Red Hat OpenDaylight solution, is
configured to listen on ports 6640 and 6653, that the OVS instances usually connect to.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

10

WARNING

The default OpenDaylight southbound port 6633 is also open and available. If you do
not want to use that port, you can consider closing it, in order to prevent security
issues.

In OpenStack, each service typically has its own virtual IP address (VIP) and OpenDaylight behaves the
same way. HAProxy is configured to open the 8081 port to the public and control the plane’s VIPs that
are already present in OpenStack. The VIP and the port are presented to the ML2 plug-in and neutron
sends all communication through it. The OVS instances connect directly to the physical IP of the node
where OpenDaylight is running for Southbound.

Service Protocol Default Ports Network

OpenStack Neutron API TCP 9696 Internal API

OpenStack Neutron API
(SSL)

TCP 13696 Internal API

OpenDaylight
Northbound

TCP 8081, 8181 Internal API

OpenDaylight
Southbound: OVSDB

TCP 6640 Internal API

OpenDaylight
Southbound: OpenFlow

TCP 6653 Internal API

VXLAN UDP 4789 Tenant

Table 1: Network and Firewall configuration

NOTE

The above section focuses on the services and protocols relevant to the OpenDaylight
integration and is not exhaustive. For a complete list of network ports required for services
running on Red Hat OpenStack, see the Configure Firewall Rules for Red Hat OpenStack
Platform Director guide.

CHAPTER 1. OVERVIEW

11

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/paged/configure-firewall-rules-for-red-hat-openstack-platform-director/

CHAPTER 2. PREPARE FOR OPENDAYLIGHT INSTALLATION
The following section lists the steps needed to deploy the overcloud with OpenDaylight.

This document only focuses on OpenDaylight installation. Before you can deploy OpenDaylight, you
must make sure that you have a working undercloud environment and that the overcloud nodes are
connected to the physical network.

See Installing the Undercloud and Configuring Basic Overcloud Requirements with the CLI Tools of the
Director Installation and Usage guide, which describes the necessary procedures to deploy the
undercloud and overcloud.

2.1. WHAT ARE THE MINIMUM HARDWARE REQUIREMENTS?

To correctly install and run Red Hat OpenDaylight, you should have enough computer resources. The
following are the minimum requirements.

2.1.1. Compute Node Requirements

Compute nodes are responsible for running virtual machine instances after they are launched. All
Compute nodes must support hardware virtualization. They also must have enough memory and disk
space to support the requirements of the virtual machine instances they host.

Processor 64-bit x86 processor with support for the Intel 64 or AMD64 CPU
extensions, and the AMD-V or Intel VT hardware virtualization extensions
enabled. It is recommended this processor has a minimum of 4 cores.

Memory A minimum of 6 GB of RAM. Add additional RAM to this requirement based
on the amount of memory that you intend to make available to virtual
machine instances.

Disk Space A minimum of 40 GB of available disk space.

Network Interface Cards A minimum of one 1 Gbps Network Interface Cards, although it is
recommended to use at least two NICs in a production environment. Use
additional network interface cards for bonded interfaces or to delegate
tagged VLAN traffic.

Power Management Each Controller node requires a supported power management interface,
such as an Intelligent Platform Management Interface (IPMI) functionality, on
the server’s motherboard.

2.1.2. Controller Node Requirements

Controller nodes are responsible for hosting the core services in a Red Hat OpenStack Platform
environment, such as the horizon dashboard, the back-end database server, keystone authentication,
and High Availability services.

Processor 64-bit x86 processor with support for the Intel 64 or AMD64 CPU
extensions.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

12

https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage/#chap-Installing_the_Undercloud
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage/#chap-Configuring_Basic_Overcloud_Requirements_with_the_CLI_Tools

Memory Minimum amount of memory is 20 GB. However, the amount of
recommended memory depends on the number of CPU cores. Use the
following calculations as guidance:

Controller RAM minimum calculation:

Use 1.5 GB of memory per core. For example, a machine with 48 cores
should have 72 GB of RAM.

Controller RAM recommended calculation:

Use 3 GB of memory per core. For example, a machine with 48 cores
should have 144 GB of RAM.

For more information on measuring memory requirements, see Red Hat
OpenStack Platform Hardware Requirements for Highly Available
Controllers on the Red Hat Customer Portal.

Disk Space A minimum of 40 GB of available disk space.

Network Interface Cards A minimum of 2 x 1 Gbps Network Interface Cards. Use additional network
interface cards for bonded interfaces or to delegate tagged VLAN traffic.

Power Management Each Controller node requires a supported power management interface,
such as an Intelligent Platform Management Interface (IPMI) functionality, on
the server’s motherboard.

CHAPTER 2. PREPARE FOR OPENDAYLIGHT INSTALLATION

13

https://access.redhat.com/articles/2431181

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD
Red Hat OpenStack Platform director 10 provides an overcloud image that contains all of the necessary
software for OpenStack services that run on overcloud nodes. However, the OpenDaylight software and
dependencies are not included in the image by default. To install OpenDaylight, use the virt-
customize command on the undercloud to upload the OpenDaylight RPM and install it:

Prepare the installation of OpenDaylight

1. Log on to the undercloud node.

2. Run the script:

$ source ~/stackrc

3. Install the following packages:

$ sudo yum -y install libguestfs-tools libvirt rhosp-director-images

4. Start the libvirtd service:

$ sudo systemctl start libvirtd

5. Create the directory where you will store the images:

$ mkdir ~/images

6. Enter the directory:

$ cd ~/images

7. Extract the overcloud-full.tar file:

$ tar xvf /usr/share/rhosp-director-images/overcloud-full.tar

8. Extract the ironic-python-agent.tar file:

$ tar xvf /usr/share/rhosp-director-images/ironic-python-agent.tar

Install the OpenDaylight packages

1. Register the image with your RHN user:

$ virt-customize -a overcloud-full.qcow2 --run-command
'subscription-manager register --username <your RHN user> --
password <RHN password>’

2. Attach the Red Hat Enterprise Linux subscription:

$ virt-customize -a overcloud-full.qcow2 --run-command
'subscription-manager attach --pool <pool id>'

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

14

3. Enable the necessary repositories in your image:

$ virt-customize -a overcloud-full.qcow2 --run-command
'subscription-manager repos --enable=rhel-7-server-rpms --
enable=rhel-7-server-extras-rpms --enable=rhel-7-server-openstack-
10-rpms'

4. Install the OpenDaylight package and its dependencies:

$ virt-customize -a overcloud-full.qcow2 --install opendaylight --
selinux-relabel --update

5. Detach the subscription and unregister the image:

$ virt-customize -a overcloud-full.qcow2 --run-command
'subscription-manager remove --all && subscription-manager
unregister && subscription-manager clean'

6. If you do not have an overcloud image installed, skip this and proceed to next step. Otherwise
update the image:

$ openstack overcloud image upload --update-existing --image-path
~/images/

7. If you have skipped Step 6, upload the new overcloud image to glance:

$ openstack overcloud image upload

More information

If you need to update the images on the undercloud before you start the procedure, use:

$ sudo openstack overcloud image upload --update

To get the Pool ID (Step 10), you can run:

subscription-manager list --available

See the Red Hat Subscription Management guide for more details.

CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD

15

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html-single/RHSM/index.html

CHAPTER 4. CONFIGURE AND DEPLOY OPENDAYLIGHT
WITH RED HAT OPENSTACK PLATFORM 10

There are two methods of deploying OpenDaylight with Red Hat OpenStack Platform 10.

The first includes running OpenDaylight on the default Controller role, while the second isolates
OpenDaylight on its own node using a custom role.

NOTE

In Red Hat OpenStack Platform 10 only a single instance of OpenDaylight is supported
running in either type of deployment. OpenDaylight HA (clustering) will be supported in a
future release.

4.1. CONFIGURE AND RUN THE DEPLOYMENT

The recommended approach to installing OpenDaylight is to use the default environment file and pass it
as an argument to the install command on the undercloud. This will deploy OpenDaylight using the
default enviroment file neutron-opendaylight-l3.yaml.

$ openstack overcloud deploy --templates -e /usr/share/openstack-tripleo-
heat-templates/environments/neutron-opendaylight-l3.yaml

Useful information

The default file contains these values:

A Heat environment that can be used to deploy OpenDaylight with L3
DVR
resource_registry:
OS::TripleO::Services::NeutronOvsAgent: OS::Heat::None
OS::TripleO::Services::ComputeNeutronOvsAgent: OS::Heat::None
OS::TripleO::Services::ComputeNeutronCorePlugin: OS::Heat::None
OS::TripleO::Services::OpenDaylightApi:
../puppet/services/opendaylight-api.yaml
OS::TripleO::Services::OpenDaylightOvs:
../puppet/services/opendaylight-ovs.yaml
OS::TripleO::Services::NeutronL3Agent: OS::Heat::None

parameter_defaults:
 NeutronEnableForceMetadata: true
 NeutronMechanismDrivers: 'opendaylight_v2'
 NeutronServicePlugins: "odl-router_v2"
 OpenDaylightEnableL3: "'yes'"

In Red Hat OpenStack Platform director, the resource_registry is used to map resources
for a deployment to the corresponding yaml resource definition file. Services are one type of
resource that can be mapped. The OS::Heat::None option disables services that will not be
used. In this example, OpenDaylightApi and OpenDaylightOvs services are enabled, while
default neutron agents are explicitly disabled.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

16

The heat parameters are normally set inside the director. You can override their default values
by using the parameter_defaults section of the environment file. In the above example,
certain parameters are overridden to enable OpenDaylight Layer 3 functionality.

IMPORTANT

There is another default OpenDaylight environment file (neutron-
opendaylight.yaml) that only enables Layer 2 functionality. However, support for that
configuration is deprecated and it should not be used.

NOTE

The list of other services and their configuration options are provided further in the text.

4.1.1. Configure the OpenDaylight API Service

You can configure the OpenDaylight API Service by editing opendaylight-api.yaml, located in the
/usr/share/openstack-tripleo-heat-templates/puppet/services/ directory.

Configurable options

You can configure the following options:

OpenDaylightPort Sets the port used for Northbound communication. Defaults to 8081.

OpenDaylightUsername Sets the login username for OpenDaylight. Defaults to admin. Overriding this
parameter is currently unsupported.

OpenDaylightPassword Sets the login password for OpenDaylight. Defaults to admin. Overriding this
parameter is currently unsupported.

OpenDaylightEnableL3 L3 DVR functionality cannot be disabled with ‘odl-netvirt-openstack’
OpenDaylight feature. Deprecated.

OpenDaylightEnableDHCP Enables OpenDaylight to act as the DHCP service. Defaults to false.
Overriding this parameter is currently unsupported.

OpenDaylightFeatures Comma-delimited list of features to boot in OpenDaylight. Defaults to [odl-
netvirt-openstack, odl-netvirt-ui]. When using OpenDaylight in the
deprecated Layer 2 only mode, this parameter must be overridden to use
the odl-ovsdb-openstack feature.

4.1.2. Configure the OpenDaylight OVS Service

Configure the OpenDaylight OVS Service by changing the values in opendaylight-ovs.yaml,
located in /usr/share/openstack-tripleo-heat-templates/puppet/services/.

Configurable options

You can configure the following:

CHAPTER 4. CONFIGURE AND DEPLOY OPENDAYLIGHT WITH RED HAT OPENSTACK PLATFORM 10

17

OpenDaylightPort Sets the port used for Northbound communication to OpenDaylight. Defaults
to 8081. The OVS Service uses the Northbound to query OpenDaylight to
ensure that it is fully up before connecting.

OpenDaylightConnectionPr
otocol

Layer 7 protocol used for REST access. Defaults to http. Currently, http is
the only supported protocol in OpenDaylight.

OpenDaylightCheckURL The URL to use to verify OpenDaylight is fully up before OVS connects.
Defaults to restconf/operational/network-topology:network-
topology/topology/netvirt:1

OpenDaylightProviderMappi
ngs

Comma-delimited list of mappings between logical networks and physical
interfaces. This setting is required for VLAN deployments. Defaults to
datacentre:br-ex.

4.1.3. Using Neutron Metadata Service with OpenDaylight

The OpenStack Compute service allows virtual machines to query metadata associated with them by
making a web request to a special address, 169.254.169.254. The OpenStack Networking proxies such
requests to the nova-api, even when the requests come from isolated or multiple networks with
overlapping IP addresses.

The Metadata service uses either the neutron L3 agent router to serve the metadata requests or the
DHCP agent instance. Deploying OpenDaylight with the Layer 3 routing plug-in enabled disables the
neutron L3 agent. Therefore Metadata must be configured to flow through the DHCP instance, even
when a router exists in a tenant network. To configure this, set the NeutronEnableForceMetadata to
true.

NOTE

This functionality is already enabled in the default environment file neutron-
opendaylight-l3.yaml.

VM instances will have a static host route installed, using the DHCP option 121, for 169.254.169.254/32.
With this static route in place, Metadata requests to 169.254.169.254:80 will go to the Metadata
nameserver proxy in the DHCP network namespace. The namespace proxy then adds the HTTP
headers with the instance’s IP to the request, and connects it to the Metadata agent through the Unix
domain socket. The Metadata agent queries neutron for the instance ID that corresponds to the source
IP and the network ID and proxies it to the nova Metadata service. The additional HTTP headers are
required to maintain isolation between tenants and allow overlapping IP support.

4.1.4. Configure Network and NIC template

In Red Hat OpenStack Platform director, the physical neutron network data center is mapped to an OVS
bridge called br-ex by default. It is consistently the same with the OpenDaylight integration. If you use
the default OpenDaylightProviderMappings and plan to create a flat or VLAN _External network, you
have to configure the OVS br-ex bridge in the NIC template for Compute nodes. Since the Layer 3 plug-
in uses distributed routing to these nodes, it is not necessary to configure br-ex on the controller role NIC
template any more.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

18

The br-ex bridge can be mapped to any network in network isolation, but it is typically mapped to the
External network as you can see in the example.

type: ovs_bridge
 name: {get_input: bridge_name}
 use_dhcp: false
 members:
 -
 type: interface
 name: nic3
 # force the MAC address of the bridge to this interface
 primary: true
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 -
 default: true
 ip_netmask: 0.0.0.0/0
 next_hop: {get_param: ExternalInterfaceDefaultRoute}

NOTE

When using network isolation, you do not have to place an IP address, or a default route,
on this bridge on Compute nodes.

Alternatively, it is possible to configure external network access without using the br-ex bridge at all. To
use the method, you must know the interface name of the overcloud Compute node in advance. For
example, if eth3 is the deterministic name of the third interface on the Compute node, then will specify
an interface in the NIC template for the Compute node:

-
 type: interface
 name: eth3
 use_dhcp: false

Having configured the NIC template, you must override the OpenDaylightProviderMappings parameter
to map the interface to the physical neutron network: datacentre:eth3. This will cause OpenDaylight
to move the eth3 interface onto the br-int bridge.

The OVS br-int bridge is used to carry the tenant traffic. OpenDaylight supports VXLAN and VLAN type
tenant networks. Red Hat OpenStack Platform director will automatically configure the OVS to use the
correct IP interface for VXLAN tenant traffic when VXLAN tenant network types are used.

You do not need to create the br-int bridge in the NIC template files. OpenDaylight will create the bridge
automatically. However, if you use VLAN tenant networks, you may wish to configure one more physical
neutron network and include that interface mapping in the OpenDaylightProviderMappings.

OpenDaylight will then move that interface to the br-int bridge. Regarding such behavior, you must use
different interfaces to use both the VXLAN and VLAN tenant networks. Another way is to use an extra
bridge within the OpenDaylightProviderMappings for tenant networks.

CHAPTER 4. CONFIGURE AND DEPLOY OPENDAYLIGHT WITH RED HAT OPENSTACK PLATFORM 10

19

NOTE

For example, you could use tenant:br-isolated, where br-isolated is an OVS bridge
that contains the tenant network interface and is also configured with an IP. OpenDaylight
will create a patch port from OVS bridge br-int to br-isolated. This way, you can use the
br-isolated bridge for VXLAN traffic, as well as transporting the VLAN traffic.

4.2. INSTALL OPENDAYLIGHT IN CUSTOM ROLE

Installing OpenDaylight in a custom role results in an isolated OpenDaylightApi service, running on a
node that is not the controller.

To use a custom role for OpenDaylight, follow this procedure:

Install OpenDaylight using a special role file.

1. Copy the existing roles_data.yaml file to a new file:

$ cp /usr/share/openstack-tripleo-heat-templates/roles_data.yaml
my_roles_data.yaml

2. Modify the default controller role and remove the OpenDaylightApi service from the controller
section of the new file (line 5):

 - name: Controller
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::TripleoFirewall
 - OS::TripleO::Services::OpenDaylightApi #<--Remove this
 - OS::TripleO::Services::OpenDaylightOvs

3. Create the OpenDaylight role in the new file in the OpenDaylight section:

 - name: OpenDaylight
 CountDefault: 1
 ServicesDefault:
 - OS::TripleO::Services::Kernel
 - OS::TripleO::Services::Ntp
 - OS::TripleO::Services::OpenDaylightApi
 - OS::TripleO::Services::TripleoPackages
 - OS::TripleO::Services::TripleoFirewall

4. Run the installation command using the -r argument (see Related information of this
procedure). In this example, there are three ironic nodes in total, from which one is reserved for
the custom OpenDaylight role:

$ openstack overcloud deploy --templates -e /usr/share/openstack-
tripleo-heat-templates/environments/neutron-opendaylight-l3.yaml -e
network-environment.yaml --compute-scale 1 --ntp-server
0.se.pool.ntp.org --control-flavor control --compute-flavor compute
-r my_roles_data.yaml

5. List the instances:

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

20

$ nova list

6. Verify that the new OpenDaylight role is dedicated as an instance. The following is an example
output of the previous command:

+--------------------------------------+-------------------------
-+--------+------------+-------------+--------------------+
| ID | Name
| Status | Task State | Power State | Networks |
+--------------------------------------+-------------------------
-+--------+------------+-------------+--------------------+
| 360fb1a6-b5f0-4385-b68a-ff19bcf11bc9 | overcloud-controller-0 |
BUILD | spawning | NOSTATE | ctlplane=192.0.2.4 |
| e38dde02-82da-4ba2-b5ad-d329a6ceaef1 | overcloud-novacompute-0 |
BUILD | spawning | NOSTATE | ctlplane=192.0.2.5 |
| c85ca64a-77f7-4c2c-a22e-b71d849a72e8 | overcloud-opendaylight-0 |
BUILD | spawning | NOSTATE | ctlplane=192.0.2.8 |
+--------------------------------------+-------------------------
-+--------+------------+-------------+--------------------+

More information

This argument is used to override the role definitions within Red Hat OpenStack Platform director
at installation time:

-r <roles_data>.yaml

Using a custom role requires an extra ironic node that will be used for the custom role during the
installation.

CHAPTER 4. CONFIGURE AND DEPLOY OPENDAYLIGHT WITH RED HAT OPENSTACK PLATFORM 10

21

CHAPTER 5. TEST THE DEPLOYMENT

5.1. PERFORM A BASIC TEST

The basic test will verify that instances are able to ping each other. It will also check the Floating IP SSH
access. This example describes how you can perform the test from the undercloud.

This procedure requires you to follow a large number of individual steps; for convenience, the procedure
was divided into smaller parts. However, the steps must be followed in the given order.

NOTE

In this setup, a flat network is used to create the External network, and VXLAN is used for
the Tenant networks. VLAN External networks and VLAN Tenant networks are also
supported, depending on the desired deployment.

5.1.1. Create a new network for testing

1. Source the credentials to access the overcloud:

$ source /home/stack/overcloudrc

2. Create an external neutron network that will be used to access the instance from outside of the
overcloud:

$ openstack network create --external --project $(openstack project show
service | grep id | awk '{ print $4 }') --provider-network-type flat --
provider-physical-network external

3. Create the corresponding neutron subnet for the new external network (created in the previous step):

$ openstack subnet create --project $(openstack project show service |
grep id | awk '{ print $4 }') --no-dhcp --network external --gateway
192.168.37.1 --allocation-pool start=192.168.37.200,end=192.168.37.220 --
subnet-range 192.168.37.0/24 external-subnet

4. Download the cirros image to be used for creating overcloud instances:

$ wget http://download.cirros-cloud.net/0.3.4/cirros-0.3.4-x86_64-disk.img

5. Upload the cirros image into glance on the overcloud:

$ openstack image create cirros --public --file ./cirros-0.3.4-x86_64-
disk.img --disk-format qcow2 --container-format bare

6. Create a tiny flavor to use for overcloud instances:

$ openstack flavor create m1.tiny --ram 512 --disk 1 --public

7. Create a VXLAN-based tenant network to host the instances:

$ openstack network create net_test --provider-network-type=vxlan --

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

22

provider-segment 100

8. Create a subnet for the tenant network (created in the previous step):

$ openstack subnet create --network net_test --subnet-range
123.123.123.0/24 test

9. Find and store the ID of the tenant network:

$ net_mgmt_id=$(openstack network list | grep net_test | awk '{print $2}')

10. Create an instance called cirros1 and attach it to the net_test network:

$ openstack server create --flavor m1.tiny --image cirros --nic net-
id=$net_mgmt_id cirros1

11. Create a second instance called cirros2, also attached to the net_test network:

$ openstack server create --flavor m1.tiny --image cirros --nic net-
id=$net_mgmt_id cirros2

5.1.2. Set up networking in the test environment

1. Find and store the ID of the admin project:

$ admin_project_id=$(openstack project list | grep admin | awk '{print
$2}')

2. Find and store the admin project’s default security group:

$ admin_sec_group_id=$(openstack security group list | grep
$admin_project_id | awk '{print $2}')

3. Add a rule to the admin default security group to allow ICMP traffic ingress:

$ openstack security group rule create $admin_sec_group_id --protocol icmp
--ingress

4. Add a rule to the admin default security group to allow ICMP traffic egress:

$ openstack security group rule create $admin_sec_group_id --protocol icmp
--egress

5. Add a rule to the admin default security group to allow SSH traffic ingress:

$ openstack security group rule create $admin_sec_group_id --protocol tcp
--dst-port 22 --ingress

6. Add a rule to the admin default security group to allow SSH traffic egress:

CHAPTER 5. TEST THE DEPLOYMENT

23

$ openstack security group rule create $admin_sec_group_id --protocol tcp
--dst-port 22 --egress

5.1.3. Test the connectivity

1. From horizon, you should be able to access the novnc console for an instance. Use the password from
overcloudrc to login to horizon as admin. The default login for cirros images is the username cirros,
and cubswin:) as the password.

2. From the novnc console, verify that the instance received a DHCP address:

$ ip addr show

NOTE

Another method of doing this is by using the nova console-log <instance id>
from the undercloud, which will show if a DHCP lease was obtained.

3. Now repeat the steps 1 and 2 for all other instances.

4. From one instance, attempt to ping the other instances. This will validate the basic Tenant network
connectivity in the overcloud.

5. Verify that you can reach other instances by using a Floating IP.

5.1.4. Create devices

1. Create a floating IP on the external network to be associated with cirros1 instance:

$ openstack floating ip create external

2. Create a router which will be used to handle NAT between the floating IP and cirros1 tenant IP:

$ openstack router create test

3. Set the gateway of the router to be the external network:

$ neutron router-gateway-set test external

4. Add and interface to the router attached to the tenant network:

$ neutron router-interface-add test test

5. Find and store the floating IP created in Step 23:

floating_ip=$(openstack floating ip list | head -n -1 | grep -Eo '[0-9]+\.
[0-9]+\.[0-9]+\.[0-9]+')

6. Associate the floating IP with the cirros1 instance:

$ openstack server add floating ip cirros1 $floating_ip

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

24

7. From a node that has external network access, attempt to login to the instance:

$ ssh cirros@$floating_ip

5.2. PERFORM ADVANCED TESTS

Several components of the OpenDaylight configuration and deployment may be checked post
deployment. To test specific parts of the installation, you need to follow several procedures. Each
procedure is described separately.

The procedures are to be performed on the overcloud nodes.

5.2.1. Connect to overcloud nodes

1. Login onto the undercloud.

2. Run the following command to start the process:

$ source /home/stack/stackrc

3. List all instances:

$ nova list

4. Choose the required instance and note its IP address in the list:

5. Connect to the machine. You will use the IP address from the list above:

$ ssh heat-admin@<IP from step 3>

6. Switch to superuser:

$ sudo -i

5.2.2. Test OpenDaylight

To test that OpenDaylight is working, you have to verify that the service is up and that the particular
features are correctly loaded.

1. As a superuser, login to the node.

2. Verify that the OpenDaylight service is active:

systemctl status opendaylight

3. Verify that HAProxy is properly configured to listen on port 8081:

grep -A7 opendaylight /etc/haproxy/haproxy.cfg

4. Connect to the karaf account:

$ ssh -p 8101 karaf@localhost

CHAPTER 5. TEST THE DEPLOYMENT

25

5. List the installed features.

$ feature:list | grep odl-netvirt-openstack

6. Verify that the API is up and running.

web:list | grep neutron

7. Verify that inter-nodes' VXLAN tunnels are up.

vxlan:show

8. To test that the REST API is responding correctly, you can list the modules that are using it.

curl -u "admin:admin" http://localhost:8181/restconf/modules

The output will be similar (the example has been shortened).

{"modules":{"module":[{"name":"netty-event-
executor","revision":"2013-11-
12","namespace":"urn:opendaylight:params:xml:ns:yang:controller:nett
y:eventexecutor"},{"name" ...

9. You can list the REST streams.

curl -u "admin:admin" http://localhost:8181/restconf/streams

You will get something like this:

{"streams":{}}

10. Enter the following command to verify that NetVirt is ready and running.

curl -u "admin:admin"
http://localhost:8181/restconf/operational/network-topology:network-
topology/topology/netvirt:1

The following output will confirm it.

{"topology":[{"topology-id":"netvirt:1"}]}

More information

Step 3: As mentioned before, OpenDaylight is not running in HA mode yet, therefore the service
is only active on one node.

Step 5: If there is an x in the third column of the list, as generated during the procedure, then the
feature is correctly installed.

Step 6: This API endpoint is set in /etc/neutron/plugins/ml2/ml2_conf.ini and used
by the neutron to communicate with OpenDaylight.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

26

5.2.3. Test Open vSwitch

In order to validate Open vSwitch, connect to one of the Compute nodes and verify that it is properly
configured and connected to OpenDaylight.

1. Connect to one of the Compute nodes in the overcloud as a superuser.

2. List the Open vSwitch settings.

ovs-vsctl show

3. Notice multiple Managers in the output (lines 2 and 3 in the example).

4b624d8f-a7af-4f0f-b56a-b8cfabf7635d
 Manager "ptcp:6639:127.0.0.1"
 Manager "tcp:192.0.2.4:6640"
 is_connected: true
 Bridge br-extu
 Port br-ex
 Interface br-ex
 type: internal
 Port "eth2"
 Interface "eth2"
 Port br-ex-int-patch
 Interface br-ex-int-patch
 type: patch
 options: {peer=br-ex-patch}
 Bridge br-int
 Controller "tcp:192.0.2.4:6653"
 is_connected: true
 fail_mode: secure
 Port br-int
 Interface br-int
 type: internal
 Port br-ex-patch
 Interface br-ex-patch
 type: patch
 options: {peer=br-ex-int-patch}
 ovs_version: "2.5.0"

4. Verify that the tcp manager points to the IP of the node where OpenDaylight is running.

5. Verify that the Managers show is_connected: true to ensure that connectivity to
OpenDaylight from OVS is established and uses the OVSDB protocol.

6. Verify that each bridge (other than br-int) exists and matches the NIC template used for
deployment with the Compute role.

7. Verify that the tcp connection corresponds to the IP where the OpenDaylight service is running.

8. Verify that the bridge br-int shows is_connected: true and an OpenFlow protocol
connection to OpenDaylight is established.

More information

CHAPTER 5. TEST THE DEPLOYMENT

27

The br-int bridge is created automatically by OpenDaylight.

5.2.4. Verify the Open vSwitch configuration on Compute nodes.

1. Connect to a Compute node as a superuser.

2. List the Open vSwitch configuration settings.

ovs-vsctl list open_vswitch

3. Read the output. It will be similar to this example.

_uuid : 4b624d8f-a7af-4f0f-b56a-b8cfabf7635d
bridges : [11127421-3bcc-4f9a-9040-ff8b88486508,
350135a4-4627-4e1b-8bef-56a1e4249bef]
cur_cfg : 7
datapath_types : [netdev, system]
db_version : "7.12.1"
external_ids : {system-id="b8d16d0b-a40a-47c8-a767-
e118fe22759e"}
iface_types : [geneve, gre, internal, ipsec_gre, lisp,
patch, stt, system, tap, vxlan]
manager_options : [c66f2e87-4724-448a-b9df-837d56b9f4a9,
defec179-720e-458e-8875-ea763a0d8909]
next_cfg : 7
other_config : {local_ip="11.0.0.30",
provider_mappings="datacentre:br-ex"}
ovs_version : "2.5.0"
ssl : []
statistics : {}
system_type : RedHatEnterpriseServer
system_version : "7.3-Maipo"

4. Verify that the value of the other_config option has the correct local_ip set for the local
interface that connects to the Tenant network through VXLAN tunnels.

5. Verify that the provider_mappings value under the other_config option matches the value
given in the OpenDaylightProviderMappings heat template parameter. This configuration
maps the neutron logical networks to corresponding physical interfaces.

5.2.5. Verify neutron configuration

1. Connect to the superuser account on one of the controller role nodes.

2. Make sure that the file /etc/neutron/neutron.conf contains service_plugins=odl-
router_v2.

3. Check that the file /etc/neutron/plugin.ini contains the following ml2 configuration:

[ml2]
mechanism_drivers=opendaylight_v2

[ml2_odl]
password=admin
username=admin

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

28

url=http://192.0.2.9:8081/controller/nb/v2/neutron

4. On one of the overcloud controllers, verify that neutron agents are running properly.

openstack network agent list

5. Verify that both the Metadata and DHCP agents are in the up state (the admin_state_up
option is True):

+--------------------------------------+----------------+--------
------------------+-------------------+-------+----------------+-
-----------------------+
| id | agent_type | host
| availability_zone | alive | admin_state_up | binary
|
+--------------------------------------+----------------+--------
------------------+-------------------+-------+----------------+-
-----------------------+
| 3be198c5-b3aa-4d0e-abb4-51b29db3af47 | Metadata agent |
controller-0.localdomain | | :-) | True
| neutron-metadata-agent |
| 79579d47-dd7d-4ef3-9614-cd2f736043f3 | DHCP agent |
controller-0.localdomain | nova | :-) | True
| neutron-dhcp-agent |
+--------------------------------------+----------------+--------
------------------+-------------------+-------+----------------+-
-----------------------+

More information

The IP in the plugin.ini, mentioned in step 3, should be the InternalAPI Virtual IP Address
(VIP).

Note, that there is no Open vSwitch agent, nor L3 agent, listed in output of step 5, which is a
desired state, as both are now managed by OpenDaylight.

CHAPTER 5. TEST THE DEPLOYMENT

29

CHAPTER 6. DEBUGGING

6.1. LOCATE THE LOGS

6.1.1. Access OpenDaylight logs

The OpenDaylight logs are stored on OpenDaylight nodes, where you can find them in the
/opt/opendaylight/data/log/ directory.

OpenDaylight stores its logs in the karaf.log file.

The latest log is named karaf.log, while any older logs are numbered, such as
karaf.log.1, and so on.

6.1.2. Access OpenDaylight logs through karaf shell

Another way to access the logs is to login to the karaf shell on the OpenDaylight node and display the log
files.

1. Connect to the karaf account:

$ ssh -p 8101 karaf@localhost

2. Enable trace level logging on NetVirt.

$ log set TRACE org.opendaylight.netvirt

3. If you need to tail the logs inside of the karaf shell, use

$ log:tail

More information

The karaf shell helps users enable different logging levels for any OpenDaylight feature.

If you enable TRACE, it is possible that you will receive an extremely big number of log files.

6.1.3. Access OpenStack Networking logs

When OpenStack network-related commands fail, the first step is to examine the neutron logs:

These logs are stored in server.log, located on each neutron node in the /var/log/neutron
directory.

The server.log file also includes errors about the communication with OpenDaylight.

If the neutron error originates from interacting with OpenDaylight, it is necessary to examine the
OpenDaylight logs as well, to locate the cause of the failure.

6.2. DEBUG NETWORKING ERRORS

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

30

If you experience network error (for example, there is no instance connectivity), but no errors are
reported when issuing OpenStack commands or in the neutron logs, then it may be useful to inspect the
OVS nodes for network traffic and OpenFlow flows:

1. Login (as the superuser) to the affected node where the network error has occurred.

2. Display the information about the br-int switch.

ovs-ofctl -O openflow13 show br-int

3. Examine the output. It will be similar to this example:

OFPT_FEATURES_REPLY (OF1.3) (xid=0x2): dpid:0000e4c153bdb306
n_tables:254, n_buffers:256
capabilities: FLOW_STATS TABLE_STATS PORT_STATS GROUP_STATS
QUEUE_STATS
OFPST_PORT_DESC reply (OF1.3) (xid=0x3):
 1(br-ex-patch): addr:ae:38:01:09:66:5b
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 2(tap1f0f610c-8e): addr:00:00:00:00:00:00
 config: PORT_DOWN
 state: LINK_DOWN
 speed: 0 Mbps now, 0 Mbps max
 3(tun1147c81b59c): addr:66:e3:d2:b3:b8:e3
 config: 0
 state: 0
 speed: 0 Mbps now, 0 Mbps max
 LOCAL(br-int): addr:e4:c1:53:bd:b3:06
 config: PORT_DOWN
 state: LINK_DOWN
 speed: 0 Mbps now, 0 Mbps max
OFPT_GET_CONFIG_REPLY (OF1.3) (xid=0x5): frags=normal
miss_send_len=0

4. List the statistics for the br-int switch.

ovs-ofctl -O openflow13 dump-ports br-int

5. Examine the output. It will be similar to this example:

OFPST_PORT reply (OF1.3) (xid=0x2): 4 ports
 port LOCAL: rx pkts=101215, bytes=6680190, drop=0, errs=0,
frame=0, over=0, crc=0
 tx pkts=0, bytes=0, drop=0, errs=0, coll=0
 duration=90117.708s
 port 1: rx pkts=126887, bytes=8970074, drop=0, errs=0, frame=0,
over=0, crc=0
 tx pkts=18764, bytes=2067792, drop=0, errs=0, coll=0
 duration=90117.418s
 port 2: rx pkts=1171, bytes=70800, drop=0, errs=0, frame=0,
over=0, crc=0
 tx pkts=473, bytes=44448, drop=0, errs=0, coll=0
 duration=88644.819s

CHAPTER 6. DEBUGGING

31

 port 3: rx pkts=120197, bytes=8776126, drop=0, errs=0, frame=0,
over=0, crc=0
 tx pkts=119408, bytes=8727254, drop=0, errs=0, coll=0
 duration=88632.426s

More information

In step 3, you can see that there are three ports created on this OVS node. The first is a patch
port going to the bridge br-ex, which in this scenario is used for External network connectivity.
The second port is a tap port which connects to a DHCP agent instance (we know this because
the host is a controller, otherwise on a Compute role it would be an instance), while the third port
is a VXLAN tunnel port created for the tenant traffic. When you know what each port is, you can
examine the port statistics to verify that the port is indeed receiving/sending traffic (see Step 4).

From the output in Step 5, you can see that each port is receiving (rx pkts) and sending
packets (tx pkts).

6.2.1. Advanced debugging using OpenFlow flows

For advanced users who are familiar with OpenFlow, the next level of debugging is to examine the flows
on the switch in order to detect where traffic is being dropped.

You can list the flows, as well as how many packets have hit them, by entering the following command:

ovs-ofctl -O openflow13 dump-flows br-int

The output of the command will provide you with the necessary information.

OFPST_FLOW reply (OF1.3) (xid=0x2):
 cookie=0x8000000, duration=90071.665s, table=0, n_packets=126816,
n_bytes=8964820, priority=1,in_port=1
actions=write_metadata:0x20000000001/0xffffff0000000001,goto_table:17
 cookie=0x8000000, duration=88967.292s, table=0, n_packets=473,
n_bytes=44448, priority=4,in_port=2
actions=write_metadata:0x40000000000/0xffffff0000000001,goto_table:17
 cookie=0x8000001, duration=88954.901s, table=0, n_packets=120636,
n_bytes=8807869, priority=5,in_port=3
actions=write_metadata:0x70000000001/0x1fffff0000000001,goto_table:36
 cookie=0x8000001, duration=90069.534s, table=17, n_packets=126814,
n_bytes=8964712, priority=5,metadata=0x20000000000/0xffffff0000000000
actions=write_metadata:0xc0000200000222e0/0xfffffffffffff
ffe,goto_table:19
 cookie=0x8040000, duration=90069.533s, table=17, n_packets=126813,
n_bytes=8964658, priority=6,metadata=0xc000020000000000/0xffffff0000000000
actions=write_metadata:0xe00002138a000000/0xffffffff
fffffffe,goto_table:48
 cookie=0x8040000, duration=88932.689s, table=17, n_packets=396,
n_bytes=36425, priority=6,metadata=0xc000040000000000/0xffffff0000000000
actions=write_metadata:0xe00004138b000000/0xfffffffffffff
ffe,goto_table:48

NOTE

The sample output has been edited for length.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

32

6.2.2. Packet traverse in OpenFlow

The important things to understand are that the network functions performed on a packet are broken into
different OpenFlow tables, and packets traverse those tables in order, starting from zero. An incoming
packet lands in table 0, and then progresses via the OpenFlow Pipeline until it is sent out of a port, to the
OpenDaylight Controller, or dropped. A packet may skip one or more tables depending on which network
function it may need to go to. The full diagram of tables and how they correspond to network functions is
shown below:

Figure 6.1. OpenDaylight NetVirt OpenFlow Pipeline

CHAPTER 6. DEBUGGING

33

CHAPTER 7. MODEL INSTALLATION SCENARIO
In this part you will explore an example of OpenDaylight installation using OpenStack in a production
environment. In this scenario, tunneling (VXLAN) is used for tenant traffic separation.

7.1. PHYSICAL TOPOLOGY

The topology of this scenario consists of six nodes:

1 x director undercloud node

3 x OpenStack overcloud controllers; the first one has the OpenDaylight SDN controller installed
in addition to other OpenStack services

2 x OpenStack overcloud Compute nodes

7.2. PLANNING PHYSICAL NETWORK ENVIRONMENT

The overcloud controller nodes use three network interface cards (NICs) each:

Name Purpose

nic1 Management network (e.g accessing the node via SSH)

nic2 Tenant (VXLAN) carrier, provisioning (PXE, DHCP), and Internal API networks

nic3 Public API network access

The overcloud Compute nodes are equipped with three NICs:

Name Purpose

nic1 Management network

nic2 Tenant carrier, provisioning, and Internal API networks

nic3 External (Floating IPs) network

The undercloud node is equipped with two NICs:

Name Purpose

nic1 Used for the Management network

nic2 Used for the Provisioning network

7.3. PLANNING NIC CONNECTIVITY

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

34

In this case, the environment files use abstracted numbered interfaces (nic1, nic2) and not the actual
device names presented on the host operating system (like eth0 or eno2). The hosts that belong to the
same role do not require identical network interface device names. There is no problem if one host uses
the em1 and em2 interfaces, while the other uses eno1 and eno2. All NICs values will be accessed as
nic1 and nic2.

The abstracted NIC scheme only relies on interfaces that are alive and connected. In cases, when the
hosts have a different number of interfaces, it is enough to use the minimal number of interfaces that you
need to connect the hosts. For example, if there are four physical interfaces on one host and six on the
other, you should only use nic1, nic2, nic3, and nic4 and plug in four cables on both hosts.

7.4. PLANNING NETWORKS, VLANS AND IPS

In this scenario, network isolation is used to separate the Management, Provisioning, Internal API,
Tenant, Public API, and Floating IPs network traffic.

Figure 7.1. Detailed network topology used in this scenario

The table shows the VLAN ID and IP subnet associated with each network:

CHAPTER 7. MODEL INSTALLATION SCENARIO

35

Network VLAN ID IP Subnet

Provisioning Native 192.0.5.0/24

Internal API 600 172.17.0.0/24

Tenant 603 172.16.0.0/24

Public API 411 10.35.184.144/28

Floating IP 412 10.35.186.146/28

The OpenStack Platform director creates the br-isolated OVS bridge and adds the VLAN interfaces for
each network as defined in the network configurations files. The br-ex bridge, too, is created
automatically by the director with the relevant network interface attached to it.

Make sure, that your physical network switches that provide connectivity between the hosts are properly
configured to carry those VLAN IDs. You must configure all switch ports facing the hosts as "trunks" with
the above mentioned VLANs. The term "trunk" is used here to describe a port that allows multiple VLAN
IDs to traverse through the same port.

NOTE

Configuration guidance for the physical switches is outside the scope of this document.

NOTE

The TenantNetworkVlanID in network-environment.yaml is where a VLAN tag can
be defined for Tenant network when using VXLAN tunneling (i.e VXLAN tenant traffic
transported over a VLAN tagged underlay network). This value may also be empty if the
Tenant network is desired to run over the native VLAN. Also note, that when using VLAN
tenant type networks, VLAN tags other than the value provided for
TenantNetworkVlanID may be used.

7.5. OPENDAYLIGHT CONFIGURATION FILES REFERENCE

To deploy the model installation of OpenStack, the following commands were entered on the undercloud
node:

$ source ~/stackrc

$ openstack overcloud deploy --debug \
 --templates \
 --environment-file "$HOME/extra_env.yaml" \
 --libvirt-type kvm \
 -e /home/stack/baremetal-vlan/network-environment.yaml \
 -e /usr/share/openstack-tripleo-heat-templates/environments/neutron-
opendaylight-l3.yaml \
 --log-file overcloud_install.log &> overcloud_install.log

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

36

7.5.1. The extra_env.yaml file

This file has only one parameter:

 parameter_defaults:
 OpenDaylightProviderMappings: 'datacentre:br-ex,tenant:br-isolated'

These are the mappings that each node, controlled by OpenDaylight, will use. The physical network
data center will be mapped to the br-ex OVS bridge and tenant network traffic will be mapped to the br-
isolated OVS bridge.

7.5.2. The undercloud.conf file

This file is located in the /home/stack/baremetal-vlan/ directory.

 [DEFAULT]
 local_ip = 192.0.5.1/24
 network_gateway = 192.0.5.1
 undercloud_public_vip = 192.0.5.2
 undercloud_admin_vip = 192.0.5.3
 local_interface = eno2
 network_cidr = 192.0.5.0/24
 masquerade_network = 192.0.5.0/24
 dhcp_start = 192.0.5.5
 dhcp_end = 192.0.5.24
 inspection_iprange = 192.0.5.100,192.0.5.120

In this example, the 192.0.5.0/24 subnet for the Provisioning network is used. Note that the physical
interface eno2 is used on the undercloud node for provisioning.

7.5.3. The network-environment.yaml file

This is the main file for configuring the network. It is located in the /home/stack/baremetal-vlan/
directory. In the following file the VLAN IDs and IP subnets are specified for the different networks, as
well as the provider mappings.

Also note, the two files under nic-configs directory controller.yaml and compute.yaml are used for
specifying the network configuration for the controller and Compute nodes.

The number of controller nodes (3) and Compute nodes (2) is specified in the example.

resource_registry:
 # Specify the relative/absolute path to the config files you want to use
for
 # override the default.
 OS1::TripleO::Compute::Net::SoftwareConfig: nic-configs/compute.yaml
 OS::TripleO::Controller::Net::SoftwareConfig: nic-
configs/controller.yaml

 # Network isolation configuration
 # Service section
 # If some service should be disable, use the following example
 # OS::TripleO::Network::Management: OS::Heat::None
 OS::TripleO::Network::External: /usr/share/openstack-tripleo-heat-

CHAPTER 7. MODEL INSTALLATION SCENARIO

37

templates/network/external.yaml
 OS::TripleO::Network::InternalApi: /usr/share/openstack-tripleo-heat-
templates/network/internal_api.yaml
 OS::TripleO::Network::Tenant: /usr/share/openstack-tripleo-heat-
templates/network/tenant.yaml
 OS::TripleO::Network::Management: OS::Heat::None
 OS::TripleO::Network::StorageMgmt: OS::Heat::None
 OS::TripleO::Network::Storage: OS::Heat::None

 # Port assignments for the VIPs
 OS::TripleO::Network::Ports::ExternalVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
 OS::TripleO::Network::Ports::InternalApiVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
 OS::TripleO::Network::Ports::RedisVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/vip.yaml
 OS::TripleO::Network::Ports::StorageVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml
 OS::TripleO::Network::Ports::StorageMgmtVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml

 # Port assignments for the controller role
 OS::TripleO::Controller::Ports::ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
 OS::TripleO::Controller::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
 OS::TripleO::Controller::Ports::TenantPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/tenant.yaml
 OS::TripleO::Controller::Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml
 OS::TripleO::Controller::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml
 OS::TripleO::Controller::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml

 # Port assignments for the Compute role
 OS::TripleO::Compute::Ports::ExternalPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/external.yaml
 OS::TripleO::Compute::Ports::InternalApiPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/internal_api.yaml
 OS::TripleO::Compute::Ports::TenantPort: /usr/share/openstack-tripleo-
heat-templates/network/ports/tenant.yaml
 OS::TripleO::Compute::Ports::ManagementPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml
 OS::TripleO::Compute::Ports::StoragePort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml
 OS::TripleO::Compute::Ports::StorageMgmtPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/noop.yaml

 # Port assignments for service virtual IPs for the controller role
 OS::TripleO::Controller::Ports::RedisVipPort: /usr/share/openstack-
tripleo-heat-templates/network/ports/vip.yaml

parameter_defaults:
 # Customize all these values to match the local environment
 InternalApiNetCidr: 172.17.0.0/24

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

38

 TenantNetCidr: 172.16.0.0/24
 ExternalNetCidr: 10.35.184.144/28
 # CIDR subnet mask length for provisioning network
 ControlPlaneSubnetCidr: '24'
 InternalApiAllocationPools: [{'start': '172.17.0.10', 'end':
'172.17.0.200'}]
 TenantAllocationPools: [{'start': '172.16.0.100', 'end':
'172.16.0.200'}]
 # Use an External allocation pool which will leave room for floating IPs
 ExternalAllocationPools: [{'start': '10.35.184.146', 'end':
'10.35.184.157'}]
 # Set to the router gateway on the external network
 ExternalInterfaceDefaultRoute: 10.35.184.158
 # Gateway router for the provisioning network (or Undercloud IP)
 ControlPlaneDefaultRoute: 192.0.5.254
 # Generally the IP of the Undercloud
 EC2MetadataIp: 192.0.5.1
 InternalApiNetworkVlanID: 600
 TenantNetworkVlanID: 603
 ExternalNetworkVlanID: 411
 # Define the DNS servers (maximum 2) for the overcloud nodes
 DnsServers: ["10.35.28.28","8.8.8.8"]
 # May set to br-ex if using floating IPs only on native VLAN on bridge
br-ex
 NeutronExternalNetworkBridge: "''"
 # The tunnel type for the tenant network (vxlan or gre). Set to '' to
disable tunneling.
 NeutronTunnelTypes: ''
 # The tenant network type for Neutron (vlan or vxlan).
 NeutronNetworkType: 'vxlan'
 # The OVS logical->physical bridge mappings to use.
 # NeutronBridgeMappings: 'datacentre:br-ex,tenant:br-isolated'
 # The Neutron ML2 and OpenVSwitch vlan mapping range to support.
 NeutronNetworkVLANRanges: 'datacentre:412:412'
 # Nova flavor to use.
 OvercloudControlFlavor: baremetal
 OvercloudComputeFlavor: baremetal
 # Number of nodes to deploy.
 ControllerCount: 3
 ComputeCount: 2

 # Sets overcloud nodes custom names
 # http://docs.openstack.org/developer/tripleo-
docs/advanced_deployment/node_placement.html#custom-hostnames
 ControllerHostnameFormat: 'controller-%index%'
 ComputeHostnameFormat: 'compute-%index%'
 CephStorageHostnameFormat: 'ceph-%index%'
 ObjectStorageHostnameFormat: 'swift-%index%'

7.5.4. The controller.yaml file

The file is located in the /home/stack/baremetal-vlan/nic-configs/ directory.

In this example, you are defining two switches: br-isolated and br-ex. nic2 will be under br-isolated and
nic3 under br-ex:

CHAPTER 7. MODEL INSTALLATION SCENARIO

39

heat_template_version: 2015-04-30

description: >
 Software Config to drive os-net-config to configure VLANs for the
 controller role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network
 type: string
 ManagementIpSubnet: # Only populated when including
environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 ExternalNetworkVlanID:
 default: ''
 description: Vlan ID for the external network traffic.
 type: number
 InternalApiNetworkVlanID:
 default: ''
 description: Vlan ID for the internal_api network traffic.
 type: number
 TenantNetworkVlanID:
 default: ''
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 23
 description: Vlan ID for the management network traffic.
 type: number
 ExternalInterfaceDefaultRoute:
 default: ''
 description: default route for the external network
 type: string

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

40

 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations)
that will be added to resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:
 -
 type: ovs_bridge
 name: br-isolated
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 members:
 -
 type: interface
 name: nic2
 # force the MAC address of the bridge to this interface
 primary: true
 -
 type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}
 -

CHAPTER 7. MODEL INSTALLATION SCENARIO

41

 type: ovs_bridge
 name: br-ex
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 members:
 -
 type: interface
 name: nic3
 # force the MAC address of the bridge to this interface
 -
 type: vlan
 vlan_id: {get_param: ExternalNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: ExternalIpSubnet}
 routes:
 -
 default: true
 next_hop: {get_param:
ExternalInterfaceDefaultRoute}

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

7.5.5. The compute.yaml file

The file is located in the /home/stack/baremetal-vlan/nic-configs/ directory.

Most of the options in the Compute configuration is the same as the controller. In this example, nic3 is
under br-ex to be used for External connectivity (Floating IP network)

heat_template_version: 2015-04-30

description: >
 Software Config to drive os-net-config to configure VLANs for the
 Compute role.

parameters:
 ControlPlaneIp:
 default: ''
 description: IP address/subnet on the ctlplane network
 type: string
 ExternalIpSubnet:
 default: ''
 description: IP address/subnet on the external network
 type: string
 InternalApiIpSubnet:
 default: ''
 description: IP address/subnet on the internal API network
 type: string
 TenantIpSubnet:
 default: ''
 description: IP address/subnet on the tenant network

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

42

 type: string
 ManagementIpSubnet: # Only populated when including
environments/network-management.yaml
 default: ''
 description: IP address/subnet on the management network
 type: string
 InternalApiNetworkVlanID:
 default: ''
 description: Vlan ID for the internal_api network traffic.
 type: number
 TenantNetworkVlanID:
 default: ''
 description: Vlan ID for the tenant network traffic.
 type: number
 ManagementNetworkVlanID:
 default: 23
 description: Vlan ID for the management network traffic.
 type: number
 StorageIpSubnet:
 default: ''
 description: IP address/subnet on the storage network
 type: string
 StorageMgmtIpSubnet:
 default: ''
 description: IP address/subnet on the storage mgmt network
 type: string
 ControlPlaneSubnetCidr: # Override this via parameter_defaults
 default: '24'
 description: The subnet CIDR of the control plane network.
 type: string
 ControlPlaneDefaultRoute: # Override this via parameter_defaults
 description: The default route of the control plane network.
 type: string
 DnsServers: # Override this via parameter_defaults
 default: []
 description: A list of DNS servers (2 max for some implementations)
that will be added to resolv.conf.
 type: comma_delimited_list
 EC2MetadataIp: # Override this via parameter_defaults
 description: The IP address of the EC2 metadata server.
 type: string
 ExternalInterfaceDefaultRoute:
 default: ''
 description: default route for the external network
 type: string

resources:
 OsNetConfigImpl:
 type: OS::Heat::StructuredConfig
 properties:
 group: os-apply-config
 config:
 os_net_config:
 network_config:
 -
 type: ovs_bridge

CHAPTER 7. MODEL INSTALLATION SCENARIO

43

 name: br-isolated
 use_dhcp: false
 dns_servers: {get_param: DnsServers}
 addresses:
 -
 ip_netmask:
 list_join:
 - '/'
 - - {get_param: ControlPlaneIp}
 - {get_param: ControlPlaneSubnetCidr}
 routes:
 -
 ip_netmask: 169.254.169.254/32
 next_hop: {get_param: EC2MetadataIp}
 -
 next_hop: {get_param: ControlPlaneDefaultRoute}
 members:
 -
 type: interface
 name: nic2
 # force the MAC address of the bridge to this interface
 primary: true
 -
 type: vlan
 vlan_id: {get_param: InternalApiNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: InternalApiIpSubnet}
 -
 type: vlan
 vlan_id: {get_param: TenantNetworkVlanID}
 addresses:
 -
 ip_netmask: {get_param: TenantIpSubnet}
 -
 type: ovs_bridge
 name: br-ex
 use_dhcp: false
 members:
 -
 type: interface
 name: nic3

outputs:
 OS::stack_id:
 description: The OsNetConfigImpl resource.
 value: {get_resource: OsNetConfigImpl}

7.6. DIRECTOR CONFIGURATION FILES REFERENCES

7.6.1. The neutron.conf file

This file is located in the /etc/neutron/ directory and should contain the following information.

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

44

[DEFAULT]
service_plugins=odl-router_v2

7.6.2. The ml2_conf.ini file

This file is located in the /etc/neutron/plugins/ml2/ directory and should contain the following
information:

[ml2]
type_drivers = vxlan,vlan,flat,gre
tenant_network_types = vxlan
mechanism_drivers = opendaylight_v2

[ml2_type_vlan]
network_vlan_ranges = datacentre:412:412

[ml2_odl]
password = admin
username = admin
url = http://172.17.1.18:8081/controller/nb/v2/neutron

Under the [ml2] section note that VXLAN is used as the networks’ type and so is the
opendaylight_v2 mechanism driver.

Under [ml2_type_vlan], the same mappings as configured in network-
environment.yaml file, should be set.

Under [ml2_odl], you should see the configuration accessing the
OpenDaylightController.

You can use the above details to access to check that the access to OpenDaylight controller works:

$ curl -H "Content-Type:application/json" -u admin:admin
http://172.17.1.18:8081/controller/nb/v2/neutron/networks

CHAPTER 7. MODEL INSTALLATION SCENARIO

45

CHAPTER 8. WHERE CAN I FIND MORE INFORMATION
ABOUT RED HAT OPENSTACK PLATFORM AND

OPENDAYLIGHT?

Component Reference

OpenDaylight For further information that is not covered in this document, see the
OpenDaylight Boron documentation.

Red Hat OpenDaylight Product
Guide

For more information about the Red Hat OpenDaylight and its relation to the
Red Hat OpenStack Platform, see the Red Hat OpenDaylight Product Guide.

Red Hat Enterprise Linux Red Hat OpenStack Platform is supported on Red Hat Enterprise Linux 7.3.
For information on installing Red Hat Enterprise Linux, see the
corresponding installation guide at Red Hat Enterprise Linux Documentation
Suite.

Red Hat OpenStack Platform To install OpenStack components and their dependencies, use the Red Hat
OpenStack Platform director. The director uses a basic OpenStack
undercloud, which is then used to provision and manage the OpenStack
nodes in the final overcloud. Be aware that you will need one extra host
machine for the installation of the undercloud, in addition to the environment
necessary for the deployed overcloud. For detailed instructions, see Director
Installation and Usage.

For information on configuring advanced features for a Red Hat OpenStack
Platform enterprise environment using the Red Hat OpenStack Platform
director such as network isolation, storage configuration, SSL
communication, and general configuration method, see Advanced Overcloud
Customization.

You can also manually install the Red Hat OpenStack Platform components,
see Manual Installation Procedures.

NFV Documentation For more details on planning your Red Hat OpenStack Platform deployment
with NFV, see Network Function Virtualization Planning Guide .

Red Hat OpenStack Platform 10 OpenDaylight and Red Hat OpenStack Installation and Configuration Guide

46

http://docs.opendaylight.org/en/stable-boron/
https://access.redhat.com/documentation/en-us/red_hat_openstack_platform/10/html-single/red_hat_opendaylight_product_guide/
https://access.redhat.com/site/documentation/en-US/Red_Hat_Enterprise_Linux/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/director-installation-and-usage/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/advanced-overcloud-customization/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/manual-installation-procedures/
https://access.redhat.com/documentation/en/red-hat-openstack-platform/10/single/network-functions-virtualization-planning-guide/

	Table of Contents
	PREFACE
	CHAPTER 1. OVERVIEW
	1.1. WHAT IS OPENDAYLIGHT?
	1.2. HOW DOES OPENDAYLIGHT WORK WITH OPENSTACK?
	1.2.1. The default neutron architecture
	1.2.2. Networking architecture based on OpenDaylight

	1.3. WHAT IS RED HAT OPENSTACK PLATFORM DIRECTOR AND HOW IS IT DESIGNED?
	1.3.1. Red Hat OpenStack Platform director and OpenDaylight
	1.3.2. Network isolation in Red Hat OpenStack Platform director
	1.3.3. Network and firewall configuration

	CHAPTER 2. PREPARE FOR OPENDAYLIGHT INSTALLATION
	2.1. WHAT ARE THE MINIMUM HARDWARE REQUIREMENTS?
	2.1.1. Compute Node Requirements
	2.1.2. Controller Node Requirements

	CHAPTER 3. INSTALL OPENDAYLIGHT ON THE OVERCLOUD
	CHAPTER 4. CONFIGURE AND DEPLOY OPENDAYLIGHT WITH RED HAT OPENSTACK PLATFORM 10
	4.1. CONFIGURE AND RUN THE DEPLOYMENT
	4.1.1. Configure the OpenDaylight API Service
	4.1.2. Configure the OpenDaylight OVS Service
	4.1.3. Using Neutron Metadata Service with OpenDaylight
	4.1.4. Configure Network and NIC template

	4.2. INSTALL OPENDAYLIGHT IN CUSTOM ROLE

	CHAPTER 5. TEST THE DEPLOYMENT
	5.1. PERFORM A BASIC TEST
	5.1.1. Create a new network for testing
	5.1.2. Set up networking in the test environment
	5.1.3. Test the connectivity
	5.1.4. Create devices

	5.2. PERFORM ADVANCED TESTS
	5.2.1. Connect to overcloud nodes
	5.2.2. Test OpenDaylight
	5.2.3. Test Open vSwitch
	5.2.4. Verify the Open vSwitch configuration on Compute nodes.
	5.2.5. Verify neutron configuration

	CHAPTER 6. DEBUGGING
	6.1. LOCATE THE LOGS
	6.1.1. Access OpenDaylight logs
	6.1.2. Access OpenDaylight logs through karaf shell
	6.1.3. Access OpenStack Networking logs

	6.2. DEBUG NETWORKING ERRORS
	6.2.1. Advanced debugging using OpenFlow flows
	6.2.2. Packet traverse in OpenFlow

	CHAPTER 7. MODEL INSTALLATION SCENARIO
	7.1. PHYSICAL TOPOLOGY
	7.2. PLANNING PHYSICAL NETWORK ENVIRONMENT
	7.3. PLANNING NIC CONNECTIVITY
	7.4. PLANNING NETWORKS, VLANS AND IPS
	7.5. OPENDAYLIGHT CONFIGURATION FILES REFERENCE
	7.5.1. The extra_env.yaml file
	7.5.2. The undercloud.conf file
	7.5.3. The network-environment.yaml file
	7.5.4. The controller.yaml file
	7.5.5. The compute.yaml file

	7.6. DIRECTOR CONFIGURATION FILES REFERENCES
	7.6.1. The neutron.conf file
	7.6.2. The ml2_conf.ini file

	CHAPTER 8. WHERE CAN I FIND MORE INFORMATION ABOUT RED HAT OPENSTACK PLATFORM AND OPENDAYLIGHT?

