& RedHat

Red Hat JBoss Core Services 2.4.37

Red Hat JBoss Core Services ModSecurity
Guide

For use with Red Hat JBoss middleware products.

Last Updated: 2021-09-21

Red Hat JBoss Core Services 2.4.37 Red Hat JBoss Core Services
ModSecurity Guide

For use with Red Hat JBoss middleware products.

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This book is a guide for using the Red Hat JBoss Core Services Mod Security module.

Table of Contents

Table of Contents

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION ..ttt it eetiieeeeeeennnnneennns 3
CHAPTER 1. MODSECURITY INTRODUCTION ...ttt ittt ittt taneeeeeeennanaeennnnnnns 4
1.1. OVERVIEW 4
1.2. MODSECURITY 4
CHAPTER 2. MODSECURITY CONFIGURATION ..ttt ittt ittt eeineeeeeeennaaaeeennnnns 5
2.1. RHEL CONFIGURATION 5
2.1.1. Dependencies 5
2.1.2. Installation with Red Hat JBoss Core Services 5
2.1.3. Initial Configuration 5
2.1.3.1. Starting ModSecurity 5
2.1.3.2. Configuring the rules folder 6
2.1.3.3. PCRE Warning 6
2.1.3.4. Key Configuration Options 6

2.2. WINDOWS CONFIGURATION 6
2.2.1. Windows Dependencies 6
2.2.2. Windows Installation 7
2.2.3. Windows Configuration 7
2.2.3.1. Starting ModSecurity 7
2.2.3.2. Configuring Rules Directory 8
2.2.3.3. Key Configuration Options 8
CHAPTER 3. MODSECURITY RULES MAKING ...ttt ittt ittt ttnneeeeeennnaaaeeennnnns 9
3.1. CONFIGURATION EXAMPLES 9
3.1.1. Background Information 9

3.2. RULE EXAMPLES 9
3.2.1. Background Information 9
3.2.2. Example Rule 1: 9
3.2.3. Example Rule 2: 10
CHAPTER 4. MODSECURITY REFERENCES ...t i ittt et iiaee e ennanaeennnnnnns n
4.1. APPENDIX 1
4.1.1. Actions n
4.1.2. Configuration Directives 1
4.1.3. Operators n
4.1.4. Transformation Functions n
4.1.5. Variables 1

Red Hat JBoss Core Services 2.4.37 Red Hat JBoss Core Services ModSecurity Guide

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our technical content and encourage you to tell us what you think. If
you'd like to add comments, provide insights, correct a typo, or even ask a question, you can do so
directly in the documentation.

NOTE

You must have a Red Hat account and be logged in to the customer portal.

To submit documentation feedback from the customer portal, do the following:
1. Select the Multi-page HTML format.
2. Click the Feedback button at the top-right of the document.
3. Highlight the section of text where you want to provide feedback.
4. Click the Add Feedback dialog next to your highlighted text.
5. Enter your feedback in the text box on the right of the page and then click Submit.

We automatically create a tracking issue each time you submit feedback. Open the link that is displayed
after you click Submit and start watching the issue or add more comments.

Thank you for the valuable feedback.

Red Hat JBoss Core Services 2.4.37 Red Hat JBoss Core Services ModSecurity Guide

CHAPTER 1. MODSECURITY INTRODUCTION

1.1. OVERVIEW

This guide includes information and examples for the ModSecurity v2.9 module for use with Red Hat
JBoss Core Services 2.4.37. The effectiveness of ModSecurity is based on user generated rules. As
such, this guide will explain how to create and implement rules, but will not give you a set of rules to use.

1.2. MODSECURITY

ModSecurity is a web application firewall(WAF). Web application firewalls filter, monitor, and block HTTP
traffic to a web application. As opposed to a regular firewall, a WAF uses filters to determine what and
who interacts with your HTTPD server application. ModSecurity accomplishes this task by making use of
user generated security rules. These rules allow for configurable, realtime monitoring of HTTP traffic in
order to detect attacks instantly.

CHAPTER 2. MODSECURITY CONFIGURATION

CHAPTER 2. MODSECURITY CONFIGURATION

2.1. RHEL CONFIGURATION

2.1.1. Dependencies

ModSecurity has several dependencies to function. Some of these are already included as a part of Red
Hat JBoss Core Services. A full listing is provided below:

Dependency Part of JBCS

Apache Portable Runtimes Y
APR-Util Y
mod_unique_id Y
libcurl Y
PCRE Y
libxmlI2 N
Lua5.x N
NOTE

Red Hat JBoss Core Services for windows contains libxml|2 and Lua5.x

2.1.2. Installation with Red Hat JBoss Core Services

ModSecurity comes as a part of the Red Hat JBoss Core Services package. For complete instructions
on installing Red Hat JBoss Core Services, please refer to the installation guide for JBCS

2.1.3. Initial Configuration

ModSecurity is contained as a part of the Red Hat JBoss Core Services. This means that ModSecurity
comes preconfigured and you will NOT have to use the apxs tool to build and install the module. In
order to further configure Mod_sec, we must load the module into HTTPD.

2.1.3.1. Starting ModSecurity

You must load the libxml2 and lua5.1libraries before loading the ModSecurity module. Use the following
commands to load the libraries:

LoadFile /usr/lib/libxml2.so

LoadFile /usr/lib/liblua5.1.so

https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.37/html/apache_http_server_installation_guide/installing_jboss_core_services_apache_http_server_on_red_hat_enterprise_linux

Red Hat JBoss Core Services 2.4.37 Red Hat JBoss Core Services ModSecurity Guide

Then, load the ModSecurity module using the following:

LoadModule security2_module modules/mod_security2.so

2.1.3.2. Configuring the rules folder

The backbone of ModSecurities' functionality is the creation of rules that the system uses. However, we
must know where to store rules in order to use them. JBCS comes with a preconfigured folder located at
HTTPD_HOME/modsecurity.d. You can store rules in this folder or the activated_rules folder located
underneath it.

Additionally, to use these rules we must setup the mod_security.conf.sample file to our specifications.
Most importantly you MUST change the file name to mod_security.conf. This can be done with the
following command:

mv mod_security.conf.sample ./mod_security.conf

In the file itself, you can set parameters for all of the configuration directives you will use with
ModSecurity rules.

2.1.3.3. PCRE Warning

You want to avoid Apache using the bundled PCRE library and ModSecurity linking against the one
provided by the operating system. The easiest way to do this is to compile Apache against the PCRE
library provided by the operating system (or you can compile it against the latest PCRE version you
downloaded from the main PCRE distribution site). You can do this at configure time using the --with-
pcre switch. If you are not in a position to recompile Apache, then, to compile ModSecurity successfully,
you'd still need to have access to the bundled PCRE headers (they are available only in the Apache
source code) and change the include path for ModSecurity (as you did in step 7 above) to point to them
(via the --with-pcre ModSecurity configure option). Do note that if your Apache is using an external
PCRE library you can compile ModSecurity with WITH_PCRE_STUDY defined,which would possibly give
you a slight performance edge in regular expression processing. Non-gcc compilers may have problems
running out-of-the-box as the current build system was designed around the gcc compiler and some
compiler/linker flags may differ. To use a non-gcc compiler you may need some manual Makefile tweaks
if issues cannot be solved by exporting custom CFLAGS and CPPFLAGS environment variables.

2.1.3.4. Key Configuration Options

enable-pcre-jit: Enables JIT support from pcre >= 8.20 that can improve regex performance.

enable-lua-cache: Enables lua vm caching that can improve lua script performance. Difference just
appears if ModSecurity must run more than one script per transaction.

enable-request-early: On ModSecurity 2.6 phase one has been moved to phase 2 hook, if you want to
play around it use this option.

enable-htaccess-config: It will allow the follow directives to be used into .htaccess files when
AllowOverride Options is set

2.2. WINDOWS CONFIGURATION

2.2.1. Windows Dependencies

ModSecurity has several dependencies to function on Windows. Some of these are already included as a
part of Red Hat JBoss Core Services. A full listing is provided below:

CHAPTER 2. MODSECURITY CONFIGURATION

Dependency Part of JBCS on Windows

Apache Portable Runtimes Y
APR-Util Y
mod_unique_id Y
libcurl Y
PCRE Y
libxmlI2 Y
Lua5.x Y

2.2.2. Windows Installation

Many of the items required to run ModSecurity on windows are already contained in the JBCS package.
However, for ModSecurity to function properly certain criteria must be met. Ensure the directory where
you build software from source contains the Apache source you used to build the Apache web server
and the ModSecurity source. For example:

® Apache source is in C:\ sourceDirectory\httpd-2.4.37

® Apache has been installed to C:\Apache2437

® ModSecurity source is in C:\ sourceDirectory\mod_security
In this case sourceDirectoryis a generic directory used in conjunction with the project.
Additonally, ensure your build environment has the correct setup. The PATH environment variable must
include the Visual Studio variables as set by vsvars32.bat AND also the CMAKE bin\ directory. Lastly,

set and environment variable to the Apache source code directory: C:\ sourceDirectory\httpd-2.4.37

Once you are certain you have met the above criteria, you can install JBCS to the appropriate location
on your C: drive.

ModSecurity comes as a part of the Red Hat JBoss Core Services package. For complete instructions
on installing Red Hat JBoss Core Services, please refer to the installation guide for JBCS

2.2.3. Windows Configuration

2.2.3.1. Starting ModSecurity

You must load the libxml2 and lua5.1libraries before loading the ModSecurity module. Use the following
commands to load the libraries:

LoadFile /usr/lib/libxmi2.so

LoadFile /usr/lib/liblua5.1.so

https://access.redhat.com/documentation/en-us/red_hat_jboss_core_services/2.4.37/html/apache_http_server_installation_guide/installing_jboss_core_services_apache_http_server_on_red_hat_enterprise_linux

Red Hat JBoss Core Services 2.4.37 Red Hat JBoss Core Services ModSecurity Guide

Then, load the ModSecurity module using the following:

LoadModule security2_module modules/mod_security2.so

2.2.3.2. Configuring Rules Directory

The backbone of ModSecurities' functionality is the creation of rules that the system uses. However, we
must know where to store rules in order to use them. JBCS comes with a preconfigured directory
located at HTTPD_HOME/modsecurity.d. You can store rules in this directory or the activated_rules
directory located underneath it.

Additionally, to use these rules we must setup the mod_security.conf.sample file to our specifications.
Most importantly you MUST change the file name to mod_security.conf.

2.2.3.3. Key Configuration Options

enable-pcre-jit: Enables JIT support from pcre >= 8.20 that can improve regex performance.

enable-lua-cache: Enables lua vm caching that can improve lua script performance. Difference just
appears if ModSecurity must run more than one script per transaction.

enable-request-early: On ModSecurity 2.6 phase one has been moved to phase 2 hook, if you want to
play around it use this option.

enable-htaccess-config: It will allow the follow directives to be used into .htaccess files when
AllowOverride Options is set

CHAPTER 3. MODSECURITY RULES MAKING

CHAPTER 3. MODSECURITY RULES MAKING

3.1. CONFIGURATION EXAMPLES

3.1.1. Background Information

Configuration Directives: The configuration directives for ModSecurity are similar to the Apache
Server directives. Most of the ModSecurity directives can be used inside the various Apache Scope
Directives. There are others, however, that can only be used once in the main configuration file. These
rules, along with the Core rules files, should be contained in files outside of the httpd.conf file and called
up with Apache "Include" directives. This allows for easier updating/migration of the rules. A full listing of
configuration directives can be found in the reference section of this document:

3.2. RULE EXAMPLES

3.2.1. Background Information

ModSecurity primarily functions when the user creates custom rules. These custom rules dictate what
Mod_sec checks for when running. The rules are implemented at any of the 5 phases for the Apache
request cycle. The five phases and their syntax names are given below:

Request headers - REQUEST_HEADERS
Request body - REQUEST_BODY
Response headers - RESPONSE_HEADERS
Response body - RESPONSE_BODY

Logging = LOGGING

3.2.2. Example Rule 1:

This section explains an example custom rule. The custom rule given checks whether or not history was
changed by a request. Generally rules have 4 parts: a configuration directive, variable(s), operator(s),
and action(s). For full listings of configuration directives, variables, operators, and
transformations/actions, please refer to the reference section of this guide. The rule is given below:

SecRule REQUEST_URI "@streq /index.php" "id:1,phase:1,t:lowercase,deny”

The rule begins with SecRule. This is a configuration directive which creates a rule that will analyze the
selected variables using the selected operator. Most of your rules will use this configuration directive.

The rule then continues with the variables: REQUEST_URI This variable holds the full request URL
including the query string data.

Next, operators the operator is defined as "@streq /index.php". the @streq checks for string values
equal to the /index.php file. However, before this occurs, our transformations/actions will take place.
They are defined as "id:1,phase:1,t:lowercase,deny". From this command, the rule, during phase 1, will
obtain the URI portion of the HTTP request, and transform the value to lowercase. it will then check the
transformed value to see if it is equal to /index.php. If it is equal, Modsecurity will deny the request, and
no further rules will be processed.

Red Hat JBoss Core Services 2.4.37 Red Hat JBoss Core Services ModSecurity Guide

3.2.3. Example Rule 2:

This section explains a more complex example rule. The custom rule given checks whether or not history
was changed by a request. Generally rules have 4 parts: a configuration directive, variable(s),
operator(s), and action(s). For full listings of configuration directives, variables, operators, and
transformations/actions, please refer to the reference section of this guide. The rule is given below:

SecRule REQUEST_URI|REQUEST_BODY|REQUEST_HEADERS_NAMES|REQUEST_HEADERS
"history.pushstate|history.replacestate"” "phase:4,deny,log,msg:'history-based attacks detected™

The rule begins with SecRule. This is a configuration directive which creates a rule that will analyze the
selected variables using the selected operator. Most of your rules will use this configuration directive .

The rule then continues with the variables:
REQUEST_URI|IREQUEST_BODY|REQUEST_HEADERS_NAMES|REQUEST_HEADERS There are 4
variables here and each defines a different part of the request that the rule checks.

Next, operators are defined for the request. In this case, the rule checks for the JS methods
history.pushstate() and history.replacestate(). Assuming these values are found, the last section will
be executed.

The last section defines transformations and actions that will take place. In this case it first defines the
processing phase in which the rule occurs. Then it runs the deny, log, and msg actions. Deny will stop
the rule processing and intercept the transaction. Log will indicate that a log will need to be created.
Msg will output a message with the log. the message is defined as 'history-based attacks detected'.

10

CHAPTER 4. MODSECURITY REFERENCES

CHAPTER 4. MODSECURITY REFERENCES

4.1. APPENDIX

This section contains important references to the ModSecurity documentation provided by SpiderLabs.
It has links to full listings of the following items used for creating rules.

4.1.1. Actions

Actions

4.1.2. Configuration Directives

Configuration Directives

4.1.3. Operators

Operators

4.1.4. Transformation Functions

Transformation Functions

4.1.5. Variables

Variables

1

https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Actions
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Configuration_Directives
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Operators
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Transformation_functions
https://github.com/SpiderLabs/ModSecurity/wiki/Reference-Manual-%28v2.x%29#Variables

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. MODSECURITY INTRODUCTION
	1.1. OVERVIEW
	1.2. MODSECURITY

	CHAPTER 2. MODSECURITY CONFIGURATION
	2.1. RHEL CONFIGURATION
	2.1.1. Dependencies
	2.1.2. Installation with Red Hat JBoss Core Services
	2.1.3. Initial Configuration
	2.1.3.1. Starting ModSecurity
	2.1.3.2. Configuring the rules folder
	2.1.3.3. PCRE Warning
	2.1.3.4. Key Configuration Options

	2.2. WINDOWS CONFIGURATION
	2.2.1. Windows Dependencies
	2.2.2. Windows Installation
	2.2.3. Windows Configuration
	2.2.3.1. Starting ModSecurity
	2.2.3.2. Configuring Rules Directory
	2.2.3.3. Key Configuration Options

	CHAPTER 3. MODSECURITY RULES MAKING
	3.1. CONFIGURATION EXAMPLES
	3.1.1. Background Information

	3.2. RULE EXAMPLES
	3.2.1. Background Information
	3.2.2. Example Rule 1:
	3.2.3. Example Rule 2:

	CHAPTER 4. MODSECURITY REFERENCES
	4.1. APPENDIX
	4.1.1. Actions
	4.1.2. Configuration Directives
	4.1.3. Operators
	4.1.4. Transformation Functions
	4.1.5. Variables

