
Red Hat JBoss Fuse 6.1

Apache CXF Development Guide

Develop applications with Apache CXF Web services

Last Updated: 2017-10-12

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

Develop applications with Apache CXF Web services

JBoss A-MQ Docs Team
Content Services
fuse-docs-support@redhat.com

Legal Notice

Copyright © 2013 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

REVISIT -

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. WRITING WSDL CONTRACTS

CHAPTER 1. INTRODUCING WSDL CONTRACTS
1.1. STRUCTURE OF A WSDL DOCUMENT
1.2. WSDL ELEMENTS
1.3. DESIGNING A CONTRACT

CHAPTER 2. DEFINING LOGICAL DATA UNITS
2.1. MAPPING DATA INTO LOGICAL DATA UNITS
2.2. ADDING DATA UNITS TO A CONTRACT
2.3. XML SCHEMA SIMPLE TYPES
2.4. DEFINING COMPLEX DATA TYPES
2.5. DEFINING ELEMENTS

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE
MESSAGES AND PARAMETER LISTS
MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS
MESSAGE DESIGN FOR SOAP SERVICES
MESSAGE NAMING
MESSAGE PARTS
EXAMPLE

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES
PROCESS
PORT TYPES
OPERATIONS
OPERATION MESSAGES
RETURN VALUES
EXAMPLE

PART II. WEB SERVICES BINDINGS

CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL
OVERVIEW
PORT TYPES AND BINDINGS
THE WSDL ELEMENTS
ADDING TO A CONTRACT
SUPPORTED BINDINGS

CHAPTER 6. USING SOAP 1.1 MESSAGES
6.1. ADDING A SOAP 1.1 BINDING
6.2. ADDING SOAP HEADERS TO A SOAP 1.1 BINDING

CHAPTER 7. USING SOAP 1.2 MESSAGES
7.1. ADDING A SOAP 1.2 BINDING TO A WSDL DOCUMENT
7.2. ADDING HEADERS TO A SOAP 1.2 MESSAGE

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS
OVERVIEW
NAMESPACE
CHANGING THE MESSAGE BINDING
DESCRIBING A MIME MULTIPART MESSAGE
EXAMPLE

10

11
11
11
12

13
13
14
15
16

24

25
25
25
25
26
26
27

29
29
29
29
29
31
31

32

33
33
33
33
33
34

35
35
37

42
42
44

49
49
49
49
50
50

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM
9.1. ANNOTATING DATA TYPES TO USE MTOM
9.2. ENABLING MTOM

CHAPTER 10. USING XML DOCUMENTS
XML BINDING NAMESPACE
HAND EDITING
XML MESSAGES ON THE WIRE
OVERRIDING THE BINDING'S ROOTNODE ATTRIBUTE SETTING

PART III. WEB SERVICES TRANSPORTS

CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE DEFINED IN WSDL
OVERVIEW
ENDPOINTS AND SERVICES
THE WSDL ELEMENTS
ADDING ENDPOINTS TO A CONTRACT
SUPPORTED TRANSPORTS

CHAPTER 12. USING HTTP
12.1. ADDING A BASIC HTTP ENDPOINT
12.2. CONFIGURING A CONSUMER
12.3. CONFIGURING A SERVICE PROVIDER
12.4. CONFIGURING THE JETTY RUNTIME
12.5. CONFIGURING THE NETTY RUNTIME
12.6. USING THE HTTP TRANSPORT IN DECOUPLED MODE

CHAPTER 13. USING SOAP OVER JMS
13.1. BASIC CONFIGURATION
13.2. JMS URIS
13.3. WSDL EXTENSIONS

CHAPTER 14. USING GENERIC JMS
14.1. USING THE JMS CONFIGURATION BEAN
14.2. USING WSDL TO CONFIGURE JMS
14.3. USING A NAMED REPLY DESTINATION

APPENDIX A. INTEGRATING WITH APACHE ACTIVEMQ
OVERVIEW
THE INITIAL CONTEXT FACTORY
LOOKING UP THE CONNECTION FACTORY
SYNTAX FOR DYNAMIC DESTINATIONS

APPENDIX B. CONDUITS
OVERVIEW
CONDUIT LIFE-CYCLE
CONDUIT WEIGHT

PART IV. CONFIGURING WEB SERVICE ENDPOINTS

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS
15.1. CONFIGURING SERVICE PROVIDERS
15.2. CONFIGURING CONSUMER ENDPOINTS

CHAPTER 16. APACHE CXF LOGGING
16.1. OVERVIEW OF APACHE CXF LOGGING

53
53
56

59
59
59
60
61

63

64
64
64
64
64
64

66
66
68
75
81

84
89

94
94
96
98

103
103
109
114

115
115
115
115
115

117
117
117
117

118

119
119
128

132
132

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

16.2. SIMPLE EXAMPLE OF USING LOGGING
16.3. DEFAULT LOGGING CONFIGURATION FILE
16.4. ENABLING LOGGING AT THE COMMAND LINE
16.5. LOGGING FOR SUBSYSTEMS AND SERVICES
16.6. LOGGING MESSAGE CONTENT

CHAPTER 17. DEPLOYING WS-ADDRESSING
17.1. INTRODUCTION TO WS-ADDRESSING
17.2. WS-ADDRESSING INTERCEPTORS
17.3. ENABLING WS-ADDRESSING
17.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

CHAPTER 18. ENABLING RELIABLE MESSAGING
18.1. INTRODUCTION TO WS-RM
18.2. WS-RM INTERCEPTORS
18.3. ENABLING WS-RM
18.4. CONFIGURING WS-RM
18.5. CONFIGURING WS-RM PERSISTENCE

CHAPTER 19. ENABLING HIGH AVAILABILITY
19.1. INTRODUCTION TO HIGH AVAILABILITY
19.2. ENABLING HA WITH STATIC FAILOVER
19.3. CONFIGURING HA WITH STATIC FAILOVER

CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE FABRIC
20.1. LOAD BALANCING CLUSTER
20.2. FAILOVER CLUSTER

CHAPTER 21. PACKAGING AN APPLICATION
CREATING A BUNDLE
REQUIRED BUNDLE
REQUIRED PACKAGES
EXAMPLE

CHAPTER 22. DEPLOYING AN APPLICATION
OVERVIEW
HOT DEPLOYMENT
DEPLOYING FROM THE CONSOLE
REFRESHING AN APPLICATION
STOPPING AN APPLICATION
UNINSTALLING AN APPLICATION

APPENDIX C. APACHE CXF BINDING IDS

APPENDIX D. USING THE MAVEN OSGI TOOLING
D.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT
D.2. CONFIGURING THE BUNDLE PLUG-IN

PART V. DEVELOPING APPLICATIONS USING JAX-WS

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT
23.1. CREATING THE SEI
23.2. ANNOTATING THE CODE
23.3. GENERATING WSDL

CHAPTER 24. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

133
134
137
137
139

142
142
142
143
144

146
146
147
148
151
159

162
162
162
164

166
166
174

178
178
178
178
179

180
180
180
180
180
180
181

182

183
183
186

191

192
192
194
216

219

Table of Contents

3

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

24.1. CREATING A SERVICE OBJECT
24.2. ADDING A PORT TO A SERVICE
24.3. GETTING A PROXY FOR AN ENDPOINT
24.4. IMPLEMENTING THE CONSUMER'S BUSINESS LOGIC

CHAPTER 25. A STARTING POINT WSDL CONTRACT

CHAPTER 26. TOP-DOWN SERVICE DEVELOPMENT
26.1. GENERATING THE STARTING POINT CODE
26.2. IMPLEMENTING THE SERVICE PROVIDER

CHAPTER 27. DEVELOPING A CONSUMER FROM A WSDL CONTRACT
27.1. GENERATING THE STUB CODE
27.2. IMPLEMENTING A CONSUMER

CHAPTER 28. FINDING WSDL AT RUNTIME
28.1. INSTANTIATING A PROXY BY INJECTION
28.2. USING A JAX-WS CATALOG
28.3. USING A CONTRACT RESOLVER

CHAPTER 29. GENERIC FAULT HANDLING
29.1. RUNTIME FAULTS
29.2. PROTOCOL FAULTS

CHAPTER 30. PUBLISHING A SERVICE
30.1. APIS USED TO PUBLISH A SERVICE
30.2. PUBLISHING A SERVICE IN A PLAIN JAVA APPLICATION
30.3. PUBLISHING A SERVICE IN AN OSGI CONTAINER

CHAPTER 31. BASIC DATA BINDING CONCEPTS
31.1. INCLUDING AND IMPORTING SCHEMA DEFINITIONS
31.2. XML NAMESPACE MAPPING
31.3. THE OBJECT FACTORY
31.4. ADDING CLASSES TO THE RUNTIME MARSHALLER

CHAPTER 32. USING XML ELEMENTS
OVERVIEW
XML SCHEMA MAPPING
JAVA MAPPING OF ELEMENTS WITH A NAMED TYPE
USING ELEMENTS WITH NAMED TYPES IN WSDL
JAVA MAPPING OF ELEMENTS WITH AN IN-LINE TYPE
JAVA MAPPING OF ABSTRACT ELEMENTS
JAVA MAPPING OF ELEMENTS WITH A DEFAULT VALUE

CHAPTER 33. USING SIMPLE TYPES
33.1. PRIMITIVE TYPES
33.2. SIMPLE TYPES DEFINED BY RESTRICTION
33.3. ENUMERATIONS
33.4. LISTS
33.5. UNIONS
33.6. SIMPLE TYPE SUBSTITUTION

CHAPTER 34. USING COMPLEX TYPES
34.1. BASIC COMPLEX TYPE MAPPING
34.2. ATTRIBUTES
34.3. DERIVING COMPLEX TYPES FROM SIMPLE TYPES

219
221
222
223

225

228
228
230

232
232
233

238
238
240
241

245
245
246

248
248
250
252

255
255
257
259
260

262
262
262
264
265
266
266
266

268
268
270
273
275
278
279

281
281
285
290

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

4

. .

. .

. .

. .

. .

. .

. .

. .

. .

34.4. DERIVING COMPLEX TYPES FROM COMPLEX TYPES
34.5. OCCURRENCE CONSTRAINTS
34.6. USING MODEL GROUPS

CHAPTER 35. USING WILD CARD TYPES
35.1. USING ANY ELEMENTS
35.2. USING THE XML SCHEMA ANYTYPE TYPE
35.3. USING UNBOUND ATTRIBUTES

CHAPTER 36. ELEMENT SUBSTITUTION
36.1. SUBSTITUTION GROUPS IN XML SCHEMA
36.2. SUBSTITUTION GROUPS IN JAVA
36.3. WIDGET VENDOR EXAMPLE

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED
37.1. BASICS OF CUSTOMIZING TYPE MAPPINGS
37.2. SPECIFYING THE JAVA CLASS OF AN XML SCHEMA PRIMITIVE
37.3. GENERATING JAVA CLASSES FOR SIMPLE TYPES
37.4. CUSTOMIZING ENUMERATION MAPPING
37.5. CUSTOMIZING FIXED VALUE ATTRIBUTE MAPPING
37.6. SPECIFYING THE BASE TYPE OF AN ELEMENT OR AN ATTRIBUTE

CHAPTER 38. USING A JAXBCONTEXT OBJECT
OVERVIEW
BEST PRACTICES
GETTING A JAXBCONTEXT OBJECT USING AN OBJECT FACTORY
GETTING A JAXBCONTEXT OBJECT USING PACKAGE NAMES

CHAPTER 39. USING SOAP OVER JMS
OVERVIEW
JMS URIS
PUBLISHING A SERVICE
CONSUMING A SERVICE

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS
40.1. WSDL FOR ASYNCHRONOUS EXAMPLES
40.2. GENERATING THE STUB CODE
40.3. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE POLLING APPROACH
40.4. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE CALLBACK APPROACH
40.5. CATCHING EXCEPTIONS RETURNED FROM A REMOTE SERVICE

CHAPTER 41. USING RAW XML MESSAGES
41.1. USING XML IN A CONSUMER
41.2. USING XML IN A SERVICE PROVIDER

CHAPTER 42. WORKING WITH CONTEXTS
42.1. UNDERSTANDING CONTEXTS
42.2. WORKING WITH CONTEXTS IN A SERVICE IMPLEMENTATION
42.3. WORKING WITH CONTEXTS IN A CONSUMER IMPLEMENTATION
42.4. WORKING WITH JMS MESSAGE PROPERTIES

CHAPTER 43. WRITING HANDLERS
43.1. HANDLERS: AN INTRODUCTION
43.2. IMPLEMENTING A LOGICAL HANDLER
43.3. HANDLING MESSAGES IN A LOGICAL HANDLER
43.4. IMPLEMENTING A PROTOCOL HANDLER

292
295
301

305
305
309

311

314
314
316
322

329
329
331
337
339
343
346

349
349
349
349
350

351
351
351
353
354

355
355
356
360
362
365

368
368
375

383
383
386
392
396

402
402
405
405
411

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

43.5. HANDLING MESSAGES IN A SOAP HANDLER
43.6. INITIALIZING A HANDLER
43.7. HANDLING FAULT MESSAGES
43.8. CLOSING A HANDLER
43.9. RELEASING A HANDLER
43.10. CONFIGURING ENDPOINTS TO USE HANDLERS

APPENDIX E. MAVEN TOOLING REFERENCE
NAME
DEPENDENCIES
REPOSITORIES
NAME
SYNOPSIS
DESCRIPTION
WSDL OPTIONS
DEFAULT OPTIONS
OPTIONS
NAME
SYNOPSIS
DESCRIPTION
REQUIRED CONFIGURATION
OPTIONAL CONFIGURATION

PART VI. DEVELOPING RESTFUL WEB SERVICES

CHAPTER 44. INTRODUCTION TO RESTFUL WEB SERVICES
OVERVIEW
BASIC REST PRINCIPLES
RESOURCES
REST BEST PRACTICES
DESIGNING A RESTFUL WEB SERVICE
IMPLEMENTING REST WITH APACHE CXF
DATA BINDINGS

CHAPTER 45. CREATING RESOURCES
45.1. INTRODUCTION
45.2. BASIC JAX-RS ANNOTATIONS
45.3. ROOT RESOURCE CLASSES
45.4. WORKING WITH RESOURCE METHODS
45.5. WORKING WITH SUB-RESOURCES
45.6. RESOURCE SELECTION METHOD

CHAPTER 46. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS
46.1. BASICS OF INJECTING DATA
46.2. USING JAX-RS APIS
46.3. USING APACHE CXF EXTENSIONS

CHAPTER 47. RETURNING INFORMATION TO THE CONSUMER
47.1. RETURNING PLAIN JAVA CONSTRUCTS
47.2. FINE TUNING AN APPLICATION'S RESPONSES
47.3. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION

CHAPTER 48. HANDLING EXCEPTIONS
48.1. USING WEBAPPLICAITONEXCEPTION EXCEPTIONS TO REPORT ERRORS
48.2. MAPPING EXCEPTIONS TO RESPONSES

412
416
416
417
418
418

424
424
424
424
425
425
426
426
426
426
429
429
429
429
429

431

432
432
432
433
433
433
434
434

435
435
436
437
439
441
444

448
448
448
457

459
459
460
466

469
469
471

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

6

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 49. ENTITY SUPPORT
OVERVIEW
NATIVELY SUPPORTED TYPES
CUSTOM READERS
CUSTOM WRITERS
REGISTERING READERS AND WRITERS

CHAPTER 50. GETTING AND USING CONTEXT INFORMATION
50.1. INTRODUCTION TO CONTEXTS
50.2. WORKING WITH THE FULL REQUEST URI

CHAPTER 51. ANNOTATION INHERITANCE
OVERVIEW
INHERITANCE RULES
OVERRIDING INHERITED ANNOTATIONS

PART VII. DEVELOPING APACHE CXF INTERCEPTORS

CHAPTER 52. INTERCEPTORS IN THE APACHE CXF RUNTIME
OVERVIEW
MESSAGE PROCESSING IN APACHE CXF
INTERCEPTORS
PHASES
INTERCEPTOR CHAINS
DEVELOPING INTERCEPTORS

CHAPTER 53. THE INTERCEPTOR APIS
INTERFACES
ABSTRACT INTERCEPTOR CLASS

CHAPTER 54. DETERMINING WHEN THE INTERCEPTOR IS INVOKED
54.1. SPECIFYING AN INTERCEPTOR'S PHASE
54.2. CONSTRAINING AN INTERCEPTORS PLACEMENT IN A PHASE

CHAPTER 55. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC
55.1. PROCESSING MESSAGES
55.2. UNWINDING AFTER AN ERROR

CHAPTER 56. CONFIGURING ENDPOINTS TO USE INTERCEPTORS
56.1. DECIDING WHERE TO ATTACH INTERCEPTORS
56.2. ADDING INTERCEPTORS USING CONFIGURATION
56.3. ADDING INTERCEPTORS PROGRAMMATICALLY

CHAPTER 57. MANIPULATING INTERCEPTOR CHAINS ON THE FLY
OVERVIEW
CHAIN LIFE-CYCLE
GETTING THE INTERCEPTOR CHAIN
ADDING INTERCEPTORS
REMOVING INTERCEPTORS

APPENDIX F. APACHE CXF MESSAGE PROCESSING PHASES
INBOUND PHASES
OUTBOUND PHASES

APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS
G.1. CORE APACHE CXF INTERCEPTORS

474
474
474
475
479
484

485
485
486

492
492
492
493

494

495
495
496
497
498
498
498

500
500
501

502
502
504

507
507
509

511
511
512
514

520
520
520
520
520
521

523
523
524

525
525

Table of Contents

7

. .

. .

G.2. FRONT-ENDS
G.3. MESSAGE BINDINGS
G.4. OTHER FEATURES

APPENDIX H. INTERCEPTOR PROVIDERS
OVERVIEW
LIST OF PROVIDERS

INDEX

525
527
531

534
534
534

535

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

8

Table of Contents

9

PART I. WRITING WSDL CONTRACTS

Abstract

This part describes how to define a Web service interface using WSDL.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

10

CHAPTER 1. INTRODUCING WSDL CONTRACTS

Abstract

WSDL documents define services using Web Service Description Language and a number of possible
extensions. The documents have a logical part and a concrete part. The abstract part of the contract
defines the service in terms of implementation neutral data types and messages. The concrete part of
the document defines how an endpoint implementing a service will interact with the outside world.

The recommended approach to design services is to define your services in WSDL and XML Schema
before writing any code. When hand-editing WSDL documents you must make sure that the document
is valid, as well as correct. To do this you must have some familiarity with WSDL. You can find the
standard on the W3C web site, www.w3.org.

1.1. STRUCTURE OF A WSDL DOCUMENT

A WSDL document is, at its simplest, a collection of elements contained within a root definition
element. These elements describe a service and how an endpoint implementing that service is
accessed.

A WSDL document has two distinct parts:

A logical part that defines the service in implementation neutral terms

A concrete part that defines how an endpoint implementing the service is exposed on a
network

The logical part

The logical part of a WSDL document contains the types, the message, and the portType elements.
It describes the service’s interface and the messages exchanged by the service. Within the types
element, XML Schema is used to define the structure of the data that makes up the messages. A
number of message elements are used to define the structure of the messages used by the service.
The portType element contains one or more operation elements that define the messages sent by
the operations exposed by the service.

The concrete part

The concrete part of a WSDL document contains the binding and the service elements. It describes
how an endpoint that implements the service connects to the outside world. The binding elements
describe how the data units described by the message elements are mapped into a concrete, on-the-
wire data format, such as SOAP. The service elements contain one or more port elements which
define the endpoints implementing the service.

1.2. WSDL ELEMENTS

A WSDL document is made up of the following elements:

definitions — The root element of a WSDL document. The attributes of this element specify
the name of the WSDL document, the document’s target namespace, and the shorthand
definitions for the namespaces referenced in the WSDL document.

types — The XML Schema definitions for the data units that form the building blocks of the

CHAPTER 1. INTRODUCING WSDL CONTRACTS

11

http://www.w3.org/TR/wsdl

messages used by a service. For information about defining data types see Chapter 2, Defining
Logical Data Units.

message — The description of the messages exchanged during invocation of a services
operations. These elements define the arguments of the operations making up your service.
For information on defining messages see Chapter 3, Defining Logical Messages Used by a
Service.

portType — A collection of operation elements describing the logical interface of a service.
For information about defining port types see Chapter 4, Defining Your Logical Interfaces.

operation — The description of an action performed by a service. Operations are defined by
the messages passed between two endpoints when the operation is invoked. For information
on defining operations see the section called “Operations” .

binding — The concrete data format specification for an endpoint. A binding element
defines how the abstract messages are mapped into the concrete data format used by an
endpoint. This element is where specifics such as parameter order and return values are
specified.

service — A collection of related port elements. These elements are repositories for
organizing endpoint definitions.

port — The endpoint defined by a binding and a physical address. These elements bring all of
the abstract definitions together, combined with the definition of transport details, and they
define the physical endpoint on which a service is exposed.

1.3. DESIGNING A CONTRACT

To design a WSDL contract for your services you must perform the following steps:

1. Define the data types used by your services.

2. Define the messages used by your services.

3. Define the interfaces for your services.

4. Define the bindings between the messages used by each interface and the concrete
representation of the data on the wire.

5. Define the transport details for each of the services.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

12

CHAPTER 2. DEFINING LOGICAL DATA UNITS

Abstract

When describing a service in a WSDL contract complex data types are defined as logical units using
XML Schema.

When defining a service, the first thing you must consider is how the data used as parameters for the
exposed operations is going to be represented. Unlike applications that are written in a programming
language that uses fixed data structures, services must define their data in logical units that can be
consumed by any number of applications. This involves two steps:

1. Breaking the data into logical units that can be mapped into the data types used by the
physical implementations of the service

2. Combining the logical units into messages that are passed between endpoints to carry out the
operations

This chapter discusses the first step. Chapter 3, Defining Logical Messages Used by a Service discusses
the second step.

2.1. MAPPING DATA INTO LOGICAL DATA UNITS

The interfaces used to implement a service define the data representing operation parameters as XML
documents. If you are defining an interface for a service that is already implemented, you must
translate the data types of the implemented operations into discreet XML elements that can be
assembled into messages. If you are starting from scratch, you must determine the building blocks
from which your messages are built, so that they make sense from an implementation standpoint.

Available type systems for defining service data units

According to the WSDL specification, you can use any type system you choose to define data types in a
WSDL contract. However, the W3C specification states that XML Schema is the preferred canonical
type system for a WSDL document. Therefore, XML Schema is the intrinsic type system in Apache CXF.

XML Schema as a type system

XML Schema is used to define how an XML document is structured. This is done by defining the
elements that make up the document. These elements can use native XML Schema types, like xsd:int,
or they can use types that are defined by the user. User defined types are either built up using
combinations of XML elements or they are defined by restricting existing types. By combining type
definitions and element definitions you can create intricate XML documents that can contain complex
data.

When used in WSDL XML Schema defines the structure of the XML document that holds the data used
to interact with a service. When defining the data units used by your service, you can define them as
types that specify the structure of the message parts. You can also define your data units as elements
that make up the message parts.

Considerations for creating your data units

CHAPTER 2. DEFINING LOGICAL DATA UNITS

13

You might consider simply creating logical data units that map directly to the types you envision using
when implementing the service. While this approach works, and closely follows the model of building
RPC-style applications, it is not necessarily ideal for building a piece of a service-oriented architecture.

The Web Services Interoperability Organization’s WS-I basic profile provides a number of guidelines for
defining data units and can be accessed at http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-
24.html#WSDLTYPES. In addition, the W3C also provides the following guidelines for using XML
Schema to represent data types in WSDL documents:

Use elements, not attributes.

Do not use protocol-specific types as base types.

2.2. ADDING DATA UNITS TO A CONTRACT

Depending on how you choose to create your WSDL contract, creating new data definitions requires
varying amounts of knowledge. The Apache CXF GUI tools provide a number of aids for describing data
types using XML Schema. Other XML editors offer different levels of assistance. Regardless of the
editor you choose, it is a good idea to have some knowledge about what the resulting contract should
look like.

Procedure

Defining the data used in a WSDL contract involves the following steps:

1. Determine all the data units used in the interface described by the contract.

2. Create a types element in your contract.

3. Create a schema element, shown in Example 2.1, “Schema entry for a WSDL contract” , as a
child of the type element.

The targetNamespace attribute specifies the namespace under which new data types are
defined. The remaining entries should not be changed.

Example 2.1. Schema entry for a WSDL contract

4. For each complex type that is a collection of elements, define the data type using a
complexType element. See Section 2.4.1, “Defining data structures” .

5. For each array, define the data type using a complexType element. See Section 2.4.2,
“Defining arrays”.

6. For each complex type that is derived from a simple type, define the data type using a
simpleType element. See Section 2.4.4, “Defining types by restriction” .

7. For each enumerated type, define the data type using a simpleType element. See
Section 2.4.5, “Defining enumerated types”.

8. For each element, define it using an element element. See Section 2.5, “Defining elements” .

<schema targetNamespace="http://schemas.iona.com/bank.idl"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

14

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#WSDLTYPES

2.3. XML SCHEMA SIMPLE TYPES

If a message part is going to be of a simple type it is not necessary to create a type definition for it.
However, the complex types used by the interfaces defined in the contract are defined using simple
types.

Entering simple types

XML Schema simple types are mainly placed in the element elements used in the types section of
your contract. They are also used in the base attribute of restriction elements and extension
elements.

Simple types are always entered using the xsd prefix. For example, to specify that an element is of
type int, you would enter xsd:int in its type attribute as shown in Example 2.2, “Defining an element
with a simple type”.

Example 2.2. Defining an element with a simple type

Supported XSD simple types

Apache CXF supports the following XML Schema simple types:

xsd:string

xsd:normalizedString

xsd:int

xsd:unsignedInt

xsd:long

xsd:unsignedLong

xsd:short

xsd:unsignedShort

xsd:float

xsd:double

xsd:boolean

xsd:byte

xsd:unsignedByte

xsd:integer

xsd:positiveInteger

<element name="simpleInt" type="xsd:int" />

CHAPTER 2. DEFINING LOGICAL DATA UNITS

15

xsd:negativeInteger

xsd:nonPositiveInteger

xsd:nonNegativeInteger

xsd:decimal

xsd:dateTime

xsd:time

xsd:date

xsd:QName

xsd:base64Binary

xsd:hexBinary

xsd:ID

xsd:token

xsd:language

xsd:Name

xsd:NCName

xsd:NMTOKEN

xsd:anySimpleType

xsd:anyURI

xsd:gYear

xsd:gMonth

xsd:gDay

xsd:gYearMonth

xsd:gMonthDay

2.4. DEFINING COMPLEX DATA TYPES

XML Schema provides a flexible and powerful mechanism for building complex data structures from its
simple data types. You can create data structures by creating a sequence of elements and attributes.
You can also extend your defined types to create even more complex types.

In addition to building complex data structures, you can also describe specialized types such as
enumerated types, data types that have a specific range of values, or data types that need to follow
certain patterns by either extending or restricting the primitive types.

2.4.1. Defining data structures

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

16

In XML Schema, data units that are a collection of data fields are defined using complexType
elements. Specifying a complex type requires three pieces of information:

1. The name of the defined type is specified in the name attribute of the complexType element.

2. The first child element of the complexType describes the behavior of the structure’s fields
when it is put on the wire. See the section called “Complex type varieties” .

3. Each of the fields of the defined structure are defined in element elements that are
grandchildren of the complexType element. See the section called “Defining the parts of a
structure”.

For example, the structure shown in Example 2.3, “Simple Structure” is be defined in XML Schema as a
complex type with two elements.

Example 2.3. Simple Structure

Example 2.4, “A complex type” shows one possible XML Schema mapping for the structure shown in
Example 2.3, “Simple Structure” .

Example 2.4. A complex type

Complex type varieties

XML Schema has three ways of describing how the fields of a complex type are organized when
represented as an XML document and passed on the wire. The first child element of the complexType
element determines which variety of complex type is being used. Table 2.1, “Complex type descriptor
elements” shows the elements used to define complex type behavior.

Table 2.1. Complex type descriptor elements

Element Complex Type Behavior

sequence All the complex type’s fields must be present and
they must be in the exact order they are specified in
the type definition.

struct personalInfo
{
 string name;
 int age;
};

<complexType name="personalInfo">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="age" type="xsd:int" />
 </sequence>
</complexType>

CHAPTER 2. DEFINING LOGICAL DATA UNITS

17

all All of the complex type’s fields must be present but
they can be in any order.

choice Only one of the elements in the structure can be
placed in the message.

Element Complex Type Behavior

If a sequence element, an all element, or a choice is not specified, then a sequence is assumed.
For example, the structure defined in Example 2.4, “A complex type” generates a message containing
two elements: name and age.

If the structure is defined using a choice element, as shown in Example 2.5, “Simple complex choice
type”, it generates a message with either a name element or an age element.

Example 2.5. Simple complex choice type

Defining the parts of a structure

You define the data fields that make up a structure using element elements. Every complexType
element should contain at least one element element. Each element element in the complexType
element represents a field in the defined data structure.

To fully describe a field in a data structure, element elements have two required attributes:

The name attribute specifies the name of the data field and it must be unique within the
defined complex type.

The type attribute specifies the type of the data stored in the field. The type can be either one
of the XML Schema simple types, or any named complex type that is defined in the contract.

In addition to name and type, element elements have two other commonly used optional attributes:
minOcurrs and maxOccurs. These attributes place bounds on the number of times the field occurs in
the structure. By default, each field occurs only once in a complex type. Using these attributes, you can
change how many times a field must or can appear in a structure. For example, you can define a field,
previousJobs, that must occur at least three times, and no more than seven times, as shown in
Example 2.6, “Simple complex type with occurrence constraints” .

Example 2.6. Simple complex type with occurrence constraints

<complexType name="personalInfo">
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>
 </choice>
</complexType>

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int"/>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

18

You can also use the minOccurs to make the age field optional by setting the minOccurs to zero as
shown in Example 2.7, “Simple complex type with minOccurs set to zero” . In this case age can be
omitted and the data will still be valid.

Example 2.7. Simple complex type with minOccurs set to zero

Defining attributes

In XML documents attributes are contained in the element’s tag. For example, in the complexType
element name is an attribute. They are specified using the attribute element. It comes after the
all, sequence, or choice element and are a direct child of the complexType element. Example 2.8,
“Complex type with an attribute” shows a complex type with an attribute.

Example 2.8. Complex type with an attribute

The attribute element has three attributes:

name — A required attribute that specifies the string identifying the attribute.

type — Specifies the type of the data stored in the field. The type can be one of the XML
Schema simple types.

use — Specifies if the attribute is required or optional. Valid values are required or
optional.

If you specify that the attribute is optional you can add the optional attribute default. The default
attribute allows you to specify a default value for the attribute.

 <element name="previousJobs" type="xsd:string:
 minOccurs="3" maxOccurs="7"/>
 </all>
</complexType>

<complexType name="personalInfo>
 <choice>
 <element name="name" type="xsd:string"/>
 <element name="age" type="xsd:int" minOccurs="0"/>
 </choice>
</complexType>

<complexType name="personalInfo>
 <all>
 <element name="name" type="xsd:string"/>
 <element name="previousJobs" type="xsd:string"
 minOccurs="3" maxOccurs="7"/>
 </all>
 <attribute name="age" type="xsd:int" use="optional" />
</complexType>

CHAPTER 2. DEFINING LOGICAL DATA UNITS

19

2.4.2. Defining arrays

Apache CXF supports two methods for defining arrays in a contract. The first is define a complex type
with a single element whose maxOccurs attribute has a value greater than one. The second is to use
SOAP arrays. SOAP arrays provide added functionality such as the ability to easily define multi-
dimensional arrays and to transmit sparsely populated arrays.

Complex type arrays

Complex type arrays are a special case of a sequence complex type. You simply define a complex type
with a single element and specify a value for the maxOccurs attribute. For example, to define an array
of twenty floating point numbers you use a complex type similar to the one shown in Example 2.9,
“Complex type array”.

Example 2.9. Complex type array

You can also specify a value for the minOccurs attribute.

SOAP arrays

SOAP arrays are defined by deriving from the SOAP-ENC:Array base type using the wsdl:arrayType
element. The syntax for this is shown in Example 2.10, “Syntax for a SOAP array derived using
wsdl:arrayType”.

Example 2.10. Syntax for a SOAP array derived using wsdl:arrayType

Using this syntax, TypeName specifies the name of the newly-defined array type. ElementType specifies
the type of the elements in the array. ArrayBounds specifies the number of dimensions in the array. To
specify a single dimension array use []; to specify a two-dimensional array use either [][] or [,].

For example, the SOAP Array, SOAPStrings, shown in Example 2.11, “Definition of a SOAP array” ,
defines a one-dimensional array of strings. The wsdl:arrayType attribute specifies the type of the
array elements, xsd:string, and the number of dimensions, with [] implying one dimension.

Example 2.11. Definition of a SOAP array

<complexType name="personalInfo">
 <element name="averages" type="xsd:float" maxOccurs="20"/>
</complexType>

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="ElementType<ArrayBounds>"/>
 </restriction>
 </complexContent>
</complexType>

<complexType name="SOAPStrings">
 <complexContent>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

20

You can also describe a SOAP Array using a simple element as described in the SOAP 1.1 specification.
The syntax for this is shown in Example 2.12, “Syntax for a SOAP array derived using an element” .

Example 2.12. Syntax for a SOAP array derived using an element

When using this syntax, the element's maxOccurs attribute must always be set to unbounded.

2.4.3. Defining types by extension

Like most major coding languages, XML Schema allows you to create data types that inherit some of
their elements from other data types. This is called defining a type by extension. For example, you
could create a new type called alienInfo, that extends the personalInfo structure defined in
Example 2.4, “A complex type” by adding a new element called planet.

Types defined by extension have four parts:

1. The name of the type is defined by the name attribute of the complexType element.

2. The complexContent element specifies that the new type will have more than one element.

NOTE

If you are only adding new attributes to the complex type, you can use a
simpleContent element.

3. The type from which the new type is derived, called the base type, is specified in the base
attribute of the extension element.

4. The new type’s elements and attributes are defined in the extension element, the same as
they are for a regular complex type.

For example, alienInfo is defined as shown in Example 2.13, “Type defined by extension” .

 <restriction base="SOAP-ENC:Array">
 <attribute ref="SOAP-ENC:arrayType"
 wsdl:arrayType="xsd:string[]"/>
 </restriction>
 </complexContent>
</complexType>

<complexType name="TypeName">
 <complexContent>
 <restriction base="SOAP-ENC:Array">
 <sequence>
 <element name="ElementName" type="ElementType"
 maxOccurs="unbounded"/>
 </sequence>
 </restriction>
 </complexContent>
</complexType>

CHAPTER 2. DEFINING LOGICAL DATA UNITS

21

Example 2.13. Type defined by extension

2.4.4. Defining types by restriction

XML Schema allows you to create new types by restricting the possible values of an XML Schema
simple type. For example, you can define a simple type, SSN, which is a string of exactly nine
characters. New types defined by restricting simple types are defined using a simpleType element.

The definition of a type by restriction requires three things:

1. The name of the new type is specified by the name attribute of the simpleType element.

2. The simple type from which the new type is derived, called the base type, is specified in the
restriction element. See the section called “Specifying the base type” .

3. The rules, called facets, defining the restrictions placed on the base type are defined as
children of the restriction element. See the section called “Defining the restrictions” .

Specifying the base type

The base type is the type that is being restricted to define the new type. It is specified using a
restriction element. The restriction element is the only child of a simpleType element and
has one attribute, base, that specifies the base type. The base type can be any of the XML Schema
simple types.

For example, to define a new type by restricting the values of an xsd:int you use a definition like the
one shown in Example 2.14, “Using int as the base type” .

Example 2.14. Using int as the base type

Defining the restrictions

The rules defining the restrictions placed on the base type are called facets. Facets are elements with
one attribute, value, that defines how the facet is enforced. The available facets and their valid value
settings depend on the base type. For example, xsd:string supports six facets, including:

<complexType name="alienInfo">
 <complexContent>
 <extension base="personalInfo">
 <sequence>
 <element name="planet" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
</complexType>

<simpleType name="restrictedInt">
 <restriction base="xsd:int">
 ...
 </restriction>
</simpleType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

22

length

minLength

maxLength

pattern

whitespace

enumeration

Each facet element is a child of the restriction element.

Example

Example 2.15, “SSN simple type description” shows an example of a simple type, SSN, which represents
a social security number. The resulting type is a string of the form xxx-xx-xxxx. <SSN>032-43-
9876<SSN> is a valid value for an element of this type, but <SSN>032439876</SSN> is not.

Example 2.15. SSN simple type description

2.4.5. Defining enumerated types

Enumerated types in XML Schema are a special case of definition by restriction. They are described by
using the enumeration facet which is supported by all XML Schema primitive types. As with
enumerated types in most modern programming languages, a variable of this type can only have one of
the specified values.

Defining an enumeration in XML Schema

The syntax for defining an enumeration is shown in Example 2.16, “Syntax for an enumeration”.

Example 2.16. Syntax for an enumeration

EnumName specifies the name of the enumeration type. EnumType specifies the type of the case

<simpleType name="SSN">
 <restriction base="xsd:string">
 <pattern value="\d{3}-\d{2}-\d{4}"/>
 </restriction>
</simpleType>

<simpleType name="EnumName">
 <restriction base="EnumType">
 <enumeration value="Case1Value"/>
 <enumeration value="Case2Value"/>
 ...
 <enumeration value="CaseNValue"/>
 </restriction>
</simpleType>

CHAPTER 2. DEFINING LOGICAL DATA UNITS

23

values. CaseNValue, where N is any number one or greater, specifies the value for each specific case of
the enumeration. An enumerated type can have any number of case values, but because it is derived
from a simple type, only one of the case values is valid at a time.

Example

For example, an XML document with an element defined by the enumeration widgetSize, shown in
Example 2.17, “widgetSize enumeration”, would be valid if it contained <widgetSize>big</widgetSize>,
but it would not be valid if it contained <widgetSize>big,mungo</widgetSize>.

Example 2.17. widgetSize enumeration

2.5. DEFINING ELEMENTS

Elements in XML Schema represent an instance of an element in an XML document generated from
the schema. The most basic element consists of a single element element. Like the element element
used to define the members of a complex type, they have three attributes:

name — A required attribute that specifies the name of the element as it appears in an XML
document.

type — Specifies the type of the element. The type can be any XML Schema primitive type or
any named complex type defined in the contract. This attribute can be omitted if the type has
an in-line definition.

nillable — Specifies whether an element can be omitted from a document entirely. If
nillable is set to true, the element can be omitted from any document generated using the
schema.

An element can also have an in-line type definition. In-line types are specified using either a
complexType element or a simpleType element. Once you specify if the type of data is complex or
simple, you can define any type of data needed using the tools available for each type of data. In-line
type definitions are discouraged because they are not reusable.

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 </restriction>
</simpleType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

24

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A
SERVICE

Abstract

A service is defined by the messages exchanged when its operations are invoked. In a WSDL contract
these messages are defined using message element. The messages are made up of one or more parts
that are defined using part elements.

A service’s operations are defined by specifying the logical messages that are exchanged when an
operation is invoked. These logical messages define the data that is passed over a network as an XML
document. They contain all of the parameters that are a part of a method invocation.

Logical messages are defined using the message element in your contracts. Each logical message
consists of one or more parts, defined in part elements.

TIP

While your messages can list each parameter as a separate part, the recommended practice is to use
only a single part that encapsulates the data needed for the operation.

MESSAGES AND PARAMETER LISTS

Each operation exposed by a service can have only one input message and one output message. The
input message defines all of the information the service receives when the operation is invoked. The
output message defines all of the data that the service returns when the operation is completed. Fault
messages define the data that the service returns when an error occurs.

In addition, each operation can have any number of fault messages. The fault messages define the data
that is returned when the service encounters an error. These messages usually have only one part that
provides enough information for the consumer to understand the error.

MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS

If you are defining an existing application as a service, you must ensure that each parameter used by
the method implementing the operation is represented in a message. You must also ensure that the
return value is included in the operation’s output message.

One approach to defining your messages is RPC style. When using RPC style, you define the messages
using one part for each parameter in the method’s parameter list. Each message part is based on a
type defined in the types element of the contract. Your input message contains one part for each
input parameter in the method. Your output message contains one part for each output parameter,
plus a part to represent the return value, if needed. If a parameter is both an input and an output
parameter, it is listed as a part for both the input message and the output message.

RPC style message definition is useful when service enabling legacy systems that use transports such
as Tibco or CORBA. These systems are designed around procedures and methods. As such, they are
easiest to model using messages that resemble the parameter lists for the operation being invoked.
RPC style also makes a cleaner mapping between the service and the application it is exposing.

MESSAGE DESIGN FOR SOAP SERVICES

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE

25

While RPC style is useful for modeling existing systems, the service’s community strongly favors the
wrapped document style. In wrapped document style, each message has a single part. The message’s
part references a wrapper element defined in the types element of the contract. The wrapper element
has the following characteristics:

It is a complex type containing a sequence of elements. For more information see Section 2.4,
“Defining complex data types”.

If it is a wrapper for an input message:

It has one element for each of the method’s input parameters.

Its name is the same as the name of the operation with which it is associated.

If it is a wrapper for an output message:

It has one element for each of the method’s output parameters and one element for each of
the method’s inout parameters.

Its first element represents the method’s return parameter.

Its name would be generated by appending Response to the name of the operation with
which the wrapper is associated.

MESSAGE NAMING

Each message in a contract must have a unique name within its namespace. It is recommended that
you use the following naming conventions:

Messages should only be used by a single operation.

Input message names are formed by appending Request to the name of the operation.

Output message names are formed by appending Response to the name of the operation.

Fault message names should represent the reason for the fault.

MESSAGE PARTS

Message parts are the formal data units of the logical message. Each part is defined using a part
element, and is identified by a name attribute and either a type attribute or an element attribute that
specifies its data type. The data type attributes are listed in Table 3.1, “Part data type attributes” .

Table 3.1. Part data type attributes

Attribute Description

element="elem_name" The data type of the part is defined by an element
called elem_name.

type="type_name" The data type of the part is defined by a type called
type_name.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

26

Messages are allowed to reuse part names. For instance, if a method has a parameter, foo, that is
passed by reference or is an in/out, it can be a part in both the request message and the response
message, as shown in Example 3.1, “Reused part” .

Example 3.1. Reused part

EXAMPLE

For example, imagine you had a server that stored personal information and provided a method that
returned an employee’s data based on the employee's ID number. The method signature for looking up
the data is similar to Example 3.2, “personalInfo lookup method” .

Example 3.2. personalInfo lookup method

This method signature can be mapped to the RPC style WSDL fragment shown in Example 3.3, “RPC
WSDL message definitions”.

Example 3.3. RPC WSDL message definitions

It can also be mapped to the wrapped document style WSDL fragment shown in Example 3.4, “Wrapped
document WSDL message definitions”.

Example 3.4. Wrapped document WSDL message definitions

<message name="fooRequest">
 <part name="foo" type="xsd:int"/>
<message>
<message name="fooReply">
 <part name="foo" type="xsd:int"/>
<message>

personalInfo lookup(long empId)

<message name="personalLookupRequest">
 <part name="empId" type="xsd:int"/>
<message/>
<message name="personalLookupResponse>
 <part name="return" element="xsd1:personalInfo"/>
<message/>

<types>
 <schema ... >
 ...
 <element name="personalLookup">
 <complexType>
 <sequence>
 <element name="empID" type="xsd:int" />
 </sequence>
 </complexType>

CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE

27

 </element>
 <element name="personalLookupResponse">
 <complexType>
 <sequence>
 <element name="return" type="personalInfo" />
 </sequence>
 </complexType>
 </element>
 </schema>
</types>
<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

28

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES

Abstract

Logical service interfaces are defined using the portType element.

Logical service interfaces are defined using the WSDL portType element. The portType element is a
collection of abstract operation definitions. Each operation is defined by the input, output, and fault
messages used to complete the transaction the operation represents. When code is generated to
implement the service interface defined by a portType element, each operation is converted into a
method containing the parameters defined by the input, output, and fault messages specified in the
contract.

PROCESS

To define a logical interface in a WSDL contract you must do the following:

1. Create a portType element to contain the interface definition and give it a unique name. See
the section called “Port types” .

2. Create an operation element for each operation defined in the interface. See the section
called “Operations”.

3. For each operation, specify the messages used to represent the operation’s parameter list,
return type, and exceptions. See the section called “Operation messages” .

PORT TYPES

A WSDL portType element is the root element in a logical interface definition. While many Web
service implementations map portType elements directly to generated implementation objects, a
logical interface definition does not specify the exact functionality provided by the the implemented
service. For example, a logical interface named ticketSystem can result in an implementation that
either sells concert tickets or issues parking tickets.

The portType element is the unit of a WSDL document that is mapped into a binding to define the
physical data used by an endpoint exposing the defined service.

Each portType element in a WSDL document must have a unique name, which is specified using the
name attribute, and is made up of a collection of operations, which are described in operation
elements. A WSDL document can describe any number of port types.

OPERATIONS

Logical operations, defined using WSDL operation elements, define the interaction between two
endpoints. For example, a request for a checking account balance and an order for a gross of widgets
can both be defined as operations.

Each operation defined within a portType element must have a unique name, specified using the name
attribute. The name attribute is required to define an operation.

OPERATION MESSAGES

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES

29

Logical operations are made up of a set of elements representing the logical messages communicated
between the endpoints to execute the operation. The elements that can describe an operation are
listed in Table 4.1, “Operation message elements” .

Table 4.1. Operation message elements

Element Description

input Specifies the message the client endpoint sends to
the service provider when a request is made. The
parts of this message correspond to the input
parameters of the operation.

output Specifies the message that the service provider
sends to the client endpoint in response to a
request. The parts of this message correspond to
any operation parameters that can be changed by
the service provider, such as values passed by
reference. This includes the return value of the
operation.

fault Specifies a message used to communicate an error
condition between the endpoints.

An operation is required to have at least one input or one output element. An operation can have
both input and output elements, but it can only have one of each. Operations are not required to
have any fault elements, but can, if required, have any number of fault elements.

The elements have the two attributes listed in Table 4.2, “Attributes of the input and output elements” .

Table 4.2. Attributes of the input and output elements

Attribute Description

name Identifies the message so it can be referenced when
mapping the operation to a concrete data format.
The name must be unique within the enclosing port
type.

message Specifies the abstract message that describes the
data being sent or received. The value of the
message attribute must correspond to the name
attribute of one of the abstract messages defined in
the WSDL document.

It is not necessary to specify the name attribute for all input and output elements; WSDL provides a
default naming scheme based on the enclosing operation’s name. If only one element is used in the
operation, the element name defaults to the name of the operation. If both an input and an output
element are used, the element name defaults to the name of the operation with either Request or
Response respectively appended to the name.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

30

RETURN VALUES

Because the operation element is an abstract definition of the data passed during an operation,
WSDL does not provide for return values to be specified for an operation. If a method returns a value it
will be mapped into the output element as the last part of that message.

EXAMPLE

For example, you might have an interface similar to the one shown in Example 4.1, “personalInfo
lookup interface”.

Example 4.1. personalInfo lookup interface

This interface can be mapped to the port type in Example 4.2, “personalInfo lookup port type” .

Example 4.2. personalInfo lookup port type

interface personalInfoLookup
{
 personalInfo lookup(in int empID)
 raises(idNotFound);
}

<message name="personalLookupRequest">
 <part name="empId" element="xsd1:personalLookup"/>
<message/>
<message name="personalLookupResponse">
 <part name="return" element="xsd1:personalLookupResponse"/>
<message/>
<message name="idNotFoundException">
 <part name="exception" element="xsd1:idNotFound"/>
<message/>
<portType name="personalInfoLookup">
 <operation name="lookup">
 <input name="empID" message="personalLookupRequest"/>
 <output name="return" message="personalLookupResponse"/>
 <fault name="exception" message="idNotFoundException"/>
 </operation>
</portType>

CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES

31

PART II. WEB SERVICES BINDINGS

Abstract

This part describes how to add Apache CXF bindings to a WSDL document.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

32

CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL

Abstract

Bindings map the logical messages used to define a service into a concrete payload format that can be
transmitted and received by an endpoint.

OVERVIEW

Bindings provide a bridge between the logical messages used by a service to a concrete data format
that an endpoint uses in the physical world. They describe how the logical messages are mapped into a
payload format that is used on the wire by an endpoint. It is within the bindings that details such as
parameter order, concrete data types, and return values are specified. For example, the parts of a
message can be reordered in a binding to reflect the order required by an RPC call. Depending on the
binding type, you can also identify which of the message parts, if any, represent the return type of a
method.

PORT TYPES AND BINDINGS

Port types and bindings are directly related. A port type is an abstract definition of a set of interactions
between two logical services. A binding is a concrete definition of how the messages used to
implement the logical services will be instantiated in the physical world. Each binding is then
associated with a set of network details that finish the definition of one endpoint that exposes the
logical service defined by the port type.

To ensure that an endpoint defines only a single service, WSDL requires that a binding can only
represent a single port type. For example, if you had a contract with two port types, you could not write
a single binding that mapped both of them into a concrete data format. You would need two bindings.

However, WSDL allows for a port type to be mapped to several bindings. For example, if your contract
had a single port type, you could map it into two or more bindings. Each binding could alter how the
parts of the message are mapped or they could specify entirely different payload formats for the
message.

THE WSDL ELEMENTS

Bindings are defined in a contract using the WSDL binding element. The binding element has a single
attribute, name, that specifies a unique name for the binding. The value of this attribute is used to
associate the binding with an endpoint as discussed in Chapter 4, Defining Your Logical Interfaces.

The actual mappings are defined in the children of the binding element. These elements vary
depending on the type of payload format you decide to use. The different payload formats and the
elements used to specify their mappings are discussed in the following chapters.

ADDING TO A CONTRACT

Apache CXF provides command line tools that can generate bindings for predefined service interfaces.

The tools will add the proper elements to your contract for you. However, it is recommended that you
have some knowledge of how the different types of bindings work.

CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL

33

You can also add a binding to a contract using any text editor. When hand editing a contract, you are
responsible for ensuring that the contract is valid.

SUPPORTED BINDINGS

Apache CXF supports the following bindings:

SOAP 1.1

SOAP 1.2

CORBA

Pure XML

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

34

CHAPTER 6. USING SOAP 1.1 MESSAGES

Abstract

Apache CXF provides a tool to generate a SOAP 1.1 binding which does not use any SOAP headers.
However, you can add SOAP headers to your binding using any text or XML editor.

6.1. ADDING A SOAP 1.1 BINDING

NOTE

To use wsdl2soap you will need to download the Apache CXF distribution.

Using wsdl2soap

To generate a SOAP 1.1 binding using wsdl2soap use the following command:

wsdl2soap { -i port-type-name } [-b binding-name] [-d output-directory] [-o output-file] [-n soap-
body-namespace] [-style (document/rpc)] [-use (literal/encoded)] [-v] [[-verbose] | [-quiet]]
wsdlurl

The command has the following options:

Option Interpretation

-i port-type-name Specifies the portType element for which a
binding is generated.

wsdlurl The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option Interpretation

-b binding-name Specifies the name of the generated SOAP binding.

-d output-directory Specifies the directory to place the generated WSDL
file.

-o output-file Specifies the name of the generated WSDL file.

-n soap-body-namespace Specifies the SOAP body namespace when the style
is RPC.

-style (document/rpc) Specifies the encoding style (document or RPC) to
use in the SOAP binding. The default is document.

CHAPTER 6. USING SOAP 1.1 MESSAGES

35

-use (literal/encoded) Specifies the binding use (encoded or literal) to use
in the SOAP binding. The default is literal.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

Option Interpretation

The -i port-type-name and wsdlurl arguments are required. If the -style rpc argument is specified,
the -n soap-body-namspace argument is also required. All other arguments are optional and may be
listed in any order.

IMPORTANT

wsdl2soap does not support the generation of document/encoded SOAP bindings.

Example

If your system has an interface that takes orders and offers a single operation to process the orders it
is defined in a WSDL fragment similar to the one shown in Example 6.1, “Ordering System Interface”.

Example 6.1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

36

The SOAP binding generated for orderWidgets is shown in Example 6.2, “SOAP 1.1 Binding for
orderWidgets”.

Example 6.2. SOAP 1.1 Binding for orderWidgets

This binding specifies that messages are sent using the document/literal message style.

6.2. ADDING SOAP HEADERS TO A SOAP 1.1 BINDING

Overview

SOAP headers are defined by adding soap:header elements to your default SOAP 1.1 binding. The
soap:header element is an optional child of the input, output, and fault elements of the binding.
The SOAP header becomes part of the parent message. A SOAP header is defined by specifying a
message and a message part. Each SOAP header can only contain one message part, but you can insert
as many SOAP headers as needed.

Syntax

The syntax for defining a SOAP header is shown in Example 6.3, “SOAP Header Syntax”. The message
attribute of soap:header is the qualified name of the message from which the part being inserted into
the header is taken. The part attribute is the name of the message part inserted into the SOAP
header. Because SOAP headers are always document style, the WSDL message part inserted into the
SOAP header must be defined using an element. Together the message and the part attributes fully
describe the data to insert into the SOAP header.

Example 6.3. SOAP Header Syntax

 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal"/>
 </input>
 <output name="bill">
 <soap:body use="literal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>

CHAPTER 6. USING SOAP 1.1 MESSAGES

37

As well as the mandatory message and part attributes, soap:header also supports the namespace,
the use, and the encodingStyle attributes. These optional attributes function the same for
soap:header as they do for soap:body.

Splitting messages between body and header

The message part inserted into the SOAP header can be any valid message part from the contract. It
can even be a part from the parent message which is being used as the SOAP body. Because it is
unlikely that you would want to send information twice in the same message, the SOAP binding
provides a means for specifying the message parts that are inserted into the SOAP body.

The soap:body element has an optional attribute, parts, that takes a space delimited list of part
names. When parts is defined, only the message parts listed are inserted into the SOAP body. You can
then insert the remaining parts into the SOAP header.

NOTE

When you define a SOAP header using parts of the parent message, Apache CXF
automatically fills in the SOAP headers for you.

Example

Example 6.4, “SOAP 1.1 Binding with a SOAP Header” shows a modified version of the orderWidgets
service shown in Example 6.1, “Ordering System Interface”. This version has been modified so that
each order has an xsd:base64binary value placed in the SOAP header of the request and response. The
SOAP header is defined as being the keyVal part from the widgetKey message. In this case you are
responsible for adding the SOAP header to your application logic because it is not part of the input or
output message.

Example 6.4. SOAP 1.1 Binding with a SOAP Header

<binding name="headwig">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="weave">
 <soap:operation soapAction="" style="document"/>
 <input name="grain">
 <soap:body ... />
 <soap:header message="QName" part="partName"/>
 </input>
...
</binding>

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

38

You can modify Example 6.4, “SOAP 1.1 Binding with a SOAP Header” so that the header value is a part
of the input and output messages as shown in Example 6.5, “SOAP 1.1 Binding for orderWidgets with a
SOAP Header”. In this case keyVal is a part of the input and output messages. In the soap:body

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body use="literal"/>
 <soap:header message="tns:widgetKey" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

CHAPTER 6. USING SOAP 1.1 MESSAGES

39

element's parts attribute specifies that keyVal cannot be inserted into the body. However, it is
inserted into the SOAP header.

Example 6.5. SOAP 1.1 Binding for orderWidgets with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap:operation soapAction="" style="document"/>
 <input name="order">
 <soap:body use="literal" parts="numOrdered"/>
 <soap:header message="tns:widgetOrder" part="keyVal"/>
 </input>
 <output name="bill">
 <soap:body use="literal" parts="bill"/>
 <soap:header message="tns:widgetOrderBill" part="keyVal"/>
 </output>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

40

 <fault name="sizeFault">
 <soap:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

CHAPTER 6. USING SOAP 1.1 MESSAGES

41

CHAPTER 7. USING SOAP 1.2 MESSAGES

Abstract

Apache CXF provides tools to generate a SOAP 1.2 binding which does not use any SOAP headers. You
can add SOAP headers to your binding using any text or XML editor.

7.1. ADDING A SOAP 1.2 BINDING TO A WSDL DOCUMENT

Using wsdl2soap

NOTE

To use wsdl2soap you will need to download the Apache CXF distribution.

To generate a SOAP 1.2 binding using wsdl2soap use the following command:

wsdl2soap { -i port-type-name } [-b binding-name] { -soap12 } [-d output-directory] [-o output-file] [
-n soap-body-namespace] [-style (document/rpc)] [-use (literal/encoded)] [-v] [[-verbose] | [-
quiet]] wsdlurl

The tool has the following required arguments:

Option Interpretation

-i port-type-name Specifies the portType element for which a
binding is generated.

-soap12 Specifies that the generated binding uses SOAP 1.2.

wsdlurl The path and name of the WSDL file containing the
portType element definition.

The tool has the following optional arguments:

Option Interpretation

-b binding-name Specifies the name of the generated SOAP binding.

-soap12 Specifies that the generated binding will use SOAP
1.2.

-d output-directory Specifies the directory to place the generated WSDL
file.

-o output-file Specifies the name of the generated WSDL file.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

42

-n soap-body-namespace Specifies the SOAP body namespace when the style
is RPC.

-style (document/rpc) Specifies the encoding style (document or RPC) to
use in the SOAP binding. The default is document.

-use (literal/encoded) Specifies the binding use (encoded or literal) to use
in the SOAP binding. The default is literal.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

Option Interpretation

The -i port-type-name and wsdlurl arguments are required. If the -style rpc argument is specified,
the -n soap-body-namspace argument is also required. All other arguments are optional and can be
listed in any order.

IMPORTANT

wsdl2soap does not support the generation of document/encoded SOAP 1.2 bindings.

Example

If your system has an interface that takes orders and offers a single operation to process the orders it
is defined in a WSDL fragment similar to the one shown in Example 7.1, “Ordering System Interface”.

Example 7.1. Ordering System Interface

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">

CHAPTER 7. USING SOAP 1.2 MESSAGES

43

The SOAP binding generated for orderWidgets is shown in Example 7.2, “SOAP 1.2 Binding for
orderWidgets”.

Example 7.2. SOAP 1.2 Binding for orderWidgets

This binding specifies that messages are sent using the document/literal message style.

7.2. ADDING HEADERS TO A SOAP 1.2 MESSAGE

Overview

SOAP message headers are defined by adding soap12:header elements to your SOAP 1.2 message.
The soap12:header element is an optional child of the input, output, and fault elements of the
binding. The SOAP header becomes part of the parent message. A SOAP header is defined by
specifying a message and a message part. Each SOAP header can only contain one message part, but
you can insert as many headers as needed.

Syntax

The syntax for defining a SOAP header is shown in Example 7.3, “SOAP Header Syntax”.

 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>
...
</definitions>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal"/>
 </input>
 <output name="bill">
 <wsoap12:body use="literal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

44

Example 7.3. SOAP Header Syntax

The soap12:header element’s attributes are described in Table 7.1, “soap12:header Attributes”.

Table 7.1. soap12:header Attributes

Attribute Description

message A required attribute specifying the qualified name of
the message from which the part being inserted into
the header is taken.

part A required attribute specifying the name of the
message part inserted into the SOAP header.

use Specifies if the message parts are to be encoded
using encoding rules. If set to encoded the
message parts are encoded using the encoding rules
specified by the value of the encodingStyle
attribute. If set to literal, the message parts are
defined by the schema types referenced.

encodingStyle Specifies the encoding rules used to construct the
message.

namespace Defines the namespace to be assigned to the header
element serialized with use="encoded".

Splitting messages between body and header

The message part inserted into the SOAP header can be any valid message part from the contract. It
can even be a part from the parent message which is being used as the SOAP body. Because it is
unlikely that you would send information twice in the same message, the SOAP 1.2 binding provides a
means for specifying the message parts that are inserted into the SOAP body.

<binding name="headwig">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="weave">
 <soap12:operation soapAction="" style="documment"/>
 <input name="grain">
 <soap12:body ... />
 <soap12:header message="QName" part="partName"
 use="literal|encoded"
 encodingStyle="encodingURI"
 namespace="namespaceURI" />
 </input>
...
</binding>

CHAPTER 7. USING SOAP 1.2 MESSAGES

45

The soap12:body element has an optional attribute, parts, that takes a space delimited list of part
names. When parts is defined, only the message parts listed are inserted into the body of the SOAP
1.2 message. You can then insert the remaining parts into the message's header.

NOTE

When you define a SOAP header using parts of the parent message, Apache CXF
automatically fills in the SOAP headers for you.

Example

Example 7.4, “SOAP 1.2 Binding with a SOAP Header” shows a modified version of the orderWidgets
service shown in Example 7.1, “Ordering System Interface”. This version is modified so that each order
has an xsd:base64binary value placed in the header of the request and the response. The header is
defined as being the keyVal part from the widgetKey message. In this case you are responsible for
adding the application logic to create the header because it is not part of the input or output message.

Example 7.4. SOAP 1.2 Binding with a SOAP Header

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
</message>
<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>
<message name="widgetKey">
 <part name="keyVal" element="xsd1:keyElem"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

46

You can modify Example 7.4, “SOAP 1.2 Binding with a SOAP Header” so that the header value is a part
of the input and output messages, as shown in Example 7.5, “SOAP 1.2 Binding for orderWidgets with a
SOAP Header”. In this case keyVal is a part of the input and output messages. In the soap12:body
elements the parts attribute specifies that keyVal should not be inserted into the body. However, it
is inserted into the header.

Example 7.5. SOAP 1.2 Binding for orderWidgets with a SOAP Header

 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal"/>
 <soap12:header message="tns:widgetKey" part="keyVal"/>
 </input>
 <output name="bill">
 <soap12:body use="literal"/>
 <soap12:header message="tns:widgetKey" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="widgetOrderForm.wsdl"
 targetNamespace="http://widgetVendor.com/widgetOrderForm"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://widgetVendor.com/widgetOrderForm"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsd1="http://widgetVendor.com/types/widgetTypes"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">

<types>
 <schema targetNamespace="http://widgetVendor.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <element name="keyElem" type="xsd:base64Binary"/>
 </schema>
</types>

<message name="widgetOrder">
 <part name="numOrdered" type="xsd:int"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>

CHAPTER 7. USING SOAP 1.2 MESSAGES

47

<message name="widgetOrderBill">
 <part name="price" type="xsd:float"/>
 <part name="keyVal" element="xsd1:keyElem"/>
</message>
<message name="badSize">
 <part name="numInventory" type="xsd:int"/>
</message>

<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 <fault message="tns:badSize" name="sizeFault"/>
 </operation>
</portType>

<binding name="orderWidgetsBinding" type="tns:orderWidgets">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="placeWidgetOrder">
 <soap12:operation soapAction="" style="document"/>
 <input name="order">
 <soap12:body use="literal" parts="numOrdered"/>
 <soap12:header message="tns:widgetOrder" part="keyVal"/>
 </input>
 <output name="bill">
 <soap12:body use="literal" parts="bill"/>
 <soap12:header message="tns:widgetOrderBill" part="keyVal"/>
 </output>
 <fault name="sizeFault">
 <soap12:body use="literal"/>
 </fault>
 </operation>
</binding>
...
</definitions>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

48

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH
ATTACHMENTS

Abstract

SOAP attachments provide a mechanism for sending binary data as part of a SOAP message. Using
SOAP with attachments requires that you define your SOAP messages as MIME multipart messages.

OVERVIEW

SOAP messages generally do not carry binary data. However, the W3C SOAP 1.1 specification allows
for using MIME multipart/related messages to send binary data in SOAP messages. This technique is
called using SOAP with attachments. SOAP attachments are defined in the W3C's SOAP Messages with
Attachments Note.

NAMESPACE

The WSDL extensions used to define the MIME multipart/related messages are defined in the
namespace http://schemas.xmlsoap.org/wsdl/mime/.

In the discussion that follows, it is assumed that this namespace is prefixed with mime. The entry in the
WSDL definitions element to set this up is shown in Example 8.1, “MIME Namespace Specification
in a Contract”.

Example 8.1. MIME Namespace Specification in a Contract

CHANGING THE MESSAGE BINDING

In a default SOAP binding, the first child element of the input, output, and fault elements is a
soap:body element describing the body of the SOAP message representing the data. When using
SOAP with attachments, the soap:body element is replaced with a mime:multipartRelated
element.

NOTE

WSDL does not support using mime:multipartRelated for fault messages.

The mime:multipartRelated element tells Apache CXF that the message body is a multipart
message that potentially contains binary data. The contents of the element define the parts of the
message and their contents. mime:multipartRelated elements contain one or more mime:part
elements that describe the individual parts of the message.

The first mime:part element must contain the soap:body element that would normally appear in a
default SOAP binding. The remaining mime:part elements define the attachments that are being sent
in the message.

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS

49

http://www.w3.org/TR/SOAP-attachments

DESCRIBING A MIME MULTIPART MESSAGE

MIME multipart messages are described using a mime:multipartRelated element that contains a
number of mime:part elements. To fully describe a MIME multipart message you must do the
following:

1. Inside the input or output message you are sending as a MIME multipart message, add a
mime:mulipartRelated element as the first child element of the enclosing message.

2. Add a mime:part child element to the mime:multipartRelated element and set its name
attribute to a unique string.

3. Add a soap:body element as the child of the mime:part element and set its attributes
appropriately.

TIP

If the contract had a default SOAP binding, you can copy the soap:body element from the
corresponding message from the default binding into the MIME multipart message.

4. Add another mime:part child element to the mime:multipartReleated element and set
its name attribute to a unique string.

5. Add a mime:content child element to the mime:part element to describe the contents of
this part of the message.

To fully describe the contents of a MIME message part the mime:content element has the
following attributes:

Table 8.1. mime:content Attributes

Attribute Description

part Specifies the name of the WSDL message part,
from the parent message definition, that is used
as the content of this part of the MIME multipart
message being placed on the wire.

type The MIME type of the data in this message part.
MIME types are defined as a type and a subtype
using the syntax type/subtype.

There are a number of predefined MIME types
such as image/jpeg and text/plain. The
MIME types are maintained by the Internet
Assigned Numbers Authority (IANA) and
described in detail in Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet
Message Bodies and Multipurpose Internet Mail
Extensions (MIME) Part Two: Media Types.

6. For each additional MIME part, repeat steps Step 4 and Step 5.

EXAMPLE

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

50

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

Example 8.2, “Contract using SOAP with Attachments” shows a WSDL fragment defining a service that
stores X-rays in JPEG format. The image data, xRay, is stored as an xsd:base64binary and is packed
into the MIME multipart message's second part, imageData. The remaining two parts of the input
message, patientName and patientNumber, are sent in the first part of the MIME multipart image
as part of the SOAP body.

Example 8.2. Contract using SOAP with Attachments

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"
 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <message name="storRequest">
 <part name="patientName" type="xsd:string"/>
 <part name="patientNumber" type="xsd:int"/>
 <part name="xRay" type="xsd:base64Binary"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>

 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>

 <binding name="xRayStorageBinding" type="tns:xRayStorage">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap:operation soapAction="" style="document"/>
 <input name="storRequest">
 <mime:multipartRelated>
 <mime:part name="bodyPart">
 <soap:body use="literal"/>
 </mime:part>
 <mime:part name="imageData">
 <mime:content part="xRay" type="image/jpeg"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 <output name="storResponse">
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="xRayStorageService">
 <port binding="tns:xRayStorageBinding" name="xRayStoragePort">

CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS

51

 <soap:address location="http://localhost:9000"/>
 </port>
 </service>
</definitions>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

52

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

Abstract

SOAP Message Transmission Optimization Mechanism (MTOM) replaces SOAP with attachments as a
mechanism for sending binary data as part of an XML message. Using MTOM with Apache CXF requires
adding the correct schema types to a service's contract and enabling the MTOM optimizations.

SOAP Message Transmission Optimization Mechanism (MTOM) specifies an optimized method for
sending binary data as part of a SOAP message. Unlike SOAP with Attachments, MTOM requires the
use of XML-binary Optimized Packaging (XOP) packages for transmitting binary data. Using MTOM to
send binary data does not require you to fully define the MIME Multipart/Related message as part of
the SOAP binding. It does, however, require that you do the following:

1. Annotate the data that you are going to send as an attachment.

You can annotate either your WSDL or the Java class that implements your data.

2. Enable the runtime's MTOM support.

This can be done either programmatically or through configuration.

3. Develop a DataHandler for the data being passed as an attachment.

NOTE

Developing DataHandlers is beyond the scope of this book.

9.1. ANNOTATING DATA TYPES TO USE MTOM

Overview

In WSDL, when defining a data type for passing along a block of binary data, such as an image file or a
sound file, you define the element for the data to be of type xsd:base64Binary. By default, any element
of type xsd:base64Binary results in the generation of a byte[] which can be serialized using MTOM.
However, the default behavior of the code generators does not take full advantage of the serialization.

In order to fully take advantage of MTOM you must add annotations to either your service's WSDL
document or the JAXB class that implements the binary data structure. Adding the annotations to the
WSDL document forces the code generators to generate streaming data handlers for the binary data.
Annotating the JAXB class involves specifying the proper content types and might also involve
changing the type specification of the field containing the binary data.

WSDL first

Example 9.1, “Message for MTOM” shows a WSDL document for a Web service that uses a message
which contains one string field, one integer field, and a binary field. The binary field is intended to carry
a large image file, so it is not appropriate to send it as part of a normal SOAP message.

Example 9.1. Message for MTOM

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XrayStorage"

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

53

If you want to use MTOM to send the binary part of the message as an optimized attachment you must
add the xmime:expectedContentTypes attribute to the element containing the binary data. This
attribute is defined in the http://www.w3.org/2005/05/xmlmime namespace and specifies the MIME
types that the element is expected to contain. You can specify a comma separated list of MIME types.

 targetNamespace="http://mediStor.org/x-rays"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://mediStor.org/x-rays"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xsd1="http://mediStor.org/types/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <types>
 <schema targetNamespace="http://mediStor.org/types/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <complexType name="xRayType">
 <sequence>
 <element name="patientName" type="xsd:string" />
 <element name="patientNumber" type="xsd:int" />
 <element name="imageData" type="xsd:base64Binary" />
 </sequence>
 </complexType>
 <element name="xRay" type="xsd1:xRayType" />
 </schema>
 </types>

 <message name="storRequest">
 <part name="record" element="xsd1:xRay"/>
 </message>
 <message name="storResponse">
 <part name="success" type="xsd:boolean"/>
 </message>

 <portType name="xRayStorage">
 <operation name="store">
 <input message="tns:storRequest" name="storRequest"/>
 <output message="tns:storResponse" name="storResponse"/>
 </operation>
 </portType>

 <binding name="xRayStorageSOAPBinding" type="tns:xRayStorage">
 <soap12:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="store">
 <soap12:operation soapAction="" style="document"/>
 <input name="storRequest">
 <soap12:body use="literal"/>
 </input>
 <output name="storResponse">
 <soap12:body use="literal"/>
 </output>
 </operation>
 </binding>
 ...
</definitions>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

54

The setting of this attribute changes how the code generators create the JAXB class for the data. For
most MIME types, the code generator creates a DataHandler. Some MIME types, such as those for
images, have defined mappings.

NOTE

The MIME types are maintained by the Internet Assigned Numbers Authority(IANA) and
are described in detail in Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies and Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types.

TIP

For most uses you specify application/octet-stream.

Example 9.2, “Binary Data for MTOM” shows how you can modify xRayType from Example 9.1,
“Message for MTOM” for using MTOM.

Example 9.2. Binary Data for MTOM

The generated JAXB class generated for xRayType no longer contains a byte[]. Instead the code
generator sees the xmime:expectedContentTypes attribute and generates a DataHandler for the
imageData field.

NOTE

You do not need to change the binding element to use MTOM. The runtime makes the
appropriate changes when the data is sent.

Java first

If you are doing Java first development you can make your JAXB class MTOM ready by doing the
following:

...
 <types>
 <schema targetNamespace="http://mediStor.org/types/"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 <complexType name="xRayType">
 <sequence>
 <element name="patientName" type="xsd:string" />
 <element name="patientNumber" type="xsd:int" />
 <element name="imageData" type="xsd:base64Binary"
 xmime:expectedContentTypes="application/octet-
stream"/>
 </sequence>
 </complexType>
 <element name="xRay" type="xsd1:xRayType" />
 </schema>
 </types>
...

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

55

ftp://ftp.isi.edu/in-notes/rfc2045.txt
ftp://ftp.isi.edu/in-notes/rfc2046.txt

1. Make sure the field holding the binary data is a DataHandler.

2. Add the @XmlMimeType() annotation to the field containing the data you want to stream as
an MTOM attachment.

Example 9.3, “JAXB Class for MTOM” shows a JAXB class annotated for using MTOM.

Example 9.3. JAXB Class for MTOM

9.2. ENABLING MTOM

By default the Apache CXF runtime does not enable MTOM support. It sends all binary data as either
part of the normal SOAP message or as an unoptimized attachment. You can activate MTOM support
either programmatically or through the use of configuration.

9.2.1. Using JAX-WS APIs

Overview

Both service providers and consumers must have the MTOM optimizations enabled. The JAX-WS APIs
offer different mechanisms for each type of endpoint.

Service provider

If you published your service provider using the JAX-WS APIs you enable the runtime's MTOM support
as follows:

1. Access the Endpoint object for your published service.

The easiest way to access the Endpoint object is when you publish the endpoint. For more
information see Chapter 30, Publishing a Service.

2. Get the SOAP binding from the Endpoint using its getBinding() method, as shown in
Example 9.4, “Getting the SOAP Binding from an Endpoint” .

Example 9.4. Getting the SOAP Binding from an Endpoint

@XmlType
public class XRayType {
 protected String patientName;
 protected int patientNumber;
 @XmlMimeType("application/octet-stream")
 protected DataHandler imageData;
 ...
}

// Endpoint ep is declared previously
SOAPBinding binding = (SOAPBinding)ep.getBinding();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

56

You must cast the returned binding object to a SOAPBinding object to access the MTOM
property.

3. Set the binding's MTOM enabled property to true using the binding's setMTOMEnabled()
method, as shown in Example 9.5, “Setting a Service Provider's MTOM Enabled Property” .

Example 9.5. Setting a Service Provider's MTOM Enabled Property

Consumer

To MTOM enable a JAX-WS consumer you must do the following:

1. Cast the consumer's proxy to a BindingProvider object.

TIP

For information on getting a consumer proxy see Chapter 24, Developing a Consumer Without a
WSDL Contract or Chapter 27, Developing a Consumer From a WSDL Contract.

2. Get the SOAP binding from the BindingProvider using its getBinding() method, as
shown in Example 9.6, “Getting a SOAP Binding from a BindingProvider”.

Example 9.6. Getting a SOAP Binding from a BindingProvider

3. Set the bindings MTOM enabled property to true using the binding's setMTOMEnabled()
method, as shown in Example 9.7, “Setting a Consumer's MTOM Enabled Property” .

Example 9.7. Setting a Consumer's MTOM Enabled Property

9.2.2. Using configuration

Overview

If you publish your service using XML, such as when deploying to a container, you can enable your
endpoint's MTOM support in the endpoint's configuration file. For more information on configuring
endpoint's see Part IV, “Configuring Web Service Endpoints” .

Procedure

binding.setMTOMEnabled(true);

// BindingProvider bp declared previously
SOAPBinding binding = (SOAPBinding)bp.getBinding();

binding.setMTOMEnabled(true);

CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM

57

The MTOM property is set inside the jaxws:endpoint element for your endpoint. To enable MTOM
do the following:

1. Add a jaxws:property child element to the endpoint's jaxws:endpoint element.

2. Add a entry child element to the jaxws:property element.

3. Set the entry element's key attribute to mtom-enabled.

4. Set the entry element's value attribute to true.

Example

Example 9.8, “Configuration for Enabling MTOM” shows an endpoint that is MTOM enabled.

Example 9.8. Configuration for Enabling MTOM

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://cxf.apache.org/jaxws
http://cxf.apache.org/schema/jaxws.xsd">

 <jaxws:endpoint id="xRayStorage"
 implementor="demo.spring.xRayStorImpl"
 address="http://localhost/xRayStorage">
 <jaxws:properties>
 <entry key="mtom-enabled" value="true"/>
 </jaxws:properties>
 </jaxws:endpoint>
</beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

58

CHAPTER 10. USING XML DOCUMENTS

Abstract

The pure XML payload format provides an alternative to the SOAP binding by allowing services to
exchange data using straight XML documents without the overhead of a SOAP envelope.

XML BINDING NAMESPACE

The extensions used to describe XML format bindings are defined in the namespace
http://cxf.apache.org/bindings/xformat. Apache CXF tools use the prefix xformat to represent the
XML binding extensions. Add the following line to your contracts:

HAND EDITING

To map an interface to a pure XML payload format do the following:

1. Add the namespace declaration to include the extensions defining the XML binding. See the
section called “XML binding namespace”.

2. Add a standard WSDL binding element to your contract to hold the XML binding, give the
binding a unique name, and specify the name of the WSDL portType element that represents
the interface being bound.

3. Add an xformat:binding child element to the binding element to identify that the
messages are being handled as pure XML documents without SOAP envelopes.

4. Optionally, set the xformat:binding element's rootNode attribute to a valid QName. For
more information on the effect of the rootNode attribute see the section called “XML
messages on the wire”.

5. For each operation defined in the bound interface, add a standard WSDL operation element
to hold the binding information for the operation's messages.

6. For each operation added to the binding, add the input, output, and fault children
elements to represent the messages used by the operation.

These elements correspond to the messages defined in the interface definition of the logical
operation.

7. Optionally add an xformat:body element with a valid rootNode attribute to the added
input, output, and fault elements to override the value of rootNode set at the binding
level.

NOTE

If any of your messages have no parts, for example the output message for an operation
that returns void, you must set the rootNode attribute for the message to ensure that
the message written on the wire is a valid, but empty, XML document.

xmlns:xformat="http://cxf.apache.org/bindings/xformat"

CHAPTER 10. USING XML DOCUMENTS

59

XML MESSAGES ON THE WIRE

When you specify that an interface’s messages are to be passed as XML documents, without a SOAP
envelope, you must take care to ensure that your messages form valid XML documents when they are
written on the wire. You also need to ensure that non-Apache CXF participants that receive the XML
documents understand the messages generated by Apache CXF.

A simple way to solve both problems is to use the optional rootNode attribute on either the global
xformat:binding element or on the individual message’s xformat:body elements. The rootNode
attribute specifies the QName for the element that serves as the root node for the XML document
generated by Apache CXF. When the rootNode attribute is not set, Apache CXF uses the root element
of the message part as the root element when using doc style messages, or an element using the
message part name as the root element when using rpc style messages.

For example, if the rootNode attribute is not set the message defined in Example 10.1, “Valid XML
Binding Message” would generate an XML document with the root element lineNumber.

Example 10.1. Valid XML Binding Message

For messages with one part, Apache CXF will always generate a valid XML document even if the
rootNode attribute is not set. However, the message in Example 10.2, “Invalid XML Binding Message”
would generate an invalid XML document.

Example 10.2. Invalid XML Binding Message

Without the rootNode attribute specified in the XML binding, Apache CXF will generate an XML
document similar to Example 10.3, “Invalid XML Document” for the message defined in Example 10.2,
“Invalid XML Binding Message”. The generated XML document is invalid because it has two root
elements: pairName and entryNum.

<type ... >
 ...
 <element name="operatorID" type="xsd:int"/>
 ...
</types>
<message name="operator">
 <part name="lineNumber" element="ns1:operatorID"/>
</message>

<types>
 ...
 <element name="pairName" type="xsd:string"/>
 <element name="entryNum" type="xsd:int"/>
 ...
</types>

<message name="matildas">
 <part name="dancing" element="ns1:pairName"/>
 <part name="number" element="ns1:entryNum"/>
</message>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

60

Example 10.3. Invalid XML Document

If you set the rootNode attribute, as shown in Example 10.4, “XML Binding with rootNode set” Apache
CXF will wrap the elements in the specified root element. In this example, the rootNode attribute is
defined for the entire binding and specifies that the root element will be named entrants.

Example 10.4. XML Binding with rootNode set

An XML document generated from the input message would be similar to Example 10.5, “XML
Document generated using the rootNode attribute”. Notice that the XML document now only has one
root element.

Example 10.5. XML Document generated using the rootNode attribute

OVERRIDING THE BINDING'S ROOTNODE ATTRIBUTE SETTING

You can also set the rootNode attribute for each individual message, or override the global setting for
a particular message, by using the xformat:body element inside of the message binding. For
example, if you wanted the output message defined in Example 10.4, “XML Binding with rootNode set”
to have a different root element from the input message, you could override the binding's root element
as shown in Example 10.6, “Using xformat:body”.

<pairName>
 Fred&Linda
</pairName>
<entryNum>
 123
</entryNum>

<portType name="danceParty">
 <operation name="register">
 <input message="tns:matildas" name="contestant"/>
 </operation>
</portType>

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered"/>
</binding>

<entrants>
 <pairName>
 Fred&Linda
 <entryNum>
 123
 </entryNum>
</entrants>

CHAPTER 10. USING XML DOCUMENTS

61

Example 10.6. Using xformat:body

<binding name="matildaXMLBinding" type="tns:dancingMatildas">
 <xmlformat:binding rootNode="entrants"/>
 <operation name="register">
 <input name="contestant"/>
 <output name="entered">
 <xformat:body rootNode="entryStatus" />
 </output>
 </operation>
</binding>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

62

PART III. WEB SERVICES TRANSPORTS

Abstract

This part describes how to add Apache CXF transports to a WSDL document.

PART III. WEB SERVICES TRANSPORTS

63

CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE
DEFINED IN WSDL

Abstract

Endpoints represent an instantiated service. They are defined by combining a binding and the
networking details used to expose the endpoint.

OVERVIEW

An endpoint can be thought of as a physical manifestation of a service. It combines a binding, which
specifies the physical representation of the logical data used by a service, and a set of networking
details that define the physical connection details used to make the service contactable by other
endpoints.

ENDPOINTS AND SERVICES

In the same way a binding can only map a single interface, an endpoint can only map to a single service.
However, a service can be manifested by any number of endpoints. For example, you could define a
ticket selling service that was manifested by four different endpoints. However, you could not have a
single endpoint that manifested both a ticket selling service and a widget selling service.

THE WSDL ELEMENTS

Endpoints are defined in a contract using a combination of the WSDL service element and the WSDL
port element. The service element is a collection of related port elements. The port elements
define the actual endpoints.

The WSDL service element has a single attribute, name, that specifies a unique name. The service
element is used as the parent element of a collection of related port elements. WSDL makes no
specification about how the port elements are related. You can associate the port elements in any
manner you see fit.

The WSDL port element has a single attribute, binding, that specifies the binding used by the
endpoint. The port element is the parent element of the elements that specify the actual transport
details used by the endpoint. The elements used to specify the transport details are discussed in the
following sections.

ADDING ENDPOINTS TO A CONTRACT

Apache CXF provides command line tools that can generated endpoints for predefined service
interface and binding combinations.

The tools will add the proper elements to your contract for you. However, it is recommended that you
have some knowledge of how the different transports used in defining an endpoint work.

You can also add an endpoint to a contract using any text editor. When you hand edit a contract, you
are responsible for ensuring that the contract is valid.

SUPPORTED TRANSPORTS

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

64

Endpoint definitions are built using extensions defined for each of the transports Apache CXF
supports. This includes the following transports:

HTTP

CORBA

Java Messaging Service

CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE DEFINED IN WSDL

65

CHAPTER 12. USING HTTP

Abstract

HTTP is the underlying transport for the Web. It provides a standardized, robust, and flexible platform
for communicating between endpoints. Because of these factors it is the assumed transport for most
WS-* specifications and is integral to RESTful architectures.

12.1. ADDING A BASIC HTTP ENDPOINT

Alternative HTTP runtimes

Apache CXF supports the following alternative HTTP runtime implementations:

Jetty, which is described in detail in Section 12.4, “Configuring the Jetty Runtime”.

Netty, which is described in detail in Section 12.5, “Configuring the Netty Runtime” .

Netty HTTP URL

Normally, a HTTP endpoint uses whichever HTTP runtime is included on the classpath (either Jetty or
Netty). If both the Jetty runtime and Netty runtime are included on the classpath, however, you need
to specify explicitly when you want to use the Netty runtime, because the Jetty runtime will be used by
default.

In the case where more than one HTTP runtime is available on the classpath, you can select the Netty
runtime by specifying the endpoint URL to have the following format:

Payload types

There are three ways of specifying an HTTP endpoint’s address depending on the payload format you
are using.

SOAP 1.1 uses the standardized soap:address element.

SOAP 1.2 uses the soap12:address element.

All other payload formats use the http:address element.

SOAP 1.1

When you are sending SOAP 1.1 messages over HTTP you must use the SOAP 1.1 address element to
specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as
a URL. The SOAP 1.1 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap/.

Example 12.1, “SOAP 1.1 Port Element” shows a port element used to send SOAP 1.1 messages over
HTTP.

netty://http://RestOfURL

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

66

http://www.eclipse.org/jetty/
http://netty.io/

Example 12.1. SOAP 1.1 Port Element

SOAP 1.2

When you are sending SOAP 1.2 messages over HTTP you must use the SOAP 1.2 address element to
specify the endpoint’s address. It has one attribute, location, that specifies the endpoint’s address as
a URL. The SOAP 1.2 address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/soap12/.

Example 12.2, “SOAP 1.2 Port Element” shows a port element used to send SOAP 1.2 messages over
HTTP.

Example 12.2. SOAP 1.2 Port Element

Other messages types

When your messages are mapped to any payload format other than SOAP you must use the HTTP
address element to specify the endpoint’s address. It has one attribute, location, that specifies the
endpoint’s address as a URL. The HTTP address element is defined in the namespace
http://schemas.xmlsoap.org/wsdl/http/.

Example 12.3, “HTTP Port Element” shows a port element used to send an XML message.

Example 12.3. HTTP Port Element

<definitions ...
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...>
 ...
 <service name="SOAP11Service">
 <port binding="SOAP11Binding" name="SOAP11Port">
 <soap:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
<definitions>

<definitions ...
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" ...
>
 <service name="SOAP12Service">
 <port binding="SOAP12Binding" name="SOAP12Port">
 <soap12:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
</definitions>

<definitions ...
 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" ... >
 <service name="HTTPService">
 <port binding="HTTPBinding" name="HTTPPort">

CHAPTER 12. USING HTTP

67

12.2. CONFIGURING A CONSUMER

HTTP consumer endpoints can specify a number of HTTP connection attributes including whether the
endpoint automatically accepts redirect responses, whether the endpoint can use chunking, whether
the endpoint will request a keep-alive, and how the endpoint interacts with proxies. In addition to the
HTTP connection properties, an HTTP consumer endpoint can specify how it is secured.

A consumer endpoint can be configured using two mechanisms:

Configuration

WSDL

12.2.1. Using Configuration

Namespace

The elements used to configure an HTTP consumer endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix
http-conf. In order to use the HTTP configuration elements you must add the lines shown in
Example 12.4, “HTTP Consumer Configuration Namespace” to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements' namespace to the
xsi:schemaLocation attribute.

Example 12.4. HTTP Consumer Configuration Namespace

Jetty runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Jetty runtime or
the Netty runtime.

The conduit element

 <http:address location="http://artie.com/index.xml">
 </port>
 </service>
 ...
</definitions>

<beans ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"
 ...
 xsi:schemaLocation="...

http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ...">

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

68

You configure an HTTP consumer endpoint using the http-conf:conduit element and its children.
The http-conf:conduit element takes a single attribute, name, that specifies the WSDL port
element corresponding to the endpoint. The value for the name attribute takes the form
portQName.http-conduit. Example 12.5, “http-conf:conduit Element” shows the http-
conf:conduit element that would be used to add configuration for an endpoint that is specified by
the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> when the
endpoint's target namespace is http://widgets.widgetvendor.net.

Example 12.5. http-conf:conduit Element

The http-conf:conduit element has child elements that specify configuration information. They
are described in Table 12.1, “Elements Used to Configure an HTTP Consumer Endpoint” .

Table 12.1. Elements Used to Configure an HTTP Consumer Endpoint

Element Description

http-conf:client Specifies the HTTP connection properties such as
timeouts, keep-alive requests, content types, etc.
See the section called “The client element”.

http-conf:authorization Specifies the parameters for configuring the basic
authentication method that the endpoint uses
preemptively.

The preferred approach is to supply a Basic
Authentication Supplier object.

http-conf:proxyAuthorization Specifies the parameters for configuring basic
authentication against outgoing HTTP proxy servers.

http-conf:tlsClientParameters Specifies the parameters used to configure
SSL/TLS.

http-conf:basicAuthSupplier Specifies the bean reference or class name of the
object that supplies the basic authentication
information used by the endpoint, either
preemptively or in response to a 401 HTTP
challenge.

http-conf:trustDecider Specifies the bean reference or class name of the
object that checks the HTTP(S) URLConnection
object to establish trust for a connection with an
HTTPS service provider before any information is
transmitted.

...
 <http-conf:conduit name="
{http://widgets/widgetvendor.net}widgetSOAPPort.http-conduit">
 ...
 </http-conf:conduit>
...

CHAPTER 12. USING HTTP

69

The client element

The http-conf:client element is used to configure the non-security properties of a consumer
endpoint's HTTP connection. Its attributes, described in Table 12.2, “HTTP Consumer Configuration
Attributes”, specify the connection's properties.

Table 12.2. HTTP Consumer Configuration Attributes

Attribute Description

ConnectionTimeout Specifies the amount of time, in milliseconds, that
the consumer attempts to establish a connection
before it times out. The default is 30000.

0 specifies that the consumer will continue to send
the request indefinitely.

ReceiveTimeout Specifies the amount of time, in milliseconds, that
the consumer will wait for a response before it times
out. The default is 30000.

0 specifies that the consumer will wait indefinitely.

AutoRedirect Specifies if the consumer will automatically follow a
server issued redirection. The default is false.

MaxRetransmits Specifies the maximum number of times a consumer
will retransmit a request to satisfy a redirect. The
default is -1 which specifies that unlimited
retransmissions are allowed.

AllowChunking Specifies whether the consumer will send requests
using chunking. The default is true which specifies
that the consumer will use chunking when sending
requests.

Chunking cannot be used if either of the following
are true:

http-conf:basicAuthSupplier is
configured to provide credentials
preemptively.

AutoRedirect is set to true.

In both cases the value of AllowChunking is
ignored and chunking is disallowed.

Accept Specifies what media types the consumer is
prepared to handle. The value is used as the value of
the HTTP Accept property. The value of the attribute
is specified using multipurpose internet mail
extensions (MIME) types.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

70

AcceptLanguage Specifies what language (for example, American
English) the consumer prefers for the purpose of
receiving a response. The value is used as the value
of the HTTP AcceptLanguage property.

Language tags are regulated by the International
Organization for Standards (ISO) and are typically
formed by combining a language code, determined
by the ISO-639 standard, and country code,
determined by the ISO-3166 standard, separated by
a hyphen. For example, en-US represents American
English.

AcceptEncoding Specifies what content encodings the consumer is
prepared to handle. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). The value is used as the value of
the HTTP AcceptEncoding property.

ContentType Specifies the media type of the data being sent in the
body of a message. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType property. The default is text/xml.

For web services, this should be set to text/xml. If
the client is sending HTML form data to a CGI script,
this should be set to application/x-www-
form-urlencoded. If the HTTP POST request is
bound to a fixed payload format (as opposed to
SOAP), the content type is typically set to
application/octet-stream.

Host Specifies the Internet host and port number of the
resource on which the request is being invoked. The
value is used as the value of the HTTP Host property.

This attribute is typically not required. It is only
required by certain DNS scenarios or application
designs. For example, it indicates what host the
client prefers for clusters (that is, for virtual servers
mapping to the same Internet protocol (IP) address).

Attribute Description

CHAPTER 12. USING HTTP

71

Connection Specifies whether a particular connection is to be
kept open or closed after each request/response
dialog. There are two valid values:

Keep-Alive — Specifies that the
consumer wants the connection kept open
after the initial request/response sequence.
If the server honors it, the connection is
kept open until the consumer closes it.

close(default) — Specifies that the
connection to the server is closed after
each request/response sequence.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a request from a consumer to a service
provider. See Section 12.2.3, “Consumer Cache
Control Directives”.

Cookie Specifies a static cookie to be sent with all requests.

BrowserType Specifies information about the browser from which
the request originates. In the HTTP specification
from the World Wide Web consortium (W3C) this is
also known as the user-agent. Some servers optimize
based on the client that is sending the request.

Referer Specifies the URL of the resource that directed the
consumer to make requests on a particular service.
The value is used as the value of the HTTP Referer
property.

This HTTP property is used when a request is the
result of a browser user clicking on a hyperlink
rather than typing a URL. This can allow the server
to optimize processing based upon previous task
flow, and to generate lists of back-links to resources
for the purposes of logging, optimized caching,
tracing of obsolete or mistyped links, and so on.
However, it is typically not used in web services
applications.

If the AutoRedirect attribute is set to true and
the request is redirected, any value specified in the
Referer attribute is overridden. The value of the
HTTP Referer property is set to the URL of the
service that redirected the consumer’s original
request.

Attribute Description

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

72

DecoupledEndpoint Specifies the URL of a decoupled endpoint for the
receipt of responses over a separate provider-
>consumer connection. For more information on
using decoupled endpoints see, Section 12.6, “Using
the HTTP Transport in Decoupled Mode”.

You must configure both the consumer endpoint and
the service provider endpoint to use WS-Addressing
for the decoupled endpoint to work.

ProxyServer Specifies the URL of the proxy server through which
requests are routed.

ProxyServerPort Specifies the port number of the proxy server
through which requests are routed.

ProxyServerType Specifies the type of proxy server used to route
requests. Valid values are:

HTTP(default)

SOCKS

Attribute Description

Example

Example 12.6, “HTTP Consumer Endpoint Configuration” shows the configuration of an HTTP consumer
endpoint that wants to keep its connection to the provider open between requests, that will only
retransmit requests once per invocation, and that cannot use chunking streams.

Example 12.6. HTTP Consumer Endpoint Configuration

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:conduit name="
{http://apache.org/hello_world_soap_http}SoapPort.http-conduit">
 <http-conf:client Connection="Keep-Alive"
 MaxRetransmits="1"
 AllowChunking="false" />
 </http-conf:conduit>
</beans>

CHAPTER 12. USING HTTP

73

More information

For more information on HTTP conduits see Appendix B, Conduits.

12.2.2. Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP consumer endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the
prefix http-conf. In order to use the HTTP configuration elements you must add the line shown in
Example 12.7, “HTTP Consumer WSDL Element's Namespace” to the definitions element of your
endpoint's WSDL document.

Example 12.7. HTTP Consumer WSDL Element's Namespace

Jetty runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Jetty runtime or
the Netty runtime.

The client element

The http-conf:client element is used to specify the connection properties of an HTTP consumer
in a WSDL document. The http-conf:client element is a child of the WSDL port element. It has the
same attributes as the client element used in the configuration file. The attributes are described in
Table 12.2, “HTTP Consumer Configuration Attributes” .

Example

Example 12.8, “WSDL to Configure an HTTP Consumer Endpoint” shows a WSDL fragment that
configures an HTTP consumer endpoint to specify that it does not interact with caches.

Example 12.8. WSDL to Configure an HTTP Consumer Endpoint

12.2.3. Consumer Cache Control Directives

Table 12.3, “http-conf:client Cache Control Directives” lists the cache control directives
supported by an HTTP consumer.

<definitions ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:client CacheControl="no-cache" />
 </port>
</service>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

74

Table 12.3. http-conf:client Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

no-store Caches must not store either any part of a response
or any part of the request that invoked it.

max-age The consumer can accept a response whose age is
no greater than the specified time in seconds.

max-stale The consumer can accept a response that has
exceeded its expiration time. If a value is assigned
to max-stale, it represents the number of seconds
beyond the expiration time of a response up to
which the consumer can still accept that response. If
no value is assigned, the consumer can accept a
stale response of any age.

min-fresh The consumer wants a response that is still fresh for
at least the specified number of seconds indicated.

no-transform Caches must not modify media type or location of
the content in a response between a provider and a
consumer.

only-if-cached Caches should return only responses that are
currently stored in the cache, and not responses that
need to be reloaded or revalidated.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can
adhere to the behavior mandated by the standard
directive.

12.3. CONFIGURING A SERVICE PROVIDER

HTTP service provider endpoints can specify a number of HTTP connection attributes including if it will
honor keep alive requests, how it interacts with caches, and how tolerant it is of errors in
communicating with a consumer.

A service provider endpoint can be configured using two mechanisms:

Configuration

WSDL

CHAPTER 12. USING HTTP

75

12.3.1. Using Configuration

Namespace

The elements used to configure an HTTP provider endpoint are defined in the namespace
http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the prefix
http-conf. In order to use the HTTP configuration elements you must add the lines shown in
Example 12.9, “HTTP Provider Configuration Namespace” to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements' namespace to the
xsi:schemaLocation attribute.

Example 12.9. HTTP Provider Configuration Namespace

Jetty runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Jetty runtime or
the Netty runtime.

The destination element

You configure an HTTP service provider endpoint using the http-conf:destination element and
its children. The http-conf:destination element takes a single attribute, name, that specifies the
WSDL port element that corresponds to the endpoint. The value for the name attribute takes the form
portQName.http-destination. Example 12.10, “http-conf:destination Element” shows the
http-conf:destination element that is used to add configuration for an endpoint that is specified
by the WSDL fragment <port binding="widgetSOAPBinding" name="widgetSOAPPort> when the
endpoint's target namespace is http://widgets.widgetvendor.net.

Example 12.10. http-conf:destination Element

<beans ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"
 ...
 xsi:schemaLocation="...

http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 ...">

...
 <http-conf:destination name="
{http://widgets/widgetvendor.net}widgetSOAPPort.http-destination">
 ...
 </http-conf:destination>
...

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

76

The http-conf:destination element has a number of child elements that specify configuration
information. They are described in Table 12.4, “Elements Used to Configure an HTTP Service Provider
Endpoint”.

Table 12.4. Elements Used to Configure an HTTP Service Provider Endpoint

Element Description

http-conf:server Specifies the HTTP connection properties. See the
section called “The server element”.

http-conf:contextMatchStrategy Specifies the parameters that configure the context
match strategy for processing HTTP requests.

http-conf:fixedParameterOrder Specifies whether the parameter order of an HTTP
request handled by this destination is fixed.

The server element

The http-conf:server element is used to configure the properties of a service provider endpoint's
HTTP connection. Its attributes, described in Table 12.5, “HTTP Service Provider Configuration
Attributes”, specify the connection's properties.

Table 12.5. HTTP Service Provider Configuration Attributes

Attribute Description

ReceiveTimeout Sets the length of time, in milliseconds, the service
provider attempts to receive a request before the
connection times out. The default is 30000.

0 specifies that the provider will not timeout.

SuppressClientSendErrors Specifies whether exceptions are to be thrown when
an error is encountered on receiving a request. The
default is false; exceptions are thrown on
encountering errors.

SuppressClientReceiveErrors Specifies whether exceptions are to be thrown when
an error is encountered on sending a response to a
consumer. The default is false; exceptions are
thrown on encountering errors.

HonorKeepAlive Specifies whether the service provider honors
requests for a connection to remain open after a
response has been sent. The default is false; keep-
alive requests are ignored.

CHAPTER 12. USING HTTP

77

RedirectURL Specifies the URL to which the client request should
be redirected if the URL specified in the client
request is no longer appropriate for the requested
resource. In this case, if a status code is not
automatically set in the first line of the server
response, the status code is set to 302 and the
status description is set to Object Moved. The
value is used as the value of the HTTP RedirectURL
property.

CacheControl Specifies directives about the behavior that must be
adhered to by caches involved in the chain
comprising a response from a service provider to a
consumer. See Section 12.3.3, “Service Provider
Cache Control Directives”.

ContentLocation Sets the URL where the resource being sent in a
response is located.

ContentType Specifies the media type of the information being
sent in a response. Media types are specified using
multipurpose internet mail extensions (MIME) types.
The value is used as the value of the HTTP
ContentType location.

ContentEncoding Specifies any additional content encodings that have
been applied to the information being sent by the
service provider. Content encoding labels are
regulated by the Internet Assigned Numbers
Authority (IANA). Possible content encoding values
include zip, gzip, compress, deflate, and
identity. This value is used as the value of the
HTTP ContentEncoding property.

The primary use of content encodings is to allow
documents to be compressed using some encoding
mechanism, such as zip or gzip. Apache CXF
performs no validation on content codings. It is the
user’s responsibility to ensure that a specified
content coding is supported at application level.

ServerType Specifies what type of server is sending the
response. Values take the form program-
name/version; for example, Apache/1.2.5.

Attribute Description

Example

Example 12.11, “HTTP Service Provider Endpoint Configuration” shows the configuration for an HTTP
service provider endpoint that honors keep-alive requests and suppresses all communication errors.

Example 12.11. HTTP Service Provider Endpoint Configuration

<beans xmlns="http://www.springframework.org/schema/beans"

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

78

12.3.2. Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP provider endpoint are defined in the
namespace http://cxf.apache.org/transports/http/configuration. It is commonly referred to using the
prefix http-conf. To use the HTTP configuration elements you must add the line shown in
Example 12.12, “HTTP Provider WSDL Element's Namespace” to the definitions element of your
endpoint's WSDL document.

Example 12.12. HTTP Provider WSDL Element's Namespace

Jetty runtime or Netty runtime

You can use the elements from the http-conf namespace to configure either the Jetty runtime or
the Netty runtime.

The server element

The http-conf:server element is used to specify the connection properties of an HTTP service
provider in a WSDL document. The http-conf:server element is a child of the WSDL port element.
It has the same attributes as the server element used in the configuration file. The attributes are
described in Table 12.5, “HTTP Service Provider Configuration Attributes” .

Example

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http-conf:destination name="
{http://apache.org/hello_world_soap_http}SoapPort.http-destination">
 <http-conf:server SuppressClientSendErrors="true"
 SuppressClientReceiveErrors="true"
 HonorKeepAlive="true" />
 </http-conf:destination>
</beans>

<definitions ...
 xmlns:http-
conf="http://cxf.apache.org/transports/http/configuration"

CHAPTER 12. USING HTTP

79

Example 12.13, “WSDL to Configure an HTTP Service Provider Endpoint” shows a WSDL fragment that
configures an HTTP service provider endpoint specifying that it will not interact with caches.

Example 12.13. WSDL to Configure an HTTP Service Provider Endpoint

12.3.3. Service Provider Cache Control Directives

Table 12.6, “http-conf:server Cache Control Directives” lists the cache control directives
supported by an HTTP service provider.

Table 12.6. http-conf:server Cache Control Directives

Directive Behavior

no-cache Caches cannot use a particular response to satisfy
subsequent requests without first revalidating that
response with the server. If specific response header
fields are specified with this value, the restriction
applies only to those header fields within the
response. If no response header fields are specified,
the restriction applies to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response
because the response is intended for a single user. If
specific response header fields are specified with
this value, the restriction applies only to those
header fields within the response. If no response
header fields are specified, the restriction applies to
the entire response.

no-store Caches must not store any part of the response or
any part of the request that invoked it.

no-transform Caches must not modify the media type or location
of the content in a response between a server and a
client.

must-revalidate Caches must revalidate expired entries that relate
to a response before that entry can be used in a
subsequent response.

proxy-revalidate Does the same as must-revalidate, except that it can
only be enforced on shared caches and is ignored by
private unshared caches. When using this directive,
the public cache directive must also be used.

<service ... >
 <port ... >
 <soap:address ... />
 <http-conf:server CacheControl="no-cache" />
 </port>
</service>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

80

max-age Clients can accept a response whose age is no
greater that the specified number of seconds.

s-max-age Does the same as max-age, except that it can only
be enforced on shared caches and is ignored by
private unshared caches. The age specified by s-
max-age overrides the age specified by max-age.
When using this directive, the proxy-revalidate
directive must also be used.

cache-extension Specifies additional extensions to the other cache
directives. Extensions can be informational or
behavioral. An extended directive is specified in the
context of a standard directive, so that applications
not understanding the extended directive can
adhere to the behavior mandated by the standard
directive.

Directive Behavior

12.4. CONFIGURING THE JETTY RUNTIME

Overview

The Jetty runtime is used by HTTP service providers and HTTP consumers using a decoupled endpoint.
The runtime's thread pool can be configured, and you can also set a number of the security settings for
an HTTP service provider through the Jetty runtime.

Maven dependency

If you use Apache Maven as your build system, you can add the Jetty runtime to your project by
including the following dependency in your project's pom.xml file:

Namespace

The elements used to configure the Jetty runtime are defined in the namespace
http://cxf.apache.org/transports/http-jetty/configuration. It is commonly referred to using the prefix
httpj. In order to use the Jetty configuration elements you must add the lines shown in
Example 12.14, “Jetty Runtime Configuration Namespace” to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements' namespace to the
xsi:schemaLocation attribute.

Example 12.14. Jetty Runtime Configuration Namespace

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-jetty</artifactId>
 <version>${cxf-version}</version>
</dependency>

<beans ...
 xmlns:httpj="http://cxf.apache.org/transports/http-

CHAPTER 12. USING HTTP

81

The engine-factory element

The httpj:engine-factory element is the root element used to configure the Jetty runtime used
by an application. It has a single required attribute, bus, whose value is the name of the Bus that
manages the Jetty instances being configured.

TIP

The value is typically cxf which is the name of the default Bus instance.

The httpj:engine-factory element has three children that contain the information used to
configure the HTTP ports instantiated by the Jetty runtime factory. The children are described in
Table 12.7, “Elements for Configuring a Jetty Runtime Factory” .

Table 12.7. Elements for Configuring a Jetty Runtime Factory

Element Description

httpj:engine Specifies the configuration for a particular Jetty
runtime instance. See the section called “The
engine element”.

httpj:identifiedTLSServerParameters Specifies a reusable set of properties for securing an
HTTP service provider. It has a single attribute, id,
that specifies a unique identifier by which the
property set can be referred.

httpj:identifiedThreadingParameters Specifies a reusable set of properties for controlling
a Jetty instance's thread pool. It has a single
attribute, id, that specifies a unique identifier by
which the property set can be referred.

See the section called “Configuring the thread pool”.

The engine element

The httpj:engine element is used to configure specific instances of the Jetty runtime. It has a single
attribute, port, that specifies the number of the port being managed by the Jetty instance.

jetty/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http-
jetty/configuration

http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 ...">

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

82

TIP

You can specify a value of 0 for the port attribute. Any threading properties specified in an
httpj:engine element with its port attribute set to 0 are used as the configuration for all Jetty
listeners that are not explicitly configured.

Each httpj:engine element can have two children: one for configuring security properties and one
for configuring the Jetty instance's thread pool. For each type of configuration you can either directly
provide the configuration information or you can provide a reference to a set of configuration
properties defined in the parent httpj:engine-factory element.

The child elements used to provide the configuration properties are described in Table 12.8, “Elements
for Configuring a Jetty Runtime Instance”.

Table 12.8. Elements for Configuring a Jetty Runtime Instance

Element Description

httpj:tlsServerParameters Specifies a set of properties for configuring the
security used for the specific Jetty instance.

httpj:tlsServerParametersRef Refers to a set of security properties defined by a
identifiedTLSServerParameters element.
The id attribute provides the id of the referred
identifiedTLSServerParameters element.

httpj:threadingParameters Specifies the size of the thread pool used by the
specific Jetty instance. See the section called
“Configuring the thread pool”.

httpj:threadingParametersRef Refers to a set of properties defined by a
identifiedThreadingParameters element.
The id attribute provides the id of the referred
identifiedThreadingParameters element.

Configuring the thread pool

You can configure the size of a Jetty instance's thread pool by either:

Specifying the size of the thread pool using a identifiedThreadingParameters element in
the engine-factory element. You then refer to the element using a
threadingParametersRef element.

Specifying the size of the of the thread pool directly using a threadingParameters element.

The threadingParameters has two attributes to specify the size of a thread pool. The attributes are
described in Table 12.9, “Attributes for Configuring a Jetty Thread Pool” .

NOTE

The httpj:identifiedThreadingParameters element has a single child
threadingParameters element.

CHAPTER 12. USING HTTP

83

Table 12.9. Attributes for Configuring a Jetty Thread Pool

Attribute Description

minThreads Specifies the minimum number of threads available
to the Jetty instance for processing requests.

maxThreads Specifies the maximum number of threads available
to the Jetty instance for processing requests.

Example

Example 12.15, “Configuring a Jetty Instance” shows a configuration fragment that configures a Jetty
instance on port number 9001.

Example 12.15. Configuring a Jetty Instance

12.5. CONFIGURING THE NETTY RUNTIME

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpj="http://cxf.apache.org/transports/http-
jetty/configuration"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 xsi:schemaLocation="http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-jetty/configuration
 http://cxf.apache.org/schemas/configuration/http-jetty.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
2.0.xsd">
 ...

 <httpj:engine-factory bus="cxf">
 <httpj:identifiedTLSServerParameters id="secure">
 <sec:keyManagers keyPassword="password">
 <sec:keyStore type="JKS" password="password"
 file="certs/cherry.jks"/>
 </sec:keyManagers>
 </httpj:identifiedTLSServerParameters>

 <httpj:engine port="9001">
 <httpj:tlsServerParametersRef id="secure" />
 <httpj:threadingParameters minThreads="5"
 maxThreads="15" />
 </httpj:engine>
 </httpj:engine-factory>
 </beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

84

Overview

The Netty runtime is used by HTTP service providers and HTTP consumers using a decoupled
endpoint. The runtime's thread pool can be configured, and you can also set a number of the security
settings for an HTTP service provider through the Netty runtime.

Maven dependencies

If you use Apache Maven as your build system, you can add the server-side implementation of the
Netty runtime (for defining Web service endpoints) to your project by including the following
dependency in your project's pom.xml file:

You can add the client-side implementation of the Netty runtime (for defining Web service clients) to
your project by including the following dependency in your project's pom.xml file:

Namespace

The elements used to configure the Netty runtime are defined in the namespace
http://cxf.apache.org/transports/http-netty-server/configuration. It is commonly referred to using
the prefix httpn. In order to use the Netty configuration elements you must add the lines shown in
Example 12.16, “Netty Runtime Configuration Namespace” to the beans element of your endpoint's
configuration file. In addition, you must add the configuration elements' namespace to the
xsi:schemaLocation attribute.

Example 12.16. Netty Runtime Configuration Namespace

The engine-factory element

The httpn:engine-factory element is the root element used to configure the Netty runtime used

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-netty-server</artifactId>
 <version>${cxf-version}</version>
</dependency>

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-netty-client</artifactId>
 <version>${cxf-version}</version>
</dependency>

<beans ...
 xmlns:httpn="http://cxf.apache.org/transports/http-netty-
server/configuration"
 ...
 xsi:schemaLocation="...
 http://cxf.apache.org/transports/http-netty-
server/configuration
 http://cxf.apache.org/schemas/configuration/http-netty-
server.xsd
 ...">

CHAPTER 12. USING HTTP

85

by an application. It has a single required attribute, bus, whose value is the name of the Bus that
manages the Netty instances being configured.

TIP

The value is typically cxf, which is the name of the default Bus instance.

The httpn:engine-factory element has three children that contain the information used to
configure the HTTP ports instantiated by the Netty runtime factory. The children are described in
Table 12.10, “Elements for Configuring a Netty Runtime Factory” .

Table 12.10. Elements for Configuring a Netty Runtime Factory

Element Description

httpn:engine Specifies the configuration for a particular Netty
runtime instance. See the section called “The
engine element”.

httpn:identifiedTLSServerParameters Specifies a reusable set of properties for securing an
HTTP service provider. It has a single attribute, id,
that specifies a unique identifier by which the
property set can be referred.

httpn:identifiedThreadingParameters Specifies a reusable set of properties for controlling
a Netty instance's thread pool. It has a single
attribute, id, that specifies a unique identifier by
which the property set can be referred.

See the section called “Configuring the thread pool”.

The engine element

The httpn:engine element is used to configure specific instances of the Netty runtime. Table 12.11,
“Attributes for Configuring a Netty Runtime Instance” shows the attributes supported by the
httpn:engine element.

Table 12.11. Attributes for Configuring a Netty Runtime Instance

Attribute Description

port Specifies the port used by the Netty HTTP server
instance. You can specify a value of 0 for the port
attribute. Any threading properties specified in an
engine element with its port attribute set to 0 are
used as the configuration for all Netty listeners that
are not explicitly configured.

host Specifies the listen address used by the Netty HTTP
server instance. The value can be a hostname or an
IP address. If not specified, Netty HTTP server will
listen on all local addresses.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

86

readIdleTime Specifies the maximum read idle time for a Netty
connection. The timer is reset whenever there are
any read actions on the underlying stream.

writeIdleTime Specifies the maximum write idle time for a Netty
connection. The timer is reset whenever there are
any write actions on the underlying stream.

maxChunkContentSize Specifies the maximum aggregated content size for
a Netty connection. The default value is 10MB.

Attribute Description

A httpn:engine element has one child element for configuring security properties and one child
element for configuring the Netty instance's thread pool. For each type of configuration you can either
directly provide the configuration information or you can provide a reference to a set of configuration
properties defined in the parent httpn:engine-factory element.

The supported child elements of httpn:engine are shown in Table 12.12, “Elements for Configuring a
Netty Runtime Instance”.

Table 12.12. Elements for Configuring a Netty Runtime Instance

Element Description

httpn:tlsServerParameters Specifies a set of properties for configuring the
security used for the specific Netty instance.

httpn:tlsServerParametersRef Refers to a set of security properties defined by a
identifiedTLSServerParameters element.
The id attribute provides the id of the referred
identifiedTLSServerParameters element.

httpn:threadingParameters Specifies the size of the thread pool used by the
specific Netty instance. See the section called
“Configuring the thread pool”.

httpn:threadingParametersRef Refers to a set of properties defined by a
identifiedThreadingParameters element.
The id attribute provides the id of the referred
identifiedThreadingParameters element.

httpn:sessionSupport When true, enables support for HTTP sessions.
Default is false.

httpn:reuseAddress Specifies a boolean value to set the
ReuseAddress TCP socket option. Default is
false.

Configuring the thread pool

CHAPTER 12. USING HTTP

87

You can configure the size of a Netty instance's thread pool by either:

Specifying the size of the thread pool using a identifiedThreadingParameters element in
the engine-factory element. You then refer to the element using a
threadingParametersRef element.

Specifying the size of the of the thread pool directly using a threadingParameters element.

The threadingParameters element has one attribute to specify the size of a thread pool, as
described in Table 12.13, “Attributes for Configuring a Netty Thread Pool” .

NOTE

The httpn:identifiedThreadingParameters element has a single child
threadingParameters element.

Table 12.13. Attributes for Configuring a Netty Thread Pool

Attribute Description

threadPoolSize Specifies the number of threads available to the
Netty instance for processing requests.

Example

Example 12.17, “Configuring a Netty Instance” shows a configuration fragment that configures a variety
of Netty ports.

Example 12.17. Configuring a Netty Instance

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:beans="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:h="http://cxf.apache.org/transports/http/configuration"
 xmlns:httpn="http://cxf.apache.org/transports/http-netty-
server/configuration"
 xmlns:sec="http://cxf.apache.org/configuration/security"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-
beans.xsd
 http://cxf.apache.org/configuration/security
 http://cxf.apache.org/schemas/configuration/security.xsd
 http://cxf.apache.org/transports/http/configuration
 http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://cxf.apache.org/transports/http-netty-
server/configuration
 http://cxf.apache.org/schemas/configuration/http-netty-
server.xsd"
>
 ...
 <httpn:engine-factory bus="cxf">

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

88

12.6. USING THE HTTP TRANSPORT IN DECOUPLED MODE

Overview

In normal HTTP request/response scenarios, the request and the response are sent using the same
HTTP connection. The service provider processes the request and responds with a response containing
the appropriate HTTP status code and the contents of the response. In the case of a successful request,
the HTTP status code is set to 200.

In some instances, such as when using WS-RM or when requests take an extended period of time to
execute, it makes sense to decouple the request and response message. In this case the service
providers sends the consumer a 202 Accepted response to the consumer over the back-channel of
the HTTP connection on which the request was received. It then processes the request and sends the

 <httpn:identifiedTLSServerParameters id="sample1">
 <httpn:tlsServerParameters jsseProvider="SUN"
secureSocketProtocol="TLS">
 <sec:clientAuthentication want="false" required="false"/>
 </httpn:tlsServerParameters>
 </httpn:identifiedTLSServerParameters>

 <httpn:identifiedThreadingParameters id="sampleThreading1">
 <httpn:threadingParameters threadPoolSize="120"/>
 </httpn:identifiedThreadingParameters>

 <httpn:engine port="9000" readIdleTime="30000"
writeIdleTime="90000">
 <httpn:threadingParametersRef id="sampleThreading1"/>
 </httpn:engine>

 <httpn:engine port="0">
 <httpn:threadingParameters threadPoolSize="400"/>
 </httpn:engine>

 <httpn:engine port="9001" readIdleTime="40000"
maxChunkContentSize="10000">
 <httpn:threadingParameters threadPoolSize="99" />
 <httpn:sessionSupport>true</httpn:sessionSupport>
 </httpn:engine>

 <httpn:engine port="9002">
 <httpn:tlsServerParameters>
 <sec:clientAuthentication want="true" required="true"/>
 </httpn:tlsServerParameters>
 </httpn:engine>

 <httpn:engine port="9003">
 <httpn:tlsServerParametersRef id="sample1"/>
 </httpn:engine>

 </httpn:engine-factory>
</beans>

CHAPTER 12. USING HTTP

89

response back to the consumer using a new decoupled server->client HTTP connection. The consumer
runtime receives the incoming response and correlates it with the appropriate request before
returning to the application code.

Configuring decoupled interactions

Using the HTTP transport in decoupled mode requires that you do the following:

1. Configure the consumer to use WS-Addressing.

See the section called “Configuring an endpoint to use WS-Addressing” .

2. Configure the consumer to use a decoupled endpoint.

See the section called “Configuring the consumer” .

3. Configure any service providers that the consumer interacts with to use WS-Addressing.

See the section called “Configuring an endpoint to use WS-Addressing” .

Configuring an endpoint to use WS-Addressing

Specify that the consumer and any service provider with which the consumer interacts use WS-
Addressing.

You can specify that an endpoint uses WS-Addressing in one of two ways:

Adding the wswa:UsingAddressing element to the endpoint's WSDL port element as
shown in Example 12.18, “Activating WS-Addressing using WSDL” .

Example 12.18. Activating WS-Addressing using WSDL

Adding the WS-Addressing policy to the endpoint's WSDL port element as shown in
Example 12.19, “Activating WS-Addressing using a Policy” .

Example 12.19. Activating WS-Addressing using a Policy

...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wswa:UsingAddressing
xmlns:wswa="http://www.w3.org/2005/02/addressing/wsdl"/>
 </port>
</service>
...

...
<service name="WidgetSOAPService">
 <port name="WidgetSOAPPort" binding="tns:WidgetSOAPBinding">
 <soap:address="http://widgetvendor.net/widgetSeller" />
 <wsp:Policy xmlns:wsp="http://www.w3.org/2006/07/ws-policy">
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

90

NOTE

The WS-Addressing policy supersedes the wswa:UsingAddressing WSDL element.

Configuring the consumer

Configure the consumer endpoint to use a decoupled endpoint using the DecoupledEndpoint
attribute of the http-conf:conduit element.

Example 12.20, “Configuring a Consumer to Use a Decoupled HTTP Endpoint” shows the configuration
for setting up the endpoint defined in Example 12.18, “Activating WS-Addressing using WSDL” to use
use a decoupled endpoint. The consumer now receives all responses at
http://widgetvendor.net/widgetSellerInbox.

Example 12.20. Configuring a Consumer to Use a Decoupled HTTP Endpoint

How messages are processed

Using the HTTP transport in decoupled mode adds extra layers of complexity to the processing of
HTTP messages. While the added complexity is transparent to the implementation level code in an
application, it might be important to understand what happens for debugging reasons.

Figure 12.1, “Message Flow in for a Decoupled HTTP Transport” shows the flow of messages when using
HTTP in decoupled mode.

 <wsp:Policy/>
 </wsam:Addressing>
 </wsp:Policy>
 </port>
</service>
...

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"

xsi:schemaLocation="http://cxf.apache.org/transports/http/configuration

http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

 <http:conduit name="
{http://widgetvendor.net/services}WidgetSOAPPort.http-conduit">
 <http:client
DecoupledEndpoint="http://widgetvendor.net:9999/decoupled_endpoint" />
 </http:conduit>
</beans>

CHAPTER 12. USING HTTP

91

Figure 12.1. Message Flow in for a Decoupled HTTP Transport

A request starts the following process:

1. The consumer implementation invokes an operation and a request message is generated.

2. The WS-Addressing layer adds the WS-A headers to the message.

When a decoupled endpoint is specified in the consumer's configuration, the address of the
decoupled endpoint is placed in the WS-A ReplyTo header.

3. The message is sent to the service provider.

4. The service provider receives the message.

5. The request message from the consumer is dispatched to the provider's WS-A layer.

6. Because the WS-A ReplyTo header is not set to anonymous, the provider sends back a
message with the HTTP status code set to 202, acknowledging that the request has been
received.

7. The HTTP layer sends a 202 Accepted message back to the consumer using the original
connection's back-channel.

8. The consumer receives the 202 Accepted reply on the back-channel of the HTTP connection
used to send the original message.

When the consumer receives the 202 Accepted reply, the HTTP connection closes.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

92

9. The request is passed to the service provider's implementation where the request is
processed.

10. When the response is ready, it is dispatched to the WS-A layer.

11. The WS-A layer adds the WS-Addressing headers to the response message.

12. The HTTP transport sends the response to the consumer's decoupled endpoint.

13. The consumer's decoupled endpoint receives the response from the service provider.

14. The response is dispatched to the consumer's WS-A layer where it is correlated to the proper
request using the WS-A RelatesTo header.

15. The correlated response is returned to the client implementation and the invoking call is
unblocked.

CHAPTER 12. USING HTTP

93

CHAPTER 13. USING SOAP OVER JMS

Abstract

Apache CXF implements the W3C standard SOAP/JMS transport. This standard is intended to provide
a more robust alternative to SOAP/HTTP services. Apache CXF applications using this transport
should be able to interoperate with applications that also implement the SOAP/JMS standard. The
transport is configured directly in an endpoint's WSDL.

13.1. BASIC CONFIGURATION

Overview

The SOAP over JMS protocol is defined by the World Wide Web Consortium(W3C) as a way of providing
a more reliable transport layer to the customary SOAP/HTTP protocol used by most services. The
Apache CXF implementation is fully compliant with the specification and should be compatible with
any framework that is also compliant.

This transport uses JNDI to find the JMS destinations. When an operation is invoked, the request is
packaged as a SOAP message and sent in the body of a JMS message to the specified destination.

To use the SOAP/JMS transport:

1. Specify that the transport type is SOAP/JMS.

2. Specify the target destination using a JMS URI.

3. Optionally, configure the JNDI connection.

4. Optionally, add additional JMS configuration.

Specifying the JMS transport type

You configure a SOAP binding to use the JMS transport when specifying the WSDL binding. You set the
soap:binding element's transport attribute to http://www.w3.org/2010/soapjms/.
Example 13.1, “SOAP over JMS binding specification” shows a WSDL binding that uses SOAP/JMS.

Example 13.1. SOAP over JMS binding specification

Specifying the target destination

You specify the address of the JMS target destination when specifying the WSDL port for the endpoint.
The address specification for a SOAP/JMS endpoint uses the same soap:address element and
attribute as a SOAP/HTTP endpoint. The difference is the address specification. JMS endpoints use a

<wsdl:binding ... >
 <soap:binding style="document"
 transport="http://www.w3.org/2010/soapjms/" />
 ...
</wsdl:binding>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

94

http://www.w3.org/TR/soapjms/

JMS URI as defined in the URI Scheme for JMS 1.0 . Example 13.2, “JMS URI syntax” shows the syntax
for a JMS URI.

Example 13.2. JMS URI syntax

Table 13.1, “JMS URI variants” describes the available variants for the JMS URI.

Table 13.1. JMS URI variants

Variant Description

jndi Specifies that the destination is a JNDI name for the
target destination. When using this variant, you must
provide the configuration for accessing the JNDI
provider.

topic Specifies that the destination is the name of the
topic to be used as the target destination. The string
provided is passed into
Session.createTopic() to create a
representation of the destination.

queue Specifies that the destination is the name of the
queue to be used as the target destination. The
string provided is passed into
Session.createQueue() to create a
representation of the destination.

The options portion of a JMS URI are used to configure the transport and are discussed in Section 13.2,
“JMS URIs”.

Example 13.3, “SOAP/JMS endpoint address” shows the WSDL port entry for a SOAP/JMS endpoint
whose target destination is looked up using JNDI.

Example 13.3. SOAP/JMS endpoint address

For working with SOAP/JMS services in Java see Chapter 39, Using SOAP over JMS.

Configuring JNDI and the JMS transport

The SOAP/JMS provides several ways to configure the JNDI connection and the JMS transport:

jms:variant:destination?options

<wsdl:port ... >
 ...
 <soap:address
location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
</wsdl:port>

CHAPTER 13. USING SOAP OVER JMS

95

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

Using the JMS URI

Using WSDL extensions

13.2. JMS URIS

Overview

When using SOAP/JMS, a JMS URI is used to specify the endpoint's target destination. The JMS URI
can also be used to configure JMS connection by appending one or more options to the URI. These
options are detailed in the IETF standard, URI Scheme for Java Message Service 1.0 . They can be used
to configure the JNDI system, the reply destination, the delivery mode to use, and other JMS
properties.

Syntax

As shown in Example 13.2, “JMS URI syntax” , you can append one or more options to the end of a JMS
URI by separating them from the destination's address with a question mark(?). Multiple options are
separated by an ampersand(&). Example 13.4, “Syntax for JMS URI options” shows the syntax for using
multiple options in a JMS URI.

Example 13.4. Syntax for JMS URI options

JMS properties

Table 13.2, “JMS properties settable as URI options” shows the URI options that affect the JMS
transport layer.

Table 13.2. JMS properties settable as URI options

Property Default Description

deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

jmsAddress?option1=value1&option2=value2&...optionN=valueN

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

96

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

replyToName Explicitly specifies the reply
destination to appear in the
JMSReplyTo header. Setting
this property is recommended for
applications that have request-
reply semantics because the JMS
provider will assign a temporary
reply queue if one is not explicitly
set.

The value of this property has an
interpretation that depends on
the variant specified in the JMS
URI:

jndi variant—the JNDI
name of the destination

queue or topic
variants—the actual
name of the destination

priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

timeToLive 0 Time (in milliseconds) after which
the message will be discarded by
the JMS provider. A value of 0
represents an infinite lifetime
(the default).

Property Default Description

JNDI properties

Table 13.3, “JNDI properties settable as URI options” shows the URI options that can be used to
configure JNDI for this endpoint.

Table 13.3. JNDI properties settable as URI options

Property Description

jndiConnectionFactoryName Specifies the JNDI name of the JMS connection
factory.

jndiInitialContextFactory Specifies the fully qualified Java class name of the
JNDI provider (which must be of
javax.jms.InitialContextFactory type).
Equivalent to setting the
java.naming.factory.initial Java system
property.

CHAPTER 13. USING SOAP OVER JMS

97

jndiURL Specifies the URL that initializes the JNDI provider.
Equivalent to setting the
java.naming.provider.url Java system
property.

Property Description

Additional JNDI properties

The properties, java.naming.factory.initial and java.naming.provider.url, are standard
properties, which are required to initialize any JNDI provider. Sometimes, however, a JNDI provider
might support custom properties in addition to the standard ones. In this case, you can set an arbitrary
JNDI property by setting a URI option of the form jndi-PropertyName.

For example, if you were using SUN's LDAP implementation of JNDI, you could set the JNDI property,
java.naming.factory.control, in a JMS URI as shown in Example 13.5, “Setting a JNDI property
in a JMS URI”.

Example 13.5. Setting a JNDI property in a JMS URI

Example

If the JMS provider is not already configured, it is possible to provide the requisite JNDI configuration
details in the URI using options (see Table 13.3, “JNDI properties settable as URI options”). For
example, to configure an endpoint to use the Apache ActiveMQ JMS provider and connect to the
queue called test.cxf.jmstransport.queue, use the URI shown in Example 13.6, “JMS URI that
configures a JNDI connection”.

Example 13.6. JMS URI that configures a JNDI connection

13.3. WSDL EXTENSIONS

Overview

You can specify the basic configuration of the JMS transport by inserting WSDL extension elements
into the contract, either at binding scope, service scope, or port scope. The WSDL extensions enable
you to specify the properties for bootstrapping a JNDI InitialContext, which can then be used to

jms:queue:FOO.BAR?jndi-
java.naming.factory.control=com.sun.jndi.ldap.ResponseControlFactory

jms:jndi:dynamicQueues/test.cxf.jmstransport.queue
?
jndiInitialContextFactory=org.apache.activemq.jndi.ActiveMQInitialContex
tFactory
&jndiConnectionFactoryName=ConnectionFactory
&jndiURL=tcp://localhost:61616

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

98

look up JMS destinations. You can also set some properties that affect the behavior of the JMS
transport layer.

SOAP/JMS namespace

the SOAP/JMS WSDL extensions are defined in the http://www.w3.org/2010/soapjms/
namespace. To use them in your WSDL contracts add the following setting to the wsdl:definitions
element:

WSDL extension elements

Table 13.4, “SOAP/JMS WSDL extension elements” shows all of the WSDL extension elements you can
use to configure the JMS transport.

Table 13.4. SOAP/JMS WSDL extension elements

Element Default Description

soapjms:jndiInitialCont
extFactory

 Specifies the fully qualified Java
class name of the JNDI provider.
Equivalent to setting the
java.naming.factory.ini
tial Java system property.

soapjms:jndiURL Specifies the URL that initializes
the JNDI provider. Equivalent to
setting the
java.naming.provider.ur
l Java system property.

soapjms:jndiContextPara
meter

 Enables you to specify an
additional property for creating
the JNDI InitialContext.
Use the name and value
attributes to specify the property.

soapjms:jndiConnectionF
actoryName

 Specifies the JNDI name of the
JMS connection factory.

<wsdl:definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >

CHAPTER 13. USING SOAP OVER JMS

99

soapjms:deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

soapjms:replyToName Explicitly specifies the reply
destination to appear in the
JMSReplyTo header. Setting
this property is recommended for
SOAP invocations that have
request-reply semantics. If this
property is not set the JMS
provider allocates a temporary
queue with an automatically
generated name.

The value of this property has an
interpretation that depends on
the variant specified in the JMS
URI, as follows:

jndi variant—the JNDI
name of the destination.

queue or topic
variants—the actual
name of the destination.

soapjms:priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

soapjms:timeToLive 0 Time, in milliseconds, after which
the message will be discarded by
the JMS provider. A value of 0
represents an infinite lifetime.

Element Default Description

Configuration scopes

The WSDL elements placement in the WSDL contract effect the scope of the configuration changes on
the endpoints defined in the contract. The SOAP/JMS WSDL elements can be placed as children of
either the wsdl:binding element, the wsdl:service element, or the wsdl:port element. The
parent of the SOAP/JMS elements determine which of the following scopes the configuration is placed
into.

Binding scope

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

100

You can configure the JMS transport at the binding scope by placing extension elements inside the
wsdl:binding element. Elements in this scope define the default configuration for all endpoints
that use this binding. Any settings in the binding scope can be overridden at the service scope or
the port scope.

Service scope

You can configure the JMS transport at the service scope by placing extension elements inside a
wsdl:service element. Elements in this scope define the default configuration for all endpoints in
this service. Any settings in the service scope can be overridden at the port scope.

Port scope

You can configure the JMS transport at the port scope by placing extension elements inside a
wsdl:port element. Elements in the port scope define the configuration for this port. They
override any defaults defined at the service scope or at the binding scope.

Example

Example 13.7, “WSDL contract with SOAP/JMS configuration” shows a WSDL contract for a SOAP/JMS
service. It configures the JNDI layer in the binding scope, the message delivery details in the service
scope, and the reply destination in the port scope.

Example 13.7. WSDL contract with SOAP/JMS configuration

1

2

3

4

5

<wsd;definitions ...
 xmlns:soapjms="http://www.w3.org/2010/soapjms/"
 ... >

 ...
 <wsdl:binding name="JMSGreeterPortBinding"
type="tns:JMSGreeterPortType">
 ...

 <soapjms:jndiInitialContextFactory>
 org.apache.activemq.jndi.ActiveMQInitialContextFactory

 </soapjms:jndiInitialContextFactory>
 <soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>
 <soapjms:jndiConnectionFactoryName>
 ConnectionFactory
 </soapjms:jndiConnectionFactoryName>
 ...
 </wsdl:binding>
 ...
 <wsdl:service name="JMSGreeterService">
 ...

 <soapjms:deliveryMode>NON_PERSISTENT</soapjms:deliveryMode>
 <soapjms:timeToLive>60000</soapjms:timeToLive>

 ...
 <wsdl:port binding="tns:JMSGreeterPortBinding" name="GreeterPort">

 <soap:address
location="jms:jndi:dynamicQueues/test.cxf.jmstransport.queue" />
 <soapjms:replyToName>
 dynamicQueues/greeterReply.queue

 </soapjms:replyToName>
 ...
 </wsdl:port>

CHAPTER 13. USING SOAP OVER JMS

101

1

2

3

4

5

The WSDL in Example 13.7, “WSDL contract with SOAP/JMS configuration” does the following:

Declare the namespace for the SOAP/JMS extensions.

Configure the JNDI connections in the binding scope.

Configure the JMS delivery style to non-persistent and each message to live for one minute.

Specify the target destination.

Configure the JMS transport so that reply messages are delivered on the greeterReply.queue
queue.

 ...
 </wsdl:service>
 ...
</wsdl:definitions>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

102

CHAPTER 14. USING GENERIC JMS

Abstract

Apache CXF provides a generic implementation of a JMS transport. The generic JMS transport is not
restricted to using SOAP messages and allows for connecting to any application that uses JMS.

The Apache CXF generic JMS transport can connect to any JMS provider and work with applications
that exchange JMS messages with bodies of either TextMessage or ByteMessage.

There are two ways to enable and configure the JMS transport:

JMS configuration bean

WSDL

14.1. USING THE JMS CONFIGURATION BEAN

Overview

To simplify JMS configuration and make it more powerful, Apache CXF uses a single JMS configuration
bean to configure JMS endpoints. The bean is implemented by the
org.apache.cxf.transport.jms.JMSConfiguration class. It can be used to either configure
endpoint's directly or to configure the JMS conduits and destinations.

Configuration namespace

The JMS configuration bean uses the Spring p-namespace to make the configuration as simple as
possible. To use this namespace you need to declare it in the configuration's root element as shown in
Example 14.1, “Declaring the Spring p-namespace”.

Example 14.1. Declaring the Spring p-namespace

Specifying the configuration

You specify the JMS configuration by defining a bean of class
org.apache.cxf.transport.jms.JMSConfiguration. The properties of the bean provide the
configuration settings for the transport.

Table 14.1, “General JMS Configuration Properties” lists properties that are common to both providers
and consumers.

Table 14.1. General JMS Configuration Properties

<beans ...
 xmlns:p="http://www.springframework.org/schema/p"
 ... >
 ...
</beans>

CHAPTER 14. USING GENERIC JMS

103

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-p-namespace

Property Default Description

connectionFactory-ref Specifies a reference to a bean
that defines a JMS
ConnectionFactory.

wrapInSingleConnectionF
actory

true Specifies whether to wrap the
ConnectionFactory with a
Spring
SingleConnectionFactory
. Doing so can improve the
performance of the JMS transport
when the specified connection
factory does not pool
connections.

reconnectOnException false Specifies whether to create a
new connection in the case of an
exception. This property is only
used when wrapping the
connection factory with a Spring
SingleConnectionFactory
.

targetDestination Specifies the JNDI name or
provider specific name of a
destination.

replyDestination Specifies the JMS name of the
JMS destinations where replies
are sent. This attribute allows you
to use a user defined destination
for replies. For more details see
Section 14.3, “Using a Named
Reply Destination”.

destinationResolver Specifies a reference to a Spring
DestinationResolver. This
allows you to define how
destination names are resolved.
By default a
DynamicDestinationResol
ver is used. It resolves
destinations using the JMS
providers features. If you
reference a
JndiDestinationResolver
you can resolve the destination
names using JNDI.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

104

transactionManager Specifies a reference to a Spring
transaction manager. This allows
the service to participate in JTA
Transactions.

taskExecutor Specifies a reference to a Spring
TaskExecutor. This is used in
listeners to decide how to handle
incoming messages. By default
the transport uses the Spring
SimpleAsyncTaskExecutor
.

useJms11 false Specifies whether JMS 1.1
features are available.

messageIdEnabled true Specifies whether the JMS
transport wants the JMS broker
to provide message IDs. Setting
this to false causes the
endpoint to call its message
producer's
setDisableMessageID()
method with a value of true. The
JMS broker is then given a hint
that it does not need to generate
message IDs or add them to the
messages from the endpoint. The
JMS broker can choose to accept
the hint or ignore it.

messageTimestampEnabled true Specifies whether the JMS
transport wants the JMS broker
to provide message time stamps.
Setting this to false causes the
endpoint to call its message
producer's
setDisableMessageTimest
amp() method with a value of
true. The JMS broker is then
given a hint that it does not need
to generate time stamps or add
them to the messages from the
endpoint. The JMS broker can
choose to accept the hint or
ignore it.

Property Default Description

CHAPTER 14. USING GENERIC JMS

105

cacheLevel 3 Specifies the level of caching
allowed by the listener. Valid
values are 0(CACHE_NONE),
1(CACHE_CONNECTION),
2(CACHE_SESSION),
3(CACHE_CONSUMER),
4(CACHE_AUTO).

pubSubNoLocal false Specifies whether to receive
messages produced from the
same connection.

receiveTimeout 0 Specifies, in milliseconds, the
amount of time to wait for
response messages. 0 means wait
indefinitely.

explicitQosEnabled false Specifies whether the QoS
settings like priority, persistence,
and time to live are explicitly set
for each message or if they are
allowed to use default values.

deliveryMode 1 Specifies if a message is
persistent. The two values are:

1(NON_PERSISTENT)—
messages will be kept
memory

2(PERSISTENT)—
messages will be
persisted to disk

priority 4 Specifies the message's priority
for the messages. JMS priority
values can range from 0 to 9. The
lowest priority is 0 and the
highest priority is 9.

timeToLive 0 Specifies, in milliseconds, the
message will be available after it
is sent. 0 specifies an infinite time
to live.

sessionTransacted false Specifies if JMS transactions are
used.

Property Default Description

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

106

concurrentConsumers 1 Specifies the minimum number of
concurrent consumers created by
the listener.

maxConcurrentConsumers 1 Specifies the maximum number of
concurrent consumers by
listener.

messageSelector Specifies the string value of the
selector. For more information on
the syntax used to specify
message selectors, see the JMS
1.1 specification.

subscriptionDurable false Specifies whether the server uses
durrable subscriptions.

durableSubscriptionName Specifies the string used to
register the durable subscription.

messageType text Specifies how the message data
will be packaged as a JMS
message. text specifies that the
data will be packaged as a
TextMessage. binary
specifies that the data will be
packaged as an ByteMessage.

pubSubDomain false Specifies whether the target
destination is a topic.

jmsProviderTibcoEms false Specifies if your JMS provider is
Tibco EMS. This causes the
principal in the security context
to be populated from the
JMS_TIBCO_SENDER header.

useMessageIDAsCorrelati
onID

false Specifies whether JMS will use
the message ID to correlate
messages. If not, the client will
set a generated correlation ID.

Property Default Description

As shown in Example 14.2, “JMS configuration bean” , the bean's properties are specified as attributes
to the bean element. They are all declared in the Spring p namespace.

Example 14.2. JMS configuration bean

<bean id="jmsConfig"
 class="org.apache.cxf.transport.jms.JMSConfiguration"

CHAPTER 14. USING GENERIC JMS

107

Applying the configuration to an endpoint

The JMSConfiguration bean can be applied directly to both server and client endpoints using the
Apache CXF features mechanism. To do so:

1. Set the endpoint's address attribute to jms://.

2. Add a jaxws:feature element to the endpoint's configuration.

3. Add a bean of type org.apache.cxf.transport.jms.JMSConfigFeature to the feature.

4. Set the bean element's p:jmsConfig-ref attribute to the ID of the JMSConfiguration
bean.

Example 14.3, “Adding JMS configuration to a JAX-WS client” shows a JAX-WS client that uses the
JMS configuration from Example 14.2, “JMS configuration bean” .

Example 14.3. Adding JMS configuration to a JAX-WS client

Applying the configuration to the transport

The JMSConfiguration bean can be applied to JMS conduits and JMS destinations using the
jms:jmsConfig-ref element. The jms:jmsConfig-ref element's value is the ID of the
JMSConfiguration bean.

Example 14.4, “Adding JMS configuration to a JMS conduit” shows a JMS conduit that uses the JMS
configuration from Example 14.2, “JMS configuration bean” .

Example 14.4. Adding JMS configuration to a JMS conduit

 p:connectionFactory-ref="connectionFactory"
 p:targetDestination="dynamicQueues/greeter.request.queue"
 p:pubSubDomain="false" />

<jaxws:client id="CustomerService"
 xmlns:customer="http://customerservice.example.com/"
 serviceName="customer:CustomerServiceService"
 endpointName="customer:CustomerServiceEndpoint"
 address="jms://"

serviceClass="com.example.customerservice.CustomerService">
 <jaxws:features>
 <bean class="org.apache.cxf.transport.jms.JMSConfigFeature"
 p:jmsConfig-ref="jmsConfig"/>
 </jaxws:features>
</jaxws:client>

<jms:conduit name="
{http://cxf.apache.org/jms_conf_test}HelloWorldQueueBinMsgPort.jms-
conduit">

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

108

14.2. USING WSDL TO CONFIGURE JMS

The WSDL extensions for defining a JMS endpoint are defined in the namespace
http://cxf.apache.org/transports/jms. In order to use the JMS extensions you will need to add the line
shown in Example 14.5, “JMS WSDL extension namespace” to the definitions element of your contract.

Example 14.5. JMS WSDL extension namespace

14.2.1. Basic JMS configuration

Overview

The JMS address information is provided using the jms:address element and its child, the
jms:JMSNamingProperties element. The jms:address element’s attributes specify the
information needed to identify the JMS broker and the destination. The jms:JMSNamingProperties
element specifies the Java properties used to connect to the JNDI service.

IMPORTANT

Information specified using the JMS feature will override the information in the
endpoint's WSDL file.

Specifying the JMS address

The basic configuration for a JMS endpoint is done by using a jms:address element as the child of
your service’s port element. The jms:address element used in WSDL is identical to the one used in
the configuration file. Its attributes are listed in Table 14.2, “JMS endpoint attributes” .

Table 14.2. JMS endpoint attributes

Attribute Description

destinationStyle Specifies if the JMS destination is a JMS queue or a
JMS topic.

jndiConnectionFactoryName Specifies the JNDI name bound to the JMS
connection factory to use when connecting to the
JMS destination.

jmsDestinationName Specifies the JMS name of the JMS destination to
which requests are sent.

 ...
 <jms:jmsConfig-ref>jmsConf</jms:jmsConfig-ref>
</jms:conduit>

xmlns:jms="http://cxf.apache.org/transports/jms"

CHAPTER 14. USING GENERIC JMS

109

jmsReplyDestinationName Specifies the JMS name of the JMS destinations
where replies are sent. This attribute allows you to
use a user defined destination for replies. For more
details see Section 14.3, “Using a Named Reply
Destination”.

jndiDestinationName Specifies the JNDI name bound to the JMS
destination to which requests are sent.

jndiReplyDestinationName Specifies the JNDI name bound to the JMS
destinations where replies are sent. This attribute
allows you to use a user defined destination for
replies. For more details see Section 14.3, “Using a
Named Reply Destination”.

connectionUserName Specifies the user name to use when connecting to a
JMS broker.

connectionPassword Specifies the password to use when connecting to a
JMS broker.

Attribute Description

The jms:address WSDL element uses a jms:JMSNamingProperties child element to specify
additional information needed to connect to a JNDI provider.

Specifying JNDI properties

To increase interoperability with JMS and JNDI providers, the jms:address element has a child
element, jms:JMSNamingProperties, that allows you to specify the values used to populate the
properties used when connecting to the JNDI provider. The jms:JMSNamingProperties element
has two attributes: name and value. name specifies the name of the property to set. value attribute
specifies the value for the specified property. jms:JMSNamingProperties element can also be used
for specification of provider specific properties.

The following is a list of common JNDI properties that can be set:

1. java.naming.factory.initial

2. java.naming.provider.url

3. java.naming.factory.object

4. java.naming.factory.state

5. java.naming.factory.url.pkgs

6. java.naming.dns.url

7. java.naming.authoritative

8. java.naming.batchsize

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

110

9. java.naming.referral

10. java.naming.security.protocol

11. java.naming.security.authentication

12. java.naming.security.principal

13. java.naming.security.credentials

14. java.naming.language

15. java.naming.applet

For more details on what information to use in these attributes, check your JNDI provider’s
documentation and consult the Java API reference material.

Example

Example 14.6, “JMS WSDL port specification” shows an example of a JMS WSDL port specification.

Example 14.6. JMS WSDL port specification

14.2.2. JMS client configuration

Overview

JMS consumer endpoints specify the type of messages they use. JMS consumer endpoint can use
either a JMS ByteMessage or a JMS TextMessage.

When using an ByteMessage the consumer endpoint uses a byte[] as the method for storing data into
and retrieving data from the JMS message body. When messages are sent, the message data, including
any formating information, is packaged into a byte[] and placed into the message body before it is
placed on the wire. When messages are received, the consumer endpoint will attempt to unmarshall
the data stored in the message body as if it were packed in a byte[].

When using a TextMessage, the consumer endpoint uses a string as the method for storing and
retrieving data from the message body. When messages are sent, the message information, including
any format-specific information, is converted into a string and placed into the JMS message body.

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

CHAPTER 14. USING GENERIC JMS

111

When messages are received the consumer endpoint will attempt to unmarshall the data stored in the
JMS message body as if it were packed into a string.

When native JMS applications interact with Apache CXF consumers, the JMS application is responsible
for interpreting the message and the formatting information. For example, if the Apache CXF contract
specifies that the binding used for a JMS endpoint is SOAP, and the messages are packaged as
TextMessage, the receiving JMS application will get a text message containing all of the SOAP
envelope information.

Specifying the message type

The type of messages accepted by a JMS consumer endpoint is configured using the optional
jms:client element. The jms:client element is a child of the WSDL port element and has one
attribute:

Table 14.3. JMS Client WSDL Extensions

messageType Specifies how the message data will be packaged as
a JMS message. text specifies that the data will be
packaged as a TextMessage. binary specifies
that the data will be packaged as an ByteMessage.

Example

Example 14.7, “WSDL for a JMS consumer endpoint” shows the WSDL for configuring a JMS consumer
endpoint.

Example 14.7. WSDL for a JMS consumer endpoint

14.2.3. JMS provider configuration

Overview

JMS provider endpoints have a number of behaviors that are configurable. These include:

how messages are correlated

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 <jms:client messageType="binary" />
 </port>
</service>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

112

the use of durable subscriptions

if the service uses local JMS transactions

the message selectors used by the endpoint

Specifying the configuration

Provider endpoint behaviors are configured using the optional jms:server element. The
jms:server element is a child of the WSDL wsdl:port element and has the following attributes:

Table 14.4. JMS provider endpoint WSDL extensions

Attribute Description

useMessageIDAsCorrealationID Specifies whether JMS will use the message ID to
correlate messages. The default is false.

durableSubscriberName Specifies the name used to register a durable
subscription.

messageSelector Specifies the string value of a message selector to
use. For more information on the syntax used to
specify message selectors, see the JMS 1.1
specification.

transactional Specifies whether the local JMS broker will create
transactions around message processing. The
default is false. [a]

[a] Currently, setting the transactional attribute to true is not supported by the runtime.

Example

Example 14.8, “WSDL for a JMS provider endpoint” shows the WSDL for configuring a JMS provider
endpoint.

Example 14.8. WSDL for a JMS provider endpoint

<service name="JMSService">
 <port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/test.Celtix.jmstransport" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 <jms:server messageSelector="cxf_message_selector"
 useMessageIDAsCorrelationID="true"

CHAPTER 14. USING GENERIC JMS

113

14.3. USING A NAMED REPLY DESTINATION

Overview

By default, Apache CXF endpoints using JMS create a temporary queue for sending replies back and
forth. If you prefer to use named queues, you can configure the queue used to send replies as part of an
endpoint's JMS configuration.

Setting the reply destination name

You specify the reply destination using either the jmsReplyDestinationName attribute or the
jndiReplyDestinationName attribute in the endpoint's JMS configuration. A client endpoint will
listen for replies on the specified destination and it will specify the value of the attribute in the
ReplyTo field of all outgoing requests. A service endpoint will use the value of the
jndiReplyDestinationName attribute as the location for placing replies if there is no destination
specified in the request’s ReplyTo field.

Example

Example 14.9, “JMS Consumer Specification Using a Named Reply Queue” shows the configuration for
a JMS client endpoint.

Example 14.9. JMS Consumer Specification Using a Named Reply Queue

 transactional="true"
 durableSubscriberName="cxf_subscriber" />
 </port>
</service>

<jms:conduit name="
{http://cxf.apache.org/jms_endpt}HelloWorldJMSPort.jms-conduit">
 <jms:address destinationStyle="queue"
 jndiConnectionFactoryName="myConnectionFactory"
 jndiDestinationName="myDestination"
 jndiReplyDestinationName="myReplyDestination" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.apache.cxf.transport.jms.MyInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </jms:conduit>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

114

APPENDIX A. INTEGRATING WITH APACHE ACTIVEMQ

OVERVIEW

If you are using Apache ActiveMQ as your JMS provider, the JNDI name of your destinations can be
specified in a special format that dynamically creates JNDI bindings for queues or topics. This means
that it is not necessary to configure the JMS provider in advance with the JNDI bindings for your
queues or topics.

THE INITIAL CONTEXT FACTORY

The key to integrating Apache ActiveMQ with JNDI is the ActiveMQInitialContextFactory class.
This class is used to create a JNDI InitialContext instance, which you can then use to access JMS
destinations in the JMS broker.

Example A.1, “SOAP/JMS WSDL to connect to Apache ActiveMQ” shows SOAP/JMS WSDL extensions
to create a JNDI InitialContext that is integrated with Apache ActiveMQ.

Example A.1. SOAP/JMS WSDL to connect to Apache ActiveMQ

In Example A.1, “SOAP/JMS WSDL to connect to Apache ActiveMQ” , the Apache ActiveMQ client
connects to the broker port located at tcp://localhost:61616.

LOOKING UP THE CONNECTION FACTORY

As well as creating a JNDI InitialContext instance, you must specify the JNDI name that is bound
to a javax.jms.ConnectionFactory instance. In the case of Apache ActiveMQ, there is a
predefined binding in the InitialContext instance, which maps the JNDI name
ConnectionFactory to an ActiveMQConnectionFactory instance. Example A.2, “SOAP/JMS
WSDL for specifying the Apache ActiveMQ connection factory” shaows the SOAP/JMS extension
element for specifying the Apache ActiveMQ connection factory.

Example A.2. SOAP/JMS WSDL for specifying the Apache ActiveMQ connection factory

SYNTAX FOR DYNAMIC DESTINATIONS

To access queues or topics dynamically, specify the destination's JNDI name as a JNDI composite
name in either of the following formats:

<soapjms:jndiInitialContextFactory>
 org.apache.activemq.jndi.ActiveMQInitialContextFactory
</soapjms:jndiInitialContextFactory>
<soapjms:jndiURL>tcp://localhost:61616</soapjms:jndiURL>

<soapjms:jndiConnectionFactoryName>
 ConnectionFactory
</soapjms:jndiConnectionFactoryName>

dynamicQueues/QueueName

APPENDIX A. INTEGRATING WITH APACHE ACTIVEMQ

115

QueueName and TopicName are the names that the Apache ActiveMQ broker uses. They are not
abstract JNDI names.

Example A.3, “WSDL port specification with a dynamically created queue” shows a WSDL port that uses
a dynamically created queue.

Example A.3. WSDL port specification with a dynamically created queue

When the application attempts to open the JMS connection, Apache ActiveMQ will check to see if a
queue with the JNDI name greeter.request.queue exists. If it does not exist, it will create a new
queue and bind it to the JNDI name greeter.request.queue.

dynamicTopics/TopicName

<service name="JMSService">
 <port binding="tns:GreeterBinding" name="JMSPort">
 <jms:address jndiConnectionFactoryName="ConnectionFactory"

jndiDestinationName="dynamicQueues/greeter.request.queue" >
 <jms:JMSNamingProperty name="java.naming.factory.initial"

value="org.activemq.jndi.ActiveMQInitialContextFactory" />
 <jms:JMSNamingProperty name="java.naming.provider.url"
 value="tcp://localhost:61616" />
 </jms:address>
 </port>
</service>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

116

APPENDIX B. CONDUITS

Abstract

Conduits are a low-level piece of the transport architecture that are used to implement outbound
connections. Their behavior and life-cycle can effect system performance and processing load.

OVERVIEW

Conduits manage the client-side, or outbound, transport details in the Apache CXF runtime. They are
responsible for opening ports, establishing outbound connections, sending messages, and listening for
any responses between an application and a single external endpoint. If an application connects to
multiple endpoints, it will have one conduit instance for each endpoint.

Each transport type implements its own conduit using the Conduit interface. This allows for a
standardized interface between the application level functionality and the transports.

In general, you only need to worry about the conduits being used by your application when configuring
the client-side transport details. The underlying semantics of how the runtime handles conduits is,
generally, not something a developer needs to worry about.

However, there are cases when an understanding of conduit's can prove helpful:

Implementing a custom transport

Advanced application tuning to manage limited resources

CONDUIT LIFE-CYCLE

Conduits are managed by the client implementation object. Once created, a conduit lives for the
duration of the client implementation object. The conduit's life-cycle is:

1. When the client implementation object is created, it is given a reference to a
ConduitSelector object.

2. When the client needs to send a message is request's a reference to a conduit from the conduit
selector.

If the message is for a new endpoint, the conduit selector creates a new conduit and passes it
to the client implementation. Otherwise, it passes the client a reference to the conduit for the
target endpoint.

3. The conduit sends messages when needed.

4. When the client implementation object is destroyed, all of the conduits associated with it are
destroyed.

CONDUIT WEIGHT

The weight of a conduit object depends on the transport implementation. HTTP conduits are extremely
light weight. JMS conduits are heavy because they are associated with the JMS Session object and
one or more JMSListenerContainer objects.

APPENDIX B. CONDUITS

117

PART IV. CONFIGURING WEB SERVICE ENDPOINTS

Abstract

This guide describes how to create Apache CXF endpoints in Red Hat JBoss Fuse.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

118

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

Abstract

JAX-WS endpoints are configured using one of three Spring configuration elements. The correct
element depends on what type of endpoint you are configuring and which features you wish to use. For
consumers you use the jaxws:client element. For service providers you can use either the
jaxws:endpoint element or the jaxws:server element.

The information used to define an endpoint is typically defined in the endpoint's contract. You can use
the configuration element's to override the information in the contract. You can also use the
configuration elements to provide information that is not provided in the contract.

NOTE

When dealing with endpoints developed using a Java-first approach it is likely that the
SEI serving as the endpoint's contract is lacking information about the type of binding
and transport to use.

You must use the configuration elements to activate advanced features such as WS-RM. This is done
by providing child elements to the endpoint's configuration element.

15.1. CONFIGURING SERVICE PROVIDERS

Apache CXF has two elements that can be used to configure a service provider:

Section 15.1.1, “Using the jaxws:endpoint Element”

Section 15.1.2, “Using the jaxws:server Element”

The differences between the two elements are largely internal to the runtime. The jaxws:endpoint
element injects properties into the org.apache.cxf.jaxws.EndpointImpl object created to
support a service endpoint. The jaxws:server element injects properties into the
org.apache.cxf.jaxws.support.JaxWsServerFactoryBean object created to support the
endpoint. The EndpointImpl object passes the configuration data to the
JaxWsServerFactoryBean object. The JaxWsServerFactoryBean object is used to create the
actual service object. Because either configuration element will configure a service endpoint, you can
choose based on the syntax you prefer.

15.1.1. Using the jaxws:endpoint Element

Overview

The jaxws:endpoint element is the default element for configuring JAX-WS service providers. Its
attributes and children specify all of the information needed to instantiate a service provider. Many of
the attributes map to information in the service's contract. The children are used to configure
interceptors and other advanced features.

Identifying the endpoint being configured

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

119

For the runtime to apply the configuration to the proper service provider, it must be able to identify it.
The basic means for identifying a service provider is to specify the class that implements the endpoint.
This is done using the jaxws:endpoint element's implementor attribute.

For instances where different endpoint's share a common implementation, it is possible to provide
different configuration for each endpoint. There are two approaches for distinguishing a specific
endpoint in configuration:

a combination of the serviceName attribute and the endpointName attribute

The serviceName attribute specifies the wsdl:service element defining the service's
endpoint. The endpointName attribute specifies the specific wsdl:port element defining the
service's endpoint. Both attributes are specified as QNames using the format ns:name. ns is
the namespace of the element and name is the value of the element's name attribute.

TIP

If the wsdl:service element only has one wsdl:port element, the endpointName
attribute can be omitted.

the name attribute

The name attribute specifies the QName of the specific wsdl:port element defining the
service's endpoint. The QName is provided in the format {ns}localPart. ns is the
namespace of the wsdl:port element and localPart is the value of the wsdl:port element's
name attribute.

Attributes

The attributes of the jaxws:endpoint element configure the basic properties of the endpoint. These
properties include the address of the endpoint, the class that implements the endpoint, and the bus
that hosts the endpoint.

Table 15.1, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint
Element” describes the attribute of the jaxws:endpoint element.

Table 15.1. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:endpoint
Element

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

implementor Specifies the class implementing the service. You
can specify the implementation class using either
the class name or an ID reference to a Spring bean
configuring the implementation class. This class
must be on the classpath.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

120

implementorClass Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean
that is wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This
value overrides the value specified in the services
contract.

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the service is deployed.

endpointName Specifies the value of the service's wsdl:port
element's name attribute. It is specified as a QName
using the format ns:name where ns is the
namespace of the wsdl:port element.

serviceName Specifies the value of the service's wsdl:service
element's name attribute. It is specified as a QName
using the format ns:name where ns is the
namespace of the wsdl:service element.

publish Specifies if the service should be automatically
published. If this is set to false, the developer
must explicitly publish the endpoint.

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingUri Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Appendix C, Apache CXF Binding IDs.

name Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName
using the format {ns}localPart. ns is the
namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's
name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false.
Setting this to true instructs the bean factory not
to instantiate the bean.

Attribute Description

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

121

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before it can be instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs, such as
Endpoint.publish() or
Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-endpoint to its id

Makes the bean abstract

publishedEndpointUrl The URL that is placed in the address element of
the generated WSDL. If this value is not specified,
the value of the address attribute is used. This
attribute is useful when the "public" URL is not be
the same as the URL on which the service is
deployed.

Attribute Description

In addition to the attributes listed in Table 15.1, “Attributes for Configuring a JAX-WS Service Provider
Using the jaxws:endpoint Element”, you might need to use multiple xmlns:shortName attributes
to declare the namespaces used by the endpointName and serviceName attributes.

Example

Example 15.1, “Simple JAX-WS Endpoint Configuration” shows the configuration for a JAX-WS
endpoint that specifies the address where the endpoint is published. The example assumes that you
want to use the defaults for all other values or that the implementation has specified values in the
annotations.

Example 15.1. Simple JAX-WS Endpoint Configuration

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:endpoint id="example"
 implementor="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo" />
</beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

122

Example 15.2, “JAX-WS Endpoint Configuration with a Service Name” shows the configuration for a
JAX-WS endpoint whose contract contains two service definitions. In this case, you must specify which
service definition to instantiate using the serviceName attribute.

Example 15.2. JAX-WS Endpoint Configuration with a Service Name

The xmlns:samp attribute specifies the namespace in which the WSDL service element is defined.

15.1.2. Using the jaxws:server Element

Overview

The jaxws:server element is an element for configuring JAX-WS service providers. It injects the
configuration information into the org.apache.cxf.jaxws.support.JaxWsServerFactoryBean.
This is a Apache CXF specific object. If you are using a pure Spring approach to building your services,
you will not be forced to use Apache CXF specific APIs to interact with the service.

The attributes and children of the jaxws:server element specify all of the information needed to
instantiate a service provider. The attributes specify the information that is required to instantiate an
endpoint. The children are used to configure interceptors and other advanced features.

Identifying the endpoint being configured

In order for the runtime to apply the configuration to the proper service provider, it must be able to
identify it. The basic means for identifying a service provider is to specify the class that implements the
endpoint. This is done using the jaxws:server element's serviceBean attribute.

For instances where different endpoint's share a common implementation, it is possible to provide
different configuration for each endpoint. There are two approaches for distinguishing a specific
endpoint in configuration:

a combination of the serviceName attribute and the endpointName attribute

The serviceName attribute specifies the wsdl:service element defining the service's
endpoint. The endpointName attribute specifies the specific wsdl:port element defining the
service's endpoint. Both attributes are specified as QNames using the format ns:name. ns is
the namespace of the element and name is the value of the element's name attribute.

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">

 <jaxws:endpoint id="example2"
 implementor="org.apache.cxf.example.DemoImpl"
 serviceName="samp:demoService2"
 xmlns:samp="http://org.apache.cxf/wsdl/example" />

</beans>

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

123

TIP

If the wsdl:service element only has one wsdl:port element, the endpointName
attribute can be omitted.

the name attribute

The name attribute specifies the QName of the specific wsdl:port element defining the
service's endpoint. The QName is provided in the format {ns}localPart. ns is the
namespace of the wsdl:port element and localPart is the value of the wsdl:port element's
name attribute.

Attributes

The attributes of the jaxws:server element configure the basic properties of the endpoint. These
properties include the address of the endpoint, the class that implements the endpoint, and the bus
that hosts the endpoint.

Table 15.2, “Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server Element”
describes the attribute of the jaxws:server element.

Table 15.2. Attributes for Configuring a JAX-WS Service Provider Using the jaxws:server
Element

Attribute Description

id Specifies a unique identifier that other configuration
elements can use to refer to the endpoint.

serviceBean Specifies the class implementing the service. You
can specify the implementation class using either
the class name or an ID reference to a Spring bean
configuring the implementation class. This class
must be on the classpath.

serviceClass Specifies the class implementing the service. This
attribute is useful when the value provided to the
implementor attribute is a reference to a bean
that is wrapped using Spring AOP.

address Specifies the address of an HTTP endpoint. This
value will override the value specified in the services
contract.

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the service is deployed.

endpointName Specifies the value of the service's wsdl:port
element's name attribute. It is specified as a QName
using the format ns:name, where ns is the
namespace of the wsdl:port element.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

124

serviceName Specifies the value of the service's wsdl:service
element's name attribute. It is specified as a QName
using the format ns:name, where ns is the
namespace of the wsdl:service element.

start Specifies if the service should be automatically
published. If this is set to false, the developer
must explicitly publish the endpoint.

bus Specifies the ID of the Spring bean configuring the
bus used to manage the service endpoint. This is
useful when configuring several endpoints to use a
common set of features.

bindingId Specifies the ID of the message binding the service
uses. A list of valid binding IDs is provided in
Appendix C, Apache CXF Binding IDs.

name Specifies the stringified QName of the service's
wsdl:port element. It is specified as a QName
using the format {ns}localPart, where ns is the
namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's
name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false.
Setting this to true instructs the bean factory not
to instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before the endpoint can be
instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs, such as
Endpoint.publish() or
Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-endpoint to its id

Makes the bean abstract

Attribute Description

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

125

In addition to the attributes listed in Table 15.2, “Attributes for Configuring a JAX-WS Service Provider
Using the jaxws:server Element”, you might need to use multiple xmlns:shortName attributes to
declare the namespaces used by the endpointName and serviceName attributes.

Example

Example 15.3, “Simple JAX-WS Server Configuration” shows the configuration for a JAX-WS endpoint
that specifies the address where the endpoint is published.

Example 15.3. Simple JAX-WS Server Configuration

15.1.3. Adding Functionality to Service Providers

Overview

The jaxws:endpoint and the jaxws:server elements provide the basic configuration information
needed to instantiate a service provider. To add functionality to your service provider or to perform
advanced configuration you must add child elements to the configuration.

Child elements allow you to do the following:

Change the endpoint's logging behavior

Add interceptors to the endpoint's messaging chain

Enable WS-Addressing features

Enable reliable messaging

Elements

Table 15.3, “Elements Used to Configure JAX-WS Service Providers” describes the child elements that
jaxws:endpoint supports.

Table 15.3. Elements Used to Configure JAX-WS Service Providers

Element Description

jaxws:handlers Specifies a list of JAX-WS Handler
implementations for processing messages.

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:server id="exampleServer"
 serviceBean="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo" />
</beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

126

jaxws:inInterceptors Specifies a list of interceptors that process inbound
requests. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:inFaultInterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:outInterceptors Specifies a list of interceptors that process
outbound replies. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:outFaultInterceptors Specifies a list of interceptors that process
outbound fault messages. For more information see
Part VII, “Developing Apache CXF Interceptors”.

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactor

y interface.[a]

jaxws:dataBinding [b] Specifies the class implementing the data binding
used by the endpoint. This is specified using an
embedded bean definition.

jaxws:executor Specifies a Java executor that is used for the
service. This is specified using an embedded bean
definition.

jaxws:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxws:invoker Specifies an implementation of the
org.apache.cxf.service.Invoker
interface used by the service. [c]

jaxws:properties Specifies a Spring map of properties that are passed
along to the endpoint. These properties can be used
to control features like enabling MTOM support.

jaxws:serviceFactory Specifies a bean configuring the
JaxWsServiceFactoryBean object used to
instantiate the service.

Element Description

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

127

[a] The SOAP binding is configured using the soap:soapBinding bean.

[b] The jaxws:endpoint element does not support the jaxws:dataBinding element.

[c] The Invoker implementation controls how a service is invoked. For example, it controls whether each request is
handled by a new instance of the service implementation or if state is preserved across invocations.

Element Description

15.2. CONFIGURING CONSUMER ENDPOINTS

Overview

JAX-WS consumer endpoints are configured using the jaxws:client element. The element's
attributes provide the basic information necessary to create a consumer.

To add other functionality, like WS-RM, to the consumer you add children to the jaxws:client
element. Child elements are also used to configure the endpoint's logging behavior and to inject other
properties into the endpoint's implementation.

Basic Configuration Properties

The attributes described in Table 15.4, “Attributes Used to Configure a JAX-WS Consumer” provide the
basic information necessary to configure a JAX-WS consumer. You only need to provide values for the
specific properties you want to configure. Most of the properties have sensible defaults, or they rely on
information provided by the endpoint's contract.

Table 15.4. Attributes Used to Configure a JAX-WS Consumer

Attribute Description

address Specifies the HTTP address of the endpoint where
the consumer will make requests. This value
overrides the value set in the contract.

bindingId Specifies the ID of the message binding the
consumer uses. A list of valid binding IDs is provided
in Appendix C, Apache CXF Binding IDs.

bus Specifies the ID of the Spring bean configuring the
bus managing the endpoint.

endpointName Specifies the value of the wsdl:port element's
name attribute for the service on which the
consumer is making requests. It is specified as a
QName using the format ns:name, where ns is the
namespace of the wsdl:port element.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

128

serviceName Specifies the value of the wsdl:service
element's name attribute for the service on which
the consumer is making requests. It is specified as a
QName using the format ns:name where ns is the
namespace of the wsdl:service element.

username Specifies the username used for simple
username/password authentication.

password Specifies the password used for simple
username/password authentication.

serviceClass Specifies the name of the service endpoint
interface(SEI).

wsdlLocation Specifies the location of the endpoint's WSDL
contract. The WSDL contract's location is relative to
the folder from which the client is deployed.

name Specifies the stringified QName of the wsdl:port
element for the service on which the consumer is
making requests. It is specified as a QName using
the format {ns}localPart, where ns is the
namespace of the wsdl:port element and
localPart is the value of the wsdl:port element's
name attribute.

abstract Specifies if the bean is an abstract bean. Abstract
beans act as parents for concrete bean definitions
and are not instantiated. The default is false.
Setting this to true instructs the bean factory not
to instantiate the bean.

depends-on Specifies a list of beans that the endpoint depends
on being instantiated before it can be instantiated.

createdFromAPI Specifies that the user created that bean using
Apache CXF APIs like Service.getPort().

The default is false.

Setting this to true does the following:

Changes the internal name of the bean by
appending .jaxws-client to its id

Makes the bean abstract

Attribute Description

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

129

In addition to the attributes listed in Table 15.4, “Attributes Used to Configure a JAX-WS Consumer” , it
might be necessary to use multiple xmlns:shortName attributes to declare the namespaces used by
the endpointName and the serviceName attributes.

Adding functionality

To add functionality to your consumer or to perform advanced configuration, you must add child
elements to the configuration.

Child elements allow you to do the following:

Change the endpoint's logging behavior

Add interceptors to the endpoint's messaging chain

Enable WS-Addressing features

Enable reliable messaging

Table 15.5, “Elements For Configuring a Consumer Endpoint” describes the child element's you can use
to configure a JAX-WS consumer.

Table 15.5. Elements For Configuring a Consumer Endpoint

Element Description

jaxws:binding Specifies a bean configuring the message binding
used by the endpoint. Message bindings are
configured using implementations of the
org.apache.cxf.binding.BindingFactor

y interface.[a]

jaxws:dataBinding Specifies the class implementing the data binding
used by the endpoint. You specify this using an
embedded bean definition. The class implementing
the JAXB data binding is
org.apache.cxf.jaxb.JAXBDataBinding.

jaxws:features Specifies a list of beans that configure advanced
features of Apache CXF. You can provide either a list
of bean references or a list of embedded beans.

jaxws:handlers Specifies a list of JAX-WS Handler
implementations for processing messages.

jaxws:inInterceptors Specifies a list of interceptors that process inbound
responses. For more information see Part VII,
“Developing Apache CXF Interceptors”.

jaxws:inFaultInterceptors Specifies a list of interceptors that process inbound
fault messages. For more information see Part VII,
“Developing Apache CXF Interceptors”.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

130

jaxws:outInterceptors Specifies a list of interceptors that process
outbound requests. For more information see
Part VII, “Developing Apache CXF Interceptors”.

jaxws:outFaultInterceptors Specifies a list of interceptors that process
outbound fault messages. For more information see
Part VII, “Developing Apache CXF Interceptors”.

jaxws:properties Specifies a map of properties that are passed to the
endpoint.

jaxws:conduitSelector Specifies an
org.apache.cxf.endpoint.ConduitSelec
tor implementation for the client to use. A
ConduitSelector implementation will override
the default process used to select the Conduit
object that is used to process outbound requests.

[a] The SOAP binding is configured using the soap:soapBinding bean.

Element Description

Example

Example 15.4, “Simple Consumer Configuration” shows a simple consumer configuration.

Example 15.4. Simple Consumer Configuration

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:client id="bookClient"
 serviceClass="org.apache.cxf.demo.BookClientImpl"
 address="http://localhost:8080/books"/>
 ...
</beans>

CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS

131

CHAPTER 16. APACHE CXF LOGGING

Abstract

This chapter describes how to configure logging in the Apache CXF runtime.

16.1. OVERVIEW OF APACHE CXF LOGGING

Overview

Apache CXF uses the Java logging utility, java.util.logging. Logging is configured in a logging
configuration file that is written using the standard java.util.Properties format. To run logging
on an application, you can specify logging programmatically or by defining a property at the command
that points to the logging configuration file when you start the application.

Default logging.properties file

Apache CXF comes with a default logging.properties file, which is located in your InstallDir/etc
directory. This file configures both the output destination for the log messages and the message level
that is published. The default configuration sets the loggers to print message flagged with the WARNING
level to the console. You can either use the default file without changing any of the configuration
settings or you can change the configuration settings to suit your specific application.

Logging feature

Apache CXF includes a logging feature that can be plugged into your client or your service to enable
logging. Example 16.1, “Configuration for Enabling Logging” shows the configuration to enable the
logging feature.

Example 16.1. Configuration for Enabling Logging

For more information, see Section 16.6, “Logging Message Content” .

Where to begin?

To run a simple example of logging follow the instructions outlined in a Section 16.2, “Simple Example
of Using Logging”.

For more information on how logging works in Apache CXF, read this entire chapter.

More information on java.util.logging

<jaxws:endpoint...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

132

The java.util.logging utility is one of the most widely used Java logging frameworks. There is a
lot of information available online that describes how to use and extend this framework. As a starting
point, however, the following documents gives a good overview of java.util.logging:

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html

http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html

16.2. SIMPLE EXAMPLE OF USING LOGGING

Changing the log levels and output destination

To change the log level and output destination of the log messages in the wsdl_first sample
application, complete the following steps:

1. Run the sample server as described in the Running the demo using java section of the
README.txt file in the InstallDir/samples/wsdl_first directory. Note that the
server start command specifies the default logging.properties file, as follows:

Platform Command

Windows start java -
Djava.util.logging.config.file=%
CXF_HOME%\etc\logging.properties
demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$
CXF_HOME/etc/logging.properties
demo.hw.server.Server &

The default logging.properties file is located in the InstallDir/etc directory. It
configures the Apache CXF loggers to print WARNING level log messages to the console. As a
result, you see very little printed to the console.

2. Stop the server as described in the README.txt file.

3. Make a copy of the default logging.properties file, name it mylogging.properties file,
and save it in the same directory as the default logging.properties file.

4. Change the global logging level and the console logging levels in your
mylogging.properties file to INFO by editing the following lines of configuration:

5. Restart the server using the following command:

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

CHAPTER 16. APACHE CXF LOGGING

133

http://java.sun.com/j2se/1.5.0/docs/guide/logging/overview.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/logging/package-summary.html

Platform Command

Windows start java -
Djava.util.logging.config.file=%
CXF_HOME%\etc\mylogging.properti
es demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$
CXF_HOME/etc/mylogging.propertie
s demo.hw.server.Server &

Because you configured the global logging and the console logger to log messages of level
INFO, you see a lot more log messages printed to the console.

16.3. DEFAULT LOGGING CONFIGURATION FILE

The default logging configuration file, logging.properties, is located in the InstallDir/etc
directory. It configures the Apache CXF loggers to print WARNING level messages to the console. If this
level of logging is suitable for your application, you do not have to make any changes to the file before
using it. You can, however, change the level of detail in the log messages. For example, you can change
whether log messages are sent to the console, to a file or to both. In addition, you can specify logging
at the level of individual packages.

NOTE

This section discusses the configuration properties that appear in the default
logging.properties file. There are, however, many other java.util.logging
configuration properties that you can set. For more information on the
java.util.logging API, see the java.util.logging javadoc at:
http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html.

16.3.1. Configuring Logging Output

The Java logging utility, java.util.logging, uses handler classes to output log messages.
Table 16.1, “Java.util.logging Handler Classes” shows the handlers that are configured in the default
logging.properties file.

Table 16.1. Java.util.logging Handler Classes

Handler Class Outputs to

ConsoleHandler Outputs log messages to the console

FileHandler Outputs log messages to a file

IMPORTANT

The handler classes must be on the system classpath in order to be installed by the Java
VM when it starts. This is done when you set the Apache CXF environment.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

134

http://java.sun.com/j2se/1.5/docs/api/java/util/logging/package-summary.html

1

2

Configuring the console handler

Example 16.2, “Configuring the Console Handler” shows the code for configuring the console logger.

Example 16.2. Configuring the Console Handler

The console handler also supports the configuration properties shown in Example 16.3, “Console
Handler Properties”.

Example 16.3. Console Handler Properties

The configuration properties shown in Example 16.3, “Console Handler Properties” can be explained as
follows:

The console handler supports a separate log level configuration property. This allows you to limit
the log messages printed to the console while the global logging setting can be different (see
Section 16.3.2, “Configuring Logging Levels”). The default setting is WARNING.

Specifies the java.util.logging formatter class that the console handler class uses to format
the log messages. The default setting is the java.util.logging.SimpleFormatter.

Configuring the file handler

Example 16.4, “Configuring the File Handler” shows code that configures the file handler.

Example 16.4. Configuring the File Handler

The file handler also supports the configuration properties shown in Example 16.5, “File Handler
Configuration Properties”.

Example 16.5. File Handler Configuration Properties

handlers= java.util.logging.ConsoleHandler

1

2

java.util.logging.ConsoleHandler.level = WARNING
java.util.logging.ConsoleHandler.formatter =
java.util.logging.SimpleFormatter

handlers= java.util.logging.FileHandler

1
2

3

4

java.util.logging.FileHandler.pattern = %h/java%u.log
java.util.logging.FileHandler.limit = 50000

java.util.logging.FileHandler.count = 1
java.util.logging.FileHandler.formatter =

java.util.logging.XMLFormatter

CHAPTER 16. APACHE CXF LOGGING

135

1

2

3

4

The configuration properties shown in Example 16.5, “File Handler Configuration Properties” can be
explained as follows:

Specifies the location and pattern of the output file. The default setting is your home directory.

Specifies, in bytes, the maximum amount that the logger writes to any one file. The default setting
is 50000. If you set it to zero, there is no limit on the amount that the logger writes to any one file.

Specifies how many output files to cycle through. The default setting is 1.

Specifies the java.util.logging formatter class that the file handler class uses to format the
log messages. The default setting is the java.util.logging.XMLFormatter.

Configuring both the console handler and the file handler

You can set the logging utility to output log messages to both the console and to a file by specifying
the console handler and the file handler, separated by a comma, as shown in Example 16.6,
“Configuring Both Console Logging and File Logging”.

Example 16.6. Configuring Both Console Logging and File Logging

16.3.2. Configuring Logging Levels

Logging levels

The java.util.logging framework supports the following levels of logging, from the least verbose
to the most verbose:

SEVERE

WARNING

INFO

CONFIG

FINE

FINER

FINEST

Configuring the global logging level

To configure the types of event that are logged across all loggers, configure the global logging level as
shown in Example 16.7, “Configuring Global Logging Levels” .

Example 16.7. Configuring Global Logging Levels

handlers= java.util.logging.FileHandler,
java.util.logging.ConsoleHandler

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

136

Configuring logging at an individual package level

The java.util.logging framework supports configuring logging at the level of an individual
package. For example, the line of code shown in Example 16.8, “Configuring Logging at the Package
Level” configures logging at a SEVERE level on classes in the com.xyz.foo package.

Example 16.8. Configuring Logging at the Package Level

16.4. ENABLING LOGGING AT THE COMMAND LINE

Overview

You can run the logging utility on an application by defining a java.util.logging.config.file
property when you start the application. You can either specify the default logging.properties file
or a logging.properties file that is unique to that application.

Specifying the log configuration file on application start-up

To specify logging on application start-up add the flag shown in Example 16.9, “Flag to Start Logging
on the Command Line” when starting the application.

Example 16.9. Flag to Start Logging on the Command Line

16.5. LOGGING FOR SUBSYSTEMS AND SERVICES

You can use the com.xyz.foo.level configuration property described in the section called
“Configuring logging at an individual package level” to set fine-grained logging for specified Apache
CXF logging subsystems.

Apache CXF logging subsystems

Table 16.2, “Apache CXF Logging Subsystems” shows a list of available Apache CXF logging
subsystems.

Table 16.2. Apache CXF Logging Subsystems

Subsystem Description

org.apache.cxf.aegis Aegis binding

.level= WARNING

com.xyz.foo.level = SEVERE

-Djava.util.logging.config.file=myfile

CHAPTER 16. APACHE CXF LOGGING

137

org.apache.cxf.binding.coloc colocated binding

org.apache.cxf.binding.http HTTP binding

org.apache.cxf.binding.jbi JBI binding

org.apache.cxf.binding.object Java Object binding

org.apache.cxf.binding.soap SOAP binding

org.apache.cxf.binding.xml XML binding

org.apache.cxf.bus Apache CXF bus

org.apache.cxf.configuration configuration framework

org.apache.cxf.endpoint server and client endpoints

org.apache.cxf.interceptor interceptors

org.apache.cxf.jaxws Front-end for JAX-WS style message exchange,
JAX-WS handler processing, and interceptors
relating to JAX-WS and configuration

org.apache.cxf.jbi JBI container integration classes

org.apache.cxf.jca JCA container integration classes

org.apache.cxf.js JavaScript front-end

org.apache.cxf.transport.http HTTP transport

org.apache.cxf.transport.https secure version of HTTP transport, using HTTPS

org.apache.cxf.transport.jbi JBI transport

org.apache.cxf.transport.jms JMS transport

org.apache.cxf.transport.local transport implementation using local file system

org.apache.cxf.transport.servlet HTTP transport and servlet implementation for
loading JAX-WS endpoints into a servlet container

org.apache.cxf.ws.addressing WS-Addressing implementation

Subsystem Description

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

138

org.apache.cxf.ws.policy WS-Policy implementation

org.apache.cxf.ws.rm WS-ReliableMessaging (WS-RM) implementation

org.apache.cxf.ws.security.wss4j WSS4J security implementation

Subsystem Description

Example

The WS-Addressing sample is contained in the InstallDir/samples/ws_addressing directory.
Logging is configured in the logging.properties file located in that directory. The relevant lines of
configuration are shown in Example 16.10, “Configuring Logging for WS-Addressing” .

Example 16.10. Configuring Logging for WS-Addressing

The configuration in Example 16.10, “Configuring Logging for WS-Addressing” enables the snooping of
log messages relating to WS-Addressing headers, and displays them to the console in a concise form.

For information on running this sample, see the README.txt file located in the
InstallDir/samples/ws_addressing directory.

16.6. LOGGING MESSAGE CONTENT

You can log the content of the messages that are sent between a service and a consumer. For example,
you might want to log the contents of SOAP messages that are being sent between a service and a
consumer.

Configuring message content logging

To log the messages that are sent between a service and a consumer, and vice versa, complete the
following steps:

1. Add the logging feature to your endpoint's configuration.

2. Add the logging feature to your consumer's configuration.

3. Configure the logging system log INFO level messages.

Adding the logging feature to an endpoint

Add the logging feature your endpoint's configuration as shown in Example 16.11, “Adding Logging to
Endpoint Configuration”.

Example 16.11. Adding Logging to Endpoint Configuration

java.util.logging.ConsoleHandler.formatter =
demos.ws_addressing.common.ConciseFormatter
...
org.apache.cxf.ws.addressing.soap.MAPCodec.level = INFO

CHAPTER 16. APACHE CXF LOGGING

139

The example XML shown in Example 16.11, “Adding Logging to Endpoint Configuration” enables the
logging of SOAP messages.

Adding the logging feature to a consumer

Add the logging feature your client's configuration as shown in Example 16.12, “Adding Logging to
Client Configuration”.

Example 16.12. Adding Logging to Client Configuration

The example XML shown in Example 16.12, “Adding Logging to Client Configuration” enables the
logging of SOAP messages.

Set logging to log INFO level messages

Ensure that the logging.properties file associated with your service is configured to log INFO
level messages, as shown in Example 16.13, “Setting the Logging Level to INFO” .

Example 16.13. Setting the Logging Level to INFO

Logging SOAP messages

To see the logging of SOAP messages modify the wsdl_first sample application located in the
InstallDir/samples/wsdl_first directory, as follows:

1. Add the jaxws:features element shown in Example 16.14, “Endpoint Configuration for
Logging SOAP Messages” to the cxf.xml configuration file located in the wsdl_first sample's
directory:

Example 16.14. Endpoint Configuration for Logging SOAP Messages

<jaxws:endpoint ...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

<jaxws:client ...>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:client>

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

<jaxws:endpoint name="
{http://apache.org/hello_world_soap_http}SoapPort"
 createdFromAPI="true">

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

140

2. The sample uses the default logging.properties file, which is located in the
InstallDir/etc directory. Make a copy of this file and name it mylogging.properties.

3. In the mylogging.properties file, change the logging levels to INFO by editing the .level
and the java.util.logging.ConsoleHandler.level configuration properties as follows:

4. Start the server using the new configuration settings in both the cxf.xml file and the
mylogging.properties file as follows:

Platform Command

Windows start java -
Djava.util.logging.config.file=%
CXF_HOME%\etc\mylogging.properti
es demo.hw.server.Server

UNIX java -
Djava.util.logging.config.file=$
CXF_HOME/etc/mylogging.propertie
s demo.hw.server.Server &

5. Start the hello world client using the following command:

Platform Command

Windows java -
Djava.util.logging.config.file=%
CXF_HOME%\etc\mylogging.properti
es demo.hw.client.Client
.\wsdl\hello_world.wsdl

UNIX java -
Djava.util.logging.config.file=$
CXF_HOME/etc/mylogging.propertie
s demo.hw.client.Client
./wsdl/hello_world.wsdl

The SOAP messages are logged to the console.

 <jaxws:properties>
 <entry key="schema-validation-enabled" value="true" />
 </jaxws:properties>
 <jaxws:features>
 <bean class="org.apache.cxf.feature.LoggingFeature"/>
 </jaxws:features>
</jaxws:endpoint>

.level= INFO
java.util.logging.ConsoleHandler.level = INFO

CHAPTER 16. APACHE CXF LOGGING

141

CHAPTER 17. DEPLOYING WS-ADDRESSING

Abstract

Apache CXF supports WS-Addressing for JAX-WS applications. This chapter explains how to deploy
WS-Addressing in the Apache CXF runtime environment.

17.1. INTRODUCTION TO WS-ADDRESSING

Overview

WS-Addressing is a specification that allows services to communicate addressing information in a
transport neutral way. It consists of two parts:

A structure for communicating a reference to a Web service endpoint

A set of Message Addressing Properties (MAP) that associate addressing information with a
particular message

Supported specifications

Apache CXF supports both the WS-Addressing 2004/08 specification and the WS-Addressing
2005/03 specification.

Further information

For detailed information on WS-Addressing, see the 2004/08 submission at
http://www.w3.org/Submission/ws-addressing/.

17.2. WS-ADDRESSING INTERCEPTORS

Overview

In Apache CXF, WS-Addressing functionality is implemented as interceptors. The Apache CXF runtime
uses interceptors to intercept and work with the raw messages that are being sent and received. When
a transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the WS-Addressing interceptors are added to the application's interceptor chain,
any WS-Addressing information included with a message is processed.

WS-Addressing Interceptors

The WS-Addressing implementation consists of two interceptors, as described in Table 17.1, “WS-
Addressing Interceptors”.

Table 17.1. WS-Addressing Interceptors

Interceptor Description

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

142

http://www.w3.org/Submission/ws-addressing/

org.apache.cxf.ws.addressing.MAPAggr
egator

A logical interceptor responsible for aggregating the
Message Addressing Properties (MAPs) for outgoing
messages.

org.apache.cxf.ws.addressing.soap.MA
PCodec

A protocol-specific interceptor responsible for
encoding and decoding the Message Addressing
Properties (MAPs) as SOAP headers.

Interceptor Description

17.3. ENABLING WS-ADDRESSING

Overview

To enable WS-Addressing the WS-Addressing interceptors must be added to the inbound and
outbound interceptor chains. This is done in one of the following ways:

Apache CXF Features

RMAssertion and WS-Policy Framework

Using Policy Assertion in a WS-Addressing Feature

Adding WS-Addressing as a Feature

WS-Addressing can be enabled by adding the WS-Addressing feature to the client and the server
configuration as shown in Example 17.1, “client.xml—Adding WS-Addressing Feature to Client
Configuration” and Example 17.2, “server.xml—Adding WS-Addressing Feature to Server
Configuration” respectively.

Example 17.1. client.xml—Adding WS-Addressing Feature to Client Configuration

Example 17.2. server.xml—Adding WS-Addressing Feature to Server Configuration

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:client ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:client>
</beans>

CHAPTER 17. DEPLOYING WS-ADDRESSING

143

17.4. CONFIGURING WS-ADDRESSING ATTRIBUTES

Overview

The Apache CXF WS-Addressing feature element is defined in the namespace
http://cxf.apache.org/ws/addressing. It supports the two attributes described in Table 17.2,
“WS-Addressing Attributes”.

Table 17.2. WS-Addressing Attributes

Attribute Name Value

allowDuplicates A boolean that determines if duplicate MessageIDs
are tolerated. The default setting is true.

usingAddressingAdvisory A boolean that indicates if the presence of the
UsingAddressing element in the WSDL is
advisory only; that is, its absence does not prevent
the encoding of WS-Addressing headers.

Configuring WS-Addressing attributes

Configure WS-Addressing attributes by adding the attribute and the value you want to set it to the WS-
Addressing feature in your server or client configuration file. For example, the following configuration
extract sets the allowDublicates attribute to false on the server endpoint:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

<beans ... xmlns:wsa="http://cxf.apache.org/ws/addressing" ...>
 <jaxws:endpoint ...>
 <jaxws:features>
 <wsa:addressing allowDuplicates="false"/>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

144

Using a WS-Policy assertion embedded in a feature

In Example 17.3, “Using the Policies to Configure WS-Addressing” an addressing policy assertion to
enable non-anonymous responses is embedded in the policies element.

Example 17.3. Using the Policies to Configure WS-Addressing

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:policy="http://cxf.apache.org/policy-config"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-
policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint name="
{http://cxf.apache.org/greeter_control}GreeterPort"
 createdFromAPI="true">
 <jaxws:features>
 <policy:policies>
 <wsp:Policy
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 <policy:policies>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

CHAPTER 17. DEPLOYING WS-ADDRESSING

145

CHAPTER 18. ENABLING RELIABLE MESSAGING

Abstract

Apache CXF supports WS-Reliable Messaging(WS-RM). This chapter explains how to enable and
configure WS-RM in Apache CXF.

18.1. INTRODUCTION TO WS-RM

Overview

WS-ReliableMessaging (WS-RM) is a protocol that ensures the reliable delivery of messages in a
distributed environment. It enables messages to be delivered reliably between distributed applications
in the presence of software, system, or network failures.

For example, WS-RM can be used to ensure that the correct messages have been delivered across a
network exactly once, and in the correct order.

How WS-RM works

WS-RM ensures the reliable delivery of messages between a source and a destination endpoint. The
source is the initial sender of the message and the destination is the ultimate receiver, as shown in
Figure 18.1, “Web Services Reliable Messaging” .

Figure 18.1. Web Services Reliable Messaging

The flow of WS-RM messages can be described as follows:

1. The RM source sends a CreateSequence protocol message to the RM destination. This
contains a reference for the endpoint that receives acknowledgements (the wsrm:AcksTo
endpoint).

2. The RM destination sends a CreateSequenceResponse protocol message back to the RM
source. This message contains the sequence ID for the RM sequence session.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

146

3. The RM source adds an RM Sequence header to each message sent by the application source.
This header contains the sequence ID and a unique message ID.

4. The RM source transmits each message to the RM destination.

5. The RM destination acknowledges the receipt of the message from the RM source by sending
messages that contain the RM SequenceAcknowledgement header.

6. The RM destination delivers the message to the application destination in an exactly-once-in-
order fashion.

7. The RM source retransmits a message that it has not yet received an acknowledgement.

The first retransmission attempt is made after a base retransmission interval. Successive
retransmission attempts are made, by default, at exponential back-off intervals or,
alternatively, at fixed intervals. For more details, see Section 18.4, “Configuring WS-RM”.

This entire process occurs symmetrically for both the request and the response message; that is, in
the case of the response message, the server acts as the RM source and the client acts as the RM
destination.

WS-RM delivery assurances

WS-RM guarantees reliable message delivery in a distributed environment, regardless of the transport
protocol used. Either the source or the destination endpoint logs an error if reliable delivery can not be
assured.

Supported specifications

Apache CXF supports the 2005/02 version of the WS-RM specification, which is based on the WS-
Addressing 2004/08 specification.

Further information

For detailed information on WS-RM, see the specification at
http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf.

18.2. WS-RM INTERCEPTORS

Overview

In Apache CXF, WS-RM functionality is implemented as interceptors. The Apache CXF runtime uses
interceptors to intercept and work with the raw messages that are being sent and received. When a
transport receives a message, it creates a message object and sends that message through an
interceptor chain. If the application's interceptor chain includes the WS-RM interceptors, the
application can participate in reliable messaging sessions. The WS-RM interceptors handle the
collection and aggregation of the message chunks. They also handle all of the acknowledgement and
retransmission logic.

Apache CXF WS-RM Interceptors

The Apache CXF WS-RM implementation consists of four interceptors, which are described in
Table 18.1, “Apache CXF WS-ReliableMessaging Interceptors”.

CHAPTER 18. ENABLING RELIABLE MESSAGING

147

http://specs.xmlsoap.org/ws/2005/02/rm/ws-reliablemessaging.pdf

Table 18.1. Apache CXF WS-ReliableMessaging Interceptors

Interceptor Description

org.apache.cxf.ws.rm.RMOutIntercepto
r

Deals with the logical aspects of providing reliability
guarantees for outgoing messages.

Responsible for sending the CreateSequence
requests and waiting for their
CreateSequenceResponse responses.

Also responsible for aggregating the sequence
properties—ID and message number—for an
application message.

org.apache.cxf.ws.rm.RMInInterceptor Responsible for intercepting and processing RM
protocol messages and
SequenceAcknowledgement messages that are
piggybacked on application messages.

org.apache.cxf.ws.rm.soap.RMSoapInte
rceptor

Responsible for encoding and decoding the
reliability properties as SOAP headers.

org.apache.cxf.ws.rm.RetransmissionI
nterceptor

Responsible for creating copies of application
messages for future resending.

Enabling WS-RM

The presence of the WS-RM interceptors on the interceptor chains ensures that WS-RM protocol
messages are exchanged when necessary. For example, when intercepting the first application
message on the outbound interceptor chain, the RMOutInterceptor sends a CreateSequence
request and waits to process the original application message until it receives the
CreateSequenceResponse response. In addition, the WS-RM interceptors add the sequence headers
to the application messages and, on the destination side, extract them from the messages. It is not
necessary to make any changes to your application code to make the exchange of messages reliable.

For more information on how to enable WS-RM, see Section 18.3, “Enabling WS-RM”.

Configuring WS-RM Attributes

You control sequence demarcation and other aspects of the reliable exchange through configuration.
For example, by default Apache CXF attempts to maximize the lifetime of a sequence, thus reducing
the overhead incurred by the out-of-band WS-RM protocol messages. To enforce the use of a separate
sequence per application message configure the WS-RM source’s sequence termination policy (setting
the maximum sequence length to 1).

For more information on configuring WS-RM behavior, see Section 18.4, “Configuring WS-RM”.

18.3. ENABLING WS-RM

Overview

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

148

To enable reliable messaging, the WS-RM interceptors must be added to the interceptor chains for
both inbound and outbound messages and faults. Because the WS-RM interceptors use WS-
Addressing, the WS-Addressing interceptors must also be present on the interceptor chains.

You can ensure the presence of these interceptors in one of two ways:

Explicitly, by adding them to the dispatch chains using Spring beans

Implicitly, using WS-Policy assertions, which cause the Apache CXF runtime to transparently
add the interceptors on your behalf.

Spring beans—explicitly adding interceptors

To enable WS-RM add the WS-RM and WS-Addressing interceptors to the Apache CXF bus, or to a
consumer or service endpoint using Spring bean configuration. This is the approach taken in the WS-
RM sample that is found in the InstallDir/samples/ws_rm directory. The configuration file, ws-
rm.cxf, shows the WS-RM and WS-Addressing interceptors being added one-by-one as Spring beans
(see Example 18.1, “Enabling WS-RM Using Spring Beans”).

Example 18.1. Enabling WS-RM Using Spring Beans

1

2

3

4

5

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.springframework.org/schema/
 beans http://www.springframework.org/schema/beans/spring-beans.xsd">

 <bean id="mapAggregator"
class="org.apache.cxf.ws.addressing.MAPAggregator"/>

 <bean id="mapCodec"
class="org.apache.cxf.ws.addressing.soap.MAPCodec"/>

 <bean id="rmLogicalOut"
class="org.apache.cxf.ws.rm.RMOutInterceptor">

 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmLogicalIn" class="org.apache.cxf.ws.rm.RMInInterceptor">
 <property name="bus" ref="cxf"/>
 </bean>
 <bean id="rmCodec"
class="org.apache.cxf.ws.rm.soap.RMSoapInterceptor"/>
 <bean id="cxf" class="org.apache.cxf.bus.CXFBusImpl">

 <property name="inInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

 <property name="inFaultInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalIn"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

CHAPTER 18. ENABLING RELIABLE MESSAGING

149

1

2

3

4

5

6

7

The code shown in Example 18.1, “Enabling WS-RM Using Spring Beans” can be explained as follows:

A Apache CXF configuration file is a Spring XML file. You must include an opening Spring beans
element that declares the namespaces and schema files for the child elements that are
encapsulated by the beans element.

Configures each of the WS-Addressing interceptors—MAPAggregator and MAPCodec. For more
information on WS-Addressing, see Chapter 17, Deploying WS-Addressing.

Configures each of the WS-RM interceptors—RMOutInterceptor, RMInInterceptor, and
RMSoapInterceptor.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for inbound faults.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound
messages.

Adds the WS-Addressing and WS-RM interceptors to the interceptor chain for outbound faults.

WS-Policy framework—implicitly adding interceptors

The WS-Policy framework provides the infrastructure and APIs that allow you to use WS-Policy. It is
compliant with the November 2006 draft publications of the Web Services Policy 1.5—Framework and
Web Services Policy 1.5—Attachment specifications.

To enable WS-RM using the Apache CXF WS-Policy framework, do the following:

1. Add the policy feature to your client and server endpoint. Example 18.2, “Configuring WS-RM
using WS-Policy” shows a reference bean nested within a jaxws:feature element. The
reference bean specifies the AddressingPolicy, which is defined as a separate element
within the same configuration file.

6

7

 <property name="outInterceptors">
 <list>

 <ref bean="mapAggregator"/>
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>

 <property name="outFaultInterceptors">
 <list>

 <ref bean="mapAggregator">
 <ref bean="mapCodec"/>
 <ref bean="rmLogicalOut"/>
 <ref bean="rmCodec"/>
 </list>
 </property>
 </bean>
</beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

150

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/

Example 18.2. Configuring WS-RM using WS-Policy

2. Add a reliable messaging policy to the wsdl:service element—or any other WSDL element
that can be used as an attachment point for policy or policy reference elements—to your WSDL
file, as shown in Example 18.3, “Adding an RM Policy to Your WSDL File” .

Example 18.3. Adding an RM Policy to Your WSDL File

18.4. CONFIGURING WS-RM

You can configure WS-RM by:

Setting Apache CXF-specific attributes that are defined in the Apache CXF WS-RM manager
namespace, http://cxf.apache.org/ws/rm/manager.

<jaxws:client>
 <jaxws:features>
 <ref bean="AddressingPolicy"/>
 </jaxws:features>
</jaxws:client>
<wsp:Policy wsu:Id="AddressingPolicy"
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsam:Addressing>
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
</wsp:Policy>

<wsp:Policy wsu:Id="RM"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd">
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval Milliseconds="10000"/>
 </wsrmp:RMAssertion>
</wsp:Policy>
...
<wsdl:service name="ReliableGreeterService">
 <wsdl:port binding="tns:GreeterSOAPBinding"
name="GreeterPort">
 <soap:address
location="http://localhost:9020/SoapContext/GreeterPort"/>
 <wsp:PolicyReference URI="#RM"
xmlns:wsp="http://www.w3.org/2006/07/ws-policy"/>
 </wsdl:port>
</wsdl:service>

CHAPTER 18. ENABLING RELIABLE MESSAGING

151

Setting standard WS-RM policy attributes that are defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace.

18.4.1. Configuring Apache CXF-Specific WS-RM Attributes

Overview

To configure the Apache CXF-specific attributes, use the rmManager Spring bean. Add the following to
your configuration file:

The http://cxf.apache.org/ws/rm/manager namespace to your list of namespaces.

An rmManager Spring bean for the specific attribute that your want to configure.

Example 18.4, “Configuring Apache CXF-Specific WS-RM Attributes” shows a simple example.

Example 18.4. Configuring Apache CXF-Specific WS-RM Attributes

Children of the rmManager Spring bean

Table 18.2, “Children of the rmManager Spring Bean” shows the child elements of the rmManager
Spring bean, defined in the http://cxf.apache.org/ws/rm/manager namespace.

Table 18.2. Children of the rmManager Spring Bean

Element Description

RMAssertion An element of type RMAssertion

deliveryAssurance An element of type DeliveryAssuranceType that
describes the delivery assurance that should apply

sourcePolicy An element of type SourcePolicyType that allows
you to configure details of the RM source

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/ws/rm/manager
http://cxf.apache.org/schemas/configuration/wsrm-manager.xsd">
...
<wsrm-mgr:rmManager>
<!--
 ...Your configuration goes here
-->
</wsrm-mgr:rmManager>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

152

destinationPolicy An element of type DestinationPolicyType that
allows you to configure details of the RM destination

Element Description

Example

For an example, see the section called “Maximum unacknowledged messages threshold” .

18.4.2. Configuring Standard WS-RM Policy Attributes

Overview

You can configure standard WS-RM policy attributes in one of the following ways:

RMAssertion in rmManager Spring bean

Policy within a feature

WSDL file

External attachment

WS-Policy RMAssertion Children

Table 18.3, “Children of the WS-Policy RMAssertion Element” shows the elements defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace:

Table 18.3. Children of the WS-Policy RMAssertion Element

Name Description

InactivityTimeout Specifies the amount of time that must pass without
receiving a message before an endpoint can
consider an RM sequence to have been terminated
due to inactivity.

BaseRetransmissionInterval Sets the interval within which an acknowledgement
must be received by the RM Source for a given
message. If an acknowledgement is not received
within the time set by the
BaseRetransmissionInterval, the RM
Source will retransmit the message.

ExponentialBackoff Indicates the retransmission interval will be adjusted
using the commonly known exponential backoff
algorithm (Tanenbaum).

For more information, see Computer Networks ,
Andrew S. Tanenbaum, Prentice Hall PTR, 2003.

CHAPTER 18. ENABLING RELIABLE MESSAGING

153

AcknowledgementInterval In WS-RM, acknowledgements are sent on return
messages or sent stand-alone. If a return message is
not available to send an acknowledgement, an RM
Destination can wait for up to the acknowledgement
interval before sending a stand-alone
acknowledgement. If there are no unacknowledged
messages, the RM Destination can choose not to
send an acknowledgement.

Name Description

More detailed reference information

For more detailed reference information, including descriptions of each element’s sub-elements and
attributes, please refer to http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd.

RMAssertion in rmManager Spring bean

You can configure standard WS-RM policy attributes by adding an RMAssertion within a Apache CXF
rmManager Spring bean. This is the best approach if you want to keep all of your WS-RM configuration
in the same configuration file; that is, if you want to configure Apache CXF-specific attributes and
standard WS-RM policy attributes in the same file.

For example, the configuration in Example 18.5, “Configuring WS-RM Attributes Using an RMAssertion
in an rmManager Spring Bean” shows:

A standard WS-RM policy attribute, BaseRetransmissionInterval, configured using an
RMAssertion within an rmManager Spring bean.

An Apache CXF-specific RM attribute, intraMessageThreshold, configured in the same
configuration file.

Example 18.5. Configuring WS-RM Attributes Using an RMAssertion in an rmManager Spring
Bean

Policy within a feature

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"
 xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager"
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
 <wsrm-mgr:destinationPolicy>
 <wsrm-mgr:acksPolicy intraMessageThreshold="0" />
 </wsrm-mgr:destinationPolicy>
</wsrm-mgr:rmManager>
</beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

154

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

You can configure standard WS-RM policy attributes within features, as shown in Example 18.6,
“Configuring WS-RM Attributes as a Policy within a Feature”.

Example 18.6. Configuring WS-RM Attributes as a Policy within a Feature

WSDL file

If you use the WS-Policy framework to enable WS-RM, you can configure standard WS-RM policy
attributes in a WSDL file. This is a good approach if you want your service to interoperate and use WS-
RM seamlessly with consumers deployed to other policy-aware Web services stacks.

For an example, see the section called “WS-Policy framework—implicitly adding interceptors” where
the base retransmission interval is configured in the WSDL file.

External attachment

<xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation="
http://www.w3.org/2006/07/ws-policy http://www.w3.org/2006/07/ws-
policy.xsd
http://cxf.apache.org/ws/addressing
http://cxf.apache.org/schema/ws/addressing.xsd
http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
 <jaxws:endpoint name="
{http://cxf.apache.org/greeter_control}GreeterPort"
createdFromAPI="true">
 <jaxws:features>
 <wsp:Policy>
 <wsrm:RMAssertion
xmlns:wsrm="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrm:AcknowledgementInterval Milliseconds="200"
/>
 </wsrm:RMAssertion>
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy>
 <wsam:NonAnonymousResponses/>
 </wsp:Policy>
 </wsam:Addressing>
 </wsp:Policy>
 </jaxws:features>
 </jaxws:endpoint>
</beans>

CHAPTER 18. ENABLING RELIABLE MESSAGING

155

You can configure standard WS-RM policy attributes in an external attachment file. This is a good
approach if you cannot, or do not want to, change your WSDL file.

Example 18.7, “Configuring WS-RM in an External Attachment” shows an external attachment that
enables both WS-A and WS-RM (base retransmission interval of 30 seconds) for a specific EPR.

Example 18.7. Configuring WS-RM in an External Attachment

18.4.3. WS-RM Configuration Use Cases

Overview

This subsection focuses on configuring WS-RM attributes from a use case point of view. Where an
attribute is a standard WS-RM policy attribute, defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/policy namespace, only the example of setting it in an
RMAssertion within an rmManager Spring bean is shown. For details of how to set such attributes as
a policy within a feature; in a WSDL file, or in an external attachment, see Section 18.4.2, “Configuring
Standard WS-RM Policy Attributes”.

The following use cases are covered:

Base retransmission interval

Exponential backoff for retransmission

Acknowledgement interval

Maximum unacknowledged messages threshold

Maximum length of an RM sequence

<attachments xmlns:wsp="http://www.w3.org/2006/07/ws-policy"
xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <wsp:PolicyAttachment>
 <wsp:AppliesTo>
 <wsa:EndpointReference>

<wsa:Address>http://localhost:9020/SoapContext/GreeterPort</wsa:Address>
 </wsa:EndpointReference>
 </wsp:AppliesTo>
 <wsp:Policy>
 <wsam:Addressing
xmlns:wsam="http://www.w3.org/2007/02/addressing/metadata">
 <wsp:Policy/>
 </wsam:Addressing>
 <wsrmp:RMAssertion
xmlns:wsrmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy">
 <wsrmp:BaseRetransmissionInterval
Milliseconds="30000"/>
 </wsrmp:RMAssertion>
 </wsp:Policy>
 </wsp:PolicyAttachment>
</attachments>/

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

156

http://schemas.xmlsoap.org/ws/2005/02/rm/policy

Message delivery assurance policies

Base retransmission interval

The BaseRetransmissionInterval element specifies the interval at which an RM source
retransmits a message that has not yet been acknowledged. It is defined in the
http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd schema file. The default value is 3000
milliseconds.

Example 18.8, “Setting the WS-RM Base Retransmission Interval” shows how to set the WS-RM base
retransmission interval.

Example 18.8. Setting the WS-RM Base Retransmission Interval

Exponential backoff for retransmission

The ExponentialBackoff element determines if successive retransmission attempts for an
unacknowledged message are performed at exponential intervals.

The presence of the ExponentialBackoff element enables this feature. An exponential backoff ratio
of 2 is used by default.

Example 18.9, “Setting the WS-RM Exponential Backoff Property” shows how to set the WS-RM
exponential backoff for retransmission.

Example 18.9. Setting the WS-RM Exponential Backoff Property

Acknowledgement interval

The AcknowledgementInterval element specifies the interval at which the WS-RM destination
sends asynchronous acknowledgements. These are in addition to the synchronous acknowledgements

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:BaseRetransmissionInterval Milliseconds="4000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:ExponentialBackoff="4"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

CHAPTER 18. ENABLING RELIABLE MESSAGING

157

http://schemas.xmlsoap.org/ws/2005/02/rm/wsrm-policy.xsd

that it sends on receipt of an incoming message. The default asynchronous acknowledgement interval
is 0 milliseconds. This means that if the AcknowledgementInterval is not configured to a specific
value, acknowledgements are sent immediately (that is, at the first available opportunity).

Asynchronous acknowledgements are sent by the RM destination only if both of the following
conditions are met:

The RM destination is using a non-anonymous wsrm:acksTo endpoint.

The opportunity to piggyback an acknowledgement on a response message does not occur
before the expiry of the acknowledgement interval.

Example 18.10, “Setting the WS-RM Acknowledgement Interval” shows how to set the WS-RM
acknowledgement interval.

Example 18.10. Setting the WS-RM Acknowledgement Interval

Maximum unacknowledged messages threshold

The maxUnacknowledged attribute sets the maximum number of unacknowledged messages that can
accrue per sequence before the sequence is terminated.

Example 18.11, “Setting the WS-RM Maximum Unacknowledged Message Threshold” shows how to set
the WS-RM maximum unacknowledged messages threshold.

Example 18.11. Setting the WS-RM Maximum Unacknowledged Message Threshold

Maximum length of an RM sequence

The maxLength attribute sets the maximum length of a WS-RM sequence. The default value is 0, which
means that the length of a WS-RM sequence is unbound.

<beans xmlns:wsrm-
policy="http://schemas.xmlsoap.org/ws/2005/02/rm/policy
...>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <wsrm-policy:RMAssertion>
 <wsrm-policy:AcknowledgementInterval Milliseconds="2000"/>
 </wsrm-policy:RMAssertion>
</wsrm-mgr:rmManager>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxUnacknowledged="20" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

158

When this attribute is set, the RM endpoint creates a new RM sequence when the limit is reached, and
after receiving all of the acknowledgements for the previously sent messages. The new message is sent
using a newsequence.

Example 18.12, “Setting the Maximum Length of a WS-RM Message Sequence” shows how to set the
maximum length of an RM sequence.

Example 18.12. Setting the Maximum Length of a WS-RM Message Sequence

Message delivery assurance policies

You can configure the RM destination to use the following delivery assurance policies:

AtMostOnce — The RM destination delivers the messages to the application destination only
once. If a message is delivered more than once an error is raised. It is possible that some
messages in a sequence may not be delivered.

AtLeastOnce — The RM destination delivers the messages to the application destination at
least once. Every message sent will be delivered or an error will be raised. Some messages
might be delivered more than once.

InOrder — The RM destination delivers the messages to the application destination in the
order that they are sent. This delivery assurance can be combined with the AtMostOnce or
AtLeastOnce assurances.

Example 18.13, “Setting the WS-RM Message Delivery Assurance Policy” shows how to set the WS-RM
message delivery assurance.

Example 18.13. Setting the WS-RM Message Delivery Assurance Policy

18.5. CONFIGURING WS-RM PERSISTENCE

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:sourcePolicy>
 <wsrm-mgr:sequenceTerminationPolicy maxLength="100" />
 </wsrm-mgr:sourcePolicy>
</wsrm-mgr:reliableMessaging>
</beans>

<beans xmlns:wsrm-mgr="http://cxf.apache.org/ws/rm/manager
...>
<wsrm-mgr:reliableMessaging>
 <wsrm-mgr:deliveryAssurance>
 <wsrm-mgr:AtLeastOnce />
 </wsrm-mgr:deliveryAssurance>
</wsrm-mgr:reliableMessaging>
</beans>

CHAPTER 18. ENABLING RELIABLE MESSAGING

159

Overview

The Apache CXF WS-RM features already described in this chapter provide reliability for cases such as
network failures. WS-RM persistence provides reliability across other types of failure such as an RM
source or an RM destination crash.

WS-RM persistence involves storing the state of the various RM endpoints in persistent storage. This
enables the endpoints to continue sending and receiving messages when they are reincarnated.

Apache CXF enables WS-RM persistence in a configuration file. The default WS-RM persistence store is
JDBC-based. For convenience, Apache CXF includes Derby for out-of-the-box deployment. In addition,
the persistent store is also exposed using a Java API.

IMPORTANT

WS-RM persistence is supported for oneway calls only, and it is disabled by default.

How it works

Apache CXF WS-RM persistence works as follows:

At the RM source endpoint, an outgoing message is persisted before transmission. It is evicted
from the persistent store after the acknowledgement is received.

After a recovery from crash, it recovers the persisted messages and retransmits until all the
messages have been acknowledged. At that point, the RM sequence is closed.

At the RM destination endpoint, an incoming message is persisted, and upon a successful
store, the acknowledgement is sent. When a message is successfully dispatched, it is evicted
from the persistent store.

After a recovery from a crash, it recovers the persisted messages and dispatches them. It also
brings the RM sequence to a state where new messages are accepted, acknowledged, and
delivered.

Enabling WS-persistence

To enable WS-RM persistence, you must specify the object implementing the persistent store for WS-
RM. You can develop your own or you can use the JDBC based store that comes with Apache CXF.

The configuration shown in Example 18.14, “Configuration for the Default WS-RM Persistence Store”
enables the JDBC-based store that comes with Apache CXF.

Example 18.14. Configuration for the Default WS-RM Persistence Store

Configuring WS-persistence

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore"/>
<wsrm-mgr:rmManager id="org.apache.cxf.ws.rm.RMManager">
 <property name="store" ref="RMTxStore"/>
</wsrm-mgr:rmManager>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

160

The JDBC-based store that comes with Apache CXF supports the properties shown in Table 18.4,
“JDBC Store Properties”.

Table 18.4. JDBC Store Properties

Attribute Name Type Default Setting

driverClassName String org.apache.derby.jdbc.E
mbeddedDriver

userName String null

passWord String null

url String jdbc:derby:rmdb;create=true

The configuration shown in Example 18.15, “Configuring the JDBC Store for WS-RM Persistence”
enables the JDBC-based store that comes with Apache CXF, while setting the driverClassName and url
to non-default values.

Example 18.15. Configuring the JDBC Store for WS-RM Persistence

<bean id="RMTxStore"
class="org.apache.cxf.ws.rm.persistence.jdbc.RMTxStore">
 <property name="driverClassName" value="com.acme.jdbc.Driver"/>
 <property name="url" value="jdbc:acme:rmdb;create=true"/>
</bean>

CHAPTER 18. ENABLING RELIABLE MESSAGING

161

CHAPTER 19. ENABLING HIGH AVAILABILITY

Abstract

This chapter explains how to enable and configure high availability in the Apache CXF runtime.

19.1. INTRODUCTION TO HIGH AVAILABILITY

Overview

Scalable and reliable applications require high availability to avoid any single point of failure in a
distributed system. You can protect your system from single points of failure using replicated services.

A replicated service is comprised of multiple instances, or replicas, of the same service. Together these
act as a single logical service. Clients invoke requests on the replicated service, and Apache CXF
delivers the requests to one of the member replicas. The routing to a replica is transparent to the
client.

HA with static failover

Apache CXF supports high availability (HA) with static failover in which replica details are encoded in
the service WSDL file. The WSDL file contains multiple ports, and can contain multiple hosts, for the
same service. The number of replicas in the cluster remains static as long as the WSDL file remains
unchanged. Changing the cluster size involves editing the WSDL file.

19.2. ENABLING HA WITH STATIC FAILOVER

Overview

To enable HA with static failover, you must do the following:

1. Encode replica details in your service WSDL file

2. Add the clustering feature to your client configuration

Encode replica details in your service WSDL file

You must encode the details of the replicas in your cluster in your service WSDL file. Example 19.1,
“Enabling HA with Static Failover—WSDL File” shows a WSDL file extract that defines a service cluster
of three replicas.

Example 19.1. Enabling HA with Static Failover—WSDL File

1
2

3

<wsdl:service name="ClusteredService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica1">
 <soap:address

location="http://localhost:9001/SoapContext/Replica1"/>
 </wsdl:port>

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica2">
 <soap:address

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

162

1

2

3

4

The WSDL extract shown in Example 19.1, “Enabling HA with Static Failover—WSDL File” can be
explained as follows:

Defines a service, ClusterService, which is exposed on three ports:

1. Replica1

2. Replica2

3. Replica3

Defines Replica1 to expose the ClusterService as a SOAP over HTTP endpoint on port 9001.

Defines Replica2 to expose the ClusterService as a SOAP over HTTP endpoint on port 9002.

Defines Replica3 to expose the ClusterService as a SOAP over HTTP endpoint on port 9003.

Add the clustering feature to your client configuration

In your client configuration file, add the clustering feature as shown in Example 19.2, “Enabling HA with
Static Failover—Client Configuration”.

Example 19.2. Enabling HA with Static Failover—Client Configuration

4

location="http://localhost:9002/SoapContext/Replica2"/>
 </wsdl:port>

 <wsdl:port binding="tns:Greeter_SOAPBinding" name="Replica3">
 <soap:address

location="http://localhost:9003/SoapContext/Replica3"/>
 </wsdl:port>

</wsdl:service>

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:clustering="http://cxf.apache.org/clustering"
 xsi:schemaLocation="http://cxf.apache.org/jaxws
 http://cxf.apache.org/schemas/jaxws.xsd
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:client name="
{http://apache.org/hello_world_soap_http}Replica1"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="

CHAPTER 19. ENABLING HIGH AVAILABILITY

163

19.3. CONFIGURING HA WITH STATIC FAILOVER

Overview

By default, HA with static failover uses a sequential strategy when selecting a replica service if the
original service with which a client is communicating becomes unavailable, or fails. The sequential
strategy selects a replica service in the same sequential order every time it is used. Selection is
determined by Apache CXF’s internal service model and results in a deterministic failover pattern.

Configuring a random strategy

You can configure HA with static failover to use a random strategy instead of the sequential strategy
when selecting a replica. The random strategy selects a random replica service each time a service
becomes unavailable, or fails. The choice of failover target from the surviving members in a cluster is
entirely random.

To configure the random strategy, add the configuration shown in Example 19.3, “Configuring a
Random Strategy for Static Failover” to your client configuration file.

Example 19.3. Configuring a Random Strategy for Static Failover

{http://apache.org/hello_world_soap_http}Replica2"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

 <jaxws:client name="
{http://apache.org/hello_world_soap_http}Replica3"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover/>
 </jaxws:features>
 </jaxws:client>

</beans>

1

2

<beans ...>
 <bean id="Random"
class="org.apache.cxf.clustering.RandomStrategy"/>

 <jaxws:client name="
{http://apache.org/hello_world_soap_http}Replica3"
 createdFromAPI="true">
 <jaxws:features>
 <clustering:failover>

 <clustering:strategy>
 <ref bean="Random"/>

 </clustering:strategy>
 </clustering:failover>
 </jaxws:features>
 </jaxws:client>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

164

1

2

The configuration shown in Example 19.3, “Configuring a Random Strategy for Static Failover” can be
explained as follows:

Defines a Random bean and implementation class that implements the random strategy.

Specifies that the random strategy is used when selecting a replica.

</beans>

CHAPTER 19. ENABLING HIGH AVAILABILITY

165

CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE
FABRIC

Abstract

When all of your servers and clients are deployed within the same fabric, you can use an alternative
mechanism for implementing high availability cluster, which works by exploiting the fabric registry.
Because all the parts of the application must be deployed on the same fabric, this mechanism is
suitable for deployment on a LAN.

20.1. LOAD BALANCING CLUSTER

20.1.1. Introduction to Load Balancing

Overview

The fabric load balancing mechanism exploits the fact that fabric provides a distributed fabric registry,
which is accessible to all of the container in the fabric. This makes it possible to use the fabric registry
as a discovery mechanism for locating WS endpoints in the fabric. By storing all of the endpoint
addresses belonging to a particular cluster under the same registry node, any WS clients in the fabric
can easily discover the location of the endpoints in the cluster.

Fuse Fabric

A fabric is a distributed collection of containers that share a common database of configuration
settings (the fabric registry). Every container in the fabric has a fabric agent deployed in it, which
manages the container and redeploys applications to the container whenever a new profile is assigned
to the container (a profile is the basic deployment unit in a fabric).

Load-balancing cluster

Figure 20.1, “Fabric Load Balancing for Apache CXF” gives an overview of the fabric load balancing
mechanism for Apache CXF endpoints.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

166

Figure 20.1. Fabric Load Balancing for Apache CXF

In this example, two WS servers are created, with the URIs, http://localhost:8185/Foo and
http://localhost:8186/Foo. For both of these servers, the load balancer feature is configured to
store the cluster endpoints under the path, demo/lb, in the fabric registry.

Now, when the WS client starts, it is configured to look up the cluster path, demo/lb, in the fabric
registry. Because the demo/lb path is associated with multiple endpoint addresses, fabric implements
a random load balancing algorithm to choose one of the available URIs to connect to.

FabricLoadBalancerFeature

The fabric load balancer feature is implemented by the following class:

The FabricLoadBalancerFeature class exposes the following bean properties:

fabricPath

This property specifies a node in the fabric registry (specified relative to the base node,
/fabric/cxf/endpoints) that is used to store the data for a particular endpoint cluster.

curator

A proxy reference to the OSGi service exposed by the fabric agent (of type,
org.apache.curator.framework.CuratorFramework).

io.fabric8.cxf.FabricLoadBalancerFeature

CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

167

maximumConnectionTimeout

The maximum length of time to attempt to connect to the fabric agent, specified in milliseconds.
The default is 10000 (10 seconds).

connectionRetryTime

How long to wait between connection attempts, specified in milliseconds. The default is 100.

loadBalanceStrategy

By implementing a bean of type io.fabric8.cxf.LoadBalanceStrategy and setting this
property, you can customise the load balancing algorithm used by the load balancing feature.

Prerequisites

To use the fabric load balancer feature in your application, your project must satisfy the following
prerequisites:

the section called “Maven dependency” .

the section called “OSGi package import” .

the section called “Fabric deployment” .

the section called “Required feature” .

Maven dependency

The fabric load balancer feature requires the fabric-cxf Maven artifact. Add the following
dependency to your project's POM file:

OSGi package import

If you are packaging your project as an OSGi bundle, you must add io.fabric8.cxf to the list of
imported packages. For example, using the Maven bundle plug-in, you can specify this package import
by adding io.fabric8.cxf to the comma-separated list in the Import-Package element, as
follows:

<dependency>
 <groupId>io.fabric8</groupId>
 <artifactId>fabric-cxf</artifactId>
 <version>6.1.0.redhat-379</version>
</dependency>

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <version>2.2.0</version>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-
SymbolicName>
 <Import-Package>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

168

Fabric deployment

When you come to deploy your application into a Red Hat JBoss Fuse container, you must deploy it into
a fabric. The fabric load balancer feature is not supported in a standalone container.

Required feature

The fabric load balancer requires the fabric-cxf Apache Karaf feature to be installed in the
container. In the context of a fabric, this means you must add the fabric-cxf feature to the relevant
deployment profile. For example, if you are using the cxf-lb-server profile to deploy a load-
balancing WS server, you can add the fabric-cxf feature by entering the following console
command:

20.1.2. Configure the Server

Overview

To configure a WS server to use fabric load balancing, you must configure a fabric load balancer
feature and install it in the default Apache CXF bus instance. This section describes how to configure
the load balancer feature in Spring XML and in blueprint XML.

Prerequisites

For the basic prerequisites to build a fabric load-balancing WS server, see the section called
“Prerequisites”.

Blueprint XML

The following fragment from a blueprint XML file shows how to add the fabric load balancer feature,
FabricLoadBalancerFeature, to an Apache CXF bus. Any Apache CXF endpoints subsequently
created on this bus will automatically have the load-balancer feature enabled.

 ...
 io.fabric8.cxf,
 *
 </Import-Package>
 ...
 </instructions>
 </configuration>
</plugin>

JBossFuse:karaf@root> profile-edit -f fabric-cxf cxf-lb-server

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 ...
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <reference id="curator"
 interface="org.apache.curator.framework.CuratorFramework"
/>

CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

169

The following beans are used to install the fabric load-balancer feature:

curator reference

The curator reference is a proxy of the local fabric agent, which it accesses through the
org.apache.curator.framework.CuratorFramework interface. This reference is needed in
order to integrate the load balancer feature with the underlying fabric.

FabricLoadBalancerFeature bean

The FabricLoadBalancerFeature bean is initialized with the following properties:

curator

A reference to the Apache Curator client, CuratorFramework.

fabricPath

The path of a node in the fabric registry, where the cluster data is stored (for example, the
addresses of the endpoints in the load-balancing cluster). The node path is specified relative to
the base node, /fabric/cxf/endpoints.

Apache CXF bus

The cxf:bus element installs the fabric load balancer feature in the default bus instance.

Example using Blueprint XML

Example 20.1, “WS Server with Fabric Load Balancer Feature” shows a complete Blueprint XML
example of a WS endpoint configured to use the fabric load balancing feature.

Example 20.1. WS Server with Fabric Load Balancer Feature

 <!-- The FabricFailOverFeature will try to access other service
endpoint with round rad -->
 <bean id="fabricLoadBalancerFeature"
class="io.fabric8.cxf.FabricLoadBalancerFeature">
 <property name="curator" ref="curator" />
 <property name="fabricPath" value="cxf/demo" />
 </bean>

 <!-- setup the feature on the bus to help publish the services to the
fabric-->
 <cxf:bus bus="cxf">
 <cxf:features>
 <ref component-id="fabricLoadBalancerFeature"/>
 </cxf:features>
 </cxf:bus>
 ...
</blueprint>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

170

https://curator.apache.org/

 xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-
cm/v1.0.0"
 xsi:schemaLocation="
 http://www.osgi.org/xmlns/blueprint/v1.0.0
 http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd
 http://cxf.apache.org/schemas/blueprint/core
 http://cxf.apache.org/schemas/blueprint/core.xsd
 http://cxf.apache.org/blueprint/jaxws
 http://cxf.apache.org/blueprint/jaxws.xsd
 ">

 <reference id="curator"
interface="org.apache.curator.framework.CuratorFramework" />

 <!-- The FabricFailOverFeature will try to access other service
endpoint with round rad -->
 <bean id="fabicLoadBalancerFeature"
class="io.fabric8.cxf.FabricLoadBalancerFeature">
 <property name="curator" ref="curator" />
 <property name="fabricPath" value="cxf/demo" />
 </bean>

 <!-- setup the feature on the bus to help publish the services to
the fabric-->
 <cxf:bus bus="cxf">
 <cxf:features>
 <ref component-id="fabicLoadBalancerFeature"/>
 </cxf:features>
 </cxf:bus>

 <bean id="hello1" class="io.fabric8.demo.cxf.server.HelloImpl">
 <property name="hello" value="Hi"/>
 </bean>

 <bean id="hello2" class="io.fabric8.demo.cxf.server.HelloImpl">
 <property name="hello" value="Hello"/>
 </bean>

 <!--
 TODO: We should use address in the form of
http://$[bind.address]:$[app1.port]/server/server1, but currently only
fuseenterprise
 has appX.port system properties defined
 -->

 <!-- publish the service with the address of fail, cxf client will
get the simulated IOException -->
 <jaxws:server id="service1" serviceClass="io.fabric8.demo.cxf.Hello"
address="http://localhost:9000/server/server1">
 <jaxws:serviceBean>
 <ref component-id="hello1" />
 </jaxws:serviceBean>
 </jaxws:server>

 <jaxws:server id="service2" serviceClass="io.fabric8.demo.cxf.Hello"
address="http://localhost:9000/server/server2">

CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

171

The preceding Spring XML configuration consists of the following main sections:

Enabling the fabric load balancing feature—the fabric load balancing feature is installed in the
default bus instance, as previously described. In this example, the fabricPath property is set
to the value, cxf/demo.

Creating the WS endpoints—create the WS endpoints in the usual way, using the jaxws:server
element (this can be used as an alternative to the jaxws:endpoint element). By default, this
endpoint is automatically associated with the default bus instance, which has load balancing
enabled.

20.1.3. Configure the Client

Overview

To configure a WS client to use fabric load balancing, you must install the fabric load balancer feature
directly in the client proxy instance. This section describes how to configure the load balancer feature
in Blueprint XML, and by programming in Java.

Prerequisites

For the basic prerequisites to build a fabric load-balancing WS client, see the section called
“Prerequisites”.

Blueprint XML

The following fragment from a blueprint XML file shows how to add the fabric load balancer feature,
FabricLoadBalancerFeature, directly into a WS client proxy instance.

 <jaxws:serviceBean>
 <ref component-id="hello2" />
 </jaxws:serviceBean>
 </jaxws:server>

</blueprint>

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 ...
 xmlns:jaxws="http://cxf.apache.org/blueprint/jaxws"
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 <!-- Create a client proxy, with load balancing enabled -->
 <jaxws:client id="ClientProxyBeanID"
 address="http://dummyaddress"
 serviceClass="SEI">
 <jaxws:features>
 <ref component-id="fabricLoadBalancerFeature" />
 </jaxws:features>
 </jaxws:client>
 ...
 <reference id="curator"
 interface="org.apache.curator.framework.CuratorFramework"

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

172

The fabric load balancer feature is installed directly into the WS client proxy by inserting it as a child of
the jaxws:features element (or, as in this case, by inserting a bean reference to the actual
instance). The following beans are used to initialise the fabric load-balancer feature:

curator reference

The curator reference is a proxy of the local fabric agent, which it accesses through the
org.apache.curator.framework.CuratorFramework interface. This reference is needed in
order to integrate the load balancer feature with the underlying fabric.

FabricLoadBalancerFeature bean

The FabricLoadBalancerFeature bean is initialized with the following properties:

curator

A reference to the Apache Curator client, curator.

fabricPath

The path of a node in the fabric registry, where the cluster data is stored (for example, the
addresses of the endpoints in the load-balancing cluster). The node path is specified relative to
the base node, /fabric/cxf/endpoints.

Java

As an alternative to using XML configuration, you can enable the fabric load balancing feature on the
client side by programming directly in Java. The following example shows how to enable fabric load
balancing on a proxy for the Hello Web service.

/>

 <!-- The FabricFailOverFeature will try to access other service
endpoint with round rad -->
 <bean id="fabricLoadBalancerFeature"
class="io.fabric8.cxf.FabricLoadBalancerFeature">
 <property name="curator" ref="curator" />
 <property name="fabricPath" value="ZKPath" />
 </bean>
 ...
</blueprint>

// Java
package io.fabric8.demo.cxf.client;

import org.apache.cxf.feature.AbstractFeature;
import org.apache.cxf.frontend.ClientProxyFactoryBean;
import org.apache.cxf.jaxws.JaxWsProxyFactoryBean;
import io.fabric8.cxf.FabricLoadBalancerFeature;
import io.fabric8.demo.cxf.Hello;

import java.util.ArrayList;
import java.util.List;

public class Client {

CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

173

In this example, the fabricPath property is set to the value, demo/lb (which matches the example
value used by the server in Example 20.1, “WS Server with Fabric Load Balancer Feature”).

The address that the client proxy accesses is set to a dummy value, http://dummyaddress, because
this value is not used. When the client is initialized, the load balancer feature substitutes the address
value retrieved from the demo/lb node of the fabric registry.

20.2. FAILOVER CLUSTER

Overview

A failover cluster in Fuse Fabric is based on an ordered list of WS endpoints that are registered under a
particular node in the fabric registry. A client detects the failure of a master endpoint by catching the
exception that occurs when it tries to make an invocation. When that happens, the client automatically
moves to the next available endpoint in the cluster.

Failover cluster

Figure 20.2, “Fabric Failover for Apache CXF” gives an overview of the fabric failover mechanism for
Apache CXF endpoints.

 private Hello hello;

 public void initializeHelloProxy() {
 // The feature will try to create a zookeeper client itself
 // by checking the system property of zookeeper.url
 FabricLoadBalancerFeature feature = new
FabricLoadBalancerFeature();
 // Feature will use this path to locate the service
 feature.setFabricPath("demo/lb");

 ClientProxyFactoryBean clientFactory = new
JaxWsProxyFactoryBean();
 clientFactory.setServiceClass(ClientProxyFactoryBean.class);
 // The address is not the actual address that the client will
access
 clientFactory.setAddress("http://dummyaddress");

 List<AbstractFeature> features = new ArrayList<AbstractFeature>();
 features.add(feature);
 // we need to setup the feature on the client factory
 clientFactory.setFeatures(features);

 // Create the proxy of Hello
 hello = clientFactory.create(Hello.class);
 }

 public static void main(String args[]) {
 initializeHelloProxy();
 ...
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

174

Figure 20.2. Fabric Failover for Apache CXF

In this example, two WS servers are created, with the URIs, http://localhost:8185/Foo and
http://localhost:8186/Foo. In both servers, the failover feature is configured to store the cluster
endpoints under the path, demo/fo, in the fabric registry. The cluster endpoints stored under
demo/fo are ordered. The first endpoint in the cluster is the master and all of the other endpoints are
slaves.

The failover algorithm works as follows:

1. When the WS client starts, it is configured to look up the cluster path, demo/fo, in the fabric
registry. The failover feature initially returns the first address registered under demo/fo (the
master).

2. At some point, the master server could fail. The client determines whether the master has
failed by catching the exception that occurs when it tries to make an invocation: if the caught
exception matches one of the exceptions in a specified list (by default, just the
java.io.IOException), the master is deemed to have failed and the client now ignores the
corresponding address entry under demo/fo.

3. The client selects the next address entry under demo/fo and attempts to connect to that
server. Assuming that this server is healthy, it is effectively the new master.

4. At some point in the future, if the failed old master is restarted successfully, it creates a new
address entry under demo/fo after the existing entries, and is then available to clients, in case
the other server (or servers) fail.

FabricFailOverFeature

CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

175

The fabric failover feature is implemented by the following class:

The FabricFailOverFeature class exposes the following bean properties:

fabricPath

This property specifies a node in the fabric registry (specified relative to the base node,
/fabric/cxf/endpoints) that is used to store the data for a particular endpoint cluster.

curator

A proxy reference to the OSGi service (of type,
org.apache.curator.framework.CuratorFramework) for the Apache Curator client, which is
exposed by the fabric agent.

maximumConnectionTimeout

The maximum length of time to attempt to connect to the fabric agent, specified in milliseconds.
The default is 10000 (10 seconds).

connectionRetryTime

How long to wait between connection attempts, specified in milliseconds. The default is 100.

exceptions

A semicolon-separated list of exceptions that signal to the client that a server has failed. If not set,
this property defaults to java.io.IOException.

For example, you could set the exceptions property to a value like the following:

Blueprint XML

The configuration of WS servers and WS clients in the failover case is similar to the load balancing case
(see Section 20.1.2, “Configure the Server” and Section 20.1.3, “Configure the Client”), except that
instead of instantiating and referencing a FabricLoadBalancerFeature bean, you must instantiate
and reference a FabricFailOverFeature bean.

In blueprint XML you can create a FabricFailOverFeature bean instance as follows:

io.fabric8.cxf.FabricFailOverFeature

java.io.IOException;javax.xml.ws.soap.SOAPFaultException

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 ...
 xmlns:cxf="http://cxf.apache.org/blueprint/core"
 ...
>
 ...
 <!-- Reference the fabric agent -->
 <reference id="curator"
 interface="org.apache.curator.framework.CuratorFramework"
/>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

176

Remember to customise the value of the fabricPath property and to reference the appropriate bean
ID (failoverFeature in the preceding example).

 <!-- Create the Fabric load balancer feature -->
 <bean id="failoverFeature"
 class="io.fabric8.cxf.FabricFailOverFeature">
 <property name="curator" ref="curator" />
 <property name="fabricPath" value="ZKPath" />
 </bean>
 ...
</blueprint>

CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE FABRIC

177

CHAPTER 21. PACKAGING AN APPLICATION

Abstract

Applications must be packed as an OSGi bundle before they can be deployed into Red Hat JBoss Fuse.
You will not need to include any Apache CXF specific packages in your bundle. The Apache CXF
packages are included in JBoss Fuse. You need to ensure you import the required packages when
building your bundle.

CREATING A BUNDLE

To deploy a Apache CXF application into Red Hat JBoss Fuse, you need to package it as an OSGi
bundle. There are several tools available for assisting in the process. JBoss Fuse uses the Maven
bundle plug-in whose use is described in Appendix D, Using the Maven OSGi Tooling.

REQUIRED BUNDLE

The Apache CXF runtime components are included in JBoss Fuse as an OSGi bundle called
org.apache.cxf.cxf-bundle. This bundle needs to be installed in the JBoss Fuse container before
your application's bundle can be started.

To inform the container of this dependency, you use the OSGi manifest's Required-Bundle property.

REQUIRED PACKAGES

In order for your application to use the Apache CXF components, you need to import their packages
into the application's bundle. Because of the complex nature of the dependencies in Apache CXF, you
cannot rely on the Maven bundle plug-in, or the bnd tool, to automatically determine the needed
imports. You will need to explicitly declare them.

You need to import the following packages into your bundle:

javax.jws

javax.wsdl

META-INF.cxf

META-INF.cxf.osgi

org.apache.cxf.bus

org.apache.cxf.bus.spring

org.apache.cxf.bus.resource

org.apache.cxf.configuration.spring

org.apache.cxf.resource

org.apache.servicemix.cxf.transport.http_osgi

org.springframework.beans.factory.config

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

178

EXAMPLE

Example 21.1, “Apache CXF Application Manifest” shows a manifest for a Apache CXF application's
OSGi bundle.

Example 21.1. Apache CXF Application Manifest

Manifest-Version: 1.0
Built-By: FinnMcCumial
Created-By: Apache Maven Bundle Plugin
Bundle-License: http://www.apache.org/licenses/LICENSE-2.0.txt
Import-Package: javax.jws,javax.wsdl,META-INF.cxf,META-INF.cxf.osgi,
org.apache.cxf.bus,org.apache.cxf.bus.spring,org.apache.bus.resource,
org.apache.cxf.configuration.spring, org.apache.cxf.resource,
org.apache.servicemix.cxf.transport.http_cxf,
org.springframework.beans.factory.config
Bnd-LastModified: 1222079507224
Bundle-Version: 4.0.0.fuse
Bundle-Name: Fuse CXF Example
Bundle-Description: This is a sample CXF manifest.
Build-Jdk: 1.5.0_08
Private-Package: org.apache.servicemix.examples.cxf
Required-Bundle: org.apache.cxf.cxf-bundle
Bundle-ManifestVersion: 2
Bundle-SymbolicName: cxf-wsdl-first-osgi
Tool: Bnd-0.0.255

CHAPTER 21. PACKAGING AN APPLICATION

179

CHAPTER 22. DEPLOYING AN APPLICATION

Abstract

Red Hat JBoss Fuse will automatically install and deploy your application. You can also manually
control the state of your application using the console.

OVERVIEW

There are two ways to deploy your application into Red Hat JBoss Fuse:

1. Rely on the hot deployment mechanism.

2. Use the console.

You can also start and stop a deployed application using the console.

HOT DEPLOYMENT

The easiest way to deploy an application is to place it in the hot deployment folder. By default, the hot
deployment folder is InstallDir/deploy. Any bundle placed in this folder is installed into the container.
If its dependencies can be resolved, the bundle is activated.

One the bundle is installed in the container, you can manage it using the console.

DEPLOYING FROM THE CONSOLE

The easiest way to deploy an application from the console is to install it and start it in one step. This is
done using the osgi install -s command. It takes the location of the bundle as a URI. So the
command:

servicemix>osgi install -s file:/home/finn/ws/widgetapp.jar

Installs and attempts to start the bundle widgetapp.jar which is located in /home/finn/ws.

You can use the osgi install command without the -s flag. That will install the bundle without
attempting to start it. You will then have to manually start the bundle using the osgi start
command.

The osgi start command uses the bundle ID to determine which bundle to activate. [1]

REFRESHING AN APPLICATION

If you make changes to your application and want to redeploy it, you can do so by replacing the
installed bundle with a new version and using the osgi refresh command. This command instructs
the container to stop the running instance of your application, reload the bundle, and restart it.

The osgi refresh command uses a bundle ID to determine which bundle to refresh. [1]

STOPPING AN APPLICATION

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

180

If you want to temporarily deactivate your application you can use the osgi stop command. The
osgi stop moves your application's bundle from the active state to the resolved state. This means
that it can be easily restarted using the osgi start command.

The osgi stop command uses a bundle ID to determine which bundle to stop. [1]

UNINSTALLING AN APPLICATION

When you want to permanently remove an application from the container you need to uninstall it.
Bundles can only be installed when they are not active. This means that you have to stop your
application using the osgi stop command before trying to unistall it.

Once the application's bundle is stopped, you can use the osgi uninstall command to remove the
bundle from the container. This does not delete the physical bundle. It just removes the bundle from
the container's list of installed bundles.

The osgi stop command uses a bundle ID to determine which bundle to unistall. [1]

[1] You can get a list of the bundle IDs using the osgi list command.

CHAPTER 22. DEPLOYING AN APPLICATION

181

APPENDIX C. APACHE CXF BINDING IDS

Table C.1. Binding IDs for Message Bindings

Binding ID

CORBA http://cxf.apache.org/bindings/corba

HTTP/REST http://apache.org/cxf/binding/http

SOAP 1.1 http://schemas.xmlsoap.org/wsdl/soap
/http

SOAP 1.1 w/ MTOM http://schemas.xmlsoap.org/wsdl/soap
/http?mtom=true

SOAP 1.2 http://www.w3.org/2003/05/soap/bindi
ngs/HTTP/

SOAP 1.2 w/ MTOM http://www.w3.org/2003/05/soap/bindi
ngs/HTTP/?mtom=true

XML http://cxf.apache.org/bindings/xform
at

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

182

APPENDIX D. USING THE MAVEN OSGI TOOLING

Abstract

Manually creating a bundle, or a collection of bundles, for a large project can be cumbersome. The
Maven bundle plug-in makes the job easier by automating the process and providing a number of
shortcuts for specifying the contents of the bundle manifest.

The Red Hat JBoss Fuse OSGi tooling uses the Maven bundle plug-in from Apache Felix. The bundle
plug-in is based on the bnd tool from Peter Kriens. It automates the construction of OSGi bundle
manifests by introspecting the contents of the classes being packaged in the bundle. Using the
knowledge of the classes contained in the bundle, the plug-in can calculate the proper values to
populate the Import-Packages and the Export-Package properties in the bundle manifest. The plug-in
also has default values that are used for other required properties in the bundle manifest.

To use the bundle plug-in, do the following:

1. Add the bundle plug-in to your project's POM file.

2. Configure the plug-in to correctly populate your bundle's manifest.

D.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT

Overview

A Maven project for building an OSGi bundle can be a simple single level project. It does not require any
sub-projects. However, it does require that you do the following:

1. Add the bundle plug-in to your POM.

2. Instruct Maven to package the results as an OSGi bundle.

NOTE

There are several Maven archetypes you can use to set up your project with the
appropriate settings.

Directory structure

A project that constructs an OSGi bundle can be a single level project. It only requires that you have a
top-level POM file and a src folder. As in all Maven projects, you place all Java source code in the
src/java folder, and you place any non-Java resources in the src/resources folder.

Non-Java resources include Spring configuration files, JBI endpoint configuration files, and WSDL
contracts.

NOTE

Red Hat JBoss Fuse OSGi projects that use Apache CXF, Apache Camel, or another
Spring configured bean also include a beans.xml file located in the
src/resources/META-INF/spring folder.

APPENDIX D. USING THE MAVEN OSGI TOOLING

183

http://cwiki.apache.org/FELIX/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

1

2

3

4

5

Adding a bundle plug-in

Before you can use the bundle plug-in you must add a dependency on Apache Felix. After you add the
dependency, you can add the bundle plug-in to the plug-in portion of the POM.

Example D.1, “Adding an OSGi bundle plug-in to a POM” shows the POM entries required to add the
bundle plug-in to your project.

Example D.1. Adding an OSGi bundle plug-in to a POM

The entries in Example D.1, “Adding an OSGi bundle plug-in to a POM” do the following:

Adds the dependency on Apache Felix

Adds the bundle plug-in to your project

Configures the plug-in to use the project's artifact ID as the bundle's symbolic name

Configures the plug-in to include all Java packages imported by the bundled classes; also imports
the org.apache.camel.osgi package

Configures the plug-in to bundle the listed class, but not to include them in the list of exported
packages

1

2

3
4

5

...
<dependencies>

 <dependency>
 <groupId>org.apache.felix</groupId>

 <artifactId>org.osgi.core</artifactId>
 <version>1.0.0</version>
 </dependency>
...
</dependencies>
...
<build>
 <plugins>

 <plugin>
 <groupId>org.apache.felix</groupId>

 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${pom.artifactId}</Bundle-SymbolicName>

 <Import-Package>*,org.apache.camel.osgi</Import-Package>
 <Private-

Package>org.apache.servicemix.examples.camel</Private-Package>
 </instructions>

 </configuration>
 </plugin>
 </plugins>
</build>
...

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

184

NOTE

Edit the configuration to meet the requirements of your project.

For more information on configuring the bundle plug-in, see Section D.2, “Configuring the Bundle Plug-
In”.

Activating a bundle plug-in

To have Maven use the bundle plug-in, instruct it to package the results of the project as a bundle. Do
this by setting the POM file's packaging element to bundle.

Useful Maven archetypes

There are several Maven archetypes to generate a project that is preconfigured to use the bundle plug-
in:

the section called “Spring OSGi archetype”

the section called “Apache CXF code-first archetype”

the section called “Apache CXF wsdl-first archetype”

the section called “Apache Camel archetype”

Spring OSGi archetype

The Spring OSGi archetype creates a generic project for building an OSGi project using Spring DM, as
shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.springframework.osgi -
DarchetypeArtifactId=spring-osgi-bundle-archetype -DarchetypeVersion=1.12
-DgroupId=groupId -DartifactId=artifactId -Dversion=version

Apache CXF code-first archetype

The Apache CXF code-first archetype creates a project for building a service from Java, as shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=spring-osgi-bundle-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

org.springframework.osgi/spring-bundle-osgi-archetype/1.1.2

org.apache.servicemix.tooling/servicemix-osgi-cxf-code-first-
archetype/2008.01.0.3-fuse

APPENDIX D. USING THE MAVEN OSGI TOOLING

185

Apache CXF wsdl-first archetype

The Apache CXF wsdl-first archetype creates a project for creating a service from WSDL, as shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-cxf-wsdl-first-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

Apache Camel archetype

The Apache Camel archetype creates a project for building a route that is deployed into JBoss Fuse, as
shown:

You invoke the archetype using the following command:

mvn archetype:create -DarchetypeGroupId=org.apache.servicemix.tooling -
DarchetypeArtifactId=servicemix-osgi-camel-archetype -
DarchetypeVersion=2008.01.0.3-fuse -DgroupId=groupId -
DartifactId=artifactId -Dversion=version

D.2. CONFIGURING THE BUNDLE PLUG-IN

Overview

A bundle plug-in requires very little information to function. All of the required properties use default
settings to generate a valid OSGi bundle.

While you can create a valid bundle using just the default values, you will probably want to modify some
of the values. You can specify most of the properties inside the plug-in's instructions element.

Configuration properties

Some of the commonly used configuration properties are:

Bundle-SymbolicName

Bundle-Name

Bundle-Version

Export-Package

Private-Package

org.apache.servicemix.tooling/servicemix-osgi-cxf-wsdl-first-
archetype/2008.01.0.3-fuse

org.apache.servicemix.tooling/servicemix-osgi-camel-archetype/2008.01.0.3-
fuse

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

186

Import-Package

Setting a bundle's symbolic name

By default, the bundle plug-in sets the value for the Bundle-SymbolicName property to groupId + "."
+ artifactId, with the following exceptions:

If groupId has only one section (no dots), the first package name with classes is returned.

For example, if the group Id is commons-logging:commons-logging, the bundle's symbolic
name is org.apache.commons.logging.

If artifactId is equal to the last section of groupId, then groupId is used.

For example, if the POM specifies the group ID and artifact ID as org.apache.maven:maven,
the bundle's symbolic name is org.apache.maven.

If artifactId starts with the last section of groupId, that portion is removed.

For example, if the POM specifies the group ID and artifact ID as
org.apache.maven:maven-core, the bundle's symbolic name is
org.apache.maven.core.

To specify your own value for the bundle's symbolic name, add a Bundle-SymbolicName child in the
plug-in's instructions element, as shown in Example D.2.

Example D.2. Setting a bundle's symbolic name

Setting a bundle's name

By default, a bundle's name is set to ${project.name}.

To specify your own value for the bundle's name, add a Bundle-Name child to the plug-in's
instructions element, as shown in Example D.3.

Example D.3. Setting a bundle's name

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-SymbolicName>${project.artifactId}</Bundle-SymbolicName>
 ...
 </instructions>
 </configuration>
</plugin>

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>

APPENDIX D. USING THE MAVEN OSGI TOOLING

187

Setting a bundle's version

By default, a bundle's version is set to ${project.version}. Any dashes (-) are replaced with dots
(.) and the number is padded up to four digits. For example, 4.2-SNAPSHOT becomes
4.2.0.SNAPSHOT.

To specify your own value for the bundle's version, add a Bundle-Version child to the plug-in's
instructions element, as shown in Example D.4.

Example D.4. Setting a bundle's version

Specifying exported packages

By default, the OSGi manifest's Export-Package list is populated by all of the packages in your local
Java source code (under src/main/java), except for the deault package, ., and any packages
containing .impl or .internal.

IMPORTANT

If you use a Private-Package element in your plug-in configuration and you do not
specify a list of packages to export, the default behavior includes only the packages
listed in the Private-Package element in the bundle. No packages are exported.

The default behavior can result in very large packages and in exporting packages that should be kept
private. To change the list of exported packages you can add an Export-Package child to the plug-
in's instructions element.

The Export-Package element specifies a list of packages that are to be included in the bundle and
that are to be exported. The package names can be specified using the * wildcard symbol. For example,
the entry com.fuse.demo.* includes all packages on the project's classpath that start with
com.fuse.demo.

 <Bundle-Name>JoeFred</Bundle-Name>
 ...
 </instructions>
 </configuration>
</plugin>

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Bundle-Version>1.0.3.1</Bundle-Version>
 ...
 </instructions>
 </configuration>
</plugin>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

188

You can specify packages to be excluded be prefixing the entry with !. For example, the entry
!com.fuse.demo.private excludes the package com.fuse.demo.private.

When excluding packages, the order of entries in the list is important. The list is processed in order
from the beginning and any subsequent contradicting entries are ignored.

For example, to include all packages starting with com.fuse.demo except the package
com.fuse.demo.private, list the packages using:

However, if you list the packages using com.fuse.demo.*,!com.fuse.demo.private, then
com.fuse.demo.private is included in the bundle because it matches the first pattern.

Specifying private packages

If you want to specify a list of packages to include in a bundle without exporting them, you can add a
Private-Package instruction to the bundle plug-in configuration. By default, if you do not specify a
Private-Package instruction, all packages in your local Java source are included in the bundle.

IMPORTANT

If a package matches an entry in both the Private-Package element and the
Export-Package element, the Export-Package element takes precedence. The
package is added to the bundle and exported.

The Private-Package element works similarly to the Export-Package element in that you specify
a list of packages to be included in the bundle. The bundle plug-in uses the list to find all classes on the
project's classpath that are to be included in the bundle. These packages are packaged in the bundle,
but not exported (unless they are also selected by the Export-Package instruction).

Example D.5 shows the configuration for including a private package in a bundle

Example D.5. Including a private package in a bundle

Specifying imported packages

By default, the bundle plug-in populates the OSGi manifest's Import-Package property with a list of
all the packages referred to by the contents of the bundle.

!com.fuse.demo.private,com.fuse.demo.*

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Private-Package>org.apache.cxf.wsdlFirst.impl</Private-Package>
 ...
 </instructions>
 </configuration>
</plugin>

APPENDIX D. USING THE MAVEN OSGI TOOLING

189

While the default behavior is typically sufficient for most projects, you might find instances where you
want to import packages that are not automatically added to the list. The default behavior can also
result in unwanted packages being imported.

To specify a list of packages to be imported by the bundle, add an Import-Package child to the plug-
in's instructions element. The syntax for the package list is the same as for the Export-Package
element and the Private-Package element.

IMPORTANT

When you use the Import-Package element, the plug-in does not automatically scan
the bundle's contents to determine if there are any required imports. To ensure that the
contents of the bundle are scanned, you must place an * as the last entry in the package
list.

Example D.6 shows the configuration for specifying the packages imported by a bundle

Example D.6. Specifying the packages imported by a bundle

More information

For more information on configuring a bundle plug-in, see:

"Managing OSGi Dependencies"

Apache Felix documentation

Peter Kriens' aQute Software Consultancy web site

<plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <configuration>
 <instructions>
 <Import-Package>javax.jws,
 javax.wsdl,
 org.apache.cxf.bus,
 org.apache.cxf.bus.spring,
 org.apache.cxf.bus.resource,
 org.apache.cxf.configuration.spring,
 org.apache.cxf.resource,
 org.springframework.beans.factory.config,
 *
 </Import-Package>
 ...
 </instructions>
 </configuration>
</plugin>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

190

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.1/html/Managing_OSGi_Dependencies/
http://felix.apache.org/site/apache-felix-maven-bundle-plugin-bnd.html
http://www.aqute.biz/Code/Bnd

PART V. DEVELOPING APPLICATIONS USING JAX-WS

Abstract

This guide describes how to develop Web services using the standard JAX-WS APIs.

PART V. DEVELOPING APPLICATIONS USING JAX-WS

191

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

Abstract

There are many instances where you have Java code that already implements a set of functionality
that you want to expose as part of a service oriented application. You may also simply want to avoid
using WSDL to define your interface. Using JAX-WS annotations, you can add the information required
to service enable a Java class. You can also create a Service Endpoint Interface (SEI) that can be used in
place of a WSDL contract. If you want a WSDL contract, Apache CXF provides tools to generate a
contract from annotated Java code.

To create a service starting from Java you must do the following:

1. Create a Service Endpoint Interface (SEI) that defines the methods you want to expose as a
service.

TIP

You can work directly from a Java class, but working from an interface is the recommended
approach. Interfaces are better suited for sharing with the developers who are responsible for
developing the applications consuming your service. The interface is smaller and does not
provide any of the service's implementation details.

2. Add the required annotations to your code.

3. Generate the WSDL contract for your service.

TIP

If you intend to use the SEI as the service's contract, it is not necessary to generate a WSDL
contract.

4. Publish the service as a service provider.

23.1. CREATING THE SEI

Overview

The service endpoint interface (SEI) is the piece of Java code that is shared between a service
implementation and the consumers that make requests on that service. The SEI defines the methods
implemented by the service and provides details about how the service will be exposed as an endpoint.
When starting with a WSDL contract, the SEI is generated by the code generators. However, when
starting from Java, it is the developer's responsibility to create the SEI.

There are two basic patterns for creating an SEI:

Green field development — In this pattern, you are developing a new service without any
existing Java code or WSDL. It is best to start by creating the SEI. You can then distribute the
SEI to any developers that are responsible for implementing the service providers and
consumers that use the SEI.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

192

NOTE

The recommended way to do green field service development is to start by
creating a WSDL contract that defines the service and its interfaces. See
Chapter 25, A Starting Point WSDL Contract.

Service enablement — In this pattern, you typically have an existing set of functionality that is
implemented as a Java class, and you want to service enable it. This means that you must do
two things:

1. Create an SEI that contains only the operations that are going to be exposed as part of the
service.

2. Modify the existing Java class so that it implements the SEI.

NOTE

Although you can add the JAX-WS annotations to a Java class, it is not
recommended.

Writing the interface

The SEI is a standard Java interface. It defines a set of methods that a class implements. It can also
define a number of member fields and constants to which the implementing class has access.

In the case of an SEI the methods defined are intended to be mapped to operations exposed by a
service. The SEI corresponds to a wsdl:portType element. The methods defined by the SEI
correspond to wsdl:operation elements in the wsdl:portType element.

TIP

JAX-WS defines an annotation that allows you to specify methods that are not exposed as part of a
service. However, the best practice is to leave those methods out of the SEI.

Example 23.1, “Simple SEI” shows a simple SEI for a stock updating service.

Example 23.1. Simple SEI

Implementing the interface

Because the SEI is a standard Java interface, the class that implements it is a standard Java class. If
you start with a Java class you must modify it to implement the interface. If you start with the SEI, the
implementation class implements the SEI.

package com.fusesource.demo;

public interface quoteReporter
{
 public Quote getQuote(String ticker);
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

193

Example 23.2, “Simple Implementation Class” shows a class for implementing the interface in
Example 23.1, “Simple SEI”.

Example 23.2. Simple Implementation Class

23.2. ANNOTATING THE CODE

The JAX-WS annotations specify the metadata used to map the SEI to a fully specified service
definition. Among the information provided in the annotations are the following:

The target namespace for the service.

The name of the class used to hold the request message

The name of the class used to hold the response message

If an operation is a one way operation

The binding style the service uses

The name of the class used for any custom exceptions

The namespaces under which the types used by the service are defined

TIP

Most of the annotations have sensible defaults and it is not necessary to provide values for them.
However, the more information you provide in the annotations, the better your service definition is
specified. A well-specified service definition increases the likelihood that all parts of a distributed
application will work together.

23.2.1. Required Annotations

Overview

package com.fusesource.demo;

import java.util.*;

public class stockQuoteReporter implements quoteReporter
{
 ...
public Quote getQuote(String ticker)
 {
 Quote retVal = new Quote();
 retVal.setID(ticker);

 retVal.setVal(Board.check(ticker));[2]

 Date retDate = new Date();
 retVal.setTime(retDate.toString());
 return(retVal);
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

194

In order to create a service from Java code you are only required to add one annotation to your code.
You must add the @WebService annotation on both the SEI and the implementation class.

The @WebService annotation

The @WebService annotation is defined by the javax.jws.WebService interface and it is placed on
an interface or a class that is intended to be used as a service. @WebService has the properties
described in Table 23.1, “@WebService Properties”

Table 23.1. @WebService Properties

Property Description

name Specifies the name of the service interface. This
property is mapped to the name attribute of the
wsdl:portType element that defines the
service's interface in a WSDL contract. The default is
to append PortType to the name of the
implementation class. [a]

targetNamespace Specifies the target namespace where the service is
defined. If this property is not specified, the target
namespace is derived from the package name.

serviceName Specifies the name of the published service. This
property is mapped to the name attribute of the
wsdl:service element that defines the published
service. The default is to use the name of the
service's implementation class. [a]

wsdlLocation Specifies the URL where the service's WSDL
contract is stored. This must be specified using a
relative URL. The default is the URL where the
service is deployed.

endpointInterface Specifies the full name of the SEI that the
implementation class implements. This property is
only specified when the attribute is used on a
service implementation class.

portName Specifies the name of the endpoint at which the
service is published. This property is mapped to the
name attribute of the wsdl:port element that
specifies the endpoint details for a published service.
The default is the append Port to the name of the
service's implementation class.[a]

[a] When you generate WSDL from an SEI the interface's name is used in place of the implementation class' name.

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

195

1

2

3

4

5

TIP

It is not necessary to provide values for any of the @WebService annotation's properties. However, it
is recommended that you provide as much information as you can.

Annotating the SEI

The SEI requires that you add the @WebService annotation. Because the SEI is the contract that
defines the service, you should specify as much detail as possible about the service in the
@WebService annotation's properties.

Example 23.3, “Interface with the @WebService Annotation” shows the interface defined in
Example 23.1, “Simple SEI” with the @WebService annotation.

Example 23.3. Interface with the @WebService Annotation

The @WebService annotation in Example 23.3, “Interface with the @WebService Annotation” does
the following:

Specifies that the value of the name attribute of the wsdl:portType element defining the
service interface is quoteUpdater.

Specifies that the target namespace of the service is http:\\demos.redhat.com.

Specifies that the value of the name of the wsdl:service element defining the published service
is updateQuoteService.

Specifies that the service will publish its WSDL contract at
http:\\demos.redhat.com\quoteExampleService?wsdl.

Specifies that the value of the name attribute of the wsdl:port element defining the endpoint
exposing the service is updateQuotePort.

Annotating the service implementation

In addition to annotating the SEI with the @WebService annotation, you also must annotate the
service implementation class with the @WebService annotation. When adding the annotation to the

1
2

3

4
5

package com.fusesource.demo;

import javax.jws.*;

@WebService(name="quoteUpdater",
 targetNamespace="http:\\demos.redhat.com",

 serviceName="updateQuoteService",

wsdlLocation="http:\\demos.redhat.com\quoteExampleService?wsdl",
 portName="updateQuotePort")
public interface quoteReporter

{
 public Quote getQuote(String ticker);
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

196

service implementation class you only need to specify the endpointInterface property. As shown in
Example 23.4, “Annotated Service Implementation Class” the property must be set to the full name of
the SEI.

Example 23.4. Annotated Service Implementation Class

23.2.2. Optional Annotations

While the @WebService annotation is sufficient for service enabling a Java interface or a Java class, it
does not fully describe how the service will be exposed as a service provider. The JAX-WS
programming model uses a number of optional annotations for adding details about your service, such
as the binding it uses, to the Java code. You add these annotations to the service's SEI.

TIP

The more details you provide in the SEI the easier it is for developers to implement applications that
can use the functionality it defines. It also makes the WSDL documents generated by the tools more
specific.

23.2.2.1. Defining the Binding Properties with Annotations

Overview

If you are using a SOAP binding for your service, you can use JAX-WS annotations to specify a number
of the bindings properties. These properties correspond directly to the properties you can specify in a
service's WSDL contract. Some of the settings, such as the parameter style, can restrict how you
implement a method. These settings can also effect which annotations can be used when annotating
method parameters.

The @SOAPBinding annotation

The @SOAPBinding annotation is defined by the javax.jws.soap.SOAPBinding interface. It
provides details about the SOAP binding used by the service when it is deployed. If the @SOAPBinding
annotation is not specified, a service is published using a wrapped doc/literal SOAP binding.

You can put the @SOAPBinding annotation on the SEI and any of the SEI's methods. When it is used on
a method, setting of the method's @SOAPBinding annotation take precedence.

Table 23.2, “@SOAPBinding Properties” shows the properties for the @SOAPBinding annotation.

package org.eric.demo;

import javax.jws.*;

@WebService(endpointInterface="com.fusesource.demo.quoteReporter")
public class stockQuoteReporter implements quoteReporter
{
public Quote getQuote(String ticker)
 {
 ...
 }
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

197

Table 23.2. @SOAPBinding Properties

Property Values Description

style Style.DOCUMENT (default)

Style.RPC

Specifies the style of the SOAP
message. If RPC style is specified,
each message part within the
SOAP body is a parameter or
return value and appears inside a
wrapper element within the
soap:body element. The
message parts within the wrapper
element correspond to operation
parameters and must appear in
the same order as the parameters
in the operation. If DOCUMENT
style is specified, the contents of
the SOAP body must be a valid
XML document, but its form is not
as tightly constrained.

use Use.LITERAL (default)

Use.ENCODED[a]

Specifies how the data of the
SOAP message is streamed.

parameterStyle [b] ParameterStyle.BARE

ParameterStyle.WRAPPED
(default)

Specifies how the method
parameters, which correspond to
message parts in a WSDL
contract, are placed into the
SOAP message body. If BARE is
specified, each parameter is
placed into the message body as
a child element of the message
root. If WRAPPED is specified, all
of the input parameters are
wrapped into a single element on
a request message and all of the
output parameters are wrapped
into a single element in the
response message.

[a] Use.ENCODED is not currently supported.

[b] If you set the style to RPC you must use the WRAPPED parameter style.

Document bare style parameters

Document bare style is the most direct mapping between Java code and the resulting XML
representation of the service. When using this style, the schema types are generated directly from the
input and output parameters defined in the operation's parameter list.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

198

You specify you want to use bare document\literal style by using the @SOAPBinding annotation with
its style property set to Style.DOCUMENT, and its parameterStyle property set to
ParameterStyle.BARE.

To ensure that an operation does not violate the restrictions of using document style when using bare
parameters, your operations must adhere to the following conditions:

The operation must have no more than one input or input/output parameter.

If the operation has a return type other than void, it must not have any output or input/output
parameters.

If the operation has a return type of void, it must have no more than one output or
input/output parameter.

NOTE

Any parameters that are placed in the SOAP header using the @WebParam annotation or
the @WebResult annotation are not counted against the number of allowed parameters.

Document wrapped parameters

Document wrapped style allows a more RPC like mapping between the Java code and the resulting
XML representation of the service. When using this style, the parameters in the method's parameter
list are wrapped into a single element by the binding. The disadvantage of this is that it introduces an
extra-layer of indirection between the Java implementation and how the messages are placed on the
wire.

To specify that you want to use wrapped document\literal style use the @SOAPBinding annotation
with its style property set to Style.DOCUMENT, and its parameterStyle property set to
ParameterStyle.WRAPPED.

You have some control over how the wrappers are generated by using the the section called “The
@RequestWrapper annotation” annotation and the the section called “The @ResponseWrapper
annotation” annotation.

Example

Example 23.5, “Specifying a Document Bare SOAP Binding with the SOAP Binding Annotation” shows
an SEI that uses document bare SOAP messages.

Example 23.5. Specifying a Document Bare SOAP Binding with the SOAP Binding Annotation

package org.eric.demo;

import javax.jws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;

@WebService(name="quoteReporter")
@SOAPBinding(parameterStyle=ParameterStyle.BARE)
public interface quoteReporter
{
 ...
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

199

23.2.2.2. Defining Operation Properties with Annotations

Overview

When the runtime maps your Java method definitions into XML operation definitions it provides details
such as:

What the exchanged messages look like in XML

If the message can be optimized as a one way message

The namespaces where the messages are defined

The @WebMethod annotation

The @WebMethod annotation is defined by the javax.jws.WebMethod interface. It is placed on the
methods in the SEI. The @WebMethod annotation provides the information that is normally represented
in the wsdl:operation element describing the operation to which the method is associated.

Table 23.3, “@WebMethod Properties” describes the properties of the @WebMethod annotation.

Table 23.3. @WebMethod Properties

Property Description

operationName Specifies the value of the associated
wsdl:operation element's name. The default
value is the name of the method.

action Specifies the value of the soapAction attribute of
the soap:operation element generated for the
method. The default value is an empty string.

exclude Specifies if the method should be excluded from the
service interface. The default is false.

The @RequestWrapper annotation

The @RequestWrapper annotation is defined by the javax.xml.ws.RequestWrapper interface. It
is placed on the methods in the SEI. The @RequestWrapper annotation specifies the Java class
implementing the wrapper bean for the method parameters of the request message starting a message
exchange. It also specifies the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the request messages.

Table 23.4, “@RequestWrapper Properties” describes the properties of the @RequestWrapper
annotation.

Table 23.4. @RequestWrapper Properties

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

200

Property Description

localName Specifies the local name of the wrapper element in
the XML representation of the request message. The
default value is either the name of the method, or
the value of the the section called “The
@WebMethod annotation” annotation's
operationName property.

targetNamespace Specifies the namespace under which the XML
wrapper element is defined. The default value is the
target namespace of the SEI.

className Specifies the full name of the Java class that
implements the wrapper element.

TIP

Only the className property is required.

IMPORTANT

If the method is also annotated with the @SOAPBinding annotation, and its
parameterStyle property is set to ParameterStyle.BARE, this annotation is ignored.

The @ResponseWrapper annotation

The @ResponseWrapper annotation is defined by the javax.xml.ws.ResponseWrapper interface.
It is placed on the methods in the SEI. The @ResponseWrapper specifies the Java class implementing
the wrapper bean for the method parameters in the response message in the message exchange. It
also specifies the element names, and namespaces, used by the runtime when marshaling and
unmarshalling the response messages.

Table 23.5, “@ResponseWrapper Properties” describes the properties of the @ResponseWrapper
annotation.

Table 23.5. @ResponseWrapper Properties

Property Description

localName Specifies the local name of the wrapper element in
the XML representation of the response message.
The default value is either the name of the method
with Response appended, or the value of the the
section called “The @WebMethod annotation”
annotation's operationName property with
Response appended.

targetNamespace Specifies the namespace where the XML wrapper
element is defined. The default value is the target
namespace of the SEI.

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

201

className Specifies the full name of the Java class that
implements the wrapper element.

Property Description

TIP

Only the className property is required.

IMPORTANT

If the method is also annotated with the @SOAPBinding annotation and its
parameterStyle property is set to ParameterStyle.BARE, this annotation is ignored.

The @WebFault annotation

The @WebFault annotation is defined by the javax.xml.ws.WebFault interface. It is placed on
exceptions that are thrown by your SEI. The @WebFault annotation is used to map the Java exception
to a wsdl:fault element. This information is used to marshall the exceptions into a representation
that can be processed by both the service and its consumers.

Table 23.6, “@WebFault Properties” describes the properties of the @WebFault annotation.

Table 23.6. @WebFault Properties

Property Description

name Specifies the local name of the fault element.

targetNamespace Specifies the namespace under which the fault
element is defined. The default value is the target
namespace of the SEI.

faultName Specifies the full name of the Java class that
implements the exception.

IMPORTANT

The name property is required.

The @Oneway annotation

The @Oneway annotation is defined by the javax.jws.Oneway interface. It is placed on the methods
in the SEI that will not require a response from the service. The @Oneway annotation tells the run time
that it can optimize the execution of the method by not waiting for a response and by not reserving any
resources to process a response.

This annotation can only be used on methods that meet the following criteria:

They return void

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

202

They have no parameters that implement the Holder interface

They do not throw any exceptions that can be passed back to a consumer

Example

Example 23.6, “SEI with Annotated Methods” shows an SEI with its methods annotated.

Example 23.6. SEI with Annotated Methods

23.2.2.3. Defining Parameter Properties with Annotations

Overview

The method parameters in the SEI correspond to the wsdl:message elements and their wsdl:part
elements. JAX-WS provides annotations that allow you to describe the wsdl:part elements that are
generated for the method parameters.

The @WebParam annotation

The @WebParam annotation is defined by the javax.jws.WebParam interface. It is placed on the
parameters of the methods defined in the SEI. The @WebParam annotation allows you to specify the
direction of the parameter, if the parameter will be placed in the SOAP header, and other properties of
the generated wsdl:part.

Table 23.7, “@WebParam Properties” describes the properties of the @WebParam annotation.

Table 23.7. @WebParam Properties

Property Values Description

package com.fusesource.demo;

import javax.jws.*;
import javax.xml.ws.*;

@WebService(name="quoteReporter")
public interface quoteReporter
{
 @WebMethod(operationName="getStockQuote")
 @RequestWrapper(targetNamespace="http://demo.redhat.com/types",
 className="java.lang.String")
 @ResponseWrapper(targetNamespace="http://demo.redhat.com/types",
 className="org.eric.demo.Quote")
 public Quote getQuote(String ticker);
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

203

name Specifies the name of the
parameter as it appears in the
generated WSDL document. For
RPC bindings, this is the name of
the wsdl:part representing the
parameter. For document
bindings, this is the local name of
the XML element representing
the parameter. Per the JAX-WS
specification, the default is argN,
where N is replaced with the
zero-based argument index (i.e.,
arg0, arg1, etc.).

targetNamespace Specifies the namespace for the
parameter. It is only used with
document bindings where the
parameter maps to an XML
element. The default is to use the
service's namespace.

mode Mode.IN (default)[a]

Mode.OUT

Mode.INOUT

Specifies the direction of the
parameter.

header false (default)

true

Specifies if the parameter is
passed as part of the SOAP
header.

partName Specifies the value of the name
attribute of the wsdl:part
element for the parameter. This
property is used for document
style SOAP bindings.

[a] Any parameter that implements the Holder interface is mapped to Mode.INOUT by default.

Property Values Description

The @WebResult annotation

The @WebResult annotation is defined by the javax.jws.WebResult interface. It is placed on the
methods defined in the SEI. The @WebResult annotation allows you to specify the properties of the
wsdl:part that is generated for the method's return value.

Table 23.8, “@WebResult Properties” describes the properties of the @WebResult annotation.

Table 23.8. @WebResult Properties

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

204

Property Description

name Specifies the name of the return value as it appears
in the generated WSDL document. For RPC bindings,
this is the name of the wsdl:part representing the
return value. For document bindings, this is the local
name of the XML element representing the return
value. The default value is return.

targetNamespace Specifies the namespace for the return value. It is
only used with document bindings where the return
value maps to an XML element. The default is to use
the service's namespace.

header Specifies if the return value is passed as part of the
SOAP header.

partName Specifies the value of the name attribute of the
wsdl:part element for the return value. This
property is used for document style SOAP bindings.

Example

Example 23.7, “Fully Annotated SEI” shows an SEI that is fully annotated.

Example 23.7. Fully Annotated SEI

package com.fusesource.demo;

import javax.jws.*;
import javax.xml.ws.*;
import javax.jws.soap.*;
import javax.jws.soap.SOAPBinding.*;
import javax.jws.WebParam.*;

@WebService(targetNamespace="http://demo.redhat.com",
 name="quoteReporter")
@SOAPBinding(style=Style.RPC, use=Use.LITERAL)
public interface quoteReporter
{
 @WebMethod(operationName="getStockQuote")
 @RequestWrapper(targetNamespace="http://demo.redhat.com/types",
 className="java.lang.String")
 @ResponseWrapper(targetNamespace="http://demo.redhat.com/types",
 className="org.eric.demo.Quote")
 @WebResult(targetNamespace="http://demo.redhat.com/types",
 name="updatedQuote")
 public Quote getQuote(

@WebParam(targetNamespace="http://demo.redhat.com/types",
 name="stockTicker",
 mode=Mode.IN)

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

205

23.2.3. Apache CXF Annotations

23.2.3.1. WSDL Documentation

@WSDLDocumentation annotation

The @WSDLDocumentation annotation is defined by the
org.apache.cxf.annotations.WSDLDocumentation interface. It can be placed on the SEI or the
SEI methods.

This annotation enables you to add documentation, which will then appear within
wsdl:documentation elements after the SEI is converted to WSDL. By default, the documentation
elements appear inside the port type, but you can specify the placement property to make the
documentation appear at other locations in the WSDL file. Table 23.9, “@WSDLDocumentation
properties” shows the properties supported by the @WSDLDocumentation annotation.

Table 23.9. @WSDLDocumentation properties

Property Description

value (Required) A string containing the documentation
text.

placement (Optional) Specifies where in the WSDL file this
documentation is to appear. For the list of possible
placement values, see the section called “Placement
in the WSDL contract”.

faultClass (Optional) If the placement is set to be
FAULT_MESSAGE,
PORT_TYPE_OPERATION_FAULT, or
BINDING_OPERATION_FAULT, you must also set
this property to the Java class that represents the
fault.

@WSDLDocumentationCollection annotation

The @WSDLDocumentationCollection annotation is defined by the
org.apache.cxf.annotations.WSDLDocumentationCollection interface. It can be placed on
the SEI or the SEI methods.

This annotation is used to insert multiple documentation elements at a single placement location or at
various placement locations.

Placement in the WSDL contract

 String ticker
);
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

206

To specify where the documentation should appear in the WSDL contract, you can specify the
placement property, which is of type WSDLDocumentation.Placement. The placement can have
one of the following values:

WSDLDocumentation.Placement.BINDING

WSDLDocumentation.Placement.BINDING_OPERATION

WSDLDocumentation.Placement.BINDING_OPERATION_FAULT

WSDLDocumentation.Placement.BINDING_OPERATION_INPUT

WSDLDocumentation.Placement.BINDING_OPERATION_OUTPUT

WSDLDocumentation.Placement.DEFAULT

WSDLDocumentation.Placement.FAULT_MESSAGE

WSDLDocumentation.Placement.INPUT_MESSAGE

WSDLDocumentation.Placement.OUTPUT_MESSAGE

WSDLDocumentation.Placement.PORT_TYPE

WSDLDocumentation.Placement.PORT_TYPE_OPERATION

WSDLDocumentation.Placement.PORT_TYPE_OPERATION_FAULT

WSDLDocumentation.Placement.PORT_TYPE_OPERATION_INPUT

WSDLDocumentation.Placement.PORT_TYPE_OPERATION_OUTPUT

WSDLDocumentation.Placement.SERVICE

WSDLDocumentation.Placement.SERVICE_PORT

WSDLDocumentation.Placement.TOP

Example of @WSDLDocumentation

Example 23.8, “Using @WSDLDocumentation” shows how to add a @WSDLDocumentation annotation
to the SEI and to one of its methods.

Example 23.8. Using @WSDLDocumentation

@WebService
@WSDLDocumentation("A very simple example of an SEI")
public interface HelloWorld {
 @WSDLDocumentation("A traditional form of greeting")
 String sayHi(@WebParam(name = "text") String text);
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

207

When WSDL, shown in Example 23.9, “WSDL generated with documentation” , is generated from the
SEI in Example 23.8, “Using @WSDLDocumentation”, the default placements of the documentation
elements are, respectively, PORT_TYPE and PORT_TYPE_OPERATION.

Example 23.9. WSDL generated with documentation

Example of @WSDLDocumentationCollection

Example 23.10, “Using @WSDLDocumentationCollection” shows how to add a
@WSDLDocumentationCollection annotation to an SEI.

Example 23.10. Using @WSDLDocumentationCollection

23.2.3.2. Schema Validation of Messages

@SchemaValidation annotation

<wsdl:definitions ... >
 ...
 <wsdl:portType name="HelloWorld">
 <wsdl:documentation>A very simple example of an
SEI</wsdl:documentation>
 <wsdl:operation name="sayHi">
 <wsdl:documentation>A traditional form of greeting</wsdl:documentation>
 <wsdl:input name="sayHi" message="tns:sayHi">
 </wsdl:input>
 <wsdl:output name="sayHiResponse" message="tns:sayHiResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

@WebService
@WSDLDocumentationCollection(
 {
 @WSDLDocumentation("A very simple example of an SEI"),
 @WSDLDocumentation(value = "My top level documentation",
 placement =
WSDLDocumentation.Placement.TOP),
 @WSDLDocumentation(value = "Binding documentation",
 placement =
WSDLDocumentation.Placement.BINDING)
 }
)
public interface HelloWorld {
 @WSDLDocumentation("A traditional form of Geeky greeting")
 String sayHi(@WebParam(name = "text") String text);
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

208

The @SchemaValidation annotation is defined by the
org.apache.cxf.annotations.SchemaValidation interface. It is placed on the SEI.

This annotation turns on schema validation of the XML messages sent to this endpoint. This can be
useful for testing purposes, when you suspect there is a problem with the format of incoming XML
messages. By default, validation is disabled, because it has a significant impact on performance.

Example

Example 23.11, “Activating schema validation” shows how to enable schema validation of messages for
endpoints based on the HelloWorld SEI.

Example 23.11. Activating schema validation

23.2.3.3. Specifying the Data Binding

@DataBinding annotation

The @DataBinding annotation is defined by the org.apache.cxf.annotations.DataBinding
interface. It is placed on the SEI.

This annotation is used to associate a data binding with the SEI, replacing the default JAXB data
binding. The value of the @DataBinding annotation must be the class that provides the data binding,
ClassName.class.

Supported data bindings

The following data bindings are currently supported by Apache CXF:

org.apache.cxf.jaxb.JAXBDataBinding

(Default) The standard JAXB data binding.

org.apache.cxf.sdo.SDODataBinding

The Service Data Objects (SDO) data binding is based on the Apache Tuscany SDO
implementation. If you want to use this data binding in the context of a Maven build, you need
to add a dependency on the cxf-rt-databinding-sdo artifact.

org.apache.cxf.aegis.databinding.AegisDatabinding

If you want to use this data binding in the context of a Maven build, you need to add a
dependency on the cxf-rt-databinding-aegis artifact.

org.apache.cxf.xmlbeans.XmlBeansDataBinding

@WebService
@SchemaValidation
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

209

https://jaxb.dev.java.net/
http://tuscany.apache.org/sdo-overview.html

If you want to use this data binding in the context of a Maven build, you need to add a
dependency on the cxf-rt-databinding-xmlbeans artifact.

org.apache.cxf.databinding.source.SourceDataBinding

This data binding belongs to the Apache CXF core.

org.apache.cxf.databinding.stax.StaxDataBinding

This data binding belongs to the Apache CXF core.

Example

Example 23.12, “Setting the data binding” shows how to associate the SDO binding with the
HelloWorld SEI

Example 23.12. Setting the data binding

23.2.3.4. Compressing Messages

@GZIP annotation

The @GZIP annotation is defined by the org.apache.cxf.annotations.GZIP interface. It is placed
on the SEI.

Enables GZIP compression of messages. GZIP is a negotiated enhancement. That is, an initial request
from a client will not be gzipped, but an Accept header will be added and, if the server supports GZIP
compression, the response will be gzipped and any subsequent requests will be also.

Table 23.10, “@GZIP Properties” shows the optional properties supported by the @GZIP annotation.

Table 23.10. @GZIP Properties

Property Description

threshold Messages smaller than the size specified by this
property are not gzipped. Default is -1 (no limit).

@FastInfoset

The @FastInfoset annotation is defined by the org.apache.cxf.annotations.FastInfoset
interface. It is placed on the SEI.

Enables the use of FastInfoset format for messages. FastInfoset is a binary encoding format for XML,
which aims to optimize both the message size and the processing performance of XML messages. For
more details, see the following Sun article on Fast Infoset.

@WebService
@DataBinding(org.apache.cxf.sdo.SDODataBinding.class)
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

210

http://java.sun.com/developer/technicalArticles/xml/fastinfoset/

FastInfoset is a negotiated enhancement. That is, an initial request from a client will not be in
FastInfoset format, but an Accept header will be added and, if the server supports FastInfoset, the
response will be in FastInfoset and any subsequent requests will be also.

Table 23.11, “@FastInfoset Properties” shows the optional properties supported by the @FastInfoset
annotation.

Table 23.11. @FastInfoset Properties

Property Description

force A boolean property that forces the use of
FastInfoset format, instead of negotiating. When
true, force the use of FastInfoset format; otherwise,
negotiate. Default is false.

Example of @GZIP

Example 23.13, “Enabling GZIP” shows how to enable GZIP compression for the HelloWorld SEI.

Example 23.13. Enabling GZIP

Exampe of @FastInfoset

Example 23.14, “Enabling FastInfoset” shows how to enable the FastInfoset format for the
HelloWorld SEI.

Example 23.14. Enabling FastInfoset

23.2.3.5. Enable Logging on an Endpoint

@Logging annotation

The @Logging annotation is defined by the org.apache.cxf.annotations.Logging interface. It
is placed on the SEI.

This annotation enables logging for all endpoints associated with the SEI. Table 23.12, “@Logging
Properties” shows the optional properties you can set in this annotation.

@WebService
@GZIP
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

@WebService
@FastInfoset
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

211

Table 23.12. @Logging Properties

Property Description

limit Specifies the size limit, beyond which the message is
truncated in the logs. Default is 64K.

inLocation Specifies the location to log incoming messages.
Can be either <stderr>, <stdout>, <logger>,
or a filename. Default is <logger>.

outLocation Specifies the location to log outgoing messages. Can
be either <stderr>, <stdout>, <logger>, or a
filename. Default is <logger>.

Example

Example 23.15, “Logging configuration using annotations” shows how to enable logging for the
HelloWorld SEI, where incoming messages are sent to <stdout> and outgoing messages are sent to
<logger>.

Example 23.15. Logging configuration using annotations

23.2.3.6. Adding Properties and Policies to an Endpoint

Both properties and policies can be used to associate configuration data with an endpoint. The
essential difference between them is that properties are a Apache CXF specific configuration
mechanism whereas policies are a standard WSDL configuration mechanism. Policies typically originate
from WS specifications and standards and they are normally set by defining wsdl:policy elements
that appear in the WSDL contract. By contrast, properties are Apache CXF-specific and they are
normally set by defining jaxws:properties elements in the Apache CXF Spring configuration file.

It is also possible, however, to define property settings and WSDL policy settings in Java using
annotations, as described here.

23.2.3.6.1. Adding properties

@EndpointProperty annotation

The @EndpointProperty annotation is defined by the
org.apache.cxf.annotations.EndpointProperty interface. It is placed on the SEI.

This annotation adds Apache CXF-specific configuration settings to an endpoint. Endpoint properties
can also be specified in a Spring configuration file. For example, to configure WS-Security on an
endpoint, you could add endpoint properties using the jaxws:properties element in a Spring

@WebService
@Logging(limit=16000, inLocation="<stdout>")
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

212

configuration file as follows:

Alternatively, you could specify the preceding configuration settings in Java by adding
@EndpointProperty annotations to the SEI, as shown in Example 23.16, “Configuring WS-Security
Using @EndpointProperty Annotations”.

Example 23.16. Configuring WS-Security Using @EndpointProperty Annotations

@EndpointProperties annotation

The @EndpointProperties annotation is defined by the
org.apache.cxf.annotations.EndpointProperties interface. It is placed on the SEI.

This annotation provides a way of grouping multiple @EndpointProperty annotations into a list.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ... >

 <jaxws:endpoint
 id="MyService"
 address="https://localhost:9001/MyService"
 serviceName="interop:MyService"
 endpointName="interop:MyServiceEndpoint"
 implementor="com.foo.MyService">

 <jaxws:properties>
 <entry key="ws-security.callback-handler"
value="interop.client.UTPasswordCallback"/>
 <entry key="ws-security.signature.properties"
value="etc/keystore.properties"/>
 <entry key="ws-security.encryption.properties"
value="etc/truststore.properties"/>
 <entry key="ws-security.encryption.username"
value="useReqSigCert"/>
 </jaxws:properties>

 </jaxws:endpoint>
</beans>

@WebService
@EndpointProperty(name="ws-security.callback-handler"
value="interop.client.UTPasswordCallback")
@EndpointProperty(name="ws-security.signature.properties"
value="etc/keystore.properties")
@EndpointProperty(name="ws-security.encryption.properties"
value="etc/truststore.properties")
@EndpointProperty(name="ws-security.encryption.username"
value="useReqSigCert")
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

213

Using @EndpointProperties, it is possible to re-write Example 23.16, “Configuring WS-Security
Using @EndpointProperty Annotations” as shown in Example 23.17, “Configuring WS-Security Using
an @EndpointProperties Annotation”.

Example 23.17. Configuring WS-Security Using an @EndpointProperties Annotation

23.2.3.6.2. Adding policies

@Policy annotation

The @Policy annotation is defined by the org.apache.cxf.annotations.Policy interface. It
can be placed on the SEI or the SEI methods.

This annotation is used to associate a WSDL policy with an SEI or an SEI method. The policy is specified
by providing a URI that references an XML file containing a standard wsdl:policy element. If a WSDL
contract is to be generated from the SEI (for example, using the java2ws command-line tool), you can
specify whether or not you want to include this policy in the WSDL.

Table 23.13, “@Policy Properties” shows the properties supported by the @Policy annotation.

Table 23.13. @Policy Properties

Property Description

uri (Required) The location of the file containing the
policy definition.

includeInWSDL (Optional) Whether to include the policy in the
generated contract, when generating WSDL. Default
is true.

placement (Optional) Specifies where in the WSDL file this
documentation is to appear. For the list of possible
placement values, see the section called “Placement
in the WSDL contract”.

@WebService
@EndpointProperties(
 {
 @EndpointProperty(name="ws-security.callback-handler"
value="interop.client.UTPasswordCallback"),
 @EndpointProperty(name="ws-security.signature.properties"
value="etc/keystore.properties"),
 @EndpointProperty(name="ws-security.encryption.properties"
value="etc/truststore.properties"),
 @EndpointProperty(name="ws-security.encryption.username"
value="useReqSigCert")
})
public interface HelloWorld {
 String sayHi(@WebParam(name = "text") String text);
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

214

faultClass (Optional) If the placement is set to be
BINDING_OPERATION_FAULT or
PORT_TYPE_OPERATION_FAULT, you must also
set this property to specify which fault this policy
applies to. The value is the Java class that
represents the fault.

Property Description

@Policies annotation

The @Policies annotation is defined by the org.apache.cxf.annotations.Policies interface.
It can be placed on the SEI or thse SEI methods.

This annotation provides a way of grouping multiple @Policy annotations into a list.

Placement in the WSDL contract

To specify where the policy should appear in the WSDL contract, you can specify the placement
property, which is of type Policy.Placement. The placement can have one of the following values:

Example of @Policy

The following example shows how to associate WSDL policies with the HelloWorld SEI and how to
associate a policy with the sayHi method. The policies themselves are stored in XML files in the file
system, under the annotationpolicies directory.

Policy.Placement.BINDING
Policy.Placement.BINDING_OPERATION
Policy.Placement.BINDING_OPERATION_FAULT
Policy.Placement.BINDING_OPERATION_INPUT
Policy.Placement.BINDING_OPERATION_OUTPUT
Policy.Placement.DEFAULT
Policy.Placement.PORT_TYPE
Policy.Placement.PORT_TYPE_OPERATION
Policy.Placement.PORT_TYPE_OPERATION_FAULT
Policy.Placement.PORT_TYPE_OPERATION_INPUT
Policy.Placement.PORT_TYPE_OPERATION_OUTPUT
Policy.Placement.SERVICE
Policy.Placement.SERVICE_PORT

@WebService
@Policy(uri = "annotationpolicies/TestImplPolicy.xml",
 placement = Policy.Placement.SERVICE_PORT),
@Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",
 placement = Policy.Placement.PORT_TYPE)
public interface HelloWorld {
 @Policy(uri = "annotationpolicies/TestOperationPTPolicy.xml",
 placement = Policy.Placement.PORT_TYPE_OPERATION),
 String sayHi(@WebParam(name = "text") String text);
}

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

215

Example of @Policies

You can use the @Policies annotation to group multiple @Policy annotations into a list, as shown in
the following example:

23.3. GENERATING WSDL

Using Maven

Once your code is annotated, you can generate a WSDL contract for your service using the java2ws
Maven plug-in's -wsdl option. For a detailed listing of options for the java2ws Maven plug-in see
java2ws.

Example 23.18, “Generating WSDL from Java” shows how to set up the java2ws Maven plug-in to
generate WSDL.

Example 23.18. Generating WSDL from Java

Example

@WebService
@Policies({
 @Policy(uri = "annotationpolicies/TestImplPolicy.xml",
 placement = Policy.Placement.SERVICE_PORT),
 @Policy(uri = "annotationpolicies/TestPortTypePolicy.xml",
 placement = Policy.Placement.PORT_TYPE)
})
public interface HelloWorld {
 @Policy(uri = "annotationpolicies/TestOperationPTPolicy.xml",
 placement = Policy.Placement.PORT_TYPE_OPERATION),
 String sayHi(@WebParam(name = "text") String text);
}

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <configuration>
 <className>className</className>
 <genWsdl>true</genWsdl>
 </configuration>
 <goals>
 <goal>java2ws</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

216

Example 23.19, “Generated WSDL from an SEI” shows the WSDL contract that is generated for the SEI
shown in Example 23.7, “Fully Annotated SEI” .

Example 23.19. Generated WSDL from an SEI

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://demo.eric.org/"
 xmlns:tns="http://demo.eric.org/"
 xmlns:ns1=""
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns2="http://demo.eric.org/types"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:types>
 <xsd:schema>
 <xs:complexType name="quote">
 <xs:sequence>
 <xs:element name="ID" type="xs:string" minOccurs="0"/>
 <xs:element name="time" type="xs:string" minOccurs="0"/>
 <xs:element name="val" type="xs:float"/>
 </xs:sequence>
 </xs:complexType>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="getStockQuote">
 <wsdl:part name="stockTicker" type="xsd:string">
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="getStockQuoteResponse">
 <wsdl:part name="updatedQuote" type="tns:quote">
 </wsdl:part>
 </wsdl:message>
 <wsdl:portType name="quoteReporter">
 <wsdl:operation name="getStockQuote">
 <wsdl:input name="getQuote" message="tns:getStockQuote">
 </wsdl:input>
 <wsdl:output name="getQuoteResponse"
message="tns:getStockQuoteResponse">
 </wsdl:output>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="quoteReporterBinding" type="tns:quoteReporter">
 <soap:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="getStockQuote">
 <soap:operation style="rpc" />
 <wsdl:input name="getQuote">
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output name="getQuoteResponse">
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="quoteReporterService">
 <wsdl:port name="quoteReporterPort"

CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT

217

[2] Board is an assumed class whose implementation is left to the reader.

binding="tns:quoteReporterBinding">
 <soap:address
location="http://localhost:9000/quoteReporterService" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

218

CHAPTER 24. DEVELOPING A CONSUMER WITHOUT A WSDL
CONTRACT

Abstract

You do not need a WSDL contract to develop a service consumer. You can create a service consumer
from an annotated SEI. Along with the SEI you need to know the address at which the endpoint
exposing the service is published, the QName of the service element that defines the endpoint
exposing the service, and the QName of the port element defining the endpoint on which your
consumer makes requests. This information can be specified in the SEI's annotations or provided
separately.

To create a consumer without a WSDL contract you must do the following:

1. Create a Service object for the service on which the consumer will invoke operations.

2. Add a port to the Service object.

3. Get a proxy for the service using the Service object's getPort() method.

4. Implement the consumer's business logic.

24.1. CREATING A SERVICE OBJECT

Overview

The javax.xml.ws.Service class represents the wsdl:service element which contains the
definition of all of the endpoints that expose a service. As such, it provides methods that allow you to
get endpoints, defined by wsdl:port elements, that are proxies for making remote invocations on a
service.

NOTE

The Service class provides the abstractions that allow the client code to work with
Java types as opposed to working with XML documents.

The create() methods

The Service class has two static create() methods that can be used to create a new Service
object. As shown in Example 24.1, “Service create() Methods”, both of the create() methods
take the QName of the wsdl:service element the Service object will represent, and one takes a
URI specifying the location of the WSDL contract.

TIP

All services publish their WSDL contracts. For SOAP/HTTP services the URI is usually the URI for the
service appended with ?wsdl.

Example 24.1. Service create() Methods

public static Service create(URL wsdlLocation,

CHAPTER 24. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

219

1

2

 QName serviceName)
 throws WebServiceException;
public static Service create(QName serviceName)
 throws WebServiceException;

The value of the serviceName parameter is a QName. The value of its namespace part is the target
namespace of the service. The service's target namespace is specified in the targetNamespace
property of the @WebService annotation. The value of the QName's local part is the value of
wsdl:service element's name attribute. You can determine this value in one of the following ways:

1. It is specified in the serviceName property of the @WebService annotation.

2. You append Service to the value of the name property of the @WebService annotation.

3. You append Service to the name of the SEI.

Example

Example 24.2, “Creating a Service Object” shows code for creating a Service object for the SEI
shown in Example 23.7, “Fully Annotated SEI” .

Example 24.2. Creating a Service Object

The code in Example 24.2, “Creating a Service Object” does the following:

Builds the QName for the service using the targetNamespace property and the name property of
the @WebService annotation.

Calls the single parameter create() method to create a new Service object.

NOTE

Using the single parameter create() frees you from having any dependencies on
accessing a WSDL contract.

1

2

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {

 QName serviceName = new QName("http://demo.redhat.com",
"stockQuoteReporter");
 Service s = Service.create(serviceName);
 ...

 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

220

24.2. ADDING A PORT TO A SERVICE

Overview

The endpoint information for a service is defined in a wsdl:port element, and the Service object
creates a proxy instance for each of the endpoints defined in a WSDL contract, if one is specified. If you
do not specify a WSDL contract when you create your Service object, the Service object has no
information about the endpoints that implement your service, and therefore cannot create any proxy
instances. In this case, you must provide the Service object with the information needed to represent
a wsdl:port element using the addPort() method.

The addPort() method

The Service class defines an addPort() method, shown in Example 24.3, “The addPort()
Method”, that is used in cases where there is no WSDL contract available to the consumer
implementation. The addPort() method allows you to give a Service object the information, which
is typically stored in a wsdl:port element, necessary to create a proxy for a service implementation.

Example 24.3. The addPort() Method

void addPort(QName portName,
 String bindingId,
 String endpointAddress)
 throws WebServiceException;

The value of the portName is a QName. The value of its namespace part is the target namespace of the
service. The service's target namespace is specified in the targetNamespace property of the
@WebService annotation. The value of the QName's local part is the value of wsdl:port element's
name attribute. You can determine this value in one of the following ways:

1. Specify it in the portName property of the @WebService annotation.

2. Append Port to the value of the name property of the @WebService annotation.

3. Append Port to the name of the SEI.

The value of the bindingId parameter is a string that uniquely identifies the type of binding used by
the endpoint. For a SOAP binding you use the standard SOAP namespace:
http://schemas.xmlsoap.org/soap/. If the endpoint is not using a SOAP binding, the value of the
bindingId parameter is determined by the binding developer.

The value of the endpointAddress parameter is the address where the endpoint is published. For a
SOAP/HTTP endpoint, the address is an HTTP address. Transports other than HTTP use different
address schemes.

Example

Example 24.4, “Adding a Port to a Service Object” shows code for adding a port to the Service
object created in Example 24.2, “Creating a Service Object”.

Example 24.4. Adding a Port to a Service Object

CHAPTER 24. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

221

1

2

3

4

The code in Example 24.4, “Adding a Port to a Service Object” does the following:

Creates the QName for the portName parameter.

Calls the addPort() method.

Specifies that the endpoint uses a SOAP binding.

Specifies the address where the endpoint is published.

24.3. GETTING A PROXY FOR AN ENDPOINT

Overview

A service proxy is an object that provides all of the methods exposed by a remote service and handles
all of the details required to make the remote invocations. The Service object provides service
proxies for all of the endpoints it is aware of through the getPort() method. Once you have a service
proxy, you can invoke its methods. The proxy forwards the invocation to the remote service endpoint
using the connection details specified in the service's contract.

The getPort() method

The getPort() method, shown in Example 24.5, “The getPort() Method”, returns a service proxy
for the specified endpoint. The returned proxy is of the same class as the SEI.

Example 24.5. The getPort() Method

public <T> T getPort(QName portName,
 Class<T> serviceEndpointInterface)
 throws WebServiceException;

1

2
3

4

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 ...

 QName portName = new QName("http://demo.redhat.com",
"stockQuoteReporterPort");
 s.addPort(portName,

 "http://schemas.xmlsoap.org/soap/",
 "http://localhost:9000/StockQuote");
 ...

 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

222

The value of the portName parameter is a QName that identifies the wsdl:port element that defines
the endpoint for which the proxy is created. The value of the serviceEndpointInterface
parameter is the fully qualified name of the SEI.

TIP

When you are working without a WSDL contract the value of the portName parameter is typically the
same as the value used for the portName parameter when calling addPort().

Example

Example 24.6, “Getting a Service Proxy” shows code for getting a service proxy for the endpoint added
in Example 24.4, “Adding a Port to a Service Object”.

Example 24.6. Getting a Service Proxy

24.4. IMPLEMENTING THE CONSUMER'S BUSINESS LOGIC

Overview

Once you instantiate a service proxy for a remote endpoint, you can invoke its methods as if it were a
local object. The calls block until the remote method completes.

NOTE

If a method is annotated with the @OneWay annotation, the call returns immediately.

Example

Example 24.7, “Consumer Implemented without a WSDL Contract” shows a consumer for the service
defined in Example 23.7, “Fully Annotated SEI” .

Example 24.7. Consumer Implemented without a WSDL Contract

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 ...
 quoteReporter proxy = s.getPort(portName, quoteReporter.class);
 ...
 }
}

CHAPTER 24. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT

223

1

2

3

4

The code in Example 24.7, “Consumer Implemented without a WSDL Contract” does the following:

Creates a Service object.

Adds an endpoint definition to the Service object.

Gets a service proxy from the Service object.

Invokes an operation on the service proxy.

1

2

3

4

package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 QName serviceName = new QName("http://demo.eric.org",
"stockQuoteReporter");

 Service s = Service.create(serviceName);

 QName portName = new QName("http://demo.eric.org",
"stockQuoteReporterPort");

 s.addPort(portName, "http://schemas.xmlsoap.org/soap/",
"http://localhost:9000/EricStockQuote");

 quoteReporter proxy = s.getPort(portName, quoteReporter.class);

 Quote quote = proxy.getQuote("ALPHA");
 System.out.println("Stock "+quote.getID()+" is worth

"+quote.getVal()+" as of "+quote.getTime());
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

224

CHAPTER 25. A STARTING POINT WSDL CONTRACT
Example 25.1, “HelloWorld WSDL Contract” shows the HelloWorld WSDL contract. This contract defines
a single interface, Greeter, in the wsdl:portType element. The contract also defines the endpoint
which will implement the service in the wsdl:port element.

Example 25.1. HelloWorld WSDL Contract

<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_soap_http"

xmlns:x1="http://apache.org/hello_world_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema
targetNamespace="http://apache.org/hello_world_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"><element name="sayHi">
 <element name="sayHi">
 <complexType>
 <sequence>
 <element name="requestType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="sayHiResponse">
 <complexType>
 <sequence>
 <element name="responseType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMe">
 <complexType>
 <sequence>
 <element name="requestType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMeResponse">
 <complexType>
 <sequence>
 <element name="responseType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="greetMeOneWay">
 <complexType>
 <sequence>

CHAPTER 25. A STARTING POINT WSDL CONTRACT

225

1

2

 <element name="requestType" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="pingMe">
 <complexType/>
 </element>
 <element name="pingMeResponse">
 <complexType/>
 </element>
 <element name="faultDetail">
 <complexType>
 <sequence>
 <element name="minor" type="short"/>
 <element name="major" type="short"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest">
 <wsdl:part element="x1:sayHi" name="in"/>
 </wsdl:message>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="x1:sayHiResponse" name="out"/>
 </wsdl:message>
 <wsdl:message name="greetMeRequest">
 <wsdl:part element="x1:greetMe" name="in"/>
 </wsdl:message>
 <wsdl:message name="greetMeResponse">
 <wsdl:part element="x1:greetMeResponse" name="out"/>
 </wsdl:message>
 <wsdl:message name="greetMeOneWayRequest">
 <wsdl:part element="x1:greetMeOneWay" name="in"/>
 </wsdl:message>
 <wsdl:message name="pingMeRequest">
 <wsdl:part name="in" element="x1:pingMe"/>
 </wsdl:message>
 <wsdl:message name="pingMeResponse">
 <wsdl:part name="out" element="x1:pingMeResponse"/>
 </wsdl:message>
 <wsdl:message name="pingMeFault">
 <wsdl:part name="faultDetail" element="x1:faultDetail"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>

 <wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
 </wsdl:operation>

 <wsdl:operation name="greetMe">
 <wsdl:input message="tns:greetMeRequest"

name="greetMeRequest"/>
 <wsdl:output message="tns:greetMeResponse"

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

226

1

2

3

4

The Greeter interface defined in Example 25.1, “HelloWorld WSDL Contract” defines the following
operations:

sayHi — Has a single output parameter, of xsd:string.

greetMe — Has an input parameter, of xsd:string, and an output parameter, of xsd:string.

greetMeOneWay — Has a single input parameter, of xsd:string. Because this operation has no
output parameters, it is optimized to be a oneway invocation (that is, the consumer does not wait
for a response from the server).

pingMe — Has no input parameters and no output parameters, but it can raise a fault exception.

3

4

name="greetMeResponse"/>
 </wsdl:operation>

 <wsdl:operation name="greetMeOneWay">
 <wsdl:input message="tns:greetMeOneWayRequest"

name="greetMeOneWayRequest"/>
 </wsdl:operation>

 <wsdl:operation name="pingMe">
 <wsdl:input name="pingMeRequest" message="tns:pingMeRequest"/>

 <wsdl:output name="pingMeResponse" message="tns:pingMeResponse"/>
 <wsdl:fault name="pingMeFault" message="tns:pingMeFault"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="Greeter_SOAPBinding" type="tns:Greeter">
 ...
 </wsdl:binding>

 <wsdl:service name="SOAPService">
 <wsdl:port binding="tns:Greeter_SOAPBinding" name="SoapPort">
 <soap:address
location="http://localhost:9000/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

CHAPTER 25. A STARTING POINT WSDL CONTRACT

227

CHAPTER 26. TOP-DOWN SERVICE DEVELOPMENT

Abstract

In the top-down method of developing a service provider you start from a WSDL document that defines
the operations and methods the service provider will implement. Using the WSDL document, you
generate starting point code for the service provider. Adding the business logic to the generated code
is done using normal Java programming APIs.

Once you have a WSDL document, the process for developing a JAX-WS service provider is as follows:

1. Generate starting point code.

2. Implement the service provider's operations.

3. Publish the implemented service.

26.1. GENERATING THE STARTING POINT CODE

Overview

JAX-WS specifies a detailed mapping from a service defined in WSDL to the Java classes that will
implement that service as a service provider. The logical interface, defined by the wsdl:portType
element, is mapped to a service endpoint interface (SEI). Any complex types defined in the WSDL are
mapped into Java classes following the mapping defined by the Java Architecture for XML Binding
(JAXB) specification. The endpoint defined by the wsdl:service element is also generated into a
Java class that is used by consumers to access service providers implementing the service.

The cxf-codegen-plugin Maven plug-in generates this code. It also provides options for generating
starting point code for your implementation. The code generator provides a number of options for
controlling the generated code.

Running the code generator

Example 26.1, “Service Code Generation” shows how to use the code generator to generate starting
point code for a service.

Example 26.1. Service Code Generation

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>wsdl</wsdl>
 <extraargs>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

228

This does the following:

The -impl option generates a shell implementation class for each wsdl:portType element
in the WSDL contract.

The -server option generates a simple main() to run your service provider as a stand alone
application.

The sourceRoot specifies that the generated code is written to a directory called outputDir.

wsdl element specifies the WSDL contract from which code is generated.

For a complete list of the options for the code generator see cxf-codegen-plugin.

Generated code

Table 26.1, “Generated Classes for a Service Provider” describes the files generated for creating a
service provider.

Table 26.1. Generated Classes for a Service Provider

File Description

portTypeName.java The SEI. This file contains the interface your service
provider implements. You should not edit this file.

serviceName.java The endpoint. This file contains the Java class
consumers use to make requests on the service.

portTypeNameImpl.java The skeleton implementation class. Modify this file
to build your service provider.

portTypeNameServer.java A basic server mainline that allows you to deploy
your service provider as a stand alone process. For
more information see Chapter 30, Publishing a
Service.

In addition, the code generator will generate Java classes for all of the types defined in the WSDL
contract.

 <extraarg>-server</extraarg>
 <extraarg>-impl</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

CHAPTER 26. TOP-DOWN SERVICE DEVELOPMENT

229

Generated packages

The generated code is placed into packages based on the namespaces used in the WSDL contract. The
classes generated to support the service (based on the wsdl:portType element, the wsdl:service
element, and the wsdl:port element) are placed in a package based on the target namespace of the
WSDL contract. The classes generated to implement the types defined in the types element of the
contract are placed in a package based on the targetNamespace attribute of the types element.

The mapping algorithm is as follows:

1. The leading http:// or urn:// are stripped off the namespace.

2. If the first string in the namespace is a valid Internet domain, for example it ends in .com or
.gov, then the leading www. is stripped off the string, and the two remaining components are
flipped.

3. If the final string in the namespace ends with a file extension of the pattern .xxx or .xx, then
the extension is stripped.

4. The remaining strings in the namespace are appended to the resulting string and separated by
dots.

5. All letters are made lowercase.

26.2. IMPLEMENTING THE SERVICE PROVIDER

Generating the implementation code

You generate the implementation class used to build your service provider with the code generator's -
impl flag.

TIP

If your service's contract includes any custom types defined in XML Schema, you must ensure that the
classes for the types are generated and available.

For more information on using the code generator see cxf-codegen-plugin.

Generated code

The implementation code consists of two files:

portTypeName.java — The service interface(SEI) for the service.

portTypeNameImpl.java — The class you will use to implement the operations defined by
the service.

Implement the operation's logic

To provide the business logic for your service's operations complete the stub methods in
portTypeNameImpl.java. You usually use standard Java to implement the business logic. If your
service uses custom XML Schema types, you must use the generated classes for each type to

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

230

manipulate them. There are also some Apache CXF specific APIs that can be used to access some
advanced features.

Example

For example, an implementation class for the service defined in Example 25.1, “HelloWorld WSDL
Contract” may look like Example 26.2, “Implementation of the Greeter Service” . Only the code
portions highlighted in bold must be inserted by the programmer.

Example 26.2. Implementation of the Greeter Service

package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName =
"SOAPService",
 targetNamespace =
"http://apache.org/hello_world_soap_http",
 endpointInterface =
"org.apache.hello_world_soap_http.Greeter")

public class GreeterImpl implements Greeter {

 public String greetMe(String me) {
 System.out.println("Executing operation greetMe");
 System.out.println("Message received: " + me + "\n");
 return "Hello " + me;
 }

 public void greetMeOneWay(String me) {
 System.out.println("Executing operation greetMeOneWay\n");
 System.out.println("Hello there " + me);
 }

 public String sayHi() {
 System.out.println("Executing operation sayHi\n");
 return "Bonjour";
 }

 public void pingMe() throws PingMeFault {
 FaultDetail faultDetail = new FaultDetail();
 faultDetail.setMajor((short)2);
 faultDetail.setMinor((short)1);
 System.out.println("Executing operation pingMe, throwing
PingMeFault exception\n");
 throw new PingMeFault("PingMeFault raised by server",
faultDetail);
 }
}

CHAPTER 26. TOP-DOWN SERVICE DEVELOPMENT

231

CHAPTER 27. DEVELOPING A CONSUMER FROM A WSDL
CONTRACT

Abstract

One way method of creating a consumer is to start from a WSDL contract. The contract defines the
operations, messages, and transport details of the service on which a consumer makes requests. The
starting point code for the consumer is generated from the WSDL contract. The functionality required
by the consumer is added to the generated code.

27.1. GENERATING THE STUB CODE

Overview

The cxf-codegen-plugin Maven plug-in generates the stub code from the WSDL contract. The stub
code provides the supporting code that is required to invoke operations on the remote service.

For consumers, the cxf-codegen-plugin Maven plug-in generates the following types of code:

Stub code — Supporting files for implementing a consumer.

Starting point code — Sample code that connects to the remote service and invokes every
operation on the remote service.

Generating the consumer code

To generate consumer code use the cxf-codegen-plugin Maven plug-in. Example 27.1, “Consumer
Code Generation” shows how to use the code generator to generate consumer code.

Example 27.1. Consumer Code Generation

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>wsdl</wsdl>
 <extraargs>
 <extraarg>-client</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

232

Where outputDir is the location of a directory where the generated files are placed and wsdl specifies
the WSDL contract's location. The -client option generates starting point code for the consumer's
main() method.

For a complete list of the arguments available for the cxf-codegen-plugin Maven plug-in see cxf-
codegen-plugin.

Generated code

The code generation plug-in generates the following Java packages for the contract shown in
Example 25.1, “HelloWorld WSDL Contract” :

org.apache.hello_world_soap_http — This package is generated from the
http://apache.org/hello_world_soap_http target namespace. All of the WSDL
entities defined in this namespace (for example, the Greeter port type and the SOAPService
service) map to Java classes this Java package.

org.apache.hello_world_soap_http.types — This package is generated from the
http://apache.org/hello_world_soap_http/types target namespace. All of the XML
types defined in this namespace (that is, everything defined in the wsdl:types element of the
HelloWorld contract) map to Java classes in this Java package.

The stub files generated by the cxf-codegen-plugin Maven plug-in fall into the following
categories:

Classes representing WSDL entities in the org.apache.hello_world_soap_http package. The
following classes are generated to represent WSDL entities:

Greeter — A Java interface that represents the Greeter wsdl:portType element. In
JAX-WS terminology, this Java interface is the service endpoint interface (SEI).

SOAPService — A Java service class (extending javax.xml.ws.Service) that
represents the SOAPService wsdl:service element.

PingMeFault — A Java exception class (extending java.lang.Exception) that
represents the pingMeFault wsdl:fault element.

Classes representing XML types in the org.objectweb.hello_world_soap_http.types package. In
the HelloWorld example, the only generated types are the various wrappers for the request
and reply messages. Some of these data types are useful for the asynchronous invocation
model.

27.2. IMPLEMENTING A CONSUMER

Overview

To implement a consumer when starting from a WSDL contract, you must use the following stubs:

 </goals>
 </execution>
 </executions>
</plugin>

CHAPTER 27. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

233

Service class

SEI

Using these stubs, the consumer code instantiates a service proxy to make requests on the remote
service. It also implements the consumer's business logic.

Generated service class

Example 27.2, “Outline of a Generated Service Class” shows the typical outline of a generated service
class, ServiceName_Service[3], which extends the javax.xml.ws.Service base class.

Example 27.2. Outline of a Generated Service Class

The ServiceName class in Example 27.2, “Outline of a Generated Service Class” defines the following
methods:

ServiceName(URL wsdlLocation, QName serviceName) — Constructs a service object
based on the data in the wsdl:service element with the QName ServiceName service in the
WSDL contract that is obtainable from wsdlLocation.

ServiceName() — The default constructor. It constructs a service object based on the service
name and the WSDL contract that were provided at the time the stub code was generated (for
example, when running the wsdl2java tool). Using this constructor presupposes that the
WSDL contract remains available at a specified location.

getPortName() — Returns a proxy for the endpoint defined by the wsdl:port element with
the name attribute equal to PortName. A getter method is generated for every wsdl:port
element defined by the ServiceName service. A wsdl:service element that contains multiple
endpoint definitions results in a generated service class with multiple getPortName()
methods.

Service endpoint interface

For every interface defined in the original WSDL contract, you can generate a corresponding SEI. A
service endpoint interface is the Java mapping of a wsdl:portType element. Each operation defined
in the original wsdl:portType element maps to a corresponding method in the SEI. The operation's

@WebServiceClient(name="..." targetNamespace="..."
 wsdlLocation="...")
public class ServiceName extends javax.xml.ws.Service
{
 ...
 public ServiceName(URL wsdlLocation, QName serviceName) { }

 public ServiceName() { }

 @WebEndpoint(name="...")
 public SEI getPortName() { }
 .
 .
 .
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

234

parameters are mapped as follows:

1. The input parameters are mapped to method arguments.

2. The first output parameter is mapped to a return value.

3. If there is more than one output parameter, the second and subsequent output parameters
map to method arguments (moreover, the values of these arguments must be passed using
Holder types).

For example, Example 27.3, “The Greeter Service Endpoint Interface” shows the Greeter SEI, which is
generated from the wsdl:portType element defined in Example 25.1, “HelloWorld WSDL Contract” .
For simplicity, Example 27.3, “The Greeter Service Endpoint Interface” omits the standard JAXB and
JAX-WS annotations.

Example 27.3. The Greeter Service Endpoint Interface

Consumer main function

Example 27.4, “Consumer Implementation Code” shows the code that implements the HelloWorld
consumer. The consumer connects to the SoapPort port on the SOAPService service and then
proceeds to invoke each of the operations supported by the Greeter port type.

Example 27.4. Consumer Implementation Code

package org.apache.hello_world_soap_http;
 ...
public interface Greeter
{
 public String sayHi();
 public String greetMe(String requestType);
 public void greetMeOneWay(String requestType);
 public void pingMe() throws PingMeFault;
}

package demo.hw.client;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import org.apache.hello_world_soap_http.Greeter;
import org.apache.hello_world_soap_http.PingMeFault;
import org.apache.hello_world_soap_http.SOAPService;

public final class Client {

 private static final QName SERVICE_NAME =
 new QName("http://apache.org/hello_world_soap_http",
 "SOAPService");

 private Client()
 {
 }

CHAPTER 27. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

235

The Client.main() method from Example 27.4, “Consumer Implementation Code” proceeds as
follows:

1

2

3
4

5

6

 public static void main(String args[]) throws Exception
 {

 if (args.length == 0)
 {

 System.out.println("please specify wsdl");
 System.exit(1);
 }

 URL wsdlURL;
 File wsdlFile = new File(args[0]);

 if (wsdlFile.exists())
 {
 wsdlURL = wsdlFile.toURL();
 }
 else
 {
 wsdlURL = new URL(args[0]);
 }

 System.out.println(wsdlURL);
 SOAPService ss = new SOAPService(wsdlURL,SERVICE_NAME);

 Greeter port = ss.getSoapPort();
 String resp;

 System.out.println("Invoking sayHi...");
 resp = port.sayHi();

 System.out.println("Server responded with: " + resp);
 System.out.println();

 System.out.println("Invoking greetMe...");
 resp = port.greetMe(System.getProperty("user.name"));
 System.out.println("Server responded with: " + resp);
 System.out.println();

 System.out.println("Invoking greetMeOneWay...");
 port.greetMeOneWay(System.getProperty("user.name"));
 System.out.println("No response from server as method is OneWay");
 System.out.println();

 try {
 System.out.println("Invoking pingMe, expecting exception...");

 port.pingMe();
 } catch (PingMeFault ex) {
 System.out.println("Expected exception: PingMeFault has
occurred.");
 System.out.println(ex.toString());
 }
 System.exit(0);
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

236

1

2

3

4

5

6

Provided that the Apache CXF runtime classes are on your classpath, the runtime is implicitly
initialized. There is no need to call a special function to initialize Apache CXF.

The consumer expects a single string argument that gives the location of the WSDL contract for
HelloWorld. The WSDL contract's location is stored in wsdlURL.

You create a service object using the constructor that requires the WSDL contract's location and
service name.

Call the appropriate getPortName() method to obtain an instance of the required port. In this
case, the SOAPService service supports only the SoapPort port, which implements the Greeter
service endpoint interface.

The consumer invokes each of the methods supported by the Greeter service endpoint
interface.

In the case of the pingMe() method, the example code shows how to catch the PingMeFault
fault exception.

[3] If the name attribute of the wsdl:service element ends in Service the _Service is not used.

CHAPTER 27. DEVELOPING A CONSUMER FROM A WSDL CONTRACT

237

CHAPTER 28. FINDING WSDL AT RUNTIME

Abstract

Hard coding the location of WSDL documents into an application is not scalable. In real deployment
environments, you will want to allow the WSDL document's location be resolved at runtime. Apache
CXF provides a number of tools to make this possible.

When developing consumers using the JAX-WS APIs you are must provide a hard coded path to the
WSDL document that defines your service. While this is OK in a small environment, using hard coded
paths does not translate to enterprise deployments.

To address this issue, Apache CXF provides three mechanisms for removing the requirement of using
hard coded paths:

inject a configured proxy object

a JAX-WS catalog

the

TIP

Injecting the proxy into your implementation code is generally the best option.

28.1. INSTANTIATING A PROXY BY INJECTION

Overview

Apache CXF's use of the Spring Framework allows you to avoid the hassle of using the JAX-WS APIs to
create service proxies. It allows you to define a client endpoint in a configuration file and then inject a
proxy directly into the implementation code. When the runtime instantiates the implementation object,
it will also instantiate a proxy for the external service based on the configuration. The implementation
is handed a reference to the instantiated proxy.

Because the proxy is instantiated using information in the configuration file, the WSDL location does
not need to be hard coded. It can be changed at deployment time. You can also specify that the
runtime should search the application's classpath for the WSDL.

Procedure

To inject a proxy for an external service into a service provider's implementation do the following:

1. Deploy the required WSDL documents in a well known location that all parts of the application
can access.

TIP

If you are deploying the application as a WAR file, it is recommended that you place all of the
WSDL documents and XML Schema documents in the WEB-INF/wsdl folder of the WAR.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

238

TIP

If you are deploying the application as a JAR file, it is recommended that you place all of the
WSDL documents and XML Schema documents in the META-INF/wsdl folder of the JAR.

2. Configure a JAX-WS client endpoint for the proxy that is being injected.

3. Inject the proxy into your service provide using the @Resource annotation.

Configuring the proxy

You configure a JAX-WS client endpoint using the jaxws:client element in you application's
configuration file. This tells the runtime to instantiate a
org.apache.cxf.jaxws.JaxWsClientProxy object with the specified properties. This object is
the proxy that will be injected into the service provider.

At a minimum you need to provide values for the following attributes:

id—Specifies the ID used to identify the client to be injected.

serviceClass—Specifies the SEI of the service on which the proxy makes requests.

Example 28.1, “Configuration for a Proxy to be Injected into a Service Implementation” shows the
configuration for a JAX-WS client endpoint.

Example 28.1. Configuration for a Proxy to be Injected into a Service Implementation

NOTE

In Example 28.1, “Configuration for a Proxy to be Injected into a Service
Implementation” the wsdlLocation attribute instructs the runtime to load the WSDL
from the classpath. If books.wsdl in on the classpath, the runtime will be able to find it.

For more information on configuring a JAX-WS client see Section 15.2, “Configuring Consumer
Endpoints”.

Coding the provider implementation

You inject the configured proxy into a service implementation as a resource using the @Resource as
shown in Example 28.2, “Injecting a Proxy into a Service Implementation” .

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:client id="bookClient"
 serviceClass="org.apache.cxf.demo.BookService"
 wsdlLocation="classpath:books.wsdl"/>
 ...
</beans>

CHAPTER 28. FINDING WSDL AT RUNTIME

239

Example 28.2. Injecting a Proxy into a Service Implementation

The annotation's name property corresponds to the value of the JAX-WS client's id attribute. The
configured proxy is injected into the BookService object declared immediately after the annotation.
You can use this object to make invocations on the proxy's external service.

28.2. USING A JAX-WS CATALOG

Overview

The JAX-WS specification mandates the all implementations support:

a standard catalog facility to be used when resolving any Web service document that is
part of the description of a Web service, specifically WSDL and XML Schema
documents.

This catalog facility uses the XML catalog facility specified by OASIS. All of the JAX-WS APIs and
annotation that take a WSDL URI use the catalog to resolve the WSDL document's location.

This means that you can provide an XML catalog file that rewrites the locations of your WSDL
documents to suite specific deployment environments.

Writing the catalog

JAX-WS catalogs are standard XML catalogs as defined by the OASIS XML Catalogs 1.1 specification.
They allow you to specify mapping:

a document's public identifier and/or a system identifier to a URI.

the URI of a resource to another URI.

Table 28.1, “Common JAX-WS Catalog Elements” lists some common elements used for WSDL location
resolution.

Table 28.1. Common JAX-WS Catalog Elements

package demo.hw.server;

import org.apache.hello_world_soap_http.Greeter;

@javax.jws.WebService(portName = "SoapPort", serviceName =
"SOAPService",
 targetNamespace =
"http://apache.org/hello_world_soap_http",
 endpointInterface =
"org.apache.hello_world_soap_http.Greeter")
public class StoreImpl implements Store {

@Resource(name="bookClient")
private BookService proxy;

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

240

http://www.oasis-open.org/committees/download.php/14041/xml-catalogs.html

Element Description

uri Maps a URI to an alternate URI.

rewriteURI Rewrites the beginning of a URI. For example, this
element allows you to map all URIs that start with
http://cxf.apache.org to URIs that start with
classpath:.

uriSuffix Maps a URI to an alternate URI based on the suffix of
the original URI. For example you could map all URIs
that end in foo.xsd to classpath:foo.xsd.

Packaging the catalog

The JAX-WS specification mandates that the catalog used to resolve WSDL and XML Schema
documents is assembled using all available resources named META-INF/jax-ws-catalog.xml. If
your application is packaged into a single JAR, or WAR, you can place the catalog into a single file.

If your application is packaged as multiple JARs, you can split the catalog into a number of files. Each
catalog file could be modularized to only deal with WSDLs accessed by the code in the specific JARs.

28.3. USING A CONTRACT RESOLVER

Overview

The most involved mechanism for resolving WSDL document locations at runtime is to implement your
own custom contract resolver. This requires that you provide an implementation of the Apache CXF
specific ServiceContractResolver interface. You also need to register your custom resolver with
the bus.

Once properly registered, the custom contract resolver will be used to resolve the location of any
required WSDL and schema documents.

Implementing the contract resolver

A contract resolver is an implementation of the
org.apache.cxf.endpoint.ServiceContractResolver interface. As shown in Example 28.3,
“ServiceContractResolver Interface”, this interface has a single method,
getContractLocation(), that needs to be implemented. getContractLocation() takes the
QName of a service and returns the URI for the service's WSDL contract.

Example 28.3. ServiceContractResolver Interface

public interface ServiceContractResolver
{
 URI getContractLocation(QName qname);
}

CHAPTER 28. FINDING WSDL AT RUNTIME

241

1

2

3

4

The logic used to resolve the WSDL contract's location is application specific. You can add logic that to
resolve contract locations from a UDDI registry, a database, a custom location on a file system, or any
other mechanism you choose.

Registering the contract resolver programmatically

Before the Apache CXF runtime will use your contract resolver, you must register it with a contract
resolver registry. Contract resolver registries implement the
org.apache.cxf.endpoint.ServiceContractResolverRegistry interface. However, you do
not need to implement your own registry. Apache CXF provides a default implementation in the
org.apache.cxf.endpoint.ServiceContractResolverRegistryImpl class.

To register a contract resolver with the default registry you do the following:

1. Get a reference to the default bus object.

2. Get the service contract registry from the bus using the bus' getExtension() method.

3. Create an instance of your contract resolver.

4. Register your contract resolver with the registry using the registry's register() method.

Example 28.4, “Registering a Contract Resolver” shows the code for registering a contract resolver
with the default registry.

Example 28.4. Registering a Contract Resolver

The code in Example 28.4, “Registering a Contract Resolver” does the following:

Gets a bus instance.

Gets the bus' contract resolver registry.

Creates an instance of a contract resolver.

Registers the contract resolver with the registry.

Registering a contract resolver using configuration

You can also implement a contract resolver so that it can be added to a client through configuration.
The contract resolver is implemented in such a way that when the runtime reads the configuration and
instantiates the resolver, the resolver registers itself. Because the runtime handles the initialization,
you can decide at runtime if a client needs to use the contract resolver.

1

2

3
4

BusFactory bf=BusFactory.newInstance();
Bus bus=bf.createBus();

ServiceContractResolverRegistry registry =
bus.getExtension(ServiceContractResolverRegistry);

JarServiceContractResolver resolver = new JarServiceContractResolver();

registry.register(resolver);

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

242

To implement a contract resolver so that it can be added to a client through configuration do the
following:

1. Add an init() method to your contract resolver implementation.

2. Add logic to your init() method that registers the contract resolver with the contract
resolver registry as shown in Example 28.4, “Registering a Contract Resolver” .

3. Decorate the init() method with the @PostConstruct annotation.

Example 28.5, “Service Contract Resolver that can be Registered Using Configuration” shows a
contract resolver implementation that can be added to a client using configuration.

Example 28.5. Service Contract Resolver that can be Registered Using Configuration

To register the contract resolver with a client you need to add a bean element to the client's
configuration. The bean element's class attribute is the name of the class implementing the contract
resolver.

import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import javax.xml.namespace.QName;

import org.apache.cxf.Bus;
import org.apache.cxf.BusFactory;

public class UddiResolver implements ServiceContractResolver
{
 private Bus bus;
 ...

 @PostConstruct
 public void init()
 {
 BusFactory bf=BusFactory.newInstance();
 Bus bus=bf.createBus();
 if (null != bus)
 {
 ServiceContractResolverRegistry resolverRegistry =
bus.getExtension(ServiceContractResolverRegistry.class);
 if (resolverRegistry != null)
 {
 resolverRegistry.register(this);
 }
 }
 }

 public URI getContractLocation(QName serviceName)
 {
 ...
 }
}

CHAPTER 28. FINDING WSDL AT RUNTIME

243

Example 28.6, “Bean Configuring a Contract Resolver” shows a bean for adding a configuration
resolver implemented by the org.apache.cxf.demos.myContractResolver class.

Example 28.6. Bean Configuring a Contract Resolver

Contract resolution order

When a new proxy is created, the runtime uses the contract registry resolver to locate the remote
service's WSDL contract. The contract resolver registry calls each contract resolver's
getContractLocation() method in the order in which the resolvers were registered. It returns the
first URI returned from one of the registered contract resolvers.

If you registered a contract resolver that attempted to resolve the WSDL contract at a well known
shared file system, it would be the only contract resolver used. However, if you subsequently
registered a contract resolver that resolved WSDL locations using a UDDI registry, the registry could
use both resolvers to locate a service's WSDL contract. The registry would first attempt to locate the
contract using the shared file system contract resolver. If that contract resolver failed, the registry
would then attempt to locate it using the UDDI contract resolver.

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
 ...
 <bean id="myResolver" class="org.apache.cxf.demos.myContractResolver"
/>
 ...
</beans>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

244

CHAPTER 29. GENERIC FAULT HANDLING

Abstract

The JAX-WS specification defines two type of faults. One is a generic JAX-WS runtime exception. The
other is a protocol specific class of exceptions that is thrown during message processing.

29.1. RUNTIME FAULTS

Overview

Most of the JAX-WS APIs throw a generic javax.xml.ws.WebServiceException exception.

APIs that throw WebServiceException

Table 29.1, “APIs that Throw WebServiceException” lists some of the JAX-WS APIs that can throw
the generic WebServiceException exception.

Table 29.1. APIs that Throw WebServiceException

API Reason

Binding.setHandlerChain() There is an error in the handler chain configuration.

BindingProvider.getEndpointReference
()

The specified class is not assigned from a
W3CEndpointReference.

Dispatch.invoke() There is an error in the Dispatch instance's
configuration or an error occurred while
communicating with the service.

Dispatch.invokeAsync() There is an error in the Dispatch instance's
configuration.

Dispatch.invokeOneWay() There is an error in the Dispatch instance's
configuration or an error occurred while
communicating with the service.

LogicalMessage.getPayload() An error occurred when using a supplied
JAXBContext to unmarshall the payload. The
cause field of the WebServiceException
contains the original JAXBException.

LogicalMessage.setPayload() An error occurred when setting the payload of the
message. If the exception is thrown when using a
JAXBContext, the cause field of the
WebServiceException contains the original
JAXBException.

CHAPTER 29. GENERIC FAULT HANDLING

245

WebServiceContext.getEndpointReferen
ce()

The specified class is not assigned from a
W3CEndpointReference.

API Reason

29.2. PROTOCOL FAULTS

Overview

Protocol exceptions are thrown when an error occurs during the processing of a request. All
synchronous remote invocations can throw a protocol exception. The underlying cause occurs either
in the consumer's message handling chain or in the service provider.

The JAX-WS specification defines a generic protocol exception. It also specifies a SOAP-specific
protocol exception and an HTTP-specific protocol exception.

Types of protocol exceptions

The JAX-WS specification defines three types of protocol exception. Which exception you catch
depends on the transport and binding used by your application.

Table 29.2, “Types of Generic Protocol Exceptions” describes the three types of protocol exception
and when they are thrown.

Table 29.2. Types of Generic Protocol Exceptions

Exception Class When Thrown

javax.xml.ws.ProtocolException This exception is the generic protocol exception. It
can be caught regardless of the protocol in use. It
can be cast into a specific fault type if you are using
the SOAP binding or the HTTP binding. When using
the XML binding in combination with the HTTP or
JMS transports, the generic protocol exception
cannot be cast into a more specific fault type.

javax.xml.ws.soap.SOAPFaultException This exception is thrown by remote invocations
when using the SOAP binding. For more information
see the section called “Using the SOAP protocol
exception”.

javax.xml.ws.http.HTTPException This exception is thrown when using the Apache CXF
HTTP binding to develop RESTful Web services. For
more information see Part VI, “Developing RESTful
Web Services”.

Using the SOAP protocol exception

The SOAPFaultException exception wraps a SOAP fault. The underlying SOAP fault is stored in the
fault field as a javax.xml.soap.SOAPFault object.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

246

If a service implementation needs to throw an exception that does not fit any of the custom exceptions
created for the application, it can wrap the fault in a SOAPFaultException using the exceptions
creator and throw it back to the consumer. Example 29.1, “Throwing a SOAP Protocol Exception”
shows code for creating and throwing a SOAPFaultException if the method is passed an invalid
parameter.

Example 29.1. Throwing a SOAP Protocol Exception

When a consumer catches a SOAPFaultException exception they can retrieve the underlying cause
of the exception by examining the wrapped SOAPFault exception. As shown in Example 29.2, “Getting
the Fault from a SOAP Protocol Exception”, the SOAPFault exception is retrieved using the
SOAPFaultException exception's getFault() method.

Example 29.2. Getting the Fault from a SOAP Protocol Exception

public Quote getQuote(String ticker)
{
 ...
 if(tickers.length()<3)
 {
 SOAPFault fault = SOAPFactory.newInstance().createFault();
 fault.setFaultString("Ticker too short");
 throw new SOAPFaultException(fault);
 }
 ...
}

...
try
{
 proxy.getQuote(ticker);
}
catch (SOAPFaultException sfe)
{
 SOAPFault fault = sfe.getFault();
 ...
}

CHAPTER 29. GENERIC FAULT HANDLING

247

CHAPTER 30. PUBLISHING A SERVICE

Abstract

When you want to deploy a JAX-WS service as a standalone Java application or in an OSGi container
without Spring-DM, you must to implement the code that publishes the service provider.

Apache CXF provides a number of ways to publish a service as a service provider. How you publish a
service depends on the deployment environment you are using. Many of the containers supported by
Apache CXF do not require writing logic for publishing endpoints. There are two exceptions:

deploying a server as a standalone Java application

deploying a server into an OSGi container without Spring-DM

For detailed information in deploying applications into the supported containers see Part IV,
“Configuring Web Service Endpoints”.

30.1. APIS USED TO PUBLISH A SERVICE

Overview

The javax.xml.ws.Enddpoint class does the work of publishing a JAX-WS service provider. To
publishing an endpoint do the following:

1. Create an Endpoint object for your service provider.

2. Publish the endpoint.

3. Stop the endpoint when application shuts down.

The Endpoint class provides methods for creating and publishing service providers. It also provides a
method that can create and publish a service provider in a single method call.

Instantiating an service provider

A service provider is instantiated using an Endpoint object. You instantiate an Endpoint object for
your service provider using one of the following methods:

static Endpoint create(Object implementor);
This create() method returns an Endpoint for the specified service implementation. The
Endpoint object is created using the information provided by the implementation class'
javax.xml.ws.BindingType annotation, if it is present. If the annotation is not present, the
Endpoint uses a default SOAP 1.1/HTTP binding.

static Endpoint create(URI bindingID,
 Object implementor);
This create() method returns an Endpoint object for the specified implementation object
using the specified binding. This method overrides the binding information provided by the
javax.xml.ws.BindingType annotation, if it is present. If the bindingID cannot be
resolved, or it is null, the binding specified in the javax.xml.ws.BindingType is used to
create the Endpoint. If neither the bindingID or the javax.xml.ws.BindingType can be
used, the Endpoint is created using a default SOAP 1.1/HTTP binding.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

248

static Endpoint publish(String address,
 Object implementor);
The publish() method creates an Endpoint object for the specified implementation, and
publishes it. The binding used for the Endpoint object is determined by the URL scheme of
the provided address. The list of bindings available to the implementation are scanned for a
binding that supports the URL scheme. If one is found the Endpoint object is created and
published. If one is not found, the method fails.

TIP

Using publish() is the same as invoking one of the create() methods, and then invoking
the publish() method used in publish to an address .

IMPORTANT

The implementation object passed to any of the Endpoint creation methods must
either be an instance of a class annotated with javax.jws.WebService and meeting
the requirements for being an SEI implementation or it must be an instance of a class
annotated with javax.xml.ws.WebServiceProvider and implementing the
Provider interface.

Publishing a service provider

You can publish a service provider using either of the following Endpoint methods:

void publish(String address);
This publish() method publishes the service provider at the address specified.

IMPORTANT

The address's URL scheme must be compatible with one of the service
provider's bindings.

void publish(Object serverContext);
This publish() method publishes the service provider based on the information provided in
the specified server context. The server context must define an address for the endpoint, and
the context must also be compatible with one of the service provider's available bindings.

Stopping a published service provider

When the service provider is no longer needed you should stop it using its stop() method. The
stop() method, shown in Example 30.1, “Method for Stopping a Published Endpoint” , shuts down the
endpoint and cleans up any resources it is using.

Example 30.1. Method for Stopping a Published Endpoint

void stop();

IMPORTANT

Once the endpoint is stopped it cannot be republished.

CHAPTER 30. PUBLISHING A SERVICE

249

1

2

30.2. PUBLISHING A SERVICE IN A PLAIN JAVA APPLICATION

Overview

When you want to deploy your application as a plain java application you need to implement the logic
for publishing your endpoints in the application's main() method. Apache CXF provides you two
options for writing your application's main() method.

use the main() method generated by the wsdl2java tool

write a custom main() method that publishes the endpoints

Generating a Server Mainline

The code generators -server flag makes the tool generate a simple server mainline. The generated
server mainline, as shown in Example 30.2, “Generated Server Mainline” , publishes one service
provider for each port element in the specified WSDL contract.

For more information see cxf-codegen-plugin.

Example 30.2, “Generated Server Mainline” shows a generated server mainline.

Example 30.2. Generated Server Mainline

The code in Example 30.2, “Generated Server Mainline” does the following:

Instantiates a copy of the service implementation object.

1
2

3

package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer {

 protected GreeterServer() throws Exception {
 System.out.println("Starting Server");

 Object implementor = new GreeterImpl();
 String address =
"http://localhost:9000/SoapContext/SoapPort";

 Endpoint.publish(address, implementor);
 }

 public static void main(String args[]) throws Exception {
 new GreeterServer();
 System.out.println("Server ready...");

 Thread.sleep(5 * 60 * 1000);
 System.out.println("Server exiting");
 System.exit(0);
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

250

3

1

Creates the address for the endpoint based on the contents of the address child of the
wsdl:port element in the endpoint's contract.

Publishes the endpoint.

Writing a Server Mainline

If you used the Java first development model or you do not want to use the generated server mainline
you can write your own. To write your server mainline you must do the following:

1. Instantiate an javax.xml.ws.Endpoint object for the service provider.

2. Create an optional server context to use when publishing the service provider.

3. Publish the service provider using one of the publish() methods.

4. Stop the service provider when the application is ready to exit.

Example 30.3, “Custom Server Mainline” shows the code for publishing a service provider.

Example 30.3. Custom Server Mainline

The code in Example 30.3, “Custom Server Mainline” does the following:

Instantiates a copy of the service's implementation object.

1
2

3

4

5

package org.apache.hello_world_soap_http;

import javax.xml.ws.Endpoint;

public class GreeterServer
{
 protected GreeterServer() throws Exception
 {
 }

 public static void main(String args[]) throws Exception
 {

 GreeterImpl impl = new GreeterImpl();
 Endpoint endpt.create(impl);

 endpt.publish("http://localhost:9000/SoapContext/SoapPort");

 boolean done = false;
 while(!done)
 {

 ...
 }

 endpt.stop();
 System.exit(0);

 }
}

CHAPTER 30. PUBLISHING A SERVICE

251

2

3

4

5

Creates an unpublished Endpoint for the service implementation.

Publishes the service provider at http://localhost:9000/SoapContext/SoapPort.

Loops until the server should be shutdown.

Stops the published endpoint.

30.3. PUBLISHING A SERVICE IN AN OSGI CONTAINER

Overview

When you develop an application that will be deployed into an OSGi container, you need to coordinate
the publishing and stopping of your endpoints with the life-cycle of the bundle in which it is packaged.
You want your endpoints published when the bundle is started and you want the endpoints stopped
when the bundle is stopped.

You tie your endpoints life-cycle to the bundle's life-cycle by implementing an OSGi bundle activator.
A bundle activator is used by the OSGi container to create the resource for a bundle when it is started.
The container also uses the bundle activator to clean up the bundles resources when it is stopped.

The bundle activator interface

You create a bundle activator for your application by implementing the
org.osgi.framework.BundleActivator interface. The BundleActivator interface, shown in
Example 30.4, “Bundle Activator Interface” , it has two methods that need to be implemented.

Example 30.4. Bundle Activator Interface

The start() method is called by the container when it starts the bundle. This is where you instantiate
and publish the endpoints.

The stop() method is called by the container when it stops the bundle. This is where you would stop
the endpoints.

Implementing the start method

The bundle activator's start method is where you publish your endpoints. To publish your endpoints the
start method must do the following:

1. Instantiate an javax.xml.ws.Endpoint object for the service provider.

2. Create an optional server context to use when publishing the service provider.

interface BundleActivator
{
 public void start(BundleContext context)
 throws java.lang.Exception;

 public void stop(BundleContext context)
 throws java.lang.Exception;
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

252

1

2

3

3. Publish the service provider using one of the publish() methods.

Example 30.5, “Bundle Activator Start Method for Publishing an Endpoint” shows code for publishing a
service provider.

Example 30.5. Bundle Activator Start Method for Publishing an Endpoint

The code in Example 30.5, “Bundle Activator Start Method for Publishing an Endpoint” does the
following:

Instantiates a copy of the service's implementation object.

Creates an unpublished Endpoint for the service implementation.

Publish the service provider at http://localhost:9000/SoapContext/SoapPort.

Implementing the stop method

The bundle activator's stop method is where you clean up the resources used by your application. Its
implementation should include logic for stopping all of the endpoint's published by the application.

Example 30.6, “Bundle Activator Stop Method for Stopping an Endpoint” shows a stop method for
stopping a published endpoint.

Example 30.6. Bundle Activator Stop Method for Stopping an Endpoint

1
2

3

package com.widgetvendor.osgi;

import javax.xml.ws.Endpoint;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

public class widgetActivator implements BundleActivator
{
 private Endpoint endpt;
 ...

 public void start(BundleContext context)
 {

 WidgetOrderImpl impl = new WidgetOrderImpl();
 endpt = Endpoint.create(impl);

 endpt.publish("http://localhost:9000/SoapContext/SoapPort");
 }

 ...

}

package com.widgetvendor.osgi;

import javax.xml.ws.Endpoint;
import org.osgi.framework.BundleActivator;
import org.osgi.framework.BundleContext;

CHAPTER 30. PUBLISHING A SERVICE

253

Informing the container

You must add inform the container that the application's bundle includes a bundle activator. You do
this by adding the Bundle-Activator property to the bundle's manifest. This property tells the container
which class in the bundle to use when activating the bundle. Its value is the fully qualified name of the
class implementing the bundle activator.

Example 30.7, “Bundle Activator Manifest Entry” shows a manifest entry for a bundle whose activator
is implemented by the class com.widgetvendor.osgi.widgetActivator.

Example 30.7. Bundle Activator Manifest Entry

public class widgetActivator implements BundleActivator
{
 private Endpoint endpt;
 ...

 public void stop(BundleContext context)
 {
 endpt.stop();
 }

 ...

}

Bundle-Activator: com.widgetvendor.osgi.widgetActivator

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

254

CHAPTER 31. BASIC DATA BINDING CONCEPTS

Abstract

There are a number of general topics that apply to how Apache CXF handles type mapping.

31.1. INCLUDING AND IMPORTING SCHEMA DEFINITIONS

Overview

Apache CXF supports the including and importing of schema definitions, using the <include/> and
<import/> schema tags. These tags enable you to insert definitions from external files or resources
into the scope of a schema element. The essential difference between including and importing is:

Including brings in definitions that belong to the same target namespace as the enclosing
schema element.

Importing brings in definitions that belong to a different target namespace from the enclosing
schema element.

xsd:include syntax

The include directive has the following syntax:

The referenced schema, given by anyURI, must either belong to the same target namespace as the
enclosing schema, or not belong to any target namespace at all. If the referenced schema does not
belong to any target namespace, it is automatically adopted into the enclosing schema’s namespace
when it is included.

Example 31.1, “Example of a Schema that Includes Another Schema” shows an example of an XML
Schema document that includes another XML Schema document.

Example 31.1. Example of a Schema that Includes Another Schema

<include schemaLocation="anyURI" />

<definitions
targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns:tns="http://schemas.redhat.com/tests/schema_parser"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema
targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <include schemaLocation="included.xsd"/>
 <complexType name="IncludingSequence">
 <sequence>
 <element name="includedSeq" type="tns:IncludedSequence"/>
 </sequence>
 </complexType>
 </schema>

CHAPTER 31. BASIC DATA BINDING CONCEPTS

255

Example 31.2, “Example of an Included Schema” shows the contents of the included schema file.

Example 31.2. Example of an Included Schema

xsd:import syntax

The import directive has the following syntax:

The imported definitions must belong to the namespaceAnyURI target namespace. If namespaceAnyURI
is blank or remains unspecified, the imported schema definitions are unqualified.

Example 31.3, “Example of a Schema that Includes Another Schema” shows an example of an XML
Schema that imports another XML Schema.

Example 31.3. Example of a Schema that Includes Another Schema

 </types>
 ...
</definitions>

<schema targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- Included type definitions -->
 <complexType name="IncludedSequence">
 <sequence>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 </complexType>
</schema>

<import namespace="namespaceAnyURI"
 schemaLocation="schemaAnyURI" />

<definitions
targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns:tns="http://schemas.redhat.com/tests/schema_parser"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <types>
 <schema
targetNamespace="http://schemas.redhat.com/tests/schema_parser"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import
namespace="http://schemas.redhat.com/tests/imported_types"
 schemaLocation="included.xsd"/>
 <complexType name="IncludingSequence">
 <sequence>
 <element name="includedSeq" type="tns:IncludedSequence"/>
 </sequence>
 </complexType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

256

Example 31.4, “Example of an Included Schema” shows the contents of the imported schema file.

Example 31.4. Example of an Included Schema

Using non-referenced schema documents

Using types defined in a schema document that is not referenced in the service's WSDL document is a
three step process:

1. Convert the schema document to a WSDL document using the xsd2wsdl tool.

2. Generate Java for the types using the wsdl2java tool on the generated WSDL document.

IMPORTANT

You will get a warning from the wsdl2java tool stating that the WSDL
document does not define any services. You can ignore this warning.

3. Add the generated classes to your classpath.

31.2. XML NAMESPACE MAPPING

Overview

XML Schema type, group, and element definitions are scoped using namespaces. The namespaces
prevent possible naming clashes between entities that use the same name. Java packages serve a
similar purpose. Therefore, Apache CXF maps the target namespace of a schema document into a
package containing the classes necessary to implement the structures defined in the schema
document.

Package naming

The name of the generated package is derived from a schema's target namespace using the following
algorithm:

 </schema>
 </types>
 ...
</definitions>

<schema targetNamespace="http://schemas.redhat.com/tests/imported_types"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <!-- Included type definitions -->
 <complexType name="IncludedSequence">
 <sequence>
 <element name="varInt" type="int"/>
 <element name="varString" type="string"/>
 </sequence>
 </complexType>
</schema>

CHAPTER 31. BASIC DATA BINDING CONCEPTS

257

1. The URI scheme, if present, is stripped.

NOTE

Apache CXF will only strip the http:, https:, and urn: schemes.

For example, the namespace http:\\www.widgetvendor.com\types\widgetTypes.xsd
becomes \\widgetvendor.com\types\widgetTypes.xsd.

2. The trailing file type identifier, if present, is stripped.

For example, \\www.widgetvendor.com\types\widgetTypes.xsd becomes
\\widgetvendor.com\types\widgetTypes.

3. The resulting string is broken into a list of strings using / and : as separators.

So, \\www.widgetvendor.com\types\widgetTypes becomes the list
{"www.widegetvendor.com", "types", "widgetTypes"}.

4. If the first string in the list is an internet domain name, it is decomposed as follows:

a. The leading www. is stripped.

b. The remaining string is split into its component parts using the . as the separator.

c. The order of the list is reversed.

So, {"www.widegetvendor.com", "types", "widgetTypes"} becomes {"com",
"widegetvendor", "types", "widgetTypes"}

NOTE

Internet domain names end in one of the following: .com, .net, .edu, .org,
.gov, or in one of the two-letter country codes.

5. The strings are converted into all lower case.

So, {"com", "widegetvendor", "types", "widgetTypes"} becomes {"com",
"widegetvendor", "types", "widgettypes"}.

6. The strings are normalized into valid Java package name components as follows:

a. If the strings contain any special characters, the special characters are converted to an
underscore(_).

b. If any of the strings are a Java keyword, the keyword is prefixed with an underscore(_).

c. If any of the strings begin with a numeral, the string is prefixed with an underscore(_).

7. The strings are concatenated using . as a separator.

So, {"com", "widegetvendor", "types", "widgettypes"} becomes the package
name com.widgetvendor.types.widgettypes.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

258

The XML Schema constructs defined in the namespace
http:\\www.widgetvendor.com\types\widgetTypes.xsd are mapped to the Java package
com.widgetvendor.types.widgettypes.

Package contents

A JAXB generated package contains the following:

A class implementing each complex type defined in the schema

For more information on complex type mapping see Chapter 34, Using Complex Types.

An enum type for any simple types defined using the enumeration facet

For more information on how enumerations are mapped see Section 33.3, “Enumerations”.

A public ObjectFactory class that contains methods for instantiating objects from the
schema

For more information on the ObjectFactory class see Section 31.3, “The Object Factory” .

A package-info.java file that provides metadata about the classes in the package

31.3. THE OBJECT FACTORY

Overview

JAXB uses an object factory to provide a mechanism for instantiating instances of JAXB generated
constructs. The object factory contains methods for instantiating all of the XML schema defined
constructs in the package's scope. The only exception is that enumerations do not get a creation
method in the object factory.

Complex type factory methods

For each Java class generated to implement an XML schema complex type, the object factory contains
a method for creating an instance of the class. This method takes the form:

For example, if your schema contained a complex type named widgetType, Apache CXF generates a
class called WidgetType to implement it. Example 31.5, “Complex Type Object Factory Entry” shows
the generated creation method in the object factory.

Example 31.5. Complex Type Object Factory Entry

typeName createtypeName();

public class ObjectFactory
{
 ...
 WidgetType createWidgetType()
 {
 return new WidgetType();

CHAPTER 31. BASIC DATA BINDING CONCEPTS

259

Element factory methods

For elements that are declared in the schema's global scope, Apache CXF inserts a factory method into
the object factory. As discussed in Chapter 32, Using XML Elements, XML Schema elements are mapped
to JAXBElement<T> objects. The creation method takes the form:

For example if you have an element named comment of type xsd:string, Apache CXF generates the
object factory method shown in Example 31.6, “Element Object Factory Entry”

Example 31.6. Element Object Factory Entry

31.4. ADDING CLASSES TO THE RUNTIME MARSHALLER

Overview

When the Apache CXF runtime reads and writes XML data it uses a map that associates the XML
Schema types with their representative Java types. By default, the map contains all of the types
defined in the target namespace of the WSDL contract's schema element. It also contains any types
that are generated from the namespaces of any schemas that are imported into the WSDL contract.

The addition of types from namespaces other than the schema namespace used by an application's
schema element is accomplished using the @XmlSeeAlso annotation. If your application needs to
work with types that are generated outside the scope of your application's WSDL document, you can
edit the @XmlSeeAlso annotation to add them to the JAXB map.

Using the @XmlSeeAlso annotation

The @XmlSeeAlso annotation can be added to the SEI of your service. It contains a comma separated
list of classes to include in the JAXB context. Example 31.7, “Syntax for Adding Classes to the JAXB
Context” shows the syntax for using the @XmlSeeAlso annotation.

Example 31.7. Syntax for Adding Classes to the JAXB Context

 }
 ...
}

public JAXBElement<elementType> createelementName(elementType value);

public class ObjectFactory
{
 ...
 @XmlElementDecl(namespace = "...", name = "comment")
 public JAXBElement<String> createComment(String value) {
 return new JAXBElement<String>(_Comment_QNAME, String.class,
null, value);
 }
 ...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

260

TIP

In cases where you have access to the JAXB generated classes, it is more efficient to use the
ObjectFactory classes generated to support the needed types. Including the ObjectFactory class
includes all of the classes that are known to the object factory.

Example

Example 31.8, “Adding Classes to the JAXB Context” shows an SEI annotated with @XmlSeeAlso.

Example 31.8. Adding Classes to the JAXB Context

import javax.xml.bind.annotation.XmlSeeAlso;
@WebService()
@XmlSeeAlso({Class1.class, Class2.class, ..., ClassN.class})
 public class GeneratedSEI {
 ...
 }

...
import javax.xml.bind.annotation.XmlSeeAlso;
...
@WebService()
@XmlSeeAlso({org.apache.schemas.types.test.ObjectFactory.class,org.apach
e.schemas.tests.group_test.ObjectFactory.class})
 public interface Foo {
 ...
 }

CHAPTER 31. BASIC DATA BINDING CONCEPTS

261

CHAPTER 32. USING XML ELEMENTS

Abstract

XML Schema elements are used to define an instance of an element in an XML document. Elements are
defined either in the global scope of an XML Schema document, or they are defined as a member of a
complex type. When they are defined in the global scope, Apache CXF maps them to a JAXB element
class that makes manipulating them easier.

OVERVIEW

An element instance in an XML document is defined by an XML Schema element element in the
global scope of an XML Schema document To make it easier for Java developers to work with
elements, Apache CXF maps globally scoped elements to either a special JAXB element class or to a
Java class that is generated to match its content type.

How the element is mapped depends on if the element is defined using a named type referenced by the
type attribute or if the element is defined using an in-line type definition. Elements defined with in-line
type definitions are mapped to Java classes.

TIP

It is recommended that elements are defined using a named type because in-line types are not
reusable by other elements in the schema.

XML SCHEMA MAPPING

In XML Schema elements are defined using element elements. element elements has one required
attribute. The name specifies the name of the element as it appears in an XML document.

In addition to the name attribute element elements have the optional attributes listed in Table 32.1,
“Attributes Used to Define an Element”.

Table 32.1. Attributes Used to Define an Element

Attribute Description

type Specifies the type of the element. The type can be
any XML Schema primitive type or any named
complex type defined in the contract. If this attribute
is not specified, you will need to include an in-line
type definition.

nillable Specifies if an element can be left out of a document
entirely. If nillable is set to true, the element
can be omitted from any document generated using
the schema.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

262

abstract Specifies if an element can be used in an instance
document. true indicates that the element cannot
appear in the instance document. Instead, another
element whose substitutionGroup attribute
contains the QName of this element must appear in
this element's place. For information on how this
attribute effects code generation see the section
called “Java mapping of abstract elements”.

substitutionGroup Specifies the name of an element that can be
substituted with this element. For more information
on using type substitution see Chapter 36, Element
Substitution.

default Specifies a default value for an element. For
information on how this attribute effects code
generation see the section called “Java mapping of
elements with a default value”.

fixed Specifies a fixed value for the element.

Attribute Description

Example 32.1, “Simple XML Schema Element Definition” shows a simple element definition.

Example 32.1. Simple XML Schema Element Definition

An element can also define its own type using an in-line type definition. In-line types are specified
using either a complexType element or a simpleType element. Once you specify whether the type
of data is complex or simple, you can define any type of data needed using the tools available for each
type of data.

Example 32.2, “XML Schema Element Definition with an In-Line Type” shows an element definition
with an in-line type definition.

Example 32.2. XML Schema Element Definition with an In-Line Type

<element name="joeFred" type="xsd:string" />

<element name="skate">
 <complexType>
 <sequence>
 <element name="numWheels" type="xsd:int" />
 <element name="brand" type="xsd:string" />
 </sequence>
 </complexType>
</element>

CHAPTER 32. USING XML ELEMENTS

263

JAVA MAPPING OF ELEMENTS WITH A NAMED TYPE

By default, globally defined elements are mapped to JAXBElement<T> objects where the template
class is determined by the value of the element element's type attribute. For primitive types, the
template class is derived using the wrapper class mapping described in the section called “Wrapper
classes”. For complex types, the Java class generated to support the complex type is used as the
template class.

To support the mapping and to relieve the developer of unnecessary worry about an element's QName,
an object factory method is generated for each globally defined element, as shown in Example 32.3,
“Object Factory Method for a Globally Scoped Element”.

Example 32.3. Object Factory Method for a Globally Scoped Element

For example, the element defined in Example 32.1, “Simple XML Schema Element Definition” results in
the object factory method shown in Example 32.4, “Object Factory for a Simple Element” .

Example 32.4. Object Factory for a Simple Element

Example 32.5, “Using a Globally Scoped Element” shows an example of using a globally scoped element
in Java.

Example 32.5. Using a Globally Scoped Element

public class ObjectFactory {

 private final static QName _name_QNAME = new
QName("targetNamespace", "localName");

 ...

 @XmlElementDecl(namespace = "targetNamespace", name = "localName")
 public JAXBElement<type> createname(type value);

}

public class ObjectFactory {

 private final static QName _JoeFred_QNAME = new QName("...",
"joeFred");

 ...

 @XmlElementDecl(namespace = "...", name = "joeFred")
 public JAXBElement<String> createJoeFred(String value);

}

JAXBElement<String> element = createJoeFred("Green");
String color = element.getValue();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

264

USING ELEMENTS WITH NAMED TYPES IN WSDL

If a globally scoped element is used to define a message part, the generated Java parameter is not an
instance of JAXBElement<T>. Instead it is mapped to a regular Java type or class.

Given the WSDL fragment shown in Example 32.6, “WSDL Using an Element as a Message Part” , the
resulting method has a parameter of type String.

Example 32.6. WSDL Using an Element as a Message Part

Example 32.7, “Java Method Using a Global Element as a Part” shows the generated method signature
for the sayHi operation.

Example 32.7. Java Method Using a Global Element as a Part

String sayHi(String in);

<?xml version="1.0" encoding=";UTF-8"?>
<wsdl:definitions name="HelloWorld"

targetNamespace="http://apache.org/hello_world_soap_http"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://apache.org/hello_world_soap_http"

xmlns:x1="http://apache.org/hello_world_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <schema
targetNamespace="http://apache.org/hello_world_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"><element name="sayHi">
 <element name="sayHi" type="string"/>
 <element name="sayHiResponse" type="string"/>
 </schema>
 </wsdl:types>

 <wsdl:message name="sayHiRequest">
 <wsdl:part element="x1:sayHi" name="in"/>
 </wsdl:message>
 <wsdl:message name="sayHiResponse">
 <wsdl:part element="x1:sayHiResponse" name="out"/>
 </wsdl:message>

 <wsdl:portType name="Greeter">
 <wsdl:operation name="sayHi">
 <wsdl:input message="tns:sayHiRequest" name="sayHiRequest"/>
 <wsdl:output message="tns:sayHiResponse" name="sayHiResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 ...
</wsdl:definitions>

CHAPTER 32. USING XML ELEMENTS

265

JAVA MAPPING OF ELEMENTS WITH AN IN-LINE TYPE

When an element is defined using an in-line type, it is mapped to Java following the same rules used for
mapping other types to Java. The rules for simple types are described in Chapter 33, Using Simple
Types. The rules for complex types are described in Chapter 34, Using Complex Types.

When a Java class is generated for an element with an in-line type definition, the generated class is
decorated with the @XmlRootElement annotation. The @XmlRootElement annotation has two useful
properties: name and namespace. These attributes are described in Table 32.2, “Properties for the
@XmlRootElement Annotation”.

Table 32.2. Properties for the @XmlRootElement Annotation

Property Description

name Specifies the value of the XML Schema element
element's name attribute.

namespace Specifies the namespace in which the element is
defined. If this element is defined in the target
namespace, the property is not specified.

The @XmlRootElement annotation is not used if the element meets one or more of the following
conditions:

The element's nillable attribute is set to true

The element is the head element of a substitution group

For more information on substitution groups see Chapter 36, Element Substitution.

JAVA MAPPING OF ABSTRACT ELEMENTS

When the element's abstract attribute is set to true the object factory method for instantiating
instances of the type is not generated. If the element is defined using an in-line type, the Java class
supporting the in-line type is generated.

JAVA MAPPING OF ELEMENTS WITH A DEFAULT VALUE

When the element's default attribute is used the defaultValue property is added to the generated
@XmlElementDecl annotation. For example, the element defined in Example 32.8, “XML Schema
Element with a Default Value” results in the object factory method shown in Example 32.9, “Object
Factory Method for an Element with a Default Value”.

Example 32.8. XML Schema Element with a Default Value

Example 32.9. Object Factory Method for an Element with a Default Value

<element name="size" type="xsd:int" default="7"/>

@XmlElementDecl(namespace = "...", name = "size", defaultValue = "7")

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

266

 public JAXBElement<Integer> createUnionJoe(Integer value) {
 return new JAXBElement<Integer>(_Size_QNAME, Integer.class,
null, value);
 }

CHAPTER 32. USING XML ELEMENTS

267

CHAPTER 33. USING SIMPLE TYPES

Abstract

XML Schema simple types are either XML Schema primitive types like xsd:int, or are defined using the
simpleType element. They are used to specify elements that do not contain any children or
attributes. They are generally mapped to native Java constructs and do not require the generation of
special classes to implement them. Enumerated simple types do not result in generated code because
they are mapped to Java enum types.

33.1. PRIMITIVE TYPES

Overview

When a message part is defined using one of the XML Schema primitive types, the generated
parameter's type is mapped to a corresponding Java native type. The same pattern is used when
mapping elements that are defined within the scope of a complex type. The resulting field is of the
corresponding Java native type.

Mappings

Table 33.1, “XML Schema Primitive Type to Java Native Type Mapping” lists the mapping between XML
Schema primitive types and Java native types.

Table 33.1. XML Schema Primitive Type to Java Native Type Mapping

XML Schema Type Java Type

xsd:string String

xsd:integer BigInteger

xsd:int int

xsd:long long

xsd:short short

xsd:decimal BigDecimal

xsd:float float

xsd:double double

xsd:boolean boolean

xsd:byte byte

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

268

xsd:QName QName

xsd:dateTime XMLGregorianCalendar

xsd:base64Binary byte[]

xsd:hexBinary byte[]

xsd:unsignedInt long

xsd:unsignedShort int

xsd:unsignedByte short

xsd:time XMLGregorianCalendar

xsd:date XMLGregorianCalendar

xsd:g XMLGregorianCalendar

xsd:anySimpleType [a] Object

xsd:anySimpleType [b] String

xsd:duration Duration

xsd:NOTATION QName

[a] For elements of this type.

[b] For attributes of this type.

XML Schema Type Java Type

Wrapper classes

Mapping XML Schema primitive types to Java primitive types does not work for all possible XML
Schema constructs. Several cases require that an XML Schema primitive type is mapped to the Java
primitive type's corresponding wrapper type. These cases include:

An element element with its nillable attribute set to true as shown:

An element element with its minOccurs attribute set to 0 and its maxOccurs attribute set to
1, or its maxOccurs attribute not specified, as shown :

<element name="finned" type="xsd:boolean"
 nillable="true" />

CHAPTER 33. USING SIMPLE TYPES

269

An attribute element with its use attribute set to optional, or not specified, and having
neither its default attribute nor its fixed attribute specified, as shown:

Table 33.2, “Primitive Schema Type to Java Wrapper Class Mapping” shows how XML Schema
primitive types are mapped into Java wrapper classes in these cases.

Table 33.2. Primitive Schema Type to Java Wrapper Class Mapping

Schema Type Java Type

xsd:int java.lang.Integer

xsd:long java.lang.Long

xsd:short java.lang.Short

xsd:float java.lang.Float

xsd:double java.lang.Double

xsd:boolean java.lang.Boolean

xsd:byte java.lang.Byte

xsd:unsignedByte java.lang.Short

xsd:unsignedShort java.lang.Integer

xsd:unsignedInt java.lang.Long

xsd:unsignedLong java.math.BigInteger

xsd:duration java.lang.String

33.2. SIMPLE TYPES DEFINED BY RESTRICTION

Overview

<element name="plane" type="xsd:string" minOccurs="0" />

<element name="date">
 <complexType>
 <sequence/>
 <attribute name="calType" type="xsd:string"
 use="optional" />
 </complexType>
</element>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

270

XML Schema allows you to create simple types by deriving a new type from another primitive type or
simple type. Simple types are described using a simpleType element.

The new types are described by restricting the base type with one or more facets. These facets limit
the possible valid values that can be stored in the new type. For example, you could define a simple
type, SSN, which is a string of exactly 9 characters.

Each of the primitive XML Schema types has their own set of optional facets.

Procedure

To define your own simple type do the following:

1. Determine the base type for your new simple type.

2. Determine what restrictions define the new type based on the available facets for the chosen
base type.

3. Using the syntax shown in this section, enter the appropriate simpleType element into the
types section of your contract.

Defining a simple type in XML Schema

Example 33.1, “Simple type syntax” shows the syntax for describing a simple type.

Example 33.1. Simple type syntax

The type description is enclosed in a simpleType element and identified by the value of the name
attribute. The base type from which the new simple type is being defined is specified by the base
attribute of the xsd:restriction element. Each facet element is specified within the restriction
element. The available facets and their valid settings depend on the base type. For example, xsd:string
has a number of facets including:

length

minLength

maxLength

pattern

whitespace

Example 33.2, “Postal Code Simple Type ” shows the definition for a simple type that represents the
two-letter postal code used for US states. It can only contain two, uppercase letters. TX is a valid value,
but tx or tX are not valid values.

<simpleType name="typeName">
 <restriction base="baseType">
 <facet value="value" />
 <facet value="value" />
 ...
 </restriction>
</simpleType>

CHAPTER 33. USING SIMPLE TYPES

271

Example 33.2. Postal Code Simple Type

Mapping to Java

Apache CXF maps user-defined simple types to the Java type of the simple type’s base type. So, any
message using the simple type postalCode, shown in Example 33.2, “Postal Code Simple Type ” , is
mapped to a String because the base type of postalCode is xsd:string. For example, the WSDL
fragment shown in Example 33.3, “Credit Request with Simple Types” results in a Java method,
state(), that takes a parameter, postalCode, of String.

Example 33.3. Credit Request with Simple Types

Enforcing facets

By default, Apache CXF does not enforce any of the facets that are used to restrict a simple type.
However, you can configure Apache CXF endpoints to enforce the facets by enabling schema
validation.

To configure Apache CXF endpoints to use schema validation set the schema-validation-enabled
property to true. Example 33.4, “Service Provider Configured to Use Schema Validation” shows the
configuration for a service provider that uses schema validation

Example 33.4. Service Provider Configured to Use Schema Validation

<xsd:simpleType name="postalCode">
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="[A-Z]{2}" />
 </xsd:restriction>
</xsd:simpleType>

<message name="stateRequest">
 <part name="postalCode" type="postalCode" />
</message>
...
<portType name="postalSupport">
 <operation name="state">
 <input message="tns:stateRequest" name="stateRec" />
 <output message="tns:stateResponse" name="credResp" />
 </operation>
</portType>

<jaxws:endpoint name="{http://apache.org/hello_world_soap_http}SoapPort"
 wsdlLocation="wsdl/hello_world.wsdl"
 createdFromAPI="true">
 <jaxws:properties>
 <entry key="schema-validation-enabled" value="true" />
 </jaxws:properties>
</jaxws:endpoint>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

272

For more information on configuring Apache CXF see Part IV, “Configuring Web Service Endpoints” .

33.3. ENUMERATIONS

Overview

In XML Schema, enumerated types are simple types that are defined using the xsd:enumeration
facet. Unlike atomic simple types, they are mapped to Java enums.

Defining an enumerated type in XML Schema

Enumerations are a simple type using the xsd:enumeration facet. Each xsd:enumeration facet
defines one possible value for the enumerated type.

Example 33.5, “XML Schema Defined Enumeration” shows the definition for an enumerated type. It has
the following possible values:

big

large

mungo

gargantuan

Example 33.5. XML Schema Defined Enumeration

Mapping to Java

XML Schema enumerations where the base type is xsd:string are automatically mapped to Java enum
type. You can instruct the code generator to map enumerations with other base types to Java enum
types by using the customizations described in Section 37.4, “Customizing Enumeration Mapping” .

The enum type is created as follows:

1. The name of the type is taken from the name attribute of the simple type definition and
converted to a Java identifier.

In general, this means converting the first character of the XML Schema's name to an
uppercase letter. If the first character of the XML Schema's name is an invalid character, an
underscrore (_) is prepended to the name.

2. For each enumeration facet, an enum constant is generated based on the value of the value
attribute.

<simpleType name="widgetSize">
 <restriction base="xsd:string">
 <enumeration value="big"/>
 <enumeration value="large"/>
 <enumeration value="mungo"/>
 <enumeration value="gargantuan"/>
 </restriction>

CHAPTER 33. USING SIMPLE TYPES

273

The constant's name is derived by converting all of the lowercase letters in the value to their
uppercase equivalent.

3. A constructor is generated that takes the Java type mapped from the enumeration's base
type.

4. A public method called value() is generated to access the facet value that is represented by
an instance of the type.

The return type of the value() method is the base type of the XML Schema type.

5. A public method called fromValue() is generated to create an instance of the enum type
based on a facet value.

The parameter type of the value() method is the base type of the XML Schema type.

6. The class is decorated with the @XmlEnum annotation.

The enumerated type defined in Example 33.5, “XML Schema Defined Enumeration” is mapped to the
enum type shown in Example 33.6, “Generated Enumerated Type for a String Bases XML Schema
Enumeration”.

Example 33.6. Generated Enumerated Type for a String Bases XML Schema Enumeration

@XmlType(name = "widgetSize")
@XmlEnum
public enum WidgetSize {

 @XmlEnumValue("big")
 BIG("big"),
 @XmlEnumValue("large")
 LARGE("large"),
 @XmlEnumValue("mungo")
 MUNGO("mungo"),
 @XmlEnumValue("gargantuan")
 GARGANTUAN("gargantuan");
 private final String value;

 WidgetSize(String v) {
 value = v;
 }

 public String value() {
 return value;
 }

 public static WidgetSize fromValue(String v) {
 for (WidgetSize c: WidgetSize.values()) {
 if (c.value.equals(v)) {
 return c;
 }
 }
 throw new IllegalArgumentException(v);
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

274

33.4. LISTS

Overview

XML Schema supports a mechanism for defining data types that are a list of space separated simple
types. An example of an element, primeList, using a list type is shown in Example 33.7, “List Type
Example”.

Example 33.7. List Type Example

XML Schema list types are generally mapped to Java List<T> objects. The only variation to this
pattern is when a message part is mapped directly to an instance of an XML Schema list type.

Defining list types in XML Schema

XML Schema list types are simple types and as such are defined using a simpleType element. The
most common syntax used to define a list type is shown in Example 33.8, “Syntax for XML Schema List
Types”.

Example 33.8. Syntax for XML Schema List Types

The value given for atomicType defines the type of the elements in the list. It can only be one of the
built in XML Schema atomic types, like xsd:int or xsd:string, or a user-defined simple type that is not a
list.

In addition to defining the type of elements listed in the list type, you can also use facets to further
constrain the properties of the list type. Table 33.3, “List Type Facets” shows the facets used by list
types.

Table 33.3. List Type Facets

Facet Effect

length Defines the number of elements in an instance of the
list type.

<primeList>1 3 5 7 9 11 13<\primeList>

<simpleType name="listType">
 <list itemType="atomicType">
 <facet value="value" />
 <facet value="value" />
 ...
 </list>
</simpleType>

CHAPTER 33. USING SIMPLE TYPES

275

minLength Defines the minimum number of elements allowed in
an instance of the list type.

maxLength Defines the maximum number of elements allowed in
an instance of the list type.

enumeration Defines the allowable values for elements in an
instance of the list type.

pattern Defines the lexical form of the elements in an
instance of the list type. Patterns are defined using
regular expressions.

Facet Effect

For example, the definition for the simpleList element shown in Example 33.7, “List Type Example” ,
is shown in Example 33.9, “Definition of a List Type” .

Example 33.9. Definition of a List Type

In addition to the syntax shown in Example 33.8, “Syntax for XML Schema List Types” you can also
define a list type using the less common syntax shown in Example 33.10, “Alternate Syntax for List
Types”.

Example 33.10. Alternate Syntax for List Types

Mapping list type elements to Java

When an element is defined a list type, the list type is mapped to a collection property. A collection
property is a Java List<T> object. The template class used by the List<T> is the wrapper class
mapped from the list's base type. For example, the list type defined in Example 33.9, “Definition of a
List Type” is mapped to a List<Integer>.

<simpleType name="primeListType">
 <list itemType="int"/>
</simpleType>
<element name="primeList" type="primeListType"/>

<simpleType name="listType">
 <list>
 <simpleType>
 <restriction base="atomicType">
 <facet value="value"/>
 <facet value="value"/>
 ...
 </restriction>
 </simpleType>
 </list>
 </simpleType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

276

For more information on wrapper type mapping see the section called “Wrapper classes” .

Mapping list type parameters to Java

When a message part is defined as a list type, or is mapped to an element of a list type, the resulting
method parameter is mapped to an array instead of a List<T> object. The base type of the array is the
wrapper class of the list type's base class.

For example, the WSDL fragment in Example 33.11, “WSDL with a List Type Message Part” results in
the method signature shown in Example 33.12, “Java Method with a List Type Parameter” .

Example 33.11. WSDL with a List Type Message Part

Example 33.12. Java Method with a List Type Parameter

<definitions ...>
 ...
 <types ...>
 <schema ... >
 <simpleType name="primeListType">
 <list itemType="int"/>
 </simpleType>
 <element name="primeList" type="primeListType"/>
 </schemas>
 </types>
 <message name="numRequest">
 <part name="inputData" element="xsd1:primeList" />
 </message>
 <message name="numResponse">;
 <part name="outputData" type="xsd:int">
 ...
 <portType name="numberService">
 <operation name="primeProcessor">
 <input name="numRequest" message="tns:numRequest" />
 <output name="numResponse" message="tns:numResponse" />
 </operation>
 ...
 </portType>
 ...
</definitions>

public interface NumberService {

 @XmlList
 @WebResult(name = "outputData", targetNamespace = "", partName =
"outputData")
 @WebMethod
 public int primeProcessor(
 @WebParam(partName = "inputData", name = "primeList",
targetNamespace = "...")
 java.lang.Integer[] inputData
);
}

CHAPTER 33. USING SIMPLE TYPES

277

33.5. UNIONS

Overview

In XML Schema, a union is a construct that allows you to describe a type whose data can be one of a
number of simple types. For example, you can define a type whose value is either the integer 1 or the
string first. Unions are mapped to Java Strings.

Defining in XML Schema

XML Schema unions are defined using a simpleType element. They contain at least one union
element that defines the member types of the union. The member types of the union are the valid
types of data that can be stored in an instance of the union. They are defined using the union
element's memberTypes attribute. The value of the memberTypes attribute contains a list of one or
more defined simple type names. Example 33.13, “Simple Union Type” shows the definition of a union
that can store either an integer or a string.

Example 33.13. Simple Union Type

In addition to specifying named types as a member type of a union, you can also define an anonymous
simple type as a member type of a union. This is done by adding the anonymous type definition inside
of the union element. Example 33.14, “Union with an Anonymous Member Type” shows an example of
a union containing an anonymous member type that restricts the possible values of a valid integer to
the range 1 through 10.

Example 33.14. Union with an Anonymous Member Type

Mapping to Java

XML Schema union types are mapped to Java String objects. By default, Apache CXF does not
validate the contents of the generated object. To have Apache CXF validate the contents you will must
configure the runtime to use schema validation as described in the section called “Enforcing facets” .

<simpleType name="orderNumUnion">
 <union memberTypes="xsd:string xsd:int" />
</simpleType>

<simpleType name="restrictedOrderNumUnion">
 <union memberTypes="xsd:string">
 <simpleType>
 <restriction base="xsd:int">
 <minInclusive value="1" />
 <maxInclusive value="10" />
 </restriction>
 </simpleType>
 </union>
</simpleType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

278

33.6. SIMPLE TYPE SUBSTITUTION

Overview

XML allows for simple type substitution between compatible types using the xsi:type attribute. The
default mapping of simple types to Java primitive types, however, does not fully support simple type
substitution. The runtime can handle basic simple type substitution, but information is lost. The code
generators can be customized to generate Java classes that facilitate lossless simple type
substitution.

Default mapping and marshaling

Because Java primitive types do not support type substitution, the default mapping of simple types to
Java primitive types presents problems for supporting simple type substitution. The Java virtual
machine will balk if an attempt is made to pass a short into a variable that expects an int even though
the schema defining the types allows it.

To get around the limitations imposed by the Java type system, Apache CXF allows for simple type
substitution when the value of the element's xsi:type attribute meets one of the following
conditions:

It specifies a primitive type that is compatible with the element's schema type.

It specifies a type that derives by restriction from the element’s schema type.

It specifies a complex type that derives by extension from the element’s schema type.

When the runtime does the type substitution it does not retain any knowledge of the type specified in
the element's xsi:type attribute. If the type substitution is from a complex type to a simple type, only
the value directly related to the simple type is preserved. Any other elements and attributes added by
extension are lost.

Supporting lossless type substitution

You can customize the generation of simple types to facilitate lossless support of simple type
substitution in the following ways:

Set the globalBindings customization element's mapSimpleTypeDef to true.

This instructs the code generator to create Java value classes for all named simple types
defined in the global scope.

For more information see Section 37.3, “Generating Java Classes for Simple Types” .

Add a javaType element to the globalBindings customization element.

This instructs the code generators to map all instances of an XML Schema primitive type to s
specific class of object.

For more information see Section 37.2, “Specifying the Java Class of an XML Schema
Primitive”.

Add a baseType customization element to the specific elements you want to customize.

CHAPTER 33. USING SIMPLE TYPES

279

The baseType customization element allows you to specify the Java type generated to
represent a property. To ensure the best compatibility for simple type substitution, use
java.lang.Object as the base type.

For more information see Section 37.6, “Specifying the Base Type of an Element or an
Attribute”.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

280

CHAPTER 34. USING COMPLEX TYPES

Abstract

Complex types can contain multiple elements and they can have attributes. They are mapped into Java
classes that can hold the data represented by the type definition. Typically, the mapping is to a bean
with a set of properties representing the elements and the attributes of the content model..

34.1. BASIC COMPLEX TYPE MAPPING

Overview

XML Schema complex types define constructs containing more complex information than a simple
type. The most simple complex types define an empty element with an attribute. More intricate
complex types are made up of a collection of elements.

By default, an XML Schema complex type is mapped to a Java class, with a member variable to
represent each element and attribute listed in the XML Schema definition. The class has setters and
getters for each member variable.

Defining in XML Schema

XML Schema complex types are defined using the complexType element. The complexType element
wraps the rest of elements used to define the structure of the data. It can appear either as the parent
element of a named type definition, or as the child of an element element anonymously defining the
structure of the information stored in the element. When the complexType element is used to define a
named type, it requires the use of the name attribute. The name attribute specifies a unique identifier
for referencing the type.

Complex type definitions that contain one or more elements have one of the child elements described
in Table 34.1, “Elements for Defining How Elements Appear in a Complex Type” . These elements
determine how the specified elements appear in an instance of the type.

Table 34.1. Elements for Defining How Elements Appear in a Complex Type

Element Description

all All of the elements defined as part of the complex
type must appear in an instance of the type.
However, they can appear in any order.

choice Only one of the elements defined as part of the
complex type can appear in an instance of the type.

sequence All of the elements defined as part of the complex
type must appear in an instance of the type, and
they must also appear in the order specified in the
type definition.

CHAPTER 34. USING COMPLEX TYPES

281

NOTE

If a complex type definition only uses attributes, you do not need one of the elements
described in Table 34.1, “Elements for Defining How Elements Appear in a Complex
Type”.

After deciding how the elements will appear, you define the elements by adding one or more element
element children to the definition.

Example 34.1, “XML Schema Complex Type” shows a complex type definition in XML Schema.

Example 34.1. XML Schema Complex Type

Mapping to Java

XML Schema complex types are mapped to Java classes. Each element in the complex type definition
is mapped to a member variable in the Java class. Getter and setter methods are also generated for
each element in the complex type.

All generated Java classes are decorated with the @XmlType annotation. If the mapping is for a named
complex type, the annotations name is set to the value of the complexType element's name attribute.
If the complex type is defined as part of an element definition, the value of the @XmlType annotation's
name property is the value of the element element's name attribute.

NOTE

As described in the section called “Java mapping of elements with an in-line type” , the
generated class is decorated with the @XmlRootElement annotation if it is generated
for a complex type defined as part of an element definition.

To provide the runtime with guidelines indicating how the elements of the XML Schema complex type
should be handled, the code generators alter the annotations used to decorate the class and its
member variables.

All Complex Type

All complex types are defined using the all element. They are annotated as follows:

The @XmlType annotation's propOrder property is empty.

Each element is decorated with the @XmlElement annotation.

The @XmlElement annotation's required property is set to true.

<complexType name="sequence">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="street" type="xsd:short" />
 <element name="city" type="xsd:string" />
 <element name="state" type="xsd:string" />
 <element name="zipCode" type="xsd:string" />
 </sequence>
</complexType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

282

Example 34.2, “Mapping of an All Complex Type” shows the mapping for an all complex type with
two elements.

Example 34.2. Mapping of an All Complex Type

Choice Complex Type

Choice complex types are defined using the choice element. They are annotated as follows:

The @XmlType annotation's propOrder property lists the names of the elements in the
order they appear in the XML Schema definition.

None of the member variables are annotated.

Example 34.3, “Mapping of a Choice Complex Type” shows the mapping for a choice complex type
with two elements.

Example 34.3. Mapping of a Choice Complex Type

@XmlType(name = "all", propOrder = {

})
public class All {
 @XmlElement(required = true)
 protected BigDecimal amount;
 @XmlElement(required = true)
 protected String type;

 public BigDecimal getAmount() {
 return amount;
 }

 public void setAmount(BigDecimal value) {
 this.amount = value;
 }

 public String getType() {
 return type;
 }

 public void setType(String value) {
 this.type = value;
 }
}

@XmlType(name = "choice", propOrder = {
 "address",
 "floater"
})
public class Choice {

 protected Sequence address;
 protected Float floater;

CHAPTER 34. USING COMPLEX TYPES

283

Sequence Complex Type

A sequence complex type is defined using the sequence element. It is annotated as follows:

The @XmlType annotation's propOrder property lists the names of the elements in the
order they appear in the XML Schema definition.

Each element is decorated with the @XmlElement annotation.

The @XmlElement annotation's required property is set to true.

Example 34.4, “Mapping of a Sequence Complex Type” shows the mapping for the complex type
defined in Example 34.1, “XML Schema Complex Type” .

Example 34.4. Mapping of a Sequence Complex Type

 public Sequence getAddress() {
 return address;
 }

 public void setAddress(Sequence value) {
 this.address = value;
 }

 public Float getFloater() {
 return floater;
 }

 public void setFloater(Float value) {
 this.floater = value;
 }

}

@XmlType(name = "sequence", propOrder = {
 "name",
 "street",
 "city",
 "state",
 "zipCode"
})
public class Sequence {

 @XmlElement(required = true)
 protected String name;
 protected short street;
 @XmlElement(required = true)
 protected String city;
 @XmlElement(required = true)
 protected String state;
 @XmlElement(required = true)
 protected String zipCode;

 public String getName() {
 return name;

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

284

34.2. ATTRIBUTES

Overview

Apache CXF supports the use of attribute elements and attributeGroup elements within the
scope of a complexType element. When defining structures for an XML document attribute
declarations provide a means of adding information that is specified within the tag, not the value that
the tag contains. For example, when describing the XML element <value
currency="euro">410<\value> in XML Schema the currency attribute is described using an
attribute element as shown in Example 34.5, “XML Schema Defining and Attribute” .

The attributeGroup element allows you to define a group of reusable attributes that can be
referenced by all complex types defined by the schema. For example, if you are defining a series of

 }

 public void setName(String value) {
 this.name = value;
 }

 public short getStreet() {
 return street;
 }

 public void setStreet(short value) {
 this.street = value;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String value) {
 this.city = value;
 }

 public String getState() {
 return state;
 }

 public void setState(String value) {
 this.state = value;
 }

 public String getZipCode() {
 return zipCode;
 }

 public void setZipCode(String value) {
 this.zipCode = value;
 }
}

CHAPTER 34. USING COMPLEX TYPES

285

elements that all use the attributes category and pubDate, you could define an attribute group with
these attributes and reference them in all the elements that use them. This is shown in Example 34.7,
“Attribute Group Definition”.

When describing data types for use in developing application logic, attributes whose use attribute is
set to either optional or required are treated as elements of a structure. For each attribute
declaration contained within a complex type description, an element is generated in the class for the
attribute, along with the appropriate getter and setter methods.

Defining an attribute in XML Schema

An XML Schema attribute element has one required attribute, name, that is used to identify the
attribute. It also has four optional attributes that are described in Table 34.2, “Optional Attributes
Used to Define Attributes in XML Schema”.

Table 34.2. Optional Attributes Used to Define Attributes in XML Schema

Attribute Description

use Specifies if the attribute is required. Valid values are
required, optional, or prohibited.
optional is the default value.

type Specifies the type of value the attribute can take. If
it is not used the schema type of the attribute must
be defined in-line.

default Specifies a default value to use for the attribute. It is
only used when the attribute element's use
attribute is set to optional.

fixed Specifies a fixed value to use for the attribute. It is
only used when the attribute element's use
attribute is set to optional.

Example 34.5, “XML Schema Defining and Attribute” shows an attribute element defining an attribute,
currency, whose value is a string.

Example 34.5. XML Schema Defining and Attribute

<element name="value">
 <complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:integer">
 <xsd:attribute name="currency" type="xsd:string"
 use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
</xsd:element>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

286

If the type attribute is omitted from the attribute element, the format of the data must be
described in-line. Example 34.6, “Attribute with an In-Line Data Description” shows an attribute
element for an attribute, category, that can take the values autobiography, non-fiction, or
fiction.

Example 34.6. Attribute with an In-Line Data Description

Using an attribute group in XML Schema

Using an attribute group in a complex type definition is a two step process:

1. Define the attribute group.

An attribute group is defined using an attributeGroup element with a number of
attribute child elements. The attributeGroup requires a name attribute that defines the
string used to refer to the attribute group. The attribute elements define the members of
the attribute group and are specified as shown in the section called “Defining an attribute in
XML Schema”. Example 34.7, “Attribute Group Definition” shows the description of the
attribute group catalogIndecies. The attribute group has two members: category, which
is optional, and pubDate, which is required.

Example 34.7. Attribute Group Definition

2. Use the attribute group in the definition of a complex type.

You use attribute groups in complex type definitions by using the attributeGroup element
with the ref attribute. The value of the ref attribute is the name given the attribute group
that you want to use as part of the type definition. For example if you want to use the attribute
group catalogIndecies in the complex type dvdType, you would use <attributeGroup
ref="catalogIndecies" /> as shown in Example 34.8, “Complex Type with an Attribute Group” .

Example 34.8. Complex Type with an Attribute Group

<attribute name="category" use="required">
 <simpleType>
 <restriction base="xsd:string">
 <enumeration value="autobiography"/>
 <enumeration value="non-fiction"/>
 <enumeration value="fiction"/>
 </restriction>
 </simpleType>
</attribute>

<attributeGroup name="catalogIndices">
 <attribute name="category" type="catagoryType" />
 <attribute name="pubDate" type="dateTime"
 use="required" />
</attributeGroup>

<complexType name="dvdType">
 <sequence>

CHAPTER 34. USING COMPLEX TYPES

287

Mapping attributes to Java

Attributes are mapped to Java in much the same way that member elements are mapped to Java.
Required attributes and optional attributes are mapped to member variables in the generated Java
class. The member variables are decorated with the @XmlAttribute annotation. If the attribute is
required, the @XmlAttribute annotation's required property is set to true.

The complex type defined in Example 34.9, “techDoc Description ” is mapped to the Java class shown
in Example 34.10, “techDoc Java Class”.

Example 34.9. techDoc Description

Example 34.10. techDoc Java Class

 <element name="title" type="xsd:string" />
 <element name="director" type="xsd:string" />
 <element name="numCopies" type="xsd:int" />
 </sequence>
 <attributeGroup ref="catalogIndices" />
</complexType>

<complexType name="techDoc">
 <all>
 <element name="product" type="xsd:string" />
 <element name="version" type="xsd:short" />
 </all>
 <attribute name="usefullness" type="xsd:float"
 use="optional" default="0.01" />
</complexType>

@XmlType(name = "techDoc", propOrder = {

})
public class TechDoc {

 @XmlElement(required = true)
 protected String product;
 protected short version;
 @XmlAttribute
 protected Float usefullness;

 public String getProduct() {
 return product;
 }

 public void setProduct(String value) {
 this.product = value;
 }

 public short getVersion() {
 return version;
 }

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

288

As shown in Example 34.10, “techDoc Java Class”, the default attribute and the fixed attribute
instruct the code generators to add code to the getter method generated for the attribute. This
additional code ensures that the specified value is returned if no value is set.

IMPORTANT

The fixed attribute is treated the same as the default attribute. If you want the
fixed attribute to be treated as a Java constant you can use the customization
described in Section 37.5, “Customizing Fixed Value Attribute Mapping” .

Mapping attribute groups to Java

Attribute groups are mapped to Java as if the members of the group were explicitly used in the type
definition. If the attribute group has three members, and it is used in a complex type, the generated
class for that type will include a member variable, along with the getter and setter methods, for each
member of the attribute group. For example, the complex type defined in Example 34.8, “Complex
Type with an Attribute Group”, Apache CXF generates a class containing the member variables
category and pubDate to support the members of the attribute group as shown in Example 34.11,
“dvdType Java Class”.

Example 34.11. dvdType Java Class

 public void setVersion(short value) {
 this.version = value;
 }

 public float getUsefullness() {
 if (usefullness == null) {
 return 0.01F;
 } else {
 return usefullness;
 }
 }

 public void setUsefullness(Float value) {
 this.usefullness = value;
 }
}

@XmlType(name = "dvdType", propOrder = {
 "title",
 "director",
 "numCopies"
})
public class DvdType {

 @XmlElement(required = true)
 protected String title;
 @XmlElement(required = true)
 protected String director;
 protected int numCopies;
 @XmlAttribute

CHAPTER 34. USING COMPLEX TYPES

289

34.3. DERIVING COMPLEX TYPES FROM SIMPLE TYPES

Overview

Apache CXF supports derivation of a complex type from a simple type. A simple type has, by definition,
neither sub-elements nor attributes. Hence, one of the main reasons for deriving a complex type from a
simple type is to add attributes to the simple type.

 protected CatagoryType category;
 @XmlAttribute(required = true)
 @XmlSchemaType(name = "dateTime")
 protected XMLGregorianCalendar pubDate;

 public String getTitle() {
 return title;
 }

 public void setTitle(String value) {
 this.title = value;
 }

 public String getDirector() {
 return director;
 }

 public void setDirector(String value) {
 this.director = value;
 }

 public int getNumCopies() {
 return numCopies;
 }

 public void setNumCopies(int value) {
 this.numCopies = value;
 }

 public CatagoryType getCatagory() {
 return catagory;
 }

 public void setCatagory(CatagoryType value) {
 this.catagory = value;
 }

 public XMLGregorianCalendar getPubDate() {
 return pubDate;
 }

 public void setPubDate(XMLGregorianCalendar value) {
 this.pubDate = value;
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

290

There are two ways of deriving a complex type from a simple type:

By extension

By restriction

Derivation by extension

Example 34.12, “Deriving a Complex Type from a Simple Type by Extension” shows an example of a
complex type, internationalPrice, derived by extension from the xsd:decimal primitive type to include a
currency attribute.

Example 34.12. Deriving a Complex Type from a Simple Type by Extension

The simpleContent element indicates that the new type does not contain any sub-elements. The
extension element specifies that the new type extends xsd:decimal.

Derivation by restriction

Example 34.13, “Deriving a Complex Type from a Simple Type by Restriction” shows an example of a
complex type, idType, that is derived by restriction from xsd:string. The defined type restricts the
possible values of xsd:stringto values that are ten characters in length. It also adds an attribute to the
type.

Example 34.13. Deriving a Complex Type from a Simple Type by Restriction

As in Example 34.12, “Deriving a Complex Type from a Simple Type by Extension” the
simpleContent element signals that the new type does not contain any children. This example uses a
restriction element to constrain the possible values used in the new type. The attribute element
adds the element to the new type.

Mapping to Java

A complex type derived from a simple type is mapped to a Java class that is decorated with the

<complexType name="internationalPrice">
 <simpleContent>
 <extension base="xsd:decimal">
 <attribute name="currency" type="xsd:string"/>
 </extension>
 </simpleContent>
 </complexType>

<complexType name="idType">
 <simpleContent>
 <restriction base="xsd:string">
 <length value="10" />
 <attribute name="expires" type="xsd:dateTime" />
 </restriction>
 </simpleContent>
</complexType>

CHAPTER 34. USING COMPLEX TYPES

291

@XmlType annotation. The generated class contains a member variable, value, of the simple type
from which the complex type is derived. The member variable is decorated with the @XmlValue
annotation. The class also has a getValue() method and a setValue() method. In addition, the
generated class has a member variable, and the associated getter and setter methods, for each
attribute that extends the simple type.

Example 34.14, “idType Java Class” shows the Java class generated for the idType type defined in
Example 34.13, “Deriving a Complex Type from a Simple Type by Restriction” .

Example 34.14. idType Java Class

34.4. DERIVING COMPLEX TYPES FROM COMPLEX TYPES

Overview

Using XML Schema, you can derive new complex types by either extending or restricting other
complex types using the complexContent element. When generating the Java class to represent the
derived complex type, Apache CXF extends the base type’s class. In this way, the generated Java code
preserves the inheritance hierarchy intended in the XML Schema.

Schema syntax

You derive complex types from other complex types by using the complexContent element, and

@XmlType(name = "idType", propOrder = {
 "value"
})
public class IdType {

 @XmlValue
 protected String value;
 @XmlAttribute
 @XmlSchemaType(name = "dateTime")
 protected XMLGregorianCalendar expires;

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }

 public XMLGregorianCalendar getExpires() {
 return expires;
 }

 public void setExpires(XMLGregorianCalendar value) {
 this.expires = value;
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

292

either the extension element or the restriction element. The complexContent element
specifies that the included data description includes more than one field. The extension element and
the restriction element, which are children of the complexContent element, specify the base
type being modified to create the new type. The base type is specified by the base attribute.

Extending a complex type

To extend a complex type use the extension element to define the additional elements and
attributes that make up the new type. All elements that are allowed in a complex type description are
allowable as part of the new type’s definition. For example, you can add an anonymous enumeration to
the new type, or you can use the choice element to specify that only one of the new fields can be valid
at a time.

Example 34.15, “Deriving a Complex Type by Extension” shows an XML Schema fragment that defines
two complex types, widgetOrderInfo and widgetOrderBillInfo. widgetOrderBillInfo is derived by
extending widgetOrderInfo to include two new elements: orderNumber and amtDue.

Example 34.15. Deriving a Complex Type by Extension

Restricting a complex type

To restrict a complex type use the restriction element to limit the possible values of the base
type's elements or attributes. When restricting a complex type you must list all of the elements and
attributes of the base type. For each element you can add restrictive attributes to the definition. For
example, you can add a maxOccurs attribute to an element to limit the number of times it can occur.
You can also use the fixed attribute to force one or more of the elements to have predetermined
values.

Example 34.16, “Defining a Complex Type by Restriction” shows an example of defining a complex type
by restricting another complex type. The restricted type, wallawallaAddress, can only be used for
addresses in Walla Walla, Washington because the values for the city element, the state element,

<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:int"/>
 <element name="order_date" type="xsd:dateTime"/>
 <element name="type" type="xsd1:widgetSize"/>
 <element name="shippingAddress" type="xsd1:Address"/>
 </sequence>
 <attribute name="rush" type="xsd:boolean" use="optional" />
</complexType>
<complexType name="widgetOrderBillInfo">
 <complexContent>
 <extension base="xsd1:widgetOrderInfo">
 <sequence>
 <element name="amtDue" type="xsd:decimal"/>
 <element name="orderNumber" type="xsd:string"/>
 </sequence>
 <attribute name="paid" type="xsd:boolean"
 default="false" />
 </extension>
 </complexContent>
</complexType>

CHAPTER 34. USING COMPLEX TYPES

293

and the zipCode element are fixed.

Example 34.16. Defining a Complex Type by Restriction

Mapping to Java

As it does with all complex types, Apache CXF generates a class to represent complex types derived
from another complex type. The Java class generated for the derived complex type extends the Java
class generated to support the base complex type. The base Java class is also modified to include the
@XmlSeeAlso annotation. The base class' @XmlSeeAlso annotation lists all of the classes that extend
the base class.

When the new complex type is derived by extension, the generated class will include member variables
for all of the added elements and attributes. The new member variables will be generated according to
the same mappings as all other elements.

When the new complex type is derived by restriction, the generated class will have no new member
variables. The generated class will simply be a shell that does not provide any additional functionality.
It is entirely up to you to ensure that the restrictions defined in the XML Schema are enforced.

For example, the schema in Example 34.15, “Deriving a Complex Type by Extension” results in the
generation of two Java classes: WidgetOrderInfo and WidgetBillOrderInfo.
WidgetOrderBillInfo extends WidgetOrderInfo because widgetOrderBillInfo is derived by
extension from widgetOrderInfo. Example 34.17, “WidgetOrderBillInfo” shows the generated class for
widgetOrderBillInfo.

<complexType name="Address">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="street" type="xsd:short" maxOccurs="3"/>
 <element name="city" type="xsd:string"/>
 <element name="state" type="xsd:string"/>
 <element name="zipCode" type="xsd:string"/>
 </sequence>
</complexType>
<complexType name="wallawallaAddress">
 <complexContent>
 <restriction base="xsd1:Address">
 <sequence>
 <element name="name" type="xsd:string"/>
 <element name="street" type="xsd:short"
 maxOccurs="3"/>
 <element name="city" type="xsd:string"
 fixed="WallaWalla"/>
 <element name="state" type="xsd:string"
 fixed="WA" />
 <element name="zipCode" type="xsd:string"
 fixed="99362" />
 </sequence>
 </restriction>
 </complexContent>
</complexType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

294

Example 34.17. WidgetOrderBillInfo

34.5. OCCURRENCE CONSTRAINTS

XML Schema allows you to specify the occurrence constraints on four of the XML Schema elements
that make up a complex type definition:

Section 34.5.1, “Occurrence Constraints on the All Element”

Section 34.5.2, “Occurrence Constraints on the Choice Element”

@XmlType(name = "widgetOrderBillInfo", propOrder = {
 "amtDue",
 "orderNumber"
})
public class WidgetOrderBillInfo
 extends WidgetOrderInfo
{
 @XmlElement(required = true)
 protected BigDecimal amtDue;
 @XmlElement(required = true)
 protected String orderNumber;
 @XmlAttribute
 protected Boolean paid;

 public BigDecimal getAmtDue() {
 return amtDue;
 }

 public void setAmtDue(BigDecimal value) {
 this.amtDue = value;
 }

 public String getOrderNumber() {
 return orderNumber;
 }

 public void setOrderNumber(String value) {
 this.orderNumber = value;
 }

 public boolean isPaid() {
 if (paid == null) {
 return false;
 } else {
 return paid;
 }
 }

 public void setPaid(Boolean value) {
 this.paid = value;
 }
}

CHAPTER 34. USING COMPLEX TYPES

295

Section 34.5.3, “Occurrence Constraints on Elements”

Section 34.5.4, “Occurrence Constraints on Sequences”

34.5.1. Occurrence Constraints on the All Element

XML Schema

Complex types defined with the all element do not allow for multiple occurrences of the structure
defined by the all element. You can, however, make the structure defined by the all element
optional by setting its minOccurs attribute to 0.

Mapping to Java

Setting the all element's minOccurs attribute to 0 has no effect on the generated Java class.

34.5.2. Occurrence Constraints on the Choice Element

Overview

By default, the results of a choice element can only appear once in an instance of a complex type. You
can change the number of times the element chosen to represent the structure defined by a choice
element is allowed to appear using its minOccurs attribute and its mxOccurs attribute. Using these
attributes you can specify that the choice type can occur zero to an unlimited number of times in an
instance of a complex type. The element chosen for the choice type does not need to be the same for
each occurrence of the type.

Using in XML Schema

The minOccurs attribute specifies the minimum number of times the choice type must appear. Its
value can be any positive integer. Setting the minOccurs attribute to 0 specifies that the choice type
does not need to appear inside an instance of the complex type.

The maxOccurs attribute specifies the maximum number of times the choice type can appear. Its value
can be any non-zero, positive integer or unbounded. Setting the maxOccurs attribute to unbounded
specifies that the choice type can appear an infinite number of times.

Example 34.18, “Choice Occurrence Constraints” shows the definition of a choice type, ClubEvent, with
choice occurrence constraints. The choice type overall can be repeated 0 to unbounded times.

Example 34.18. Choice Occurrence Constraints

Mapping to Java

<complexType name="ClubEvent">
 <choice minOccurs="0" maxOccurs="unbounded">
 <element name="MemberName" type="xsd:string"/>
 <element name="GuestName" type="xsd:string"/>
 </choice>
</complexType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

296

Unlike single instance choice structures, XML Schema choice structures that can occur multiple times
are mapped to a Java class with a single member variable. This single member variable is a List<T>
object that holds all of the data for the multiple occurrences of the sequence. For example, if the
sequence defined in Example 34.18, “Choice Occurrence Constraints” occurred two times, then the list
would have two items.

The name of the Java class' member variable is derived by concatenating the names of the member
elements. The element names are separated by Or and the first letter of the variable name is converted
to lower case. For example, the member variable generated from Example 34.18, “Choice Occurrence
Constraints” would be named memberNameOrGuestName.

The type of object stored in the list depends on the relationship between the types of the member
elements. For example:

If the member elements are of the same type the generated list will contain JAXBElement<T>
objects. The base type of the JAXBElement<T> objects is determined by the normal mapping
of the member elements' type.

If the member elements are of different types and their Java representations implement a
common interface, the list will contains objects of the common interface.

If the member elements are of different types and their Java representations extend a
common base class, the list will contains objects of the common base class.

If none of the other conditions are met, the list will contain Object objects.

The generated Java class will only have a getter method for the member variable. The getter method
returns a reference to the live list. Any modifications made to the returned list will effect the actual
object.

The Java class is decorated with the @XmlType annotation. The annotation's name property is set to
the value of the name attribute from the parent element of the XML Schema definition. The annotation's
propOrder property contains the single member variable representing the elements in the sequence.

The member variable representing the elements in the choice structure are decorated with the
@XmlElements annotation. The @XmlElements annotation contains a comma separated list of
@XmlElement annotations. The list has one @XmlElement annotation for each member element
defined in the XML Schema definition of the type. The @XmlElement annotations in the list have their
name property set to the value of the XML Schema element element's name attribute and their type
property set to the Java class resulting from the mapping of the XML Schema element element's type.

Example 34.19, “Java Representation of Choice Structure with an Occurrence Constraint” shows the
Java mapping for the XML Schema choice structure defined in Example 34.18, “Choice Occurrence
Constraints”.

Example 34.19. Java Representation of Choice Structure with an Occurrence Constraint

@XmlType(name = "ClubEvent", propOrder = {
 "memberNameOrGuestName"
})
public class ClubEvent {

 @XmlElementRefs({
 @XmlElementRef(name = "GuestName", type = JAXBElement.class),
 @XmlElementRef(name = "MemberName", type = JAXBElement.class)
 })

CHAPTER 34. USING COMPLEX TYPES

297

minOccurs set to 0

If only the minOccurs element is specified and its value is 0, the code generators generate the Java
class as if the minOccurs attribute were not set.

34.5.3. Occurrence Constraints on Elements

Overview

You can specify how many times a specific element in a complex type appears using the element
element's minOccurs attribute and maxOccurs attribute. The default value for both attributes is 1.

minOccurs set to 0

When you set one of the complex type's member element's minOccurs attribute to 0, the
@XmlElement annotation decorating the corresponding Java member variable is changed. Instead of
having its required property set to true, the @XmlElement annotation's required property is set to
false.

minOccurs set to a value greater than 1

In XML Schema you can specify that an element must occur more than once in an instance of the type
by setting the element element's minOccurs attribute to a value greater than one. However, the
generated Java class will not support the XML Schema constraint. Apache CXF generates the
supporting Java member variable as if the minOccurs attribute were not set.

Elements with maxOccurs set

When you want a member element to appear multiple times in an instance of a complex type, you set
the element's maxOccurs attribute to a value greater than 1. You can set the maxOccurs attribute's
value to unbounded to specify that the member element can appear an unlimited number of times.

The code generators map a member element with the maxOccurs attribute set to a value greater than
1 to a Java member variable that is a List<T> object. The base class of the list is determined by
mapping the element's type to Java. For XML Schema primitive types, the wrapper classes are used as
described in the section called “Wrapper classes” . For example, if the member element is of type
xsd:int the generated member variable is a List<Integer> object.

34.5.4. Occurrence Constraints on Sequences

 protected List<JAXBElement<String>> memberNameOrGuestName;

 public List<JAXBElement<String>> getMemberNameOrGuestName() {
 if (memberNameOrGuestName == null) {
 memberNameOrGuestName = new ArrayList<JAXBElement<String>>
();
 }
 return this.memberNameOrGuestName;
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

298

Overview

By default, the contents of a sequence element can only appear once in an instance of a complex type.
You can change the number of times the sequence of elements defined by a sequence element is
allowed to appear using its minOccurs attribute and its maxOccurs attribute. Using these attributes
you can specify that the sequence type can occur zero to an unlimited number of times in an instance
of a complex type.

Using XML Schema

The minOccurs attribute specifies the minimum number of times the sequence must occur in an
instance of the defined complex type. Its value can be any positive integer. Setting the minOccurs
attribute to 0 specifies that the sequence does not need to appear inside an instance of the complex
type.

The maxOccurs attribute specifies the upper limit for how many times the sequence can occur in an
instance of the defined complex type. Its value can be any non-zero, positive integer or unbounded.
Setting the maxOccurs attribute to unbounded specifies that the sequence can appear an infinite
number of times.

Example 34.20, “Sequence with Occurrence Constraints” shows the definition of a sequence type,
CultureInfo, with sequence occurrence constraints. The sequence can be repeated 0 to 2 times.

Example 34.20. Sequence with Occurrence Constraints

Mapping to Java

Unlike single instance sequences, XML Schema sequences that can occur multiple times are mapped
to a Java class with a single member variable. This single member variable is a List<T> object that
holds all of the data for the multiple occurrences of the sequence. For example, if the sequence defined
in Example 34.20, “Sequence with Occurrence Constraints” occurred two times, then the list would
have four items.

The name of the Java class' member variable is derived by concatenating the names of the member
elements. The element names are separated by And and the first letter of the variable name is
converted to lower case. For example, the member variable generated from Example 34.20,
“Sequence with Occurrence Constraints” is named nameAndLcid.

The type of object stored in the list depends on the relationship between the types of the member
elements. For example:

If the member elements are of the same type the generated list will contain JAXBElement<T>
objects. The base type of the JAXBElement<T> objects is determined by the normal mapping
of the member elements' type.

<complexType name="CultureInfo">
 <sequence minOccurs="0" maxOccurs="2">
 <element name="Name" type="string"/>
 <element name="Lcid" type="int"/>
 </sequence>
</complexType>

CHAPTER 34. USING COMPLEX TYPES

299

If the member elements are of different types and their Java representations implement a
common interface, the list will contains objects of the common interface.

If the member elements are of different types and their Java representations extend a
common base class, the list will contain objects of the common base class.

If none of the other conditions are met, the list will contain Object objects.

The generated Java class only has a getter method for the member variable. The getter method
returns a reference to the live list. Any modifications made to the returned list effects the actual
object.

The Java class is decorated with the @XmlType annotation. The annotation's name property is set to
the value of the name attribute from the parent element of the XML Schema definition. The annotation's
propOrder property contains the single member variable representing the elements in the sequence.

The member variable representing the elements in the sequence are decorated with the
@XmlElements annotation. The @XmlElements annotation contains a comma separated list of
@XmlElement annotations. The list has one @XmlElement annotation for each member element
defined in the XML Schema definition of the type. The @XmlElement annotations in the list have their
name property set to the value of the XML Schema element element's name attribute and their type
property set to the Java class resulting from the mapping of the XML Schema element element's type.

Example 34.21, “Java Representation of Sequence with an Occurrence Constraint” shows the Java
mapping for the XML Schema sequence defined in Example 34.20, “Sequence with Occurrence
Constraints”.

Example 34.21. Java Representation of Sequence with an Occurrence Constraint

minOccurs set to 0

If only the minOccurs element is specified and its value is 0, the code generators generate the Java
class as if the minOccurs attribute is not set.

@XmlType(name = "CultureInfo", propOrder = {
 "nameAndLcid"
})
public class CultureInfo {

 @XmlElements({
 @XmlElement(name = "Name", type = String.class),
 @XmlElement(name = "Lcid", type = Integer.class)
 })
 protected List<Serializable> nameAndLcid;

 public List<Serializable> getNameAndLcid() {
 if (nameAndLcid == null) {
 nameAndLcid = new ArrayList<Serializable>();
 }
 return this.nameAndLcid;
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

300

34.6. USING MODEL GROUPS

Overview

XML Schema model groups are convenient shortcuts that allows you to reference a group of elements
from a user-defined complex type.For example, you can define a group of elements that are common to
several types in your application and then reference the group repeatedly. Model groups are defined
using the group element, and are similar to complex type definitions. The mapping of model groups to
Java is also similar to the mapping for complex types.

Defining a model group in XML Schema

You define a model group in XML Schema using the group element with the name attribute. The value
of the name attribute is a string that is used to refer to the group throughout the schema. The group
element, like the complexType element, can have the sequence element, the all element, or the
choice element as its immediate child.

Inside the child element, you define the members of the group using element elements. For each
member of the group, specify one element element. Group members can use any of the standard
attributes for the element element including minOccurs and maxOccurs. So, if your group has three
elements and one of them can occur up to three times, you define a group with three element
elements, one of which uses maxOccurs="3". Example 34.22, “XML Schema Model Group” shows a
model group with three elements.

Example 34.22. XML Schema Model Group

Using a model group in a type definition

Once a model group has been defined, it can be used as part of a complex type definition. To use a
model group in a complex type definition, use the group element with the ref attribute. The value of
the ref attribute is the name given to the group when it was defined. For example, to use the group
defined in Example 34.22, “XML Schema Model Group” you use <group ref="tns:passenger" /> as
shown in Example 34.23, “Complex Type with a Model Group” .

Example 34.23. Complex Type with a Model Group

<group name="passenger">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="clubNum" type="xsd:long" />
 <element name="seatPref" type="xsd:string"
 maxOccurs="3" />
 </sequence>
</group>

<complexType name="reservation">
 <sequence>
 <group ref="tns:passenger" />
 <element name="origin" type="xsd:string" />
 <element name="destination" type="xsd:string" />

CHAPTER 34. USING COMPLEX TYPES

301

When a model group is used in a type definition, the group becomes a member of the type. So an
instance of reservation has four member elements. The first element is the passenger element and it
contains the member elements defined by the group shown in Example 34.22, “XML Schema Model
Group”. An example of an instance of reservation is shown in Example 34.24, “Instance of a Type with
a Model Group”.

Example 34.24. Instance of a Type with a Model Group

Mapping to Java

By default, a model group is only mapped to Java artifacts when it is included in a complex type
definition. When generating code for a complex type that includes a model group, Apache CXF simply
includes the member variables for the model group into the Java class generated for the type. The
member variables representing the model group are annotated based on the definitions of the model
group.

Example 34.25, “Type with a Group” shows the Java class generated for the complex type defined in
Example 34.23, “Complex Type with a Model Group” .

Example 34.25. Type with a Group

 <element name="fltNum" type="xsd:long" />
 </sequence>
</complexType>

<reservation>
 <passenger>
 <name>A. Smart</name>
 <clubNum>99</clubNum>
 <seatPref>isle1</seatPref>
 </passenger>
 <origin>LAX</origin>
 <destination>FRA</destination>
 <fltNum>34567</fltNum>
</reservation>

@XmlType(name = "reservation", propOrder = {
 "name",
 "clubNum",
 "seatPref",
 "origin",
 "destination",
 "fltNum"
})
public class Reservation {

 @XmlElement(required = true)
 protected String name;
 protected long clubNum;
 @XmlElement(required = true)
 protected List<String> seatPref;
 @XmlElement(required = true)

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

302

Multiple occurrences

 protected String origin;
 @XmlElement(required = true)
 protected String destination;
 protected long fltNum;

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public long getClubNum() {
 return clubNum;
 }

 public void setClubNum(long value) {
 this.clubNum = value;
 }

 public List<String> getSeatPref() {
 if (seatPref == null) {
 seatPref = new ArrayList<String>();
 }
 return this.seatPref;
 }

 public String getOrigin() {
 return origin;
 }

 public void setOrigin(String value) {
 this.origin = value;
 }

 public String getDestination() {
 return destination;
 }

 public void setDestination(String value) {
 this.destination = value;
 }

 public long getFltNum() {
 return fltNum;
 }

 public void setFltNum(long value) {
 this.fltNum = value;
 }

CHAPTER 34. USING COMPLEX TYPES

303

You can specify that the model group appears more than once by setting the group element's
maxOccurs attribute to a value greater than one. To allow for multiple occurrences of the model group
Apache CXF maps the model group to a List<T> object. The List<T> object is generated following
the rules for the group's first child:

If the group is defined using a sequence element see Section 34.5.4, “Occurrence Constraints
on Sequences”.

If the group is defined using a choice element see Section 34.5.2, “Occurrence Constraints
on the Choice Element”.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

304

CHAPTER 35. USING WILD CARD TYPES

Abstract

There are instances when a schema author wants to defer binding elements or attributes to a defined
type. For these cases, XML Schema provides three mechanisms for specifying wild card place holders.
These are all mapped to Java in ways that preserve their XML Schema functionality.

35.1. USING ANY ELEMENTS

Overview

The XML Schema any element is used to create a wild card place holder in complex type definitions.
When an XML element is instantiated for an XML Schema any element, it can be any valid XML
element. The any element does not place any restrictions on either the content or the name of the
instantiated XML element.

For example, given the complex type defined in Example 35.1, “XML Schema Type Defined with an Any
Element” you can instantiate either of the XML elements shown in Example 35.2, “XML Document with
an Any Element”.

Example 35.1. XML Schema Type Defined with an Any Element

Example 35.2. XML Document with an Any Element

XML Schema any elements are mapped to either a Java Object object or a Java
org.w3c.dom.Element object.

Specifying in XML Schema

<element name="FlyBoy">
 <complexType>
 <sequence>
 <any />
 <element name="rank" type="xsd:int" />
 </sequence>
 </complexType>
</element>

<FlyBoy>
 <learJet>CL-215</learJet>
 <rank>2</rank>
</element>
<FlyBoy>
 <viper>Mark II</viper>
 <rank>1</rank>
</element>

CHAPTER 35. USING WILD CARD TYPES

305

The any element can be used when defining sequence complex types and choice complex types. In
most cases, the any element is an empty element. It can, however, take an annotation element as a
child.

Table 35.1, “Attributes of the XML Schema Any Element” describes the any element's attributes.

Table 35.1. Attributes of the XML Schema Any Element

Attribute Description

namespace Specifies the namespace of the elements that can be
used to instantiate the element in an XML document.
The valid values are:

##any

Specifies that elements from any namespace can
be used. This is the default.

##other

Specifies that elements from any namespace
other than the parent element's namespace can be
used.

##local

Specifies elements without a namespace must
be used.

##targetNamespace

Specifies that elements from the parent
element's namespace must be used.

A space delimited list of URIs, ##local, and
##targetNamespace

Specifies that elements from any of the listed
namespaces can be used.

maxOccurs Specifies the maximum number of times an instance
of the element can appear in the parent element. The
default value is 1. To specify that an instance of the
element can appear an unlimited number of times,
you can set the attribute's value to unbounded.

minOccurs Specifies the minimum number of times an instance
of the element can appear in the parent element. The
default value is 1.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

306

processContents Specifies how the element used to instantiate the
any element should be validated. Valid values are:

strict

Specifies that the element must be validated
against the proper schema. This is the default
value.

lax

Specifies that the element should be validated
against the proper schema. If it cannot be
validated, no errors are thrown.

skip

Specifies that the element should not be
validated.

Attribute Description

Example 35.3, “Complex Type Defined with an Any Element” shows a complex type defined with an
any element

Example 35.3. Complex Type Defined with an Any Element

Mapping to Java

XML Schema any elements result in the creation of a Java property named any. The property has
associated getter and setter methods. The type of the resulting property depends on the value of the
element's processContents attribute. If the any element's processContents attribute is set to
skip, the element is mapped to a org.w3c.dom.Element object. For all other values of the
processContents attribute an any element is mapped to a Java Object object.

The generated property is decorated with the @XmlAnyElement annotation. This annotation has an
optional lax property that instructs the runtime what to do when marshaling the data. Its default value
is false which instructs the runtime to automatically marshal the data into a
org.w3c.dom.Element object. Setting lax to true instructs the runtime to attempt to marshal the
data into JAXB types. When the any element's processContents attribute is set to skip, the lax
property is set to its default value. For all other values of the processContents attribute, lax is set to
true.

Example 35.4, “Java Class with an Any Element” shows how the complex type defined in
Example 35.3, “Complex Type Defined with an Any Element” is mapped to a Java class.

<complexType name="surprisePackage">
 <sequence>
 <any processContents="lax" />
 <element name="to" type="xsd:string" />
 <element name="from" type="xsd:string" />
 </sequence>
</complexType>

CHAPTER 35. USING WILD CARD TYPES

307

Example 35.4. Java Class with an Any Element

Marshalling

If the Java property for an any element has its lax set to false, or the property is not specified, the
runtime makes no attempt to parse the XML data into JAXB objects. The data is always stored in a
DOM Element object.

If the Java property for an any element has its lax set to true, the runtime attempts to marshal the
XML data into the appropriate JAXB objects. The runtime attempts to identify the proper JAXB
classes using the following procedure:

1. It checks the element tag of the XML element against the list of elements known to the
runtime. If it finds a match, the runtime marshals the XML data into the proper JAXB class for
the element.

2. It checks the XML element's xsi:type attribute. If it finds a match, the runtime marshals the
XML element into the proper JAXB class for that type.

public class SurprisePackage {

 @XmlAnyElement(lax = true)
 protected Object any;
 @XmlElement(required = true)
 protected String to;
 @XmlElement(required = true)
 protected String from;

 public Object getAny() {
 return any;
 }

 public void setAny(Object value) {
 this.any = value;
 }

 public String getTo() {
 return to;
 }

 public void setTo(String value) {
 this.to = value;
 }

 public String getFrom() {
 return from;
 }

 public void setFrom(String value) {
 this.from = value;
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

308

3. If it cannot find a match it marshals the XML data into a DOM Element object.

Usually an application's runtime knows about all of the types generated from the schema's included in
its contract. This includes the types defined in the contract's wsdl:types element, any data types
added to the contract through inclusion, and any types added to the contract through importing other
schemas. You can also make the runtime aware of additional types using the @XmlSeeAlso annotation
which is described in Section 31.4, “Adding Classes to the Runtime Marshaller” .

Unmarshalling

If the Java property for an any element has its lax set to false, or the property is not specified, the
runtime will only accept DOM Element objects. Attempting to use any other type of object will result
in a marshalling error.

If the Java property for an any element has its lax set to true, the runtime uses its internal map
between Java data types and the XML Schema constructs they represent to determine the XML
structure to write to the wire. If the runtime knows the class and can map it to an XML Schema
construct, it writes out the data and inserts an xsi:type attribute to identify the type of data the
element contains.

If the runtime cannot map the Java object to a known XML Schema construct, it will throw a marshaling
exception. You can add types to the runtime's map using the @XmlSeeAlso annotation which is
described in Section 31.4, “Adding Classes to the Runtime Marshaller” .

35.2. USING THE XML SCHEMA ANYTYPE TYPE

Overview

The XML Schema type xsd:anyType is the root type for all XML Schema types. All of the primitives are
derivatives of this type, as are all user defined complex types. As a result, elements defined as being of
xsd:anyType can contain data in the form of any of the XML Schema primitives as well as any complex
type defined in a schema document.

In Java the closest matching type is the Object class. It is the class from which all other Java classes
are sub-typed.

Using in XML Schema

You use the xsd:anyType type as you would any other XML Schema complex type. It can be used as the
value of an element element's type element. It can also be used as the base type from which other
types are defined.

Example 35.5, “Complex Type with a Wild Card Element” shows an example of a complex type that
contains an element of type xsd:anyType.

Example 35.5. Complex Type with a Wild Card Element

<complexType name="wildStar">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="ship" type="xsd:anyType" />
 </sequence>
</complexType>

CHAPTER 35. USING WILD CARD TYPES

309

Mapping to Java

Elements that are of type xsd:anyType are mapped to Object objects. Example 35.6, “Java
Representation of a Wild Card Element” shows the mapping of Example 35.5, “Complex Type with a
Wild Card Element” to a Java class.

Example 35.6. Java Representation of a Wild Card Element

This mapping allows you to place any data into the property representing the wild card element. The
Apache CXF runtime handles the marshaling and unmarshaling of the data into usable Java
representation.

Marshalling

When Apache CXF marshals XML data into Java types, it attempts to marshal anyType elements into
known JAXB objects. To determine if it is possible to marshal an anyType element into a JAXB
generated object, the runtime inspects the element's xsi:type attribute to determine the actual type
used to construct the data in the element. If the xsi:type attribute is not present, the runtime
attempts to identify the element's actual data type by introspection. If the element's actual data type
is determined to be one of the types known by the application's JAXB context, the element is
marshaled into a JAXB object of the proper type.

If the runtime cannot determine the actual data type of the element, or the actual data type of the
element is not a known type, the runtime marshals the content into a org.w3c.dom.Element object.
You will then need to work with the element's content using the DOM APis.

An application's runtime usually knows about all of the types generated from the schema's included in
its contract. This includes the types defined in the contract's wsdl:types element, any data types

public class WildStar {

 @XmlElement(required = true)
 protected String name;
 @XmlElement(required = true)
 protected Object ship;

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public Object getShip() {
 return ship;
 }

 public void setShip(Object value) {
 this.ship = value;
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

310

added to the contract through inclusion, and any types added to the contract through importing other
schema documents. You can also make the runtime aware of additional types using the @XmlSeeAlso
annotation which is described in Section 31.4, “Adding Classes to the Runtime Marshaller” .

Unmarshalling

When Apache CXF unmarshals Java types into XML data, it uses an internal map between Java data
types and the XML Schema constructs they represent to determine the XML structure to write to the
wire. If the runtime knows the class and can map the class to an XML Schema construct, it writes out
the data and inserts an xsi:type attribute to identify the type of data the element contains. If the
data is stored in a org.w3c.dom.Element object, the runtime writes the XML structure represented
by the object but it does not include an xsi:type attribute.

If the runtime cannot map the Java object to a known XML Schema construct, it throws a marshaling
exception. You can add types to the runtime's map using the @XmlSeeAlso annotation which is
described in Section 31.4, “Adding Classes to the Runtime Marshaller” .

35.3. USING UNBOUND ATTRIBUTES

Overview

XML Schema has a mechanism that allows you to leave a place holder for an arbitrary attribute in a
complex type definition. Using this mechanism, you can define a complex type that can have any
attribute. For example, you can create a type that defines the elements <robot name="epsilon" />,
<robot age="10000" />, or <robot type="weevil" /> without specifying the three attributes. This can
be particularly useful when flexibility in your data is required.

Defining in XML Schema

Undeclared attributes are defined in XML Schema using the anyAttribute element. It can be used
wherever an attribute element can be used. The anyAttribute element has no attributes, as shown
in Example 35.7, “Complex Type with an Undeclared Attribute” .

Example 35.7. Complex Type with an Undeclared Attribute

The defined type, arbitter, has two elements and can have one attribute of any type. The elements three
elements shown in Example 35.8, “Examples of Elements Defined with a Wild Card Attribute” can all be
generated from the complex type arbitter.

Example 35.8. Examples of Elements Defined with a Wild Card Attribute

<complexType name="arbitter">
 <sequence>
 <element name="name" type="xsd:string" />
 <element name="rate" type="xsd:float" />
 </sequence>
 <anyAttribute />
</complexType>

<officer rank="12"><name>...</name><rate>...</rate></officer>
<lawyer type="divorce"><name>...</name><rate>...</rate></lawyer>
<judge><name>...</name><rate>...</rate></judge>

CHAPTER 35. USING WILD CARD TYPES

311

Mapping to Java

When a complex type containing an anyAttribute element is mapped to Java, the code generator
adds a member called otherAttributes to the generated class. otherAttributes is of type
java.util.Map<QName, String> and it has a getter method that returns a live instance of the map.
Because the map returned from the getter is live, any modifications to the map are automatically
applied. Example 35.9, “Class for a Complex Type with an Undeclared Attribute” shows the class
generated for the complex type defined in Example 35.7, “Complex Type with an Undeclared
Attribute”.

Example 35.9. Class for a Complex Type with an Undeclared Attribute

Working with undeclared attributes

The otherAttributes member of the generated class expects to be populated with a Map object.
The map is keyed using QNames. Once you get the map , you can access any attributes set on the
object and set new attributes on the object.

Example 35.10, “Working with Undeclared Attributes” shows sample code for working with undeclared

public class Arbitter {

 @XmlElement(required = true)
 protected String name;
 protected float rate;

 @XmlAnyAttribute
 private Map<QName, String> otherAttributes = new HashMap<QName,
String>();

 public String getName() {
 return name;
 }

 public void setName(String value) {
 this.name = value;
 }

 public float getRate() {
 return rate;
 }

 public void setRate(float value) {
 this.rate = value;
 }

 public Map<QName, String> getOtherAttributes() {
 return otherAttributes;
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

312

1

2

3

2

attributes.

Example 35.10. Working with Undeclared Attributes

The code in Example 35.10, “Working with Undeclared Attributes” does the following:

Gets the map containing the undeclared attributes.

Creates QNames to work with the attributes.

Sets the values for the attributes into the map.

Retrieves the value for one of the attributes.

1

2

3

4

Arbitter judge = new Arbitter();
Map<QName, String> otherAtts = judge.getOtherAttributes();

QName at1 = new QName("test.apache.org", "house");
QName at2 = new QName("test.apache.org", "veteran");

otherAtts.put(at1, "Cape");
otherAtts.put(at2, "false");

String vetStatus = otherAtts.get(at2);

CHAPTER 35. USING WILD CARD TYPES

313

CHAPTER 36. ELEMENT SUBSTITUTION

Abstract

XML Schema substitution groups allow you to define a group of elements that can replace a top level,
or head, element. This is useful in cases where you have multiple elements that share a common base
type or with elements that need to be interchangeable.

36.1. SUBSTITUTION GROUPS IN XML SCHEMA

Overview

A substitution group is a feature of XML schema that allows you to specify elements that can replace
another element in documents generated from that schema. The replaceable element is called the
head element and must be defined in the schema’s global scope. The elements of the substitution
group must be of the same type as the head element or a type that is derived from the head element’s
type.

In essence, a substitution group allows you to build a collection of elements that can be specified using
a generic element. For example, if you are building an ordering system for a company that sells three
types of widgets you might define a generic widget element that contains a set of common data for all
three widget types. Then you can define a substitution group that contains a more specific set of data
for each type of widget. In your contract you can then specify the generic widget element as a message
part instead of defining a specific ordering operation for each type of widget. When the actual message
is built, the message can contain any of the elements of the substitution group.

Syntax

Substitution groups are defined using the substitutionGroup attribute of the XML Schema
element element. The value of the substitutionGroup attribute is the name of the element that
the element being defined replaces. For example, if your head element is widget, adding the attribute
substitutionGroup="widget" to an element named woodWidget specifies that anywhere a widget
element is used, you can substitute a woodWidget element. This is shown in Example 36.1, “Using a
Substitution Group”.

Example 36.1. Using a Substitution Group

Type restrictions

The elements of a substitution group must be of the same type as the head element or of a type derived
from the head element’s type. For example, if the head element is of type xsd:int all members of the
substitution group must be of type xsd:int or of a type derived from xsd:int. You can also define a
substitution group similar to the one shown in Example 36.2, “Substitution Group with Complex Types”
where the elements of the substitution group are of types derived from the head element’s type.

Example 36.2. Substitution Group with Complex Types

<element name="widget" type="xsd:string" />
<element name="woodWidget" type="xsd:string"
 substitutionGroup="widget" />

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

314

The head element of the substitution group, widget, is defined as being of type widgetType. Each
element of the substitution group extends widgetType to include data that is specific to ordering that
type of widget.

Based on the schema in Example 36.2, “Substitution Group with Complex Types” , the part elements in
Example 36.3, “XML Document using a Substitution Group” are valid.

Example 36.3. XML Document using a Substitution Group

<complexType name="widgetType">
 <sequence>
 <element name="shape" type="xsd:string" />
 <element name="color" type="xsd:string" />
 </sequence>
</complexType>
<complexType name="woodWidgetType">
 <complexContent>
 <extension base="widgetType">
 <sequence>
 <element name="woodType" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
<complexType name="plasticWidgetType">
 <complexContent>
 <extension base="widgetType">
 <sequence>
 <element name="moldProcess" type="xsd:string" />
 </sequence>
 </extension>
 </complexContent>
</complexType>
<element name="widget" type="widgetType" />
<element name="woodWidget" type="woodWidgetType"
 substitutionGroup="widget" />
<element name="plasticWidget" type="plasticWidgetType"
 substitutionGroup="widget" />
<complexType name="partType">
 <sequence>
 <element ref="widget" />
 </sequence>
</complexType>
<element name="part" type="partType" />

<part>
 <widget>
 <shape>round</shape>
 <color>blue</color>
 </widget>
</part>
<part>
 <plasticWidget>
 <shape>round</shape>

CHAPTER 36. ELEMENT SUBSTITUTION

315

Abstract head elements

You can define an abstract head element that can never appear in a document produced using your
schema. Abstract head elements are similar to abstract classes in Java because they are used as the
basis for defining more specific implementations of a generic class. Abstract heads also prevent the
use of the generic element in the final product.

You declare an abstract head element by setting the abstract attribute of an element element to
true, as shown in Example 36.4, “Abstract Head Definition”. Using this schema, a valid review
element can contain either a positiveComment element or a negativeComment element, but
cannot contain a comment element.

Example 36.4. Abstract Head Definition

36.2. SUBSTITUTION GROUPS IN JAVA

Overview

Apache CXF, as specified in the JAXB specification, supports substitution groups using Java's native
class hierarchy in combination with the ability of the JAXBElement class' support for wildcard
definitions. Because the members of a substitution group must all share a common base type, the
classes generated to support the elements' types also share a common base type. In addition, Apache
CXF maps instances of the head element to JAXBElement<? extends T> properties.

 <color>blue</color>
 <moldProcess>sandCast</moldProcess>
 </plasticWidget>
</part>
<part>
 <woodWidget>
 <shape>round</shape>
 <color>blue</color>
 <woodType>elm</woodType>
 </woodWidget>
</part>

<element name="comment" type="xsd:string" abstract="true" />
<element name="positiveComment" type="xsd:string"
 substitutionGroup="comment" />
<element name="negtiveComment" type="xsd:string"
 substitutionGroup="comment" />
<element name="review">
 <complexContent>
 <all>
 <element name="custName" type="xsd:string" />
 <element name="impression" ref="comment" />
 </all>
 </complexContent>
</element>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

316

Generated object factory methods

The object factory generated to support a package containing a substitution group has methods for
each of the elements in the substitution group. For each of the members of the substitution group,
except for the head element, the @XmlElementDecl annotation decorating the object factory method
includes two additional properties, as described in Table 36.1, “Properties for Declaring a JAXB
Element is a Member of a Substitution Group”.

Table 36.1. Properties for Declaring a JAXB Element is a Member of a Substitution Group

Property Description

substitutionHeadNamespace Specifies the namespace where the head element is
defined.

substitutionHeadName Specifies the value of the head element's name
attribute.

The object factory method for the head element of the substitution group's @XmlElementDecl
contains only the default namespace property and the default name property.

In addition to the element instantiation methods, the object factory contains a method for instantiating
an object representing the head element. If the members of the substitution group are all of complex
types, the object factory also contains methods for instantiating instances of each complex type used.

Example 36.5, “Object Factory Method for a Substitution Group” shows the object factory method for
the substitution group defined in Example 36.2, “Substitution Group with Complex Types” .

Example 36.5. Object Factory Method for a Substitution Group

public class ObjectFactory {

 private final static QName _Widget_QNAME = new QName(...);
 private final static QName _PlasticWidget_QNAME = new QName(...);
 private final static QName _WoodWidget_QNAME = new QName(...);

 public ObjectFactory() {
 }

 public WidgetType createWidgetType() {
 return new WidgetType();
 }

 public PlasticWidgetType createPlasticWidgetType() {
 return new PlasticWidgetType();
 }

 public WoodWidgetType createWoodWidgetType() {
 return new WoodWidgetType();
 }

 @XmlElementDecl(namespace="...", name = "widget")
 public JAXBElement<WidgetType> createWidget(WidgetType value) {
 return new JAXBElement<WidgetType>(_Widget_QNAME,

CHAPTER 36. ELEMENT SUBSTITUTION

317

Substitution groups in interfaces

If the head element of a substitution group is used as a message part in one of an operation's
messages, the resulting method parameter will be an object of the class generated to support that
element. It will not necessarily be an instance of the JAXBElement<? extends T> class. The
runtime relies on Java's native type hierarchy to support the type substitution, and Java will catch any
attempts to use unsupported types.

To ensure that the runtime knows all of the classes needed to support the element substitution, the
SEI is decorated with the @XmlSeeAlso annotation. This annotation specifies a list of classes required
by the runtime for marshalling. Fore more information on using the @XmlSeeAlso annotation see
Section 31.4, “Adding Classes to the Runtime Marshaller” .

Example 36.7, “Generated Interface Using a Substitution Group” shows the SEI generated for the
interface shown in Example 36.6, “WSDL Interface Using a Substitution Group” . The interface uses the
substitution group defined in Example 36.2, “Substitution Group with Complex Types” .

Example 36.6. WSDL Interface Using a Substitution Group

WidgetType.class, null, value);
 }

 @XmlElementDecl(namespace = "...", name = "plasticWidget",
substitutionHeadNamespace = "...", substitutionHeadName = "widget")
 public JAXBElement<PlasticWidgetType>
createPlasticWidget(PlasticWidgetType value) {
 return new JAXBElement<PlasticWidgetType>(_PlasticWidget_QNAME,
PlasticWidgetType.class, null, value);
 }

 @XmlElementDecl(namespace = "...", name = "woodWidget",
substitutionHeadNamespace = "...", substitutionHeadName = "widget")
 public JAXBElement<WoodWidgetType> createWoodWidget(WoodWidgetType
value) {
 return new JAXBElement<WoodWidgetType>(_WoodWidget_QNAME,
WoodWidgetType.class, null, value);
 }

}

<message name="widgetMessage">
 <part name="widgetPart" element="xsd1:widget" />
 </message>
 <message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
 </message>
 <message name="badSize">
 <part name="numInventory" type="xsd:int" />
 </message>
 <portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order" />
 <output message="tns:widgetOrderBill" name="bill" />
 <fault message="tns:badSize" name="sizeFault" />

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

318

Example 36.7. Generated Interface Using a Substitution Group

TIP

The SEI shown in Example 36.7, “Generated Interface Using a Substitution Group” lists the object
factory in the @XmlSeeAlso annotation. Listing the object factory for a namespace provides access to
all of the generated classes for that namespace.

Substitution groups in complex types

When the head element of a substitution group is used as an element in a complex type, the code
generator maps the element to a JAXBElement<? extends T> property. It does not map it to a
property containing an instance of the generated class generated to support the substitution group.

For example, the complex type defined in Example 36.8, “Complex Type Using a Substitution Group”
results in the Java class shown in Example 36.9, “Java Class for a Complex Type Using a Substitution
Group”. The complex type uses the substitution group defined in Example 36.2, “Substitution Group
with Complex Types”.

Example 36.8. Complex Type Using a Substitution Group

 </operation>
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />
 <output message="tns:numWidgets" name="response" />
 </operation>
 </portType>

@WebService(targetNamespace = "...", name = "orderWidgets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "numInventory", targetNamespace = "", partName =
"numInventory")
 @WebMethod
 public int checkWidgets(
 @WebParam(partName = "widgetPart", name = "widget",
targetNamespace = "...")
 com.widgetvendor.types.widgettypes.WidgetType widgetPart
);
}

<complexType name="widgetOrderInfo">
 <sequence>
 <element name="amount" type="xsd:int"/>
 <element ref="xsd1:widget"/>
 </sequence>
</complexType>

CHAPTER 36. ELEMENT SUBSTITUTION

319

Example 36.9. Java Class for a Complex Type Using a Substitution Group

Setting a substitution group property

How you work with a substitution group depends on whether the code generator mapped the group to
a straight Java class or to a JAXBElement<? extends T> class. When the element is simply mapped
to an object of the generated value class, you work with the object the same way you work with other
Java objects that are part of a type hierarchy. You can substitute any of the subclasses for the parent
class. You can inspect the object to determine its exact class, and cast it appropriately.

TIP

The JAXB specification recommends that you use the object factory methods for instantiating objects
of the generated classes.

When the code generators create a JAXBElement<? extends T> object to hold instances of a
substitution group, you must wrap the element's value in a JAXBElement<? extends T> object. The
best method to do this is to use the element creation methods provided by the object factory. They
provide an easy means for creating an element based on its value.

Example 36.10, “Setting a Member of a Substitution Group” shows code for setting an instance of a
substitution group.

Example 36.10. Setting a Member of a Substitution Group

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "widgetOrderInfo", propOrder = {"amount","widget",})
public class WidgetOrderInfo {

 protected int amount;
 @XmlElementRef(name = "widget", namespace = "...", type =
JAXBElement.class)
 protected JAXBElement<? extends WidgetType> widget;
 public int getAmount() {
 return amount;
 }

 public void setAmount(int value) {
 this.amount = value;
 }

 public JAXBElement<? extends WidgetType> getWidget() {
 return widget;
 }

 public void setWidget(JAXBElement<? extends WidgetType> value) {
 this.widget = ((JAXBElement<? extends WidgetType>) value);
 }

}

1 ObjectFactory of = new ObjectFactory();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

320

1

2

3

4

5

The code in Example 36.10, “Setting a Member of a Substitution Group” does the following:

Instantiates an object factory.

Instantiates a PlasticWidgetType object.

Instantiates a JAXBElement<PlasticWidgetType> object to hold a plastic widget element.

Instantiates a WidgetOrderInfo object.

Sets the WidgetOrderInfo object's widget to the JAXBElement object holding the plastic
widget element.

Getting the value of a substitution group property

The object factory methods do not help when extracting the element's value from a JAXBElement<?
extends T> object. You must to use the JAXBElement<? extends T> object's getValue()
method. The following options determine the type of object returned by the getValue() method:

Use the isInstance() method of all the possible classes to determine the class of the
element's value object.

Use the JAXBElement<? extends T> object's getName() method to determine the
element's name.

The getName() method returns a QName. Using the local name of the element, you can
determine the proper class for the value object.

Use the JAXBElement<? extends T> object's getDeclaredType() method to determine
the class of the value object.

The getDeclaredType() method returns the Class object of the element's value object.

WARNING

There is a possibility that the getDeclaredType() method will return
the base class for the head element regardless of the actual class of the
value object.

2

3
4

5

PlasticWidgetType pWidget = of.createPlasticWidgetType();
pWidget.setShape = "round';

pWidget.setColor = "green";
pWidget.setMoldProcess = "injection";

JAXBElement<PlasticWidgetType> widget = of.createPlasticWidget(pWidget);

WidgetOrderInfo order = of.createWidgetOrderInfo();
order.setWidget(widget);



CHAPTER 36. ELEMENT SUBSTITUTION

321

Example 36.11, “Getting the Value of a Member of the Substitution Group” shows code retrieving the
value from a substitution group. To determine the proper class of the element's value object the
example uses the element's getName() method.

Example 36.11. Getting the Value of a Member of the Substitution Group

36.3. WIDGET VENDOR EXAMPLE

This section shows an example of substitution groups being used in Apache CXF to solve a real world
application. A service and consumer are developed using the widget substitution group defined in
Example 36.2, “Substitution Group with Complex Types” . The service offers two operations:
checkWidgets and placeWidgetOrder. Example 36.12, “Widget Ordering Interface” shows the
interface for the ordering service.

Example 36.12. Widget Ordering Interface

String elementName = order.getWidget().getName().getLocalPart();
if (elementName.equals("woodWidget")
{
 WoodWidgetType widget=order.getWidget().getValue();
}
else if (elementName.equals("plasticWidget")
{
 PlasticWidgetType widget=order.getWidget().getValue();
}
else
{
 WidgetType widget=order.getWidget().getValue();
}

<message name="widgetOrder">
 <part name="widgetOrderForm" type="xsd1:widgetOrderInfo"/>
</message>
<message name="widgetOrderBill">
 <part name="widgetOrderConformation"
 type="xsd1:widgetOrderBillInfo"/>
</message>
<message name="widgetMessage">
 <part name="widgetPart" element="xsd1:widget" />
</message>
<message name="numWidgets">
 <part name="numInventory" type="xsd:int" />
</message>
<portType name="orderWidgets">
 <operation name="placeWidgetOrder">
 <input message="tns:widgetOrder" name="order"/>
 <output message="tns:widgetOrderBill" name="bill"/>
 </operation>
 <operation name="checkWidgets">
 <input message="tns:widgetMessage" name="request" />
 <output message="tns:numWidgets" name="response" />
 </operation>
</portType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

322

Example 36.13, “Widget Ordering SEI” shows the generated Java SEI for the interface.

Example 36.13. Widget Ordering SEI

NOTE

Because the example only demonstrates the use of substitution groups, some of the
business logic is not shown.

36.3.1. The checkWidgets Operation

Overview

checkWidgets is a simple operation that has a parameter that is the head member of a substitution
group. This operation demonstrates how to deal with individual parameters that are members of a
substitution group. The consumer must ensure that the parameter is a valid member of the
substitution group. The service must properly determine which member of the substitution group was
sent in the request.

Consumer implementation

The generated method signature uses the Java class supporting the type of the substitution group's
head element. Because the member elements of a substitution group are either of the same type as the

@WebService(targetNamespace = "http://widgetVendor.com/widgetOrderForm",
name = "orderWidgets")
@XmlSeeAlso({com.widgetvendor.types.widgettypes.ObjectFactory.class})
public interface OrderWidgets {

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "numInventory", targetNamespace = "", partName =
"numInventory")
 @WebMethod
 public int checkWidgets(
 @WebParam(partName = "widgetPart", name = "widget",
targetNamespace = "http://widgetVendor.com/types/widgetTypes")
 com.widgetvendor.types.widgettypes.WidgetType widgetPart
);

 @SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)
 @WebResult(name = "widgetOrderConformation", targetNamespace = "",
partName = "widgetOrderConformation")
 @WebMethod
 public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo
placeWidgetOrder(
 @WebParam(partName = "widgetOrderForm", name =
"widgetOrderForm", targetNamespace = "")
 com.widgetvendor.types.widgettypes.WidgetOrderInfo
widgetOrderForm
) throws BadSize;
}

CHAPTER 36. ELEMENT SUBSTITUTION

323

head element or of a type derived from the head element's type, the Java classes generated to support
the members of the substitution group inherit from the Java class generated to support the head
element. Java's type hierarchy natively supports using subclasses in place of the parent class.

Because of how Apache CXF generates the types for a substitution group and Java's type hierarchy,
the client can invoke checkWidgets() without using any special code. When developing the logic to
invoke checkWidgets() you can pass in an object of one of the classes generated to support the
widget substitution group.

Example 36.14, “Consumer Invoking checkWidgets()” shows a consumer invoking
checkWidgets().

Example 36.14. Consumer Invoking checkWidgets()

Service implementation

The service's implementation of checkWidgets() gets a widget description as a WidgetType object,
checks the inventory of widgets, and returns the number of widgets in stock. Because all of the classes
used to implement the substitution group inherit from the same base class, you can implement
checkWidgets() without using any JAXB specific APIs.

System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
 case '1':
 {
 WidgetType widget = new WidgetType();
 ...
 break;
 }
 case '2':
 {
 WoodWidgetType widget = new WoodWidgetType();
 ...
 break;
 }
 case '3':
 {
 PlasticWidgetType widget = new PlasticWidgetType();
 ...
 break;
 }
 default :
 System.out.println("Invaid Widget Selection!!");
}

proxy.checkWidgets(widgets);

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

324

All of the classes generated to support the members of the substitution group for widget extend the
WidgetType class. Because of this fact, you can use instanceof to determine what type of widget
was passed in and simply cast the widgetPart object into the more restrictive type if appropriate.
Once you have the proper type of object, you can check the inventory of the right kind of widget.

Example 36.15, “Service Implementation of checkWidgets()” shows a possible implementation.

Example 36.15. Service Implementation of checkWidgets()

36.3.2. The placeWidgetOrder Operation

Overview

placeWidgetOrder uses two complex types containing the substitution group. This operation
demonstrates to use such a structure in a Java implementation. Both the consumer and the service
must get and set members of a substitution group.

Consumer implementation

To invoke placeWidgetOrder() the consumer must construct a widget order containing one
element of the widget substitution group. When adding the widget to the order, the consumer should
use the object factory methods generated for each element of the substitution group. This ensures that
the runtime and the service can correctly process the order. For example, if an order is being placed
for a plastic widget, the ObjectFactory.createPlasticWidget() method is used to create the
element before adding it to the order.

Example 36.16, “Setting a Substitution Group Member” shows consumer code for setting the widget
property of the WidgetOrderInfo object.

Example 36.16. Setting a Substitution Group Member

public int checkWidgets(WidgetType widgetPart)
{
 if (widgetPart instanceof WidgetType)
 {
 return checkWidgetInventory(widgetType);
 }
 else if (widgetPart instanceof WoodWidgetType)
 {
 WoodWidgetType widget = (WoodWidgetType)widgetPart;
 return checkWoodWidgetInventory(widget);
 }
 else if (widgetPart instanceof PlasticWidgetType)
 {
 PlasticWidgetType widget = (PlasticWidgetType)widgetPart;
 return checkPlasticWidgetInventory(widget);
 }
}

ObjectFactory of = new ObjectFactory();

WidgetOrderInfo order = new of.createWidgetOrderInfo();

CHAPTER 36. ELEMENT SUBSTITUTION

325

...
System.out.println();
System.out.println("What color widgets do you want to order?");
String color = reader.readLine();
System.out.println();
System.out.println("What shape widgets do you want to order?");
String shape = reader.readLine();
System.out.println();
System.out.println("What type of widgets do you want to order?");
System.out.println("1 - Normal");
System.out.println("2 - Wood");
System.out.println("3 - Plastic");
System.out.println("Selection [1-3]");
String selection = reader.readLine();
String trimmed = selection.trim();
char widgetType = trimmed.charAt(0);
switch (widgetType)
{
 case '1':
 {
 WidgetType widget = of.createWidgetType();
 widget.setColor(color);
 widget.setShape(shape);
 JAXB<WidgetType> widgetElement = of.createWidget(widget);
 order.setWidget(widgetElement);
 break;
 }
 case '2':
 {
 WoodWidgetType woodWidget = of.createWoodWidgetType();
 woodWidget.setColor(color);
 woodWidget.setShape(shape);
 System.out.println();
 System.out.println("What type of wood are your widgets?");
 String wood = reader.readLine();
 woodWidget.setWoodType(wood);
 JAXB<WoodWidgetType> widgetElement =
of.createWoodWidget(woodWidget);
 order.setWoodWidget(widgetElement);
 break;
 }
 case '3':
 {
 PlasticWidgetType plasticWidget = of.createPlasticWidgetType();
 plasticWidget.setColor(color);
 plasticWidget.setShape(shape);
 System.out.println();
 System.out.println("What type of mold to use for your
 widgets?");
 String mold = reader.readLine();
 plasticWidget.setMoldProcess(mold);
 JAXB<WidgetType> widgetElement =
of.createPlasticWidget(plasticWidget);
 order.setPlasticWidget(widgetElement);
 break;
 }

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

326

Service implementation

The placeWidgetOrder() method receives an order in the form of a WidgetOrderInfo object,
processes the order, and returns a bill to the consumer in the form of a WidgetOrderBillInfo
object. The orders can be for a plain widget, a plastic widget, or a wooden widget. The type of widget
ordered is determined by what type of object is stored in widgetOrderForm object’s widget property.
The widget property is a substitution group and can contain a widget element, a woodWidget
element, or a plasticWidget element.

The implementation must determine which of the possible elements is stored in the order. This can be
accomplished using the JAXBElement<? extends T> object's getName() method to determine the
element's QName. The QName can then be used to determine which element in the substitution group
is in the order. Once the element included in the bill is known, you can extract its value into the proper
type of object.

Example 36.17, “Implementation of placeWidgetOrder()” shows a possible implementation.

Example 36.17. Implementation of placeWidgetOrder()

 default :
 System.out.println("Invaid Widget Selection!!");
 }

1

2

3

4
5

6

7
8

9

public com.widgetvendor.types.widgettypes.WidgetOrderBillInfo
placeWidgetOrder(WidgetOrderInfo widgetOrderForm)
{

 ObjectFactory of = new ObjectFactory();

 WidgetOrderBillInfo bill = new WidgetOrderBillInfo()

 // Copy the shipping address and the number of widgets
 // ordered from widgetOrderForm to bill
 ...

 int numOrdered = widgetOrderForm.getAmount();

 String elementName =
widgetOrderForm.getWidget().getName().getLocalPart();

 if (elementName.equals("woodWidget")
 {

 WoodWidgetType widget=order.getWidget().getValue();
 buildWoodWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<WoodWidgetType> widgetElement =

of.createWoodWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.75;
 bill.setAmountDue(amtDue);
 }

 else if (elementName.equals("plasticWidget")
 {
 PlasticWidgetType widget=order.getWidget().getValue();

CHAPTER 36. ELEMENT SUBSTITUTION

327

1

2

3

4

5

6

7

8

9

The code in Example 36.17, “Implementation of placeWidgetOrder()” does the following:

Instantiates an object factory to create elements.

Instantiates a WidgetOrderBillInfo object to hold the bill.

Gets the number of widgets ordered.

Gets the local name of the element stored in the order.

Checks to see if the element is a woodWidget element.

Extracts the value of the element from the order to the proper type of object.

Creates a JAXBElement<T> object placed into the bill.

Sets the bill object's widget property.

Sets the bill object's amountDue property.

 buildPlasticWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<PlasticWidgetType> widgetElement =
of.createPlasticWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.90;
 bill.setAmountDue(amtDue);
 }
 else
 {
 WidgetType widget=order.getWidget().getValue();
 buildWidget(widget, numOrdered);

 // Add the widget info to bill
 JAXBElement<WidgetType> widgetElement = of.createWidget(widget);
 bill.setWidget(widgetElement);

 float amtDue = numOrdered * 0.30;
 bill.setAmountDue(amtDue);
 }

 return(bill);
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

328

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

Abstract

The default JAXB mappings address most of the cases encountered when using XML Schema to define
the objects for a Java application. For instances where the default mappings are insufficient, JAXB
provides an extensive customization mechanism.

37.1. BASICS OF CUSTOMIZING TYPE MAPPINGS

Overview

The JAXB specification defines a number of XML elements that customize how Java types are mapped
to XML Schema constructs. These elements can be specified in-line with XML Schema constructs. If
you cannot, or do not want to, modify the XML Schema definitions, you can specify the customizations
in external binding document.

Namespace

The elements used to customize the JAXB data bindings are defined in the namespace
http://java.sun.com/xml/ns/jaxb. You must add a namespace declaration similar to the one
shown in Example 37.1, “JAXB Customization Namespace” . This is added to the root element of all XML
documents defining JAXB customizations.

Example 37.1. JAXB Customization Namespace

Version declaration

When using the JAXB customizations, you must indicate the JAXB version being used. This is done by
adding a jaxb:version attribute to the root element of the external binding declaration. If you are
using in-line customization, you must include the jaxb:version attribute in the schema element
containing the customizations. The value of the attribute is always 2.0.

Example 37.2, “Specifying the JAXB Customization Version” shows an example of the jaxb:version
attribute used in a schema element.

Example 37.2. Specifying the JAXB Customization Version

Using in-line customization

The most direct way to customize how the code generators map XML Schema constructs to Java
constructs is to add the customization elements directly to the XML Schema definitions. The JAXB
customization elements are placed inside the xsd:appinfo element of the XML schema construct

xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

< schema ...
 jaxb:version="2.0">

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

329

that is being modified.

Example 37.3, “Customized XML Schema” shows an example of a schema containing an in-line JAXB
customization.

Example 37.3. Customized XML Schema

Using an external binding declaration

When you cannot, or do not want to, make changes to the XML Schema document that defines your
type, you can specify the customizations using an external binding declaration. An external binding
declaration consists of a number of nested jaxb:bindings elements. Example 37.4, “JAXB External
Binding Declaration Syntax” shows the syntax of an external binding declaration.

Example 37.4. JAXB External Binding Declaration Syntax

The schemaLocation attribute and the wsdlLocation attribute are used to identify the schema
document to which the modifications are applied. Use the schemaLocation attribute if you are
generating code from a schema document. Use the wsdlLocation attribute if you are generating
code from a WSDL document.

The node attribute is used to identify the specific XML schema construct that is to be modified. It is an
XPath statement that resolves to an XML Schema element.

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <complexType name="size">
 <annotation>
 <appinfo>
 <jaxb:class name="widgetSize" />
 </appinfo>
 </annotation>
 <sequence>
 <element name="longSize" type="xsd:string" />
 <element name="numberSize" type="xsd:int" />
 </sequence>
 </complexType>
<schema>

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings [schemaLocation="schemaUri" | wsdlLocation="wsdlUri">
 <jaxb:bindings node="nodeXPath">
 binding declaration
 </jaxb:bindings>
 ...
 </jaxb:bindings>
<jaxb:bindings>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

330

Given the schema document widgetSchema.xsd, shown in Example 37.5, “XML Schema File” , the
external binding declaration shown in Example 37.6, “External Binding Declaration” modifies the
generation of the complex type size.

Example 37.5. XML Schema File

Example 37.6. External Binding Declaration

To instruct the code generators to use the external binging declaration use the wsdl2java tool's -b
binding-file option, as shown below:

wsdl2java -b widgetBinding.xml widget.wsdl

37.2. SPECIFYING THE JAVA CLASS OF AN XML SCHEMA PRIMITIVE

Overview

By default, XML Schema types are mapped to Java primitive types. While this is the most logical
mapping between XML Schema and Java, it does not always meet the requirements of the application
developer. You might want to map an XML Schema primitive type to a Java class that can hold extra
information, or you might want to map an XML primitive type to a class that allows for simple type
substitution.

The JAXB javaType customization element allows you to customize the mapping between an XML
Schema primitive type and a Java primitive type. It can be used to customize the mappings at both the
global level and the individual instance level. You can use the javaType element as part of a simple
type definition or as part of a complex type definition.

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 version="1.0">
 <complexType name="size">
 <sequence>
 <element name="longSize" type="xsd:string" />
 <element name="numberSize" type="xsd:int" />
 </sequence>
 </complexType>
<schema>

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="wsdlSchema.xsd">
 <jaxb:bindings node="xsd:complexType[@name='size']">
 <jaxb:class name="widgetSize" />
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

331

When using the javaType customization element you must specify methods for converting the XML
representation of the primitive type to and from the target Java class. Some mappings have default
conversion methods. For instances where there are no default mappings, Apache CXF provides JAXB
methods to ease the development of the required methods.

Syntax

The javaType customization element takes four attributes, as described in Table 37.1, “Attributes for
Customizing the Generation of a Java Class for an XML Schema Type”.

Table 37.1. Attributes for Customizing the Generation of a Java Class for an XML Schema Type

Attribute Required Description

name Yes Specifies the name of the Java
class to which the XML Schema
primitive type is mapped. It must
be either a valid Java class name
or the name of a Java primitive
type. You must ensure that this
class exists and is accessible to
your application. The code
generator does not check for this
class.

xmlType No Specifies the XML Schema
primitive type that is being
customized. This attribute is only
used when the javaType
element is used as a child of the
globalBindings element.

parseMethod No Specifies the method responsible
for parsing the string-based XML
representation of the data into an
instance of the Java class. For
more information see the section
called “Specifying the
converters”.

printMethod No Specifies the method responsible
for converting a Java object to
the string-based XML
representation of the data. For
more information see the section
called “Specifying the
converters”.

The javaType customization element can be used in three ways:

To modify all instances of an XML Schema primitive type — The javaType element modifies all
instances of an XML Schema type in the schema document when it is used as a child of the
globalBindings customization element. When it is used in this manner, you must specify a

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

332

value for the xmlType attribute that identifies the XML Schema primitive type being modified.

Example 37.7, “Global Primitive Type Customization” shows an in-line global customization
that instructs the code generators to use java.lang.Integer for all instances of xsd:short
in the schema.

Example 37.7. Global Primitive Type Customization

To modify a simple type definition — The javaType element modifies the class generated for
all instances of an XML simple type when it is applied to a named simple type definition. When
using the javaType element to modify a simple type definition, do not use the xmlType
attribute.

Example 37.8, “Binding File for Customizing a Simple Type” shows an external binding file that
modifies the generation of a simple type named zipCode.

Example 37.8. Binding File for Customizing a Simple Type

To modify an element or attribute of a complex type definition — The javaType can be applied
to individual parts of a complex type definition by including it as part of a JAXB property
customization. The javaType element is placed as a child to the property's baseType

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings ...>
 <jaxb:javaType name="java.lang.Integer"
 xmlType="xsd:short" />
 </globalBindings
 </appinfo>
 </annotation>
 ...
</schema>

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings wsdlLocation="widgets.wsdl">
 <jaxb:bindings node="xsd:simpleType[@name='zipCode']">
 <jaxb:javaType
name="com.widgetVendor.widgetTypes.zipCodeType"

parseMethod="com.widgetVendor.widgetTypes.support.parseZipCode"

printMethod="com.widgetVendor.widgetTypes.support.printZipCode" />
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

333

element. When using the javaType element to modify a specific part of a complex type
definition, do not use the xmlType attribute.

Example 37.9, “Binding File for Customizing an Element in a Complex Type” shows a binding
file that modifies an element of a complex type.

Example 37.9. Binding File for Customizing an Element in a Complex Type

For more information on using the baseType element see Section 37.6, “Specifying the Base
Type of an Element or an Attribute”.

Specifying the converters

The Apache CXF cannot convert XML Schema primitive types into random Java classes. When you use
the javaType element to customize the mapping of an XML Schema primitive type, the code
generator creates an adapter class that is used to marshal and unmarshal the customized XML
Schema primitive type. A sample adapter class is shown in Example 37.10, “JAXB Adapter Class”.

Example 37.10. JAXB Adapter Class

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings
node="xsd:ComplexType[@name='widgetOrderInfo']">
 <jaxb:bindings node="xsd:element[@name='cost']">
 <jaxb:property>
 <jaxb:baseType>
 <jaxb:javaType
name="com.widgetVendor.widgetTypes.costType"
 parseMethod="parseCost"
 printMethod="printCost" >
 </jaxb:baseType>
 </jaxb:property>
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

public class Adapter1 extends XmlAdapter<String, javaType>
{
 public javaType unmarshal(String value)
 {
 return(parseMethod(value));
 }

 public String marshal(javaType value)
 {
 return(printMethod(value));
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

334

parseMethod and printMethod are replaced by the value of the corresponding parseMethod attribute
and printMethod attribute. The values must identify valid Java methods. You can specify the
method's name in one of two ways:

A fully qualified Java method name in the form of packagename.ClassName.methodName

A simple method name in the form of methodName

When you only provide a simple method name, the code generator assumes that the method
exists in the class specified by the javaType element's name attribute.

IMPORTANT

The code generators do not generate parse or print methods. You are responsible for
supplying them. For information on developing parse and print methods see the section
called “Implementing converters”.

If a value for the parseMethod attribute is not provided, the code generator assumes that the Java
class specified by the name attribute has a constructor whose first parameter is a Java String object.
The generated adapter's unmarshal() method uses the assumed constructor to populate the Java
object with the XML data.

If a value for the printMethod attribute is not provided, the code generator assumes that the Java
class specified by the name attribute has a toString() method. The generated adapter's marshal()
method uses the assumed toString() method to convert the Java object to XML data.

If the javaType element's name attribute specifies a Java primitive type, or one of the Java primitive's
wrapper types, the code generators use the default converters. For more information on default
converters see the section called “Default primitive type converters” .

What is generated

As mentioned in the section called “Specifying the converters” , using the javaType customization
element triggers the generation of one adapter class for each customization of an XML Schema
primitive type. The adapters are named in sequence using the pattern AdapterN. If you specify two
primitive type customizations, the code generators create two adapter classes: Adapter1 and
Adapter2.

The code generated for an XML schema construct depends on whether the effected XML Schema
construct is a globally defined element or is defined as part of a complex type.

When the XML Schema construct is a globally defined element, the object factory method generated
for the type is modified from the default method as follows:

The method is decorated with an @XmlJavaTypeAdapter annotation.

The annotation instructs the runtime which adapter class to use when processing instances of
this element. The adapter class is specified as a class object.

The default type is replaced by the class specified by the javaType element's name attribute.

Example 37.11, “Customized Object Factory Method for a Global Element” shows the object factory
method for an element affected by the customization shown in Example 37.7, “Global Primitive Type
Customization”.

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

335

Example 37.11. Customized Object Factory Method for a Global Element

When the XML Schema construct is defined as part of a complex type, the generated Java property is
modified as follows:

The property is decorated with an @XmlJavaTypeAdapter annotation.

The annotation instructs the runtime which adapter class to use when processing instances of
this element. The adapter class is specified as a class object.

The property's @XmlElement includes a type property.

The value of the type property is the class object representing the generated object's default
base type. In the case of XML Schema primitive types, the class is String.

The property is decorated with an @XmlSchemaType annotation.

The annotation identifies the XML Schema primitive type of the construct.

The default type is replaced by the class specified by the javaType element's name attribute.

Example 37.12, “Customized Complex Type” shows the object factory method for an element affected
by the customization shown in Example 37.7, “Global Primitive Type Customization” .

Example 37.12. Customized Complex Type

@XmlElementDecl(namespace = "http://widgetVendor.com/types/widgetTypes",
name = "shorty")
 @XmlJavaTypeAdapter(org.w3._2001.xmlschema.Adapter1 .class)
 public JAXBElement<Integer> createShorty(Integer value) {
 return new JAXBElement<Integer>(_Shorty_QNAME, Integer.class,
null, value);
 }

public class NumInventory {

 @XmlElement(required = true, type = String.class)
 @XmlJavaTypeAdapter(Adapter1 .class)
 @XmlSchemaType(name = "short")
 protected Integer numLeft;
 @XmlElement(required = true)
 protected String size;

 public Integer getNumLeft() {
 return numLeft;
 }

 public void setNumLeft(Integer value) {
 this.numLeft = value;
 }

 public String getSize() {
 return size;
 }

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

336

Implementing converters

The Apache CXF runtime has does not know how to convert XML primitive types to and from the Java
class specified by the javaType element, except that it should call the methods specified by the
parseMethod attribute and the printMethod attribute. You are responsible for providing
implementations of the methods the runtime calls. The implemented methods must be capable of
working with the lexical structures of the XML primitive type.

To simplify the implementation of the data conversion methods, Apache CXF provides the
javax.xml.bind.DatatypeConverter class. This class provides methods for parsing and printing
all of the XML Schema primitive types. The parse methods take string representations of the XML data
and they return an instance of the default type defined in Table 33.1, “XML Schema Primitive Type to
Java Native Type Mapping”. The print methods take an instance of the default type and they return a
string representation of the XML data.

The Java documentation for the DatatypeConverter class can be found at
http://java.sun.com/webservices/docs/1.6/api/javax/xml/bind/DatatypeConverter.html.

Default primitive type converters

When specifying a Java primitive type, or one of the Java primitive type Wrapper classes, in the
javaType element's name attribute, it is not necessary to specify values for the parseMethod
attribute or the printMethod attribute. The Apache CXF runtime substitutes default converters if no
values are provided.

The default data converters use the JAXB DatatypeConverter class to parse the XML data. The
default converters will also provide any type casting necessary to make the conversion work.

37.3. GENERATING JAVA CLASSES FOR SIMPLE TYPES

Overview

By default, named simple types do not result in generated types unless they are enumerations.
Elements defined using a simple type are mapped to properties of a Java primitive type.

There are instances when you need to have simple types generated into Java classes, such as is when
you want to use type substitution.

To instruct the code generators to generate classes for all globally defined simple types, set the
globalBindings customization element's mapSimpleTypeDef to true.

Adding the customization

To instruct the code generators to create Java classes for named simple types add the
globalBinding element's mapSimpleTypeDef attribute and set its value to true.

 public void setSize(String value) {
 this.size = value;
 }

}

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

337

http://java.sun.com/webservices/docs/1.6/api/javax/xml/bind/DatatypeConverter.html

Example 37.13, “in-Line Customization to Force Generation of Java Classes for SimpleTypes” shows an
in-line customization that forces the code generator to generate Java classes for named simple types.

Example 37.13. in-Line Customization to Force Generation of Java Classes for SimpleTypes

Example 37.14, “Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of simple types.

Example 37.14. Binding File to Force Generation of Constants

IMPORTANT

This customization only affects named simple types that are defined in the global scope.

Generated classes

The class generated for a simple type has one property called value. The value property is of the Java
type defined by the mappings in Section 33.1, “Primitive Types” . The generated class has a getter and a
setter for the value property.

Example 37.16, “Customized Mapping of a Simple Type” shows the Java class generated for the simple
type defined in Example 37.15, “Simple Type for Customized Mapping” .

Example 37.15. Simple Type for Customized Mapping

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings mapSimpleTypeDef="true" />
 </appinfo>
 </annotation>
 ...
</schema>

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:globalBindings mapSimpleTypeDef="true" />
 <jaxb:bindings>
<jaxb:bindings>

<simpleType name="simpleton">
 <restriction base="xsd:string">
 <maxLength value="10"/>
 </restriction>
</simpleType>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

338

Example 37.16. Customized Mapping of a Simple Type

37.4. CUSTOMIZING ENUMERATION MAPPING

Overview

If you want enumerated types that are based on a schema type other than xsd:string, you must instruct
the code generator to map it. You can also control the name of the generated enumeration constants.

The customization is done using the jaxb:typesafeEnumClass element along with one or more
jaxb:typesafeEnumMember elements.

There might also be instances where the default settings for the code generator cannot create valid
Java identifiers for all of the members of an enumeration. You can customize how the code generators
handle this by using an attribute of the globalBindings customization.

Member name customizer

If the code generator encounters a naming collision when generating the members of an enumeration
or if it cannot create a valid Java identifier for a member of the enumeration, the code generator, by
default, generates a warning and does not generate a Java enum type for the enumeration.

You can alter this behavior by adding the globalBinding element's typesafeEnumMemberName
attribute. The typesafeEnumMemberName attribute's values are described in Table 37.2, “Values for
Customizing Enumeration Member Name Generation”.

Table 37.2. Values for Customizing Enumeration Member Name Generation

Value Description

skipGeneration(default) Specifies that the Java enum type is not generated
and generates a warning.

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "simpleton", propOrder = {"value"})
public class Simpleton {

 @XmlValue
 protected String value;

 public String getValue() {
 return value;
 }

 public void setValue(String value) {
 this.value = value;
 }

}

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

339

generateName Specifies that member names will be generated
following the pattern VALUE_N. N starts off at one,
and is incremented for each member of the
enumeration.

generateError Specifies that the code generator generates an error
when it cannot map an enumeration to a Java enum
type.

Value Description

Example 37.17, “Customization to Force Type Safe Member Names” shows an in-line customization
that forces the code generator to generate type safe member names.

Example 37.17. Customization to Force Type Safe Member Names

Class customizer

The jaxb:typesafeEnumClass element specifies that an XML Schema enumeration should be
mapped to a Java enum type. It has two attributes that are described in Table 37.3, “Attributes for
Customizing a Generated Enumeration Class”. When the jaxb:typesafeEnumClass element is
specified in-line, it must be placed inside the xsd:annotation element of the simple type it is
modifying.

Table 37.3. Attributes for Customizing a Generated Enumeration Class

Attribute Description

name Specifies the name of the generated Java enum
type. This value must be a valid Java identifier.

map Specifies if the enumeration should be mapped to a
Java enum type. The default value is true.

Member customizer

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings typesafeEnumMemberName="generateName" />
 </appinfo>
 </annotation>
 ...
</schema>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

340

The jaxb:typesafeEnumMember element specifies the mapping between an XML Schema
enumeration facet and a Java enum type constant. You must use one jaxb:typesafeEnumMember
element for each enumeration facet in the enumeration being customized.

When using in-line customization, this element can be used in one of two ways:

It can be placed inside the xsd:annotation element of the enumeration facet it is
modifying.

They can all be placed as children of the jaxb:typesafeEnumClass element used to
customize the enumeration.

The jaxb:typesafeEnumMember element has a name attribute that is required. The name attribute
specifies the name of the generated Java enum type constant. It's value must be a valid Java identifier.

The jaxb:typesafeEnumMember element also has a value attribute. The value is used to
associate the enumeration facet with the proper jaxb:typesafeEnumMember element. The value
of the value attribute must match one of the values of an enumeration facets' value attribute. This
attribute is required when you use an external binding specification for customizing the type
generation, or when you group the jaxb:typesafeEnumMember elements as children of the
jaxb:typesafeEnumClass element.

Examples

Example 37.18, “In-line Customization of an Enumerated Type” shows an enumerated type that uses
in-line customization and has the enumeration's members customized separately.

Example 37.18. In-line Customization of an Enumerated Type

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <simpleType name="widgetInteger">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumClass />
 </appinfo>
 </annotation>
 <restriction base="xsd:int">
 <enumeration value="1">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="one" />
 </appinfo>
 </annotation>
 </enumeration>
 <enumeration value="2">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="two" />
 </appinfo>
 </annotation>
 </enumeration>

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

341

Example 37.19, “In-line Customization of an Enumerated Type Using a Combined Mapping” shows an
enumerated type that uses in-line customization and combines the member's customization in the
class customization.

Example 37.19. In-line Customization of an Enumerated Type Using a Combined Mapping

Example 37.20, “Binding File for Customizing an Enumeration” shows an external binding file that
customizes an enumerated type.

 <enumeration value="3">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="three" />
 </appinfo>
 </annotation>
 </enumeration>
 <enumeration value="4">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumMember name="four" />
 </appinfo>
 </annotation>
 </enumeration>
 </restriction>
 </simpleType>
<schema>

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <simpleType name="widgetInteger">
 <annotation>
 <appinfo>
 <jaxb:typesafeEnumClass>
 <jaxb:typesafeEnumMember value="1" name="one" />
 <jaxb:typesafeEnumMember value="2" name="two" />
 <jaxb:typesafeEnumMember value="3" name="three" />
 <jaxb:typesafeEnumMember value="4" name="four" />
 </jaxb:typesafeEnumClass>
 </appinfo>
 </annotation>
 <restriction base="xsd:int">
 <enumeration value="1" />
 <enumeration value="2" />
 <enumeration value="3" />
 <enumeration value="4" >
 </restriction>
 </simpleType>
<schema>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

342

Example 37.20. Binding File for Customizing an Enumeration

37.5. CUSTOMIZING FIXED VALUE ATTRIBUTE MAPPING

Overview

By default, the code generators map attributes defined as having a fixed value to normal properties.
When using schema validation, Apache CXF can enforce the schema definition. However, using schema
validation increases message processing time.

Another way to map attributes that have fixed values to Java is to map them to Java constants. You
can instruct the code generator to map fixed value attributes to Java constants using the
globalBindings customization element. You can also customize the mapping of fixed value
attributes to Java constants at a more localized level using the property element.

Global customization

You can alter this behavior by adding the globalBinding element's
fixedAttributeAsConstantProperty attribute. Setting this attribute to true instructs the code
generator to map any attribute defined using fixed attribute to a Java constant.

Example 37.21, “in-Line Customization to Force Generation of Constants” shows an in-line
customization that forces the code generator to generate constants for attributes with fixed values.

Example 37.21. in-Line Customization to Force Generation of Constants

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings node="xsd:simpleType[@name='widgetInteger']">
 <jaxb:typesafeEnumClass>
 <jaxb:typesafeEnumMember value="1" name="one" />
 <jaxb:typesafeEnumMember value="2" name="two" />
 <jaxb:typesafeEnumMember value="3" name="three" />
 <jaxb:typesafeEnumMember value="4" name="four" />
 </jaxb:typesafeEnumClass>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <annotation>
 <appinfo>
 <jaxb:globalBindings fixedAttributeAsConstantProperty="true" />
 </appinfo>

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

343

Example 37.22, “Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of fixed attributes.

Example 37.22. Binding File to Force Generation of Constants

Local mapping

You can customize attribute mapping on a per-attribute basis using the property element's
fixedAttributeAsConstantProperty attribute. Setting this attribute to true instructs the code
generator to map any attribute defined using fixed attribute to a Java constant.

Example 37.23, “In-Line Customization to Force Generation of Constants” shows an in-line
customization that forces the code generator to generate constants for a single attribute with a fixed
value.

Example 37.23. In-Line Customization to Force Generation of Constants

 </annotation>
 ...
</schema>

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:globalBindings fixedAttributeAsConstantProperty="true" />
 <jaxb:bindings>
<jaxb:bindings>

<schema targetNamespace="http://widget.com/types/widgetTypes"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 jaxb:version="2.0">
 <complexType name="widgetAttr">
 <sequence>
 ...
 </sequence>
 <attribute name="fixer" type="xsd:int" fixed="7">
 <annotation>
 <appinfo>
 <jaxb:property fixedAttributeAsConstantProperty="true" />
 </appinfo>
 </annotation>
 </attribute>
 </complexType>
 ...
</schema>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

344

Example 37.24, “Binding File to Force Generation of Constants” shows an external binding file that
customizes the generation of a fixed attribute.

Example 37.24. Binding File to Force Generation of Constants

Java mapping

In the default mapping, all attributes are mapped to standard Java properties with getter and setter
methods. When this customization is applied to an attribute defined using the fixed attribute, the
attribute is mapped to a Java constant, as shown in Example 37.25, “Mapping of a Fixed Value
Attribute to a Java Constant”.

Example 37.25. Mapping of a Fixed Value Attribute to a Java Constant

type is determined by mapping the base type of the attribute to a Java type using the mappings
described in Section 33.1, “Primitive Types” .

NAME is determined by converting the value of the attribute element's name attribute to all capital
letters.

value is determined by the value of the attribute element's fixed attribute.

For example, the attribute defined in Example 37.23, “In-Line Customization to Force Generation of
Constants” is mapped as shown in Example 37.26, “Fixed Value Attribute Mapped to a Java Constant” .

Example 37.26. Fixed Value Attribute Mapped to a Java Constant

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="types.xsd">
 <jaxb:bindings node="xsd:complexType[@name='widgetAttr']">
 <jaxb:bindings node="xsd:attribute[@name='fixer']">
 <jaxb:property fixedAttributeAsConstantProperty="true" />
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

@XmlAttribute
public final static type NAME = value;

@XmlRootElement(name = "widgetAttr")
public class WidgetAttr {

 ...

 @XmlAttribute
 public final static int FIXER = 7;

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

345

37.6. SPECIFYING THE BASE TYPE OF AN ELEMENT OR AN
ATTRIBUTE

Overview

Occasionally you need to customize the class of the object generated for an element, or for an
attribute defined as part of an XML Schema complex type. For example, you might want to use a more
generalized class of object to allow for simple type substitution.

One way to do this is to use the JAXB base type customization. It allows a developer, on a case by case
basis, to specify the class of object generated to represent an element or an attribute. The base type
customization allows you to specify an alternate mapping between the XML Schema construct and the
generated Java object. This alternate mapping can be a simple specialization or a generalization of the
default base class. It can also be a mapping of an XML Schema primitive type to a Java class.

Customization usage

To apply the JAXB base type property to an XML Schema construct use the JAXB baseType
customization element. The baseType customization element is a child of the JAXB property
element, so it must be properly nested.

Depending on how you want to customize the mapping of the XML Schema construct to Java object,
you add either the baseType customization element's name attribute, or a javaType child element.
The name attribute is used to map the default class of the generated object to another class within the
same class hierarchy. The javaType element is used when you want to map XML Schema primitive
types to a Java class.

IMPORTANT

You cannot use both the name attribute and a javaType child element in the same
baseType customization element.

Specializing or generalizing the default mapping

The baseType customization element's name attribute is used to redefine the class of the generated
object to a class within the same Java class hierarchy. The attribute specifies the fully qualified name of
the Java class to which the XML Schema construct is mapped. The specified Java class must be either
a super-class or a sub-class of the Java class that the code generator normally generates for the XML
Schema construct. For XML Schema primitive types that map to Java primitive types, the wrapper
class is used as the default base class for the purpose of customization.

For example, an element defined as being of xsd:int uses java.lang.Integer as its default base
class. The value of the name attribute can specify any super-class of Integer such as Number or
Object.

 ...

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

346

TIP

For simple type substitution, the most common customization is to map the primitive types to an
Object object.

Example 37.27, “In-Line Customization of a Base Type” shows an in-line customization that maps one
element in a complex type to a Java Object object.

Example 37.27. In-Line Customization of a Base Type

Example 37.28, “External Binding File to Customize a Base Type” shows an external binding file for the
customization shown in Example 37.27, “In-Line Customization of a Base Type” .

Example 37.28. External Binding File to Customize a Base Type

The resulting Java object's @XmlElement annotation includes a type property. The value of the type
property is the class object representing the generated object's default base type. In the case of XML
Schema primitive types, the class is the wrapper class of the corresponding Java primitive type.

Example 37.29, “Java Class with a Modified Base Class” shows the class generated based on the
schema definition in Example 37.28, “External Binding File to Customize a Base Type” .

<complexType name="widgetOrderInfo">
 <all>
 <element name="amount" type="xsd:int" />
 <element name="shippingAdress" type="Address>
 <annotation>
 <appinfo>
 <jaxb:property>
 <jaxb:baseType name="java.lang.Object" />
 </jaxb:property>
 </appinfo>
 </annotation>
 </element>
 <element name="type" type="xsd:string"/>
 </all>
</complexType>

<jaxb:bindings xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 jaxb:version="2.0">
 <jaxb:bindings schemaLocation="enumMap.xsd">
 <jaxb:bindings node="xsd:ComplexType[@name='widgetOrderInfo']">
 <jaxb:bindings node="xsd:element[@name='shippingAddress']">
 <jaxb:property>
 <jaxb:baseType name="java.lang.Object" />
 </jaxb:property>
 </jaxb:bindings>
 </jaxb:bindings>
 </jaxb:bindings>
<jaxb:bindings>

CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED

347

Example 37.29. Java Class with a Modified Base Class

Usage with javaType

The javaType element can be used to customize how elements and attributes defined using XML
Schema primitive types are mapped to Java objects. Using the javaType element provides a lot more
flexibility than simply using the baseType element's name attribute. The javaType element allows
you to map a primitive type to any class of object.

For a detailed description of using the javaType element, see Section 37.2, “Specifying the Java Class
of an XML Schema Primitive”.

public class WidgetOrderInfo {

 protected int amount;
 @XmlElement(required = true)
 protected String type;
 @XmlElement(required = true, type = Address.class)
 protected Object shippingAddress;

 ...
 public Object getShippingAddress() {
 return shippingAddress;
 }

 public void setShippingAddress(Object value) {
 this.shippingAddress = value;
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

348

CHAPTER 38. USING A JAXBCONTEXT OBJECT

Abstract

The JAXBContext object allows the Apache CXF's runtime to transform data between XML elements
and Java object. Application developers need to instantiate a JAXBContext object they want to use
JAXB objects in message handlers and when implementing consumers that work with raw XML
messages.

OVERVIEW

The JAXBContext object is a low-level object used by the runtime. It allows the runtime to convert
between XML elements and their corresponding Java representations. An application developer
generally does not need to work with JAXBContext objects. The marshaling and unmarshaling of XML
data is typically handled by the transport and binding layers of a JAX-WS application.

However, there are instances when an application will need to manipulate the XML message content
directly. In two of these instances:

Implementing consumers that use raw XML data

Working with messages in a handler

You will need instantiate a JAXBContext object using one of the two available
JAXBContext.newInstance() methods.

BEST PRACTICES

JAXBContext objects are resource intensive to instantiate. It is recommended that an application
create as few instances as possible. One way to do this is to create a single JAXBContext object that
can manage all of the JAXB objects used by your application and share it among as many parts of your
application as possible.

TIP

JAXBContext objects are thread safe.

GETTING A JAXBCONTEXT OBJECT USING AN OBJECT FACTORY

The JAXBContext class provides a newInstance() method, shown in Example 38.1, “Getting a JAXB
Context Using Classes”, that takes a list of classes that implement JAXB objects.

Example 38.1. Getting a JAXB Context Using Classes

static JAXBContext newInstance(Class... classesToBeBound)
 throws JAXBException;

The returned JAXBObject object will be able to marshal and unmarshal data for the JAXB object
implemented by the classes passed into the method. It will also be able to work with any classes that
are statically referenced from any of the classes passed into the method.

CHAPTER 38. USING A JAXBCONTEXT OBJECT

349

While it is possible to pass the name of every JAXB class used by your application to the
newInstance() method it is not efficient. A more efficient way to accomplish the same goal is to
pass in the object factory, or object factories, generated for your application. The resulting
JAXBContext object will be able to manage any JAXB classes the specified object factories can
instantiate.

GETTING A JAXBCONTEXT OBJECT USING PACKAGE NAMES

The JAXBContext class provides a newInstance() method, shown in Example 38.2, “Getting a
JAXB Context Using Classes”, that takes a colon (:) seperated list of package names. The specified
packages should contain JAXB objects derived from XML Schema.

Example 38.2. Getting a JAXB Context Using Classes

static JAXBContext newInstance(String contextPath)
 throws JAXBException;

The returned JAXBContext object will be able to marshal and unmarshal data for all of the JAXB
objects implemented by the classes in the specified packages.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

350

CHAPTER 39. USING SOAP OVER JMS

OVERVIEW

The SOAP over JMS protocol is defined by the World Wide Web Consortium(W3C) as a way of providing
a more reliable transport layer to the customary SOAP/HTTP protocol used by most services. The
Apache CXF implementation is fully compliant with the specification and should be compatible with
any framework that is also compliant.

This transport uses JNDI to find the JMS destinations. When an operation is invoked, the request is
packaged as a SOAP message and sent in the body of a JMS message to the specified destination.

Publishing and consuming SOAP/JMS services differ from SOAP/HTTP services in the following ways:

SOAP/JMS service addressed are specified using a special JMS URI

you must use the Apache CXF specific factory objects to use SOAP/JMS endpoints

JMS URIS

JMS endpoints use a JMS URI as defined in the URI Scheme for JMS 1.0 . Example 39.1, “JMS URI
syntax” shows the syntax for a JMS URI.

Example 39.1. JMS URI syntax

Table 39.1, “JMS URI variants” describes the available variants for the JMS URI.

Table 39.1. JMS URI variants

Variant Description

jndi Specifies that the destination is a JNDI name for the
target destination. When using this variant, you must
provide the configuration for accessing the JNDI
provider.

topic Specifies that the destination is the name of the
topic to be used as the target destination. The string
provided is passed into
Session.createTopic() to create a
representation of the destination.

queue Specifies that the destination is the name of the
queue to be used as the target destination. The
string provided is passed into
Session.createQueue() to create a
representation of the destination.

Table 39.2, “JMS properties settable as URI options” shows the URI options.

jms:variant:destination?options

CHAPTER 39. USING SOAP OVER JMS

351

http://www.w3.org/TR/soapjms/
http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

Table 39.2. JMS properties settable as URI options

Property Default Description

deliveryMode PERSISTENT Specifies whether to use JMS
PERSISTENT or
NON_PERSISTENT message
semantics. In the case of
PERSISTENT delivery mode, the
JMS broker stores messages in
persistent storage before
acknowledging them; whereas
NON_PERSISTENT messages
are kept in memory only.

replyToName Explicitly specifies the reply
destination to appear in the
JMSReplyTo header. Setting
this property is recommended for
applications that have request-
reply semantics because the JMS
provider will assign a temporary
reply queue if one is not explicitly
set.

The value of this property has an
interpretation that depends on
the variant specified in the JMS
URI:

jndi variant—the JNDI
name of the destination

queue or topic
variants—the actual
name of the destination

priority 4 Specifies the JMS message
priority, which ranges from 0
(lowest) to 9 (highest).

timeToLive 0 Time (in milliseconds) after which
the message will be discarded by
the JMS provider. 0 represents an
infinite lifetime.

jndiConnectionFactoryNa
me

 Specifies the JNDI name of the
JMS connection factory.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

352

1

2

3

4

jndiInitialContextFacto
ry

 Specifies the fully qualified Java
class name of the JNDI provider
(which must be of
javax.jms.InitialContex
tFactory type). Equivalent to
setting the
java.naming.factory.ini
tial Java system property.

jndiURL Specifies the URL that initializes
the JNDI provider. Equivalent to
setting the
java.naming.provider.ur
l Java system property.

Property Default Description

PUBLISHING A SERVICE

The JAX-WS standard publish() method cannot be used to publish a SOAP/JMS service. Instead,
you must use the Apache CXF's JaxWsServerFactoryBean class as shown in Example 39.2,
“Publishing a SOAP/JMS service”.

Example 39.2. Publishing a SOAP/JMS service

The code in Example 39.2, “Publishing a SOAP/JMS service” does the following:

Creates the JMS URI representing t he endpoint's address.

Instantiates a JaxWsServerFactoryBean to publish the service.

Sets the address field of the factory bean with the JMS URI of the service.

Specifies that the service created by the factory will use the SOAP/JMS transport.

1

2

3
4

String address =
"jms:jndi:dynamicQueues/test.cxf.jmstransport.queue3"

 + "?jndiInitialContextFactory"
 + "=org.apache.activemq.jndi.ActiveMQInitialContextFactory"
 + "&jndiConnectionFactoryName=ConnectionFactory"
 + "&jndiURL=tcp://localhost:61500";
Hello implementor = new HelloImpl();

JaxWsServerFactoryBean svrFactory = new JaxWsServerFactoryBean();
svrFactory.setServiceClass(Hello.class);
svrFactory.setAddress(address);

svrFactory.setTransportId(JMSSpecConstants.SOAP_JMS_SPECIFICIATION_TRANS
PORTID);
svrFactory.setServiceBean(implementor);
svrFactory.create();

CHAPTER 39. USING SOAP OVER JMS

353

1

2

3

4

CONSUMING A SERVICE

The standard JAX-WS APIs cannot be used to consume a SOAP/JMS service. Instead, you must use
the Apache CXF's JaxWsProxyFactoryBean class as shown in Example 39.3, “Consuming a
SOAP/JMS service”.

Example 39.3. Consuming a SOAP/JMS service

The code in Example 39.3, “Consuming a SOAP/JMS service” does the following:

Creates the JMS URI representing t he endpoint's address.

Instantiates a JaxWsProxyFactoryBean to create the proxy.

Sets the address field of the factory bean with the JMS URI of the service.

Specifies that the proxy created by the factory will use the SOAP/JMS transport.

1

2
3

4

// Java
public void invoke() throws Exception {

 String address =
"jms:jndi:dynamicQueues/test.cxf.jmstransport.queue3"

 + "?jndiInitialContextFactory"
 + "=org.apache.activemq.jndi.ActiveMQInitialContextFactory"
 +
"&jndiConnectionFactoryName=ConnectionFactory&jndiURL=tcp://localhost:61
500";

 JaxWsProxyFactoryBean factory = new JaxWsProxyFactoryBean();
 factory.setAddress(address);

factory.setTransportId(JMSSpecConstants.SOAP_JMS_SPECIFICIATION_TRANSPOR
TID);
 factory.setServiceClass(Hello.class);
 Hello client = (Hello)factory.create();
 String reply = client.sayHi(" HI");
 System.out.println(reply);
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

354

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

Abstract

JAX-WS provides an easy mechanism for accessing services asynchronously. The SEI can specify
additional methods that can be used to access a service asynchronously. The Apache CXF code
generators generate the extra methods for you. You simply add the business logic.

In addition to the usual synchronous mode of invocation, Apache CXF supports two forms of
asynchronous invocation:

Polling approach — To invoke the remote operation using the polling approach, you call a
method that has no output parameters, but returns a javax.xml.ws.Response object. The
Response object (which inherits from the javax.util.concurrency.Future interface)
can be polled to check whether or not a response message has arrived.

Callback approach — To invoke the remote operation using the callback approach, you call a
method that takes a reference to a callback object (of javax.xml.ws.AsyncHandler type)
as one of its parameters. When the response message arrives at the client, the runtime calls
back on the AsyncHandler object, and gives it the contents of the response message.

40.1. WSDL FOR ASYNCHRONOUS EXAMPLES

Example 40.1, “WSDL Contract for Asynchronous Example” shows the WSDL contract that is used for
the asynchronous examples. The contract defines a single interface, GreeterAsync, which contains a
single operation, greetMeSometime.

Example 40.1. WSDL Contract for Asynchronous Example

<?xml version="1.0" encoding="UTF-8"?><wsdl:definitions
xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://apache.org/hello_world_async_soap_http"

xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://apache.org/hello_world_async_soap_http"
 name="HelloWorld">
 <wsdl:types>
 <schema
targetNamespace="http://apache.org/hello_world_async_soap_http/types"
 xmlns="http://www.w3.org/2001/XMLSchema"

xmlns:x1="http://apache.org/hello_world_async_soap_http/types"
 elementFormDefault="qualified">
 <element name="greetMeSometime">
 <complexType>
 <sequence>
 <element name="requestType" type="xsd:string"/>
 </sequence>
 </complexType>

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

355

40.2. GENERATING THE STUB CODE

Overview

The asynchronous style of invocation requires extra stub code for the dedicated asynchronous
methods defined on the SEI. This special stub code is not generated by default. To switch on the
asynchronous feature and generate the requisite stub code, you must use the mapping customization
feature from the WSDL 2.0 specification.

Customization enables you to modify the way the Maven code generation plug-in generates stub code.
In particular, it enables you to modify the WSDL-to-Java mapping and to switch on certain features.

 </element>
 <element name="greetMeSometimeResponse">
 <complexType>
 <sequence>
 <element name="responseType"
 type="xsd:string"/>
 </sequence>
 </complexType>
 </element>
 </schema>
 </wsdl:types>

 <wsdl:message name="greetMeSometimeRequest">
 <wsdl:part name="in" element="x1:greetMeSometime"/>
 </wsdl:message>
 <wsdl:message name="greetMeSometimeResponse">
 <wsdl:part name="out"
 element="x1:greetMeSometimeResponse"/>
 </wsdl:message>

 <wsdl:portType name="GreeterAsync">
 <wsdl:operation name="greetMeSometime">
 <wsdl:input name="greetMeSometimeRequest"
 message="tns:greetMeSometimeRequest"/>
 <wsdl:output name="greetMeSometimeResponse"
 message="tns:greetMeSometimeResponse"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="GreeterAsync_SOAPBinding"
 type="tns:GreeterAsync">
 ...
 </wsdl:binding>

 <wsdl:service name="SOAPService">
 <wsdl:port name="SoapPort"
 binding="tns:GreeterAsync_SOAPBinding">
 <soap:address
location="http://localhost:9000/SoapContext/SoapPort"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

356

Here, customization is used to switch on the asynchronous invocation feature. Customizations are
specified using a binding declaration, which you define using a jaxws:bindings tag (where the
jaxws prefix is tied to the http://java.sun.com/xml/ns/jaxws namespace). There are two ways
of specifying a binding declaration:

External Binding Declaration

When using an external binding declaration the jaxws:bindings element is defined in a file
separate from the WSDL contract. You specify the location of the binding declaration file to code
generator when you generate the stub code.

Embedded Binding Declaration

When using an embedded binding declaration you embed the jaxws:bindings element directly in
a WSDL contract, treating it as a WSDL extension. In this case, the settings in jaxws:bindings
apply only to the immediate parent element.

Using an external binding declaration

The template for a binding declaration file that switches on asynchronous invocations is shown in
Example 40.2, “Template for an Asynchronous Binding Declaration” .

Example 40.2. Template for an Asynchronous Binding Declaration

Where AffectedWSDL specifies the URL of the WSDL contract that is affected by this binding
declaration. The AffectedNode is an XPath value that specifies which node (or nodes) from the WSDL
contract are affected by this binding declaration. You can set AffectedNode to wsdl:definitions, if
you want the entire WSDL contract to be affected. The jaxws:enableAsyncMapping element is set
to true to enable the asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the GreeterAsync interface,
you can specify <bindings node="wsdl:definitions/wsdl:portType[@name='GreeterAsync']"> in the
preceding binding declaration.

Assuming that the binding declaration is stored in a file, async_binding.xml, you would set up your
POM as shown in Example 40.3, “Consumer Code Generation” .

Example 40.3. Consumer Code Generation

<bindings xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 wsdlLocation="AffectedWSDL"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="AffectedNode">
 <enableAsyncMapping>true</enableAsyncMapping>
 </bindings>
</bindings>

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>${cxf.version}</version>
 <executions>

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

357

The -b option tells the code generator where to locate the external binding file.

For more information on the code generator see cxf-codegen-plugin.

Using an embedded binding declaration

You can also embed the binding customization directly into the WSDL document defining the service
by placing the jaxws:bindings element and its associated jaxws:enableAsynchMapping child
directly into the WSDL. You also must add a namespace declaration for the jaxws prefix.

Example 40.4, “WSDL with Embedded Binding Declaration for Asynchronous Mapping” shows a WSDL
file with an embedded binding declaration that activates the asynchronous mapping for an operation.

Example 40.4. WSDL with Embedded Binding Declaration for Asynchronous Mapping

 <execution>
 <id>generate-sources</id>
 <phase>generate-sources</phase>
 <configuration>
 <sourceRoot>outputDir</sourceRoot>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>hello_world.wsdl</wsdl>
 <extraargs>
 <extraarg>-client</extraarg>
 <extraarg>-b async_binding.xml</extraarg>
 </extraargs>
 </wsdlOption>
 </wsdlOptions>
 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

<wsdl:definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
 ...
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws"
 ...>
 ...
 <wsdl:portType name="GreeterAsync">
 <wsdl:operation name="greetMeSometime">
 <jaxws:bindings>
 <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>
 </jaxws:bindings>
 <wsdl:input name="greetMeSometimeRequest"
 message="tns:greetMeSometimeRequest"/>
 <wsdl:output name="greetMeSometimeResponse"
 message="tns:greetMeSometimeResponse"/>
 </wsdl:operation>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

358

When embedding the binding declaration into the WSDL document you can control the scope affected
by the declaration by changing where you place the declaration. When the declaration is placed as a
child of the wsdl:definitions element the code generator creates asynchronous methods for all of
the operations defined in the WSDL document. If it is placed as a child of a wsdl:portType element
the code generator creates asynchronous methods for all of the operations defined in the interface. If
it is placed as a child of a wsdl:operation element the code generator creates asynchronous
methods for only that operation.

It is not necessary to pass any special options to the code generator when using embedded
declarations. The code generator will recognize them and act accordingly.

Generated interface

After generating the stub code in this way, the GreeterAsync SEI (in the file GreeterAsync.java)
is defined as shown in Example 40.5, “Service Endpoint Interface with Methods for Asynchronous
Invocations”.

Example 40.5. Service Endpoint Interface with Methods for Asynchronous Invocations

In addition to the usual synchronous method, greetMeSometime(), two asynchronous methods are
also generated for the greetMeSometime operation:

Callback approach

 </wsdl:portType>
 ...
</wsdl:definitions>

package org.apache.hello_world_async_soap_http;

import
org.apache.hello_world_async_soap_http.types.GreetMeSometimeResponse;
...

public interface GreeterAsync
{
 public Future<?> greetMeSometimeAsync(
 java.lang.String requestType,
 AsyncHandler<GreetMeSometimeResponse> asyncHandler
);

 public Response<GreetMeSometimeResponse> greetMeSometimeAsync(
 java.lang.String requestType
);

 public java.lang.String greetMeSometime(
 java.lang.String requestType
);
}

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

359

public Future<?> greetMeSomtimeAsync(java.lang.String requestType,
 AsyncHandler<GreetMeSomtimeRespons
e> asyncHandler);

Polling approach

public Response<GreetMeSomeTimeResponse> greetMeSometimeAsync(java.lang
.String requestType);

40.3. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE
POLLING APPROACH

The polling approach is the more straightforward of the two approaches to developing an
asynchronous application. The client invokes the asynchronous method called
OperationNameAsync() and is returned a Response<T> object that it polls for a response. What the
client does while it is waiting for a response is depends on the requirements of the application. There
are two basic patterns for handling the polling:

Non-blocking polling — You periodically check to see if the result is ready by calling the non-
blocking Response<T>.isDone() method. If the result is ready, the client processes it. If it
not, the client continues doing other things.

Blocking polling — You call Response<T>.get() right away, and block until the response
arrives (optionally specifying a timeout).

Using the non-blocking pattern

Example 40.6, “Non-Blocking Polling Approach for an Asynchronous Operation Call” illustrates using
non-blocking polling to make an asynchronous invocation on the greetMeSometime operation defined
in Example 40.1, “WSDL Contract for Asynchronous Example” . The client invokes the asynchronous
operation and periodically checks to see if the result is returned.

Example 40.6. Non-Blocking Polling Approach for an Asynchronous Operation Call

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

 public static void main(String args[]) throws Exception {

 // set up the proxy for the client

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

360

1

2

3

The code in Example 40.6, “Non-Blocking Polling Approach for an Asynchronous Operation Call” does
the following:

Invokes the greetMeSometimeAsync() on the proxy.

The method call returns the Response<GreetMeSometimeResponse> object to the client
immediately. The Apache CXF runtime handles the details of receiving the reply from the remote
endpoint and populating the Response<GreetMeSometimeResponse> object.

NOTE

The runtime transmits the request to the remote endpoint's greetMeSometime()
method and handles the details of the asynchronous nature of the call
transparently. The endpoint, and therefore the service implementation, never
worries about the details of how the client intends to wait for a response.

Checks to see if a response has arrived by checking the isDone() of the returned Response
object.

If the response has not arrived, the client continues working before checking again.

When the response arrives, the client retrieves it from the Response object using the get()
method.

Using the blocking pattern

When using the block polling pattern, the Response object's isDone() is never called. Instead, the
Response object's get() method is called immediately after invoking the remote operation. The
get() blocks until the response is available.

TIP

You can also pass a timeout limit to the get() method.

Example 40.7, “Blocking Polling Approach for an Asynchronous Operation Call” shows a client that
uses blocking polling.

1

2

3

 Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));

 while (!greetMeSomeTimeResp.isDone()) {
 // client does some work

 }
 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response

 System.exit(0);
 }
}

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

361

Example 40.7. Blocking Polling Approach for an Asynchronous Operation Call

40.4. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE
CALLBACK APPROACH

An alternative approach to making an asynchronous operation invocation is to implement a callback
class. You then call the asynchronous remote method that takes the callback object as a parameter.
The runtime returns the response to the callback object.

To implement an application that uses callbacks, do the following:

1. Create a callback class that implements the AsyncHandler interface.

NOTE

Your callback object can perform any amount of response processing required
by your application.

2. Make remote invocations using the operationNameAsync() that takes the callback object
as a parameter and returns a Future<?> object.

3. If your client requires access to the response data, you can poll the returned Future<?>
object's isDone() method to see if the remote endpoint has sent the response.

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

 public static void main(String args[]) throws Exception {

 // set up the proxy for the client

 Response<GreetMeSometimeResponse> greetMeSomeTimeResp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));
 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response
 System.exit(0);
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

362

TIP

If the callback object does all of the response processing, it is not necessary to check if the
response has arrived.

Implementing the callback

The callback class must implement the javax.xml.ws.AsyncHandler interface. The interface
defines a single method:

void handleResponse(Response<T> res);
The Apache CXF runtime calls the handleResponse() method to notify the client that the response
has arrived. Example 40.8, “The javax.xml.ws.AsyncHandler Interface” shows an outline of the
AsyncHandler interface that you must implement.

Example 40.8. The javax.xml.ws.AsyncHandler Interface

Example 40.9, “Callback Implementation Class” shows a callback class for the greetMeSometime
operation defined in Example 40.1, “WSDL Contract for Asynchronous Example” .

Example 40.9. Callback Implementation Class

public interface javax.xml.ws.AsyncHandler
{
 void handleResponse(Response<T> res)
}

1

2

3

package demo.hw.client;

import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.types.*;

public class GreeterAsyncHandler implements
AsyncHandler<GreetMeSometimeResponse>
{

 private GreetMeSometimeResponse reply;

 public void handleResponse(Response<GreetMeSometimeResponse>
 response)

 {
 try
 {
 reply = response.get();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 public String getResponse()

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

363

1

2

3

The callback implementation shown in Example 40.9, “Callback Implementation Class” does the
following:

Defines a member variable, response, that holds the response returned from the remote
endpoint.

Implements handleResponse().

This implementation simply extracts the response and assigns it to the member variable reply.

Implements an added method called getResponse().

This method is a convenience method that extracts the data from reply and returns it.

Implementing the consumer

Example 40.10, “Callback Approach for an Asynchronous Operation Call” illustrates a client that uses
the callback approach to make an asynchronous call to the GreetMeSometime operation defined in
Example 40.1, “WSDL Contract for Asynchronous Example” .

Example 40.10. Callback Approach for an Asynchronous Operation Call

 {
 return reply.getResponseType();
 }
}

1

2

3

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client {
 ...

 public static void main(String args[]) throws Exception
 {
 ...
 // Callback approach

 GreeterAsyncHandler callback = new GreeterAsyncHandler();

 Future<?> response =
 port.greetMeSometimeAsync(System.getProperty("user.name"),

 callback);
 while (!response.isDone())
 {

 // Do some work
 }

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

364

1

2

3

4

The code in Example 40.10, “Callback Approach for an Asynchronous Operation Call” does the
following:

Instantiates a callback object.

Invokes the greetMeSometimeAsync() that takes the callback object on the proxy.

The method call returns the Future<?> object to the client immediately. The Apache CXF
runtime handles the details of receiving the reply from the remote endpoint, invoking the callback
object's handleResponse() method, and populating the
Response<GreetMeSometimeResponse> object.

NOTE

The runtime transmits the request to the remote endpoint's greetMeSometime()
method and handles the details of the asynchronous nature of the call without the
remote endpoint's knowledge. The endpoint, and therefore the service
implementation, does not need to worry about the details of how the client intends
to wait for a response.

Uses the returned Future<?> object's isDone() method to check if the response has arrived
from the remote endpoint.

Invokes the callback object's getResponse() method to get the response data.

40.5. CATCHING EXCEPTIONS RETURNED FROM A REMOTE SERVICE

Overview

Consumers making asynchronous requests will not receive the same exceptions returned than when
they make synchronous requests. Any exceptions returned to the consumer asynchronously are
wrapped in an ExecutionException exception. The actual exception thrown by the service is stored
in the ExecutionException exception's cause field.

Catching the exception

Exceptions generated by a remote service are thrown locally by the method that passes the response
to the consumer's business logic. When the consumer makes a synchronous request, the method
making the remote invocation throws the exception. When the consumer makes an asynchronous
request, the Response<T> object's get() method throws the exception. The consumer will not
discover that an error was encountered in processing the request until it attempts to retrieve the
response message.

4 resp = callback.getResponse();
 ...

 System.exit(0);
 }
}

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

365

Unlike the methods generated by the JAX-WS framework, the Response<T> object's get() method
does not throw either user modeled exceptions nor the generic JAX-WS exceptions. Instead, it throws
a java.util.concurrent.ExecutionException exception.

Getting the exception details

The framework stores the exception returned from the remote service in the ExecutionException
exception's cause field. The details about the remote exception are extracted by getting the value of
the cause field and examining the stored exception. The stored exception can be any user defined
exception or one of the generic JAX-WS exceptions.

Example

Example 40.11, “Catching an Exception using the Polling Approach” shows an example of catching an
exception using the polling approach.

Example 40.11. Catching an Exception using the Polling Approach

1

2

package demo.hw.client;

import java.io.File;
import java.util.concurrent.Future;

import javax.xml.namespace.QName;
import javax.xml.ws.Response;

import org.apache.hello_world_async_soap_http.*;

public final class Client
{
 private static final QName SERVICE_NAME
 = new QName("http://apache.org/hello_world_async_soap_http",
 "SOAPService");

 private Client() {}

 public static void main(String args[]) throws Exception
 {
 ...
 // port is a previously established proxy object.
 Response<GreetMeSometimeResponse> resp =
 port.greetMeSometimeAsync(System.getProperty("user.name"));

 while (!resp.isDone())
 {
 // client does some work
 }

 try
 {

 GreetMeSometimeResponse reply = greetMeSomeTimeResp.get();
 // process the response
 }

 catch (ExecutionException ee)
 {

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

366

1

2

3

The code in Example 40.11, “Catching an Exception using the Polling Approach” does the following:

Wraps the call to the Response<T> object's get() method in a try/catch block.

Catches a ExecutionException exception.

Extracts the cause field from the exception.

If the consumer was using the callback approach the code used to catch the exception would be placed
in the callback object where the service's response is extracted.

3 Throwable cause = ee.getCause();
 System.out.println("Exception "+cause.getClass().getName()+"

thrown by the remote service.");
 }
 }
}

CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS

367

CHAPTER 41. USING RAW XML MESSAGES

Abstract

The high-level JAX-WS APIs shield the developer from using native XML messages by marshaling the
data into JAXB objects. However, there are cases when it is better to have direct access to the raw
XML message data that is passing on the wire. The JAX-WS APIs provide two interfaces that provide
access to the raw XML: the Dispatch interface is the client-side interface, and the Provider
interface is the server-side interface.

41.1. USING XML IN A CONSUMER

The Dispatch interface is a low-level JAX-WS API that allows you work directly with raw messages. It
accepts and returns messages, or payloads, of a number of types including DOM objects, SOAP
messages, and JAXB objects. Because it is a low-level API, the Dispatch interface does not perform
any of the message preparation that the higher-level JAX-WS APIs perform. You must ensure that the
messages, or payloads, that you pass to the Dispatch object are properly constructed, and make
sense for the remote operation being invoked.

41.1.1. Usage Modes

Overview

Dispatch objects have two usage modes:

Message mode

Message Payload mode (Payload mode)

The usage mode you specify for a Dispatch object determines the amount of detail that is passed to
the user level code.

Message mode

In message mode, a Dispatch object works with complete messages. A complete message includes
any binding specific headers and wrappers. For example, a consumer interacting with a service that
requires SOAP messages must provide the Dispatch object's invoke() method a fully specified
SOAP message. The invoke() method also returns a fully specified SOAP message. The consumer
code is responsible for completing and reading the SOAP message's headers and the SOAP message's
envelope information.

TIP

Message mode is not ideal when working with JAXB objects.

To specify that a Dispatch object uses message mode provide the value
java.xml.ws.Service.Mode.MESSAGE when creating the Dispatch object. For more information
about creating a Dispatch object see the section called “Creating a Dispatch object”.

Payload mode

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

368

In payload mode, also called message payload mode, a Dispatch object works with only the payload of
a message. For example, a Dispatch object working in payload mode works only with the body of a
SOAP message. The binding layer processes any binding level wrappers and headers. When a result is
returned from the invoke() method the binding level wrappers and headers are already striped
away, and only the body of the message is left.

TIP

When working with a binding that does not use special wrappers, such as the Apache CXF XML binding,
payload mode and message mode provide the same results.

To specify that a Dispatch object uses payload mode provide the value
java.xml.ws.Service.Mode.PAYLOAD when creating the Dispatch object. For more information
about creating a Dispatch object see the section called “Creating a Dispatch object”.

41.1.2. Data Types

Overview

Because Dispatch objects are low-level objects, they are not optimized for using the same JAXB
generated types as the higher level consumer APIs. Dispatch objects work with the following types of
objects:

javax.xml.transform.Source

javax.xml.soap.SOAPMessage

javax.activation.DataSource

JAXB

Using Source objects

A Dispatch object accepts and returns objects that are derived from the
javax.xml.transform.Source interface. Source objects are supported by any binding, and in
either message mode or payload mode.

Source objects are low level objects that hold XML documents. Each Source implementation
provides methods that access the stored XML documents and then manipulate its contents. The
following objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as a set
of Node objects that are accessed using the getNode() method. Nodes can be either updated or
added to the DOM tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects contain an InputSource
object that holds the raw data and an XMLReader object that parses the raw data.

StreamSource

CHAPTER 41. USING RAW XML MESSAGES

369

Holds XML messages as a data stream. The data stream can be manipulated the same as any other
data stream.

If you create your Dispatch object so that it uses generic Source objects, Apache CXF returns the
messages as SAXSource objects.

This behavior can be changed using the endpoint's source-preferred-format property. See Part IV,
“Configuring Web Service Endpoints” for information about configuring the Apache CXF runtime.

Using SOAPMessage objects

Dispatch objects can use javax.xml.soap.SOAPMessage objects when the following conditions
are true:

The Dispatch object is using the SOAP binding

The Dispatch object is using message mode

A SOAPMessage object holds a SOAP message. They contain one SOAPPart object and zero or more
AttachmentPart objects. The SOAPPart object contains the SOAP specific portions of the SOAP
message including the SOAP envelope, any SOAP headers, and the SOAP message body. The
AttachmentPart objects contain binary data that is passed as an attachment.

Using DataSource objects

Dispatch objects can use objects that implement the javax.activation.DataSource interface
when the following conditions are true:

The Dispatch object is using the HTTP binding

The Dispatch object is using message mode

DataSource objects provide a mechanism for working with MIME typed data from a variety of sources,
including URLs, files, and byte arrays.

Using JAXB objects

While Dispatch objects are intended to be low level APIs that allow you to work with raw messages,
they also allow you to work with JAXB objects. To work with JAXB objects a Dispatch object must be
passed a JAXBContext that can marshal and unmarshal the JAXB objects in use. The JAXBContext
is passed when the Dispatch object is created.

You can pass any JAXB object understood by the JAXBContext object as the parameter to the
invoke() method. You can also cast the returned message into any JAXB object understood by the
JAXBContext object.

For information on creating a JAXBContext object see Chapter 38, Using A JAXBContext Object.

41.1.3. Working with Dispatch Objects

Procedure

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

370

To use a Dispatch object to invoke a remote service the following sequence should be followed:

1. Create a Dispatch object.

2. Construct a request message.

3. Call the proper invoke() method.

4. Parse the response message.

Creating a Dispatch object

To create a Dispatch object do the following:

1. Create a Service object to represent the wsdl:service element that defines the service on
which the Dispatch object will make invocations. See Section 24.1, “Creating a Service
Object”.

2. Create the Dispatch object using the Service object's createDispatch() method, shown
in Example 41.1, “The createDispatch() Method”.

Example 41.1. The createDispatch() Method

public Dispatch<T> createDispatch(QName portName,
 java.lang.Class<T> type,
 Service.Mode mode)
 throws WebServiceException;

NOTE

If you are using JAXB objects the method signature for createDispatch() is:

public Dispatch<T> createDispatch(QName portName,
 javax.xml.bind.JAXBContext
 context,
 Service.Mode mode)
 throws WebServiceException;

Table 41.1, “Parameters for createDispatch()” describes the parameters for the
createDispatch() method.

Table 41.1. Parameters for createDispatch()

Parameter Description

portName Specifies the QName of the wsdl:port
element that represents the service provider
where the Dispatch object will make
invocations.

CHAPTER 41. USING RAW XML MESSAGES

371

type Specifies the data type of the objects used by
the Dispatch object. See Section 41.1.2, “Data
Types”.

When working with JAXB objects, this
parameter specifies the JAXBContext object
used to marshal and unmarshal the JAXB
objects.

mode Specifies the usage mode for the Dispatch
object. See Section 41.1.1, “Usage Modes”.

Parameter Description

Example 41.2, “Creating a Dispatch Object” shows the code for creating a Dispatch object that
works with DOMSource objects in payload mode.

Example 41.2. Creating a Dispatch Object

Constructing request messages

When working with Dispatch objects, requests must be built from scratch. The developer is
responsible for ensuring that the messages passed to a Dispatch object match a request that the
targeted service provider can process. This requires precise knowledge about the messages used by
the service provider and what, if any, header information it requires.

This information can be provided by a WSDL document or an XML Schema document that defines the
messages. While service providers vary greatly there are a few guidelines to be followed:

package com.fusesource.demo;

import javax.xml.namespace.QName;
import javax.xml.ws.Service;

public class Client
{
public static void main(String args[])
 {
 QName serviceName = new QName("http://org.apache.cxf",
"stockQuoteReporter");
 Service s = Service.create(serviceName);

 QName portName = new QName("http://org.apache.cxf",
"stockQuoteReporterPort");
 Dispatch<DOMSource> dispatch = s.createDispatch(portName,
 DOMSource.class,

Service.Mode.PAYLOAD);
 ...

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

372

The root element of the request is based in the value of the name attribute of the
wsdl:operation element corresponding to the operation being invoked.

WARNING

If the service being invoked uses doc/literal bare messages, the root
element of the request is based on the value of the name attribute of the
wsdl:part element referred to by the wsdl:operation element.

The root element of the request is namespace qualified.

If the service being invoked uses rpc/literal messages, the top-level elements in the request
will not be namespace qualified.

IMPORTANT

The children of top-level elements may be namespace qualified. To be certain
you must check their schema definitions.

If the service being invoked uses rpc/literal messages, none of the top-level elements can be
null.

If the service being invoked uses doc/literal messages, the schema definition of the message
determines if any of the elements are namespace qualified.

For more information about how services use XML messages see, the WS-I Basic Profile.

Synchronous invocation

For consumers that make synchronous invocations that generate a response, use the Dispatch
object's invoke() method shown in Example 41.3, “The Dispatch.invoke() Method”.

Example 41.3. The Dispatch.invoke() Method

T invoke(T msg)
 throws WebServiceException;

The type of both the response and the request passed to the invoke() method are determined when
the Dispatch object is created. For example if you create a Dispatch object using
createDispatch(portName, SOAPMessage.class, Service.Mode.MESSAGE), both the
response and the request are SOAPMessage objects.

NOTE

When using JAXB objects, both the response and the request can be of any type the
provided JAXBContext object can marshal and unmarshal. Also, the response and the
request can be different JAXB objects.



CHAPTER 41. USING RAW XML MESSAGES

373

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

Example 41.4, “Making a Synchronous Invocation Using a Dispatch Object” shows code for making a
synchronous invocation on a remote service using a DOMSource object.

Example 41.4. Making a Synchronous Invocation Using a Dispatch Object

Asynchronous invocation

Dispatch objects also support asynchronous invocations. As with the higher level asynchronous APIs
discussed in Chapter 40, Developing Asynchronous Applications, Dispatch objects can use both the
polling approach and the callback approach.

When using the polling approach, the invokeAsync() method returns a Response<t> object that
can be polled to see if the response has arrived. Example 41.5, “The Dispatch.invokeAsync()
Method for Polling” shows the signature of the method used to make an asynchronous invocation
using the polling approach.

Example 41.5. The Dispatch.invokeAsync() Method for Polling

Response <T> invokeAsync(T msg)
 throws WebServiceException;

For detailed information on using the polling approach for asynchronous invocations see Section 40.3,
“Implementing an Asynchronous Client with the Polling Approach”.

When using the callback approach, the invokeAsync() method takes an AsyncHandler
implementation that processes the response when it is returned. Example 41.6, “The
Dispatch.invokeAsync() Method Using a Callback” shows the signature of the method used to
make an asynchronous invocation using the callback approach.

Example 41.6. The Dispatch.invokeAsync() Method Using a Callback

Future<?> invokeAsync(T msg,
 AsyncHandler<T> handler)
 throws WebServiceException;

For detailed information on using the callback approach for asynchronous invocations see
Section 40.4, “Implementing an Asynchronous Client with the Callback Approach” .

// Creating a DOMSource Object for the request
DocumentBuilder db = DocumentBuilderFactory.newDocumentBuilder();
Document requestDoc = db.newDocument();
Element root =
requestDoc.createElementNS("http://org.apache.cxf/stockExample",
 "getStockPrice");
root.setNodeValue("DOW");
DOMSource request = new DOMSource(requestDoc);

// Dispatch disp created previously
DOMSource response = disp.invoke(request);

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

374

NOTE

As with the synchronous invoke() method, the type of the response and the type of
the request are determined when you create the Dispatch object.

Oneway invocation

When a request does not generate a response, make remote invocations using the Dispatch object's
invokeOneWay(). Example 41.7, “The Dispatch.invokeOneWay() Method” shows the signature
for this method.

Example 41.7. The Dispatch.invokeOneWay() Method

void invokeOneWay(T msg)
 throws WebServiceException;

The type of object used to package the request is determined when the Dispatch object is created.
For example if the Dispatch object is created using createDispatch(portName,
DOMSource.class, Service.Mode.PAYLOAD), then the request is packaged into a DOMSource
object.

NOTE

When using JAXB objects, the response and the request can be of any type the provided
JAXBContext object can marshal and unmarshal.

Example 41.8, “Making a One Way Invocation Using a Dispatch Object” shows code for making a
oneway invocation on a remote service using a JAXB object.

Example 41.8. Making a One Way Invocation Using a Dispatch Object

41.2. USING XML IN A SERVICE PROVIDER

The Provider interface is a low-level JAX-WS API that allows you to implement a service provider
that works directly with messages as raw XML. The messages are not packaged into JAXB objects
before being passed to an object that implements the Provider interface.

41.2.1. Messaging Modes

// Creating a JAXBContext and an Unmarshaller for the request
JAXBContext jbc =
JAXBContext.newInstance("org.apache.cxf.StockExample");
Unmarshaller u = jbc.createUnmarshaller();

// Read the request from disk
File rf = new File("request.xml");
GetStockPrice request = (GetStockPrice)u.unmarshal(rf);

// Dispatch disp created previously
disp.invokeOneWay(request);

CHAPTER 41. USING RAW XML MESSAGES

375

Overview

Objects that implement the Provider interface have two messaging modes:

Message mode

Payload mode

The messaging mode you specify determines the level of messaging detail that is passed to your
implementation.

Message mode

When using message mode, a Provider implementation works with complete messages. A complete
message includes any binding specific headers and wrappers. For example, a Provider
implementation that uses a SOAP binding receives requests as fully specified SOAP message. Any
response returned from the implementation must be a fully specified SOAP message.

To specify that a Provider implementation uses message mode by provide the value
java.xml.ws.Service.Mode.MESSAGE as the value to the javax.xml.ws.ServiceMode
annotation, as shown in Example 41.9, “Specifying that a Provider Implementation Uses Message
Mode”.

Example 41.9. Specifying that a Provider Implementation Uses Message Mode

Payload mode

In payload mode a Provider implementation works with only the payload of a message. For example, a
Provider implementation working in payload mode works only with the body of a SOAP message. The
binding layer processes any binding level wrappers and headers.

TIP

When working with a binding that does not use special wrappers, such as the Apache CXF XML binding,
payload mode and message mode provide the same results.

To specify that a Provider implementation uses payload mode by provide the value
java.xml.ws.Service.Mode.PAYLOAD as the value to the javax.xml.ws.ServiceMode
annotation, as shown in Example 41.10, “Specifying that a Provider Implementation Uses Payload
Mode”.

Example 41.10. Specifying that a Provider Implementation Uses Payload Mode

@WebServiceProvider
@ServiceMode(value=Service.Mode.MESSAGE)
public class stockQuoteProvider implements Provider<SOAPMessage>
{
 ...
}

@WebServiceProvider
@ServiceMode(value=Service.Mode.PAYLOAD)

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

376

TIP

If you do not provide a value for the @ServiceMode annotation, the Provider implementation uses
payload mode.

41.2.2. Data Types

Overview

Because they are low-level objects, Provider implementations cannot use the same JAXB generated
types as the higher level consumer APIs. Provider implementations work with the following types of
objects:

javax.xml.transform.Source

javax.xml.soap.SOAPMessage

javax.activation.DataSource

Using Source objects

A Provider implementation can accept and return objects that are derived from the
javax.xml.transform.Source interface. Source objects are low level objects that hold XML
documents. Each Source implementation provides methods that access the stored XML documents
and manipulate its contents. The following objects implement the Source interface:

DOMSource

Holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as a set
of Node objects that are accessed using the getNode() method. Nodes can be either updated or
added to the DOM tree using the setNode() method.

SAXSource

Holds XML messages as a Simple API for XML (SAX) object. SAX objects contain an InputSource
object that holds the raw data and an XMLReader object that parses the raw data.

StreamSource

Holds XML messages as a data stream. The data stream can be manipulated the same as any other
data stream.

If you create your Provider object so that it uses generic Source objects, Apache CXF returns the
messages as SAXSource objects.

This behavior can be changed using the endpoint's source-preferred-format property. See Part IV,
“Configuring Web Service Endpoints” for information about configuring the Apache CXF runtime.

public class stockQuoteProvider implements Provider<DOMSource>
{
 ...
}

CHAPTER 41. USING RAW XML MESSAGES

377

IMPORTANT

When using Source objects the developer is responsible for ensuring that all required
binding specific wrappers are added to the message. For example, when interacting with
a service expecting SOAP messages, the developer must ensure that the required SOAP
envelope is added to the outgoing request and that the SOAP envelope's contents are
correct.

Using SOAPMessage objects

Provider implementations can use javax.xml.soap.SOAPMessage objects when the following
conditions are true:

The Provider implementation is using the SOAP binding

The Provider implementation is using message mode

A SOAPMessage object holds a SOAP message. They contain one SOAPPart object and zero or more
AttachmentPart objects. The SOAPPart object contains the SOAP specific portions of the SOAP
message including the SOAP envelope, any SOAP headers, and the SOAP message body. The
AttachmentPart objects contain binary data that is passed as an attachment.

Using DataSource objects

Provider implementations can use objects that implement the javax.activation.DataSource
interface when the following conditions are true:

The implementation is using the HTTP binding

The implementation is using message mode

DataSource objects provide a mechanism for working with MIME typed data from a variety of sources,
including URLs, files, and byte arrays.

41.2.3. Implementing a Provider Object

Overview

The Provider interface is relatively easy to implement. It only has one method, invoke(), that must
be implemented. In addition it has three simple requirements:

An implementation must have the @WebServiceProvider annotation.

An implementation must have a default public constructor.

An implementation must implement a typed version of the Provider interface.

In other words, you cannot implement a Provider<T> interface. You must implement a
version of the interface that uses a concrete data type as listed in Section 41.2.2, “Data
Types”. For example, you can implement an instance of a Provider<SAXSource>.

The complexity of implementing the Provider interface is in the logic handling the request messages
and building the proper responses.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

378

Working with messages

Unlike the higher-level SEI based service implementations, Provider implementations receive
requests as raw XML data, and must send responses as raw XML data. This requires that the developer
has intimate knowledge of the messages used by the service being implemented. These details can
typically be found in the WSDL document describing the service.

WS-I Basic Profile provides guidelines about the messages used by services, including:

The root element of a request is based in the value of the name attribute of the
wsdl:operation element that corresponds to the operation that is invoked.

WARNING

If the service uses doc/literal bare messages, the root element of the
request is based on the value of name attribute of the wsdl:part element
referred to by the wsdl:operation element.

The root element of all messages is namespace qualified.

If the service uses rpc/literal messages, the top-level elements in the messages are not
namespace qualified.

IMPORTANT

The children of top-level elements might be namespace qualified, but to be
certain you will must check their schema definitions.

If the service uses rpc/literal messages, none of the top-level elements can be null.

If the service uses doc/literal messages, then the schema definition of the message determines
if any of the elements are namespace qualified.

The @WebServiceProvider annotation

To be recognized by JAX-WS as a service implementation, a Provider implementation must be
decorated with the @WebServiceProvider annotation.

Table 41.2, “@WebServiceProvider Properties” describes the properties that can be set for the
@WebServiceProvider annotation.

Table 41.2. @WebServiceProvider Properties

Property Description

portName Specifies the value of the name attribute of the
wsdl:port element that defines the service's
endpoint.



CHAPTER 41. USING RAW XML MESSAGES

379

http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html

serviceName Specifies the value of the name attribute of the
wsdl:service element that contains the
service's endpoint.

targetNamespace Specifies the targetname space of the service's
WSDL definition.

wsdlLocation Specifies the URI for the WSDL document defining
the service.

Property Description

All of these properties are optional, and are empty by default. If you leave them empty, Apache CXF
creates values using information from the implementation class.

Implementing the invoke() method

The Provider interface has only one method, invoke(), that must be implemented. The invoke()
method receives the incoming request packaged into the type of object declared by the type of
Provider interface being implemented, and returns the response message packaged into the same
type of object. For example, an implementation of a Provider<SOAPMessage> interface receives the
request as a SOAPMessage object and returns the response as a SOAPMessage object.

The messaging mode used by the Provider implementation determines the amount of binding
specific information the request and the response messages contain. Implementations using message
mode receive all of the binding specific wrappers and headers along with the request. They must also
add all of the binding specific wrappers and headers to the response message. Implementations using
payload mode only receive the body of the request. The XML document returned by an implementation
using payload mode is placed into the body of the request message.

Examples

Example 41.11, “Provider<SOAPMessage> Implementation” shows a Provider implementation that
works with SOAPMessage objects in message mode.

Example 41.11. Provider<SOAPMessage> Implementation

1

2

3

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.WebServiceProvider;

@WebServiceProvider(portName="stockQuoteReporterPort"
 serviceName="stockQuoteReporter")
@ServiceMode(value="Service.Mode.MESSAGE")
public class stockQuoteReporterProvider implements

Provider<SOAPMessage>
{

public stockQuoteReporterProvider()
 {

 }

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

380

1

2

3

4

5

6

7

8

9

The code in Example 41.11, “Provider<SOAPMessage> Implementation” does the following:

Specifies that the following class implements a Provider object that implements the service
whose wsdl:service element is named stockQuoteReporter, and whose wsdl:port
element is named stockQuoteReporterPort.

Specifies that this Provider implementation uses message mode.

Provides the required default public constructor.

Provides an implementation of the invoke() method that takes a SOAPMessage object and
returns a SOAPMessage object.

Extracts the request message from the body of the incoming SOAP message.

Checks the root element of the request message to determine how to process the request.

Creates the factories required for building the response.

Builds the SOAP message for the response.

Returns the response as a SOAPMessage object.

Example 41.12, “Provider<DOMSource> Implementation” shows an example of a Provider
implementation using DOMSource objects in payload mode.

Example 41.12. Provider<DOMSource> Implementation

4

5
6

7

8

9

public SOAPMessage invoke(SOAPMessage request)
 {
 SOAPBody requestBody = request.getSOAPBody();

if(requestBody.getElementName.getLocalName.equals("getStockPrice"))

 {
 MessageFactory mf = MessageFactory.newInstance();
 SOAPFactory sf = SOAPFactory.newInstance();

 SOAPMessage response = mf.createMessage();
 SOAPBody respBody = response.getSOAPBody();

 Name bodyName = sf.createName("getStockPriceResponse");
 respBody.addBodyElement(bodyName);
 SOAPElement respContent = respBody.addChildElement("price");
 respContent.setValue("123.00");
 response.saveChanges();

 return response;
 }

 ...
 }
}

import javax.xml.ws.Provider;
import javax.xml.ws.Service;
import javax.xml.ws.ServiceMode;

CHAPTER 41. USING RAW XML MESSAGES

381

1

2

3

4

The code in Example 41.12, “Provider<DOMSource> Implementation” does the following:

Specifies that the class implements a Provider object that implements the service whose
wsdl:service element is named stockQuoteReporter, and whose wsdl:port element is
named stockQuoteReporterPort.

Specifies that this Provider implementation uses payload mode.

Provides the required default public constructor.

Provides an implementation of the invoke() method that takes a DOMSource object and
returns a DOMSource object.

1

2

3

4

import javax.xml.ws.WebServiceProvider;

@WebServiceProvider(portName="stockQuoteReporterPort"
serviceName="stockQuoteReporter")
@ServiceMode(value="Service.Mode.PAYLOAD")
public class stockQuoteReporterProvider implements

Provider<DOMSource>
public stockQuoteReporterProvider()
 {

 }

public DOMSource invoke(DOMSource request)
 {

 DOMSource response = new DOMSource();
 ...
 return response;
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

382

CHAPTER 42. WORKING WITH CONTEXTS

Abstract

JAX-WS uses contexts to pass metadata along the messaging chain. This metadata, depending on its
scope, is accessible to implementation level code. It is also accessible to JAX-WS handlers that
operate on the message below the implementation level.

42.1. UNDERSTANDING CONTEXTS

Overview

In many instances it is necessary to pass information about a message to other parts of an application.
Apache CXF does this using a context mechanism. Contexts are maps that hold properties relating to
an outgoing or an incoming message. The properties stored in the context are typically metadata
about the message, and the underlying transport used to communicate the message. For example, the
transport specific headers used in transmitting the message, such as the HTTP response code or the
JMS correlation ID, are stored in the JAX-WS contexts.

The contexts are available at all levels of a JAX-WS application. However, they differ in subtle ways
depending upon where in the message processing stack you are accessing the context. JAX-WS
Handler implementations have direct access to the contexts and can access all properties that are set
in them. Service implementations access contexts by having them injected, and can only access
properties that are set in the APPLICATION scope. Consumer implementations can only access
properties that are set in the APPLICATION scope.

Figure 42.1, “Message Contexts and Message Processing Path” shows how the context properties pass
through Apache CXF. As a message passes through the messaging chain, its associated message
context passes along with it.

CHAPTER 42. WORKING WITH CONTEXTS

383

Figure 42.1. Message Contexts and Message Processing Path

How properties are stored in a context

The message contexts are all implementations of the javax.xml.ws.handler.MessageContext
interface. The MessageContext interface extends the java.util.Map<String key, Object
value> interface. Map objects store information as key value pairs.

In a message context, properties are stored as name/value pairs. A property's key is a String that
identifies the property. The value of a property can be any value stored in any Java object. When the
value is returned from a message context, the application must know the type to expect and cast
accordingly. For example, if a property's value is stored in a UserInfo object it is still returned from a
message context as an Object object that must be cast back into a UserInfo object.

Properties in a message context also have a scope. The scope determines where a property can be
accessed in the message processing chain.

Property scopes

Properties in a message context are scoped. A property can be in one of the following scopes:

APPLICATION

Properties scoped as APPLICATION are available to JAX-WS Handler implementations, consumer
implementation code, and service provider implementation code. If a handler needs to pass a
property to the service provider implementation, it sets the property's scope to APPLICATION. All

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

384

properties set from either the consumer implementation or the service provider implementation
contexts are automatically scoped as APPLICATION.

HANDLER

Properties scoped as HANDLER are only available to JAX-WS Handler implementations. Properties
stored in a message context from a Handler implementation are scoped as HANDLER by default.

You can change a property's scope using the message context's setScope() method. Example 42.1,
“The MessageContext.setScope() Method” shows the method's signature.

Example 42.1. The MessageContext.setScope() Method

void setScope(String key,
 MessageContext.Scope scope)
 throws java.lang.IllegalArgumentException;

The first parameter specifies the property's key. The second parameter specifies the new scope for the
property. The scope can be either:

MessageContext.Scope.APPLICATION

MessageContext.Scope.HANDLER

Overview of contexts in handlers

Classes that implement the JAX-WS Handler interface have direct access to a message's context
information. The message's context information is passed into the Handler implementation's
handleMessage(), handleFault(), and close() methods.

Handler implementations have access to all of the properties stored in the message context,
regardless of their scope. In addition, logical handlers use a specialized message context called a
LogicalMessageContext. LogicalMessageContext objects have methods that access the
contents of the message body.

Overview of contexts in service implementations

Service implementations can access properties scoped as APPLICATION from the message context.
The service provider's implementation object accesses the message context through the
WebServiceContext object.

For more information see Section 42.2, “Working with Contexts in a Service Implementation” .

Overview of contexts in consumer implementations

Consumer implementations have indirect access to the contents of the message context. The
consumer implementation has two separate message contexts:

Request context — holds a copy of the properties used for outgoing requests

Response context — holds a copy of the properties from an incoming response

The dispatch layer transfers the properties between the consumer implementation's message contexts

CHAPTER 42. WORKING WITH CONTEXTS

385

and the message context used by the Handler implementations.

When a request is passed to the dispatch layer from the consumer implementation, the contents of the
request context are copied into the message context that is used by the dispatch layer. When the
response is returned from the service, the dispatch layer processes the message and sets the
appropriate properties into its message context. After the dispatch layer processes a response, it
copies all of the properties scoped as APPLICATION in its message context to the consumer
implementation's response context.

For more information see Section 42.3, “Working with Contexts in a Consumer Implementation” .

42.2. WORKING WITH CONTEXTS IN A SERVICE IMPLEMENTATION

Overview

Context information is made available to service implementations using the WebServiceContext
interface. From the WebServiceContext object you can obtain a MessageContext object that is
populated with the current request's context properties in the application scope. You can manipulate
the values of the properties, and they are propagated back through the response chain.

NOTE

The MessageContext interface inherits from the java.util.Map interface. Its
contents can be manipulated using the Map interface's methods.

Obtaining a context

To obtain the message context in a service implementation do the following:

1. Declare a variable of type WebServiceContext.

2. Decorate the variable with the javax.annotation.Resource annotation to indicate that
the context information is being injected into the variable.

3. Obtain the MessageContext object from the WebServiceContext object using the
getMessageContext() method.

IMPORTANT

getMessageContext() can only be used in methods that are decorated with
the @WebMethod annotation.

Example 42.2, “Obtaining a Context Object in a Service Implementation” shows code for obtaining a
context object.

Example 42.2. Obtaining a Context Object in a Service Implementation

import javax.xml.ws.*;
import javax.xml.ws.handler.*;
import javax.annotation.*;

@WebServiceProvider
public class WidgetServiceImpl

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

386

Reading a property from a context

Once you have obtained the MessageContext object for your implementation, you can access the
properties stored there using the get() method shown in Example 42.3, “The
MessageContext.get() Method”.

Example 42.3. The MessageContext.get() Method

V get(Object key);

NOTE

This get() is inherited from the Map interface.

The key parameter is the string representing the property you want to retrieve from the context. The
get() returns an object that must be cast to the proper type for the property. Table 42.1, “Properties
Available in the Service Implementation Context” lists a number of the properties that are available in
a service implementation's context.

IMPORTANT

Changing the values of the object returned from the context also changes the value of
the property in the context.

Example 42.4, “Getting a Property from a Service's Message Context” shows code for getting the name
of the WSDL operation element that represents the invoked operation.

Example 42.4. Getting a Property from a Service's Message Context

{
 @Resource
 WebServiceContext wsc;

 @WebMethod
 public String getColor(String itemNum)
 {
 MessageContext context = wsc.getMessageContext();
 }

 ...
}

import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

 ...
 // MessageContext context retrieved in a previous example
 QName wsdl_operation = (QName)context.get(Message.WSDL_OPERATION);

CHAPTER 42. WORKING WITH CONTEXTS

387

Setting properties in a context

Once you have obtained the MessageContext object for your implementation, you can set properties,
and change existing properties, using the put() method shown in Example 42.5, “The
MessageContext.put() Method”.

Example 42.5. The MessageContext.put() Method

V put(K key,
 V value)
 throws ClassCastException, IllegalArgumentException,
NullPointerException;

If the property being set already exists in the message context, the put() method replaces the
existing value with the new value and returns the old value. If the property does not already exist in the
message context, the put() method sets the property and returns null.

Example 42.6, “Setting a Property in a Service's Message Context” shows code for setting the
response code for an HTTP request.

Example 42.6. Setting a Property in a Service's Message Context

Supported contexts

Table 42.1, “Properties Available in the Service Implementation Context” lists the properties
accessible through the context in a service implementation object.

Table 42.1. Properties Available in the Service Implementation Context

Base Class

Property Name Description

org.apache.cxf.message.Message

PROTOCOL_HEADERS[a] Specifies the transport specific header information.
The value is stored as a
java.util.Map<String, List<String>>.

RESPONSE_CODE[a] Specifies the response code returned to the
consumer. The value is stored as an Integer
object.

import javax.xml.ws.handler.MessageContext;
import org.apache.cxf.message.Message;

 ...
 // MessageContext context retrieved in a previous example
 context.put(Message.RESPONSE_CODE, new Integer(404));

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

388

ENDPOINT_ADDRESS Specifies the address of the service provider. The
value is stored as a String.

HTTP_REQUEST_METHOD[a] Specifies the HTTP verb sent with a request. The
value is stored as a String.

PATH_INFO[a] Specifies the path of the resource being requested.
The value is stored as a String.

The path is the portion of the URI after the hostname
and before any query string. For example, if an
endpoint's URI is
http://cxf.apache.org/demo/widgets the path is
/demo/widgets.

QUERY_STRING[a] Specifies the query, if any, attached to the URI used
to invoke the request. The value is stored as a
String.

Queries appear at the end of the URI after a ?. For
example, if a request is made to
http://cxf.apache.org/demo/widgets?color the
query is color.

MTOM_ENABLED Specifies whether or not the service provider can
use MTOM for SOAP attachments. The value is
stored as a Boolean.

SCHEMA_VALIDATION_ENABLED Specifies whether or not the service provider
validates messages against a schema. The value is
stored as a Boolean.

FAULT_STACKTRACE_ENABLED Specifies if the runtime provides a stack trace along
with a fault message. The value is stored as a
Boolean.

CONTENT_TYPE Specifies the MIME type of the message. The value is
stored as a String.

BASE_PATH Specifies the path of the resource being requested.
The value is stored as a java.net.URL.

The path is the portion of the URI after the hostname
and before any query string. For example, if an
endpoint's URL is
http://cxf.apache.org/demo/widgets the base path
is /demo/widgets.

ENCODING Specifies the encoding of the message. The value is
stored as a String.

Base Class

Property Name Description

CHAPTER 42. WORKING WITH CONTEXTS

389

FIXED_PARAMETER_ORDER Specifies whether the parameters must appear in
the message in a particular order. The value is
stored as a Boolean.

MAINTAIN_SESSION Specifies if the consumer wants to maintain the
current session for future requests. The value is
stored as a Boolean.

WSDL_DESCRIPTION[a] Specifies the WSDL document that defines the
service being implemented. The value is stored as a
org.xml.sax.InputSource object.

WSDL_SERVICE[a] Specifies the qualified name of the wsdl:service
element that defines the service being implemented.
The value is stored as a QName.

WSDL_PORT[a] Specifies the qualified name of the wsdl:port
element that defines the endpoint used to access
the service. The value is stored as a QName.

WSDL_INTERFACE[a] Specifies the qualified name of the
wsdl:portType element that defines the service
being implemented. The value is stored as a QName.

WSDL_OPERATION[a] Specifies the qualified name of the
wsdl:operation element that corresponds to
the operation invoked by the consumer. The value is
stored as a QName.

javax.xml.ws.handler.MessageContext

MESSAGE_OUTBOUND_PROPERTY Specifies if a message is outbound. The value is
stored as a Boolean. true specifies that a
message is outbound.

INBOUND_MESSAGE_ATTACHMENTS Contains any attachments included in the request
message. The value is stored as a
java.util.Map<String, DataHandler>.

The key value for the map is the MIME Content-ID
for the header.

OUTBOUND_MESSAGE_ATTACHMENTS Contains any attachments for the response
message. The value is stored as a
java.util.Map<String, DataHandler>.

The key value for the map is the MIME Content-ID
for the header.

Base Class

Property Name Description

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

390

WSDL_DESCRIPTION Specifies the WSDL document that defines the
service being implemented. The value is stored as a
org.xml.sax.InputSource object.

WSDL_SERVICE Specifies the qualified name of the wsdl:service
element that defines the service being implemented.
The value is stored as a QName.

WSDL_PORT Specifies the qualified name of the wsdl:port
element that defines the endpoint used to access
the service. The value is stored as a QName.

WSDL_INTERFACE Specifies the qualified name of the
wsdl:portType element that defines the service
being implemented. The value is stored as a QName.

WSDL_OPERATION Specifies the qualified name of the
wsdl:operation element that corresponds to
the operation invoked by the consumer. The value is
stored as a QName.

HTTP_RESPONSE_CODE Specifies the response code returned to the
consumer. The value is stored as an Integer
object.

HTTP_REQUEST_HEADERS Specifies the HTTP headers on a request. The value
is stored as a java.util.Map<String,
List<String>>.

HTTP_RESPONSE_HEADERS Specifies the HTTP headers for the response. The
value is stored as a java.util.Map<String,
List<String>>.

HTTP_REQUEST_METHOD Specifies the HTTP verb sent with a request. The
value is stored as a String.

SERVLET_REQUEST Contains the servlet's request object. The value is
stored as a
javax.servlet.http.HttpServletReques
t.

SERVLET_RESPONSE Contains the servlet's response object. The value is
stored as a
javax.servlet.http.HttpResponse.

Base Class

Property Name Description

CHAPTER 42. WORKING WITH CONTEXTS

391

SERVLET_CONTEXT Contains the servlet's context object. The value is
stored as a
javax.servlet.ServletContext.

PATH_INFO Specifies the path of the resource being requested.
The value is stored as a String.

The path is the portion of the URI after the hostname
and before any query string. For example, if an
endpoint's URL is
http://cxf.apache.org/demo/widgets the path is
/demo/widgets.

QUERY_STRING Specifies the query, if any, attached to the URI used
to invoke the request. The value is stored as a
String.

Queries appear at the end of the URI after a ?. For
example, if a request is made to
http://cxf.apache.org/demo/widgets?color the
query string is color.

REFERENCE_PARAMETERS Specifies the WS-Addressing reference parameters.
This includes all of the SOAP headers whose
wsa:IsReferenceParameter attribute is set
to true. The value is stored as a
java.util.List.

org.apache.cxf.transport.jms.JMSConstants

JMS_SERVER_HEADERS Contains the JMS message headers. For more
information see Section 42.4, “Working with JMS
Message Properties”.

[a] When using HTTP this property is the same as the standard JAX-WS defined property.

Base Class

Property Name Description

42.3. WORKING WITH CONTEXTS IN A CONSUMER IMPLEMENTATION

Overview

Consumer implementations have access to context information through the BindingProvider
interface. The BindingProvider instance holds context information in two separate contexts:

Request Context

The request context enables you to set properties that affect outbound messages. Request context
properties are applied to a specific port instance and, once set, the properties affect every
subsequent operation invocation made on the port, until such time as a property is explicitly

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

392

cleared. For example, you might use a request context property to set a connection timeout or to
initialize data for sending in a header.

Response Context

The response context enables you to read the property values set by the response to the last
operation invocation made from the current thread. Response context properties are reset after
every operation invocation. For example, you might access a response context property to read
header information received from the last inbound message.

IMPORTANT

Only information that is placed in the application scope of a message context can be
accessed by the consumer implementation.

Obtaining a context

Contexts are obtained using the javax.xml.ws.BindingProvider interface. The
BindingProvider interface has two methods for obtaining a context:

getRequestContext()

The getRequestContext() method, shown in Example 42.7, “The getRequestContext()
Method”, returns the request context as a Map object. The returned Map object can be used to
directly manipulate the contents of the context.

Example 42.7. The getRequestContext() Method

Map<String, Object> getRequestContext();

getResponseContext()

The getResponseContext(), shown in Example 42.8, “The getResponseContext() Method”,
returns the response context as a Map object. The returned Map object's contents reflect the state
of the response context's contents from the most recent successful request on a remote service
made in the current thread.

Example 42.8. The getResponseContext() Method

Map<String, Object> getResponseContext();

Since proxy objects implement the BindingProvider interface, a BindingProvider object can be
obtained by casting a proxy object. The contexts obtained from the BindingProvider object are
only valid for operations invoked on the proxy object used to create it.

Example 42.9, “Getting a Consumer's Request Context” shows code for obtaining the request context
for a proxy.

Example 42.9. Getting a Consumer's Request Context

CHAPTER 42. WORKING WITH CONTEXTS

393

Reading a property from a context

Consumer contexts are stored in java.util.Map<String, Object> objects. The map has keys
that are String objects and values that contain arbitrary objects. Use java.util.Map.get() to
access an entry in the map of response context properties.

To retrieve a particular context property, ContextPropertyName, use the code shown in Example 42.10,
“Reading a Response Context Property”.

Example 42.10. Reading a Response Context Property

Setting properties in a context

Consumer contexts are hash maps stored in java.util.Map<String, Object> objects. The map
has keys that are String objects and values that are arbitrary objects. To set a property in a context
use the java.util.Map.put() method.

TIP

While you can set properties in both the request context and the response context, only the changes
made to the request context have any impact on message processing. The properties in the response
context are reset when each remote invocation is completed on the current thread.

The code shown in Example 42.11, “Setting a Request Context Property” changes the address of the
target service provider by setting the value of the
BindingProvider.ENDPOINT_ADDRESS_PROPERTY.

Example 42.11. Setting a Request Context Property

// Proxy widgetProxy obtained previously
BindingProvider bp = (BindingProvider)widgetProxy;
Map<String, Object> responseContext = bp.getResponseContext();

// Invoke an operation.
port.SomeOperation();

// Read response context property.
java.util.Map<String, Object> responseContext =
 ((javax.xml.ws.BindingProvider)port).getResponseContext();
PropertyType propValue = (PropertyType)
responseContext.get(ContextPropertyName);

// Set request context property.
java.util.Map<String, Object> requestContext =
 ((javax.xml.ws.BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
"http://localhost:8080/widgets");

// Invoke an operation.
port.SomeOperation();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

394

IMPORTANT

Once a property is set in the request context its value is used for all subsequent remote
invocations. You can change the value and the changed value will then be used.

Supported contexts

Apache CXF supports the following context properties in consumer implementations:

Table 42.2. Consumer Context Properties

Base Class

Property Name Description

javax.xml.ws.BindingProvider

ENDPOINT_ADDRESS_PROPERTY Specifies the address of the target service. The value
is stored as a String.

USERNAME_PROPERTY[a] Specifies the username used for HTTP basic
authentication. The value is stored as a String.

PASSWORD_PROPERTY[b] Specifies the password used for HTTP basic
authentication. The value is stored as a String.

SESSION_MAINTAIN_PROPERTY[c] Specifies if the client wants to maintain session
information. The value is stored as a Boolean
object.

org.apache.cxf.ws.addressing.JAXWSAConstants

CLIENT_ADDRESSING_PROPERTIES Specifies the WS-Addressing information used by
the consumer to contact the desired service
provider. The value is stored as a
org.apache.cxf.ws.addressing.Address
ingProperties.

org.apache.cxf.transports.jms.context.JMSConstants

JMS_CLIENT_REQUEST_HEADERS Contains the JMS headers for the message. For
more information see Section 42.4, “Working with
JMS Message Properties”.

[a] This property is overridden by the username defined in the HTTP security settings.

[b] This property is overridden by the password defined in the HTTP security settings.

[c] The Apache CXF ignores this property.

CHAPTER 42. WORKING WITH CONTEXTS

395

Base Class

Property Name Description

42.4. WORKING WITH JMS MESSAGE PROPERTIES

The Apache CXF JMS transport has a context mechanism that can be used to inspect a JMS message's
properties. The context mechanism can also be used to set a JMS message's properties.

42.4.1. Inspecting JMS Message Headers

Consumers and services use different context mechanisms to access the JMS message header
properties. However, both mechanisms return the header properties as a
org.apache.cxf.transports.jms.context.JMSMessageHeadersType object.

Getting the JMS Message Headers in a Service

To get the JMS message header properties from the WebServiceContext object, do the following:

1. Obtain the context as described in the section called “Obtaining a context” .

2. Get the message headers from the message context using the message context's get()
method with the parameter
org.apache.cxf.transports.jms.JMSConstants.JMS_SERVER_HEADERS.

Example 42.12, “Getting JMS Message Headers in a Service Implementation” shows code for getting
the JMS message headers from a service's message context:

Example 42.12. Getting JMS Message Headers in a Service Implementation

import org.apache.cxf.transport.jms.JMSConstants;
import org.apache.cxf.transports.jms.context.JMSMessageHeadersType;

@WebService(serviceName = "HelloWorldService",
 portName = "HelloWorldPort",
 endpointInterface =
"org.apache.cxf.hello_world_jms.HelloWorldPortType",
 targetNamespace =
"http://cxf.apache.org/hello_world_jms")
 public class GreeterImplTwoWayJMS implements HelloWorldPortType
 {
 @Resource
 protected WebServiceContext wsContext;
 ...

 @WebMethod

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

396

1

2

3

Getting JMS Message Header Properties in a Consumer

Once a message is successfully retrieved from the JMS transport you can inspect the JMS header
properties using the consumer's response context. In addition, you can see how long the client waits
for a response before timing out.

You can To get the JMS message headers from a consumer's response context do the following:

1. Get the response context as described in the section called “Obtaining a context” .

2. Get the JMS message header properties from the response context using the context's get()
method with
org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RESPONSE_HEADERS
as the parameter.

Example 42.13, “Getting the JMS Headers from a Consumer Response Header” shows code for getting
the JMS message header properties from a consumer's response context.

Example 42.13. Getting the JMS Headers from a Consumer Response Header

The code in Example 42.13, “Getting the JMS Headers from a Consumer Response Header” does the
following:

Casts the proxy to a BindingProvider.

Gets the response context.

Retrieves the JMS message headers from the response context.

42.4.2. Inspecting the Message Header Properties

 public String greetMe(String me)
 {
 MessageContext mc = wsContext.getMessageContext();
 JMSMessageHeadersType headers = (JMSMessageHeadersType)
mc.get(JMSConstants.JMS_SERVER_HEADERS);
 ...
 }
 ...
}

1
2

3

import org.apache.cxf.transports.jms.context.*;
// Proxy greeter initialized previously

BindingProvider bp = (BindingProvider)greeter;
Map<String, Object> responseContext = bp.getResponseContext();

JMSMessageHeadersType responseHdr = (JMSMessageHeadersType)

responseContext.get(JMSConstants.JMS_CLIENT_REQUEST_HEADERS);
...
}

CHAPTER 42. WORKING WITH CONTEXTS

397

Standard JMS Header Properties

Table 42.3, “JMS Header Properties” lists the standard properties in the JMS header that you can
inspect.

Table 42.3. JMS Header Properties

Property Name Property Type Getter Method

Correlation ID string getJMSCorralationID()

Delivery Mode int getJMSDeliveryMode()

Message Expiration long getJMSExpiration()

Message ID string getJMSMessageID()

Priority int getJMSPriority()

Redelivered boolean getJMSRedlivered()

Time Stamp long getJMSTimeStamp()

Type string getJMSType()

Time To Live long getTimeToLive()

Optional Header Properties

In addition, you can inspect any optional properties stored in the JMS header using
JMSMessageHeadersType.getProperty(). The optional properties are returned as a List of
org.apache.cxf.transports.jms.context.JMSPropertyType. Optional properties are stored
as name/value pairs.

Example

Example 42.14, “Reading the JMS Header Properties” shows code for inspecting some of the JMS
properties using the response context.

Example 42.14. Reading the JMS Header Properties

1

2
3

4
5

6

// JMSMessageHeadersType messageHdr retrieved previously
System.out.println("Correlation ID:
"+messageHdr.getJMSCorrelationID());
System.out.println("Message Priority: "+messageHdr.getJMSPriority());

System.out.println("Redelivered: "+messageHdr.getRedelivered());

JMSPropertyType prop = null;
List<JMSPropertyType> optProps = messageHdr.getProperty();

Iterator<JMSPropertyType> iter = optProps.iterator();
while (iter.hasNext())

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

398

1

2

3

4

5

6

The code in Example 42.14, “Reading the JMS Header Properties” does the following:

Prints the value of the message's correlation ID.

Prints the value of the message's priority property.

Prints the value of the message's redelivered property.

Gets the list of the message's optional header properties.

Gets an Iterator to traverse the list of properties.

Iterates through the list of optional properties and prints their name and value.

42.4.3. Setting JMS Properties

Using the request context in a consumer endpoint, you can set a number of the JMS message header
properties and the consumer endpoint's timeout value. These properties are valid for a single
invocation. You must reset them each time you invoke an operation on the service proxy.

NOTE

You cannot set header properties in a service.

JMS Header Properties

Table 42.4, “Settable JMS Header Properties” lists the properties in the JMS header that can be set
using the consumer endpoint's request context.

Table 42.4. Settable JMS Header Properties

Property Name Property Type Setter Method

Correlation ID string setJMSCorralationID()

Delivery Mode int setJMSDeliveryMode()

Priority int setJMSPriority()

Time To Live long setTimeToLive()

To set these properties do the following:

1. Create an org.apache.cxf.transports.jms.context.JMSMessageHeadersType
object.

{
 prop = iter.next();
 System.out.println("Property name: "+prop.getName());
 System.out.println("Property value: "+prop.getValue());
}

CHAPTER 42. WORKING WITH CONTEXTS

399

2. Populate the values you want to set using the appropriate setter methods described in
Table 42.4, “Settable JMS Header Properties” .

3. Set the values to the request context by calling the request context's put() method using
org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_REQUEST_HEADERS as
the first argument, and the new JMSMessageHeadersType object as the second argument.

Optional JMS Header Properties

You can also set optional properties to the JMS header. Optional JMS header properties are stored in
the JMSMessageHeadersType object that is used to set the other JMS header properties. They are
stored as a List object containing
org.apache.cxf.transports.jms.context.JMSPropertyType objects. To add optional
properties to the JMS header do the following:

1. Create a JMSPropertyType object.

2. Set the property's name field using setName().

3. Set the property's value field using setValue().

4. Add the property to the JMS message header using
JMSMessageHeadersType.getProperty().add(JMSPropertyType).

5. Repeat the procedure until all of the properties have been added to the message header.

Client Receive Timeout

In addition to the JMS header properties, you can set the amount of time a consumer endpoint waits for
a response before timing out. You set the value by calling the request context's put() method with
org.apache.cxf.transports.jms.JMSConstants.JMS_CLIENT_RECEIVE_TIMEOUT as the
first argument and a long representing the amount of time in milliseconds that you want the consumer
to wait as the second argument.

Example

Example 42.15, “Setting JMS Properties using the Request Context” shows code for setting some of
the JMS properties using the request context.

Example 42.15. Setting JMS Properties using the Request Context

1

2

3
4

5
6

import org.apache.cxf.transports.jms.context.*;
 // Proxy greeter initialized previously

InvocationHandler handler = Proxy.getInvocationHandler(greeter);

BindingProvider bp= null;
if (handler instanceof BindingProvider)
{
 bp = (BindingProvider)handler;

 Map<String, Object> requestContext = bp.getRequestContext();

 JMSMessageHeadersType requestHdr = new JMSMessageHeadersType();
 requestHdr.setJMSCorrelationID("WithBob");

 requestHdr.setJMSExpiration(3600000L);

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

400

1

2

3

4

5

6

7

8

9

10

11

12

The code in Example 42.15, “Setting JMS Properties using the Request Context” does the following:

Gets the InvocationHandler for the proxy whose JMS properties you want to change.

Checks to see if the InvocationHandler is a BindingProvider.

Casts the returned InvocationHandler object into a BindingProvider object to retrieve the
request context.

Gets the request context.

Creates a JMSMessageHeadersType object to hold the new message header values.

Sets the Correlation ID.

Sets the Expiration property to 60 minutes.

Creates a new JMSPropertyType object.

Sets the values for the optional property.

Adds the optional property to the message header.

Sets the JMS message header values into the request context.

Sets the client receive timeout property to 1 second.

7

8
9

10

11

12

 JMSPropertyType prop = new JMSPropertyType;
 prop.setName("MyProperty");
 prop.setValue("Bluebird");

 requestHdr.getProperty().add(prop);

 requestContext.put(JMSConstants.CLIENT_REQUEST_HEADERS,
requestHdr);

 requestContext.put(JMSConstants.CLIENT_RECEIVE_TIMEOUT, new
Long(1000));

}

CHAPTER 42. WORKING WITH CONTEXTS

401

CHAPTER 43. WRITING HANDLERS

Abstract

JAX-WS provides a flexible plug-in framework for adding message processing modules to an
application. These modules, known as handlers, are independent of the application level code and can
provide low-level message processing capabilities.

43.1. HANDLERS: AN INTRODUCTION

Overview

When a service proxy invokes an operation on a service, the operation's parameters are passed to
Apache CXF where they are built into a message and placed on the wire. When the message is received
by the service, Apache CXF reads the message from the wire, reconstructs the message, and then
passes the operation parameters to the application code responsible for implementing the operation.
When the application code is finished processing the request, the reply message undergoes a similar
chain of events on its trip to the service proxy that originated the request. This is shown in Figure 43.1,
“Message Exchange Path”.

Figure 43.1. Message Exchange Path

JAX-WS defines a mechanism for manipulating the message data between the application level code
and the network. For example, you might want the message data passed over the open network to be
encrypted using a proprietary encryption mechanism. You could write a JAX-WS handler that
encrypted and decrypted the data. Then you could insert the handler into the message processing
chains of all clients and servers.

As shown in Figure 43.2, “Message Exchange Path with Handlers” , the handlers are placed in a chain
that is traversed between the application level code and the transport code that places the message
onto the network.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

402

Figure 43.2. Message Exchange Path with Handlers

Handler types

The JAX-WS specification defines two basic handler types:

Logical Handler

Logical handlers can process the message payload and the properties stored in the message
context. For example, if the application uses pure XML messages, the logical handlers have access
to the entire message. If the application uses SOAP messages, the logical handlers have access to
the contents of the SOAP body. They do not have access to either the SOAP headers or any
attachments unless they were placed into the message context.

Logical handlers are placed closest to the application code on the handler chain. This means that
they are executed first when a message is passed from the application code to the transport. When
a message is received from the network and passed back to the application code, the logical
handlers are executed last.

Protocol Handler

Protocol handlers can process the entire message received from the network and the properties
stored in the message context. For example, if the application uses SOAP messages, the protocol
handlers would have access to the contents of the SOAP body, the SOAP headers, and any
attachments.

Protocol handlers are placed closest to the transport on the handler chain. This means that they are
executed first when a message is received from the network. When a message is sent to the
network from the application code, the protocol handlers are executed last.

CHAPTER 43. WRITING HANDLERS

403

TIP

The only protocol handler supported by Apache CXF is specific to SOAP.

Implementation of handlers

The differences between the two handler types are very subtle and they share a common base
interface. Because of their common parentage, logical handlers and protocol handlers share a number
of methods that must be implemented, including:

handleMessage()

The handleMessage() method is the central method in any handler. It is the method responsible
for processing normal messages.

handleFault()

handleFault() is the method responsible for processing fault messages.

close()

close() is called on all executed handlers in a handler chain when a message has reached the end
of the chain. It is used to clean up any resources consumed during message processing.

The differences between the implementation of a logical handler and the implementation of a protocol
handler revolve around the following:

The specific interface that is implemented

All handlers implement an interface that derives from the Handler interface. Logical handlers
implement the LogicalHandler interface. Protocol handlers implement protocol specific
extensions of the Handler interface. For example, SOAP handlers implement the
SOAPHandler interface.

The amount of information available to the handler

Protocol handlers have access to the contents of messages and all of the protocol specific
information that is packaged with the message content. Logical handlers can only access the
contents of the message. Logical handlers have no knowledge of protocol details.

Adding handlers to an application

To add a handler to an application you must do the following:

1. Determine whether the handler is going to be used on the service providers, the consumers, or
both.

2. Determine which type of handler is the most appropriate for the job.

3. Implement the proper interface.

To implement a logical handler see Section 43.2, “Implementing a Logical Handler” .

To implement a protocol handler see Section 43.4, “Implementing a Protocol Handler” .

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

404

4. Configure your endpoint(s) to use the handlers.

43.2. IMPLEMENTING A LOGICAL HANDLER

Overview

Logical handlers implement the javax.xml.ws.handler.LogicalHandler interface. The
LogicalHandler interface, shown in Example 43.1, “LogicalHandler Synopsis” passes a
LogicalMessageContext object to the handleMessage() method and the handleFault()
method. The context object provides access to the body of the message and to any properties set into
the message exchange's context.

Example 43.1. LogicalHandler Synopsis

Procedure

To implement a logical hander you do the following:

1. Implement any initialization logic required by the handler.

2. Implement the message handling logic.

3. Implement the fault handling logic.

4. Implement the logic for closing the handler when it is finished.

5. Implement any logic for cleaning up the handler's resources before it is destroyed.

43.3. HANDLING MESSAGES IN A LOGICAL HANDLER

Overview

Normal message processing is handled by the handleMessage() method.

The handleMessage() method receives a LogicalMessageContext object that provides access to
the message body and any properties stored in the message context.

The handleMessage() method returns either true or false depending on how message processing
is to continue. It can also throw an exception.

Getting the message data

The LogicalMessageContext object passed into logical message handlers allows access to the
message body using the context's getMessage() method. The getMessage() method, shown in

public interface LogicalHandler extends Handler
{
 boolean handleMessage(LogicalMessageContext context);
 boolean handleFault(LogicalMessageContext context);
 void close(LogicalMessageContext context);
}

CHAPTER 43. WRITING HANDLERS

405

Example 43.2, “Method for Getting the Message Payload in a Logical Handler” , returns the message
payload as a LogicalMessage object.

Example 43.2. Method for Getting the Message Payload in a Logical Handler

LogicalMessage getMessage();

Once you have the LogicalMessage object, you can use it to manipulate the message body. The
LogicalMessage interface, shown in Example 43.3, “Logical Message Holder”, has getters and
setters for working with the actual message body.

Example 43.3. Logical Message Holder

 LogicalMessage {
 Source getPayload();
 Object getPayload(JAXBContext context);
 void setPayload(Object payload,
 JAXBContext context);
 void setPayload(Source payload);
}

IMPORTANT

The contents of the message payload are determined by the type of binding in use. The
SOAP binding only allows access to the SOAP body of the message. The XML binding
allows access to the entire message body.

Working with the message body as an XML object

One pair of getters and setters of the logical message work with the message payload as a
javax.xml.transform.dom.DOMSource object.

The getPayload() method that has no parameters returns the message payload as a DOMSource
object. The returned object is the actual message payload. Any changes made to the returned object
change the message body immediately.

You can replace the body of the message with a DOMSource object using the setPayload() method
that takes the single Source object.

Working with the message body as a JAXB object

The other pair of getters and setters allow you to work with the message payload as a JAXB object.
They use a JAXBContext object to transform the message payload into JAXB objects.

To use the JAXB objects you do the following:

1. Get a JAXBContext object that can manage the data types in the message body.

For information on creating a JAXBContext object see Chapter 38, Using A JAXBContext
Object.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

406

2. Get the message body as shown in Example 43.4.

Example 43.4. Getting the Message Body as a JAXB Object

3. Cast the returned object to the proper type.

4. Manipulate the message body as needed.

5. Put the updated message body back into the context as shown in Example 43.5.

Example 43.5. Updating the Message Body Using a JAXB Object

Working with context properties

The logical message context passed into a logical handler is an instance of the application's message
context and can access all of the properties stored in it. Handlers have access to properties at both the
APPLICATION scope and the HANDLER scope.

Like the application's message context, the logical message context is a subclass of Java Map. To
access the properties stored in the context, you use the get() method and put() method inherited
from the Map interface.

By default, any properties you set in the message context from inside a logical handler are assigned a
scope of HANDLER. If you want the application code to be able to access the property you need to use
the context's setScope() method to explicitly set the property's scope to APPLICATION.

For more information on working with properties in the message context see Section 42.1,
“Understanding Contexts”.

Determining the direction of the message

It is often important to know the direction a message is passing through the handler chain. For
example, you would want to retrieve a security token from incoming requests and attach a security
token to an outgoing response.

The direction of the message is stored in the message context's outbound message property. You
retrieve the outbound message property from the message context using the
MessageContext.MESSAGE_OUTBOUND_PROPERTY key as shown in Example 43.6, “Getting the
Message's Direction from the SOAP Message Context”.

Example 43.6. Getting the Message's Direction from the SOAP Message Context

JAXBContext jaxbc = JAXBContext(myObjectFactory.class);
Object body = message.getPayload(jaxbc);

message.setPayload(body, jaxbc);

Boolean outbound;
outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

CHAPTER 43. WRITING HANDLERS

407

The property is stored as a Boolean object. You can use the object's booleanValue() method to
determine the property's value. If the property is set to true, the message is outbound. If the property
is set to false the message is inbound.

Determining the return value

How the handleMessage() method completes its message processing has a direct impact on how
message processing proceeds. It can complete by doing one of the following actions:

I. Return true—Returning true signals to the Apache CXF runtime that message processing
should continue normally. The next handler, if any, has its handleMessage() invoked.

II. Return false—Returning false signals to the Apache CXF runtime that normal message
processing must stop. How the runtime proceeds depends on the message exchange pattern in
use for the current message.

For request-response message exchanges the following happens:

1. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the message stops
progressing toward the service's implementation object. Instead, it is sent back towards
the binding for return to the consumer that originated the request.

2. Any message handlers that reside along the handler chain in the new processing direction
have their handleMessage() method invoked in the order in which they reside in the
chain.

3. When the message reaches the end of the handler chain it is dispatched.

For one-way message exchanges the following happens:

1. Message processing stops.

2. All previously invoked message handlers have their close() method invoked.

3. The message is dispatched.

III. Throw a ProtocolException exception—Throwing a ProtocolException exception, or a
subclass of this exception, signals the Apache CXF runtime that fault message processing is
beginning. How the runtime proceeds depends on the message exchange pattern in use for the
current message.

For request-response message exchanges the following happens:

1. If the handler has not already created a fault message, the runtime wraps the message in a
fault message.

2. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the message stops
progressing toward the service's implementation object. Instead, it is sent back towards
the binding for return to the consumer that originated the request.

3. Any message handlers that reside along the handler chain in the new processing direction
have their handleFault() method invoked in the order in which they reside in the chain.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

408

4. When the fault message reaches the end of the handler chain it is dispatched.

For one-way message exchanges the following happens:

1. If the handler has not already created a fault message, the runtime wraps the message in a
fault message.

2. Message processing stops.

3. All previously invoked message handlers have their close() method invoked.

4. The fault message is dispatched.

IV. Throw any other runtime exception—Throwing a runtime exception other than a
ProtocolException exception signals the Apache CXF runtime that message processing is
to stop. All previously invoked message handlers have the close() method invoked and the
exception is dispatched. If the message is part of a request-response message exchange, the
exception is dispatched so that it is returned to the consumer that originated the request.

Example

Example 43.7, “Logical Message Handler Message Processing” shows an implementation of
handleMessage() message for a logical message handler that is used by a service consumer. It
processes requests before they are sent to the service provider.

Example 43.7. Logical Message Handler Message Processing

1

2

3

4

public class SmallNumberHandler implements
LogicalHandler<LogicalMessageContext>
{
 public final boolean handleMessage(LogicalMessageContext
messageContext)
 {
 try
 {
 boolean outbound =
(Boolean)messageContext.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outbound)
 {
 LogicalMessage msg = messageContext.getMessage();

 JAXBContext jaxbContext =
JAXBContext.newInstance(ObjectFactory.class);

 Object payload = msg.getPayload(jaxbContext);
 if (payload instanceof JAXBElement)

 {
 payload = ((JAXBElement)payload).getValue();
 }

 if (payload instanceof AddNumbers)
 {

 AddNumbers req = (AddNumbers)payload;

 int a = req.getArg0();
 int b = req.getArg1();

CHAPTER 43. WRITING HANDLERS

409

1

2

3

4

5

6

7

8

The code in Example 43.7, “Logical Message Handler Message Processing” does the following:

Checks if the message is an outbound request.

If the message is an outbound request, the handler does additional message processing.

Gets the LogicalMessage representation of the message payload from the message context.

Gets the actual message payload as a JAXB object.

Checks to make sure the request is of the correct type.

If it is, the handler continues processing the message.

Checks the value of the sum.

If it is less than the threshold of 20 then it builds a response and returns it to the client.

Builds the response.

Returns false to stop message processing and return the response to the client.

Throws a runtime exception if the message is not of the correct type.

This exception is returned to the client.

5

6

7

8

9

10

 int answer = a + b;

 if (answer < 20)
 {

 AddNumbersResponse resp = new
AddNumbersResponse();
 resp.setReturn(answer);

 msg.setPayload(new
ObjectFactory().createAddNumbersResponse(resp),
 jaxbContext);

 return false;
 }

 }
 else
 {

 throw new WebServiceException("Bad Request");
 }

 }
 return true;
 }
 catch (JAXBException ex)
 {

 throw new ProtocolException(ex);
 }
 }
...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

410

9

10

Returns true if the message is an inbound response or the sum does not meet the threshold.

Message processing continues normally.

Throws a ProtocolException if a JAXB marshalling error is encountered.

The exception is passed back to the client after it is processed by the handleFault() method of
the handlers between the current handler and the client.

43.4. IMPLEMENTING A PROTOCOL HANDLER

Overview

Protocol handlers are specific to the protocol in use. Apache CXF provides the SOAP protocol handler
as specified by JAX-WS. A SOAP protocol handler implements the
javax.xml.ws.handler.soap.SOAPHandler interface.

The SOAPHandler interface, shown in Example 43.8, “SOAPHandler Synopsis”, uses a SOAP specific
message context that provides access to the message as a SOAPMessage object. It also allows you to
access the SOAP headers.

Example 43.8. SOAPHandler Synopsis

In addition to using a SOAP specific message context, SOAP protocol handlers require that you
implement an additional method called getHeaders(). This additional method returns the QNames of
the header blocks the handler can process.

Procedure

To implement a logical hander do the following:

1. Implement any initialization logic required by the handler.

2. Implement the message handling logic.

3. Implement the fault handling logic.

4. Implement the getHeaders() method.

5. Implement the logic for closing the handler when it is finished.

6. Implement any logic for cleaning up the handler's resources before it is destroyed.

public interface SOAPHandler extends Handler
{
 boolean handleMessage(SOAPMessageContext context);
 boolean handleFault(SOAPMessageContext context);
 void close(SOAPMessageContext context);
 Set<QName> getHeaders()
}

CHAPTER 43. WRITING HANDLERS

411

Implementing the getHeaders() method

The getHeaders(), shown in Example 43.9, “The SOAPHander.getHeaders() Method”, method
informs the Apache CXF runtime what SOAP headers the handler is responsible for processing. It
returns the QNames of the outer element of each SOAP header the handler understands.

Example 43.9. The SOAPHander.getHeaders() Method

Set<QName> getHeaders();

For many cases simply returning null is sufficient. However, if the application uses the
mustUnderstand attribute of any of the SOAP headers, then it is important to specify the headers
understood by the application's SOAP handlers. The runtime checks the set of SOAP headers that all of
the registered handlers understand against the list of headers with the mustUnderstand attribute set
to true. If any of the flagged headers are not in the list of understood headers, the runtime rejects the
message and throws a SOAP must understand exception.

43.5. HANDLING MESSAGES IN A SOAP HANDLER

Overview

Normal message processing is handled by the handleMessage() method.

The handleMessage() method receives a SOAPMessageHandler object that provides access to the
message body as a SOAPMessage object and the SOAP headers associated with the message. In
addition, the context provides access to any properties stored in the message context.

The handleMessage() method returns either true or false depending on how message processing
is to continue. It can also throw an exception.

Working with the message body

You can get the SOAP message using the SOAP message context's getMessage() method. It returns
the message as a live SOAPMessage object. Any changes to the message in the handler are
automatically reflected in the message stored in the context.

If you wish to replace the existing message with a new one, you can use the context's setMessage()
method. The setMessage() method takes a SOAPMessage object.

Getting the SOAP headers

You can access the SOAP message's headers using the SOAPMessage object's getHeader() method.
This will return the SOAP header as a SOAPHeader object that you will need to inspect to find the
header elements you wish to process.

The SOAP message context provides a getHeaders() method, shown in Example 43.10, “The
SOAPMessageContext.getHeaders() Method”, that will return an array containing JAXB objects
for the specified SOAP headers.

Example 43.10. The SOAPMessageContext.getHeaders() Method

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

412

Ojbect[] getHeaders(QName header,
 JAXBContext context,
 boolean allRoles);

You specify the headers using the QName of their element. You can further limit the headers that are
returned by setting the allRoles parameter to false. That instructs the runtime to only return the
SOAP headers that are applicable to the active SOAP roles.

If no headers are found, the method returns an empty array.

For more information about instantiating a JAXBContext object see Chapter 38, Using A
JAXBContext Object.

Working with context properties

The SOAP message context passed into a logical handler is an instance of the application's message
context and can access all of the properties stored in it. Handlers have access to properties at both the
APPLICATION scope and the Handler scope.

Like the application's message context, the SOAP message context is a subclass of Java Map. To
access the properties stored in the context, you use the get() method and put() method inherited
from the Map interface.

By default, any properties you set in the context from inside a logical handler will be assigned a scope
of HANDLER. If you want the application code to be able to access the property you need to use the
context's setScope() method to explicitly set the property's scope to APPLICATION.

For more information on working with properties in the message context see Section 42.1,
“Understanding Contexts”.

Determining the direction of the message

It is often important to know the direction a message is passing through the handler chain. For
example, you would want to add headers to an outgoing message and strip headers from an incoming
message.

The direction of the message is stored in the message context's outbound message property. You
retrieve the outbound message property from the message context using the
MessageContext.MESSAGE_OUTBOUND_PROPERTY key as shown in Example 43.11, “Getting the
Message's Direction from the SOAP Message Context”.

Example 43.11. Getting the Message's Direction from the SOAP Message Context

The property is stored as a Boolean object. You can use the object's booleanValue() method to
determine the property's value. If the property is set to true, the message is outbound. If the property
is set to false the message is inbound.

Determining the return value

Boolean outbound;
outbound = (Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

CHAPTER 43. WRITING HANDLERS

413

How the handleMessage() method completes its message processing has a direct impact on how
message processing proceeds. It can complete by doing one of the following actions:

I. return true—Returning true signals to the Apache CXF runtime that message processing
should continue normally. The next handler, if any, has its handleMessage() invoked.

II. return false—Returning false signals to the Apache CXF runtime that normal message
processing is to stop. How the runtime proceeds depends on the message exchange pattern in
use for the current message.

For request-response message exchanges the following happens:

1. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the message will stop
progressing toward the service's implementation object. It will instead be sent back
towards the binding for return to the consumer that originated the request.

2. Any message handlers that reside along the handler chain in the new processing direction
have their handleMessage() method invoked in the order in which they reside in the
chain.

3. When the message reaches the end of the handler chain it is dispatched.

For one-way message exchanges the following happens:

1. Message processing stops.

2. All previously invoked message handlers have their close() method invoked.

3. The message is dispatched.

III. throw a ProtocolException exception—Throwing a ProtocolException exception, or a
subclass of this exception, signals the Apache CXF runtime that fault message processing is to
start. How the runtime proceeds depends on the message exchange pattern in use for the
current message.

For request-response message exchanges the following happens:

1. If the handler has not already created a fault message, the runtime wraps the message in a
fault message.

2. The direction of message processing is reversed.

For example, if a request is being processed by a service provider, the message will stop
progressing toward the service's implementation object. It will be sent back towards the
binding for return to the consumer that originated the request.

3. Any message handlers that reside along the handler chain in the new processing direction
have their handleFault() method invoked in the order in which they reside in the chain.

4. When the fault message reaches the end of the handler chain it is dispatched.

For one-way message exchanges the following happens:

1. If the handler has not already created a fault message, the runtime wraps the message in a
fault message.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

414

1

2

3

4

2. Message processing stops.

3. All previously invoked message handlers have their close() method invoked.

4. The fault message is dispatched.

IV. throw any other runtime exception—Throwing a runtime exception other than a
ProtocolException exception signals the Apache CXF runtime that message processing is
to stop. All previously invoked message handlers have the close() method invoked and the
exception is dispatched. If the message is part of a request-response message exchange the
exception is dispatched so that it is returned to the consumer that originated the request.

Example

Example 43.12, “Handling a Message in a SOAP Handler” shows a handleMessage() implementation
that prints the SOAP message to the screen.

Example 43.12. Handling a Message in a SOAP Handler

The code in Example 43.12 does the following:

Retrieves the outbound property from the message context.

Tests the messages direction and prints the appropriate message.

Retrieves the SOAP message from the context.

Prints the message to the console.

1

2

3

4

public boolean handleMessage(SOAPMessageContext smc)
{
 PrintStream out;

 Boolean outbound =
(Boolean)smc.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);

 if (outbound.booleanValue())
 {

 out.println("\nOutbound message:");
 }
 else
 {
 out.println("\nInbound message:");
 }

 SOAPMessage message = smc.getMessage();

 message.writeTo(out);
 out.println();

 return true;
}

CHAPTER 43. WRITING HANDLERS

415

43.6. INITIALIZING A HANDLER

Overview

When the runtime creates an instance of a handler, it creates all of the resources the hander needs to
process messages. While you can place all of the logic for doing this in the handler's constructor, it may
not be the most appropriate place. The handler framework performs a number of optional steps when it
instantiates a handler. You can add resource injection and other initialization logic that will be
executed during the optional steps.

TIP

You do not have to provide any initialization methods for a handler.

Order of initialization

The Apache CXF runtime initializes a handler in the following manner:

1. The handler's constructor is called.

2. Any resources that are specified by the @Resource annotation are injected.

3. The method decorated with @PostConstruct annotation, if it is present, is called.

NOTE

Methods decorated with the @PostConstruct annotation must have a void
return type and have no parameters.

4. The handler is place in the Ready state.

43.7. HANDLING FAULT MESSAGES

Overview

Handlers use the handleFault() method for processing fault messages when a
ProtocolException exception is thrown during message processing.

The handleFault() method receives either a LogicalMessageContext object or
SOAPMessageContext object depending on the type of handler. The received context gives the
handler's implementation access to the message payload.

The handleFault() method returns either true or false, depending on how fault message
processing is to proceed. It can also throw an exception.

Getting the message payload

The context object received by the handleFault() method is similar to the one received by the
handleMessage() method. You use the context's getMessage() method to access the message
payload in the same way. The only difference is the payload contained in the context.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

416

For more information on working with a LogicalMessageContext see Section 43.3, “Handling
Messages in a Logical Handler”.

For more information on working with a SOAPMessageContext see Section 43.5, “Handling Messages
in a SOAP Handler”.

Determining the return value

How the handleFault() method completes its message processing has a direct impact on how
message processing proceeds. It completes by performing one of the following actions:

Return true

Returning true signals that fault processing should continue normally. The handleFault()
method of the next handler in the chain will be invoked.

Return false

Returning false signals that fault processing stops. The close() method of the handlers that
were invoked in processing the current message are invoked and the fault message is dispatched.

Throw an exception

Throwing an exception stops fault message processing. The close() method of the handlers that
were invoked in processing the current message are invoked and the exception is dispatched.

Example

Example 43.13, “Handling a Fault in a Message Handler” shows an implementation of handleFault()
that prints the message body to the screen.

Example 43.13. Handling a Fault in a Message Handler

43.8. CLOSING A HANDLER

When a handler chain is finished processing a message, the runtime calls each executed handler's
close() method. This is the appropriate place to clean up any resources that were used by the
handler during message processing or resetting any properties to a default state.

If a resource needs to persist beyond a single message exchange, you should not clean it up during in
the handler's close() method.

public final boolean handleFault(LogicalMessageContext messageContext)
{
 System.out.println("handleFault() called with message:");

 LogicalMessage msg=messageContext.getMessage();
 System.out.println(msg.getPayload());

 return true;
}

CHAPTER 43. WRITING HANDLERS

417

43.9. RELEASING A HANDLER

Overview

The runtime releases a handler when the service or service proxy to which the handler is bound is
shutdown. The runtime will invoke an optional release method before invoking the handler's
destructor. This optional release method can be used to release any resources used by the handler or
perform other actions that would not be appropriate in the handler's destructor.

TIP

You do not have to provide any clean-up methods for a handler.

Order of release

The following happens when the handler is released:

1. The handler finishes processing any active messages.

2. The runtime invokes the method decorated with the @PreDestroy annotation.

This method should clean up any resources used by the handler.

3. The handler's destructor is called.

43.10. CONFIGURING ENDPOINTS TO USE HANDLERS

43.10.1. Programmatic Configuration

IMPORTANT

Any handler chains configured using the Spring configuration override the handler
chains configured programmaticaly.

43.10.1.1. Adding a Handler Chain to a Consumer

Overview

Adding a handler chain to a consumer involves explicitly building the chain of handlers. Then you set
the handler chain directly on the service proxy's Binding object.

Procedure

To add a handler chain to a consumer you do the following:

1. Create a List<Handler> object to hold the handler chain.

2. Create an instance of each handler that will be added to the chain.

3. Add each of the instantiated handler objects to the list in the order they are to be invoked by
the runtime.

4. Get the Binding object from the service proxy.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

418

1

2

3

4

5

TIP

Apache CXF provides an implementation of the Binding interface called
org.apache.cxf.jaxws.binding.DefaultBindingImpl.

5. Set the handler chain on the proxy using the Binding object's setHandlerChain() method.

Example

Example 43.14, “Adding a Handler Chain to a Consumer” shows code for adding a handler chain to a
consumer.

Example 43.14. Adding a Handler Chain to a Consumer

The code in Example 43.14, “Adding a Handler Chain to a Consumer” does the following:

Instantiates a handler.

Creates a List object to hold the chain.

Adds the handler to the chain.

Gets the Binding object from the proxy as a DefaultBindingImpl object.

Assigns the handler chain to the proxy's binding.

43.10.1.2. Adding a Handler Chain to a Service Provider

Overview

You add a handler chain to a service provider by decorating either the SEI or the implementation class
with the @HandlerChain annotation. The annotation points to a meta-data file defining the handler
chain used by the service provider.

Procedure

1
2

3

4
5

import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.Handler;
import java.util.ArrayList;
import java.util.List;

import org.apache.cxf.jaxws.binding.DefaultBindingImpl;
...

SmallNumberHandler sh = new SmallNumberHandler();
List<Handler> handlerChain = new ArrayList<Handler>();

handlerChain.add(sh);

DefaultBindingImpl binding = ((BindingProvider)proxy).getBinding();
binding.getBinding().setHandlerChain(handlerChain);

CHAPTER 43. WRITING HANDLERS

419

To add handler chain to a service provider you do the following:

1. Decorate the provider's implementation class with the @HandlerChain annotation.

2. Create a handler configuration file that defines the handler chain.

The @HandlerChain annotation

The javax.jws.HandlerChain annotation decorates service provider's implementation class. It
instructs the runtime to load the handler chain configuration file specified by its file property.

The annotation's file property supports two methods for identifying the handler configuration file to
load:

a URL

a relative path name

Example 43.15, “Service Implementation that Loads a Handler Chain” shows a service provider
implementation that will use the handler chain defined in a file called handlers.xml. handlers.xml
must be located in the directory from which the service provider is run.

Example 43.15. Service Implementation that Loads a Handler Chain

Handler configuration file

The handler configuration file defines a handler chain using the XML grammar that accompanies JSR
109(Web Services for Java EE, Version 1.2). This grammar is defined in the
http://java.sun.com/xml/ns/javaee.

The root element of the handler configuration file is the handler-chains element. The handler-
chains element has one or more handler-chain elements.

The handler-chain element define a handler chain. Table 43.1, “Elements Used to Define a Server-
Side Handler Chain” describes the handler-chain element's children.

Table 43.1. Elements Used to Define a Server-Side Handler Chain

import javax.jws.HandlerChain;
import javax.jws.WebService;
...

@WebService(name = "AddNumbers",
 targetNamespace = "http://apache.org/handlers",
 portName = "AddNumbersPort",
 endpointInterface = "org.apache.handlers.AddNumbers",
 serviceName = "AddNumbersService")
@HandlerChain(file = "handlers.xml")
public class AddNumbersImpl implements AddNumbers
{
...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

420

Element Description

handler Contains the elements that describe a handler.

service-name-pattern Specifies the QName of the WSDL service
element defining the service to which the handler
chain is bound. You can use * as a wildcard when
defining the QName.

port-name-pattern Specifies the QName of the WSDL port element
defining the endpoint to which the handler chain is
bound. You can use * as a wildcard when defining the
QName.

protocol-binding Specifies the message binding for which the handler
chain is used. The binding is specified as a URI or
using one of the following aliases:
##SOAP11_HTTP, ##SOAP11_HTTP_MTOM,
##SOAP12_HTTP, ##SOAP12_HTTP_MTOM, or
##XML_HTTP.

For more information about message binding URIs
see Appendix C, Apache CXF Binding IDs.

The handler-chain element is only required to have a single handler element as a child. It can,
however, support as many handler elements as needed to define the complete handler chain. The
handlers in the chain are executed in the order they specified in the handler chain definition.

IMPORTANT

The final order of execution will be determined by sorting the specified handlers into
logical handlers and protocol handlers. Within the groupings, the order specified in the
configuration will be used.

The other children, such as protocol-binding, are used to limit the scope of the defined handler
chain. For example, if you use the service-name-pattern element, the handler chain will only be
attached to service providers whose WSDL port element is a child of the specified WSDL service
element. You can only use one of these limiting children in a handler element.

The handler element defines an individual handler in a handler chain. Its handler-class child
element specifies the fully qualified name of the class implementing the handler. The handler element
can also have an optional handler-name element that specifies a unique name for the handler.

Example 43.16, “Handler Configuration File” shows a handler configuration file that defines a single
handler chain. The chain is made up of two handlers.

Example 43.16. Handler Configuration File

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>

CHAPTER 43. WRITING HANDLERS

421

43.10.2. Spring Configuration

Overview

The easiest way to configure an endpoint to use a handler chain is to define the chain in the endpoint's
configuration. This is done by adding a jaxwxs:handlers child to the element configuring the
endpoint.

IMPORTANT

A handler chain added through the configuration file takes precedence over a handler
chain configured programatically.

Procedure

To configure an endpoint to load a handler chain you do the following:

1. If the endpoint does not already have a configuration element, add one.

For more information on configuring Apache CXF endpoints see Chapter 15, Configuring JAX-
WS Endpoints.

2. Add a jaxws:handlers child element to the endpoint's configuration element.

3. For each handler in the chain, add a bean element specifying the class that implements the
handler.

TIP

If your handler implementation is used in more than one place you can reference a bean
element using the ref element.

The handlers element

The jaxws:handlers element defines a handler chain in an endpoint's configuration. It can appear as
a child to all of the JAX-WS endpoint configuration elements. These are:

jaxws:endpoint configures a service provider.

jaxws:server also configures a service provider.

 <handler-name>LoggingHandler</handler-name>
 <handler-class>demo.handlers.common.LoggingHandler</handler-
class>
 </handler>
 <handler>
 <handler-name>AddHeaderHandler</handler-name>
 <handler-class>demo.handlers.common.AddHeaderHandler</handler-
class>
 </handler>
 </handler-chain>
</handler-chains>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

422

jaxws:client configures a service consumer.

You add handlers to the handler chain in one of two ways:

add a bean element defining the implementation class

use a ref element to refer to a named bean element from elsewhere in the configuration file

The order in which the handlers are defined in the configuration is the order in which they will be
executed. The order may be modified if you mix logical handlers and protocol handlers. The run time
will sort them into the proper order while maintaining the basic order specified in the configuration.

Example

Example 43.17, “Configuring an Endpoint to Use a Handler Chain In Spring” shows the configuration for
a service provider that loads a handler chain.

Example 43.17. Configuring an Endpoint to Use a Handler Chain In Spring

<beans ...
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 ...
 schemaLocation="...
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd
 ...">
 <jaxws:endpoint id="HandlerExample"
 implementor="org.apache.cxf.example.DemoImpl"
 address="http://localhost:8080/demo">
 <jaxws:handlers>
 <bean class="demo.handlers.common.LoggingHandler" />
 <bean class="demo.handlers.common.AddHeaderHandler" />
 </jaxws:handlers>
 </jaws:endpoint>
</beans>

CHAPTER 43. WRITING HANDLERS

423

APPENDIX E. MAVEN TOOLING REFERENCE

NAME
Plug-in Setup — before you can use the Apache CXF plug-ins, you must first add the proper
dependencies and repositories to your POM.

DEPENDENCIES
You need to add the following dependencies to your project's POM:

the JAX-WS frontend

the HTTP transport

the Jetty transport

REPOSITORIES
To ensure that you are using the Progress versions of the plug-ins you need to add the Apache CXF
repositories to the project's POM:

the plug-in repository

the Apache CXF release repository

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxws</artifactId>
 <version>version</version>
</dependency>

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http</artifactId>
 <version>version</version>
</dependency>

<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http-jetty</artifactId>
 <version>version</version>
</dependency>

<pluginRepository>
 <id>fusesource.m2</id>
 <name>Apache CXF Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
</pluginRepository>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

424

the Apache CXF snapshot repository

NAME
cxf-codegen-plugin — generates JAX-WS compliant Java code from a WSDL document

SYNOPSIS

<repository>
 <id>fusesource.m2</id>
 <name>Apache CXF Open Source Community Release Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public/</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <releases>
 <enabled>true</enabled>
 </releases>
</repository>

<repository>
 <id>fusesource.m2-snapshot</id>
 <name>Apache CXF Open Source Community Snapshot Repository</name>
 <url>http://repo.fusesource.com/nexus/content/groups/public-
snapshots/</url>
 <snapshots>
 <enabled>true</enabled>
 </snapshots>
 <releases>
 <enabled>false</enabled>
 </releases>
</repository>

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-codegen-plugin</artifactId>
 <version>version</version>
 <executions>
 <execution>
 <id>generate-sources</id>
 <configuration>
 <defaultOptions>
 <option>...</option>
 ...
 </defaultOptions>
 <wsdlOptions>
 <wsdlOption>
 <wsdl>wsdlPath</wsdl>
 <option>...</option>
 ...
 </wsdlOption>
 ...
 </wsdlOptions>

APPENDIX E. MAVEN TOOLING REFERENCE

425

DESCRIPTION
The wsdl2java task takes a WSDL document and generates fully annotated Java code from which to
implement a service. The WSDL document must have a valid portType element, but it does not need
to contain a binding element or a service element. Using the optional arguments you can
customize the generated code.

WSDL OPTIONS
At least one wsdlOptions element is required to configure the plug-in. The wsdlOptions element's
wsdl child is required and specifies a WSDL document to be processed by the plug-in. In addition to
the wsdl element, the wsdlOptions element can take a number of children that can customize how
the WSDL document is processed.

TIP

More than one wsdlOptions element can be listed in the plug-in configuration. Each element
configures a single WSDL document for processing.

DEFAULT OPTIONS
The defaultOptions element is an optional element. It can be used to set options that are used
across all of the specified WSDL documents.

IMPORTANT

If an option is duplicated in the wsdlOptions element, the value in the wsdlOptions
element takes precedent.

OPTIONS
The options used to manage the code generation process are reviewed in the following table.

Option Interpretation

-? Displays the online help for this utility.

-help

-h

-fe frontend Specifies the front end used by the code generator.
The default is jaxws.[a]

-db databinding Specifies the data binding used by the code
generator. The default is jaxb.[b]

 </configuration>
 <goals>
 <goal>wsdl2java</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

426

-wv wsdlVersion Specifies the WSDL version expected by the tool.
The default is 1.1.[c]

-p [wsdlNamespace=]PackageName Specifies zero, or more, package names to use for
the generated code. Optionally specifies the WSDL
namespace to package name mapping.

-b bindingName Specifies zero, or more, JAXWS or JAXB binding
files. Use spaces to separate multiple entries.

-sn serviceName Specifies the name of the WSDL service for which
code is to be generated. The default is to generate
code for every service in the WSDL document.

-d output-directory Specifies the directory into which the generated
code files are written.

-catalog catalogUrl Specifies the URL of an XML catalog to use for
resolving imported schemas and WSDL documents.

-compile Compiles generated Java files.

-classdir complile-class-dir Specifies the directory into which the compiled class
files are written.

-client Generates starting point code for a client mainline.

-server Generates starting point code for a server mainline.

-impl Generates starting point code for an implementation
object.

-all Generates all starting point code: types, service
proxy, service interface, server mainline, client
mainline, implementation object, and an Ant
build.xml file.

-ant Generates the Ant build.xml file.

-keep Instructs the tool to not overwrite any existing files.

-defaultValues[=DefaultValueProvider] Instructs the tool to generate default values for the
generated client and the generated implementation.
Optionally, you can also supply the name of the class
used to generate the default values. By default, the
RandomValueProvider class is used.

Option Interpretation

APPENDIX E. MAVEN TOOLING REFERENCE

427

-nexclude schema-namespace[=java-
packagename]

Ignore the specified WSDL schema namespace when
generating code. This option may be specified
multiple times. Also, optionally specifies the Java
package name used by types described in the
excluded namespace(s).

-exsh (true/false) Enables or disables processing of extended soap
header message binding. Default is false.

-dns (true/false) Enables or disables the loading of the default
namespace package name mapping. Default is true.

-dex (true/false) Enables or disables the loading of the default
excludes namespace mapping. Default is true.

-wsdlLocation wsdlLocation Specifies the value of the @WebService
annotation's wsdlLocation property.

-xjcargs Specifies a comma separated list of arguments to be
passed to directly to the XJC when the JAXB data
binding is being used. To get a list of all possible XJC
arguments use the -xjc-X.

-noAddressBinding Instructs the tool to use the Apache CXF proprietary
WS-Addressing type instead of the JAX-WS 2.1
compliant mapping.

-validate Instructs the tool to validate the WSDL document
before attempting to generate any code.

-v Displays the version number for the tool.

-verbose Displays comments during the code generation
process.

-quiet Suppresses comments during the code generation
process.

wsdlfile The path and name of the WSDL file to use in
generating the code.

[a] Currently, Apache CXF only provides the JAX-WS front end for the code generator.

[b] Currently, Apache CXF only provides the JAXB data binding for the code generator.

[c] Currently, Apache CXF only provides WSDL 1.1 support for the code generator.

Option Interpretation

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

428

NAME
java2ws — generates a WSDL document from Java code

SYNOPSIS

DESCRIPTION
The java2ws task takes a service endpoint implementation (SEI) and generates the support files used
to implement a Web service. It can generate the following:

a WSDL document

the server code needed to deploy the service as a POJO

client code for accessing the service

wrapper and fault beans

REQUIRED CONFIGURATION
The plug-in requires that the className configuration element is present. The element's value is the
fully qualified name of the SEI to be processed.

OPTIONAL CONFIGURATION
The configuration element's listed in the following table can be used to fine tune the WSDL generation.

Element Description

frontend Specifies front end to use for processing the SEI and
generating the support classes. jaxws is the
default. simple is also supported.

databinding Specifies the data binding used for processing the
SEI and generating the support classes. The default
when using the JAX-WS front end is jaxb. The
default when using the simple frontend is aegis.

<plugin>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-java2ws-plugin</artifactId>
 <version>version</version>
 <executions>
 <execution>
 <id>process-classes</id>
 <phase>process-classes</phase>
 <configuration>
 <className>className</className>
 <option>...</option>
 ...
 </configuration>
 <goals>
 <goal>java2ws</goal>
 </goals>
 </execution>
 </executions>
</plugin>

APPENDIX E. MAVEN TOOLING REFERENCE

429

genWsdl Instructs the tool to generate a WSDL document
when set to true.

genWrapperbean Instructs the tool to generate the wrapper bean and
the fault beans when set to true.

genClient Instructs the tool to generate client code when set
to true.

genServer Instructs the tool to generate server code when set
to true.

outputFile Specifies the name of the generated WSDL file.

classpath Specifies the classpath searched when processing
the SEI.

soap12 Specifies that the generated WSDL document is to
include a SOAP 1.2 binding when set to true.

targetNamespace Specifies the target namespace to use in the
generated WSDL file.

serviceName Specifies the value of the generated service
element's name attribute.

Element Description

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

430

PART VI. DEVELOPING RESTFUL WEB SERVICES

Abstract

This guide describes how to use the JAX-RS APIs to implement Web services.

PART VI. DEVELOPING RESTFUL WEB SERVICES

431

CHAPTER 44. INTRODUCTION TO RESTFUL WEB SERVICES

Abstract

Representational State Transfer(REST) is a software architecture style that centers around the
transmission of data over HTTP, using only the four basic HTTP verbs. It also eschews the use of any
additional wrappers such as a SOAP envelope and the use of any state data.

OVERVIEW

Representational State Transfer(REST) is an architectural style first described in a doctoral dissertation
by a researcher named Roy Fielding. In RESTful systems, servers expose resources using a URI, and
clients access these resources using the four HTTP verbs. As clients receive representations of a
resource they are placed in a state. When they access a new resource, typically by following a link, they
change, or transition, their state. In order to work, REST assumes that resources are capable of being
represented using a pervasive standard grammar.

The World Wide Web is the most ubiquitous example of a system designed on REST principles. Web
browsers act as clients accessing resources hosted on Web servers. The resources are represented
using HTML or XML grammars that all Web browsers can consume. The browsers can also easily follow
the links to new resources.

The advantages of RESTful systems is that they are highly scalable and highly flexible. Because the
resources are accessed and manipulated using the four HTTP verbs, the resources are exposed using a
URIs, and the resources are represented using standard grammars, clients are not as affected by
changes to the servers. Also, RESTful systems can take full advantage of the scalability features of
HTTP such as caching and proxies.

BASIC REST PRINCIPLES

RESTful architectures adhere to the following basic principles:

Application state and functionality are divided into resources.

Resources are addressable using standard URIs that can be used as hypermedia links.

All resources use only the four HTTP verbs.

DELETE

GET

POST

PUT

All resources provide information using the MIME types supported by HTTP.

The protocol is stateless.

Responses are cacheable.

The protocol is layered.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

432

RESOURCES

Resources are central to REST. A resource is a source of information that can be addressed using a URI.
In the early days of the Web, resources were largely static documents. In the modern Web, a resource
can be any source of information. For example a Web service can be a resource if it can be accessed
using a URI.

RESTful endpoints exchange representations of the resources they address. A representation is a
document containing the data provided by the resource. For example, the method of a Web service that
provides access to a customer record would be a resource, the copy of the customer record
exchanged between the service and the consumer is a representation of the resource.

REST BEST PRACTICES

When designing RESTful Web services it is helpful to keep in mind the following:

Provide a distinct URI for each resource you wish to expose.

For example, if you are building a system that deals with driving records, each record should
have a unique URI. If the system also provides information on parking violations and speeding
fines, each type of resource should also have a unique base. For example, speeding fines could
be accessed through /speedingfines/driverID and parking violations could be accessed through
/parkingfines/driverID.

Use nouns in your URIs.

Using nouns highlights the fact that resources are things and not actions. URIs such as
/ordering imply an action, whereas /orders implies a thing.

Methods that map to GET should not change any data.

Use links in your responses.

Putting links to other resources in your responses makes it easier for clients to follow a chain
of data. For example, if your service returns a collection of resources, it would be easier for a
client to access each of the individual resources using the provided links. If links are not
included, a client needs to have additional logic to follow the chain to a specific node.

Make your service stateless.

Requiring the client or the service to maintain state information forces a tight coupling
between the two. Tight couplings make upgrading and migrating more difficult. Maintaining
state can also make recovery from communication errors more difficult.

DESIGNING A RESTFUL WEB SERVICE

Regardless of the framework you use to implement a RESTful Web service, there are a number of steps
that should be followed:

1. Define the resources the service will expose.

In general, a service will expose one or more resources that are organized as a tree. For
example, a driving record service could be organized into three resources:

/license/driverID

CHAPTER 44. INTRODUCTION TO RESTFUL WEB SERVICES

433

/license/driverID/speedingfines

/license/driverID/parkingfines

2. Define what actions you want to be able to perform on each resource.

For example, you may want to be able to update a diver's address or remove a parking ticket
from a driver's record.

3. Map the actions to the appropriate HTTP verbs.

Once you have defined the service, you can implement it using Apache CXF.

IMPLEMENTING REST WITH APACHE CXF

Apache CXF provides an implementation of the Java API for RESTFul Web Services(JAX-RS). JAX-RS
provides a standardized way to map POJOs to resources using annotations.

When moving from the abstract service definition to a RESTful Web service implemented using JAX-
RS, you need to do the following:

1. Create a root resource class for the resource that represents the top of the service's resource
tree.

See Section 45.3, “Root resource classes” .

2. Map the service's other resources into sub-resources.

See Section 45.5, “Working with sub-resources” .

3. Create methods to implement each of the HTTP verbs used by each of the resources.

See Section 45.4, “Working with resource methods”.

NOTE

Apache CXF continues to support the old HTTP binding to map Java interfaces into
RESTful Web services. The HTTP binding provides basic functionality and has a number
of limitations. Developers are encouraged to update their applications to use JAX-RS.

DATA BINDINGS

By default, Apache CXF uses Java Architecture for XML Binding(JAXB) objects to map the resources
and their representations to Java objects. Provides clean, well defined mappings between Java objects
and XML elements.

The Apache CXF JAX-RS implementation also supports exchanging data using JavaScript Object
Notation(JSON). JSON is a popular data format used by Ajax developers. The marshaling of data
between JSON and JAXB is handled by the Apache CXF runtime.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

434

CHAPTER 45. CREATING RESOURCES

Abstract

In RESTful Web services all requests are handled by resources. The JAX-RS APIs implement resources
as a Java class. A resource class is a Java class that is annotated with one, or more, RAX-RS
annotations. The core of a RESTful Web service implemented using JAX-RS is a root resource class.
The root resource class is the entry point to the resource tree exposed by a service. It may handle all
requests itself, or it may provide access to sub-resources that handle requests.

45.1. INTRODUCTION

Overview

RESTful Web services implemented using JAX-RS APIs provide responses as representations of a
resource implemented by Java classes. A resource class is a class that uses JAX-RS annotations to
implement a resource. For most RESTful Web services, there is a collection of resources that need to be
accessed. The resource class' annotations provide information such as the URI of the resources and
which HTTP verb each operation handles.

Types of resources

The JAX-RS APIs allow you to create two basic types of resources:

A Section 45.3, “Root resource classes” is the entry point to a service's resource tree. It is
decorated with the @Path annotation to define the base URI for the resources in the service.

Section 45.5, “Working with sub-resources” are accessed through the root resource. They are
implemented by methods that are decorated with the @Path annotation. A sub-resource's
@Path annotation defines a URI relative to the base URI of a root resource.

Example

Example 45.1, “Simple resource class” shows a simple resource class.

Example 45.1. Simple resource class

1

2

package demo.jaxrs.server;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;

@Path("/customerservice")
public class CustomerService

{
 public CustomerService()
 {
 }

 @GET
 public Customer getCustomer(@QueryParam("id") String id)

CHAPTER 45. CREATING RESOURCES

435

1

2

Two items make the class defined in Example 45.1, “Simple resource class” a resource class:

The @Path annotation specifies the base URI for the resource.

The @GET annotation specifies that the method implements the HTTP GET method for the
resource.

45.2. BASIC JAX-RS ANNOTATIONS

Overview

The most basic pieces of information required by a RESTful Web service implementation are:

the URI of the service's resources

how the class' methods are mapped to the HTTP verbs

JAX-RS defines a set of annotations that provide this basic information. All resource classes must have
at least one of these annotations.

Setting the path

The @Path annotation specifies the URI of a resource. The annotation is defined by the
javax.ws.rs.Path interface and it can be used to decorate either a resource class or a resource
method. It takes a string value as its only parameter. The string value is a URI template that specifies
the location of an implemented resource.

The URI template specifies a relative location for the resource. As shown in Example 45.2, “URI
template syntax”, the template can contain the following:

unprocessed path components

parameter identifiers surrounded by { }

NOTE

Parameter identifiers can include regular expressions to alter the default path
processing.

Example 45.2. URI template syntax

 {
 ...
 }

 ...
}

@Path("resourceName/{param1}/../{paramN}")

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

436

For example, the URI template widgets/{color}/{number} would map to widgets/blue/12. The value of
the color parameter is assigned to blue. The value of the number parameter is assigned 12.

How the URI template is mapped to a complete URI depends on what the @Path annotation is
decorating. If it is placed on a root resource class, the URI template is the root URI of all resources in
the tree and it is appended directly to the URI at which the service is published. If the annotation
decorates a sub-resource, it is relative to the root resource URI.

Specifying HTTP verbs

JAX-RS uses five annotations for specifying the HTTP verb that will be used for a method:

javax.ws.rs.DELETE specifies that the method maps to a DELETE.

javax.ws.rs.GET specifies that the method maps to a GET.

javax.ws.rs.POST specifies that the method maps to a POST.

javax.ws.rs.PUT specifies that the method maps to a PUT.

javax.ws.rs.HEAD specifies that the method maps to a HEAD.

When you map your methods to HTTP verbs, you must ensure that the mapping makes sense. For
example, if you map a method that is intended to submit a purchase order, you would map it to a PUT or
a POST. Mapping it to a GET or a DELETE would result in unpredictable behavior.

45.3. ROOT RESOURCE CLASSES

Overview

A root resource class is the entry point into a JAX-RS implemented RESTful Web service. It is
decorated with a @Path that specifies the root URI of the resources implemented by the service. Its
methods either directly implement operations on the resource or provide access to sub-resources.

Requirements

In order for a class to be a root resource class it must meet the following criteria:

The class must be decorated with the @Path annotation.

The specified path is the root URI for all of the resources implemented by the service. If the
root resource class specifies that its path is widgets and one of its methods implements the
GET verb, then a GET on widgets invokes that method. If a sub-resource specifies that its URI is
{id}, then the full URI template for the sub-resource is widgets/{id} and it will handle requests
made to URIs like widgets/12 and widgets/42.

The class must have a public constructor for the runtime to invoke.

The runtime must be able to provide values for all of the constructor's parameters. The
constructor's parameters can include parameters decorated with the JAX-RS parameter
annotations. For more information on the parameter annotations see Chapter 46, Passing
Information into Resource Classes and Methods.

CHAPTER 45. CREATING RESOURCES

437

At least one of the classes methods must either be decorated with an HTTP verb annotation or
the @Path annotation.

Example

Example 45.3, “Root resource class” shows a root resource class that provides access to a sub-
resource.

Example 45.3. Root resource class

1

2

3

4

package demo.jaxrs.server;

import javax.ws.rs.DELETE;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.core.Response;

@Path("/customerservice/")
public class CustomerService

{
 public CustomerService()
 {

 ...
 }

 @GET
 public Customer getCustomer(@QueryParam("id") String id)

 {
 ...
 }

 @DELETE
 public Response deleteCustomer(@QueryParam("id") String id)
 {
 ...
 }

 @PUT
 public Response updateCustomer(Customer customer)
 {
 ...
 }

 @POST
 public Response addCustomer(Customer customer)
 {
 ...
 }

 @Path("/orders/{orderId}/")
 public Order getOrder(@PathParam("orderId") String orderId)

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

438

1

2

3

4

The class in Example 45.3, “Root resource class” meets all of the requirements for a root resource
class.

The class is decorated with the @Path annotation. The root URI for the resources exposed by the
service is customerservice.

The class has a public constructor. In this case the no argument constructor is used for simplicity.

The class implements each of the four HTTP verbs for the resource.

The class also provides access to a sub-resource through the getOrder() method. The URI for
the sub-resource, as specified using the the @Path annotation, is customerservice/order/ id. The
sub-resource is implemented by the Order class.

For more information on implementing sub-resources see Section 45.5, “Working with sub-
resources”.

45.4. WORKING WITH RESOURCE METHODS

Overview

Resource methods are annotated using JAX-RS annotations. They have one of the HTTP method
annotation specifying the types of requests that the method processes. JAX-RS places several
constraints on resource methods.

General constraints

All resource methods must meet the following conditions:

It must be public.

It must be decorated with one of the HTTP method annotations described in the section called
“Specifying HTTP verbs”.

It must not have more than one entity parameter as described in the section called
“Parameters”.

Parameters

Resource method parameters take two forms:

entity parameters—Entity parameters are not annotated. Their value is mapped from the
request entity body. An entity parameter can be of any type for which your application has an
entity provider. Typically they are JAXB objects.

 {
 ...
 }

}

CHAPTER 45. CREATING RESOURCES

439

IMPORTANT

A resource method can have only one entity parameter.

For more information on entity providers see Chapter 49, Entity Support.

annotated parameters—Annotated parameters use one of the JAX-RS annotations that
specify how the value of the parameter is mapped from the request. Typically, the value of the
parameter is mapped from portions of the request URI.

For more information about using the JAX-RS annotations for mapping request data to
method parameters see Chapter 46, Passing Information into Resource Classes and Methods.

Example 45.4, “Resource method with a valid parameter list” shows a resource method with a valid
parameter list.

Example 45.4. Resource method with a valid parameter list

Example 45.5, “Resource method with an invalid parameter list” shows a resource method with an
invalid parameter list. It has two parameters that are not annotated.

Example 45.5. Resource method with an invalid parameter list

Return values

Resource methods can return one of the following:

void

any Java class for which the application has an entity provider

For more information on entity providers see Chapter 49, Entity Support.

a Response object

@POST
@Path("disaster/monster/giant/{id}")
public void addDaikaiju(Kaiju kaiju,
 @PathParam("id") String id)
{
 ...
}

@POST
@Path("disaster/monster/giant/")
public void addDaikaiju(Kaiju kaiju,
 String id)
{
 ...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

440

For more information on Response objects see Section 47.2, “Fine tuning an application's
responses”.

a GenericEntity<T> object

For more information on GenericEntity<T> objects see Section 47.3, “Returning entities
with generic type information”.

All resource methods return an HTTP status code to the requester. When the return type of the
method is void or the value being returned is null, the resource method sets the HTTP status code to
204. When the resource method returns any value other than null, it sets the HTTP status code to
200.

45.5. WORKING WITH SUB-RESOURCES

Overview

It is likely that a service will need to be handled by more than one resource. For example, in an order
processing service best-practices suggests that each customer would be handled as a unique resource.
Each order would also be handled as a unique resource.

Using the JAX-RS APIs, you would implement the customer resources and the order resources as sub-
resources. A sub-resource is a resource that is accessed through a root resource class. They are
defined by adding a @Path annotation to a resource class' method. Sub-resources can be implemented
in one of two ways:

Sub-resource method—directly implements an HTTP verb for a sub-resource and is decorated
with one of the annotations described in the section called “Specifying HTTP verbs” .

Sub-resource locator—points to a class that implements the sub-resource.

Specifying a sub-resource

Sub-resources are specified by decorating a method with the @Path annotation. The URI of the sub-
resource is constructed as follows:

1. Append the value of the sub-resource's @Path annotation to the value of the sub-resource's
parent resource's @Path annotation.

The parent resource's @Path annotation maybe located on a method in a resource class that
returns an object of the class containing the sub-resource.

2. Repeat the previous step until the root resource is reached.

3. The assembled URI is appended to the base URI at which the service is deployed.

For example the URI of the sub-resource shown in Example 45.6, “Order sub-resource” could be
baseURI/customerservice/order/12.

Example 45.6. Order sub-resource

...
@Path("/customerservice/")
public class CustomerService

CHAPTER 45. CREATING RESOURCES

441

Sub-resource methods

A sub-resource method is decorated with both a @Path annotation and one of the HTTP verb
annotations. The sub-resource method is directly responsible for handling a request made on the
resource using the specified HTTP verb.

Example 45.7, “Sub-resource methods” shows a resource class with three sub-resource methods:

getOrder() handles HTTP GET requests for resources whose URI matches
/customerservice/orders/{orderId}/.

updateOrder() handles HTTP PUT requests for resources whose URI matches
/customerservice/orders/{orderId}/.

newOrder() handles HTTP POST requests for the resource at /customerservice/orders/.

Example 45.7. Sub-resource methods

{
 ...
 @Path("/orders/{orderId}/")
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }
}

...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 @Path("/orders/{orderId}/")
 @PUT
 public Order updateOrder(@PathParam("orderId") String orderId,
 Order order)
 {
 ...
 }

 @Path("/orders/")
 @POST
 public Order newOrder(Order order)
 {

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

442

NOTE

Sub-resource methods with the same URI template are equivalent to resource class
returned by a sub-resource locator.

Sub-resource locators

Sub-resource locators are not decorated with one of the HTTP verb annotations and do not directly
handle are request on the sub-resource. Instead, a sub-resource locator returns an instance of a
resource class that can handle the request.

In addition to not having an HTTP verb annotation, sub-resource locators also cannot have any entity
parameters. All of the parameters used by a sub-resource locator method must use one of the
annotations described in Chapter 46, Passing Information into Resource Classes and Methods.

As shown in Example 45.8, “Sub-resource locator returning a specific class” , sub-resource locator
allows you to encapsulate a resource as a reusable class instead of putting all of the methods into one
super class. The processOrder() method is a sub-resource locator. When a request is made on a URI
matching the URI template /orders/{orderId}/ it returns an instance of the Order class. The Order
class has methods that are decorated with HTTP verb annotations. A PUT request is handled by the
updateOrder() method.

Example 45.8. Sub-resource locator returning a specific class

 ...
 }
}

...
@Path("/customerservice/")
public class CustomerService
{
 ...
 @Path("/orders/{orderId}/")
 public Order processOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 ...
}

public class Order
{
 ...
 @GET
 public Order getOrder(@PathParam("orderId") String orderId)
 {
 ...
 }

 @PUT
 public Order updateOrder(@PathParam("orderId") String orderId,

CHAPTER 45. CREATING RESOURCES

443

Sub-resource locators are processed at runtime so that they can support polymorphism. The return
value of a sub-resource locator can be a generic Object, an abstract class, or the top of a class
hierarchy. For example, if your service needed to process both PayPal orders and credit card orders,
the processOrder() method's signature from Example 45.8, “Sub-resource locator returning a
specific class” could remain unchanged. You would simply need to implement two classes, ppOrder
and ccOder, that extended the Order class. The implementation of processOrder() would
instantiate the desired implementation of the sub-resource based on what ever logic is required.

45.6. RESOURCE SELECTION METHOD

Overview

It is possible for a given URI to map to one or more resource methods. For example the URI
customerservice/12/ma could match the templates @Path("customerservice/{id}") or
@Path("customerservice/{id}/{state}"). JAX-RS specifies a detailed algorithm for matching
a resource method to a request. The algorithm compares the normalized URI, the HTTP verb, and the
media types of the request and response entities to the annotations on the resource classes.

The basic selection algorithm

The JAX-RS selection algorithm is broken down into three stages:

1. Determine the root resource class.

The request URI is matched against all of the classes decorated with the @Path annotation.
The classes whose @Path annotation matches the request URI are determined.

If the value of the resource class' @Path annotation matches the entire request URI, the class'
methods are used as input into the third stage.

2. Determine the object will handle the request.

If the request URI is longer than the value of the selected class' @Path annotation, the values
of the resource methods' @Path annotations are used to look for a sub-resource that can
process the request.

If one or more sub-resource methods match the request URI, these methods are used as input
for the third stage.

If the only matches for the request URI are sub-resource locaters, the resource methods of the
object created by the sub-resource locater to match the request URI. This stage is repeated
until a sub-resource method matches the request URI.

3. Select the resource method that will handle the request.

The resource method whose HTTP verb annotation matches the HTTP verb in the request. In

 Order order)
 {
 ...
 }

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

444

addition, the selected resource method must accept the media type of the request entity body
and be capable of producing a response that conforms to the media type(s) specified in the
request.

Selecting from multiple resource classes

The first two stages of the selection algorithm determine the resource that will handle the request. In
some cases the resource is implemented by a resource class. In other cases, it is implemented by one
or more sub-resources that use the same URI template. When there are multiple resources that match
a request URI, resource classes are preferred over sub-resources.

If more than one resource still matches the request URI after sorting between resource classes and
sub-resources, the following criteria are used to select a single resource:

1. Prefer the resource with the most literal characters in its URI template.

Literal characters are characters that are not part of a template variable. For example,
/widgets/{id}/{color} has ten literal characters and /widgets/1/{color} has eleven literal
characters. So, the request URI /widgets/1/red would be matched to the resource with
/widgets/1/{color} as its URI template.

NOTE

A trailing slash (/) counts as a literal character. So /joefred/ will be preferred
over /joefred.

2. Prefer the resource with the most variables in its URI template.

The request URI /widgets/30/green could match both /widgets/{id}/{color} and
/widgets/{amount}/. However, the resource with the URI template /widgets/{id}/{color} will
be selected because it has two variables.

3. Prefer the resource with the most variables containing regular expressions.

The request URI /widgets/30/green could match both /widgets/{number}/{color} and
/widgets/{id:.+}/{color}. However, the resource with the URI template /widgets/{id:.+}/{color}
will be selected because it has a variable containing a regular expression.

Selecting from multiple resource methods

In many cases, selecting a resource that matches the request URI results in a single resource method
that can process the request. The method is determined by matching the HTTP verb specified in the
request with a resource method's HTTP verb annotation. In addition to having the appropriate HTTP
verb annotation, the selected method must also be able to handle the request entity included in the
request and be able to produce the proper type of response specified in the request's metadata.

NOTE

The type of request entity a resource method can handle is specified by the @Consumes
annotation. The type of responses a resource method can produce are specified using
the @Produces annotation.

When selecting a resource produces multiple methods that can handle a request the following criteria
is used to select the resource method that will handle the request:

CHAPTER 45. CREATING RESOURCES

445

1. Prefer resource methods over sub-resources.

2. Prefer sub-resource methods over sub-resource locaters.

3. Prefer methods that use the most specific values in the @Consumes annotation and the
@Produces annotation.

For example, a method that has the annotation @Consumes(text/xml) would be preferred
over a method that has the annotation @Consumes(text/*). Both methods would be
preferred over a method without an @Consumes annotation or the annotation
@Consumes(*/*).

4. Prefer methods that most closely match the content type of the request body entity.

TIP

The content type of the request body entity is specified in the HTTP Content-Type property.

5. Prefer methods that most closely match the content type accepted as a response.

TIP

The content types accepted as a response are specified in the HTTP Accept property.

Customizing the selection process

In some cases, developers have reported the algorithm being somewhat restrictive in the way multiple
resource classes are selected. For example, if a given resource class has been matched and if this class
has no matching resource method, then the algorithm stops executing. It never checks the remaining
matching resource classes.

Apache CXF provides the org.apache.cxf.jaxrs.ext.ResourceComparator interface which
can be used to customize how the runtime handles multiple matching resource classes. The
ResourceComparator interface, shown in Example 45.9, “Interface for customizing resource
selection”, has to methods that need to be implemented. One compares two resource classes and the
other compares two resource methods.

Example 45.9. Interface for customizing resource selection

package org.apache.cxf.jaxrs.ext;

import org.apache.cxf.jaxrs.model.ClassResourceInfo;
import org.apache.cxf.jaxrs.model.OperationResourceInfo;
import org.apache.cxf.message.Message;

public interface ResourceComparator
{
 int compare(ClassResourceInfo cri1,
 ClassResourceInfo cri2,
 Message message);

 int compare(OperationResourceInfo oper1,

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

446

Custom implementations select between the two resources as follows:

Return 1 if the first parameter is a better match than the second parameter

Return -1 if the second parameter is a better match than the first parameter

If 0 is returned then the runtime will proceed with the default selection algorithm

You register a custom ResourceComparator implementation by adding a resourceComparator
child to the service's jaxrs:server element.

 OperationResourceInfo oper2,
 Message message);
}

CHAPTER 45. CREATING RESOURCES

447

CHAPTER 46. PASSING INFORMATION INTO RESOURCE
CLASSES AND METHODS

Abstract

JAX-RS specifies a number of annotations that allow the developer to control where the information
passed into resources come from. The annotations conform to common HTTP concepts such as matrix
parameters in a URI. The standard APIs allow the annotations to be used on method parameters, bean
properties, and resource class fields. Apache CXF provides an extension that allows for the injection of
a sequence of parameters to be injected into a bean.

46.1. BASICS OF INJECTING DATA

Overview

Parameters, fields, and bean properties that are initialized using data from the HTTP request message
have their values injected into them by the runtime. The specific data that is injected is specified by a
set of annotations described in Section 46.2, “Using JAX-RS APIs” .

The JAX-RS specification places a few restrictions on when the data is injected. It also places a few
restrictions on the types of objects into which request data can be injected.

When data is injected

Request data is injected into objects when they are instantiated due to a request. This means that only
objects that directly correspond to a resource can use the injection annotations. As discussed in
Chapter 45, Creating Resources, these objects will either be a root resource decorated with the @Path
annotation or an object returned from a sub-resource locator method.

Supported data types

The specific set of data types that data can be injected into depends on the annotation used to specify
the source of the injected data. However, all of the injection annotations support at least the following
set of data types:

primitives such as int, char, or long

Objects that have a constructor that accepts a single String argument

Objects that have a static valueOf() method that accepts a single String argument

List<T>, Set<T>, or SortedSet<T> objects where T satisfies the other conditions in the list

TIP

Where injection annotations have different requirements for supported data types, the differences will
be highlighted in the discussion of the annotation.

46.2. USING JAX-RS APIS

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

448

The standard JAX-RS API specifies annotations that can be used to inject values into fields, bean
properties, and method parameters. The annotations can be split up into three distinct types:

annotations that inject information from the request URI

annotations that inject information from the HTTP message header

annotations that inject information from HTML forms

46.2.1. Injecting data from a request URI

Overview

One of the best practices for designing a RESTful Web service is that each resource should have a
unique URI. A developer can use this principle to provide a good deal of information to the underlying
resource implementation. When designing URI templates for a resource, a developer can build the
templates to include parameter information that can be injected into the resource implementation.
Developers can also leverage query and matrix parameters for feeding information into the resource
implementations.

Getting data from the URI's path

One of the more common mechanisms for getting information about a resource is through the
variables used in creating the URI templates for a resource. This is accomplished using the
javax.ws.rs.PathParam annotation. The @PathParam annotation has a single parameter that
identifies the URI template variable from which the data will be injected.

In Example 46.1, “Injecting data from a URI template variable” the @PathParam annotation specifies
that the value of the URI template variable color is injected into the itemColor field.

Example 46.1. Injecting data from a URI template variable

The data types supported by the @PathParam annotation are different from the ones described in the
section called “Supported data types”. The entity into which the @PathParam annotation injects data
must be of one of the following types:

PathSegment

import javax.ws.rs.Path;
import javax.ws.rs.PathParam
...

@Path("/boxes/{shape}/{color}")
class Box
{
 ...

 @PathParam("color")
 String itemColor;

 ...
}

CHAPTER 46. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

449

The value will be the final segment of the matching part of the path.

List<PathSegment>

The value will be a list of PathSegment objects corresponding to the path segment(s) that
matched the named template parameter.

primitives such as int, char, or long

Objects that have a constructor that accepts a single String argument

Objects that have a static valueOf() method that accepts a single String argument

Using query parameters

A common way of passing information on the Web is to use query parameters in a URI. Query
parameters appear at the end of the URI and are separated from the resource location portion of the
URI by a question mark(?). They consist of one, or more, name value pairs where the name and value
are separated by an equal sign(=). When more than one query parameter is specified, the pairs are
separated from each other by either a semicolon(;) or an ampersand(&). Example 46.2, “URI with a
query string” shows the syntax of a URI with query parameters.

Example 46.2. URI with a query string

NOTE

You can use either the semicolon or the ampersand to separate query parameters, but
not both.

The javax.ws.rs.QueryParam annotation extracts the value of a query parameter and injects it into
a JAX-RS resource. The annotation takes a single parameter that identifies the name of the query
parameter from which the value is extracted and injected into the specified field, bean property, or
parameter. The @QueryParam annotation supports the types described in the section called
“Supported data types”.

Example 46.3, “Resource method using data from a query parameter” shows a resource method that
injects the value of the query parameter id into the method's id parameter.

Example 46.3. Resource method using data from a query parameter

http://fusesource.org?name=value;name2=value2;...

import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

450

To process an HTTP POST to /monstersforhire/daikaiju?id=jonas the updateMonster() method's
type is set to daikaiju and the id is set to jonas.

Using matrix parameters

URI matrix parameters, like URI query parameters, are name/value pairs that can provide additional
information selecting a resource. Unlike query parameters, matrix parameters can appear anywhere in
a URI and they are separated from the hierarchical path segments of the URI using a semicolon(;).
/mostersforhire/daikaiju;id=jonas has one matrix parameter called id and
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 has two matrix parameters called type
and wingspan.

NOTE

Matrix parameters are not evaluated when computing a resource's URI. So, the URI used
to locate the proper resource to handle the request URI
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 is
/monstersforhire/japan/flying.

The value of a matrix parameter is injected into a field, parameter, or bean property using the
javax.ws.rs.MatrixParam annotation. The annotation takes a single parameter that identifies the
name of the matrix parameter from which the value is extracted and injected into the specified field,
bean property, or parameter. The @MatrixParam annotation supports the types described in the
section called “Supported data types”.

Example 46.4, “Resource method using data from matrix parameters” shows a resource method that
injects the value of the matrix parameters type and id into the method's parameters.

Example 46.4. Resource method using data from matrix parameters

 @Path("\{type}")
 public void updateMonster(@PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }
 ...
}

import javax.ws.rs.MatrixParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 public void updateMonster(@MatrixParam("type") String type,
 @MatrixParam("id") String id)
 {
 ...

CHAPTER 46. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

451

To process an HTTP POST to /monstersforhire;type=daikaiju;id=whale the updateMonster()
method's type is set to daikaiju and the id is set to whale.

NOTE

JAX-RS evaluates all of the matrix parameters in a URI at once, so it cannot enforce
constraints on a matrix parameters location in a URI. For example
/monstersforhire/japan;type=daikaiju/flying;wingspan=40 ,
/monstersforhire/japan/flying;type=daikaiju;wingspan=40, and
/monstersforhire/japan;type=daikaiju;wingspan=40/flying are all treated as equivalent
by a RESTful Web service implemented using the JAX-RS APIs.

Disabling URI decoding

By default all request URIs are decoded. So the URI /monster/night%20stalker and the URI
/monster/night stalker are equivalent. The automatic URI decoding makes it easy to send characters
outside of the ASCII character set as parameters.

If you do not wish to have URI automatically decoded, you can use the javax.ws.rs.Encoded
annotation to deactivate the URI decoding. The annotation can be used to deactivate URI decoding at
the following levels:

class level—Decorating a class with the @Encoded annotation deactivates the URI decoding for
all parameters, field, and bean properties in the class.

method level—Decorating a method with the @Encoded annotation deactivates the URI
decoding for all parameters of the class.

parameter/field level—Decorating a parameter or field with the @Encoded annotation
deactivates the URI decoding for all parameters of the class.

Example 46.5, “Disabling URI decoding” shows a resource whose getMonster() method does not use
URI decoding. The addMonster() method only disables URI decoding for the type parameter.

Example 46.5. Disabling URI decoding

 }
 ...
}

@Path("/monstersforhire/")
public class MonsterService
{
 ...

 @GET
 @Encoded
 @Path("\{type}")
 public Monster getMonster(@PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

452

Error handling

If an error occurs when attempting to inject data using one of the URI injection annotations a
WebApplicationException exception wraps the original exception is generated. The
WebApplicationException exception's status is set to 404.

46.2.2. Injecting data from the HTTP message header

Overview

In normal usage the HTTP headers in a request message pass along generic information about the
message, how it is to be handled in transit, and details about the expected response. While a few
standard headers are commonly recognized and used, the HTTP specification allows for any
name/value pair to be used as an HTTP header. The JAX-RS APIs provide an easy mechanism for
injecting HTTP header information into a resource implementation.

One of the most commonly used HTTP headers is the cookie. Cookies allow HTTP clients and servers to
share static information across multiple request/response sequences. The JAX-RS APIs provide an
annotation inject data directly from a cookie into a resource implementation.

Injecting information from the HTTP headers

The javax.ws.rs.HeaderParam annotation is used to inject the data from an HTTP header field into
a parameter, field, or bean property. It has a single parameter that specifies the name of the HTTP
header field from which the value is extracted and injected into the resource implementation. The
associated parameter, field, or bean property must conform to the data types described in the section
called “Supported data types”.

Example 46.6, “Injecting the If-Modified-Since header” shows code for injecting the value of the HTTP
If-Modified-Since header into a class' oldestDate field.

Example 46.6. Injecting the If-Modified-Since header

 @PUT
 @Path("\{id}")
 public void addMonster(@Encoded @PathParam("type") String type,
 @QueryParam("id") String id)
 {
 ...
 }
 ...
}

import javax.ws.rs.HeaderParam;
...
class RecordKeeper
{
 ...
 @HeaderParam("If-Modified-Since")
 String oldestDate;
 ...
}

CHAPTER 46. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

453

Injecting information from a cookie

Cookies are a special type of HTTP header. They are made up of one or more name/value pairs that are
passed to the resource implementation on the first request. After the first request, the cookie is
passes back and forth between the provider and consumer with each message. Only the consumer,
because they generate requests, can change the cookie. Cookies are commonly used to maintain
session across multiple request/response sequences, storing user settings, and other data that can
persist.

The javax.ws.rs.CookieParam annotation extracts the value from a cookie's field and injects it
into a resource implementation. It takes a single parameter that specifies the name of the cookie's field
from which the value is to be extracted. In addition to the data types listed in the section called
“Supported data types”, entities decorated with the @CookieParam can also be a Cookie object.

Example 46.7, “Injecting a cookie” shows code for injecting the value of the handle cookie into a field
in the CB class.

Example 46.7. Injecting a cookie

Error handling

If an error occurs when attempting to inject data using one of the HTTP message injection annotations
a WebApplicationException exception wrapping the original exception is generated. The
WebApplicationException exception's status is set to 400.

46.2.3. Injecting data from HTML forms

Overview

HTML forms are an easy means of getting information from a user and they are also easy to create.
Form data can be used for HTTP GET requests and HTTP POST requests:

GET

When form data is sent as part of an HTTP GET request the data is appended to the URI as a set of
query parameters. Injecting data from query parameters is discussed in the section called “Using
query parameters”.

POST

When form data is sent as part of an HTTP POST request the data is placed in the HTTP message

import javax.ws.rs.CookieParam;
...
class CB
{
 ...
 @CookieParam("handle")
 String handle;
 ...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

454

body. The form data can be handled using a regular entity parameter that supports the form data. It
can also be handled by using the @FormParam annotation to extract the data and inject the pieces
into resource method parameters.

Using the @FormParam annotation to inject form data

The javax.ws.rs.FormParam annotation extracts field values from form data and injects the value
into resource method parameters. The annotation takes a single parameter that specifies the key of
the field from which it extracts the values. The associated parameter must conform to the data types
described in the section called “Supported data types” .

IMPORTANT

The JAX-RS API Javadoc states that the @FormParam annotation can be placed on
fields, methods, and parameters. However, the @FormParam annotation is only
meaningful when placed on resource method parameters.

Example

Example 46.8, “Injecting form data into resource method parameters” shows a resource method that
injects form data into its parameters. The method assumes that the client's form includes three fields
—title, tags, and body—that contain string data.

Example 46.8. Injecting form data into resource method parameters

46.2.4. Specifying a default value to inject

Overview

To provide for a more robust service implementation, you may want to ensure that any optional
parameters can be set to a default value. This can be particularly useful for values that are taken from
query parameters and matrix parameters since entering long URI strings is highly error prone. You
may also want to set a default value for a parameter extracted from a cookie since it is possible for a
requesting system not have the proper information to construct a cookie with all the values.

The javax.ws.rs.DefaultValue annotation can be used in conjunction with the following injection
annotations:

@PathParam

import javax.ws.rs.FormParam;
import javax.ws.rs.POST;

...
@POST
public boolean updatePost(@FormParam("title") String title,
 @FormParam("tags") String tags,
 @FormParam("body") String post)
{
 ...
}

CHAPTER 46. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

455

@QueryParam

@MatrixParam

@FormParam

@HeaderParam

@CookieParam

The @DefaultValue annotation specifies a default value to be used when the data corresponding to
the injection annotation is not present in the request.

Syntax

Example 46.9, “Syntax for setting the default value of a parameter” shows the syntax for using the
@DefaultValue annotation.

Example 46.9. Syntax for setting the default value of a parameter

The annotation must come before the parameter, bean, or field, it will effect. The position of the
@DefaultValue annotation relative to the accompanying injection annotation does not matter.

The @DefaultValue annotation takes a single parameter. This parameter is the value that will be
injected into the field if the proper data cannot be extracted based on the injection annotation. The
value can be any String value. The value should be compatible with type of the associated field. For
example, if the associated field is of type int, a default value of blue results in an exception.

Dealing with lists and sets

If the type of the annotated parameter, bean or field is List, Set, or SortedSet then the resulting
collection will have a single entry mapped from the supplied default value.

Example

Example 46.10, “Setting default values” shows two examples of using the @DefaultValue to specify a
default value for a field whose value is injected.

Example 46.10. Setting default values

import javax.ws.rs.DefaultValue;
 ...
 void resourceMethod(@MatrixParam("matrix")
 @DefaultValue("value)
 int someValue, ...)
 ...

import javax.ws.rs.DefaultValue;
import javax.ws.rs.PathParam;
import javax.ws.rs.QueryParam;
import javax.ws.rs.GET;
import javax.ws.rs.Path;

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

456

The getMonster() method in Example 46.10, “Setting default values” is invoked when a GET request
is sent to baseURI/monster. The method expects two query parameters, id and type, appended to the
URI. So a GET request using the URI baseURI/monster?id=1&type=fomóiri would return the Fomóiri
with the id of one.

Because the @DefaultValue annotation is placed on both parameters, the getMonster() method
can function if the query parameters are omitted. A GET request sent to baseURI/monster is
equivalent to a GET request using the URI baseURI/monster?id=42&type=bogeyman.

46.3. USING APACHE CXF EXTENSIONS

Overview

Apache CXF provides an extension to the standard JAX-WS injection mechanism that allows
developers to replace a sequence of injection annotations with a single annotation. The single
annotation is place on a bean containing fields for the data that is extracted using the annotation. For
example, if a resource method is expecting a request URI to include three query parameters called id,
type, and size, it could use a single @QueryParam annotation to inject all of the parameters into a
bean with corresponding fields.

Supported injection annotations

This extension does not support all of the injection parameters. It only supports the following ones:

@PathParam

@QueryParam

@MatrixParam

@FormParam

Syntax

To indicate that an annotation is going to use serial injection into a bean, you need to do two things:

@Path("/monster")
public class MonsterService
{

 @Get
 public Monster getMonster(@QueryParam("id") @DefaultValue("42") int
id,
 @QueryParam("type")
@DefaultValue("bogeyman") String type)
 {
 ...
 }

 ...
}

CHAPTER 46. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS

457

1. Specify the annotation's parameter as an empty string. For example @PathParam("")
specifies that a sequence of URI template variables are to be serialized into a bean.

2. Ensure that the annotated parameter is a bean with fields that match the values being injected.

Example

Example 46.11, “Injecting query parameters into a bean” shows an example of injecting a number of
Query parameters into a bean. The resource method expect the request URI to include two query
parameters: type and id. Their values are injected into the corresponding fields of the Monster bean.

Example 46.11. Injecting query parameters into a bean

import javax.ws.rs.QueryParam;
import javax.ws.rs.PathParam;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
...

@Path("/monstersforhire/")
public class MonsterService
{
 ...
 @POST
 public void updateMonster(@QueryParam("") Monster bean)
 {
 ...
 }
 ...
}

public class Monster
{
 String type;
 String id;

 ...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

458

CHAPTER 47. RETURNING INFORMATION TO THE CONSUMER

Abstract

RESTful requests require that at least an HTTP response code be returned to the consumer. In many
cases, a request can be satisfied by returning a plain JAXB object or a GenericEntity object. When
the resource method needs to return additional metadata along with the response entity, JAX-RS
resource methods can return a Response object containing any needed HTTP headers or other
metadata.

The information returned to the consumer determines the exact type of object a resource method
returns. This may seem obvious, but the mapping between Java return objects and what is returned to
a RESTful consumer is not one-to-one. At a minimum, RESTful consumers need to be returned a valid
HTTP return code in addition to any response entity body. The mapping of the data contained within a
Java object to a response entity is effected by the MIME types a consumer is willing to accept.

To address the issues involved in mapping Java object to RESTful response messages, resource
methods are allowed to return four types of Java constructs:

common Java types return basic information with HTTP return codes determined by the JAX-
RS runtime.

JAXB objects return complex information with HTTP return codes determined by the JAX-RS
runtime.

JAX-RS return complex information with a programmatically determined HTTP return status.
The Response object also allows HTTP headers to be specified.

JAX-RS return complex information with HTTP return codes determined by the JAX-RS
runtime. The GenericEnitity object provides more information to the runtime components
serializing the data.

47.1. RETURNING PLAIN JAVA CONSTRUCTS

Overview

In many cases a resource class can return a standard Java type, a JAXB object, or any object for which
the application has an entity provider. In these cases the runtime determines the MIME type
information using the Java class of the object being returned. The runtime also determines the
appropriate HTTP return code to send to the consumer.

Returnable types

Resource methods can return void or any Java type for which an entity writer is provided. By default,
the runtime has providers for the following:

the Java primitives

the Number representations of the Java primitives

JAXB objects

CHAPTER 47. RETURNING INFORMATION TO THE CONSUMER

459

the section called “Natively supported types” lists all of the return types supported by default. the
section called “Custom writers” describes how to implement a custom entity writer.

MIME types

The runtime determines the MIME type of the returned entity by first checking the resource method
and resource class for a @Produces annotation. If it finds one, it uses the MIME type specified in the
annotation. If it does not find one specified by the resource implementation, it relies on the entity
providers to determine the proper MIME type.

By default the runtime assign MIME types as follows:

Java primitives and their Number representations are assigned a MIME type of
application/octet-stream.

JAXB objects are assigned a MIME type of application/xml.

Applications can use other mappings by implementing custom entity providers as described in the
section called “Custom writers”.

Response codes

When resource methods return plain Java constructs, the runtime automatically sets the response's
status code if the resource method completes without throwing an exception. The status code is set as
follows:

204(No Content)—the resource method's return type is void

204(No Content)—the value of the returned entity is null

200(OK)—the value of the returned entity is not null

If an exception is thrown before the resource method completes the return status code is set as
described in Chapter 48, Handling Exceptions.

47.2. FINE TUNING AN APPLICATION'S RESPONSES

47.2.1. Basics of building responses

Overview

RESTful services often need more precise control over the response returned to a consumer than is
allowed when a resource method returns a plain Java construct. The JAX-RS Response class allows a
resource method to have some control over the return status sent to the consumer and to specify
HTTP message headers and cookies in the response.

Response objects wrap the object representing the entity that is returned to the consumer.
Response objects are instantiated using the ResponseBuilder class as a factory.

The ResponseBuilder class also has many of the methods used to manipulate the response's
metadata. For instance the ResonseBuilder class contains the methods for setting HTTP headers
and cache control directives.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

460

Relationship between a response and a response builder

The Response class has a protected constructor, so they cannot be instantiated directly. They are
created using the ResponseBuilder class enclosed by the Response class. The ResponseBuilder
class is a holder for all of the information that will be encapsulated in the response created from it. The
ResponseBuilder class also has all of the methods responsible for setting HTTP header properties
on the message.

The Response class does provide some methods that ease setting the proper response code and
wrapping the entity. There are methods for each of the common response status codes. The methods
corresponding to status that include an entity body, or required metadata, include versions that allow
for directly setting the information into the associated response builder.

The ResponseBuilder class' build() method returns a response object containing the information
stored in the response builder at the time the method is invoked. After the response object is returned,
the response builder is returned to a clean state.

Getting a response builder

There are two ways to get a response builder:

Using the static methods of the Response class as shown in Example 47.1, “Getting a response
builder using the Response class”.

Example 47.1. Getting a response builder using the Response class

When getting a response builder this way you do not get access to an instance you can
manipulate in multiple steps. You must string all of the actions into a single method call.

Using the Apache CXF specific ResponseBuilderImpl class. This class allows you to work
directly with a response builder. However, it requires that you manually set all of the response
builders information manually.

Example 47.2, “Getting a response builder using the ResponseBuilderImpl class” shows
how Example 47.1, “Getting a response builder using the Response class” could be rewritten
using the ResponseBuilderImpl class.

Example 47.2. Getting a response builder using the ResponseBuilderImpl class

import javax.ws.rs.core.Response;

Response r = Response.ok().build();

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(200);
Response r = builder.build();

CHAPTER 47. RETURNING INFORMATION TO THE CONSUMER

461

TIP

You could also simply assign the ResponseBuilder returned from a Response class'
method to a ResponseBuilderImpl object.

More information

For more information about the Response class see the Response class' Javadoc.

For more information about the ResponseBuilder class see the ResponseBuilder class' Javadoc.

For more information on the Apache CXF ResponseBuilderIml class see the
ResponseBuilderImpl Javadoc.

47.2.2. Creating responses for common use cases

Overview

The Response class provides shortcut methods for handling the more common responses that a
RESTful service will need. These methods handle setting the proper headers using either provided
values or default values. They also handle populating the entity body when appropriate.

Creating responses for successful requests

When a request is successfully processed the application needs to send a response to acknowledge
that the request has been fulfilled. That response may contain an entity.

The most common response when successfully completing a response is OK. An OK response typically
contains an entity that corresponds to the request. The Response class has an overloaded ok()
method that sets the response status to 200 and adds a supplied entity to the enclosed response
builder. There are five versions of the ok() method. The most commonly used variant are:

Response.ok()—creates a response with a status of 200 and an empty entity body.

Response.ok(java.lang.Object entity)—creates a response with a status of 200,
stores the supplied object in the responses entity body, and determines the entities media
type by introspecting the object.

Example 47.3, “Creating a response with an 200 response” shows an example of creating a response
with an OK status.

Example 47.3. Creating a response with an 200 response

import javax.ws.rs.core.Response;
import demo.jaxrs.server.Customer;
...

Customer customer = new Customer("Jane", 12);

return Response.ok(customer).build();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

462

https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/Response.html
https://jsr311.dev.java.net/nonav/releases/1.0/javax/ws/rs/core/Response.ResponseBuilder.html
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/jaxrs/impl/ResponseBuilderImpl.html

For cases where the requester is not expecting an entity body, it may be more appropriate to send a
204 No Content status instead of an 200 OK status. The Response.noContent() method will
create an appropriate response object.

Example 47.4, “Creating a response with a 204 status” shows an example of creating a response with
an 204 status.

Example 47.4. Creating a response with a 204 status

Creating responses for redirection

The Response class provides methods for handling three of the redirection response statuses.

303 See Other

The 303 See Other status is useful when the requested resource needs to permanently redirect
the consumer to a new resource to process the request.

The Response classes seeOther() method creates a response with a 303 status and places the
new resource URI in the message's Location field. The seeOther() method takes a single
parameter that specifies the new URI as a java.net.URI object.

304 Not Modified

The 304 Not Modified status can be used for different things depending on the nature of the
request. It can be used to signify that the requested resource has not changed since a previous GET
request. It can also be used to signify that a request to modify the resource did not result in the
resource being changed.

The Response classes notModified() methods creates a response with a 304 status and sets
the modified date property on the HTTP message. There are three versions of the notModified()
method:

notModified();

notModified(javax.ws.rs.core.Entity tag);

notModified(java.lang.String tag);

307 Temporary Redirect

The 307 Temporary Redirect status is useful when the requested resource needs to direct the
consumer to a new resource, but wants the consumer to continue using this resource to handle
future requests.

The Response classes temporaryRedirect() method creates a response with a 307 status and
places the new resource URI in the message's Location field. The temporaryRedirect()
method takes a single parameter that specifies the new URI as a java.net.URI object.

import javax.ws.rs.core.Response;

return Response.noContent().build();

CHAPTER 47. RETURNING INFORMATION TO THE CONSUMER

463

Example 47.5, “Creating a response with a 304 status” shows an example of creating a response with
an 304 status.

Example 47.5. Creating a response with a 304 status

Creating responses to signal errors

The Response class provides methods to create responses for two basic processing errors:

serverError()();—creates a response with a status of 500 Internal Server Error.

notAcceptable()(java.util.List<javax.ws.rs.core.Variant> variants);—
creates a response with a 406 Not Acceptable status and an entity body containing a list of
acceptable resource types.

Example 47.6, “Creating a response with a 500 status” shows an example of creating a response with
an 500 status.

Example 47.6. Creating a response with a 500 status

47.2.3. Handling more advanced responses

Overview

The Response class methods provide short cuts for creating responses for common cases. When you
need to address more complicated cases such as specifying cache control directives, adding custom
HTTP headers, or sending a status not handled by the Response class, you need to use the
ResponseBuilder classes methods to populate the response before using the build() method to
generate the response object.

TIP

As discussed in the section called “Getting a response builder” , you can use the Apache CXF
ResponseBuilderImpl class to create a response builder instance that can be manipulated directly.

Adding custom headers

Custom headers are added to a response using the ResponseBuilder class' header() method. The
header() method takes two parameters:

name—a string specifying the name of the header

import javax.ws.rs.core.Response;

return Response.notModified().build();

import javax.ws.rs.core.Response;

return Response.serverError().build();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

464

value—a Java object containing the data stored in the header

You can set multiple headers on the message by calling the header() method repeatedly.

Example 47.7, “Adding a header to a response” shows code for adding a header to a response.

Example 47.7. Adding a header to a response

Adding a cookie

Custom headers are added to a response using the ResponseBuilder class' cookie() method. The
cookie() method takes one or more cookies. Each cookie is stored in a
javax.ws.rs.core.NewCookie object. The easiest of the NewCookie class' contructors to use
takes two parameters:

name—a string specifying the name of the cookie

value—a string specifying the value of the cookie

You can set multiple cookies by calling the cookie() method repeatedly.

Example 47.8, “Adding a cookie to a response” shows code for adding a cookie to a response.

Example 47.8. Adding a cookie to a response

WARNING

Calling the cookie() method with a null parameter list erases any cookies
already associated with the response.

Setting the response status

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.header("username", "joe");
Response r = builder.build();

import javax.ws.rs.core.Response;
import javax.ws.rs.core.NewCookie;

NewCookie cookie = new NewCookie("username", "joe");

Response r = Response.ok().cookie(cookie).build();



CHAPTER 47. RETURNING INFORMATION TO THE CONSUMER

465

When you want to return a status other than one of the statuses supported by the Response class'
helper methods, you can use the ResponseBuilder class' status() method to set the response's
status code. The status() method has two variants. One takes an int that specifies the response
code. The other takes a Response.Status object to specify the response code.

The Response.Status class is an enumeration enclosed in the Response class. It has entries for
most of the defined HTTP response codes.

Example 47.9, “Adding a header to a response” shows code for setting the response status to 404 Not
Found.

Example 47.9. Adding a header to a response

Setting cache control directives

The ResponseBuilder class' cacheControl() method allows you to set the cache control headers
on the response. The cacheControl() method takes a javax.ws.rs.CacheControl object that
specifies the cache control directives for the response.

The CacheControl class has methods that correspond to all of the cache control directives supported
by the HTTP specification. Where the directive is a simple on or off value the setter method takes a
boolean value. Where the directive requires a numeric value, such as the max-age directive, the setter
takes an int value.

Example 47.10, “Adding a header to a response” shows code for setting the no-store cache control
directive.

Example 47.10. Adding a header to a response

47.3. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION

Overview

import javax.ws.rs.core.Response;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(404);
Response r = builder.build();

import javax.ws.rs.core.Response;
import javax.ws.rs.core.CacheControl;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

CacheControl cache = new CacheControl();
cache.setNoCache(true);

ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.cacheControl(cache);
Response r = builder.build();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

466

There are occasions where the application needs more control over the MIME type of the returned
object or the entity provider used to serialize the response. The JAX-RS
javax.ws.rs.core.GenericEntity<T> class provides finer control over the serializing of entities
by providing a mechanism for specifying the generic type of the object representing the entity.

Using a GenericEntity<T> object

One of the criteria used for selecting the entity provider that serializes a response is the generic type
of the object. The generic type of an object represents the Java type of the object. When a common
Java type or a JAXB object is returned, the runtime can use Java reflection to determine the generic
type. However, when a JAX-RS Response object is returned, the runtime cannot determine the
generic type of the wrapped entity and the actual Java class of the object is used as the Java type.

To ensure that the entity provider is provided with correct generic type information, the entity can be
wrapped in a GenericEntity<T> object before being added to the Response object being returned.

Resource methods can also directly return a GenericEntity<T> object. In practice, this approach is
rarely used. The generic type information determined by reflection of an unwrapped entity and the
generic type information stored for an entity wrapped in a GenericEntity<T> object are typically
the same.

Creating a GenericEntity<T> object

There are two ways to create a GenericEntity<T> object:

1. Create a subclass of the GenericEntity<T> class using the entity being wrapped.
Example 47.11, “Creating a GenericEntity<T> object using a subclass” shows how to create
a GenericEntity<T> object containing an entity of type List<String> whose generic type
will be available at runtime.

Example 47.11. Creating a GenericEntity<T> object using a subclass

TIP

The subclass used to create a GenericEntity<T> object is typically anonymous.

2. Create an instance directly by supplying the generic type information with the entity.
Example 47.12, “Directly instantiating a GenericEntity<T> object” shows how to create a
response containing an entity of type AtomicInteger.

Example 47.12. Directly instantiating a GenericEntity<T> object

import javax.ws.rs.core.GenericEntity;

List<String> list = new ArrayList<String>();
...
GenericEntity<List<String>> entity =
 new GenericEntity<List<String>>(list) {};
Response response = Response.ok(entity).build();

import javax.ws.rs.core.GenericEntity;

CHAPTER 47. RETURNING INFORMATION TO THE CONSUMER

467

AtomicInteger result = new AtomicInteger(12);
GenericEntity<AtomicInteger> entity =
 new GenericEntity<AtomicInteger>(result,

result.getClass().getGenericSuperclass());
Response response = Response.ok(entity).build();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

468

CHAPTER 48. HANDLING EXCEPTIONS

Abstract

When possible, exceptions caught by a resource method should cause a useful error to be returned to
the requesting consumer. JAX-RS resource methods can throw a WebApplicaitonException
exception. You can also provide ExceptionMapper<E> implementations to map exceptions to
appropriate responses.

48.1. USING WEBAPPLICAITONEXCEPTION EXCEPTIONS TO REPORT ERRORS

Overview

The JAX-RS API introduced the WebApplicationException runtime exception to provide an easy
way for resource methods to create exceptions that are appropriate for RESTful clients to consume.
WebApplicationException exceptions can include a Response object that defines the entity body
to return to the originator of the request. It also provides a mechanism for specifying the HTTP status
code to be returned to the client if no entity body is provided.

Creating a simple exception

The easiest means of creating a WebApplicaitonException exception is to use either the no
argument constructor or the constructor that wraps the original exception in a
WebApplicationException exception. Both constructors create a WebApplicaitonException
with an empty response.

When an exception created by either of these constructors is thrown, the runtime returns a response
with an empty entity body and a status code of 500 Server Error.

Setting the status code returned to the client

When you want to return an error code other than 500, you can use one of the four
WebApplicaitonException constructors that allow you to specify the status. Two of these
constructors, shown in Example 48.1, “Creating a WebApplicationException with a status code” ,
take the return status as an integer.

Example 48.1. Creating a WebApplicationException with a status code

WebApplicationException(int status);
WebApplicationException(java.lang.Throwable cause,
 int status);

The other two, shown in Example 48.2, “Creating a WebApplicationException with a status code”
take the response status as an instance of Response.Status.

Example 48.2. Creating a WebApplicationException with a status code

WebApplicationException(javax.ws.rs.core.Response.Status status);
WebApplicationException(java.lang.Throwable cause,
 javax.ws.rs.core.Response.Status status);

CHAPTER 48. HANDLING EXCEPTIONS

469

When an exception created by either of these constructors is thrown, the runtime returns a response
with an empty entity body and the specified status code.

Providing an entity body

If you want a message to be sent along with the exception, you can use one of the
WebApplicationException constructors that takes a Response object. The runtime uses the
Response object to create the response sent to the client. The entity stored in the response is
mapped to the entity body of the message and the status field of the response is mapped to the HTTP
status of the message.

Example 48.3, “Sending a message with an exception” shows code for returning a text message to a
client containing the reason for the exception and sets the HTTP message status to 409 Conflict.

Example 48.3. Sending a message with an exception

Extending the generic exception

It is possible to extend the WebApplicationException exception. This would allow you to create
custom exceptions and eliminate some boiler plate code.

Example 48.4, “Extending WebApplicationException” shows a new exception that creates a
similar response to the code in Example 48.3, “Sending a message with an exception” .

Example 48.4. Extending WebApplicationException

import javax.ws.rs.core.Response;
import javax.ws.rs.WebApplicationException;
import org.apache.cxf.jaxrs.impl.ResponseBuilderImpl;

...
ResponseBuilderImpl builder = new ResponseBuilderImpl();
builder.status(Response.Status.CONFLICT);
builder.entity("The requested resource is conflicted.");
Response response = builder.build();
throw WebApplicationException(response);

public class ConflicteddException extends WebApplicationException
{
 public ConflictedException(String message)
 {
 ResponseBuilderImpl builder = new ResponseBuilderImpl();
 builder.status(Response.Status.CONFLICT);
 builder.entity(message);
 super(builder.build());
 }
}

...
throw ConflictedException("The requested resource is conflicted.");

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

470

48.2. MAPPING EXCEPTIONS TO RESPONSES

Overview

There are instances where throwing a WebApplicationException exception is impractical or
impossible. For example, you may not want to catch all possible exceptions and then create a
WebApplicationException for them. You may also want to use custom exceptions that make
working with your application code easier.

To handle these cases the JAX-RS API allows you to implement a custom exception provider that
generates a Response object to send to a client. Custom exception providers are created by
implementing the ExceptionMapper<E> interface. When registered with the Apache CXF runtime,
the custom provider will be used whenever an exception of type E is thrown.

How exception mappers are selected

Exception mappers are used in two cases:

When a WebApplicationException, or one of its subclasses, with an empty entity body is
thrown, the runtime will check to see if there is an exception mapper that handles
WebApplicationException exceptions. If there is the exception mapper is used to create
the response sent to the consumer.

When any exception other than a WebApplicationException exception, or one of its
subclasses, is thrown, the runtime will check for an appropriate exception mapper. An
exception mapper is selected if it handles the specific exception thrown. If there is not an
exception mapper for the specific exception that was thrown, the exception mapper for the
nearest superclass of the exception is selected.

If an exception mapper is not found for an exception, the exception is wrapped in an
ServletException exception and passed onto the container runtime. The container runtime will
then determine how to handle the exception.

Implementing an exception mapper

Exception mappers are created by implementing the javax.ws.rs.ext.ExceptionMapper<E>
interface. As shown in Example 48.5, “Exception mapper interface” , the interface has a single method,
toResponse(), that takes the original exception as a parameter and returns a Response object.

Example 48.5. Exception mapper interface

The Response object created by the exception mapper is processed by the runtime just like any other
Response object. The resulting response to the consumer will contain the status, headers, and entity
body encapsulated in the Response object.

public interface ExceptionMapper<E extends java.lang.Throwable>
{
 public Response toResponse(E exception);
}

CHAPTER 48. HANDLING EXCEPTIONS

471

Exception mapper implementations are considered providers by the runtime. Therefor they must be
decorated with the @Provder annotation.

If an exception occurs while the exception mapper is building the Response object, the runtime will a
response with a status of 500 Server Error to the consumer.

Example 48.6, “Mapping an exception to a response” shows an exception mapper that intercepts
Spring AccessDeniedException exceptions and generates a response with a 403 Forbidden
status and an empty entity body.

Example 48.6. Mapping an exception to a response

The runtime will catch any AccessDeniedException exceptions and create a Response object with
no entity body and a status of 403. The runtime will then process the Response object as it would for a
normal response. The result is that the consumer will receive an HTTP response with a status of 403.

Registering an exception mapper

Before a JAX-RS application can use an exception mapper, the exception mapper must be registered
with the runtime. Exception mappers are registered with the runtime using the jaxrs:providers
element in the application's configuration file.

The jaxrs:providers element is a child of the jaxrs:server element and contains a list of bean
elements. Each bean element defines one exception mapper.

Example 48.7, “Registering exception mappers with the runtime” shows a JAX-RS server configured to
use a an exception mapper.

Example 48.7. Registering exception mappers with the runtime

import javax.ws.rs.core.Response;
import javax.ws.rs.ext.ExceptionMapper;

import org.springframework.security.AccessDeniedException;

@Provider
public class SecurityExceptionMapper implements
ExceptionMapper<AccessDeniedException>
{

 public Response toResponse(AccessDeniedException exception)
 {
 return Response.status(Response.Status.FORBIDDEN).build();
 }

}

<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="securityException"
class="com.bar.providers.SecurityExceptionMapper"/>

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

472

 </jaxrs:providers>
 </jaxrs:server>
</beans>

CHAPTER 48. HANDLING EXCEPTIONS

473

CHAPTER 49. ENTITY SUPPORT

Abstract

The Apache CXF runtime supports a limited number of mappings between MIME types and Java objects
out of the box. Developers can extend the mappings by implementing custom readers and writers. The
custom readers and writers are registered with the runtime at start-up.

OVERVIEW

The runtime relies on JAX-RS MessageBodyReader and MessageBodyWriter implementations to
serialize and de-serialize data between the HTTP messages and their Java representations. The
readers and writers can restrict the MIME types they are capable of processing.

The runtime provides readers and writers for a number of common mappings. If an application requires
more advanced mappings, a developer can provide custom implementations of the
MessageBodyReader interface and/or the MessageBodyWriter interface. Custom readers and
writers are registered with the runtime when the application is started.

NATIVELY SUPPORTED TYPES

Table 49.1, “Natively supported entity mappings” lists the entity mappings provided by Apache CXF out
of the box.

Table 49.1. Natively supported entity mappings

Java Type MIME Type

primitive types text/plain

java.lang.Number text/plain

byte[] */*

java.lang.String */*

java.io.InputStream */*

java.io.Reader */*

java.io.File */*

javax.activation.DataSource */*

javax.xml.transform.Source text/xml, application/xml,
application/*+xml

javax.xml.bind.JAXBElement text/xml, application/xml,
application/*+xml

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

474

JAXB annotated objects text/xml, application/xml,
application/*+xml

javax.ws.rs.core.MultivaluedMap<Stri
ng, String>

application/x-www-form-urlencoded [a]

javax.ws.rs.core.StreamingOutput */* [b]

[a] This mapping is used for handling HTML form data.

[b] This mapping is only supported for returning data to a consumer.

Java Type MIME Type

CUSTOM READERS

Custom entity readers are responsible for mapping incoming HTTP requests into a Java type that a
service's implementation can manipulate. They implement the
javax.ws.rs.ext.MessageBodyReader interface.

The interface, shown in Example 49.1, “Message reader interface” , has two methods that need
implementing:

Example 49.1. Message reader interface

isReadable()

The isReadable() method determines if the reader is capable of reading the data stream and
creating the proper type of entity representation. If the reader can create the proper type of entity
the method returns true.

package javax.ws.rs.ext;

public interface MessageBodyReader<T>
{
 public boolean isReadable(java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[]
annotations,
 javax.ws.rs.core.MediaType mediaType);

 public T readFrom(java.lang.Class<T> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType,
 javax.ws.rs.core.MultivaluedMap<String, String>
httpHeaders,
 java.io.InputStream entityStream)
 throws java.io.IOException, WebApplicationException;
}

CHAPTER 49. ENTITY SUPPORT

475

Table 49.2, “Parameters used to determine if a reader can produce an entity” describes the
isReadable() method's parameters.

Table 49.2. Parameters used to determine if a reader can produce an entity

Parameter Type Description

type Class<T> Specifies the actual Java class
of the object used to store the
entity.

genericType Type Specifies the Java type of the
object used to store the entity.
For example, if the message
body is to be converted into a
method parameter, the value
will be the type of the method
parameter as returned by the
Method.getGenericParam
eterTypes() method.

annotations Annotation[] Specifies the list of annotations
on the declaration of the object
created to store the entity. For
example if the message body is
to be converted into a method
parameter, this will be the
annotations on that parameter
returned by the
Method.getParameterAnn
otations() method.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

readFrom()

The readFrom() method reads the HTTP entity and coverts it into the desired Java object. If the
reading is successful the method returns the created Java object containing the entity. If an error
occurs when reading the input stream the method should throw an IOException exception. If an
error occurs that requires an HTTP error response, an WebApplicationException with the
HTTP response should be thrown.

Table 49.3, “Parameters used to read an entity” describes the readFrom() method's parameters.

Table 49.3. Parameters used to read an entity

Parameter Type Description

type Class<T> Specifies the actual Java class
of the object used to store the
entity.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

476

genericType Type Specifies the Java type of the
object used to store the entity.
For example, if the message
body is to be converted into a
method parameter, the value
will be the type of the method
parameter as returned by the
Method.getGenericParam
eterTypes() method.

annotations Annotation[] Specifies the list of annotations
on the declaration of the object
created to store the entity. For
example if the message body is
to be converted into a method
parameter, this will be the
annotations on that parameter
returned by the
Method.getParameterAnn
otations() method.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

httpHeaders MultivaluedMap<String,
String>

Specifies the HTTP message
headers associated with the
entity.

entityStream InputStream Specifies the input stream
containing the HTTP entity.

Parameter Type Description

IMPORTANT

This method should not close the input stream.

Before an MessageBodyReader implementation can be used as an entity reader, it must be decorated
with the javax.ws.rs.ext.Provider annotation. The @Provider annotation alerts the runtime
that the supplied implementation provides additional functionality. The implementation must also be
registered with the runtime as described in the section called “Registering readers and writers” .

By default a custom entity provider handles all MIME types. You can limit the MIME types that a custom
entity reader will handle using the javax.ws.rs.Consumes annotation. The @Consumes annotation
specifies a comma separated list of MIME types that the custom entity provider reads. If an entity is
not of a specified MIME type, the entity provider will not be selected as a possible reader.

Example 49.2, “XML source entity reader” shows an entity reader the consumes XML entities and
stores them in a Source object.

Example 49.2. XML source entity reader

CHAPTER 49. ENTITY SUPPORT

477

import java.io.IOException;
import java.io.InputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.Consumes;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.ext.MessageBodyReader;
import javax.ws.rs.ext.Provider;
import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.transform.Source;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;

import org.w3c.dom.Document;
import org.apache.cxf.jaxrs.ext.xml.XMLSource;

@Provider
@Consumes({"application/xml", "application/*+xml", "text/xml",
"text/html" })
public class SourceProvider implements MessageBodyReader<Object>
{
 public boolean isReadable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return Source.class.isAssignableFrom(type) ||
XMLSource.class.isAssignableFrom(type);
 }

 public Object readFrom(Class<Object> source,
 Type genericType,
 Annotation[] annotations,
 MediaType mediaType,
 MultivaluedMap<String, String> httpHeaders,
 InputStream is)
 throws IOException
 {
 if (DOMSource.class.isAssignableFrom(source))
 {
 Document doc = null;
 DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
 DocumentBuilder builder;
 try
 {
 builder = factory.newDocumentBuilder();
 doc = builder.parse(is);
 }
 catch (Exception e)
 {
 IOException ioex = new IOException("Problem creating a Source

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

478

CUSTOM WRITERS

Custom entity writers are responsible for mapping Java types into HTTP entities. They implement the
javax.ws.rs.ext.MessageBodyWriter interface.

The interface, shown in Example 49.3, “Message writer interface” , has three methods that need
implementing:

Example 49.3. Message writer interface

object");
 ioex.setStackTrace(e.getStackTrace());
 throw ioex;
 }

 return new DOMSource(doc);
 }
 else if (StreamSource.class.isAssignableFrom(source) ||
Source.class.isAssignableFrom(source))
 {
 return new StreamSource(is);
 }
 else if (XMLSource.class.isAssignableFrom(source))
 {
 return new XMLSource(is);
 }

 throw new IOException("Unrecognized source");
 }
}

package javax.ws.rs.ext;

public interface MessageBodyWriter<T>
{
 public boolean isWriteable(java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[]
annotations,
 javax.ws.rs.core.MediaType mediaType);

 public long getSize(T t,
 java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType);

 public void writeTo(T t,
 java.lang.Class<?> type,
 java.lang.reflect.Type genericType,
 java.lang.annotation.Annotation[] annotations,
 javax.ws.rs.core.MediaType mediaType,
 javax.ws.rs.core.MultivaluedMap<String, Object>
httpHeaders,

CHAPTER 49. ENTITY SUPPORT

479

isWriteable()

The isWriteable() method determines if the entity writer can map the Java type to the proper
entity type. If the writer can do the mapping, the method returns true.

Table 49.4, “Parameters used to read an entity” describes the isWritable() method's
parameters.

Table 49.4. Parameters used to read an entity

Parameter Type Description

type Class<T> Specifies the Java class of the
object being written.

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class,
described in Section 47.3,
“Returning entities with generic
type information”, provides
support for controlling this
value.

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

getSize()

The getSize() method is called before the writeTo(). It returns the length, in bytes, of the
entity being written. If a positive value is returned the value is written into the HTTP message's
Content-Length header.

Table 49.5, “Parameters used to read an entity” describes the getSize() method's parameters.

Table 49.5. Parameters used to read an entity

Parameter Type Description

t generic Specifies the instance being
written.

 java.io.OutputStream entityStream)
 throws java.io.IOException, WebApplicationException;
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

480

type Class<T> Specifies the Java class of the
object being written.

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class,
described in Section 47.3,
“Returning entities with generic
type information”, provides
support for controlling this
value.

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

Parameter Type Description

writeTo()

The writeTo() method converts a Java object into the desired entity type and writes the entity to
the output stream. If an error occurs when writing the entity to the output stream the method
should throw an IOException exception. If an error occurs that requires an HTTP error response,
an WebApplicationException with the HTTP response should be thrown.

Table 49.6, “Parameters used to read an entity” describes the writeTo() method's parameters.

Table 49.6. Parameters used to read an entity

Parameter Type Description

t generic Specifies the instance being
written.

type Class<T> Specifies the Java class of the
object being written.

CHAPTER 49. ENTITY SUPPORT

481

genericType Type Specifies the Java type of object
to be written, obtained either by
reflection of a resource method
return type or via inspection of
the returned instance. The
GenericEntity class,
described in Section 47.3,
“Returning entities with generic
type information”, provides
support for controlling this
value.

annotations Annotation[] Specifies the list of annotations
on the method returning the
entity.

mediaType MediatType Specifies the MIME type of the
HTTP entity.

httpHeaders MultivaluedMap<String,
Object>

Specifies the HTTP response
headers associated with the
entity.

entityStream OutputStream Specifies the output stream into
which the entity is written.

Parameter Type Description

Before a MessageBodyWriter implementation can be used as an entity writer, it must be decorated
with the javax.ws.rs.ext.Provider annotation. The @Provider annotation alerts the runtime
that the supplied implementation provides additional functionality. The implementation must also be
registered with the runtime as described in the section called “Registering readers and writers” .

By default a custom entity provider handles all MIME types. You can limit the MIME types that a custom
entity writer will handle using the javax.ws.rs.Produces annotation. The @Produces annotation
specifies a comma separated list of MIME types that the custom entity provider generates. If an entity
is not of a specified MIME type, the entity provider will not be selected as a possible writer.

Example 49.4, “XML source entity writer” shows an entity writer that takes Source objects and
produces XML entities.

Example 49.4. XML source entity writer

import java.io.IOException;
import java.io.OutputStream;
import java.lang.annotation.Annotation;
import java.lang.reflect.Type;

import javax.ws.rs.Produces;
import javax.ws.rs.WebApplicationException;
import javax.ws.rs.core.MediaType;

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

482

import javax.ws.rs.core.MultivaluedMap;
import javax.ws.rs.ext.MessageBodyWriter;
import javax.ws.rs.ext.Provider;
import javax.xml.transform.Source;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;

import org.apache.cxf.jaxrs.ext.xml.XMLSource;

@Provider
@Produces({"application/xml", "application/*+xml", "text/xml" })
public class SourceProvider implements MessageBodyWriter<Source>
{

 public boolean isWriteable(Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {
 return Source.class.isAssignableFrom(type);
 }

 public void writeTo(Source source,
 Class<?> clazz,
 Type genericType,
 Annotation[] annotations,
 MediaType mediatype,
 MultivaluedMap<String, Object> httpHeaders,
 OutputStream os)
 throws IOException
 {
 StreamResult result = new StreamResult(os);
 TransformerFactory tf = TransformerFactory.newInstance();
 try
 {
 Transformer t = tf.newTransformer();
 t.transform(source, result);
 }
 catch (TransformerException te)
 {
 te.printStackTrace();
 throw new WebApplicationException(te);
 }
 }

 public long getSize(Source source,
 Class<?> type,
 Type genericType,
 Annotation[] annotations,
 MediaType mt)
 {

CHAPTER 49. ENTITY SUPPORT

483

REGISTERING READERS AND WRITERS

Before a JAX-RS application can use any custom entity providers, the custom providers must be
registered with the runtime. Providers are registered with the runtime using either the
jaxrs:providers element in the application's configuration file or using the
JAXRSServerFactoryBean class.

The jaxrs:providers element is a child of the jaxrs:server element and contains a list of bean
elements. Each bean element defines one entity provider.

Example 49.5, “Registering entity providers with the runtime” show a JAX-RS server configured to use
a set of custom entity providers.

Example 49.5. Registering entity providers with the runtime

The JAXRSServerFactoryBean class is a Apache CXF extension that provides access to the
configuration APIs. It has a setProvider() method that allows you to add instantiated entity
providers to an application. Example 49.6, “Programmatically registering an entity provider” shows
code for registering an entity provider programmatically.

Example 49.6. Programmatically registering an entity provider

 return -1;
 }
}

<beans ...>
 <jaxrs:server id="customerService" address="/">
 ...
 <jaxrs:providers>
 <bean id="isProvider"
class="com.bar.providers.InputStreamProvider"/>
 <bean id="longProvider" class="com.bar.providers.LongProvider"/>
 </jaxrs:providers>
 </jaxrs:server>
</beans>

import org.apache.cxf.jaxrs.JAXRSServerFactoryBean;
...
JAXRSServerFactoryBean sf = new JAXRSServerFactoryBean();
...
SourceProvider provider = new SourceProvider();
sf.setProvider(provider);
...

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

484

CHAPTER 50. GETTING AND USING CONTEXT INFORMATION

Abstract

Context information includes detailed information about a resource's URI, the HTTP headers, and other
details that are not readily available using the other injection annotations. Apache CXF provides
special class that amalgamates the all possible context information into a single object.

50.1. INTRODUCTION TO CONTEXTS

Context annotation

You specify that context information is to be injected into a field or a resource method parameter
using the javax.ws.rs.core.Context annotation. Annotating a field or parameter of one of the
context types will instruct the runtime to inject the appropriate context information into the annotated
field or parameter.

Types of contexts

Table 50.1, “Context types” lists the types of context information that can be injected and the objects
that support them.

Table 50.1. Context types

Object Context information

UriInfo The full request URI

HttpHeaders The HTTP message headers

Request Information that can be used to determine the best
representation variant or to determine if a set of
preconditions have been set

SecurityContext Information about the security of the requester
including the authentication scheme in use, if the
request channel is secure, and the user principle

Where context information can be used

Context information is available to the following parts of a JAX-RS application:

resource classes

resource methods

entity providers

exception mappers

CHAPTER 50. GETTING AND USING CONTEXT INFORMATION

485

Scope

All context information injected using the @Context annotation is specific to the current request. This
is true in all cases including entity providers and exception mappers.

Adding contexts

The JAX-RS framework allows developers to extend the types of information that can be injected using
the context mechanism. You add custom contexts by implementing a Context<T> object and
registering it with the runtime.

50.2. WORKING WITH THE FULL REQUEST URI

The request URI contains a significant amount of information. Most of this information can be accessed
using method parameters as described in Section 46.2.1, “Injecting data from a request URI” , however
using parameters forces certain constraints on how the URI is processed. Using parameters to access
the segments of a URI also does not provide a resource access to the full request URI.

You can provide access to the complete request URI by injecting the URI context into a resource. The
URI is provided as a UriInfo object. The UriInfo interface provides functions for decomposing the
URI in a number of ways. It can also provide the URI as a UriBuilder object that allows you to
construct URIs to return to clients.

50.2.1. Injecting the URI information

Overview

When a class field or method parameter that is a UriInfo object is decorated with the @Context
annotation, the URI context for the current request is injected into the UriInfo object.

Example

Example 50.1, “Injecting the URI context into a class field” shows a class with a field populated by
injecting the URI context.

Example 50.1. Injecting the URI context into a class field

50.2.2. Working with the URI

import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.Path;
...
@Path("/monstersforhire/")
public class MonsterService
{
 @Context
 UriInfo requestURI;
 ...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

486

Overview

One of the main advantages of using the URI context is that it provides access to the base URI of the
service and the path segment of the URI for the selected resource. This information can be useful for a
number of purposes such as making processing decisions based on the URI or calculating URIs to
return as part of the response. For example if the base URI of the request contains a .com extension the
service may decide to use US dollars and if the base URI contains a .co.uk extension is may decide to
us British Pounds.

The UriInfo interface provides methods for accessing the parts of the URI:

the base URI

the resource path

the full URI

Getting the Base URI

The base URI is the root URI on which the service is published. It does not contain any portion of the
URI specified in any of the service's @Path annotations. For example if a service implementing the
resource defined in Example 46.5, “Disabling URI decoding” were published to http://fusesource.org
and a request was made on http://fusesource.org/montersforhire/nightstalker?12 the base URI would
be http://fusesource.org.

Table 50.2, “Methods for accessing a resource's base URI” describes the methods that return the base
URI.

Table 50.2. Methods for accessing a resource's base URI

Method Desription

URI getBaseUri(); Returns the service's base URI as a URI object.

UriBuilder getBaseUriBuilder(); Returns the base URI as a
javax.ws.rs.core.UriBuilder object. The
UriBuilder class is useful for creating URIs for
other resources implemented by the service.

Getting the path

The path portion of the request URI is the portion of the URI that was used to select the current
resource. It does not include the base URI, but does include any URI template variable and matrix
parameters included in the URI.

The value of the path depends on the resource selected. For example, the paths for the resources
defined in Example 50.2, “Getting a resource's path” would be:

rootPath — /monstersforhire/

getterPath — /mostersforhire/nightstalker

The GET request was made on /monstersforhire/nightstalker.

putterPath — /mostersforhire/911

CHAPTER 50. GETTING AND USING CONTEXT INFORMATION

487

The PUT request was made on /monstersforhire/911.

Example 50.2. Getting a resource's path

Table 50.3, “Methods for accessing a resource's path” describes the methods that return the resource
path.

Table 50.3. Methods for accessing a resource's path

Method Desription

String getPath(); Returns the resource's path as a decoded URI.

String getPath(boolean decode); Returns the resource's path. Specifying false
disables URI decoding.

@Path("/monstersforhire/")
public class MonsterService
{
 @Context
 UriInfo rootUri;

 ...

 @GET
 public List<Monster> getMonsters(@Context UriInfo getUri)
 {
 String rootPath = rootUri.getPath();
 ...
 }

 @GET
 @Path("\{type}")
 public Monster getMonster(@PathParam("type") String type,
 @Context UriInfo getUri)
 {
 String getterPath = getUri.getPath();
 ...
 }

 @PUT
 @Path("\{id}")
 public void addMonster(@Encoded @PathParam("type") String type,
 @Context UriInfo putUri)
 {
 String putterPath = putUri.getPath();
 ...
 }
 ...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

488

List<PathSegment> getPathSegments()
;

Returns the decoded path as a list of
javax.ws.rs.core.PathSegment objects.
Each portion of the path, including matrix
parameters, is placed into a unique entry in the list.

For example the resource path box/round#tall
would result in a list with three entries: box, round,
and tall.

List<PathSegment> getPathSegments(b
oolean decode);

Returns the path as a list of
javax.ws.rs.core.PathSegment objects.
Each portion of the path, including matrix
parameters, is placed into a unique entry in the list.
Specifying false disables URI decoding.

For example the resource path box#tall/round
would result in a list with three entries: box, tall,
and round.

Method Desription

Getting the full request URI

Table 50.4, “Methods for accessing the full request URI” describes the methods that return the full
request URI. You have the option of returning the request URI or the absolute path of the resource. The
difference is that the request URI includes the any query parameters appended to the URI and the
absolute path does not include the query parameters.

Table 50.4. Methods for accessing the full request URI

Method Desription

URI getRequestUri(); Returns the complete request URI, including query
parameters and matrix parameters, as a
java.net.URI object.

UriBuilder getRequestUriBuilder(); Returns the complete request URI, including query
parameters and matrix parameters, as a
javax.ws.rs.UriBuilder object. The
UriBuilder class is useful for creating URIs for
other resources implemented by the service.

URI getAbsolutePath(); Returns the complete request URI, including matrix
parameters, as a java.net.URI object. The
absolute path does not include query parameters.

UriBuilder getAbsolutePathBuilder()
;

Returns the complete request URI, including matrix
parameters, as a javax.ws.rs.UriBuilder
object. The absolute path does not include query
parameters.

CHAPTER 50. GETTING AND USING CONTEXT INFORMATION

489

For a request made using the URI http://fusesource.org/montersforhire/nightstalker?12, the
getRequestUri() methods would return http://fusesource.org/montersforhire/nightstalker?12. The
getAbsolutePath() method would return http://fusesource.org/montersforhire/nightstalker.

50.2.3. Getting the value of URI template variables

Overview

As described in the section called “Setting the path” , resource paths can contain variable segments
that are bound to values dynamically. Often these variable path segments are used as parameters to a
resource method as described in the section called “Getting data from the URI's path” . You can,
however, also access them through the URI context.

Methods for getting the path parameters

The UriInfo interface provides two methods, shown in Example 50.3, “Methods for returning path
parameters from the URI context”, that return a list of the path parameters.

Example 50.3. Methods for returning path parameters from the URI context

MultivaluedMap<java.lang.String, java.lang.String> getPathParameters();
MultivaluedMap<java.lang.String,
java.lang.String> getPathParameters(boolean decode);

The getPathParameters() method that does not take any parameters automatically decodes the
path parameters. If you want to disable URI decoding use getPathParameters(false).

The values are stored in the map using their template identifiers as keys. For example if the URI
template for the resource is /{color}/box/{note} the returned map will have two entries with the keys
color and note.

Example

Example 50.4, “Extracting path parameters from the URI context” shows code for retrieving the path
parameters using the URI context.

Example 50.4. Extracting path parameters from the URI context

import javax.ws.rs.Path;
import javax.ws.rs.Get;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.UriInfo;
import javax.ws.rs.core.MultivaluedMap;

@Path("/monstersforhire/")
public class MonsterService

 @GET
 @Path("\{type}\{size}")
 public Monster getMonster(@Context UriInfo uri)
 {
 MultivaluedMap paramMap = uri.getPathParameters();
 String type = paramMap.getFirst("type");

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

490

 String size = paramMap.getFirst("size");
 }
}

CHAPTER 50. GETTING AND USING CONTEXT INFORMATION

491

CHAPTER 51. ANNOTATION INHERITANCE

Abstract

JAX-RS annotations can be inherited by subclasses and classes implementing annotated interfaces.
The inheritance mechanism allows for subclasses and implementation classes to override the
annotations inherited from its parents.

OVERVIEW

Inheritance is one of the more powerful mechanisms in Java because it allows developers to create
generic objects that can then be specialized to meet particular needs. JAX-RS keeps this power by
allowing the annotations used in mapping classes to resources to be inherited from super classes.

JAX-RS's annotation inheritance also extends to support for interfaces. Implementation classes inherit
the JAX-RS annotations used in the interface they implement.

The JAX-RS inheritance rules do provide a mechanism for overriding inherited annotations. However, it
is not possible to completely remove JAX-RS annotations from a construct that inherits them from a
super class or interface.

INHERITANCE RULES

Resource classes inherit any JAX-RS annotations from the interface(s) it implements. Resource
classes also inherit any JAX-RS annotations from any super classes they extend. Annotations inherited
from a super class take precedence over annotations inherited from am interface.

In the code sample shown in Example 51.1, “Annotation inheritance” , the Kaijin class'
getMonster() method inherits the @Path, @GET, and @PathParam annotations from the Kaiju
interface.

Example 51.1. Annotation inheritance

public interface Kaiju
{
 @GET
 @Path("/{id}")
 public Monster getMonster(@PathParam("id") int id);
 ...
}

@Path("/kaijin")
public class Kaijin implements Kaiju
{
 public Monster getMonster(int id)
 {
 ...
 }
 ...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

492

OVERRIDING INHERITED ANNOTATIONS

Overriding inherited annotations is as easy as providing new annotations. If the subclass, or
implementation class, provides any of its own JAX-RS annotations for a method then all of the JAX-RS
annotations for that method are ignored.

In the code sample shown in Example 51.2, “Overriding annotation inheritance” , the Kaijin class'
getMonster() method does not inherit any of the annotations from the Kaiju interface. The
implementation class overrides the @Produces annotation which causes all of the annotations from
the interface to be ignored.

Example 51.2. Overriding annotation inheritance

public interface Kaiju
{
 @GET
 @Path("/{id}")
 @Produces("text/xml");
 public Monster getMonster(@PathParam("id") int id);
 ...
}

@Path("/kaijin")
public class Kaijin implements Kaiju
{

 @GET
 @Path("/{id}")
 @Produces("application/octect-stream");
 public Monster getMonster(@PathParam("id") int id)
 {
 ...
 }
 ...
}

CHAPTER 51. ANNOTATION INHERITANCE

493

PART VII. DEVELOPING APACHE CXF INTERCEPTORS

Abstract

This guide describes how to write Apache CXF interceptors that can perform pre and post processing
on messages.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

494

CHAPTER 52. INTERCEPTORS IN THE APACHE CXF RUNTIME

Abstract

Most of the functionality in the Apache CXF runtime is implemented by interceptors. Every endpoint
created by the Apache CXF runtime has three potential interceptor chains for processing messages.
The interceptors in the these chains are responsible for transforming messages between the raw data
transported across the wire and the Java objects handled by the endpoint's implementation code. The
interceptors are organized into phases to ensure that processing happens on the proper order.

OVERVIEW

A large part of what Apache CXF does entails processing messages. When a consumer makes a
invocation on a remote service the runtime needs to marshal the data into a message the service can
consume and place it on the wire. The service provider must unmarshal the message, execute its
business logic, and marshal the response into the appropriate message format. The consumer must
then unmarshal the response message, correlate it to the proper request, and pass it back to the
consumer's application code. In addition to the basic marshaling and unmarshaling, the Apache CXF
runtime may do a number of other things with the message data. For example, if WS-RM is activated,
the runtime must process the message chunks and acknowledgement messages before marshaling and
unmarshaling the message. If security is activated, the runtime must validate the message's
credentials as part of the message processing sequence.

Figure 52.1, “Apache CXF interceptor chains” shows the basic path that a request message takes when
it is received by a service provider.

CHAPTER 52. INTERCEPTORS IN THE APACHE CXF RUNTIME

495

Figure 52.1. Apache CXF interceptor chains

MESSAGE PROCESSING IN APACHE CXF

When a Apache CXF developed consumer invokes a remote service the following message processing
sequence is started:

1. The Apache CXF runtime creates an outbound interceptor chain to process the request.

2. If the invocation starts a two-way message exchange, the runtime creates an inbound
interceptor chain and a fault processing interceptor chain.

3. The request message is passed sequentially through the outbound interceptor chain.

Each interceptor in the chain performs some processing on the message. For example, the
Apache CXF supplied SOAP interceptors package the message in a SOAP envelope.

4. If any of the interceptors on the outbound chain create an error condition the chain is unwound
and control is returned to the application level code.

An interceptor chain is unwound by calling the fault processing method on all of the previously
invoked interceptors.

5. The request is dispatched to the appropriate service provider.

6. When the response is received, it is passed sequentially through the inbound interceptor chain.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

496

NOTE

If the response is an error message, it is passed into the fault processing
interceptor chain.

7. If any of the interceptors on the inbound chain create an error condition, the chain is unwound.

8. When the message reaches the end of the inbound interceptor chain, it is passed back to the
application code.

When a Apache CXF developed service provider receives a request from a consumer, a similar process
takes place:

1. The Apache CXF runtime creates an inbound interceptor chain to process the request
message.

2. If the request is part of a two-way message exchange, the runtime also creates an outbound
interceptor chain and a fault processing interceptor chain.

3. The request is passed sequentially through the inbound interceptor chain.

4. If any of the interceptors on the inbound chain create an error condition, the chain is unwound
and a fault is dispatched to the consumer.

An interceptor chain is unwound by calling the fault processing method on all of the previously
invoked interceptors.

5. When the request reaches the end of the inbound interceptor chain, it is passed to the service
implementation.

6. When the response is ready it is passed sequentially through the outbound interceptor chain.

NOTE

If the response is an exception, it is passed through the fault processing
interceptor chain.

7. If any of the interceptors on the outbound chain create an error condition, the chain is
unwound and a fault message is dispatched.

8. Once the request reaches the end of the outbound chain, it is dispatched to the consumer.

INTERCEPTORS

All of the message processing in the Apache CXF runtime is done by interceptors. Interceptors are
POJOs that have access to the message data before it is passed to the application layer. They can do a
number of things including: transforming the message, stripping headers off of the message, or
validating the message data. For example, an interceptor could read the security headers off of a
message, validate the credentials against an external security service, and decide if message
processing can continue.

The message data available to an interceptor is determined by several factors:

the interceptor's chain

CHAPTER 52. INTERCEPTORS IN THE APACHE CXF RUNTIME

497

the interceptor's phase

the other interceptors that occur earlier in the chain

PHASES

Interceptors are organized into phases. A phase is a logical grouping of interceptors with common
functionality. Each phase is responsible for a specific type of message processing. For example,
interceptors that process the marshaled Java objects that are passed to the application layer would all
occur in the same phase.

INTERCEPTOR CHAINS

Phases are aggregated into interceptor chains. An interceptor chain is a list of interceptor phases that
are ordered based on whether messages are inbound or outbound.

Each endpoint created using Apache CXF has three interceptor chains:

a chain for inbound messages

a chain for outbound messages

a chain for error messages

Interceptor chains are primarily constructed based on the choose of binding and transport used by the
endpoint. Adding other runtime features, such as security or logging, also add interceptors to the
chains. Developers can also add custom interceptors to a chain using configuration.

DEVELOPING INTERCEPTORS

Developing an interceptor, regardless of its functionality, always follows the same basic procedure:

1. Determine which abstract interceptor class to extend.

Apache CXF provides a number of abstract interceptors to make it easier to develop custom
interceptors.

2. Determine the phase in which the interceptor will run.

Interceptors require certain parts of a message to be available and require the data to be in a
certain format. The contents of the message and the format of the data is partially determined
by an interceptor's phase.

3. Determine if there are any other interceptors that must be executed either before or after the
interceptor.

In general, the ordering of interceptors within a phase is not important. However, in certain
situations it may be important to ensure that an interceptor is executed before, or after, other
interceptors in the same phase.

4. Implement the interceptor's message processing logic.

5. Implement the interceptor's fault processing logic.

If an error occurs in the active interceptor chain after the interceptor has executed, its fault
processing logic is invoked.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

498

6. Attach the interceptor to one of the endpoint's interceptor chains.

CHAPTER 52. INTERCEPTORS IN THE APACHE CXF RUNTIME

499

CHAPTER 53. THE INTERCEPTOR APIS

Abstract

Interceptors implement the PhaseInterceptor interface which extends the base Interceptor
interface. This interface defines a number of methods used by the Apache CXF's runtime to control
interceptor execution and are not appropriate for application developers to implement. To simplify
interceptor development, Apache CXF provides a number of abstract interceptor implementations that
can be extended.

INTERFACES

All of the interceptors in Apache CXF implement the base Interceptor interface shown in
Example 53.1, “Base interceptor interface” .

Example 53.1. Base interceptor interface

The Interceptor interface defines the two methods that a developer needs to implement for a
custom interceptor:

handleMessage()

The handleMessage() method does most of the work in an interceptor. It is called on each
interceptor in a message chain and receives the contents of the message being processed.
Developers implement the message processing logic of the interceptor in this method. For detailed
information about implementing the handleMessage() method, see Section 55.1, “Processing
messages”.

handleFault()

The handleFault() method is called on an interceptor when normal message processing has
been interrupted. The runtime calls the handleFault() method of each invoked interceptor in
reverse order as it unwinds an interceptor chain. For detailed information about implementing the
handleFault() method, see Section 55.2, “Unwinding after an error”.

Most interceptors do not directly implement the Interceptor interface. Instead, they implement the
PhaseInterceptor interface shown in Example 53.2, “The phase interceptor interface” . The
PhaseInterceptor interface adds four methods that allow an interceptor the participate in
interceptor chains.

package org.apache.cxf.interceptor;

public interface Interceptor<T extends Message>
{

 void handleMessage(T message) throws Fault;

 void handleFault(T message);

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

500

Example 53.2. The phase interceptor interface

ABSTRACT INTERCEPTOR CLASS

Instead of directly implementing the PhaseInterceptor interface, developers should extend the
AbstractPhaseInterceptor class. This abstract class provides implementations for the phase
management methods of the PhaseInterceptor interface. The AbstractPhaseInterceptor
class also provides a default implementation of the handleFault() method.

Developers need to provide an implementation of the handleMessage() method. They can also
provide a different implementation for the handleFault() method. The developer-provided
implementations can manipulate the message data using the methods provided by the generic
org.apache.cxf.message.Message interface.

For applications that work with SOAP messages, Apache CXF provides an
AbstractSoapInterceptor class. Extending this class provides the handleMessage() method
and the handleFault() method with access to the message data as an
org.apache.cxf.binding.soap.SoapMessage object. SoapMessage objects have methods for
retrieving the SOAP headers, the SOAP envelope, and other SOAP metadata from the message.

package org.apache.cxf.phase;
...

public interface PhaseInterceptor<T extends Message> extends
Interceptor<T>
{

 Set<String> getAfter();

 Set<String> getBefore();

 String getId();

 String getPhase();

}

CHAPTER 53. THE INTERCEPTOR APIS

501

CHAPTER 54. DETERMINING WHEN THE INTERCEPTOR IS
INVOKED

Abstract

Interceptors are organized into phases. The phase in which an interceptor runs determines what
portions of the message data it can access. An interceptor can determine its location in relationship to
the other interceptors in the same phase. The interceptor's phase and its location within the phase are
set as part of the interceptor's constructor logic.

When developing a custom interceptor, the first thing to consider is where in the message processing
chain the interceptor belongs. The developer can control an interceptor's position in the message
processing chain in one of two ways:

Specifying the interceptor's phase

Specifying constraints on the location of the interceptor within the phase

Typically, the code specifying an interceptor's location is placed in the interceptor's constructor. This
makes it possible for the runtime to instantiate the interceptor and put in the proper place in the
interceptor chain without any explicit action in the application level code.

54.1. SPECIFYING AN INTERCEPTOR'S PHASE

Overview

Interceptors are organized into phases. An interceptor's phase determines when in the message
processing sequence it is called. Developers specify an interceptor's phase its constructor. Phases are
specified using constant values provided by the framework.

Phase

Phases are a logical collection of interceptors. As shown in Figure 54.1, “An interceptor phase”, the
interceptors within a phase are called sequentially.

Figure 54.1. An interceptor phase

The phases are linked together in an ordered list to form an interceptor chain and provide defined
logical steps in the message processing procedure. For example, a group of interceptors in the

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

502

RECEIVE phase of an inbound interceptor chain processes transport level details using the raw
message data picked up from the wire.

There is, however, no enforcement of what can be done in any of the phases. It is recommended that
interceptors within a phase adhere to tasks that are in the spirit of the phase.

The complete list of phases defined by Apache CXF can be found in Appendix F, Apache CXF Message
Processing Phases.

Specifying a phase

Apache CXF provides the org.apache.cxf.Phase class to use for specifying a phase. The class is a
collection of constants. Each phase defined by Apache CXF has a corresponding constant in the Phase
class. For example, the RECEIVE phase is specified by the value Phase.RECEIVE.

Setting the phase

An interceptor's phase is set in the interceptor's constructor. The AbstractPhaseInterceptor
class defines three constructors for instantiating an interceptor:

public AbstractPhaseInterceptor(String phase)—sets the phase of the interceptor
to the specified phase and automatically sets the interceptor's id to the interceptor's class
name.

TIP

This constructor will satisfy most use cases.

public AbstractPhaseInterceptor(String id, String phase)—sets the
interceptor's id to the string passed in as the first parameter and the interceptor's phase to
the second string.

public AbstractPhaseInterceptor(String phase, boolean uniqueId)—specifies
if the interceptor should use a unique, system generated id. If the uniqueId parameter is
true, the interceptor's id will be calculated by the system. If the uniqueId parameter is
false the interceptor's id is set to the interceptor's class name.

The recommended way to set a custom interceptor's phase is to pass the phase to the
AbstractPhaseInterceptor constructor using the super() method as shown in Example 54.1,
“Setting an interceptor's phase”.

Example 54.1. Setting an interceptor's phase

import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
 {

 public StreamInterceptor()
 {

CHAPTER 54. DETERMINING WHEN THE INTERCEPTOR IS INVOKED

503

The StreamInterceptor interceptor shown in Example 54.1, “Setting an interceptor's phase” is
placed into the PRE_STREAM phase.

54.2. CONSTRAINING AN INTERCEPTORS PLACEMENT IN A PHASE

Overview

Placing an interceptor into a phase may not provide fine enough control over its placement to ensure
that the interceptor works properly. For example, if an interceptor needed to inspect the SOAP
headers of a message using the SAAJ APIs, it would need to run after the interceptor that converts the
message into a SAAJ object. There may also be cases where one interceptor consumes a part of the
message needed by another interceptor. In these cases, a developer can supply a list of interceptors
that must be executed before their interceptor. A developer can also supply a list of interceptors that
must be executed after their interceptor.

IMPORTANT

The runtime can only honor these lists within the interceptor's phase. If a developer
places an interceptor from an earlier phase in the list of interceptors that must execute
after the current phase, the runtime will ignore the request.

Add to the chain before

One issue that arises when developing an interceptor is that the data required by the interceptor is not
always present. This can occur when one interceptor in the chain consumes message data required by
a later interceptor. Developers can control what a custom interceptor consumes and possibly fix the
problem by modifying their interceptors. However, this is not always possible because a number of
interceptors are used by Apache CXF and a developer cannot modify them.

An alternative solution is to ensure that a custom interceptor is placed before any interceptors that
will consume the message data the custom interceptor requires. The easiest way to do that would be to
place it in an earlier phase, but that is not always possible. For cases where an interceptor needs to be
placed before one or more other interceptors the Apache CXF's AbstractPhaseInterceptor class
provides two addBefore() methods.

As shown in Example 54.2, “Methods for adding an interceptor before other interceptors” , one takes a
single interceptor id and the other takes a collection of interceptor ids. You can make multiple calls to
continue adding interceptors to the list.

Example 54.2. Methods for adding an interceptor before other interceptors

public void addBefore(String i);
public void addBefore(Collection<String> i);

As shown in Example 54.3, “Specifying a list of interceptors that must run after the current
interceptor”, a developer calls the addBefore() method in the constuctor of a custom interceptor.

 super(Phase.PRE_STREAM);
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

504

Example 54.3. Specifying a list of interceptors that must run after the current interceptor

TIP

Most interceptors use their class name for an interceptor id.

Add to the chain after

Another reason the data required by the interceptor is not present is that the data has not been placed
in the message object. For example, an interceptor may want to work with the message data as a SOAP
message, but it will not work if it is placed in the chain before the message is turned into a SOAP
message. Developers can control what a custom interceptor consumes and possibly fix the problem by
modifying their interceptors. However, this is not always possible because a number of interceptors are
used by Apache CXF and a developer cannot modify them.

An alternative solution is to ensure that a custom interceptor is placed after the interceptor, or
interceptors, that generate the message data the custom interceptor requires. The easiest way to do
that would be to place it in a later phase, but that is not always possible. The
AbstractPhaseInterceptor class provides two addAfter() methods for cases where an
interceptor needs to be placed after one or more other interceptors.

As shown in Example 54.4, “Methods for adding an interceptor after other interceptors” , one method
takes a single interceptor id and the other takes a collection of interceptor ids. You can make multiple
calls to continue adding interceptors to the list.

Example 54.4. Methods for adding an interceptor after other interceptors

public void addAfter(String i);
public void addAfter(Collection<String> i);

As shown in Example 54.5, “Specifying a list of interceptors that must run before the current
interceptor”, a developer calls the addAfter() method in the constuctor of a custom interceptor.

Example 54.5. Specifying a list of interceptors that must run before the current interceptor

public class MyPhasedOutInterceptor extends AbstractPhaseInterceptor
{

 public MyPhasedOutInterceptor() {
 super(Phase.PRE_LOGICAL);
 addBefore(HolderOutInterceptor.class.getName());
 }

...

}

public class MyPhasedOutInterceptor extends AbstractPhaseInterceptor
{

 public MyPhasedOutInterceptor() {
 super(Phase.PRE_LOGICAL);

CHAPTER 54. DETERMINING WHEN THE INTERCEPTOR IS INVOKED

505

TIP

Most interceptors use their class name for an interceptor id.

 addAfter(StartingOutInterceptor.class.getName());
 }

...

}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

506

CHAPTER 55. IMPLEMENTING THE INTERCEPTORS
PROCESSING LOGIC

Abstract

Interceptors are straightforward to implement. The bulk of their processing logic is in the
handleMessage() method. This method receives the message data and manipulates it as needed.
Developers may also want to add some special logic to handle fault processing cases.

Figure 55.1, “Flow through an interceptor” shows the process flow through an interceptor.

Figure 55.1. Flow through an interceptor

In normal message processing, only the handleMessage() method is called. The handleMessage()
method is where the interceptor's message processing logic is placed.

If an error occurs in the handleMessage() method of the interceptor, or any subsequent interceptor
in the interceptor chain, the handleFault() method is called. The handleFault() method is useful
for cleaning up after an interceptor in the event of an error. It can also be used to alter the fault
message.

55.1. PROCESSING MESSAGES

Overview

In normal message processing, an interceptor's handleMessage() method is invoked. It receives that
message data as a Message object. Along with the actual contents of the message, the Message
object may contain a number of properties related to the message or the message processing state.
The exact contents of the Message object depends on the interceptors preceding the current
interceptor in the chain.

Getting the message contents

The Message interface provides two methods that can be used in extracting the message contents:

public <T> T getContent(java.lang.Class<T> format);
The getContent() method returns the content of the message in an object of the specified
class. If the contents are not available as an instance of the specified class, null is returned.
The list of available content types is determined by the interceptor's location on the
interceptor chain and the direction of the interceptor chain.

CHAPTER 55. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC

507

public Collection<Attachment> getAttachments();
The getAttachments() method returns a Java Collection object containing any binary
attachments associated with the message. The attachments are stored in
org.apache.cxf.message.Attachment objects. Attachment objects provide methods
for managing the binary data.

IMPORTANT

Attachments are only available after the attachment processing interceptors
have executed.

Determining the message's direction

The direction of a message can be determined by querying the message exchange. The message
exchange stores the inbound message and the outbound message in separate properties.[4]

The message exchange associated with a message is retrieved using the message's getExchange()
method. As shown in Example 55.1, “Getting the message exchange” , getExchange() does not take
any parameters and returns the message exchange as a org.apache.cxf.message.Exchange
object.

Example 55.1. Getting the message exchange

Exchange getExchange();

The Exchange object has four methods, shown in Example 55.2, “Getting messages from a message
exchange”, for getting the messages associated with an exchange. Each method will either return the
message as a org.apache.cxf.Message object or it will return null if the message does not exist.

Example 55.2. Getting messages from a message exchange

Message getInMessage();
Message getInFaultMessage();
Message getOutMessage();
Message getOutFaultMessage();

Example 55.3, “Checking the direction of a message chain” shows code for determining if the current
message is outbound. The method gets the message exchange and checks to see if the current
message is the same as the exchange's outbound message. It also checks the current message against
the exchanges outbound fault message to error messages on the outbound fault interceptor chain.

Example 55.3. Checking the direction of a message chain

public static boolean isOutbound()
{
 Exchange exchange = message.getExchange();
 return message != null
 && exchange != null
 && (message == exchange.getOutMessage()
 || message == exchange.getOutFaultMessage());
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

508

Example

Example 55.4, “Example message processing method” shows code for an interceptor that processes
zip compressed messages. It checks the direction of the message and then performs the appropriate
actions.

Example 55.4. Example message processing method

55.2. UNWINDING AFTER AN ERROR

import java.io.IOException;
import java.io.InputStream;
import java.util.zip.GZIPInputStream;

import org.apache.cxf.message.Message;
import org.apache.cxf.phase.AbstractPhaseInterceptor;
import org.apache.cxf.phase.Phase;

public class StreamInterceptor extends AbstractPhaseInterceptor<Message>
{

 ...

 public void handleMessage(Message message)
 {

 boolean isOutbound = false;
 isOutbound = message == message.getExchange().getOutMessage()
 || message ==
message.getExchange().getOutFaultMessage();

 if (!isOutbound)
 {
 try
 {
 InputStream is = message.getContent(InputStream.class);
 GZIPInputStream zipInput = new GZIPInputStream(is);
 message.setContent(InputStream.class, zipInput);
 }
 catch (IOException ioe)
 {
 ioe.printStackTrace();
 }
 }
 else
 {
 // zip the outbound message
 }
 }
 ...
}

CHAPTER 55. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC

509

Overview

When an error occurs during the execution of an interceptor chain, the runtime stops traversing the
interceptor chain and unwinds the chain by calling the handleFault() method of any interceptors in
the chain that have already been executed.

The handleFault() method can be used to clean up any resources used by an interceptor during
normal message processing. It can also be used to rollback any actions that should only stand if
message processing completes successfully. In cases where the fault message will be passed on to an
outbound fault processing interceptor chain, the handleFault() method can also be used to add
information to the fault message.

Getting the message payload

The handleFault() method receives the same Message object as the handleMessage() method
used in normal message processing. Getting the message contents from the Message object is
described in the section called “Getting the message contents” .

Example

Example 55.5, “Handling an unwinding interceptor chain” shows code used to ensure that the original
XML stream is placed back into the message when the interceptor chain is unwound.

Example 55.5. Handling an unwinding interceptor chain

[4] It also stores inbound and outbound faults separately.

@Override
public void handleFault(SoapMessage message)
{
 super.handleFault(message);
 XMLStreamWriter writer =
(XMLStreamWriter)message.get(ORIGINAL_XML_WRITER);
 if (writer != null)
 {
 message.setContent(XMLStreamWriter.class, writer);
 }
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

510

CHAPTER 56. CONFIGURING ENDPOINTS TO USE
INTERCEPTORS

Abstract

Interceptors are added to an endpoint when it is included in a message exchange. The endpoint's
interceptor chains are constructed from a the interceptor chains of a number of components in the
Apache CXF runtime. Interceptors are specified in either the endpoint's configuration or the
configuration of one of the runtime components. Interceptors can be added using either the
configuration file or the interceptor API.

56.1. DECIDING WHERE TO ATTACH INTERCEPTORS

Overview

There are a number of runtime objects that host interceptor chains. These include:

the endpoint object

the service object

the proxy object

the factory object used to create the endpoint or the proxy

the binding

the central Bus object

A developer can attach their own interceptors to any of these objects. The most common objects to
attach interceptors are the bus and the individual endpoints. Choosing the correct object requires
understanding how these runtime objects are combined to make an endpoint.

Endpoints and proxies

Attaching interceptors to either the endpoint or the proxy is the most fine grained way to place an
interceptor. Any interceptors attached directly to an endpoint or a proxy only effect the specific
endpoint or proxy. This is a good place to attach interceptors that are specific to a particular
incarnation of a service. For example, if a developer wants to expose one instance of a service that
converts units from metric to imperial they could attach the interceptors directly to one endpoint.

Factories

Using the Spring configuration to attach interceptors to the factories used to create an endpoint or a
proxy has the same effect as attaching the interceptors directly to the endpoint or proxy. However,
when interceptors are attached to a factory programmatically the interceptors attached to the factory
are propagated to every endpoint or proxy created by the factory.

Bindings

Attaching interceptors to the binding allows the developer to specify a set of interceptors that are
applied to all endpoints that use the binding. For example, if a developer wants to force all endpoints

CHAPTER 56. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

511

that use the raw XML binding to include a special ID element, they could attach the interceptor
responsible for adding the element to the XML binding.

Buses

The most general place to attach interceptors is the bus. When interceptors are attached to the bus,
the interceptors are propagated to all of the endpoints managed by that bus. Attaching interceptors to
the bus is useful in applications that create multiple endpoints that share a similar set of interceptors.

Combining attachment points

Because an endpoint's final set of interceptor chains is an amalgamation of the interceptor chains
contributed by the listed objects, several of the listed object can be combined in a single endpoint's
configuration. For example, if an application spawned multiple endpoints that all required an
interceptor that checked for a validation token, that interceptor would be attached to the application's
bus. If one of those endpoints also required an interceptor that converted Euros into dollars, the
conversion interceptor would be attached directly to the specific endpoint.

56.2. ADDING INTERCEPTORS USING CONFIGURATION

Overview

The easiest way to attach interceptors to an endpoint is using the configuration file. Each interceptor
to be attached to an endpoint is configured using a standard Spring bean. The interceptor's bean can
then be added to the proper interceptor chain using Apache CXF configuration elements.

Each runtime component that has an associated interceptor chain is configurable using specialized
Spring elements. Each of the component's elements have a standard set of children for specifying their
interceptor chains. There is one child for each interceptor chain associated with the component. The
children list the beans for the interceptors to be added to the chain.

Configuration elements

Table 56.1, “Interceptor chain configuration elements” describes the four configuration elements for
attaching interceptors to a runtime component.

Table 56.1. Interceptor chain configuration elements

Element Description

inInterceptors Contains a list of beans configuring interceptors to
add to an endpoint's inbound interceptor chain.

outInterceptors Contains a list of beans configuring interceptors to
add to an endpoint's outbound interceptor chain.

inFaultInterceptors Contains a list of beans configuring interceptors to
add to an endpoint's inbound fault processing
interceptor chain.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

512

outFaultInterceptors Contains a list of beans configuring interceptors to
add to an endpoint's outbound fault processing
interceptor chain.

Element Description

All of the interceptor chain configuration elements take a list child element. The list element has
one child for each of the interceptors being attached to the chain. Interceptors can be specified using
either a bean element directly configuring the interceptor or a ref element that refers to a bean
element that configures the interceptor.

Examples

Example 56.1, “Attaching interceptors to the bus” shows configuration for attaching interceptors to a
bus' inbound interceptor chain.

Example 56.1. Attaching interceptors to the bus

Example 56.2, “Attaching interceptors to a JAX-WS service provider” shows configuration for
attaching an interceptor to a JAX-WS service's outbound interceptor chain.

Example 56.2. Attaching interceptors to a JAX-WS service provider

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:cxf="http://cxf.apache.org/core"
 xmlns:http="http://cxf.apache.org/transports/http/configuration"
 xsi:schemaLocation="
 http://cxf.apache.org/core http://cxf.apache.org/schemas/core.xsd
 http://cxf.apache.org/transports/http/configuration
http://cxf.apache.org/schemas/configuration/http-conf.xsd
 http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">
 ...
 <bean id="GZIPStream"
class="demo.stream.interceptor.StreamInterceptor"/>

 <cxf:bus>
 <cxf:inInterceptors>
 <list>
 <ref bean="GZIPStream"/>
 </list>
 </cxf:inInterceptors>
 </cxf:bus>
</beans>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xmlns:wsa="http://cxf.apache.org/ws/addressing"
 xsi:schemaLocation="

CHAPTER 56. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

513

More information

For more information about configuring endpoints using the Spring configuration see Part IV,
“Configuring Web Service Endpoints”.

56.3. ADDING INTERCEPTORS PROGRAMMATICALLY

Interceptors can be attached to endpoints programmatically using either one of two approaches:

the InterceptorProvider API

Java annotations

Using the InterceptorProvider API allows the developer to attach interceptors to any of the
runtime components that have interceptor chains, but it requires working with the underlying Apache
CXF classes. The Java annotations can only be added to service interfaces or service implementations,
but they allow developers to stay within the JAX-WS API or the JAX-RS API.

56.3.1. Using the interceptor provider API

Overview

Interceptors can be registered with any component that implements the InterceptorProvider
interface shown in Example 56.3, “The interceptor provider interface” .

Example 56.3. The interceptor provider interface

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd">

 <jaxws:endpoint ...>
 <jaxws:outInterceptors>
 <list>
 <bean id="GZIPStream"
class="demo.stream.interceptor.StreamInterceptor" />
 </list>
 </jaxws:outInterceptors>
 </jaxws:endpoint>
</beans>

package org.apache.cxf.interceptor;

import java.util.List;

public interface InterceptorProvider
{
 List<Interceptor<? extends Message>> getInInterceptors();

 List<Interceptor<? extends Message>> getOutInterceptors();

 List<Interceptor<? extends Message>> getInFaultInterceptors();

 List<Interceptor<? extends Message>> getOutFaultInterceptors();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

514

The four methods in the interface allow you to retrieve each of an endpoint's interceptor chains as a
Java List object. Using the methods offered by the Java List object, developers can add and remove
interceptors to any of the chains.

Procedure

To use the InterceptorProvider API to attach an interceptor to a runtime component's interceptor
chain, you must:

1. Get access to the runtime component with the chain to which the interceptor is being
attached.

Developers must use Apache CXF specific APIs to access the runtime components from
standard Java application code. The runtime components are usually accessible by casting the
JAX-WS or JAX-RS artifacts into the underlying Apache CXF objects.

2. Create an instance of the interceptor.

3. Use the proper get method to retrieve the desired interceptor chain.

4. Use the List object's add() method to attach the interceptor to the interceptor chain.

TIP

This step is usually combined with retrieving the interceptor chain.

Attaching an interceptor to a consumer

Example 56.4, “Attaching an interceptor to a consumer programmatically” shows code for attaching
an interceptor to the inbound interceptor chain of a JAX-WS consumer.

Example 56.4. Attaching an interceptor to a consumer programmatically

}

1

package com.fusesource.demo;

import java.io.File;
import java.net.URL;
import javax.xml.namespace.QName;
import javax.xml.ws.Service;

import org.apache.cxf.endpoint.ClientProxy;
import org.apache.cxf.endpoint.ClientProxy;

public class Client
{
 public static void main(String args[])
 {
 QName serviceName = new QName("http://demo.eric.org",
"stockQuoteReporter");

 Service s = Service.create(serviceName);

CHAPTER 56. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

515

1

2

3

4

5

6

The code in Example 56.4, “Attaching an interceptor to a consumer programmatically” does the
following:

Creates a JAX-WS Service object for the consumer.

Adds a port to the Service object that provides the consumer's target address.

Creates the proxy used to invoke methods on the service provider.

Gets the Apache CXF Client object associated with the proxy.

Creates an instance of the interceptor.

Attaches the interceptor to the inbound interceptor chain.

Attaching an interceptor to a service provider

Example 56.5, “Attaching an interceptor to a service provider programmatically” shows code for
attaching an interceptor to a service provider's outbound interceptor chain.

Example 56.5. Attaching an interceptor to a service provider programmatically

2

3

4

5 6

 QName portName = new QName("http://demo.eric.org",
"stockQuoteReporterPort");
 s.addPort(portName, "http://schemas.xmlsoap.org/soap/",

"http://localhost:9000/EricStockQuote");

 quoteReporter proxy = s.getPort(portName, quoteReporter.class);

 Client cxfClient = ClientProxy.getClient(proxy);

 ValidateInterceptor validInterceptor = new ValidateInterceptor();
 cxfClient.getInInterceptor().add(validInterceptor);

 ...
 }
}

1

2

package com.fusesource.demo;
import java.util.*;

import org.apache.cxf.endpoint.Server;
import org.apache.cxf.frontend.ServerFactoryBean;
import org.apache.cxf.frontend.EndpointImpl;

public class stockQuoteReporter implements quoteReporter
{
 ...
 public stockQuoteReporter()
 {

 ServerFactoryBean sfb = new ServerFactoryBean();

 Server server = sfb.create();
 EndpointImpl endpt = server.getEndpoint();

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

516

1

2

3

4

5

1

2

3

The code in Example 56.5, “Attaching an interceptor to a service provider programmatically” does the
following:

Creates a ServerFactoryBean object that will provide access to the underlying Apache CXF
objects.

Gets the Server object that Apache CXF uses to represent the endpoint.

Gets the Apache CXF EndpointImpl object for the service provider.

Creates an instance of the interceptor.

Attaches the interceptor to the endpoint;s outbound interceptor chain.

Attaching an interceptor to a bus

Example 56.6, “Attaching an interceptor to a bus” shows code for attaching an interceptor to a bus'
inbound interceptor chain.

Example 56.6. Attaching an interceptor to a bus

The code in Example 56.6, “Attaching an interceptor to a bus” does the following:

Gets the default bus for the runtime instance.

Creates an instance of the interceptor.

Attaches the interceptor to the inbound interceptor chain.

The WatchInterceptor will be attached to the inbound interceptor chain of all endpoints created by
the runtime instance.

3

4
5

 AuthTokenInterceptor authInterceptor = new AuthTokenInterceptor();

 endpt.getOutInterceptor().add(authInterceptor);
 }

}

1

2

3

import org.apache.cxf.BusFactory;
org.apache.cxf.Bus;

...

Bus bus = BusFactory.getDefaultBus();

WatchInterceptor watchInterceptor = new WatchInterceptor();

bus..getInInterceptor().add(watchInterceptor);

...

CHAPTER 56. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

517

56.3.2. Using Java annotations

Overview

Apache CXF provides four Java annotations that allow a developer to specify the interceptor chains
used by an endpoint. Unlike the other means of attaching interceptors to endpoints, the annotations
are attached to application-level artifacts. The artifact that is used determines the scope of the
annotation's effect.

Where to place the annotations

The annotations can be placed on the following artifacts:

the service endpoint interface(SEI) defining the endpoint

If the annotations are placed on an SEI, all of the service providers that implement the
interface and all of the consumers that use the SEI to create proxies will be affected.

a service implementation class

If the annotations are placed on an implementation class, all of the service providers using the
implementation class will be affected.

The annotations

The annotations are all in the org.apache.cxf.interceptor package and are described in Table 56.2,
“Interceptor chain annotations”.

Table 56.2. Interceptor chain annotations

Annotation Description

InInterceptors Specifies the interceptors for the inbound
interceptor chain.

OutInterceptors Specifies the interceptors for the outbound
interceptor chain.

InFaultInterceptors Specifies the interceptors for the inbound fault
interceptor chain.

OutFaultInterceptors Specifies the interceptors for the outbound fault
interceptor chain.

Listing the interceptors

The list of interceptors is specified as a list of fully qualified class names using the syntax shown in
Example 56.7, “Syntax for listing interceptors in a chain annotation” .

Example 56.7. Syntax for listing interceptors in a chain annotation

interceptors={"interceptor1", "interceptor2", ..., "interceptorN"}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

518

Example

Example 56.8, “Attaching interceptors to a service implementation” shows annotations that attach two
interceptors to the inbound interceptor chain of endpoints that use the logic provided by SayHiImpl.

Example 56.8. Attaching interceptors to a service implementation

import org.apache.cxf.interceptor.InInterceptors;

@InInterceptors(interceptors={"com.sayhi.interceptors.FirstLast",
"com.sayhi.interceptors.LogName"})
public class SayHiImpl implements SayHi
{
 ...
}

CHAPTER 56. CONFIGURING ENDPOINTS TO USE INTERCEPTORS

519

CHAPTER 57. MANIPULATING INTERCEPTOR CHAINS ON THE
FLY

Abstract

Interceptors can reconfigure an endpoint's interceptor chain as part of its message processing logic. It
can add new interceptors, remove interceptors, reorder interceptors, and even suspend the
interceptor chain. Any on-the-fly manipulation is invocation-specific, so the original chain is used each
time an endpoint is involved in a message exchange.

OVERVIEW

Interceptor chains only live as long as the message exchange that sparked their creation. Each
message contains a reference to the interceptor chain responsible for processing it. Developers can
use this reference to alter the message's interceptor chain. Because the chain is per-exchange, any
changes made to a message's interceptor chain will not effect other message exchanges.

CHAIN LIFE-CYCLE

Interceptor chains and the interceptors in the chain are instantiated on a per-invocation basis. When an
endpoint is invoked to participate in a message exchange, the required interceptor chains are
instantiated along with instances of its interceptors. When the message exchange that caused the
creation of the interceptor chain is completed, the chain and its interceptor instances are destroyed.

This means that any changes you make to the interceptor chain or to the fields of an interceptor do not
persist across message exchanges. So, if an interceptor places another interceptor in the active chain
only the active chain is effected. Any future message exchanges will be created from a pristine state as
determined by the endpoint's configuration. It also means that a developer cannot set flags in an
interceptor that will alter future message processing.

TIP

If an interceptor needs to pass information along to future instances, it can set a property in the
message context. The context does persist across message exchanges.

GETTING THE INTERCEPTOR CHAIN

The first step in changing a message's interceptor chain is getting the interceptor chain. This is done
using the Message.getInterceptorChain() method shown in Example 57.1, “Method for getting
an interceptor chain”. The interceptor chain is returned as a
org.apache.cxf.interceptor.InterceptorChain object.

Example 57.1. Method for getting an interceptor chain

InterceptorChain getInterceptorChain();

ADDING INTERCEPTORS

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

520

1

2

3

The InterceptorChain object has two methods, shown in Example 57.2, “Methods for adding
interceptors to an interceptor chain”, for adding interceptors to an interceptor chain. One allows you
to add a single interceptor and the other allows you to add multiple interceptors.

Example 57.2. Methods for adding interceptors to an interceptor chain

void add(Interceptor<? extends Message> i);
void add(Collection<Interceptor<? extends Message>> i);

Example 57.3, “Adding an interceptor to an interceptor chain on-the-fly” shows code for adding a
single interceptor to a message's interceptor chain.

Example 57.3. Adding an interceptor to an interceptor chain on-the-fly

The code in Example 57.3, “Adding an interceptor to an interceptor chain on-the-fly” does the
following:

Instantiates a copy of the interceptor to be added to the chain.

IMPORTANT

The interceptor being added to the chain should be in either the same phase as the
current interceptor or a latter phase than the current interceptor.

Gets the interceptor chain for the current message.

Adds the new interceptor to the chain.

REMOVING INTERCEPTORS

The InterceptorChain object has one method, shown in Example 57.4, “Methods for removing
interceptors from an interceptor chain”, for removing an interceptor from an interceptor chain.

Example 57.4. Methods for removing interceptors from an interceptor chain

void remove(Interceptor<? extends Message> i);

Example 57.5, “Removing an interceptor from an interceptor chain on-the-fly” shows code for
removing an interceptor from a message's interceptor chain.

1
2

3

void handleMessage(Message message)
{
 ...

 AddledIntereptor addled = new AddledIntereptor();
 InterceptorChain chain = message.getInterceptorChain();

 chain.add(addled);
 ...

}

CHAPTER 57. MANIPULATING INTERCEPTOR CHAINS ON THE FLY

521

Example 57.5. Removing an interceptor from an interceptor chain on-the-fly

Where InterceptorClassName is the class name of the interceptor you want to remove from the
chain.

void handleMessage(Message message)
{
 ...
 Iterator<Interceptor<? extends Message>> iterator =
 message.getInterceptorChain().iterator();
 Interceptor<?> removeInterceptor = null;
 for (; iterator.hasNext();) {
 Interceptor<?> interceptor = iterator.next();
 if (interceptor.getClass().getName().equals("InterceptorClassName"))
{
 removeInterceptor = interceptor;
 break;
 }
 }

 if (removeInterceptor != null) {
 log.debug("Removing interceptor
{}",removeInterceptor.getClass().getName());
 message.getInterceptorChain().remove(removeInterceptor);
 }
 ...
}

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

522

APPENDIX F. APACHE CXF MESSAGE PROCESSING PHASES

INBOUND PHASES

Table F.1, “Inbound message processing phases” lists the phases available in inbound interceptor
chains.

Table F.1. Inbound message processing phases

Phase Description

RECEIVE Performs transport specific processing, such as
determining MIME boundaries for binary
attachments.

PRE_STREAM Processes the raw data stream received by the
transport.

USER_STREAM

POST_STREAM

READ Determines if a request is a SOAP or XML message
and builds adds the proper interceptors. SOAP
message headers are also processed in this phase.

PRE_PROTOCOL Performs protocol level processing. This includes
processing of WS-* headers and processing of the
SOAP message properties.USER_PROTOCOL

POST_PROTOCOL

UNMARSHAL Unmarshals the message data into the objects used
by the application level code.

PRE_LOGICAL Processes the unmarshalled message data.

USER_LOGICAL

POST_LOGICAL

PRE_INVOKE

INVOKE Passes the message to the application code. On the
server side, the service implementation is invoked in
this phase. On the client side, the response is
handed back to the application.

POST_INVOKE Invokes the outbound interceptor chain.

APPENDIX F. APACHE CXF MESSAGE PROCESSING PHASES

523

OUTBOUND PHASES

Table F.2, “Inbound message processing phases” lists the phases available in inbound interceptor
chains.

Table F.2. Inbound message processing phases

Phase Description

SETUP Performs any set up that is required by later phases
in the chain.

PRE_LOGICAL Performs processing on the unmarshalled data
passed from the application level.

USER_LOGICAL

POST_LOGICAL

PREPARE_SEND Opens the connection for writing the message on
the wire.

PRE_STREAM Performs processing required to prepare the
message for entry into a data stream.

PRE_PROTOCOL Begins processing protocol specific information.

WRITE Writes the protocol message.

PRE_MARSHAL Marshals the message.

MARSHAL

POST_MARSHAL

USER_PROTOCOL Process the protocol message.

POST_PROTOCOL

USER_STREAM Process the byte-level message.

POST_STREAM

SEND Sends the message and closes the transport stream.

IMPORTANT

Outbound interceptor chains have a mirror set of ending phases whose names are
appended with _ENDING. The ending phases are used interceptors that require some
terminal action to occur before data is written on the wire.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

524

APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS

G.1. CORE APACHE CXF INTERCEPTORS

Inbound

Table G.1, “Core inbound interceptors” lists the core inbound interceptors that are added to all Apache
CXF endpoints.

Table G.1. Core inbound interceptors

Class Phase Description

ServiceInvokerIntercept
or

INVOKE Invokes the proper method on the
service.

Outbound

The Apache CXF does not add any core interceptors to the outbound interceptor chain by default. The
contents of an endpoint's outbound interceptor chain depend on the features in use.

G.2. FRONT-ENDS

JAX-WS

Table G.2, “Inbound JAX-WS interceptors” lists the interceptors added to a JAX-WS endpoint's
inbound message chain.

Table G.2. Inbound JAX-WS interceptors

Class Phase Description

HolderInInterceptor PRE_INVOKE Creates holder objects for any out
or in/out parameters in the
message.

WrapperClassInIntercept
or

POST_LOGICAL Unwraps the parts of a wrapped
doc/literal message into the
appropriate array of objects.

LogicalHandlerInInterce
ptor

PRE_PROTOCOL Passes message processing to
the JAX-WS logical handlers used
by the endpoint. When the JAX-
WS handlers complete, the
message is passed along to the
next interceptor on the inbound
chain.

APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS

525

SOAPHandlerInterceptor PRE_PROTOCOL Passes message processing to
the JAX-WS SOAP handlers used
by the endpoint. When the SOAP
handlers finish with the message,
the message is passed along to
the next interceptor in the chain.

Class Phase Description

Table G.3, “Outbound JAX-WS interceptors” lists the interceptors added to a JAX-WS endpoint's
outbound message chain.

Table G.3. Outbound JAX-WS interceptors

Class Phase Description

HolderOutInterceptor PRE_LOGICAL Removes the values of any out
and in/out parameters from their
holder objects and adds the
values to the message's
parameter list.

WebFaultOutInterceptor PRE_PROTOCOL Processes outbound fault
messages.

WrapperClassOutIntercep
tor

PRE_LOGICAL Makes sure that wrapped
doc/literal messages and
rpc/literal messages are properly
wrapped before being added to
the message.

LogicalHandlerOutInterc
eptor

PRE_MARSHAL Passes message processing to
the JAX-WS logical handlers used
by the endpoint. When the JAX-
WS handlers complete, the
message is passed along to the
next interceptor on the outbound
chain.

SOAPHandlerInterceptor PRE_PROTOCOL Passes message processing to
the JAX-WS SOAP handlers used
by the endpoint. When the SOAP
handlers finish processing the
message, it is passed along to the
next interceptor in the chain.

MessageSenderIntercepto
r

PREPARE_SEND Calls back to the Destination
object to have it setup the output
streams, headers, etc. to prepare
the outgoing transport.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

526

JAX-RS

Table G.4, “Inbound JAX-RS interceptors” lists the interceptors added to a JAX-RS endpoint's inbound
message chain.

Table G.4. Inbound JAX-RS interceptors

Class Phase Description

JAXRSInInterceptor PRE_STREAM Selects the root resource class,
invokes any configured JAX-RS
request filters, and determines
the method to invoke on the root
resource.

IMPORTANT

The inbound chain for a JAX-RS endpoint skips straight to the
ServiceInvokerInInterceptor interceptor. No other interceptors will be invoked
after the JAXRSInInterceptor.

Table G.5, “Outbound JAX-RS interceptors” lists the interceptors added to a JAX-RS endpoint's
outbound message chain.

Table G.5. Outbound JAX-RS interceptors

Class Phase Description

JAXRSOutInterceptor MARSHAL Marshals the response into the
proper format for transmission.

G.3. MESSAGE BINDINGS

SOAP

Table G.6, “Inbound SOAP interceptors” lists the interceptors added to a endpoint's inbound message
chain when using the SOAP Binding.

Table G.6. Inbound SOAP interceptors

Class Phase Description

CheckFaultInterceptor POST_PROTOCOL Checks if the message is a fault
message. If the message is a fault
message, normal processing is
aborted and fault processing is
started.

MustUnderstandIntercept
or

PRE_PROTOCOL Processes the must understand
headers.

APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS

527

RPCInInterceptor UNMARSHAL Unmarshals rpc/literal messages.
If the message is bare, the
message is passed to a
BareInInterceptor object
to deserialize the message parts.

ReadsHeadersInterceptor READ Parses the SOAP headers and
stores them in the message
object.

SoapActionInInterceptor READ Parses the SOAP action header
and attempts to find a unique
operation for the action.

SoapHeaderInterceptor UNMARSHAL Binds the SOAP headers that map
to operation parameters to the
appropriate objects.

AttachmentInInterceptor RECEIVE Parses the mime headers for
mime boundaries, finds the root
part and resets the input stream
to it, and stores the other parts in
a collection of Attachment
objects.

DocLiteralInInterceptor UNMARSHAL Examines the first element in the
SOAP body to determine the
appropriate operation and calls
the data binding to read in the
data.

StaxInInterceptor POST_STREAM Creates an XMLStreamReader
object from the message.

URIMappingInterceptor UNMARSHAL Handles the processing of HTTP
GET methods.

SwAInInterceptor PRE_INVOKE Creates the required MIME
handlers for binary SOAP
attachments and adds the data to
the parameter list.

Class Phase Description

Table G.7, “Outbound SOAP interceptors” lists the interceptors added to a endpoint's outbound
message chain when using the SOAP Binding.

Table G.7. Outbound SOAP interceptors

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

528

Class Phase Description

RPCOutInterceptor MARSHAL Marshals rpc style messages for
transmission.

SoapHeaderOutFilterInte
rceptor

PRE_LOGICAL Removes all SOAP headers that
are marked as inbound only.

SoapPreProtocolOutInter
ceptor

POST_LOGICAL Sets up the SOAP version and the
SOAP action header.

AttachmentOutIntercepto
r

PRE_STREAM Sets up the attachment
marshalers and the mime stuff
required to process any
attachments that might be in the
message.

BareOutInterceptor MARSHAL Writes the message parts.

StaxOutInterceptor PRE_STREAM Creates an XMLStreamWriter
object from the message.

WrappedOutInterceptor MARSHAL Wraps the outbound message
parameters.

SoapOutInterceptor WRITE Writes the soap:envelope
element and the elements for the
header blocks in the message.
Also writes an empty
soap:body element for the
remaining interceptors to
populate.

SwAOutInterceptor PRE_LOGICAL Removes any binary data that will
be packaged as a SOAP
attachment and stores it for later
processing.

XML

Table G.8, “Inbound XML interceptors” lists the interceptors added to a endpoint's inbound message
chain when using the XML Binding.

Table G.8. Inbound XML interceptors

Class Phase Description

APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS

529

AttachmentInInterceptor RECEIVE Parses the mime headers for
mime boundaries, finds the root
part and resets the input stream
to it, and then stores the other
parts in a collection of
Attachment objects.

DocLiteralInInterceptor UNMARSHAL Examines the first element in the
message body to determine the
appropriate operation and then
calls the data binding to read in
the data.

StaxInInterceptor POST_STREAM Creates an XMLStreamReader
object from the message.

URIMappingInterceptor UNMARSHAL Handles the processing of HTTP
GET methods.

XMLMessageInInterceptor UNMARSHAL Unmarshals the XML message.

Class Phase Description

Table G.9, “Outbound XML interceptors” lists the interceptors added to a endpoint's outbound
message chain when using the XML Binding.

Table G.9. Outbound XML interceptors

Class Phase Description

StaxOutInterceptor PRE_STREAM Creates an XMLStreamWriter
objects from the message.

WrappedOutInterceptor MARSHAL Wraps the outbound message
parameters.

XMLMessageOutIntercepto
r

MARSHAL Marshals the message for
transmission.

CORBA

Table G.10, “Inbound CORBA interceptors” lists the interceptors added to a endpoint's inbound
message chain when using the CORBA Binding.

Table G.10. Inbound CORBA interceptors

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

530

Class Phase Description

CorbaStreamInIntercepto
r

PRE_STREAM Deserializes the CORBA message.

BareInInterceptor UNMARSHAL Deserializes the message parts.

Table G.11, “Outbound CORBA interceptors” lists the interceptors added to a endpoint's outbound
message chain when using the CORBA Binding.

Table G.11. Outbound CORBA interceptors

Class Phase Description

CorbaStreamOutIntercept
or

PRE_STREAM Serializes the message.

BareOutInterceptor MARSHAL Writes the message parts.

CorbaStreamOutEndingInt
erceptor

USER_STREAM Creates a streamable object for
the message and stores it in the
message context.

G.4. OTHER FEATURES

Logging

Table G.12, “Inbound logging interceptors” lists the interceptors added to a endpoint's inbound
message chain to support logging.

Table G.12. Inbound logging interceptors

Class Phase Description

LoggingInInterceptor RECEIVE Writes the raw message data to
the logging system.

Table G.13, “Outbound logging interceptors” lists the interceptors added to a endpoint's outbound
message chain to support logging.

Table G.13. Outbound logging interceptors

Class Phase Description

LoggingOutInterceptor PRE_STREAM Writes the outbound message to
the logging system.

For more information about logging see Chapter 16, Apache CXF Logging.

APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS

531

WS-Addressing

Table G.14, “Inbound WS-Addressing interceptors” lists the interceptors added to a endpoint's inbound
message chain when using WS-Addressing.

Table G.14. Inbound WS-Addressing interceptors

Class Phase Description

MAPCodec PRE_PROTOCOL Decodes the message addressing
properties.

Table G.15, “Outbound WS-Addressing interceptors” lists the interceptors added to a endpoint's
outbound message chain when using WS-Addressing.

Table G.15. Outbound WS-Addressing interceptors

Class Phase Description

MAPAggregator PRE_LOGICAL Aggregates the message
addressing properties for a
message.

MAPCodec PRE_PROTOCOL Encodes the message addressing
properties.

For more information about WS-Addressing see Chapter 17, Deploying WS-Addressing.

WS-RM

IMPORTANT

WS-RM relies on WS-Addressing so all of the WS-Addressing interceptors will also be
added to the interceptor chains.

Table G.16, “Inbound WS-RM interceptors” lists the interceptors added to a endpoint's inbound
message chain when using WS-RM.

Table G.16. Inbound WS-RM interceptors

Class Phase Description

RMInInterceptor PRE_LOGICAL Handles the aggregation of
message parts and
acknowledgement messages.

RMSoapInterceptor PRE_PROTOCOL Encodes and decodes the WS-RM
properties from messages.

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

532

Table G.17, “Outbound WS-RM interceptors” lists the interceptors added to a endpoint's outbound
message chain when using WS-RM.

Table G.17. Outbound WS-RM interceptors

Class Phase Description

RMOutInterceptor PRE_LOGICAL Handles the chunking of
messages and the transmission of
the chunks. Also handles the
processing of acknowledgements
and resend requests.

RMSoapInterceptor PRE_PROTOCOL Encodes and decodes the WS-RM
properties from messages.

For more information about WS-RM see Chapter 18, Enabling Reliable Messaging.

APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS

533

APPENDIX H. INTERCEPTOR PROVIDERS

OVERVIEW

Interceptor providers are objects in the Apache CXF runtime that have interceptor chains attached to
them. They all implement the org.apache.cxf.interceptor.InterceptorProvider interface.
Developers can attach their own interceptors to any interceptor provider.

LIST OF PROVIDERS

The following objects are interceptor providers:

AddressingPolicyInterceptorProvider

ClientFactoryBean

ClientImpl

ClientProxyFactoryBean

CorbaBinding

CXFBusImpl

org.apache.cxf.jaxws.EndpointImpl

org.apache.cxf.endpoint.EndpointImpl

ExtensionManagerBus

JAXRSClientFactoryBean

JAXRSServerFactoryBean

JAXRSServiceImpl

JaxWsClientEndpointImpl

 JaxWsClientFactoryBean

JaxWsEndpointImpl

JaxWsProxyFactoryBean

JaxWsServerFactoryBean

JaxwsServiceBuilder

MTOMPolicyInterceptorProvider

NoOpPolicyInterceptorProvider

ObjectBinding

RMPolicyInterceptorProvider

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

534

ServerFactoryBean

ServiceImpl

SimpleServiceBuilder

SoapBinding

WrappedEndpoint

WrappedService

XMLBinding

INDEX
Symbols

@Consumes, Custom readers

@Context, Context annotation, Overview

@CookieParam, Injecting information from a cookie

@DataBinding, Specifying the Data Binding

@DefaultValue, Specifying a default value to inject

@DELETE, Specifying HTTP verbs

@Encoded, Disabling URI decoding

@EndpointProperties, @EndpointProperties annotation

@EndpointProperty, @EndpointProperty annotation

@FastInfoset, @FastInfoset

@FormParam, Injecting data from HTML forms

@GET, Specifying HTTP verbs

@GZIP, @GZIP annotation

@HandlerChain, The @HandlerChain annotation

@HEAD, Specifying HTTP verbs

@HeaderParam, Injecting information from the HTTP headers

@InFaultInterceptors, The annotations

@InInterceptors, The annotations

@Logging, Enable Logging on an Endpoint

@MatrixParam, Using matrix parameters

@Oneway, The @Oneway annotation

@OutFaultInterceptors, The annotations

INDEX

535

@OutInterceptors, The annotations

@Path, Setting the path, Requirements, Specifying a sub-resource

@PathParam, Getting data from the URI's path

@Policies, @Policies annotation

@Policy, @Policy annotation

@POST, Specifying HTTP verbs

@PostConstruct, Order of initialization

@PreDestroy, Releasing a Handler

@Produces, Custom writers

@Provider, Implementing an exception mapper, Custom readers, Custom writers

@PUT, Specifying HTTP verbs

@QueryParam, Using query parameters

@RequestWrapper, The @RequestWrapper annotation

className property, The @RequestWrapper annotation

localName property, The @RequestWrapper annotation

targetNamespace property, The @RequestWrapper annotation

@Resource, Coding the provider implementation , Obtaining a context, Order of initialization

@ResponseWrapper, The @ResponseWrapper annotation

className property, The @ResponseWrapper annotation

localName property, The @ResponseWrapper annotation

targetNamespace property, The @ResponseWrapper annotation

@SchemaValidation, Schema Validation of Messages

@ServiceMode, Message mode, Payload mode

@SOAPBinding, The @SOAPBinding annotation

parameterStyle property, The @SOAPBinding annotation

style property, The @SOAPBinding annotation

use property, The @SOAPBinding annotation

@WebFault, The @WebFault annotation

faultName property, The @WebFault annotation

name property, The @WebFault annotation

targetNamespace property, The @WebFault annotation

@WebMethod, The @WebMethod annotation , Obtaining a context

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

536

action property, The @WebMethod annotation

exclude property, The @WebMethod annotation

operationName property, The @WebMethod annotation

@WebParam, The @WebParam annotation

header property, The @WebParam annotation

mode property, The @WebParam annotation

name property, The @WebParam annotation

partName property, The @WebParam annotation

targetNamespace property, The @WebParam annotation

@WebResult, The @WebResult annotation

header property, The @WebResult annotation

name property, The @WebResult annotation

partName property, The @WebResult annotation

targetNamespace property, The @WebResult annotation

@WebService, The @WebService annotation

endpointInterface property, The @WebService annotation

name property, The @WebService annotation

portName property, The @WebService annotation

serviceName property, The @WebService annotation

targetNamespace property, The @WebService annotation

wsdlLocation property, The @WebService annotation

@WebServiceProvider, The @WebServiceProvider annotation

@WSDLDocumentation, @WSDLDocumentation annotation

@WSDLDocumentationCollection, @WSDLDocumentationCollection annotation

@XmlAnyElement, Mapping to Java

@XmlAttribute, Mapping attributes to Java

@XmlElement, Mapping to Java , Mapping to Java , Mapping to Java

required property, minOccurs set to 0

type property, What is generated , Specializing or generalizing the default mapping

@XmlElementDecl

defaultValue, Java mapping of elements with a default value

substitutionHeadName, Generated object factory methods

INDEX

537

substitutionHeadNamespace, Generated object factory methods

@XmlElements, Mapping to Java , Mapping to Java

@XmlEnum, Mapping to Java

@XmlJavaTypeAdapter, What is generated

@XmlRootElement, Java mapping of elements with an in-line type

@XmlSchemaType, What is generated

@XmlSeeAlso, Using the @XmlSeeAlso annotation, Mapping to Java , Substitution groups in
interfaces

@XmlType, Mapping to Java , Mapping to Java , Mapping to Java

A

AbstractPhaseInterceptor, Abstract interceptor class

addAfter(), Add to the chain after

addBefore(), Add to the chain before

constructor, Setting the phase

AcknowledgementInterval, Acknowledgement interval

all element, Complex type varieties

annotations

@Consumes (see @Consumes)

@Context (see @Context)

@CookieParam (see @CookieParam)

@DataBinding (see @DataBinding)

@DefaultValue (see @DefaultValue)

@DELETE (see @DELETE)

@Encoded (see @Encoded)

@EndpointProperties (see @EndpointProperties)

@EndpointProperty (see @EndpointProperty)

@FastInfoset (see @FastInfoset)

@FormParam (see @FormParam)

@GET (see @GET)

@GZIP (see @GZIP)

@HandlerChain (see @HandlerChain)

@HEAD (see @HEAD)

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

538

@HeaderParam (see @HeaderParam)

@Logging (see @Logging)

@MatrixParam (see @MatrixParam)

@Oneway (see @Oneway)

@Path (see @Path)

@PathParam (see @PathParam)

@Policies (see @Policies)

@Policy (see @Policy)

@POST (see @POST)

@PostConstruct (see @PostConstruct)

@PreDestroy (see @PreDestroy)

@Produces (see @Produces)

@Provider (see @Provider)

@PUT (see @PUT)

@QueryParam (see @QueryParam)

@RequestWrapper (see @RequestWrapper)

@Resource (see @Resource)

@ResponseWrapper (see @ResponseWrapper)

@SchemaValidation (see @SchemaValidation)

@ServiceMode (see @ServiceMode)

@SOAPBinding (see @SOAPBinding)

@WebFault (see @WebFault)

@WebMethod (see @WebMethod)

@WebParam (see @WebParam)

@WebResult (see @WebResult)

@WebService (see @WebService)

@WebServiceProvider (see @WebServiceProvider)

@WSDLDocumentation (see @WSDLDocumentation)

@WSDLDocumentationCollection (see @WSDLDocumentationCollection)

@XmlAttribute (see @XmlAttribute)

@XmlElement (see @XmlElement)

@XmlElementDecl (see @XmlElementDecl)

@XmlEnum (see @XmlEnum)

INDEX

539

@XmlJavaTypeAdapter (see @XmlJavaTypeAdapter)

@XmlRootElement (see @XmlRootElement)

@XmlSchemaType (see @XmlSchemaType)

@XmlType (see @XmlType)

inheritance, Annotation Inheritance

any element, Specifying in XML Schema

anyAttribute, Defining in XML Schema

anyType, Using in XML Schema

mapping to Java, Mapping to Java

application source, How WS-RM works

asynchronous applications

callback approach, Developing Asynchronous Applications

implementation

callback approach, Implementing an Asynchronous Client with the Callback Approach ,
Asynchronous invocation

polling approach, Implementing an Asynchronous Client with the Polling Approach ,
Asynchronous invocation

polling approach, Developing Asynchronous Applications

implementation patterns, Implementing an Asynchronous Client with the Polling Approach

using a Dispatch object, Asynchronous invocation

asynchronous methods, Generated interface

callback approach, Generated interface

pooling approach, Generated interface

AtLeastOnce, Message delivery assurance policies

AtMostOnce, Message delivery assurance policies

attribute element, Defining attributes

name attribute, Defining attributes

type attribute, Defining attributes

use attribute, Defining attributes

attributes

optional, Wrapper classes

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

540

B

BaseRetransmissionInterval, Base retransmission interval

baseType, Supporting lossless type substitution, Customization usage

name attribute, Specializing or generalizing the default mapping

binding element, WSDL elements

BindingProvider

getRequestContext() method, Obtaining a context

getResponseContext() method, Obtaining a context

bindings

SOAP with Attachments, Describing a MIME multipart message

XML, Hand editing

build(), Relationship between a response and a response builder

Bundle-Name, Setting a bundle's name

Bundle-SymbolicName, Setting a bundle's symbolic name

Bundle-Version, Setting a bundle's version

BundleActivator, The bundle activator interface

bundles

exporting packages, Specifying exported packages

importing packages, Specifying imported packages

name, Setting a bundle's name

private packages, Specifying private packages

symbolic name, Setting a bundle's symbolic name

version, Setting a bundle's version

C

CacheControl, Setting cache control directives

cacheControl(), Setting cache control directives

choice element, Complex type varieties

close(), Implementation of handlers

code generation

consumer, Generating the consumer code

customization, Generating the Stub Code

service provider, Running the code generator

INDEX

541

service provider implementation, Generating the implementation code

WSDL contract, Generating WSDL

code generator, Generating a Server Mainline

complex types

all type, Complex type varieties

choice type, Complex type varieties

elements, Defining the parts of a structure

occurrence constraints, Defining the parts of a structure

sequence type, Complex type varieties

complexType element, Defining data structures

concrete part, The concrete part

configuration

HTTP consumer connection properties, The client element

HTTP consumer endpoint, Using Configuration

HTTP service provider connection properties, The server element

HTTP service provider endpoint, Using Configuration

HTTP thread pool, Configuring the thread pool , Configuring the thread pool

inbound fault interceptors, Configuration elements, The annotations

inbound interceptors, Configuration elements, The annotations

Jetty engine, The engine-factory element

Jetty instance, The engine element

Netty engine, The engine-factory element

Netty instance, The engine element

outbound fault interceptors, Configuration elements, The annotations

outbound interceptors, Configuration elements, The annotations

constants, Customizing Fixed Value Attribute Mapping

consumer

implementing business logic, Implementing the Consumer's Business Logic , Consumer main
function

consumer contexts, Working with Contexts in a Consumer Implementation

context

request

consumer, Overview

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

542

WebServiceContext (see WebServiceContext)

ContextResolver<T>, Adding contexts

contract resolver

implementing, Implementing the contract resolver

registering, Registering the contract resolver programmatically

cookie(), Adding a cookie

cookies, Injecting information from a cookie

createDispatch(), Creating a Dispatch object

CreateSequence, How WS-RM works

CreateSequenceResponse, How WS-RM works

cxf-codegen-plugin, Running the code generator , Generating the implementation code, Generating
the Stub Code, Generating a Server Mainline

D

DataSource, Using DataSource objects, Using DataSource objects

DatatypeConverter, Implementing converters

definitions element, WSDL elements

Dispatch object

creating, Creating a Dispatch object

invoke() method, Synchronous invocation

invokeAsync() method, Asynchronous invocation

invokeOneWay() method, Oneway invocation

message mode, Message mode

message payload mode, Payload mode

payload mode, Payload mode

DOMSource, Using Source objects , Using Source objects

driverClassName, Configuring WS-persistence

E

element, XML Schema mapping

element element, Defining the parts of a structure

maxOccurs attribute, Defining the parts of a structure

minOccurrs attribute, Defining the parts of a structure

name attribute, Defining the parts of a structure

INDEX

543

type attribute, Defining the parts of a structure

elements

custom mapping, Customizing Fixed Value Attribute Mapping

mapping to Java

in-line type definition, Java mapping of elements with an in-line type

named type definition, Java mapping of elements with a named type

XML Schema definition, XML Schema mapping

endpoint

adding to a Service object, Adding a Port to a Service

determining the address, The addPort() method

determining the binding type, The addPort() method

determining the port name, The addPort() method

getting, Getting a Proxy for an Endpoint , Generated service class, Instantiating an service
provider

Endpoint

create(), Instantiating an service provider

creating, Instantiating an service provider

publish(), Instantiating an service provider , Publishing a service provider

stop, Stopping a published service provider

entity parameter, Parameters

enumerations

custom mapping, Customizing Enumeration Mapping

defining in schema, Defining an enumerated type in XML Schema

ExceptionMapper<E>, Implementing an exception mapper

Exchange

getInFaultMessage(), Determining the message's direction

getInMessage(), Determining the message's direction

getOutFaultMessage(), Determining the message's direction

getOutMessage(), Determining the message's direction

ExecutionException, Catching the exception

ExponentialBackoff, Exponential backoff for retransmission

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

544

Export-Package, Specifying exported packages

F

facets

enforcing, Enforcing facets

form parameters, Injecting data from HTML forms

forms, Injecting data from HTML forms

G

generated code

asynchronous operations, Generated interface

consumer, Generated code

packages, Generated packages, Generated code

server mainline, Generating a Server Mainline

service implementation, Generated code

service provider, Generated code

stub code, Generated code

WSDL contract, Generating WSDL

GenericEntity<T>, Returning entities with generic type information

getRequestContext(), Obtaining a context

getResponseContext(), Obtaining a context

globalBindings

fixedAttributeAsConstantProperty attribute, Global customization

mapSimpleTypeDef, Supporting lossless type substitution

mapSimpleTypeDef attribute, Adding the customization

typesafeEnumMemberName attribute, Member name customizer

H

handleFault(), Implementation of handlers, Unwinding after an error

handleMessage(), Implementation of handlers, Processing messages

handler, Handler configuration file

handler-chain, Handler configuration file

handler-chains, Handler configuration file

handler-class, Handler configuration file

INDEX

545

handler-name, Handler configuration file

handleResponse(), Implementing the callback

handlers

constructor, Order of initialization

initializing, Order of initialization

logical, Handler types

protocol, Handler types

header(), Adding custom headers

high availability

client configuration, Add the clustering feature to your client configuration

configuring random strategy, Configuring a random strategy

configuring static failover, Overview

enabling static failover, Overview

static failover, HA with static failover

HTML forms, Injecting data from HTML forms

HTTP

DELETE, Specifying HTTP verbs

endpoint address, Adding a Basic HTTP Endpoint

GET, Specifying HTTP verbs

HEAD, Specifying HTTP verbs

POST, Specifying HTTP verbs

PUT, Specifying HTTP verbs

HTTP headers, Injecting information from the HTTP headers , Types of contexts

http-conf:authorization, The conduit element

http-conf:basicAuthSupplier, The conduit element

http-conf:client, The client element

Accept, The client element

AcceptEncoding, The client element

AcceptLanguage, The client element

AllowChunking, The client element

AutoRedirect, The client element

BrowserType, The client element

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

546

CacheControl, The client element, Consumer Cache Control Directives

Connection, The client element

ConnectionTimeout, The client element

ContentType, The client element

Cookie, The client element

DecoupledEndpoint, The client element, Configuring the consumer

Host, The client element

MaxRetransmits, The client element

ProxyServer, The client element

ProxyServerPort, The client element

ProxyServerType, The client element

ReceiveTimeout, The client element

Referer, The client element

http-conf:conduit, The conduit element

name attribute, The conduit element

http-conf:contextMatchStrategy, The destination element

http-conf:destination, The destination element

name attribute, The destination element

http-conf:fixedParameterOrder, The destination element

http-conf:proxyAuthorization, The conduit element

http-conf:server, The destination element , The server element

CacheControl, The server element, Service Provider Cache Control Directives

ContentEncoding, The server element

ContentLocation, The server element

ContentType, The server element

HonorKeepAlive, The server element

ReceiveTimeout, The server element

RedirectURL, The server element

ServerType, The server element

SuppressClientReceiveErrors, The server element

SuppressClientSendErrors, The server element

http-conf:tlsClientParameters, The conduit element

INDEX

547

http-conf:trustDecider, The conduit element

http:address, Other messages types

HttpHeaders, Types of contexts

httpj:engine, The engine element

httpj:engine-factory, The engine-factory element

httpj:identifiedThreadingParameters, The engine-factory element , Configuring the thread pool

httpj:identifiedTLSServerParameters, The engine-factory element

httpj:threadingParameters, The engine element , Configuring the thread pool

maxThreads, Configuring the thread pool

minThreads, Configuring the thread pool

httpj:threadingParametersRef, The engine element

httpj:tlsServerParameters, The engine element

httpj:tlsServerParametersRef, The engine element

httpn:engine, The engine element

httpn:engine-factory, The engine-factory element

httpn:identifiedThreadingParameters, The engine-factory element , Configuring the thread pool

httpn:identifiedTLSServerParameters, The engine-factory element

httpn:threadingParameters, The engine element , Configuring the thread pool

httpn:threadingParametersRef, The engine element

httpn:tlsServerParameters, The engine element

httpn:tlsServerParametersRef, The engine element

I

implementation

asynchronous callback object, Implementing the callback

asynchronous client

callback approach, Implementing an Asynchronous Client with the Callback Approach

callbacks, Implementing the consumer

polling approach, Implementing an Asynchronous Client with the Polling Approach

consumer, Implementing the Consumer's Business Logic , Consumer main function, Using XML
in a Consumer

SEI, Implementing the interface

server mainline, Writing a Server Mainline

service, Implementing a Provider Object

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

548

service operations, Implementing the interface, Implement the operation's logic

Import-Package, Specifying imported packages

inFaultInterceptors, Configuration elements

inInterceptors, Configuration elements

InOrder, Message delivery assurance policies

interceptor

definition, Interceptors

life-cycle, Chain life-cycle

Interceptor, Interfaces

interceptor chain

definition, Interceptor chains

life-cycle, Chain life-cycle

programmatic configuration, Adding interceptors programmatically

Spring configuration, Adding interceptors using configuration

InterceptorChain

add(), Adding interceptors

remove(), Removing interceptors

J

java.util.concurrent.ExecutionException, Catching the exception

java2ws, Generating WSDL

javaType, Syntax, Usage with javaType

parseMethod attribute, Specifying the converters

printMethod attribute, Specifying the converters

javax.xml.ws.AsyncHandler, Implementing the callback

javax.xml.ws.Service (see Service object)

javax.xml.ws.WebServiceException, Runtime Faults

jaxb:bindings, Using an external binding declaration

jaxb:property, Customization usage

JAXBContext, Using A JAXBContext Object

newInstance(Class...), Getting a JAXBContext object using an object factory

newInstance(String), Getting a JAXBContext object using package names

INDEX

549

jaxws:binding, Elements, Adding functionality

jaxws:client

abstract, Basic Configuration Properties

address, Basic Configuration Properties

bindingId, Basic Configuration Properties

bus, Basic Configuration Properties

createdFromAPI, Basic Configuration Properties

depends-on, Basic Configuration Properties

endpointName, Basic Configuration Properties

name, Basic Configuration Properties

password, Basic Configuration Properties

serviceClass, Basic Configuration Properties

serviceName, Basic Configuration Properties

username, Basic Configuration Properties

wsdlLocation, Basic Configuration Properties, Configuring the proxy

jaxws:conduitSelector, Adding functionality

jaxws:dataBinding, Elements, Adding functionality

jaxws:endpoint

abstract, Attributes

address, Attributes

bindingUri, Attributes

bus, Attributes

createdFromAPI, Attributes

depends-on, Attributes

endpointName, Attributes

id, Attributes

implementor, Attributes

implementorClass, Attributes

name, Attributes

publish, Attributes

publishedEndpointUrl, Attributes

serviceName, Attributes

wsdlLocation, Attributes

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

550

jaxws:exector, Elements

jaxws:features, Elements, Adding functionality

jaxws:handlers, Elements, Adding functionality, The handlers element

jaxws:inFaultInterceptors, Elements, Adding functionality

jaxws:inInterceptors, Elements, Adding functionality

jaxws:invoker, Elements

jaxws:outFaultInterceptors, Elements, Adding functionality

jaxws:outInterceptors, Elements, Adding functionality

jaxws:properties, Elements, Adding functionality

jaxws:server

abstract, Attributes

address, Attributes

bindingId, Attributes

bus, Attributes

createdFromAPI, Attributes

depends-on, Attributes

endpointName, Attributes

id, Attributes

name, Attributes

publish, Attributes

serviceBean, Attributes

serviceClass, Attributes

serviceName, Attributes

wsdlLocation, Attributes

jaxws:serviceFactory, Elements

JaxWsProxyFactoryBean, Consuming a service

JaxWsServerFactoryBean, Publishing a service

JMS

getting JMS message headers in a service, Getting the JMS Message Headers in a Service

getting optional header properties, Optional Header Properties

inspecting message header properties, Inspecting JMS Message Headers

setting message header properties, JMS Header Properties

setting optional message header properties, Optional JMS Header Properties

INDEX

551

setting the client's timeout, Client Receive Timeout

specifying the message type, Specifying the message type

JMS destination

specifying, Specifying the JMS address

JMS URIs, JMS URIs

jms:address, Specifying the JMS address

connectionPassword attribute, Specifying the JMS address

connectionUserName attribute, Specifying the JMS address

destinationStyle attribute, Specifying the JMS address

jmsDestinationName attribute, Specifying the JMS address

jmsiReplyDestinationName attribute, Using a Named Reply Destination

jmsReplyDestinationName attribute, Specifying the JMS address

jndiConnectionFactoryName attribute, Specifying the JMS address

jndiDestinationName attribute, Specifying the JMS address

jndiReplyDestinationName attribute, Specifying the JMS address , Using a Named Reply
Destination

jms:client, Specifying the message type

messageType attribute, Specifying the message type

jms:JMSNamingProperties, Specifying JNDI properties

jms:server, Specifying the configuration

durableSubscriberName, Specifying the configuration

messageSelector, Specifying the configuration

transactional, Specifying the configuration

useMessageIDAsCorrealationID, Specifying the configuration

JMSConfiguration, Specifying the configuration

JNDI

specifying the connection factory, Specifying the JMS address

L

list type

XML Schema definition, Defining list types in XML Schema

logical handler, Handler types

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

552

logical part, The logical part

LogicalHander

handleFault(), Handling Fault Messages

handleMessage(), Handling Messages in a Logical Handler

LogicalHandler

close(), Closing a Handler

LogicalMessage, Getting the message data

LogicalMessageContext, Overview of contexts in handlers

getMessage(), Getting the message data

M

matrix parameters, Using matrix parameters

Maven archetypes, Useful Maven archetypes

Maven tooling

adding the bundle plug-in, Adding a bundle plug-in

maxLength, Maximum length of an RM sequence

maxUnacknowledged, Maximum unacknowledged messages threshold

Message

getAttachments(), Getting the message contents

getContent(), Getting the message contents

getExchange(), Determining the message's direction

getInterceptorChain(), Getting the interceptor chain

message context

getting a property, Reading a property from a context

properties, How properties are stored in a context , Property scopes

property scopes

APPLICATION, Property scopes

HANDLER, Property scopes

reading values, Reading a property from a context

request

consumer, Setting JMS Properties

response

INDEX

553

consumer, Overview, Getting JMS Message Header Properties in a Consumer

setting a property, Setting properties in a context

setting properties, Setting properties in a context

message element, WSDL elements, Defining Logical Messages Used by a Service

MessageBodyReader, Custom readers

MessageBodyWriter, Custom writers

MessageContext, Obtaining a context

get() method, Reading a property from a context

put() method, Setting properties in a context

setScope() method, Property scopes

MessageContext.MESSAGE_OUTBOUND_PROPERTY, Determining the direction of the message,
Determining the direction of the message

mime:content, Describing a MIME multipart message

part, Describing a MIME multipart message

type, Describing a MIME multipart message

mime:multipartRelated, Changing the message binding

mime:part, Changing the message binding , Describing a MIME multipart message

name attribute, Describing a MIME multipart message

MTOM, Sending Binary Data with SOAP MTOM

enabling

configuration, Using configuration

consumer, Consumer

service provider, Service provider

Java first, Java first

WSDL first, WSDL first

N

named reply destination

specifying in WSDL, Specifying the JMS address

using, Using a Named Reply Destination

namespace

package name mapping, Package naming

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

554

NewCookie, Adding a cookie

nillable, Wrapper classes

noContent(), Creating responses for successful requests

notAcceptable(), Creating responses to signal errors

notModified(), Creating responses for redirection

O

object factory

creating complex type instances, Complex type factory methods

creating element instances, Element factory methods

ObjectFactory

complex type factory, Complex type factory methods

element factory, Element factory methods

ok(), Creating responses for successful requests

operation element, WSDL elements

org.apache.cxf.Phase, Specifying a phase

osgi install, Deploying from the console

osgi refresh, Refreshing an application

osgi start, Deploying from the console

osgi stop, Stopping an application

osgi uninstall, Uninstalling an application

outFaultInterceptors, Configuration elements

outInterceptors, Configuration elements

P

package name mapping, Generated packages

parameter constraints, Parameters

parameter mapping, Service endpoint interface

part element, Defining Logical Messages Used by a Service , Message parts

element attribute, Message parts

name attribute, Message parts

type attribute, Message parts

passWord, Configuring WS-persistence

INDEX

555

PathSegment, Getting the path

PhaseInterceptor, Interfaces

phases

definition, Phases

inbound, Inbound phases

outbound, Outbound phases

setting, Setting the phase

port element, WSDL elements

port-name-pattern, Handler configuration file

portType element, WSDL elements, Port types

primitive types, Mappings

Private-Package, Specifying private packages

property

fixedAttributeAsConstantProperty attribute, Local mapping

protocol handler, Handler types

protocol-binding, Handler configuration file

Provider

invoke() method, Implementing the invoke() method

message mode, Message mode

payload mode, Payload mode

Q

query parameters, Using query parameters

R

random strategy, Configuring a random strategy

replicated services, Overview

Request, Types of contexts

request context, Working with Contexts in a Consumer Implementation , Setting JMS Properties

accessing, Obtaining a context

consumer, Overview

setting properties, Setting properties in a context

ResourceComparator, Customizing the selection process

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

556

Response, Relationship between a response and a response builder , Providing an entity body ,
Implementing an exception mapper

response context, Working with Contexts in a Consumer Implementation

accessing, Obtaining a context

consumer, Overview, Getting JMS Message Header Properties in a Consumer

getting JMS message headers, Getting JMS Message Header Properties in a Consumer

reading values, Reading a property from a context

Response.Status, Setting the status code returned to the client

Response<T>.get()

exceptions, Catching the exception

ResponseBuilder, Relationship between a response and a response builder , Getting a response
builder, Handling more advanced responses

ResponseBuilderImpl, Getting a response builder, Handling more advanced responses

RMAssertion, WS-Policy RMAssertion Children

root resource

requirements, Requirements

root URI, Requirements, Working with the URI

RPC style design, Message design for integrating with legacy systems

S

SAXSource, Using Source objects , Using Source objects

schema validation, Enforcing facets

SecurityContext, Types of contexts

seeOther(), Creating responses for redirection

SEI, Creating the SEI, Generated code, Service endpoint interface

annotating, Annotating the Code

creating, Writing the interface

creation patterns, Overview

generated from WSDL contract, Generated code

relationship to wsdl:portType, Writing the interface , Service endpoint interface

required annotations, Annotating the SEI

Sequence, How WS-RM works

sequence element, Complex type varieties

INDEX

557

SequenceAcknowledgment, How WS-RM works

serverError(), Creating responses to signal errors

service

implementing the operations, Implement the operation's logic

service element, WSDL elements

service enablement, Overview

service endpoint interface (see SEI)

service implementation, Generated code, Implementing a Provider Object

operations, Implementing the interface

required annotations, Annotating the service implementation

Service object, Creating a Service Object

adding an endpoint, Adding a Port to a Service

determining the port name, The addPort() method

addPort() method, Adding a Port to a Service

bindingId parameter, The addPort() method

endpointAddress parameter, The addPort() method

portName parameter, The addPort() method

create() method, The create() methods

serviceName parameter, The create() methods

createDispatch() method, Creating a Dispatch object

creating, The create() methods , Generated service class

determining the service name, The create() methods

generated from a WSDL contract, Generated code

generated methods, Generated service class

getPort() method, The getPort() method

portName parameter, The getPort() method

getting a service proxy, Getting a Proxy for an Endpoint

relationship to wsdl:service element, Creating a Service Object, Generated code

service provider

implementation, Implementing a Provider Object

publishing, Publishing a service provider

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

558

service provider implementation

generating, Generating the implementation code

service providers contexts, Working with Contexts in a Service Implementation

service proxy

getting, Getting a Proxy for an Endpoint , Generated service class, Consumer main function

service-name-pattern, Handler configuration file

Service.Mode.MESSAGE, Message mode, Message mode

Service.Mode.PAYLOAD, Payload mode, Payload mode

ServiceContractResolver, Implementing the contract resolver

simple type

define by restriction, Defining a simple type in XML Schema

simple types

enumerations, Defining an enumerated type in XML Schema

mapping to Java, Mapping to Java

primitive, Mappings

wrapper classes, Wrapper classes

SOAP 1.1

endpoint address, SOAP 1.1

SOAP 1.2

endpoint address, SOAP 1.2

SOAP headers

mustUnderstand, Implementing the getHeaders() method

SOAP Message Transmission Optimization Mechanism, Sending Binary Data with SOAP MTOM

SOAP/JMS, Using SOAP over JMS

address, JMS URIs

consuming, Consuming a service

publishing, Publishing a service

soap12:address, SOAP 1.2

soap12:body

parts, Splitting messages between body and header

soap12:header, Overview

INDEX

559

encodingStyle, Syntax

message, Syntax

namespace, Syntax

part, Syntax

use, Syntax

soap:address, SOAP 1.1

soap:body

parts, Splitting messages between body and header

soap:header, Overview

encodingStyle, Syntax

message, Syntax

namespace, Syntax

part, Syntax

use, Syntax

SOAPHander

getHeaders(), Implementing the getHeaders() method

handleFault(), Handling Fault Messages

handleMessage(), Handling Messages in a SOAP Handler

SOAPHandler

close(), Closing a Handler

SOAPMessage, Using SOAPMessage objects, Using SOAPMessage objects, Working with the
message body

SOAPMessageContext

get(), Working with context properties

getMessage(), Working with the message body

Source, Using Source objects , Using Source objects

static failover, HA with static failover

configuring, Overview

enabling, Overview

status(), Setting the response status

StreamSource, Using Source objects , Using Source objects

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

560

sub-resource locator, Sub-resource locators

sub-resource method, Sub-resource methods

substitution group

in complex types, Substitution groups in complex types

in interfaces, Substitution groups in interfaces

object factory, Generated object factory methods

T

temporaryRedirect(), Creating responses for redirection

type customization

external declaration, Using an external binding declaration

in-line, Using in-line customization

JAXB version, Version declaration

namespace, Namespace

type packages

contents, Package contents

name generation, Package naming

types element, WSDL elements

typesafeEnumClass, Class customizer

typesafeEnumMember, Member customizer

U

union types

mapping to Java, Mapping to Java

XML Schema definition, Defining in XML Schema

URI

decoding, Disabling URI decoding

injecting, Overview

matrix parameters, Using matrix parameters

query parameters, Using query parameters

root, Requirements, Working with the URI

template variables, Getting data from the URI's path , Getting the value of URI template
variables

INDEX

561

UriBuilder, Getting the Base URI , Getting the full request URI

UriInfo, Types of contexts, Working with the full request URI

userName, Configuring WS-persistence

W

WebApplicationException, Using WebApplicaitonException exceptions to report errors

WebServiceContext

getMessageContext() method, Obtaining a context

getting the JMS message headers, Getting the JMS Message Headers in a Service

WebServiceException, Runtime Faults

wrapped document style, Message design for SOAP services

WS-Addressing

using, Configuring an endpoint to use WS-Addressing

WS-RM

AcknowledgementInterval, Acknowledgement interval

AtLeastOnce, Message delivery assurance policies

AtMostOnce, Message delivery assurance policies

BaseRetransmissionInterval, Base retransmission interval

configuring, Configuring WS-RM

destination, How WS-RM works

driverClassName, Configuring WS-persistence

enabling, Enabling WS-RM

ExponentialBackoff, Exponential backoff for retransmission

externaL attachment, External attachment

initial sender, How WS-RM works

InOrder, Message delivery assurance policies

interceptors, Apache CXF WS-RM Interceptors

maxLength, Maximum length of an RM sequence

maxUnacknowledged, Maximum unacknowledged messages threshold

passWord, Configuring WS-persistence

rmManager, Children of the rmManager Spring bean

source, How WS-RM works

ultimate receiver, How WS-RM works

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

562

url, Configuring WS-persistence

userName, Configuring WS-persistence

wsam:Addressing, Configuring an endpoint to use WS-Addressing

WSDL

binding element, The WSDL elements

name attribute, The WSDL elements

port element, The WSDL elements

binding attribute, The WSDL elements

service element, The WSDL elements

name attribute, The WSDL elements

WSDL contract

generation, Generating WSDL

WSDL design

RPC style, Message design for integrating with legacy systems

wrapped document style, Message design for SOAP services

WSDL extensors

jms:address (see jms:address)

jms:client (see jms:client)

jms:JMSNamingProperties (see jms:JMSNamingProperties)

jms:server (see jms:server)

wsdl2soap, Using wsdl2soap, Using wsdl2soap

wsdl:documentation, WSDL Documentation

wsdl:portType, Writing the interface , Generated code, Service endpoint interface

wsdl:service, Creating a Service Object, Generated code

wsrm:AcksTo, How WS-RM works

wswa:UsingAddressing, Configuring an endpoint to use WS-Addressing

X

xformat:binding, Hand editing

rootNode, Hand editing

xformat:body, Hand editing

INDEX

563

rootNode, Hand editing

Red Hat JBoss Fuse 6.1 Apache CXF Development Guide

564

	Table of Contents
	PART I. WRITING WSDL CONTRACTS
	CHAPTER 1. INTRODUCING WSDL CONTRACTS
	1.1. STRUCTURE OF A WSDL DOCUMENT
	The logical part
	The concrete part

	1.2. WSDL ELEMENTS
	1.3. DESIGNING A CONTRACT

	CHAPTER 2. DEFINING LOGICAL DATA UNITS
	2.1. MAPPING DATA INTO LOGICAL DATA UNITS
	Available type systems for defining service data units
	XML Schema as a type system
	Considerations for creating your data units

	2.2. ADDING DATA UNITS TO A CONTRACT
	Procedure

	2.3. XML SCHEMA SIMPLE TYPES
	Entering simple types
	Supported XSD simple types

	2.4. DEFINING COMPLEX DATA TYPES
	2.4.1. Defining data structures
	Complex type varieties
	Defining the parts of a structure
	Defining attributes

	2.4.2. Defining arrays
	Complex type arrays
	SOAP arrays

	2.4.3. Defining types by extension
	2.4.4. Defining types by restriction
	Specifying the base type
	Defining the restrictions
	Example

	2.4.5. Defining enumerated types
	Defining an enumeration in XML Schema
	Example

	2.5. DEFINING ELEMENTS

	CHAPTER 3. DEFINING LOGICAL MESSAGES USED BY A SERVICE
	MESSAGES AND PARAMETER LISTS
	MESSAGE DESIGN FOR INTEGRATING WITH LEGACY SYSTEMS
	MESSAGE DESIGN FOR SOAP SERVICES
	MESSAGE NAMING
	MESSAGE PARTS
	EXAMPLE

	CHAPTER 4. DEFINING YOUR LOGICAL INTERFACES
	PROCESS
	PORT TYPES
	OPERATIONS
	OPERATION MESSAGES
	RETURN VALUES
	EXAMPLE

	PART II. WEB SERVICES BINDINGS
	CHAPTER 5. UNDERSTANDING BINDINGS IN WSDL
	OVERVIEW
	PORT TYPES AND BINDINGS
	THE WSDL ELEMENTS
	ADDING TO A CONTRACT
	SUPPORTED BINDINGS

	CHAPTER 6. USING SOAP 1.1 MESSAGES
	6.1. ADDING A SOAP 1.1 BINDING
	Using wsdl2soap
	Example

	6.2. ADDING SOAP HEADERS TO A SOAP 1.1 BINDING
	Overview
	Syntax
	Splitting messages between body and header
	Example

	CHAPTER 7. USING SOAP 1.2 MESSAGES
	7.1. ADDING A SOAP 1.2 BINDING TO A WSDL DOCUMENT
	Using wsdl2soap
	Example

	7.2. ADDING HEADERS TO A SOAP 1.2 MESSAGE
	Overview
	Syntax
	Splitting messages between body and header
	Example

	CHAPTER 8. SENDING BINARY DATA USING SOAP WITH ATTACHMENTS
	OVERVIEW
	NAMESPACE
	CHANGING THE MESSAGE BINDING
	DESCRIBING A MIME MULTIPART MESSAGE
	EXAMPLE

	CHAPTER 9. SENDING BINARY DATA WITH SOAP MTOM
	9.1. ANNOTATING DATA TYPES TO USE MTOM
	Overview
	WSDL first
	Java first

	9.2. ENABLING MTOM
	9.2.1. Using JAX-WS APIs
	Overview
	Service provider
	Consumer

	9.2.2. Using configuration
	Overview
	Procedure
	Example

	CHAPTER 10. USING XML DOCUMENTS
	XML BINDING NAMESPACE
	HAND EDITING
	XML MESSAGES ON THE WIRE
	OVERRIDING THE BINDING'S ROOTNODE ATTRIBUTE SETTING

	PART III. WEB SERVICES TRANSPORTS
	CHAPTER 11. UNDERSTANDING HOW ENDPOINTS ARE DEFINED IN WSDL
	OVERVIEW
	ENDPOINTS AND SERVICES
	THE WSDL ELEMENTS
	ADDING ENDPOINTS TO A CONTRACT
	SUPPORTED TRANSPORTS

	CHAPTER 12. USING HTTP
	12.1. ADDING A BASIC HTTP ENDPOINT
	Alternative HTTP runtimes
	Netty HTTP URL
	Payload types
	SOAP 1.1
	SOAP 1.2
	Other messages types

	12.2. CONFIGURING A CONSUMER
	12.2.1. Using Configuration
	Namespace
	Jetty runtime or Netty runtime
	The conduit element
	The client element
	Example
	More information

	12.2.2. Using WSDL
	Namespace
	Jetty runtime or Netty runtime
	The client element
	Example

	12.2.3. Consumer Cache Control Directives

	12.3. CONFIGURING A SERVICE PROVIDER
	12.3.1. Using Configuration
	Namespace
	Jetty runtime or Netty runtime
	The destination element
	The server element
	Example

	12.3.2. Using WSDL
	Namespace
	Jetty runtime or Netty runtime
	The server element
	Example

	12.3.3. Service Provider Cache Control Directives

	12.4. CONFIGURING THE JETTY RUNTIME
	Overview
	Maven dependency
	Namespace
	The engine-factory element
	The engine element
	Configuring the thread pool
	Example

	12.5. CONFIGURING THE NETTY RUNTIME
	Overview
	Maven dependencies
	Namespace
	The engine-factory element
	The engine element
	Configuring the thread pool
	Example

	12.6. USING THE HTTP TRANSPORT IN DECOUPLED MODE
	Overview
	Configuring decoupled interactions
	Configuring an endpoint to use WS-Addressing
	Configuring the consumer
	How messages are processed

	CHAPTER 13. USING SOAP OVER JMS
	13.1. BASIC CONFIGURATION
	Overview
	Specifying the JMS transport type
	Specifying the target destination
	Configuring JNDI and the JMS transport

	13.2. JMS URIS
	Overview
	Syntax
	JMS properties
	JNDI properties
	Additional JNDI properties
	Example

	13.3. WSDL EXTENSIONS
	Overview
	SOAP/JMS namespace
	WSDL extension elements
	Configuration scopes
	Example

	CHAPTER 14. USING GENERIC JMS
	14.1. USING THE JMS CONFIGURATION BEAN
	Overview
	Configuration namespace
	Specifying the configuration
	Applying the configuration to an endpoint
	Applying the configuration to the transport

	14.2. USING WSDL TO CONFIGURE JMS
	14.2.1. Basic JMS configuration
	Overview
	Specifying the JMS address
	Specifying JNDI properties
	Example

	14.2.2. JMS client configuration
	Overview
	Specifying the message type
	Example

	14.2.3. JMS provider configuration
	Overview
	Specifying the configuration
	Example

	14.3. USING A NAMED REPLY DESTINATION
	Overview
	Setting the reply destination name
	Example

	APPENDIX A. INTEGRATING WITH APACHE ACTIVEMQ
	OVERVIEW
	THE INITIAL CONTEXT FACTORY
	LOOKING UP THE CONNECTION FACTORY
	SYNTAX FOR DYNAMIC DESTINATIONS

	APPENDIX B. CONDUITS
	OVERVIEW
	CONDUIT LIFE-CYCLE
	CONDUIT WEIGHT

	PART IV. CONFIGURING WEB SERVICE ENDPOINTS
	CHAPTER 15. CONFIGURING JAX-WS ENDPOINTS
	15.1. CONFIGURING SERVICE PROVIDERS
	15.1.1. Using the jaxws:endpoint Element
	Overview
	Identifying the endpoint being configured
	Attributes
	Example

	15.1.2. Using the jaxws:server Element
	Overview
	Identifying the endpoint being configured
	Attributes
	Example

	15.1.3. Adding Functionality to Service Providers
	Overview
	Elements

	15.2. CONFIGURING CONSUMER ENDPOINTS
	Overview
	Basic Configuration Properties
	Adding functionality
	Example

	CHAPTER 16. APACHE CXF LOGGING
	16.1. OVERVIEW OF APACHE CXF LOGGING
	Overview
	Default logging.properties file
	Logging feature
	Where to begin?
	More information on java.util.logging

	16.2. SIMPLE EXAMPLE OF USING LOGGING
	Changing the log levels and output destination

	16.3. DEFAULT LOGGING CONFIGURATION FILE
	16.3.1. Configuring Logging Output
	Configuring the console handler
	Configuring the file handler
	Configuring both the console handler and the file handler

	16.3.2. Configuring Logging Levels
	Logging levels
	Configuring the global logging level
	Configuring logging at an individual package level

	16.4. ENABLING LOGGING AT THE COMMAND LINE
	Overview
	Specifying the log configuration file on application start-up

	16.5. LOGGING FOR SUBSYSTEMS AND SERVICES
	Apache CXF logging subsystems
	Example

	16.6. LOGGING MESSAGE CONTENT
	Configuring message content logging
	Adding the logging feature to an endpoint
	Adding the logging feature to a consumer
	Set logging to log INFO level messages
	Logging SOAP messages

	CHAPTER 17. DEPLOYING WS-ADDRESSING
	17.1. INTRODUCTION TO WS-ADDRESSING
	Overview
	Supported specifications
	Further information

	17.2. WS-ADDRESSING INTERCEPTORS
	Overview
	WS-Addressing Interceptors

	17.3. ENABLING WS-ADDRESSING
	Overview
	Adding WS-Addressing as a Feature

	17.4. CONFIGURING WS-ADDRESSING ATTRIBUTES
	Overview
	Configuring WS-Addressing attributes
	Using a WS-Policy assertion embedded in a feature

	CHAPTER 18. ENABLING RELIABLE MESSAGING
	18.1. INTRODUCTION TO WS-RM
	Overview
	How WS-RM works
	WS-RM delivery assurances
	Supported specifications
	Further information

	18.2. WS-RM INTERCEPTORS
	Overview
	Apache CXF WS-RM Interceptors
	Enabling WS-RM
	Configuring WS-RM Attributes

	18.3. ENABLING WS-RM
	Overview
	Spring beans—explicitly adding interceptors
	WS-Policy framework—implicitly adding interceptors

	18.4. CONFIGURING WS-RM
	18.4.1. Configuring Apache CXF-Specific WS-RM Attributes
	Overview
	Children of the rmManager Spring bean
	Example

	18.4.2. Configuring Standard WS-RM Policy Attributes
	Overview
	WS-Policy RMAssertion Children
	More detailed reference information
	RMAssertion in rmManager Spring bean
	Policy within a feature
	WSDL file
	External attachment

	18.4.3. WS-RM Configuration Use Cases
	Overview
	Base retransmission interval
	Exponential backoff for retransmission
	Acknowledgement interval
	Maximum unacknowledged messages threshold
	Maximum length of an RM sequence
	Message delivery assurance policies

	18.5. CONFIGURING WS-RM PERSISTENCE
	Overview
	How it works
	Enabling WS-persistence
	Configuring WS-persistence

	CHAPTER 19. ENABLING HIGH AVAILABILITY
	19.1. INTRODUCTION TO HIGH AVAILABILITY
	Overview
	HA with static failover

	19.2. ENABLING HA WITH STATIC FAILOVER
	Overview
	Encode replica details in your service WSDL file
	Add the clustering feature to your client configuration

	19.3. CONFIGURING HA WITH STATIC FAILOVER
	Overview
	Configuring a random strategy

	CHAPTER 20. ENABLING HIGH AVAILABILITY IN FUSE FABRIC
	20.1. LOAD BALANCING CLUSTER
	20.1.1. Introduction to Load Balancing
	Overview
	Fuse Fabric
	Load-balancing cluster
	FabricLoadBalancerFeature
	Prerequisites
	Maven dependency
	OSGi package import
	Fabric deployment
	Required feature

	20.1.2. Configure the Server
	Overview
	Prerequisites
	Blueprint XML
	Example using Blueprint XML

	20.1.3. Configure the Client
	Overview
	Prerequisites
	Blueprint XML
	Java

	20.2. FAILOVER CLUSTER
	Overview
	Failover cluster
	FabricFailOverFeature
	Blueprint XML

	CHAPTER 21. PACKAGING AN APPLICATION
	CREATING A BUNDLE
	REQUIRED BUNDLE
	REQUIRED PACKAGES
	EXAMPLE

	CHAPTER 22. DEPLOYING AN APPLICATION
	OVERVIEW
	HOT DEPLOYMENT
	DEPLOYING FROM THE CONSOLE
	REFRESHING AN APPLICATION
	STOPPING AN APPLICATION
	UNINSTALLING AN APPLICATION

	APPENDIX C. APACHE CXF BINDING IDS
	APPENDIX D. USING THE MAVEN OSGI TOOLING
	D.1. SETTING UP A RED HAT JBOSS FUSE OSGI PROJECT
	Overview
	Directory structure
	Adding a bundle plug-in
	Activating a bundle plug-in
	Useful Maven archetypes
	Spring OSGi archetype
	Apache CXF code-first archetype
	Apache CXF wsdl-first archetype
	Apache Camel archetype

	D.2. CONFIGURING THE BUNDLE PLUG-IN
	Overview
	Configuration properties
	Setting a bundle's symbolic name
	Setting a bundle's name
	Setting a bundle's version
	Specifying exported packages
	Specifying private packages
	Specifying imported packages
	More information

	PART V. DEVELOPING APPLICATIONS USING JAX-WS
	CHAPTER 23. BOTTOM-UP SERVICE DEVELOPMENT
	23.1. CREATING THE SEI
	Overview
	Writing the interface
	Implementing the interface

	23.2. ANNOTATING THE CODE
	23.2.1. Required Annotations
	Overview
	The @WebService annotation
	Annotating the SEI
	Annotating the service implementation

	23.2.2. Optional Annotations
	23.2.2.1. Defining the Binding Properties with Annotations
	23.2.2.2. Defining Operation Properties with Annotations
	23.2.2.3. Defining Parameter Properties with Annotations

	23.2.3. Apache CXF Annotations
	23.2.3.1. WSDL Documentation
	23.2.3.2. Schema Validation of Messages
	23.2.3.3. Specifying the Data Binding
	23.2.3.4. Compressing Messages
	23.2.3.5. Enable Logging on an Endpoint
	23.2.3.6. Adding Properties and Policies to an Endpoint

	23.3. GENERATING WSDL
	Using Maven
	Example

	CHAPTER 24. DEVELOPING A CONSUMER WITHOUT A WSDL CONTRACT
	24.1. CREATING A SERVICE OBJECT
	Overview
	The create() methods
	Example

	24.2. ADDING A PORT TO A SERVICE
	Overview
	The addPort() method
	Example

	24.3. GETTING A PROXY FOR AN ENDPOINT
	Overview
	The getPort() method
	Example

	24.4. IMPLEMENTING THE CONSUMER'S BUSINESS LOGIC
	Overview
	Example

	CHAPTER 25. A STARTING POINT WSDL CONTRACT
	CHAPTER 26. TOP-DOWN SERVICE DEVELOPMENT
	26.1. GENERATING THE STARTING POINT CODE
	Overview
	Running the code generator
	Generated code
	Generated packages

	26.2. IMPLEMENTING THE SERVICE PROVIDER
	Generating the implementation code
	Generated code
	Implement the operation's logic
	Example

	CHAPTER 27. DEVELOPING A CONSUMER FROM A WSDL CONTRACT
	27.1. GENERATING THE STUB CODE
	Overview
	Generating the consumer code
	Generated code

	27.2. IMPLEMENTING A CONSUMER
	Overview
	Generated service class
	Service endpoint interface
	Consumer main function

	CHAPTER 28. FINDING WSDL AT RUNTIME
	28.1. INSTANTIATING A PROXY BY INJECTION
	Overview
	Procedure
	Configuring the proxy
	Coding the provider implementation

	28.2. USING A JAX-WS CATALOG
	Overview
	Writing the catalog
	Packaging the catalog

	28.3. USING A CONTRACT RESOLVER
	Overview
	Implementing the contract resolver
	Registering the contract resolver programmatically
	Registering a contract resolver using configuration
	Contract resolution order

	CHAPTER 29. GENERIC FAULT HANDLING
	29.1. RUNTIME FAULTS
	Overview
	APIs that throw WebServiceException

	29.2. PROTOCOL FAULTS
	Overview
	Types of protocol exceptions
	Using the SOAP protocol exception

	CHAPTER 30. PUBLISHING A SERVICE
	30.1. APIS USED TO PUBLISH A SERVICE
	Overview
	Instantiating an service provider
	Publishing a service provider
	Stopping a published service provider

	30.2. PUBLISHING A SERVICE IN A PLAIN JAVA APPLICATION
	Overview
	Generating a Server Mainline
	Writing a Server Mainline

	30.3. PUBLISHING A SERVICE IN AN OSGI CONTAINER
	Overview
	The bundle activator interface
	Implementing the start method
	Implementing the stop method
	Informing the container

	CHAPTER 31. BASIC DATA BINDING CONCEPTS
	31.1. INCLUDING AND IMPORTING SCHEMA DEFINITIONS
	Overview
	xsd:include syntax
	xsd:import syntax
	Using non-referenced schema documents

	31.2. XML NAMESPACE MAPPING
	Overview
	Package naming
	Package contents

	31.3. THE OBJECT FACTORY
	Overview
	Complex type factory methods
	Element factory methods

	31.4. ADDING CLASSES TO THE RUNTIME MARSHALLER
	Overview
	Using the @XmlSeeAlso annotation
	Example

	CHAPTER 32. USING XML ELEMENTS
	OVERVIEW
	XML SCHEMA MAPPING
	JAVA MAPPING OF ELEMENTS WITH A NAMED TYPE
	USING ELEMENTS WITH NAMED TYPES IN WSDL
	JAVA MAPPING OF ELEMENTS WITH AN IN-LINE TYPE
	JAVA MAPPING OF ABSTRACT ELEMENTS
	JAVA MAPPING OF ELEMENTS WITH A DEFAULT VALUE

	CHAPTER 33. USING SIMPLE TYPES
	33.1. PRIMITIVE TYPES
	Overview
	Mappings
	Wrapper classes

	33.2. SIMPLE TYPES DEFINED BY RESTRICTION
	Overview
	Procedure
	Defining a simple type in XML Schema
	Mapping to Java
	Enforcing facets

	33.3. ENUMERATIONS
	Overview
	Defining an enumerated type in XML Schema
	Mapping to Java

	33.4. LISTS
	Overview
	Defining list types in XML Schema
	Mapping list type elements to Java
	Mapping list type parameters to Java

	33.5. UNIONS
	Overview
	Defining in XML Schema
	Mapping to Java

	33.6. SIMPLE TYPE SUBSTITUTION
	Overview
	Default mapping and marshaling
	Supporting lossless type substitution

	CHAPTER 34. USING COMPLEX TYPES
	34.1. BASIC COMPLEX TYPE MAPPING
	Overview
	Defining in XML Schema
	Mapping to Java

	34.2. ATTRIBUTES
	Overview
	Defining an attribute in XML Schema
	Using an attribute group in XML Schema
	Mapping attributes to Java
	Mapping attribute groups to Java

	34.3. DERIVING COMPLEX TYPES FROM SIMPLE TYPES
	Overview
	Derivation by extension
	Derivation by restriction
	Mapping to Java

	34.4. DERIVING COMPLEX TYPES FROM COMPLEX TYPES
	Overview
	Schema syntax
	Extending a complex type
	Restricting a complex type
	Mapping to Java

	34.5. OCCURRENCE CONSTRAINTS
	34.5.1. Occurrence Constraints on the All Element
	XML Schema
	Mapping to Java

	34.5.2. Occurrence Constraints on the Choice Element
	Overview
	Using in XML Schema
	Mapping to Java
	minOccurs set to 0

	34.5.3. Occurrence Constraints on Elements
	Overview
	minOccurs set to 0
	minOccurs set to a value greater than 1
	Elements with maxOccurs set

	34.5.4. Occurrence Constraints on Sequences
	Overview
	Using XML Schema
	Mapping to Java
	minOccurs set to 0

	34.6. USING MODEL GROUPS
	Overview
	Defining a model group in XML Schema
	Using a model group in a type definition
	Mapping to Java
	Multiple occurrences

	CHAPTER 35. USING WILD CARD TYPES
	35.1. USING ANY ELEMENTS
	Overview
	Specifying in XML Schema
	Mapping to Java
	Marshalling
	Unmarshalling

	35.2. USING THE XML SCHEMA ANYTYPE TYPE
	Overview
	Using in XML Schema
	Mapping to Java
	Marshalling
	Unmarshalling

	35.3. USING UNBOUND ATTRIBUTES
	Overview
	Defining in XML Schema
	Mapping to Java
	Working with undeclared attributes

	CHAPTER 36. ELEMENT SUBSTITUTION
	36.1. SUBSTITUTION GROUPS IN XML SCHEMA
	Overview
	Syntax
	Type restrictions
	Abstract head elements

	36.2. SUBSTITUTION GROUPS IN JAVA
	Overview
	Generated object factory methods
	Substitution groups in interfaces
	Substitution groups in complex types
	Setting a substitution group property
	Getting the value of a substitution group property

	36.3. WIDGET VENDOR EXAMPLE
	36.3.1. The checkWidgets Operation
	Overview
	Consumer implementation
	Service implementation

	36.3.2. The placeWidgetOrder Operation
	Overview
	Consumer implementation
	Service implementation

	CHAPTER 37. CUSTOMIZING HOW TYPES ARE GENERATED
	37.1. BASICS OF CUSTOMIZING TYPE MAPPINGS
	Overview
	Namespace
	Version declaration
	Using in-line customization
	Using an external binding declaration

	37.2. SPECIFYING THE JAVA CLASS OF AN XML SCHEMA PRIMITIVE
	Overview
	Syntax
	Specifying the converters
	What is generated
	Implementing converters
	Default primitive type converters

	37.3. GENERATING JAVA CLASSES FOR SIMPLE TYPES
	Overview
	Adding the customization
	Generated classes

	37.4. CUSTOMIZING ENUMERATION MAPPING
	Overview
	Member name customizer
	Class customizer
	Member customizer
	Examples

	37.5. CUSTOMIZING FIXED VALUE ATTRIBUTE MAPPING
	Overview
	Global customization
	Local mapping
	Java mapping

	37.6. SPECIFYING THE BASE TYPE OF AN ELEMENT OR AN ATTRIBUTE
	Overview
	Customization usage
	Specializing or generalizing the default mapping
	Usage with javaType

	CHAPTER 38. USING A JAXBCONTEXT OBJECT
	OVERVIEW
	BEST PRACTICES
	GETTING A JAXBCONTEXT OBJECT USING AN OBJECT FACTORY
	GETTING A JAXBCONTEXT OBJECT USING PACKAGE NAMES

	CHAPTER 39. USING SOAP OVER JMS
	OVERVIEW
	JMS URIS
	PUBLISHING A SERVICE
	CONSUMING A SERVICE

	CHAPTER 40. DEVELOPING ASYNCHRONOUS APPLICATIONS
	40.1. WSDL FOR ASYNCHRONOUS EXAMPLES
	40.2. GENERATING THE STUB CODE
	Overview
	Using an external binding declaration
	Using an embedded binding declaration
	Generated interface

	40.3. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE POLLING APPROACH
	Using the non-blocking pattern
	Using the blocking pattern

	40.4. IMPLEMENTING AN ASYNCHRONOUS CLIENT WITH THE CALLBACK APPROACH
	Implementing the callback
	Implementing the consumer

	40.5. CATCHING EXCEPTIONS RETURNED FROM A REMOTE SERVICE
	Overview
	Catching the exception
	Getting the exception details
	Example

	CHAPTER 41. USING RAW XML MESSAGES
	41.1. USING XML IN A CONSUMER
	41.1.1. Usage Modes
	Overview
	Message mode
	Payload mode

	41.1.2. Data Types
	Overview
	Using Source objects
	Using SOAPMessage objects
	Using DataSource objects
	Using JAXB objects

	41.1.3. Working with Dispatch Objects
	Procedure
	Creating a Dispatch object
	Constructing request messages
	Synchronous invocation
	Asynchronous invocation
	Oneway invocation

	41.2. USING XML IN A SERVICE PROVIDER
	41.2.1. Messaging Modes
	Overview
	Message mode
	Payload mode

	41.2.2. Data Types
	Overview
	Using Source objects
	Using SOAPMessage objects
	Using DataSource objects

	41.2.3. Implementing a Provider Object
	Overview
	Working with messages
	The @WebServiceProvider annotation
	Implementing the invoke() method
	Examples

	CHAPTER 42. WORKING WITH CONTEXTS
	42.1. UNDERSTANDING CONTEXTS
	Overview
	How properties are stored in a context
	Property scopes
	Overview of contexts in handlers
	Overview of contexts in service implementations
	Overview of contexts in consumer implementations

	42.2. WORKING WITH CONTEXTS IN A SERVICE IMPLEMENTATION
	Overview
	Obtaining a context
	Reading a property from a context
	Setting properties in a context
	Supported contexts

	42.3. WORKING WITH CONTEXTS IN A CONSUMER IMPLEMENTATION
	Overview
	Obtaining a context
	Reading a property from a context
	Setting properties in a context
	Supported contexts

	42.4. WORKING WITH JMS MESSAGE PROPERTIES
	42.4.1. Inspecting JMS Message Headers
	Getting the JMS Message Headers in a Service
	Getting JMS Message Header Properties in a Consumer

	42.4.2. Inspecting the Message Header Properties
	Standard JMS Header Properties
	Optional Header Properties
	Example

	42.4.3. Setting JMS Properties
	JMS Header Properties
	Optional JMS Header Properties
	Client Receive Timeout
	Example

	CHAPTER 43. WRITING HANDLERS
	43.1. HANDLERS: AN INTRODUCTION
	Overview
	Handler types
	Implementation of handlers
	Adding handlers to an application

	43.2. IMPLEMENTING A LOGICAL HANDLER
	Overview
	Procedure

	43.3. HANDLING MESSAGES IN A LOGICAL HANDLER
	Overview
	Getting the message data
	Working with the message body as an XML object
	Working with the message body as a JAXB object
	Working with context properties
	Determining the direction of the message
	Determining the return value
	Example

	43.4. IMPLEMENTING A PROTOCOL HANDLER
	Overview
	Procedure
	Implementing the getHeaders() method

	43.5. HANDLING MESSAGES IN A SOAP HANDLER
	Overview
	Working with the message body
	Getting the SOAP headers
	Working with context properties
	Determining the direction of the message
	Determining the return value
	Example

	43.6. INITIALIZING A HANDLER
	Overview
	Order of initialization

	43.7. HANDLING FAULT MESSAGES
	Overview
	Getting the message payload
	Determining the return value
	Example

	43.8. CLOSING A HANDLER
	43.9. RELEASING A HANDLER
	Overview
	Order of release

	43.10. CONFIGURING ENDPOINTS TO USE HANDLERS
	43.10.1. Programmatic Configuration
	43.10.1.1. Adding a Handler Chain to a Consumer
	43.10.1.2. Adding a Handler Chain to a Service Provider

	43.10.2. Spring Configuration
	Overview
	Procedure
	The handlers element
	Example

	APPENDIX E. MAVEN TOOLING REFERENCE
	NAME
	DEPENDENCIES
	REPOSITORIES
	NAME
	SYNOPSIS
	DESCRIPTION
	WSDL OPTIONS
	DEFAULT OPTIONS
	OPTIONS
	NAME
	SYNOPSIS
	DESCRIPTION
	REQUIRED CONFIGURATION
	OPTIONAL CONFIGURATION

	PART VI. DEVELOPING RESTFUL WEB SERVICES
	CHAPTER 44. INTRODUCTION TO RESTFUL WEB SERVICES
	OVERVIEW
	BASIC REST PRINCIPLES
	RESOURCES
	REST BEST PRACTICES
	DESIGNING A RESTFUL WEB SERVICE
	IMPLEMENTING REST WITH APACHE CXF
	DATA BINDINGS

	CHAPTER 45. CREATING RESOURCES
	45.1. INTRODUCTION
	Overview
	Types of resources
	Example

	45.2. BASIC JAX-RS ANNOTATIONS
	Overview
	Setting the path
	Specifying HTTP verbs

	45.3. ROOT RESOURCE CLASSES
	Overview
	Requirements
	Example

	45.4. WORKING WITH RESOURCE METHODS
	Overview
	General constraints
	Parameters
	Return values

	45.5. WORKING WITH SUB-RESOURCES
	Overview
	Specifying a sub-resource
	Sub-resource methods
	Sub-resource locators

	45.6. RESOURCE SELECTION METHOD
	Overview
	The basic selection algorithm
	Selecting from multiple resource classes
	Selecting from multiple resource methods
	Customizing the selection process

	CHAPTER 46. PASSING INFORMATION INTO RESOURCE CLASSES AND METHODS
	46.1. BASICS OF INJECTING DATA
	Overview
	When data is injected
	Supported data types

	46.2. USING JAX-RS APIS
	46.2.1. Injecting data from a request URI
	Overview
	Getting data from the URI's path
	Using query parameters
	Using matrix parameters
	Disabling URI decoding
	Error handling

	46.2.2. Injecting data from the HTTP message header
	Overview
	Injecting information from the HTTP headers
	Injecting information from a cookie
	Error handling

	46.2.3. Injecting data from HTML forms
	Overview
	Using the @FormParam annotation to inject form data
	Example

	46.2.4. Specifying a default value to inject
	Overview
	Syntax
	Dealing with lists and sets
	Example

	46.3. USING APACHE CXF EXTENSIONS
	Overview
	Supported injection annotations
	Syntax
	Example

	CHAPTER 47. RETURNING INFORMATION TO THE CONSUMER
	47.1. RETURNING PLAIN JAVA CONSTRUCTS
	Overview
	Returnable types
	MIME types
	Response codes

	47.2. FINE TUNING AN APPLICATION'S RESPONSES
	47.2.1. Basics of building responses
	Overview
	Relationship between a response and a response builder
	Getting a response builder
	More information

	47.2.2. Creating responses for common use cases
	Overview
	Creating responses for successful requests
	Creating responses for redirection
	Creating responses to signal errors

	47.2.3. Handling more advanced responses
	Overview
	Adding custom headers
	Adding a cookie
	Setting the response status
	Setting cache control directives

	47.3. RETURNING ENTITIES WITH GENERIC TYPE INFORMATION
	Overview
	Using a GenericEntity<T> object
	Creating a GenericEntity<T> object

	CHAPTER 48. HANDLING EXCEPTIONS
	48.1. USING WEBAPPLICAITONEXCEPTION EXCEPTIONS TO REPORT ERRORS
	Overview
	Creating a simple exception
	Setting the status code returned to the client
	Providing an entity body
	Extending the generic exception

	48.2. MAPPING EXCEPTIONS TO RESPONSES
	Overview
	How exception mappers are selected
	Implementing an exception mapper
	Registering an exception mapper

	CHAPTER 49. ENTITY SUPPORT
	OVERVIEW
	NATIVELY SUPPORTED TYPES
	CUSTOM READERS
	CUSTOM WRITERS
	REGISTERING READERS AND WRITERS

	CHAPTER 50. GETTING AND USING CONTEXT INFORMATION
	50.1. INTRODUCTION TO CONTEXTS
	Context annotation
	Types of contexts
	Where context information can be used
	Scope
	Adding contexts

	50.2. WORKING WITH THE FULL REQUEST URI
	50.2.1. Injecting the URI information
	Overview
	Example

	50.2.2. Working with the URI
	Overview
	Getting the Base URI
	Getting the path
	Getting the full request URI

	50.2.3. Getting the value of URI template variables
	Overview
	Methods for getting the path parameters
	Example

	CHAPTER 51. ANNOTATION INHERITANCE
	OVERVIEW
	INHERITANCE RULES
	OVERRIDING INHERITED ANNOTATIONS

	PART VII. DEVELOPING APACHE CXF INTERCEPTORS
	CHAPTER 52. INTERCEPTORS IN THE APACHE CXF RUNTIME
	OVERVIEW
	MESSAGE PROCESSING IN APACHE CXF
	INTERCEPTORS
	PHASES
	INTERCEPTOR CHAINS
	DEVELOPING INTERCEPTORS

	CHAPTER 53. THE INTERCEPTOR APIS
	INTERFACES
	ABSTRACT INTERCEPTOR CLASS

	CHAPTER 54. DETERMINING WHEN THE INTERCEPTOR IS INVOKED
	54.1. SPECIFYING AN INTERCEPTOR'S PHASE
	Overview
	Phase
	Specifying a phase
	Setting the phase

	54.2. CONSTRAINING AN INTERCEPTORS PLACEMENT IN A PHASE
	Overview
	Add to the chain before
	Add to the chain after

	CHAPTER 55. IMPLEMENTING THE INTERCEPTORS PROCESSING LOGIC
	55.1. PROCESSING MESSAGES
	Overview
	Getting the message contents
	Determining the message's direction
	Example

	55.2. UNWINDING AFTER AN ERROR
	Overview
	Getting the message payload
	Example

	CHAPTER 56. CONFIGURING ENDPOINTS TO USE INTERCEPTORS
	56.1. DECIDING WHERE TO ATTACH INTERCEPTORS
	Overview
	Endpoints and proxies
	Factories
	Bindings
	Buses
	Combining attachment points

	56.2. ADDING INTERCEPTORS USING CONFIGURATION
	Overview
	Configuration elements
	Examples
	More information

	56.3. ADDING INTERCEPTORS PROGRAMMATICALLY
	56.3.1. Using the interceptor provider API
	Overview
	Procedure
	Attaching an interceptor to a consumer
	Attaching an interceptor to a service provider
	Attaching an interceptor to a bus

	56.3.2. Using Java annotations
	Overview
	Where to place the annotations
	The annotations
	Listing the interceptors
	Example

	CHAPTER 57. MANIPULATING INTERCEPTOR CHAINS ON THE FLY
	OVERVIEW
	CHAIN LIFE-CYCLE
	GETTING THE INTERCEPTOR CHAIN
	ADDING INTERCEPTORS
	REMOVING INTERCEPTORS

	APPENDIX F. APACHE CXF MESSAGE PROCESSING PHASES
	INBOUND PHASES
	OUTBOUND PHASES

	APPENDIX G. APACHE CXF PROVIDED INTERCEPTORS
	G.1. CORE APACHE CXF INTERCEPTORS
	Inbound
	Outbound

	G.2. FRONT-ENDS
	JAX-WS
	JAX-RS

	G.3. MESSAGE BINDINGS
	SOAP
	XML
	CORBA

	G.4. OTHER FEATURES
	Logging
	WS-Addressing
	WS-RM

	APPENDIX H. INTERCEPTOR PROVIDERS
	OVERVIEW
	LIST OF PROVIDERS

	INDEX

