& RedHat

Red Hat Fuse 7.2

Apache Camel Development Guide

Develop applications with Apache Camel

Last Updated: 2019-05-13

Red Hat Fuse 7.2 Apache Camel Development Guide

Develop applications with Apache Camel

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to develop JBoss Fuse applications with Apache Camel. It covers the
basic building blocks, enterprise integration patterns, basic syntax for routing expression and
predicate languages, creating web services with the Apache CXF component, using the Apache
Camel API, and how to create a Camel component that wraps any Java API.

Table of Contents

Table of Contents

PART I. IMPLEMENTING ENTERPRISE INTEGRATION PATTERNS ittt ieie s, 27
CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS ... ittt ieiieaieenneenn, 28
1.1. IMPLEMENTING A ROUTEBUILDER CLASS 28
Overview 28
RouteBuilder classes 28
Implementing a RouteBuilder 28
1.2. BASIC JAVA DSL SYNTAX 29
What is a DSL? 29
Router rule syntax 29
Consumers and producers 30
Exchanges 30
Message exchange patterns 31
Grouped exchanges 32
Processors 32
Expressions and predicates 32
1.3. ROUTER SCHEMA IN A SPRING XML FILE 32
Namespace 32
Specifying the schema location 32
Runtime schema location 33
Using an XML editor 33
1.4. ENDPOINTS 33
Overview 33
Endpoint URIs 34
Working with Long Endpoint URIs 34
Specifying time periods in a URI 35
Specifying raw values in URI options 36
Case-insensitive enum options 36
Specifying URI Resources 36
Apache Camel components 36
Consumer endpoints 37
Producer endpoints 38
1.5. PROCESSORS 39
Overview 39
Some sample processors 45
Choice 46
Filter 47
Throttler 47
Custom processor 47
CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING ...ttt i eeiieeieeieeaneennnennn 49
2.1. PIPELINE PROCESSING 49
Overview 49
Processor nodes 49
Pipeline for InOnly exchanges 50
Pipeline for InOut exchanges 51
Pipeline for InOptionalOut exchanges 51
2.2. MULTIPLE INPUTS 52
Overview 52
Multiple independent inputs 52
Segmented routes 52

Red Hat Fuse 7.2 Apache Camel Development Guide

Direct endpoints

SEDA endpoints

VM endpoints

Content enricher pattern

2.3. EXCEPTION HANDLING

2.3.1. onException Clause
Overview
Trapping exceptions using onException
Java DSL example
XML DSL example
Trapping multiple exceptions
Deadletter channel
Use original message
Redelivery policy
Conditional trapping
Handling exceptions
Suppressing exception rethrow
Continuing processing
Sending a response
Exception thrown while handling an exception
Scopes
Route scope
2.3.2. Error Handler
Overview
Java DSL example
XML DSL example
Types of error handler
2.3.3.doTry, doCatch, and doFinally
Overview
Similarities between doCatch and Java catch
Special features of doCatch
Example
Rethrowing exceptions in doCatch
Conditional exception catching using onWhen
Nested Conditions in doTry
2.3.4. Propagating SOAP Exceptions
Overview
How to propagate stack trace information

2.4. BEAN INTEGRATION

Overview

Bean registry

Registry plug-in strategy

Accessing a bean created in Java

Accessing overloaded bean methods
Specify parameters explicitly

Basic method signatures

Method signature for processing message bodies
Method signature for processing exchanges
Accessing a Spring bean from Spring XML
Accessing a Spring bean from Java

Bean shutdown order in Spring XML
Parameter binding annotations

Basic annotations

53
53
54
54
55
55
55
56
56
56
57
58
58
59
60

61

61
62
62
63
63
64
64
64
65
65
66
66
66
66
67
67
67
68
69
70
70
70

71

71

71

71
72
72
73
74
74
74
75
75
76
76
76

Table of Contents

Expression language annotations 77
Inherited annotations 80
Interface implementations 80
Invoking static methods 81
Invoking an OSGi service 81
2.5. CREATING EXCHANGE INSTANCES 82
Overview 82
ExchangeBuilder class 82
Example 82
ExchangeBuilder methods 82
2.6. TRANSFORMING MESSAGE CONTENT 83
2.6.1. Simple Message Transformations 83
Overview 83
API for simple transformations 83
ProcessorDefinition class 83
Builder class 84
ValueBuilder class 86
2.6.2. Marshalling and Unmarshalling 87
Java DSL commands 88
Data formats 88
Java serialization 88
JAXB 88
XMLBeans 89
XStream 89
2.6.3. Endpoint Bindings 90
What is a binding? 90
DataFormatBinding 90
Associating a binding with an endpoint 90
Binding URI 90
BindingComponent 91
BindingComponent constructors 92
Implementing a custom binding 92
Binding interface 92
When to use bindings 93
2.7. PROPERTY PLACEHOLDERS 93
Overview 93
Property files 94
Resolving properties 94
Specifying locations using system properties and environment variables 95
Configuring the properties component 95
Placeholder syntax 96
Substitution in endpoint URIs 96
Substitution in Spring XML files 97
Substitution of XML DSL attribute values 97
Substitution of Java DSL EIP options 98
Substitution in Simple language expressions 98
Using Property Placeholders in the XML DSL 99
Integration with OSGi blueprint property placeholders 100
Implicit blueprint integration 100
Explicit blueprint integration 101
Integration with Spring property placeholders 102
2.8. THREADING MODEL 103
Java thread pool API 103

Red Hat Fuse 7.2 Apache Camel Development Guide

Apache Camel thread pool API 103
Component threading model 103
Processor threading model 104
threads DSL options 105
Creating a default thread pool 105
Default thread pool profile settings 106
Changing the default thread pool profile 106
Customizing a processor’s thread pool 107
Creating a custom thread pool 107
Creating a custom thread pool profile 109
Sharing a thread pool between components 110
Customizing thread names 110
2.9. CONTROLLING START-UP AND SHUTDOWN OF ROUTES m
Overview m
Setting the route ID m
Disabling automatic start-up of routes 12
Manually starting and stopping routes 12
Startup order of routes 13
Shutdown sequence n4
Shutdown order of routes 14
Shutting down running tasks in a route n4
Shutdown timeout 15
Integration with custom components ns5
2.9.1. RouteldFactory 16
2.10. SCHEDULED ROUTE POLICY 116
2.10.1. Overview of Scheduled Route Policies 16
Overview 16
Scheduling tasks 16
Quartz component 16
2.10.2. Simple Scheduled Route Policy n7
Overview nz
Dependency n7
Java DSL example nz
XML DSL example 18
Defining dates and times 18
Graceful shutdown 19
Logging Inflight Exchanges on Timeout 19
Scheduling tasks 19
Starting a route 19
Stopping a route 120
Suspending a route 120
Resuming a route 121
2.10.3. Cron Scheduled Route Policy 121
Overview 121
Dependency 122
Java DSL example 122
XML DSL example 122
Defining cron expressions 123
Scheduling tasks 123
Starting a route 123
Stopping a route 124
Suspending a route 124
Resuming a route 124

Table of Contents

2.10.4. Route Policy Factory 125
Using Route Policy Factory 125

2.11. RELOADING CAMEL ROUTES 125
2.11.1. Enabling Live Reload 126
2.12. RUNNING APACHE CAMEL STANDALONE 126
2.13. ONCOMPLETION 127
Overview 127
Route Only Scope for onCompletion 127
Global Scope for onCompletion 129
Using onWhen 129
Using onCompletion with or without a thread pool 129
Run onCompletion before Consumer Sends Response 130
2.14. METRICS 130
Overview 130
Metrics Route Policy 130
Metrics Route Policy Factory 131
Options 131
2.15. IMX NAMING 132
Overview 132
Default naming strategy 132
Customizing the JMX naming strategy 133
Specifying a name pattern in Java 133
Specifying a name pattern in XML 133
Name pattern tokens 133
Examples 134
Ambiguous names 134
2.16. PERFORMANCE AND OPTIMIZATION 134
Message copying 134
CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNSttt iiiinnnenns 135
3.1. OVERVIEW OF THE PATTERNS 135
Enterprise Integration Patterns book 135
Messaging systems 135
Messaging channels 136
Message construction 137
Message routing 137
Message transformation 139
Messaging endpoints 140
System management 141
CHAPTER 4. DEFINING REST SERVICES ...ttt ettt eaneeeerannnneeeannnn 142
4.1. OVERVIEW OF REST IN CAMEL 142
Overview 142
What is REST? 142
A sample REST invocation 142
REST wrapper layers 142
REST implementations 143
JAX-RS REST implementation 144
4.2. DEFINING SERVICES WITH REST DSL 145
REST DSL is a facade 145
Advantages of the REST DSL 145
Components that integrate with REST DSL 145
Configuring REST DSL to use a REST implementation 145

Red Hat Fuse 7.2 Apache Camel Development Guide

Syntax 146
REST DSL with Java 146
REST DSL with XML 147
Specifying a base path 147
Using Dynamic To 148
URI templates 148
Embedded route syntax 149
REST DSL and HTTP transport component 150
Specifying the content type of requests and responses 150
Additional HTTP methods 150
Defining custom HTTP error messages 151
Parameter Default Values 152
Wrapping a JsonParserException in a custom HTTP error message 152
REST DSL options 152
4.3. MARSHALLING TO AND FROM JAVA OBJECTS 154
Marshalling Java objects for transmission over HTTP 154
Integration of JSON and JAXB with the REST DSL 155
Supported data format components 155
How to enable object marshalling 156
Configuring the binding mode 157
Example 158
Configure the Servlet component as the REST implementation 158
Required dependencies 160
Java type for responses 160
Sample REST DSL route with JSON binding 161
REST operations 162
URLs to invoke the REST service 163
4.4, CONFIGURING THE REST DSL 163
Configuring with Java 163
Configuring with XML 163
Configuration options 164
Default CORS headers 167
Enabling or disabling Jackson JSON features 167
45. SWAGGER INTEGRATION 168
Overview 168
Configuring a CamelContext to enable Swagger 168
Swagger module configuration options 169
Using the CORS filter to enable CORS support 171
Obtaining JSON or YAML output 172
Examples 172
Enhancing documentation generated by Swagger 172
CHAPTER 5. MESSAGING SYSTEMS ..t ettt ettt eaneeeerannnneenananns 174
5.1. MESSAGE 174
Overview 174
Types of message 174
Message structure 174
Correlating messages 175
Exchange objects 175
Accessing messages 175
5.2. MESSAGE CHANNEL 175
Overview 175
Message-oriented components 176

Table of Contents

ActiveMQ 176
JMS 176
AMQP 177
5.3. MESSAGE ENDPOINT 177
Overview 177
Types of endpoint 177
Endpoint URIs 178
Dynamic To 178
5.4. PIPES AND FILTERS 180
Overview 180
Pipeline for the InOut exchange pattern 180
Pipeline for the InOnly and RobustInOnly exchange patterns 181
Comparison of pipeline() and to() DSL commands 182
5.5. MESSAGE ROUTER 182
Overview 182
Java DSL example 183
XML configuration example 183
Choice without otherwise 183
5.6. MESSAGE TRANSLATOR 183
Overview 183
Bean integration 184
5.7. MESSAGE HISTORY 185
Overview 185
Limiting Character Length in Logs 185
CHAPTER 6. MESSAGING CHANNELS ...ttt i iea et eaeennneeanneeaneeenneennnens 186
6.1. POINT-TO-POINT CHANNEL 186
Overview 186
Components that support point-to-point channel 186
JMS 186
ActiveMQ 187
SEDA 187
JPA 187
XMPP 187
6.2. PUBLISH-SUBSCRIBE CHANNEL 187
Overview 187
Components that support publish-subscribe channel 188
JMS 188
ActiveMQ 188
XMPP 189
Static subscription lists 189
Java DSL example 189
XML configuration example 189
6.3. DEAD LETTER CHANNEL 189
Overview 189
Creating a dead letter channel in Java DSL 190
XML DSL example 190
Redelivery policy 191
Redelivery headers 193
Redelivery exchange properties 194
Using the original message 194
Redeliver delay pattern 195
Which endpoint failed? 195

Red Hat Fuse 7.2 Apache Camel Development Guide

onRedelivery processor
Control redelivery during shutdown or stopping
Using onExceptionOccurred Processor
onException clause
OnPrepareFailure
6.4. GUARANTEED DELIVERY
Overview
Components that support guaranteed delivery
JMS
ActiveMQ
ActiveMQ Journal
6.5. MESSAGE BUS
Overview

CHAPTER 7. MESSAGE CONSTRUCTION ...ttt ittt et it enieeeenannnneeennns
7.]. CORRELATION IDENTIFIER
Overview
7.2. EVENT MESSAGE
EVENT MESSAGE
Explicitly specifying InOnly
7.3. RETURN ADDRESS
Return Address
EXAMPLE

CHAPTER 8. MESSAGE ROUTING ...ttt ittt et it eeaneereennnneeenannnneesnnns
8.1. CONTENT-BASED ROUTER
Overview
Java DSL example
XML configuration example
8.2. MESSAGE FILTER
Overview
Java DSL example
XML configuration example
Filtering with beans
Using stop()
Knowing if Exchange was filtered or not
8.3. RECIPIENT LIST
Overview
Recipient list with fixed destinations
Java DSL example
XML configuration example
Recipient list calculated at run time
Java DSL example
XML configuration example
Sending to multiple recipients in parallel
Stop on exception
Ignore invalid endpoints
Using custom AggregationStrategy
Using custom thread pool
Using method call as recipient list
Bean as recipient list
Using timeout
Apply custom processing to the outgoing messages

196
197
197
197
198
199
199
199
199
200
201
201
201

203
203
203
203
203
204
205
205
205

207
207
207
207
207
208
208
208
208
209
209
209
210
210
210
210
21
21
21
21
212
212
212
213
213
213
214
214
215

Options
Using Exchange Pattern in Recipient List
8.4.SPLITTER
Overview
Java DSL example
XML configuration example
Splitting into groups of lines
Skip first item
Splitter reply
Parallel execution
Using a bean to perform splitting
Exchange properties
Splitter/aggregator pattern
Java DSL example
AggregationStrategy implementation
Stream based processing
Stream based processing with XML
Options
8.5. AGGREGATOR
Overview
How the aggregator works
Java DSL example
XML DSL example
Specifying the correlation expression
Specifying the aggregation strategy
Implementing a custom aggregation strategy
Controlling the lifecycle of a custom aggregation strategy
Exchange properties
Specifying a completion condition
Specifying the completion predicate
Specifying a dynamic completion timeout
Specifying a dynamic completion size
Forcing completion of a single group from within an AggregationStrategy
Forcing completion of all groups with a special message
Using AggregateController
Enforcing unique correlation keys
Stream based processing using Simple expressions
Grouped exchanges
Batch consumer
Persistent aggregation repository
Threading options
Aggregating into a List
Aggregator options
8.6. RESEQUENCER
Overview
Batch resequencing
Batch options
Stream resequencing
Ignore invalid exchanges
Reject old messages
8.7. ROUTING SLIP
Overview
The slip header

Table of Contents

216
219
219
219
220
220

221

221
222
222
223
224
225
225
225
226
227
227
230
230

231
232
232
232
233
234
235
236
236
237
238
239
240
240
240

241

241
242
243
243
244
244
245
250
250
250

251
252
253
253
253
253
254

9

Red Hat Fuse 7.2 Apache Camel Development Guide

10

The current endpoint property
Java DSL example

XML configuration example
Ignore invalid endpoints
Options

8.8. THROTTLER

Overview

Java DSL example

XML configuration example

Dynamically changing maximum requests per period
Asynchronous delaying

Options

8.9. DELAYER

Overview

Java DSL example

XML configuration example
Creating a custom delay
Asynchronous delaying
Options

8.10. LOAD BALANCER

Overview

Java DSL example

XML configuration example
Load-balancing policies
Round robin

Random

Sticky

Topic

Failover

Weighted round robin and weighted random
Custom Load Balancer
Circuit Breaker

8. HYSTRIX

Overview

Java DSL example

XML configuration example
Using the Hystrix fallback feature
Hystrix configuration examples
Options

8.12. SERVICE CALL

Overview

Syntax for calling a service

Translating service names to URIs

Configuring the component that calls the service
Options shared by all implementations

Service call options when using Kubernetes

8.13. MULTICAST

Overview

Multicast with a custom aggregation strategy

Parallel processing

XML configuration example

Apply custom processing to the outgoing messages

Using onPrepare to execute custom logic when preparing messages

254
254
254
255
255
256
256
256
256
256
257
257
258
258
258
258
259
259
260
260
260
260
260
261
261
261
262
263
263
266
267
269
269
269
270
270
270
270

271
276
276
276
277
278
278
279

281

281

281
282
282
283
283

Table of Contents

Options 286
8.14. COMPOSED MESSAGE PROCESSOR 288
Composed Message Processor 288
Java DSL example 288
XML DSL example 289
Processing steps 289
8.15. SCATTER-GATHER 290
Scatter-Gather 290
Dynamic scatter-gather example 290
Static scatter-gather example 292
8.16. LOOP 293
Loop 293
Exchange properties 293
Java DSL examples 293
XML configuration example 293
Using copy mode 294
Options 295
Do While Loop 295
8.17. SAMPLING 296
Sampling Throttler 296
Java DSL example 296
Spring XML example 296
Options 297
8.18. DYNAMIC ROUTER 297
Dynamic Router 297
Dynamic Router in Camel 2.5 onwards 298
Java DSL 298
Spring XML 299
Options 299
@DYNAMICROUTER ANNOTATION 300
CHAPTER O. SAG A E P it ettt ettt ettt ettt e e aaaeeeeeannneeessannnneeeennnns 301
9.1. OVERVIEW 301
9.2. SAGA EIP OPTIONS 301
9.3. SAGA SERVICE CONFIGURATION 302
9.3.1. Using the In-Memory Saga Service 302
9.4. EXAMPLES 302
9.4.1. Handling Completion Events 304
9.4.2. Using Custom Identifiers and Options 305
9.4.3. Setting Timeouts 305
9.4.4. Choosing Propagation 306
9.4.5. Using Manual Completion (Advanced) 306
9.5. XML CONFIGURATION 307
CHAPTER 10. MESSAGE TRANSFORMATION ... ittt ittt ie it eeiieeenaannneeennns 308
10.1. CONTENT ENRICHER 308
Overview 308
Alternatives for enriching content 308
Using message translators and processors to enrich content 309
Using the enrich() method to enrich content 310
Spring XML enrich example 310
Default aggregation strategy when enriching content 31
Options supported by the enrich() method 31

1

Red Hat Fuse 7.2 Apache Camel Development Guide

Specifying an aggregation strategy when using the enrich() method
Using dynamic URIs with enrich()
Using the pollEnrich() method to enrich content
Polling methods used by pollEnrich()
Examples of using the pollEnrich() method
Using dynamic URIs with pollEnrich()
Options supported by the pollEnrich() method
10.2. CONTENT FILTER
Overview
Implementing a content filter
XML configuration example
Using an XPath filter
10.3. NORMALIZER
Overview
Java DSL example
XML configuration example
10.4. CLAIM CHECK EIP
Claim Check EIP
10.4.1. Claim Check EIP Options
Filter Option
10.4.2. Filter Option with Include and Exclude Pattern
10.4.3. Java Examples
10.4.4. XML Examples
10.5. SORT
Sort
Java DSL example
XML configuration example
Options
10.6. TRANSFORMER
10.6.1. How the Transformer works?
10.6.1.1. Data type format
10.6.1.2. Supported Transformers
10.6.1.3. Common Options
10.6.1.4. DataFormat Transformer Options
10.6.2. Endpoint Transformer Options
10.6.3. Custom Transformer Options
10.6.4. Transformer Example
10.6.4.1. Part |
10.6.4.2. Part I
10.7. VALIDATOR
10.7.1. Data type format
10.7.2. Supported Validators
10.7.3. Common Option
10.7.4. Predicate Validator Option
10.7.5. Endpoint Validator Options
10.7.6. Custom Validator Options
10.7.7. Validator Examples
10.7.7.1. Part |
10.7.7.2. Part Il
10.8. VALIDATE
Overview
Java DSL example
XML DSL example

12

313

314

315

315

316

316

317

319

319

319
320
320
320
320

321

321
322
322
322
324
324
325
326
327
327
327
327
328
328
328
328
329
329
329
330
330

331

331

331
332
332
332
332
333
333
334
334
334
335
335
335
335
336

Table of Contents

CHAPTER 11. MESSAGING ENDPOINT S ..ttt itit et taiteeaneennneeaneeeaneennneennens 337
11.1. MESSAGING MAPPER 337
Overview 337
Finding objects to map 337
11.2. EVENT DRIVEN CONSUMER 338
Overview 338
11.3. POLLING CONSUMER 338
Overview 338
Scheduled poll consumer 339
Quartz component 339
11.4. COMPETING CONSUMERS 339
Overview 339
JMS based competing consumers 340
SEDA based competing consumers 341
11.5. MESSAGE DISPATCHER 341
Overview 341
JMS selectors 342
JMS selectors in ActiveMQ 343
Content-based router 343
11.6. SELECTIVE CONSUMER 343
Overview 343
JMS selector 344
JMS selector in ActiveMQ 344
Message filter 344
11.7. DURABLE SUBSCRIBER 345
Overview 345
JMS durable subscriber 346
Alternative example 346
11.8. IDEMPOTENT CONSUMER 348
Overview 348
Idempotent consumer with in-memory cache 348
Idempotent consumer with JPA repository 349
Spring XML example 350
Idempotent consumer with JDBC repository 350
How to handle duplicate messages in the route 351
How to handle duplicate message in a clustered environment with a data grid 352
Options 352
11.9. TRANSACTIONAL CLIENT 354
Overview 354
Transaction oriented endpoints 355
References 355
11.10. MESSAGING GATEWAY 355
Overview 355
11.11. SERVICE ACTIVATOR 355
Overview 355
Bean integration 356
CHAPTER 12. SYSTEM MANAGEMENT ...ttt ittt ittt ettt et eeneeeaneeeaneennneennnns 358
12.1. DETOUR 358
Detour 358
Example 358
12.2. LOGEIP 359
Overview 359

13

Red Hat Fuse 7.2 Apache Camel Development Guide

Java DSL example
XML DSL example
Global Log Name
12.3. WIRE TAP
Wire Tap
WireTap node
Tap a copy of the original exchange
Tap and modify a copy of the original exchange
Tap a new exchange instance
Sending a new Exchange and set headers in DSL
Java DSL
XML DSL
Using URIs
Using onPrepare to execute custom logic when preparing messages
Options

PART Il. ROUTING EXPRESSION AND PREDICATE LANGUAGES

CHAPTER 13. INTRODUCTION ..ottt ittt ettt ettt et et eaneeeaneennneeaneeraneesnneennens
13.1. OVERVIEW OF THE LANGUAGES
Table of expression and predicate languages
13.2. HOW TO INVOKE AN EXPRESSION LANGUAGE
Prerequisites
Camel on EAP deployment
Approaches to invoking
As a static method
As a fluent DSL method
As an XML element
As an annotation
As a Camel endpoint URI

CHAPTER 14, CONS T ANT i i e e i et it it ei e ca e
OVERVIEW
XML EXAMPLE
JAVA EXAMPLE

L0 o Y o I 1 TR
OVERVIEW
ADDING JUEL PACKAGE
STATIC IMPORT
VARIABLES
EXAMPLE

CHAPTER16. THE FILE LANGUAGE ...ttt ittt e et eateanneeaneeraneenaneennens
16.1. WHEN TO USE THE FILE LANGUAGE
Overview
In a File or FTP consumer endpoint
On exchanges created by a File or FTP consumer
16.2. FILE VARIABLES
Overview
Starting directory
Naming convention of file variables
Table of variables
16.3. EXAMPLES

14

359
359
360
360
360

361

361
362
362
363
364
364
364
365
365

367

368
368
368
369
369
370
370
370

371

371
372
372

374
374
374
374

375
375
375
375
375
376

377
377
377
377
378
378
378
378
379
379
380

Table of Contents

Relative pathname 380
Absolute pathname 381
CHAPTER 17. GROOV Y ittt ttit ettt ettt et e et e e e et eeaneennneeanaesaneesaneennens 383
OVERVIEW 383
ADDING THE SCRIPT MODULE 383
STATIC IMPORT 383
BUILT-IN ATTRIBUTES 383
EXAMPLE 384
USING THE PROPERTIES COMPONENT 384
CUSTOMIZING GROOVY SHELL 384
CHAPTER 18. HEADE R .ottt ittt ettt ettt ettt et e e e aneeeaneennneeaneeraneesnneennens 386
OVERVIEW 386
XML EXAMPLE 386
JAVA EXAMPLE 386
CHAPTER 1. JAV AS C RIP T ittt ittt ettt ettt e e et et e e aeennneeaneeeaneennneennens 387
OVERVIEW 387
ADDING THE SCRIPT MODULE 387
STATIC IMPORT 387
BUILT-IN ATTRIBUTES 387
EXAMPLE 388
USING THE PROPERTIES COMPONENT 388
CHAPTER 20. JOS QL ittt ittt ittt et ettt et e et e e e aneeeaneennneeaneesaneesaneennens 389
OVERVIEW 389
ADDING THE JOSQL MODULE 389
STATIC IMPORT 389
VARIABLES 389
EXAMPLE 390
CHAPTER 21 JSON P AT H ittt ettt ettt ettt et e ettt et e eaneenneeeanaeeanaeenneennnens 391
OVERVIEW 391
ADDING THE JSONPATH PACKAGE 391
JAVA EXAMPLE 391
XML EXAMPLE 391
EASY SYNTAX 392
SUPPORTED MESSAGE BODY TYPES 392
SUPPRESS EXCEPTIONS 393
JSONPATH INJECTION 393
INLINE SIMPLE EXPRESSIONS 394
REFERENCE 394
CHAPTER 22, JX P ATH ittt ittt ettt ettt e it e e e e e aneeeaneennneeaneesaneesaneennens 395
OVERVIEW 395
ADDING JXPATH PACKAGE 395
VARIABLES 395
OPTIONS 396
EXAMPLES 396
JXPATH INJECTION 396
LOADING THE SCRIPT FROM AN EXTERNAL RESOURCE 397
CHAPTER 23. MV E L ottt ittt ettt ettt ettt ettt et e e e e et eeaneennneeaneesaneesaneennens 398
OVERVIEW 398

15

Red Hat Fuse 7.2 Apache Camel Development Guide

SYNTAX 398
ADDING THE MVEL MODULE 398
BUILT-IN VARIABLES 398
EXAMPLE 399
CHAPTER 24. THE OBJECT-GRAPH NAVIGATION LANGUAGE(OGNL)ccviiiiiiieiiiiinennnn. 400
OVERVIEW 400
CAMEL ON EAP DEPLOYMENT 400
ADDING THE OGNL MODULE 400
STATIC IMPORT 400
BUILT-IN VARIABLES 400
EXAMPLE 401
CHAPTER 25, PHP o e e e e ettt ettt et 402
OVERVIEW 402
ADDING THE SCRIPT MODULE 402
STATIC IMPORT 402
BUILT-IN ATTRIBUTES 402
EXAMPLE 403
USING THE PROPERTIES COMPONENT 403
CHAPTER 26. EXCHANGE PROPE RTY .ottt teeiie et eeaneeseennneeenannnneeennns 404
OVERVIEW 404
XML EXAMPLE 404
JAVA EXAMPLE 404
CHAPTER 27. PYTHON oottt et et et ettt et aie i 405
OVERVIEW 405
ADDING THE SCRIPT MODULE 405
STATIC IMPORT 405
BUILT-IN ATTRIBUTES 405
EXAMPLE 406
USING THE PROPERTIES COMPONENT 406
CHAPTER 28, REF . e et ettt et et ettt et aie i eanaes 407
OVERVIEW 407
STATIC IMPORT 407
XML EXAMPLE 407
JAVA EXAMPLE 407
CHAPTER 29. RUBY ittt e ettt et ettt ettt aie e tae s 408
OVERVIEW 408
ADDING THE SCRIPT MODULE 408
STATIC IMPORT 408
BUILT-IN ATTRIBUTES 408
EXAMPLE 409
USING THE PROPERTIES COMPONENT 409
CHAPTER 30. THE SIMPLE LANGUAGE ... ittt ittt et iaete i ennneeraannnneeennns 410
30.1. JAVA DSL 410
Simple expressions in Java DSL 410
Embedding in a string 410
Customizing the start and end tokens 410
30.2. XML DSL a1
Simple expressions in XML DSL 41

16

Alternative placeholder syntax
Customizing the start and end tokens
Whitespace and auto-trim in XML DSL
30.3. INVOKING AN EXTERNAL SCRIPT
Overview
Syntax for script resource
30.4. EXPRESSIONS
Overview
Contents of a single variable
Variables embedded in a string
date and bean variables
Specifying the result type
Dynamic Header Key
Nested expressions
Accessing constants or enums
OGNL expressions
OGNL null-safe operator
OGNL list element access
OGNL array length access
30.5. PREDICATES
Overview
Syntax
Examples
Conjunctions
30.6. VARIABLE REFERENCE
Table of variables
30.7. OPERATOR REFERENCE
Binary operators
Unary operators and character escapes
Combining predicates

CHAPTER3L.SPELcoiiit.
OVERVIEW
SYNTAX
ADDING SPEL PACKAGE
VARIABLES
XML EXAMPLE
JAVA EXAMPLE

CHAPTER 32. THE XPATH LANGUAGE

32.1. JAVA DSL
Basic expressions
Namespaces
Auditing namespaces

32.2. XML DSL
Basic expressions
Namespaces
Auditing namespaces

32.3. XPATH INJECTION
Parameter binding annotation
Namespaces
Custom namespaces

32.4. XPATH BUILDER

Table of Contents

4n
4n
4n
412
412
412
412
412
413
413
413
413
414
414
414
414
415
415
415
415
416
416
416
417
417
417
421
421
423
423

424
424
424
424
424
425
425

427
427
427
427
428
428
428
429
429
430
430
430

431

431

17

Red Hat Fuse 7.2 Apache Camel Development Guide

CHAPTER 33. XQUERY

PART Ill. ADVANCED CAMEL PROGRAMMING

Overview
Matching expressions
Evaluating expressions
32.5. ENABLING SAXON
Prerequisites
Using the Saxon parser in Java DSL
Using the Saxon parser in XML DSL
Programming with Saxon
32.6. EXPRESSIONS
Result type
Patterns in location paths
Predicate filters
Axes
Functions
Reference
32.7. PREDICATES
Basic predicates
XPath predicate operators
32.8. USING VARIABLES AND FUNCTIONS
Evaluating variables in a route
Evaluating functions in a route
Evaluating variables in XPathBuilder
32.9. VARIABLE NAMESPACES
Table of namespaces
32.10. FUNCTION REFERENCE
Table of custom functions

OVERVIEW

JAVA SYNTAX

ADDING THE SAXON MODULE
CAMEL ON EAP DEPLOYMENT
STATIC IMPORT

VARIABLES

EXAMPLE

CHAPTER 34. UNDERSTANDING MESSAGE FORMATS ... e

18

34.1. EXCHANGES

Overview

The Exchange interface

Lazy creation of messages

Lazy creation of exchange IDs
34.2. MESSAGES

Overview

The Message interface

Lazy creation of bodies, headers, and attachments

Lazy creation of message IDs

Initial message format

Type converters

Type conversion methods in Message
Converting to XML

Marshalling and unmarshalling

431

431
432
432
432
432
433
433
433
433
434
435
435
436
436
437
437
437
438
438
438
438
439
439
439
439

441
441
441
441
441
441

442

442

443

444
444
444
445
445
445
445
446
446
447
447
447
448
448
448

Table of Contents

Final message format 449
34.3. BUILT-IN TYPE CONVERTERS 449
Overview 449
Basic type converters 449
Collection type converters 450
Map type converters 450
DOM type converters 450
SAX type converters 451
enum type converter 451
Custom type converters 451
34.4. BUILT-IN UUID GENERATORS 451
Overview 451
Provided UUID generators 45]
Custom UUID generator 452
Specifying the UUID generator using Java 452
Specifying the UUID generator using Spring 452
CHAPTER 35. IMPLEMENTING A PROCESSOR .. ittt it eeiiie e eeannneeeanns 454
35.1. PROCESSING MODEL 454
Pipelining model 454
35.2. IMPLEMENTING A SIMPLE PROCESSOR 454
Overview 454
Processor interface 454
Implementing the Processor interface 455
Inserting the simple processor into a route 455
35.3. ACCESSING MESSAGE CONTENT 455
Accessing message headers 455
Accessing the message body 456
Accessing message attachments 456
35.4. THE EXCHANGEHELPER CLASS 456
Overview 457
Resolve an endpoint 457
Wrapping the exchange accessors 457
Testing the exchange pattern 458
Get the In message’s MIME content type 458
CHAPTER 36. TYPE CONVERTERS ...ttt ettt e et eanaeeenannnneeennnn 459
36.1. TYPE CONVERTER ARCHITECTURE 459
Overview 459
Type converter interface 459
Master type converter 459
Type converter loader 460
Type conversion process 460
36.2. HANDLING DUPLICATE TYPE CONVERTERS 461
TypeConverterExists Class 461
36.3. IMPLEMENTING TYPE CONVERTER USING ANNOTATIONS 461
Overview 462
How to implement a type converter 462
Implement an annotated converter class 462
Create a TypeConverter file 463
Package the type converter 463
Fallback converter method 463
36.4. IMPLEMENTING A TYPE CONVERTER DIRECTLY 465

19

Red Hat Fuse 7.2 Apache Camel Development Guide

Overview
Implement the TypeConverter interface
Add the type converter to the registry

CHAPTER 37. PRODUCER AND CONSUMER TEMPLATES

37.1. USING THE PRODUCER TEMPLATE
37.1.1. Introduction to the Producer Template
Overview
Synchronous invocation
Synchronous invocation with a processor
Asynchronous invocation
Asynchronous invocation with a callback
37.1.2. Synchronous Send
Overview
Send an exchange
Send an exchange populated by a processor
Send a message body
Send a message body and header(s)
Send a message body and exchange property
37.1.3. Synchronous Request with InOut Pattern
Overview
Request an exchange populated by a processor
Request a message body
Request a message body and header(s)
37.1.4. Asynchronous Send
Overview
Send an exchange
Send an exchange populated by a processor
Send a message body
37.1.5. Asynchronous Request with InOut Pattern
Overview
Request a message body
Request a message body and header(s)
37.1.6. Asynchronous Send with Callback
Overview
Send an exchange
Send an exchange populated by a processor
Send a message body
Request a message body
37.2. USING FLUENT PRODUCER TEMPLATES
Available as of Camel 2.18
37.3. USING THE CONSUMER TEMPLATE
Overview
Example of polling exchanges
Example of polling message bodies
Methods for polling exchanges
Methods for polling message bodies

CHAPTER 38. IMPLEMENTING A COMPONENT ...,

38.1. COMPONENT ARCHITECTURE
38.1.1. Factory Patterns for a Component
Overview
Component

20

465
465
465

467
467
467
467
467
468
468
469
470
470
470

471

471
472
473
474
474
474
474
475
476
476
476
477
477
477
477
477
478
479
479
479
480
480
480

481

481

481
482
482
482
483
483

484
484
484
484
484

Endpoint
Consumer
Producer
Exchange
Message
38.1.2. Using a Component in a Route
Overview
Source endpoint
Processors
Target endpoint
38.1.3. Consumer Patterns and Threading
Overview
Event-driven pattern
Scheduled poll pattern
Polling pattern
38.1.4. Asynchronous Processing
Overview
Synchronous producer
Asynchronous producer
38.2.HOW TO IMPLEMENT A COMPONENT
Overview
Which interfaces do you need to implement?
Implementation steps
Installing and configuring the component
38.3. AUTO-DISCOVERY AND CONFIGURATION
38.3.1. Setting Up Auto-Discovery
Overview
Availability of component classes
Configuring auto-discovery
Example
38.3.2. Configuring a Component
Overview
Define bean properties on your component class
Configure the component in Spring
Examples

CHAPTER 39. COMPONENT INTERFACEt

39.1. THE COMPONENT INTERFACE
Overview
The Component interface
Component methods
39.2. IMPLEMENTING THE COMPONENT INTERFACE
The DefaultComponent class
URI parsing
Parameter injection
Disabling endpoint parameter injection
Scheduled executor service
Validating the URI
Creating an endpoint
Example
SynchronizationRouteAware Interface

CHAPTER 40. ENDPOINT INTERFACE ...

Table of Contents

484
485
485
485
485
486
486
486
486
486
486
486
487
487
488
489
489
489
490

491
492
492
492
493
493
493
493
493
493
494
494
494
494
495
495

............................. 497

497
497
497
498
498
498
498
499
499
500
500
500

501
502

Red Hat Fuse 7.2 Apache Camel Development Guide

40.1. THE ENDPOINT INTERFACE
Overview
The Endpoint interface
Endpoint methods
Endpoint singletons

40.2. IMPLEMENTING THE ENDPOINT INTERFACE
Alternative ways of implementing an endpoint
Event-driven endpoint implementation
Scheduled poll endpoint implementation
Polling endpoint implementation
Implementing the BrowsableEndpoint interface
Example

CHAPTER 41. CONSUMERINTERFACE e

411. THE CONSUMER INTERFACE
Overview
Consumer parameter injection
Scheduled poll parameters
Converting between event-driven and polling consumers
ShutdownPrepared interface
ShutdownAware interface
41.2. IMPLEMENTING THE CONSUMER INTERFACE
Alternative ways of implementing a consumer
Event-driven consumer implementation
Scheduled poll consumer implementation
Polling consumer implementation
Custom threading implementation

CHAPTER 42. PRODUCERINTERFACE ... i

42.1. THE PRODUCER INTERFACE
Overview
The Producer interface
Producer methods
Asynchronous processing
ExchangeHelper class
42.2. IMPLEMENTING THE PRODUCER INTERFACE
Alternative ways of implementing a producer
How to implement a synchronous producer
How to implement an asynchronous producer

CHAPTER 43. EXCHANGE INTERFACE ... o i

43.1. THE EXCHANGE INTERFACE
Overview
The Exchange interface
Exchange methods

CHAPTER 44. MESSAGE INTERFACE e

44.1. THE MESSAGE INTERFACE
Overview
The Message interface
Message methods
442 . IMPLEMENTING THE MESSAGE INTERFACE
How to implement a custom message

22

503
503
504
505
506
506
506
506
508
509

510

510

513
513
513
513
514
515
516
517
517
517
518
519
520
522

525
525
525
525
526
526
527
527
527
527
528

530
530
530

531

534
534
534
534
535
536
536

Table of Contents

PART IV. THE API COMPONENT FRAMEWORK ... ittt ieieeieaneeeneeennnennns 538
CHAPTER 45. INTRODUCTION TO THE APl COMPONENT FRAMEWORKttt 539
45.1. WHAT IS THE API COMPONENT FRAMEWORK? 539
Motivation 539
Turning APIs into components 539
Generic URI format 539
URI format for a single API class 539
Reflection and metadata 540
Javadoc 540
Method signature files 540
What does the framework consist of? 540
452. HOW TO USE THE FRAMEWORK 540
Overview 540
Java API 541
Javadoc metadata 541
Signature file metadata 542
Generate starting code with the Maven archetype 542
Edit component classes 542
Customize POM files 543
Configure the camel-api-component-maven-plugin 543
OSGi bundle configuration 543
Build the component 543
CHAPTER 46. GETTING STARTED WITH THEFRAMEWORKttt iiii i ennees 545
46.1. GENERATE CODE WITH THE MAVEN ARCHETYPE 545
Maven archetypes 545
The APl component Maven archetype 545
Prerequisites 545
Invoke the Maven archetype 545
Options 545
Structure of the generated project 546
46.2. GENERATED API SUB-PROJECT 547
Overview 547
Sample Java API 547
ExampleJavadocHello class 547
ExampleFileHello class 548
Generating the Javadoc metadata for ExampleJavadocHello 548
46.3. GENERATED COMPONENT SUB-PROJECT 548
Overview 548
Providing the Java APl in the component POM 549
Providing the Javadoc metadata in the component POM 549
Defining the file metadata for Example File Hello 550
Configuring the APl mapping 550
Generated component implementation 552
ExampleComponent class 552
ExampleEndpoint class 553
ExampleConsumer class 555
ExampleProducer class 555
ExampleConfiguration class 556
URI format 556
Default component instance 557
46.4. PROGRAMMING MODEL 557

23

Red Hat Fuse 7.2 Apache Camel Development Guide

Overview 557
Component methods to implement 558
What else to implement in the Component class? 558
Endpoint methods to implement 558
Consumer methods to implement 560
Producer methods to implement 561
Consumer polling and threading model 561
46.5. SAMPLE COMPONENT IMPLEMENTATIONS 561
Overview 561
Box.com 561
LinkedIn 561
GoogleDrive 562
Olingo2 562
CHAPTER 47. CONFIGURING THE API COMPONENT MAVEN PLUG-INttt 563
47.]. OVERVIEW OF THE PLUG-IN CONFIGURATION 563
Overview 563
Location of the generated code 563
Prerequisites 563
Setting up the plug-in 563
Example base configuration 563
Base configuration 564
Example instance configuration 565
Basic mapping configuration 565
Customizing the APl mapping 566
Configuring Javadoc metadata 567
Configuring signature file metadata 567
47.2. JAVADOC OPTIONS 567
Overview 567
Syntax 567
Scope 567
Options 568
47.3. METHOD ALIASES 568
Overview 568
Syntax 568
Scope 569
Example 569
47.4. NULLABLE OPTIONS 569
Overview 569
Syntax 569
Scope 570
Example 570
47.5. ARGUMENT NAME SUBSTITUTION 571
Overview 571
Syntax 571
Scope 572
Child elements 572
Example 572
47.6. EXCLUDED ARGUMENTS 573
Overview 573
Syntax 573
Scope 573
Elements 574

24

Table of Contents

47.7. EXTRA OPTIONS
Overview
Syntax
Scope
Child elements
Example

574
574
574
574
575
575

25

Red Hat Fuse 7.2 Apache Camel Development Guide

26

PART I. IMPLEMENTING ENTERPRISE INTEGRATION PATTERNS

PART I. IMPLEMENTING ENTERPRISE INTEGRATION
PATTERNS

This part describes how to build routes using Apache Camel. It covers the basic building blocks and EIP
components.

27

Red Hat Fuse 7.2 Apache Camel Development Guide

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

Abstract

Apache Camel supports two alternative Domain Specific Languages (DSL) for defining routes: a Java
DSL and a Spring XML DSL. The basic building blocks for defining routes are endpoints and processors,
where the behavior of a processor is typically modified by expressions or logical predicates. Apache
Camel enables you to define expressions and predicates using a variety of different languages.

1.1. IMPLEMENTING A ROUTEBUILDER CLASS

Overview

To use the Domain Specific Language (DSL), you extend the RouteBuilder class and override its
configure() method (where you define your routing rules).

You can define as many RouteBuilder classes as necessary. Each class is instantiated once and is
registered with the CamelContext object. Normally, the lifecycle of each RouteBuilder object is
managed automatically by the container in which you deploy the router.

RouteBuilder classes

As a router developer, your core task is to implement one or more RouteBuilder classes. There are two
alternative RouteBuilder classes that you can inherit from:

e org.apache.camel.builder.RouteBuilder — this is the generic RouteBuilder base class that is
suitable for deploying into any container type. It is provided in the camel-core artifact.

e org.apache.camel.spring.SpringRouteBuilder — this base class is specially adapted to the
Spring container. In particular, it provides extra support for the following Spring specific
features: looking up beans in the Spring registry (using the beanRef() Java DSL command) and
transactions (see the Transactions Guide for details). It is provided in the camel-spring
artifact.

The RouteBuilder class defines methods used to initiate your routing rules (for example, from(),
intercept(), and exception()).

Implementing a RouteBuilder

Example 1.1, “Implementation of a RouteBuilder Class” shows a minimal RouteBuilder implementation.
The configure() method body contains a routing rule; each rule is a single Java statement.

public class MyRouteBuilder extends RouteBuilder {
public void configure() {
// Define routing rules here:

from("file:src/data?noop=true").to("file:target/messages”);

Example 1.1. Implementation of a RouteBuilder Class
/I More rules can be included, in you like.

| import org.apache.camel.builder.RouteBuilder;

28

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

/..
}
}

The form of the rule from(URL1).to(URL2) instructs the router to read files from the directory src/data
and send them to the directory target/messages. The option ?noop=true instructs the router to retain
(not delete) the source files in the src/data directory.

NOTE

When you use the contextScan with Spring or Blueprint to filter RouteBuilder classes,
by default Apache Camel will look for singleton beans. However, you can turn on the old
behavior to include prototype scoped with the new option includeNonSingletons.

1.2. BASIC JAVA DSL SYNTAX

Whatis a DSL?

A Domain Specific Language (DSL) is a mini-language designed for a special purpose. A DSL does not
have to be logically complete but needs enough expressive power to describe problems adequately in
the chosen domain. Typically, a DSL does not require a dedicated parser, interpreter, or compiler. A DSL
can piggyback on top of an existing object-oriented host language, provided DSL constructs map
cleanly to constructs in the host language API.

Consider the following sequence of commands in a hypothetical DSL:

commandO1;
command02;
command03;

You can map these commands to Java method invocations, as follows:
I command01().command02().command03()

You can even map blocks to Java method invocations. For example:

I command01().startBlock().command02().command03().endBlock()

The DSL syntax is implicitly defined by the data types of the host language API. For example, the return
type of a Java method determines which methods you can legally invoke next (equivalent to the next
command in the DSL).

Router rule syntax

Apache Camel defines a router DSL for defining routing rules. You can use this DSL to define rules in
the body of a RouteBuilder.configure() implementation. Figure 1.1, “Local Routing Rules” shows an
overview of the basic syntax for defining local routing rules.

29

Red Hat Fuse 7.2 Apache Camel Development Guide

Figure 1.1. Local Routing Rules

" 1. Source Target ——"=
X Processor ge
= Endpoint Endpoint<———
Ouf Out
from("SourceURL"). filter(xpath("...")). to("TargetURL")
| I |
Predicate
[
Processor

A local rule always starts with a from(" EndpointURL") method, which specifies the source of messages
(consumer endpoint) for the routing rule. You can then add an arbitrarily long chain of processors to the
rule (for example, filter()). You typically finish off the rule with a to("EndpointURL") method, which
specifies the target (producer endpoint) for the messages that pass through the rule. However, it is not
always necessary to end a rule with to(). There are alternative ways of specifying the message targetin a
rule.

NOTE

You can also define a global routing rule, by starting the rule with a special processor type
(such as intercept(), exception(), or errorHandler()). Global rules are outside the scope
of this guide.

Consumers and producers

A local rule always starts by defining a consumer endpoint, using from(" EndpointURL"), and typically
(but not always) ends by defining a producer endpoint, using to("EndpointURL"). The endpoint URLs,
EndpointURL, can use any of the components configured at deploy time. For example, you could use a
file endpoint, file:MyMessageDirectory, an Apache CXF endpoint, cxf:MyServiceName, or an Apache
ActiveMQ endpoint, activemq:queue:MyQName. For a complete list of component types, see Apache
Camel Component Reference.

Exchanges

An exchange object consists of a message, augmented by metadata. Exchanges are of central
importance in Apache Camel, because the exchange is the standard form in which messages are
propagated through routing rules. The main constituents of an exchange are, as follows:

® |nmessage —is the current message encapsulated by the exchange. As the exchange
progresses through a route, this message may be modified. So the In message at the start of a
route is typically not the same as the In message at the end of the route. The
org.apache.camel.Message type provides a generic model of a message, with the following
parts:

o Body.
o Headers.
o Attachments.

It is important to realize that this is a generic model of a message. Apache Camel supports a
large variety of protocols and endpoint types. Hence, it is not possible to standardize the

30

{topics/eip/building_blocks.adoc}

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

format of the message body or the message headers. For example, the body of a JMS message
would have a completely different format to the body of a HTTP message or a Web services
message. For this reason, the body and the headers are declared to be of Object type. The
original content of the body and the headers is then determined by the endpoint that created
the exchange instance (that is, the endpoint appearing in the from() command).

Out message — is a temporary holding area for a reply message or for a transformed message.
Certain processing nodes (in particular, the to() command) can modify the current message by
treating the In message as a request, sending it to a producer endpoint, and then receiving a
reply from that endpoint. The reply message is then inserted into the Out message slot in the
exchange.

Normally, if an Out message has been set by the current node, Apache Camel modifies the
exchange as follows before passing it to the next node in the route: the old In message is
discarded and the Out message is moved to the In message slot. Thus, the reply becomes the
new current message. For a more detailed discussion of how Apache Camel connects nodes
together in a route, see Section 2.1, “Pipeline Processing”.

There is one special case where an Out message is treated differently, however. If the consumer
endpoint at the start of a route is expecting a reply message, the Out message at the very end
of the route is taken to be the consumer endpoint’s reply message (and, what is more, in this
case the final node must create an Out message or the consumer endpoint would hang) .

Message exchange pattern (MEP) — affects the interaction between the exchange and
endpoints in the route, as follows:

o Consumer endpoint — the consumer endpoint that creates the original exchange sets the
initial value of the MEP. The initial value indicates whether the consumer endpoint expects
to receive a reply (for example, the INnOut MEP) or not (for example, the InOnly MEP).

o Producer endpoints — the MEP affects the producer endpoints that the exchange
encounters along the route (for example, when an exchange passes through a to() node).
For example, if the current MEP is InOnly, a to() node would not expect to receive a reply
from the endpoint. Sometimes you need to change the current MEP in order to customize
the exchange's interaction with a producer endpoint. For more details, see Section 1.4,
“Endpoints”.

Exchange properties — a list of named properties containing metadata for the current message.

Message exchange patterns

Using an Exchange object makes it easy to generalize message processing to different message
exchange patterns. For example, an asynchronous protocol might define an MEP that consists of a single
message that flows from the consumer endpoint to the producer endpoint (an InOnly MEP). An RPC
protocol, on the other hand, might define an MEP that consists of a request message and a reply
message (an InOut MEP). Currently, Apache Camel supports the following MEPs:

InOnly
RobustinOnly
InOut
InOptionalOut
OutOnly

RobustOutOnly

31

Red Hat Fuse 7.2 Apache Camel Development Guide

e Outin
o OQOutOptionalln

Where these message exchange patterns are represented by constants in the enumeration type,
org.apache.camel.ExchangePattern.
Grouped exchanges

Sometimes it is useful to have a single exchange that encapsulates multiple exchange instances. For this
purpose, you can use a grouped exchange. A grouped exchange is essentially an exchange instance that
contains a java.util.List of Exchange objects stored in the Exchange.GROUPED_EXCHANGE
exchange property. For an example of how to use grouped exchanges, see Section 8.5, “Aggregator”.

Processors

A processor is a node in a route that can access and modify the stream of exchanges passing through
the route. Processors can take expression or predicate arguments, that modify their behavior. For
example, the rule shown in Figure 1.1, “Local Routing Rules” includes a filter() processor that takes an
xpath() predicate as its argument.

Expressions and predicates
Expressions (evaluating to strings or other data types) and predicates (evaluating to true or false) occur

frequently as arguments to the built-in processor types. For example, the following filter rule
propagates In messages, only if the foo header is equal to the value bar:

I from("seda:a").filter(header("foo").isEqualTo("bar")).to("seda:b");

Where the filter is qualified by the predicate, header("foo").isEqualTo("bar"). To construct more
sophisticated predicates and expressions, based on the message content, you can use one of the
expression and predicate languages (see Part Il, “Routing Expression and Predicate Languages”).

1.3. ROUTER SCHEMA IN A SPRING XML FILE

Namespace

The router schema — which defines the XML DSL — belongs to the following XML schema namespace:

I http://camel.apache.org/schema/spring

Specifying the schema location

The location of the router schema is normally specified to be
http://camel.apache.org/schema/spring/camel-spring.xsd, which references the latest version of the
schema on the Apache Web site. For example, the root beans element of an Apache Camel Spring file
is normally configured as shown in Example 1.2, “Specifying the Router Schema Location” .

Example 1.2. Specifying the Router Schema Location
xmlns:camel="http://camel.apache.org/schema/spring"

I <beans xmins="http://www.springframework.org/schema/beans"

32

http://camel.apache.org/schema/spring/camel-spring.xsd

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="

http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-
spring.xsd">

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring">
<!-- Define your routing rules here -->
</camelContext>
</beans>

Runtime schema location

At run time, Apache Camel does not download the router schema from schema location specified in the
Spring file. Instead, Apache Camel automatically picks up a copy of the schema from the root directory
of the camel-spring JAR file. This ensures that the version of the schema used to parse the Spring file
always matches the current runtime version. This is important, because the latest version of the schema
posted up on the Apache Web site might not match the version of the runtime you are currently using.

Using an XML editor

Generally, it is recommended that you edit your Spring files using a full-feature XML editor. An XML
editor’s auto-completion features make it much easier to author XML that complies with the router
schema and the editor can warn you instantly, if the XML is badly-formed.

XML editors generally do rely on downloading the schema from the location that you specify in the
xsi:schemalocation attribute. In order to be sure you are using the correct schema version whilst
editing, it is usually a good idea to select a specific version of the camel-spring.xsd file. For example, to
edit a Spring file for the 2.3 version of Apache Camel, you could modify the beans element as follows:

<beans xmiIns="http://www.springframework.org/schema/beans"
xmlns:camel="http://camel.apache.org/schema/spring"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal.ocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring-
2.3.0.xsd">

Change back to the default, camel-spring.xsd, when you are finished editing. To see which schema
versions are currently available for download, navigate to the Web page,
http://camel.apache.org/schema/spring.

1.4. ENDPOINTS

Overview

Apache Camel endpoints are the sources and sinks of messages in a route. An endpoint is a very general
sort of building block: the only requirement it must satisfy is that it acts either as a source of messages (a
consumer endpoint) or as a sink of messages (a producer endpoint). Hence, there are a great variety of

33

http://camel.apache.org/schema/spring

Red Hat Fuse 7.2 Apache Camel Development Guide

different endpoint types supported in Apache Camel, ranging from protocol supporting endpoints, such
as HTTP, to simple timer endpoints, such as Quartz, that generate dummy messages at regular time
intervals. One of the major strengths of Apache Camelis that it is relatively easy to add a custom
component that implements a new endpoint type.

Endpoint URIs

Endpoints are identified by endpoint URIs, which have the following general form:

I scheme:contextPath[?queryOptions]

The URI scheme identifies a protocol, such as http, and the contextPath provides URI details that are
interpreted by the protocol. In addition, most schemes allow you to define query options, queryOptions,
which are specified in the following format:

I ?option01=value01&option02=value02&...

For example, the following HTTP URI can be used to connect to the Google search engine page:

I http://www.google.com

The following File URI can be used to read all of the files appearing under the C:\temp\src\data
directory:

I file://C:/temp/src/data

Not every scheme represents a protocol. Sometimes a scheme just provides access to a useful utility,
such as a timer. For example, the following Timer endpoint URI generates an exchange every second
(=1000 milliseconds). You could use this to schedule activity in a route.

I timer://tickTock?period=1000

Working with Long Endpoint URIs

Sometimes endpoint URIs can become quite long due to all the accompanying configuration information
supplied. In JBoss Fuse 6.2 onwards, there are two approaches you can take to make your working with
lengthy URIs more manageable.

Configure Endpoints Separately

You can configure the endpoint separately, and from the routes refer to the endpoints using their
shorthand IDs.

<camelContext ...>

<endpoint id="foo" uri="ftp://foo@myserver">
<property name="password" value="secret"/>
<property name="recursive" value="true"/>
<property name="ftpClient.dataTimeout" value="30000"/>
<property name="ftpClient.serverLanguageCode" value="fr"/>
</endpoint>

<route>
<from uri="ref:foo"/>

34

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

</route>
</camelContext>

You can also configure some options in the URI and then use the property attribute to specify
additional options (or to override options from the URI).

<endpoint id="foo" uri="ftp://foo@myserver?recursive=true">
<property name="password" value="secret"/>
<property name="ftpClient.dataTimeout" value="30000"/>
<property name="ftpClient.serverLanguageCode" value="fr"/>
</endpoint>

Split Endpoint Configuration Across New Lines

You can split URI attributes using new lines.

<route>
<from uri="ftp://foo@myserver?password=secret&
recursive=true&ftpClient.dataTimeout=30000&
ftpClientConfig.serverLanguageCode=fr"/>
<to uri="bean:doSomething"/>
</route>

NOTE

You can specify one or more options on each line, each separated by &.

Specifying time periods in a URI

Many of the Apache Camel components have options whose value is a time period (for example, for
specifying timeout values and so on). By default, such time period options are normally specified as a
pure number, which is interpreted as a millisecond time period. But Apache Camel also supports a more
readable syntax for time periods, which enables you to express the period in hours, minutes, and
seconds. Formally, the human-readable time period is a string that conforms to the following syntax:

I [NHour(h|hourn)][NMin(m|minute)][NSec(s|second)]

Where each term in square brackets, [], is optional and the notation, (A|B), indicates that A and B are
alternatives.

For example, you can configure timer endpoint with a 45 minute period as follows:

from("timer:foo?period=45m")
to("log:foo");
You can also use arbitrary combinations of the hour, minute, and second units, as follows:

from("timer:foo?period=1h15m")
to("log:foo");
from("timer:bar?period=2h30s")

35

Red Hat Fuse 7.2 Apache Camel Development Guide

to("log:bar");
from("timer:bar?period=3h45m58s")
to("log:bar");

Specifying raw values in URI options

By default, the option values that you specify in a URI are automatically URI-encoded. In some cases this
is undesirable behavior. For example, when setting a password option, it is preferable to transmit the raw
character string without URI encoding.

Itis possible to switch off URI encoding by specifying an option value with the syntax, RAW(RawValue).
For example,

from("SourceURI")
to("ftp:joe@myftpserver.com?password=RAW(se+re?t&23)&binary=true")

In this example, the password value is transmitted as the literal value, se+re?t&23.

Case-insensitive enum options

Some endpoint URI options get mapped to Java enum constants. For example, the level option of the
Log component, which can take the enum values, INFO, WARN, ERROR, and so on. This type
conversion is case-insensitive, so any of the following alternatives could be used to set the logging level
of a Log producer endpoint:

<to uri="log:foo?level=info"/>
<to uri="log:foo?level=INfo"/>
<to uri="log:foo?level=InFo"/>

Specifying URI Resources

From Camel 2.17, the resource based components such as XSLT, Velocity can load the resource file from
the Registry by using ref: as prefix.

For example, ifmyvelocityscriptbean and mysimplescriptbean are the IDs of two beans in the registry,
you can use the contents of these beans as follows:

Velocity endpoint:

from("velocity:ref:myvelocityscriptbean").<rest_of _route>.

Language endpoint (for invoking a scripting language):

from("direct:start")
.to("language:simple:ref:mysimplescriptbean")
Where Camel implicitly converts the bean to a String.

Apache Camel components

Each URI scheme maps to an Apache Camel component, where an Apache Camel component is
essentially an endpoint factory. In other words, to use a particular type of endpoint, you must deploy the
corresponding Apache Camel component in your runtime container. For example, to use JMS endpoints,
you would deploy the JMS component in your container.

36

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

Apache Camel provides a large variety of different components that enable you to integrate your
application with various transport protocols and third-party products. For example, some of the more
commonly used components are: File, JMS, CXF (Web services), HTTP, Jetty, Direct, and Mock. For the
full list of supported components, see the Apache Camel component documentation.

Most of the Apache Camel components are packaged separately to the Camel core. If you use Maven to
build your application, you can easily add a component (and its third-party dependencies) to your

application simply by adding a dependency on the relevant component artifact. For example, to include
the HTTP component, you would add the following Maven dependency to your project POM file:

<!-- Maven POM File -->
<properties>
<camel-version>{camelFullVersion}</camel-version>
</properties>
<dependencies>
<dependency>
<groupld>org.apache.camel</groupld>
<artifactld>camel-http</artifactld>
<version>${camel-version}</version>

</dependency>

</dependencies>

The following components are built-in to the Camel core (in the camel-core artifact), so they are always
available:

® Bean

® Browse
® Dataset
® Direct
® File

® | og

® Mock

® Properties
® Ref

e SEDA
® Timer

e VM

Consumer endpoints

A consumer endpoint is an endpoint that appears at the start of a route (thatis,ina from() DSL

37

http://camel.apache.org/components.html

Red Hat Fuse 7.2 Apache Camel Development Guide

command). In other words, the consumer endpoint is responsible for initiating processing in a route: it
creates a new exchange instance (typically, based on some message that it has received or obtained),
and provides a thread to process the exchange in the rest of the route.

For example, the following JMS consumer endpoint pulls messages off the payments queue and
processes them in the route:

from("jms:queue:payments")
.process(SomeProcessor)
to("TargetURI");

Or equivalently, in Spring XML:

<camelContext id="CamelContextID"
xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="jms:queue:payments"/>
<process ref="someProcessorld"/>
<to uri="TargetURI'"/>
</route>
</camelContext>

Some components are consumer only — that is, they can only be used to define consumer endpoints.
For example, the Quartz component is used exclusively to define consumer endpoints. The following
Quartz endpoint generates an event every second (1000 milliseconds):

from("quartz://secondTimer?trigger.repeatinterval=1000")
.process(SomeProcessor)
to("TargetURI);

If you like, you can specify the endpoint URI as a formatted string, using the fromF() Java DSL
command. For example, to substitute the username and password into the URI for an FTP endpoint, you
could write the route in Java, as follows:

fromF("ftp:%s@fusesource.com?password=%s", username, password)
.process(SomeProcessor)
to("TargetURI);

Where the first occurrence of %s is replaced by the value of the username string and the second
occurrence of %s is replaced by the password string. This string formatting mechanism is implemented
by String.format() and is similar to the formatting provided by the C printf() function. For details, see
java.util.Formatter.

Producer endpoints

A producer endpoint is an endpoint that appears in the middle or at the end of a route (for example, in a
to() DSL command). In other words, the producer endpoint receives an existing exchange object and
sends the contents of the exchange to the specified endpoint.

For example, the following JMS producer endpoint pushes the contents of the current exchange onto
the specified JMS queue:

38

mailto:s@fusesource.com
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

from("SourceURI")
.process(SomeProcessor)
.to("jms:queue:orderForms");

Or equivalently in Spring XML:

<camelContext id="CamelContextID" xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURI"/>
<process ref="someProcessorld"/>
<to uri="jms:queue:orderForms"/>
</route>
</camelContext>

Some components are producer only — that is, they can only be used to define producer endpoints. For
example, the HTTP endpoint is used exclusively to define producer endpoints.

from("SourceURI")
.process(SomeProcessor)
to("http://www.google.com/search?hl=en&qg=camel+router");

If you like, you can specify the endpoint URI as a formatted string, using the toF() Java DSL command.
For example, to substitute a custom Google query into the HTTP URI, you could write the route in Java,
as follows:

from("SourceURI")
.process(SomeProcessor)
AoF("http://www.google.com/search?hl=en&q=%s", myGoogleQuery);

Where the occurrence of %s is replaced by your custom query string, myGoogleQuery. For details, see
java.util.Formatter.

1.5. PROCESSORS

Overview

To enable the router to do something more interesting than simply connecting a consumer endpoint to a
producer endpoint, you can add processors to your route. A processor is a command you can insert into a
routing rule to perform arbitrary processing of messages that flow through the rule. Apache Camel
provides a wide variety of different processors, as shown in Table 1.1, “Apache Camel Processors”.

Table 1.1. Apache Camel Processors

Java DSL XML DSL Description

aggregate() aggregate Section 8.5, “Aggregator”:
Creates an aggregator, which
combines multiple incoming
exchanges into a single exchange.

39

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Formatter.html

Red Hat Fuse 7.2 Apache Camel Development Guide

Java DSL

aop()

bean(), beanRef()

choice()

convertBodyTo()

delay()

doTry()

end()

enrich().enrichRef()

filter()

idempotentConsumer()

40

XML DSL

aop

bean

choice

convertBodyTo

delay

doTry

N/A

enrich

filter

idempotentConsumer

Description

Use Aspect Oriented
Programming (AOP) to do work
before and after a specified sub-
route.

Process the current exchange by
invoking a method on a Java
object (or bean). See Section 2.4,
“Bean Integration”.

Section 8.1, “Content-Based
Router”: Selects a particular sub-
route based on the exchange
content, using when and
otherwise clauses.

Converts the In message body to
the specified type.

Section 8.9, “Delayer”: Delays the
propagation of the exchange to
the latter part of the route.

Creates a try/catch block for
handling exceptions, using
doCatch, doFinally, and end
clauses.

Ends the current command block.

Section 10.1, “Content Enricher”:
Combines the current exchange
with data requested from a
specified producer endpoint URI.

Section 8.2, "“Message Filter”
Uses a predicate expression to
filter incoming exchanges.

Section 11.8, “ldempotent
Consumer”: Implements a
strategy to suppress duplicate
messages.

Java DSL

inheritErrorHandler()

inOnly()

inOut()

loadBalance()

log()

loop()

markRollbackOnly()

markRollbackOnlyLast()

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

XML DSL

@inheritErrorHandler

inOnly

inOut

loadBalance

loop

@markRollbackOnly

@markRollbackOnlyLast

Description

Boolean option that can be used
to disable the inherited error
handler on a particular route node
(defined as a sub-clause in the
Java DSL and as an attribute in
the XML DSL).

Either sets the current exchange’s
MEP to InOnly (if no arguments)
or sends the exchange as an
InOnly to the specified
endpoint(s).

Either sets the current exchange’s
MEP to InOut (if no arguments)
or sends the exchange as an
InOut to the specified
endpoint(s).

Section 8.10, “Load Balancer™:
Implements load balancing over a
collection of endpoints.

Logs a message to the console.

Section 8.16, “Loop”: Repeatedly
resends each exchange to the
latter part of the route.

(Transactions) Marks the current
transaction for rollback only (no
exception is raised). In the XML
DSL, this option is set as a
boolean attribute on the
rollback element. See Apache
Karaf Transaction Guide.

(Transactions) If one or more
transactions have previously been
associated with this thread and
then suspended, this command
marks the latest transaction for
rollback only (no exception is
raised). In the XML DSL, this
option is set as a boolean
attribute on the rollback
element. See Apache Karaf
Transaction Guide.

41

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/apache_karaf_transaction_guide/index
https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/apache_karaf_transaction_guide/index

Red Hat Fuse 7.2 Apache Camel Development Guide

Java DSL

marshal()

multicast()

onCompletion()

onException()

pipeline()

policy()

pollEnrich(),pollEnrichRef()

process() processRef

42

XML DSL

marshal

multicast

onCompletion

onException

pipeline

policy

pollEnrich

process

Description

Transforms into a low-level or
binary format using the specified
data format, in preparation for
sending over a particular
transport protocol.

Section 8.13, “Multicast”:
Multicasts the current exchange
to multiple destinations, where
each destination gets its own
copy of the exchange.

Defines a sub-route (terminated
by end() in the Java DSL) that
gets executed after the main
route has completed. See also
Section 2.13, “OnCompletion”.

Defines a sub-route (terminated
by end() in the Java DSL) that
gets executed whenever the
specified exception occurs.
Usually defined on its own line
(notin aroute).

Section 5.4, “Pipes and Filters”:
Sends the exchange to a series of
endpoints, where the output of
one endpoint becomes the input
of the next endpoint. See also
Section 2.1, “Pipeline Processing”.

Apply a policy to the current route
(currently only used for
transactional policies — see
Apache Karaf Transaction Guide.

Section 10.1, “Content Enricher”:
Combines the current exchange
with data polled from a specified
consumer endpoint URI.

Execute a custom processor on
the current exchange. See the
section called “"Custom processor”
and Part lll, “Advanced Camel
Programming”.

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/apache_karaf_transaction_guide/index

Java DSL

recipientList()

removeHeader()

removeHeaders()

removeProperty()

removeProperties()

resequence()

rollback()

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

XML DSL

recipientList

removeHeader

removeHeaders

removeProperty

removeProperties

resequence

rollback

Description

Section 8.3, "Recipient List"
Sends the exchange to a list of
recipients that is calculated at
runtime (for example, based on
the contents of a header).

Removes the specified header
from the exchange’s In message.

Removes the headers matching
the specified pattern from the
exchange's In message. The
pattern can have the form,
prefix* — in which case it
matches every name starting with
prefix — otherwise, it is
interpreted as a regular
expression.

Removes the specified exchange
property from the exchange.

Removes the properties matching
the specified pattern from the
exchange. Takes a comma
separated list of 1 or more strings
as arguments. The first string is
the pattern (see
removeHeaders() above).
Subsequent strings specify
exceptions - these properties
remain.

Section 8.6, “Resequencer” Re-
orders incoming exchanges on
the basis of a specified
comparotor operation. Supports a
batch mode and astream mode.

(Transactions) Marks the current
transaction for rollback only (also
raising an exception, by default).
See Apache Karaf Transaction
Guide.

43

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/apache_karaf_transaction_guide/index

Red Hat Fuse 7.2 Apache Camel Development Guide

Java DSL

routingSlip()

sample()

setBody()

setExchangePattern()

setHeader()

setOutHeader()

setProperty()

sort()

split()

stop()

threads()

44

XML DSL

routingSlip

sample

setBody

setExchangePattern

setHeader

setOutHeader

setProperty()

sort

split

stop

threads

Description

Section 8.7, "Routing Slip"™:
Routes the exchange through a
pipeline that is constructed
dynamically, based on the list of
endpoint URIs extracted from a
slip header.

Creates a sampling throttler,
allowing you to extract a sample
of exchanges from the traffic on a
route.

Sets the message body of the
exchange’s In message.

Sets the current exchange's MEP
to the specified value. See the
section called “Message exchange
patterns”.

Sets the specified header in the
exchange’s In message.

Sets the specified header in the
exchange’s Out message.

Sets the specified exchange
property.

Sorts the contents of the In
message body (where a custom
comparator can optionally be
specified).

Section 8.4, “Splitter”: Splits the
current exchange into a sequence
of exchanges, where each split
exchange contains a fragment of
the original message body.

Stops routing the current
exchange and marks it as
completed.

Creates a thread pool for
concurrent processing of the
latter part of the route.

Java DSL

throttle()

throwException()

to()

toF()

transacted()

transform()

unmarshal()

validate()

wireTap()

Some sample processors

XML DSL

throttle

throwException

to

N/A

transacted

transform

unmarshal

validate

wireTap

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

Description

Section 8.8, “Throttler” Limit the
flow rate to the specified level
(exchanges per second).

Throw the specified Java
exception.

Send the exchange to one or
more endpoints. See Section 2.1,
"Pipeline Processing”.

Send the exchange to an
endpoint, using string formatting.
That is, the endpoint URI string
can embed substitutions in the
style of the C printf() function.

Create a Spring transaction scope
that encloses the latter part of the
route. See Apache Karaf
Transaction Guide.

Section 5.6, “Message
Translator”: Copy the In message
headers to the Out message
headers and set the Out message
body to the specified value.

Transforms the In message body
from a low-level or binary format
to a high-level format, using the
specified data format.

Takes a predicate expression to
test whether the current message
is valid. If the predicate returns
false, throws a
PredicateValidationExceptio
N exception.

Section 12.3, “Wire Tap” Sends a
copy of the current exchange to
the specified wire tap URI, using
the ExchangePattern.InOnly
MEP.

45

https://access.redhat.com/documentation/en-us/red_hat_fuse/7.2/html-single/apache_karaf_transaction_guide/index

Red Hat Fuse 7.2 Apache Camel Development Guide

To get some idea of how to use processors in a route, see the following examples:
® Choice
® Filter
® Throttler

® Custom

Choice

The choice() processor is a conditional statement that is used to route incoming messages to
alternative producer endpoints. Each alternative producer endpoint is preceded by a when() method,
which takes a predicate argument. If the predicate is true, the following target is selected, otherwise
processing proceeds to the next when() method in the rule. For example, the following choice()
processor directs incoming messages to either Targetl, Target2, or Target3, depending on the values of
Predicatel and Predicate2:

from("SourceURL")

.choice()
.when(Predicate1).to("Target1")
.when(Predicate2).to("Target2")
.otherwise().to("Target3");

Or equivalently in Spring XML:

<camelContext id="buildSimpleRouteWithChoice" xmlns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL"/>
<choice>
<when>
<!I-- First predicate -->
<simple>header.foo = 'bar'</simple>
<to uri="Target1"/>
</when>
<when>
<!I-- Second predicate -->
<simple>header.foo = 'manchu'</simple>
<to uri="Target2"/>
</when>
<otherwise>
<to uri="Target3"/>
</otherwise>
</choice>
</route>
</camelContext>

In the Java DSL, there is a special case where you might need to use the endChoice() command. Some
of the standard Apache Camel processors enable you to specify extra parameters using special sub-
clauses, effectively opening an extra level of nesting which is usually terminated by the end() command.
For example, you could specify a load balancer clause as
loadBalance().roundRobin().to("mock:foo").to("mock:bar").end(), which load balances messages
between the mock:foo and mock:bar endpoints. If the load balancer clause is embedded in a choice
condition, however, it is necessary to terminate the clause using the endChoice() command, as follows:

46

CHAPTER 1. BUILDING BLOCKS FOR ROUTE DEFINITIONS

from("direct:start")
.choice()
.when(bodyAs(String.class).contains("Camel"))
.loadBalance().roundRobin().to("mock:foo").to("mock:bar").endChoice()
.otherwise()
to("mock:result");

Filter

The filter() processor can be used to prevent uninteresting messages from reaching the producer
endpoint. It takes a single predicate argument: if the predicate is true, the message exchange is allowed
through to the producer; if the predicate is false, the message exchange is blocked. For example, the
following filter blocks a message exchange, unless the incoming message contains a header, foo, with
value equal to bar:

I from(" SourceURL") filter(header("foo").isEqualTo("bar")).to(" TargetURL");

Or equivalently in Spring XML:

<camelContext id="filterRoute" xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL"/>
<filter>
<simple>header.foo = 'bar'</simple>
<to uri="TargetURL"/>
<ffilter>
</route>
</camelContext>

Throttler

The throttle() processor ensures that a producer endpoint does not get overloaded. The throttler works
by limiting the number of messages that can pass through per second. If the incoming messages exceed
the specified rate, the throttler accumulates excess messages in a buffer and transmits them more
slowly to the producer endpoint. For example, to limit the rate of throughput to 100 messages per
second, you can define the following rule:

I from(" SourceURL").throttle(100).to(" TargetURL");

Or equivalently in Spring XML:

<camelContext id="throttleRoute" xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL"/>
<throttle maximumRequestsPerPeriod="100" timePeriodMillis="1000">
<to uri="TargetURL"/>
</throttle>
</route>
</camelContext>

Custom processor

47

Red Hat Fuse 7.2 Apache Camel Development Guide

If none of the standard processors described here provide the functionality you need, you can always
define your own custom processor. To create a custom processor, define a class that implements the
org.apache.camel.Processor interface and overrides the process() method. The following custom
processor, MyProcessor, removes the header named foo from incoming messages:

public void process(org.apache.camel.Exchange exchange) {
inMessage = exchange.getin();
if (inMessage != null) {

public class MyProcessor implements org.apache.camel.Processor {
inMessage.removeHeader("foo");

‘ Example 1.3. Implementing a Custom Processor Class

To insert the custom processor into a router rule, invoke the process() method, which provides a generic
mechanism for inserting processors into rules. For example, the following rule invokes the processor
defined in Example 1.3, “Implementing a Custom Processor Class”:

org.apache.camel.Processor myProc = new MyProcessor();

from("SourceURL").process(myProc).to(" TargetURL");

48

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Abstract

Apache Camel provides several processors and components that you can link together in a route. This
chapter provides a basic orientation by explaining the principles of building a route using the provided
building blocks.

2.1. PIPELINE PROCESSING

Overview

In Apache Camel, pipelining is the dominant paradigm for connecting nodes in a route definition. The
pipeline concept is probably most familiar to users of the UNIX operating system, where it is used to join
operating system commands. For example, Is | more is an example of a command that pipes a directory
listing, Is, to the page-scrolling utility, more. The basic idea of a pipeline is that the output of one
command is fed into the input of the next. The natural analogy in the case of a route is for the Out
message from one processor to be copied to the In message of the next processor.

Processor nodes

Every node in a route, except for the initial endpoint, is a processor, in the sense that they inherit from
the org.apache.camel.Processor interface. In other words, processors make up the basic building
blocks of a DSL route. For example, DSL commands such as filter(), delayer(), setBody(), setHeader(),
and to() all represent processors. When considering how processors connect together to build up a
route, it is important to distinguish two different processing approaches.

The first approach is where the processor simply modifies the exchange's In message, as shown in
Figure 2.1, “Processor Modifying an In Message” . The exchange’s Out message remains null in this case.

Figure 2.1. Processor Modifying an In Message

In In
Processor

The following route shows a setHeader() command that modifies the current In message by adding (or
modifying) the BillingSystem heading:

from("activemq:orderQueue")
.setHeader("BillingSystem", xpath("/order/billingSystem"))
to("activemq:billingQueue");

The second approach is where the processor creates an Out message to represent the result of the
processing, as shown in Figure 2.2, "Processor Creating an Out Message” .

49

Red Hat Fuse 7.2 Apache Camel Development Guide

Figure 2.2. Processor Creating an Out Message

Processor

In Out

>

The following route shows a transform() command that creates an Out message with a message body
containing the string, DummyBody:

from("activemq:orderQueue")
transform(constant("DummyBody"))
to("activemq:billingQueue");

where constant("DummyBody") represents a constant expression. You cannot pass the string,
DummyBody, directly, because the argument to transform() must be an expression type.

Pipeline for InOnly exchanges

Figure 2.3, "Sample Pipeline for InOnly Exchanges” shows an example of a processor pipeline for InOnly
exchanges. Processor A acts by modifying the In message, while processors B and C create an Out
message. The route builder links the processors together as shown. In particular, processors B and C are
linked together in the form of a pipeline: that is, processor B's Out message is moved to the In message
before feeding the exchange into processor C, and processor C's Out message is moved to the In
message before feeding the exchange into the producer endpoint. Thus the processors' outputs and
inputs are joined into a continuous pipeline, as shown in Figure 2.3, “Sample Pipeline for InOnly
Exchanges”.

Figure 2.3. Sample Pipeline for InOnly Exchanges

Processor B Processor C

A A

In Out In Out
Consumer In In Producer

Endpoint Processor A > Endpoint

Apache Camel employs the pipeline pattern by default, so you do not need to use any special syntax to
create a pipeline in your routes. For example, the following route pulls messages from a userdataQueue
queue, pipes the message through a Velocity template (to produce a customer address in text format),
and then sends the resulting text address to the queue, envelopeAddresses:

from("activemq:userdataQueue")
.to(ExchangePattern.InOut, "velocity:file:AdressTemplate.vm")
.to("activemq:envelopeAddresses");

50

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Where the Velocity endpoint, velocity:file:AddressTemplate.vm, specifies the location of a Velocity
template file, file:AddressTemplate.vm, in the file system. The to() command changes the exchange
pattern to InOut before sending the exchange to the Velocity endpoint and then changes it back to
InOnly afterwards. For more details of the Velocity endpoint, see Velocity in the Apache Camel
Component Reference Guide.

Pipeline for InOut exchanges

Figure 2.4, "Sample Pipeline for InOut Exchanges” shows an example of a processor pipeline for InOut
exchanges, which you typically use to support remote procedure call (RPC) semantics. Processors A, B,
and C are linked together in the form of a pipeline, with the output of each processor being fed into the
input of the next. The final Out message produced by the producer endpoint is sent all the way back to
the consumer endpoint, where it provides the reply to the original request.

Figure 2.4. Sample Pipeline for InOut Exchanges

Processor A Processor B Processor C

1 A A
In Out In Out In Ouf

\ 4

Consumer Producer
Endpoint P Endpoint
h out

Note that in order to support the InOut exchange pattern, it is essential that the last node in the route
(whether it is a producer endpoint or some other kind of processor) creates an Out message. Otherwise,
any client that connects to the consumer endpoint would hang and wait indefinitely for a reply message.
You should be aware that not all producer endpoints create Out messages.

Consider the following route that processes payment requests, by processing incoming HTTP requests:

from("jetty:http://localhost:8080/foo")
to("cxf:bean:addAccountDetails")
.to("cxf:bean:getCreditRating")
.to("cxf:bean:processTransaction");

Where the incoming payment request is processed by passing it through a pipeline of Web services,
cxf:bean:addAccountDetails, cxf:bean:getCreditRating, and cxf:bean:processTransaction. The
final Web service, processTransaction, generates a response (Out message) that is sent back through
the JETTY endpoint.

When the pipeline consists of just a sequence of endpoints, it is also possible to use the following
alternative syntax:

from("jetty:http://localhost:8080/foo")
.pipeline("cxf:bean:addAccountDetails", "cxf:bean:getCreditRating",
"cxf:bean:processTransaction");

Pipeline for InOptionalOut exchanges

The pipeline for InOptionalOut exchanges is essentially the same as the pipeline in Figure 2.4, “Sample
Pipeline for InOut Exchanges”. The difference between InOut and InOptionalOut is that an exchange
with the InOptionalOut exchange pattern is allowed to have a null Out message as a reply. That is, in the

51

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-Velocity.html

Red Hat Fuse 7.2 Apache Camel Development Guide

case of an InOptionalOut exchange, a nullOut message is copied to the In message of the next node in
the pipeline. By contrast, in the case of an InOut exchange, a nullOut message is discarded and the
original In message from the current node would be copied to the Inmessage of the next node instead.

2.2. MULTIPLE INPUTS

Overview

A standard route takes its input from just a single endpoint, using the from(EndpointURL) syntax in the
Java DSL. But what if you need to define multiple inputs for your route? Apache Camel provides several
alternatives for specifying multiple inputs to a route. The approach to take depends on whether you
want the exchanges to be processed independently of each other or whether you want the exchanges
from different inputs to be combined in some way (in which case, you should use the the section called
“Content enricher pattern”).

Multiple independent inputs

The simplest way to specify multiple inputs is using the multi-argument form of the from() DSL
command, for example:

I from("URI1", "URIZ", "URI3").to("DestinationUr");

Or you can use the following equivalent syntax:

I from("URI1").from("URI2").from("URI3").to("DestinationUr");

In both of these examples, exchanges from each of the input endpoints, UR/1, URI2, and URI3, are
processed independently of each other and in separate threads. In fact, you can think of the preceding
route as being equivalent to the following three separate routes:

from("URI1").to("DestinationUr");
from("URI2").to("DestinationUrT");
from("URI3").to("DestinationUrT");

Segmented routes

For example, you might want to merge incoming messages from two different messaging systems and
process them using the same route. In most cases, you can deal with multiple inputs by dividing your
route into segments, as shown in Figure 2.5, “Processing Multiple Inputs with Segmented Routes” .

Figure 2.5. Processing Multiple Inputs with Segmented Routes

from("activemg:Nyse") .to (InternalUrl)

N

from(InternalUrl) .to("activemqg:USTxn")

A

from("activemg:Nasdaq") .to (InternalUrl)

The initial segments of the route take their inputs from some external queues — for example,
activemq:Nyse and activemq:Nasdaq — and send the incoming exchanges to an internal endpoint,
InternalUrl. The second route segment merges the incoming exchanges, taking them from the internal

52

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

endpoint and sending them to the destination queue, activemq:USTxn. The InternalUrlis the URL for
an endpoint that is intended only for use within a router application. The following types of endpoints
are suitable for internal use:

® Direct endpoint
® SEDA endpoints
® VM endpoints

The main purpose of these endpoints is to enable you to glue together different segments of a route.
They all provide an effective way of merging multiple inputs into a single route.

Direct endpoints

The direct component provides the simplest mechanism for linking together routes. The event model
for the direct component is synchronous, so that subsequent segments of the route run in the same
thread as the first segment. The general format of a direct URL is direct: EndpointID, where the
endpoint ID, EndpointID, is simply a unique alphanumeric string that identifies the endpoint instance.

For example, if you want to take the input from two message queues, activemq:Nyse and
activemq:Nasdaq, and merge them into a single message queue, activemq:USTxn, you can do this by
defining the following set of routes:

from("activemq:Nyse").to("direct:mergeTxns");
from("activemq:Nasdaq").to("direct:mergeTxns");

from("direct:mergeTxns").to("activemq:USTxn");

Where the first two routes take the input from the message queues, Nyse and Nasdaq, and send them
to the endpoint, direct:mergeTxns. The last queue combines the inputs from the previous two queues
and sends the combined message stream to the activemq:USTxn queue.

The implementation of the direct endpoint behaves as follows: whenever an exchange arrives at a
producer endpoint (for example, to("direct:mergeTxns")), the direct endpoint passes the exchange
directly to all of the consumers endpoints that have the same endpoint ID (for example,
from("direct:mergeTxns")). Direct endpoints can only be used to communicate between routes that
belong to the same CamelContext in the same Java virtual machine (JVM) instance.

SEDA endpoints

The SEDA component provides an alternative mechanism for linking together routes. You can use it in a
similar way to the direct component, but it has a different underlying event and threading model, as
follows:

® Processing of a SEDA endpoint is not synchronous. That is, when you send an exchange to a
SEDA producer endpoint, control immediately returns to the preceding processor in the route.

® SEDA endpoints contain a queue buffer (of java.util.concurrent.BlockingQueue type), which
stores all of the incoming exchanges prior to processing by the next route segment.

® FEach SEDA consumer endpoint creates a thread pool (the default size is 5) to process exchange
objects from the blocking queue.

53

Red Hat Fuse 7.2 Apache Camel Development Guide

® The SEDA component supports the competing consumers pattern, which guarantees that each
incoming exchange is processed only once, even if there are multiple consumers attached to a
specific endpoint.

One of the main advantages of using a SEDA endpoint is that the routes can be more responsive, owing
to the built-in consumer thread pool. The stock transactions example can be re-written to use SEDA
endpoints instead of direct endpoints, as follows:

from("activemq:Nyse").to("seda:mergeTxns");
from("activemq:Nasdaq").to("seda:mergeTxns");

from("seda:mergeTxns").to("activemq:USTxn");

The main difference between this example and the direct example is that when using SEDA, the second
route segment (from seda:mergeTxns to activemq:USTxn) is processed by a pool of five threads.

NOTE

There is more to SEDA than simply pasting together route segments. The staged event-
driven architecture (SEDA) encompasses a design philosophy for building more
manageable multi-threaded applications. The purpose of the SEDA component in
Apache Camel is simply to enable you to apply this design philosophy to your
applications. For more details about SEDA, see
http://www.eecs.harvard.edu/~mdw/proj/seda/.

VM endpoints

The VM component is very similar to the SEDA endpoint. The only difference is that, whereas the SEDA
component is limited to linking together route segments from within the same CamelContext, the VM
component enables you to link together routes from distinct Apache Camel applications, as long as they
are running within the same Java virtual machine.

The stock transactions example can be re-written to use VM endpoints instead of SEDA endpoints, as
follows:

from("activemq:Nyse").to("vm:mergeTxns");
from("activemq:Nasdaq").to("vm:mergeTxns");

And in a separate router application (running in the same Java VM), you can define the second segment
of the route as follows:

I from("vm:mergeTxns").to("activemq:USTxn");

Content enricher pattern

The content enricher pattern defines a fundamentally different way of dealing with multiple inputs to a
route. When an exchange enters the enricher processor, the enricher contacts an external resource to
retrieve information, which is then added to the original message. In this pattern, the external resource
effectively represents a second input to the message.

For example, suppose you are writing an application that processes credit requests. Before processing a

credit request, you need to augment it with the data that assigns a credit rating to the customer, where
the ratings data is stored in a file in the directory, src/data/ratings. You can combine the incoming credit

54

http://www.eecs.harvard.edu/~mdw/proj/seda/

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

request with data from the ratings file using the pollEnrich() pattern and a
GroupedExchangeAggregationStrategy aggregation strategy, as follows:

from("jms:queue:creditRequests")
.pollEnrich("file:src/data/ratings?noop=true”, new GroupedExchangeAggregationStrategy())
.bean(new MergeCreditRequestAndRatings(), "merge")
to("jms:queue:reformattedRequests”);

Where the GroupedExchangeAggregationStrategy class is a standard aggregation strategy from the
org.apache.camel.processor.aggregate package that adds each new exchange to a java.util.List
instance and stores the resulting list in the Exchange.GROUPED_EXCHANGE exchange property. In
this case, the list contains two elements: the original exchange (from the creditRequests JMS queue);
and the enricher exchange (from the file endpoint).

To access the grouped exchange, you can use code like the following:

public class MergeCreditRequestAndRatings {
public void merge(Exchange ex) {
// Obtain the grouped exchange
List<Exchange> list = ex.getProperty(Exchange. GROUPED_EXCHANGE, List.class);

/I Get the exchanges from the grouped exchange
Exchange originalEx = list.get(0);
Exchange ratingsEx = list.get(1);

// Merge the exchanges

-
}

An alternative approach to this application would be to put the merge code directly into the
implementation of the custom aggregation strategy class.

For more details about the content enricher pattern, see Section 10.1, “Content Enricher”.

2.3. EXCEPTION HANDLING

Abstract

Apache Camel provides several different mechanisms, which let you handle exceptions at different
levels of granularity: you can handle exceptions within a route using doTry, doCatch, and doFinally; or
you can specify what action to take for each exception type and apply this rule to all routes in a
RouteBuilder using onException; or you can specify what action to take for all exception types and
apply this rule to all routes in a RouteBuilder using errorHandler.

For more details about exception handling, see Section 6.3, “Dead Letter Channel”.
2.3.1. onException Clause

Overview

The onException clause is a powerful mechanism for trapping exceptions that occur in one or more
routes: it is type-specific, enabling you to define distinct actions to handle different exception types; it
allows you to define actions using essentially the same (actually, slightly extended) syntax as a route,

55

Red Hat Fuse 7.2 Apache Camel Development Guide

giving you considerable flexibility in the way you handle exceptions; and it is based on a trapping model,
which enables a single onException clause to deal with exceptions occurring at any node in any route.

Trapping exceptions using onException

The onException clause is a mechanism for trapping, rather than catching exceptions. That is, once you
define an onException clause, it traps exceptions that occur at any pointin a route. This contrasts with
the Java try/catch mechanism, where an exception is caught, only if a particular code fragment is
explicitly enclosed in a try block.

What really happens when you define an onException clause is that the Apache Camel runtime
implicitly encloses each route node in a try block. This is why the onException clause is able to trap
exceptions at any point in the route. But this wrapping is done for you automatically; it is not visible in
the route definitions.

Java DSL example

In the following Java DSL example, the onException clause applies to all of the routes defined in the
RouteBuilder class. If a ValidationException exception occurs while processing either of the routes
(from("seda:inputA") or from("seda:inputB")), the onException clause traps the exception and
redirects the current exchange to the validationFailed JMS queue (which serves as a deadletter
queue).

/I Java
public class MyRouteBuilder extends RouteBuilder {

public void configure() {
onException(ValidationException.class)
.to("activemq:validationFailed");

from("seda:inputA")
.to("validation:foo/bar.xsd", "activemq:someQueue");

from("seda:inputB").to("direct:foo")
.to("rnc:mySchema.rnc”, "activemq:anotherQueue");
}
}

XML DSL example

The preceding example can also be expressed in the XML DSL, using the onException element to
define the exception clause, as follows:

<beans xmins="http://www.springframework.org/schema/beans"
xmlIns:camel="http://camel.apache.org/schema/spring"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmIns="http://camel.apache.org/schema/spring">

<onException>
<exception>com.mycompany.ValidationException</exception>

56

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

<to uri="activemq:validationFailed"/>
</onException>
<route>
<from uri="seda:inputA"/>
<to uri="validation:foo/bar.xsd"/>
<to uri="activemq:someQueue"/>
</route>
<route>
<from uri="seda:inputB"/>
<to uri="rnc:mySchema.rnc"/>
<to uri="activemq:anotherQueue"/>
</route>
</camelContext>

</beans>

Trapping multiple exceptions

You can define multiple onException clauses to trap exceptionsina RouteBuilder scope. This enables
you to take different actions in response to different exceptions. For example, the following series of
onException clauses defined in the Java DSL define different deadletter destinations for
ValidationException, IOException, and Exception:

onException(ValidationException.class).to("activemq:validationFailed");
onException(java.io.lOException.class).to("activemq:ioExceptions");
onException(Exception.class).to("activemq:exceptions”);

You can define the same series of onException clauses in the XML DSL as follows:

<onException>
<exception>com.mycompany.ValidationException</exception>
<to uri="activemq:validationFailed"/>

</onException>

<onException>
<exception>java.io.|OException</exception>
<to uri="activemq:ioExceptions"/>

</onException>

<onException>
<exception>java.lang.Exception</exception>
<to uri="activemq:exceptions"/>

</onException>

You can also group multiple exceptions together to be trapped by the same onException clause. In the

Java DSL, you can group multiple exceptions as follows:

onException(ValidationException.class, BuesinessException.class)
.to("activemq:validationFailed");

In the XML DSL, you can group multiple exceptions together by defining more than one exception
element inside the onException element, as follows:

<onException>
<exception>com.mycompany.ValidationException</exception>
<exception>com.mycompany.BuesinessException</exception>

57

Red Hat Fuse 7.2 Apache Camel Development Guide

<to uri="activemq:validationFailed"/>
</onException>

When trapping multiple exceptions, the order of the onException clauses is significant. Apache Camel

initially attempts to match the thrown exception against the first clause. If the first clause fails to match,

the next onException clause is tried, and so on until a match is found. Each matching attempt is

governed by the following algorithm:

1. If the thrown exception is a chained exception (that is, where an exception has been caught and
rethrown as a different exception), the most nested exception type serves initially as the basis
for matching. This exception is tested as follows:

a. If the exception-to-test has exactly the type specified in the onException clause (tested
using instanceof), a match is triggered.

b. If the exception-to-test is a sub-type of the type specified in the onException clause, a
match is triggered.

2. If the most nested exception fails to yield a match, the next exception in the chain (the wrapping
exception) is tested instead. The testing continues up the chain until either a match is triggered
or the chain is exhausted.

NOTE

The throwException EIP enables you to create a new exception instance from a simple
language expression. You can make it dynamic, based on the available information from
the current exchange. for example,

<throwException exceptionType="java.lang.lllegalArgumentException"
message="${body}"/>

Deadletter channel

The basic examples of onException usage have so far all exploited the deadletter channel pattern.
That is, when an onException clause traps an exception, the current exchange is routed to a special
destination (the deadletter channel). The deadletter channel serves as a holding area for failed
messages that have not been processed. An administrator can inspect the messages at a later time and
decide what action needs to be taken.

For more details about the deadletter channel pattern, see Section 6.3, “Dead Letter Channel”.

Use original message

By the time an exception is raised in the middle of a route, the message in the exchange could have
been modified considerably (and might not even by readable by a human). Often, it is easier for an
administrator to decide what corrective actions to take, if the messages visible in the deadletter queue
are the original messages, as received at the start of the route. The useOriginalMessage option is
false by default, but will be auto-enabled if it is configured on an error handler.

In the Java DSL, you can replace the message in the exchange by the original message. Set the

setAllowUseOriginalMessage() to true, then use the useOriginalMessage() DSL command, as
follows:

58

https://docs.oracle.com/javase/tutorial/essential/exceptions/chained.html

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

onException(ValidationException.class)
.useOriginalMessage()
.to("activemq:validationFailed");

In the XML DSL, you can retrieve the original message by setting the useOriginalMessage attribute on
the onException element, as follows:

<onException useOriginalMessage="true">
<exception>com.mycompany.ValidationException</exception>
<to uri="activemq:validationFailed"/>

</onException>

NOTE

If the setAllowUseOriginalMessage() option is set to true, Camel makes a copy of the
original message at the start of the route, which ensures that the original message is
available when you call useOriginalMessage(). However, if the
setAllowUseOriginalMessage() option is set to false (this is the default) on the Camel
context, the original message will not be accessible and you cannot call
useOriginalMessage().

A reasons to exploit the default behaviour is to optimize performance when processing
large messages.

In Camel versions prior to 2.18, the default setting of allowUseOriginalMessage is true.

Redelivery policy

Instead of interrupting the processing of a message and giving up as soon as an exception is raised,
Apache Camel gives you the option of attempting to redeliver the message at the point where the
exception occurred. In networked systems, where timeouts can occur and temporary faults arise, it is
often possible for failed messages to be processed successfully, if they are redelivered shortly after the
original exception was raised.

The Apache Camel redelivery supports various strategies for redelivering messages after an exception
occurs. Some of the most important options for configuring redelivery are as follows:

maximumRedeliveries()

Specifies the maximum number of times redelivery can be attempted (default is 0). A negative value
means redelivery is always attempted (equivalent to an infinite value).

retryWhile()

Specifies a predicate (of Predicate type), which determines whether Apache Camel ought to
continue redelivering. If the predicate evaluates to true on the current exchange, redelivery is
attempted; otherwise, redelivery is stopped and no further redelivery attempts are made.
This option takes precedence over the maximumRedeliveries() option.

In the Java DSL, redelivery policy options are specified using DSL commands in the onException clause.
For example, you can specify a maximum of six redeliveries, after which the exchange is sent to the
validationFailed deadletter queue, as follows:

onException(ValidationException.class)
.maximumRedeliveries(6)

59

Red Hat Fuse 7.2 Apache Camel Development Guide

.retryAttemptedLoglLevel(org.apache.camel.LogginLevel. WARN)
.to("activemq:validationFailed");

In the XML DSL, redelivery policy options are specified by setting attributes on the redeliveryPolicy
element. For example, the preceding route can be expressed in XML DSL as follows:

<onException useOriginalMessage="true">
<exception>com.mycompany.ValidationException</exception>
<redeliveryPolicy maximumRedeliveries="6"/>
<to uri="activemq:validationFailed"/>

</onException>

The latter part of the route — after the redelivery options are set — is not processed until after the last
redelivery attempt has failed. For detailed descriptions of all the redelivery options, see Section 6.3,
“Dead Letter Channel”.

Alternatively, you can specify redelivery policy options in a redeliveryPolicyProfile instance. You can
then reference the redeliveryPolicyProfile instance using the onException element’s
redeliverPolicyRef attribute. For example, the preceding route can be expressed as follows:

<redeliveryPolicyProfile id="redelivPolicy" maximumRedeliveries="6"
retryAttemptedLogLevel="WARN"/>

<onException useOriginalMessage="true" redeliveryPolicyRef="redelivPolicy">
<exception>com.mycompany.ValidationException</exception>
<to uri="activemq:validationFailed"/>

</onException>

NOTE

The approach using redeliveryPolicyProfile is useful, if you want to re-use the same
redelivery policy in multiple onException clauses.

Conditional trapping

Exception trapping with onException can be made conditional by specifying the onWhen option. If you
specify the onWhen option in an onException clause, a match is triggered only when the thrown
exception matches the clause and the onWhen predicate evaluates to true on the current exchange.

For example, in the following Java DSL fragment,the first onException clause triggers, only if the
thrown exception matches MyUserException and the user header is non-null in the current exchange:

/l Java

/I Here we define onException() to catch MyUserException when
// there is a header[user] on the exchange that is not null
onException(MyUserException.class)
.onWhen(header("user").isNotNull())
.maximumRedeliveries(2)
.to(ERROR_USER_QUEUE);

/I Here we define onException to catch MyUserException as a kind

/I of fallback when the above did not match.
/I Noitce: The order how we have defined these onException is

60

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

/[important as Camel will resolve in the same order as they
/I have been defined
onException(MyUserException.class)
.maximumRedeliveries(2)
.to(ERROR_QUEUE);

The preceding onException clauses can be expressed in the XML DSL as follows:

<redeliveryPolicyProfile id="twoRedeliveries" maximumRedeliveries="2"/>

<onException redeliveryPolicyRef="twoRedeliveries">
<exception>com.mycompany.MyUserException</exception>
<onWhen>
<simple>${header.user} != null</simple>
</onWhen>
<to uri="activemq:error_user_queue"/>
</onException>

<onException redeliveryPolicyRef="twoRedeliveries">
<exception>com.mycompany.MyUserException</exception>
<to uri="activemq:error_queue"/>

</onException>

Handling exceptions

By default, when an exception is raised in the middle of a route, processing of the current exchange is

interrupted and the thrown exception is propagated back to the consumer endpoint at the start of the
route. When an onException clause is triggered, the behavior is essentially the same, except that the

onException clause performs some processing before the thrown exception is propagated back.

But this default behavior is not the only way to handle an exception. The onException provides various
options to modify the exception handling behavior, as follows:

® Suppressing exception rethrow —you have the option of suppressing the rethrown exception
after the onException clause has completed. In other words, in this case the exception does
not propagate back to the consumer endpoint at the start of the route.

e Continuing processing — you have the option of resuming normal processing of the exchange
from the point where the exception originally occurred. Implicitly, this approach also suppresses
the rethrown exception.

® Sending a response — in the special case where the consumer endpoint at the start of the route
expects a reply (that is, having an InOut MEP), you might prefer to construct a custom fault
reply message, rather than propagating the exception back to the consumer endpoint.

NOTE

Using a custom processor, the Camel Exception Clause and Error Handler get invoked,
soon after it throws an exception using the new onExceptionOccurred option.

-

Suppressing exception rethrow

To prevent the current exception from being rethrown and propagated back to the consumer endpoint,
you can set the handled() option to true in the Java DSL, as follows:

61

Red Hat Fuse 7.2 Apache Camel Development Guide

onException(ValidationException.class)
.handled(true)
.to("activemq:validationFailed");

In the Java DSL, the argument to the handled() option can be of boolean type, of Predicate type, or of
Expression type (where any non-boolean expression is interpreted as true, if it evaluates to a non-null
value).

The same route can be configured to suppress the rethrown exception in the XML DSL, using the
handled element, as follows:

<onException>
<exception>com.mycompany.ValidationException</exception>
<handled>
<constant>true</constant>
</handled>
<to uri="activemq:validationFailed"/>
</onException>

Continuing processing

To continue processing the current message from the point in the route where the exception was
originally thrown, you can set the continued option to true in the Java DSL, as follows:

onException(ValidationException.class)
.continued(true);

In the Java DSL, the argument to the continued() option can be of boolean type, of Predicate type, or
of Expression type (where any non-boolean expression is interpreted as true, if it evaluates to a non-
null value).

The same route can be configured in the XML DSL, using the continued element, as follows:

<onException>
<exception>com.mycompany.ValidationException</exception>
<continued>
<constant>true</constant>
</continued>
</onException>

Sending a response

When the consumer endpoint that starts a route expects a reply, you might prefer to construct a custom
fault reply message, instead of simply letting the thrown exception propagate back to the consumer.
There are two essential steps you need to follow in this case: suppress the rethrown exception using the
handled option; and populate the exchange’'s Out message slot with a custom fault message.

For example, the following Java DSL fragment shows how to send a reply message containing the text
string, Sorry, whenever the MyFunctionalException exception occurs:

/I we catch MyFunctionalException and want to mark it as handled (= no failure returned to client)
// but we want to return a fixed text response, so we transform OUT body as Sorry.
onException(MyFunctionalException.class)

62

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

.handled(true)
transform().constant("Sorry");

If you are sending a fault response to the client, you will often want to incorporate the text of the
exception message in the response. You can access the text of the current exception message using the
exceptionMessage() builder method. For example, you can send a reply containing just the text of the
exception message whenever the MyFunctionalException exception occurs, as follows:

/I we catch MyFunctionalException and want to mark it as handled (= no failure returned to client)
// but we want to return a fixed text response, so we transform OUT body and return the exception
message
onException(MyFunctionalException.class)

.handled(true)

transform(exceptionMessage());

The exception message text is also accessible from the Simple language, through the
exception.message variable. For example, you could embed the current exception text in a reply
message, as follows:

/I we catch MyFunctionalException and want to mark it as handled (= no failure returned to client)
// but we want to return a fixed text response, so we transform OUT body and return a nice message
// using the simple language where we want insert the exception message
onException(MyFunctionalException.class)

.handled(true)

transform().simple("Error reported: ${exception.message} - cannot process this message.");

The preceding onException clause can be expressed in XML DSL as follows:

<onException>
<exception>com.mycompany.MyFunctionalException</exception>
<handled>
<constant>true</constant>
</handled>
<transform>
<simple>Error reported: ${exception.message} - cannot process this message.</simple>
</transform>
</onException>

Exception thrown while handling an exception

An exception that gets thrown while handling an existing exception (in other words, one that gets thrown
in the middle of processing an onException clause) is handled in a special way. Such an exception is
handled by the special fallback exception handler, which handles the exception as follows:

® All existing exception handlers are ignored and processing fails immediately.

® The new exception is logged.

® The new exception is set on the exchange object.

The simple strategy avoids complex failure scenarios which could otherwise end up with an onException
clause getting locked into an infinite loop.

Scopes

63

Red Hat Fuse 7.2 Apache Camel Development Guide

The onException clauses can be effective in either of the following scopes:

® RouteBuilder scope — onException clauses defined as standalone statements inside a
RouteBuilder.configure() method affect all of the routes defined in that RouteBuilder
instance. On the other hand, these onException clauses have no effect whatsoever on routes
defined inside any other RouteBuilder instance. The onException clauses must appear before
the route definitions.

All of the examples up to this point are defined using the RouteBuilder scope.

® Route scope — onException clauses can also be embedded directly within a route. These
onException clauses affect only the route in which they are defined.

Route scope

You can embed an onException clause anywhere inside a route definition, but you must terminate the
embedded onException clause using the end() DSL command.

For example, you can define an embedded onException clause in the Java DSL, as follows:

/[Java
from("direct:start")
.onException(OrderFailedException.class)
.maximumRedeliveries(1)
.handled(true)
.beanRef("orderService", "orderFailed")
.to("mock:error")
.end()
.beanRef("orderService", "handleOrder")
to("mock:result");

You can define an embedded onException clause in the XML DSL, as follows:

<route errorHandlerRef="deadLetter">
<from uri="direct:start"/>
<onException>
<exception>com.mycompany.OrderFailedException</exception>
<redeliveryPolicy maximumRedeliveries="1"/>
<handled>
<constant>true</constant>
</handled>
<bean ref="orderService" method="orderFailed"/>
<to uri="mock:error"/>
</onException>
<bean ref="orderService" method="handleOrder"/>
<to uri="mock:result"/>
</route>

2.3.2. Error Handler

Overview

The errorHandler() clause provides similar features to the onException clause, except that this
mechanism is not able to discriminate between different exception types. The errorHandler() clause is
the original exception handling mechanism provided by Apache Camel and was available before the

64

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

onException clause was implemented.

Java DSL example

The errorHandler() clause is defined in a RouteBuilder class and applies to all of the routes in that
RouteBuilder class. It is triggered whenever an exception of any kind occurs in one of the applicable
routes. For example, to define an error handler that routes all failed exchanges to the ActiveMQ
deadLetter queue, you can define a RouteBuilder as follows:

public class MyRouteBuilder extends RouteBuilder {

public void configure() {
errorHandler(deadLetterChannel("activemq:deadLetter"));

/I The preceding error handler applies

// to all of the following routes:

from("activemq:orderQueue")
to("pop3://fulfilment@acme.com”);

from("file:src/data?noop=true”)
to("file:target/messages”);

/...

}
}

Redirection to the dead letter channel will not occur, however, until all attempts at redelivery have been
exhausted.

XML DSL example

In the XML DSL, you define an error handler within a camelContext scope using the errorHandler
element. For example, to define an error handler that routes all failed exchanges to the ActiveMQ
deadLetter queue, you can define an errorHandler element as follows:

<beans xmiIns="http://www.springframework.org/schema/beans"
xmlIns:camel="http://camel.apache.org/schema/spring"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd">

<camelContext xmIns="http://camel.apache.org/schema/spring">
<errorHandler type="DeadLetterChannel"
deadLetterUri="activemq:deadLetter"/>
<route>
<from uri="activemq:orderQueue"/>
<to uri="pop3://fulfilment@acme.com"/>
</route>
<route>
<from uri="file:src/data?noop=true"/>
<to uri="file:target/messages"/>
</route>
</camelContext>

</beans>

65

Red Hat Fuse 7.2 Apache Camel Development Guide

Types of error handler

Table 2.1, "Error Handler Types” provides an overview of the different types of error handler you can
define.

Table 2.1. Error Handler Types

Java DSL Builder XML DSL Type Attribute Description

defaultErrorHandler() DefaultErrorHandler Propagates exceptions back to
the caller and supports the
redelivery policy, but it does not
support a dead letter queue.

deadLetterChannel() DeadLetterChannel Supports the same features as
the default error handler and, in
addition, supports a dead letter
queue.

loggingErrorChannel() LoggingErrorChannel Logs the exception text whenever
an exception occurs.

noErrorHandler() NoErrorHandler Dummy handler implementation
that can be used to disable the
error handler.

TransactionErrorHandler An error handler for transacted
routes. A default transaction error
handler instance is automatically
used for a route that is marked as
transacted.

2.3.3.doTry, doCatch, and doFinally

Overview

To handle exceptions within a route, you can use a combination of the doTry, doCatch, and doFinally
clauses, which handle exceptions in a similar way to Java's try, catch, and finally blocks.

Similarities between doCatch and Java catch

In general, the doCatch() clause in a route definition behaves in an analogous way to the catch()
statement in Java code. In particular, the following features are supported by the doCatch() clause:

® Multiple doCatch clauses — you can have multiple doCatch clauses within a single doTry block.

The doCatch clauses are tested in the order they appear, just like Java catch() statements.
Apache Camel executes the first doCatch clause that matches the thrown exception.

NOTE

This algorithm is different from the exception matching algorithm used by the
onException clause — see Section 2.3.1, “onException Clause” for details.

66

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

® Rethrowing exceptions— you can rethrow the current exception from within a doCatch clause
using the handled sub-clause (see the section called “Rethrowing exceptions in doCatch”).

Special features of doCatch

There are some special features of the doCatch() clause, however, that have no analogue in the Java
catch() statement. The following features are specific to doCatch():

® Catching multiple exceptions — the doCatch clause allows you to specify a list of exceptions to
catch, in contrast to the Java catch() statement, which catches only one exception (see the
section called "Example”).

® Conditional catching— you can catch an exception conditionally, by appending an onWhen
sub-clause to the doCatch clause (see the section called “Conditional exception catching using
onWhen").

Example

The following example shows how to write a doTry block in the Java DSL, where the doCatch() clause
will be executed, if either the IOException exception or the lllegalStateException exception are raised,
and the doFinally() clause is always executed, irrespective of whether an exception is raised or not.

from("direct:start")

.doTry()
.process(new ProcessorFail())
to("mock:result")

.doCatch(IOException.class, lllegalStateException.class)
to("mock:catch")

.doFinally()
to("mock:finally")

.end();

Or equivalently, in Spring XML:

<route>
<from uri="direct:start"/>
<!-- here the try starts. its a try .. catch .. finally just as regular java code -->
<doTry>
<process ref="processorFail"/>
<to uri="mock:result"/>
<doCatch>
<!-- catch multiple exceptions -->
<exception>java.io.|OException</exception>
<exception>java.lang.lllegalStateException</exception>
<to uri="mock:catch"/>
</doCatch>
<doFinally>
<to uri="mock:finally"/>
</doFinally>
</doTry>
</route>

Rethrowing exceptions in doCatch

67

Red Hat Fuse 7.2 Apache Camel Development Guide

It is possible to rethrow an exception in a doCatch() clause by calling the handled() sub-clause with its
argument set to false, as follows:

from("direct:start")
.doTry()
.process(new ProcessorFail())
to("mock:result")
.doCatch(IOException.class)
/I mark this as NOT handled, eg the caller will also get the exception
Jhandled(false)
to("mock:io")
.doCatch(Exception.class)
// and catch all other exceptions
to("mock:error")
.end();

In the preceding example, if the IOException is caught by doCatch(), the current exchange is sent to
the mock:io endpoint, and then the IOException is rethrown. This gives the consumer endpoint at the
start of the route (in the from() command) an opportunity to handle the exception as well.

The following example shows how to define the same route in Spring XML:

<route>
<from uri="direct:start"/>
<doTry>
<process ref="processorFail"/>
<to uri="mock:result"/>
<doCatch>
<exception>java.io.|OException</exception>
<!-- mark this as NOT handled, eg the caller will also get the exception -->
<handled>
<constant>false</constant>
</handled>
<to uri="mock:io"/>
</doCatch>
<doCatch>
<!-- and catch all other exceptions they are handled by default (ie handled = true) -->
<exception>java.lang.Exception</exception>
<to uri="mock:error"/>
</doCatch>
</doTry>
</route>

Conditional exception catching using onWhen

A special feature of the Apache Camel doCatch() clause is that you can conditionalize the catching of
exceptions based on an expression that is evaluated at run time. In other words, if you catch an
exception using a clause of the form, doCatch(ExceptionList).doWhen(Expression), an exception will
only be caught, if the predicate expression, Expression, evaluates to true at run time.

For example, the following doTry block will catch the exceptions, IOException and
lllegalStateException, only if the exception message contains the word, Severe:

from("direct:start")
.doTry()

68

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

.process(new ProcessorFail())
to("mock:result")

.doCatch(IOException.class, lllegalStateException.class)
.onWhen(exceptionMessage().contains("Severe"))
.to("mock:catch")

.doCatch(CamelExchangeException.class)
.to("mock:catchCamel")

.doFinally()
to("mock:finally")

.end();

Or equivalently, in Spring XML:

<route>
<from uri="direct:start"/>
<doTry>
<process ref="processorFail"/>
<to uri="mock:result"/>
<doCatch>
<exception>java.io.|OException</exception>
<exception>java.lang.lllegalStateException</exception>
<onWhen>
<simple>${exception.message} contains 'Severe'</simple>
</onWhen>
<to uri="mock:catch"/>
</doCatch>
<doCatch>
<exception>org.apache.camel.CamelExchangeException</exception>
<to uri="mock:catchCamel"/>
</doCatch>
<doFinally>
<to uri="mock:finally"/>
</doFinally>
</doTry>
</route>

Nested Conditions in doTry

There are various options available to add Camel exception handling to a JavaDSL route. dotry()
creates a try or catch block for handling exceptions and is useful for route specific error handling.

If you want to catch the exception inside of ChoiceDefinition, you can use the following doTry blocks:

from("direct:wayne-get-token").setExchangePattern(ExchangePattern.InOut)
.doTry()
.to("https4://wayne-token-service")
.choice()
.when().simple("${header.CamelHttpResponseCode} == '200™)
.convertBodyTo(String.class)
.setHeader("wayne-token").groovy("body.replaceAll(\",")")
Jog(">> Wayne Token : ${header.wayne-token}")
.endChoice()

doCatch(java.lang.Class (java.lang.Exception>)
Jog(">> Exception")

69

Red Hat Fuse 7.2 Apache Camel Development Guide

.endDoTry();

from("direct:wayne-get-token").setExchangePattern(ExchangePattern.InOut)
.doTry()
.to("https4://wayne-token-service")
.doCatch(Exception.class)
Jog(">> Exception")
.endDoTry();

2.3.4. Propagating SOAP Exceptions

Overview

The Camel CXF component provides an integration with Apache CXF, enabling you to send and receive
SOAP messages from Apache Camel endpoints. You can easily define Apache Camel endpoints in XML,
which can then be referenced in a route using the endpoint’s bean ID. For more details, see CXF in the
Apache Camel Component Reference Guide.

How to propagate stack trace information

It is possible to configure a CXF endpoint so that, when a Java exception is thrown on the server side,
the stack trace for the exception is marshalled into a fault message and returned to the client. To enable
this feaure, set the dataFormat to PAYLOAD and set the faultStackTraceEnabled property to true in
the exfEndpoint element, as follows:

<cxf:exfEndpoint id="router" address="http://localhost:9002/TestMessage"
wsdIURL="ship.wsdl"
endpointName="s:TestSoapEndpoint"
serviceName="s:TestService"
xmlins:s="http://test">
<cxf:properties>
<!-- enable sending the stack trace back to client; the default value is false-->
<entry key="faultStackTraceEnabled" value="true" />
<entry key="dataFormat" value="PAYLOAD" />
</cxf:properties>
</cxf:exfEndpoint>

For security reasons, the stack trace does not include the causing exception (that is, the part of a stack
trace that follows Caused by). If you want to include the causing exception in the stack trace, set the
exceptionMessageCauseEnabled property to true in the exfEndpoint element, as follows:

<cxf:exfEndpoint id="router" address="http://localhost:9002/TestMessage"
wsdIURL="ship.wsdl"
endpointName="s:TestSoapEndpoint"
serviceName="s:TestService"
xmlins:s="http://test">
<cxf:properties>
<!-- enable to show the cause exception message and the default value is false -->
<entry key="exceptionMessageCauseEnabled" value="true" />
<l-- enable to send the stack trace back to client, the default value is false-->
<entry key="faultStackTraceEnabled" value="true" />
<entry key="dataFormat" value="PAYLOAD" />
</cxf:properties>
</cxf:exfEndpoint>

70

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-CXF.html

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

' WARNING
A You should only enable the exceptionMessageCauseEnabled flag for testing and

diagnostic purposes. It is normal practice for servers to conceal the original cause of
an exception to make it harder for hostile users to probe the server.

2.4. BEAN INTEGRATION

Overview

Bean integration provides a general purpose mechanism for processing messages using arbitrary Java
objects. By inserting a bean reference into a route, you can call an arbitrary method on a Java object,
which can then access and modify the incoming exchange. The mechanism that maps an exchange's
contents to the parameters and return values of a bean method is known as parameter binding.
Parameter binding can use any combination of the following approaches in order to initialize a method’s
parameters:

e Conventional method signatures — If the method signature conforms to certain conventions,
the parameter binding can use Java reflection to determine what parameters to pass.

® Annotations and dependency injection — For a more flexible binding mechanism, employ
Java annotations to specify what to inject into the method'’s arguments. This dependency
injection mechanism relies on Spring 2.5 component scanning. Normally, if you are deploying
your Apache Camel application into a Spring container, the dependency injection mechanism
will work automatically.

® Explicitly specified parameters — You can specify parameters explicitly (either as constants
or using the Simple language), at the point where the bean is invoked.

Bean registry

Beans are made accessible through a bean registry, which is a service that enables you to look up beans
using either the class name or the bean ID as a key. The way that you create an entry in the bean registry
depends on the underlying framework — for example, plain Java, Spring, Guice, or Blueprint. Registry
entries are usually created implicitly (for example, when you instantiate a Spring bean in a Spring XML
file).

Registry plug-in strategy

Apache Camel implements a plug-in strategy for the bean registry, defining an integration layer for
accessing beans which makes the underlying registry implementation transparent. Hence, it is possible
to integrate Apache Camel applications with a variety of different bean registries, as shown in Table 2.2,
“Registry Plug-Ins”.

Table 2.2. Registry Plug-Ins

Registry Implementation Camel Component with Registry Plug-In

Spring bean registry camel-spring

71

Red Hat Fuse 7.2 Apache Camel Development Guide

Registry Implementation Camel Component with Registry Plug-In

Guice bean registry camel-guice
Blueprint bean registry camel-blueprint
OSGi service registry deployed in OSGi container

JNDI registry

Normally, you do not have to worry about configuring bean registries, because the relevant bean registry
is automatically installed for you. For example, if you are using the Spring framework to define your
routes, the Spring ApplicationContextRegistry plug-in is automatically installed in the current
CamelContext instance.

Deployment in an OSGi container is a special case. When an Apache Camel route is deployed into the
OSGi container, the CamelContext automatically sets up a registry chain for resolving bean instances:
the registry chain consists of the OSGi registry, followed by the Blueprint (or Spring) registry.

Accessing a bean created in Java

To process exchange objects using a Java bean (which is a plain old Java object or POJO), use the
bean() processor, which binds the inbound exchange to a method on the Java object. For example, to
process inbound exchanges using the class, MyBeanProcessor, define a route like the following:

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBody")
.to("file:data/outbound");

Where the bean() processor creates an instance of MyBeanProcessor type and invokes the
processBody() method to process inbound exchanges. This approach is adequate if you only want to
access the MyBeanProcessor instance from a single route. However, if you want to access the same
MyBeanProcessor instance from multiple routes, use the variant of bean() that takes the Object type
as its first argument. For example:

MyBeanProcessor myBean = new MyBeanProcessor();

from("file:data/inbound")
.bean(myBean, "processBody")
.to("file:data/outbound");

from("activemq:inboundData")
.bean(myBean, "processBody")
.to("activemq:outboundData");

Accessing overloaded bean methods

If a bean defines overloaded methods, you can choose which of the overloaded methods to invoke by
specifying the method name along with its parameter types. For example, if the MyBeanBrocessor
class has two overloaded methods, processBody(String) and processBody(String,String), you can
invoke the latter overloaded method as follows:

72

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBody(String,String)")
.to("file:data/outbound");

Alternatively, if you want to identify a method by the number of parameters it takes, rather than
specifying the type of each parameter explicitly, you can use the wildcard character, *. For example, to
invoke a method named processBody that takes two parameters, irrespective of the exact type of the
parameters, invoke the bean() processor as follows:

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBody(*,*)")
.to("file:data/outbound”);

When specifying the method, you can use either a simple unqualified type name—for example,
processBody(Exchange)—or a fully qualified type name—for example,
processBody(org.apache.camel.Exchange).

NOTE

In the current implementation, the specified type name must be an exact match of the
parameter type. Type inheritance is not taken into account.

Specify parameters explicitly

You can specify parameter values explicitly, when you call the bean method. The following simple type
values can be passed:

® Boolean: true or false.

® Numeric: 123, 7, and so on.

e String: 'In single quotes' or "In double quotes".
® Null object: null.

The following example shows how you can mix explicit parameter values with type specifiers in the same
method invocation:

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBody(String, 'Sample string value', true, 7)")
.to("file:data/outbound");

In the preceding example, the value of the first parameter would presumably be determined by a
parameter binding annotation (see the section called “Basic annotations”).

In addition to the simple type values, you can also specify parameter values using the Simple language
(Chapter 30, The Simple Language). This means that the full power of the Simple language is
available when specifying parameter values. For example, to pass the message body and the value of
the title header to a bean method:

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBodyAndHeader(${body},${header title})")
.to("file:data/outbound");

73

Red Hat Fuse 7.2 Apache Camel Development Guide

You can also pass the entire header hash map as a parameter. For example, in the following example, the
second method parameter must be declared to be of type java.util.Map:

from("file:data/inbound")
.bean(MyBeanProcessor.class, "processBodyAndAllHeaders(${body},${header})")
.to("file:data/outbound");

NOTE

From Apache Camel 2.19 release, returning null from a bean method call now always
ensures the message body has been set as a null value.

Basic method signatures

To bind exchanges to a bean method, you can define a method signature that conforms to certain
conventions. In particular, there are two basic conventions for method signatures:

® Method signature for processing message bodies

® Method signature for processing exchanges

Method signature for processing message bodies

If you want to implement a bean method that accesses or modifies the incoming message body, you
must define a method signature that takes a single String argument and returns a String value. For
example:

/I Java
package com.acme;

public class MyBeanProcessor {
public String processBody(String body) {
// Do whatever you like to 'body'...
return newBody;

}
}

Method signature for processing exchanges

For greater flexibility, you can implement a bean method that accesses the incoming exchange. This
enables you to access or modify all headers, bodies, and exchange properties. For processing
exchanges, the method signature takes a single org.apache.camel.Exchange parameter and returns
void. For example:

/ Java
package com.acme;

public class MyBeanProcessor {
public void processExchange(Exchange exchange) {
// Do whatever you like to 'exchange'...
exchange.getin().setBody("Here is a new message body!");

}
}

74

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Accessing a Spring bean from Spring XML

Instead of creating a bean instance in Java, you can create an instance using Spring XML. In fact, this is
the only feasible approach if you are defining your routes in XML. To define a bean in XML, use the
standard Spring bean element. The following example shows how to create an instance of
MyBeanProcessor:

<beans ...>

<bean id="myBeanld" class="com.acme.MyBeanProcessor"/>
</beans>

Itis also possible to pass data to the bean’s constructor arguments using Spring syntax. For full details
of how to use the Spring bean element, see The loC Container from the Spring reference guide.

Where the beanRef() processor invokes the MyBeanProcessor.processBody() method on the
specified bean instance. You can also invoke the bean from within a Spring XML route, using the Camel
schema’s bean element. For example:

<camelContext id="CamelContextID" xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="file:data/inbound"/>
<bean ref="myBeanld" method="processBody"/>
<to uri="file:data/outbound"/>
</route>
</camelContext>

For a slight efficiency gain, you can set the cache option to true, which avoids looking up the registry
every time a bean is used. For example, to enable caching, you can set the cache attribute on the bean
element as follows:

I <bean ref="myBeanld" method="processBody" cache="true"/>

Accessing a Spring bean from Java

When you create an object instance using the Spring bean element, you can reference it from Java
using the bean’s ID (the value of the bean element’s id attribute). For example, given the bean element
with ID equal to myBeanld, you can reference the bean in a Java DSL route using the beanRef()
processor, as follows:

I from("file:data/inbound").beanRef("myBeanld", "processBody").to("file:data/outbound");

Alternatively, you can reference the Spring bean by injection, using the @Beanlnject annotation as
follows:

/l Java
import org.apache.camel.@Beanlnject;

public class MyRouteBuilder extends RouteBuilder {

@Beanlnject("myBeanld")
com.acme.MyBeanProcessor bean;

public void configure() throws Exception {

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html

Red Hat Fuse 7.2 Apache Camel Development Guide

If you omit the bean ID from the @Beanlnject annotation, Camel looks up the registry by type, but this
only works if there is just a single bean of the given type. For example, to look up and inject the bean of
com.acme.MyBeanProcessor type:

@Beanlnject
com.acme.MyBeanProcessor bean;

Bean shutdown order in Spring XML

For the beans used by a Camel context, the correct shutdown order is usually:
1. Shut down the camelContext instance, followed by;
2. Shut down the used beans.

If this shutdown order is reversed, then it could happen that the Camel context tries to access a bean
that is already destroyed (either leading directly to an error; or the Camel context tries to create the
missing bean while it is being destroyed, which also causes an error). The default shutdown order in
Spring XML depends on the order in which the beans and the camelContext appear in the Spring XML
file. In order to avoid random errors due to incorrect shutdown order, therefore, the camelContext is
configured to shut down before any of the other beans in the Spring XML file. This is the default
behaviour since Apache Camel 2.13.0.

If you need to change this behaviour (so that the Camel context is not forced to shut down before the
other beans), you can set the shutdownEager attribute on the camelContext element to false. In this
case, you could potentially exercise more fine-grained control over shutdown order using the Spring
depends-on attribute.

Parameter binding annotations

The basic parameter bindings described in the section called “Basic method signatures” might not
always be convenient to use. For example, if you have a legacy Java class that performs some data
manipulation, you might want to extract data from an inbound exchange and map it to the arguments of
an existing method signature. For this kind of parameter binding, Apache Camel provides the following
kinds of Java annotation:

® Basic annotations

® | anguage annotations

® |nherited annotations

Basic annotations

Table 2.3, "Basic Bean Annotations” shows the annotations from the org.apache.camel Java package
that you can use to inject message data into the arguments of a bean method.

Table 2.3. Basic Bean Annotations

76

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Annotation Meaning Parameter?
@Attachments Binds to a list of attachments.
@Body Binds to an inbound message
body.
@Header Binds to an inbound message String name of the header.
header.
@Headers Binds to a java.util.Map of the

inbound message headers.

@OutHeaders Binds to a java.util.Map of the
outbound message headers.

@Property Binds to a named exchange String name of the property.
property.
@Properties Binds to a java.util.Map of the

exchange properties.

For example, the following class shows you how to use basic annotations to inject message data into the
processExchange() method arguments.

/I Java
import org.apache.camel.”;

public class MyBeanProcessor {

public void processExchange(
@Header(name="user") String user,
@Body String body,
Exchange exchange

) {
/I Do whatever you like to 'exchange’...
exchange.getin().setBody(body + "UserName =" + user);

}
}

Notice how you are able to mix the annotations with the default conventions. As well as injecting the
annotated arguments, the parameter binding also automatically injects the exchange object into the
org.apache.camel.Exchange argument.

Expression language annotations

The expression language annotations provide a powerful mechanism for injecting message data into a
bean method’s arguments. Using these annotations, you can invoke an arbitrary script, written in the
scripting language of your choice, to extract data from an inbound exchange and inject the datainto a
method argument. Table 2.4, “Expression Language Annotations” shows the annotations from the
org.apache.camel.language package (and sub-packages, for the non-core annotations) that you can
use to inject message data into the arguments of a bean method.

77

Red Hat Fuse 7.2 Apache Camel Development Guide

Table 2.4. Expression Language Annotations

Annotation Description

@Bean

@Constant

©@EL

@Groovy

@Header

@dJavaScript

@OGNL

@PHP

@Python

@Ruby

@Simple

@XPath

@XQuery

Injects a Bean expression.

Injects a Constant expression

Injects an EL expression.

Injects a Groovy expression.

Injects a Header expression.

Injects a JavaScript expression.

Injects an OGNL expression.

Injects a PHP expression.

Injects a Python expression.

Injects a Ruby expression.

Injects a Simple expression.

Injects an XPath expression.

Injects an XQuery expression.

For example, the following class shows you how to use the @XPath annotation to extract a username
and a password from the body of an incoming message in XML format:

/[Java
import org.apache.camel.language.”;

public class MyBeanProcessor {
public void checkCredentials(

@XPath("/credentials/username/text()") String user,
@XPath("/credentials/password/text()") String pass

)4

/I Check the user/pass credentials...

The @Bean annotation is a special case, because it enables you to inject the result of invoking a
registered bean. For example, to inject a correlation ID into a method argument, you can use the @Bean

annotation to invoke an ID generator class, as follows:

78

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

/I Java
import org.apache.camel.language.”;

public class MyBeanProcessor {
public void processCorrelatedMsg(
@Bean("myCorrldGenerator") String corrld,
@Body String body
) {

/I Check the user/pass credentials...

Where the string, myCorrldGenerator, is the bean ID of the ID generator instance. The ID generator
class can be instantiated using the spring bean element, as follows:

<beans ...>

<bean id="myCorrldGenerator" class="com.acme.MyldGenerator"/>
</beans>

Where the MyldGenerator class could be defined as follows:

/I Java
package com.acme;

public class MyldGenerator {
private UserManager userManager;

public String generate(
@Header(name = "user") String user,
@Body String payload
) throws Exception {
User user = userManager.lookupUser(user);
String userld = user.getPrimaryld();
String id = userld + generateHashCodeForPayload(payload);
return id;

Notice that you can also use annotations in the referenced bean class, MyldGenerator. The only
restriction on the generate() method signature is that it must return the correct type to inject into the
argument annotated by @Bean. Because the @Bean annotation does not let you specify a method
name, the injection mechanism simply invokes the first method in the referenced bean that has the
matching return type.

NOTE

Some of the language annotations are available in the core component (@Bean,
@Constant, @Simple, and @XPath). For non-core components, however, you will have
to make sure that you load the relevant component. For example, to use the OGNL
script, you must load the camel-ognl component.

79

Red Hat Fuse 7.2 Apache Camel Development Guide

Inherited annotations

Parameter binding annotations can be inherited from an interface or from a superclass. For example, if
you define a Java interface with a Header annotation and a Body annotation, as follows:

/[Java
import org.apache.camel.”;

public interface MyBeanProcessorlIntf {
void processExchange(
@Header(name="user") String user,
@Body String body,
Exchange exchange
);
}

The overloaded methods defined in the implementation class, MyBeanProcessor, now inherit the
annotations defined in the base interface, as follows:

/[Java
import org.apache.camel.”;

public class MyBeanProcessor implements MyBeanProcessorintf {
public void processExchange(
String user, // Inherits Header annotation
String body, // Inherits Body annotation
Exchange exchange

)4

}
}

Interface implementations

The class that implements a Java interface is often protected, private or in package-only scope. If you
try to invoke a method on an implementation class that is restricted in this way, the bean binding falls
back to invoking the corresponding interface method, which is publicly accessible.

For example, consider the following public BeanIntf interface:

/[Java
public interface Beanlntf {
void processBodyAndHeader(String body, String title);

}

Where the Beanlntf interface is implemented by the following protected Beanlntflmpl class:

/[Java
protected class BeanIntfimpl implements Beanlntf {
void processBodyAndHeader(String body, String title) {

}
}

80

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

The following bean invocation would fall back to invoking the public Beanlntf.processBodyAndHeader
method:

from("file:data/inbound")
.bean(Beanlntflmpl.class, "processBodyAndHeader(${body}, ${header title})")
.to("file:data/outbound");

Invoking static methods

Bean integration has the capability to invoke static methods without creating an instance of the
associated class. For example, consider the following Java class that defines the static method,
changeSomething():

/l Java

public final class MyStaticClass {
private MyStaticClass() {

}

public static String changeSomething(String s) {
if ("Hello World".equals(s)) {
return "Bye World";
}

return null;

}

public void doSomething() {
// noop

}
}

You can use bean integration to invoke the static changeSomething method, as follows:

from("direct:a")
.bean(MyStaticClass.class, "changeSomething")
to("mock:a");

Note that, although this syntax looks identical to the invocation of an ordinary function, bean integration
exploits Java reflection to identify the method as static and proceeds to invoke the method without
instantiating MyStaticClass.

Invoking an OSGi service

In the special case where a route is deployed into a Red Hat JBoss Fuse container, it is possible to invoke
an OSGi service directly using bean integration. For example, assuming that one of the bundles in the
OSGi container has exported the service, org.fusesource.example.HelloWorldOsgiService, you could
invoke the sayHello method using the following bean integration code:

from("file:data/inbound")
.bean(org.fusesource.example.HelloWorldOsgiService.class, "sayHello")
.to("file:data/outbound”);

You could also invoke the OSGi service from within a Spring or blueprint XML file, using the bean
component, as follows:

81

Red Hat Fuse 7.2 Apache Camel Development Guide

I <to uri="bean:org.fusesource.example.HelloWorldOsgiService?method=sayHello"/>

The way this works is that Apache Camel sets up a chain of registries when it is deployed in the OSGi
container. First of all, it looks up the specified class name in the OSGi service registry; if this lookup fails,
it then falls back to the local Spring DM or blueprint registry.

2.5. CREATING EXCHANGE INSTANCES

Overview

When processing messages with Java code (for example, in a bean class or in a processor class), it is
often necessary to create a fresh exchange instance. If you need to create an Exchange object, the
easiest approach is to invoke the methods of the ExchangeBuilder class, as described here.

ExchangeBuilder class

The fully qualified name of the ExchangeBuilder class is as follows:

I org.apache.camel.builder.ExchangeBuilder

The ExchangeBuilder exposes the static method, anExchange, which you can use to start building an
exchange object.

Example

For example, the following code creates a new exchange object containing the message body string,
Hello World!, and with headers containing username and password credentials:

/l Java
import org.apache.camel.Exchange;
import org.apache.camel.builder.ExchangeBuilder;

Exchange exch = ExchangeBuilder.anExchange(camelCtx)
.withBody("Hello World!")
.withHeader("username", "jdoe")
.withHeader("password", "pass")
build();

ExchangeBuilder methods

The ExchangeBuilder class supports the following methods:

ExchangeBuilder anExchange(CamelContext context)
(static method) Initiate building an exchange object.
Exchange build()
Build the exchange.
ExchangeBuilder withBody(Object body)
Set the message body on the exchange (that is, sets the exchange’s In message body).
ExchangeBuilder withHeader(String key, Object value)

Set a header on the exchange (that is, sets a header on the exchange's In message).

82

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

ExchangeBuilder withPattern(ExchangePattern pattern)
Sets the exchange pattern on the exchange.
ExchangeBuilder withProperty(String key, Object value)

Sets a property on the exchange.

2.6. TRANSFORMING MESSAGE CONTENT

Abstract

Apache Camel supports a variety of approaches to transforming message content. In addition to a
simple native API for modifying message content, Apache Camel supports integration with several
different third-party libraries and transformation standards.

2.6.1. Simple Message Transformations

Overview

The Java DSL has a built-in API that enables you to perform simple transformations on incoming and
outgoing messages. For example, the rule shown in Example 2.1, “Simple Transformation of Incoming
Messages” appends the text, World!, to the end of the incoming message body.

Example 2.1. Simple Transformation of Incoming Messages

I from("SourceURL").setBody(body().append(" World!")).to(" TargetURL");

Where the setBody() command replaces the content of the incoming message’s body.

API for simple transformations

You can use the following API classes to perform simple transformations of the message contentin a
router rule:

e org.apache.camel.model.ProcessorDefinition
e org.apache.camel.builder.Builder

e org.apache.camel.builder.ValueBuilder

ProcessorDefinition class

The org.apache.camel.model.ProcessorDefinition class defines the DSL commands you can insert
directly into a router rule — for example, the setBody() command in Example 2.1, “Simple Transformation
of Incoming Messages”. Table 2.5, “Transformation Methods from the ProcessorDefinition Class” shows
the ProcessorDefinition methods that are relevant to transforming message content:

Table 2.5. Transformation Methods from the ProcessorDefinition Class

Method Description

Type convertBodyTo(Class type) Converts the IN message body to the specified type.

83

Red Hat Fuse 7.2 Apache Camel Development Guide

Method Description

Type removeFaultHeader(String name)

Type removeHeader(String name)

Type removeProperty(String name)

ExpressionClause<ProcessorDefinition<Typ
e>> setBody()

Type setFaultBody(Expression expression)

Type setFaultHeader(String name,
Expression expression)

ExpressionClause<ProcessorDefinition<Typ
e>> setHeader(String name)

Type setHeader(String name, Expression
expression)

ExpressionClause<ProcessorDefinition<Typ
e>> setOutHeader(String name)

Type setOutHeader(String name, Expression
expression)

ExpressionClause<ProcessorDefinition<Typ
e>> setProperty(String name)

Type setProperty(String name, Expression
expression)

ExpressionClause<ProcessorDefinition<Typ
e>> transform()

Type transform(Expression expression)

Adds a processor which removes the header on the
FAULT message.

Adds a processor which removes the header on the
IN message.

Adds a processor which removes the exchange
property.

Adds a processor which sets the body on the IN
message.

Adds a processor which sets the body on the FAULT
message.

Adds a processor which sets the header on the
FAULT message.

Adds a processor which sets the header on the IN
message.

Adds a processor which sets the header on the IN
message.

Adds a processor which sets the header on the OUT
message.

Adds a processor which sets the header on the OUT
message.

Adds a processor which sets the exchange property.

Adds a processor which sets the exchange property.

Adds a processor which sets the body on the OUT
message.

Adds a processor which sets the body on the OUT
message.

Builder class

The org.apache.camel.builder.Builder class provides access to message content in contexts where
expressions or predicates are expected. In other words, Builder methods are typically invoked in the
arguments of DSL commands — for example, the body() command in Example 2.1, “Simple

84

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Transformation of Incoming Messages”. Table 2.6, “Methods from the Builder Class” summarizes the

static methods available in the Builder class.

Table 2.6. Methods from the Builder Class

Method Description

static <E extends Exchange>
ValueBuilder<E> body()

static <E extends Exchange,T>
ValueBuilder<E> bodyAs(Class<T> type)

static <E extends Exchange>
ValueBuilder<E> constant(Object value)

static <E extends Exchange>
ValueBuilder<E> faultBody()

static <E extends Exchange,T>
ValueBuilder<E> faultBodyAs(Class<T> type)

static <E extends Exchange>
ValueBuilder<E> header(String name)

static <E extends Exchange>
ValueBuilder<E> outBody()

static <E extends Exchange>
ValueBuilder<E> outBodyAs(Class<T> type)

static ValueBuilder property(String name)

static ValueBuilder
regexReplaceAll(Expression content, String
regex, Expression replacement)

static ValueBuilder
regexReplaceAll(Expression content, String
regex, String replacement)

static ValueBuilder sendTo(String uri)

static <E extends Exchange>
ValueBuilder<E> systemProperty(String
name)

Returns a predicate and value builder for the inbound
body on an exchange.

Returns a predicate and value builder for the inbound
message body as a specific type.

Returns a constant expression.

Returns a predicate and value builder for the fault
body on an exchange.

Returns a predicate and value builder for the fault
message body as a specific type.

Returns a predicate and value builder for headers on
an exchange.

Returns a predicate and value builder for the
outbound body on an exchange.

Returns a predicate and value builder for the
outbound message body as a specific type.

Returns a predicate and value builder for properties
on an exchange.

Returns an expression that replaces all occurrences
of the regular expression with the given replacement.

Returns an expression that replaces all occurrences
of the regular expression with the given replacement.

Returns an expression processing the exchange to

the given endpoint uri.

Returns an expression for the given system property.

85

Red Hat Fuse 7.2 Apache Camel Development Guide

Method Description

static <E extends Exchange> Returns an expression for the given system property.
ValueBuilder<E> systemProperty(String
name, String defaultValue)

ValueBuilder class

The org.apache.camel.builder.ValueBuilder class enables you to modify values returned by the
Builder methods. In other words, the methods in ValueBuilder provide a simple way of modifying
message content. Table 2.7, “"Modifier Methods from the ValueBuilder Class” summarizes the methods
available in the ValueBuilder class. That is, the table shows only the methods that are used to modify
the value they are invoked on (for full details, see the APl Reference documentation).

Table 2.7. Modifier Methods from the ValueBuilder Class

Method Description

ValueBuilder<E> append(Object value) Appends the string evaluation of this expression with
the given value.

Predicate contains(Object value) Create a predicate that the left hand expression
contains the value of the right hand expression.

ValueBuilder<E> convertTo(Class type) Converts the current value to the given type using
the registered type converters.

ValueBuilder<E> convertToString() Converts the current value a String using the
registered type converters.

Predicate endsWith(Object value)

<T> T evaluate(Exchange exchange,
Class<T> type)

Predicate in(Object... values)

Predicate in(Predicate... predicates)

Predicate isEqualTo(Object value) Returns true, if the current value is equal to the given
value argument.

Predicate isGreaterThan(Object value) Returns true, if the current value is greater than the
given value argument.

Predicate isGreaterThanOrEqualTo(Object Returns true, if the current value is greater than or
value) equal to the given value argument.

86

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Method Description

Predicate isinstanceOf(Class type)

Predicate isLessThan(Object value)

Predicate isLessThanOrEqualTo(Object
value)

Predicate isNotEqualTo(Object value)

Predicate isNotNull()

Predicate isNuli()

Predicate matches(Expression expression)
Predicate not(Predicate predicate)

ValueBuilder prepend(Object value)

Predicate regex(String regex)

ValueBuilder<E> regexReplaceAll(String
regex, Expression<E> replacement)

ValueBuilder<E> regexReplaceAll(String
regex, String replacement)

ValueBuilder<E> regexTokenize(String
regex)

ValueBuilder sort(Comparator comparator)

Predicate startsWith(Object value)

ValueBuilder<E> tokenize()

ValueBuilder<E> tokenize(String token)

2.6.2. Marshalling and Unmarshalling

Returns true, if the current value is an instance of the
given type.

Returns true, if the current value is less than the given
value argument.

Returns true, if the current value is less than or equal
to the given value argument.

Returns true, if the current value is not equal to the
given value argument.

Returns true, if the current value is not null.

Returns true, if the current value is null.

Negates the predicate argument.

Prepends the string evaluation of this expression to
the given value.

Replaces all occurrencies of the regular expression
with the given replacement.

Replaces all occurrencies of the regular expression
with the given replacement.

Tokenizes the string conversion of this expression
using the given regular expression.

Sorts the current value using the given comparator.

Returns true, if the current value matches the string
value of the value argument.

Tokenizes the string conversion of this expression
using the comma token separator.

Tokenizes the string conversion of this expression
using the given token separator.

87

Red Hat Fuse 7.2 Apache Camel Development Guide

Java DSL commands

You can convert between low-level and high-level message formats using the following commands:
e marshal() — Converts a high-level data format to a low-level data format.

e unmarshal() — Converts a low-level data format to a high-level data format.

Data formats

Apache Camel supports marshalling and unmarshalling of the following data formats:
® Java serialization
e JAXB
® XMLBeans

® XStream

Java serialization

Enables you to convert a Java object to a blob of binary data. For this data format, unmarshalling
converts a binary blob to a Java object, and marshalling converts a Java object to a binary blob. For
example, to read a serialized Java object from an endpoint, SourceURL, and convert it to a Java object,
you use a rule like the following:

from(" SourceURL").unmarshal().serialization()
.<FurtherProcessing>.to(" TargetURL");

Or alternatively, in Spring XML:

<camelContext id="serialization" xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL"/>
<unmarshal>
<serialization/>
</unmarshal>
<to uri="TargetURL"/>
</route>
</camelContext>

JAXB

Provides a mapping between XML schema types and Java types (see https://jaxb.dev.java.net/). For
JAXB, unmarshalling converts an XML data type to a Java object, and marshalling converts a Java
object to an XML data type. Before you can use JAXB data formats, you must compile your XML schema
using a JAXB compiler to generate the Java classes that represent the XML data types in the schema.
This is called binding the schema. After the schema is bound, you define a rule to unmarshal XML data to
a Java object, using code like the following:

org.apache.camel.spi.DataFormat jaxb = new
org.apache.camel.model.dataformat.JaxbDataFormat(" GeneratedPackageName");

88

https://jaxb.dev.java.net/

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

from("SourceURL").unmarshal(jaxb)
.<FurtherProcessing>.to(" TargetURL");

where GeneratedPackagename is the name of the Java package generated by the JAXB compiler,
which contains the Java classes representing your XML schema.

Or alternatively, in Spring XML:

<camelContext id="jaxb" xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL"/>
<unmarshal>
<jaxb prettyPrint="true" contextPath="GeneratedPackageName"/>
</unmarshal>
<to uri="TargetURL"/>
</route>
</camelContext>

XMLBeans

Provides an alternative mapping between XML schema types and Java types (see
http://xmlbeans.apache.org/). For XMLBeans, unmarshalling converts an XML data type to a Java
object and marshalling converts a Java object to an XML data type. For example, to unmarshal XML
data to a Java object using XMLBeans, you use code like the following:

from(" SourceURL").unmarshal().xmIBeans()
.<FurtherProcessing>.to(" TargetURL");

Or alternatively, in Spring XML:

<camelContext id="xmIBeans" xmlIns="http://camel.apache.org/schema/spring">
<route>
<from uri="SourceURL"/>
<unmarshal>
<xml|Beans prettyPrint="true"/>
</unmarshal>
<to uri="TargetURL"/>
</route>
</camelContext>

XStream

Provides another mapping between XML types and Java types (see
http://www.xml.com/pub/a/2004/08/18/xstream.html). XStream is a serialization library (like Java
serialization), enabling you to convert any Java object to XML. For XStream, unmarshalling converts an
XML data type to a Java object, and marshalling converts a Java object to an XML data type.

from(" SourceURL").unmarshal().xstream()
.<FurtherProcessing>.to(" TargetURL");

NOTE

The XStream data format is currently not supported in Spring XML.

89

http://xmlbeans.apache.org/
http://www.xml.com/pub/a/2004/08/18/xstream.html

Red Hat Fuse 7.2 Apache Camel Development Guide

2.6.3. Endpoint Bindings

What is a binding?

In Apache Camel, a binding is a way of wrapping an endpoint in a contract — for example, by applying a
Data Format, a Content Enricher or a validation step. A condition or transformation is applied to the
messages coming in, and a complementary condition or transformation is applied to the messages going
out.

DataFormatBinding

The DataFormatBinding class is useful for the specific case where you want to define a binding that
marshals and unmarshals a particular data format (see Section 2.6.2, “Marshalling and Unmarshalling™).
In this case, all that you need to do to create a binding is to create a DataFormatBinding instance,
passing a reference to the relevant data format in the constructor.

For example, the XML DSL snippet in Example 2.2, “"JAXB Binding” shows a binding (with ID, jaxb) that

is capable of marshalling and unmarshalling the JAXB data format when it is associated with an Apache
Camel endpoint:

Example 2.2. JAXB Binding
<beans ... >
<bean id="jaxb" class="org.apache.camel.processor.binding.DataFormatBinding">

<constructor-arg ref="jaxbformat"/>
</bean>
<bean id="jaxbformat" class="org.apache.camel.model.dataformat.JaxbDataFormat">
<property name="prettyPrint" value="true"/>
<property name="contextPath" value="org.apache.camel.example"/>
</bean>

</beans>

Associating a binding with an endpoint
The following alternatives are available for associating a binding with an endpoint:
® Binding URI

® Component
Binding URI
To associate a binding with an endpoint, you can prefix the endpoint URI with binding:NameOfBinding,
where NameOfBinding is the bean ID of the binding (for example, the ID of a binding bean created in
Spring XML).

For example, the following example shows how to associate ActiveMQ endpoints with the JAXB binding
defined in Example 2.2, “JAXB Binding”.

I <beans ...>

90

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

<camelContext xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="binding:jaxb:activemq:orderQueue"/>
<to uri="binding:jaxb:activemq:otherQueue"/>
</route>
</camelContext>

</beans>

BindingComponent

Instead of using a prefix to associate a binding with an endpoint, you can make the association implicit,
so that the binding does not need to appear in the URI. For existing endpoints that do not have an
implicit binding, the easiest way to achieve this is to wrap the endpoint using the BindingComponent
class.

For example, to associate the jaxb binding with activemq endpoints, you could define a new
BindingComponent instance as follows:

<beans ... >

<bean id="jaxbmq" class="org.apache.camel.component.binding.BindingComponent">
<constructor-arg ref="jaxb"/>
<constructor-arg value="activemq:foo."/>

</bean>

<bean id="jaxb" class="org.apache.camel.processor.binding.DataFormatBinding">
<constructor-arg ref="jaxbformat"/>
</bean>

<bean id="jaxbformat" class="org.apache.camel.model.dataformat.JaxbDataFormat">
<property name="prettyPrint" value="true"/>
<property name="contextPath" value="org.apache.camel.example"/>

</bean>

</beans>

Where the (optional) second constructor argument to jaxbmgq defines a URI prefix. You can now use the
jaxbmq ID as the scheme for an endpoint URI. For example, you can define the following route using this
binding component:

<beans ...>

<camelContext xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="jaxbmq:firstQueue"/>
<to uri="jaxbmq:otherQueue"/>
</route>
</camelContext>

</beans>

The preceding route is equivalent to the following route, which uses the binding URI approach:

o1

Red Hat Fuse 7.2 Apache Camel Development Guide

<beans ...>

<camelContext xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="binding:jaxb:activemq:foo.firstQueue"/>
<to uri="binding:jaxb:activemq:foo.otherQueue"/>
</route>
</camelContext>

</beans>

NOTE

For developers that implement a custom Apache Camel component, it is possible to
achieve this by implementing an endpoint class that inherits from the
org.apache.camel.spi.HasBinding interface.

BindingComponent constructors
The BindingComponent class supports the following constructors:

public BindingComponent()

No arguments form. Use property injection to configure the binding component instance.
public BindingComponent(Binding binding)

Associate this binding component with the specified Binding object, binding.
public BindingComponent(Binding binding, String uriPrefix)

Associate this binding component with the specified Binding object, binding, and URI prefix,
uriPrefix. This is the most commonly used constructor.

public BindingComponent(Binding binding, String uriPrefix, String uriPostfix)

This constructor supports the additional URI post-fix, uriPostfix, argument, which is automatically
appended to any URIs defined using this binding component.

Implementing a custom binding

In addition to the DataFormatBinding, which is used for marshalling and unmarshalling data formats,
you can implement your own custom bindings. Define a custom binding as follows:

1. Implement an org.apache.camel.Processor class to perform a transformation on messages
incoming to a consumer endpoint (appearing in a from element).

2. Implement a complementary org.apache.camel.Processor class to perform the reverse
transformation on messages outgoing from a producer endpoint (appearing in a to element).

3. Implement the org.apache.camel.spi.Binding interface, which acts as a factory for the
processor instances.

Binding interface

Example 2.3, “The org.apache.camel.spi.Binding Interface” shows the definition of the
org.apache.camel.spi.Binding interface, which you must implement to define a custom binding.

I Example 2.3. The org.apache.camel.spi.Binding Interface

92

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

/I Java

package org.apache.camel.spi;

import org.apache.camel.Processor;

/**

* Represents a Binding or contract

* which can be applied to an Endpoint; such as ensuring that a particular
* Data Format is used on messages in
and out of an endpoint.
*/
public interface Binding {

/**

* Returns a new {@link Processor} which is used by a producer on an endpoint to implement

* the producer side binding before the message is sent to the underlying endpoint.

*/

Processor createProduceProcessor();

/**

* Returns a new {@link Processor} which is used by a consumer on an endpoint to process the

* message with the binding before its passed to the endpoint consumer producer.

*/

Processor createConsumeProcessor();

}

When to use bindings

Bindings are useful when you need to apply the same kind of transformation to many different kinds of
endpoint.

2.7. PROPERTY PLACEHOLDERS

Overview

The property placeholders feature can be used to substitute strings into various contexts (such as
endpoint URIs and attributes in XML DSL elements), where the placeholder settings are stored in Java
properties files. This feature can be useful, if you want to share settings between different Apache
Camel applications or if you want to centralize certain configuration settings.

For example, the following route sends requests to a Web server, whose host and port are substituted by
the placeholders, {{remote.host}} and {{remote.port}}:

I from("direct:start").to("http://{{remote.host}}:{{remote.port}}");
The placeholder values are defined in a Java properties file, as follows:

Java properties file
remote.host=myserver.com
remote.port=8080

93

Red Hat Fuse 7.2 Apache Camel Development Guide

NOTE

Property Placeholders support an encoding option that enables you to read the
.properties file, using a specific character set such as UTF-8. However, by default, it
implements the ISO-8859-1 character set.

Apache Camel using the PropertyPlaceholders support the following:
e Specify the default value together with the key to lookup.

® No need to define the PropertiesComponent, if all the placeholder keys consist of default
values, which are to be used.

e Use third-party functions to lookup the property values. It enables you to implement your own
logic.

NOTE
Provide three out of the box functions to lookup values from OS environmental
variable, JVM system properties, or the service name idiom.

Property files

Property settings are stored in one or more Java properties files and must conform to the standard Java
properties file format. Each property setting appears on its own line, in the format Key=Value. Lines
with # or ! as the first non-blank character are treated as comments.

For example, a property file could have content as shown in Example 2.4, “Sample Property File”.

Example 2.4. Sample Property File
Property placeholder settings
(in Java properties file format)
cool.end=mock:result
cool.result=result
cool.concat=mock:{{cool.result}}

cool.start=direct:cool
cool.showid=true

cheese.end=mock:cheese
cheese.quote=Camel rocks
cheese.type=Gouda

bean.foo=foo
bean.bar=bar

Resolving properties

The properties component must be configured with the locations of one or more property files before
you can start using it in route definitions. You must provide the property values using one of the
following resolvers:

classpath:PathName,PathName,...

94

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

(Default) Specifies locations on the classpath, where PathName is a file pathname delimited using
forward slashes.

file: PathName,PathName,...

Specifies locations on the file system, where PathName is a file pathname delimited using forward
slashes.

ref:BeanID
Specifies the ID of a java.util.Properties object in the registry.
blueprint: BeanID

Specifies the ID of a cm:property-placeholder bean, which is used in the context of an OSGi
blueprint file to access properties defined in the OSGi Configuration Adminservice. For details, see
the section called “Integration with OSGi blueprint property placeholders” .

For example, to specify the com/fusesource/cheese.properties property file and the

com/fusesource/bar.properties property file, both located on the classpath, you would use the
following location string:

I com/fusesource/cheese.properties,com/fusesource/bar.properties

o

NOTE

You can omit the classpath: prefix in this example, because the classpath resolver is
used by default.

Specifying locations using system properties and environment variables

You can embed Java system properties and O/S environment variables in a location PathName.
Java system properties can be embedded in a location resolver using the syntax, ${ PropertyName}. For

example, if the root directory of Red Hat JBoss Fuse is stored in the Java system property, karaf.home,
you could embed that directory value in a file location, as follows:

I file:${karaf.nome}/etc/foo.properties

O/S environment variables can be embedded in a location resolver using the syntax, ${env:VarName}.
For example, if the root directory of JBoss Fuse is stored in the environment variable, SMX_HOME, you
could embed that directory value in a file location, as follows:

I file:${env:SMX_HOME}/etc/foo.properties

Configuring the properties component

Before you can start using property placeholders, you must configure the properties component,
specifying the locations of one or more property files.

In the Java DSL, you can configure the properties component with the property file locations, as follows:

/I Java
import org.apache.camel.component.properties.PropertiesComponent;

95

Red Hat Fuse 7.2 Apache Camel Development Guide

PropertiesComponent pc = new PropertiesComponent();
pc.setLocation("com/fusesource/cheese.properties,com/fusesource/bar.properties");
context.addComponent("properties”, pc);

As shown in the addComponent() call, the name of the properties component must be set to
properties.

In the XML DSL, you can configure the properties component using the dedicated propertyPlacholder
element, as follows:

<camelContext ...>
<propertyPlaceholder
id="properties"
location="com/fusesource/cheese.properties,com/fusesource/bar.properties”
/>
</camelContext>

If you want the properties component to ignore any missing .properties files when it is being initialized,
you can set the ignoreMissingLocation option to true (normally, a missing .properties file would result
in an error being raised).

Additionally, if you want the properties component to ignore any missing locations that are specified

using Java system properties or O/S environment variables, you can set the ignoreMissingLocation
option to true.

Placeholder syntax

After it is configured, the property component automatically substitutes placeholders (in the appropriate
contexts). The syntax of a placeholder depends on the context, as follows:

® |n endpoint URIs and in Spring XML files— the placeholder is specified as {{Key}}.
® When setting XML DSL attributes— xs:string attributes are set using the following syntax:

I AttributeName="{{ Key}}"

Other attribute types (for example, xs:int or xs:boolean) must be set using the following
syntax:

I prop:AttributeName="Key"

Where prop is associated with the http:/camel.apache.org/schema/placeholder namespace.

® When setting Java DSL EIP options— to set an option on an Enterprise Integration Pattern
(EIP) command in the Java DSL, add a placeholder() clause like the following to the fluent DSL:

I .placeholder("OptionName", "Key")

® |n Simple language expressions— the placeholder is specified as ${properties:Key}.

Substitution in endpoint URIs

Wherever an endpoint URI string appears in a route, the first step in parsing the endpoint URl is to apply
the property placeholder parser. The placeholder parser automatically substitutes any property names

96

http://camel.apache.org/schema/placeholder

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

appearing between double braces, {{Key}}. For example, given the property settings shown in
Example 2.4, “Sample Property File”, you could define a route as follows:

from("{{cool.start}}")
.to("log:{{cool.start}}?showBodyType=false&showExchangeld={{cool.showid}}")
to("mock:{{cool.result}}");

By default, the placeholder parser looks up the properties bean ID in the registry to find the property
component. If you prefer, you can explicitly specify the scheme in the endpoint URIs. For example, by
prefixing properties: to each of the endpoint URIs, you can define the following equivalent route:

from("properties:{{cool.start}}")
{o("properties:log:{{cool.start}}?showBody Type=false&showExchangeld={{cool.showid}}")
.to("properties:mock:{{cool.result}}");

When specifying the scheme explicitly, you also have the option of specifying options to the properties
component. For example, to override the property file location, you could set the location option as
follows:

I from("direct:start").to("properties:{{bar.end}}?location=com/mycompany/bar.properties");

Substitution in Spring XML files

You can also use property placeholders in the XML DSL, for setting various attributes of the DSL
elements. In this context, the placholder syntax also uses double braces, {{ Key}}. For example, you could
define a jmxAgent element using property placeholders, as follows:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring">
<propertyPlaceholder id="properties" location="org/apache/camel/spring/jmx.properties"/>

<!-- we can use property placeholders when we define the JMX agent -->
<jmxAgent id="agent" registryPort="{{myjmx.port}}"
usePlatformMBeanServer="{{myjmx.usePlatform}}"
createConnector="true"
statisticsLevel="RoutesOnly"
/>

<route>
<from uri="seda:start"/>
<to uri="mock:result"/>
</route>
</camelContext>

Substitution of XML DSL attribute values

You can use the regular placeholder syntax for specifying attribute values of xs:string type — for
example, <jmxAgent registryPort="{{myjmx.port}}" ...>. But for attributes of any other type (for
example, xs:int or xs:boolean), you must use the special syntax, prop:AttributeName="Key".

For example, given that a property file defines the stop.flag property to have the value, true, you can
use this property to set the stopOnException boolean attribute, as follows:

I <beans xmiIns="http://www.springframework.org/schema/beans"

97

Red Hat Fuse 7.2 Apache Camel Development Guide

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:prop="http://camel.apache.org/schema/placeholder"
>

<bean id="illegal" class="java.lang.lllegalArgumentException">
<constructor-arg index="0" value="Good grief!"/>
</bean>

<camelContext xmIns="http://camel.apache.org/schema/spring">

<propertyPlaceholder id="properties"
location="classpath:org/apache/camel/component/properties/myprop.properties”
xmlns="http://camel.apache.org/schema/spring"/>

<route>
<from uri="direct:start"/>
<multicast prop:stopOnException="stop.flag">
<to uri="mock:a"/>
<throwException ref="damn"/>
<to uri="mock:b"/>
</multicast>
</route>

</camelContext>

</beans>

IMPORTANT

The prop prefix must be explicitly assigned to the
http://camel.apache.org/schema/placeholder namespace in your Spring file, as shown
in the beans element of the preceding example.

Substitution of Java DSL EIP options

When invoking an EIP command in the Java DSL, you can set any EIP option using the value of a property

placeholder, by adding a sub-clause of the form, placeholder(" OptionName", " Key").

For example, given that a property file defines the stop.flag property to have the value, true, you can
use this property to set the stopOnException option of the multicast EIP, as follows:

from("direct:start")
.multicast().placeholder("stopOnException", "stop.flag")
to("mock:a").throwException(new lllegalAccessException("Damn")).to("mock:b");

Substitution in Simple language expressions

You can also substitute property placeholders in Simple language expressions, but in this case the
syntax of the placeholder is ${properties:Key}. For example, you can substitute the cheese.quote
placeholder inside a Simple expression, as follows:

from("direct:start")
transform().simple("Hi ${body} do you think ${properties:cheese.quote}?");

98

http://camel.apache.org/schema/placeholder

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

You can specify a default value for the property, using the syntax, ${properties:Key: DefaultVal}. For
example:

from("direct:start")
transform().simple("Hi ${body} do you think ${properties:cheese.quote:cheese is good}?");
Itis also possible to override the location of the property file using the syntax, ${properties-
location:Location:Key}. For example, to substitute the bar.quote placeholder using the settings from
the com/mycompany/bar.properties property file, you can define a Simple expression as follows:

from("direct:start")
transform().simple("Hi ${body}. ${properties-location:com/mycompany/bar.properties:bar.quote}.");

Using Property Placeholders in the XML DSL

In older releases, the xs:string type attributes were used to support placeholders in the XML DSL. For
example, the timeout attribute would be a xs:int type. Therefore, you cannot set a string value as the
placeholder key.

From Apache Camel 2.7 onwards, this is now possible by using a special placeholder namespace. The
following example illustrates the prop prefix for the namespace. It enables you to use the prop prefixin
the attributes in the XML DSLs.

NOTE

In the Multicast, set the option stopOnException as the value of the placeholder with the
key stop. Also, in the properties file, define the value as

I stop=true

<beans xmiIns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlins:prop="http://camel.apache.org/schema/placeholder"
xsi:schemal.ocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring http://camel.apache.org/schema/spring/camel-spring.xsd
">

<!-- Notice in the declaration above, we have defined the prop prefix as the Camel placeholder
namespace -->

<bean id="damn" class="java.lang.lllegalArgumentException">
<constructor-arg index="0" value="Damn"/>
</bean>
<camelContext xmIns="http://camel.apache.org/schema/spring">
<propertyPlaceholder id="properties"
location="classpath:org/apache/camel/component/properties/myprop.properties”

xmlns="http://camel.apache.org/schema/spring"/>

<route>

99

Red Hat Fuse 7.2 Apache Camel Development Guide

<from uri="direct:start"/>

<!-- use prop namespace, to define a property placeholder, which maps to
option stopOnException={{stop}} -->

<multicast prop:stopOnException="stop">
<to uri="mock:a"/>
<throwException ref="damn"/>
<to uri="mock:b"/>

</multicast>

</route>

</camelContext>

</beans>

Integration with OSGi blueprint property placeholders

If you deploy your route into the Red Hat JBoss Fuse OSGi container, you can integrate the Apache
Camel property placeholder mechanism with JBoss Fuse's blueprint property placeholder mechanism
(in fact, the integration is enabled by default). There are two basic approaches to setting up the
integration, as follows:

® Implicit blueprint integration

® Explicit blueprint integration

Implicit blueprint integration

If you define a camelContext element inside an OSGi blueprint file, the Apache Camel property
placeholder mechanism automatically integrates with the blueprint property placeholder mechanism.
That is, placeholders obeying the Apache Camel syntax (for example, {{cool.end}}) that appear within
the scope of camelContext are implicitly resolved by looking up the blueprint property placeholder
mechanism.

For example, consider the following route defined in an OSGi blueprint file, where the last endpointin
the route is defined by the property placeholder, {{result}}:

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:cm="http://aries.apache.org/blueprint/xmins/blueprint-cm/v1.0.0"
xsi:schemalocation="
http://www.osgi.org/xmlIns/blueprint/v1.0.0
https://www.osgi.org/xmins/blueprint/v1.0.0/blueprint.xsd">

<!-- OSGl blueprint property placeholder -->
<cm:property-placeholder id="myblueprint.placeholder" persistent-id="camel.blueprint">
<!-- list some properties for this test -->
<cm:default-properties>
<cm:property name="result" value="mock:result"/>
</cm:default-properties>
</cm:property-placeholder>

<camelContext xmIns="http://camel.apache.org/schema/blueprint">
<!-- in the route we can use {{ }} placeholders which will look up in blueprint,
as Camel will auto detect the OSGi blueprint property placeholder and use it -->
<route>

100

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

<from uri="direct:start"/>
<to uri="mock:foo"/>
<to uri="{{result}}"/>
</route>
</camelContext>

</blueprint>

The blueprint property placeholder mechanism is initialized by creating a cm:property-placeholder
bean. In the preceding example, the cm:property-placeholder bean is associated with the
camel.blueprint persistent ID, where a persistent ID is the standard way of referencing a group of
related properties from the OSGi Configuration Adminservice. In other words, the cm:property-
placeholder bean provides access to all of the properties defined under the camel.blueprint persistent
ID. It is also possible to specify default values for some of the properties (using the nested cm:property
elements).

In the context of blueprint, the Apache Camel placeholder mechanism searches for an instance of
cm:property-placeholder in the bean registry. If it finds such an instance, it automatically integrates the
Apache Camel placeholder mechanism, so that placeholders like, {{result}}, are resolved by looking up
the key in the blueprint property placeholder mechanism (in this example, through the
myblueprint.placeholder bean).

NOTE

The default blueprint placeholder syntax (accessing the blueprint properties directly) is
${Key}. Hence, outside the scope of a camelContext element, the placeholder syntax
you must use is ${Key}. Whereas, inside the scope of a camelContext element, the
placeholder syntax you must use is {{ Key}}.

Explicit blueprint integration

If you want to have more control over where the Apache Camel property placeholder mechanism finds its
properties, you can define a propertyPlaceholder element and specify the resolver locations explicitly.

For example, consider the following blueprint configuration, which differs from the previous example in
that it creates an explicit propertyPlaceholder instance:

<blueprint xmlns="http://www.osgi.org/xmIns/blueprint/v1.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:cm="http://aries.apache.org/blueprint/xmins/blueprint-cm/v1.0.0"
xsi:schemalocation="
http://www.osgi.org/xmlIns/blueprint/v1.0.0
">https://www.osgi.org/xmlins/blueprint/v1.0.0/blueprint.xsd">

<!-- OSGI blueprint property placeholder -->
<cm:property-placeholder id="myblueprint.placeholder" persistent-id="camel.blueprint">
<!-- list some properties for this test -->
<cm:default-properties>
<cm:property name="result" value="mock:result"/>
</cm:default-properties>
</cm:property-placeholder>

<camelContext xmIns="http://camel.apache.org/schema/blueprint">

<!-- using Camel properties component and refer to the blueprint property placeholder by its id --

101

http://www.osgi.org/xmlns/blueprint/v1.0.0
https://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd

Red Hat Fuse 7.2 Apache Camel Development Guide

<propertyPlaceholder id="properties" location="blueprint:myblueprint.placeholder"/>

<!l--in the route we can use {{ }} placeholders which will lookup in blueprint -->
<route>

<from uri="direct:start"/>

<to uri="mock:foo"/>

<to uri="{{result}}"/>
</route>

</camelContext>

</blueprint>

In the preceding example, the propertyPlaceholder element specifies explicitly which cm:property-
placeholder bean to use by setting the location to blueprint:myblueprint.placeholder. That is, the
blueprint: resolver explicitly references the ID, myblueprint.placeholder, of the cm:property-
placeholder bean.

This style of configuration is useful, if there is more than one em:property-placeholder bean defined in
the blueprint file and you need to specify which one to use. It also makes it possible to source properties
from multiple locations, by specifying a comma-separated list of locations. For example, if you wanted
to look up properties both from the cm:property-placeholder bean and from the properties file,
myproperties.properties, on the classpath, you could define the propertyPlaceholder element as
follows:

<propertyPlaceholder id="properties"
location="blueprint:myblueprint.placeholder,classpath:myproperties.properties"/>

Integration with Spring property placeholders

If you define your Apache Camel application using XML DSL in a Spring XML file, you can integrate the
Apache Camel property placeholder mechanism with Spring property placeholder mechanism by
declaring a Spring bean of type,
org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer.

Define a BridgePropertyPlaceholderConfigurer, which replaces both Apache Camel’s
propertyPlaceholder element and Spring’s ctx:property-placeholder element in the Spring XML file.
You can then refer to the configured properties using either the Spring ${PropName} syntax or the
Apache Camel {{ PropName}} syntax.

For example, defining a bridge property placeholder that reads its property settings from the
cheese.properties file:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmiIns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:ctx="http://www.springframework.org/schema/context"
xsi:schemalocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd">

<!-- Bridge Spring property placeholder with Camel -->

102

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

<!-- Do not use <ctx:property-placeholder ... > at the same time -->
<bean id="bridgePropertyPlaceholder"
class="org.apache.camel.spring.spi.BridgePropertyPlaceholderConfigurer">
<property name="location"
value="classpath:org/apache/camel/component/properties/cheese.properties"/>
</bean>

<!-- A bean that uses Spring property placeholder -->

<l-- The ${hi} is a spring property placeholder -->

<bean id="hello" class="org.apache.camel.component.properties.HelloBean">
<property name="greeting" value="${hi}"/>

</bean>

<camelContext xmIns="http://camel.apache.org/schema/spring">
<!-- Use Camel's property placeholder {{ }} style -->
<route>
<from uri="direct:{{cool.bar}}"/>
<bean ref="hello"/>
<to uri="{{cool.end}}"/>
</route>
</camelContext>

</beans>

NOTE
Alternatively, you can set the location attribute of the

BridgePropertyPlaceholderConfigurer to point at a Spring properties file. The Spring
properties file syntax is fully supported.

2.8. THREADING MODEL

Java thread pool API

The Apache Camel threading model is based on the powerful Java concurrency API, Package
java.util.concurrent, that first became available in Sun’s JDK 1.5. The key interface in this APl is the
ExecutorService interface, which represents a thread pool. Using the concurrency API, you can create
many different kinds of thread pool, covering a wide range of scenarios.

Apache Camel thread pool API

The Apache Camel thread pool API builds on the Java concurrency API by providing a central factory (of
org.apache.camel.spi.ExecutorServiceManager type) for all of the thread pools in your Apache
Camel application. Centralising the creation of thread pools in this way provides several advantages,
including:

e Simplified creation of thread pools, using utility classes.

® Integrating thread pools with graceful shutdown.

® Threads automatically given informative names, which is beneficial for logging and
management.

Component threading model

103

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/package-summary.html

Red Hat Fuse 7.2 Apache Camel Development Guide

Some Apache Camel components — such as SEDA, JMS, and Jetty — are inherently multi-threaded.
These components have all been implemented using the Apache Camel threading model and thread
pool API.

If you are planning to implement your own Apache Camel component, it is recommended that you
integrate your threading code with the Apache Camel threading model. For example, if your component
needs a thread pool, it is recommended that you create it using the CamelContext’s
ExecutorServiceManager object.

Processor threading model

Some of the standard processors in Apache Camel create their own thread pool by default. These
threading-aware processors are also integrated with the Apache Camel threading model and they
provide various options that enable you to customize the thread pools that they use.

Table 2.8, "Processor Threading Options” shows the various options for controlling and setting thread
pools on the threading-aware processors built-in to Apache Camel.

Table 2.8. Processor Threading Options

Java DSL XML DSL

Processor

aggregate

multicast

recipientList

split

threads

104

parallelProcessing()
executorService()
executorServiceRef()

parallelProcessing()
executorService()
executorServiceRef()

parallelProcessing()
executorService()
executorServiceRef()

parallelProcessing()
executorService()
executorServiceRef()

executorService()
executorServiceRef()
poolSize()
maxPoolSize()
keepAliveTime()
timeUnit()
maxQueueSize()
rejectedPolicy()

@parallelProcessing
@executorServiceRef

@parallelProcessing
@executorServiceRef

@parallelProcessing
@executorServiceRef

@parallelProcessing
@executorServiceRef

@executorServiceRef
@poolSize
@maxPoolSize
@keepAliveTime
@timeUnit
@maxQueueSize
@rejectedPolicy

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Processor Java DSL XML DSL

wireTap
wireTap(String uri, I @executorServiceRef
ExecutorService
executorService)
wireTap(String uri, String
executorServiceRef)

threads DSL options

The threads processor is a general-purpose DSL command, which you can use to introduce a thread
pool into a route. It supports the following options to customize the thread pool:

poolSize()

Minimum number of threads in the pool (and initial pool size).
maxPoolSize()

Maximum number of threads in the pool.
keepAliveTime()

If any threads are idle for longer than this period of time (specified in seconds), they are terminated.
timeUnit()

Time unit for keep alive, specified using the java.util.concurrent.TimeUnit type.
maxQueueSize()

Maximum number of pending tasks that this thread pool can store in its incoming task queue.
rejectedPolicy()

Specifies what course of action to take, if the incoming task queue is full. See Table 2.10, “Thread
Pool Builder Options”

NOTE

The preceding thread pool options are not compatible with the executorServiceRef
option (for example, you cannot use these options to override the settings in the thread
pool referenced by an executorServiceRef option). Apache Camel validates the DSL to
enforce this.

Creating a default thread pool

To create a default thread pool for one of the threading-aware processors, enable the
parallelProcessing option, using the parallelProcessing() sub-clause, in the Java DSL, or the
parallelProcessing attribute, in the XML DSL.

For example, in the Java DSL, you can invoke the multicast processor with a default thread pool (where
the thread pool is used to process the multicast destinations concurrently) as follows:

from("direct:start")
.multicast().parallelProcessing()
to("mock:first")
.to("mock:second")
to("mock:third");

105

Red Hat Fuse 7.2 Apache Camel Development Guide

You can define the same route in XML DSL as follows

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring">
<route>
<from uri="direct:start"/>
<multicast parallelProcessing="true">
<to uri="mock:first"/>
<to uri="mock:second"/>
<to uri="mock:third"/>
</multicast>
</route>
</camelContext>

Default thread pool profile settings

The default thread pools are automatically created by a thread factory that takes its settings from the
default thread pool profile. The default thread pool profile has the settings shown in Table 2.9, “Default
Thread Pool Profile Settings” (assuming that these settings have not been modified by the application
code).

Table 2.9. Default Thread Pool Profile Settings

Thread Option Default Value

maxQueueSize 1000
poolSize 10
maxPoolSize 20
keepAliveTime 60 (seconds)
rejectedPolicy CallerRuns

Changing the default thread pool profile

Itis possible to change the default thread pool profile settings, so that all subsequent default thread
pools will be created with the custom settings. You can change the profile either in Java or in Spring
XML.

For example, in the Java DSL, you can customize the poolSize option and the maxQueueSize option in
the default thread pool profile, as follows:

/[Java
import org.apache.camel.spi.ExecutorServiceManager;
import org.apache.camel.spi.ThreadPoolProfile;

ExecutorServiceManager manager = context.getExecutorServiceManager();
ThreadPoolProfile defaultProfile = manager.getDefaultThreadPoolProfile();

/I Now, customize the profile settings.

106

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

defaultProfile.setPoolSize(3);
defaultProfile.setMaxQueueSize(100);

In the XML DSL, you can customize the default thread pool profile, as follows:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring">
<threadPoolProfile
id="changedProfile"
defaultProfile="true"
poolSize="3"
maxQueueSize="100"/>

</camelContext>

Note that it is essential to set the defaultProfile attribute to true in the preceding XML DSL example,
otherwise the thread pool profile would be treated like a custom thread pool profile (see the section
called “Creating a custom thread pool profile”), instead of replacing the default thread pool profile.

Customizing a processor’s thread pool

Itis also possible to specify the thread pool for a threading-aware processor more directly, using either
the executorService or executorServiceRef options (where these options are used instead of the
parallelProcessing option). There are two approaches you can use to customize a processor’s thread
pool, as follows:

® Specify a custom thread pool— explicitly create an ExecutorService (thread pool) instance
and pass it to the executorService option.

® Specify a custom thread pool profile— create and register a custom thread pool factory. When
you reference this factory using the executorServiceRef option, the processor automatically
uses the factory to create a custom thread pool instance.

When you pass a bean ID to the executorServiceRef option, the threading-aware processor first tries to
find a custom thread pool with that ID in the registry. If no thread pool is registered with that ID, the
processor then attempts to look up a custom thread pool profile in the registry and uses the custom
thread pool profile to instantiate a custom thread pool.

Creating a custom thread pool

A custom thread pool can be any thread pool of java.util.concurrent.ExecutorService type. The following
approaches to creating a thread pool instance are recommended in Apache Camel:

® Use the org.apache.camel.builder.ThreadPoolBuilder utility to build the thread pool class.

e Use the org.apache.camel.spi.ExecutorServiceManager instance from the current
CamelContext to create the thread pool class.

Ultimately, there is not much difference between the two approaches, because the ThreadPoolBuilder
is actually defined using the ExecutorServiceManager instance. Normally, the ThreadPoolBuilder is
preferred, because it offers a simpler approach. But there is at least one kind of thread (the
ScheduledExecutorService) that can only be created by accessing the ExecutorServiceManager
instance directory.

107

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ExecutorService.html

Red Hat Fuse 7.2 Apache Camel Development Guide

Table 2.10, “Thread Pool Builder Options” shows the options supported by the ThreadPoolBuilder class,
which you can set when defining a new custom thread pool.

Table 2.10. Thread Pool Builder Options

Builder Option Description

maxQueueSize() Sets the maximum number of pending tasks that this
thread pool can store in its incoming task queue. A
value of -1 specifies an unbounded queue. Default
value is taken from default thread pool profile.

poolSize() Sets the minimum number of threads in the pool (this
is also the initial pool size). Default value is taken
from default thread pool profile.

maxPoolSize() Sets the maximum number of threads that can be in
the pool. Default value is taken from default thread
pool profile.

keepAliveTime() If any threads are idle for longer than this period of

time (specified in seconds), they are terminated. This
allows the thread pool to shrink when the load is light.
Default value is taken from default thread pool
profile.

rejectedPolicy() Specifies what course of action to take, if the

y
incoming task queue is full. You can specify four
possible values:

CallerRuns

(Default value) Gets the caller thread to run the
latest incoming task. As a side effect, this option
prevents the caller thread from receiving any
more tasks until it has finished processing the
latest incoming task.

Abort

Aborts the latest incoming task by throwing an
exception.

Discard
Quietly discards the latest incoming task.

DiscardOldest

Discards the oldest unhandled task and then
attempts to enqueue the latest incoming task in
the task queue.

build() Finishes building the custom thread pool and
registers the new thread pool under the ID specified
as the argument to build().

In Java DSL, you can define a custom thread pool using the ThreadPoolBuilder, as follows:

108

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

/I Java
import org.apache.camel.builder.ThreadPoolBuilder;
import java.util.concurrent.ExecutorService;

ThreadPoolBuilder poolBuilder = new ThreadPoolBuilder(context);
ExecutorService customPool =
poolBuilder.poolSize(5).maxPoolSize(5).maxQueueSize(100).build("customPool");

from("direct:start")
.multicast().executorService(customPool)
to("mock:first")
.to("mock:second")
to("mock:third");

Instead of passing the object reference, customPool, directly to the executorService() option, you can
look up the thread pool in the registry, by passing its bean ID to the executorServiceRef() option, as
follows:

/l Java
from("direct:start")
.multicast().executorServiceRef("customPool")
to("mock:first")
.to("mock:second")
to("mock:third");

In XML DSL, you access the ThreadPoolBuilder using the threadPool element. You can then reference
the custom thread pool using the executorServiceRef attribute to look up the thread pool by ID in the
Spring registry, as follows:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring">
<threadPool id="customPool"
poolSize="5"
maxPoolSize="5"
maxQueueSize="100" />

<route>
<from uri="direct:start"/>
<multicast executorServiceRef="customPool">
<to uri="mock:first"/>
<to uri="mock:second"/>
<to uri="mock:third"/>
</multicast>
</route>
</camelContext>

Creating a custom thread pool profile

If you have many custom thread pool instances to create, you might find it more convenient to define a
custom thread pool profile, which acts as a factory for thread pools. Whenever you reference a thread
pool profile from a threading-aware processor, the processor automatically uses the profile to create a
new thread pool instance. You can define a custom thread pool profile either in Java DSL or in XML DSL.

109

Red Hat Fuse 7.2 Apache Camel Development Guide

For example, in Java DSL you can create a custom thread pool profile with the bean ID, customProfile,
and reference it from within a route, as follows:

/l Java
import org.apache.camel.spi.ThreadPoolProfile;
import org.apache.camel.impl.ThreadPoolProfileSupport;

/I Create the custom thread pool profile

ThreadPoolProfile customProfile = new ThreadPoolProfileSupport("customProfile");
customProfile.setPoolSize(5);

customProfile.setMaxPoolSize(5);

customProfile.setMaxQueueSize(100);
context.getExecutorServiceManager().registerThreadPoolProfile(customProfile);

/I Reference the custom thread pool profile in a route
from("direct:start")
.multicast().executorServiceRef("customProfile")
to("mock:first")
.to("mock:second")
to("mock:third");

In XML DSL, use the threadPoolProfile element to create a custom pool profile (where you let the
defaultProfile option default to false, because this is not a default thread pool profile). You can create
a custom thread pool profile with the bean ID, customProfile, and reference it from within a route, as
follows:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring">
<threadPoolProfile
id="customProfile"
poolSize="5"
maxPoolSize="5"
maxQueueSize="100" />

<route>
<from uri="direct:start"/>
<multicast executorServiceRef="customProfile">
<to uri="mock:first"/>
<to uri="mock:second"/>
<to uri="mock:third"/>
</multicast>
</route>
</camelContext>

Sharing a thread pool between components

Some of the standard poll-based components — such as File and FTP — allow you to specify the thread
pool to use. This makes it possible for different components to share the same thread pool, reducing the
overall number of threads in the JVM.

For example, the see File2 in the Apache Camel Component Reference Guide. and the Ftp2 in the
Apache Camel Component Reference Guide both expose the scheduledExecutorService property,
which you can use to specify the component’s ExecutorService object.

Customizing thread names

110

https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-File2.html
https://access.redhat.com/documentation/en-US/Red_Hat_JBoss_Fuse/6.2/html/Apache_Camel_Component_Reference/IDU-FTP2.html

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

To make the application logs more readable, it is often a good idea to customize the thread names
(which are used to identify threads in the log). To customize thread names, you can configure the
thread name patternby calling the setThreadNamePattern method on the ExecutorServiceStrategy
class or the ExecutorServiceManager class. Alternatively, an easier way to set the thread name pattern
is to set the threadNamePattern property on the CamelContext object.

The following placeholders can be used in a thread name pattern:

#camelld#
The name of the current CamelContext.
#counter#
A unique thread identifier, implemented as an incrementing counter.
#name#
The regular Camel thread name.
#longNamei#

The long thread name — which can include endpoint parameters and so on.

The following is a typical example of a thread name pattern:

I Camel (#camelld#) thread #counter# - #name#

The following example shows how to set the threadNamePattern attribute on a Camel context using
XML DSL:

<camelContext xmIns="http://camel.apache.org/schema/spring"
threadNamePattern="Riding the thread #counter#" >
<route>
<from uri="seda:start"/>
<to uri="log:result"/>
<to uri="mock:result"/>
</route>
</camelContext>

2.9. CONTROLLING START-UP AND SHUTDOWN OF ROUTES

Overview

By default, routes are automatically started when your Apache Camel application (as represented by the
CamelContext instance) starts up and routes are automatically shut down when your Apache Camel
application shuts down. For non-critical deployments, the details of the shutdown sequence are usually
not very important. But in a production environment, it is often crucial that existing tasks should run to
completion during shutdown, in order to avoid data loss. You typically also want to control the order in
which routes shut down, so that dependencies are not violated (which would prevent existing tasks from
running to completion).

For this reason, Apache Camel provides a set of features to support graceful shutdown of applications.
Graceful shutdown gives you full control over the stopping and starting of routes, enabling you to
control the shutdown order of routes and enabling current tasks to run to completion.

Setting the route ID

m

Red Hat Fuse 7.2 Apache Camel Development Guide

It is good practice to assign a route ID to each of your routes. As well as making logging messages and
management features more informative, the use of route IDs enables you to apply greater control over
the stopping and starting of routes.

For example, in the Java DSL, you can assign the route ID, myCustomerRouteld, to a route by invoking
the routeld() command as follows:

I from("SourceURI").routeld("myCustomRouteld").process(...).to(TargetURI);

In the XML DSL, set the route element’s id attribute, as follows:

<camelContext id="CamelContextID" xmIns="http://camel.apache.org/schema/spring">
<route id="myCustomRouteld" >
<from uri="SourceURI"/>
<process ref="someProcessorld"/>
<to uri="TargetURI'/>
</route>
</camelContext>

Disabling automatic start-up of routes

By default, all of the routes that the CamelContext knows about at start time will be started
automatically. If you want to control the start-up of a particular route manually, however, you might
prefer to disable automatic start-up for that route.

To control whether a Java DSL route starts up automatically, invoke the autoStartup command, either
with a boolean argument (true or false) or a String argument (true or false). For example, you can
disable automatic start-up of a route in the Java DSL, as follows:

from(" SourceURI")
.routeld("nonAuto")
.autoStartup(false)
to(TargetURI);

You can disable automatic start-up of a route in the XML DSL by setting the autoStartup attribute to
false on the route element, as follows:

<camelContext id="CamelContextID" xmIns="http://camel.apache.org/schema/spring">
<route id="nonAuto" autoStartup="false">
<from uri="SourceURI"/>
<to uri="TargetURI'/>
</route>
</camelContext>

Manually starting and stopping routes

You can manually start or stop a route at any time in Java by invoking the startRoute() and stopRoute()
methods on the CamelContext instance. For example, to start the route having the route ID, nonAuto,
invoke the startRoute() method on the CamelContext instance, context, as follows:

/[Java
context.startRoute("nonAuto");

12

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

To stop the route having the route ID, nonAuto, invoke the stopRoute() method on the CamelContext
instance, context, as follows:

/[Java
context.stopRoute("nonAuto");

Startup order of routes

By default, Apache Camel starts up routes in a non-deterministic order. In some applications, however, it
can be important to control the startup order. To control the startup order in the Java DSL, use the
startupOrder() command, which takes a positive integer value as its argument. The route with the lowest
integer value starts first, followed by the routes with successively higher startup order values.

For example, the first two routes in the following example are linked together through the seda:buffer
endpoint. You can ensure that the first route segment starts after the second route segment by
assigning startup orders (2 and 1respectively), as follows:

Example 2.5. Startup Order in Java DSL
from("jetty:http://fooserver:8080")
.routeld("first")

.startupOrder(2)
.to("seda:buffer");
from("seda:buffer")
.routeld("second")
.startupOrder(1)
to("mock:result");

/[This route's startup order is unspecified
from("jms:queue:foo").to("jms:queue:bar");

Or in Spring XML, you can achieve the same effect by setting the route element’s startupOrder
attribute, as follows:

Example 2.6. Startup Order in XML DSL
<route id="first" startupOrder="2">
<from uri="jetty:http:/fooserver:8080"/>

<to uri="seda:buffer"/>
</route>

<route id="second" startupOrder="1">
<from uri="seda:buffer"/>
<to uri="mock:result"/>

</route>

<!-- This route's startup order is unspecified -->
<route>

<from uri="jms:queue:foo"/>

<to uri="jms:queue:bar"/>
</route>

13

Red Hat Fuse 7.2 Apache Camel Development Guide

Each route must be assigned a unique startup order value. You can choose any positive integer value
that is less than 1000. Values of 1000 and over are reserved for Apache Camel, which automatically
assigns these values to routes without an explicit startup value. For example, the last route in the
preceding example would automatically be assigned the startup value, 1000 (so it starts up after the
first two routes).

Shutdown sequence

When a CamelContext instance is shutting down, Apache Camel controls the shutdown sequence using
a pluggable shutdown strategy. The default shutdown strategy implements the following shutdown
sequence:

1. Routes are shut down in the reverse of the start-up order.

2. Normally, the shutdown strategy waits until the currently active exchanges have finshed
processing. The treatment of running tasks is configurable, however.

3. Overall, the shutdown sequence is bound by a timeout (default, 300 seconds). If the shutdown
sequence exceeds this timeout, the shutdown strategy will force shutdown to occur, even if
some tasks are still running.

Shutdown order of routes

Routes are shut down in the reverse of the start-up order. That is, when a start-up order is defined using
the startupOrder() command (in Java DSL) or startupOrder attribute (in XML DSL), the first route to
shut down is the route with the highest integer value assigned by the start-up order and the last route to
shut down is the route with the lowest integer value assigned by the start-up order.

For example, in Example 2.5, “Startup Order in Java DSL", the first route segment to be shut down is the
route with the ID, first, and the second route segment to be shut down is the route with the ID, second.
This example illustrates a general rule, which you should observe when shutting down routes: the routes
that expose externally-accessible consumer endpoints should be shut down first, because this helps
to throttle the flow of messages through the rest of the route graph.

NOTE

Apache Camel also provides the option shutdownRoute(Defer), which enables you to
specify that a route must be amongst the last routes to shut down (overriding the start-
up order value). But you should rarely ever need this option. This option was mainly
needed as a workaround for earlier versions of Apache Camel (prior to 2.3), for which
routes would shut down in the same order as the start-up order.

Shutting down running tasks in a route

If a route is still processing messages when the shutdown starts, the shutdown strategy normally waits
until the currently active exchange has finished processing before shutting down the route. This
behavior can be configured on each route using the shutdownRunningTask option, which can take
either of the following values:

ShutdownRunningTask.CompleteCurrentTaskOnly

(Default) Usually, a route operates on just a single message at a time, so you can safely shut down
the route after the current task has completed.

ShutdownRunningTask.CompleteAllTasks

14

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Specify this option in order to shut down batch consumers gracefully. Some consumer endpoints
(for example, File, FTP, Mail, iBATIS, and JPA) operate on a batch of messages at a time. For these
endpoints, it is more appropriate to wait until all of the messages in the current batch have
completed.

For example, to shut down a File consumer endpoint gracefully, you should specify the
CompleteAllTasks option, as shown in the following Java DSL fragment:

/[Java
public void configure() throws Exception {
from("file:target/pending")
.routeld("first").startupOrder(2)
.shutdownRunningTask(ShutdownRunningTask.CompleteAllTasks)
.delay(1000).to("seda:foo");

from("seda:foo")
.routeld("second").startupOrder(1)
to("mock:bar");

}

The same route can be defined in the XML DSL as follows:

<camelContext id="camel" xmIns="http://camel.apache.org/schema/spring">
<!-- let this route complete all its pending messages when asked to shut down -->
<route id="first"
startupOrder="2"
shutdownRunningTask="CompleteAllTasks">
<from uri="file:target/pending"/>
<delay><constant>1000</constant></delay>
<to uri="seda:foo"/>
</route>

<route id="second" startupOrder="1">
<from uri="seda:foo"/>
<to uri="mock:bar"/>
</route>
</camelContext>

Shutdown timeout

The shutdown timeout has a default value of 300 seconds. You can change the value of the timeout by
invoking the setTimeout() method on the shutdown strategy. For example, you can change the timeout
value to 600 seconds, as follows:

/ Java
// context = CamelContext instance
context.getShutdownStrategy().setTimeout(600);

Integration with custom components

If you are implementing a custom Apache Camel component (which also inherits from the
org.apache.camel.Service interface), you can ensure that your custom code receives a shutdown
notification by implementing the org.apache.camel.spi.ShutdownPrepared interface. This gives the
component an opportunity execute custom code in preparation for shutdown.

115

Red Hat Fuse 7.2 Apache Camel Development Guide

2.9.1. RouteldFactory

Based on the consumer endpoints, you can add RouteldFactory that can assign route ids with the
logical names.

For example, when using the routes with seda or direct components as route inputs, then you may want
to use their names as the route id, such as,

e direct:foo- foo
® sedabar- bar
® jms:orders- orders
Instead of using auto-assigned names, you can use the NodeldFactory that can assign logical names for

routes. Also, you can use the context-path of route URL as the name. For example, execute the
following to use the RoutelDFactory:

I context.setNodeldFactory(new RouteldFactory());

NOTE

Itis possible to get the custom route id from rest endpoints.

2.10. SCHEDULED ROUTE POLICY

2.10.1. Overview of Scheduled Route Policies

Overview

A scheduled route policy can be used to trigger events that affect a route at runtime. In particular, the
implementations that are currently available enable you to start, stop, suspend, or resume a route at any
time (or times) specified by the policy.

Scheduling tasks

The scheduled route policies are capable of triggering the following kinds of event:

e Start aroute— start the route at the time (or times) specified. This event only has an effect, if
the route is currently in a stopped state, awaiting activation.

® Stop aroute—stop the route at the time (or times) specified. This event only has an effect, if
the route is currently active.

® Suspend aroute — temporarily de-activate the consumer endpoint at the start of the route (as
specified in from()). The rest of the route is still active, but clients will not be able to send new

messages into the route.

® Resume a route— re-activate the consumer endpoint at the start of the route, returning the
route to a fully active state.

Quartz component

16

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

The Quartz component is a timer component based on Terracotta’s Quartz, which is an open source
implementation of a job scheduler. The Quartz component provides the underlying implementation for
both the simple scheduled route policy and the cron scheduled route policy.

2.10.2. Simple Scheduled Route Policy

Overview

The simple scheduled route policy is a route policy that enables you to start, stop, suspend, and resume
routes, where the timing of these events is defined by providing the time and date of an initial event and
(optionally) by specifying a certain number of subsequent repititions. To define a simple scheduled
route policy, create an instance of the following class:

I org.apache.camel.routepolicy.quartz.SimpleScheduledRoutePolicy

Dependency

The simple scheduled route policy depends on the Quartz component, camel-quartz. For example, if
you are using Maven as your build system, you would need to add a dependency on the camel-quartz
artifact.

Java DSL example

Example 2.7, "Java DSL Example of Simple Scheduled Route” shows how to schedule a route to start up
using the Java DSL. The initial start time, startTime, is defined to be 3 seconds after the current time.
The policy is also configured to start the route a second time, 3 seconds after the initial start time, which
is configured by setting routeStartRepeatCount to 1and routeStartRepeatinterval to 3000
milliseconds.

In Java DSL, you attach the route policy to the route by calling the routePolicy() DSL command in the
route.

long startTime = System.currentTimeMillis() + 3000L;
policy.setRouteStartDate(new Date(startTime));
policy.setRouteStartRepeatCount(1);
policy.setRouteStartRepeatinterval(3000);

from("direct:start")
.routeld("test")
.routePolicy(policy)

/[Java
SimpleScheduledRoutePolicy policy = new SimpleScheduledRoutePolicy();
.to("mock:success");

| Example 2.7. Java DSL Example of Simple Scheduled Route

NOTE

You can specify multiple policies on the route by calling routePolicy() with multiple
arguments.

17

http://www.quartz-scheduler.org/

Red Hat Fuse 7.2 Apache Camel Development Guide

XML DSL example

Example 2.8, "XML DSL Example of Simple Scheduled Route” shows how to schedule a route to start up
using the XML DSL.

In XML DSL, you attach the route policy to the route by setting the routePolicyRef attribute on the
route element.

Example 2.8. XML DSL Example of Simple Scheduled Route

<bean id="date" class="java.util.Data"/>

<bean id="startPolicy"
class="org.apache.camel.routepolicy.quartz.SimpleScheduledRoutePolicy">
<property name="routeStartDate" ref="date"/>
<property name="routeStartRepeatCount" value="1"/>
<property name="routeStartRepeatinterval" value="3000"/>
</bean>

<camelContext xmIns="http://camel.apache.org/schema/spring">
<route id="myroute" routePolicyRef="startPolicy">
<from uri="direct:start"/>
<to uri="mock:success"/>
</route>
</camelContext>

NOTE

You can specify multiple policies on the route by setting the value of routePolicyRef as a
comma-separated list of bean IDs.

Defining dates and times

The initial times of the triggers used in the simple scheduled route policy are specified using the
java.util.Date type.The most flexible way to define a Date instance is through the
java.util.GregorianCalendar class. Use the convenient constructors and methods of the
GregorianCalendar class to define a date and then obtain a Date instance by calling
GregorianCalendar.getTime().

For example, to define the time and date for January 1, 2011 at noon, call a GregorianCalendar
constructor as follows:

/I Java
import java.util. GregorianCalendar;
import java.util.Calendar;

GregorianCalendar gc = new GregorianCalendar(
2011,
Calendar.JANUARY,
1,
12, // hourOfDay
0, // minutes
0 //seconds

18

http://docs.oracle.com/javase/7/docs/api/java/util/GregorianCalendar.html

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

)i
java.util.Date triggerDate = gc.getTime();

The GregorianCalendar class also supports the definition of times in different time zones. By default, it
uses the local time zone on your computer.

Graceful shutdown

When you configure a simple scheduled route policy to stop a route, the route stopping algorithm is
automatically integrated with the graceful shutdown procedure (see Section 2.9, “Controlling Start-Up
and Shutdown of Routes”). This means that the task waits until the current exchange has finished
processing before shutting down the route. You can set a timeout, however, that forces the route to
stop after the specified time, irrespective of whether or not the route has finished processing the
exchange.

Logging Inflight Exchanges on Timeout

If a graceful shutdown fails to shutdown cleanly within the given timeout period, then Apache Camel
performs more aggressive shut down. It forces routes, threadpools etc to shutdown.

After the timeout, Apache Camel logs information about the current inflight exchanges. It logs the origin
of the exchange and current route of exchange.

For example, the log below shows that there is one inflight exchange, that origins from routel and is
currently on the same routel at the delayl node.

During graceful shutdown, If you enable the DEBUG logging level on

org.apache.camel.impl.DefaultShutdownStrategy, then it logs the same inflight exchange
information.

2015-01-12 13:23:23,656 [- ShutdownTask] INFO DefaultShutdownStrategy - There are 1 inflight
exchanges:

InflightExchange: [exchangeld=ID-davsclaus-air-62213-1421065401253-0-3, fromRouteld=route1,
routeld=route1, nodeld=delay1, elapsed=2007, duration=2017]

If you do not want to see these logs, you can turn this off by setting the option
logInflightExchangesOnTimeout to false.

I context.getShutdownStrategegy().setLoglnflightExchangesOnTimeout(false);

Scheduling tasks

You can use a simple scheduled route policy to define one or more of the following scheduling tasks:
® Starting aroute
® Stopping aroute
® Suspending a route

® Resuming a route

Starting a route

19

Red Hat Fuse 7.2 Apache Camel Development Guide

The following table lists the parameters for scheduling one or more route starts.

Parameter Type Default Description

routeStartDate java.util.Date None Specifies the date and
time when the route is
started for the first time.

routeStartRepeatCo int 0 When set to a non-zero

unt value, specifies how
many times the route
should be started.

routeStartRepeatinte long 0 Specifies the time
rval interval between starts,
in units of milliseconds.

Stopping a route

The following table lists the parameters for scheduling one or more route stops.

Parameter Type Default Description
routeStopDate java.util.Date None Specifies the date and
time when the route is
stopped for the first
time.
routeStopRepeatCou int 0 When set to a non-zero
nt value, specifies how

many times the route
should be stopped.

routeStopRepeatinte long 0 Specifies the time
rval interval between stops,
in units of milliseconds.

routeStopGracePeri int 10000 Specifies how long to

od wait for the current
exchange to finish
processing (grace
period) before forcibly
stopping the route. Set
to O for an infinite grace

period.
routeStopTimeUnit long TimeUnit.MILLISECO Specifies the time unit
NDS of the grace period.

Suspending a route

120

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

The following table lists the parameters for scheduling the suspension of a route one or more times.

Parameter Type Default Description
routeSuspendDate java.util.Date None Specifies the date and
time when the route is
suspended for the first
time.
routeSuspendRepea int 0 When set to a non-zero
tCount value, specifies how

many times the route
should be suspended.

routeSuspendRepea long 0 Specifies the time

tinterval interval between
suspends, in units of
milliseconds.

Resuming a route

The following table lists the parameters for scheduling the resumption of a route one or more times.

Parameter Type Default Description

routeResumeDate java.util.Date None Specifies the date and
time when the route is
resumed for the first

time.
routeResumeRepeat int 0 When set to a non-zero
Count value, specifies how

many times the route
should be resumed.

routeResumeRepeatl long 0 Specifies the time

nterval interval between
resumes, in units of
milliseconds.

2.10.3. Cron Scheduled Route Policy

Overview

The cron scheduled route policy is a route policy that enables you to start, stop, suspend, and resume
routes, where the timing of these events is specified using cron expressions. To define a cron scheduled
route policy, create an instance of the following class:

I org.apache.camel.routepolicy.quartz.CronScheduledRoutePolicy

121

Red Hat Fuse 7.2 Apache Camel Development Guide

Dependency

The simple scheduled route policy depends on the Quartz component, camel-quartz. For example, if
you are using Maven as your build system, you would need to add a dependency on the camel-quartz
artifact.

Java DSL example

Example 2.9, "Java DSL Example of a Cron Scheduled Route” shows how to schedule a route to start up
using the Java DSL. The policy is configured with the cron expression, */3 * * * * ? which triggers a start
event every 3 seconds.

In Java DSL, you attach the route policy to the route by calling the routePolicy() DSL command in the
route.

policy.setRouteStartTime("*/3 * * * * ?");

from("direct:start")
.routeld("test")
.routePolicy(policy)

/[Java
CronScheduledRoutePolicy policy = new CronScheduledRoutePolicy();
.to("mock:success");;

‘ Example 2.9. Java DSL Example of a Cron Scheduled Route

NOTE

You can specify multiple policies on the route by calling routePolicy() with multiple
arguments.

XML DSL example

Example 2.10, “XML DSL Example of a Cron Scheduled Route” shows how to schedule a route to start up
using the XML DSL.

In XML DSL, you attach the route policy to the route by setting the routePolicyRef attribute on the
route element.

<bean id="startPolicy" class="org.apache.camel.routepolicy.quartz.CronScheduledRoutePolicy">
<property name="routeStartTime" value="*/3 * * * * ?"/>
</bean>

<camelContext xmIns="http://camel.apache.org/schema/spring">
<route id="testRoute" routePolicyRef="startPolicy">
<from uri="direct:start"/>
<to uri="mock:success"/>
</route>

Example 2.10. XML DSL Example of a Cron Scheduled Route
</camelContext>

‘ <bean id="date" class="org.apache.camel.routepolicy.quartz.SimpleDate"/>

122

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

NOTE

You can specify multiple policies on the route by setting the value of routePolicyRef as a
comma-separated list of bean IDs.

Defining cron expressions

The cron expression syntax has its origins in the UNIX cron utility, which schedules jobs to run in the
background on a UNIX system. A cron expression is effectively a syntax for wildcarding dates and times
that enables you to specify either a single event or multiple events that recur periodically.

A cron expression consists of 6 or 7 fields in the following order:

I Seconds Minutes Hours DayOfMonth Month DayOfWeek [Year]

The Year field is optional and usually omitted, unless you want to define an event that occurs once and
once only. Each field consists of a mixture of literals and special characters. For example, the following
cron expression specifies an event that fires once every day at midnight:

I 0024**7?

The * character is a wildcard that matches every value of a field. Hence, the preceding expression
matches every day of every month. The ? character is a dummy placeholder that means *ignore this
field*. It always appears either in the DayOfMonth field or in the DayOfWeek field, because it is not
logically consistent to specify both of these fields at the same time. For example, if you want to schedule
an event that fires once a day, but only from Monday to Friday, use the following cron expression:

I 0024 ?*MON-FRI

Where the hyphen character specifies a range, MON-FRI. You can also use the forward slash character, /,
to specify increments. For example, to specify that an event fires every 5 minutes, use the following
cron expression:

I 00/5***?

For a full explanation of the cron expression syntax, see the Wikipedia article on CRON expressions.

Scheduling tasks

You can use a cron scheduled route policy to define one or more of the following scheduling tasks:
® Starting aroute
® Stopping a route
® Suspending a route

® Resuming a route

Starting a route

123

http://en.wikipedia.org/wiki/CRON_expression

Red Hat Fuse 7.2 Apache Camel Development Guide

The following table lists the parameters for scheduling one or more route starts.

Parameter Type Default Description

routeStartString String None Specifies a cron
expression that triggers
one or more route start
events.

Stopping a route

The following table lists the parameters for scheduling one or more route stops.

Parameter Type Default Description

routeStopTime String None Specifies a cron
expression that triggers
one or more route stop

events.
routeStopGracePeri int 10000 Specifies how long to
od wait for the current

exchange to finish
processing (grace
period) before forcibly
stopping the route. Set
to O for an infinite grace

period.
routeStopTimeUnit long TimeUnit.MILLISECO Specifies the time unit
NDS of the grace period.

Suspending a route

The following table lists the parameters for scheduling the suspension of a route one or more times.

Parameter Type Default Description

routeSuspendTime String None Specifies a cron
expression that triggers
one or more route
suspend events.

Resuming a route

The following table lists the parameters for scheduling the resumption of a route one or more times.

124

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Parameter Default Description

routeResumeTime String None Specifies a cron
expression that triggers
one or more route
resume events.

2.10.4. Route Policy Factory

Using Route Policy Factory

Available as of Camel 2.14

If you want to use a route policy for every route, you can use a
org.apache.camel.spi.RoutePolicyFactory as a factory for creating a RoutePolicy instance for each
route. This can be used when you want to use the same kind of route policy for every route. Then you
need to only configure the factory once, and every route created will have the policy assigned.

There is APl on CamelContext to add a factory, as shown below:

I context.addRoutePolicyFactory(new MyRoutePolicyFactory());

From XML DSL you only define a <bean> with the factory

I <bean id="myRoutePolicyFactory" class="com.foo.MyRoutePolicyFactory"/>

The factory contains the createRoutePolicy method for creating route policies.

/**
* Creates a new {@link org.apache.camel.spi.RoutePolicy} which will be assigned to the given route.

*

* @param camelContext the camel context

* @param routeld the route id

* @param route the route definition

* @return the created {@link org.apache.camel.spi.RoutePolicy}, or <tt>null</tt> to not use a policy
for this route

*/

RoutePolicy createRoutePolicy(CamelContext camelContext, String routeld, RouteDefinition route);

Note you can have as many route policy factories as you want. Just call the addRoutePolicyFactory
again, or declare the other factories as <beans in XML.

2.11. RELOADING CAMEL ROUTES

In Apache Camel 2.19 release, you can enable the live reload of your camel XML routes, which will trigger
a reload, when you save the XML file from your editor. You can use this feature when using:

® Camel standalone with Camel Main class
® Camel Spring Boot

® From the camel:run maven plugin

125

Red Hat Fuse 7.2 Apache Camel Development Guide

However, you can also enable this manually, by setting a ReloadStrategy on the CamelContext and by
providing your own custom strategies.

2.11.1. Enabling Live Reload

To enable the live reload, you need to set watch directory in the camel-maven-plugin.

<plugin>

<groupld>org.apache.camel</groupld>

<artifactld>camel-maven-plugin</artifactld>

<version>${project.version}</version>

<configuration>
<!-- turn on reload when the XML file is updated in the source code -->
<fileWatcherDirectory>src/main/resources/META-INF/spring</fileWatcherDirectory>

</configuration>

</plugin>

2.12. RUNNING APACHE CAMEL STANDALONE

When you run camel as a standalone application, it provides the Main class that you can use to run the
application and keep it running until the JVM terminates. You can find the MainListener class within the
org.apache.camel.main Java package.

Following are the components of the Main class:
e camel-core JAR in the org.apache.camel.Main class
e camel-spring JAR in the org.apache.camel.spring.Main class

The following example shows how you can create and use the Main class from Camel:

public class MainExample {
private Main main;

public static void main(String[] args) throws Exception {
MainExample example = new MainExample();
example.boot();

}

public void boot() throws Exception {
// create a Main instance
main = new Main();
// bind MyBean into the registry
main.bind("foo", new MyBean());
// add routes
main.addRouteBuilder(new MyRouteBuilder());
// add event listener
main.addMainListener(new Events());
// set the properties from a file
main.setPropertyPlaceholderLocations("example.properties");
// run until you terminate the JVM
System.out.printin("Starting Camel. Use ctrl + ¢ to terminate the JVM.\n");
main.run();

126

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

private static class MyRouteBuilder extends RouteBuilder {
@0Override
public void configure() throws Exception {
from("timer:foo?delay={{millisecs}}")
.process(new Processor() {
public void process(Exchange exchange) throws Exception {
System.out.printin("Invoked timer at " + new Date());
}
}
.bean("foo");
}
}

public static class MyBean {
public void callMe() {
System.out.printin("MyBean.callMe method has been called");

}
}

public static class Events extends MainListenerSupport {

@Override
public void afterStart(MainSupport main) {
System.out.printin("MainExample with Camel is now started!");

}

@Override
public void beforeStop(MainSupport main) {
System.out.printin("MainExample with Camel is now being stopped!");

}
}
}

2.13. ONCOMPLETION

Overview

The OnCompletion DSL name is used to define an action that is to take place when a Unit of Work is
completed. A Unit of Work is a Camel concept that encompasses an entire exchange. See Section 34.1,
"Exchanges”. The onCompletion command has the following features:

® The scope of the OnCompletion command can be global or per route. A route scope overrides
global scope.

e OnCompletion can be configured to be triggered on success for failure.
® The onWhen predicate can be used to only trigger the onCompletion in certain situations.

® You can define whether or not to use a thread pool, though the default is no thread pool.

Route Only Scope for onCompletion

When an onCompletion DSL is specified on an exchange, Camel spins off a new thread. This allows the
original thread to continue without interference from the onCompletion task. A route will only support

127

Red Hat Fuse 7.2 Apache Camel Development Guide

one onCompletion. In the following example, the onCompletion is triggered whether the exchange
completes with success or failure. This is the default action.

from("direct:start")
.onCompletion()
// This route is invoked when the original route is complete.
// This is similar to a completion callback.
.to("log:sync")
.to("mock:sync")
/I Must use end to denote the end of the onCompletion route.
.end()
/I here the original route contiues
.process(new MyProcessor())
to("mock:result");

For XML the format is as follows:

<route>
<from uri="direct:start"/>
<!-- This onCompiletion block is executed when the exchange is done being routed. -->
<l-- This callback is always triggered even if the exchange fails. -->
<onCompletion>
<l-- This is similar to an after completion callback. -->
<to uri="log:sync"/>
<to uri="mock:sync"/>
</onCompletion>
<process ref="myProcessor"/>
<to uri="mock:result"/>
</route>

To trigger the onCompletion on failure, the onFailureOnly parameter can be used. Similarly, to trigger
the onCompletion on success, use the onCompleteOnly parameter.

from("direct:start")
/I Here onCompletion is qualified to invoke only when the exchange fails (exception or FAULT
body).
.onCompletion().onFailureOnly()
.to("log:sync")
.to("mock:sync")
/I Must use end to denote the end of the onCompletion route.
.end()
// here the original route continues
.process(new MyProcessor())
to("mock:result");

For XML, onFailureOnly and onCompleteOnly are expressed as booleans on the onCompletion tag:

<route>
<from uri="direct:start"/>
<!-- this onCompletion block will only be executed when the exchange is done being routed -->
<!-- this callback is only triggered when the exchange failed, as we have onFailure=true -->
<onCompletion onFailureOnly="true">
<to uri="log:sync"/>
<to uri="mock:sync"/>
</onCompletion>

128

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

<process ref="myProcessor"/>
<to uri="mock:result"/>
</route>

Global Scope for onCompletion

To define onCompletion for more than just one route:

/I define a global on completion that is invoked when the exchange is complete
onCompletion().to("log:global").to("mock:sync");

from("direct:start")
.process(new MyProcessor())
.to("mock:result");

Using onWhen

To trigger the onCompletion under certain circumstances, use the onWhen predicate. The following
example will trigger the onCompletion when the body of the message contains the word Hello:

/from("direct:start")

.onCompletion().onWhen(body().contains("Hello"))
// this route is only invoked when the original route is complete as a kind
/I of completion callback. And also only if the onWhen predicate is true
.to("log:sync")
.to("mock:sync")

/I must use end to denote the end of the onCompletion route

.end()

/I here the original route contiues

.to("log:original")

to("mock:result");

Using onCompletion with or without a thread pool

As of Camel 2.14, onCompletion will not use a thread pool by default. To force the use of a thread pool,
either set an executorService or set parallelProcessing to true. For example, in Java DSL, use the
following format:

onCompletion().parallelProcessing()
.to("mock:before")
.delay(1000)
.setBody(simple("OnComplete:${body}"));

For XML the format is:

<onCompletion parallelProcessing="true">
<to uri="before"/>
<delay><constant>1000</constant></delay>
<setBody><simple>OnComplete:${body}<simple></setBody>
</onCompletion>

Use the executorServiceRef option to refer to a specific thread pool:

129

Red Hat Fuse 7.2 Apache Camel Development Guide

<onCompletion executorServiceRef="myThreadPool"
<to uri="before"/>
<delay><constant>1000</constant></delay>
<setBody><simple>OnComplete:${body}</simple></setBody>
</onCompletion>>

Run onCompletion before Consumer Sends Response
onCompletion can be run in two modes:
e AfterConsumer - The default mode which runs after the consumer is finished

o BeforeConsumer - Runs before the consumer writes a response back to the callee. This allows
onCompletion to modify the Exchange, such as adding special headers, or to log the Exchange
as a response logger.

For example, to add a created by header to the response, use modeBeforeConsumer() as shown
below:

.onCompletion().modeBeforeConsumer()
.setHeader("createdBy", constant("Someone"))
.end()

For XML, set the mode attribute to BeforeConsumer:

<onCompletion mode="BeforeConsumer">
<setHeader headerName="createdBy">
<constant>Someone</constant>
</setHeader>
</onCompletion>

2.14. METRICS

Overview

Available as of Camel 2.14
While Camel provides a lot of existing metrics integration with Codahale metrics has been added for
Camel routes. This allows end users to seamless feed Camel routing information together with existing
data they are gathering using Codahale metrics.
To use the Codahale metrics you will need to:

1. Add camel-metrics component

2. Enable route metrics in XML or Java code
Note that performance metrics are only usable if you have a way of displaying them; any kind of

monitoring tooling which can integrate with JMX can be used, as the metrics are available over JMX. In
addition, the actual data is 100% Codehale JSON.

Metrics Route Policy

130

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

Obtaining Codahale metrics for a single route can be accomplished by defining a MetricsRoutePolicy
on a per route basis.

From Java create an instance of MetricsRoutePolicy to be assigned as the route’s policy. This is shown
below:

I from("file:src/data?noop=true").routePolicy(new MetricsRoutePolicy()).to("jms:incomingOrders");

From XML DSL you define a <bean> which is specified as the route’s policy; for example:

<bean id="policy" class="org.apache.camel.component.metrics.routepolicy.MetricsRoutePolicy"/>

<camelContext xmIns="http://camel.apache.org/schema/spring">
<route routePolicyRef="policy">
<from uri="file:src/data?noop=true"/>

[..]

Metrics Route Policy Factory

This factory allows one to add a RoutePolicy for each route which exposes route utilization statistics
using Codahale metrics. This factory can be used in Java and XML as the examples below demonstrate.

From Java you just add the factory to the CamelContext as shown below:
I context.addRoutePolicyFactory(new MetricsRoutePolicyFactory());

And from XML DSL you define a <beans as follows:

<!-- use camel-metrics route policy to gather metrics for all routes -->
<bean id="metricsRoutePolicyFactory"
class="org.apache.camel.component.metrics.routepolicy.MetricsRoutePolicyFactory"/>

From Java code you can get hold of the com.codahale.metrics.MetricRegistry from the
org.apache.camel.component.metrics.routepolicy.MetricsRegistryService as shown below:

MetricRegistryService registryService = context.hasService(MetricsRegistryService.class);
if (registryService = null) {
MetricsRegistry registry = registryService.getMetricsRegistry();

Options
The MetricsRoutePolicyFactory and MetricsRoutePolicy supports the following options:

Name Default Description

durationUnit TimeUnit.MILLISECONDS The unit to use for duration in the
metrics reporter or when dumping
the statistics as json.

131

Red Hat Fuse 7.2 Apache Camel Development Guide

jmxDomain org.apache.camel.metrics The JXM domain name.

metricsRegistry Allow to use a shared
com.codahale.metrics.Metric
Registry. If none is provided
then Camel will create a shared
instance used by the this
CamelContext.

prettyPrint false Whether to use pretty print when
outputting statistics in json
format.

rateUnit TimeUnit. SECONDS The unit to use for rate in the

metrics reporter or when dumping
the statistics as json.

usedmx false Whether to report fine grained
statistics to JMX by using the
com.codahale.metrics.JmxR
eporter.

Notice that if JMXis enabled on
CamelContext then a
MetricsRegistryService
mbean is enlisted under the
services type in the JMX tree.
That mbean has a single
operation to output the statistics
using json. Setting useJmx to true
is only needed if you want fine
grained mbeans per statistics

type.

2.15. JIMX NAMING

Overview

Apache Camel allows you to customize the name of a CamelContext bean as it appears in JMX, by
defining a management name pattern for it. For example, you can customize the name pattern of an
XML CamelContext instance, as follows:

<camelContext id="myCamel" managementNamePattern="#name#">

</camelContext>

If you do not explicitly set a name pattern for the CamelContext bean, Apache Camel reverts to a
default naming strategy.

Default naming strategy

By default, the JMX name of a CamelContext bean deployed in an OSGi bundle is equal to the OSGi

132

CHAPTER 2. BASIC PRINCIPLES OF ROUTE BUILDING

symbolic name of the bundle. For example, if the OSGi symbolic name is MyCamelBundle, the JMX
name would be MyCamelBundle. In cases where there is more than one CamelContext in the bundle,
the JMX name is disambiguated by adding a counter value as a suffix. For example, if there are multiple
Camel contexts in the MyCamelBundle bundle, the corresponding JMX MBeans are named as follows:

MyCamelBundle-1
MyCamelBundle-2
MyCamelBundle-3

Customizing the JMX naming strategy

One drawback of the default naming strategy is that you cannot guarantee that a given CamelContext
bean will have the same JMX name between runs. If you want to have greater consistency between runs,
you can control the JMX name more precisely by defining a JMX name pattern for the CamelContext
instances.

Specifying a name pattern in Java

To specify a name pattern on a CamelContext in Java, call the setNamePattern method, as follows:

/[Java
I context.getManagementNameStrategy().setNamePattern("#name#");

Specifying a name pattern in XML

To specify a name pattern on a CamelContext in XML, set the managementNamePattern attribute on
the camelContext element, as follows:

I <camelContext id="myCamel" managementNamePattern="#name#">

Name pattern tokens

You can construct a JMX name pattern by mixing literal text with any of the following tokens:

Table 2.11. JMX Name Pattern Tokens

Token Description

#camelld# Value of the id attribute on the CamelContext
bean.

#name# Same as #camelld#.

#counteri# An incrementing counter (starting at 1).

#bundleld# The OSGi bundle ID of the deployed bundle (OSGi
only).

#symbolicName# The OSGi symbolic name (OSGi only).

133

Red Hat Fuse 7.2 Apache Camel Development Guide

Token Description

#version# The OSGi bundle version (OSGi only).

Examples
Here are some examples of JMX name patterns you could define using the supported tokens:
<camelContext id="fooContext" managementNamePattern="FooApplication-#name#">

</camelContext>
<camelContext id="myCamel" managementNamePattern="#bundle|D#-#symbolicName#-#name#">

</camelContext>

Ambiguous names

Because the customised naming pattern overrides the default naming strategy, it is possible to define
ambiguous JMX MBean names using this approach. For example:

<camelContext id="foo" managementNamePattern="SameOldSameOIld"> ... </camelContext>

<camelContext id="bar" managementNamePattern="SameOldSameOIld"> ... </camelContext>

In this case, Apache Camel would fail on start-up and report an MBean already exists exception. You
should, therefore, take extra care to ensure that you do not define ambiguous name patterns.

2.16. PERFORMANCE AND OPTIMIZATION

Message copying

The allowUseOriginalMessage option default setting is false, to cut down on copies being made of the
original message when they are not needed. To enable the allowUseOriginalMessage option use the
following commands:

e Set useOriginalMessage=true on any of the error handlers or on the onException element.

® |n Java application code, set AllowUseOriginalMessage=true, then use the
getOriginalMessage method.

NOTE

In Camel versions prior to 2.18, the default setting of allowUseOriginalMessage is true.

134

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION
PATTERNS

Abstract

The Apache Camel’s Enterprise Integration Patterns are inspired by a book of the same name written
by Gregor Hohpe and Bobby Woolf. The patterns described by these authors provide an excellent
toolbox for developing enterprise integration projects. In addition to providing a common language for
discussing integration architectures, many of the patterns can be implemented directly using Apache
Camel’s programming interfaces and XML configuration.

3.1. OVERVIEW OF THE PATTERNS

Enterprise Integration Patterns book

Apache Camel supports most of the patterns from the book, Enterprise Integration Patterns by Gregor
Hohpe and Bobby Woolf.

Messaging systems

The messaging systems patterns, shown in Table 3.1, “Messaging Systems”, introduce the fundamental
concepts and components that make up a messaging system.

Table 3.1. Messaging Systems

Icon Name Use Case

Figure 5.1, "Message Pattern” How can two applications
connected by a message channel
exchange a piece of information?

I Figure 5.2, “"Message Channel How does one application
Pattern” communicate with another

,:} application using messaging?

Figure 5.3, “Message Endpoint How does an application connect
__-. I:' Pattern” to a messaging channel to send
and receive messages?

Figure 5.4, "Pipes and Filters How can we perform complex

+DD Pattern” processing on a message while
still maintaining independence

and flexibility?

135

http://www.enterpriseintegrationpatterns.com/toc.html

Red Hat Fuse 7.2 Apache Camel Development Guide

Icon Name Use Case
Figure 5.7, "Message Router How can you decouple individual
_/:: Pattern” processing steps so that
messages can be passed to

different filters depending on a
set of defined conditions?

Figure 5.8, "Message Translator How do systems using different
""H""‘ Pattern” data formats communicate with
™ .)
each other using messaging?

Messaging channels

A messaging channel is the basic component used for connecting the participants in a messaging
system. The patternsin Table 3.2, “Messaging Channels” describe the different kinds of messaging
channels available.

Table 3.2. Messaging Channels

Icon Name Use Case

Figure 6.1, "Point to Point Channel ~ How can the caller be sure that

» Pattern” exactly one receiver will receive

the document or will perform the
call?

Figure 6.2, “Publish Subscribe How can the sender broadcast an
. Channel Pattern” event to all interested receivers?
Figure 6.3, "Dead Letter Channel What will the messaging system
:} Pattern” do with a message it cannot

. deliver?

h Figure 6.4, "Guaranteed Delivery How does the sender make sure
ﬁ Pattern” that a message will be delivered,
even if the messaging system
fails?

1

What is an architecture that
enables separate, decoupled
applications to work together,
such that one or more of the
applications can be added or
removed without affecting the
others?

Figure 6.5, "Message Bus Pattern’

136

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

Message construction

The message construction patterns, shown in Table 3.3, “Message Construction”, describe the various
forms and functions of the messages that pass through the system.

Table 3.3. Message Construction

Icon Name Use Case

the section called "Overview” How does a requestor identify the
request that generated the
received reply?

Section 7.3, “Return Address” How does a replier know where to
send the reply?

Message routing

The message routing patterns, shown in Table 3.4, “"Message Routing”, describe various ways of linking
message channels together, including various algorithms that can be applied to the message stream
(without modifying the body of the message).

Table 3.4. Message Routing

Name Use Case

a
o
=]

Section 8.1, “Content-Based How do we handle a situation

Router” where the implementation of a
single logical function (for
example, inventory check) is
spread across multiple physical
systems?

1

How does a component avoid
receiving uninteresting
messages?

Section 8.2, “Message Filter’

Section 8.3, “Recipient List” How do we route a message to a
list of dynamically specified
recipients?

Section 8.4, “Splitter” How can we process a message if
O it contains multiple elements,

O each of which might have to be
processed in a different way?

L

137

Red Hat Fuse 7.2 Apache Camel Development Guide

Icon

138

Name

Section 8.5, "Aggregator”

Section 8.6, “Resequencer”

Section 8.14, “Composed
Message Processor”

Section 8.15, “Scatter-Gather”

Section 8.7, “Routing Slip”

Section 8.8, "Throttler”

Section 8.9, “Delayer”

Section 8.10, “Load Balancer”

Section 8.11, “Hystrix"

Use Case

How do we combine the results of
individual, but related messages
so that they can be processed as
a whole?

How can we get a stream of
related, but out-of-sequence,
messages back into the correct
order?

How can you maintain the overall
message flow when processing a
message consisting of multiple
elements, each of which may
require different processing?

How do you maintain the overall
message flow when a message
needs to be sent to multiple
recipients, each of which may
send areply?

How do we route a message
consecutively through a series of
processing steps when the
sequence of steps is not known at
design-time, and might vary for
each message?

How can | throttle messages to
ensure that a specific endpoint
does not get overloaded, or that
we don't exceed an agreed SLA
with some external service?

How can | delay the sending of a
message?

How can | balance load across a
number of endpoints?

How can | use a Hystrix circuit
breaker when calling an external
service? New in Camel 2.18.

Icon

Message transformation

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

Name

Section 8.12, “Service Call”

Section 8.13, "Multicast”

Section 8.16, “Loop”

"

Section 8.17, “Sampling’

Use Case

How can | call a remote service in

a distributed system by looking up

the service in a registry? New in
Camel 2.18.

How can | route a message to a
number of endpoints at the same
time?

How can | repeat processing a
message in a loop?

How can | sample one message
out of many in a given period to
avoid overloading a ownstream
route?

The message transformation patterns, shown in Table 3.5, “Message Transformation”, describe how to
modify the contents of messages for various purposes.

Table 3.5. Message Transformation

Icon

I:I—-|:|

< 0

[

Name

Section 10.1, “Content Enricher”

Section 10.2, “Content Filter”

Section 10.4, “Claim Check EIP”

Section 10.3, “Normalizer”

Use Case

How do | communicate with
another system if the message
originator does not have all
required data items?

How do you simplify dealing with
a large message, when you are
interested in only a few data
items?

How can we reduce the data
volume of messages sent across
the system without sacrificing
information content?

How do you process messages
that are semantically equivalent,
but arrive in a different format?

139

Red Hat Fuse 7.2 Apache Camel Development Guide

Icon Name Use Case
Section 10.5, “Sort” How can | sort the body of a
message?

Messaging endpoints

A messaging endpoint denotes the point of contact between a messaging channel and an application.
The messaging endpoint patterns, shown in Table 3.6, “Messaging Endpoints”, describe various features
and qualities of service that can be configured on an endpoint.

Table 3.6. Messaging Endpoints

Icon Name Use Case

Section 111, “Messaging Mapper” How do you move data between
domain objects and the
messaging infrastructure while
keeping the two independent of
each other?

Section 11.2, “Event Driven How can an application
Consumer” automatically consume messages
as they become available?

Section 11.3, "Polling Consumer” How can an application consume
_— a message when the application is
ready?
Section 11.4, "Competing How can a messaging client
Consumers” process multiple messages
concurrently?
Section 11.5, “Message How can multiple consumers on a
_— Dispatcher” single channel coordinate their

message processing?

3 E W E

Section 11.6, “Selective Consumer” How can a message consumer
— select which messages it wants to
receive?
Section 11.7, “Durable Subscriber” How can a subscriber avoid

missing messages when it's not
listening for them?

E

140

Icon

gt
gatl

—

System management

CHAPTER 3. INTRODUCING ENTERPRISE INTEGRATION PATTERNS

Name

Section 11.8, “ldempotent
Consumer”

Section 11.9, “Transactional Client”

Section 1110, “Messaging
Gateway”

Section 11.11, “Service Activator”

Use Case

How can a message receiver deal
with duplicate messages?

How can a client control its
transactions with the messaging
system?

How do you encapsulate access
to the messaging system from the
rest of the application?

How can an application design a
service to be invoked by various
messaging technologies as well as
by non-messaging techniques?

The system management patterns, shown in Table 3.7, “System Management”, describe how to monitor,
test, and administer a messaging system.

Table 3.7. System Management

Icon

——

Name

Chapter 12, System Management

Use Case

How do you inspect messages
that travel on a point-to-point
channel?

141

Red Hat Fuse 7.2 Apache Camel Development Guide

CHAPTER 4. DEFINING REST SERVICES

Abstract

Apache Camel supports multiple approaches to defining REST services. In particular, Apache Camel
provides the REST DSL (Domain Specific Language), which is a simple but powerful fluent API that can
be layered over any REST component and provides integration with Swagger.

4.1. OVERVIEW OF REST IN CAMEL

Overview

Apache Camel provides many different approaches and components for defining REST services in your
Camel applications. This section provides a quick overview of these different approaches and
components, so that you can decide which implementation and API best suits your requirements.

What is REST?

Representational State Transfer (REST) is an architecture for distributed applications that centers
around the transmission of data over HTTP, using only the four basic HTTP verbs: GET, POST, PUT, and
DELETE.

In contrast to a protocol such as SOAP, which treats HTTP as a mere transport protocol for SOAP
messages, the REST architecture exploits HTTP directly. The key insight is that the HTTP protocol
itself, augmented by a few simple conventions, is eminently suitable to serve as the framework for
distributed applications.

A sample REST invocation

Because the REST architecture is built around the standard HTTP verbs, in many cases you can use a
regular browser as a REST client. For example, to invoke a simple Hello World REST service running on
the host and port, localhost:9091, you could navigate to a URL like the following in your browser:

I http://localhost:9091/say/hello/Garp

The Hello World REST service might then return a response string, such as:

I Hello Garp

Which gets displayed in your browser window. The ease with which you can invoke REST services, using
nothing more than a standard browser (or the curl command-line utility), is one of the many reasons
why the REST protocol has rapidly gained popularity.

REST wrapper layers

The following REST wrapper layers offer a simplified syntax for defining REST services and can be
layered on top of different REST implementations:
REST DSL

The REST DSL (in camel-core) is a facade or wrapper layer that provides a simplified builder API for
defining REST services. The REST DSL does not itself provide a REST implementation: it must be
combined with an underlying REST implementation. For example, the following Java code shows how

142

http://swagger.io/getting-started/

CHAPTER 4. DEFINING REST SERVICES

to define a simple Hello World service using the REST DSL:

rest("/say")
.get("/hello/{name}").route().transform().simple("Hello ${header.name}");

For more details, see Section 4.2, "Defining Services with REST DSL" .

Rest component

The Rest component (in camel-core) is a wrapper layer that enables you to define REST services
using a URI syntax. Like the REST DSL, the Rest component does not itself provide a REST
implementation. It must be combined with an underlying REST implementation.

If you do not explicitly configure an HTTP transport component then the REST DSL automatically
discovers which HTTP component to use by checking for available components on the classpath. The
REST DSL looks for the default names of any HTTP components and uses the first one it finds. If
there are no HTTP components on the classpath and you did not explicitly configure an HTTP
transport then the default HTTP component is camel-http.

NOTE

The ability to automatically discover which HTTP component to use is new in Camel
2.18. Itis not available in Camel 2.17.

The following Java code shows how to define a simple Hello World service using the camel-rest
component:

I from("rest:get:say:/hello/{name}").transform().simple("Hello ${header.name}");

REST implementations

Apache Camel provides several different REST implementations, through the following components:

Spark-Rest component

The Spark-Rest component (in camel-spark-rest) is a REST implementation that enables you to
define REST services using a URI syntax. The Spark framework itself is a Java API, which is loosely
based on the Sinatra framework (a Python API). For example, the following Java code shows how to
define a simple Hello World service using the Spark-Rest component:

I from("spark-rest:get:/say/hello/:name").transform().simple("Hello ${header.name}");

Notice that, in contrast to the Rest component, the syntax for a variable in the URI is :name instead
of {name}.

NOTE

A The Spark-Rest component requires Java 8.
Restlet component

The Restlet component (in camel-restlet) is a REST implementation that can, in principle, be layered
above different transport protocols (although this component is only tested against the HTTP
protocol). This component also provides an integration with the Restlet Framework, which is a

143

http://sparkjava.com/
http://restlet.com/

Red Hat Fuse 7.2 Apache Camel Development Guide

commercial framework for developing REST services in Java. For example, the following Java code
shows how to define a simple Hello World service using the Restlet component:

from("restlet:http://0.0.0.0:9091/say/hello/{name} ?restletMethod=get")
transform().simple("Hello ${header.name}");

For more details, see Restletin the Apache Camel Component Reference Guide.

Servlet component

The Servlet component (in camel-servlet) is a component that binds a Java servlet to a Camel
route. In other words, the Servlet component enables you to package and deploy a Camel route as if
it was a standard Java servlet. The Servlet component is therefore particularly useful, if you need to
deploy a Camel route inside a servlet container (for example, into an Apache Tomcat HTTP server
or into a JBoss Enterprise Application Platform container).

The Servlet component on its own, however, does not provide any convenient REST API for defining
REST services. The easiest way to use the Servlet component, therefore, is to combine it with the
REST DSL, so that you can define REST services with a user-friendly API.

For more details, see Servietin the Apache Camel Component Reference Guide.

JAX-RS REST implementation

JAX-RS (Java API for RESTful Web Services) is a framework for binding REST requests to Java objects,
w