
Red Hat, Inc. Don Domingo Jacquelynn East
William Cohen

Red Hat Enterprise Linux
5
SystemTap Beginners Guide

Introduction to SystemTap (for Red Hat Enterprise Linux 5.3 and later)
Edition 1.0

Red Hat Enterprise Linux 5 SystemTap Beginners Guide

Introduction to SystemTap (for Red Hat Enterprise Linux 5.3 and later)
Edition 1.0

Don Domingo
Engineering Services and Operations Content Services

Jacquelynn East
Engineering Services and Operations Content Services
jeast@redhat.com

William Cohen
Engineering Services and Operations Performance Tools
wcohen@redhat.com

Red Hat, Inc.

Legal Notice

Copyright © 2011 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide provides basic instructions on how to use SystemTap to monitor different subsystems of
Red_Hat_Enterprise_Linux 5 in finer detail. The SystemTap Beginners Guide is recommended for
users who have taken RHCT or have a similar level of expertise in Red_Hat_Enterprise_Linux 5.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

Preface

Chapter 1. Introduction
1.1. Documentation Goals
1.2. SystemTap Capabilities

Chapter 2. Using SystemTap
2.1. Installation and Setup
2.2. Generating Instrumentation for Other Computers
2.3. Running SystemTap Scripts

Chapter 3. Understanding How SystemTap Works
3.1. Architecture
3.2. SystemTap Scripts
3.3. Basic SystemTap Handler Constructs
3.4. Associative Arrays
3.5. Array Operations in SystemTap
3.6. Tapsets

Chapter 4. Useful SystemTap Scripts
4.1. Network
4.2. Disk
4.3. Profiling
4.4. Identifying Contended User-Space Locks

Chapter 5. Understanding SystemTap Errors
5.1. Parse and Semantic Errors
5.2. Run Time Errors and Warnings

Chapter 6. References

Appendix A. Revision History

Index

2

3
3
3

5
5
7
9

11
11
11
18
21
22
29

30
30
34
43
54

56
56
58

59

60

60

Table of Contents

1

Preface

SystemTap Beginners Guide

2

Chapter 1. Introduction

SystemTap is a tracing and probing tool that allows users to study and monitor the activities of the operating
system (particularly, the kernel) in fine detail. It provides information similar to the output of tools like
netstat, ps, top, and iostat; however, SystemTap is designed to provide more filtering and analysis
options for collected information.

For system administrators, SystemTap can be used as a performance monitoring tool for Red Hat Enterprise
Linux 5. It is most useful when other similar tools cannot precisely pinpoint a bottleneck in the system,
requiring a deep analysis of system activity. In the same manner, application developers can also use
SystemTap to monitor, in finer detail, how their application behaves within the Linux system.

1.1. Documentation Goals

SystemTap provides the infrastructure to monitor the running Linux kernel for detailed analysis. This can
assist administrators and developers in identifying the underlying cause of a bug or performance problem.

Without SystemTap, monitoring the activity of a running kernel would require a tedious instrument, recompile,
install, and reboot sequence. SystemTap is designed to eliminate this, allowing users to gather the same
information by simply running user-written SystemTap scripts.

However, SystemTap was initially designed for users with intermediate to advanced knowledge of the kernel.
This makes SystemTap less useful to administrators or developers with limited knowledge of and experience
with the Linux kernel. Moreover, much of the existing SystemTap documentation is similarly aimed at
knowledgeable and experienced users. This makes learning the tool similarly difficult.

To lower these barriers the SystemTap Beginners Guide was written with the following goals:

To introduce users to SystemTap, familiarize them with its architecture, and provide setup instructions for
all kernel types.

To provide pre-written SystemTap scripts for monitoring detailed activity in different components of the
system, along with instructions on how to run them and analyze their output.

1.2. SystemTap Capabilities

SystemTap was originally developed to provide functionality for Red Hat Enterprise Linux 5 similar to
previous Linux probing tools such as dprobes and the Linux Trace Toolkit. SystemTap aims to supplement
the existing suite of Linux monitoring tools by providing users with the infrastructure to track kernel activity. In
addition, SystemTap combines this capability with two things:

Flexibility: SystemTap's framework allows users to develop simple scripts for investigating and monitoring
a wide variety of kernel functions, system calls, and other events that occur in kernel-space. With this,
SystemTap is not so much a tool as it is a system that allows you to develop your own kernel-specific
forensic and monitoring tools.

Ease-Of-Use: as mentioned earlier, SystemTap allows users to probe kernel-space events without having
to resort to instrument, recompile, install, and reboot the kernel.

Most of the SystemTap scripts enumerated in Chapter 4, Useful SystemTap Scripts demonstrate system
forensics and monitoring capabilities not natively available with other similar tools (such as top, oprofile,
or ps). These scripts are provided to give readers extensive examples of the application of SystemTap, which
in turn will educate them further on the capabilities they can employ when writing their own SystemTap
scripts.

Chapter 1. Introduction

3

Limitations

The current iteration of SystemTap allows for a multitude of options when probing kernel-space events.
However, SystemTap's ability to probe user-space events is quite limited. At present, the developmental
efforts of the SystemTap community are geared towards improving SystemTap's user-space probing
capabilities.

SystemTap Beginners Guide

4

Chapter 2. Using SystemTap

This chapter instructs users how to install SystemTap, and provides an introduction on how to run
SystemTap scripts.

2.1. Installation and Setup

To deploy SystemTap, you need to install the SystemTap packages along with the corresponding set of -
devel, -debuginfo and -debuginfo-common packages for your kernel. If your system has multiple
kernels installed, and you wish to use SystemTap on more than one kernel kernel, you will need to install the
-devel and -debuginfo packages for each of those kernel versions.

These procedures will be discussed in detail in the following sections.

Important

Many users confuse -debuginfo with -debug. Remember that the deployment of SystemTap
requires the installation of the -debuginfo package of the kernel, not the -debug version of the
kernel.

2.1.1. Installing SystemTap

To deploy Systemtap, you will need to to install the following RPMs:

systemtap

systemtap-runtime

Assuming that yum is installed in the system, these two rpms can be installed with yum install
systemtap systemtap-runtime. Note that before you can use SystemTap, you will still need to install
the required kernel information RPMs.

2.1.2. Installing Required Kernel Information RPMs

SystemTap needs information about the kernel in order to place instrumentation in it (i.e. probe it). This
information also allows SystemTap to generate the code for the instrumentation. This information is contained
in the matching -devel, -debuginfo, and -debuginfo-common packages for your kernel. The necessary
-devel and -debuginfo packages for the ordinary "vanilla" kernel are as follows:

kernel-debuginfo

kernel-debuginfo-common

kernel-devel

Likewise, the necessary packages for the PAE kernel would be kernel-PAE-debuginfo, kernel-PAE-
debuginfo-common, and kernel-PAE-devel.

To determine what kernel your system is currently using, use:

uname -r

Chapter 2. Using SystemTap

5

For example, if you wish to use SystemTap on kernel version 2.6.18-53.el5 on an i686 machine, then
you would need to download and install the following RPMs:

kernel-debuginfo-2.6.18-53.1.13.el5.i686.rpm

kernel-debuginfo-common-2.6.18-53.1.13.el5.i686.rpm

kernel-devel-2.6.18-53.1.13.el5.i686.rpm

Important

The version, variant, and architecture of the -devel, -debuginfo and -debuginfo-common
packages must match the kernel you wish to probe with SystemTap exactly.

The easiest way to install the required kernel information packages is through yum install and
debuginfo-install. debuginfo-install is included with later versions of the yum-utils package
(for example, version 1.1.10), and also requires an appropriate yum repository from which to download and
install -debuginfo/-debuginfo-common packages.

Most required kernel packages can be found at ftp://ftp.redhat.com/pub/redhat/linux/enterprise/; navigate
there until you find the appropriate Debuginfo directory for your system. Configure yum accordingly by
adding a new "debug" yum repository file under /etc/yum.repos.d containing the following lines:

[rhel-debuginfo]
name=Red Hat Enterprise Linux $releasever - $basearch - Debug
baseurl=ftp://ftp.redhat.com/pub/redhat/linux/enterprise/$releasever/en/os/$
basearch/Debuginfo/
enabled=1

After configuring yum with the appropriate repository, you can now install the required -devel, -
debuginfo, and -debuginfo-common packages for your kernel. To install the corresponding packages for
a specific kernel, run the following commands:

yum install kernelname-devel-version

debuginfo-install kernelname-version

Replace kernelname with the appropriate kernel variant name (for example, kernel-PAE), and version
with the target kernel's version. For example, to install the required kernel information packages for the
kernel-PAE--2.6.18-53.1.13.el5 kernel, run:

yum install kernel-PAE-devel-2.6.18-53.1.13.el5

debuginfo-install kernel-PAE-2.6.18-53.1.13.el5

If you do not have yum and yum-utils installed (and you are unable to install them), you will have to
manually download and install the required kernel information packages. To generate the URL from which to
download the required packages, use the following script:

rheldebugurl.sh

#! /bin/bash
pkg="redhat-release"
releasever=`rpm -q --qf "%{version}" $pkg`

SystemTap Beginners Guide

6

ftp://ftp.redhat.com/pub/redhat/linux/enterprise/

base=`uname -m`
echo "ftp://ftp.redhat.com/pub/redhat/linux/\
enterprise/$releasever/en/os/$base/Debuginfo"

Once you have manually downloaded the required packages to the machine, install the RPMs by running
rpm --force -ivh package_names.

2.1.3. Initial Testing

If you are currently using the kernel you wish to probe with SystemTap, you can immediately test whether the
deployment was successful. If not, you will need to reboot and load the appropriate kernel.

To start the test, run the command stap -v -e 'probe vfs.read {printf("read
performed\n"); exit()}'. This command simply instructs SystemTap to print read performed then
exit properly once a virtual file system read is detected. If the SystemTap deployment was successful, you
should get output similar to the following:

Pass 1: parsed user script and 45 library script(s) in 340usr/0sys/358real
ms.
Pass 2: analyzed script: 1 probe(s), 1 function(s), 0 embed(s), 0 global(s)
in 290usr/260sys/568real ms.
Pass 3: translated to C into
"/tmp/stapiArgLX/stap_e5886fa50499994e6a87aacdc43cd392_399.c" in
490usr/430sys/938real ms.
Pass 4: compiled C into "stap_e5886fa50499994e6a87aacdc43cd392_399.ko" in
3310usr/430sys/3714real ms.
Pass 5: starting run.
read performed
Pass 5: run completed in 10usr/40sys/73real ms.

The last three lines of the output (i.e. beginning with Pass 5 indicate that SystemTap was able to
successfully create the instrumentation to probe the kernel, run the instrumentation, detect the event being
probed (in this case, a virtual file system read), and execute a valid handler (print text then close it with no
errors).

2.2. Generating Instrumentation for Other Computers

When users run a SystemTap script, SystemTap builds a kernel module out of that script. SystemTap then
loads the module into the kernel, allowing it to extract the specified data directly from the kernel (refer to
Procedure 3.1, “SystemTap Session” in Section 3.1, “Architecture” for more information).

Normally, however, SystemTap scripts can only be run on systems where SystemTap is deployed (as in
Section 2.1, “Installation and Setup”). This could mean that if you want to run SystemTap on ten systems, you
would need to deploy SystemTap on all those systems. In some cases, this may be neither feasible nor
desired. For instance, corporate policy may prohibit an administrator from installing RPMs that provide
compilers or debug information on specific machines, which will prevent the deployment of SystemTap.

To work around this, you can resort to cross-instrumentation. Cross-instrumentation is the process of
generating SystemTap instrumentation module from a SystemTap script on one computer to be used on
another computer. This process offers the following benefits:

The kernel information packages for various machines can be installed on a single host machine.

Chapter 2. Using SystemTap

7

Each target machine only needs one RPM to installed to use the generated SystemTap instrumentation
module: systemtap-runtime.

Note

For the sake of simplicity, we will be using the following terms throughout this section:

 instrumentation module — the kernel module built from a SystemTap script; i.e. the SystemTap
module is built on the host system, and will be loaded on the target kernel of target system.
 host system — the system on which you compile the instrumentation modules (from SystemTap
scripts), to be loaded on target systems.
 target system — the system for which you are building the instrumentation module (from
SystemTap scripts).
 target kernel — the kernel of the target system. This is the kernel on which you wish to load/run
the instrumentation module.

Procedure 2.1. Configuring a Host System and Target Systems

1. Install the systemtap-runtime RPM on each target system.

2. Determine the kernel running on each target system by running uname -r on each target system.

3. Install SystemTap on the host system. You will be building the instrumentation module for the target
systems on the host system. For instructions on how to install SystemTap, refer to Section 2.1.1,
“Installing SystemTap”.

4. Using the target kernel version determined earlier, install the target kernel and related RPMs on the
host system by the method described in Section 2.1.2, “Installing Required Kernel Information
RPMs”. If multiple target systems use different target kernels, you will need to repeat this step for
each different kernel used on the target systems.

After performing Procedure 2.1, “Configuring a Host System and Target Systems”, you can now build the
instrumentation module (for any target system) on the host system.

To build the instrumentation module, run the following command on the host system (be sure to specify the
appropriate values):

stap -r kernel_version script -m module_name

Here, kernel_version refers to the version of the target kernel (the output of uname -r on the target
machine), script refers to the script to be converted into an instrumentation module, and module_name is
the desired name of the instrumentation module.

Note

To determine the architecture notation of a running kernel, run uname -m.

Once the instrumentation module is compiled, copy it to the target system and then load it using:

staprun module_name.ko

SystemTap Beginners Guide

8

For example, to create the instrumentation module simple.ko from a SystemTap script named
simple.stp for the target kernel 2.6.18-92.1.10.el5 (on x86_64 architecture), use the following command:

stap -r 2.6.18-92.1.10.el5 -e 'probe vfs.read {exit()}' -m simple

This will create a module named simple.ko. To use the instrumentation module simple.ko, copy it to the
target system and run the following command (on the target system):

staprun simple.ko

Important

The host system must be the same architecture and running the same distribution of Linux as the
target system in order for the built instrumentation module to work.

2.3. Running SystemTap Scripts

SystemTap scripts are run through the command stap. stap can run SystemTap scripts from standard input
or from file.

Running stap and staprun requires elevated privileges to the system. However, not all users can be
granted root access just to run SystemTap. In some cases, for instance, you may want to allow a non-
privileged user to run SystemTap instrumentation on his machine.

To allow ordinary users to run SystemTap without root access, add them to one of these user groups:

stapdev

Members of this group can use stap to run SystemTap scripts, or staprun to run SystemTap
instrumentation modules.

Running stap involves compiling SystemTap scripts into kernel modules and loading them into the
kernel. This requires elevated privileges to the system, which are granted to stapdev members.
Unfortunately, such privileges also grant effective root access to stapdev members. As such, you
should only grant stapdev group membership to users whom you can trust root access.

stapusr

Members of this group can only run staprun to run SystemTap instrumentation modules. In
addition, they can only run those modules from
/lib/modules/kernel_version/systemtap/. Note that this directory must be owned only by
the root user, and must only be writable by the root user.

Below is a list of commonly used stap options:

-v

Makes the output of the SystemTap session more verbose. You can repeat this option (for
example, stap -vvv script.stp) to provide more details on the script's execution. This option
is particularly useful if you encounter any errors in running the script.

For more information about common SystemTap script errors, refer to Chapter 5, Understanding
SystemTap Errors.

Chapter 2. Using SystemTap

9

-o filename

Sends the standard output to file (filename).

-x process ID

Sets the SystemTap handler function target() to the specified process ID. For more information
about target(), refer to SystemTap Functions.

-c command

Sets the SystemTap handler function target() to the specified command. Note that you must
use the full path to the specified command; for example, instead of specifying cp, use /bin/cp (as
in stap script -c /bin/cp). For more information about target(), refer to SystemTap
Functions.

-e 'script'

Use script string rather than a file as input for systemtap translator.

You can also instruct stap to run scripts from standard input using the switch -. To illustrate:

Example 2.1. Running Scripts From Standard Input

echo "probe timer.s(1) {exit()}" | stap -

Example 2.1, “Running Scripts From Standard Input” instructs stap to run the script passed by echo to
standard input. Any stap options you wish to use should be inserted before the - switch; for instance, to
make the example in Example 2.1, “Running Scripts From Standard Input” more verbose, the command
would be:

echo "probe timer.s(1) {exit()}" | stap -v -

For more information about stap, refer to man stap.

To run SystemTap instrumentation (i.e. the kernel module built from SystemTap scripts during a cross-
instrumentation), use staprun instead. For more information about staprun and cross-instrumentation,
refer to Section 2.2, “Generating Instrumentation for Other Computers”.

Note

The stap options -v and -o also work for staprun. For more information about staprun, refer to
man staprun.

SystemTap Beginners Guide

10

Chapter 3. Understanding How SystemTap Works

SystemTap allows users to write and reuse simple scripts to deeply examine the activities of a running Linux
system. These scripts can be designed to extract data, filter it, and summarize it quickly (and safely),
enabling the diagnosis of complex performance (or even functional) problems.

The essential idea behind a SystemTap script is to name events, and to give them handlers. When
SystemTap runs the script, SystemTap monitors for the event; once the event occurs, the Linux kernel then
runs the handler as a quick sub-routine, then resumes.

There are several kind of events; entering/exiting a function, timer expiration, session termination, etc. A
handler is a series of script language statements that specify the work to be done whenever the event occurs.
This work normally includes extracting data from the event context, storing them into internal variables, and
printing results.

3.1. Architecture

A SystemTap session begins when you run a SystemTap script. This session occurs in the following fashion:

Procedure 3.1. SystemTap Session

1. First, SystemTap checks the script against the existing tapset library (normally in
/usr/share/systemtap/tapset/ for any tapsets used. SystemTap will then substitute any
located tapsets with their corresponding definitions in the tapset library.

2. SystemTap then translates the script to C, running the system C compiler to create a kernel module
from it. The tools that perform this step are contained in the systemtap package (refer to
Section 2.1.1, “Installing SystemTap” for more information).

3. SystemTap loads the module, then enables all the probes (events and handlers) in the script. The
staprun in the systemtap-runtime package (refer to Section 2.1.1, “Installing SystemTap” for
more information) provides this functionality.

4. As the events occur, their corresponding handlers are executed.

5. Once the SystemTap session is terminated, the probes are disabled, and the kernel module is
unloaded.

This sequence is driven from a single command-line program: stap. This program is SystemTap's main
front-end tool. For more information about stap, refer to man stap (once SystemTap is properly installed
on your machine).

3.2. SystemTap Scripts

For the most part, SystemTap scripts are the foundation of each SystemTap session. SystemTap scripts
instruct SystemTap on what type of information to collect, and what to do once that information is collected.

As stated in Chapter 3, Understanding How SystemTap Works, SystemTap scripts are made up of two
components: events and handlers. Once a SystemTap session is underway, SystemTap monitors the
operating system for the specified events and executes the handlers as they occur.

Chapter 3. Understanding How SystemTap Works

11

Note

An event and its corresponding handler is collectively called a probe. A SystemTap script can have
multiple probes.

A probe's handler is commonly referred to as a probe body.

In terms of application development, using events and handlers is similar to instrumenting the code by
inserting diagnostic print statements in a program's sequence of commands. These diagnostic print
statements allow you to view a history of commands executed once the program is run.

SystemTap scripts allow insertion of the instrumentation code without recompilation of the code and allows
more flexibility with regard to handlers. Events serve as the triggers for handlers to run; handlers can be
specified to record specified data and print it in a certain manner.

Format

SystemTap scripts use the file extension .stp, and contains probes written in the following format:

probe event {statements}

SystemTap supports multiple events per probe; multiple events are delimited by a comma (,). If multiple
events are specified in a single probe, SystemTap will execute the handler when any of the specified events
occur.

Each probe has a corresponding statement block. This statement block is enclosed in braces ({ }) and
contains the statements to be executed per event. SystemTap executes these statements in sequence;
special separators or terminators are generally not necessary between multiple statements.

Note

Statement blocks in SystemTap scripts follow the same syntax and semantics as the C programming
language. A statement block can be nested within another statement block.

Systemtap allows you to write functions to factor out code to be used by a number of probes. Thus, rather
than repeatedly writing the same series of statements in multiple probes, you can just place the instructions
in a function, as in:

function function_name(arguments) {statements}
probe event {function_name(arguments)}

The statements in function_name are executed when the probe for event executes. The arguments are
optional values passed into the function.

SystemTap Beginners Guide

12

Important

Section 3.2, “SystemTap Scripts” is designed to introduce readers to the basics of SystemTap scripts.
To understand SystemTap scripts better, it is advisable that you refer to Chapter 4, Useful SystemTap
Scripts; each section therein provides a detailed explanation of the script, its events, handlers, and
expected output.

3.2.1. Event

SystemTap events can be broadly classified into two types: synchronous and asynchronous.

Synchronous Events

A synchronous event occurs when any process executes an instruction at a particular location in kernel code.
This gives other events a reference point from which more contextual data may be available.

Examples of synchronous events include:

syscall.system_call

The entry to the system call system_call. If the exit from a syscall is desired, appending a .return
to the event monitor the exit of the system call instead. For example, to specify the entry and exit of
the system call close, use syscall.close and syscall.close.return respectively.

vfs.file_operation

The entry to the file_operation event for Virtual File System (VFS). Similar to syscall event,
appending a .return to the event monitors the exit of the file_operation operation.

kernel.function("function")

The entry to the kernel function function. For example, kernel.function("sys_open") refers
to the "event" that occurs when the kernel function sys_open is called by any thread in the
system. To specify the return of the kernel function sys_open, append the return string to the
event statement; i.e. kernel.function("sys_open").return.

When defining probe events, you can use asterisk (*) for wildcards. You can also trace the entry
or exit of a function in a kernel source file. Consider the following example:

Example 3.1. wildcards.stp

probe kernel.function("*@net/socket.c") { }
probe kernel.function("*@net/socket.c").return { }

In the previous example, the first probe's event specifies the entry of ALL functions in the kernel
source file net/socket.c. The second probe specifies the exit of all those functions. Note that in
this example, there are no statements in the handler; as such, no information will be collected or
displayed.

module("module").function("function")

Allows you to probe functions within modules. For example:

Chapter 3. Understanding How SystemTap Works

13

Example 3.2. moduleprobe.stp

probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }

The first probe in Example 3.2, “moduleprobe.stp” points to the entry of all functions for the ext3
module. The second probe points to the exits of all functions for that same module; the use of the
.return suffix is similar to kernel.function(). Note that the probes in Example 3.2,
“moduleprobe.stp” do not contain statements in the probe handlers, and as such will not print any
useful data (as in Example 3.1, “wildcards.stp”).

A system's kernel modules are typically located in /lib/modules/kernel_version, where
kernel_version refers to the currently loaded kernel version. Modules use the filename extension
.ko.

Asynchronous Events

Asynchronous events are not tied to a particular instruction or location in code. This family of probe points
consists mainly of counters, timers, and similar constructs.

Examples of asynchronous events include:

begin

The startup of a SystemTap session; i.e. as soon as the SystemTap script is run.

end

The end of a SystemTap session.

timer events

An event that specifies a handler to be executed periodically. For example:

Example 3.3. timer-s.stp

probe timer.s(4)
{
 printf("hello world\n")
}

Example 3.3, “timer-s.stp” is an example of a probe that prints hello world every 4 seconds.
Note that you can also use the following timer events:

timer.ms(milliseconds)

timer.us(microseconds)

timer.ns(nanoseconds)

timer.hz(hertz)

timer.jiffies(jiffies)

SystemTap Beginners Guide

14

When used in conjunction with other probes that collect information, timer events allows you to
print out get periodic updates and see how that information changes over time.

Important

SystemTap supports the use of a large collection of probe events. For more information about
supported events, refer to man stapprobes. The SEE ALSO section of man stapprobes also
contains links to other man pages that discuss supported events for specific subsystems and
components.

3.2.2. Systemtap Handler/Body

Consider the following sample script:

Example 3.4. helloworld.stp

probe begin
{
 printf ("hello world\n")
 exit ()
}

In Example 3.4, “helloworld.stp”, the event begin (i.e. the start of the session) triggers the handler enclosed
in { }, which simply prints hello world followed by a new-line, then exits.

Note

SystemTap scripts continue to run until the exit() function executes. If the users wants to stop the
execution of the script, it can interrupted manually with Ctrl+C.

printf () Statements

The printf () statement is one of the simplest functions for printing data. printf () can also be used to
display data using a wide variety of SystemTap functions in the following format:

 printf ("format string\n", arguments)

The format string specifies how arguments should be printed. The format string of Example 3.4,
“helloworld.stp” simply instructs SystemTap to print hello world, and contains no format specifiers.

You can use the format specifiers %s (for strings) and %d (for numbers) in format strings, depending on your
list of arguments. Format strings can have multiple format specifiers, each matching a corresponding
argument; multiple arguments are delimited by a comma (,).

Chapter 3. Understanding How SystemTap Works

15

Note

Semantically, the SystemTap printf function is very similar to its C language counterpart. The
aforementioned syntax and format for SystemTap's printf function is identical to that of the C-style
printf.

To illustrate this, consider the following probe example:

Example 3.5. variables-in-printf-statements.stp

probe syscall.open
{
 printf ("%s(%d) open\n", execname(), pid())
}

Example 3.5, “variables-in-printf-statements.stp” instructs SystemTap to probe all entries to the system call
open; for each event, it prints the current execname() (a string with the executable name) and pid() (the
current process ID number), followed by the word open. A snippet of this probe's output would look like:

vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open
df(3433) open
df(3433) open
df(3433) open
hald(2360) open

SystemTap Functions

SystemTap supports a wide variety of functions that can be used as printf () arguments. Example 3.5,
“variables-in-printf-statements.stp” uses the SystemTap functions execname() (name of the process that
called a kernel function/performed a system call) and pid() (current process ID).

The following is a list of commonly-used SystemTap functions:

tid()

The ID of the current thread.

uid()

The ID of the current user.

cpu()

The current CPU number.

gettimeofday_s()

The number of seconds since UNIX epoch (January 1, 1970).

SystemTap Beginners Guide

16

ctime()

Convert number of seconds since UNIX epoch to date.

pp()

A string describing the probe point currently being handled.

thread_indent()

This particular function is quite useful, providing you with a way to better organize your print
results. The function takes one argument, an indentation delta, which indicates how many spaces
to add or remove from a thread's "indentation counter". It then returns a string with some generic
trace data along with an appropriate number of indentation spaces.

The generic data included in the returned string includes a timestamp (number of microseconds
since the first call to thread_indent() by the thread), a process name, and the thread ID. This
allows you to identify what functions were called, who called them, and the duration of each
function call.

If call entries and exits immediately precede each other, it is easy to match them. However, in
most cases, after a first function call entry is made several other call entries and exits may be
made before the first call exits. The indentation counter helps you match an entry with its
corresponding exit by indenting the next function call if it is not the exit of the previous one.

Consider the following example on the use of thread_indent():

Example 3.6. thread_indent.stp

probe kernel.function("*@net/socket.c")
{
 printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return
{
 printf ("%s <- %s\n", thread_indent(-1), probefunc())
}

Example 3.6, “thread_indent.stp” prints out the thread_indent() and probe functions at each
event in the following format:

0 ftp(7223): -> sys_socketcall
1159 ftp(7223): -> sys_socket
2173 ftp(7223): -> __sock_create
2286 ftp(7223): -> sock_alloc_inode
2737 ftp(7223): <- sock_alloc_inode
3349 ftp(7223): -> sock_alloc
3389 ftp(7223): <- sock_alloc
3417 ftp(7223): <- __sock_create
4117 ftp(7223): -> sock_create
4160 ftp(7223): <- sock_create
4301 ftp(7223): -> sock_map_fd
4644 ftp(7223): -> sock_map_file

Chapter 3. Understanding How SystemTap Works

17

4699 ftp(7223): <- sock_map_file
4715 ftp(7223): <- sock_map_fd
4732 ftp(7223): <- sys_socket
4775 ftp(7223): <- sys_socketcall

This sample output contains the following information:

The time (in microseconds) since the initial thread_ident() call for the thread (included in
the string from thread_ident()).

The process name (and its corresponding ID) that made the function call (included in the string
from thread_ident()).

An arrow signifying whether the call was an entry (<-) or an exit (->); the indentations help you
match specific function call entries with their corresponding exits.

The name of the function called by the process.

name

Identifies the name of a specific system call. This variable can only be used in probes that use the
event syscall.system_call.

target()

Used in conjunction with stap script -x process ID or stap script -c command. If
you want to specify a script to take an argument of a process ID or command, use target() as
the variable in the script to refer to it. For example:

Example 3.7. targetexample.stp

probe syscall.* {
 if (pid() == target())
 printf("%s/n", name)
}

When Example 3.7, “targetexample.stp” is run with the argument -x process ID, it watches all
system calls (as specified by the event syscall.*) and prints out the name of all system calls
made by the specified process.

This has the same effect as specifying if (pid() == process ID) each time you wish to
target a specific process. However, using target() makes it easier for you to re-use the script,
giving you the ability to simply pass a process ID as an argument each time you wish to run the
script (e.g. stap targetexample.stp -x process ID).

For more information about supported SystemTap functions, refer to man stapfuncs.

3.3. Basic SystemTap Handler Constructs

SystemTap supports the use of several basic constructs in handlers. The syntax for most of these handler
constructs are mostly based on C and awk syntax. This section describes several of the most useful
SystemTap handler constructs, which should provide you with enough information to write simple yet useful
SystemTap scripts.

3.3.1. Variables

SystemTap Beginners Guide

18

3.3.1. Variables

Variables can be used freely throughout a handler; simply choose a name, assign a value from a function or
expression to it, and use it in an expression. SystemTap automatically identifies whether a variable should be
typed as a string or integer, based on the type of the values assigned to it. For instance, if you use set the
variable foo to gettimeofday_s() (as in foo = gettimeofday_s()), then foo is typed as an number
and can be printed in a printf() with the integer format specifier (%d).

Note, however, that by default variables are only local to the probe they are used in. This means that
variables are initialized, used and disposed at each probe handler invocation. To share a variable between
probes, declare the variable name using global outside of the probes. Consider the following example:

Example 3.8. timer-jiffies.stp

global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
 hz=(1000*count_jiffies) / count_ms
 printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",
 count_jiffies, count_ms, hz)
 exit ()
}

Example 3.8, “timer-jiffies.stp” computes the CONFIG_HZ setting of the kernel using timers that count jiffies
and milliseconds, then computing accordingly. The global statement allows the script to use the variables
count_jiffies and count_ms (set in their own respective probes) to be shared with probe
timer.ms(12345).

Note

The ++ notation in Example 3.8, “timer-jiffies.stp” (i.e. count_jiffies ++ and count_ms ++) is
used to increment the value of a variable by 1. In the following probe, count_jiffies is
incremented by 1 every 100 jiffies:

probe timer.jiffies(100) { count_jiffies ++ }

In this instance, SystemTap understands that count_jiffies is an integer. Because no initial value
was assigned to count_jiffies, its initial value is zero by default.

3.3.2. Conditional Statements

In some cases, the output of a SystemTap script may be too big. To address this, you need to further refine
the script's logic in order to delimit the output into something more relevant or useful to your probe.

You can do this by using conditionals in handlers. SystemTap accepts the following types of conditional
statements:

If/Else Statements

Chapter 3. Understanding How SystemTap Works

19

Format:

if (condition)
 statement1
else
 statement2

The statement1 is executed if the condition expression is non-zero. The statement2 is
executed if the condition expression is zero. The else clause (else statement2)is optional.
Both statement1 and statement2 can be statement blocks.

Example 3.9. ifelse.stp

global countread, countnonread
probe kernel.function("vfs_read"),kernel.function("vfs_write")
{
 if (probefunc()=="vfs_read")
 countread ++
 else
 countnonread ++
}
probe timer.s(5) { exit() }
probe end
{
 printf("VFS reads total %d\n VFS writes total %d\n", countread,
countnonread)
}

Example 3.9, “ifelse.stp” is a script that counts how many virtual file system reads (vfs_read) and
writes (vfs_write) the system performs within a 5-second span. When run, the script increments
the value of the variable countread by 1 if the name of the function it probed matches vfs_read
(as noted by the condition if (probefunc()=="vfs_read")); otherwise, it increments
countnonread (else {countnonread ++}).

While Loops

Format:

while (condition)
 statement

So long as condition is non-zero the block of statements in statement are executed. The
statement is often a statement block and it must change a value so condition will eventually
be zero.

For Loops

Format:

for (initialization; conditional; increment) statement

The for loop is simply shorthand for a while loop. The following is the equivalent while loop:

SystemTap Beginners Guide

20

initialization
while (conditional) {
 statement
 increment
}

Conditional Operators

Aside from == ("is equal to"), you can also use the following operators in your conditional statements:

>=

Greater than or equal to

<=

Less than or equal to

!=

Is not equal to

3.3.3. Command-Line Arguments

You can also allow a SystemTap script to accept simple command-line arguments using a $ or @ immediately
followed by the number of the argument on the command line. Use $ if you are expecting the user to enter an
integer as a command-line argument, and @ if you are expecting a string.

Example 3.10. commandlineargs.stp

probe kernel.function(@1) { }
probe kernel.function(@1).return { }

Example 3.10, “commandlineargs.stp” is similar to Example 3.1, “wildcards.stp”, except that it allows you to
pass the kernel function to be probed as a command-line argument (as in stap commandlineargs.stp
kernel function). You can also specify the script to accept multiple command-line arguments, noting
them as @1, @2, and so on, in the order they are entered by the user.

3.4. Associative Arrays

SystemTap also supports the use of associative arrays. While an ordinary variable represents a single value,
associative arrays can represent a collection of values. Simply put, an associative array is a collection of
unique keys; each key in the array has a value associated with it.

Since associative arrays are normally processed in multiple probes (as we will demonstrate later), they are
declared as global variables in the SystemTap script. The syntax for accessing an element in an
associative array is similar to that of awk, and is as follows:

array_name[index_expression]

Chapter 3. Understanding How SystemTap Works

21

Here, the array_name is any arbitrary name the array uses. The index_expression is used to refer to a
specific unique key in the array. To illustrate, let us try to build an array named foo that specifies the ages of
three people (i.e. the unique keys): tom, dick, and harry. To assign them the ages (i.e. associated values)
of 23, 24, and 25 respectively, we'd use the following array statements:

Example 3.11. Basic Array Statements

foo["tom"] = 23
foo["dick"] = 24
foo["harry"] = 25

You can specify up to 5 index expressons in an array statement, each one delimited by a comma (,). This is
useful if you wish to have a key that contains multiple pieces of information. The following line from
disktop.stp uses 5 elements for the key: process ID, executable name, user ID, parent process ID, and string
"W". It associates the value of devname with that key.

device[pid(),execname(),uid(),ppid(),"W"] = devname

Important

All associate arrays must be declared as global, regardless of whether the associate array is used in
one or multiple probes.

3.5. Array Operations in SystemTap

This section enumerates some of the most commonly used array operations in SystemTap.

3.5.1. Assigning an Associated Value

Use = to set an associated value to indexed unique pairs, as in:

array_name[index_expression] = value

Example 3.11, “Basic Array Statements” shows a very basic example of how to set an explicit associated
value to a unique key. You can also use a handler function as both your index_expression and value.
For example, you can use arrays to set a timestamp as the associated value to a process name (which you
wish to use as your unique key), as in:

Example 3.12. Associating Timestamps to Process Names

foo[tid()] = gettimeofday_s()

Whenever an event invokes the statement in Example 3.12, “Associating Timestamps to Process Names”,
SystemTap returns the appropriate tid() value (i.e. the ID of a thread, which is then used as the unique
key). At the same time, SystemTap also uses the function gettimeofday_s() to set the corresponding
timestamp as the associated value to the unique key defined by the function tid(). This creates an array

SystemTap Beginners Guide

22

composed of key pairs containing thread IDs and timestamps.

In this same example, if tid() returns a value that is already defined in the array foo, the operator will
discard the original associated value to it, and replace it with the current timestamp from
gettimeofday_s().

3.5.2. Reading Values From Arrays

You can also read values from an array the same way you would read the value of a variable. To do so,
include the array_name[index_expression] statement as an element in a mathematical expression.
For example:

Example 3.13. Using Array Values in Simple Computations

delta = gettimeofday_s() - foo[tid()]

This example assumes that the array foo was built using the construct in Example 3.12, “Associating
Timestamps to Process Names” (from Section 3.5.1, “Assigning an Associated Value”). This sets a
timestamp that will serve as a reference point, to be used in computing for delta.

The construct in Example 3.13, “Using Array Values in Simple Computations” computes a value for the
variable delta by subtracting the associated value of the key tid() from the current gettimeofday_s().
The construct does this by reading the value of tid() from the array. This particular construct is useful for
determining the time between two events, such as the start and completion of a read operation.

Note

If the index_expression cannot find the unique key, it returns a value of 0 (for numerical
operations, such as Example 3.13, “Using Array Values in Simple Computations”) or a null/empty
string value (for string operations) by default.

3.5.3. Incrementing Associated Values

Use ++ to increment the associated value of a unique key in an array, as in:

array_name[index_expression] ++

Again, you can also use a handler function for your index_expression. For example, if you wanted to tally
how many times a specific process performed a read to the virtual file system (using the event vfs.read),
you can use the following probe:

Example 3.14. vfsreads.stp

probe vfs.read
{
 reads[execname()] ++
}

Chapter 3. Understanding How SystemTap Works

23

In Example 3.14, “vfsreads.stp”, the first time that the probe returns the process name gnome-terminal
(i.e. the first time gnome-terminal performs a VFS read), that process name is set as the unique key
gnome-terminal with an associated value of 1. The next time that the probe returns the process name
gnome-terminal, SystemTap increments the associated value of gnome-terminal by 1. SystemTap
performs this operation for all process names as the probe returns them.

3.5.4. Processing Multiple Elements in an Array

Once you've collected enough information in an array, you will need to retrieve and process all elements in
that array to make it useful. Consider Example 3.14, “vfsreads.stp”: the script collects information about how
many VFS reads each process performs, but does not specify what to do with it. The obvious means for
making Example 3.14, “vfsreads.stp” useful is to print the key pairs in the array reads, but how?

The best way to process all key pairs in an array (as an iteration) is to use the foreach statement. Consider
the following example:

Example 3.15. cumulative-vfsreads.stp

global reads
probe vfs.read
{
 reads[execname()] ++
}
probe timer.s(3)
{
 foreach (count in reads)
 printf("%s : %d \n", count, reads[count])
}

In the second probe of Example 3.15, “cumulative-vfsreads.stp”, the foreach statement uses the variable
count to reference each iteration of a unique key in the array reads. The reads[count] array statement
in the same probe retrieves the associated value of each unique key.

Given what we know about the first probe in Example 3.15, “cumulative-vfsreads.stp”, the script prints VFS-
read statistics every 3 seconds, displaying names of processes that performed a VFS-read along with a
corresponding VFS-read count.

Now, remember that the foreach statement in Example 3.15, “cumulative-vfsreads.stp” prints all iterations
of process names in the array, and in no particular order. You can instruct the script to process the iterations
in a particular order by using + (ascending) or - (descending). In addition, you can also limit the number of
iterations the script needs to process with the limit value option.

For example, consider the following replacement probe:

probe timer.s(3)
{
 foreach (count in reads- limit 10)
 printf("%s : %d \n", count, reads[count])
}

This foreach statement instructs the script to process the elements in the array reads in descending order
(of associated value). The limit 10 option instructs the foreach to only process the first ten iterations (i.e.
print the first 10, starting with the highest value).

SystemTap Beginners Guide

24

3.5.5. Clearing/Deleting Arrays and Array Elements

Sometimes, you may need to clear the associated values in array elements, or reset an entire array for re-
use in another probe. Example 3.15, “cumulative-vfsreads.stp” in Section 3.5.4, “Processing Multiple
Elements in an Array” allows you to track how the number of VFS reads per process grows over time, but it
does not show you the number of VFS reads each process makes per 3-second period.

To do that, you will need to clear the values accumulated by the array. You can accomplish this using the
delete operator to delete elements in an array, or an entire array. Consider the following example:

Example 3.16. noncumulative-vfsreads.stp

global reads
probe vfs.read
{
 reads[execname()] ++
}
probe timer.s(3)
{
 foreach (count in reads)
 printf("%s : %d \n", count, reads[count])
 delete reads
}

In Example 3.16, “noncumulative-vfsreads.stp”, the second probe prints the number of VFS reads each
process made within the probed 3-second period only. The delete reads statement clears the reads
array within the probe.

Chapter 3. Understanding How SystemTap Works

25

Note

You can have multiple array operations within the same probe. Using the examples from
Section 3.5.4, “Processing Multiple Elements in an Array” and Section 3.5.5, “Clearing/Deleting Arrays
and Array Elements” , you can track the number of VFS reads each process makes per 3-second
period and tally the cumulative VFS reads of those same processes. Consider the following example:

global reads, totalreads

probe vfs.read
{
 reads[execname()] ++
 totalreads[execname()] ++
}

probe timer.s(3)
{
 printf("=======\n")
 foreach (count in reads-)
 printf("%s : %d \n", count, reads[count])
 delete reads
}

probe end
{
 printf("TOTALS\n")
 foreach (total in totalreads-)
 printf("%s : %d \n", total, totalreads[total])
}

In this example, the arrays reads and totalreads track the same information, and are printed out
in a similar fashion. The only difference here is that reads is cleared every 3-second period, whereas
totalreads keeps growing.

3.5.6. Using Arrays in Conditional Statements

You can also use associative arrays in if statements. This is useful if you want to execute a subroutine once
a value in the array matches a certain condition. Consider the following example:

Example 3.17. vfsreads-print-if-1kb.stp

global reads
probe vfs.read
{
 reads[execname()] ++
}

probe timer.s(3)
{
 printf("=======\n")

SystemTap Beginners Guide

26

 foreach (count in reads-)
 if (reads[count] >= 1024)
 printf("%s : %dkB \n", count, reads[count]/1024)
 else
 printf("%s : %dB \n", count, reads[count])
}

Every three seconds, Example 3.17, “vfsreads-print-if-1kb.stp” prints out a list of all processes, along with
how many times each process performed a VFS read. If the associated value of a process name is equal or
greater than 1024, the if statement in the script converts and prints it out in kB.

Testing for Membership

You can also test whether a specific unique key is a member of an array. Further, membership in an array
can be used in if statements, as in:

if([index_expression] in array_name) statement

To illustrate this, consider the following example:

Example 3.18. vfsreads-stop-on-stapio2.stp

global reads

probe vfs.read
{
 reads[execname()] ++
}

probe timer.s(3)
{
 printf("=======\n")
 foreach (count in reads+)
 printf("%s : %d \n", count, reads[count])
 if(["stapio"] in reads) {
 printf("stapio read detected, exiting\n")
 exit()
 }
}

The if(["stapio"] in reads) statement instructs the script to print stapio read detected,
exiting once the unique key stapio is added to the array reads.

3.5.7. Computing for Statistical Aggregates

Statistical aggregates are used to collect statistics on numerical values where it is important to accumulate
new data quickly and in large volume (i.e. storing only aggregated stream statistics). Statistical aggregates
can be used in global variables or as elements in an array.

To add value to a statistical aggregate, use the operator <<< value.

Chapter 3. Understanding How SystemTap Works

27

Example 3.19. stat-aggregates.stp

global reads
probe vfs.read
{
 reads[execname()] <<< count
}

In Example 3.19, “stat-aggregates.stp”, the operator <<< count stores the amount returned by count to to
the associated value of the corresponding execname() in the reads array. Remember, these values are
stored; they are not added to the associated values of each unique key, nor are they used to replace the
current associated values. In a manner of speaking, think of it as having each unique key (execname())
having multiple associated values, accumulating with each probe handler run.

Note

In the context of Example 3.19, “stat-aggregates.stp”, count returns the amount of data written by the
returned execname() to the virtual file system.

To extract data collected by statistical aggregates, use the syntax format @extractor(variable/array
index expression). extractor can be any of the following integer extractors:

count

Returns the number of all values stored into the variable/array index expression. Given the sample
probe in Example 3.19, “stat-aggregates.stp”, the expression @count(writes[execname()])
will return how many values are stored in each unique key in array writes.

sum

Returns the sum of all values stored into the variable/array index expression. Again, given sample
probe in Example 3.19, “stat-aggregates.stp”, the expression @sum(writes[execname()]) will
return the total of all values stored in each unique key in array writes.

min

Returns the smallest among all the values stored in the variable/array index expression.

max

Returns the largest among all the values stored in the variable/array index expression.

avg

Returns the average of all values stored in the variable/array index expression.

When using statistical aggregates, you can also build array constructs that use multiple index expressions (to
a maximum of 5). This is helpful in capturing additional contextual information during a probe. For example:

Example 3.20. Multiple Array Indexes

global reads

SystemTap Beginners Guide

28

probe vfs.read
{
 reads[execname(),pid()] <<< 1
}
probe timer.s(3)
{
 foreach([var1,var2] in reads)
 printf("%s (%d) : %d \n", var1, var2, @count(reads[var1,var2]))
}

In Example 3.20, “Multiple Array Indexes”, the first probe tracks how many times each process performs a
VFS read. What makes this different from earlier examples is that this array associates a performed read to
both a process name and its corresponding process ID.

The second probe in Example 3.20, “Multiple Array Indexes” demonstrates how to process and print the
information collected by the array reads. Note how the foreach statement uses the same number of
variables (i.e. var1 and var2) contained in the first instance of the array reads from the first probe.

3.6. Tapsets

Tapsets are scripts that form a library of pre-written probes and functions to be used in SystemTap scripts.
When a user runs a SystemTap script, SystemTap checks the script's probe events and handlers against the
tapset library; SystemTap then loads the corresponding probes and functions before translating the script to
C (refer to Section 3.1, “Architecture” for information on what transpires in a SystemTap session).

Like SystemTap scripts, tapsets use the filename extension .stp. The standard library of tapsets is located
in /usr/share/systemtap/tapset/ by default. However, unlike SystemTap scripts, tapsets are not
meant for direct execution; rather, they constitute the library from which other scripts can pull definitions.

Simply put, the tapset library is an abstraction layer designed to make it easier for users to define events and
functions. In a manner of speaking, tapsets provide useful aliases for functions that users may want to specify
as an event; knowing the proper alias to use is, for the most part, easier than remembering specific kernel
functions that might vary between kernel versions.

Several handlers and functions in Section 3.2.1, “Event” and SystemTap Functions are defined in tapsets.
For example, thread_indent() is defined in indent.stp.

Chapter 3. Understanding How SystemTap Works

29

Chapter 4. Useful SystemTap Scripts

This chapter enumerates several SystemTap scripts you can use to monitor and investigate different
subsystems. All of these scripts are available at
/usr/share/systemtap/testsuite/systemtap.examples/ once you install the systemtap-
testsuite RPM.

4.1. Network

The following sections showcase scripts that trace network-related functions and build a profile of network
activity.

4.1.1. Network Profiling

This section describes how to profile network activity. nettop.stp provides a glimpse into how much network
traffic each process is generating on a machine.

nettop.stp

#! /usr/bin/env stap

global ifxmit, ifrecv
global ifmerged

probe netdev.transmit
{
 ifxmit[pid(), dev_name, execname(), uid()] <<< length
}

probe netdev.receive
{
 ifrecv[pid(), dev_name, execname(), uid()] <<< length
}

function print_activity()
{
 printf("%5s %5s %-7s %7s %7s %7s %7s %-15s\n",
 "PID", "UID", "DEV", "XMIT_PK", "RECV_PK",
 "XMIT_KB", "RECV_KB", "COMMAND")

 foreach ([pid, dev, exec, uid] in ifrecv) {
 ifmerged[pid, dev, exec, uid] += @count(ifrecv[pid,dev,exec,uid]);
 }
 foreach ([pid, dev, exec, uid] in ifxmit) {
 ifmerged[pid, dev, exec, uid] += @count(ifxmit[pid,dev,exec,uid]);
 }
 foreach ([pid, dev, exec, uid] in ifmerged-) {
 n_xmit = @count(ifxmit[pid, dev, exec, uid])
 n_recv = @count(ifrecv[pid, dev, exec, uid])
 printf("%5d %5d %-7s %7d %7d %7d %7d %-15s\n",
 pid, uid, dev, n_xmit, n_recv,
 n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0,
 n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0,
 exec)

SystemTap Beginners Guide

30

 }

 print("\n")

 delete ifxmit
 delete ifrecv
 delete ifmerged
}

probe timer.ms(5000), end, error
{
 print_activity()
}

Note that function print_activity() uses the following expressions:

n_xmit ? @sum(ifxmit[pid, dev, exec, uid])/1024 : 0
n_recv ? @sum(ifrecv[pid, dev, exec, uid])/1024 : 0

These expressions are if/else conditionals. The first statement is simply a more concise way of writing the
following psuedo code:

if n_recv != 0 then
 @sum(ifrecv[pid, dev, exec, uid])/1024
else
 0

nettop.stp tracks which processes are generating network traffic on the system, and provides the following
information about each process:

PID — the ID of the listed process.

UID — user ID. A user ID of 0 refers to the root user.

DEV — which ethernet device the process used to send / receive data (e.g. eth0, eth1)

XMIT_PK — number of packets transmitted by the process

RECV_PK — number of packets received by the process

XMIT_KB — amount of data sent by the process, in kilobytes

RECV_KB — amount of data received by the service, in kilobytes

nettop.stp provides network profile sampling every 5 seconds. You can change this setting by editing probe
timer.ms(5000) accordingly. Example 4.1, “nettop.stp Sample Output” contains an excerpt of the output
from nettop.stp over a 20-second period:

Example 4.1. nettop.stp Sample Output

[...]
 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 0 5 0 0 swapper
11178 0 eth0 2 0 0 0 synergyc

Chapter 4. Useful SystemTap Scripts

31

 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 2886 4 eth0 79 0 5 0 cups-polld
11362 0 eth0 0 61 0 5 firefox
 0 0 eth0 3 32 0 3 swapper
 2886 4 lo 4 4 0 0 cups-polld
11178 0 eth0 3 0 0 0 synergyc

 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 0 6 0 0 swapper
 2886 4 lo 2 2 0 0 cups-polld
11178 0 eth0 3 0 0 0 synergyc
 3611 0 eth0 0 1 0 0 Xorg

 PID UID DEV XMIT_PK RECV_PK XMIT_KB RECV_KB COMMAND
 0 0 eth0 3 42 0 2 swapper
11178 0 eth0 43 1 3 0 synergyc
11362 0 eth0 0 7 0 0 firefox
 3897 0 eth0 0 1 0 0 multiload-apple
[...]

4.1.2. Tracing Functions Called in Network Socket Code

This section describes how to trace functions called from the kernel's net/socket.c file. This task helps
you identify, in finer detail, how each process interacts with the network at the kernel level.

socket-trace.stp

#! /usr/bin/env stap

probe kernel.function("*@net/socket.c").call {
 printf ("%s -> %s\n", thread_indent(1), probefunc())
}
probe kernel.function("*@net/socket.c").return {
 printf ("%s <- %s\n", thread_indent(-1), probefunc())
}

socket-trace.stp is identical to Example 3.6, “thread_indent.stp”, which was earlier used in SystemTap
Functions to illustrate how thread_indent() works.

Example 4.2. socket-trace.stp Sample Output

[...]
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 Xorg(3611): -> sock_poll
3 Xorg(3611): <- sock_poll
0 gnome-terminal(11106): -> sock_poll
5 gnome-terminal(11106): <- sock_poll
0 scim-bridge(3883): -> sock_poll
3 scim-bridge(3883): <- sock_poll
0 scim-bridge(3883): -> sys_socketcall

SystemTap Beginners Guide

32

4 scim-bridge(3883): -> sys_recv
8 scim-bridge(3883): -> sys_recvfrom
12 scim-bridge(3883):-> sock_from_file
16 scim-bridge(3883):<- sock_from_file
20 scim-bridge(3883):-> sock_recvmsg
24 scim-bridge(3883):<- sock_recvmsg
28 scim-bridge(3883): <- sys_recvfrom
31 scim-bridge(3883): <- sys_recv
35 scim-bridge(3883): <- sys_socketcall
[...]

Example 4.2, “socket-trace.stp Sample Output” contains a 3-second excerpt of the output for socket-trace.stp.
For more information about the output of this script as provided by thread_indent(), refer to SystemTap
Functions Example 3.6, “thread_indent.stp”.

4.1.3. Monitoring Incoming TCP Connections

This section illustrates how to monitor incoming TCP connections. This task is useful in identifying any
unauthorized, suspicious, or otherwise unwanted network access requests in real time.

tcp_connections.stp

#! /usr/bin/env stap

probe begin {
 printf("%6s %16s %6s %6s %16s\n",
 "UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.function("tcp_accept").return?,
 kernel.function("inet_csk_accept").return? {
 sock = $return
 if (sock != 0)
 printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
 inet_get_local_port(sock), inet_get_ip_source(sock))
}

While tcp_connections.stp is running, it will print out the following information about any incoming TCP
connections accepted by the system in real time:

Current UID

CMD - the command accepting the connection

PID of the command

Port used by the connection

IP address from which the TCP connection originated

Example 4.3. tcp_connections.stp Sample Output

Chapter 4. Useful SystemTap Scripts

33

UID CMD PID PORT IP_SOURCE
0 sshd 3165 22 10.64.0.227
0 sshd 3165 22 10.64.0.227

4.2. Disk

The following sections showcase scripts that monitor disk and I/O activity.

4.2.1. Summarizing Disk Read/Write Traffic

This section describes how to identify which processes are performing the heaviest disk reads/writes to the
system.

disktop.stp

#!/usr/bin/env stap
#
Copyright (C) 2007 Oracle Corp.
#
Get the status of reading/writing disk every 5 seconds,
output top ten entries
#
This is free software,GNU General Public License (GPL);
either version 2, or (at your option) any later version.
#
Usage:
./disktop.stp
#

global io_stat,device
global read_bytes,write_bytes

probe vfs.read.return {
 if ($return>0) {
 if (devname!="N/A") {/*skip read from cache*/
 io_stat[pid(),execname(),uid(),ppid(),"R"] += $return
 device[pid(),execname(),uid(),ppid(),"R"] = devname
 read_bytes += $return
 }
 }
}

probe vfs.write.return {
 if ($return>0) {
 if (devname!="N/A") { /*skip update cache*/
 io_stat[pid(),execname(),uid(),ppid(),"W"] += $return
 device[pid(),execname(),uid(),ppid(),"W"] = devname
 write_bytes += $return
 }
 }
}

probe timer.ms(5000) {

SystemTap Beginners Guide

34

 /* skip non-read/write disk */
 if (read_bytes+write_bytes) {

 printf("\n%-25s, %-8s%4dKb/sec, %-7s%6dKb, %-7s%6dKb\n\n",
 ctime(gettimeofday_s()),
 "Average:", ((read_bytes+write_bytes)/1024)/5,
 "Read:",read_bytes/1024,
 "Write:",write_bytes/1024)

 /* print header */
 printf("%8s %8s %8s %25s %8s %4s %12s\n",
 "UID","PID","PPID","CMD","DEVICE","T","BYTES")
 }
 /* print top ten I/O */
 foreach ([process,cmd,userid,parent,action] in io_stat- limit 10)
 printf("%8d %8d %8d %25s %8s %4s %12d\n",
 userid,process,parent,cmd,
 device[process,cmd,userid,parent,action],
 action,io_stat[process,cmd,userid,parent,action])

 /* clear data */
 delete io_stat
 delete device
 read_bytes = 0
 write_bytes = 0
}

probe end{
 delete io_stat
 delete device
 delete read_bytes
 delete write_bytes
}

disktop.stp outputs the top ten processes responsible for the heaviest reads/writes to disk. Example 4.4,
“disktop.stp Sample Output” displays a sample output for this script, and includes the following data per listed
process:

UID — user ID. A user ID of 0 refers to the root user.

PID — the ID of the listed process.

PPID — the process ID of the listed process's parent process.

CMD — the name of the listed process.

DEVICE — which storage device the listed process is reading from or writing to.

T — the type of action performed by the listed process; W refers to write, while R refers to read.

BYTES — the amount of data read to or written from disk.

The time and date in the output of disktop.stp is returned by the functions ctime() and
gettimeofday_s(). ctime() derives calendar time in terms of seconds passed since the Unix epoch
(January 1, 1970). gettimeofday_s() counts the actual number of seconds since Unix epoch, which gives
a fairly accurate human-readable timestamp for the output.

Chapter 4. Useful SystemTap Scripts

35

In this script, the $return is a local variable that stores the actual number of bytes each process reads or
writes from the virtual file system. $return can only be used in return probes (e.g. vfs.read.return and
vfs.read.return).

Example 4.4. disktop.stp Sample Output

[...]
Mon Sep 29 03:38:28 2008 , Average: 19Kb/sec, Read: 7Kb, Write: 89Kb

UID PID PPID CMD DEVICE T BYTES
0 26319 26294 firefox sda5 W 90229
0 2758 2757 pam_timestamp_c sda5 R 8064
0 2885 1 cupsd sda5 W
1678

Mon Sep 29 03:38:38 2008 , Average: 1Kb/sec, Read: 7Kb, Write: 1Kb

UID PID PPID CMD DEVICE T BYTES
0 2758 2757 pam_timestamp_c sda5 R 8064
0 2885 1 cupsd sda5 W
1678

4.2.2. Tracking I/O Time For Each File Read or Write

This section describes how to monitor the amount of time it takes for each process to read from or write to
any file. This is useful if you wish to determine what files are slow to load on a given system.

iotime.stp

global start
global entry_io
global fd_io
global time_io

function timestamp:long() {
 return gettimeofday_us() - start
}

function proc:string() {
 return sprintf("%d (%s)", pid(), execname())
}

probe begin {
 start = gettimeofday_us()
}

global filenames
global filehandles
global fileread
global filewrite

probe syscall.open {
 filenames[pid()] = user_string($filename)

SystemTap Beginners Guide

36

}

probe syscall.open.return {
 if ($return != -1) {
 filehandles[pid(), $return] = filenames[pid()]
 fileread[pid(), $return] = 0
 filewrite[pid(), $return] = 0
 } else {
 printf("%d %s access %s fail\n", timestamp(), proc(), filenames[pid()])
 }
 delete filenames[pid()]
}

probe syscall.read {
 if ($count > 0) {
 fileread[pid(), $fd] += $count
 }
 t = gettimeofday_us(); p = pid()
 entry_io[p] = t
 fd_io[p] = $fd
}

probe syscall.read.return {
 t = gettimeofday_us(); p = pid()
 fd = fd_io[p]
 time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.write {
 if ($count > 0) {
 filewrite[pid(), $fd] += $count
 }
 t = gettimeofday_us(); p = pid()
 entry_io[p] = t
 fd_io[p] = $fd
}

probe syscall.write.return {
 t = gettimeofday_us(); p = pid()
 fd = fd_io[p]
 time_io[p,fd] <<< t - entry_io[p]
}

probe syscall.close {
 if (filehandles[pid(), $fd] != "") {
 printf("%d %s access %s read: %d write: %d\n", timestamp(), proc(),
 filehandles[pid(), $fd], fileread[pid(), $fd], filewrite[pid(),
$fd])
 if (@count(time_io[pid(), $fd]))
 printf("%d %s iotime %s time: %d\n", timestamp(), proc(),
 filehandles[pid(), $fd], @sum(time_io[pid(), $fd]))
 }
 delete fileread[pid(), $fd]
 delete filewrite[pid(), $fd]
 delete filehandles[pid(), $fd]
 delete fd_io[pid()]

Chapter 4. Useful SystemTap Scripts

37

 delete entry_io[pid()]
 delete time_io[pid(),$fd]
}

iotime.stp tracks each time a system call opens, closes, reads from, and writes to a file. For each file any
system call accesses, iotime.stp counts the number of microseconds it takes for any reads or writes to finish
and tracks the amount of data (in bytes) read from or written to the file.

iotime.stp also uses the local variable $count to track the amount of data (in bytes) that any system call
attempts to read or write. Note that $return (as used in disktop.stp from Section 4.2.1, “Summarizing Disk
Read/Write Traffic”) stores the actual amount of data read/written. $count can only be used on probes that
track data reads or writes (e.g. syscall.read and syscall.write).

Example 4.5. iotime.stp Sample Output

[...]
825946 3364 (NetworkManager) access /sys/class/net/eth0/carrier read: 8190
write: 0
825955 3364 (NetworkManager) iotime /sys/class/net/eth0/carrier time: 9
[...]
117061 2460 (pcscd) access /dev/bus/usb/003/001 read: 43 write: 0
117065 2460 (pcscd) iotime /dev/bus/usb/003/001 time: 7
[...]
3973737 2886 (sendmail) access /proc/loadavg read: 4096 write: 0
3973744 2886 (sendmail) iotime /proc/loadavg time: 11
[...]

Example 4.5, “iotime.stp Sample Output” prints out the following data:

A timestamp, in microseconds

Process ID and process name

An access or iotime flag

The file accessed

If a process was able to read or write any data, a pair of access and iotime lines should appear together.
The access line's timestamp refer to the time that a given process started accessing a file; at the end of the
line, it will show the amount of data read/written (in bytes). The iotime line will show the amount of time (in
microseconds) that the process took in order to perform the read or write.

If an access line is not followed by an iotime line, it simply means that the process did not read or write
any data.

4.2.3. Track Cumulative IO

This section describes how to track the cumulative amount of I/O to the system.

traceio.stp

#! /usr/bin/env stap
traceio.stp

SystemTap Beginners Guide

38

Copyright (C) 2007 Red Hat, Inc., Eugene Teo <eteo@redhat.com>
Copyright (C) 2009 Kai Meyer <kai@unixlords.com>
Fixed a bug that allows this to run longer
And added the humanreadable function
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
#

global reads, writes, total_io

probe vfs.read.return {
 reads[pid(),execname()] += $return
 total_io[pid(),execname()] += $return
}

probe vfs.write.return {
 writes[pid(),execname()] += $return
 total_io[pid(),execname()] += $return
}

function humanreadable(bytes) {
 if (bytes > 1024*1024*1024) {
 return sprintf("%d GiB", bytes/1024/1024/1024)
 } else if (bytes > 1024*1024) {
 return sprintf("%d MiB", bytes/1024/1024)
 } else if (bytes > 1024) {
 return sprintf("%d KiB", bytes/1024)
 } else {
 return sprintf("%d B", bytes)
 }
}

probe timer.s(1) {
 foreach([p,e] in total_io- limit 10)
 printf("%8d %15s r: %12s w: %12s\n",
 p, e, humanreadable(reads[p,e]),
 humanreadable(writes[p,e]))
 printf("\n")
 # Note we don't zero out reads, writes and total_io,
 # so the values are cumulative since the script started.
}

traceio.stp prints the top ten executables generating I/O traffic over time. In addition, it also tracks the
cumulative amount of I/O reads and writes done by those ten executables. This information is tracked and
printed out in 1-second intervals, and in descending order.

Note that traceio.stp also uses the local variable $return, which is also used by disktop.stp from
Section 4.2.1, “Summarizing Disk Read/Write Traffic”.

Example 4.6. traceio.stp Sample Output

[...]

Chapter 4. Useful SystemTap Scripts

39

 Xorg r: 583401 KiB w: 0 KiB
 floaters r: 96 KiB w: 7130 KiB
multiload-apple r: 538 KiB w: 537 KiB
 sshd r: 71 KiB w: 72 KiB
pam_timestamp_c r: 138 KiB w: 0 KiB
 staprun r: 51 KiB w: 51 KiB
 snmpd r: 46 KiB w: 0 KiB
 pcscd r: 28 KiB w: 0 KiB
 irqbalance r: 27 KiB w: 4 KiB
 cupsd r: 4 KiB w: 18 KiB

 Xorg r: 588140 KiB w: 0 KiB
 floaters r: 97 KiB w: 7143 KiB
multiload-apple r: 543 KiB w: 542 KiB
 sshd r: 72 KiB w: 72 KiB
pam_timestamp_c r: 138 KiB w: 0 KiB
 staprun r: 51 KiB w: 51 KiB
 snmpd r: 46 KiB w: 0 KiB
 pcscd r: 28 KiB w: 0 KiB
 irqbalance r: 27 KiB w: 4 KiB
 cupsd r: 4 KiB w: 18 KiB

4.2.4. I/O Monitoring (By Device)

This section describes how to monitor I/O activity on a specific device.

traceio2.stp

#! /usr/bin/env stap

global device_of_interest, dev

probe begin {
 /* The following is not the most efficient way to do this.
 One could directly put the result of usrdev2kerndev()
 into device_of_interest. However, want to test out
 the other device functions */
 dev = usrdev2kerndev($1)
 device_of_interest = MKDEV(MAJOR(dev), MINOR(dev))
}

probe vfs.write, vfs.read
{
 if (dev == device_of_interest)
 printf ("%s(%d) %s 0x%x\n",
 execname(), pid(), probefunc(), dev)
}

traceio2.stp takes 1 argument: the whole device number. To get this number, use stat -c "0x%D"
directory, where directory is located in the device you wish to monitor.

SystemTap Beginners Guide

40

The usrdev2kerndev() function converts the whole device number into the format understood by the
kernel. The output produced by usrdev2kerndev() is used in conjunction with the MKDEV(), MINOR(),
and MAJOR() functions to determine the major and minor numbers of a specific device.

The output of traceio2.stp includes the name and ID of any process performing a read/write, the function it is
performing (i.e. vfs_read or vfs_write), and the kernel device number.

The following example is an excerpt from the full output of stap traceio2.stp 0x805, where 0x805 is
the whole device number of /home. /home resides in /dev/sda5, which is the device we wish to monitor.

Example 4.7. traceio2.stp Sample Output

[...]
synergyc(3722) vfs_read 0x800005
synergyc(3722) vfs_read 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
cupsd(2889) vfs_write 0x800005
[...]

4.2.5. Monitoring Reads and Writes to a File

This section describes how to monitor reads from and writes to a file in real time.

inodewatch-simple.stp

probe vfs.write, vfs.read
{
 dev_nr = $file->f_dentry->d_inode->i_sb->s_dev
 inode_nr = $file->f_dentry->d_inode->i_ino
 if (dev_nr == ($1 << 20 | $2) # major/minor device
 && inode_nr == $3)
 printf ("%s(%d) %s 0x%x/%u\n",
 execname(), pid(), probefunc(), dev_nr, inode_nr)
}

inodewatch-simple.stp takes the following information about the file as arguments on the command line:

The file's major device number.

The file's minor device number.

The file's inode number.

To get this information, use stat -c '%D %i' filename, where filename is an absolute path.

For instance: if you wish to monitor /etc/crontab, run stat -c '%D %i' /etc/crontab first. This
gives the following output:

805 1078319

Chapter 4. Useful SystemTap Scripts

41

805 is the base-16 (hexadecimal) device number. The lower two digits are the minor device number and the
upper digits are the major number. 1078319 is the inode number. To start monitoring /etc/crontab, run
stap inodewatch.stp 0x8 0x05 1078319 (The 0x prefixes indicate base-16 values.

The output of this command contains the name and ID of any process performing a read/write, the function it
is performing (i.e. vfs_read or vfs_write), the device number (in hex format), and the inode number.
Example 4.8, “inodewatch-simple.stp Sample Output” contains the output of stap inodewatch.stp 0x8
0x05 1078319 (when cat /etc/crontab is executed while the script is running) :

Example 4.8. inodewatch-simple.stp Sample Output

cat(16437) vfs_read 0x800005/1078319
cat(16437) vfs_read 0x800005/1078319

4.2.6. Monitoring Changes to File Attributes

This section describes how to monitor if any processes are changing the attributes of a targeted file, in real
time.

inodewatch2-simple.stp

global ATTR_MODE = 1

probe kernel.function("inode_setattr") {
 dev_nr = $inode->i_sb->s_dev
 inode_nr = $inode->i_ino

 if (dev_nr == ($1 << 20 | $2) # major/minor device
 && inode_nr == $3
 && $attr->ia_valid & ATTR_MODE)
 printf ("%s(%d) %s 0x%x/%u %o %d\n",
 execname(), pid(), probefunc(), dev_nr, inode_nr, $attr->ia_mode,
uid())
}

Like inodewatch-simple.stp from Section 4.2.5, “Monitoring Reads and Writes to a File”, inodewatch2-
simple.stp takes the targeted file's device number (in integer format) and inode number as arguments. For
more information on how to retrieve this information, refer to Section 4.2.5, “Monitoring Reads and Writes to a
File”.

The output for inodewatch2-simple.stp is similar to that of inodewatch-simple.stp, except that inodewatch2-
simple.stp also contains the attribute changes to the monitored file, as well as the ID of the user responsible
(uid()). Example 4.9, “inodewatch2-simple.stp Sample Output” contains shows the output of inodewatch2-
simple.stp while monitoring /home/joe/bigfile when user joe executes chmod 777
/home/joe/bigfile and chmod 666 /home/joe/bigfile.

Example 4.9. inodewatch2-simple.stp Sample Output

chmod(17448) inode_setattr 0x800005/6011835 100777 500
chmod(17449) inode_setattr 0x800005/6011835 100666 500

SystemTap Beginners Guide

42

4.3. Profiling

The following sections showcase scripts that profile kernel activity by monitoring function calls.

4.3.1. Counting Function Calls Made

This section describes how to identify how many times the system called a specific kernel function in a 30-
second sample. Depending on your use of wildcards, you can also use this script to target multiple kernel
functions.

functioncallcount.stp

#! /usr/bin/env stap
The following line command will probe all the functions
in kernel's memory management code:
#
stap functioncallcount.stp "*@mm/*.c"

probe kernel.function(@1).call { # probe functions listed on commandline
 called[probefunc()] <<< 1 # add a count efficiently
}

global called

probe end {
 foreach (fn in called-) # Sort by call count (in decreasing order)
 # (fn+ in called) # Sort by function name
 printf("%s %d\n", fn, @count(called[fn]))
 exit()
}

functioncallcount.stp takes the targeted kernel function as an argument. The argument supports wildcards,
which enables you to target multiple kernel functions up to a certain extent.

You can increase the sample time by editing the timer in the second probe (timer.ms()). The output of
functioncallcount.stp contains the name of the function called and how many times it was called during the
sample time (in alphabetical order). Example 4.10, “functioncallcount.stp Sample Output” contains an excerpt
from the output of stap countcalls.stp "*@mm/*.c":

Example 4.10. functioncallcount.stp Sample Output

[...]
__vma_link 97
__vma_link_file 66
__vma_link_list 97
__vma_link_rb 97
__xchg 103
add_page_to_active_list 102
add_page_to_inactive_list 19
add_to_page_cache 19
add_to_page_cache_lru 7

Chapter 4. Useful SystemTap Scripts

43

all_vm_events 6
alloc_pages_node 4630
alloc_slabmgmt 67
anon_vma_alloc 62
anon_vma_free 62
anon_vma_lock 66
anon_vma_prepare 98
anon_vma_unlink 97
anon_vma_unlock 66
arch_get_unmapped_area_topdown 94
arch_get_unmapped_exec_area 3
arch_unmap_area_topdown 97
atomic_add 2
atomic_add_negative 97
atomic_dec_and_test 5153
atomic_inc 470
atomic_inc_and_test 1
[...]

4.3.2. Call Graph Tracing

This section describes how to trace incoming and outgoing function calls.

para-callgraph-simple.stp

function trace(entry_p) {
 if(tid() in trace)
 printf("%s%s%s\n",thread_indent(entry_p),
 (entry_p>0?"->":"<-"),
 probefunc())
}

global trace
probe kernel.function(@1).call {
 if (execname() == "stapio") next # skip our own helper process
 trace[tid()] = 1
 trace(1)
}
probe kernel.function(@1).return {
 trace(-1)
 delete trace[tid()]
}

probe kernel.function(@2).call { trace(1) }
probe kernel.function(@2).return { trace(-1) }
function trace(entry_p) {
 if(tid() in trace)
 printf("%s%s%s\n",thread_indent(entry_p),
 (entry_p>0?"->":"<-"),
 probefunc())
}

global trace
probe kernel.function(@1).call {

SystemTap Beginners Guide

44

 if (execname() == "stapio") next # skip our own helper process
 trace[tid()] = 1
 trace(1)
}
probe kernel.function(@1).return {
 trace(-1)
 delete trace[tid()]
}

probe kernel.function(@2).call { trace(1) }
probe kernel.function(@2).return { trace(-1) }

para-callgraph-simple.stp takes two command-line arguments:

A trigger function (@1), which enables or disables tracing on a per-thread basis. Tracing in each thread
will continue as long as the trigger function has not exited yet.

The kernel function/s whose entry/exit call you'd like to trace (@2).

para-callgraph-simple.stp uses thread_indent(); as such, its output contains the timestamp, process
name, and thread ID of @2 (i.e. the probe function you are tracing). For more information about
thread_indent(), refer to its entry in SystemTap Functions.

The following example contains an excerpt from the output for stap para-callgraph.stp sys_read
'*@fs/*.c':

Example 4.11. para-callgraph-simple.stp Sample Output

[...]
 0 klogd(1391):->sys_read
 14 klogd(1391): ->fget_light
 22 klogd(1391): <-fget_light
 27 klogd(1391): ->vfs_read
 35 klogd(1391): ->rw_verify_area
 43 klogd(1391): <-rw_verify_area
 49 klogd(1391): ->kmsg_read
 0 sendmail(1696):->sys_read
 17 sendmail(1696): ->fget_light
 26 sendmail(1696): <-fget_light
 34 sendmail(1696): ->vfs_read
 44 sendmail(1696): ->rw_verify_area
 52 sendmail(1696): <-rw_verify_area
 58 sendmail(1696): ->proc_file_read
 70 sendmail(1696): ->loadavg_read_proc
 84 sendmail(1696): ->proc_calc_metrics
 92 sendmail(1696): <-proc_calc_metrics
 95 sendmail(1696): <-loadavg_read_proc
 101 sendmail(1696): <-proc_file_read
 106 sendmail(1696): ->dnotify_parent
 115 sendmail(1696): <-dnotify_parent
 119 sendmail(1696): ->inotify_dentry_parent_queue_event
 127 sendmail(1696): <-inotify_dentry_parent_queue_event

Chapter 4. Useful SystemTap Scripts

45

 133 sendmail(1696): ->inotify_inode_queue_event
 141 sendmail(1696): <-inotify_inode_queue_event
 146 sendmail(1696): <-vfs_read
 151 sendmail(1696):<-sys_read

4.3.3. Determining Time Spent in Kernel and User Space

This section illustrates how to determine the amount of time any given thread is spending in either kernel or
user-space.

thread-times.stp

#! /usr/bin/stap

probe timer.profile {
 tid=tid()
 if (!user_mode())
 kticks[tid] <<< 1
 else
 uticks[tid] <<< 1
 ticks <<< 1
 tids[tid] <<< 1
}

global uticks, kticks, ticks

global tids

probe timer.s(5), end {
 allticks = @count(ticks)
 printf ("%5s %7s %7s (of %d ticks)\n",
 "tid", "%user", "%kernel", allticks)
 foreach (tid in tids- limit 20) {
 uscaled = @count(uticks[tid])*10000/allticks
 kscaled = @count(kticks[tid])*10000/allticks
 printf ("%5d %3d.%02d%% %3d.%02d%%\n",
 tid, uscaled/100, uscaled%100, kscaled/100, kscaled%100)
 }
 printf("\n")

 delete uticks
 delete kticks
 delete ticks
 delete tids
}

thread-times.stp lists the top 20 processes currently taking up CPU time within a 5-second sample, along with
the total number of CPU ticks made during the sample. The output of this script also notes the percentage of
CPU time each process used, as well as whether that time was spent in kernel space or user space.

Example 4.12, “thread-times.stp Sample Output” contains a 5-second sample of the output for thread-
times.stp:

SystemTap Beginners Guide

46

Example 4.12. thread-times.stp Sample Output

 tid %user %kernel (of 20002 ticks)
 0 0.00% 87.88%
32169 5.24% 0.03%
 9815 3.33% 0.36%
 9859 0.95% 0.00%
 3611 0.56% 0.12%
 9861 0.62% 0.01%
11106 0.37% 0.02%
32167 0.08% 0.08%
 3897 0.01% 0.08%
 3800 0.03% 0.00%
 2886 0.02% 0.00%
 3243 0.00% 0.01%
 3862 0.01% 0.00%
 3782 0.00% 0.00%
21767 0.00% 0.00%
 2522 0.00% 0.00%
 3883 0.00% 0.00%
 3775 0.00% 0.00%
 3943 0.00% 0.00%
 3873 0.00% 0.00%

4.3.4. Monitoring Polling Applications

This section how to identify and monitor which applications are polling. Doing so allows you to track
unnecessary or excessive polling, which can help you pinpoint areas for improvement in terms of CPU usage
and power savings.

timeout.stp

#! /usr/bin/env stap
Copyright (C) 2009 Red Hat, Inc.
Written by Ulrich Drepper <drepper@redhat.com>
Modified by William Cohen <wcohen@redhat.com>

global process, timeout_count, to
global poll_timeout, epoll_timeout, select_timeout, itimer_timeout
global nanosleep_timeout, futex_timeout, signal_timeout

probe syscall.poll, syscall.epoll_wait {
 if (timeout) to[pid()]=timeout
}

probe syscall.poll.return {
 p = pid()
 if ($return == 0 && to[p] > 0) {
 poll_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 delete to[p]
 }
}

Chapter 4. Useful SystemTap Scripts

47

probe syscall.epoll_wait.return {
 p = pid()
 if ($return == 0 && to[p] > 0) {
 epoll_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 delete to[p]
 }
}

probe syscall.select.return {
 if ($return == 0) {
 p = pid()
 select_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe syscall.futex.return {
 if (errno_str($return) == "ETIMEDOUT") {
 p = pid()
 futex_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe syscall.nanosleep.return {
 if ($return == 0) {
 p = pid()
 nanosleep_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe kernel.function("it_real_fn") {
 p = pid()
 itimer_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
}

probe syscall.rt_sigtimedwait.return {
 if (errno_str($return) == "EAGAIN") {
 p = pid()
 signal_timeout[p]++
 timeout_count[p]++
 process[p] = execname()
 }
}

probe syscall.exit {
 p = pid()

SystemTap Beginners Guide

48

 if (p in process) {
 delete process[p]
 delete timeout_count[p]
 delete poll_timeout[p]
 delete epoll_timeout[p]
 delete select_timeout[p]
 delete itimer_timeout[p]
 delete futex_timeout[p]
 delete nanosleep_timeout[p]
 delete signal_timeout[p]
 }
}

probe timer.s(1) {
 ansi_clear_screen()
 printf (" pid | poll select epoll itimer futex nanosle signal|
process\n")
 foreach (p in timeout_count- limit 20) {
 printf ("%5d |%7d %7d %7d %7d %7d %7d %7d| %-.38s\n", p,
 poll_timeout[p], select_timeout[p],
 epoll_timeout[p], itimer_timeout[p],
 futex_timeout[p], nanosleep_timeout[p],
 signal_timeout[p], process[p])
 }
}

timeout.stp tracks how many times each application used the following system calls over time:

poll

select

epoll

itimer

futex

nanosleep

signal

In some applications, these system calls are used excessively. As such, they are normally identified as "likely
culprits" for polling applications. Note, however, that an application may be using a different system call to
poll excessively; sometimes, it is useful to find out the top system calls used by the system (refer to
Section 4.3.5, “Tracking Most Frequently Used System Calls” for instructions). Doing so can help you identify
any additional suspects, which you can add to timeout.stp for tracking.

Example 4.13. timeout.stp Sample Output

 uid | poll select epoll itimer futex nanosle signal| process
28937 | 148793 0 0 4727 37288 0 0| firefox
22945 | 0 56949 0 1 0 0 0| scim-
bridge
 0 | 0 0 0 36414 0 0 0| swapper

Chapter 4. Useful SystemTap Scripts

49

 4275 | 23140 0 0 1 0 0 0|
mixer_applet2
 4191 | 0 14405 0 0 0 0 0| scim-
launcher
22941 | 7908 1 0 62 0 0 0| gnome-
terminal
 4261 | 0 0 0 2 0 7622 0| escd
 3695 | 0 0 0 0 0 7622 0| gdm-
binary
 3483 | 0 7206 0 0 0 0 0| dhcdbd
 4189 | 6916 0 0 2 0 0 0| scim-
panel-gtk
 1863 | 5767 0 0 0 0 0 0| iscsid
 2562 | 0 2881 0 1 0 1438 0| pcscd
 4257 | 4255 0 0 1 0 0 0| gnome-
power-man
 4278 | 3876 0 0 60 0 0 0|
multiload-apple
 4083 | 0 1331 0 1728 0 0 0| Xorg
 3921 | 1603 0 0 0 0 0 0|
gam_server
 4248 | 1591 0 0 0 0 0 0| nm-
applet
 3165 | 0 1441 0 0 0 0 0| xterm
29548 | 0 1440 0 0 0 0 0| httpd
 1862 | 0 0 0 0 0 1438 0| iscsid

You can increase the sample time by editing the timer in the second probe (timer.s()). The output of
functioncallcount.stp contains the name and UID of the top 20 polling applications, along with how many
times each application performed each polling system call (over time). Example 4.13, “timeout.stp Sample
Output” contains an excerpt of the script:

4.3.5. Tracking Most Frequently Used System Calls

timeout.stp from Section 4.3.4, “Monitoring Polling Applications” helps you identify which applications are
polling by pointing out which ones used the following system calls most frequently:

poll

select

epoll

itimer

futex

nanosleep

signal

However, in some systems, a different system call might be responsible for excessive polling. If you suspect
that a polling application might is using a different system call to poll, you need to identify first the top system
calls used by the system. To do this, use topsys.stp.

topsys.stp

SystemTap Beginners Guide

50

#! /usr/bin/env stap
#
This script continuously lists the top 20 systemcalls in the interval
5 seconds
#

global syscalls_count

probe syscall.* {
 syscalls_count[name]++
}

function print_systop () {
 printf ("%25s %10s\n", "SYSCALL", "COUNT")
 foreach (syscall in syscalls_count- limit 20) {
 printf("%25s %10d\n", syscall, syscalls_count[syscall])
 }
 delete syscalls_count
}

probe timer.s(5) {
 print_systop ()
 printf("--
\n")
}

topsys.stp lists the top 20 system calls used by the system per 5-second interval. It also lists how many times
each system call was used during that period. Refer to Example 4.14, “topsys.stp Sample Output” for a
sample output.

Example 4.14. topsys.stp Sample Output

--
 SYSCALL COUNT
 gettimeofday 1857
 read 1821
 ioctl 1568
 poll 1033
 close 638
 open 503
 select 455
 write 391
 writev 335
 futex 303
 recvmsg 251
 socket 137
 clock_gettime 124
 rt_sigprocmask 121
 sendto 120
 setitimer 106
 stat 90

Chapter 4. Useful SystemTap Scripts

51

 time 81
 sigreturn 72
 fstat 66
--

4.3.6. Tracking System Call Volume Per Process

This section illustrates how to determine which processes are performing the highest volume of system calls.
In previous sections, we've described how to monitor the top system calls used by the system over time
(Section 4.3.5, “Tracking Most Frequently Used System Calls”). We've also described how to identify which
applications use a specific set of "polling suspect" system calls the most (Section 4.3.4, “Monitoring Polling
Applications”). Monitoring the volume of system calls made by each process provides more data in
investigating your system for polling processes and other resource hogs.

syscalls_by_proc.stp

#! /usr/bin/env stap

Copyright (C) 2006 IBM Corp.
#
This file is part of systemtap, and is free software. You can
redistribute it and/or modify it under the terms of the GNU General
Public License (GPL); either version 2, or (at your option) any
later version.

#
Print the system call count by process name in descending order.
#

global syscalls

probe begin {
 print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
 syscalls[execname()]++
}

probe end {
 printf ("%-10s %-s\n", "#SysCalls", "Process Name")
 foreach (proc in syscalls-)
 printf("%-10d %-s\n", syscalls[proc], proc)
}

syscalls_by_proc.stp lists the top 20 processes performing the highest number of system calls. It also lists
how many system calls each process performed during the time period. Refer to Example 4.15, “topsys.stp
Sample Output” for a sample output.

Example 4.15. topsys.stp Sample Output

Collecting data... Type Ctrl-C to exit and display results

SystemTap Beginners Guide

52

#SysCalls Process Name
1577 multiload-apple
692 synergyc
408 pcscd
376 mixer_applet2
299 gnome-terminal
293 Xorg
206 scim-panel-gtk
95 gnome-power-man
90 artsd
85 dhcdbd
84 scim-bridge
78 gnome-screensav
66 scim-launcher
[...]

If you prefer the output to display the process IDs instead of the process names, use the following script
instead.

syscalls_by_pid.stp

#! /usr/bin/env stap

Copyright (C) 2006 IBM Corp.
#
This file is part of systemtap, and is free software. You can
redistribute it and/or modify it under the terms of the GNU General
Public License (GPL); either version 2, or (at your option) any
later version.

#
Print the system call count by process ID in descending order.
#

global syscalls

probe begin {
 print ("Collecting data... Type Ctrl-C to exit and display results\n")
}

probe syscall.* {
 syscalls[pid()]++
}

probe end {
 printf ("%-10s %-s\n", "#SysCalls", "PID")
 foreach (pid in syscalls-)
 printf("%-10d %-d\n", syscalls[pid], pid)
}

As indicated in the output, you need to manually exit the script in order to display the results. You can add a
timed expiration to either script by simply adding a timer.s() probe; for example, to instruct the script to
expire after 5 seconds, add the following probe to the script:

Chapter 4. Useful SystemTap Scripts

53

probe timer.s(5)
{
 exit()
}

4.4. Identifying Contended User-Space Locks

This section describes how to identify contended user-space locks throughout the system within a specific
time period. The ability to identify contended user-space locks can help you investigate hangs that you
suspect may be caused by futex contentions.

Simply put, a futex contention occurs when multiple processes are trying to access the same region of
memory. In some cases, this can result in a deadlock between the processes in contention, thereby
appearing as an application hang.

To do this, futexes.stp probes the futex system call.

futexes.stp

#! /usr/bin/env stap

This script tries to identify contended user-space locks by hooking
into the futex system call.

global thread_thislock # short
global thread_blocktime #
global FUTEX_WAIT = 0 /*, FUTEX_WAKE = 1 */

global lock_waits # long-lived stats on (tid,lock) blockage elapsed time
global process_names # long-lived pid-to-execname mapping

probe syscall.futex {
 if (op != FUTEX_WAIT) next # don't care about WAKE event originator
 t = tid ()
 process_names[pid()] = execname()
 thread_thislock[t] = $uaddr
 thread_blocktime[t] = gettimeofday_us()
}

probe syscall.futex.return {
 t = tid()
 ts = thread_blocktime[t]
 if (ts) {
 elapsed = gettimeofday_us() - ts
 lock_waits[pid(), thread_thislock[t]] <<< elapsed
 delete thread_blocktime[t]
 delete thread_thislock[t]
 }
}

probe end {
 foreach ([pid+, lock] in lock_waits)
 printf ("%s[%d] lock %p contended %d times, %d avg us\n",
 process_names[pid], pid, lock, @count(lock_waits[pid,lock]),
 @avg(lock_waits[pid,lock]))

SystemTap Beginners Guide

54

}

futexes.stp needs to be manually stopped; upon exit, it prints the following information:

Name and ID of the process responsible for a contention

The region of memory it contested

How many times the region of memory was contended

Average time of contention throughout the probe

Example 4.16, “futexes.stp Sample Output” contains an excerpt from the output of futexes.stp upon exiting
the script (after approximately 20 seconds).

Example 4.16. futexes.stp Sample Output

[...]
automount[2825] lock 0x00bc7784 contended 18 times, 999931 avg us
synergyc[3686] lock 0x0861e96c contended 192 times, 101991 avg us
synergyc[3758] lock 0x08d98744 contended 192 times, 101990 avg us
synergyc[3938] lock 0x0982a8b4 contended 192 times, 101997 avg us
[...]

Chapter 4. Useful SystemTap Scripts

55

Chapter 5. Understanding SystemTap Errors

This chapter explains the most common errors you may encounter while using SystemTap.

5.1. Parse and Semantic Errors

These types of errors occur while SystemTap attempts to parse and translate the script into C, prior to being
converted into a kernel module. For example type errors result from operations that assign invalid values to
variables or arrays.

parse error: expected foo, saw bar

The script contains a grammatical/typographical error. SystemTap detected type of construct that is incorrect,
given the context of the probe.

The following invalid SystemTap script is missing its probe handlers:

probe vfs.read
probe vfs.write

It results in the following error message showing that the parser was expecting something other than the
probe keyword in column 1 of line 2:

parse error: expected one of '. , (? ! { = +='
 saw: keyword at perror.stp:2:1
1 parse error(s).

parse error: embedded code in unprivileged script

The script contains unsafe embedded C code (blocks of code surrounded by %{ %}. SystemTap allows you
to embed C code in a script, which is useful if there are no tapsets to suit your purposes. However, embedded
C constructs are not be safe; as such, SystemTap warns you with this error if such constructs appear in the
script.

If you are sure of the safety of any similar constructs in the script and are member of stapdev group (or have
root privileges), run the script in "guru" mode by using the option -g (i.e. stap -g script).

semantic error: type mismatch for identifier 'foo' ... string vs. long

The function foo in the script used the wrong type (i.e. %s or %d). This error will present itself in Example 5.1,
“error-variable.stp”, because the function execname() returns a string the format specifier should be a %s,
not %d.

Example 5.1. error-variable.stp

probe syscall.open
{
 printf ("%d(%d) open\n", execname(), pid())
}

SystemTap Beginners Guide

56

semantic error: unresolved type for identifier 'foo'

The identifier (e.g. a variable) was used, but no type (integer or string) could be determined. This occurs, for
instance, if you use a variable in a printf statement while the script never assigns a value to the variable.

semantic error: Expecting symbol or array index expression

SystemTap could not assign a value to a variable or to a location in an array. The destination for the
assignment is not a valid destination. The following example code would generate this error:

probe begin { printf("x") = 1 }

while searching for arity N function, semantic error: unresolved function call

A function call or array index expression in the script used an invalid number of arguments/parameters. In
SystemTap arity can either refer to the number of indices for an array, or the number of parameters to a
function.

semantic error: array locals not supported, missing global declaration?

The script used an array operation without declaring the array as a global variable (global variables can be
declared after their use in Systemtap scripts). Similar messages appear if an array is used, but with
inconsistent arities.

semantic error: variable ’foo’ modied during ’foreach’ iteration

The array foo is being modifed (being assigned to or deleted from) within an active foreach loop. This error
also displays if an operation within the script performs a function call within the foreach loop.

semantic error: probe point mismatch at position N, while resolving probe point foo

SystemTap did not understand what the event or SystemTap function foo refers to. This usually means that
SystemTap could not find a match for foo in the tapset library. The N refers to the line and column of the
error.

semantic error: no match for probe point, while resolving probe point foo

The events / handler function foo could not be resolved altogether, for a variety of reasons. This error occurs
when the script contains the event kernel.function("blah"), and blah does not exist. In some cases,
the error could also mean the script contains an invalid kernel file name or source line number.

semantic error: unresolved target-symbol expression

A handler in the script references a target variable, but the value of the variable could not be resolved. This
error could also mean that a handler is referencing a target variable that is not valid in the context when it
was referenced. This may be a result of compiler optimization of the generated code.

semantic error: libdw failure

There was a problem processing the debugging information. In most cases, this error results from the
installation of a kernel-debuginfo RPM whose version does not match the probed kernel exactly. The
installed kernel-debuginfo RPM itself may have some consistency / correctness problems.

semantic error: cannot find foo debuginfo

Chapter 5. Understanding SystemTap Errors

57

SystemTap could not find a suitable kernel-debuginfo at all.

5.2. Run Time Errors and Warnings

Runtime errors and warnings occur when the SystemTap instrumentation has been installed and is collecting
data on the system.

WARNING: Number of errors: N, skipped probes: M

Errors and/or skipped probes occurred during this run. Both N and M are the counts of the number of probes
that were not executed due to conditions such as too much time required to execute event handlers over an
interval of time.

division by 0

The script code performed an invalid division.

aggregate element not found

An statistics extractor function other than @count was invoked on an aggregate that has not had any values
accumulated yet. This is similar to a division by zero.

aggregation overflow

An array containing aggregate values contains too many distinct key pairs at this time.

MAXNESTING exceeded

Too many levels of function call nesting were attempted. The default nesting of function calls allowed is 10.

MAXACTION exceeded

The probe handler attempted to execute too many statements in the probe handler. The default number of
actions allow in a probe handler is 1000.

kernel/user string copy fault at ADDR

The probe handler attempted to copy a string from kernel or user space at an invalid address (ADDR).

pointer dereference fault

There was a fault encountered during a pointer dereference operation such as a target variable evaluation.

SystemTap Beginners Guide

58

Chapter 6. References

This chapter enumerates other references for more information about SystemTap. It is advisable that you
refer to these sources in the course of writing advanced probes and tapsets.

SystemTap Wiki

The SystemTap Wiki is a collection of links and articles related to the deployment, usage, and
development of SystemTap. You can find it in http://sourceware.org/systemtap/wiki/HomePage.

SystemTap Tutorial

Much of the content in this book comes from the SystemTap Tutorial. The SystemTap Tutorial is a
more appropriate reference for users with intermediate to advanced knowledge of C++ and kernel
development, and can be found at http://sourceware.org/systemtap/tutorial/.

man stapprobes

The stapprobes man page enumerates a variety of probe points supported by SystemTap, along
with additional aliases defined by the SystemTap tapset library. The bottom of the man page
includes a list of other man pages enumerating similar probe points for specific system
components, such as stapprobes.scsi, stapprobes.kprocess, stapprobes.signal, etc.

man stapfuncs

The stapfuncs man page enumerates numerous functions supported by the SystemTap tapset
library, along with the prescribed syntax for each one. Note, however, that this is not a complete list
of all supported functions; there are more undocumented functions available.

SystemTap Language Reference

This document is a comprehensive reference of SystemTap's language constructs and syntax. It is
recommended for users with a rudimentary to intermediate knowledge of C++ and other similar
programming languages. The SystemTap Language Reference is available to all users at
http://sourceware.org/systemtap/langref/

Tapset Developers Guide

Once you have sufficient proficiency in writing SystemTap scripts, you can then try your hand out
on writing your own tapsets. The Tapset Developers Guide describes how to add functions to your
tapset library.

Test Suite

The systemtap-testsuite package allows you to test the entire SystemTap toolchain without
having to build from source. In addition, it also contains numerous examples of SystemTap scripts
you can study and test; some of these scripts are also documented in Chapter 4, Useful
SystemTap Scripts.

By default, the example scripts included in systemtap-testsuite are located in
/usr/share/systemtap/testsuite/systemtap.examples.

Chapter 6. References

59

 http://sourceware.org/systemtap/wiki/HomePage
http://sourceware.org/systemtap/tutorial/
http://sourceware.org/systemtap/langref/

Appendix A. Revision History

Revision 1.0-10.400 2013-10-31 Rüdiger Landmann
Rebuild with publican 4.0.0

Revision 1.0-10 2012-07-18 Anthony Towns
Rebuild for Publican 3.0

Revision 1.0-0 Wed Jun 17 2009 Don Domingo
Building+pushing to RHEL

Index

Symbols
$count

- sample usage
- local variables, Tracking I/O Time For Each File Read or Write

$return
- sample usage

- local variables, Summarizing Disk Read/Write Traffic, Track Cumulative IO

@avg (integer extractor)
- computing for statistical aggregates

- array operations, Computing for Statistical Aggregates

@count (integer extractor)
- computing for statistical aggregates

- array operations, Computing for Statistical Aggregates

@max (integer extractor)
- computing for statistical aggregates

- array operations, Computing for Statistical Aggregates

@min (integer extractor)
- computing for statistical aggregates

- array operations, Computing for Statistical Aggregates

@sum (integer extractor)
- computing for statistical aggregates

- array operations, Computing for Statistical Aggregates

A
adding values to statistical aggregates

- computing for statistical aggregates
- array operations, Computing for Statistical Aggregates

advantages of cross-instrumentation, Generating Instrumentation for Other Computers

aggregate element not found
- runtime errors/warnings

SystemTap Beginners Guide

60

- understanding SystemTap errors, Run Time Errors and Warnings

aggregates (statistical)
- array operations, Computing for Statistical Aggregates

aggregation overflow
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

algebraic formulas using arrays
- reading values from arrays

- array operations, Reading Values From Arrays

architecture notation, determining, Generating Instrumentation for Other Computers

architecture of SystemTap, Architecture

array locals not supported
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

array operations
- assigning associated values, Assigning an Associated Value

- associating timestamps to process names, Assigning an Associated Value

- associative arrays, Array Operations in SystemTap
- clearing arrays/array elements, Clearing/Deleting Arrays and Array Elements

- delete operator, Clearing/Deleting Arrays and Array Elements
- multiple array operations within the same probe, Clearing/Deleting Arrays and
Array Elements
- virtual file system reads (non-cumulative), tallying, Clearing/Deleting Arrays and
Array Elements

- computing for statistical aggregates, Computing for Statistical Aggregates
- @avg (integer extractor), Computing for Statistical Aggregates
- @count (integer extractor), Computing for Statistical Aggregates
- @max (integer extractor), Computing for Statistical Aggregates
- @min (integer extractor), Computing for Statistical Aggregates
- @sum (integer extractor), Computing for Statistical Aggregates
- adding values to statistical aggregates, Computing for Statistical Aggregates
- count (operator), Computing for Statistical Aggregates
- extracting data collected by statistical aggregates, Computing for Statistical
Aggregates

- conditional statements, using arrays in, Using Arrays in Conditional Statements
- testing for array membership, Using Arrays in Conditional Statements

- deleting arrays and array elements, Clearing/Deleting Arrays and Array Elements
- incrementing associated values, Incrementing Associated Values

- tallying virtual file system reads (VFS reads), Incrementing Associated Values

- multiple elements in an array, Processing Multiple Elements in an Array
- processing multiple elements in an array, Processing Multiple Elements in an Array

- cumulative virtual file system reads, tallying, Processing Multiple Elements in an
Array
- foreach, Processing Multiple Elements in an Array
- iterations, processing elements in an array as, Processing Multiple Elements in
an Array

Appendix A. Revision History

61

- limiting the output of foreach, Processing Multiple Elements in an Array
- ordering the output of foreach, Processing Multiple Elements in an Array

- reading values from arrays, Reading Values From Arrays
- computing for timestamp deltas, Reading Values From Arrays
- empty unique keys, Reading Values From Arrays
- using arrays in simple computations, Reading Values From Arrays

arrays, Associative Arrays
- (see also associative arrays)

assigning associated values
- array operations, Assigning an Associated Value

- associating timestamps to process names, Assigning an Associated Value

- associating timestamps to process names
- array operations, Assigning an Associated Value

associated values
- introduction

- arrays, Associative Arrays

associating timestamps to process names
- assigning associated values

- array operations, Assigning an Associated Value

associative arrays
- introduction, Associative Arrays

- associated values, Associative Arrays
- example, Associative Arrays
- index expression, Associative Arrays
- key pairs, Associative Arrays
- syntax, Associative Arrays
- unique keys, Associative Arrays

asynchronous events
- Events, Event

B
begin

- Events, Event

building instrumentation modules from SystemTap scripts, Generating Instrumentation for
Other Computers

building kernel modules from SystemTap scripts, Generating Instrumentation for Other
Computers

C
call graph tracing

- examples of SystemTap scripts, Call Graph Tracing

capabilities of SystemTap
- Introduction, SystemTap Capabilities

changes to file attributes, monitoring

SystemTap Beginners Guide

62

- examples of SystemTap scripts, Monitoring Changes to File Attributes

clearing arrays/array elements
- array operations, Clearing/Deleting Arrays and Array Elements

- delete operator, Clearing/Deleting Arrays and Array Elements
- multiple array operations within the same probe, Clearing/Deleting Arrays and
Array Elements
- virtual file system reads (non-cumulative), tallying, Clearing/Deleting Arrays and
Array Elements

command-line arguments
- SystemTap handler constructs

- handlers, Command-Line Arguments

compiling instrumentation/kernel modules from SystemTap scripts, Generating Instrumentation
for Other Computers

components
- SystemTap scripts

- introduction, SystemTap Scripts

computing for statistical aggregates
- array operations, Computing for Statistical Aggregates

- @avg (integer extractor), Computing for Statistical Aggregates
- @count (integer extractor), Computing for Statistical Aggregates
- @max (integer extractor), Computing for Statistical Aggregates
- @min (integer extractor), Computing for Statistical Aggregates
- @sum (integer extractor), Computing for Statistical Aggregates
- adding values to statistical aggregates, Computing for Statistical Aggregates
- count (operator), Computing for Statistical Aggregates
- extracting data collected by statistical aggregates, Computing for Statistical
Aggregates

computing for timestamp deltas
- reading values from arrays

- array operations, Reading Values From Arrays

conditional operators
- conditional statements

- handlers, Conditional Statements

conditional statements, using arrays in
- array operations, Using Arrays in Conditional Statements

- testing for array membership, Using Arrays in Conditional Statements

CONFIG_HZ, computing for, Variables

contended user-space locks (futex contentions), identifying
- examples of SystemTap scripts, Identifying Contended User-Space Locks

copy fault
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

count operator
- computing for statistical aggregates

Appendix A. Revision History

63

- array (operator), Computing for Statistical Aggregates

counting function calls
- examples of SystemTap scripts, Counting Function Calls Made

CPU ticks
- examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

cpu()
- functions, Systemtap Handler/Body

cross-compiling, Generating Instrumentation for Other Computers

cross-instrumentation
- advantages of, Generating Instrumentation for Other Computers
- building kernel modules from SystemTap scripts, Generating Instrumentation for Other
Computers
- configuration

- host system and target system, Generating Instrumentation for Other Computers

- generating instrumentation from SystemTap scripts, Generating Instrumentation for Other
Computers
- host system, Generating Instrumentation for Other Computers
- instrumentation module, Generating Instrumentation for Other Computers
- target kernel, Generating Instrumentation for Other Computers
- target system, Generating Instrumentation for Other Computers

ctime()
- functions, Systemtap Handler/Body

ctime(), example of usage
- script examples, Summarizing Disk Read/Write Traffic

cumulative I/O, tracking
- examples of SystemTap scripts, Track Cumulative IO

cumulative virtual file system reads, tallying
- processing multiple elements in an array

- array operations, Processing Multiple Elements in an Array

D
delete operator

- clearing arrays/array elements
- array operations, Clearing/Deleting Arrays and Array Elements

determining architecture notation, Generating Instrumentation for Other Computers

determining the kernel version, Installing Required Kernel Information RPMs

determining time spent in kernel and user space
- examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

device I/O, monitoring
- examples of SystemTap scripts, I/O Monitoring (By Device)

device number of a file (integer format)
- examples of SystemTap scripts, Monitoring Reads and Writes to a File

SystemTap Beginners Guide

64

disk I/O traffic, summarizing
- script examples, Summarizing Disk Read/Write Traffic

division by 0
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

documentation goals
- Introduction, Documentation Goals

E
embedded code in unprivileged script

- parse/semantics error
- understanding SystemTap errors, Parse and Semantic Errors

empty unique keys
- reading values from arrays

- array operations, Reading Values From Arrays

end
- Events, Event

errors
- parse/semantics error, Parse and Semantic Errors

- embedded code in unprivileged script, Parse and Semantic Errors
- expected symbol/array index expression, Parse and Semantic Errors
- grammatical/typographical script error, Parse and Semantic Errors
- guru mode, Parse and Semantic Errors
- invalid values to variables/arrays, Parse and Semantic Errors
- libdwfl failure, Parse and Semantic Errors
- no match for probe point, Parse and Semantic Errors
- non-global arrays, Parse and Semantic Errors
- probe mismatch, Parse and Semantic Errors
- type mismatch for identifier, Parse and Semantic Errors
- unresolved function call, Parse and Semantic Errors
- unresolved target-symbol expression, Parse and Semantic Errors
- unresolved type for identifier, Parse and Semantic Errors
- variable modified during 'foreach', Parse and Semantic Errors

- runtime errors/warnings, Run Time Errors and Warnings
- aggregate element not found, Run Time Errors and Warnings
- aggregation overflow, Run Time Errors and Warnings
- copy fault, Run Time Errors and Warnings
- division by 0, Run Time Errors and Warnings
- MAXACTION exceeded, Run Time Errors and Warnings
- MAXNESTING exceeded, Run Time Errors and Warnings
- number of errors: N, skipped probes: M, Run Time Errors and Warnings
- pointer dereference fault, Run Time Errors and Warnings

event types
- Understanding How SystemTap Works, Understanding How SystemTap Works

Events
- asynchronous events, Event
- begin, Event

Appendix A. Revision History

65

- end, Event
- examples of synchronous and asynchronous events, Event
- introduction, Event
- kernel.function("function"), Event
- module("module"), Event
- synchronous events, Event
- syscall.system_call, Event
- timer events, Event
- vfs.file_operation, Event
- wildcards, Event

events and handlers, Understanding How SystemTap Works

events wildcards, Event

example
- introduction

- arrays, Associative Arrays

example of multiple command-line arguments
- examples of SystemTap scripts, Call Graph Tracing

examples of synchronous and asynchronous events
- Events, Event

examples of SystemTap scripts, Useful SystemTap Scripts
- call graph tracing, Call Graph Tracing
- CPU ticks, Determining Time Spent in Kernel and User Space
- ctime(), example of usage, Summarizing Disk Read/Write Traffic
- determining time spent in kernel and user space, Determining Time Spent in Kernel and
User Space
- file device number (integer format), Monitoring Reads and Writes to a File
- futex system call, Identifying Contended User-Space Locks
- identifying contended user-space locks (i.e. futex contentions), Identifying Contended User-
Space Locks
- if/else conditionals, alternative syntax, Network Profiling
- inode number, Monitoring Reads and Writes to a File
- monitoring changes to file attributes, Monitoring Changes to File Attributes
- monitoring device I/O, I/O Monitoring (By Device)
- monitoring I/O time, Tracking I/O Time For Each File Read or Write
- monitoring incoming TCP connections, Monitoring Incoming TCP Connections
- monitoring polling applications, Monitoring Polling Applications
- monitoring reads and writes to a file, Monitoring Reads and Writes to a File
- monitoring system calls, Tracking Most Frequently Used System Calls
- monitoring system calls (volume per process), Tracking System Call Volume Per Process
- multiple command-line arguments, example of, Call Graph Tracing
- net/socket.c, tracing functions from, Tracing Functions Called in Network Socket Code
- network profiling, Network Profiling
- process deadlocks (arising from futex contentions), Identifying Contended User-Space
Locks
- stat -c, determining file device number (integer format), Monitoring Reads and Writes to a
File
- stat -c, determining whole device number, I/O Monitoring (By Device)
- summarizing disk I/O traffic, Summarizing Disk Read/Write Traffic
- tallying function calls, Counting Function Calls Made
- thread_indent(), sample usage, Call Graph Tracing
- timer.ms(), sample usage, Counting Function Calls Made

SystemTap Beginners Guide

66

- timer.s(), sample usage, Monitoring Polling Applications, Tracking Most Frequently Used
System Calls
- tracing functions called in network socket code, Tracing Functions Called in Network
Socket Code
- tracking cumulative I/O, Track Cumulative IO
- trigger function, Call Graph Tracing
- usrdev2kerndev(), I/O Monitoring (By Device)
- whole device number (usage as a command-line argument), I/O Monitoring (By Device)

exceeded MAXACTION
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

exceeded MAXNESTING
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

exit()
- functions, Systemtap Handler/Body

expected symbol/array index expression
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

extracting data collected by statistical aggregates
- computing for statistical aggregates

- array operations, Computing for Statistical Aggregates

F
file attributes, monitoring changes to

- examples of SystemTap scripts, Monitoring Changes to File Attributes

file device number (integer format)
- examples of SystemTap scripts, Monitoring Reads and Writes to a File

file reads/writes, monitoring
- examples of SystemTap scripts, Monitoring Reads and Writes to a File

for loops
- conditional statements

- handlers, Conditional Statements

foreach
- processing multiple elements in an array

- array operations, Processing Multiple Elements in an Array

format
- introduction

- arrays, Associative Arrays

format and syntax
- printf(), Systemtap Handler/Body
- SystemTap handler constructs

- handlers, Variables

Appendix A. Revision History

67

- SystemTap scripts
- introduction, SystemTap Scripts

format specifiers
- printf(), Systemtap Handler/Body

format strings
- printf(), Systemtap Handler/Body

function call (unresolved)
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

function calls (incoming/outgoing), tracing
- examples of SystemTap scripts, Call Graph Tracing

function calls, tallying
- examples of SystemTap scripts, Counting Function Calls Made

functions, Systemtap Handler/Body
- cpu(), Systemtap Handler/Body
- ctime(), Systemtap Handler/Body
- gettimeofday_s(), Systemtap Handler/Body
- pp(), Systemtap Handler/Body
- SystemTap scripts

- introduction, SystemTap Scripts

- target(), Systemtap Handler/Body
- thread_indent(), Systemtap Handler/Body
- tid(), Systemtap Handler/Body
- uid(), Systemtap Handler/Body

functions (used in handlers)
- exit(), Systemtap Handler/Body

functions called in network socket code, tracing
- examples of SystemTap scripts, Tracing Functions Called in Network Socket Code

futex contention, definition
- examples of SystemTap scripts, Identifying Contended User-Space Locks

futex contentions, identifying
- examples of SystemTap scripts, Identifying Contended User-Space Locks

futex system call
- examples of SystemTap scripts, Identifying Contended User-Space Locks

G
gettimeofday_s()

- functions, Systemtap Handler/Body

global
- SystemTap handler constructs

- handlers, Variables

SystemTap Beginners Guide

68

goals, documentation
- Introduction, Documentation Goals

grammatical/typographical script error
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

guru mode
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

H
handler functions, Systemtap Handler/Body

handlers
- conditional statements, Conditional Statements

- conditional operators, Conditional Statements
- for loops, Conditional Statements
- if/else, Conditional Statements
- while loops, Conditional Statements

- introduction, Systemtap Handler/Body
- SystemTap handler constructs, Basic SystemTap Handler Constructs

- command-line arguments, Command-Line Arguments
- global, Variables
- syntax and format, Basic SystemTap Handler Constructs
- variable notations, Command-Line Arguments
- variables, Variables

handlers and events, Understanding How SystemTap Works
- SystemTap scripts

- introduction, SystemTap Scripts

heaviest disk reads/writes, identifying
- script examples, Summarizing Disk Read/Write Traffic

host system
- cross-instrumentation, Generating Instrumentation for Other Computers

host system and target system
- cross-instrumentation

- configuration, Generating Instrumentation for Other Computers

I
I/O monitoring (by device)

- examples of SystemTap scripts, I/O Monitoring (By Device)

I/O time, monitoring
- examples of SystemTap scripts, Tracking I/O Time For Each File Read or Write

I/O traffic, summarizing
- script examples, Summarizing Disk Read/Write Traffic

identifier type mismatch
- parse/semantics error

Appendix A. Revision History

69

- understanding SystemTap errors, Parse and Semantic Errors

identifying contended user-space locks (i.e. futex contentions)
- examples of SystemTap scripts, Identifying Contended User-Space Locks

identifying heaviest disk reads/writes
- script examples, Summarizing Disk Read/Write Traffic

if/else
- conditional statements

- handlers, Conditional Statements

if/else conditionals, alternative syntax
- examples of SystemTap scripts, Network Profiling

if/else statements, using arrays in
- array operations, Using Arrays in Conditional Statements

incoming TCP connections, monitoring
- examples of SystemTap scripts, Monitoring Incoming TCP Connections

incoming/outgoing function calls, tracing
- examples of SystemTap scripts, Call Graph Tracing

incrementing associated values
- array operations, Incrementing Associated Values

- tallying virtual file system reads (VFS reads), Incrementing Associated Values

index expression
- introduction

- arrays, Associative Arrays

initial testing, Initial Testing

inode number
- examples of SystemTap scripts, Monitoring Reads and Writes to a File

Installation
- initial testing, Initial Testing
- kernel information packages, Installing Required Kernel Information RPMs
- kernel version, determining the, Installing Required Kernel Information RPMs
- required packages, Installing Required Kernel Information RPMs
- rheldebugurl.sh, Installing Required Kernel Information RPMs
- Setup and Installation, Installation and Setup
- systemtap package, Installing SystemTap
- systemtap-runtime package, Installing SystemTap

instrumentation module
- cross-instrumentation, Generating Instrumentation for Other Computers

instrumentation modules from SystemTap scripts, building, Generating Instrumentation for
Other Computers

integer extractors
- computing for statistical aggregates

- array operations, Computing for Statistical Aggregates

SystemTap Beginners Guide

70

Introduction
- capabilities of SystemTap, SystemTap Capabilities
- documentation goals, Documentation Goals
- goals, documentation, Documentation Goals
- limitations of SystemTap, SystemTap Capabilities
- performance monitoring, Introduction

invalid division
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

invalid values to variables/arrays
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

iterations, processing elements in an array as
- processing multiple elements in an array

- array operations, Processing Multiple Elements in an Array

K
kernel and user space, determining time spent in

- examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

kernel information packages, Installing Required Kernel Information RPMs

kernel modules from SystemTap scripts, building, Generating Instrumentation for Other
Computers

kernel version, determining the, Installing Required Kernel Information RPMs

kernel.function("function")
- Events, Event

key pairs
- introduction

- arrays, Associative Arrays

L
libdwfl failure

- parse/semantics error
- understanding SystemTap errors, Parse and Semantic Errors

limitations of SystemTap
- Introduction, SystemTap Capabilities

limiting the output of foreach
- processing multiple elements in an array

- array operations, Processing Multiple Elements in an Array

local variables
- name, Systemtap Handler/Body
- sample usage

- $count, Tracking I/O Time For Each File Read or Write
- $return, Summarizing Disk Read/Write Traffic, Track Cumulative IO

M

Appendix A. Revision History

71

MAXACTION exceeded
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

MAXNESTING exceeded
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

membership (in array), testing for
- conditional statements, using arrays in

- array operations, Using Arrays in Conditional Statements

module("module")
- Events, Event

monitoring changes to file attributes
- examples of SystemTap scripts, Monitoring Changes to File Attributes

monitoring cumulative I/O
- examples of SystemTap scripts, Track Cumulative IO

monitoring device I/O
- examples of SystemTap scripts, I/O Monitoring (By Device)

monitoring I/O time
- examples of SystemTap scripts, Tracking I/O Time For Each File Read or Write

monitoring incoming TCP connections
- examples of SystemTap scripts, Monitoring Incoming TCP Connections

monitoring polling applications
- examples of SystemTap scripts, Monitoring Polling Applications

monitoring reads and writes to a file
- examples of SystemTap scripts, Monitoring Reads and Writes to a File

monitoring system calls
- examples of SystemTap scripts, Tracking Most Frequently Used System Calls

monitoring system calls (volume per process)
- examples of SystemTap scripts, Tracking System Call Volume Per Process

multiple array operations within the same probe
- clearing arrays/array elements

- array operations, Clearing/Deleting Arrays and Array Elements

multiple command-line arguments, example of
- examples of SystemTap scripts, Call Graph Tracing

multiple elements in an array
- array operations, Processing Multiple Elements in an Array

N
name

SystemTap Beginners Guide

72

- local variables, Systemtap Handler/Body

net/socket.c, tracing functions from
- examples of SystemTap scripts, Tracing Functions Called in Network Socket Code

network profiling
- examples of SystemTap scripts, Network Profiling

network socket code, tracing functions called in
- examples of SystemTap scripts, Tracing Functions Called in Network Socket Code

network traffic, monitoring
- examples of SystemTap scripts, Network Profiling

no match for probe point
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

non-global arrays
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

number of errors: N, skipped probes: M
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

O
operations

- assigning associated values
- associating timestamps to process names, Assigning an Associated Value

- associative arrays, Array Operations in SystemTap
- clearing arrays/array elements, Clearing/Deleting Arrays and Array Elements

- delete operator, Clearing/Deleting Arrays and Array Elements
- multiple array operations within the same probe, Clearing/Deleting Arrays and
Array Elements
- virtual file system reads (non-cumulative), tallying, Clearing/Deleting Arrays and
Array Elements

- computing for statistical aggregates, Computing for Statistical Aggregates
- @avg (integer extractor), Computing for Statistical Aggregates
- @count (integer extractor), Computing for Statistical Aggregates
- @max (integer extractor), Computing for Statistical Aggregates
- @min (integer extractor), Computing for Statistical Aggregates
- @sum (integer extractor), Computing for Statistical Aggregates
- adding values to statistical aggregates, Computing for Statistical Aggregates
- count (operator), Computing for Statistical Aggregates
- extracting data collected by statistical aggregates, Computing for Statistical
Aggregates

- conditional statements, using arrays in, Using Arrays in Conditional Statements
- testing for array membership, Using Arrays in Conditional Statements

- deleting arrays and array elements, Clearing/Deleting Arrays and Array Elements
- incrementing associated values, Incrementing Associated Values

- tallying virtual file system reads (VFS reads), Incrementing Associated Values

Appendix A. Revision History

73

- multiple elements in an array, Processing Multiple Elements in an Array
- processing multiple elements in an array, Processing Multiple Elements in an Array

- cumulative virtual file system reads, tallying, Processing Multiple Elements in an
Array
- foreach, Processing Multiple Elements in an Array
- iterations, processing elements in an array as, Processing Multiple Elements in
an Array
- limiting the output of foreach, Processing Multiple Elements in an Array
- ordering the output of foreach, Processing Multiple Elements in an Array

- reading values from arrays, Reading Values From Arrays
- computing for timestamp deltas, Reading Values From Arrays
- empty unique keys, Reading Values From Arrays
- using arrays in simple computations, Reading Values From Arrays

options, stap
- Usage, Running SystemTap Scripts

ordering the output of foreach
- processing multiple elements in an array

- array operations, Processing Multiple Elements in an Array

overflow of aggregation
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

P
packages required to run SystemTap, Installing Required Kernel Information RPMs

parse/semantics error
- understanding SystemTap errors, Parse and Semantic Errors

- embedded code in unprivileged script, Parse and Semantic Errors
- expected symbol/array index expression, Parse and Semantic Errors
- grammatical/typographical script error, Parse and Semantic Errors
- guru mode, Parse and Semantic Errors
- invalid values to variables/arrays, Parse and Semantic Errors
- libdwfl failure, Parse and Semantic Errors
- no match for probe point, Parse and Semantic Errors
- non-global arrays, Parse and Semantic Errors
- probe mismatch, Parse and Semantic Errors
- type mismatch for identifier, Parse and Semantic Errors
- unresolved function call, Parse and Semantic Errors
- unresolved target-symbol expression, Parse and Semantic Errors
- unresolved type for identifier, Parse and Semantic Errors
- variable modified during 'foreach', Parse and Semantic Errors

performance monitoring
- Introduction, Introduction

pointer dereference fault
- runtime errors/warnings

- understanding SystemTap errors, Run Time Errors and Warnings

polling applications, monitoring
- examples of SystemTap scripts, Monitoring Polling Applications

SystemTap Beginners Guide

74

pp()
- functions, Systemtap Handler/Body

printf()
- format specifiers, Systemtap Handler/Body
- format strings, Systemtap Handler/Body
- syntax and format, Systemtap Handler/Body

printing I/O activity (cumulative)
- examples of SystemTap scripts, Track Cumulative IO

probe mismatch
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

probe point (no match for)
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

probes
- SystemTap scripts

- introduction, SystemTap Scripts

process deadlocks (arising from futex contentions)
- examples of SystemTap scripts, Identifying Contended User-Space Locks

processing multiple elements in an array
- array operations, Processing Multiple Elements in an Array
- cumulative virtual file system reads, tallying

- array operations, Processing Multiple Elements in an Array

- foreach
- array operations, Processing Multiple Elements in an Array

- limiting the output of foreach
- array operations, Processing Multiple Elements in an Array

- ordering the output of foreach
- array operations, Processing Multiple Elements in an Array

profiling the network
- examples of SystemTap scripts, Network Profiling

R
reading values from arrays

- array operations, Reading Values From Arrays
- empty unique keys, Reading Values From Arrays
- using arrays in simple computations, Reading Values From Arrays

- computing for timestamp deltas
- array operations, Reading Values From Arrays

reads/writes to a file, monitoring
- examples of SystemTap scripts, Monitoring Reads and Writes to a File

Appendix A. Revision History

75

required packages, Installing Required Kernel Information RPMs

rheldebugurl.sh, Installing Required Kernel Information RPMs

RPMs required to run SystemTap, Installing Required Kernel Information RPMs

running scripts from standard input, Running SystemTap Scripts

running SystemTap scripts
- Usage, Running SystemTap Scripts

runtime errors/warnings
- understanding SystemTap errors, Run Time Errors and Warnings

- aggregate element not found, Run Time Errors and Warnings
- aggregation overflow, Run Time Errors and Warnings
- copy fault, Run Time Errors and Warnings
- division by 0, Run Time Errors and Warnings
- MAXACTION exceeded, Run Time Errors and Warnings
- MAXNESTING exceeded, Run Time Errors and Warnings
- number of errors: N, skipped probes: M, Run Time Errors and Warnings
- pointer dereference fault, Run Time Errors and Warnings

S
script examples

- call graph tracing, Call Graph Tracing
- CPU ticks, Determining Time Spent in Kernel and User Space
- ctime(), example of usage, Summarizing Disk Read/Write Traffic
- determining time spent in kernel and user space, Determining Time Spent in Kernel and
User Space
- file device number (integer format), Monitoring Reads and Writes to a File
- futex system call, Identifying Contended User-Space Locks
- identifying contended user-space locks (i.e. futex contentions), Identifying Contended User-
Space Locks
- if/else conditionals, alternative syntax, Network Profiling
- inode number, Monitoring Reads and Writes to a File
- monitoring changes to file attributes, Monitoring Changes to File Attributes
- monitoring device I/O, I/O Monitoring (By Device)
- monitoring I/O time, Tracking I/O Time For Each File Read or Write
- monitoring incoming TCP connections, Monitoring Incoming TCP Connections
- monitoring polling applications, Monitoring Polling Applications
- monitoring reads and writes to a file, Monitoring Reads and Writes to a File
- monitoring system calls, Tracking Most Frequently Used System Calls
- monitoring system calls (volume per process), Tracking System Call Volume Per Process
- multiple command-line arguments, example of, Call Graph Tracing
- net/socket.c, tracing functions from, Tracing Functions Called in Network Socket Code
- network profiling, Network Profiling
- process deadlocks (arising from futex contentions), Identifying Contended User-Space
Locks
- stat -c, determining file device number (integer format), Monitoring Reads and Writes to a
File
- stat -c, determining whole device number, I/O Monitoring (By Device)
- summarizing disk I/O traffic, Summarizing Disk Read/Write Traffic
- tallying function calls, Counting Function Calls Made
- thread_indent(), sample usage, Call Graph Tracing
- timer.ms(), sample usage, Counting Function Calls Made
- timer.s(), sample usage, Monitoring Polling Applications, Tracking Most Frequently Used
System Calls

SystemTap Beginners Guide

76

- tracing functions called in network socket code, Tracing Functions Called in Network
Socket Code
- tracking cumulative I/O, Track Cumulative IO
- trigger function, Call Graph Tracing
- usrdev2kerndev(), I/O Monitoring (By Device)
- whole device number (usage as a command-line argument), I/O Monitoring (By Device)

scripts
- introduction, SystemTap Scripts

- components, SystemTap Scripts
- events and handlers, SystemTap Scripts
- format and syntax, SystemTap Scripts
- functions, SystemTap Scripts
- probes, SystemTap Scripts
- statement blocks, SystemTap Scripts

sessions, SystemTap, Architecture

Setup and Installation, Installation and Setup

standard input, running scripts from
- Usage, Running SystemTap Scripts

stap
- Usage, Running SystemTap Scripts

stap options, Running SystemTap Scripts

stapdev
- Usage, Running SystemTap Scripts

staprun
- Usage, Running SystemTap Scripts

stapusr
- Usage, Running SystemTap Scripts

stat -c, determining file device number (integer format)
- examples of SystemTap scripts, Monitoring Reads and Writes to a File

stat -c, determining whole device number
- examples of SystemTap scripts, I/O Monitoring (By Device)

statement blocks
- SystemTap scripts

- introduction, SystemTap Scripts

statistical aggregates
- array operations, Computing for Statistical Aggregates

summarizing disk I/O traffic
- script examples, Summarizing Disk Read/Write Traffic

synchronous events
- Events, Event

Appendix A. Revision History

77

syntax
- introduction

- arrays, Associative Arrays

syntax and format
- printf(), Systemtap Handler/Body
- SystemTap handler constructs

- handlers, Basic SystemTap Handler Constructs

- SystemTap scripts
- introduction, SystemTap Scripts

syscall.system_call
- Events, Event

system calls volume (per process), monitoring
- examples of SystemTap scripts, Tracking System Call Volume Per Process

system calls, monitoring
- examples of SystemTap scripts, Tracking Most Frequently Used System Calls

SystemTap architecture, Architecture

SystemTap handlers
- SystemTap handler constructs, Basic SystemTap Handler Constructs

- syntax and format, Basic SystemTap Handler Constructs

systemtap package, Installing SystemTap

SystemTap script functions, Systemtap Handler/Body

SystemTap scripts
- introduction, SystemTap Scripts

- components, SystemTap Scripts
- events and handlers, SystemTap Scripts
- format and syntax, SystemTap Scripts
- functions, SystemTap Scripts
- probes, SystemTap Scripts
- statement blocks, SystemTap Scripts

- useful examples, Useful SystemTap Scripts

SystemTap scripts, how to run, Running SystemTap Scripts

SystemTap sessions, Architecture

SystemTap statements
- conditional statements, Conditional Statements

- conditional operators, Conditional Statements
- for loops, Conditional Statements
- if/else, Conditional Statements
- while loops, Conditional Statements

- SystemTap handler constructs
- command-line arguments, Command-Line Arguments
- global, Variables
- variable notations, Command-Line Arguments
- variables, Variables

SystemTap Beginners Guide

78

systemtap-runtime package, Installing SystemTap

systemtap-testsuite package
- sample scripts, Useful SystemTap Scripts

T
tallying function calls

- examples of SystemTap scripts, Counting Function Calls Made

tallying virtual file system reads (VFS reads)
- incrementing associated values

- array operations, Incrementing Associated Values

Tapsets
- definition of, Tapsets

target kernel
- cross-instrumentation, Generating Instrumentation for Other Computers

target system
- cross-instrumentation, Generating Instrumentation for Other Computers

target system and host system
- configuration, Generating Instrumentation for Other Computers

target()
- functions, Systemtap Handler/Body

target-symbol expression, unresolved
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

TCP connections (incoming), monitoring
- examples of SystemTap scripts, Monitoring Incoming TCP Connections

testing for array membership
- conditional statements, using arrays in

- array operations, Using Arrays in Conditional Statements

testing, initial, Initial Testing

thread_indent()
- functions, Systemtap Handler/Body

thread_indent(), sample usage
- examples of SystemTap scripts, Call Graph Tracing

tid()
- functions, Systemtap Handler/Body

time of I/O
- examples of SystemTap scripts, Tracking I/O Time For Each File Read or Write

time spent in kernel/user space, determining
- examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

Appendix A. Revision History

79

timer events
- Events, Event

timer.ms(), sample usage
- examples of SystemTap scripts, Counting Function Calls Made

timer.s(), sample usage
- examples of SystemTap scripts, Monitoring Polling Applications, Tracking Most Frequently
Used System Calls

timestamp deltas, computing for
- reading values from arrays

- array operations, Reading Values From Arrays

timestamps, association thereof to process names
- assigning associated values

- array operations, Assigning an Associated Value

tracing call graph
- examples of SystemTap scripts, Call Graph Tracing

tracing functions called in network socket code
- examples of SystemTap scripts, Tracing Functions Called in Network Socket Code

tracing incoming/outgoing function calls
- examples of SystemTap scripts, Call Graph Tracing

tracking cumulative I/O
- examples of SystemTap scripts, Track Cumulative IO

trigger function
- examples of SystemTap scripts, Call Graph Tracing

type mismatch for identifier
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

typographical script error
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

U
uid()

- functions, Systemtap Handler/Body

uname -m, Generating Instrumentation for Other Computers

uname -r, Installing Required Kernel Information RPMs

Understanding How SystemTap Works, Understanding How SystemTap Works
- architecture, Architecture
- event types, Understanding How SystemTap Works
- events and handlers, Understanding How SystemTap Works
- SystemTap sessions, Architecture

SystemTap Beginners Guide

80

understanding SystemTap errors
- parse/semantics error, Parse and Semantic Errors

- embedded code in unprivileged script, Parse and Semantic Errors
- expected symbol/array index expression, Parse and Semantic Errors
- grammatical/typographical script error, Parse and Semantic Errors
- guru mode, Parse and Semantic Errors
- invalid values to variables/arrays, Parse and Semantic Errors
- libdwfl failure, Parse and Semantic Errors
- no match for probe point, Parse and Semantic Errors
- non-global arrays, Parse and Semantic Errors
- probe mismatch, Parse and Semantic Errors
- type mismatch for identifier, Parse and Semantic Errors
- unresolved function call, Parse and Semantic Errors
- unresolved target-symbol expression, Parse and Semantic Errors
- unresolved type for identifier, Parse and Semantic Errors
- variable modified during 'foreach', Parse and Semantic Errors

- runtime errors/warnings, Run Time Errors and Warnings
- aggregate element not found, Run Time Errors and Warnings
- aggregation overflow, Run Time Errors and Warnings
- copy fault, Run Time Errors and Warnings
- division by 0, Run Time Errors and Warnings
- MAXACTION exceeded, Run Time Errors and Warnings
- MAXNESTING exceeded, Run Time Errors and Warnings
- number of errors: N, skipped probes: M, Run Time Errors and Warnings
- pointer dereference fault, Run Time Errors and Warnings

unique keys
- introduction

- arrays, Associative Arrays

unprivileged script, embedded code in
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

unresolved function call
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

unresolved target-symbol expression
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

unresolved type for identifier
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

unsafe embedded code in unprivileged script
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

Usage
- options, stap, Running SystemTap Scripts
- running SystemTap scripts, Running SystemTap Scripts
- standard input, running scripts from, Running SystemTap Scripts

Appendix A. Revision History

81

- stap, Running SystemTap Scripts
- stapdev, Running SystemTap Scripts
- staprun, Running SystemTap Scripts
- stapusr, Running SystemTap Scripts

useful examples of SystemTap scripts, Useful SystemTap Scripts

user and kernel space, determining time spent in
- examples of SystemTap scripts, Determining Time Spent in Kernel and User Space

using arrays in simple computations
- reading values from arrays

- array operations, Reading Values From Arrays

Using SystemTap, Using SystemTap

usrdev2kerndev()
- examples of SystemTap scripts, I/O Monitoring (By Device)

V
values, assignment of

- array operations, Assigning an Associated Value

variable modified during 'foreach'
- parse/semantics error

- understanding SystemTap errors, Parse and Semantic Errors

variable notations
- SystemTap handler constructs

- handlers, Command-Line Arguments

variables
- SystemTap handler constructs

- handlers, Variables

variables (local)
- name, Systemtap Handler/Body
- sample usage

- $count, Tracking I/O Time For Each File Read or Write
- $return, Summarizing Disk Read/Write Traffic, Track Cumulative IO

VFS reads, tallying of
- incrementing associated values

- array operations, Incrementing Associated Values

vfs.file_operation
- Events, Event

virtual file system reads (cumulative), tallying
- processing multiple elements in an array

- array operations, Processing Multiple Elements in an Array

virtual file system reads (non-cumulative), tallying
- clearing arrays/array elements

- array operations, Clearing/Deleting Arrays and Array Elements

SystemTap Beginners Guide

82

W
while loops

- conditional statements
- handlers, Conditional Statements

whole device number (usage as a command-line argument)
- examples of SystemTap scripts, I/O Monitoring (By Device)

wildcards in events, Event

writes/reads to a file, monitoring
- examples of SystemTap scripts, Monitoring Reads and Writes to a File

Appendix A. Revision History

83

	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Documentation Goals
	1.2. SystemTap Capabilities

	Chapter 2. Using SystemTap
	2.1. Installation and Setup
	2.1.1. Installing SystemTap
	2.1.2. Installing Required Kernel Information RPMs
	2.1.3. Initial Testing

	2.2. Generating Instrumentation for Other Computers
	2.3. Running SystemTap Scripts

	Chapter 3. Understanding How SystemTap Works
	3.1. Architecture
	3.2. SystemTap Scripts
	3.2.1. Event
	3.2.2. Systemtap Handler/Body

	3.3. Basic SystemTap Handler Constructs
	3.3.1. Variables
	3.3.2. Conditional Statements
	3.3.3. Command-Line Arguments

	3.4. Associative Arrays
	3.5. Array Operations in SystemTap
	3.5.1. Assigning an Associated Value
	3.5.2. Reading Values From Arrays
	3.5.3. Incrementing Associated Values
	3.5.4. Processing Multiple Elements in an Array
	3.5.5. Clearing/Deleting Arrays and Array Elements
	3.5.6. Using Arrays in Conditional Statements
	3.5.7. Computing for Statistical Aggregates

	3.6. Tapsets

	Chapter 4. Useful SystemTap Scripts
	4.1. Network
	4.1.1. Network Profiling
	4.1.2. Tracing Functions Called in Network Socket Code
	4.1.3. Monitoring Incoming TCP Connections

	4.2. Disk
	4.2.1. Summarizing Disk Read/Write Traffic
	4.2.2. Tracking I/O Time For Each File Read or Write
	4.2.3. Track Cumulative IO
	4.2.4. I/O Monitoring (By Device)
	4.2.5. Monitoring Reads and Writes to a File
	4.2.6. Monitoring Changes to File Attributes

	4.3. Profiling
	4.3.1. Counting Function Calls Made
	4.3.2. Call Graph Tracing
	4.3.3. Determining Time Spent in Kernel and User Space
	4.3.4. Monitoring Polling Applications
	4.3.5. Tracking Most Frequently Used System Calls
	4.3.6. Tracking System Call Volume Per Process

	4.4. Identifying Contended User-Space Locks

	Chapter 5. Understanding SystemTap Errors
	5.1. Parse and Semantic Errors
	5.2. Run Time Errors and Warnings

	Chapter 6. References
	Appendix A. Revision History
	Index

