
Red Hat JBoss Enterprise Application
Platform 7.4-Beta

Performance Tuning Guide

Instructions for evaluating Red Hat JBoss Enterprise Application Platform
performance, and for configuring updates to improve performance.

Last Updated: 2021-03-30

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance
Tuning Guide

Instructions for evaluating Red Hat JBoss Enterprise Application Platform performance, and for
configuring updates to improve performance.

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is a guide of performance tuning for Red Hat JBoss Enterprise Application Platform.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. INTRODUCTION
1.1. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

CHAPTER 2. MONITORING PERFORMANCE
2.1. CONFIGURING JBOSS EAP FOR REMOTE MONITORING CONNECTIONS
2.2. JCONSOLE

2.2.1. Connecting to a Local JBoss EAP JVM Using JConsole
2.2.2. Connecting to a Remote JBoss EAP JVM Using JConsole

2.3. JAVA VISUALVM
2.3.1. Connecting to a Local JBoss EAP JVM Using VisualVM
2.3.2. Connecting to a Remote JBoss EAP JVM Using VisualVM

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES
3.1. ENABLING GARBAGE COLLECTION LOGGING
3.2. JAVA HEAP DUMPS

3.2.1. Creating a Heap Dump
3.2.1.1. OpenJDK and Oracle JDK
3.2.1.2. IBM JDK

3.2.2. Analyzing a Heap Dump
3.3. IDENTIFYING HIGH CPU UTILIZATION BY JAVA THREADS

CHAPTER 4. JVM TUNING
4.1. SETTING A FIXED HEAP SIZE
4.2. CONFIGURING THE GARBAGE COLLECTOR

Garbage Collection Logging Options
4.3. ENABLING LARGE PAGES
4.4. ENABLING AGGRESSIVE OPTIMIZATIONS
4.5. SETTING ULIMITS
4.6. HOST CONTROLLER AND PROCESS CONTROLLER JVM TUNING

CHAPTER 5. EJB SUBSYSTEM TUNING
5.1. BEAN INSTANCE POOLS

5.1.1. Creating a Bean Instance Pool
5.1.2. Specifying the Instance Pool a Bean Should Use
5.1.3. Disabling the Default Bean Instance Pool

5.2. BEAN THREAD POOLS
5.2.1. Creating a Bean Thread Pool
5.2.2. Configuring EJB Services to Use a Specific Bean Thread Pool

5.3. EXCEPTIONS THAT INDICATE EJB SUBSYSTEM TUNING MIGHT BE REQUIRED

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING
6.1. MONITORING POOL STATISTICS

6.1.1. Datasource Statistics
6.1.1.1. Enabling Datasource Statistics

Enable Datasource Statistics Using the Management CLI
Enable Datasource Statistics Using the Management Console

6.1.1.2. Viewing Datasource Statistics
View Datasource Statistics Using the Management CLI
View Datasource Statistics Using the Management Console

6.1.2. Resource Adapter Statistics
Enable Resource Adapter Statistics
View Resource Adapter Statistics

4
4

5
5
6
7
8
9

10
11

13
13
13
13
13
14
14
15

16
16
16
16
16
17
18
19

20
20
20
21
21
21
22
22
22

24
24
24
24
24
24
25
25
26
26
26
26

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

6.2. POOL ATTRIBUTES
6.3. CONFIGURING POOL ATTRIBUTES

6.3.1. Configuring Datasource Pool Attributes
6.3.2. Configuring Resource Adapter Pool Attributes

CHAPTER 7. MESSAGING SUBSYSTEM TUNING

CHAPTER 8. LOGGING SUBSYSTEM TUNING
8.1. DISABLING LOGGING TO THE CONSOLE
8.2. CONFIGURING LOGGING LEVELS
8.3. CONFIGURING THE LOCATION OF LOG FILES

CHAPTER 9. UNDERTOW SUBSYSTEM TUNING
9.1. BUFFER CACHES
9.2. CONFIGURING BYTE BUFFER POOLS
9.3. JSP CONFIGURATION
9.4. LISTENERS

CHAPTER 10. IO SUBSYSTEM TUNING
10.1. CONFIGURING WORKERS

10.1.1. Monitoring Worker Statistics
10.2. CONFIGURING BUFFER POOLS

CHAPTER 11. JGROUPS SUBSYSTEM TUNING
11.1. MONITORING JGROUPS STATISTICS
11.2. NETWORKING AND JUMBO FRAMES
11.3. MESSAGE BUNDLING
11.4. JGROUPS THREAD POOLS
11.5. JGROUPS SEND AND RECEIVE BUFFERS

CHAPTER 12. TRANSACTIONS SUBSYSTEM TUNING

APPENDIX A. REFERENCE MATERIAL
A.1. DATASOURCE STATISTICS
A.2. RESOURCE ADAPTER STATISTICS
A.3. IO SUBSYSTEM ATTRIBUTES

27
28
28
29

30

31
31
31
31

32
32
32
33
33

35
35
35
35

37
37
38
38
39
39

40

41
41

44
44

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

2

Table of Contents

3

CHAPTER 1. INTRODUCTION
A JBoss EAP installation is optimized by default. However, configurations to your environment,
applications, and use of JBoss EAP subsystems can impact performance, meaning additional
configuration might be needed.

This guide provides optimization recommendations for common JBoss EAP use cases, as well as
instructions for monitoring performance and diagnosing performance issues.

IMPORTANT

You should stress test and verify all performance configuration changes under
anticipated conditions in a development or testing environment prior to deploying them
to production.

1.1. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

In this document, the variable EAP_HOME is used to denote the path to the JBoss EAP installation.
Replace this variable with the actual path to your JBoss EAP installation.

If you installed JBoss EAP using the ZIP install method, the install directory is the jboss-eap-7.4
directory where you extracted the ZIP archive.

If you installed JBoss EAP using the RPM install method, the install directory is
/opt/rh/eap7/root/usr/share/wildfly/.

If you used the installer to install JBoss EAP, the default path for EAP_HOME is
${user.home}/EAP-7.4.0:

For Red Hat Enterprise Linux and Solaris: /home/USER_NAME/EAP-7.4.0/

For Microsoft Windows: C:\Users\USER_NAME\EAP-7.4.0\

If you used the Red Hat CodeReady Studio installer to install and configure the JBoss EAP
server, the default path for EAP_HOME is ${user.home}/devstudio/runtimes/jboss-eap:

For Red Hat Enterprise Linux: /home/USER_NAME/devstudio/runtimes/jboss-eap/

For Microsoft Windows: C:\Users\USER_NAME\devstudio\runtimes\jboss-eap or
C:\Documents and Settings\USER_NAME\devstudio\runtimes\jboss-eap\

NOTE

EAP_HOME is not an environment variable. JBOSS_HOME is the environment variable
used in scripts.

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

4

CHAPTER 2. MONITORING PERFORMANCE
You can monitor JBoss EAP performance using any tool that can examine JVMs running on your
machine. Red Hat recommends that you use either JConsole, for which JBoss EAP includes a
preconfigured wrapper script, or Java VisualVM. Both these tools provide basic monitoring of JVM
processes, including memory usage, thread utilization, loaded classes, and other JVM metrics.

If you will be running one of these tools locally on the same machine that JBoss EAP is running on, then
no configuration is necessary. However, if you will be running one of these tools to monitor JBoss EAP
running on a remote machine, then some configuration is required for JBoss EAP to accept remote
JMX connections.

2.1. CONFIGURING JBOSS EAP FOR REMOTE MONITORING
CONNECTIONS

For a Standalone Server

1. Ensure that you have created a management user. You might want to create a separate
management user to monitor your JBoss EAP server. See the JBoss EAP Configuration Guide
for details.

2. When starting JBoss EAP, bind the management interface to the IP address that you will use to
remotely monitor the server:

$ EAP_HOME/bin/standalone.sh -bmanagement=IP_ADDRESS

WARNING

This exposes all the JBoss EAP management interfaces, including the
management console and management CLI, to the specified network.
Ensure that you only bind the management interface to a private network.

3. Use the following URI with your management user name and password in your JVM monitoring
tool to connect to the JBoss EAP server. The URI below uses the default management port
(9990).

service:jmx:remote+http://IP_ADDRESS:9990

For a Managed Domain Host

Using the above procedure of binding the management interface on a managed domain host will only
expose the host controller JVM for remote monitoring, and not the individual JBoss EAP servers
running on that host.

To configure JBoss EAP to remotely monitor individual servers on a managed domain host, follow the
procedure below.

1. Create a new user in the ApplicationRealm that you will use to connect to the JBoss EAP
servers for remote monitoring. See the JBoss EAP Configuration Guide for details.

CHAPTER 2. MONITORING PERFORMANCE

5

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#management_users
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#management_users

2. In the management CLI, run the following commands to add a remoting port to the socket
binding group, and add remoting to the ApplicationRealm. If necessary, replace the profile
name and socket binding group in the following commands with the ones that you are using.

/profile=full/subsystem=jmx/remoting-connector=jmx:add(use-management-endpoint=false)
/socket-binding-group=full-sockets/socket-binding=remoting:add(port=4447)
/profile=full/subsystem=remoting/connector=remoting-connector:add(socket-
binding=remoting,security-realm=ApplicationRealm)

3. When starting your JBoss EAP managed domain host, bind one or both of the following
interfaces to an IP address that you will use for monitoring.

If you want to connect to individual JBoss EAP server JVMs running on your managed
domain host, bind the public interface:

$ EAP_HOME/bin/domain.sh -b=IP_ADDRESS

If you want to connect to the JBoss EAP host controller JVM, also bind the management
interface:

$ EAP_HOME/bin/domain.sh -bmanagement=IP_ADDRESS

WARNING

This exposes all the JBoss EAP management interfaces, including the
management console and management CLI, to the specified network.
Ensure that you only bind the management interface to a private
network.

4. Use the following details in your JVM monitoring tool:

To connect to individual JBoss EAP server JVMs running on your managed domain host,
use the following URI with your ApplicationRealm user name and password that was
created earlier.

service:jmx:remote://IP_ADDRESS:4447

To connect to different JBoss EAP servers on a single host, add the respective server’s port
offset value to the above port number.

To connect to the JBoss EAP host controller JVM, use the following URI with a
management user name and password.

service:jmx:remote://IP_ADDRESS:9990

2.2. JCONSOLE

A preconfigured JConsole wrapper script is bundled with JBoss EAP. Using this wrapper script ensures

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

6

A preconfigured JConsole wrapper script is bundled with JBoss EAP. Using this wrapper script ensures
that all the required libraries are added to the class path, and also provides access to the JBoss EAP
management CLI from within JConsole.

2.2.1. Connecting to a Local JBoss EAP JVM Using JConsole

To connect to a JBoss EAP JVM running on the same machine as JConsole:

1. Run the jconsole script in EAP_HOME/bin.

2. Under Local Process, select the JBoss EAP JVM process that to want to monitor.

For a standalone JBoss EAP server, there is one JBoss EAP JVM process.

Figure 2.1. JConsole Local Standalone JBoss EAP Server JVM

A JBoss EAP managed domain host has multiple JVM processes you can connect to: a host
controller JVM process, a process controller JVM process, and a JVM process for each
JBoss EAP server on the host. You can determine which JVM you have connected to by

CHAPTER 2. MONITORING PERFORMANCE

7

looking at the JVM arguments.

Figure 2.2. JConsole Local Managed Domain JBoss EAP JVMs

3. Click Connect.

2.2.2. Connecting to a Remote JBoss EAP JVM Using JConsole

Prerequisites

Configure JBoss EAP for remote monitoring connections .

Download and extract a ZIP installation of JBoss EAP to your local machine. See the JBoss EAP
Installation Guide for details.

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

8

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/installation_guide/#downloading_zip_installation

1. Run the jconsole script in EAP_HOME/bin.

2. Under Remote Process, insert the URI for the remote JBoss EAP JVM process that to want to
monitor.
See the instructions on configuring JBoss EAP for remote monitoring connections for the URI
to use.

Figure 2.3. JConsole Remote JBoss EAP JVM

3. Ensure that you provide the user name and password for the monitoring connection.

4. Click Connect.

2.3. JAVA VISUALVM

Java VisualVM is included with the Oracle JDK, and is located at JAVA_HOME/bin/jvisualvm. If you are
not using the Oracle JDK, VisualVM is also available for download from the VisualVM website. Note that
VisualVM does not work with the IBM JDK.

CHAPTER 2. MONITORING PERFORMANCE

9

https://visualvm.github.io/

The following sections provide instructions for using VisualVM to connect to a local or remote JBoss
EAP JVM. See the VisualVM documentation for other information on using VisualVM.

2.3.1. Connecting to a Local JBoss EAP JVM Using VisualVM

To connect to a JBoss EAP JVM running on the same machine as VisualVM:

1. Open VisualVM, and find the Applications pane on the left side of the VisualVM window.

2. Under Local, double-click the JBoss EAP JVM process that you want to monitor.

For a standalone JBoss EAP server, there is one JBoss EAP JVM process.

Figure 2.4. VisualVM Local Standalone JBoss EAP Server JVM

A JBoss EAP managed domain host has multiple JVM processes you can connect to: a host
controller JVM process, a process controller JVM process, and a JVM process for each
JBoss EAP server on the host. You can determine which JVM you have connected to by
looking at the JVM arguments.

Figure 2.5. VisualVM Local Managed Domain JBoss EAP JVMs

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

10

https://docs.oracle.com/javase/8/docs/technotes/guides/visualvm/

Figure 2.5. VisualVM Local Managed Domain JBoss EAP JVMs

2.3.2. Connecting to a Remote JBoss EAP JVM Using VisualVM

Prerequisites

Configure JBoss EAP for remote monitoring connections .

Download and extract a ZIP installation of JBoss EAP to your local machine. See the JBoss EAP
Installation Guide for details.

1. You must add the required JBoss EAP libraries to your class path to remotely monitor a JBoss
EAP JVM. Start VisualVM with the arguments for required libraries on your local machine. For
example:

$ visualvm -cp:a EAP_HOME/bin/client/jboss-cli-client.jar -J-
Dmodule.path=EAP_HOME/modules

2. In the File menu, select Add JMX Connection.

3. Complete the details for your remote JBoss EAP JVM:

In the Connection field, insert the URI for the remote JBoss EAP JVM process that to want
to monitor. See the instructions on configuring JBoss EAP for remote monitoring
connections for the URI to use.

Select the Use security credentials check box, and enter the user name and password for
the monitoring connection.

If you are not using an SSL connection, select the Do not require SSL connection check

CHAPTER 2. MONITORING PERFORMANCE

11

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/installation_guide/#downloading_zip_installation

If you are not using an SSL connection, select the Do not require SSL connection check
box.

Figure 2.6. VisualVM Remote JBoss EAP JVM

4. Click OK.

5. In the Applications pane on the left side of the VisualVM window, double-click on the JMX item
under the remote host to open the monitoring connection.

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

12

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES

3.1. ENABLING GARBAGE COLLECTION LOGGING

Examining garbage collection logs can be useful when attempting to troubleshoot Java performance
issues, especially those related to memory usage.

Other than some additional disk I/O activity for writing the log files, enabling garbage collection logging
does not significantly affect server performance.

Garbage collection logging is already enabled by default for a standalone JBoss EAP server running on
OpenJDK or Oracle JDK. For a JBoss EAP managed domain, garbage collection logging can be enabled
for the host controller, process controller, or individual JBoss EAP servers.

1. Get the correct JVM options for enabling garbage collection logging for your JDK. Replace the
path in the options below to where you want the log to be created.

NOTE

The Red Hat Customer Portal has a JVM Options Configuration Tool that can
help you generate optimal JVM settings.

For OpenJDK or Oracle JDK:

-verbose:gc -Xloggc:/path/to/gc.log -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -
XX:+PrintGCApplicationStoppedTime

For IBM JDK:

-verbose:gc -Xverbosegclog:/path/to/gc.log

2. Apply the garbage collection JVM options to your JBoss EAP server.
See the JBoss EAP Configuration Guide for instructions on how to apply JVM options to a
standalone server or servers in a managed domain .

3.2. JAVA HEAP DUMPS

A Java heap dump is a snapshot of a JVM heap created at a certain point in time. Creating and analyzing
heap dumps can be useful for diagnosing and troubleshooting issues with Java applications.

Depending on which JDK you are using, there are different ways of creating and analyzing a Java heap
dump for a JBoss EAP process. This section covers common methods for Oracle JDK, OpenJDK, and
IBM JDK.

3.2.1. Creating a Heap Dump

3.2.1.1. OpenJDK and Oracle JDK

Create an On-Demand Heap Dump

You can use the jcmd command to create an on-demand heap dump for JBoss EAP running on
OpenJDK or Oracle JDK.

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES

13

https://access.redhat.com/labs/jvmconfig/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#jvm_settings_standalone_server
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#jvm_settings_managed_domain

1. Determine the process ID of the JVM that you want to create a heap dump from.

2. Create the heap dump with the following command:

$ jcmd JAVA_PID GC.heap_dump -all=true FILENAME.hprof

This creates a heap dump file in the HPROF format, usually located in EAP_HOME or
EAP_HOME/bin. Alternatively, you can specify a file path to another directory.

Create a Heap Dump Automatically on OutOfMemoryError

You can use the -XX:+HeapDumpOnOutOfMemoryError JVM option to automatically create a heap
dump when an OutOfMemoryError exception is thrown.

This creates a heap dump file in the HPROF format, usually located in EAP_HOME or EAP_HOME/bin.
Alternatively, you can set a custom path for the heap dump using -XX:HeapDumpPath=/path/. If you
specify a file name using -XX:HeapDumpPath, for example, -
XX:HeapDumpPath=/path/filename.hprof, the heap dumps will overwrite each other.

See the JBoss EAP Configuration Guide for instructions on how to apply JVM options to a standalone
server or servers in a managed domain .

3.2.1.2. IBM JDK

When using the IBM JDK, heap dumps are automatically generated when an OutOfMemoryError is
thrown.

Heap dumps from the IBM JDK are saved in the /tmp/ directory as a portable heap dump (PHD)
formatted file.

3.2.2. Analyzing a Heap Dump

Heap Dump Analysis Tools

There are many tools that can analyze heap dump files and help identify issues. Red Hat Support
recommends using the Eclipse Memory Analyzer tool (MAT) , which can analyze heap dumps formatted
in either HPROF or PHD formats.

For information on using Eclipse MAT, see the Eclipse MAT documentation .

Heap Dump Analysis Tips

Sometimes the cause of the heap performance issues are obvious, but other times you may need an
understanding of your application’s code and the specific circumstances that cause issues like an
OutOfMemoryError. This can help to identify whether an issue is a memory leak, or if the heap is just not
large enough.

Some suggestions for identifying memory usage issues include:

If a single object is not found to be consuming too much memory, try grouping by class to see if
many small objects are consuming a lot of memory.

Check if the biggest usage of memory is a thread. A good indicator of this is if the
OutOfMemoryError-triggered heap dump is much smaller than the specified Xmx maximum
heap size.

A technique to make memory leaks more detectable is to temporarily double the normal

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

14

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#jvm_settings_standalone_server
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#jvm_settings_managed_domain
https://www.eclipse.org/mat/
https://www.eclipse.org/mat/documentation/

A technique to make memory leaks more detectable is to temporarily double the normal
maximum heap size. When an OutOfMemoryError occurs, the size of the objects related to the
memory leak will be about half the size of the heap.

When the source of a memory issue is identified, you can view the paths from garbage collection roots to
see what is keeping the objects alive.

3.3. IDENTIFYING HIGH CPU UTILIZATION BY JAVA THREADS

NOTE

For customers using JBoss EAP on Red Hat Enterprise Linux or Solaris, the JVMPeg lab
tool on the Red Hat Customer Portal helps collect and analyze Java thread information to
identify high CPU utilization. Follow the instructions for using the JVMPeg lab tool
instead of using the following procedure.

For OpenJDK and Oracle JDK environments, Java thread diagnostic information is available using the
jstack utility.

1. Identify the process ID of the Java process that is utilizing a high percentage of the CPU.
It can also be useful to obtain per-thread CPU data on high-usage processes. This can be done
using the top -H command on Red Hat Enterprise Linux systems.

2. Using the jstack utility, create a stack dump of the Java process. For example, on Linux and
Solaris:

jstack -l JAVA_PROCESS_ID > high-cpu-tdump.out

You might need to create multiple dumps at intervals to see any changes or trends over a
period of time.

3. Analyze the stack dumps. You can use a tool such as the Thread Dump Analyzer (TDA) .

CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES

15

https://access.redhat.com/labs/jvmpeg/
https://access.redhat.com/labsinfo/jvmpeg
https://github.com/irockel/tda

CHAPTER 4. JVM TUNING
Configuring optimal JVM options for your applications and JBoss EAP environment is one of the most
fundamental ways to tune performance. This chapter covers configuring some general JVM options.

NOTE

Many of the JVM options listed in this chapter can be easily generated using the JVM
Options Configuration Tool on the Red Hat Customer Portal.

See the JBoss EAP Configuration Guide for instructions on how to apply JVM options to a standalone
server or servers in a managed domain .

4.1. SETTING A FIXED HEAP SIZE

You must set an appropriate heap size to prevent out of memory errors.

The -Xms option sets the initial heap size, and -Xmx sets the maximum heap size. It is recommended for
production environments that you set the initial and maximum heap size options to the same size, so
that the heap size is fixed and pre-allocated.

For example, the following options set a 2048 MB heap size:

-Xms2048M -Xmx2048M

It is recommended that you test your applications under load in a development environment to
determine the maximum memory usage. Your production heap size should be at least 25% higher than
the tested maximum to allow room for overhead.

4.2. CONFIGURING THE GARBAGE COLLECTOR

Although the parallel garbage collector, also known as the throughput garbage collector, is the default
garbage collector in Java 8 for server-class machines, Red Hat recommends using the G1 garbage
collector, which is expected to be the default from Java 9 onward. The G1 garbage collector generally
performs better than the CMS and parallel garbage collectors in most scenarios.

To enable the G1 collector, use the following JVM option:

-XX:+UseG1GC

Garbage Collection Logging Options
Garbage collection logging is enabled by default for standalone JBoss EAP servers. To enable garbage
collection logging for a JBoss EAP managed domain, see Section 3.1, “Enabling Garbage Collection
Logging”.

4.3. ENABLING LARGE PAGES

Enabling large pages for JBoss EAP JVMs results in pages that are locked in memory and cannot be
swapped to disk like regular memory.

Especially for memory-intensive applications, the advantage of using large pages is that the heap
cannot be paged or swapped to disk, and is thus always readily available.

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

16

https://access.redhat.com/labs/jvmconfig/
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#jvm_settings_standalone_server
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#jvm_settings_managed_domain
https://docs.oracle.com/javase/8/docs/technotes/guides/vm/gctuning/ergonomics.html#ergonomics

One disadvantage of using large pages is that other processes running on the system might not have
quick access to memory, which might result in excessive paging for these processes.

As with any other performance configuration change, it is recommended that you test the impact of the
change in a testing environment.

1. You must ensure that your operating system configuration allows for processes to use large
pages.

For Red Hat Enterprise Linux systems, you must explicitly configure HugeTLB pages to
guarantee that JBoss EAP processes will have access to large pages.
For information on configuring Red Hat Enterprise Linux memory options, see the Memory
chapter in the Red Hat Enterprise Linux Performance Tuning Guide.

For Windows Server systems, the user that is running JBoss EAP must have the large pages
privilege assigned:

1. Select Control Panel → Administrative Tools → Local Security Policy.

2. Select Local Policies → User Rights Assignment.

3. Double-click Lock pages in memory.

4. Add the Windows Server users and user groups that you want to use large pages.

5. Restart the machine.

2. Enable or disable large page support:

To explicitly enable large page support for JBoss EAP JVMs, use the following JVM option:

-XX:+UseLargePages

To explicitly disable large page support for JBoss EAP JVMs, use the following JVM option:

-XX:-UseLargePages

3. When starting JBoss EAP, ensure that there are no warnings related to reserving memory.

On Red Hat Enterprise Linux, an error might look like:

OpenJDK 64-Bit Server VM warning: Failed to reserve shared memory. (error = 1)

On Windows Server, an error might look like:

Java HotSpot(TM) 64-Bit Server VM warning: JVM cannot use large page memory
because it does not have enough privilege to lock pages in memory.

If you do see warnings, verify that your operating system configuration and JVM options are
configured correctly.

For more information, see the Oracle documentation on Java support for large pages .

4.4. ENABLING AGGRESSIVE OPTIMIZATIONS

Using the aggressive optimizations (AggressiveOpts) JVM option can provide performance

CHAPTER 4. JVM TUNING

17

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Performance_Tuning_Guide/index.html#sect-Red_Hat_Enterprise_Linux-Performance_Tuning_Guide-Considerations-Page_size
http://www.oracle.com/technetwork/java/javase/tech/largememory-jsp-137182.html

Using the aggressive optimizations (AggressiveOpts) JVM option can provide performance
improvements for your environment. This option enables Java performance optimization features that
are expected to become default in future Java releases.

To enable AggressiveOpts, use the following JVM option:

-XX:+AggressiveOpts

4.5. SETTING ULIMITS

For Red Hat Enterprise Linux and Solaris platforms, you must configure appropriate ulimit values for
JBoss EAP JVM processes. The "soft" ulimit can be temporarily exceeded, while the "hard" ulimit is the
strict ceiling for the usage of a resource. Appropriate ulimit values vary depending on your environment
and applications.

IMPORTANT

If you are using IBM JDK, it is important to note that IBM JDK uses the soft limit for the
maximum number of open files used by a JVM process. On Red Hat Enterprise Linux, the
default soft limit (1024) is considered too low for JBoss EAP processes using IBM JDK.

If the limits applied to JBoss EAP processes are too low, you will see a warning like the following when
starting JBoss EAP:

WARN [org.jboss.as.warn.fd-limit] (main) WFLYSRV0071: The operating system has limited the
number of open files to 1024 for this process; a value of at least 4096 is recommended.

To see your current ulimit values, use the following commands:

For soft ulimit values:

ulimit -Sa

For hard ulimit values:

ulimit -Ha

To set the ulimit for the maximum number of open files, use the following commands with the number
you want to apply:

To set the soft ulimit for the maximum number of open files:

ulimit -Sn 4096

To set the hard ulimit for the maximum number of open files:

ulimit -Hn 4096

NOTE

To guarantee that a ulimit setting is effective, it is recommended on production systems
to set the soft and hard limits to the same value.

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

18

For more information on setting ulimit values using a configuration file, see How to set ulimit values on
the Customer Portal.

4.6. HOST CONTROLLER AND PROCESS CONTROLLER JVM TUNING

JBoss EAP managed domain hosts have separate JVMs for the host controller and process controller.
See the JBoss EAP Configuration Guide for more information on the roles of host controllers and
process controllers.

You can tune the host controller and process controller JVM settings, but even for large managed
domain environments, the default JVM configuration for the host controller and process controller
should suffice.

The default configurations for host controller and process controller JVMs have been tested with a
managed domain size of up to 20 JBoss EAP hosts each running 10 JBoss EAP servers, for a total
domain size of 200 JBoss EAP servers.

If you experience issues with larger managed domains, you might need to monitor the host controller or
process controller JVMs in your environment to determine appropriate values for JVM options such as
heap size.

CHAPTER 4. JVM TUNING

19

https://access.redhat.com/solutions/61334
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#about_host_controllers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#process_controllers

CHAPTER 5. EJB SUBSYSTEM TUNING
JBoss EAP can cache Jakarta Enterprise Beans to save initialization time. This is accomplished using
bean pools.

There are two different bean pools that can be tuned in JBoss EAP: bean instance pools and bean
thread pools.

Appropriate bean pool sizes depend on your environment and applications. It is recommended that you
experiment with different bean pool sizes and perform stress testing in a development environment
that emulates your expected real-world conditions.

5.1. BEAN INSTANCE POOLS

Bean instance pools are used for Stateless Session Beans (SLSBs) and Message Driven Beans (MDBs).
By default, SLSBs use the instance pool default-slsb-instance-pool, and MDBs use the instance pool
default-mdb-instance-pool.

The size of a bean instance pool limits the number of instances of a particular EJB that can be created
at one time. If the pool for a particular EJB is full, the client will block and wait for an instance to become
available. If a client does not get an instance within the time set in the pool’s timeout attributes, an
exception is thrown.

The size of a bean instance pool is configured using either derive-size or max-pool-size. The derive-
size attribute allows you to configure the pool size using one of the following values:

from-worker-pools, which indicates that the maximum pool size is derived from the size of the
total threads for all worker pools configured on the system.

from-cpu-count, which indicates that the maximum pool size is derived from the total number of
processors available on the system. Note that this is not necessarily a 1:1 mapping, and might be
augmented by other factors.

If derive-size is undefined, then the value of max-pool-size is used for the size of the bean instance
pool.

NOTE

The derive-size attribute overrides any value specified in max-pool-size. derive-size
must be undefined for the max-pool-size value to take effect.

You can configure an EJB to use a specific instance pool. This allows for finer control of the instances
available to each EJB type.

5.1.1. Creating a Bean Instance Pool

This section shows you how to create a new bean instance pool using the management CLI. You can also
configure bean instance pools using the management console by navigating to the EJB subsystem from
the Configuration tab, and then selecting the Bean Pool tab.

To create a new instance pool, use one of the following commands:

To create a bean instance pool with a derived maximum pool size:

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

20

/subsystem=ejb3/strict-max-bean-instance-pool=POOL_NAME:add(derive-
size=DERIVE_OPTION,timeout-unit=TIMEOUT_UNIT,timeout=TIMEOUT_VALUE)

The following example creates a bean instance pool named my_derived_pool with a maximum
size derived from the CPU count, and a timeout of 2 minutes:

/subsystem=ejb3/strict-max-bean-instance-pool=my_derived_pool:add(derive-size=from-cpu-
count,timeout-unit=MINUTES,timeout=2)

To create a bean instance pool with an explicit maximum pool size:

/subsystem=ejb3/strict-max-bean-instance-pool=POOL_NAME:add(max-pool-
size=POOL_SIZE,timeout-unit=TIMEOUT_UNIT,timeout=TIMEOUT_VALUE)

The following example creates a bean instance pool named my_pool with a maximum of 30
instances and a timeout of 30 seconds:

/subsystem=ejb3/strict-max-bean-instance-pool=my_pool:add(max-pool-size=30,timeout-
unit=SECONDS,timeout=30)

5.1.2. Specifying the Instance Pool a Bean Should Use

You can set a specific instance pool that a particular bean will use either by using the
@org.jboss.ejb3.annotation.Pool annotation, or by modifying the jboss-ejb3.xml deployment
descriptor of the bean. See the jboss-ejb3.xml Deployment Descriptor Reference in Developing EJB
Applications for more information.

5.1.3. Disabling the Default Bean Instance Pool

The default bean instance pool can be disabled, which results in EJBs not using any instance pool by
default. Instead, a new EJB instance is created when a thread needs to invoke a method on an EJB. This
might be useful if you do not want any limit on the number of EJB instances that are created.

To disable the default bean instance pool, use the following management CLI command:

/subsystem=ejb3:undefine-attribute(name=default-slsb-instance-pool)

NOTE

If a bean is configured to use a particular bean instance pool , disabling the default
instance pool does not affect the pool that the bean uses.

5.2. BEAN THREAD POOLS

By default, a bean thread pool named default is used for asynchronous EJB calls and EJB timers.

NOTE

From JBoss EAP 7 onward, remote EJB requests are handled in the worker defined in the
io subsystem by default.

CHAPTER 5. EJB SUBSYSTEM TUNING

21

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/developing_ejb_applications/#jboss_ejb3_xml_deployment_descriptor_reference

If required, you can configure each of these EJB services to use a different bean thread pool. This can
be useful if you want finer control of each service’s access to a bean thread pool.

When determining an appropriate thread pool size, consider how many concurrent requests you expect
will be processed at once.

5.2.1. Creating a Bean Thread Pool

This section shows you how to create a new bean thread pool using the management CLI. You can also
configure bean thread pools using the management console by navigating to the EJB subsystem from
the Configuration tab and selecting Container → Thread Pool in the left menu.

To create a new thread pool, use the following command:

/subsystem=ejb3/thread-pool=POOL_NAME:add(max-threads=MAX_THREADS)

The following example creates a bean thread pool named my_thread_pool with a maximum of 30
threads:

/subsystem=ejb3/thread-pool=my_thread_pool:add(max-threads=30)

5.2.2. Configuring EJB Services to Use a Specific Bean Thread Pool

The EJB3 asynchronous invocation service and timer service can each be configured to use a specific
bean thread pool. By default, both these services use the default bean thread pool.

This section shows you how to configure the above EJB services to use a specific bean thread pool using
the management CLI. You can also configure these services using the management console by
navigating to the EJB subsystem from the Configuration tab, selecting the Services tab, and choosing
the appropriate service.

To configure an EJB service to use a specific bean thread pool, use the following command:

/subsystem=ejb3/service=SERVICE_NAME:write-attribute(name=thread-pool-
name,value=THREAD_POOL_NAME)

Replace SERVICE_NAME with the EJB service you want to configure:

async for the EJB3 asynchronous invocation service

timer-service for the EJB3 timer service

The following example sets the EJB3 async service to use the bean thread pool named
my_thread_pool:

/subsystem=ejb3/service=async:write-attribute(name=thread-pool-name,value=my_thread_pool)

5.3. EXCEPTIONS THAT INDICATE EJB SUBSYSTEM TUNING MIGHT
BE REQUIRED

The Stateless EJB instance pool is not large enough or the timeout is too low

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

22

javax.ejb.EJBException: JBAS014516: Failed to acquire a permit within 20 SECONDS
 at org.jboss.as.ejb3.pool.strictmax.StrictMaxPool.get(StrictMaxPool.java:109)

See Bean Instance Pools.

The EJB thread pool is not large enough, or an EJB is taking longer to process than the
invocation timeout

java.util.concurrent.TimeoutException: No invocation response received in 300000
milliseconds

See Bean Thread Pools.

CHAPTER 5. EJB SUBSYSTEM TUNING

23

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER
TUNING

Connection pools are the principal tool that JBoss EAP uses to optimize performance for environments
that use datasources, such as relational databases, or resource adapters.

Allocating and deallocating resources for datasource and resource adapter connections is very
expensive in terms of time and system resources. Connection pooling reduces the cost of connections
by creating a 'pool' of connections that are available to applications.

Before configuring your connection pool for optimal performance, you must monitor the datasource
pool statistics or resource adapter statistics under load to determine the appropriate settings for your
environment.

6.1. MONITORING POOL STATISTICS

6.1.1. Datasource Statistics

When statistics collection is enabled for a datasource, you can view runtime statistics for the datasource.

6.1.1.1. Enabling Datasource Statistics

By default, datasource statistics are not enabled. You can enable datasource statistics collection using
the management CLI or the management console.

Enable Datasource Statistics Using the Management CLI
The following management CLI command enables the collection of statistics for the ExampleDS
datasource.

NOTE

In a managed domain, precede this command with /profile=PROFILE_NAME.

/subsystem=datasources/data-source=ExampleDS:write-attribute(name=statistics-
enabled,value=true)

Reload the server for the changes to take effect.

Enable Datasource Statistics Using the Management Console
Use the following steps to enable statistics collection for a datasource using the management console.

1. Navigate to Configuration → Subsystems → Datasources & Drivers → Datasources.

2. Select the datasource and click View.

3. Click Edit under the Attributes tab.

4. Set the Statistics Enabled field to ON and click Save. A popup appears indicating that the
changes require a reload in order to take effect.

5. Reload the server.

For a standalone server, click the Reload link from the popup to reload the server.

For a managed domain, click the Topology link from the popup. From the Topology tab,

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

24

For a managed domain, click the Topology link from the popup. From the Topology tab,
select the appropriate server and select the Reload drop down option to reload the server.

6.1.1.2. Viewing Datasource Statistics

You can view runtime statistics for a datasource using the management CLI or management console.

View Datasource Statistics Using the Management CLI
The following management CLI command retrieves the core pool statistics for the ExampleDS
datasource.

NOTE

In a managed domain, precede these commands with
/host=HOST_NAME/server=SERVER_NAME.

/subsystem=datasources/data-source=ExampleDS/statistics=pool:read-resource(include-
runtime=true)
{
 "outcome" => "success",
 "result" => {
 "ActiveCount" => 1,
 "AvailableCount" => 20,
 "AverageBlockingTime" => 0L,
 "AverageCreationTime" => 122L,
 "AverageGetTime" => 128L,
 "AveragePoolTime" => 0L,
 "AverageUsageTime" => 0L,
 "BlockingFailureCount" => 0,
 "CreatedCount" => 1,
 "DestroyedCount" => 0,
 "IdleCount" => 1,
 ...
}

The following management CLI command retrieves the JDBC statistics for the ExampleDS datasource.

/subsystem=datasources/data-source=ExampleDS/statistics=jdbc:read-resource(include-
runtime=true)
{
 "outcome" => "success",
 "result" => {
 "PreparedStatementCacheAccessCount" => 0L,
 "PreparedStatementCacheAddCount" => 0L,
 "PreparedStatementCacheCurrentSize" => 0,
 "PreparedStatementCacheDeleteCount" => 0L,
 "PreparedStatementCacheHitCount" => 0L,
 "PreparedStatementCacheMissCount" => 0L,
 "statistics-enabled" => true
 }
}

NOTE

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING

25

NOTE

Since statistics are runtime information, be sure to specify the include-runtime=true
argument.

See Datasource Statistics for a detailed list of all available statistics.

View Datasource Statistics Using the Management Console
To view datasource statistics from the management console, navigate to the Datasources subsystem
from the Runtime tab, select a datasource, and click View.

See Datasource Statistics for a detailed list of all available statistics.

6.1.2. Resource Adapter Statistics

You can view core runtime statistics for deployed resource adapters. See the Resource Adapter
Statistics appendix for a detailed list of all available statistics.

Enable Resource Adapter Statistics
By default, resource adapter statistics are not enabled. The following management CLI command
enables the collection of statistics for a simple resource adapter myRA.rar with a connection factory
bound in JNDI as java:/eis/AcmeConnectionFactory:

NOTE

In a managed domain, precede the command with
/host=HOST_NAME/server=SERVER_NAME/.

/deployment=myRA.rar/subsystem=resource-adapters/statistics=statistics/connection-
definitions=java\:\/eis\/AcmeConnectionFactory:write-attribute(name=statistics-enabled,value=true)

View Resource Adapter Statistics
Resource adapter statistics can be retrieved from the management CLI. The following management CLI
command returns statistics for the resource adapter myRA.rar with a connection factory bound in JNDI
as java:/eis/AcmeConnectionFactory.

NOTE

In a managed domain, precede the command with
/host=HOST_NAME/server=SERVER_NAME/.

deployment=myRA.rar/subsystem=resource-adapters/statistics=statistics/connection-
definitions=java\:\/eis\/AcmeConnectionFactory:read-resource(include-runtime=true)
{
 "outcome" => "success",
 "result" => {
 "ActiveCount" => "1",
 "AvailableCount" => "20",
 "AverageBlockingTime" => "0",
 "AverageCreationTime" => "0",
 "CreatedCount" => "1",
 "DestroyedCount" => "0",
 "InUseCount" => "0",

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

26

 "MaxCreationTime" => "0",
 "MaxUsedCount" => "1",
 "MaxWaitCount" => "0",
 "MaxWaitTime" => "0",
 "TimedOut" => "0",
 "TotalBlockingTime" => "0",
 "TotalCreationTime" => "0"
 }
}

NOTE

Since statistics are runtime information, be sure to specify the include-runtime=true
argument.

6.2. POOL ATTRIBUTES

This section details advice for selected pool attributes that can be configured for optimal datasource or
resource adapter performance. For instructions on how to configure each of these attributes, see:

Configuring Datasource Pool Attributes

Configuring Resource Adapter Pool Attributes

Minimum Pool Size

The min-pool-size attribute defines the minimum size of the connection pool. The default
minimum is zero connections. With a zero min-pool-size, connections are created and
placed in the pool when the first transactions occur.
If min-pool-size is too small, it results in increased latency while executing initial database
commands because new connections might need to be established. If min-pool-size is too
large, it results in wasted connections to the datasource or resource adapter.

During periods of inactivity the connection pool will shrink, possibly to the min-pool-size
value.

Red Hat recommends that you set min-pool-size to the number of connections that allow
for ideal on-demand throughput for your applications.

Maximum Pool Size

The max-pool-size attribute defines the maximum size of the connection pool. It is an
important performance parameter because it limits the number of active connections, and
thus also limits the amount of concurrent activity.
If max-pool-size is too small, it can result in requests being unnecessarily blocked. If max-
pool-size is too large, it can result in your JBoss EAP environment, datasource, or resource
adapter using more resources than it can handle.

Red Hat recommends that you set the max-pool-size to at least 15% higher than an
acceptable MaxUsedCount observed after monitoring performance under load. This allows
some buffer for higher than expected conditions.

Prefill

The pool-prefill attribute specifies whether JBoss EAP will prefill the connection pool with
the minimum number of connections when JBoss EAP starts. The default value is false.

When pool-prefill is set to true, JBoss EAP uses more resources at startup, but there will be

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING

27

When pool-prefill is set to true, JBoss EAP uses more resources at startup, but there will be
less latency for initial transactions.

Red Hat recommends to set pool-prefill to true if you have optimized the min-pool-size.

Strict Minimum

The pool-use-strict-min attribute specifies whether JBoss EAP allows the number of
connections in the pool to fall below the specified minimum.
If pool-use-strict-min is set to true, JBoss EAP will not allow the number of connections to
temporarily fall below the specified minimum. The default value is false.

Although a minimum number of pool connections is specified, when JBoss EAP closes
connections, for instance, if the connection is idle and has reached the timeout, the closure
may cause the total number of connections to temporarily fall below the minimum before a
new connection is created and added to the pool.

Timeouts

There are a number of timeout options that are configurable for a connection pool, but a
significant one for performance tuning is idle-timeout-minutes.
The idle-timeout-minutes attribute specifies the maximum time, in minutes, a connection
may be idle before being closed. As idle connections are closed, the number of connections
in the pool will shrink down to the specified minimum.

The longer the timeout, the more resources are used but requests might be served faster.
The lower the timeout, the less resources are used but requests might need to wait for a new
connection to be created.

6.3. CONFIGURING POOL ATTRIBUTES

6.3.1. Configuring Datasource Pool Attributes

Prerequisites

Install a JDBC driver. See JDBC Drivers in the JBoss EAP Configuration Guide.

Create a datasource. See Creating Datasources in the JBoss EAP Configuration Guide.

You can configure datasource pool attributes using either the management CLI or the management
console:

To use the management console, navigate to Configuration → Subsystems → Datasources &
Drivers → Datasources, select your datasource, and click View. The pool options are
configurable under the datasource Pool tab. Timeout options are configurable under the
datasource Timeouts tab.

To use the management CLI, execute the following command:

/subsystem=datasources/data-source=DATASOURCE_NAME/:write-
attribute(name=ATTRIBUTE_NAME,value=ATTRIBUTE_VALUE)

For example, to set the ExampleDS datasource min-pool-size attribute to a value of 5
connections, use the following command:

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

28

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#jdbc_drivers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#adding_datasources

/subsystem=datasources/data-source=ExampleDS/:write-attribute(name=min-pool-
size,value=5)

6.3.2. Configuring Resource Adapter Pool Attributes

Prerequisites

Deploy your resource adapter and add a connection definition. See Configuring Resource
Adapters in the JBoss EAP Configuration Guide.

You can configure resource adapter pool attributes using either the management CLI or the
management console:

To use the management console, navigate to Configuration → Subsystems → Resource
Adapters, select your resource adapter, click View, and select Connection Definitions in the
left menu. The pool options are configurable under the Pool tab. Timeout options are
configurable under the Attributes tab.

To use the management CLI, execute the following command:

/subsystem=resource-adapters/resource-
adapter=RESOURCE_ADAPTER_NAME/connection-
definitions=CONNECTION_DEFINITION_NAME:write-
attribute(name=ATTRIBUTE_NAME,value=ATTRIBUTE_VALUE)

For example, to set the my_RA resource adapter my_CD connection definition min-pool-size
attribute to a value of 5 connections, use the following command:

/subsystem=resource-adapters/resource-adapter=my_RA/connection-
definitions=my_CD:write-attribute(name=min-pool-size,value=5)

CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING

29

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configuring_resource_adapters

CHAPTER 7. MESSAGING SUBSYSTEM TUNING
Performance tuning advice for the messaging-activemq subsystem is covered in the Performance
Tuning part of the JBoss EAP Configuring Messaging guide.

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

30

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuring_messaging/#performance_tuning
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuring_messaging/

CHAPTER 8. LOGGING SUBSYSTEM TUNING
You can further improve upon JBoss EAP logging subsystem performance in production environments
by disabling logging to console , configuring appropriate logging levels , and specifying the best location
to store log files.

For more information on configuring the logging subsystem, see the logging chapter in the JBoss EAP
Configuration Guide.

8.1. DISABLING LOGGING TO THE CONSOLE

Disabling console logging can improve JBoss EAP performance. Although outputting logs to the
console can be useful in development and testing environments, for production environments it is not
necessary in most cases. The JBoss EAP root logger includes a console log handler for all default
standalone server profiles except standalone-full-ha. The default managed domain profiles do not
include a console handler.

To remove the default console handler from the root logger, use the following management CLI
command.

/subsystem=logging/root-logger=ROOT:remove-handler(name=CONSOLE)

8.2. CONFIGURING LOGGING LEVELS

For ideal performance, you must configure the logging levels for your production environment
appropriately. For example, although INFO or DEBUG levels might be appropriate for development or
testing environments, in most cases you should set your production environment logging level to
something higher, such as WARN or ERROR.

For details on setting log levels for different logging handlers, see Configuring Log Handlers in the
JBoss EAP Configuration Guide.

8.3. CONFIGURING THE LOCATION OF LOG FILES

You should consider the storage location of log files as a potential performance issue. If you save logs to
a file system or disk configuration that has poor I/O throughput, it has the potential to affect the whole
platform’s performance.

To prevent logging from impacting JBoss EAP performance, it is recommended that you set log
locations to high-performance dedicated disks that have a lot of space.

For details on configuring log file locations for different logging handlers, see Configuring Log Handlers
in the JBoss EAP Configuration Guide.

CHAPTER 8. LOGGING SUBSYSTEM TUNING

31

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#logging_with_jboss_eap
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configuring_log_handlers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configuring_log_handlers

CHAPTER 9. UNDERTOW SUBSYSTEM TUNING
The non-blocking I/O undertow subsystem introduced in JBoss EAP 7 has greatly improved
performance compared to the previous web subsystem in JBoss EAP 6. Opportunities for tuning the
undertow subsystem for your environment include configuring buffer caches, JSP settings, and
listeners.

9.1. BUFFER CACHES

A buffer cache is used to cache static files handled by the undertow subsystem. This includes images,
static HTML, CSS, and JavaScript files. You can specify a default buffer cache for each Undertow
servlet container. Having an optimized buffer cache for your servlet container can improve Undertow
performance for serving static files.

Buffers in a buffer cache are allocated in regions, and are of a fixed size. There are three configurable
attributes for each buffer cache:

buffer-size

The size of an individual buffer, in bytes. The default is 1024 bytes. Red Hat recommends that you
set the buffer size to entirely store your largest static file.

buffers-per-region

The number of buffers per region. The default is 1024.

max-regions

The maximum number of regions, which sets a maximum amount of memory allocated to the buffer
cache. The default is 10 regions.

You can calculate the maximum amount memory used by a buffer cache by multiplying the buffer size,
the number of buffers per region, and the maximum number of regions. For example, the default buffer
cache is 1024 bytes * 1024 buffers per region * 10 regions = 10MB.

Configure your buffer caches based on the size of your static files, and the results from testing expected
loads in a development environment. When determining the effect on performance, consider the
balance of the buffer cache performance benefit versus the memory used.

For instructions on using the management CLI to configure buffer caches, see Configuring Buffer
Caches in the JBoss EAP Configuration Guide.

9.2. CONFIGURING BYTE BUFFER POOLS

Undertow byte buffer pools are used to allocate pooled NIO ByteBuffer instances. All listeners have a
byte buffer pool and you can use different buffer pools and workers for each listener. Byte buffer pools
can be shared between different server instances.

For a full list of the attributes available for configuring byte buffer pools, see Byte Buffer Pool
Attributes in the JBoss EAP Configuration Guide.

The main byte buffer pool attribute that significantly affects performance is buffer-size. The default is
calculated based on the RAM resources of your system, and is sufficient in most cases. If you are
configuring this attribute manually, an ideal size for most servers is 16KB.

See the JBoss EAP Configuration Guide for instructions on how to create and configure byte buffer
pools.

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

32

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#undertow-configure-buffer-caches
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#byte_buffer_pool_attributes
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configure_undertow_buffer_pools

9.3. JSP CONFIGURATION

There are JSP configuration options for Undertow servlet containers that provide optimizations for how
JSP pages are compiled into Java bytecode.

generate-strings-as-char-arrays

If your JSPs contain a lot of String constants, enabling this option optimizes scriplets by converting
the String constants to char arrays.

optimize-scriptlets

If your JSPs contain many String concatenations, enabling this option optimizes scriplets by
removing String concatenation for every JSP request.

trim-spaces

If your JSPs contain a lot of white space, enabling this option trims the white space from HTTP
requests and reduces HTTP request payload.

Configuring JSP Options

You can enable these Undertow JSP configuration options using the management console or
management CLI.

To enable them using the management console:

1. Navigate to Configuration → Subsystems → Web (Undertow) → Servlet Container.

2. Select the servlet container you want to configure and click View.

3. Select JSP and click Edit.

4. For each option you want to enable, set the field to ON and then click Save.

To enable them using the management CLI, use the following command:

/subsystem=undertow/servlet-container=SERVLET_CONTAINER/setting=jsp/:write-
attribute(name=OPTION_NAME,value=true)

For example, to enable generate-strings-as-char-arrays for the default servlet container, use
the following command:

/subsystem=undertow/servlet-container=default/setting=jsp/:write-attribute(name=generate-
strings-as-char-arrays,value=true)

9.4. LISTENERS

Depending on your applications and environment, you can configure multiple listeners specific to certain
types of traffic, for example, traffic on specific ports, and then configure options for each listener.

The following are selected performance-related options that can be configured on HTTP, HTTPS, and
AJP listeners.

max-connections

The maximum number of concurrent connections that the listener can handle. By default this
attribute is undefined, which results in unlimited connections.

You can use this option to set a ceiling on the number of connections a listener can handle, which

CHAPTER 9. UNDERTOW SUBSYSTEM TUNING

33

You can use this option to set a ceiling on the number of connections a listener can handle, which
might be useful to cap resource usage. In configuring this value you should consider your workload
and traffic type. Also see no-request-timeout below.

no-request-timeout

The length of time in milliseconds that a connection is idle before it is closed. The default value is
60000 milliseconds (1 minute).
Tuning this option in your environment for optimal connection efficiency can help improve network
performance. If idle connections are prematurely closed, there are overheads in re-establishing
connections. If idle connections are open for too long, they unnecessarily use resources.

max-header-size

The maximum size of an HTTP request header, in bytes. The default is 1048576 (1024KB).
Limiting the header size can be useful to prevent certain types of denial of service attacks.

buffer-pool

Specifies the buffer pool in the io subsystem to use for the listener. By default, all listeners use the
default buffer pool.
You can use this option to configure each listener to use a unique buffer pool, or have multiple
listeners use the same buffer pool.

worker

The undertow subsystem relies on the io subsystem to provide XNIO workers. This option specifies
the XNIO worker that the listener uses. By default, a listener uses the default worker in the io
subsystem.
It might be useful to configure each listener to use a specific worker so you can assign different
worker resources to certain types of network traffic.

Configuring Listener Options

You can configure listener options using the management console or management CLI.

To configure them using the management console:

1. Navigate to Configuration → Subsystems → Web (Undertow) → Server.

2. Select the server you want to configure and click View.

3. In the left menu, select Listener then select the type of listener to configure, for example
HTTP Listener, and select the listener in the table.

4. CLick Edit, modify the options you want to configure, and click Save.

To configure them using the management CLI, use the following command:

/subsystem=undertow/server=SERVER_NAME/LISTENER_TYPE=LISTENER_NAME:write-
attribute(name=OPTION_NAME,value=OPTION_VALUE)

For example, to set max-connections to 100000 for the default HTTP listener in the default-
server Undertow server, use the following command:

/subsystem=undertow/server=default-server/http-listener=default:write-attribute(name=max-
connections,value=100000)

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

34

CHAPTER 10. IO SUBSYSTEM TUNING
The io subsystem defines XNIO workers and buffer pools that are used by other JBoss EAP subsystems,
such as Undertow and Remoting.

10.1. CONFIGURING WORKERS

You can create multiple separate workers that each have their own performance configuration and
which handle different I/O tasks. For example, you could create one worker to handle HTTP I/O, and
another worker to handle EJB I/O, and then separately configure the attributes of each worker for
specific load requirements.

See the IO Subsystem Attributes appendix for the list of configurable worker attributes.

Worker attributes that significantly affect performance include io-threads which sets the total number
of I/O threads that a worker can use, and task-max-threads which sets the maximum number of threads
that can be used for a particular task. The defaults for these two attributes are calculated based on the
server’s CPU count.

See the JBoss EAP Configuration Guide for instructions on how to create and configure workers .

10.1.1. Monitoring Worker Statistics

You can view a worker’s runtime statistics using the management CLI. This exposes worker statistics
such as connection count, thread count, and queue size.

The following command displays runtime statistics for the default worker:

/subsystem=io/worker=default:read-resource(include-runtime=true,recursive=true)

NOTE

The number of core threads, which is tracked by the core-pool-size statistic, is currently
always set to the same value as the maximum number of threads, which is tracked by the
max-pool-size statistic.

10.2. CONFIGURING BUFFER POOLS

NOTE

IO buffer pools are deprecated, but they are still set as the default in the current release.
For more information about configuring Undertow byte buffer pools, see the Configuring
Byte Buffer Pools section of the Configuration Guide for JBoss EAP.

A buffer pool in the io subsystem is a pooled NIO buffer instance that is used specifically for I/O
operations. Like workers, you can create separate buffer pools which can be dedicated to handle specific
I/O tasks.

See the IO Subsystem Attributes appendix for the list of configurable buffer pool attributes.

The main buffer pool attribute that significantly affects performance is buffer-size. The default is
calculated based on the RAM resources of your system, and is sufficient in most cases. If you are
configuring this attribute manually, an ideal size for most servers is 16KB.

CHAPTER 10. IO SUBSYSTEM TUNING

35

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#io_configure_worker
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configure_undertow_buffer_pools

See the JBoss EAP Configuration Guide for instructions on how to create and configure buffer pools .

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

36

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#io_configure_buffer_pool

CHAPTER 11. JGROUPS SUBSYSTEM TUNING
For optimal network performance it is recommended that you use UDP multicast for JGroups in
environments that support it.

NOTE

TCP has more overhead and is often considered slower than UDP since it handles error
checking, packet ordering, and congestion control itself. JGroups handles these features
for UDP, whereas TCP guarantees them itself. TCP is a good choice when using JGroups
on unreliable or high congestion networks, or when multicast is not available.

This chapter assumes that you have chosen your JGroups stack transport protocol (UDP or TCP) and
communications protocols that JGroups cluster communications will use. See the JBoss EAP
Configuration Guide for more information about cluster communication with JGroups .

11.1. MONITORING JGROUPS STATISTICS

You can enable statistics for the jgroups subsystem to monitor JBoss EAP clustering using the
management CLI or through JMX.

NOTE

Enabling statistics adversely affects performance. Only enable statistics when necessary.

1. Use the following command to enable statistics for a JGroups channel.

NOTE

In a managed domain, precede these commands with /profile=PROFILE_NAME.

/subsystem=jgroups/channel=CHANNEL_NAME:write-attribute(name=statistics-
enabled,value=true)

For example, use the following command to enable statistics for the default ee channel.

/subsystem=jgroups/channel=ee:write-attribute(name=statistics-enabled,value=true)

2. Reload the JBoss EAP server.

reload

3. You can now see JGroups statistics using either the management CLI, or through JMX with a
JVM monitoring tool:

To use the management CLI, use the :read-resource(include-runtime=true) command on
the JGroups channel or protocol that you want to see the statistics for.

NOTE

CHAPTER 11. JGROUPS SUBSYSTEM TUNING

37

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#cluster_communication_jgroups

NOTE

In a managed domain, precede these commands with
/host=HOST_NAME/server=SERVER_NAME.

For example:

To see the statistics for the ee channel, use the following command:

/subsystem=jgroups/channel=ee:read-resource(include-runtime=true)

To see the statistics for the FD_ALL protocol in the ee channel, use the following
command:

/subsystem=jgroups/channel=ee/protocol=FD_ALL:read-resource(include-
runtime=true)

To connect to JBoss EAP using a JVM monitoring tool, see the Monitoring Performance
chapter. You can see the statistics on JGroups MBeans through the JMX connection.

11.2. NETWORKING AND JUMBO FRAMES

Where possible, it is recommended that the network interface for JGroups traffic should be part of a
dedicated Virtual Local Area Network (VLAN). This allows you to separate cluster communications from
other JBoss EAP network traffic to more easily control cluster network performance, throughput, and
security.

Another network configuration to consider to improve cluster performance is to enable jumbo frames. If
your network environment supports it, enabling jumbo frames by increasing the Maximum Transmission
Unit (MTU) can help boost network performance, especially in high throughput environments.

To use jumbo frames, all NICs and switches in your network must support it. See the Red Hat Customer
Portal for instructions on enabling jumbo frames for Red Hat Enterprise Linux .

11.3. MESSAGE BUNDLING

Message bundling in JGroups improves network performance by assembling multiple small messages
into larger bundles. Rather than sending out many small messages over the network to cluster nodes,
instead messages are queued until the maximum bundle size is reached or there are no more messages
to send. The queued messages are assembled into a larger message bundle and then sent.

This bundling reduces communications overhead, especially in TCP environments where there is a
higher overhead for network communications.

Configuring Message Bundling

JGroups message bundling is configured using the max_bundle_size property. The default
max_bundle_size is 64KB.

The performance improvements of tuning the bundle size depend on your environment, and whether
more efficient network traffic is balanced against a possible delay of communications while the bundle is
assembled.

Use the following management CLI command to configure max_bundle_size.

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

38

https://access.redhat.com/solutions/3643

/subsystem=jgroups/stack=STACK_NAME/transport=TRANSPORT_TYPE/property=max_bundle_siz
e:add(value=BUNDLE_SIZE)

For example, to set max_bundle_size to 60K for the default udp stack:

/subsystem=jgroups/stack=udp/transport=UDP/property=max_bundle_size:add(value=60K)

11.4. JGROUPS THREAD POOLS

The jgroups subsystem uses its own thread pools for processing cluster communication. JGroups
contains thread pools for default, internal, oob, and timer functions which you can configure
individually. Each JGroups thread pool includes configurable attributes for keepalive-time, max-
threads, min-threads, and queue-length.

Appropriate values for each thread pool attribute depend on your environment, but for most situations
the default values should suffice.

See the JBoss EAP Configuration Guide for instructions on how to configure JGroups thread pools .

11.5. JGROUPS SEND AND RECEIVE BUFFERS

The jgroups subsystem has configurable send and receive buffers for both UDP and TCP stacks.

Appropriate values for JGroups buffers depend on your environment, but for most situations the default
values should suffice. It is recommended that you test your cluster under load in a development
environment to tune appropriate values for the buffer sizes.

NOTE

Your operating system may limit the available buffer sizes and JBoss EAP may not be
able to use its configured buffer values. See Resolving Buffer Size Warnings in the JBoss
EAP Configuration Guide.

See the JBoss EAP Configuration Guide for instructions on how to configure JGroups send and receive
buffers.

CHAPTER 11. JGROUPS SUBSYSTEM TUNING

39

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configure_jgroups_thread_pools
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configure_jgroups_send_receive_buffers
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configure_jgroups_send_receive_buffers

CHAPTER 12. TRANSACTIONS SUBSYSTEM TUNING
If your environment uses XA distributed transactions, you can tune the transaction manager’s log store
for better performance.

The default transaction log store uses a simple file store. For XA transactions this type of log store can
be inefficient, as it creates one system file for each transaction log. Especially for XA transactions, a
journal store is much more efficient as it uses a journal that consists of one file for all transactions.

For better XA transaction performance, it is recommended that you use a journal log store. For
Red Hat Enterprise Linux systems, you can additionally enable asynchronous I/O (AIO) on the journal
store to further improve performance.

NOTE

For Red Hat Enterprise Linux systems, if you are enabling asynchronous I/O (AIO) on the
journal store, ensure that the libaio package is installed.

Enable the Journal Log Store Using the Management Console

1. Navigate to Configuration → Subsystems → Transaction → and click View.

2. In the Configuration tab, click Edit.

3. Set the Use Journal Store field to ON.

4. Optional: For Red Hat Enterprise Linux systems, set the Journal Store Enable Async IO field to
ON.

5. Click Save.

Enable the Journal Log Store Using the Management CLI

1. To enable the journal log store using the management CLI, use the following command:

/subsystem=transactions:write-attribute(name=use-journal-store,value=true)

2. Optional: For Red Hat Enterprise Linux systems, use the following command to enable journal
log store asynchronous I/O:

/subsystem=transactions:write-attribute(name=journal-store-enable-async-io, value=true)

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

40

APPENDIX A. REFERENCE MATERIAL

A.1. DATASOURCE STATISTICS

Table A.1. Core Pool Statistics

Name Description

ActiveCount The number of active connections. Each of the connections is
either in use by an application or available in the pool.

AvailableCount The number of available connections in the pool.

AverageBlockingTime The average time spent blocking on obtaining an exclusive lock
on the pool. This value is in milliseconds.

AverageCreationTime The average time spent creating a connection. This value is in
milliseconds.

AverageGetTime The average time spent obtaining a connection.

AveragePoolTime The average time that a connection spent in the pool.

AverageUsageTime The average time spent using a connection.

BlockingFailureCount The number of failures trying to obtain a connection.

CreatedCount The number of connections created.

DestroyedCount The number of connections destroyed.

IdleCount The number of connections that are currently idle.

InUseCount The number of connections currently in use.

MaxCreationTime The maximum time it took to create a connection. This value is in
milliseconds.

MaxGetTime The maximum time for obtaining a connection.

MaxPoolTime The maximum time for a connection in the pool.

MaxUsageTime The maximum time using a connection.

MaxUsedCount The maximum number of connections used.

MaxWaitCount The maximum number of requests waiting for a connection at
the same time.

APPENDIX A. REFERENCE MATERIAL

41

MaxWaitTime The maximum time spent waiting for an exclusive lock on the
pool.

TimedOut The number of timed out connections.

TotalBlockingTime The total time spent waiting for an exclusive lock on the pool.
This value is in milliseconds.

TotalCreationTime The total time spent creating connections. This value is in
milliseconds.

TotalGetTime The total time spent obtaining connections.

TotalPoolTime The total time spent by connections in the pool.

TotalUsageTime The total time spent using connections.

WaitCount The number of requests that had to wait to obtain a connection.

XACommitAverageTime The average time for an XAResource commit invocation.

XACommitCount The number of XAResource commit invocations.

XACommitMaxTime The maximum time for an XAResource commit invocation.

XACommitTotalTime The total time for all XAResource commit invocations.

XAEndAverageTime The average time for an XAResource end invocation.

XAEndCount The number of XAResource end invocations.

XAEndMaxTime The maximum time for an XAResource end invocation.

XAEndTotalTime The total time for all XAResource end invocations.

XAForgetAverageTime The average time for an XAResource forget invocation.

XAForgetCount The number of XAResource forget invocations.

XAForgetMaxTime The maximum time for an XAResource forget invocation.

XAForgetTotalTime The total time for all XAResource forget invocations.

XAPrepareAverageTime The average time for an XAResource prepare invocation.

Name Description

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

42

XAPrepareCount The number of XAResource prepare invocations.

XAPrepareMaxTime The maximum time for an XAResource prepare invocation.

XAPrepareTotalTime The total time for all XAResource prepare invocations.

XARecoverAverageTime The average time for an XAResource recover invocation.

XARecoverCount The number of XAResource recover invocations.

XARecoverMaxTime The maximum time for an XAResource recover invocation.

XARecoverTotalTime The total time for all XAResource recover invocations.

XARollbackAverageTime The average time for an XAResource rollback invocation.

XARollbackCount The number of XAResource rollback invocations.

XARollbackMaxTime The maximum time for an XAResource rollback invocation.

XARollbackTotalTime The total time for all XAResource rollback invocations.

XAStartAverageTime The average time for an XAResource start invocation.

XAStartCount The number of XAResource start invocations.

XAStartMaxTime The maximum time for an XAResource start invocation.

XAStartTotalTime The total time for all XAResource start invocations.

Name Description

Table A.2. JDBC Statistics

Name Description

PreparedStatementCacheAccessCount The number of times that the statement cache was accessed.

PreparedStatementCacheAddCount The number of statements added to the statement cache.

PreparedStatementCacheCurrentSize The number of prepared and callable statements currently
cached in the statement cache.

PreparedStatementCacheDeleteCount The number of statements discarded from the cache.

PreparedStatementCacheHitCount The number of times that statements from the cache were used.

APPENDIX A. REFERENCE MATERIAL

43

PreparedStatementCacheMissCount The number of times that a statement request could not be
satisfied with a statement from the cache.

Name Description

A.2. RESOURCE ADAPTER STATISTICS

Table A.3. Resource Adapter Statistics

Name Description

ActiveCount The number of active connections. Each of the connections is either in use by an
application or available in the pool

AvailableCount The number of available connections in the pool.

AverageBlockingTime The average time spent blocking on obtaining an exclusive lock on the pool. The
value is in milliseconds.

AverageCreationTime The average time spent creating a connection. The value is in milliseconds.

CreatedCount The number of connections created.

DestroyedCount The number of connections destroyed.

InUseCount The number of connections currently in use.

MaxCreationTime The maximum time it took to create a connection. The value is in milliseconds.

MaxUsedCount The maximum number of connections used.

MaxWaitCount The maximum number of requests waiting for a connection at the same time.

MaxWaitTime The maximum time spent waiting for an exclusive lock on the pool.

TimedOut The number of timed out connections.

TotalBlockingTime The total time spent waiting for an exclusive lock on the pool. The value is in
milliseconds.

TotalCreationTime The total time spent creating connections. The value is in milliseconds.

WaitCount The number of requests that had to wait for a connection.

A.3. IO SUBSYSTEM ATTRIBUTES

NOTE

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

44

NOTE

Attribute names in these tables are listed as they appear in the management model, for
example, when using the management CLI. See the schema definition file located at
EAP_HOME/docs/schema/wildfly-io_2_0.xsd to view the elements as they appear in
the XML, as there may be differences from the management model.

Table A.4. worker Attributes

Attribute Default Description

io-threads The number of I/O threads to create for the worker.
If not specified, the number of threads is set to the
number of CPUs × 2.

stack-size 0 The stack size, in bytes, to attempt to use for worker
threads.

task-keepalive 60000 The number of milliseconds to keep non-core task
threads alive.

task-core-threads 2 The number of threads for the core task thread pool.

task-max-threads The maximum number of threads for the worker task
thread pool. If not specified, the maximum number of
threads is set to the number of CPUs × 16, taking the
MaxFileDescriptorCount JMX property, if set,
into account.

Table A.5. buffer-pool Attributes

Attribute Default Description

NOTE

IO buffer pools are deprecated, but they are still set as the default in the current release. For
more information about configuring Undertow byte buffer pools, see the Configuring Byte
Buffer Pools section of the Configuration Guide for JBoss EAP. Additionally, see Byte Buffer
Pool Attributes in the JBoss EAP Configuration Guide for the byte buffer pool attribute list.

APPENDIX A. REFERENCE MATERIAL

45

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#configure_undertow_buffer_pools
https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.4-Beta/html-single/configuration_guide/#byte_buffer_pool_attributes

buffer-size The size, in bytes, of each buffer slice. If not
specified, the size is set based on the available RAM
of your system:

512 bytes for less than 64 MB RAM

1024 bytes (1 KB) for 64 MB - 128 MB RAM

16384 bytes (16 KB) for more than 128 MB
RAM

For performance tuning advice on this attribute, see
Configuring Buffer Pools.

buffers-per-slice How many slices, or sections, to divide the larger
buffer into. This can be more memory efficient than
allocating many separate buffers. If not specified, the
number of slices is set based on the available RAM of
your system:

10 for less than 128 MB RAM

20 for more than 128 MB RAM

direct-buffers Whether the buffer pool uses direct buffers, which
are faster in many cases with NIO. Note that some
platforms do not support direct buffers.

Attribute Default Description

Revised on 2021-03-30 16:41:44 UTC

Red Hat JBoss Enterprise Application Platform 7.4-Beta Performance Tuning Guide

46

	Table of Contents
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT THE USE OF EAP_HOME IN THIS DOCUMENT

	CHAPTER 2. MONITORING PERFORMANCE
	2.1. CONFIGURING JBOSS EAP FOR REMOTE MONITORING CONNECTIONS
	2.2. JCONSOLE
	2.2.1. Connecting to a Local JBoss EAP JVM Using JConsole
	2.2.2. Connecting to a Remote JBoss EAP JVM Using JConsole

	2.3. JAVA VISUALVM
	2.3.1. Connecting to a Local JBoss EAP JVM Using VisualVM
	2.3.2. Connecting to a Remote JBoss EAP JVM Using VisualVM

	CHAPTER 3. DIAGNOSING PERFORMANCE ISSUES
	3.1. ENABLING GARBAGE COLLECTION LOGGING
	3.2. JAVA HEAP DUMPS
	3.2.1. Creating a Heap Dump
	3.2.1.1. OpenJDK and Oracle JDK
	3.2.1.2. IBM JDK

	3.2.2. Analyzing a Heap Dump

	3.3. IDENTIFYING HIGH CPU UTILIZATION BY JAVA THREADS

	CHAPTER 4. JVM TUNING
	4.1. SETTING A FIXED HEAP SIZE
	4.2. CONFIGURING THE GARBAGE COLLECTOR
	Garbage Collection Logging Options

	4.3. ENABLING LARGE PAGES
	4.4. ENABLING AGGRESSIVE OPTIMIZATIONS
	4.5. SETTING ULIMITS
	4.6. HOST CONTROLLER AND PROCESS CONTROLLER JVM TUNING

	CHAPTER 5. EJB SUBSYSTEM TUNING
	5.1. BEAN INSTANCE POOLS
	5.1.1. Creating a Bean Instance Pool
	5.1.2. Specifying the Instance Pool a Bean Should Use
	5.1.3. Disabling the Default Bean Instance Pool

	5.2. BEAN THREAD POOLS
	5.2.1. Creating a Bean Thread Pool
	5.2.2. Configuring EJB Services to Use a Specific Bean Thread Pool

	5.3. EXCEPTIONS THAT INDICATE EJB SUBSYSTEM TUNING MIGHT BE REQUIRED

	CHAPTER 6. DATASOURCE AND RESOURCE ADAPTER TUNING
	6.1. MONITORING POOL STATISTICS
	6.1.1. Datasource Statistics
	6.1.1.1. Enabling Datasource Statistics
	6.1.1.2. Viewing Datasource Statistics

	6.1.2. Resource Adapter Statistics
	Enable Resource Adapter Statistics
	View Resource Adapter Statistics

	6.2. POOL ATTRIBUTES
	6.3. CONFIGURING POOL ATTRIBUTES
	6.3.1. Configuring Datasource Pool Attributes
	6.3.2. Configuring Resource Adapter Pool Attributes

	CHAPTER 7. MESSAGING SUBSYSTEM TUNING
	CHAPTER 8. LOGGING SUBSYSTEM TUNING
	8.1. DISABLING LOGGING TO THE CONSOLE
	8.2. CONFIGURING LOGGING LEVELS
	8.3. CONFIGURING THE LOCATION OF LOG FILES

	CHAPTER 9. UNDERTOW SUBSYSTEM TUNING
	9.1. BUFFER CACHES
	9.2. CONFIGURING BYTE BUFFER POOLS
	9.3. JSP CONFIGURATION
	9.4. LISTENERS

	CHAPTER 10. IO SUBSYSTEM TUNING
	10.1. CONFIGURING WORKERS
	10.1.1. Monitoring Worker Statistics

	10.2. CONFIGURING BUFFER POOLS

	CHAPTER 11. JGROUPS SUBSYSTEM TUNING
	11.1. MONITORING JGROUPS STATISTICS
	11.2. NETWORKING AND JUMBO FRAMES
	11.3. MESSAGE BUNDLING
	11.4. JGROUPS THREAD POOLS
	11.5. JGROUPS SEND AND RECEIVE BUFFERS

	CHAPTER 12. TRANSACTIONS SUBSYSTEM TUNING
	APPENDIX A. REFERENCE MATERIAL
	A.1. DATASOURCE STATISTICS
	A.2. RESOURCE ADAPTER STATISTICS
	A.3. IO SUBSYSTEM ATTRIBUTES

