& RedHat

Red Hat Decision Manager 7.13

Developing decision services in Red Hat
Decision Manager

Last Updated: 2024-03-14






Red Hat Decision Manager 7.13 Developing decision services in Red Hat
Decision Manager




Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document describes how to develop decision services with Red Hat Decision Manager using
Decision Model and Notation (DMN) models, Drools Rule Language (DRL) files, guided decision
tables, and other decision-authoring assets.



Table of Contents

Table of Contents

[ 3 2 Y o P n
MAKING OPEN SOURCE MORE INCLUSIVE ..ttt ittt ettt et eaeeaneeraneeaneeeaneeeaness 12
PART |. DESIGNING A DECISION SERVICEUSING DMN MODELS  .....iiitiiiiiiiiiiiiiienneennnnns 13
CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER  ............coovvvna.. 14
CHAPTER 2. RED HAT DECISION MANAGER BPMN ANDDMN MODELERS  ..... ..ottt 18
2.1. INSTALLING THE RED HAT DECISION MANAGER VS CODE EXTENSION BUNDLE 18
2.2. CONFIGURING THE RED HAT DECISION MANAGER STANDALONE EDITORS 19
CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN ................... 23
CHAPTER 4. DECISION MODEL AND NOTATION (DMN) .ttt ittt eie e eeaeaneenneenn, 25
4.1. DMN CONFORMANCE LEVELS 25
4.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS 25
4.3. RULE EXPRESSIONS IN FEEL 29
4.3.1. Data typesin FEEL 30
4.3.2. Built-in functions in FEEL 34
4.3.2.1. Conversion functions 35
4.3.2.2. Boolean functions 39
4.3.2.3. String functions 39
4.3.2.4. List functions 44
4.3.2.4.1. Loop statements 52

4.3.2.5. Numeric functions 53
4.3.2.6. Date and time functions 57
4.3.2.7. Range functions 57
4.3.2.8. Temporal functions 65
4.3.2.9. Sort functions 67
4.3.2.10. Context functions 67

4.3.3. Variable and function names in FEEL 68

4.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS 69
4.4.1. DMN decision tables 69
4.4.1.1. Hit policies in DMN decision tables 71

4.4.2. Boxed literal expressions 72
4.4.3. Boxed context expressions 72
4.4.4, Boxed relation expressions 73
4.4.5. Boxed function expressions 74
4.4.6. Boxed invocation expressions 76
4.4.7. Boxed list expressions 77

4.5. DMN MODEL EXAMPLE 78
CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER ... ittt iiiieieiienneenn, 87
5.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION MANAGER 88
5.2. CONFIGURABLE DMN VALIDATION IN RED HAT DECISION MANAGER 89
CHAPTER 6. CREATING AND EDITING DMN MODELSINBUSINESSCENTRAL .....cctviiiiiiiennnnn, 92
6.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN BUSINESS CENTRAL 100
6.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED EXPRESSIONS IN BUSINESS CENTRAL 109
6.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL 119
6.3.1. Including other DMN models within a DMN file in Business Central 19
6.3.2. Including PMML models within a DMN file in Business Central 122



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

6.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN BUSINESS CENTRAL
6.5. DMN MODEL DOCUMENTATION IN BUSINESS CENTRAL
6.6. DMN DESIGNER NAVIGATION AND PROPERTIES IN BUSINESS CENTRAL

CHAPTER7.DMN MODEL EXECUTION ..o e e i

7.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION

7.2. EXECUTING A DMN SERVICE USING THE KIE SERVER JAVA CLIENT API
7.3. EXECUTING A DMN SERVICE USING THE KIE SERVER REST API
7.4.REST ENDPOINTS FOR SPECIFIC DMN MODELS

CHAPTER 8. ADDITIONAL RESOURCES ... i i i e
PART Il. DESIGNING A DECISION SERVICE USING PMML MODELS  ............ciiiiiiiiiiiiin..,
CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER ...................

CHAPTER 10. PREDICTIVE MODEL MARKUP LANGUAGE (PMML) ... ..o

10.1. PMML CONFORMANCE LEVELS

CHAPTER 1. PMML MODEL EXAMPLES ... i i i e e

CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER ...

12.1. PMML TRUSTY SUPPORT AND NAMING CONVENTIONS IN RED HAT DECISION MANAGER
Known limitations of PMML trusty implementation

12.2. PMML LEGACY SUPPORT AND NAMING CONVENTIONS IN RED HAT DECISION MANAGER
12.2.1. PMML extensions in Red Hat Decision Manager

CHAPTER13. PMML MODEL EXECUTION .. .. i i i e

13.1. EMBEDDING A PMML TRUSTY CALL DIRECTLY IN A JAVA APPLICATION

13.2. EMBEDDING A PMML LEGACY CALL DIRECTLY IN A JAVA APPLICATION
13.2.1. PMML execution helper class

13.3. EXECUTING A PMML MODEL USING KIE SERVER

CHAPTER14. ADDITIONAL RESOURCES ... . i e e it
PART Ill. DESIGNING A DECISION SERVICEUSING DRLRULES ...
CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER  ..................

CHAPTER16. DRL (DROOLS RULE LANGUAGE) RULES ... ... i

16.1. PACKAGES IN DRL
16.2. IMPORT STATEMENTS IN DRL
16.3. FUNCTIONS IN DRL
16.4. QUERIES IN DRL
16.5. TYPE DECLARATIONS AND METADATA IN DRL
16.5.1. Type declarations without metadata in DRL
16.5.2. Enumerative type declarations in DRL
16.5.3. Extended type declarations in DRL
16.5.4. Type declarations with metadata in DRL
16.5.5. Metadata tags for fact type and attribute declarations in DRL
16.5.6. Property-change settings and listeners for fact types
16.5.7. Access to DRL declared types in application code
16.6. GLOBAL VARIABLES IN DRL
16.7. RULE ATTRIBUTES IN DRL
16.7.1. Timer and calendar rule attributes in DRL
16.8. RULE CONDITIONS IN DRL (WHEN)
16.8.1. Patterns and constraints

128
133
134

141
141
143
146
151

182
182
184
188

191

198

199



Table of Contents

16.8.2. Bound variables in patterns and constraints 231
16.8.3. Nested constraints and inline casts 232
16.8.4. Date literal in constraints 233
16.8.5. Supported operators in DRL pattern constraints 233
16.8.6. Operator precedence in DRL pattern constraints 237
16.8.7. Supported rule condition elements in DRL (keywords) 238
16.8.8. OOPath syntax with graphs of objects in DRL rule conditions 248
16.9. RULE ACTIONS IN DRL (THEN) 251
16.9.1. Supported rule action methods in DRL 252
16.9.2. Other rule action methods from drools variable 254
16.9.3. Advanced rule actions with conditional and named consequences 255
16.10. COMMENTS IN DRL FILES 257
16.11. ERROR MESSAGES FOR DRL TROUBLESHOOTING 257
CHAPTER 17. DAT A OBUE C T S ittt ettt ettt ettt et aa e aneeeaeennneeaneeeaneenaneennnns 262
17.1. CREATING DATA OBJECTS 262
CHAPTER 18. CREATING DRL RULES IN BUSINESS CENTRAL .. ..tiiiitiiiieiii i eaieennneennnns 264
18.1. ADDING WHEN CONDITIONS IN DRL RULES 268
18.2. ADDING THEN ACTIONS IN DRL RULES 272
CHAPTER19. EXECUTING RULES ... . ittt itii ittt ei et enaeeeaneeraneenaneennnns 274
CHAPTER 20. OTHER METHODS FOR CREATING AND EXECUTING DRLRULES ...................... 280
20.1. CREATING AND EXECUTING DRL RULES USING JAVA 280
20.2. CREATING AND EXECUTING DRL RULES USING MAVEN 283
CHAPTER 21. EXAMPLE DECISIONS IN RED HAT DECISION MANAGERFORANIDE .................. 289
21.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE 289
21.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING) 292
21.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION) 295
State example using salience 298
State example using agenda groups 301
Dynamic facts in the State example 302
21.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION) 303
21.5. PRICING EXAMPLE DECISIONS (DECISION TABLES) 309
Spreadsheet decision table setup 310
Base pricing rules 313
Promotional discount rules 314
21.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION) 314
Rule execution behavior in the Pet Store example 315
Pet Store rule file imports, global variables, and Java functions 317
Pet Store rules with agenda groups 318
Pet Store example execution 322
21.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE) 326
Politician and Hope classes 327
Rule definitions for politician honesty 328
Example execution and audit trail 329
21.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION) 332
Sudoku example execution and interaction 332
Sudoku example classes 338
Sudoku validation rules (validate.drl) 338



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Sudoku solving rules (sudoku.drl) 339
21.9. CONWAY'S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION) 346
Conway example execution and interaction 347
Conway example rules with ruleflow groups 348
21.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION) 352
Recursive query and related rules 356
Transitive closure rule 357
Reactive query rule 358
Queries with unbound arguments in rules 359
CHAPTER 22. PERFORMANCE TUNING CONSIDERATIONS WITHDRL .. ...iiiiiiiiiii i, 361
CHAPTER 23. NEXT STE P S oottt ittt e it e e et et aneeanneeaneeraneennneennnns 365
PART IV. DESIGNING A DECISION SERVICE USING GUIDED DECISIONTABLES  ..........ccvvviinnn.. 366
CHAPTER 24. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER .................... 367
CHAPTER 25. GUIDED DECISION TABLES ...ttt it e et ettt e i eieeaneennnenns 371
CHAPTER 26. DAT A OBUE CT S ittt ettt ettt et eeae e aaeeeaneeeaneennneeaneesaneesaneennnns 372
26.1. CREATING DATA OBJECTS 372
CHAPTER 27. CREATING GUIDED DECISION TABLES ...ttt iie et aieenneennnes 374
CHAPTER 28. HIT POLICIES FOR GUIDED DECISION TABLES ...ttt iiiieeieeineennees 376
28.1. HIT POLICY EXAMPLES: DECISION TABLE FOR DISCOUNTS ON MOVIE TICKETS 377
28.1.1. Types of guided decision tables 379
CHAPTER 29. ADDING COLUMNS TO GUIDED DECISION TABLES .. ...ttt eaeens 381
CHAPTER 30. TYPES OF COLUMNS IN GUIDED DECISION TABLES ....ciiiiiiiiiiii i, 383
30.1."ADD A CONDITION" 383
30.1.1. Inserting an any other value in condition column cells 385
30.2."ADD A CONDITION BRL FRAGMENT" 385
30.3."ADD A METADATA COLUMN" 388
30.4."ADD AN ACTION BRL FRAGMENT" 388
30.5."ADD AN ATTRIBUTE COLUMN" 391
30.6. "DELETE AN EXISTING FACT" 392
30.7."EXECUTE A WORK ITEM" 392
30.8."SET THE VALUE OF A FIELD" 393
30.9."SET THE VALUE OF A FIELD WITH A WORK ITEM RESULT" 393
CHAPTER 31. VIEWING RULE NAME COLUMN IN GUIDED DECISIONTABLES ..........cciiiiiinenn... 395
CHAPTER 32. SORTING COLUMN VALUES IN GUIDED DECISIONTABLES ........ciiiiiiiiiiieennn.. 396
CHAPTER 33. EDITING OR DELETING COLUMNS IN GUIDED DECISIONTABLES  ...........c.ccvv..... 397
CHAPTER 34. ADDING ROWS AND DEFINING RULES IN GUIDED DECISIONTABLES  ................. 398
CHAPTER 35. DEFINING ENUMERATIONS FOR DROP-DOWN LISTSINRULE ASSETS ................ 400
35.1. ADVANCED ENUMERATION OPTIONS FOR RULE ASSETS 401
CHAPTER 36. REAL-TIME VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES .......... 404
36.1. TYPES OF PROBLEMS IN GUIDED DECISION TABLES 404
36.2. TYPES OF NOTIFICATIONS 405
36.3. DISABLING VERIFICATION AND VALIDATION OF GUIDED DECISION TABLES 405



Table of Contents

CHAPTER 37. CONVERTING A GUIDED DECISION TABLE TO A SPREADSHEET DECISION TABLE .... 407
CHAPTER 38. EXECUTING RULES ... i i e e et 408
CHAPTER 30. NEXT STEPS .o i i i it i it 414
PART V. DESIGNING A DECISION SERVICE USING SPREADSHEET DECISIONTABLES ................ 415
CHAPTER 40. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER  .............. .. ..., 416
CHAPTER 41. SPREADSHEET DECISION TABLES ... i e 420
CHAPTER 42, DAT A OBUEC T S i i i e i i et et i 421

42.1. CREATING DATA OBJECTS 421
CHAPTER 43.DECISION TABLEUSE CASE .. ... i i 423
CHAPTER 44. DEFINING SPREADSHEET DECISION TABLES ... ... i 425

44.1. RULESET DEFINITIONS 427

44.2. RULETABLE DEFINITIONS 429

44.3. ADDITIONAL RULE ATTRIBUTES FOR RULESET OR RULETABLE DEFINITIONS 432
CHAPTER 45. UPLOADING SPREADSHEET DECISION TABLES TO BUSINESS CENTRAL  ............. 435

CHAPTER 46. CONVERTING AN UPLOADED SPREADSHEET DECISION TABLE TO A GUIDED DECISION

TABLE IN BUSINESS CENT RAL 1.ttt ettt ittt eateeaneeenneeannesaneesaneeenneeaneennns 436
CHAPTER 47. EXECUTING RULES ... ittt itett et anteeaeennneeaneeraneennneennnns 437
CHAPTER 48. NEXT STE P S oottt ettt ettt et et et aeenneeeaneeeaneennneennnns 443
PART VI. DESIGNING A DECISION SERVICEUSING GUIDEDRULES ........c.iiiiiiiiiiiiiiiiiieennnn, 444
CHAPTER 49. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER  ................... 445
CHAPTER S0. GUIDED RULES ...t ittiitttitteittteiteeaeeaateeaneeeaneennneeaneesaneesnneennnns 449
CHAPTER 51 DAT A OBUEC T S ittt ittt ettt ettt ettt ete ettt taneeeaneennneeaneeraneesaneennnns 450
51.1. CREATING DATA OBJECTS 450
CHAPTER52. CREATING GUIDED RULES .. ..ttt ittt eit e i eie e ennneennens 452
52.1. ADDING WHEN CONDITIONS IN GUIDED RULES 453
52.2. ADDING THEN ACTIONS IN GUIDED RULES 456
52.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS 459
52.3.1. Advanced enumeration options for rule assets 460
52.4. ADDING OTHER RULE OPTIONS 462
52.4.1. Rule attributes 463
CHAPTERGS3. EXECUTING RULES ...ttt ittt it ei et eaeennneeaneeeaneennneennnns 466
CHAPTER 54, NEXT ST EP S .ottt e it et e et anteeaeeanneeaneeeaneenaneennnns 472
PART VII. DESIGNING A DECISION SERVICE USING GUIDED RULETEMPLATES ........ccoviviinnnn. 473
CHAPTER 55. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER  .................... 474
CHAPTER 56. GUIDED RULE TEMP LATES .ttt ittt et eiteeaeennneeaneeraneeraneennens 478
CHAPTER 57. DAT A OBUE CT S ittt ittt ettt ettt ettt et aateeaneeeaneennneeaneesaneesaneennnns 479
57.1. CREATING DATA OBJECTS 479



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 58. CREATING GUIDED RULE TEMPLATES ...ttt eieeaineeaneeenneennnens 481
58.1. ADDING WHEN CONDITIONS IN GUIDED RULE TEMPLATES 482
58.2. ADDING THEN ACTIONS IN GUIDED RULE TEMPLATES 485
58.3. DEFINING ENUMERATIONS FOR DROP-DOWN LISTS IN RULE ASSETS 487

58.3.1. Advanced enumeration options for rule assets 489
58.4. ADDING OTHER RULE OPTIONS 490
58.4.1. Rule attributes 491

CHAPTER 59. DEFINING DATA TABLES FORGUIDED RULE TEMPLATES ......ciiiiiiii e, 494

CHAPTER 60. EXECUTING RULES ... iittttitttiittteiteieenieeaeeeaneennneeaneeeaneesaneennnns 497

CHAPTER BT NEXT ST E P S ..ottt ittt ettt ettt et ettt et e eaneennneeaneeeaneesnneennnns 503

PART VIIl. TESTING A DECISION SERVICE USING TESTSCENARIOS  ......iiiiiiiiiiiiiiiiieiennns 504

CHAPTER 62. TEST SCENARIOS .o ittt ettt e ett e aeeaaeeeaneeraneennneennnns 505

CHAPTER 63. DAT A OBUEC TS ittt ettt ettt ettt et eaneeeaneeeaneennneeaneeeaneeeaneennnns 506
63.1. CREATING DATA OBJECTS 506

CHAPTER 64. TEST SCENARIOS DESIGNERIN BUSINESS CENTRAL  ...ciittiiiiiiiiiiiiineennne, 508
64.1. IMPORTING DATA OBJECTS 508
64.2. IMPORTING A TEST SCENARIO 509
64.3. SAVING A TEST SCENARIO 509
64.4. COPYING A TEST SCENARIO 509
64.5. DOWNLOADING A TEST SCENARIO 510
64.6. SWITCHING BETWEEN VERSIONS OF A TEST SCENARIO 510
64.7. VIEW OR HIDE THE ALERTS PANEL 510
64.8. CONTEXTUAL MENU OPTIONS 511
64.9. GLOBAL SETTINGS FOR TEST SCENARIOS 512

64.9.1. Configuring global settings for rule-based test scenarios 512
64.9.2. Configuring global settings for DMN-based test scenarios 513

CHAPTER 65. TEST SCENARIO TEMP LATE ...ttt it ettt ee et anneeaneeenneennnens 514
65.1. CREATING A TEST SCENARIO TEMPLATE FOR RULE-BASED TEST SCENARIOS 514
65.2. USING ALIASES IN RULE-BASED TEST SCENARIOS 515

CHAPTER 66. TEST TEMPLATE FORDMN-BASED TESTSCENARIOS ...ttt 516
66.1. CREATING A TEST SCENARIO TEMPLATE FOR DMN-BASED TEST SCENARIOS 516

CHAPTER 67.DEFINING A TEST SCENARIO ...ttt it eet et eaeeaneeraneennneenn 517

CHAPTER 68. BACKGROUND INSTANCEIN TESTSCENARIOS ..ottt iiieenennnens 518
68.1. ADDING A BACKGROUND DATA IN RULE-BASED TEST SCENARIOS 518
68.2. ADDING A BACKGROUND DATA IN DMN-BASED TEST SCENARIOS 519

CHAPTER 69. USING LIST AND MAP COLLECTIONSINTESTSCENARIOS .. ....c.iiiiiiiiiiinnnnn. 521

CHAPTER 70. EXPRESSION SYNTAXIN TEST SCENARIOS ...ttt ieieaieenneennnes 523
70.1. EXPRESSION SYNTAX IN RULE-BASED TEST SCENARIOS 523
70.2. EXPRESSION SYNTAX IN DMN-BASED TEST SCENARIOS 524

CHAPTER 71. RUNNING THE TEST SCENARIOS ...ttt ieit et ieieiteraneernneennnns 526

CHAPTER 72. RUNNING A TEST SCENARIO LOCALLY ..ttt eiieeieaneennneennnes 527

CHAPTER 73. EXPORTING AND IMPORTING TEST SCENARIO SPREADSHEETS ..........cccvvvenn... 528



Table of Contents

73.1. EXPORTING A TEST SCENARIO SPREADSHEET 528
73.2. IMPORTING A TEST SCENARIO SPREADSHEET 528
CHAPTER 74. COVERAGE REPORTS FOR TEST SCENARIOS ... ittt iiiie et eanns 529
74.1. GENERATING COVERAGE REPORTS FOR RULE-BASED TEST SCENARIOS 529
74.2. GENERATING COVERAGE REPORTS FOR DMN-BASED TEST SCENARIOS 530
CHAPTER 75. EXECUTING A TEST SCENARIO USING THE KIESERVERRESTAPI ........ccoiivvvenn... 531
CHAPTER 76. CREATING TEST SCENARIO USING THE SAMPLE MORTGAGES PROJECT ............ 539
CHAPTER 77. TEST SCENARIOS (LEGACY) DESIGNERIN BUSINESS CENTRAL  ........c.iviiivnenn... 542
77.1. CREATING AND RUNNING A TEST SCENARIO (LEGACY) 542
77.1.1. Adding GIVEN facts in test scenarios (legacy) 544
77.1.2. Adding EXPECT results in test scenarios (legacy) 545
CHAPTER 78. FEATURE COMPARISON OF LEGACY AND NEW TEST SCENARIO DESIGNER .......... 548
CHAPTER 7. NEXT STE P S .ottt ettt ettt ettt et eae et eeaneennneeaneeeaneesaneennens 552
PART IX. DECISION ENGINE IN RED HAT DECISION MANAGER ... ittt eiiiiee et 553
CHAPTER 80. DECISION ENGINE IN RED HAT DECISION MANAGER ... .. ittt 554
CHAPTER 81 KIE SESSIONS ..ottt ittt ettt e e aneeeeanneeeessannaneessennnneeennns 555
81.1. STATELESS KIE SESSIONS 555
81.1.1. Global variables in stateless KIE sessions 558
81.2. STATEFUL KIE SESSIONS 559
81.3. KIE SESSION POOLS 562
CHAPTER 82. INFERENCE AND TRUTH MAINTENANCE IN THE DECISIONENGINE ................... 564
82.1. FACT EQUALITY MODES IN THE DECISION ENGINE 568
CHAPTER 83. EXECUTION CONTROL INTHEDECISIONENGINE .......ciitiiiiiiiiiiiiiiiiinennnn 570
83.1. SALIENCE FOR RULES 570
83.2. AGENDA GROUPS FOR RULES 571
83.3. ACTIVATION GROUPS FOR RULES 572
83.4. RULE EXECUTION MODES AND THREAD SAFETY IN THE DECISION ENGINE 573
83.5. FACT PROPAGATION MODES IN THE DECISION ENGINE 575
83.6. AGENDA EVALUATION FILTERS 576
CHAPTER 84. PHREAK RULE ALGORITHMIN THEDECISIONENGINE .........c.oiiiiiiiiiiiiinennn.. 577
84.1. RULE EVALUATION IN PHREAK 577
84.1.1. Rule evaluation with forward and backward chaining 581
84.2. RULE BASE CONFIGURATION 582
84.3. SEQUENTIAL MODE IN PHREAK 584
CHAPTER 85. COMPLEX EVENT PROCESSING (CEP) ...ttt ittt ieie e enneennnes 587
85.1. EVENTS IN COMPLEX EVENT PROCESSING 588
85.2. DECLARING FACTS AS EVENTS 588
85.3. METADATA TAGS FOR EVENTS 589
85.4. EVENT PROCESSING MODES IN THE DECISION ENGINE 591
85.4.1. Negative patterns in decision engine stream mode 593
85.5. PROPERTY-CHANGE SETTINGS AND LISTENERS FOR FACT TYPES 594
85.6. TEMPORAL OPERATORS FOR EVENTS 597
85.7. SESSION CLOCK IMPLEMENTATIONS IN THE DECISION ENGINE 605
85.8. EVENT STREAMS AND ENTRY POINTS 607



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

85.8.1. Declaring entry points for rule data 607
85.9. SLIDING WINDOWS OF TIME OR LENGTH 609
85.9.1. Declaring sliding windows for rule data 609
85.10. MEMORY MANAGEMENT FOR EVENTS 610
CHAPTER 86. DECISION ENGINE QUERIESAND LIVEQUERIES ..ottt iieiiiee e 612
CHAPTER 87. DECISION ENGINE EVENT LISTENERS AND DEBUG LOGGING ...........coiivveennnn., 614
87.1. PRACTICES FOR DEVELOPMENT OF EVENT LISTENERS 615
CHAPTER 88. CONFIGURING A LOGGING UTILITY IN THEDECISIONENGINE  ............ccooiiinat., 616
CHAPTER 89. EXAMPLE DECISIONS IN RED HAT DECISION MANAGERFORANIDE .................. 617
89.1. IMPORTING AND EXECUTING RED HAT DECISION MANAGER EXAMPLE DECISIONS IN AN IDE 617
89.2. HELLO WORLD EXAMPLE DECISIONS (BASIC RULES AND DEBUGGING) 620
89.3. STATE EXAMPLE DECISIONS (FORWARD CHAINING AND CONFLICT RESOLUTION) 623
State example using salience 626
State example using agenda groups 629
Dynamic facts in the State example 630
89.4. FIBONACCI EXAMPLE DECISIONS (RECURSION AND CONFLICT RESOLUTION) 631
89.5. PRICING EXAMPLE DECISIONS (DECISION TABLES) 637
Spreadsheet decision table setup 638
Base pricing rules 641
Promotional discount rules 642
89.6. PET STORE EXAMPLE DECISIONS (AGENDA GROUPS, GLOBAL VARIABLES, CALLBACKS, AND GUI
INTEGRATION) 642
Rule execution behavior in the Pet Store example 643
Pet Store rule file imports, global variables, and Java functions 645
Pet Store rules with agenda groups 646
Pet Store example execution 650
89.7. HONEST POLITICIAN EXAMPLE DECISIONS (TRUTH MAINTENANCE AND SALIENCE) 654
Politician and Hope classes 655
Rule definitions for politician honesty 656
Example execution and audit trail 657
89.8. SUDOKU EXAMPLE DECISIONS (COMPLEX PATTERN MATCHING, CALLBACKS, AND GUI
INTEGRATION) 660
Sudoku example execution and interaction 660
Sudoku example classes 666
Sudoku validation rules (validate.drl) 666
Sudoku solving rules (sudoku.drl) 667
89.9. CONWAY'S GAME OF LIFE EXAMPLE DECISIONS (RULEFLOW GROUPS AND GUI INTEGRATION)
674
Conway example execution and interaction 675
Conway example rules with ruleflow groups 676
89.10. HOUSE OF DOOM EXAMPLE DECISIONS (BACKWARD CHAINING AND RECURSION) 680
Recursive query and related rules 684
Transitive closure rule 685
Reactive query rule 686
Queries with unbound arguments in rules 687
CHAPTER 90. PERFORMANCE TUNING CONSIDERATIONS WITH THE DECISION ENGINE  ............ 689
CHAPTER 91. ADDITIONAL RESOURCES ... tttiitttitttitt et eaeeenneeanneeanneeaneeenneennnens 691
PART X. INTEGRATING MACHINE LEARNING WITH RED HAT DECISION MANAGER .................. 692



Table of Contents

CHAPTER 92. PRAGMATIC Al i e i i e et i et 693
CHAPTER 93. CREDIT CARD FRAUD DISPUTEUSE CASE ... .. i 696
93.1. USING A PMML MODEL WITH A DMN MODEL TO RESOLVE CREDIT CARD TRANSACTION DISPUTES
696
93.2. CREDIT CARD TRANSACTION DISPUTE EXERCISE PMML FILE 706
CHAPTER 94. ADDITIONAL RESOURCES ... . i i ettt 715
APPENDIX A. VERSIONING INFORMATION ... i et 716
APPENDIX B. CONTACT INFORMATION .. e i 717



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

10



PREFACE

PREFACE

As a developer of business decisions, you can use Red Hat Decision Manager to develop decision
services using Decision Model and Notation (DMN) models, Drools Rule Language (DRL) rules, guided
decision tables, and other rule-authoring assets.

1



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message .

12


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

PART I. DESIGNING A DECISION SERVICE USING DMN MODELS

PART |. DESIGNING A DECISION SERVICE USING DMN
MODELS

As a business analyst or business rules developer, you can use Decision Model and Notation (DMN) to
model a decision service graphically. The decision requirements of a DMN decision model are
determined by a decision requirements graph (DRG) that is depicted in one or more decision
requirements diagrams (DRDs). A DRD can represent part or all of the overall DRG for the DMN model.
DRDs trace business decisions from start to finish, with each decision node using logic defined in DMN
boxed expressions such as decision tables.

Red Hat Decision Manager provides runtime support for DMN 1.1, 1.2, 1.3, and 1.4 models at conformance
level 3, and design support for DMN 1.2 models at conformance level 3. You can design your DMN
models directly in Business Central or with the Red Hat Decision Manager DMN modeler in VS Code, or
import existing DMN models into your Red Hat Decision Manager projects for deployment and
execution. Any DMN 1.1and 1.3 models (do not contain DMN 1.3 features) that you import into Business
Central, open in the DMN designer, and save are converted to DMN 1.2 models.

For more information about DMN, see the Object Management Group (OMG) Decision Model and
Notation specification.

For a step-by-step tutorial with an example DMN decision service, see Getting started with decision
services.

13


https://www.omg.org/spec/DMN
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 1.1. Decision-authoring assets supported in Red Hat Decision Manager

Highlights Authoring tools Documentation
Decision Model . Business Central Designing a
. ® Are decision models based on a . .
and Notation . . or other DMN- decision service
notation standard defined by the ) ) )
(DMN) models Object Management Group compliant editor using DMN models

(OMG)

® Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

® Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

e Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

® Are optimal for creating

comprehensive, illustrative, and
stable decision flows

14


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights

Authoring tools Documentation

Guided decision
tables

Spreadsheet
decision tables

Guided rules

® Are tables of rules that you
create in a Ul-based table
designer in Business Central

® Are awizard-led alternative to
spreadsheet decision tables

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates

® Support hit policies, real-time
validation, and other additional
features not supported in other
assets

® Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

® Are XLS or XLSX spreadsheet
decision tables that you can
upload into Business Central

® Support template keys and
values for creating rule
templates

® Are optimal for creating rules in
decision tables already managed
outside of Business Central

® Have strict syntax requirements
for rules to be compiled properly
when uploaded

® Areindividual rules that you
create in a Ul-based rule
designer in Business Central

® Provide fields and options for
acceptable input

® Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided

decision tables

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Business Central Designing a
decision service

using guided rules

15


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Highlights Authoring tools Documentation
Guided rule Business Central Designing a
® Arereusable rule structures that . .
templates decision service

you create in a Ul-based
template designer in Business
Central templates

using guided rule

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

® Are optimal for creating many
rules with the same rule structure
but with different defined field

values
DRL rules o Business Central Designing a
® Areindividual rules that you or integrated decision service
define directly in .drl text files 9 )
development using DRL rules
® Provide the most flexibility for environment (IDE)

defining rules and other
technicalities of rule behavior

® Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

® Are optimal for creating rules
that require advanced DRL
options

® Have strict syntax requirements
for rules to be compiled properly

16


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

CHAPTER 1. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights Authoring tools Documentation

Predictive Model . . PMML or XML Designing a
® Are predictive data-analytic

Markup Language . editor decision service
models based on a notation )

(PMML) models standard defined by the Data using PMML
Mining Group (DMG) models

® Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

® Support Regression, Scorecard,
Tree, Mining, and other model
types

e Can beincluded with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

® Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

When you define business decisions, you can also consider using Red Hat build of Kogito for your cloud-
native decision services. For more information about getting started with Red Hat build of Kogito
microservices, see Getting started with Red Hat build of Kogito in Red Hat Decision Manager .

17


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 2. RED HAT DECISION MANAGER BPMN AND DMN
MODELERS

Red Hat Decision Manager provides the following extensions or applications that you can use to design
Business Process Model and Notation (BPMN) process models and Decision Model and Notation
(DMN) decision models using graphical modelers.

® Business Central Enables you to view and design BPMN models, DMN models, and test
scenario files in a related embedded designer.
To use Business Central, you can set up a development environment containing a Business
Central to design business rules and processes, and a KIE Server to execute and test the
created business rules and processes.

® Red Hat Decision Manager VS Code extension Enables you to view and design BPMN models,
DMN models, and test scenario files in Visual Studio Code (VS Code). The VS Code extension
requires VS Code 1.46.0 or later.
To install the Red Hat Decision Manager VS Code extension, select the Extensions menu
option in VS Code and search for and install the Red Hat Business Automation Bundle
extension.

e Standalone BPMN and DMN editors Enable you to view and design BPMN and DMN models
embedded in your web applications. To download the necessary files, you can either use the
NPM artifacts from the NPM registry or download the JavaScript files directly for the DMN
standalone editor library at https://<YOUR_PAGE>/dmn/index.js and for the BPMN
standalone editor library at https://<YOUR_PAGE>/bpmn/index.js.

2.1.INSTALLING THE RED HAT DECISION MANAGER VS CODE
EXTENSION BUNDLE

Red Hat Decision Manager provides a Red Hat Business Automation BundleVS Code extension that
enables you to design Decision Model and Notation (DMN) decision models, Business Process Model
and Notation (BPMN) 2.0 business processes, and test scenarios directly in VS Code. VS Code is the
preferred integrated development environment (IDE) for developing new business applications. Red
Hat Decision Manager also provides individual DMN Editor and BPMN Editor VS Code extensions for
DMN or BPMN support only, if needed.

IMPORTANT

The editors in the VS Code are partially compatible with the editors in the Business
Central, and several Business Central features are not supported in the VS Code.

Prerequisites

® The latest stable version of VS Code is installed.

Procedure

1. Inyour VS Code IDE, select the Extensions menu option and search for Red Hat Business
Automation Bundle for DMN, BPMN, and test scenario file support.
For DMN or BPMN file support only, you can also search for the individual DMN Editor or
BPMN Editor extensions.

2. When the Red Hat Business Automation Bundleextension appears in VS Code, select it and
click Install.

18


https://www.npmjs.com/package/@kie-tools/kie-editors-standalone
https://code.visualstudio.com/

CHAPTER 2. RED HAT DECISION MANAGER BPMN AND DMN MODELERS

3. For optimal VS Code editor behavior, after the extension installation is complete, reload or
close and re-launch your instance of VS Code.

After you install the VS Code extension bundle, any .dmn, .bpmn, or .bpmn2 files that you open or
create in VS Code are automatically displayed as graphical models. Additionally, any .scesim files that
you open or create are automatically displayed as tabular test scenario models for testing the
functionality of your business decisions.

If the DMN, BPMN, or test scenario modelers open only the XML source of a DMN, BPMN, or test

scenario file and displays an error message, review the reported errors and the model file to ensure that
all elements are correctly defined.

NOTE
For new DMN or BPMN models, you can also enter dmn.new or bpmn.new in a web
browser to design your DMN or BPMN model in the online modeler. When you finish

creating your model, you can click Download in the online modeler page to import your
DMN or BPMN file into your Red Hat Decision Manager project in VS Code.

2.2. CONFIGURING THE RED HAT DECISION MANAGER STANDALONE
EDITORS

Red Hat Decision Manager provides standalone editors that are distributed in a self-contained library
providing an all-in-one JavaScript file for each editor. The JavaScript file uses a comprehensive API to
set and control the editor.

You can install the standalone editors using the following methods:

® Download each JavaScript file manually

® Use the NPM package

Procedure

1. Install the standalone editors using one of the following methods:
Download each JavaScript file manually For this method, follow these steps:

a. Download the JavaScript files.
b. Add the downloaded Javascript files to your hosted application.
c. Add the following <script> tag to your HTML page:

Script tag for your HTML page for the DMN editor

I <script sre="https://<YOUR_PAGE>/dmn/index.js"></script>
Script tag for your HTML page for the BPMN editor

I <script src="https://<YOUR_PAGE>/bpmn/index.js"></script>

Use the NPM package: For this method, follow these steps:

a. Add the NPM package to your package.json file:

19



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Adding the NPM package
I npm install @kie-tools/kie-editors-standalone

b. Import each editor library to your TypeScript file:

Importing each editor

import * as DmnEditor from "@kie-tools/kie-editors-standalone/dist/dmn"
import * as BpmnEditor from "@kie-tools/kie-editors-standalone/dist/bpmn"

2. After you install the standalone editors, open the required editor by using the provided editor
API, as shown in the following example for opening a DMN editor. The APl is the same for each
editor.

Opening the DMN standalone editor

const editor = DmnEditor.open({
container: document.getElementByld("dmn-editor-container"),
initialContent: Promise.resolve(™),
readOnly: false,
origin: ",
resources: new Map([
[
"MyIncludedModel.dmn",

{

contentType: "text",
content: Promise.resolve(™)

}

)
hE

Use the following parameters with the editor API:

Table 2.1. Example parameters

Parameter Description

container HTML element in which the editor is appended.

initialContent Promise to a DMN model content. This parameter can be
empty, as shown in the following examples:

e Promise.resolve("")

e Promise.resolve("
<DIAGRAM_CONTENT _DIRECTLY_HERE>")

o fetch("MyDmnModel.dmn™").then(content =
content.text())

20



CHAPTER 2. RED HAT DECISION MANAGER BPMN AND DMN MODELERS

Parameter Description

readOnly (Optional) Enables you to allow changes in the editor. Set to false
(default) to allow content editing and true for read-only
mode in editor.

origin (Optional) Origin of the repository. The default value is
window.location.origin.

resources (Optional) Map of resources for the editor. For example, this
parameter is used to provide included models for the DMN
editor or work item definitions for the BPMN editor. Each
entry in the map contains a resource name and an object
that consists of content-type (text orbinary) and
content (similar to theinitialContent parameter).

The returned object contains the methods that are required to manipulate the editor.

Table 2.2. Returned object methods

Method Description

getContent(): Promise<string> Returns a promise containing the editor content.

setContent(path: string, content:  Sets the content of the editor.
string): void

getPreview(): Promise<string> Returns a promise containing an SVG string of the current
diagram.

subscribeToContentChanges(ca  Sets a callback to be called when the content changes in
liback: (isDirty: boolean) = the editor and returns the same callback to be used for
void): (isDirty: boolean) = void unsubscription.

unsubscribeToContentChanges(  Unsubscribes the passed callback when the content
callback: (isDirty: boolean) = changes in the editor.
void): void

markAsSaved(): void Resets the editor state that indicates that the content in
the editor is saved. Also, it activates the subscribed
callbacks related to content change.

undo(): void Undoes the last change in the editor. Also, it activates the
subscribed callbacks related to content change.

redo(): void Redoes the last undone change in the editor. Also, it
activates the subscribed callbacks related to content
change.



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Method Description

close(): void Closes the editor.
getElementPosition(selector: Provides an alternative to extend the standard query
string): Promise<Rect> selector when an element lives inside a canvas or a video

component. The selector parameter must follow the
<PROVIDER>:::<SELECT> format, such as
Canvas:::MySquare or Video:::PresenterHand. This
method returns a Rect representing the element position.

envelopeApi: This is an advanced editor API. For more information about
MessageBusClientApi<KogitoEd  advanced editor API, see MessageBusClientApi and
itorEnvelopeApi> KogitoEditorEnvelopeApi.

22


https://github.com/kiegroup/kie-tools/blob/master/packages/envelope-bus/src/api/index.ts#L43-L56
https://github.com/kiegroup/kie-tools/blob/master/packages/editor/src/api/KogitoEditorEnvelopeApi.ts#L34-L41

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN MODELS USING MAVEN

CHAPTER 3. CREATING AND EXECUTING DMN AND BPMN
MODELS USING MAVEN

You can use Maven archetypes to develop DMN and BPMN models in VS Code using the Red Hat
Decision Manager VS Code extension instead of Business Central. You can then integrate your
archetypes with your Red Hat Decision Manager decision and process services in Business Central as
needed. This method of developing DMN and BPMN models is helpful for building new business
applications using the Red Hat Decision Manager VS Code extension.

Procedure

1. Ina command terminal, navigate to a local folder where you want to store the new Red Hat
Decision Manager project.

2. Enter the following command to use a Maven archtype to generate a project within a defined
folder:

Generating a project using Maven archetype

mvn archetype:generate \
-DarchetypeGroupld=org.kie \
-DarchetypeAtrtifactld=kie-kjar-archetype \
-DarchetypeVersion=7.67.0.Final-redhat-00024

This command generates a Maven project with required dependencies and generates required
directories and files to build your business application. You can use the Git version control
system (recommended) when developing a project.

If you want to generate multiple projects in the same directory, specify the artifactld and
groupld of the generated business application by adding -Dgroupld=<groupid> -Dartifactld=
<artifactld> to the previous command.

3. Inyour VS Code IDE, click File, select Open Folder, and navigate to the folder that is generated
using the previous command.

4. Before creating the first asset, set a package for your business application, for example,
org.kie.businessapp, and create respective directories in the following paths:

e PROJECT_HOME/src/main/java
e PROJECT_HOME/src/main/resources
e PROJECT_HOME/src/test/resources

For example, you can create PROJECT_HOME/src/main/java/org/kie/businessapp for
org.kie.businessapp package.

5. Use VS Code to create assets for your business application. You can create the assets
supported by Red Hat Decision Manager VS Code extension using the following ways:

® To create a business process, create a new file with .bpmn or .bpmn2 in
PROJECT_HOME/src/main/resources/org/kie/businessapp directory, such as
Process.bpmn.

23



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

® To create a DMN model, create a new file with .dmnin
PROJECT_HOME/src/main/resources/org/kie/businessapp directory, such as
AgeDecision.dmn.

® To create a test scenario simulation model, create a new file with .scesim in
PROJECT_HOME/src/test/resources/org/kie/businessapp directory, such as
TestAgeScenario.scesim.

6. After you create the assets in your Maven archetype, navigate to the root directory (contains

pom.xml) of the project in the command line and run the following command to build the
knowledge JAR (KJAR) of your project:

I mvn clean install

If the build fails, address any problems described in the command line error messages and try
again to validate the project until the build is successful. However, if the build is successful, you
can find the artifact of your business application in PROJECT_HOME/target directory.

NOTE

Use mvn clean install command often to validate your project after each major
change during development.

You can deploy the generated knowledge JAR (KJAR) of your business application on a running KIE
Server using the REST API. For more information about using REST API, see Interacting with Red Hat
Decision Manager using KIE APIs.

24


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Decision Model and Notation (DMN) is a standard established by the Object Management Group
(OMG) for describing and modeling operational decisions. DMN defines an XML schema that enables
DMN models to be shared between DMN-compliant platforms and across organizations so that
business analysts and business rules developers can collaborate in designing and implementing DMN
decision services. The DMN standard is similar to and can be used together with the Business Process
Model and Notation (BPMN) standard for designing and modeling business processes.

For more information about the background and applications of DMN, see the OMG Decision Model and
Notation specification.

4.1. DMN CONFORMANCE LEVELS

The DMN specification defines three incremental levels of conformance in a software implementation. A
product that claims compliance at one level must also be compliant with any preceding levels. For
example, a conformance level 3 implementation must also include the supported components in
conformance levels 1and 2. For the formal definitions of each conformance level, see the OMG Decision
Model and Notation specification.

The following list summarizes the three DMN conformance levels:

Conformance level 1

A DMN conformance level 1implementation supports decision requirement diagrams (DRDs),
decision logic, and decision tables, but decision models are not executable. Any language can be used
to define the expressions, including natural, unstructured languages.

Conformance level 2

A DMN conformance level 2 implementation includes the requirements in conformance level 1, and
supports Simplified Friendly Enough Expression Language (S-FEEL) expressions and fully
executable decision models.

Conformance level 3

A DMN conformance level 3 implementation includes the requirements in conformance levels 1and
2, and supports Friendly Enough Expression Language (FEEL) expressions, the full set of boxed
expressions, and fully executable decision models.

Red Hat Decision Manager provides runtime support for DMN 1.1, 1.2, 1.3, and 1.4 models at conformance
level 3, and design support for DMN 1.2 models at conformance level 3. You can design your DMN
models directly in Business Central or with the Red Hat Decision Manager DMN modeler in VS Code, or
import existing DMN models into your Red Hat Decision Manager projects for deployment and
execution. Any DMN 1.1and 1.3 models (do not contain DMN 1.3 features) that you import into Business
Central, open in the DMN designer, and save are converted to DMN 1.2 models.

4.2. DMN DECISION REQUIREMENTS DIAGRAM (DRD) COMPONENTS
A decision requirements diagram (DRD) is a visual representation of your DMN model. A DRD can
represent part or all of the overall decision requirements graph (DRG) for the DMN model. DRDs trace
business decisions using decision nodes, business knowledge models, sources of business knowledge,
input data, and decision services.

The following table summarizes the components in a DRD:

Table 4.1. DRD components

25


https://www.omg.org/spec/DMN
https://www.omg.org/spec/DMN

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Component Description Notation

Elements Decision Node where one or more input elements
determine an output based on defined Decision
decision logic.

Business Reusable function with one or more Busi

knowledge model decision elements. Decisions that have krmﬁ‘
the same logic but depend on different e
sub-input data or sub-decisions use

business knowledge models to determine
which procedure to follow.

Knowledge source External authorities, documents,
. o Knowledge
committees, or policies that regulate a source
decision or business knowledge model.

Knowledge sources are references to
real-world factors rather than executable
business rules.

Input data Information used in a decision node or a
business knowledge model. Input data
usually includes business-level concepts

or objects relevant to the business, such
as loan applicant data used in a lending
strategy.

Decision service Top-level decision containing a set of i )
- . . Decision service
reusable decisions published as a service

for invocation. A decision service can be L—J

invoked from an external application or a
BPMN business process.

Requirement Information Connection from an input data node or
connectors requirement decision node to another decision node
that requires the information.

Knowledge Connection from a business knowledge =~ -===== -——=3
requirement model to a decision node or to another

business knowledge model that invokes

the decision logic.

Authority Connection from an input data node or a pooooooooc )
requirement decision node to a dependent knowledge

source or from a knowledge source to a

decision node, business knowledge

model, or another knowledge source.

26



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Description Notation

Artifacts Text annotation Explanatory note associated with an input
data node, decision node, business m"“
knowledge model, or knowledge source.

Association Connection from an input datanode, -« - - - - - - -
decision node, business knowledge
model, or knowledge source to a text
annotation.

The following table summarizes the permitted connectors between DRD elements:

Table 4.2. DRD connector rules

Starts from Connects to Connection type Example

Decision Decision Information
requirement Decision |———»  Decision
Business Decision Knowledge
Busi
knowledge model requirement k"ﬁ‘ -----21 Decision

Business Bus) B
knowledge model krﬁa ...... krﬁ.

Decision service Decision Knowledge rD i | 1
. ecision service | _ _ _ _ -
requirement >  Decision

NN

Business Sl Busi
Decision service |.____: k
knowledge model | ] &
Input data Decision Information
requirement Decision

27



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Starts from Connects to

Knowledge source

Decision

Business

knowledge model

Knowledge source

Input data

Knowledge source Authority

requirement

Decision Authority

requirement

Business
knowledge model

Knowledge source

Text annotation Association

Connection type

Example

Decision

The following example DRD illustrates some of these DMN components in practice:

28



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Figure 4.1. Example DRD: Loan prequalification

quul'fﬁlhcaﬂun

£
5

2

Fl

Totes [ Notes

Applicant -‘;L\c'tﬁa‘f;h i

The following example DRD illustrates DMN components that are part of a reusable decision service:

Figure 4.2. Example DRD: Phone call handling as a decision service

/ Call can be handled \

Call conditions
satisfied
Suitable
Sttt office
A
Banned
phone — s banned Is office open
numbers

- ] r

1 nzmggr ] ' Office , tlncomingcall ,

In a DMN decision service node, the decision nodes in the bottom segment incorporate input data from
outside of the decision service to arrive at a final decision in the top segment of the decision service
node. The resulting top-level decisions from the decision service are then implemented in any
subsequent decisions or business knowledge requirements of the DMN model. You can reuse DMN
decision services in other DMN models to apply the same decision logic with different input data and
different outgoing connections.

4.3. RULE EXPRESSIONS IN FEEL

Friendly Enough Expression Language (FEEL) is an expression language defined by the Object
Management Group (OMG) DMN specification. FEEL expressions define the logic of a decision in a
DMN model. FEEL is designed to facilitate both decision modeling and execution by assigning
semantics to the decision model constructs. FEEL expressions in decision requirements diagrams
(DRDs) occupy table cells in boxed expressions for decision nodes and business knowledge models.

29



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

For more information about FEEL in DMN, see the OMG Decision Model and Notation specification.

4.3.1. Data typesin FEEL

Friendly Enough Expression Language (FEEL) supports the following data types:

® Numbers

® Strings

® Boolean values

® Dates

® Time

® Date and time

® Days and time duration
® Years and months duration
® Functions

® Contexts

® Ranges (orintervals)

® |sts

NOTE

The DMN specification currently does not provide an explicit way of declaring a variable
as a function, context, range, or list, but Red Hat Decision Manager extends the DMN
built-in types to support variables of these types.

The following list describes each data type:

Numbers

30

Numbers in FEEL are based on the [EEE 754-2008 Decimal 128 format, with 34 digits of precision.
Internally, numbers are represented in Java as BigDecimals with MathContext DECIMAL128. FEEL
supports only one number data type, so the same type is used to represent both integers and
floating point numbers.

FEEL numbers use a dot (.) as a decimal separator. FEEL does not support -INF, +INF, or NaN. FEEL
uses null to represent invalid numbers.

Red Hat Decision Manager extends the DMN specification and supports additional number
notations:

® Scientific: You can use scientific notation with the suffix e<exps> or E<exps. For example,
1.2e3 is the same as writing the expression 1.2*10**3, but is a literal instead of an expression.

® Hexadecimal: You can use hexadecimal numbers with the prefix 0x. For example, Oxff is the
same as the decimal number 255. Both uppercase and lowercase letters are supported. For
example, OXFF is the same as Oxff.


https://www.omg.org/spec/DMN
http://ieeexplore.ieee.org/document/4610935/
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

e Type suffixes: You can use the type suffixes f, F, d, D, I, and L. These suffixes are ignored.

Strings

Strings in FEEL are any sequence of characters delimited by double quotation marks.

Example

I "John Doe"

Boolean values

FEEL uses three-valued boolean logic, so a boolean logic expression may have values true, false, or
null.

Dates

Date literals are not supported in FEEL, but you can use the built-in date() function to construct date
values. Date strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The formatis "YYYY-MM-DD" where YYYY is the year with four digits, MM is the number
of the month with two digits, and DD is the number of the day.

Example:

I date( "2017-06-23")

Date objects have time equal to "00:00:00", which is midnight. The dates are considered to be local,
without a timezone.

Time
Time literals are not supported in FEEL, but you can use the built-in time() function to construct time
values. Time strings in FEEL follow the format defined in the XML Schema Part 2: Datatypes
document. The format is "hh:mm:ss[.uuu][(+-)hh:mm]" where hh s the hour of the day (from 00 to
23), mm is the minutes in the hour, and ss is the number of seconds in the minute. Optionally, the
string may define the number of milliseconds (uuu) within the second and contain a positive ( +) or
negative () offset from UTC time to define its timezone. Instead of using an offset, you can use the
letter z to represent the UTC time, which is the same as an offset of -00:00. If no offset is defined,
the time is considered to be local.
Examples:

time( "04:25:12")

time( "14:10:00+02:00" )
time( "22:35:40.345-05:00")
time( "15:00:30z")

Time values that define an offset or a timezone cannot be compared to local times that do not define
an offset or a timezone.

Date and time

Date and time literals are not supported in FEEL, but you can use the built-in date and time()
function to construct date and time values. Date and time strings in FEEL follow the format defined
in the XML Schema Part 2: Datatypes document. The format is "<date>T<time>", where <date> and
<time> follow the prescribed XML schema formatting, conjoined by T.

Examples:

I date and time( "2017-10-22T723:59:00" )

31


https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xmlschema-2/#dateTime

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

date and time( "2017-06-13T14:10:00+02:00" )
date and time( "2017-02-05T722:35:40.345-05:00" )
date and time( "2017-06-13T15:00:30z" )

Date and time values that define an offset or a timezone cannot be compared to local date and time
values that do not define an offset or a timezone.

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dateTime as a synonym of date and time.

Days and time duration

Days and time duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Days and time duration strings in FEEL follow
the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only days,
hours, minutes and seconds. Months and years are not supported.

Examples:

duration( "P1DT23H12M30S")
duration( "P23D" )

duration( "PT12H")

duration( "PT35M")

IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword dayTimeDuration as a synonym of days and time
duration.

Years and months duration

Years and months duration literals are not supported in FEEL, but you can use the built-in duration()
function to construct days and time duration values. Years and months duration strings in FEEL
follow the format defined in the XML Schema Part 2: Datatypes document, but are restricted to only
years and months. Days, hours, minutes, or seconds are not supported.

Examples:
duration( "P3Y5M")
duration( "P2Y")
duration( "P10M")
duration( "P25M" )
IMPORTANT

If your implementation of the DMN specification does not support spaces in the XML
schema, use the keyword yearMonthDuration as a synonym of years and months
duration.

Functions

32


https://www.w3.org/TR/xmlschema-2/#duration
https://www.w3.org/TR/xmlschema-2/#duration

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

FEEL has function literals (or anonymous functions) that you can use to create functions. The DMN
specification currently does not provide an explicit way of declaring a variable as a function, but Red
Hat Decision Manager extends the DMN built-in types to support variables of functions.

Example:

I function(a,b)a +b

In this example, the FEEL expression creates a function that adds the parameters a and b and
returns the result.

Contexts

FEEL has context literals that you can use to create contexts. A contextin FEEL is a list of key and
value pairs, similar to maps in languages like Java. The DMN specification currently does not provide
an explicit way of declaring a variable as a context, but Red Hat Decision Manager extends the DMN
built-in types to support variables of contexts.

Example:

I {x:5,y:3}

In this example, the expression creates a context with two entries, X and y, representing a coordinate
in a chart.

In DMN 1.2, another way to create contexts is to create an item definition that contains the list of
keys as attributes, and then declare the variable as having that item definition type.

The Red Hat Decision Manager DMN API supports DMN ItemDefinition structural types in a
DMNContext represented in two ways:

e User-defined Java type: Must be a valid JavaBeans object defining properties and getters
for each of the components in the DMN ItemDefinition. If necessary, you can also use the
@FEELProperty annotation for those getters representing a component name which would
result in an invalid Java identifier.

e java.util.Map interface: The map needs to define the appropriate entries, with the keys
corresponding to the component name in the DMN ItemDefinition.

Ranges (or intervals)

FEEL has range literals that you can use to create ranges or intervals. A range in FEEL is a value that
defines a lower and an upper bound, where either can be open or closed. The DMN specification
currently does not provide an explicit way of declaring a variable as a range, but Red Hat Decision
Manager extends the DMN built-in types to support variables of ranges.

The syntax of a range is defined in the following formats:

range := interval_start endpoint '.." endpoint interval_end
interval_start := open_start | closed_start
open_start ="("|"T

closed start =T
interval_end :=open_end | closed_end

open_end =0T
closed_end =7
endpoint = expression

The expression for the endpoint must return a comparable value, and the lower bound endpoint
must be lower than the upper bound endpoint.

33



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

For example, the following literal expression defines an interval between 1 and 10, including the
boundaries (a closed interval on both endpoints):

I [1..10]

The following literal expression defines an interval between 1hour and 12 hours, including the lower
boundary (a closed interval), but excluding the upper boundary (an open interval):

I [ duration("PT1H") .. duration("PT12H") )

You can use ranges in decision tables to test for ranges of values, or use ranges in simple literal
expressions. For example, the following literal expression returns true if the value of a variable xis
between 0 and 100:

I xin[1..100]

Lists

FEEL has list literals that you can use to create lists of items. A listin FEEL is represented by a
comma-separated list of values enclosed in square brackets. The DMN specification currently does
not provide an explicit way of declaring a variable as a list, but Red Hat Decision Manager extends
the DMN built-in types to support variables of lists.

Example:

I [2,3,4,5]
All lists in FEEL contain elements of the same type and are immutable. Elements in a list can be
accessed by index, where the first element is 1. Negative indexes can access elements starting from

the end of the list so that -1 is the last element.

For example, the following expression returns the second element of a list x:

I x[2]

The following expression returns the second-to-last element of a list x:

I x[-2]

Elements in a list can also be counted by the function count, which uses the list of elements as the
parameter.

For example, the following expression returns 4:

I count([ 2, 3,4,5]))

4.3.2. Built-in functions in FEEL

To promote interoperability with other platforms and systems, Friendly Enough Expression Language
(FEEL) includes a library of built-in functions. The built-in FEEL functions are implemented in the
Drools Decision Model and Notation (DMN) engine so that you can use the functions in your DMN
decision services.

34



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

The following sections describe each built-in FEEL function, listed in the format NAME( PARAMETERS
). For more information about FEEL functions in DMN, see the OMG Decision Model and Notation
specification.

4.3.2.1. Conversion functions

The following functions support conversion between values of different types. Some of these functions
use specific string formats, such as the following examples:

e date string: Follows the format defined in the XML Schema Part 2: Datatypes document, such
as 2020-06-01

® time string: Follows one of the following formats:
o Format defined in the XML Schema Part 2: Datatypes document, such as 23:59:00z

o Format for a local time defined by ISO 8601 followed by @ and an IANA Timezone, such as
00:01:00@Etc/UTC

e date time string: Follows the format of a date string followed by T and a time string, such as
2012-12-25T11:00:00Z

e duration string: Follows the format of days and time duration and years and months
duration defined in the XQuery 1.0 and XPath 2.0 Data Model , such as P1Y2M

date( from) -using date

Converts from to a date value.

Table 4.3. Parameters

Parameter Type Format
from string date string
Example

I date( "2012-12-25" ) - date( "2012-12-24" ) = duration( "P1D")

date( from ) -using date and time

Converts from to a date value and sets time components to null.

Table 4.4. Parameters

Parameter Type

from date and time

Example

I date(date and time( "2012-12-25T11:00:00Z" )) = date( "2012-12-25" )


https://www.omg.org/spec/DMN
https://www.w3.org/TR/xmlschema-2/#date
https://www.w3.org/TR/xmlschema-2/#time
https://www.w3.org/TR/xpath-datamodel/#types

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

date( year, month, day)
Produces a date from the specified year, month, and day values.

Table 4.5. Parameters

Parameter Type

year number

month number

day number
Example

I date( 2012, 12, 25 ) = date( "2012-12-25")

date and time( date, time )
Produces a date and time from the specified date and ignores any time components and the
specified time.

Table 4.6. Parameters

Parameter Type
date date ordate and time
time time

Example

I date and time ( "2012-12-24T23:59:00" ) = date and time(date( "2012-12-24" ), time( "23:59:00" ))

date and time( from)
Produces a date and time from the specified string.

Table 4.7. Parameters

Parameter Type Format
from string date time string
Example

date and time( "2012-12-24T23:59:00" ) + duration( "PT1M" ) = date and time( "2012-12-
25T00:00:00")

36



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

time( from)

Produces a time from the specified string.

Table 4.8. Parameters

Parameter Type Format
from string time string
Example

time( "23:59:002" ) + duration( "PT2M" ) = time( "00:01:00@Etc/UTC" )

time( from)

Produces a time from the specified parameter and ignores any date components.

Table 4.9. Parameters

Parameter Type
from time ordate and time
Example

I time(date and time( "2012-12-25T11:00:00Z" )) = time( "11:00:00Z" )

time( hour, minute, second, offset?)

Produces a time from the specified hour, minute, and second component values.

Table 4.10. Parameters

Parameter Type

hour number

minute number

second number

offset (Optional) days and time duration or null
Example

time( "23:59:00z" ) = time(23, 59, 0, duration( "PTOH"))



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

number( from, grouping separator, decimal separator )

Converts from to a number using the specified separators.

Table 4.11. Parameters

Parameter Type

from string representing a valid number

grouping separator Space (), comma (,), period (.), or null

decimal separator Same types as grouping separator, but the values cannot match
Example
I number( "1 000,0","","," ) = number( "1,000.0", ",", ".")

string( from)

Provides a string representation of the specified parameter.

Table 4.12. Parameters

Parameter Type

from Non-null value

Examples

string(1.1)="1.1"
string( null' ) = null

duration( from)

Converts from to a days and time duration value or years and months duration value.

Table 4.13. Parameters

Parameter Type Format
from string duration string
Examples

date and time( "2012-12-24T23:59:00" ) - date and time( "2012-12-22T03:45:00" ) = duration(
"P2DT20H14M")
duration( "P2Y2M" ) = duration( "P26M" )

38



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

years and months duration( from, to )

Calculates the years and months duration between the two specified parameters.

Table 4.14. Parameters

Parameter Type

from date ordate and time
to date ordate and time
Example

I years and months duration( date( "2011-12-22" ), date( "2013-08-24" ) ) = duration( "P1Y8M" )

4.3.2.2. Boolean functions

The following functions support Boolean operations.

not( negand)
Performs the logical negation of the negand operand.

Table 4.15. Parameters

Parameter Type

negand boolean

Examples

not( true ) = false
not( null ) = null
4.3.2.3. String functions

The following functions support string operations.

NOTE
In FEEL, Unicode characters are counted based on their code points.

substring( string, start position, length?)

Returns the substring from the start position for the specified length. The first character is at
position value 1.

Table 4.16. Parameters



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Parameter Type

string string
start position number
length (Optional) number
Examples
substring( "testing",3 ) = "sting"
substring( "testing",3,3 ) = "sti"
substring( "testing", -2, 1) ="n"
substring( "\UO1F40Eab", 2 ) = "ab"

NOTE

L

In FEEL, the string literal "\UO1F40Eab" is the ab string (horse symbol followed by a
and b).

string length( string )
Calculates the length of the specified string.

Table 4.17. Parameters

Parameter Type

string string

Examples

string length( "tes" ) = 3
string length( "UO1F40Eab" ) = 3

upper case( string)

Produces an uppercase version of the specified string.

Table 4.18. Parameters

Parameter Type

string string

Example

I upper case( "aBc4" ) = "ABC4"

40



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

lower case( string )

Produces a lowercase version of the specified string.

Table 4.19. Parameters

Parameter Type

string string

Example
I lower case( "aBc4" ) = "abc4"

substring before( string, match)

Calculates the substring before the match.

Table 4.20. Parameters

Parameter Type

string string
match string
Examples

substring before( "testing”, "ing" ) = "test"
substring before( "testing", "xyz" ) ="

substring after( string, match )

Calculates the substring after the match.

Table 4.21. Parameters

Parameter Type

string string
match string
Examples

substring after( "testing", "test" ) = "ing"
Substrlng after( llll, ||a|| ) —_m

41



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

replace( input, pattern, replacement, flags? )

Calculates the regular expression replacement.

Table 4.22. Parameters

Parameter Type

input string
pattern string
replacement string
flags (Optional) string
; NOTE
y This function uses regular expression parameters as defined in XQuery 1.0 and XPath
2.0 Functions and Operators.
Example

I replace( "abcd", "(ab)|(a)", "[1=$1][2=$2]" ) = "[1=ab][2=]cd"

contains( string, match)

Returns true if the string contains the match.

Table 4.23. Parameters

Parameter Type

string string
match string
Example

I contains( "testing”, "to" ) = false
starts with( string, match)

Returns true if the string starts with the match

Table 4.24. Parameters

42


https://www.w3.org/TR/xquery-operators/#regex-syntax

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

string string
match string
Example

I starts with( "testing", "te" ) = true

ends with( string, match)
Returns true if the string ends with the match.

Table 4.25. Parameters

Parameter Type

string string
match string
Example

I ends with( "testing”, "g" ) = true

matches( input, pattern, flags?)

Returns true if the input matches the regular expression.

Table 4.26. Parameters

Parameter Type

input string
pattern string
flags (Optional) string
NOTE
4 This function uses regular expression parameters as defined in XQuery 1.0 and XPath
2.0 Functions and Operators.
Example

I matches( "teeesting", "Me*sting" ) = true


https://www.w3.org/TR/xquery-operators/#regex-syntax

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

split( string, delimiter)

Returns a list of the original string and splits it at the delimiter regular expression pattern.

Table 4.27. Parameters

Parameter Type

string string
delimiter string for a regular expression pattern
NOTE
) This function uses regular expression parameters as defined in XQuery 1.0 and XPath
p 2.0 Functions and Operators.
Examples

split( "John Doe", "\s" ) = ["John", "Doe"]
Split( "a;b;c;;ll’ ";ll ) = [llall,llbll,"cll,llll,ll"]

4.3.2.4. List functions

The following functions support list operations.

NOTE

In FEEL, the index of the first elementin alistis 1. The index of the last element in a list
can be identified as -1.

list contains( list, element)

Returns true if the list contains the element.

Table 4.28. Parameters

Parameter Type

list list
element Any type, including null
Example

I list contains([1,2,3], 2 ) = true

count( list)

Counts the elements in the list.

44


https://www.w3.org/TR/xquery-operators/#regex-syntax

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Table 4.29. Parameters

Parameter

list list

Examples

count([1,2,3]) =3
count([])=0
count([1,[2,3]]) =2

min( list)

Returns the minimum comparable element in the list.

Table 4.30. Parameters

Parameter Type

list list

Alternative signature

I min( e, e2, ...,eN)

max( list)

Returns the maximum comparable element in the list.

Table 4.31. Parameters

Parameter Type

list list

Alternative signature
I max(el, e2, ...,eN)
Examples

max(1,2,3) =3
max([]) = null



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

sum( list)

Returns the sum of the numbers in the list.

Table 4.32. Parameters

Parameter Type

list list of number elements

Alternative signature

I sum(ni, n2,....,nN)

mean( list)

Calculates the average (arithmetic mean) of the elements in the list.

Table 4.33. Parameters

Parameter Type

list list of number elements

Alternative signature

I mean( ni, n2, ..., nN)

all( list )

Returns true if all elements in the list are true.

Table 4.34. Parameters

46



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

list list ofboolean elements

Alternative signature
I all( b1, b2, ..., bN)
Examples

all( [false,null,true] ) = false
all( true ) = true
all( [true] ) = true

(

(

all([]) = true
all(0) =null
any( list)

Returns true if any element in the list is true.

Table 4.35. Parameters

Parameter Type

list list ofboolean elements

Alternative signature
I any(b1,b2,...,bN)
Examples

any( [false,null,true] ) = true

(
any( false ) = false
any([]) = false
any(0) =null

sublist( list, start position, length?)

Returns the sublist from the start position, limited to the length elements.

Table 4.36. Parameters

Parameter Type

list list

start position number



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Parameter Type

length (Optional) number

Example

sublist([4,5,6], 1, 2) = [4,5]

append( list, item)

Creates a list that is appended to the item or items.

Table 4.37. Parameters

Parameter Type

list list
item Any type
Example

append([1],2,3) =[1,2,3]

concatenate( list)

Creates a list that is the result of the concatenated lists.

Table 4.38. Parameters

Parameter

list list

Example

concatenate( [1,2],[3] ) = [1,2,3]

insert before( list, position, newltem )

Creates a list with the newltem inserted at the specified position.

Table 4.39. Parameters

Parameter Type

list list

position number

48



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

newltem Any type

Example

I insert before( [1,3],1,2) =[2,1,3]

remove( list, position)

Creates a list with the removed element excluded from the specified position.

Table 4.40. Parameters

Parameter Type

list list
position number
Example

remove([1,2,3],2) =[1,3]

reverse( list)

Returns a reversed list.

Table 4.41. Parameters

Parameter

list list

Example

I reverse( [1,2,3] ) = [3,2,1]

index of( list, match)

Returns indexes matching the element.

Parameters

e list of type list
e match of any type

Table 4.42. Parameters



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Parameter Type

list list
match Any type
Example

index of( [1,2,3,2],2 ) = [2,4]

union( list)

Returns a list of all the elements from multiple lists and excludes duplicates.

Table 4.43. Parameters

Parameter Type

list list

Example

union( [1,2],[2,3] ) = [1,2,3]

distinct values( list )

Returns a list of elements from a single list and excludes duplicates.

Table 4.44. Parameters

Parameter

list list

Example

I distinct values( [1,2,3,2,1] ) =[1,2,3]

flatten(list)

Returns a flattened list.

Table 4.45. Parameters

Parameter

list list

Example

50



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

I flatten( [[1,2],[[3]], 4] ) = [1,2,3,4]

product( list)

Returns the product of the numbers in the list.

Table 4.46. Parameters

Parameter Type

list list of number elements

Alternative signature

I product( n1, n2, ..., nN)

Examples
product( [2, 3, 4] ) = 24
product( 2, 3,4 ) =24

median( list)
Returns the median of the numbers in the list. If the number of elements is odd, the result is the
middle element. If the number of elements is even, the result is the average of the two middle
elements.

Table 4.47. Parameters

Parameter Type

list list of number elements

Alternative signature
I median( n1, n2, ..., nN)

Examples

median(
median(

stddev( list)

Returns the standard deviation of the numbers in the list.

Table 4.48. Parameters



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Parameter Type

list list of number elements

Alternative signature

stddev( n1, n2, ..., nN)

Examples
stddev( 2, 4,7,5) = 2.081665999466132735282297706979931
stddev( [47] ) = null
stddev( 47 ) = null
stddev([]) = null
mode( list)

Returns the mode of the numbers in the list. If multiple elements are returned, the numbers are
sorted in ascending order.

Table 4.49. Parameters

Parameter Type

list list of number elements

Alternative signature

I mode( n1, n2, ..., nN)

4.3.2.4.1. Loop statements

Loop statements can transform lists or verify if some elements satisfy a specific condition:

forin (list)

[terates the elements of the list.

Table 4.50. Parameters

Parameter Type

list list of Any elements

52



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Examples

foriin[1,2,3]returni*i=[1, 4, 9]
foriin[1,2,3],jin[1,23]returni*j=[1, 2, 3, 2, 4, 6, 3, 6, 9]

some in (list) satisfies (condition)
Returns to single boolean value (true or false), if any element in the list satisfies the condition.

Table 4.51. Parameters

Parameter Type

list list of Any elements
condition boolean expression evaluated to true or false
Examples

every in (list) satisfies (condition)

someiin [1, 2, 3] satisfies i > 3 = true
someiin [1, 2, 3] satisfies i > 4 = false

Returns to single boolean value (true or false), if every element in the list satisfies the condition.

Table 4.52. Parameters

Parameter Type

list list of Any elements
condition boolean expression evaluated to true or false
Examples

every iin[1, 2, 3] satisfies i > 1 = false
every iin[1, 2, 3] satisfies i > 0 = true

4.3.2.5. Numeric functions

The following functions support number operations.

decimal( n, scale)

Returns a number with the specified scale.

Table 4.53. Parameters



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Parameter Type

n number
scale number in the range [-6111..6176]
2 NOTE
This function is implemented to be consistent with the FEEL:number definition for
2 ) rounding decimal numbers to the nearest even decimal number.
Examples
decimal( 1/3,2) = .33
decimal(1.5,0)=2
decimal(2.5,0)=2
decimal( 1. 035 2)=1.04
decimal( 1.045,2) = 1.04
decimal( 1.055,2) = 1.06
decimal( 1.065,2) = 1.06
floor(n)

Returns the greatest integer that is less than or equal to the specified number.

Table 4.54. Parameters

Parameter Type

n number

Examples

floor(1.5) =
floor(-1.5)=-2

ceiling(n)

Returns the smallest integer that is greater than or equal to the specified number.

Table 4.55. Parameters

Parameter Type

n number

Examples

54



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

ceiling(1.5) =2
ceiling(-1.5) = -1

abs(n)

Returns the absolute value.

Table 4.56. Parameters

Parameter Type

n number, days and time duration, oryears and months duration
Examples
abs(10)=10
abs(-10) =10
abs( @"PT5H" ) = @"PT5H"
abs( @"-PT5H" ) = @"PT5H"

modulo( dividend, divisor )

Returns the remainder of the division of the dividend by the divisor. If either the dividend or divisor is
negative, the result is of the same sign as the divisor.

NOTE

This function is also expressed as modulo(dividend, divisor) = dividend -
divisor*floor(dividen d/divisor).

Table 4.57. Parameters

Parameter Type

dividend number
divisor number
Examples

modulo( 12,5) =2

modulo(-12,5)=3

modulo( 12,-5 )= -3

modulo( -12,-5 )= -2

modulo( 10.1,4.5)=1.1

modulo( -10.1,4.5)= 3.4

modulo( 10.1, -4.5)=-3.4

modulo( -10.1, -4.5 )=-1.1

sqrt( number)

55



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Returns the square root of the specified number.

Table 4.58. Parameters

Parameter Type

n number

Example

sqri(16) =4

log( number)

Returns the logarithm of the specified number.

Table 4.59. Parameters

Parameter Type

n number

Example

I decimal( log(10),2)=2.30

exp( number)

Returns Euler's number e raised to the power of the specified number.

Table 4.60. Parameters

Parameter Type

n number

Example

I decimal( exp(5),2) = 148.41

odd( number)

Returns true if the specified number is odd.

Table 4.61. Parameters

Parameter Type

n number

56



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Examples

odd( 5) = true
odd( 2) = false

even( number)

Returns true if the specified number is even.

Table 4.62. Parameters

Parameter Type

n number

Examples

even(5) = false
even (2) = true

4.3.2.6. Date and time functions

The following functions support date and time operations.

is( valuel, value2)
Returns true if both values are the same element in the FEEL semantic domain.

Table 4.63. Parameters

Parameter Type

value1 Any type
value2 Any type
Examples

is( date( "2012-12-25" ), time( "23:00:50" ) ) = false
is( date( "2012-12-25" ), date( "2012-12-25" ) ) = true
is( time( "23:00:502" ), time( "23:00:50" ) ) = false

4.3.2.7. Range functions

The following functions support temporal ordering operations to establish relationships between single
scalar values and ranges of such values. These functions are similar to the components in the Health
Level Seven (HL7) International Clinical Quality Language (CQL) 1.4 syntax.

before()


https://cql.hl7.org/08-a-cqlsyntax.html

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Returns true when an element A is before an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. before( point1 point2)
b. before( point range )
c. before( range point)

d. before( range1,range2)

Requirements for evaluating totrue
a. point1 < point2
b. point < range.start or ( point = range.start and not(range.start included) )
c. range.end < point or ( range.end = point and not(range.end included) )

d. rangel.end < range2.start or (( not(range1.end included) or not(range2.start included) )
and range1.end = range2.start )

Examples

before( 1, 10 ) = true

before( 10, 1) = false

before( 1, [1..10] ) = false

before( 1, (1..10] ) = true

before( 1, [5..10] ) = true

before( [1..10], 10 ) = false

before([1..10), 10 ) = true

before( [1..10], 15) = true

before( [1..10], [15..20] ) = true

before( [1..10], [10..20] ) = false

before( [1..10), [10..20] ) = true

before( [1..10], (10..20] ) = true
after()

Returns true when an element A is after an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. after( point1 point2)
b. after( point range )
c. after( range, point)

d. after( range1l range2)

Requirements for evaluating totrue

58



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

a. point1 > point2
b. point > range.end or ( point = range.end and not(range.end included) )
c. range.start > point or ( range.start = point and not(range.start included) )

d. range1l.start > range2.end or (( not(range1.start included) or not(range2.end included) )
and range1.start = range2.end )

Examples
after( 10, 5) = true
after( 5,10 ) = false
after( 12 [1..10] ) = true
after( 10, [1..10) ) = true
after( 10, [1..10] ) = false
after([11..20], 12) = false
after([11..20], 10 ) = true
after( (11..20], 11 ) = true
after([11..20], 11 ) = false
after([11..20], [1..10] ) = true
after([1..10], [11..20] ) = false
after([11..20], [1..11) ) = true
after( (11..20], [1..11] ) = true

meets()

Returns true when an element A meets an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. meets( rangei, range2)

Requirements for evaluating totrue

a. rangel.end included and range2.start included and range1.end = range2.start

Examples
meets( [1..5], [5..10] ) = tru
meets( [1..5), [5..10] ) = false
meets( [1..5], (5..10] ) = false
meets( [1..5], [6..10] ) = false
met by()

Returns true when an element A is met by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. met by( range1, range2 )

Requirements for evaluating totrue

59



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

a. range1l.start included and range2.end included and range1.start = range2.end

Examples
met by( [5..10], [1..5] ) = tru
met by( [5..10], [1..5) ) = false
met by( (5..10], [1..5] ) = false
met by( [6..10], [1..5] ) = false
overlaps()

Returns true when an element A overlaps an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. overlaps( range1, range2 )

Requirements for evaluating totrue

a. (rangeil.end > range2.start or (range1l.end = range2.start and (range1.end included or
range2.end included)) ) and ( range1.start < range2.end or (range1.start = range2.end
and range1.start included and range2.end included) )

Examples

overlaps( [1..5], [3..8] ) = true
overlaps( [3..8], [1..5] ) = true
overlaps([1..8], [3..5] ) = true
overlaps( [3..5], [1..8] ) = true
overlaps([1..5], [6..8] ) = false
overlaps( [6..8], [1..5] ) = false
overlaps( [1..5], [5..8] ) = true
overlaps([1..5], (5..8] ) = false
overlaps([1..5), [5..8] ) = false
overlaps([1..5), (5..8] ) = false
overlaps( [5..8], [1..5] ) = tru

overlaps( (5..8], [1..5]) = false
overlaps( [5..8], [1..5) ) = false
overlaps( (5..8], [1..5) ) = false

overlaps before()

Returns true when an element A overlaps before an element B and when the relevant requirements
for evaluating to true are also met.

Signatures

a. overlaps before( range1 range2 )

Requirements for evaluating totrue

a. (rangei.start < range2.start or (rangei.start = range2.start and range1.start included
and range2.start included) ) and ( rangel.end > range2.start or (range1.end =
range2.start and rangeil.end included and range2.start included) ) and ( rangei.end <

60



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

range2.end or (rangel.end = range2.end and (not(range1.end included) or range2.end
included )) )

Examples
overlaps before( [1..5], [3..8] ) = true
overlaps before( [1..5], [6..8] ) = false
overlaps before( [1..5], [5..8] ) = true
overlaps before( [1..5], (5..8] ) = false
overlaps before( [1..5), [5..8] ) = false
overlaps before( [1..5), (1..5] ) = true
overlaps before( [1..5], (1..5] ) = true
overlaps before( [1..5), [1..5] ) = false
overlaps before( [1..5], [1..5] ) = false

overlaps after()

Returns true when an element A overlaps after an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a.

overlaps after( range1 range2 )

Requirements for evaluating totrue

a. (range2.start < range1.start or (range2.start = range1.start and range2.start included
and not( range1.start included)) ) and ( range2.end > range1.start or (range2.end =
rangel.start and range2.end included and range1.start included) ) and ( range2.end <
rangel.end or (range2.end = rangei.end and (not(range2.end included) or range1.end
included)) )

Examples
overlaps after( [3..8], [1..5] )= true
overlaps after( [6..8], [1..5] )= false
overlaps after( [5..8], [1..5] )= true
overlaps after( (5..8], [1..5] )= false
overlaps after( [5..8], [1..5) )= false
overlaps after( (1..5], [1..5) )= true
overlaps after( (1..5], [1..5] )= true
overlaps after( [1..5], [1..5) )= false
overlaps after( [1..5], [1..5] )= false
overlaps after( (1..5), [1..5] )= false
overlaps after( (1..5], [1..6] )= false
overlaps after( (1..5], (1..5] )= false
overlaps after( (1..5], [2..5] )= false

finishes( )

Returns true when an element A finishes an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

61



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

a. finishes( point, range)

b. finishes( range1, range2)

Requirements for evaluating totrue

a. range.end included and range.end = point
b. rangei.end included = range2.end included and rangei.end = range2.end and (

range1l.start > range2.start or (range1.start = range2.start and (not(range1.start
included) or range2.start included)) )

Examples

finishes( 10, [1..10] ) = true
finishes( 10, [1..10) ) = false

(

(
finishes([5..10], [1..10] ) = true
finishes( [5..10), [1..10] ) = false
finishes([5..10), [1..10) ) = true
finishes([1..10], [1..10] ) = true
finishes( (1..10], [1..10] ) = true

finished by()

Returns true when an element A is finished by an element B and when the relevant requirements for
evaluating to true are also met.

Signatures

a. finished by( range, point)

b. finished by( range1 range2 )

Requirements for evaluating totrue

a. range.end included and range.end = point

b. rangei.end included = range2.end included and rangei.end = range2.end and (
range1l.start < range2.start or (range1.start = range2.start and (range1.start included or
not(range2.start included))) )

Examples
finished by( [1..10], 10 ) = true
finished by( [1..10), 10 ) = false
finished by( [1..10], [5..10] ) = true
finished by( [1..10], [5..10) ) = false
finished by( [1..10), [5..10) ) = true
finished by( [1..10], [1..10] ) = true
finished by( [1..10], (1..10] ) = true
includes()

Returns true when an element A includes an element B and when the relevant requirements for
evaluating to true are also met.

62



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Signatures
a. includes( range, point )

b. includes( range1, range2 )

Requirements for evaluating totrue

a. (range.start < point and range.end > point) or (range.start = point and range.start
included) or (range.end = point and range.end included)

b. (range1l.start < range2.start or (range1.start = range2.start and (range1.start included
or not(range2.start included))) ) and ( range1.end > range2.end or (rangei.end =
range2.end and (range1.end included or not(range2.end included))) )

Examples

includes
includes
includes
includes

.10],5)
.10], 12
101, 1)
.10], 10

= tru
)=f|e
= tru

)

= true

includes
includes
includes
includes
includes
includes
includes

.10],[1..

]
3]
.10], (1..5]
.10], (1..10

..10], 1) = false
..10), 10 ) = false
10], [4..6

= true

10), [5..1

includes
includes
includes

.10], (1.

1
1
1
1
1
1
1.
1
1
1
1
1
1
1..10], [1..

(
(
(
(
(
(
(
(
(
(
(
(
(
(

——— — — e P — — e — — p— —

)
: 0))
.10], [1..1 ))=
10])
0])

during()

Returns true when an element A is during an element B and when the relevant requirements for
evaluating to true are also met.

Signatures
a. during( point, range )

b. during( range1 range2 )

Requirements for evaluating totrue

a. (range.start < point and range.end > point) or (range.start = point and range.start
included) or (range.end = point and range.end included)

b. (range2.start < rangel.start or (range2.start = range1.start and (range2.start included
or not(range1.start included))) ) and ( range2.end > range1.end or (range2.end =
rangei.end and (range2.end included or not(range1.end included))) )

Examples

I during( 5, [1..10] ) = true

63



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

during( 12, [1..10] ) = false
during( 1, [1..10] ) = true
during 10 [1..10] ) = true

(

(

(
during( 1, (1..10] ) = false
dur|ng(10 [1..10)) = false
during( [4..6], [1..10] ) = true
during([1..5], [1..10] ) = true
during( (1..5], (1..10] ) = true
during( (1..10), [1..10] ) = true
during( [5..10), [1..10) ) = true
during([1..10), [1..10] ) = true
during( (1..10], [1..10] ) = true
during([1..10], [1..10] ) = true

starts()

Returns true when an element A starts an element B and when the relevant requirements for
evaluating to true are also met.

Signatures
a. starts( point, range)

b. starts( range1l, range2)

Requirements for evaluating totrue

a. range.start = point and range.start included

b. range1l.start = range2.start and range1.start included = range2.start included and (
rangel.end < range2.end or (rangei.end = range2.end and (not(range1.end included)
or range2.end included)) )

Examples

= true

(

starts( 1, (1..10] ) = false
starts( 2, [1..10] ) = false
starts( [1..5], [1..10] ) = true
starts( (1..5], (1..10] ) = true
starts( (1..5], [1..10] ) = false
starts( [1..5], (1..10] ) = false
starts([1..10], [1..10] ) = true
starts( [1..10), [1..10] ) = true
starts( (1..10), (1..10) ) = true

started by()

64

Returns true when an element A is started by an element B and when the relevant requirements for

evaluating to true are also met.

Signatures

a. started by( range, point)



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)
b. started by( rangei, range2 )

Requirements for evaluating totrue

a. range.start = point and range.start included

b. range1l.start = range2.start and range1.start included = range2.start included and (
range2.end < range1.end or (range2.end = rangei.end and (not(range2.end included)
or rangel.end included)) )

Examples
started by( [1..10], 1) = true
started by( (1..10], 1) = false
started by( [1..10], 2 ) = false
started by( [1..10], [1..5] ) = true
started by( (1..10], (1..5] ) = true
started by( [1..10], (1..5] ) = false
started by( (1..10], [1..5] ) = false
started by( [1..10], [1..10] ) = true
started by( [1..10], [1..10) ) = true
started by( (1..10), (1..10) ) = true
coincides()

Returns true when an element A coincides with an element B and when the relevant requirements
for evaluating to true are also met.

Signatures

a. coincides( point1, point2)

b. coincides( range1, range2 )

Requirements for evaluating totrue
a. point1 = point2

b. range1l.start = range2.start and range1.start included = range2.start included and
rangel.end = range2.end and range1.end included = range2.end included

Examples
coincides( 5, 5) = true
coincides( 3, 4 ) = false
coincides( [1..5], [1..5] ) = true
coincides( (1..5), [1..5] ) = false
coincides( [1..5], [2..6] ) = false

4.3.2.8. Temporal functions

The following functions support general temporal operations.

day of year( date )

65



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Returns the Gregorian number of the day of the year.

Table 4.64. Parameters

Parameter Type

date date ordate and time

Example

I day of year( date(2019, 9, 17) ) = 260

day of week( date )

Returns the Gregorian day of the week: "Monday", "Tuesday”, "Wednesday", "Thursday",
"Friday", "Saturday", or "Sunday".

Table 4.65. Parameters

Parameter Type

date date ordate and time

Example

I day of week( date(2019, 9, 17) ) = "Tuesday"

month of year( date )

Returns the Gregorian month of the year: "January”, "February", "March”, "April”, "May", "June",
"July", "August”, "September”, "October”, "November", or "December".

Table 4.66. Parameters

Parameter Type

date date ordate and time

Example

I month of year( date(2019, 9, 17) ) = "September"

month of year( date )
Returns the Gregorian week of the year as defined by ISO 8601.

Table 4.67. Parameters

66



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Parameter Type

date date ordate and time

Examples

week of year( date
week of year( date

( 2019, 9, 1

(
week of year( date

(

(

(

7)) =38

2003, 12, 29) ) =

2004, 1,4)) = 1
)) 53
))
))

week of year( date
week of year( date
week of year( date

2005, 1, 1
2005, 1, 3
2005, 1,9

P

4.3.2.9. Sort functions
The following functions support sorting operations.

sort( list, precedes)

Returns a list of the same elements but ordered according to the sorting function.

Table 4.68. Parameters

Parameter Type

list list
precedes function
Example

sort( list: [3,1,4,5,2], precedes: function(x,y) x <y ) =[1,2,3,4,5]

4.3.2.10. Context functions
The following functions support context operations.

get value( m, key)

Returns the value from the context for the specified entry key.

Table 4.69. Parameters

Parameter Type

m context

key string



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Examples

get value( {key1 : "value1"}, "key1" ) = "value1"
get value( {key1 : "value1"}, "unexistent-key" ) = null

get entries(m)

Returns a list of key-value pairs for the specified context.

Table 4.70. Parameters

Parameter Type

m context

Example

get entries( {key1 : "value1", key2 : "value2"} ) = [ { key : "key1", value : "valuei" }, {key : "key2",
value : "value2"} |

4.3.3. Variable and function names in FEEL

Unlike many traditional expression languages, Friendly Enough Expression Language (FEEL) supports
spaces and a few special characters as part of variable and function names. A FEEL name must start with
aletter, ?, or _ element. The unicode letter characters are also allowed. Variable names cannot start with
a language keyword, such as and, true, or every. The remaining characters in a variable name can be any
of the starting characters, as well as digits, white spaces, and special characters such as +,-,/,% ', and ..

For example, the following names are all valid FEEL names:
® Age
® Birth Date
® Flight 234 pre-check procedure
Several limitations apply to variable and function names in FEEL:

Ambiguity
The use of spaces, keywords, and other special characters as part of names can make FEEL
ambiguous. The ambiguities are resolved in the context of the expression, matching names from left
to right. The parser resolves the variable name as the longest name matched in scope. You can use (
) to disambiguate names if necessary.

Spaces in names

The DMN specification limits the use of spaces in FEEL names. According to the DMN specification,
names can contain multiple spaces but not two consecutive spaces.

In order to make the language easier to use and avoid common errors due to spaces, Red Hat
Decision Manager removes the limitation on the use of consecutive spaces. Red Hat Decision
Manager supports variable names with any number of consecutive spaces, but normalizes them into
a single space. For example, the variable references First Name with one space and First Name with
two spaces are both acceptable in Red Hat Decision Manager.

68



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Red Hat Decision Manager also normalizes the use of other white spaces, like the non-breakable
white space that is common in web pages, tabs, and line breaks. From a Red Hat Decision Manager
FEEL engine perspective, all of these characters are normalized into a single white space before
processing.

The keyword in

The keyword in is the only keyword in the language that cannot be used as part of a variable name.
Although the specifications allow the use of keywords in the middle of variable names, the use of in
in variable names conflicts with the grammar definition of for, every and some expression
constructs.

4.4. DMN DECISION LOGIC IN BOXED EXPRESSIONS

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD). Some boxed expressions can
contain other boxed expressions, but the top-level boxed expression corresponds to the decision logic
of a single DRD artifact. While DRDs represent the flow of a DMN decision model, boxed expressions
define the actual decision logic of individual nodes. DRDs and boxed expressions together form a
complete and functional DMN decision model.

The following are the types of DMN boxed expressions:
® Decision tables
® |iteral expressions
® Contexts
® Relations
® Functions
® |nvocations

® | sts

NOTE

Red Hat Decision Manager does not provide boxed list expressions in Business Central,
but supports a FEEL list data type that you can use in boxed literal expressions. For
more information about the list data type and other FEEL data types in Red Hat
Decision Manager, see Section 4.3.1, “Data types in FEEL".

All Friendly Enough Expression Language (FEEL) expressions that you use in your boxed expressions
must conform to the FEEL syntax requirements in the OMG Decision Model and Notation specification.

4.4.1. DMN decision tables

A decision table in DMN is a visual representation of one or more business rules in a tabular format. You
use decision tables to define rules for a decision node that applies those rules at a given pointin the
decision model. Each rule consists of a single row in the table, and includes columns that define the
conditions (input) and outcome (output) for that particular row. The definition of each row is precise
enough to derive the outcome using the values of the conditions. Input and output values can be FEEL
expressions or defined data type values.

69


https://www.omg.org/spec/DMN

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

For example, the following decision table determines credit score ratings based on a defined range of a
loan applicant’s credit score:

Figure 4.3. Decision table for credit score rating

Hit policy

Rules

Input colurmn

Decision Tabhle l

Output column

|

Credit Score.FICO
(number)

== 750

[700..750)

[650. . 700)

[600. .650)

< 608

Credit Score Rating
(Credit_Score_Rating)

"Excellent"

"Good"

"Fair"

"FPoor"

"Bad"

Input and output names

and data types

Description

- ‘/alues

The following decision table determines the next step in a lending strategy for applicants depending on
applicant loan eligibility and the bureau call type:

Figure 4.4. Decision table for lending strategy

Strategy (Decision

Tak

ble)

fTal?

Eligibility
fstring]

"IMELIGIBLE"

"ELIGIBLE"

"ELIGIBLE"

BureauCallType Strategy
{string) (tStrategy)
- "DECLINE"
"FULL", "MINI" "BUREAU"
"MONE" "THROUGH"

Description

Disregard BureauCallType when ineligible.

The following decision table determines applicant qualification for a loan as the concluding decision
node in a loan prequalification decision model:

70



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Figure 4.5. Decision table for loan prequalification

Loan Pre-Qualification (pecision Table)
Loan Pre-Qualification
ot
E Credit Score Rating . Back End Ratio Front End Ratio s i Description
(Credit_Score_Rating) (Back_End_Ratio) (Front_End_Ratio) Qualification FETsam P
(string) (string)
"Poor", "Bad" - - "Mot Qualified" "Credit Score too low."
1
"Insufficient" |"Sufficient" "Not Qualified" "Debt to income ratio is too high."
2
- "Sufficient" "Insufficient" "Mot Qualified" '_'Hortga%e ﬁayment to income ratio
3 is tod Righ."
- "Insufficient" | "Insufficient" "Not Qualified" "Debt to income ratio is too high
4 AND mortgage ﬁayment to income
ratio 1s too high."
"Fair!", "Good", "Sufficient" "Sufficient" "Qualified" "The borrower has been successfully,,
5 "Excellent™ prequalified for the requested loan.

Decision tables are a popular way of modeling rules and decision logic, and are used in many
methodologies (such as DMN) and implementation frameworks (such as Drools).

IMPORTANT

Red Hat Decision Manager supports both DMN decision tables and Drools-native
decision tables, but they are different types of assets with different syntax requirements
and are not interchangeable. For more information about Drools-native decision tables in
Red Hat Decision Manager, see Designing a decision service using spreadsheet decision
tables.

4.4.1.1. Hit policies in DMN decision tables

Hit policies determine how to reach an outcome when multiple rules in a decision table match the
provided input values. For example, if one rule in a decision table applies a sales discount to military
personnel and another rule applies a discount to students, then when a customer is both a student and in
the military, the decision table hit policy must indicate whether to apply one discount or the other
(Unique, First) or both discounts (Collect Sum). You specify the single character of the hit policy ( U, F,
C+) in the upper-left corner of the decision table.

The following decision table hit policies are supported in DMN:
® Unique (U): Permits only one rule to match. Any overlap raises an error.

® Any (A): Permits multiple rules to match, but they must all have the same output. If multiple
matching rules do not have the same output, an error is raised.

® Priority (P): Permits multiple rules to match, with different outputs. The output that comes first
in the output values list is selected.

® First (F): Uses the first match in rule order.

® Collect (C+, C>, C<, C#):Aggregates output from multiple rules based on an aggregation
function.

o Collect (C): Aggregates values in an arbitrary list.

o Collect Sum (C+): Outputs the sum of all collected values. Values must be numeric.

71


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

o Collect Min (C<): Outputs the minimum value among the matches. The resulting values
must be comparable, such as numbers, dates, or text (lexicographic order).

o Collect Max (C>): Outputs the maximum value among the matches. The resulting values
must be comparable, such as numbers, dates or text (lexicographic order).

o Collect Count (C#): Outputs the number of matching rules.

4.4.2. Boxed literal expressions

A boxed literal expression in DMN is a literal FEEL expression as text in a table cell, typically with a
labeled column and an assigned data type. You use boxed literal expressions to define simple or
complex node logic or decision data directly in FEEL for a particular node in a decision. Literal FEEL
expressions must conform to FEEL syntax requirements in the OMG Decision Model and Notation
specification.

For example, the following boxed literal expression defines the minimum acceptable PITI calculation
(principal, interest, taxes, and insurance) in a lending decision, where acceptable rate is a variable
defined in the DMN model:

Figure 4.6. Boxed literal expression for minimum PITI value

Lender Acceptable PITI (Literal expression)

Lender Acceptable PITI
frAumber)

decimal( acceptable rate, 2 )

The following boxed literal expression sorts a list of possible dating candidates (soul mates) in an online
dating application based on their score on criteria such as age, location, and interests:

Figure 4.7. Boxed literal expression for matching online dating candidates

Sorted Souls (Literal expression)

Sorted Souls
(tCandidates)

sort( Candidate Souls, function( cl, c2 ) cl.Score >= c2,5core )

4.4.3. Boxed context expressions

A boxed context expression in DMN is a set of variable names and values with a result value. Each name-

72


https://www.omg.org/spec/DMN

CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

value pair is a context entry. You use context expressions to represent data definitions in decision logic
and set a value for a desired decision element within the DMN decision model. A value in a boxed context
expression can be a data type value or FEEL expression, or can contain a nested sub-expression of any
type, such as a decision table, a literal expression, or another context expression.

For example, the following boxed context expression defines the factors for sorting delayed passengers
in a flight-rebooking decision model, based on defined data types (tPassengerTable,
tFlightNumberList):

Figure 4.8. Boxed context expression for flight passenger waiting list

Prioritized Waiting List (Conrext)

# Prioritized Waiting List
(tPassengerTable)

Cancelled Flights Flight List[ Status = "cancelled" ].Flight Number
(tFlightNumbert ist)

Waiting List Passenger List[ list contains( Cancelled Flights, Flight Number ) ]
(tPassengerTable)

sort{ Waiting List, Passenger Priority )

<result>

The following boxed context expression defines the factors that determine whether a loan applicant can

meet minimum mortgage payments based on principal, interest, taxes, and insurance (PITI), represented
as a front-end ratio calculation with a sub-context expression:

Figure 4.9. Boxed context expression for front-end client PITI ratio

Front End Ratio (Context)

# Front End Ratio
(Front_End_Ratio)

# PITI
pmt ERe uested Product.Amount"‘%(Requested Product.Rate/100)/12))/
1 1-(1/(1+{Requested Product Rate/100)/12)**-Requested Product.Term))
fnumiber)
Client PITI tax Applicant Data.Monthly. Tax
1 (number) 2 (number)

insurance | Applicant Data.Monthly. Insurance
(number)

income Applicant Data.Monthly. Income
(number)

if client PITI <= Lender Acceptable PITI()
<resulft> then "Sufficient"
else "Insufficient"

4.4.4. Boxed relation expressions

A boxed relation expression in DMN is a traditional data table with information about given entities, listed
as rows. You use boxed relation tables to define decision data for relevant entities in a decision at a
particular node. Boxed relation expressions are similar to context expressions in that they set variable
names and values, but relation expressions contain no result value and list all variable values based on a
single defined variable in each column.

73



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

For example, the following boxed relation expression provides information about employees in an
employee rostering decision:

Figure 4.10. Boxed relation expression with employee information

Employee Information (relation)

# Mame Dept Salary
{string) {string) frumber)
"John" "Sales” 100000
1
"Mary" "Finances" 120000
2

4.4.5. Boxed function expressions

A boxed function expression in DMN is a parameterized boxed expression containing a literal FEEL
expression, a nested context expression of an external JAVA or PMML function, or a nested boxed
expression of any type. By default, all business knowledge models are defined as boxed function
expressions. You use boxed function expressions to call functions on your decision logic and to define all
business knowledge models.

For example, the following boxed function expression determines airline flight capacity in a flight-
rebooking decision model:

Figure 4.11. Boxed function expression for flight capacity

Flight Capacity (function)

Flight Capacity
{boolean)

(flight, rebooked list)

flight.Capacity > count( rebooked list[ Flight Number = flight.Flight Number ] )

The following boxed function expression contains a basic Java function as a context expression for
determining absolute value in a decision model calculation:

74



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Figure 4.12. Boxed function expression for absolute value

Absolute jFunction)

Absolute
frumber)
]
(value)
class "Java. lang.Math"
l {(string)
method signature "abs(double)"
2 .
{(string)

The following boxed function expression determines a monthly mortgage installment as a business

knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 4.13. Boxed function expression for installment calculation in business knowledge model

InstallmentCalculation (Function)

InstallmentCalculation
fnumber)

(ProductType, Rate, Term, Amount)

MonthlyFee if ProductType ="STANDARD LOAN" then 20,00

(number) else 1f ProductType ="SPECIAL LOAN" then 25.00 else null

MonthlyRepayment  (Amount *Rate/12) / (1 - (1 + Rate/12)**-Term)
fnumber)

MonthlyRepayment+MonthlyFee

The following boxed function expression uses a PMML model included in the DMN file to define the
minimum acceptable PITI calculation (principal, interest, taxes, and insurance) in a lending decision:

75



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 4.14. Boxed function expression with an included PMML model in business knowledge model

PITI ¢Function)

PITI
frumber)

(fid1, fid2, fld3)

document . .
1 (string) PITI Model
model - "
2 (string) LinReg

4.4.6. Boxed invocation expressions

A boxed invocation expression in DMN is a boxed expression that invokes a business knowledge model.
A boxed invocation expression contains the name of the business knowledge model to be invoked and a
list of parameter bindings. Each binding is represented by two boxed expressions on a row: The box on
the left contains the name of a parameter and the box on the right contains the binding expression
whose value is assigned to the parameter to evaluate the invoked business knowledge model. You use
boxed invocations to invoke at a particular decision node a business knowledge model defined in the
decision model.

For example, the following boxed invocation expression invokes a Reassign Next Passenger business
knowledge model as the concluding decision node in a flight-rebooking decision model:

76



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

Figure 4.15. Boxed invocation expression to reassign flight passengers

Rebooked Passengers (invocation)

Rebooked Passengers
(tPassengerTable)
#
Reassign Next Passenger
Waiting List Frioritized Waiting List
1
(tPassengerTable)
5 Reassigned Passengers List []
(tPassengerTabia)
3
{tFlight Table)

The following boxed invocation expression invokes an InstallmentCalculation business knowledge
model to calculate a monthly installment amount for a loan before proceeding to affordability decisions:

Figure 4.16. Boxed invocation expression for required monthly installment

RequiredMonthlyInstallment (invocation)

RequiredMonthlylnstallment
fnumber)
#
InstallmentCalculation

, ProductType RequestedProduct. ProductType
[string)

5 Rate ReguestedProduct. Rate
(number)

2 Term RequestedProduct. Term
(strig)

4 Amount ReguestedProduct. Amount
fnumber)

4.4.7. Boxed list expressions
A boxed list expression in DMN represents a FEEL list of items. You use boxed lists to define lists of

relevant items for a particular node in a decision. You can also use literal FEEL expressions for list items
in cells to create more complex lists.

77



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

For example, the following boxed list expression identifies approved credit score agencies in a loan
application decision service:

Figure 4.17. Boxed list expression for approved credit score agencies

Approved credit score agencies (List)

: "Acme Agency, Inc."
5 "Top Scores, Inc."
3 "Global Scoring, Inc."

The following boxed list expression also identifies approved credit score agencies but uses FEEL logic
to define the agency status (Inc., LLC, SA, GA) based on a DMN input node:

Figure 4.18. Boxed list expression using FEEL logic for approved credit score agency status

Approved credit score agencies (List)

: "Acme Agency" + suffix
5 "Top Scores" + suffix
3 "Global Scoring" + suffix

Approved credit
sCore agencies

4.5. DMN MODEL EXAMPLE

The following is a real-world DMN model example that demonstrates how you can use decision
modeling to reach a decision based on input data, circumstances, and company guidelines. In this
scenario, a flight from San Diego to New York is canceled, requiring the affected airline to find alternate
arrangements for its inconvenienced passengers.

78



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

First, the airline collects the information necessary to determine how best to get the travelers to their
destinations:

Input data

e List of flights

® |ist of passengers

Decisions

® Prioritize the passengers who will get seats on a new flight

® Determine which flights those passengers will be offered

Business knowledge models

® The company process for determining passenger priority

® Any flights that have space available

® Company rules for determining how best to reassign inconvenienced passengers
The airline then uses the DMN standard to model its decision process in the following decision
requirements diagram (DRD) for determining the best rebooking solution:

Figure 4.19. DRD for flight rebooking

Rebooked
FPassengers
. "‘\
'\-\.\"‘
k3 "‘\
Prioritized Reassign Next
Waiting List Passenger

Passenger Passenger List Flight Capacity

Flight List Priority

Similar to flowcharts, DRDs use shapes to represent the different elements in a process. Ovals contain
the two necessary input data, rectangles contain the decision points in the model, and rectangles with
clipped corners (business knowledge models) contain reusable logic that can be repeatedly invoked.

79



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

The DRD draws logic for each element from boxed expressions that provide variable definitions using
FEEL expressions or data type values.

Some boxed expressions are basic, such as the following decision for establishing a prioritized waiting
list:

Figure 4.20. Boxed context expression example for prioritized wait list

Prioritized Waiting List (Conrext)

# Prioritized Waiting List
(tPassengerTable)

Cancelled Flights Flight List[ Status = "cancelled" ].Flight Number
(tFlightNumbert ist)

Waiting List Passenger List[ list contains( Cancelled Flights, Flight Number ) ]
(tPassengerTable)

sort{ Waiting List, Passenger Priority )
<resulft>

Some boxed expressions are more complex with greater detail and calculation, such as the following
business knowledge model for reassigning the next delayed passenger:

Figure 4.21. Boxed function expression for passenger reassignment

Reassign Next Passenger (Function)

Reassign Mext Passenger
(tPassengerTable)
F
(Waiting List, Reassigned Passengers List, Flights)
- Next Passenger Waiting List[1]
(tPassenger)
Original Flight Flights[ Flight Number = Next Passenger.Flight Mumber ][1]
2 [Flight)
Flights[ From = Orlglnal Flight.From and
3 BestlternarelElisht Depz:lrgﬂr%glgaérgli%g} -Ili—glaglﬂg Departure and
(tFlight) Status = “scﬁedule i
Flight Capac1ty( 1tem, R93551gned Passengers List ) ][1]
Name Next Passenger.Name
l (string)
Status Next Passenger.Status
= (string)
Reassigned Passenger Miles Next Passenger.Miles
4 3
(tPassenger] (numéber)
Flight Number | Best Alternate Flight.Flight Number
4 (string)
<result> Select expression
g Remaining Waiting List remove( Waiting List, 1)
(tPassengerTable)
Updated Reassigned Passengers List | append( Reassigned Passengers List, Reassigned Passenger )
6 (tPassengerTable)
ir count(tRemaining Waiting List ) = @
Reassign Next Passenger( Remalnlnﬂ Waiting List,
<results dated Reassigned Passengers List,
e Flights )
else
Updated Reassigned Passengers List

The following is the DMN source file for this decision model:

80



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

<dmn:definitions xmIns="https://www.drools.org/kie-dmn/Flight-rebooking"
xmins:dmn="http://www.omg.org/spec/DMN/20151101/dmn.xsd"
xmins:feel="http://www.omg.org/spec/FEEL/20140401" id="_0019_flight_rebooking" name="0019-
flight-rebooking" namespace="https://www.drools.org/kie-dmn/Flight-rebooking">
<dmn:itemDefinition id="_tFlight" name="tFlight">
<dmn:itemComponent id="_tFlight_Flight" name="Flight Number">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight From" name="From">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_To" name="To">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Dep" name="Departure">
<dmn:typeRef>feel:dateTime</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Arr" name="Arrival">
<dmn:typeRef>feel:dateTime</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Capacity" name="Capacity">
<dmn:typeRef>feel:number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tFlight_Status" name="Status">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tFlightTable" isCollection="true" name="tFlightTable">
<dmn:typeRef>tFlight</dmn:typeRef>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tPassenger" name="tPassenger">
<dmn:itemComponent id="_tPassenger_Name" name="Name">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Status" name="Status">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Miles" nhame="Miles">
<dmn:typeRef>feel:number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_tPassenger_Flight" name="Flight Number">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tPassengerTable" isCollection="true" name="tPassengerTable">
<dmn:typeRef>tPassenger</dmn:typeRef>
</dmn:itemDefinition>
<dmn:itemDefinition id="_tFlightNumberList" isCollection="true" name="tFlightNumberList">
<dmn:typeRef>feel:string</dmn:typeRef>
</dmn:itemDefinition>
<dmn:inputData id="i_Flight_List" name="Flight List">
<dmn:variable name="Flight List" typeRef="tFlightTable"/>
</dmn:inputData>
<dmn:inputData id="i_Passenger_List" name="Passenger List">
<dmn:variable name="Passenger List" typeRef="tPassengerTable"/>
</dmn:inputData>

81



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

<dmn:decision name="Prioritized Waiting List" id="d_PrioritizedWaitingList">
<dmn:variable name="Prioritized Waiting List" typeRef="tPassengerTable"/>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Passenger_List"/>
</dmn:informationRequirement>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Flight_List"/>
</dmn:informationRequirement>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_PassengerPriority"/>
</dmn:knowledgeRequirement>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Cancelled Flights" typeRef="tFlightNumberList"/>
<dmn:literalExpression>
<dmn:text>Flight List[ Status = "cancelled" ].Flight Number</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Waiting List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>Passenger List[ list contains( Cancelled Flights, Flight Number ) ]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:literalExpression>
<dmn:text>sort( Waiting List, passenger priority )</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:decision>
<dmn:decision name="Rebooked Passengers" id="d_RebookedPassengers">
<dmn:variable name="Rebooked Passengers" typeRef="tPassengerTable"/>
<dmn:informationRequirement>
<dmn:requiredDecision href="#d_PrioritizedWaitingList"/>
</dmn:informationRequirement>
<dmn:informationRequirement>
<dmn:requiredinput href="#i_Flight_List"/>
</dmn:informationRequirement>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_ReassignNextPassenger"/>
</dmn:knowledgeRequirement>
<dmn:invocation>
<dmn:literalExpression>
<dmn:text>reassign next passenger</dmn:text>
</dmn:literalExpression>
<dmn:binding>
<dmn:parameter name="Waiting List"/>
<dmn:literalExpression>
<dmn:text>Prioritized Waiting List</dmn:text>
</dmn:literalExpression>
</dmn:binding>
<dmn:binding>
<dmn:parameter name="Reassigned Passengers List"/>
<dmn:literalExpression>
<dmn:text>[]</dmn:text>

82



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

</dmn:literalExpression>
</dmn:binding>
<dmn:binding>
<dmn:parameter name="Flights"/>
<dmn:literalExpression>
<dmn:text>Flight List</dmn:text>
</dmn:literalExpression>
</dmn:binding>
</dmn:invocation>
</dmn:decision>
<dmn:businessKnowledgeModel id="b_PassengerPriority" name="passenger priority">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="Passengeri" typeRef="tPassenger"/>
<dmn:formalParameter name="Passenger2" typeRef="tPassenger"/>
<dmn:decisionTable hitPolicy="UNIQUE">
<dmn:input id="b_Passenger_Priority_dt i P1_Status" label="Passengeri.Status">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passengeri.Status</dmn:text>
</dmn:inputExpression>
<dmn:inputValues>
<dmn:text>"gold", "silver", "bronze"</dmn:text>
</dmn:inputValues>
</dmn:input>
<dmn:input id="b_Passenger_Priority_dt i P2_Status" label="Passenger2.Status">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passenger2.Status</dmn:text>
</dmn:inputExpression>
<dmn:inputValues>
<dmn:text>"gold", "silver", "bronze"</dmn:text>
</dmn:inputValues>
</dmn:input>
<dmn:input id="b_Passenger_Priority_dt i P1_Miles" label="Passengeri.Miles">
<dmn:inputExpression typeRef="feel:string">
<dmn:text>Passengeri.Miles</dmn:text>
</dmn:inputExpression>
</dmn:input>
<dmn:output id="b_Status_Priority_dt 0" label="Passenger1 has priority">
<dmn:outputValues>
<dmn:text>true, false</dmn:text>
</dmn:outputValues>
<dmn:defaultOutputEntry>
<dmn:text>false</dmn:text>
</dmn:defaultOutputEntry>
</dmn:output>
<dmn:rule id="b_Passenger_Priority_dt_r1">
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i1">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i2">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r1_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r1_o1">
<dmn:text>true</dmn:text>

83



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt r2">
<dmn:inputEntry id="b_Passenger_Priority_dt r2_i1">
<dmn:text>"gold"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt_r2_i2">
<dmn:text>"silver","bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r2_i3">
<dmn:text>-</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r2_o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt r3">
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i1">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i2">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r3_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r3 o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt r4">
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i1">
<dmn:text>"silver"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i2">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r4_i3">
<dmn:text>-</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r4 o1">
<dmn:text>true</dmn:text>
</dmn:outputEntry>
</dmn:rule>
<dmn:rule id="b_Passenger_Priority_dt r5">
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i1">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i2">
<dmn:text>"bronze"</dmn:text>
</dmn:inputEntry>
<dmn:inputEntry id="b_Passenger_Priority_dt r5_i3">
<dmn:text>>= Passenger2.Miles</dmn:text>
</dmn:inputEntry>
<dmn:outputEntry id="b_Passenger_Priority_dt r5 o1">
<dmn:text>true</dmn:text>

84



CHAPTER 4. DECISION MODEL AND NOTATION (DMN)

</dmn:outputEntry>
</dmn:rule>
</dmn:decisionTable>
</dmn:encapsulatedLogic>
<dmn:variable name="passenger priority" typeRef="feel:boolean"/>
</dmn:businessKnowledgeModel>
<dmn:businessKnowledgeModel id="b_ReassignNextPassenger" name="reassign next passenger">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="Waiting List" typeRef="tPassengerTable"/>
<dmn:formalParameter name="Reassigned Passengers List" typeRef="tPassengerTable"/>
<dmn:formalParameter name="Flights" typeRef="tFlightTable"/>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Next Passenger" typeRef="tPassenger"/>
<dmn:literalExpression>
<dmn:text>Waiting List[1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Original Flight" typeRef="tFlight"/>
<dmn:literalExpression>
<dmn:text>Flights[ Flight Number = Next Passenger.Flight Number ][1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Best Alternate Flight" typeRef="tFlight"/>
<dmn:literalExpression>
<dmn:text>Flights[ From = Original Flight.From and To = Original Flight.To and Departure >
Original Flight.Departure and Status = "scheduled" and has capacity( item, Reassigned Passengers
List ) ][1]</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Reassigned Passenger" typeRef="tPassenger"/>
<dmn:context>
<dmn:contextEntry>
<dmn:variable name="Name" typeRef="feel:string"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Name</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Status" typeRef="feel:string"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Status</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Miles" typeRef="feel:number"/>
<dmn:literalExpression>
<dmn:text>Next Passenger.Miles</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Flight Number" typeRef="feel:string"/>
<dmn:literalExpression>

85



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

<dmn:text>Best Alternate Flight.Flight Number</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Remaining Waiting List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>remove( Waiting List, 1 )</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:variable name="Updated Reassigned Passengers List" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>append( Reassigned Passengers List, Reassigned Passenger )</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
<dmn:contextEntry>
<dmn:literalExpression>
<dmn:text>if count( Remaining Waiting List ) > 0 then reassign next passenger( Remaining
Waiting List, Updated Reassigned Passengers List, Flights ) else Updated Reassigned Passengers
List</dmn:text>
</dmn:literalExpression>
</dmn:contextEntry>
</dmn:context>
</dmn:encapsulatedLogic>
<dmn:variable name="reassign next passenger" typeRef="tPassengerTable"/>
<dmn:knowledgeRequirement>
<dmn:requiredKnowledge href="#b_HasCapacity"/>
</dmn:knowledgeRequirement>
</dmn:businessKnowledgeModel>
<dmn:businessKnowledgeModel id="b_HasCapacity" name="has capacity">
<dmn:encapsulatedLogic>
<dmn:formalParameter name="flight" typeRef="tFlight"/>
<dmn:formalParameter name="rebooked list" typeRef="tPassengerTable"/>
<dmn:literalExpression>
<dmn:text>flight.Capacity > count( rebooked list[ Flight Number = flight.Flight Number ]
)</dmn:text>
</dmn:literalExpression>
</dmn:encapsulatedLogic>
<dmn:variable name="has capacity" typeRef="feel:boolean"/>
</dmn:businessKnowledgeModel>
</dmn:definitions>

86



CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER

CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER

Red Hat Decision Manager provides runtime support for DMN 1.1, 1.2, 1.3, and 1.4 models at conformance
level 3, and design support for DMN 1.2 models at conformance level 3. You can integrate DMN models
with your Red Hat Decision Manager decision services in several ways:
® Design your DMN models directly in Business Central using the DMN designer.
® |mport DMN files into your project in Business Central (Menu = Design - Projects = Import
Asset). Any DMN 1.1and 1.3 models (do not contain DMN 1.3 features) that you import into
Business Central, open in the DMN designer, and save are converted to DMN 1.2 models.

® Package DMN files as part of your project knowledge JAR (KJAR) file without Business Central.

The following table summarizes the design and runtime support for each DMN version in Red Hat
Decision Manager:

Table 5.1. DMN support in Red Hat Decision Manager

DMN version DMN engine support DMN modeler support
Execution

DMN 11

DMN 1.2

DMN 1.3

DMN 1.4

In addition to all DMN conformance level 3 requirements, Red Hat Decision Manager also includes
enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Decision Manager. From a platform perspective,
DMN models are like any other business asset in Red Hat Decision Manager, such as DRL files or
spreadsheet decision tables, that you can include in your Red Hat Decision Manager project and deploy
to KIE Server in order to start your DMN decision services.

For more information about including external DMN files with your Red Hat Decision Manager project
packaging and deployment method, see Packaging and deploying an Red Hat Decision Manager project .

You can design a new DMN decision service using a Red Hat build of Kogito microservice as an
alternative for the cloud-native capabilities of DMN decision services. You can migrate your DMN
service to a Red Hat build of Kogito microservice. For more information about migrating to Red Hat build
of Kogito microservices, see Migrating to Red Hat build of Kogito microservices .

87


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager#assembly-migration-to-kogito-microservices

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

5.1. CONFIGURABLE DMN PROPERTIES IN RED HAT DECISION
MANAGER

Red Hat Decision Manager provides the following DMN properties that you can configure when you
execute your DMN models on KIE Server or on your client application. You can configure some of these
properties using the kmodule.xml file in your Red Hat Decision Manager project when you deploy your
project on KIE Server.

org.kie.dmn.strictConformance

When enabled, this property disables by default any extensions or profiles provided beyond the DMN
standard, such as some helper functions or enhanced features of DMN 1.2 backported into DMN 1.1.
You can use this property to configure the decision engine to support only pure DMN features, such
as when running the DMN Technology Compatibility Kit (TCK).

Default value: false

I -Dorg.kie.dmn.strictConformance=true

org.kie.dmn.runtime.typecheck

When enabled, this property enables verification of actual values conforming to their declared types
in the DMN model, as input or output of DRD elements. You can use this property to verify whether
data supplied to the DMN model or produced by the DMN model is compliant with what is specified
in the model.

Default value: false

I -Dorg.kie.dmn.runtime.typecheck=true

org.kie.dmn.decisionservice.coercesingleton

By default, this property makes the result of a decision service defining a single output decision be
the single value of the output decision value. When disabled, this property makes the result of a
decision service defining a single output decision be a context with the single entry for that decision.
You can use this property to adjust your decision service outputs according to your project
requirements.

Default value: true

I -Dorg.kie.dmn.decisionservice.coercesingleton=false

org.kie.dmn.profiles.$PROFILE_NAME

When valorized with a Java fully qualified name, this property loads a DMN profile onto the decision
engine at start time. You can use this property to implement a predefined DMN profile with
supported features different from or beyond the DMN standard. For example, if you are creating
DMN models using the Signavio DMN modeller, use this property to implement features from the
Signavio DMN profile into your DMN decision service.

I -Dorg.kie.dmn.profiles.signavio=org.kie.dmn.signavio.KieDMNSignavioProfile

org.kie.dmn.runtime.listeners.$LISTENER_NAME

When valorized with a Java fully qualified name, this property loads and registers a DMN Runtime
Listener onto the decision engine at start time. You can use this property to register a DMN listener
in order to be notified of several events during DMN model evaluations.

88


https://dmn-tck.github.io/tck/

CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER

To configure this property when deploying your project on KIE Server, modify this property in the
kmodule.xml file of your project. This approach is helpful when the listener is specific to your project
and when the configuration must be applied in KIE Server only to your deployed project.

<kmodule xmins="http://www.drools.org/xsd/kmodule">
<configuration>
<property key="org.kie.dmn.runtime.listeners.mylistener" value="org.acme.MyDMNListener"/>
</configuration>
</kmodule>

To configure this property globally for your Red Hat Decision Manager environment, modify this
property using a command terminal or any other global application configuration mechanism. This
approach is helpful when the decision engine is embedded as part of your Java application.

I -Dorg.kie.dmn.runtime.listeners.mylistener=org.acme.MyDMNListener

org.kie.dmn.compiler.execmodel

When enabled, this property enables DMN decision table logic to be compiled into executable rule
models during run time. You can use this property to evaluate DMN decision table logic more
efficiently. This property is helpful when the executable model compilation was not originally
performed during project compile time. Enabling this property may result in added compile time
during the first evaluation by the decision engine, but subsequent compilations are more efficient.
Default value: false

I -Dorg.kie.dmn.compiler.execmodel=true

5.2. CONFIGURABLE DMN VALIDATION IN RED HAT DECISION
MANAGER

By default, the kie-maven-plugin component in the pom.xml file of your Red Hat Decision Manager
project uses the following <validateDMN> configurations to perform pre-compilation validation of DMN
model assets and to perform DMN decision table static analysis:

e VALIDATE_SCHEMA: DMN model files are verified against the DMN specification XSD schema
to ensure that the files are valid XML and compliant with the specification.

e VALIDATE_MODEL: The pre-compilation analysis is performed for the DMN model to ensure
that the basic semantic is aligned with the DMN specification.

e ANALYZE_DECISION_TABLE: DMN decision tables are statically analyzed for gaps or overlaps
and to ensure that the semantic of the decision table follows best practices.

You can modify the default DMN validation and DMN decision table analysis behavior to perform only a
specified validation during the project build, or you can disable this default behavior completely, as
shown in the following examples:

Default configuration for DMN validation and decision table analysis

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactid>
<extensions>true</extensions>

89



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

<configuration>

<validateDMN>VALIDATE_SCHEMA,VALIDATE_MODEL,ANALYZE_DECISION_TABLE</alidateD
MN>

</configuration>
</plugin>

Configuration to perform only the DMN decision table static analysis

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactld>
<extensions>true</extensions>
<configuration>

<validateDMN>ANALYZE_DECISION_TABLE</validateDMN>

</configuration>

</plugin>

Configuration to perform only the XSD schema validation

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactld>
<extensions>true</extensions>
<configuration>

<validateDMN>VALIDATE_SCHEMA</NalidateDMN>

</configuration>

</plugin>

Configuration to perform only the DMN model validation

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactld>
<extensions>true</extensions>
<configuration>

<validateDMN>VALIDATE_MODEL</validateDMN>

</configuration>

</plugin>

Configuration to disable all DMN validation

<plugin>
<groupld>org.kie</groupld>
<artifactld>kie-maven-plugin</artifactid>
<extensions>true</extensions>
<configuration>

<validateDMN>disable</validateDMN>

</configuration>

</plugin>

90



CHAPTER 5. DMN SUPPORT IN RED HAT DECISION MANAGER

NOTE

If you enter an unrecognized <validateDMN> configuration flag, all pre-compilation
validation is disabled and the Maven plugin emits related log messages.

o1



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 6. CREATING AND EDITING DMN MODELS IN
BUSINESS CENTRAL

You can use the DMN designer in Business Central to design DMN decision requirements diagrams
(DRDs) and define decision logic for a complete and functional DMN decision model. Red Hat Decision
Manager provides design support for DMN 1.2 models at conformance level 3, and includes
enhancements and fixes to FEEL and DMN model components to optimize the experience of
implementing DMN decision services with Red Hat Decision Manager. Red Hat Decision Manager also
provides runtime support for DMN 1.1, 1.2, 1.3, and 1.4 models at conformance level 3, but any DMN 1.1and
1.3 models (do not contain DMN 1.3 features) that you import into Business Central, open in the DMN
designer, and save are converted to DMN 1.2 models.

Procedure

1. In Business Central, go to Menu - Design = Projects and click the project name.

2. Create orimport a DMN file in your Business Central project.
To create a DMN file, click Add Asset = DMN, enter an informative DMN model name, select
the appropriate Package, and click Ok.

To import an existing DMN file, click Import Asset, enter the DMN model name, select the
appropriate Package, select the DMN file to upload, and click Ok.

The new DMN file is now listed in the DMN panel of the Project Explorer, and the DMN decision
requirements diagram (DRD) canvas appears.

NOTE

If you imported a DMN file that does not contain layout information, the
imported decision requirements diagram (DRD) is formatted automatically in the
DMN designer. Click Save in the DMN designer to save the DRD layout.

If an imported DRD is not automatically formatted, you can select the Perform

automatic layout icon in the upper-right toolbar in the DMN designer to format
the DRD.

3. Begin adding components to your new or imported DMN decision requirements diagram (DRD)
by clicking and dragging one of the DMN nodes from the left toolbar:

92



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.1. Adding DRD components

My DMN model.dmn - DMN -

Model  Overview  Documentation Data Types

i

O (g oy 9 o

DMMN Decision

The following DRD components are available:

Decision: Use this node for a DMN decision, where one or more input elements determine
an output based on defined decision logic.

Business knowledge model: Use this node for reusable functions with one or more decision
elements. Decisions that have the same logic but depend on different sub-input data or
sub-decisions use business knowledge models to determine which procedure to follow.

Knowledge source: Use this node for external authorities, documents, committees, or
policies that regulate a decision or business knowledge model. Knowledge sources are
references to real-world factors rather than executable business rules.

Input data: Use this node for information used in a decision node or a business knowledge
model. Input data usually includes business-level concepts or objects relevant to the
business, such as loan applicant data used in a lending strategy.

Text annotation: Use this node for explanatory notes associated with an input data node,
decision node, business knowledge model, or knowledge source.

Decision service: Use this node to enclose a set of reusable decisions implemented as a
decision service for invocation. A decision service can be used in other DMN models and can
be invoked from an external application or a BPMN business process.

4. In the DMN designer canvas, double-click the new DRD node to enter an informative node

name.

93



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

5. If the node is a decision or business knowledge model, select the node to display the node
options and click the Edit icon to open the DMN boxed expression designer to define the

decision logic for the node:
Figure 6.2. Opening a new decision node boxed expression

« Back to My DMN model

Credit Score Rating (<Undefined=>)

Select expression

& |
ng

AE]w

Figure 6.3. Opening a new business knowledge model boxed expression

« Back to My DMN model

PITI ¢Function)

PITI
{=Undefined=)

Edit parameters

w A
PITI O b=
< -

o

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,

or a nested boxed expression of any type.

94



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

For decision nodes, you click the undefined table to select the type of boxed expression you
want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

Figure 6.4. Selecting the logic type for a decision node

« Back to My DMN mao Select logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

For business knowledge models, you click the top-left function cell to select the function type,
or right-click the function value cell, select Clear, and select a boxed expression of another type.

95



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.5. Selecting the function or other logic type for a business knowledge model

« Back to My DMN model

PITI (Function)

PITI

FEEL
JAVA
PMML

Select Function Kind

&« Back to My DMN model

PITI (Function)

PITI
fAnyl

Edit parameters

Select logic type

Literal expression

| Clear
#« Back to My DMN model
PITI (Function)
PITI
fAny)
Edit parameters
) Context
Select expression

Decision Table
Relation
Function

Invocation

6. Inthe selected boxed expression designer for either a decision node (any expression type) or

96




CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

business knowledge model (function expression), click the applicable table cells to define the
table name, variable data types, variable names and values, function parameters and bindings,
or FEEL expressions to include in the decision logic.

You can right-click cells for additional actions where applicable, such as inserting or removing
table rows and columns or clearing table contents.

The following is an example decision table for a decision node that determines credit score
ratings based on a defined range of a loan applicant’s credit score:

Figure 6.6. Decision node decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.,FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
>= 750 "Excellent"
1
[TO8..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< 500 "Bad"
5

The following is an example boxed function expression for a business knowledge model that
calculates mortgage payments based on principal, interest, taxes, and insurance (PITI) as a
literal expression:

97



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.7. Business knowledge model function for PITI calculation

« Back to Loan Pre-Qualification

- 11
PITI (Function)

PITI
frumber)

{pmt, tax, insurance, income)

(pmt+tax+insurance)/income

7. After you define the decision logic for the selected node, click Back to "<MODEL_NAME>"to
return to the DRD view.

8. For the selected DRD node, use the available connection options to create and connect to the
next node in the DRD, or click and drag a new node onto the DRD canvas from the left toolbar.
The node type determines which connection options are supported. For example, an Input data
node can connect to a decision node, knowledge source, or text annotation using the applicable
connection type, whereas a Knowledge source node can connect to any DRD element. A
Decision node can connect only to another decision or a text annotation.

The following connection types are available, depending on the node type:

® Information requirement: Use this connection from an input data node or decision node to
another decision node that requires the information.

e Knowledge requirement: Use this connection from a business knowledge model to a
decision node or to another business knowledge model that invokes the decision logic.

® Authority requirement: Use this connection from an input data node or a decision node to a
dependent knowledge source or from a knowledge source to a decision node, business

knowledge model, or another knowledge source.

® Association: Use this connection from an input data node, decision node, business
knowledge model, or knowledge source to a text annotation.

98



S.

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTR

Figure 6.8. Connecting credit score input to the credit score rating decision

Create DMN Information Requirement

$ ul
i

redit
%tnn
ing

o

Continue adding and defining the remaining DRD components of your decision model.
Periodically click Save in the DMN designer to save your work.

NOTE

As you periodically save a DRD, the DMN designer performs a static validation of
the DMN model and might produce error messages until the model is defined
completely. After you finish defining the DMN model completely, if any errors
remain, troubleshoot the specified problems accordingly.

After you add and define all components of the DRD, click Save to save and validate the
completed DRD.

To adjust the DRD layout, you can select the Perform automatic layouticon in the upper-right
toolbar of the DMN designer.

The following is an example DRD for a loan prequalification decision model:

Al

99



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.9. Completed DRD for loan prequalification

Prequalification|

o g
| | & = ST

The following is an example DRD for a phone call handling decision model using a reusable
decision service:

Figure 6.10. Completed DRD for phone call handling with a decision service

( Call can be handled \

Call conditions
satisfied
Suitable
R office
A
Banned
hone —» Is banned Is office open
numbers

- ] r

l nir;ﬁggr J ' Office , 'Incomingcall ’

In a DMN decision service node, the decision nodes in the bottom segment incorporate input
data from outside of the decision service to arrive at a final decision in the top segment of the
decision service node. The resulting top-level decisions from the decision service are then
implemented in any subsequent decisions or business knowledge requirements of the DMN
model. You can reuse DMN decision services in other DMN models to apply the same decision
logic with different input data and different outgoing connections.

6.1. DEFINING DMN DECISION LOGIC IN BOXED EXPRESSIONS IN
BUSINESS CENTRAL

Boxed expressions in DMN are tables that you use to define the underlying logic of decision nodes and
business knowledge models in a decision requirements diagram (DRD). Some boxed expressions can
contain other boxed expressions, but the top-level boxed expression corresponds to the decision logic

100



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

of a single DRD artifact. While DRDs represent the flow of a DMN decision model, boxed expressions
define the actual decision logic of individual nodes. DRDs and boxed expressions together form a
complete and functional DMN decision model.

You can use the DMN designer in Business Central to define decision logic for your DRD components
using built-in boxed expressions.

Prerequisites

e A DMN fileis created or imported in Business Central.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer canvas, select a decision node or business knowledge model node that you
want to define and click the Edit icon to open the DMN boxed expression designer:

Figure 6.11. Opening a new decision node boxed expression

« Back to My DMN model

Credit Score Rating (<Undefined=>)

Select expression

P
B85
CH3
O

101



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.12. Opening a new business knowledge model boxed expression

« Back to My DMN model

PITI ¢Function)

PITI
{=Undefined=)

Edit parameters

w A
PITI 0 &=
< o

=

By default, all business knowledge models are defined as boxed function expressions containing
a literal FEEL expression, a nested context expression of an external JAVA or PMML function,
or a nested boxed expression of any type.

For decision nodes, you click the undefined table to select the type of boxed expression you
want to use, such as a boxed literal expression, boxed context expression, decision table, or
other DMN boxed expression.

Figure 6.13. Selecting the logic type for a decision node

« Back to My DMN mao select logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

For business knowledge model nodes, you click the top-left function cell to select the function
type, or right-click the function value cell, select Clear, and select a boxed expression of another

type.

102



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.14. Selecting the function or other logic type for a business knowledge model

« Back to My DMN model

PITI (Function)

PITI
c Select Function Kind
FEEL
JAVA
PRINL

&« Back to My DMN model

PITI (Function)

PITI
fAnyl

Edit parameters

| Clear
#« Back to My DMN model
PITI (Function)
PITI
fAnyt .
E Select logic type
Edit parameters
Literal expression
) Context
Select expression
Decision Table
Relation
Function
Invocation

3. For this example, use a decision node and select Decision Table as the boxed expression type.

103



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

A decision table in DMN is a visual representation of one or more rules in a tabular format. Each
rule consists of a single row in the table, and includes columns that define the conditions (input)
and outcome (output) for that particular row.

4. Click the input column header to define the name and data type for the input condition. For
example, name the input column Credit Score.FICO with a humber data type. This column
specifies numeric credit score values or ranges of loan applicants.

5. Click the output column header to define the name and data type for the output values. For
example, name the output column Credit Score Rating and next to the Data Type option, click
Manage to go to the Data Types page where you can create a custom data type with score
ratings as constraints.

Figure 6.15. Managing data types for a column header value

% Back to Loan Pre-Qualification

. . ".'_"""l".""-‘l"n' :":_-:'li I,' = .
Credit Score Rating (Decision Table) Edit Output Clause

MName
A Credi;niif;;ﬂct] Credit S;?;f Credit Score Rating

Data Type
: Any i

6. On the Data Types page, click New Data Type to add a new data type or click Import Data
Object to import an existing data object from your project that you want to use as a DMN data
type.

If you import a data object from your project as a DMN data type and then that object is
updated, you must re-import the data object as a DMN data type to apply the changes in your
DMN model.

For this example, click New Data Type and create a Credit_Score_Rating data type as a string:

Figure 6.16. Adding a new data type

Model Documentation Data Types Included Models Overview Q

Custom Data Types

New Data Type Import Data Object Search d yo Q | Expand all | Collapse all

* Name * Type

Credit_Score_Rating string - B List # Add Constraints @ v x

7. Click Add Constraints, select Enumeration from the drop-down options, and add the following
constraints:

e "Excellent"
. "Good"

e "Fair”

104



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

e "Poor"
o "Bad"

Figure 6.17. Adding constraints to the new data type

Data Type constraints

Add constraints to limit and define valid input for the string data type.

Select constraint type

Enumeration

i "Excellent”

s "Good”

5 "Fairt

i "Poor"

i "Bad"

Clear all

To change the order of data type constraints, you can click the left end of the constraint row
and drag the row as needed:

105



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

106

Figure 6.18. Dragging constraints to change constraint order

Data Type constraints x

Add constraints to limit and define valid input for the string data type.
Select constraint type

Enumeration w

i!J"Ex-::eIIent"
i "Good"

it "Fair"

it "Poor"

8 8 e

it "Bad” 11

For information about constraint types and syntax requirements for the specified data type, see
the Decision Model and Notation specification.

Click OK to save the constraints and click the check mark to the right of the data type to save
the data type.

Return to the Credit Score Rating decision table, click the Credit Score Rating column header,
and set the data type to this new custom data type.

. Use the Credit Score.FICO input column to define credit score values or ranges of values, and

use the Credit Score Rating column to specify one of the corresponding ratings you defined in
the Credit_Score_Rating data type.
Right-click any value cell to insert or delete rows (rules) or columns (clauses).


https://www.omg.org/spec/DMN

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL
Figure 6.19. Decision node decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.,FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
>= 750 "Excellent"
1
[7o0..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< GO0 "Bad"
5

1. After you define all rules, click the top-left corner of the decision table to define the rule Hit
Policy and Builtin Aggregator (for COLLECT hit policy only).
The hit policy determines how to reach an outcome when multiple rules in a decision table match
the provided input values. The built-in aggregator determines how to aggregate rule values
when you use the COLLECT hit policy.

107



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.20. Defining the decision table hit policy

« Back to Loan Pre-Qualification

Credit Score Rating (pecision Table)

Edit Hit Policy

Hit Policy
UNIQUE

Builtin Aggregator

1 <MNone>

[700, ., 750)
2

[656, ,700)
3

[60a,  650)
4

< 600
5

“GDUd“

"Fair"

"Poor"

IIBadII

Description

LT

The following example is a more complex decision table that determines applicant qualification
for aloan as the concluding decision node in the same loan prequalification decision model:

Figure 6.21. Decision table for loan prequalification

Loan Pre-Qualification (Decision Table)

E Credit Score Rating | Back End Ratio
(Credit Score Rating) (Back_End_Ratio)
"poor", "Bad" | -

1
- "Insufficient"

2
- "Sufficient"

3
- "Insufficient"

4
"Fair', "Good", "Sufficient"

5 "Excelient”

Front End Ratio
(Front_End_Ratio)

"Sufficient"

"Insufficient"

"Insufficient"

"Sufficient"

Qualification
(string)
"Not Qualified"
"Mot Qualified"
"Not Qualified"

"MNot Qualified"

"Qualified"

Loan Pre-Qualification
(Loan_Qualification)

Reason
(string)

"Credit Score too low."
"Debt to income ratio is too high."

"Mortgage payment to income ratio
is tog %igﬁ.)‘Ir

"Debt to income ratio is too high
AND mortgage ﬁayment to income
ratio is”tdo high."

"The borrower has been successfully,
prequalified for the requested loan.

Description

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define variables and parameters for decision logic, but according to the
requirements of the boxed expression type. Some boxed expressions, such as boxed literal expressions,
can be single-column tables, while other boxed expressions, such as function, context, and invocation
expressions, can be multi-column tables with nested boxed expressions of other types.

108



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

For example, the following boxed context expression defines the parameters that determine whether a
loan applicant can meet minimum mortgage payments based on principal, interest, taxes, and insurance
(PITI), represented as a front-end ratio calculation with a sub-context expression:

Figure 6.22. Boxed context expression for front-end client PITI ratio

Front End Ratio (Context)

Front End Ratio

# (Front_End_Ratio)
# PITI
pmt Requested Product.Amount*%(Requested Product.Rate/100)/12))/
1 1-(1/(1+{Requested Product Rate/100)/12)**-Requested Product.Term))
fnumiber)
Client PITI tax Applicant Data.Monthly. Tax
1 (number) 2 (number)

insurance | Applicant Data.Monthly. Insurance

("5}

(number)

income Applicant Data.Monthly. Income

(number)

if client PITI <= Lender Acceptable PITI()
<resulft> then "Sufficient"
else "Insufficient"

The following boxed function expression determines a monthly mortgage installment as a business
knowledge model in a lending decision, with the function value defined as a nested context expression:

Figure 6.23. Boxed function expression for installment calculation in business knowledge model

InstallmentCalculation (Function)

InstallmentCalculation
(number)

(ProductType, Rate, Term, Amount)

MonthlyFee if ProductType ="STANDARD LOAN" then 20,00

(number) else 1f ProductType ="SPECIAL LOAN" then 25.00 else null

MonthlyRepayment  (Amount *Rate/12) / (1 - (1 + Rate/12)**-Term)
fnumber)

MonthlyRepayment+MonthlyFee

For more information and examples of each boxed expression type, see Section 4.4, "DMN decision
logic in boxed expressions”.

6.2. CREATING CUSTOM DATA TYPES FOR DMN BOXED
EXPRESSIONS IN BUSINESS CENTRAL

In DMN boxed expressions in Business Central, data types determine the structure of the data that you
use within an associated table, column, or field in the boxed expression. You can use default DMN data
types (such as String, Number, Boolean) or you can create custom data types to specify additional
fields and constraints that you want to implement for the boxed expression values.

109



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Custom data types that you create for a boxed expression can be simple or structured:
® Simple data types have only a name and a type assignment. Example: Age (number).

® Structured data types contain multiple fields associated with a parent data type. Example: A
single type Person containing the fields Name (string), Age (humber), Email (string).

Prerequisites

o A DMN file is created or imported in Business Central.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. Inthe DMN designer canvas, select a decision node or business knowledge model for which you
want to define the data types and click the Edit icon to open the DMN boxed expression
designer.

3. If the boxed expression is for a decision node that is not yet defined, click the undefined table to
select the type of boxed expression you want to use, such as a boxed literal expression, boxed
context expression, decision table, or other DMN boxed expression.

Figure 6.24. Selecting the logic type for a decision node

« Back to My DMN mao select logic type

Credit Score Rati

Literal expression

Select expression Context

Decision Table

Relation
Function

Invocation

4. Click the cell for the table header, column header, or parameter field (depending on the boxed
expression type) for which you want to define the data type and click Manage to go to the Data
Types page where you can create a custom data type.

110



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL
Figure 6.25. Managing data types for a column header value

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table) Edit Output Clause

Mame

A Credit Score.FICO Credit Score Credit Score Rating

{number) {any,

1 Any w

You can also set and manage custom data types for a specified decision node or business
knowledge model node by selecting the Properties icon in the upper-right corner of the DMN
designer:

m



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.26. Managing data types in decision requirements diagram (DRD) properties

& X Properties > (£
-
N _4341 aa5f-4d20-48d3-b8e2-3cdb 27606600
Description

<p>This decision logic converts the&nbsp;borrower’s Credit Score numl

Documentation Links ©Add

None

Mame

Credit Score Rating

Question

What is borrower's credit rating based on FICO score (Borrower FICO5c

Allowed Answers

Excellent, Good, Fair, Poor, Bad
R v Information item

Lend
Accept

IT Data type fanage

Any ~

The data type that you define for a specified cell in a boxed expression determines the structure
of the data that you use within that associated table, column, or field in the boxed expression.

In this example, an output column Credit Score Rating for a DMN decision table defines a set of
custom credit score ratings based on an applicant’s credit score.

5. On the Data Types page, click New Data Type to add a new data type or click Import Data
Object to import an existing data object from your project that you want to use as a DMN data
type.

If you import a data object from your project as a DMN data type and then that object is
updated, you must re-import the data object as a DMN data type to apply the changes in your
DMN model.

For this example, click New Data Type and create a Credit_Score_Rating data type as a string:

12



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.27. Adding a new data type

Model Documentation Data Types Included Models  Overview Q

Custom Data Types

New Data Type Import Data Object Search data types Q | Expand all | Collapse all
* Name * Type &
Credit_Score_Rating string - = List # Add Constraints @ v x

If the data type requires a list of items, enable the List setting.

. Click Add Constraints, select Enumeration from the drop-down options, and add the following
constraints:

e "Excellent"”
e "Good"

o "Fair"

e "Poor"

e "Bad"

Figure 6.28. Adding constraints to the new data type

Data Type constraints

Add constraints to limit and define valid input for the string data type.

Select constraint type

Enumeration

i "Excellent”

: "Goad”

: "Fair

: "Poor"

i "Bad”

Clear all

To change the order of data type constraints, you can click the left end of the constraint row
and drag the row as needed:

13



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.29. Dragging constraints to change constraint order

Data Type constraints x

Add constraints to limit and define valid input for the string data type.
Select constraint type

Enumeration w

i!J"Ex-::eIIent"
i "Good"

it "Fair"

it "Poor"

8 8 e

it "Bad” 11

Clear all “ Cancel

For information about constraint types and syntax requirements for the specified data type, see
the Decision Model and Notation specification.

7. Click OK to save the constraints and click the check mark to the right of the data type to save
the data type.

8. Return to the Credit Score Rating decision table, click the Credit Score Rating column header,
set the data type to this new custom data type, and define the rule values for that column with
the rating constraints that you specified.

14


https://www.omg.org/spec/DMN

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL
Figure 6.30. Decision table for credit score rating

« Back to Loan Pre-Qualification

Credit Score Rating (Decision Table)

U Credit Score.FICO Credit Score Rating Description
{number] {Credit_Score Rating) P
== 750 "Excellent"
1
[TO8..750) "Good"
2
[650. ,700) "Fair"
3
[GOO, . 650) "Poor"
4
< GO0 "Bad"
5

In the DMN decision model for this scenario, the Credit Score Rating decision flows into the
following Loan Prequalification decision that also requires custom data types:

Figure 6.31. Decision table for loan prequalification

Loan Pre-Qualification (Decision Table)

Loan Pre-Qualification

Undefined.
Credit Score Rating | Back End Ratio | Front End Ratio {lindefinec>)

) 5 ; Description
o, <Undefined>, <Undefined>
(<Undefined>) r ) |’ / Qualification Reason

(string) (string)

9. Continuing with this example, return to the Data Types window, click New Data Type, and
create a Loan_Qualification data type as a Structure with no constraints.
When you save the new structured data type, the first sub-field appears so that you can begin
defining nested data fields in this parent data type. You can use these sub-fields in association
with the parent structured data type in boxed expressions, such as nested column headers in
decision tables or nested table parameters in context or function expressions.

For additional sub-fields, select the addition icon next to the Loan_Qualification data type:

115



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.32. Adding a new structured data type with nested fields

Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object Search data typ Q | Expand all | Collapse all
Credit_Score_Rating (string) # "Excellent”, "Good", “Fair”, "Poor”, & [+ i}
i1 ¥ Loan_Qualification (Structure) & % i}

10. For this example, under the structured Loan_Qualification data type, add a Qualification field
with "Qualified" and "Not Qualified" enumeration constraints, and a Reason field with no
constraints. Add also a simple Back_End_Ratio and a Front_End_Ratio data type, both with
"Sufficient" and "Insufficient” enumeration constraints.

Click the check mark to the right of each data type that you create to save your changes.

Figure 6.33. Adding nested data types with constraints

Model Overview Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object earch data typ Q | Expandall | Collapse all
Credit_Score_Rating (string) # “Excellent”, "Good", “Fair”, "Poor”.... & o o :
Back_End_Ratio (string) & “Sufficient”, "Insufficient™ V4 [ +] o
Front_End_Ratio (string) # “Sufficient”, "Insufficient™ ’ 0 ﬂ

v Loan_Qualification (Structure) V4 (+] o
Qualification (string) # "Qualified”, "Not Qualified" S O o
Reason (string) ' (+] @

To change the order or nesting of data types, you can click the left end of the data type row and
drag the row as needed:

16



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.34. Dragging data types to change data type order or nesting

Model Overview  Documentation Data Types Included Models Q

Custom Data Types

New Data Type Import Data Object X Q | Expand all | Collapse all
Credit_Score_Rating (string) & “Excellent”, "Good", "Fair”, "Poor”,... rd +] ﬁ .
- Back_End_Ratio (string) - “sufficient”, “Insufficient” s O W
Front_End_Ratio (string) & "“Sufficient™, "Insufficient” ’ 0 ﬂ'
v Loan_Qualification (Structure) 4 [+ ﬁ
Qualification (string) # "Qualified”, "Not Qualified” ' (+] i
Reason (string) 4 [+ o

11. Return to the decision table and, for each column, click the column header cell, set the data type
to the new corresponding custom data type, and define the rule values as needed for the
column with the constraints that you specified, if applicable.

Figure 6.35. Decision table for loan prequalification

Loan Pre-Qualification (Decision Table)

Loan Pre-Qualification
lificati
E Credit Score Rating | Back End Ratio Front End Ratio LGN Description
(Credit Score Rating) (Back_End_Ratio) (Front_End_Ratio) qualification eTsan
(string) (string)
. "Poor", "Bad" - - "Not Qualified" "Credit Score too low."
- "Insufficient" |"Sufficient" "Mot Qualified" "Debt to income ratio is too high."
2
- "sufficient" "Insufficient" |"Mot Qualified" '_'Mortga%e ﬁayment to income ratio
3 is too high.”
- "Insufficient" |"Insufficient" |"Not Qualified" |"Debt to income ratio is too high
4 AND mortgage ﬁayment to income
ratio is”tdo high."
"Fair", "Good", "Sufficient" "Sufficient" "Qualified" "The borrower has been successfully,
5 "Excellent” prequalified for the requested loah.

For boxed expression types other than decision tables, you follow these guidelines similarly to navigate
the boxed expression tables and define custom data types as needed.

For example, the following boxed function expression uses custom tCandidate and tProfile structured
data types to associate data for online dating compatibility:

17



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.36. Boxed function expression for online dating compatibility

Evaluate Match (Function)

Evaluate Match
{tCandidate)

{Lonely Soul, Candidate)

Profilel Lonely Soul
(tPrafile)

Profile? Candidate

(tPrafile)
Is Soul a Match(LlLonely Soul, Candidate) and

3 Is Match Is Soul a Match(Candidate, Lonely Soul

fboolean)

Score Number of Matching Interests(Lonely Soul, Candidate) -
4 absolute( Lonely Soul.Age - Candidate. Age )

fnumber)

<resuft> Select expression

Figure 6.37. Custom data type definitions for online dating compatibility
Model Overview Documentation Data Types Included Models

Custom Data Types

New Data Type Import Data Object sarch data type Q | Expand all | Collapse all
> tProfiles (tProfile) B List + ves & [+] o
v tCandidate (Structure) & L+] i}
v Profile1 (tProfile) S O W
MName (string) & [+ i}
Gender (tGender) S O 1o

City (string) 4 © @

18



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.38. Parameter definitions with custom data types for online dating compatibility

Edit Parameters

Evaluate Match (runction)
Add parameter

Evaluate Match .
{tCandidate) Lonely Soul tProfile ~

Candidate tProfile +

(Lonely Soul, Candidate)

Profilel Lonely Soul
(tProfile)

Profile2 Candidate
{tProfile)

Is Soul a Match(Lonely Soul, ¢
Is Match Is Soul a Match(Candidate, Lonei}r Soul]

fbooclean)

Score Number of Matching Interests(Lonely Soul, Candidate) -
4 absolute( Lonely Soul.Age - Candidate.Age )

frumber)

<result= Select expression

6.3. INCLUDED MODELS IN DMN FILES IN BUSINESS CENTRAL

In the DMN designer in Business Central, you can use the Included Models tab to include other DMN
models and Predictive Model Markup Language (PMML) models from your project in a specified DMN
file. When you include a DMN model within another DMN file, you can use all of the nodes and logic from
both models in the same decision requirements diagram (DRD). When you include a PMML model within
a DMN file, you can invoke that PMML model as a boxed function expression for a DMN decision node or
business knowledge model node.

You cannot include DMN or PMML models from other projects in Business Central.

6.3.1. Including other DMN models within a DMN file in Business Central

In Business Central, you can include other DMN models from your project in a specified DMN file. When
you include a DMN model within another DMN file, you can use all of the nodes and logic from both
models in the same decision requirements diagram (DRD), but you cannot edit the nodes from the
included model. To edit nodes from included models, you must update the source file for the included
model directly. If you update the source file for an included DMN model, open the DMN file where the
DMN model is included (or close an re-open) to verify the changes.

You cannot include DMN models from other projects in Business Central.

Prerequisites

® The DMN models are created or imported (as .dmn files) in the same project in Business
Central as the DMN file in which you want to include the models.

Procedure

1. In Business Central, go to Menu - Design — Projects, click the project name, and select the
DMN file you want to modify.

2. In the DMN designer, click the Included Models tab.

19



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

3. Click Include Model, select a DMN model from your project in the Models list, enter a unique
name for the included model, and click Include:

Figure 6.39. Including a DMN model

Include model

Models that have been added to the project directory may be included in this DMN file, Decision
requirements diagram components of included DMN models will be available to use in this DMN file.
PMML models will be available for invocation through DMN functions.

Models

Lending.dmn

Provide a unique name

Lending Strategy

Include Cancel

The DMN model is added to this DMN file, and all DRD nodes from the included model are listed
under Decision Components in the Decision Navigator view:

Figure 6.40. DMN file with decision components from the included DMN model

%= Decision Navigator < @ Loan prequalification.dmn - DMN « Save | Delete | Rename

m . = Model Overview Documentation Data Types Included Models
» Decision Graphs

Included Models

~ Decision Components Included models are externally defined models that have been added to this DMN file. External DMN m
PMML models can be invoked through DMN functions.
Filter by v

O Lending Strategy.Post-bureauAffordability

Lending.dmn

O Lending Strategy.Pre-bureauRiskCategory
Lending.dmn

Lending Strategy

Lending.d
O Lending Strategy.Adjudication ending.dmn
Lending.dmn E 9 ® 24
o Lending Strategy.InstallmentCalculation Remove

Lending.dmn

o Lending Strategy.CreditContingencyFactorTa...
Lending.dmn

o Lending Strategy.AffordabilityCalculation
Lending.dmn

All data types from the included model are also listed in read-only mode in the Data Types tab
for the DMN file:

120



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.41. DMN file with data types from the included DMN model

Delete | Rename

& Loan prequalification... | save | ~

Model Qverview Documentation Data Types

Custom Data Types

New Data Type Import Data Object

Copy & b Hi @ O C|v &~ 47|53 K| & Download | Latest Version v || Hide Alerts | | . %

Included Models Q

Q | Expand all | Collapse all

@ This list contains Data Types on read-only mode. You can edit them by opening the original file.

>  Credit_Score (Structure)

> Loan_Qualification {Structure)

Lending.tEligibility (string) # "INELIGIBLE", "ELIGIBLE
Lending.tBureauCallType (string) # “FULL", "MINI®
Lending.tStrategy (string) # “DECLINE", "BUREAU",

x
s O o -
& O W
s O O
NONE S O o
THROUGH" S O o

4. In the Model tab of the DMN designer, click and drag the included DRD components onto the
canvas to begin implementing them in your DRD:

Figure 6.42. Adding DRD components from the included DMN model

&= Decision Navigator

» Decision Graphs

~ Decision Components

Filter by

Lending Strategy.Post-bureauAffordability
Lending.dmn

Lending Strategy.Pre-bureauRiskCategory
Lending.dmn

Lending Strategy.Adjudication
Lending.dmn

Lending Strategy.InstallmentCalculation
Lending.dmn

Lending.dmn

Lending Strategy.AffordabilityCalculation
Lending.dmn

Lending Strategy.CreditContingencyFactorTa...

< Loan prequalification.dmn - DMN +

Overview Documentation Included Models

Maodel Data Types

[

Credit Score
Rating

i g0 m0 § 80

Lending Strategy.Ins

tallmentCalculation

To edit DRD nodes or data types from included models, you must update the source file for the
included model directly. If you update the source file for an included DMN model, open the DMN
file where the DMN model is included (or close an re-open) to verify the changes.

To edit the included model name or to remove the included model from the DMN file, use the
Included Models tab in the DMN designer.

121



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

IMPORTANT

When you remove an included model, any nodes from that included model that
are currently used in the DRD are also removed.

6.3.2. Including PMML models within a DMN file in Business Central

In Business Central, you can include Predictive Model Markup Language (PMML) models from your
project in a specified DMN file. When you include a PMML model within a DMN file, you can invoke that
PMML model as a boxed function expression for a DMN decision node or business knowledge model
node. If you update the source file for an included PMML model, you must remove and re-include the
PMML model in the DMN file to apply the source changes.

You cannot include PMML models from other projects in Business Central.

Prerequisites

® The PMML models are imported (as .pmml files) in the same project in Business Central as the
DMN file in which you want to include the models.

Procedure

1. In your DMN project, add the following dependencies to the project pom.xml file to enable
PMML evaluation:

<!I-- Required for the PMML compiler -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>kie-pmml</artifactld>
<version>${rhpam.version}</version>
<scope>provided</scope>
</dependency>

<!I-- Alternative dependencies for JPMML Evaluator, override “kie-pmml dependency -->

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-dmn-jpmml</artifactld>
<version>${rhpam.version}</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.jpmml</groupld>
<artifactld>pmml-evaluator</artifactld>
<version>1.5.1</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.jpmml</groupld>
<artifactld>pmml-evaluator-extension</artifactld>
<version>1.5.1</version>
<scope>provided</scope>

</dependency>

122



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

To access the project pom.xml file in Business Central, you can select any existing asset in the
project and then in the Project Explorer menu on the left side of the screen, click the
Customize View gear icon and select Repository View = pom.xml.

If you want to use the full PMML specification implementation with the Java Evaluator API for
PMML (JPMML), use the alternative set of JPMML dependencies in your DMN project. If the
JPMML dependencies and the standard kiespmml dependency are both present, the kie-pmml
dependency is disabled. For information about JPMML licensing terms, see Openscoring.io.

IMPORTANT

The legacy kie-pmml dependency is deprecated with Red Hat Decision Manager
7.10.0 and will be replaced by kie-pmml-trusty dependency in a future Red Hat
Decision Manager release.

o :
3$ NOTE
‘t‘)? Instead of specifying a Red Hat Decision Manager <versions for individual
¢~¢. dependencies, consider adding the Red Hat Business Automation bill of materials
¥ (BOM) dependency to dependencyManagement section of your project

N
‘,ﬁ‘)? pom.xml file. The Red Hat Business Automation BOM applies to both Red Hat
¢¢ Decision Manager and Red Hat Process Automation Manager. When you add the
*‘3 BOM files, the correct versions of transitive dependencies from the provided
‘--‘) i Maven repositories are included in the project.

5
te
*‘;*‘ Example BOM dependency:
L K

L
%$ <dependency>
*‘? <groupld>com.redhat.ba</groupld>
$?*, <artifactld>ba-platform-bom</artifactid>
*‘ Ii <version>7.13.5.redhat-00002</version>
“-‘)? <scopesimport</scope>

LN <type>pom</type>
‘¥¢+ Y

o /dependency>
> </aep y

;a)

<
v,

<$

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

. If you added the JPMML dependencies in your DMN project to use the JPMML Evaluator,
download the following JAR files and add them to the ~/kie-server.war/WEB-INF/lib and
~/business-central.war/WEB-INF/lib directories in your Red Hat Decision Manager
distribution:

e kie-dmn-jpmml JAR file in the Red Hat Process Automation Manager 7.13.5 Maven
Repository distribution (rhpam-7.13.5-maven-repository/maven-repository/org/kie/kie-
dmn-jpmml/7.67.0.Final-redhat-00024/kie-dmn-jpmml-7.67.0.Final-redhat-00024.jar)
from the Red Hat Customer Portal

e JPMML Evaluator 1.5.1 JAR file from the online Maven repository

e JPMML Evaluator Extensions 1.5.1 JAR file from the online Maven repository

These artifacts are required to enable JPMML evaluation in KIE Server and Business Central.

123


https://openscoring.io/
https://access.redhat.com/solutions/3363991
https://access.redhat.com/jbossnetwork/restricted/listSoftware.html?downloadType=distributions&product=rhpam&version=7.13.5
https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator/1.5.1
https://mvnrepository.com/artifact/org.jpmml/pmml-evaluator-extension/1.5.1

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

IMPORTANT

Red Hat supports integration with the Java Evaluator API for PMML (JPMML)
for PMML execution in Red Hat Decision Manager. However, Red Hat does not
support the JPMML libraries directly. If you include JPMML libraries in your Red
Hat Decision Manager distribution, see the Openscoring.io licensing terms for
JPMML.

3. In Business Central, go to Menu = Design = Projects, click the project name, and select the
DMN file you want to modify.

4. In the DMN designer, click the Included Models tab.

5. Click Include Model, select a PMML model from your project in the Models list, enter a unique
name for the included model, and click Include:

Figure 6.43. Including a PMML model

Include model

Models that have been added to the project directory may be included in this DMN file, Decision
requirements diagram components of included DMN models will be available to use in this DMN file.
PMML models will be available for invocation through DMN functions.

Models

PITLpmml

Provide a unique name

PITI Model

Include Cancel

The PMML model is added to this DMN file:

124


https://openscoring.io/

CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.44. DMN file with included PMML model

@ Loan prequalification.dmn - DMN - Save | Delete | Rename | Copy

Model Overview Documentation Data Types Included Models

Included Models
Included models are externally defined models that have been added to this DMM file. External DMN models b
PMML models can be invoked through DMN functions.

PITI Model

PITL.pmml
@ 1

Remove

6. In the Model tab of the DMN designer, select or create the decision node or business
knowledge model node in which you want to invoke the PMML model and click the Edit icon to

open the DMN boxed expression designer:
Figure 6.45. Opening a new decision node boxed expression

« Back to My DMN model

Credit Score Rating (<Undefined=>)

Select expression

AE]w
i
O

125



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

126

Figure 6.46. Opening a hew business knowledge model boxed expression

« Back to My DMN model

PITI ¢Function)

PITI
{=Undefined=)

Edit parameters

w A

PITI =1

< -
o

7. Set the expression type to Function (default for business knowledge model nodes), click the
top-left function cell, and select PMML.

8. In the document and model rows in the table, double-click the undefined cells to specify the
included PMML document and the relevant PMML model within that document:



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.47. Adding a PMML model in a DMN business knowledge model

« Back to Loan Pre-Qualification

PITI (Function)

FITI
(<lindeifined=)
Fi
1 document ST Model -
(string) i
2 model Second select PMML model
rjfﬂﬂ‘gj [N [, F¥irvi e [;

Figure 6.48. Example PMML definition in a DMN business knowledge model

PITI ¢Function)

PITI
frumber)

(fid1, fid2, fld3)

document " "
1 (string) PITI Model
model o .
2 (string) LinReg

If you update the source file for an included PMML model, you must remove and re-include the
PMML model in the DMN file to apply the source changes.

To edit the included model name or to remove the included model from the DMN file, use the
Included Models tab in the DMN designer.

127



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

6.4. CREATING DMN MODELS WITH MULTIPLE DIAGRAMS IN
BUSINESS CENTRAL

For complex DMN models, you can use the DMN designer in Business Central to design multiple DMN
decision requirements diagrams (DRDs) that represent parts of the overall decision requirements graph
(DRG) for the DMN decision model. In simple cases, you can use a single DRD to represent all of the
overall DRG for the decision model, but in complex cases, a single DRD can become large and difficult to
follow. Therefore, to better organize DMN decision models with many decision requirements, you can
divide the model into smaller nested DRDs that constitute the larger central DRD representation of the
overall DRG.

Prerequisites

® You understand how to design DRDs in Business Central. For information about creating DRDs,
see Chapter 6, Creating and editing DMN models in Business Central .

Procedure

1. In Business Central, navigate to your DMN project and create or import a DMN file in the
project.

2. Open the new or imported DMN file to view the DRD in the DMN designer, and begin designing
or modifying the DRD using the DMN nodes in the left toolbar.

3. Forany DMN nodes that you want to define in a separate nested DRD, select the node, click the
DRD Actions icon, and select from the available options.

Figure 6.49. DRD actions icon for subdividing a DRD

The following options are available:

® Create: Use this option to create a nested DRD where you can separately define the DMN
components and diagram for the selected node.

® Add to: If you already created a nested DRD, use this option to add the selected node to an
existing DRD.

® Remove: If the node that you selected is already within a nested DRD, use this option to
remove the node from that nested DRD.

After you create a nested DRD within your DMN decision model, the new DRD opensiin a
separate DRD canvas and the available DRD and components are listed in the Decision
Navigator left menu. You can use the Decision Navigator menu to rename or remove a nested
DRD.

128



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.50. Rename new nested DRD in the Decision Navigator menu

(=
DRDs
v < |Credit Score Rating] | v 1 U
O credit Score Rating Credit Score
] Rating
[rons

4. In the separate canvas for the new nested DRD, design the flow and logic for all required
components in this portion of the DMN model, as usual.

5. Continue adding and defining any other nested DRDs for your decision model and save the
completed DMN file.
For example, the following DRD for a loan prequalification decision model contains all DMN
components for the model without any nested DRDs. This example relies on the single DRD for
all components and logic, resulting in a large and complex diagram.

Figure 6.51. Single DRD for loan prequalification

Prequalification|

o e
o] [ & = .

Alternatively, by following the steps in this procedure, you can divide this example DRD into
multiple nested DRDs to better organize the decision requirements, as shown in the following
example:

129



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

130

Figure 6.52. Multiple nested DRDs for loan prequalification

%  Decision Navigator
m DRG
= «& Loan Pre-Qualification
O Back End Ratio
I credit Score Rating
O Front End Ratio

[ Loan Prequalification

DRDs
~ «§ Front End Ratio
O Applicant Data
O Front End Ratio
* (O Lender Acceptable PITI
f () Function
CALending regulations
~ 3JPIm
f () Function
O Requested Product
+ «§ Credit Score Rating
[ Credit Score Rating
O Credit Score
~ «5 Back End Ratio
O applicant Data
[ Back End Ratio
» CJDITI
f () Function
= [JLender Acceptable DITI
f () Function

CALending regulations

Figure 6.53. Overview of front end ratio DRD

% Decision Navigator
m DRG
» «§ Loan Pre-Qualification
CJBack End Ratio
[ cCredit Score Rating
CJFront End Ratio

JLoan Prequalification

DRDs

~ « Front End Ratio
O Applicant Data
I Front End Ratio
= [JLender Acceptable PITI
f () Function
CALending regulations
- CJPITI
f () Function
O Requested Product

~ «f Credit Score Rating
[ cCredit Score Rating
O Credit Score
~ «5 Back End Ratio
O Applicant Data
[CJBack End Ratio
- DM
f () Function
» [(JLender Acceptable DITI
”) Function

CALending regulations

& Loan Pre-Qualification.dmn.dmn - DMN «~ save v |  Delete Rename
Model Documentation Data Types Included Models Overview
o
(=]

Loan
cJ Prequalification
-
™
Credit Score Back End
=] Front End Rating Ratlo
Alerts
Level Text

& Loan Pre-Qualification.dmn.dmn - DMN + save | v | | Delete | Rename

Model Documentation Data Types Included Models Overview
o

(o=}

Loan

(o] Prequalification

(=

™

w e
-} Credit Score Back End

=] E Front End - Rating Ratlo
4

Alerts

Level Text



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.54. DRD for front end ratio

Front End NDtE,'E-S on
Ratio [ """ ratio.
calculation

Applicant
plgata

Requested
Product

Lending
regulations

Figure 6.55. Overview of credit score rating DRD

& Decision Navigator < & Loan Pre-Qualification.dmn.dmn - DMN ~ save | v | | Delete Rename
m DRG “ Model  Documentation  DataTypes  Included Models — Overview
~ «5 Loan Pre-Qualification
[CJBack End Ratio ()
[ credit Score Rating
CJFront End Ratio A
DO Loan Prequalification Loan
=] Prequalification
DRDs
(=
~ « Front End Ratio
O Applicant Data [
CJFront End Ratio i / =
# | Creditscore | O Back End
= (JLender Acceptable PITI (=] FI’ORI;ttiEﬂd g Rating . Ratio

f () Function
CALending regulations
~ CJPITI
f () Function
O Requested Product

~ «4 Credit Score Rating
[ Credit Score Rating

O Credit Score

~ « Back End Ratio
O Applicant Data
[CJBack End Ratio
~ OJom
f () Function
~ CJLender Acceptable DITI
Alerts
f () Function

CALending regulations Level Text

131



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.56. DRD for credit score rating

Credit Score
Rating

Credit Score

Figure 6.57. Overview of back end ratio DRD

Decision Navigator < & Loan Pre-Qualification.dmn.dmn - DMN + Save =~ | Delete | Rename

=
m DRG “ Model  Documentation  DataTypes  Included Models  Overview
~ « Loan Pre-Qualification
[ Back End Ratio (a»)
O Credit Score Rating
O Front End Ratio (=]

[ Loan Prequalification

Loan
o Prequalification

DRDs
O

~ « Front End Ratio
O applicant Data [ons
O Front End Ratio
= OJLender Acceptable PITI (=]

Ao

Front End Credit Score [#| BackEnd (]
Ratio Rating Ratio .

f () Function
CA Lending regulations
= 3JPIm
f () Function
O Requested Product
~ « Credit Score Rating
I credit Score Rating

O credit Score

~ «§ Back End Ratio
O applicant Data
[ Back End Ratio
- 3JDIm
f () Function 4
= OJLender Acceptable DITI

Alerts
f () Function

CA Lending regulations Level Text

132



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.58. DRD for back end ratio

[] =
Lendear

Acceptable
ITl

Applicant
FJlgata

Lending

regulations

Notes on
ratio
calculation

oITl

6.5. DMN MODEL DOCUMENTATION IN BUSINESS CENTRAL

In the DMN designer in Business Central, you can use the Documentation tab to generate a report of
your DMN model that you can print or download as an HTML file for offline use. The DMN model report
contains all decision requirements diagrams (DRDs), data types, and boxed expressions in your DMN
model. You can use this report to share your DMN model details or as part of your internal reporting

workflow.

133



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.59. Example DMN model report

Model  Overview  Documentation  DataTypes  Included Madels

& Print

[ Download HTML file

Supported by il RedHat

9Drools

Loan Pre-Qualification

DMN Model Documentation

Namespace http-fhwww trisotech.com/definitions!_de0a715-1176-427e-add8-68d30003c84c

Genera ted on: 18 November 2019

Generated by: whadrmin

Generated from: Loan prequalification.dmn

Table of Contents

1. Loan Pre-Qualification - DMN model
2. Loan Pre-Qualification - Data Types

3. Loan Pre-Qualification - DRD components

6.6. DMN DESIGNER NAVIGATION AND PROPERTIES IN BUSINESS
CENTRAL

The DMN designer in Business Central provides the following additional features to help you navigate
through the components and properties of decision requirements diagrams (DRDs).

DMN file and diagram views

In the upper-left corner of the DMN designer, select the Project Explorer view to navigate between
all DMN and other files or select the Decision Navigator view to navigate between the decision
components, graphs, and boxed expressions of a selected DRD:

134



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.60. Project Explorer view

Project Explorer
([}

<default> » mortgages » mortgages

DMN «
DM Community Challenge
Flight rebooking
Lending
l":'l Lean prequalification
= DRL -

£| DATA OBJECTS ~

[$]
-3
~

Model

i

[ §0 B0 Bi RO

DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~

ENUMERATION DEFINITIONS ~

GUIDED DECISION TABLES ~

@ Loan prequalification... - | save | Delete | Rename | G

Overview  Documentation  Data Types

; Requested

135



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.61. Decision Navigator view

Q Decision Navigator

«» Decision Graphs

« «5 Loan Pre-Qualification
O Applicant Data
» CJBack End Ratio
® Context
+ [ Credit Score Rating
B Decision Table
O Credit Score
- DT
f () Function
+ [ Front End Ratio
® Context

* (O Lender Acceptable DTI

f () Function

+ (O Lender Acceptable PITI

f () Function

» [ Loan Pre-Qualification

B Decision Table
* [ Passenger Priority
f () Function
= CJPITI
f () Function
O Requested Product

136

> I
[#
@



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

& Decision Navigator < & Loan prequalificatio... | save | Delete | Rename | Co
m . = Model Overview Documentation Data Types
» Decision Graphs
[
« Decision Components m
(]
Filter by v
A
—
= Lending Strategy.Post-bureauAffordability
Lending.dmn (=]
- Lending Strategy.Pre-bureauRiskCategory (|

Lending.dmn

Lending Strategy.Adjudication
Lending.dmn

; Requested

Lending Strategy.InstallmentCalculation
Lending.dmn

Lending Strategy.CreditContingencyFactorTa...
Lending.dmn

Lending Strategy.AffordabilityCalculation
Lending.dmn

Lending Strategy.ApplicationRiskScoreModel
Lending.dmn

Lending Strategy.Post-bureauRiskCategoryT...
Lending.dmn

NOTE

N

The DRD components from any DMN models included in the DMN file (in the
Included Models tab) are also listed in the Decision Components panel for the DMN
file.

In the upper-right corner of the DMN designer, select the Explore diagram icon to view an elevated
preview of the selected DRD and to navigate between the nodes of the selected DRD:

137



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.62. Explore diagram view

Hide Alerts | | o | % Explore diagram >| | £
o (®
R Preview
Explorer
Le
Acce

Loan Pre-Qualification

o
o
o
(-
o
o
(-
o
(-
(-
o

Credit Score
Requested Product
PITI

Credit Score Rating
Applicant Data

Lender Acceptable PITI
Back End Ratio
Lender Acceptable DTI
Loan Pre-Qualification
Front End Ratio

DTl

Clear | & || +* | X

DRD properties and design

In the upper-right corner of the DMN designer, select the Properties icon to modify the identifying
information, data types, and appearance of a selected DRD, DRD node, or boxed expression cell:

138



CHAPTER 6. CREATING AND EDITING DMN MODELS IN BUSINESS CENTRAL

Figure 6.63. DRD node properties

v | &~ @ 32 B & | Download | Latest Version~ || Hide Alerts || .* | % Properties >
Q Id @

O Description

<p=This decision determines if a prospective barrower is prequalifie

& m}
:
T

o Documentation Links ©rdd

Vorne

Name

Loan Pre-Qualification

Question

Is borrower successfully prequalified for the requested loan?

Allowed Answers

QualifiedNot QualifiedDecision Reason

v Information item
Data type Manage
Any w

~ Background details

Background colour

=

» Border colour
File Column Line
JCESSFUL - 0 0 > Font settings

To view the properties of the entire DRD, click the DRD canvas background instead of a specific
node.

DRD search

In the upper-right corner of the DMN designer, use the search bar to search for text that appears in
your DRD. The search feature is especially helpful in complex DRDs with many nodes:

139



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 6.64. DRD search

Back End 10of1 A v X
[#| BackEnd O
Ratio =~
. i Lender
Applicant
Sata DTl Acceptable

Tl

DMN decision service details

Select a decision service node in the DMN designer to view additional properties, including Input
Data, Encapsulated Decisions, and Output Decisions in the Properties panel.

Figure 6.65. Decision Service details

w A Description
< f Call can be handled \ o
o
Call conditions -
satisfied
Documentation Links ©add
/'\ None
Name
Banned 777~ suitable office Call can be handled
phone i Is banned Is office open
numbers y
~ Decision Service details
K / Input Data
® P

« Phone number (<Undefined>)
« Office (<Undefined=)

Encapsulated Decisions

Phone Office ] + Banned phone numbers (<Undefined>)
number Incoming call « Is banned (<Undefined>)
= |5 office open (<Undefined>)

Qutput Decisions
« Call conditions satisfied (<Undefined>)

> Information item

> Background details

140



CHAPTER 7. DMN MODEL EXECUTION

CHAPTER 7. DMN MODEL EXECUTION

You can create or import DMN files in your Red Hat Decision Manager project using Business Central or
package the DMN files as part of your project knowledge JAR (KJAR) file without Business Central.
After you implement your DMN files in your Red Hat Decision Manager project, you can execute the
DMN decision service by deploying the KIE container that contains it to KIE Server for remote access or
by manipulating the KIE container directly as a dependency of the calling application. Other options for
creating and deploying DMN knowledge packages are also available, and most are similar for all types of
knowledge assets, such as DRL files or process definitions.

For information about including external DMN assets with your project packaging and deployment
method, see Packaging and deploying an Red Hat Decision Manager project .

7.1. EMBEDDING A DMN CALL DIRECTLY IN A JAVA APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You typically embed
knowledge assets directly into a project if there is a tight relationship between the version of the code
and the version of the DMN definition. Any changes to the decision take effect after you have
intentionally updated and redeployed the application. A benefit of this approach is that proper
operation does not rely on any external dependencies to the run time, which can be a limitation of
locked-down environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can
dynamically change, (for example, by using a system property), and it can be periodically scanned for
updates and automatically updated. This introduces an external dependency on the deploy time of the
service, but executes the decision locally, reducing reliance on an external service being available during
run time.

Prerequisites

® You have built the DMN project as a KJAR artifact and deployed it to a Maven repository, or you
have included your DMN assets as part of your project classpath:

I mvn clean install

For more information about project packaging and deployment and executable models, see
Packaging and deploying an Red Hat Decision Manager project .

Procedure

1. Inyour client application, add the following dependencies to the relevant classpath of your Java
project:

<!I-- Required for the DMN runtime API -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-dmn-core</artifactld>
<version>${rhpam.version}</version>
</dependency>

<I-- Required if not using classpath KIE container -->

<dependency>
<groupld>org.kie</groupld>

141


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

<artifactld>kie-ci</artifactld>
<version>${rhpam.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.67.0.Final-redhat-00024).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Create a KIE container from classpath or Releaseld:

KieServices kieServices = KieServices.Factory.get();

Releaseld releaseld = kieServices.newReleaseld( "org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer( releaseld );

Alternative option:

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

3. Obtain DMNRuntime from the KIE container and a reference to the DMN model to be
evaluated, by using the model namespace and modelName:

DMNRuntime dmnRuntime =
KieRuntimeFactory.of(kieContainer.getKieBase()).get(DMNRuntime.class);

String namespace = "http://www.redhat.com/_c7328033-c355-43cd-b616-0aceef80e52a";
String modelName = "dmn-movieticket-ageclassification”;

DMNModel dmnModel = dmnRuntime.getModel(namespace, modelName);

142


https://access.redhat.com/solutions/3363991

CHAPTER 7. DMN MODEL EXECUTION

4. Execute the decision services for the desired model:

DMNContext dmnContext = dmnRuntime.newContext(); ﬂ

for (Integer age : Arrays.asList(1,12,13,64,65,66)) {
dmnContext.set("Age", age);
DMNResult dmnResult =
dmnRuntime.evaluateAll(dmnModel, dmnContext); 6

for (DMNDecisionResult dr : dmnResult.getDecisionResults()) { ﬂ
log.info("Age: "+ age +", " +
"Decision: " + dr.getDecisionName() + ", " +
"Result: " + dr.getResult());

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

9 Assign input variables for the input DMN context.
9 Evaluate all DMN decisions defined in the DMN model.

Q Each evaluation may result in one or more results, creating the loop.

This example prints the following output:

Age 1 Decision 'AgeClassification’ : Child
Age 12 Decision 'AgeClassification’ : Child
Age 13 Decision 'AgeClassification’ : Adult
Age 64 Decision 'AgeClassification’ : Adult
Age 65 Decision 'AgeClassification’ : Senior
Age 66 Decision 'AgeClassification’ : Senior

If the DMN model was not previously compiled as an executable model for more efficient
execution, you can enable the following property when you execute your DMN models:

I -Dorg.kie.dmn.compiler.execmodel=true

7.2. EXECUTING A DMN SERVICE USING THE KIE SERVER JAVA
CLIENT API

The KIE Server Java client API provides a lightweight approach to invoking a remote DMN service either
through the REST or JMS interfaces of KIE Server. This approach reduces the number of runtime
dependencies necessary to interact with a KIE base. Decoupling the calling code from the decision
definition also increases flexibility by enabling them to iterate independently at the appropriate pace.

For more information about the KIE Server Java client API, see Interacting with Red Hat Decision
Manager using KIE APIs.

Prerequisites

143


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

e KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

® You have built the DMN project as a KJAR artifact and deployed it to KIE Server:
I mvn clean install

For more information about project packaging and deployment and executable models, see
Packaging and deploying an Red Hat Decision Manager project .

® You have the ID of the KIE container containing the DMN model. If more than one model is
present, you must also know the model namespace and model name of the relevant model.

Procedure

1. Inyour client application, add the following dependency to the relevant classpath of your Java
project:

<!I-- Required for the KIE Server Java client API -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-client</artifactld>
<version>${rhpam.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.67.0.Final-redhat-00024).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

2. Instantiate a KieServicesClient instance with the appropriate connection information.
Example:

144


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/solutions/3363991

CHAPTER 7. DMN MODEL EXECUTION

KieServicesConfiguration conf =
KieServicesFactory.newRestConfiguration(URL, USER, PASSWORD); @)

conf.setMarshallingFormat(MarshallingFormat.JSON); 9

KieServicesClient kieServicesClient = KieServicesFactory.newKieServicesClient(conf);

ﬂ The connection information:
® Example URL: http://localhost:8080/kie-server/services/rest/server
® The credentials should reference a user with the kie-server role.

The Marshalling format is an instance of
org.kie.server.api.marshalling.MarshallingFormat. It controls whether the messages will
be JSON or XML. Options for Marshalling format are JSON, JAXB, or XSTREAM.

3. Obtain a DMNServicesClient from the KIE server Java client connected to the related KIE
Server by invoking the method getServicesClient() on the KIE server Java client instance:

DMNServicesClient dmnClient =
kieServicesClient.getServicesClient(DMNServicesClient.class );

The dmnClient can now execute decision services on KIE Server.

4. Execute the decision services for the desired model.
Example:

for (Integer age : Arrays.aslList(1,12,13,64,65,66)) {
DMNContext dmnContext = dmnClient.newContext();
dmnContext.set("Age", age); 9
ServiceResponse<DMNResult> serverResp = 6
dmnClient.evaluateAll($kieContainerld,

$modelNamespace,

$modelName,

dmnContext);

DMNResult dmnResult = serverResp.getResult(); ﬂ
for (DMNDecisionResult dr : dmnResult.getDecisionResults()) {

log.info("Age: "+ age +", " +
"Decision: " + dr.getDecisionName() + ", " +
"Result: " + dr.getResult());

Instantiate a new DMN Context to be the input for the model evaluation. Note that this
example is looping through the Age Classification decision multiple times.

9 Assign input variables for the input DMN Context.
9 Evaluate all the DMN Decisions defined in the DMN model:

e S$kieContainerld is the ID of the container where the KJAR containing the DMN model
is deployed

145



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

o $modelNamespace is the namespace for the model.
o $modelName is the name for the model.

Q The DMN Result object is available from the server response.

At this point, the dmnResult contains all the decision results from the evaluated DMN model.

You can also execute only a specific DMN decision in the model by using alternative methods of
the DMNServicesClient.

NOTE

If the KIE container only contains one DMN model, you can omit
$modelNamespace and $modelName because the KIE Server APl selects it by
default.

7.3. EXECUTING A DMN SERVICE USING THE KIE SERVER REST API

Directly interacting with the REST endpoints of KIE Server provides the most separation between the
calling code and the decision logic definition. The calling code is completely free of direct
dependencies, and you can implement it in an entirely different development platform such as Node.js
or .NET. The examples in this section demonstrate Nix-style curl commands but provide relevant
information to adapt to any REST client.

When you use a REST endpoint of KIE Server, the best practice is to define a domain object POJO Java
class, annotated with standard KIE Server marshalling annotations. For example, the following code is
using a domain object Person class that is annotated properly:

Example POJO Java class

@javax.xml.bind.annotation.XmlAccessorType(javax.xml.bind.annotation.XmlAccessType.FIELD)
public class Person implements java.io.Serializable {

static final long serialVersionUID = 1L;

private java.lang.String id;
private java.lang.String name;

@javax.xml.bind.annotation.adapters.XmlJavaTypeAdapter(org.kie.internal.jaxb.LocalDate XmIAdapter.c
lass)
private java.time.LocalDate dojoining;

public Person() {
}

public java.lang.String getld() {
return this.id;

}

public void setld(java.lang.String id) {
this.id = id;
}

146



CHAPTER 7. DMN MODEL EXECUTION

public java.lang.String getName() {
return this.name;

}

public void setName(java.lang.String name) {
this.name = name;

}

public java.time.LocalDate getDojoining() {
return this.dojoining;

}

public void setDojoining(java.time.LocalDate dojoining) {
this.dojoining = dojoining;

}

public Person(java.lang.String id, java.lang.String name,
java.time.LocalDate dojoining) {
this.id = id;
this.name = name;
this.dojoining = dojoining;

}

For more information about the KIE Server REST API, see Interacting with Red Hat Decision Manager
using KIE APIs.

Prerequisites

® KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

® You have built the DMN project as a KJAR artifact and deployed it to KIE Server:
I mvn clean install

For more information about project packaging and deployment and executable models, see
Packaging and deploying an Red Hat Decision Manager project .

® You have the ID of the KIE container containing the DMN model. If more than one model is
present, you must also know the model namespace and model name of the relevant model.

Procedure

1. Determine the base URL for accessing the KIE Server REST API endpoints. This requires
knowing the following values (with the default local deployment values as an example):

® Host (localhost)
e Port (8080)
® Root context (kie-server)

® Base REST path (services/rest/)

147


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Example base URL in local deployment:
http://localhost:8080/kie-server/services/rest/

2. Determine user authentication requirements.
When users are defined directly in the KIE Server configuration, HTTP Basic authentication is
used and requires the user name and password. Successful requests require that the user have
the kie-server role.

The following example demonstrates how to add credentials to a curl request:

I curl -u username:password <request>

If KIE Server is configured with Red Hat Single Sign-On, the request must include a bearer
token:

I curl -H "Authorization: bearer STOKEN" <request>

3. Specify the format of the request and response. The REST API endpoints work with both JSON
and XML formats and are set using request headers:

JSON

I curl -H "accept: application/json" -H "content-type: application/json"
XML

I curl -H "accept: application/xml" -H "content-type: application/xml"

4. Optional: Query the container for a list of deployed decision models:
[GET] server/containers/{containerld}/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/xml" -X GET "http://localhost:8080/kie-
server/services/rest/server/containers/MovieDMNContainer/dmn"

Sample XML output:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK models successfully retrieved from container
'MovieDMNContainer">
<dmn-model-info-list>
<model>
<model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a</model-namespace>
<model-name>dmn-movieticket-ageclassification</model-name>
<model-id>_99</model-id>
<decisions>
<dmn-decision-info>
<decision-id>_3</decision-id>
<decision-name>AgeClassification</decision-name>
</dmn-decision-info>

148



CHAPTER 7. DMN MODEL EXECUTION

</decisions>
</model>
</dmn-model-info-list>
</response>

Sample JSON output:

{
"type" : "SUCCESS",

"msg" : "OK models successfully retrieved from container 'MovieDMNContainer™,

"result" : {
"dmn-model-info-list" : {
"models" : [ {

"model-namespace” : "http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a",
"model-name” : "dmn-movieticket-ageclassification”,
"model-id" : " 99",
"decisions” : [ {
"decision-id" : "_3",
"decision-name" : "AgeClassification”

. Execute the model:

[POST] server/containers/{containerld}/dmn

Example curl request:

curl -u krisv:krisv -H "accept: application/json" -H "content-type: application/json" -X POST
"http://localhost:8080/kie-server/services/rest/server/containers/MovieDMNContainer/dmn" -d
"{\"model-namespace\" : \"http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a\", \"model-name\" : \"dmn-movieticket-ageclassification\", \"decision-name\" : |
], \"decision-id\" : [ ], \"dmn-context\" : {\"Age\" : 66}}"

Example JSON request:

"model-namespace" : "http://www.redhat.com/_c7328033-c355-43cd-b616-0aceef80e52a",
"model-name” : "dmn-movieticket-ageclassification”,
"decision-name" : [ ],
"decision-id" : [],
"dmn-context" : {"Age" : 66}
}

Example XML request (JAXB format):

<?xml version="1.0" encoding="UTF-8"?>

<dmn-evaluation-context>
<model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-

Oaceef80e52a</model-namespace>
<model-name>dmn-movieticket-ageclassification</model-name>

149



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

<dmn-context xsi:type="jaxbListWrapper" xmIns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance">
<type>MAP</type>
<element xsi:type="jaxbStringObjectPair" key="Age">
<value xsi:type="xs:int" xmins:xs="http://www.w3.0rg/2001/XMLSchema">66</value>
</element>
</dmn-context>
</dmn-evaluation-context>

NOTE

Regardless of the request format, the request requires the following elements:
® Model namespace

® Model name

® Context object containing input values

Example JSON response:

{
"type" : "SUCCESS",

"msg" : "OK from container 'MovieDMNContainer™,
"result" : {
"dmn-evaluation-result" : {
"messages" : [],
"model-namespace” : "http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a",
"model-name” : "dmn-movieticket-ageclassification”,
"decision-name" : [ 1,
"dmn-context" : {
"Age" : 66,
"AgeClassification" : "Senior"
b
"decision-results" : {
" 3"
"messages" : [],
"decision-id" : "_3",
"decision-name" : "AgeClassification”,
"result" : "Senior",
"status" : "SUCCEEDED"

Example XML (JAXB format) response:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<response type="SUCCESS" msg="OK from container 'MovieDMNContainer">
<dmn-evaluation-result>
<model-namespace>http://www.redhat.com/_c7328033-c355-43cd-b616-
Oaceef80e52a</model-namespace>

150



CHAPTER 7. DMN MODEL EXECUTION

<model-name>dmn-movieticket-ageclassification</model-name>
<dmn-context xsi:type="jaxbListWrapper"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<type>MAP</type>
<element xsi:type="jaxbStringObjectPair" key="Age">
<value xsi:type="xs:int"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">66</value>
</element>
<element xsi:type="jaxbStringObjectPair" key="AgeClassification">
<value xsi:type="xs:string"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema">Senior</value>
</element>
</dmn-context>
<messages/>
<decisionResults>
<entry>
<key>_3</key>
<value>
<decision-id>_3</decision-id>
<decision-name>AgeClassification</decision-name>
<result xsi:type="xs:string"
xmins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance">Senior</result>
<messages/>
<status>SUCCEEDED</status>
</value>
</entry>
</decisionResults>
</dmn-evaluation-result>
</response>

7.4. REST ENDPOINTS FOR SPECIFIC DMN MODELS

Red Hat Decision Manager provides model-specific DMN KIE Server endpoints that you can use to
interact with your specific DMN model without using the Business Central user interface.

For each DMN model in a container in Red Hat Decision Manager, the following KIE Server REST
endpoints are automatically generated based on the content of the DMN model:

o POST /server/containers/{containerld}/dmn/models/{modelname}: A business-domain
endpoint for evaluating a specified DMN model in a container

o POST /server/containers/{containerld}/dmn/models/{modelname}/{decisionServiceName}:
A business-domain endpoint for evaluating a specified decision service component in a specific
DMN model available in a container

o POST /server/containers/{containerld}/dmn/models/{modelname}/dmnresult: An endpoint
for evaluating a specified DMN model containing customized body payload and returning a
DMNResult response, including business-domain context, helper messages, and helper
decision pointers

e POST
/server/containers/{containerld}/dmn/models/{modelname}/{decisionServiceName}/dmnre
sult: An endpoint for evaluating a specified decision service component in a specific DMN model
and returning a DMNResult response, including the business-domain context, helper messages,
and help decision pointers for the decision service

151



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

e GET /server/containers/{containerld}/dmn/models/{modelname}: An endpoint for returning
standard DMN XML without decision logic and containing the inputs and decisions of the
specified DMN model

e GET /server/containers/{containerld}/dmn/openapi.json (|.yaml): An endpoint for retrieving
Swagger or OAS for the DMN models in a specified container

You can use these endpoints to interact with a DMN model or a specific decision service within a model.
As you decide between using business-domain and dmnresult variants of these REST endpoints, review
the following considerations:

e REST business-domain endpoints Use this endpoint type if a client application is only
concerned with a positive evaluation outcome, is not interested in parsing Info or Warn
messages, and only needs an HTTP 5xx response for any errors. This type of endpoint is also
helpful for single-page application-like clients, due to singleton coercion of decision service
results that resemble the DMN modeling behavior.

e RESTdmnresult endpoints: Use this endpoint type if a client needs to parse Info, Warn, or
Error messages in all cases.

For each endpoint, use a REST client or curl utility to send requests with the following components:
® Base URL: http://HOST:PORTI/kie-server/services/rest/
® Path parameters
o {containerld}: The string identifier of the container, such as mykjar-project
o {modelName}: The string identifier of the DMN model, such as Traffic Violation

o {decisionServiceName}: The string identifier of the decision service component in the
DMN DRG, such as TrafficViolationDecisionService

o dmnresult: The string identifier that enables the endpoint to return a full DMNResult
response with more detailed Info, Warn, and Error messaging

® HTTP headers: For POST requests only:
o accept: application/json
o content-type: application/json

® HTTP methods: GET or POST

The examples in the following endpoints are based on a mykjar-project container that contains a
Traffic Violation DMN model, containing a TrafficViolationDecisionService decision service
component.

For all of these endpoints, if a DMN evaluation Error message occurs, a DMNResult response is
returned along with an HTTP 5xx error. If a DMN Info or Warn message occurs, the relevant response is
returned along with the business-domain REST body, in the X-Kogito-decision-messages extended
HTTP header, to be used for client-side business logic. When there is a requirement of more refined
client-side business logic, the client can use the dmnresult variant of the endpoints.

Retrieve Swagger or OAS for DMN models in a specified container

GET /server/containers/{containerld}/dmn/openapi.json (|.yaml)

Example REST endpoint

152



CHAPTER 7. DMN MODEL EXECUTION

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/openapi.json (|.yaml)

Return the DMN XML without decision logic
GET /server/containers/{containerld}/dmn/models/{modelname}

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation

Example curl request

curl -u wbadmin:wbadmin -X GET "http://localhost:8080/kie-
server/services/rest/server/containers/mykjar-project/dmn/models/Traffic%20Violation" -H
"accept: application/xml"

Example response (XML)

<?xml version="'1.0" encoding="UTF-8'?>
<dmn:definitions xmIns:dmn="http://www.omg.org/spec/DMN/20180521/MODEL/"
xmlns="https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF"
xmins:di="http://www.omg.org/spec/DMN/20180521/DI/"
xmins:kie="http://www.drools.org/kie/dmn/1.2"
xmins:feel="http://www.omg.org/spec/DMN/20180521/FEEL/"
xmlns:dmndi="http://www.omg.org/spec/DMN/20180521/DMNDI/"
xmins:dc="http://www.omg.org/spec/DMN/20180521/DC/" id="_1C792953-80DB-4B32-99EB-
25FBE32BAF9E" name="Traffic Violation"
expressionLanguage="http://www.omg.org/spec/DMN/20180521/FEEL/"
typeLanguage="http://www.omg.org/spec/DMN/20180521/FEEL/"
namespace="https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF">
<dmn:extensionElements/>
<dmn:itemDefinition id="_63824D3F-9173-446D-A940-6A7FOFA056BB" name="tDriver"
isCollection="false">
<dmn:itemComponent id="_9DAB5DAA-3B44-4F6D-87F2-95125FB2FEE4" name="Name"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_856BA8FA-EF7B-4DF9-A1EE-E28263CE9955" name="Age"
isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_FDC2CE03-D465-47C2-A311-98944E8CC23F" name="State"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_D6FD34C4-00DC-4C79-B1BF-BBCF6FC9B6D7" name="City"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_7110FE7E-1A38-4C39-BOEB-AEEF06BA37F4" name="Points"
isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>

153



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

</dmn:itemDefinition>
<dmn:itemDefinition id="_40731093-0642-4588-9183-1660FC55053B" name="tViolation"
isCollection="false">
<dmn:itemComponent id="_39E88D9F-AE53-47AD-B3DE-8AB38D4F50B3" name="Code"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_1648EA0A-2463-4B54-A12A-D743A3E3EE7B" name="Date"
isCollection="false">
<dmn:typeRef>date</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_9F129EAA-4E71-4D99-B6D0-84EEC3AC43CC" name="Type"
isCollection="false">
<dmn:typeRef>string</dmn:typeRef>
<dmn:allowedValues kie:constraintType="enumeration" id="_626A8F9C-9DD1-44E0-9568-
OF6F8F8BA228">
<dmn:text>"speed", "parking”, "driving under the influence"</dmn:text>
</dmn:allowedValues>
</dmn:itemComponent>
<dmn:itemComponent id="_DDD10D6E-BD38-4C79-9E2F-8155E3A4B438" name="Speed
Limit" isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_229F80E4-2892-494C-B70D-683ABF2345F6" name="Actual
Speed" isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:itemDefinition id="_2D4F30EE-21A6-4A78-A524-A5C238D433AE" name="tFine"
isCollection="false">
<dmn:itemComponent id="_B9F70BC7-1995-4F51-B949-1AB65538B405" name="Amount"
isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
<dmn:itemComponent id="_F49085D6-8F08-4463-9A1A-EF6B57635DBD" name="Points"
isCollection="false">
<dmn:typeRef>number</dmn:typeRef>
</dmn:itemComponent>
</dmn:itemDefinition>
<dmn:inputData id="_1929CBD5-40E0-442D-B909-49CEDE0101DC" name="Violation">
<dmn:variable id="_C16CF9B1-5FAB-48A0-95E0-5FCD661E0406" hame="Violation"
typeRef="tViolation"/>
</dmn:inputData>
<dmn:decision id="_4055D956-1C47-479C-B3F4-BAEB61F1C929" nhame="Fine">
<dmn:variable id="_8C1EAC83-F251-4D94-8A9E-BO3ACF6849CD" name="Fine"
typeRef="tFine"/>
<dmn:informationRequirement id="_800A3BBB-90A3-4D9D-BA5E-A311DED0134F">
<dmn:requiredinput href="#_1929CBD5-40E0-442D-B909-49CEDEO101DC"/>
</dmn:informationRequirement>
</dmn:decision>
<dmn:inputData id="_1F9350D7-146D-46F1-85D8-15B5B68AF22A" name="Driver">
<dmn:variable id="_A80F16DF-0DB4-43A2-B041-32900B1A3F3D" name="Driver"
typeRef="tDriver"/>
</dmn:inputData>
<dmn:decision id="_8A408366-D8E9-4626-ABF3-5F69AA01F880" name="Should the driver be
suspended?">

154



CHAPTER 7. DMN MODEL EXECUTION

<dmn:question>Should the driver be suspended due to points on his license?</dmn:question>

<dmn:allowedAnswers>"Yes", "No"</dmn:allowedAnswers>

<dmn:variable id="_ 40387B66-5D00-48C8-BB90-E83EE3332C72" name="Should the driver be

suspended?" typeRef="string"/>
<dmn:informationRequirement id="_982211B1-5246-49CD-BE85-3211F71253CF">
<dmn:requiredinput href="#_1F9350D7-146D-46F1-85D8-15B5B68AF22A"/>
</dmn:informationRequirement>
<dmn:informationRequirement id="_AEC4AA5F-50C3-4FED-A0C2-261F90290731">
<dmn:requiredDecision href="#_4055D956-1C47-479C-B3F4-BAEB61F1C929"/>
</dmn:informationRequirement>
</dmn:decision>
<dmndi:DMNDI>
<dmndi:DMNDiagram>
<di:extension/>
<dmndi:DMNShape id="dmnshape-_1929CBD5-40E0-442D-B909-49CEDE0101DC"
dmnElementRef="_1929CBD5-40E0-442D-B909-49CEDEQ0101DC" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="708" y="350" width="100" height="50"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNShape id="dmnshape-_4055D956-1C47-479C-B3F4-BAEB61F1C929"
dmnElementRef="_4055D956-1C47-479C-B3F4-BAEB61F1C929" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="709" y="210" width="100" height="50"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNShape id="dmnshape-_1F9350D7-146D-46F1-85D8-15B5B68AF22A"
dmnElementRef="_1F9350D7-146D-46F1-85D8-15B5B68AF22A" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="369" y="344" width="100" height="50"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNShape id="dmnshape-_8A408366-D8E9-4626-ABF3-5F69AA01F880"
dmnElementRef="_8A408366-D8E9-4626-ABF3-5F69AA01F880" isCollapsed="false">
<dmndi:DMNStyle>
<dmndi:FillColor red="255" green="255" blue="255"/>
<dmndi:StrokeColor red="0" green="0" blue="0"/>
<dmndi:FontColor red="0" green="0" blue="0"/>
</dmndi:DMNStyle>
<dc:Bounds x="534" y="83" width="133" height="63"/>
<dmndi:DMNLabel/>
</dmndi:DMNShape>
<dmndi:DMNEdge id="dmnedge-_800A3BBB-90A3-4D9D-BA5E-A311DEDO134F"
dmnElementRef="_800A3BBB-90A3-4D9D-BA5E-A311DEDO0134F">

155



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

<di:waypoint x="758" y="375"/>
<di:waypoint x="759" y="235"/>
</dmndi:DMNEdge>
<dmndi:DMNEdge id="dmnedge-_982211B1-5246-49CD-BE85-3211F71253CF"
dmnElementRef="_982211B1-5246-49CD-BE85-3211F71253CF">
<di:waypoint x="419" y="369"/>
<di:waypoint x="600.5" y="114.5"/>
</dmndi:DMNEdge>
<dmndi:DMNEdge id="dmnedge-_ AEC4AA5F-50C3-4FED-A0C2-261F90290731"
dmnElementRef="_AEC4AA5F-50C3-4FED-A0C2-261F90290731">
<di:waypoint x="759" y="235"/>
<di:waypoint x="600.5" y="114.5"/>
</dmndi:DMNEdge>
</dmndi:DMNDiagram>
</dmndi:-DMNDI>

Evaluate a specified DMN model in a specified container

POST /server/containers/{containerld}/dmn/models/{modelname}

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation

Example curl request

curl -u wbadmin:wbadmin-X POST "http://localhost:8080/kie-
server/services/rest/server/containers/mykjar-project/dmn/models/Traffic Violation" -H "accept:
application/json" -H "Content-Type: application/json" -d "{\"Driver\":{\"Points\":15},\"Violation\":
{\"Date\":\"2021-04-08\"\"Type\":\"speed\" \"Actual Speed\":135,\"Speed Limit\":100}}"

Example POST request body with input data

{
"Driver": {
"Points": 15
b
"Violation": {
"Date": "2021-04-08",
"Type": "speed",
"Actual Speed": 135,
"Speed Limit": 100

Example response (JSON)

{
"Violation": {
"Type": "speed",
"Speed Limit": 100,
"Actual Speed": 135,
"Code": null,
"Date": "2021-04-08"

156



CHAPTER 7. DMN MODEL EXECUTION

b
"Driver": {
"Points": 15,
"State": null,
"City": null,
"Age": null,
"Name": null
b
"Fine": {
"Points": 7,
"Amount": 1000
}

"Should the driver be suspended?": "Yes"

Evaluate a specified decision service within a specified DMN model in a container

POST /server/containers/{containerld}/dmn/models/{modelname}/{decisionServiceName}
For this endpoint, the request body must contain all the requirements of the decision service. The
response is the resulting DMN context of the decision service, including the decision values, the
original input values, and all other parametric DRG components in serialized form. For example, a
business knowledge model is available in string-serialized form in its signature.

If the decision service is composed of a single-output decision, the response is the resulting value of
that specific decision. This behavior provides an equivalent value at the API level of a specification
feature when invoking the decision service in the model itself. As a result, you can, for example,
interact with a DMN decision service from single-page web applications.

Figure 7.1. Example TrafficViolationDecisionService decision service with single-output decision

= Traffic Violation.dmn X

Editor Documentation Data Types

[isass
-
/ TrafficViolationDecisionService \
=)
Should the driver
(=] be suspended?
A
A \
c
Fine

: Driver } I Violation ]

157



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Figure 7.2. Example TrafficViolationDecisionService decision service with multiple-output
decision

= Traffic Violation.dmn X

Editor Documentation Data Types

[
(=]
/ TrafficViolationDecisionService \
(D)
Should the driver .
be suspended? < Fine
(=]
) f
(=
c

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService

Example POST request body with input data

{
"Driver": {
"Points": 2
b
"Violation": {
"Type": "speed",
"Actual Speed": 120,
"Speed Limit": 100
}
}

Example curl request
curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService -H 'content-type:

application/json’ -H 'accept: application/json' -d '{"Driver": {"Points": 2}, "Violation": {"Type":
"speed", "Actual Speed": 120, "Speed Limit": 100}}'

Example response for single-output decision (JSON)

158



CHAPTER 7. DMN MODEL EXECUTION

I HNOII

Example response for multiple-output decision (JSON)

{
"Violation": {
"Type": "speed",
"Speed Limit": 100,
"Actual Speed": 120
b
"Driver": {
"Points": 2
b
"Fine": {
"Points": 3,
"Amount": 500
}

"Should the driver be suspended?": "No"
}

Evaluate a specified DMN model in a specified container and return ® MNResult response

POST /server/containers/{containerld}/dmn/models/{modelname}/dmnresult

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/dmnresult

Example POST request body with input data

{
"Driver": {
"Points": 2
b
"Violation": {
"Type": "speed",
"Actual Speed": 120,
"Speed Limit": 100
}
}

Example curl request

curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/dmnresult -H 'content-type: application/json' -H 'accept:
application/json' -d '{"Driver": {"Points": 2}, "Violation": {"Type": "speed", "Actual Speed": 120,
"Speed Limit": 100}}'

Example response (JSON)

{
"namespace": "https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF",

"modelName": "Traffic Violation",

159



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

"dmnContext": {
"Violation": {
"Type": "speed",
"Speed Limit": 100,
"Actual Speed": 120,
"Code": null,
"Date": null
b
"Driver": {
"Points": 2,
"State": null,
"City": null,
"Age": null,
"Name": null
b
"Fine": {
"Points": 3,
"Amount": 500
}

"Should the driver be suspended?": "No"
|3

"messages": [],
"decisionResults": [
{
"decisionld": "_4055D956-1C47-479C-B3F4-BAEB61F1C929",
"decisionName": "Fine",
"result": {
"Points": 3,
"Amount": 500
13
"messages": [],
"evaluationStatus": "SUCCEEDED"

—_—

"decisionld": "_8A408366-D8E9-4626-ABF3-5F69AA01F880",
"decisionName": "Should the driver be suspended?",

"result": "No",

"messages": [],

"evaluationStatus": "SUCCEEDED"

Evaluate a specified decision service within a DMN model in a specified container and return a
DMNResult response

POST
/server/containers/{containerld}/dmn/models/{modelname}/{decisionServiceName}/dmnresult

Example REST endpoint

http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService/dmnresult

Example POST request body with input data

160



CHAPTER 7. DMN MODEL EXECUTION

{
"Driver": {
"Points": 2
b
"Violation": {
"Type": "speed",
"Actual Speed": 120,
"Speed Limit": 100
}
}

Example curl request

curl -X POST http://localhost:8080/kie-server/services/rest/server/containers/mykjar-
project/dmn/models/Traffic Violation/TrafficViolationDecisionService/dmnresult -H 'content-type:
application/json’ -H 'accept: application/json' -d '{"Driver": {"Points": 2}, "Violation": {"Type":
"speed", "Actual Speed": 120, "Speed Limit": 100}}'

Example response (JSON)

{
"namespace": "https://kiegroup.org/dmn/_A4BCA8B8-CF08-433F-93B2-A2598F19ECFF",
"modelName": "Traffic Violation",
"dmnContext": {
"Violation": {
"Type": "speed",
"Speed Limit": 100,
"Actual Speed": 120,
"Code": null,
"Date": null
b
"Driver": {
"Points": 2,
"State": null,
"City": null,
"Age": null,
"Name": null
b
"Should the driver be suspended?": "No"
b
"messages": [],
"decisionResults": [
{
"decisionld": "_8A408366-D8E9-4626-ABF3-5F69AA01F880",
"decisionName": "Should the driver be suspended?",
"result": "No",
"messages": [],
"evaluationStatus": "SUCCEEDED"

161



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

162

CHAPTER 8. ADDITIONAL RESOURCES

Decision Model and Notation specification
DMN Technology Compatibility Kit
Packaging and deploying an Red Hat Decision Manager project

Interacting with Red Hat Decision Manager using KIE APIs


https://www.omg.org/spec/DMN
https://dmn-tck.github.io/tck/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

PART Il. DESIGNING A DECISION SERVICE USING PMML MODELS

PART Il. DESIGNING A DECISION SERVICE USING PMML
MODELS

As a business rules developer, you can use Predictive Model Markup Language (PMML) to define
statistical or data-mining models that you can integrate with your decision services in Red Hat Decision
Manager. Red Hat Decision Manager includes consumer conformance support of PMML 4.2.1 for
Regression, Scorecard, Tree, and Mining models. Red Hat Decision Manager does not include a built-in
PMML model editor, but you can use an XML or PMML-specific authoring tool to create PMML models
and then integrate them with your Red Hat Decision Manager projects.

For more information about PMML, see the DMG PMML specification.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models and include your PMML models as part of your DMN service. For information
about DMN support in Red Hat Decision Manager 7.13, see the following resources:

® Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

® Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

163


http://dmg.org/pmml/pmml-v4-4-1.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#dmn-included-models-pmml-proc_dmn-models

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 9.1. Decision-authoring assets supported in Red Hat Decision Manager

Highlights Authoring tools Documentation
Decision Model . Business Central Designing a
. ® Are decision models based on a . .
and Notation . . or other DMN- decision service
notation standard defined by the ) ) )
(DMN) models Object Management Group compliant editor using DMN models

(OMG)

® Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

® Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

e Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

® Are optimal for creating

comprehensive, illustrative, and
stable decision flows

164


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights

Authoring tools Documentation

Guided decision
tables

Spreadsheet
decision tables

Guided rules

® Are tables of rules that you
create in a Ul-based table
designer in Business Central

® Are awizard-led alternative to
spreadsheet decision tables

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates

® Support hit policies, real-time
validation, and other additional
features not supported in other
assets

® Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

® Are XLS or XLSX spreadsheet
decision tables that you can
upload into Business Central

® Support template keys and
values for creating rule
templates

® Are optimal for creating rules in
decision tables already managed
outside of Business Central

® Have strict syntax requirements
for rules to be compiled properly
when uploaded

® Areindividual rules that you
create in a Ul-based rule
designer in Business Central

® Provide fields and options for
acceptable input

® Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided

decision tables

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Business Central Designing a
decision service

using guided rules

165


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Highlights Authoring tools Documentation
Guided rule Business Central Designing a
® Are reusable rule structures that . .
templates decision service

you create in a Ul-based
template designer in Business
Central templates

using guided rule

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

® Are optimal for creating many
rules with the same rule structure
but with different defined field

values
DRL rules o Business Central Designing a
® Areindividual rules that you or integrated decision service
define directly in .drl text files 9 )
development using DRL rules
® Provide the most flexibility for environment (IDE)

defining rules and other
technicalities of rule behavior

® Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

® Are optimal for creating rules
that require advanced DRL
options

® Have strict syntax requirements
for rules to be compiled properly

166


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

CHAPTER 9. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights Authoring tools Documentation

Predictive Model . . PMML or XML Designing a
® Are predictive data-analytic

Markup Language . editor decision service
models based on a notation )

(PMML) models standard defined by the Data using PMML
Mining Group (DMG) models

® Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

® Support Regression, Scorecard,
Tree, Mining, and other model
types

@ Can beincluded with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

® Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

When you define business decisions, you can also consider using Red Hat build of Kogito for your cloud-
native decision services. For more information about getting started with Red Hat build of Kogito
microservices, see Getting started with Red Hat build of Kogito in Red Hat Decision Manager .

167


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 10. PREDICTIVE MODEL MARKUP LANGUAGE
(PMML)

Predictive Model Markup Language (PMML) is an XML-based standard established by the Data Mining
Group (DMG) for defining statistical and data-mining models. PMML models can be shared between
PMML-compliant platforms and across organizations so that business analysts and developers are
unified in designing, analyzing, and implementing PMML-based assets and services.

For more information about the background and applications of PMML, see the DMG PMML
specification.

10.1. PMML CONFORMANCE LEVELS

The PMML specification defines producer and consumer conformance levels in a software
implementation to ensure that PMML models are created and integrated reliably. For the formal
definitions of each conformance level, see the DMG PMML conformance page.

The following list summarizes the PMML conformance levels:

Producer conformance

A tool or application is producer conforming if it generates valid PMML documents for at least one
type of model. Satisfying PMML producer conformance requirements ensures that a model
definition document is syntactically correct and defines a model instance that is consistent with
semantic criteria that are defined in model specifications.

Consumer conformance

An application is consumer conforming if it accepts valid PMML documents for at least one type of
model. Satisfying consumer conformance requirements ensures that a PMML model created
according to producer conformance can be integrated and used as defined. For example, if an
application is consumer conforming for Regression model types, then valid PMML documents
defining models of this type produced by different conforming producers would be interchangeable
in the application.

Red Hat Decision Manager includes consumer conformance support for the following PMML model
types:

® Regression models

® Scorecard models

® Tree models

® Mining models (with sub-types modelChain, selectAll, and selectFirst)
® Clustering models

For a list of all PMML model types, including those not supported in Red Hat Decision Manager, see the
DMG PMML specification.

168


http://dmg.org/pmml/pmml-v4-4-1.html
http://dmg.org/pmml/v4-4-1/Conformance.html
http://dmg.org/pmml/v4-4-1/Regression.html
http://dmg.org/pmml/v4-4-1/Scorecard.html
http://dmg.org/pmml/v4-4-1/TreeModel.html
http://dmg.org/pmml/v4-4-1/MultipleModels.html#xsdElement_MiningModel
http://dmg.org/pmml/v4-4-1/ClusteringModel.html
http://dmg.org/pmml/v4-4-1/GeneralStructure.html

CHAPTER 11. PMML MODEL EXAMPLES

CHAPTER 1. PMML MODEL EXAMPLES

PMML defines an XML schema that enables PMML models to be used between different PMML-
compliant platforms. The PMML specification enables multiple software platforms to work with the
same file for authoring, testing, and production execution, assuming producer and consumer
conformance are met.

The following are examples of PMML Regression, Scorecard, Tree, Mining, and Clustering models. These
examples illustrate the supported models that you can integrate with your decision services in Red Hat
Decision Manager.

For more PMML examples, see the DMG PMML Sample Files page.

Example PMML Regression model

<PMML version="4.2" xsi:schemalocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins="http://www.dmg.org/PMML-4_2">
<Header copyright="JBoss"/>
<DataDictionary numberOfFields="5">
<DataField dataType="double" name="fld1" optype="continuous"/>
<DataField dataType="double" name="fld2" optype="continuous"/>
<DataField dataType="string" name="fld3" optype="categorical">
<Value value="x"/>
<Value value="y"/>
</DataField>
<DataField dataType="double" name="fld4" optype="continuous"/>
<DataField dataType="double" name="fld5" optype="continuous"/>
</DataDictionary>
<RegressionModel algorithmName="linearRegression" functionName="regression"
modelName="LinReg" normalizationMethod="logit" targetFieldName="fld4">
<MiningSchema>
<MiningField name="fld1"/>
<MiningField name="fld2"/>
<MiningField name="{ld3"/>
<MiningField name="fld4" usageType="predicted"/>
<MiningField name="fld5" usageType="target"/>
</MiningSchema>
<RegressionTable intercept="0.5">
<NumericPredictor coefficient="5" exponent="2" name="fld1"/>
<NumericPredictor coefficient="2" exponent="1" name="{ld2"/>
<CategoricalPredictor coefficient="-3" hame="{ld3" value="x"/>
<CategoricalPredictor coefficient="3" name="fld3" value="y"/>
<PredictorTerm coefficient="0.4">
<FieldRef field="fld1"/>
<FieldRef field="fld2"/>
</PredictorTerm>
</RegressionTable>
</RegressionModel>
</PMML>

Example PMML Scorecard model

<PMML version="4.2" xsi:schemalocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

169


http://dmg.org/pmml/v4-4-1/pmml-4-4-1.xsd
http://dmg.org/pmml/pmml_examples/index.html

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

xmins="http://www.dmg.org/PMML-4_2">
<Header copyright="JBoss"/>
<DataDictionary numberOfFields="4">
<DataField name="param1" optype="continuous" dataType="double"/>
<DataField name="param2" optype="continuous" dataType="double"/>
<DataField name="overallScore" optype="continuous" dataType="double" />
<DataField name="finalscore" optype="continuous" dataType="double" />
</DataDictionary>
<Scorecard modelName="ScorecardCompoundPredicate" useReasonCodes="true"
isScorable="true" functionName="regression" baselineScore="15" initialScore="0.8"
reasonCodeAlgorithm="pointsAbove">
<MiningSchema>
<MiningField name="param1" usageType="active" invalidValueTreatment="asMissing">
</MiningField>
<MiningField name="param2" usageType="active" invalidValueTreatment="asMissing">
</MiningField>
<MiningField name="overallScore" usageType="target"/>
<MiningField name="finalscore" usageType="predicted"/>
</MiningSchema>
<Characteristics>
<Characteristic name="ch1" baselineScore="50" reasonCode="reasonCh1">
<Attribute partialScore="20">
<SimplePredicate field="param1" operator="lessThan" value="20"/>
</Attribute>
<Attribute partialScore="100">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="param1" operator="greaterOrEqual" value="20"/>
<SimplePredicate field="param2" operator="lessOrEqual" value="25"/>
</CompoundPredicate>
</Attribute>
<Attribute partialScore="200">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="param1" operator="greaterOrEqual" value="20"/>
<SimplePredicate field="param2" operator="greaterThan" value="25"/>
</CompoundPredicate>
</Attribute>
</Characteristic>
<Characteristic name="ch2" reasonCode="reasonCh2">
<Attribute partialScore="10">
<CompoundPredicate booleanOperator="or">
<SimplePredicate field="param2" operator="lessOrEqual" value="-5"/>
<SimplePredicate field="param2" operator="greaterOrEqual" value="50"/>
</CompoundPredicate>
</Attribute>
<Attribute partialScore="20">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="param2" operator="greaterThan" value="-5"/>
<SimplePredicate field="param2" operator="lessThan" value="50"/>
</CompoundPredicate>
</Attribute>
</Characteristic>
</Characteristics>
</Scorecard>
</PMML>

Example PMML Tree model

170



CHAPTER 11. PMML MODEL EXAMPLES

<PMML version="4.2" xsi:schemalocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins="http://www.dmg.org/PMML-4_2">
<Header copyright="JBOSS"/>
<DataDictionary numberOfFields="5">
<DataField dataType="double" name="fld1" optype="continuous"/>
<DataField dataType="double" name="fld2" optype="continuous"/>
<DataField dataType="string" name="fld3" optype="categorical">
<Value value="true"/>
<Value value="false"/>
</DataField>
<DataField dataType="string" name="fld4" optype="categorical">
<Value value="optA"/>
<Value value="optB"/>
<Value value="optC"/>
</DataField>
<DataField dataType="string" name="fld5" optype="categorical">
<Value value="tgtX"/>
<Value value="tgtY"/>
<Value value="tgtZ"/>
</DataField>
</DataDictionary>
<TreeModel functionName="classification" modelName="TreeTest">
<MiningSchema>
<MiningField name="fld1"/>
<MiningField name="fld2"/>
<MiningField name="{ld3"/>
<MiningField name="fld4"/>
<MiningField name="{ld5" usageType="predicted"/>
</MiningSchema>
<Node score="tgtX">
<True/>
<Node score="tgtX">
<SimplePredicate field="fld4" operator="equal" value="optA"/>
<Node score="tgtX">
<CompoundPredicate booleanOperator="surrogate">
<SimplePredicate field="fld1" operator="lessThan" value="30.0"/>
<SimplePredicate field="fld2" operator="greaterThan" value="20.0"/>
</CompoundPredicate>
<Node score="tgtX">
<SimplePredicate field="fld2" operator="lessThan" value="40.0"/>
</Node>
<Node score="tgtZ">
<SimplePredicate field="fld2" operator="greaterOrEqual" value="10.0"/>
</Node>
</Node>
<Node score="tgtZ">
<CompoundPredicate booleanOperator="or">
<SimplePredicate field="fld1" operator="greaterOrEqual" value="60.0"/>
<SimplePredicate field="fld1" operator="lessOrEqual" value="70.0"/>
</CompoundPredicate>
<Node score="tgtZ">
<SimpleSetPredicate booleanOperator="isNotIn" field="fld4">
<Array type="string">optA optB</Array>
</SimpleSetPredicate>
</Node>

171



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

</Node>
</Node>
<Node score="tgtY">
<CompoundPredicate booleanOperator="or">
<SimplePredicate field="fld4" operator="equal" value="optA"/>
<SimplePredicate field="fld4" operator="equal" value="optC"/>
</CompoundPredicate>
<Node score="tgtY">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="fld1" operator="greaterThan" value="10.0"/>
<SimplePredicate field="fld1" operator="lessThan" value="50.0"/>
<SimplePredicate field="fld4" operator="equal" value="optA"/>
<SimplePredicate field="fld2" operator="lessThan" value="100.0"/>
<SimplePredicate field="fld3" operator="equal" value="false"/>
</CompoundPredicate>
</Node>
<Node score="{gtZ">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="fld4" operator="equal" value="optC"/>
<SimplePredicate field="fld2" operator="lessThan" value="30.0"/>
</CompoundPredicate>
</Node>
</Node>
</Node>
</TreeModel>
</PMML>

Example PMML Mining model (modelChain)

<PMML version="4.2" xsi:schemalocation="http://www.dmg.org/PMML-4_2 http://www.dmg.org/v4-2-
1/pmml-4-2.xsd" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins="http://www.dmg.org/PMML-4_2">
<Header>
<Application name="Drools-PMML" version="7.0.0-SNAPSHOT" />
</Header>
<DataDictionary numberOfFields="7">
<DataField name="age" optype="continuous" dataType="double" />
<DataField name="occupation" optype="categorical" dataType="string">
<Value value="SKYDIVER" />
<Value value="ASTRONAUT" />
<Value value="PROGRAMMER" />
<Value value="TEACHER" />
<Value value="INSTRUCTOR" />
</DataField>
<DataField name="residenceState" optype="categorical" dataType="string">
<Value value="AP" />
<Value value="KN" />
<Value value="TN" />
</DataField>
<DataField name="validLicense" optype="categorical" dataType="boolean" />
<DataField name="overallScore" optype="continuous" dataType="double" />
<DataField name="grade" optype="categorical" dataType="string">
<Value value="A" />
<Value value="B" />
<Value value="C" />
<Value value="D" />

172



CHAPTER 11. PMML MODEL EXAMPLES

<Value value="F" />
</DataField>
<DataField name="qualificationLevel" optype="categorical" dataType="string">
<Value value="Unqualified" />
<Value value="Barely" />
<Value value="Well" />
<Value value="Over" />
</DataField>
</DataDictionary>
<MiningModel modelName="SampleModelChainMine" functionName="classification">
<MiningSchema>
<MiningField name="age" />
<MiningField name="occupation" />
<MiningField name="residenceState" />
<MiningField name="validLicense" />
<MiningField name="overallScore" />
<MiningField name="qualificationLevel" usageType="target"/>
</MiningSchema>
<Segmentation multipleModelMethod="modelChain">
<Segment id="1">

<True />
<Scorecard modelName="Sample Score 1" useReasonCodes="true" isScorable="true"
functionName="regression" baselineScore="0.0" initialScore="0.345">

<MiningSchema>
<MiningField name="age" usageType="active" invalidValueTreatment="asMissing" />
<MiningField name="occupation" usageType="active" invalidValueTreatment="asMissing" />
<MiningField name="residenceState" usageType="active" invalidValueTreatment="asMissing"

/>
<MiningField name="validLicense" usageType="active" invalidValueTreatment="asMissing" />
<MiningField name="overallScore" usageType="predicted" />
</MiningSchema>
<Output>
<OutputField name="calculatedScore" displayName="Final Score" dataType="double"
feature="predictedValue" targetField="overallScore" />
</Output>
<Characteristics>

<Characteristic name="AgeScore" baselineScore="0.0" reasonCode="ABZ">
<Extension name="cellRef" value="$B$8" />
<Attribute partialScore="10.0">
<Extension name="cellRef" value="$C$10" />
<SimplePredicate field="age" operator="lessOrEqual" value="5" />
</Attribute>
<Attribute partialScore="30.0" reasonCode="CX1">
<Extension name="cellRef" value="$C$11" />
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="age" operator="greaterOrEqual" value="5" />
<SimplePredicate field="age" operator="lessThan" value="12" />
</CompoundPredicate>
</Attribute>
<Attribute partialScore="40.0" reasonCode="CX2">
<Extension name="cellRef" value="$C$12" />
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="age" operator="greaterOrEqual" value="13" />
<SimplePredicate field="age" operator="lessThan" value="44" />
</CompoundPredicate>
</Attribute>

173



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

<Attribute partialScore="25.0">
<Extension name="cellRef" value="$C$13" />
<SimplePredicate field="age" operator="greaterOrEqual" value="45" />
</Attribute>
</Characteristic>
<Characteristic name="OccupationScore" baselineScore="0.0">
<Extension name="cellRef" value="$B$16" />
<Attribute partialScore="-10.0" reasonCode="CX2">
<Extension name="description" value="skydiving is a risky occupation" />
<Extension name="cellRef" value="$C$18" />
<SimpleSetPredicate field="occupation" booleanOperator="isIn">
<Array n="2" type="string">SKYDIVER ASTRONAUT</Array>
</SimpleSetPredicate>
</Attribute>
<Attribute partialScore="10.0">
<Extension name="cellRef" value="$C$19" />
<SimpleSetPredicate field="occupation" booleanOperator="isIn">
<Array n="2" type="string">TEACHER INSTRUCTOR</Array>
</SimpleSetPredicate>
</Attribute>
<Attribute partialScore="5.0">
<Extension name="cellRef" value="$C$20" />
<SimplePredicate field="occupation" operator="equal" value="PROGRAMMER" />
</Attribute>
</Characteristic>
<Characteristic name="ResidenceStateScore" baselineScore="0.0" reasonCode="RES">
<Extension name="cellRef" value="$B$22" />
<Attribute partialScore="-10.0">
<Extension name="cellRef" value="$C$24" />
<SimplePredicate field="residenceState" operator="equal" value="AP" />
</Attribute>
<Attribute partialScore="10.0">
<Extension name="cellRef" value="$C$25" />
<SimplePredicate field="residenceState" operator="equal" value="KN" />
</Attribute>
<Attribute partialScore="5.0">
<Extension name="cellRef" value="$C$26" />
<SimplePredicate field="residenceState" operator="equal" value="TN" />
</Attribute>
</Characteristic>
<Characteristic name="ValidLicenseScore" baselineScore="0.0">
<Extension name="cellRef" value="$B$28" />
<Attribute partialScore="1.0" reasonCode="LX00">
<Extension name="cellRef" value="$C$30" />
<SimplePredicate field="validLicense" operator="equal" value="true" />
</Attribute>
<Attribute partialScore="-1.0" reasonCode="LX00">
<Extension name="cellRef" value="$C$31" />
<SimplePredicate field="validLicense" operator="equal" value="false" />
</Attribute>
</Characteristic>
</Characteristics>
</Scorecard>
</Segment>
<Segment id="2">
<True />

174



CHAPTER 11. PMML MODEL EXAMPLES

<TreeModel modelName="SampleTree" functionName="classification"
missingValueStrategy="lastPrediction" noTrueChildStrategy="returnLastPrediction">

<MiningSchema>

<MiningField name="age" usageType="active" />

<MiningField name="validLicense" usageType="active" />

<MiningField name="calculatedScore" usageType="active" />

<MiningField name="qualificationLevel" usageType="predicted" />
</MiningSchema>

<Output>
<OutputField name="qualification" displayName="Qualification Level" dataType="string"
feature="predictedValue" targetField="qualificationLevel" />
</Output>
<Node score="Well" id="1">
<True/>

<Node score="Barely" id="2">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="age" operator="greaterOrEqual" value="16" />
<SimplePredicate field="validLicense" operator="equal" value="true" />
</CompoundPredicate>
<Node score="Barely" id="3">
<SimplePredicate field="calculatedScore" operator="lessOrEqual" value="50.0" />
</Node>
<Node score="Well" id="4">
<CompoundPredicate booleanOperator="and">
<SimplePredicate field="calculatedScore" operator="greaterThan" value="50.0" />
<SimplePredicate field="calculatedScore" operator="lessOrEqual" value="60.0" />
</CompoundPredicate>
</Node>
<Node score="Over" id="5">
<SimplePredicate field="calculatedScore" operator="greaterThan" value="60.0" />
</Node>
</Node>
<Node score="Unqualified" id="6">
<CompoundPredicate booleanOperator="surrogate">
<SimplePredicate field="age" operator="lessThan" value="16" />
<SimplePredicate field="calculatedScore" operator="lessOrEqual" value="40.0" />
<True />
</CompoundPredicate>
</Node>
</Node>
</TreeModel>
</Segment>
</Segmentation>
</MiningModel>
</PMML>

Example PMML Clustering model

<?xml version="1.0" encoding="UTF-8"7>
<PMML version="4.1" xmIns="http://www.dmg.org/PMML-4_1">
<Header>
<Application name="KNIME" version="2.8.0"/>
</Header>
<DataDictionary numberOfFields="5">
<DataField name="sepal_length" optype="continuous" dataType="double">
<Interval closure="closedClosed" leftMargin="4.3" rightMargin="7.9"/>

175



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

</DataField>
<DataField name="sepal_width" optype="continuous" dataType="double">
<Interval closure="closedClosed" leftMargin="2.0" rightMargin="4.4"/>
</DataField>
<DataField name="petal_length" optype="continuous" dataType="double">
<Interval closure="closedClosed" leftMargin="1.0" rightMargin="6.9"/>
</DataField>
<DataField name="petal_width" optype="continuous" dataType="double">
<Interval closure="closedClosed" leftMargin="0.1" rightMargin="2.5"/>
</DataField>
<DataField name="class" optype="categorical" dataType="string"/>
</DataDictionary>
<ClusteringModel modelName="SinglelrisKMeansClustering" functionName="clustering"
modelClass="centerBased" numberOfClusters="4">
<MiningSchema>
<MiningField name="sepal_length" invalidValueTreatment="asls"/>
<MiningField name="sepal_width" invalidValueTreatment="asls"/>
<MiningField name="petal_length" invalidValueTreatment="asls"/>
<MiningField name="petal_width" invalidValueTreatment="asls"/>
<MiningField name="class" usageType="predicted"/>
</MiningSchema>
<ComparisonMeasure kind="distance">
<squaredEuclidean/>
</ComparisonMeasure>
<ClusteringField field="sepal_length" compareFunction="absDiff"/>
<ClusteringField field="sepal_width" compareFunction="absDiff"/>
<ClusteringField field="petal_length" compareFunction="absDiff"/>
<ClusteringField field="petal_width" compareFunction="absDiff"/>
<Cluster name="virginica" size="32">
<Array n="4" type="real">6.9125000000000005 3.099999999999999 5.846874999999999
2.1312499999999996</Array>
</Cluster>
<Cluster name="versicolor" size="41">
<Array n="4" type="real">6.23658536585366 2.8585365853658535 4.807317073170731
1.6219512195121943</Array>
</Cluster>
<Cluster name="setosa" size="50">
<Array n="4" type="real">5.005999999999999 3.4180000000000006 1.464
0.2439999999999999</Array>
</Cluster>
<Cluster name="unknown" size="27">
<Array n="4" type="real">5.529629629629629 2.6222222222222222 3.940740740740741
1.2185185185185188</Array>
</Cluster>
</ClusteringModel>
</PMML>

176



CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER

CHAPTER 12. PMML SUPPORT IN RED HAT DECISION
MANAGER

Red Hat Decision Manager includes consumer conformance support for the following PMML model
types:

® Regression models

® Scorecard models

® Tree models

® Mining models (with sub-types modelChain, selectAll, and selectFirst)
® Clustering models

For alist of all PMML model types, including those not supported in Red Hat Decision Manager, see the
DMG PMML specification.

Red Hat Decision Manager offers two implementations including PMML legacy and PMML trusty.

IMPORTANT

The PMML legacy implementation is deprecated with Red Hat Decision Manager 7.10.0
and will be replaced by PMML trusty implementation in a future Red Hat Decision
Manager release.

Red Hat Decision Manager does not include a built-in PMML model editor, but you can use an XML or
PMML-specific authoring tool to create PMML models and then integrate the PMML models in your
decision services in Red Hat Decision Manager. You can import PMML files into your project in Business
Central (Menu - Design = Projects = Import Assef) or package the PMML files as part of your project
knowledge JAR (KJAR) file without Business Central.

For more information about including assets such as PMML files with your project packaging and
deployment method, see Packaging and deploying an Red Hat Decision Manager project .

You can migrate a PMML service to a Red Hat build of Kogito microservice. For more information about

migrating to Red Hat build of Kogito microservices, see Migrating to Red Hat build of Kogito
microservices.

12.1. PMML TRUSTY SUPPORT AND NAMING CONVENTIONS IN RED
HAT DECISION MANAGER
When you add a PMML file to a project in Red Hat Decision Manager, multiple assets are generated. The
tree and scorecard models are translated to rules, and regression and mining models are translated to
Java classes. Each type of PMML model generates a different set of assets, but all PMML model types
generate at least the following set of assets:

® Aroot package whose name is derived from the PMML file name

® |nthe root package, a Java factory class that is used to instantiate the model

® A subpackage specific to the model whose name is derived from the model name

177


http://dmg.org/pmml/v4-4-1/Regression.html
http://dmg.org/pmml/v4-4-1/Scorecard.html
http://dmg.org/pmml/v4-4-1/TreeModel.html
http://dmg.org/pmml/v4-4-1/MultipleModels.html#xsdElement_MiningModel
http://dmg.org/pmml/v4-4-1/ClusteringModel.html
http://dmg.org/pmml/v4-4-1/GeneralStructure.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager#assembly-getting-started-migration-to-kogito-microservices

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

® For rule models, two rule-mapper classes that are used to instantiate the rule network

® For mining models, children model packages and classes are nested in the parent model

NOTE

Currently, only one model for each PMML file is allowed. Also, extensions are temporarily
not supported.

The following are naming conventions for generated PMML packages and classes:

® The root package name is the name of the original PMML file in lowercase and without space,
for example, sampleregression.

® The name of the generated factory Java class is the PMML file name with Factory added to it
in the format fileName+"Factory" and first uppercase letter, for example,
SampleRegressionFactory.

® The subpackage name of a model is the name of the original model in lowercase and without
space, for example, compoundnestedpredicatescorecard.

® The names of the generated data classes are determined by the model type:

o Rules models: A top-level PMMLRuleMappersimpl is generated including references to
PMMLRuleMapperlmpl classes that are nested in the subpackages.

© Mining models:

B  The name of the created segmentation subpackage is the name of the original model
in lowercase, without space, and segmentation added to it in the format
modelName+”segmentation”, for example, mixedminingsegmentation.

® |n the segmentation subpackage, a segmentation Java class is created that contains
the references to the nested models. The name of the created segmentation Java
class is the model name with Segmentation added to it in the format
modelName+Segmentation, for example, MixedMiningSegmentation.

®m  For each segment, a specific subpackage is created. The name of the segment specific
subpackage is the original model name in lowercase with segment and a progressive
integer starting from O added to it in the format modelName+segment+integer. For
example, mixedminingsegment0, mixedminingsegmenti.

Known limitations of PMML trusty implementation
The following list shows elements that are not implemented for PMML trusty:

® Target element is not implemented
o Extension element is not implemented

e MiningSchema or MiningField elements that are not implemented, include:

o importance
o outliers

o lowValue

178



CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER

o highValue
o invalidValueTreatment
o invalidValueReplacement

e OQutputField elements that are not implemented, include:

o Decisions

o Value

o Rule feature

o Algorithm

o isMultiValued
o segmentid

o isFinalResult

o TransformationDictionary or LocalTransformation expressions that are not supported,
include:

o NormContinuous
o NormDiscrete

o MapValues

o Textlndex

o Aggregate

o Lag

o ModelStats, ModelExplanation, and ModelExplanation element is not implemented in all
models including regression, tree, scorecard, and mining

e verification element is not implemented in tree, scorecard, and mining model
e VariableWeight element is not implemented in mining model

® Tree model elements that are not implemented, include:

o IsMissing or IsNotMissing

o Surrogate in CompoundPredicate
o missingValuePenalty

o splitCharacteristic

o isScorable



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

12.2. PMML LEGACY SUPPORT AND NAMING CONVENTIONS IN RED
HAT DECISION MANAGER

When you add a PMML file to a project in Red Hat Decision Manager, multiple assets are generated.
Each type of PMML model generates a different set of assets, but all PMML model types generate at
least the following set of assets:
o A DRL file that contains all of the rules associated with your PMML model
® Atleast two Java classes:
o A data class that is used as the default object type for the model type

o A RuleUnit class that is used to manage data sources and rule execution

If a PMML file has MiningModel as the root model, multiple instances of each of these files are
generated.

The following are naming conventions for generated PMML legacy packages, classes, and rules:
® |f no package name is given in a PMML model file, then the default package name
org.kie.pmml.pmml_4 2 is prefixed to the model name for the generated rules in the format

"org.kie.pmml.pmmi_4_2"+modelName.

® The package name for the generated RuleUnit Java class is the same as the package name for
the generated rules.

® The name of the generated RuleUnit Java class is the model name with RuleUnit added to itin
the format modelName+"RuleUnit".

® FEach PMML model has at least one data class that is generated. The package name for these
classes is org.kie.pmml.pmmi_4_2.model.

® The names of generated data classes are determined by the model type, prefixed with the
model name:

o Regression models: One data class named modelName+"RegressionData"
o Scorecard models: One data class named modelName+"ScoreCardData"

o Tree models: Two data classes, the first named modelName+"TreeNode" and the second
named modelName+"TreeToken"

© Mining models: One data class named modelName+"MiningModelData"

NOTE

The mining model also generates all of the rules and classes that are within each of its
segments.

._,f"

12.2.1. PMML extensions in Red Hat Decision Manager

The PMML legacy specification supports Extension elements that extend the content of a PMML
model. You can use extensions at almost every level of a PMML model definition, and as the first and
last child in the main element of a model for maximum flexibility. For more information about PMML
extensions, see the DMG PMML Extension Mechanism.

180


http://dmg.org/pmml/v4-4-1/GeneralStructure.html#xsdElement_Extension

CHAPTER 12. PMML SUPPORT IN RED HAT DECISION MANAGER

To optimize PMML integration, Red Hat Decision Manager supports the following additional PMML
extensions:

e modelPackage: Designates a package name for the generated rules and Java classes. Include
this extension in the Header section of the PMML model file.

e adapter: Designates the type of construct (bean or trait) that is used to contain input and
output data for rules. Insert this extension in the MiningSchema or Output section (or both) of
the PMML model file.

e externalClass: Used in conjunction with the adapter extension in defininga MiningField or

OutputField. This extension contains a class with an attribute name that matches the name of
the MiningField or OutputField element.

181



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 13. PMML MODEL EXECUTION

You can import PMML files into your Red Hat Decision Manager project using Business Central (Menu
-» Design = Projects = Import Asset) or package the PMML files as part of your project knowledge
JAR (KJAR) file without Business Central. After you implement your PMML files in your Red Hat
Decision Manager project, you can execute the PMML-based decision service by embedding PMML
calls directly in your Java application or by sending an ApplyPmmiIModelCommand command to a
configured KIE Server.

For more information about including PMML assets with your project packaging and deployment
method, see Packaging and deploying an Red Hat Decision Manager project .

NOTE

You can also include a PMML model as part of a Decision Model and Notation (DMN)
service in Business Central. When you include a PMML model within a DMN file, you can
invoke that PMML model as a boxed function expression for a DMN decision node or
business knowledge model node. For more information about including PMML models in a
DMN service, see Designing a decision service using DMN models .

13.1. EMBEDDING A PMML TRUSTY CALL DIRECTLY IN A JAVA
APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You embed knowledge
assets directly into a project if there is a tight relationship between the version of the code and the
version of the PMML definition. Any changes to the decision take effect after you have intentionally
updated and redeployed the application. A benefit of this approach is that proper operation does not
rely on any external dependencies to the run time, which can be a limitation of locked-down
environments.

Prerequisites

® A KJAR containing the PMML model to execute has been created. For more information about
project packaging, see Packaging and deploying an Red Hat Decision Manager project .

Procedure

1. Inyour client application, add the following dependencies to the relevant classpath of your Java
project:

<!I-- Required for the PMML compiler -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>kie-pmml-dependencies</artifactld>
<version>${rhpam.version}</version>
</dependency>

<!I-- Required for the KIE public API -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-api</artifactld>
<version>${rhpam.version}</version>
</dependencies>

182


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#dmn-included-models-pmml-proc_dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

CHAPTER 13. PMML MODEL EXECUTION

<!-- Required if not using classpath KIE container -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-ci</artifactld>
<version>${rhpam.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.67.0.Final-redhat-00024).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

. Create a KIE container from classpath or Releaseld:

KieServices kieServices = KieServices.Factory.get();

Releaseld releaseld = kieServices.newReleaseld( "org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer( releaseld );

Alternative option:

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

. Create an instance of the PMMLRuntime that is used to execute the model:

PMMLRuntime pmmIRuntime =
KieRuntimeFactory.of(kieContainer.getKieBase()).get(PMMLRuntime.class);

. Create an instance of the PMMLRequestData class that applies your PMML model to a data
set:

183


https://access.redhat.com/solutions/3363991

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

PMMLRequestData pmmlIRequestData = new PMMLRequestData({correlation_id},
{model_name});
pmmlRequestData.addRequestParam({parameter_name}, {parameter_value})

5. Create aninstance of the PMMLContext class that contains the input data:

I PMMLContext pmmlContext = new PMMLContextimpl(pmmIRequestData);

6. Retrieve the PMML4Result while executing the PMML model with the required PMML class
instances that you created:

I PMML4Result pmml4Result = pmmIRuntime.evaluate({model_name}, pmmlIContext);

13.2. EMBEDDING A PMML LEGACY CALL DIRECTLY IN A JAVA
APPLICATION

A KIE container is local when the knowledge assets are either embedded directly into the calling
program or are physically pulled in using Maven dependencies for the KJAR. You embed knowledge
assets directly into a project if there is a tight relationship between the version of the code and the
version of the PMML definition. Any changes to the decision take effect after you have intentionally
updated and redeployed the application. A benefit of this approach is that proper operation does not
rely on any external dependencies to the run time, which can be a limitation of locked-down
environments.

Using Maven dependencies enables further flexibility because the specific version of the decision can
dynamically change (for example, by using a system property), and it can be periodically scanned for
updates and automatically updated. This introduces an external dependency on the deploy time of the
service, but executes the decision locally, reducing reliance on an external service being available during
run time.

Prerequisites

® A KJAR containing the PMML model to execute has been created. For more information about
project packaging, see Packaging and deploying an Red Hat Decision Manager project .

Procedure

1. Inyour client application, add the following dependencies to the relevant classpath of your Java
project:

<!-- Required for the PMML compiler -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>kie-pmml</artifactld>
<version>${rhpam.version}</version>
</dependency>

<!I-- Required for the KIE public API -->

<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-api</artifactld>
<version>${rhpam.version}</version>

184


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

CHAPTER 13. PMML MODEL EXECUTION

</dependencies>

<!-- Required if not using classpath KIE container -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-ci</artifactld>
<version>${rhpam.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.67.0.Final-redhat-00024).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

IMPORTANT

To use the legacy implementation, ensure that the kie-pmml-implementation
system property is set as legacy.

. Create a KIE container from classpath or Releaseld:

KieServices kieServices = KieServices.Factory.get();

Releaseld releaseld = kieServices.newReleaseld( "org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer( releaseld );

Alternative option:

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

185


https://access.redhat.com/solutions/3363991

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

186

3. Create aninstance of the PMMLRequestData class, which applies your PMML model to a set of

data:

-

o

public class PMMLRequestData {

private String correlationld;
private String modelName;

private String source;
private List<Parameterinfo<?>> requestParams; ﬂ

Identifies data that is associated with a particular request or result
The name of the model that should be applied to the request data

Used by internally generated PMMLRequestData objects to identify the segment that
generated the request

The default mechanism for sending input data points

4. Create aninstance of the PMML4Result class, which holds the output information that is the
result of applying the PMML-based rules to the input data:

® 0060 ® o

public class PMML4Result {

private String correlationld;

private String segmentationld; ﬂ

private String segmentid;

private int segmentindex;

private String resultCode;

private Map<String, Object> resultVariables; 6

Used when the model type is MiningModel. The segmentationld is used to differentiate
between multiple segmentations.

Used in conjunction with the segmentationld to identify which segment generated the
results.

Used to maintain the order of segments.

Used to determine whether the model was successfully applied, where OK indicates
success.

Contains the name of a resultant variable and its associated value.

In addition to the normal getter methods, the PMML4Result class also supports the following
methods for directly retrieving the values for result variables:

public <T> Optional<T> getResultValue(String objName, String objField, Class<T> clazz,
Object...params)

public Object getResultValue(String objName, String objField, Object...params)



5. Create an instance of the Parameterinfo class, which serves as a wrapper for basic data type

CHAPTER 13. PMML MODEL EXECUTION

objects used as part of the PMMLRequestData class:

public class Parameterinfo<T> { ﬂ

- -

private String correlationld;
private String name;

private String capitalizedName;
private Class<T> type;

private T value;

The parameterized class to handle many different types
The name of the variable that is expected as input for the model
The class that is the actual type of the variable

The actual value of the variable

6. Execute the PMML model based on the required PMML class instances that you have created:

public void executeModel(KieBase kbase,

}

Map<String,Object> variables,

String modelName,

String correlationld,

String modelPkgName) {
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
PMMLRequestData request = new PMMLRequestData(correlationld, modelName);
PMML4Result resultHolder = new PMML4Result(correlationld);
variables.entrySet().forEach( es -> {

request.addRequestParam(es.getKey(), es.getValue());

ok

DataSource<PMMLRequestData> requestData = executor.newDataSource("request”);
DataSource<PMML4Result> resultData = executor.newDataSource("results");
DataSource<PMMLData> internalData = executor.newDataSource("pmmliData");

requestData.insert(request);
resultData.insert(resultHolder);

List<String> possiblePackageNames = calculatePossiblePackageNames(modelName,
modelPkgName);
Class<? extends RuleUnit> ruleUnitClass = getStartingRuleUnit("RuleUnitIndicator",
(InternalKnowledgeBase)kbase,
possiblePackageNames);

if (ruleUnitClass != null) {
executor.run(ruleUnitClass);
if ( "OK".equals(resultHolder.getResultCode()) ) {
// extract result variables here

}
}

187



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

To facilitate your PMML model execution, you can also use a PMML4ExecutionHelper class supported
in Red Hat Decision Manager. For more information about the PMML helper class, see Section 13.2.],

protected Class<? extends RuleUnit> getStartingRuleUnit(String startingRule,
InternalKnowledgeBase ikb, List<String> possiblePackages) {
RuleUnitRegistry unitRegistry = ikb.getRuleUnitRegistry();
Map<String,InternalkKnowledgePackage> pkgs = ikb.getPackagesMap();
Rulelmpl rulelmpl = null;
for (String pkgName: possiblePackages) {
if (pkgs.containsKey(pkgName)) {
InternalkKnowledgePackage pkg = pkgs.get(pkgName);
rulelmpl = pkg.getRule(startingRule);
if (rulelmpl = null) {
RuleUnitDescr descr = unitRegistry.getRuleUnitFor(rulelmpl).orElse(null);
if (descr = null) {
return descr.getRuleUnitClass();

}
}
}
}

return null;

}

protected List<String> calculatePossiblePackageNames(String modelld,
String...knownPackageNames) {
List<String> packageNames = new ArrayList<>();
String javaModelld = modelld.replaceAll("\s","");
if (knownPackageNames != null && knownPackageNames.length > 0) {
for (String knownPkgName: knownPackageNames) {
packageNames.add(knownPkgName + "." + javaModelld);

}
}

String basePkgName = PMML4Unitimpl.DEFAULT_ROOT_PACKAGE+"."+javaModelld;

packageNames.add(basePkgName);
return packageNames;

}

Rules are executed by the RuleUnitExecutor class. The RuleUnitExecutor class creates KIE
sessions and adds the required DataSource objects to those sessions, and then executes the
rules based on the RuleUnit that is passed as a parameter to the run() method. The
calculatePossiblePackageNames and the getStartingRuleUnit methods determine the fully
qualified name of the RuleUnit class that is passed to the run() method.

"PMML execution helper class”.

13.2.1. PMML execution helper class

Red Hat Decision Manager provides a PMML4ExecutionHelper class that helps create the

PMMLRequestData class required for PMML model execution and that helps execute rules using the

RuleUnitExecutor class.

The following are examples of a PMML model execution without and with the PMML4ExecutionHelper

class, as a comparison:

Example PMML model execution without using PMML4ExecutionHelper

188



CHAPTER 13. PMML MODEL EXECUTION

public void executeModel(KieBase kbase,
Map<String,Object> variables,
String modelName,
String correlationld,
String modelPkgName) {
RuleUnitExecutor executor = RuleUnitExecutor.create().bind(kbase);
PMMLRequestData request = new PMMLRequestData(correlationld, modelName);
PMML4Result resultHolder = new PMML4Result(correlationld);
variables.entrySet().forEach( es -> {
request.addRequestParam(es.getKey(), es.getValue());

D;

DataSource<PMMLRequestData> requestData = executor.newDataSource("request”);
DataSource<PMML4Result> resultData = executor.newDataSource("results");
DataSource<PMMLData> internalData = executor.newDataSource("pmmlData");

requestData.insert(request);
resultData.insert(resultHolder);

List<String> possiblePackageNames = calculatePossiblePackageNames(modelName,
modelPkgName);
Class<? extends RuleUnit> ruleUnitClass = getStartingRuleUnit("RuleUnitIndicator",
(InternalKnowledgeBase)kbase,
possiblePackageNames);

if (ruleUnitClass != null) {
executor.run(ruleUnitClass);
if ( "OK".equals(resultHolder.getResultCode()) ) {
// extract result variables here

}
}
}

protected Class<? extends RuleUnit> getStartingRuleUnit(String startingRule,
InternalKnowledgeBase ikb, List<String> possiblePackages) {
RuleUnitRegistry unitRegistry = ikb.getRuleUnitRegistry();
Map<String,InternalkKnowledgePackage> pkgs = ikb.getPackagesMap();
Rulelmpl rulelmpl = null;
for (String pkgName: possiblePackages) {
if (pkgs.containsKey(pkgName)) {
InternalkKnowledgePackage pkg = pkgs.get(pkgName);
rulelmpl = pkg.getRule(startingRule);
if (rulelmpl = null) {
RuleUnitDescr descr = unitRegistry.getRuleUnitFor(rulelmpl).orElse(null);
if (descr = null) {
return descr.getRuleUnitClass();

}
}
}
}

return null;

}

protected List<String> calculatePossiblePackageNames(String modelld,
String...knownPackageNames) {
List<String> packageNames = new ArrayList<>();

189



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

String javaModelld = modelld.replaceAll("\s","");
if (knownPackageNames != null && knownPackageNames.length > 0) {
for (String knownPkgName: knownPackageNames) {
packageNames.add(knownPkgName + "." + javaModelld);
}
}
String basePkgName = PMML4Unitimpl.DEFAULT_ROOT_PACKAGE+"."+javaModelld;
packageNames.add(basePkgName);
return packageNames;

Example PMML model execution using PMML4ExecutionHelper

public void executeModel(KieBase kbase,
Map<String,Object> variables,
String modelName,
String modelPkgName,
String correlationld) {
PMML4ExecutionHelper helper = PMML4ExecutionHelperFactory.getExecutionHelper(modelName,
kbase);
helper.addPossiblePackageName(modelPkgName);

PMMLRequestData request = new PMMLRequestData(correlationld, modelName);
variables.entrySet().forEach(entry -> {
request.addRequestParam(entry.getKey(), entry.getValue);

b

PMML4Result resultHolder = helper.submitRequest(request);
if ("OK".equals(resultHolder.getResultCode)) {
// extract result variables here

}
}

When you use the PMML4ExecutionHelper, you do not need to specify the possible package names nor
the RuleUnit class as you would in a typical PMML model execution.

To construct a PMML4ExecutionHelper class, you use the PMML4ExecutionHelperFactory class to
determine how instances of PMML4ExecutionHelper are retrieved.

The following are the available PMML4ExecutionHelperFactory class methods for constructing a
PMML4ExecutionHelper class:

PMML4ExecutionHelperFactory methods for PMML assets in a KIE base

Use these methods when PMML assets have already been compiled and are being used from an
existing KIE base:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, KieBase kbase)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, KieBase kbase,
boolean includeMiningDataSources)

PMML4ExecutionHelperFactory methods for PMML assets on the project classpath

Use these methods when PMML assets are on the project classpath. The classPath argument is the
project classpath location of the PMML file:

190



CHAPTER 13. PMML MODEL EXECUTION

public static PMML4ExecutionHelper getExecutionHelper(String modelName, String classPath,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName,String classPath,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

PMML4ExecutionHelperFactory methods for PMML assets in a byte array

Use these methods when PMML assets are in the form of a byte array:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, byte[] content,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, byte[] content,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

PMML4ExecutionHelperFactory methods for PMML assets in aResource

Use these methods when PMML assets are in the form of an org.kie.api.io.Resource object:

public static PMML4ExecutionHelper getExecutionHelper(String modelName, Resource resource,
KieBaseConfiguration kieBaseConf)

public static PMML4ExecutionHelper getExecutionHelper(String modelName, Resource resource,
KieBaseConfiguration kieBaseConf, boolean includeMiningDataSources)

NOTE

The classpath, byte array, and resource PMML4ExecutionHelperFactory methods
create a KIE container for the generated rules and Java classes. The container is used as
the source of the KIE base that the RuleUnitExecutor uses. The container is not
persisted. The PMML4ExecutionHelperFactory method for PMML assets that are
already in a KIE base does not create a KIE container in this way.

13.3. EXECUTING A PMML MODEL USING KIE SERVER

You can execute PMML models that have been deployed to KIE Server by sending the
ApplyPmmIModelCommand command to the configured KIE Server. When you use this command, a
PMMLRequestData object is sent to KIE Server and a PMML4Result result object is received as a reply.
You can send PMML requests to KIE Server through the KIE Server REST API from a configured Java
class or directly from a REST client.

Prerequisites

e KIE Server is installed and configured, including a known user name and credentials for a user
with the kie-server role. For installation options, see Planning a Red Hat Decision Manager
installation.

® AKIE container is deployed in KIE Server in the form of a KJAR that includes the PMML model.
For more information about project packaging, see Packaging and deploying an Red Hat

Decision Manager project.

® You have the container ID of the KIE container containing the PMML model.

191


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/installing_and_configuring_red_hat_decision_manager#assembly-planning
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Procedure

1. Inyour client application, add the following dependencies to the relevant classpath of your Java
project:

Example of legacy implementation

<!-- Required for the PMML compiler -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>kie-pmml</artifactld>
<version>${rhpam.version}</version>
</dependency>

<!I-- Required for the KIE public API -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-api</artifactld>
<version>${rhpam.version}</version>
</dependencies>

<!I-- Required for the KIE Server Java client API -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-client</artifactld>
<version>${rhpam.version}</version>
</dependency>

<I-- Required if not using classpath KIE container -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-ci</artifactld>
<version>${rhpam.version}</version>
</dependency>

IMPORTANT

To use the legacy implementation, ensure that the kie-pmml-implementation
system property is set as legacy.

Example of trusty implementation

<!I-- Required for the PMML compiler -->
<dependency>
<groupld>org.drools</groupld>
<artifactld>kie-pmml-dependencies</artifactld>
<version>${rhpam.version}</version>
</dependency>

<!-- Required for the KIE public API -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-api</artifactld>
<version>${rhpam.version}</version>
</dependencies>

192



CHAPTER 13. PMML MODEL EXECUTION

<!I-- Required for the KIE Server Java client API -->
<dependency>
<groupld>org.kie.server</groupld>
<artifactld>kie-server-client</artifactld>
<version>${rhpam.version}</version>
</dependency>

<I-- Required if not using classpath KIE container -->
<dependency>
<groupld>org.kie</groupld>
<artifactld>kie-ci</artifactld>
<version>${rhpam.version}</version>
</dependency>

The <versions is the Maven artifact version for Red Hat Decision Manager currently used in
your project (for example, 7.67.0.Final-redhat-00024).

NOTE

Instead of specifying a Red Hat Decision Manager <versions for individual
dependencies, consider adding the Red Hat Business Automation bill of materials
(BOM) dependency to your project pom.xml file. The Red Hat Business
Automation BOM applies to both Red Hat Decision Manager and Red Hat
Process Automation Manager. When you add the BOM files, the correct versions
of transitive dependencies from the provided Maven repositories are included in
the project.

Example BOM dependency:

<dependency>
<groupld>com.redhat.ba</groupld>
<artifactld>ba-platform-bom</artifactid>
<version>7.13.5.redhat-00002</version>
<scope>import</scope>
<type>pom</type>

</dependency>

For more information about the Red Hat Business Automation BOM, see What is
the mapping between RHDM product and maven library version?.

. Create a KIE container from classpath or Releaseld:

KieServices kieServices = KieServices.Factory.get();

Releaseld releaseld = kieServices.newReleaseld( "org.acme", "my-kjar", "1.0.0");
KieContainer kieContainer = kieServices.newKieContainer( releaseld );

Alternative option:

KieServices kieServices = KieServices.Factory.get();

KieContainer kieContainer = kieServices.getKieClasspathContainer();

193


https://access.redhat.com/solutions/3363991

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

194

3. Create a class for sending requests to KIE Server and receiving responses:

public class ApplyScorecardModel {
private static final Releaseld releaseld =
new Releaseld("org.acme”,"my-kjar","1.0.0");
private static final String containerld = "SampleModelContainer";
private static KieCommands commandFactory;
private static ClassLoader kjarClassLoader;

private RuleServicesClient serviceClient; g

// Attributes specific to your class instance
private String rankedFirstCode;
private Double score;

// Initialization of non-final static attributes
static {
commandFactory = KieServices.Factory.get().getCommands();

// Specifications for kjarClassLoader, if used
KieMavenRepository kmp = KieMavenRepository.getMavenRepository();
File artifactFile = kmp.resolveArtifact(releaseld).getFile();
if (artifactFile = null) {
URL urls[] = new URL[1];
try {
urls[0] = artifactFile.toURI().toURLY();
classLoader = new KieURLClassLoader(urls,PMML4Result.class.getClassLoader());
} catch (MalformedURLException e) {
logger.error("Error getting classLoader for "+containerld);
logger.error(e.getMessage());
}
}else {
logger.warn("Did not find the artifact file for "+releaseld.toString());
}
}

public ApplyScorecardModel(KieServicesConfiguration kieConfig) {
KieServicesClient clientFactory = KieServicesFactory.newKieServicesClient(kieConfig);
serviceClient = clientFactory.getServicesClient(RuleServicesClient.class);

}

// Getters and setters

// Method for executing the PMML model on KIE Server

public void applyModel(String occupation, int age) {
PMMLRequestData input = new PMMLRequestData("1234","SampleModelName"); 6
input.addRequestParam(new Parameterinfo("1234","occupation",String.class,occupation));
input.addRequestParam(new Parameterinfo("1234","age",Integer.class,age));

CommandFactoryServicelmpl cf = (CommandFactoryServicelmpl)commandFactory;
ApplyPmmIModelCommand command = (ApplyPmmIModelCommand)
cf.newApplyPmmIModel(request); ﬂ

ServiceResponse<ExecutionResults> results =
ruleClient.executeCommandsWithResults(CONTAINER_ID, command); €



CHAPTER 13. PMML MODEL EXECUTION

if (results 1= null) { @
PMML4Result resultHolder = (PMML4Result)results.getResult().getValue("results");
if (resultHolder != null && "OK".equals(resultHolder.getResultCode())) {
this.score = resultHolder.getResultValue("ScoreCard","score",Double.class).get();
Map<String,Object> rankingMap =
(Map<String,Object>)resultHolder.getResultValue("ScoreCard","ranking");
if (rankingMap != null && !rankingMap.isEmpty()) {
this.rankedFirstCode = rankingMap.keySet().iterator().next();

Defines the class loader if you did not include the KJAR in your client project dependencies

Identifies the service client as defined in the configuration settings, including KIE Server
REST API access credentials

Initializes a PMMLRequestData object
Creates an instance of the ApplyPmmIModelCommand
Sends the command using the service client

Retrieves the results of the executed PMML model

QD00 09O

4. Execute the class instance to send the PMML invocation request to KIE Server.
Alternatively, you can use JMS and REST interfaces to send the ApplyPmmIModelCommand
command to KIE Server. For REST requests, you use the ApplyPmmiModelCommand
command as a POST request to http:/SERVER:PORT/kie-
server/services/rest/server/containers/instances/{containerld} in JSON, JAXB, or XStream
request format.

Example POST endpoint

http://localhost:8080/kie-
server/services/rest/server/containers/instances/SampleModelContainer

Example JSON request body

{

"commands": [ {
"apply-pmml-model-command"”: {
"outldentifier": null,
"packageName": null,
"hasMining": false,
"requestData": {
"correlationld": "123",
"modelName": "SimpleScorecard",
"source": null,
"requestParams": |

{

195



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

"correlationld": "123",
"name": "param1"”,

"type": "java.lang.Double",
"value": "10.0"

"correlationld": "123",
"name": "param2",

"type": "java.lang.Double",
"value": "15.0"

Example curl request with endpoint and body

curl -X POST "http://localhost:8080/kie-
server/services/rest/server/containers/instances/SampleModelContainer" -H "accept:
application/json" -H "content-type: application/json" -d "{ \"commands\": [ { \"apply-pmmi-
model-command\": { \"outldentifier\": null, \"packageName\": null, \"hasMining\": false,
\"requestData\": { \"correlationld\": \"123\", \"modelName\": \"SimpleScorecard\", \"source\":
null, \"requestParams\": [ { \"correlationld\": \"123\", \"name\": \"param1\", \"type\":
\"java.lang.Double\", \"value\": \"10.0\" }, { \"correlationld\": \"123\", \"name\": \"param?2\",
\"type\": \"java.lang.Double\", \"value\": \"15.0\" } 1 } } } [}"

Example JSON response

{
"results" : [ {
"value" : {"org.kie.api.pmml.DoubleFieldOutput":{
"value" : 40.8,
"correlationld" : "123",
"segmentationld" : null,
"segmentld" : null,
"name" : "OverallScore",
"displayValue" : "OverallScore",

"weight" : 1.0
1
"key" : "OverallScore"
b {

"value" : {"org.kie.api.pmml.PMML4Result":{
"resultVariables" : {
"OverallScore" : {
"value" : 40.8,
"correlationld" : "123",
"segmentationld" : null,
"segmentld" : null,
"name" : "OverallScore",
"displayValue" : "OverallScore",
"weight" : 1.0
b

196



"ScoreCard" : {

"modelName" : "SimpleScorecard",

"score" : 40.8,
"holder" : {

"modelName" : "SimpleScorecard",

"correlationld" : "123",
"voverallScore" : null,

"moverallScore" : true,

"vparam1" : 10.0,
"mparami" : false,
"vparam2" : 15.0,
"mparam2" : false
b
"enableRC" : true,
"pointsBelow" : true,
"ranking" : {
"reasonCh1" : 5.0,
"reasonCh2" : -6.0

}
}
b

"correlationld" : "123",
"segmentationld" : null,
"segmentld" : null,
"segmentindex" : 0,
"resultCode" : "OK",
"resultObjectName" : null

1
"key" : "results"
b,
"facts" : [ ]
}

CHAPTER 13. PMML MODEL EXECUTION

197



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 14. ADDITIONAL RESOURCES
® PMML specification
® Packaging and deploying an Red Hat Decision Manager project

® Interacting with Red Hat Decision Manager using KIE APIs

198


http://dmg.org/pmml/pmml-v4-4-1.html
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-packaging-deploying
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#assembly-kie-apis

PART Ill. DESIGNING A DECISION SERVICE USING DRL RULES

PART lll. DESIGNING A DECISION SERVICE USING DRL RULES

As a business rules developer, you can define business rules using the DRL (Drools Rule Language)
designer in Business Central. DRL rules are defined directly in free-form .drl text files instead of in a
guided or tabular format like other types of rule assets in Business Central. These DRL files form the
core of the decision service for your project.

NOTE

You can also design your decision service using Decision Model and Notation (DMN)
models instead of rule-based or table-based assets. For information about DMN support
in Red Hat Decision Manager 7.13, see the following resources:

® Getting started with decision services (step-by-step tutorial with a DMN decision
service example)

® Designing a decision service using DMN models (overview of DMN support and
capabilities in Red Hat Decision Manager)

Prerequisites

® The space and project for the DRL rules have been created in Business Central. Each asset is
associated with a project assigned to a space. For details, see Getting started with decision
services.

199


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_decision_manager#assembly-getting-started-decision-services

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT
DECISION MANAGER

Red Hat Decision Manager supports several assets that you can use to define business decisions for
your decision service. Each decision-authoring asset has different advantages, and you might prefer to
use one or a combination of multiple assets depending on your goals and needs.

The following table highlights the main decision-authoring assets supported in Red Hat Decision
Manager projects to help you decide or confirm the best method for defining decisions in your decision
service.

Table 15.1. Decision-authoring assets supported in Red Hat Decision Manager

Highlights Authoring tools Documentation
Decision Model . Business Central Designing a
. ® Are decision models based on a . .
and Notation . . or other DMN- decision service
notation standard defined by the ) ) )
(DMN) models Object Management Group compliant editor using DMN models

(OMG)

® Use graphical decision
requirements diagrams (DRDs)
that represent part or all of the
overall decision requirements
graph (DRG) to trace business
decision flows

® Use an XML schema that allows
the DMN models to be shared
between DMN-compliant
platforms

e Support Friendly Enough
Expression Language (FEEL) to
define decision logic in DMN
decision tables and other DMN
boxed expressions

® Are optimal for creating

comprehensive, illustrative, and
stable decision flows

200


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-dmn-models

CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights

Authoring tools Documentation

Guided decision
tables

Spreadsheet
decision tables

Guided rules

® Are tables of rules that you
create in a Ul-based table
designer in Business Central

® Are awizard-led alternative to
spreadsheet decision tables

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates

® Support hit policies, real-time
validation, and other additional
features not supported in other
assets

® Are optimal for creating rules in
a controlled tabular format to
minimize compilation errors

® Are XLS or XLSX spreadsheet
decision tables that you can
upload into Business Central

® Support template keys and
values for creating rule
templates

® Are optimal for creating rules in
decision tables already managed
outside of Business Central

® Have strict syntax requirements
for rules to be compiled properly
when uploaded

® Areindividual rules that you
create in a Ul-based rule
designer in Business Central

® Provide fields and options for
acceptable input

® Are optimal for creating single
rules in a controlled format to
minimize compilation errors

Business Central Designing a
decision service
using guided

decision tables

Spreadsheet
editor

Designing a
decision service
using spreadsheet
decision tables

Business Central Designing a
decision service

using guided rules

201


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-decision-tables
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rules

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Highlights Authoring tools Documentation
Guided rule Business Central Designing a
® Are reusable rule structures that L .
templates decision service

you create in a Ul-based
template designer in Business
Central templates

using guided rule

® Provide fields and options for
acceptable input

® Support template keys and
values for creating rule
templates (fundamental to the
purpose of this asset)

® Are optimal for creating many
rules with the same rule structure
but with different defined field

values
DRL rules o Business Central Designing a
® Areindividual rules that you or integrated decision service
define directly in .drl text files 9 )
development using DRL rules
® Provide the most flexibility for environment (IDE)

defining rules and other
technicalities of rule behavior

® Can be created in certain
standalone environments and
integrated with Red Hat
Decision Manager

® Are optimal for creating rules
that require advanced DRL
options

® Have strict syntax requirements
for rules to be compiled properly

202


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-guided-rule-templates
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-drl-rules

CHAPTER 15. DECISION-AUTHORING ASSETS IN RED HAT DECISION MANAGER

Highlights Authoring tools Documentation

Predictive Model . . PMML or XML Designing a
® Are predictive data-analytic

Markup Language . editor decision service
models based on a notation )

(PMML) models standard defined by the Data using PMML
Mining Group (DMG) models

® Use an XML schema that allows
the PMML models to be shared
between PMML-compliant
platforms

® Support Regression, Scorecard,
Tree, Mining, and other model
types

e Can beincluded with a
standalone Red Hat Decision
Manager project or imported
into a project in Business Central

® Are optimal for incorporating
predictive data into decision
services in Red Hat Decision
Manager

When you define business decisions, you can also consider using Red Hat build of Kogito for your cloud-
native decision services. For more information about getting started with Red Hat build of Kogito
microservices, see Getting started with Red Hat build of Kogito in Red Hat Decision Manager .

203


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#assembly-pmml-models
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/getting_started_with_red_hat_build_of_kogito_in_red_hat_decision_manager

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

DRL (Drools Rule Language) rules are business rules that you define directly in .drl text files. These DRL
files are the source in which all other rule assets in Business Central are ultimately rendered. You can
create and manage DRL files within the Business Central interface, or create them externally as part of a
Maven or Java project using Red Hat CodeReady Studio or another integrated development
environment (IDE). A DRL file can contain one or more rules that define at a minimum the rule
conditions (when) and actions (then). The DRL designer in Business Central provides syntax
highlighting for Java, DRL, and XML.

DRL files consist of the following components:

Components in a DRL file

package

import

function // Optional
query // Optional

declare // Optional
global // Optional

rule "rule name"
/Il Attributes
when
// Conditions
then
// Actions
end

rule "rule2 name"

The following example DRL rule determines the age limit in a loan application decision service:

Example rule for loan application age limit

rule "Underage"
salience 15
agenda-group "applicationGroup”
when
$application : LoanApplication()
Applicant( age < 21)
then
$application.setApproved( false );
$application.setExplanation( "Underage" );
end

A DRL file can contain single or multiple rules, queries, and functions, and can define resource
declarations such as imports, globals, and attributes that are assigned and used by your rules and

204



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

queries. The DRL package must be listed at the top of a DRL file and the rules are typically listed last. All
other DRL components can follow any order.

Each rule must have a unique name within the rule package. If you use the same rule name more than
once in any DRL file in the package, the rules fail to compile. Always enclose rule names with double
quotation marks (rule "rule name") to prevent possible compilation errors, especially if you use spaces
in rule names.

All data objects related to a DRL rule must be in the same project package as the DRL file in Business

Central. Assets in the same package are imported by default. Existing assets in other packages can be
imported with the DRL rule.

16.1. PACKAGES IN DRL

A package is a folder of related assets in Red Hat Decision Manager, such as data objects, DRL files,
decision tables, and other asset types. A package also serves as a unique namespace for each group of
rules. A single rule base can contain multiple packages. You typically store all the rules for a package in
the same file as the package declaration so that the package is self-contained. However, you can import
objects from other packages that you want to use in the rules.

The following example is a package name and namespace for a DRL file in a mortgage application
decision service:

Example package definition in a DRL file

I package org.mortgages;

16.2. IMPORT STATEMENTS IN DRL

Similar to import statements in Java, imports in DRL files identify the fully qualified paths and type
names for any objects that you want to use in the rules. You specify the package and data object in the
format packageName.objectName, with multiple imports on separate lines. The decision engine
automatically imports classes from the Java package with the same name as the DRL package and from
the package java.lang.

The following example is an import statement for a loan application object in a mortgage application
decision service:

Example import statement in a DRL file

I import org.mortgages.LoanApplication;

16.3. FUNCTIONS IN DRL

Functions in DRL files put semantic code in your rule source file instead of in Java classes. Functions are
especially useful if an action (then) part of a rule is used repeatedly and only the parameters differ for
each rule. Above the rules in the DRL file, you can declare the function or import a static method from a
helper class as a function, and then use the function by name in an action (then) part of the rule.

The following examples illustrate a function that is either declared or imported in a DRL file:

Example function declaration with a rule (option 1)

205



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

function String hello(String applicantName) {
return "Hello " + applicantName + "!";

}

rule "Using a function"
when
/I Empty
then
System.out.printin( hello( "James" ) );
end

Example function import with a rule (option 2)

import function my.package.applicant.hello;

rule "Using a function"
when
// Empty
then
System.out.printin( hello( "James" ) );
end

16.4. QUERIES IN DRL

Queries in DRL files search the working memory of the decision engine for facts related to the rules in
the DRL file. You add the query definitions in DRL files and then obtain the matching results in your
application code. Queries search for a set of defined conditions and do not require when or then
specifications. Query names are global to the KIE base and therefore must be unique among all other
rule queries in the project. To return the results of a query, you construct a QueryResults definition
using ksession.getQueryResults('name"), where "name" is the query name. This returns a list of query
results, which enable you to retrieve the objects that matched the query. You define the query and
query results parameters above the rules in the DRL file.

The following example is a query definition in a DRL file for underage applicants in a mortgage
application decision service, with the accompanying application code:

Example query definition in a DRL file

query "people under the age of 21"
$person : Person( age < 21))
end

Example application code to obtain query results

QueryResults results = ksession.getQueryResults( "people under the age of 21" );
System.out.printin( "we have " + results.size() + " people under the age of 21");

You can also iterate over the returned QueryResults using a standard for loop. Each elementis a
QueryResultsRow that you can use to access each of the columns in the tuple.

Example application code to obtain and iterate over query results

I QueryResults results = ksession.getQueryResults( "people under the age of 21" );

206



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

System.out.printin( "we have " + results.size() + " people under the age of 21" );
System.out.printin( "These people are under the age of 21:" );

for ( QueryResultsRow row : results ) {
Person person = ( Person ) row.get( "person");
System.out.printin( person.getName() + "\n" );

}

16.5. TYPE DECLARATIONS AND METADATA IN DRL

Declarations in DRL files define new fact types or metadata for fact types to be used by rules in the DRL
file:

® New fact types: The default fact type in the java.lang package of Red Hat Decision Manager is
Object, but you can declare other types in DRL files as needed. Declaring fact types in DRL files
enables you to define a new fact model directly in the decision engine, without creating models
in a lower-level language like Java. You can also declare a new type when a domain model is
already built and you want to complement this model with additional entities that are used
mainly during the reasoning process.

® Metadata for fact types:You can associate metadata in the format @key(value) with new or
existing facts. Metadata can be any kind of data that is not represented by the fact attributes
and is consistent among all instances of that fact type. The metadata can be queried at run time
by the decision engine and used in the reasoning process.

16.5.1. Type declarations without metadata in DRL

A declaration of a new fact does not require any metadata, but must include a list of attributes or fields.
If a type declaration does not include identifying attributes, the decision engine searches for an existing
fact class in the classpath and raises an error if the class is missing.

The following example is a declaration of a new fact type Person with no metadata in a DRL file:

Example declaration of a new fact type with a rule

declare Person
name : String
dateOfBirth : java.util.Date
address : Address

end

rule "Using a declared type"
when
$p : Person( name == "James" )
then // Insert Mark, who is a customer of James.
Person mark = new Person();
mark.setName( "Mark" );
insert( mark );
end

In this example, the new fact type Person has the three attributes name, dateOfBirth, and address.
Each attribute has a type that can be any valid Java type, including another class that you create or a
fact type that you previously declared. The dateOfBirth attribute has the type java.util.Date, from the
Java API, and the address attribute has the previously defined fact type Address.

207



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

To avoid writing the fully qualified name of a class every time you declare it, you can define the full class
name as part of the import clause:

Example type declaration with the fully qualified class name in the import

import java.util.Date

declare Person
name : String
dateOfBirth : Date
address : Address
end

When you declare a new fact type, the decision engine generates at compile time a Java class
representing the fact type. The generated Java class is a one-to-one JavaBeans mapping of the type
definition.

For example, the following Java class is generated from the example Person type declaration:

Generated Java class for the Person fact type declaration

public class Person implements Serializable {
private String name;
private java.util.Date dateOfBirth;
private Address address;

// Empty constructor
public Person() {...}

// Constructor with all fields
public Person( String name, Date dateOfBirth, Address address ) {...}

// If keys are defined, constructor with keys
public Person( ...keys... ) {...}

// Getters and setters
// “equals’ and "hashCode"
// toString”

You can then use the generated class in your rules like any other fact, as illustrated in the previous rule
example with the Person type declaration:

Example rule that uses the declared Person fact type

rule "Using a declared type"
when
$p : Person( name == "James" )
then // Insert Mark, who is a customer of James.
Person mark = new Person();
mark.setName( "Mark" );
insert( mark );
end

208



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

16.5.2. Enumerative type declarations in DRL

DRL supports the declaration of enumerative types in the format declare enum <factTypes, followed
by a comma-separated list of values ending with a semicolon. You can then use the enumerative list in
the rules in the DRL file.

For example, the following enumerative type declaration defines days of the week for an employee
scheduling rule:

Example enumerative type declaration with a scheduling rule

declare enum DaysOfWeek

SUN("Sunday"),MON("Monday"), TUE("Tuesday"),WED("Wednesday"), THU("Thursday"),FRI("Friday"
),SAT("Saturday");

fullName : String
end

rule "Using a declared Enum"
when
$emp : Employee( dayOff == DaysOfWeek.MONDAY )
then
end
16.5.3. Extended type declarations in DRL

DRL supports type declaration inheritance in the format declare <factType1> extends <factType2s.
To extend a type declared in Java by a subtype declared in DRL, you repeat the parent typeina
declaration statement without any fields.

For example, the following type declarations extend a Student type from a top-level Person type, and a
LongTermStudent type from the Student subtype:

Example extended type declarations

import org.people.Person

declare Person end

declare Student extends Person
school : String

end

declare LongTermStudent extends Student

years : int
course : String
end

16.5.4. Type declarations with metadata in DRL

You can associate metadata in the format @key(value) (the value is optional) with fact types or fact
attributes. Metadata can be any kind of data that is not represented by the fact attributes and is

209



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

consistent among all instances of that fact type. The metadata can be queried at run time by the
decision engine and used in the reasoning process. Any metadata that you declare before the attributes
of a fact type are assigned to the fact type, while metadata that you declare after an attribute are
assigned to that particular attribute.

In the following example, the two metadata attributes @author and @dateOfCreation are declared for
the Person fact type, and the two metadata items @key and @maxLength are declared for the name
attribute. The @key metadata attribute has no required value, so the parentheses and the value are
omitted.

Example metadata declaration for fact types and attributes

import java.util.Date

declare Person
@author( Bob )
@dateOfCreation( 01-Feb-2009 )

name : String @key @maxLength( 30 )
dateOfBirth : Date
address : Address

end

For declarations of metadata attributes for existing types, you can identify the fully qualified class name
as part of the import clause for all declarations or as part of the individual declare clause:

Example metadata declaration for an imported type

import org.drools.examples.Person

declare Person
@author( Bob )
@dateOfCreation( 01-Feb-2009 )
end

Example metadata declaration for a declared type

declare org.drools.examples.Person
@author( Bob )
@dateOfCreation( 01-Feb-2009 )
end

16.5.5. Metadata tags for fact type and attribute declarations in DRL

Although you can define custom metadata attributes in DRL declarations, the decision engine also
supports the following predefined metadata tags for declarations of fact types or fact type attributes.

210



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

NOTE

The examples in this section that refer to the VoiceCall class assume that the sample
application domain model includes the following class details:

VoiceCall fact class in an example Telecom domain model

public class VoiceCall {
private String originNumber;
private String destinationNumber;
private Date callDateTime;
private long callDuration; //in milliseconds

// Constructors, getters, and setters

}

@role

This tag determines whether a given fact type is handled as a regular fact or an event in the decision
engine during complex event processing.
Default parameter: fact

Supported parameters: fact, event
I @role( fact | event)
Example: Declare VoiceCall as event type

declare VoiceCall
@role( event)
end

@timestamp

This tag is automatically assigned to every event in the decision engine. By default, the time is
provided by the session clock and assigned to the event when it is inserted into the working memory
of the decision engine. You can specify a custom time stamp attribute instead of the default time
stamp added by the session clock.

Default parameter: The time added by the decision engine session clock

Supported parameters: Session clock time or custom time stamp attribute
I @timestamp( <attributeName> )
Example: Declare VoiceCall timestamp attribute

declare VoiceCall

@role( event)

@timestamp( callDateTime )
end

@duration

This tag determines the duration time for events in the decision engine. Events can be interval-

21



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

based events or point-in-time events. Interval-based events have a duration time and persist in the
working memory of the decision engine until their duration time has lapsed. Point-in-time events
have no duration and are essentially interval-based events with a duration of zero. By default, every
event in the decision engine has a duration of zero. You can specify a custom duration attribute
instead of the default.

Default parameter: Null (zero)

Supported parameters: Custom duration attribute
I @duration( <attributeName> )
Example: Declare VoiceCall duration attribute

declare VoiceCall
@role( event)
@timestamp( callDateTime )
@duration( callDuration )
end

@expires

This tag determines the time duration before an event expires in the working memory of the decision
engine. By default, an event expires when the event can no longer match and activate any of the
current rules. You can define an amount of time after which an event should expire. This tag
definition also overrides the implicit expiration offset calculated from temporal constraints and
sliding windows in the KIE base. This tag is available only when the decision engine is running in
stream mode.

Default parameter: Null (event expires after event can no longer match and activate rules)

Supported parameters: Custom timeOffset attribute in the format [#d][#h][#m][#s][[ms]]
I @expires( <timeOffset> )
Example: Declare expiration offset for VoiceCall events

declare VoiceCall
@role( event)
@timestamp( callDateTime )
@duration( callDuration )
@expires( 1h35m)

end

@typesafe

This tab determines whether a given fact type is compiled with or without type safety. By default, all
type declarations are compiled with type safety enabled. You can override this behavior to type-
unsafe evaluation, where all constraints are generated as MVEL constraints and executed
dynamically. This is useful when dealing with collections that do not have any generics or mixed type
collections.

Default parameter: true

Supported parameters: true, false

I @typesafe( <boolean> )

212



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

Example: Declare VoiceCall for type-unsafe evaluation

declare VoiceCall
@role( fact)
@typesafe( false )
end

@serialVersionUID

This tag defines an identifying serialVersionUID value for a serializable class in a fact declaration. If a
serializable class does not explicitly declare a serialVersionUID, the serialization run time calculates a
default serialVersionUID value for that class based on various aspects of the class, as described in
the Java Object Serialization Specification. However, for optimal deserialization results and for
greater compatibility with serialized KIE sessions, set the serialVersionUID as needed in the relevant
class or in your DRL declarations.

Default parameter: Null

Supported parameters: Custom serialVersionUID integer
I @serialVersionUID( <integer> )
Example: Declare serialVersionUID for a VoiceCall class

declare VoiceCall
@serialVersionUID( 42 )
end

@key
This tag enables a fact type attribute to be used as a key identifier for the fact type. The generated
class can then implement the equals() and hashCode() methods to determine if two instances of
the type are equal to each other. The decision engine can also generate a constructor using all the
key attributes as parameters.
Default parameter: None

Supported parameters: None
I <attributeDefinition> @key
Example: Declare Person type attributes as keys

declare Person
firstName : String @key
lastName : String @key
age :int

end

For this example, the decision engine checks the firstName and lastName attributes to determine if
two instances of Person are equal to each other, but it does not check the age attribute. The
decision engine also implicitly generates three constructors: one without parameters, one with the
@key fields, and one with all fields:

Example constructors from the key declarations

213


https://docs.oracle.com/javase/10/docs/specs/serialization/index.html

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Person() // Empty constructor
Person( String firstName, String lastName )

Person( String firstName, String lastName, int age )

You can then create instances of the type based on the key constructors, as shown in the following
example:

Example instance using the key constructor

I Person person = new Person( "John", "Doe" );

@position

214

This tag determines the position of a declared fact type attribute or field in a positional argument,
overriding the default declared order of attributes. You can use this tag to modify positional
constraints in patterns while maintaining a consistent format in your type declarations and positional
arguments. You can use this tag only for fields in classes on the classpath. If some fields in a single
class use this tag and some do not, the attributes without this tag are positioned last, in the declared
order. Inheritance of classes is supported, but not interfaces of methods.

Default parameter: None

Supported parameters: Any integer
I <attributeDefinition> @position ( <integer> )
Example: Declare a fact type and override declared order

declare Person
firstName : String @position( 1)
lastName : String @position( 0)
age : int @position( 2)
occupation: String

end

In this example, the attributes are prioritized in positional arguments in the following order:

1. lastName

2. firstName

3. age

4. occupation
In positional arguments, you do not need to specify the field name because the position maps to a
known named field. For example, the argument Person( lastName == "Doe" ) is the same as
Person( "Doe"; ), where the lastName field has the highest position annotation in the DRL
declaration. The semicolon ; indicates that everything before it is a positional argument. You can mix
positional and named arguments on a pattern by using the semicolon to separate them. Any variables
in a positional argument that have not yet been bound are bound to the field that maps to that

position.

The following example patterns illustrate different ways of constructing positional and named



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

arguments. The patterns have two constraints and a binding, and the semicolon differentiates the
positional section from the named argument section. Variables and literals and expressions using only
literals are supported in positional arguments, but not variables alone.

Example patterns with positional and named arguments

Person( "Doe", "John", $a; )
Person( "Doe", "John"; $a : age )
Person( "Doe"; firstName == "John", $a : age )

Person( lastName == "Doe"; firstName == "John", $a : age )

Positional arguments can be classified as input arguments or output arguments. Input arguments
contain a previously declared binding and constrain against that binding using unification. Output
arguments generate the declaration and bind it to the field represented by the positional argument
when the binding does not yet exist.

In extended type declarations, use caution when defining @position annotations because the
attribute positions are inherited in subtypes. This inheritance can result in a mixed attribute order
that can be confusing in some cases. Two fields can have the same @position value and consecutive
values do not need to be declared. If a position is repeated, the conflict is solved using inheritance,
where position values in the parent type have precedence, and then using the declaration order from
the first to last declaration.

For example, the following extended type declarations result in mixed positional priorities:

Example extended fact type with mixed position annotations

declare Person
firstName : String @position( 1)
lastName : String @position( 0)
age : int @position( 2)
occupation: String

end

declare Student extends Person
degree : String @position( 1)
school : String @position( 0)
graduationDate : Date

end

In this example, the attributes are prioritized in positional arguments in the following order:
1. lastName (position O in the parent type)
2. school (position O in the subtype)
3. firstName (position 1in the parent type)
4. degree (position 1in the subtype)
5. age (position 2 in the parent type)

6. occupation (first field with no position annotation)

215



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

7. graduationDate (second field with no position annotation)

16.5.6. Property-change settings and listeners for fact types

By default, the decision engine does not re-evaluate all fact patterns for fact types each time a rule is
triggered, but instead reacts only to modified properties that are constrained or bound inside a given
pattern. For example, if a rule calls modify() as part of the rule actions but the action does not generate
new data in the KIE base, the decision engine does not automatically re-evaluate all fact patterns
because no data was modified. This property reactivity behavior prevents unwanted recursions in the
KIE base and results in more efficient rule evaluation. This behavior also means that you do not always
need to use the no-loop rule attribute to avoid infinite recursion.

You can modify or disable this property reactivity behavior with the following
KnowledgeBuilderConfiguration options, and then use a property-change setting in your Java class or
DRL files to fine-tune property reactivity as needed:

e ALWAYS: (Default) All types are property reactive, but you can disable property reactivity for a
specific type by using the @classReactive property-change setting.

e ALLOWED: No types are property reactive, but you can enable property reactivity for a specific
type by using the @propertyReactive property-change setting.

o DISABLED: No types are property reactive. All property-change listeners are ignored.

Example property reactivity setting in KnowledgeBuilderConfiguration

KnowledgeBuilderConfiguration config =
KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration();
config.setOption(PropertySpecificOption.ALLOWED);

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder(config);

Alternatively, you can update the drools.propertySpecific system property in the standalone.xml file
of your Red Hat Decision Manager distribution:

Example property reactivity setting in system properties

<system-properties>
<property name="drools.propertySpecific" value="ALLOWED"/>

</system-properties>

The decision engine supports the following property-change settings and listeners for fact classes or
declared DRL fact types:

@classReactive

If property reactivity is set to ALWAYS in the decision engine (all types are property reactive), this
tag disables the default property reactivity behavior for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to re-evaluate all fact patterns for the
specified fact type each time the rule is triggered, instead of reacting only to modified properties
that are constrained or bound inside a given pattern.

Example: Disable default property reactivity in a DRL type declaration

216



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

declare Person
@classReactive
firstName : String
lastName : String
end

Example: Disable default property reactivity in a Java class

@classReactive

public static class Person {
private String firstName;
private String lastName;

}

@propertyReactive

If property reactivity is set to ALLOWED in the decision engine (no types are property reactive
unless specified), this tag enables property reactivity for a specific Java class or a declared DRL fact
type. You can use this tag if you want the decision engine to react only to modified properties that
are constrained or bound inside a given pattern for the specified fact type, instead of re-evaluating
all fact patterns for the fact each time the rule is triggered.

Example: Enable property reactivity in a DRL type declaration (when reactivity is
disabled globally)

declare Person
@propertyReactive
firstName : String
lastName : String
end

Example: Enable property reactivity in a Java class (when reactivity is disabled globally)

@propertyReactive

public static class Person {
private String firstName;
private String lastName;

}

@watch

This tag enables property reactivity for additional properties that you specify in-line in fact patterns
in DRL rules. This tag is supported only if property reactivity is set to ALWAYS in the decision
engine, or if property reactivity is set to ALLOWED and the relevant fact type uses the
@propertyReactive tag. You can use this tag in DRL rules to add or exclude specific properties in
fact property reactivity logic.

Default parameter: None

Supported parameters: Property name, * (all), ! (not), I* (no properties)
I <factPattern> @watch ( <property> )

Example: Enable or disable property reactivity in fact patterns

217



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

/I Listens for changes in both “firstName™ (inferred) and “lastName:
Person(firstName == $expectedFirstName) @watch( lastName )

/I Listens for changes in all properties of the "Person’ fact:
Person(firstName == $expectedFirstName) @watch( *)

/I Listens for changes in "lastName™ and explicitly excludes changes in “firstName™:
Person(firstName == $expectedFirstName) @watch( lastName, !firstName )

/I Listens for changes in all properties of the "Person’ fact except "age':
Person(firstName == $expectedFirstName) @watch( *, lage )

/I Excludes changes in all properties of the "Person’ fact (equivalent to using "@classReactivity’
tag):
Person(firstName == $expectedFirstName) @watch( !*)

The decision engine generates a compilation error if you use the @watch tag for properties in a fact
type that uses the @classReactive tag (disables property reactivity) or when property reactivity is
set to ALLOWED in the decision engine and the relevant fact type does not use the
@propertyReactive tag. Compilation errors also arise if you duplicate properties in listener
annotations, such as @watch( firstName, ! firstName ).

@propertyChangeSupport

For facts that implement support for property changes as defined in the JavaBeans Specification,
this tag enables the decision engine to monitor changes in the fact properties.

Example: Declare property change support in JavaBeans object

declare Person
@propertyChangeSupport
end

16.5.7. Access to DRL declared types in application code

Declared types in DRL are typically used within the DRL files while Java models are typically used when
the model is shared between rules and applications. Because declared types are generated at KIE base
compile time, an application cannot access them until application run time. In some cases, an application
needs to access and handle facts directly from the declared types, especially when the application wraps
the decision engine and provides higher-level, domain-specific user interfaces for rules management.

To handle declared types directly from the application code, you can use the
org.drools.definition.type.FactType APl in Red Hat Decision Manager. Through this API, you can
instantiate, read, and write fields in the declared fact types.

The following example code modifies a Person fact type directly from an application:

Example application code to handle a declared fact type through the FactType API

import java.util.Date;
import org.kie.api.definition.type.FactType;

import org.kie.api.KieBase;
import org.kie.api.runtime.KieSession;

218


https://download.oracle.com/otndocs/jcp/7224-javabeans-1.01-fr-spec-oth-JSpec/

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

// Get a reference to a KIE base with the declared type:
KieBase kbase = ...

// Get the declared fact type:
FactType personType = kbase.getFactType("org.drools.examples”, "Person");

// Create instances:
Object bob = personType.newlnstance();

// Set attribute values:

personType.set(bob, "name", "Bob" );

personType.set(bob, "dateOfBirth", new Date());

personType.set(bob, "address", new Address("King's Road","London","404"));

// Insert the fact into a KIE session:
KieSession ksession = ...
ksession.insert(bob);
ksession.fireAllIRules();

// Read attributes:

String name = (String) personType.get(bob, "name");
Date date = (Date) personType.get(bob, "dateOfBirth");

The APl also includes other helpful methods, such as setting all the attributes at once, reading values
from a Map collection, or reading all attributes at once into a Map collection.

Although the API behavior is similar to Java reflection, the API does not use reflection and relies on
more performant accessors that are implemented with generated bytecode.

16.6. GLOBAL VARIABLES IN DRL

Global variables in DRL files typically provide data or services for the rules, such as application services
used in rule consequences, and return data from rules, such as logs or values added in rule
consequences. You set the global value in the working memory of the decision engine through a KIE
session configuration or REST operation, declare the global variable above the rules in the DRL file, and
then use it in an action (then) part of the rule. For multiple global variables, use separate lines in the DRL
file.

The following example illustrates a global variable list configuration for the decision engine and the
corresponding global variable definition in the DRL file:

Example global list configuration for the decision engine

List<String> list = new ArrayList<>();
KieSession kieSession = kiebase.newKieSession();
kieSession.setGlobal( "myGlobalList", list );

Example global variable definition with a rule

global java.util.List myGlobalList;

rule "Using a global"

219



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

when
/I Empty
then
myGiloballList.add( "My global list" );
end

' WARNING
A Do not use global variables to establish conditions in rules unless a global variable

has a constant immutable value. Global variables are not inserted into the working
memory of the decision engine, so the decision engine cannot track value changes
of variables.

Do not use global variables to share data between rules. Rules always reason and
react to the working memory state, so if you want to pass data from rule to rule,
assert the data as facts into the working memory of the decision engine.

A use case for a global variable might be an instance of an email service. In your integration code that is
calling the decision engine, you obtain your emailService object and then set it in the working memory
of the decision engine. In the DRL file, you declare that you have a global of type emailService and give
it the name "email"”, and then in your rule consequences, you can use actions such as
email.sendSMS(number, message).

If you declare global variables with the same identifier in multiple packages, then you must set all the
packages with the same type so that they all reference the same global value.

16.7. RULE ATTRIBUTES IN DRL

Rule attributes are additional specifications that you can add to business rules to modify rule behavior.
In DRL files, you typically define rule attributes above the rule conditions and actions, with multiple
attributes on separate lines, in the following format:

rule "rule_name"
/I Attribute
/I Attribute
when
// Conditions
then
// Actions
end

The following table lists the names and supported values of the attributes that you can assign to rules:

Table 16.1. Rule attributes

Attribute Value

220



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

Attribute Value

salience An integer defining the priority of the rule. Rules with a higher salience value
are given higher priority when ordered in the activation queue.

Example: salience 10
enabled A Boolean value. When the option is selected, the rule is enabled. When the
option is not selected, the rule is disabled.

Example: enabled true

date-effective A string containing a date and time definition. The rule can be activated
only if the current date and time is after a date-effective attribute.

Example: date-effective "4-Sep-2018"

date-expires A string containing a date and time definition. The rule cannot be activated
if the current date and time is after the date-expires attribute.

Example: date-expires "4-Oct-2018"

no-loop A Boolean value. When the option is selected, the rule cannot be reactivated
(looped) if a consequence of the rule re-triggers a previously met condition.
When the condition is not selected, the rule can be looped in these
circumstances.

Example: no-loop true

agenda-group A string identifying an agenda group to which you want to assign the rule.
Agenda groups allow you to partition the agenda to provide more execution
control over groups of rules. Only rules in an agenda group that has
acquired a focus are able to be activated.

Example: agenda-group "GroupName"

activation-group A string identifying an activation (or XOR) group to which you want to
assign the rule. In activation groups, only one rule can be activated. The first
rule to fire will cancel all pending activations of all rules in the activation

group.

Example: activation-group "GroupName"

duration Along integer value defining the duration of time in milliseconds after which
the rule can be activated, if the rule conditions are still met.

Example: duration 10000

timer A string identifying either int (interval) orcron timer definitions for
scheduling the rule.

Example: timer ( cron:* 0/15 * * * ? ) (every 15 minutes)

221



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Attribute Value

calendar A Quartz calendar definition for scheduling the rule.

Example: calendars "* * 0-7,18-23 ? * *"" (exclude non-business hours)

auto-focus A Boolean value, applicable only to rules within agenda groups. When the
option is selected, the next time the rule is activated, a focus is
automatically given to the agenda group to which the rule is assigned.

Example: auto-focus true

lock-on-active A Boolean value, applicable only to rules within rule flow groups or agenda
groups. When the option is selected, the next time the ruleflow group for the
rule becomes active or the agenda group for the rule receives a focus, the
rule cannot be activated again until the ruleflow group is no longer active or
the agenda group loses the focus. This is a stronger version of the ho-loop
attribute, because the activation of a matching rule is discarded regardless
of the origin of the update (not only by the rule itself). This attribute is ideal
for calculation rules where you have a number of rules that modify a fact
and you do not want any rule re-matching and firing again.

Example: lock-on-active true

ruleflow-group A string identifying a rule flow group. In rule flow groups, rules can fire only
when the group is activated by the associated rule flow.

Example: ruleflow-group "GroupName"

dialect A string identifying either JAVA or MVEL as the language to be used for
code expressions in the rule. By default, the rule uses the dialect specified at
the package level. Any dialect specified here overrides the package dialect
setting for the rule.

Example: dialect "JAVA"

NOTE

When you use Red Hat Decision Manager without the
executable model, the dialect "JAVA" rule consequences
support only Java 5 syntax. For more information about
executable models, see Packaging and deploying an Red Hat
Decision Manager project.

16.7.1. Timer and calendar rule attributes in DRL

Timers and calendars are DRL rule attributes that enable you to apply scheduling and timing constraints
to your DRL rules. These attributes require additional configurations depending on the use case.

222


http://www.quartz-scheduler.org/
https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/deploying_and_managing_red_hat_decision_manager_services#executable-model-con_packaging-deploying

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

The timer attribute in DRL rules is a string identifying either int (interval) or cron timer definitions for
scheduling a rule and supports the following formats:

Timer attribute formats

timer (int: <initial delay> <repeat interval> )

timer ( cron: <cron expression> )
Example interval timer attributes

/I Run after a 30-second delay
timer (int: 30s)

/I Run every 5 minutes after a 30-second delay each time
timer (int: 30s 5m)

Example cron timer attribute

/I Run every 15 minutes
timer ( cron:* 0/15*** ?)

Interval timers follow the semantics of java.util.Timer objects, with an initial delay and an optional
repeat interval. Cron timers follow standard Unix cron expressions.

The following example DRL rule uses a cron timer to send an SMS text message every 15 minutes:

Example DRL rule with a cron timer

rule "Send SMS message every 15 minutes"
timer (cron:* 0/15* ** 7))
when
$a : Alarm( on == true)
then
channels[ "sms" ].insert( new Sms( $a.mobileNumber, "The alarm is still on." );
end

Generally, a rule that is controlled by a timer becomes active when the rule is triggered and the rule
consequence is executed repeatedly, according to the timer settings. The execution stops when the rule
condition no longer matches incoming facts. However, the way the decision engine handles rules with
timers depends on whether the decision engine is in active mode or in passive mode.

By default, the decision engine runs in passive mode and evaluates rules, according to the defined timer
settings, when a user or an application explicitly calls fireAllRules(). Conversely, if a user or application
calls fireUntilHalt(), the decision engine starts in active mode and evaluates rules continually until the
user or application explicitly calls halt().

When the decision engine is in active mode, rule consequences are executed even after control returns
from a call to fireUntilHalt() and the decision engine remains reactive to any changes made to the
working memory. For example, removing a fact that was involved in triggering the timer rule execution
causes the repeated execution to terminate, and inserting a fact so that some rule matches causes that
rule to be executed. However, the decision engine is not continually active, but is active only after a rule
is executed. Therefore, the decision engine does not react to asynchronous fact insertions until the next
execution of a timer-controlled rule. Disposing a KIE session terminates all timer activity.

223



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

When the decision engine is in passive mode, rule consequences of timed rules are evaluated only when
fireAllRules() is invoked again. However, you can change the default timer-execution behavior in
passive mode by configuring the KIE session with a TimedRuleExecutionOption option, as shown in the
following example:

KIE session configuration to automatically execute timed rules in passive mode

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
ksconf.setOption( TimedRuleExecutionOption.YES );
KSession ksession = kbase.newKieSession(ksconf, null);

You can additionally set a FILTERED specification on the TimedRuleExecutionOption option that
enables you to define a callback to filter those rules, as shown in the following example:

KIE session configuration to filter which timed rules are automatically executed

KieSessionConfiguration ksconf = KieServices.Factory.get().newKieSessionConfiguration();
conf.setOption( new TimedRuleExecutionOption.FILTERED(new TimedRuleExecutionFilter() {
public boolean accept(Rule[] rules) {
return rules[0].getName().equals("MyRule");

D)

For interval timers, you can also use an expression timer with expr instead of int to define both the delay
and interval as an expression instead of a fixed value.

The following example DRL file declares a fact type with a delay and period that are then used in the
subsequent rule with an expression timer:

Example rule with an expression timer

declare Bean
delay : String = "30s"
period :long = 60000
end

rule "Expression timer"
timer ( expr: $d, $p )
when
Bean( $d : delay, $p : period )
then
/I Actions
end

The expressions, such as $d and $p in this example, can use any variable defined in the pattern-
matching part of the rule. The variable can be any String value that can be parsed into a time duration
or any numeric value that is internally converted in a long value for a duration in milliseconds.

Both interval and expression timers can use the following optional parameters:
e start and end: A Date or a String representing a Date or a long value. The value can also be a

Number that is transformed into a Java Date in the format new Date( ((Number)
n).longValue() ).

224



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

e repeat-limit: An integer that defines the maximum number of repetitions allowed by the timer. If
both the end and the repeat-limit parameters are set, the timer stops when the first of the two
is reached.

Example timer attribute with optional start, end, and repeat-limit parameters
I timer (int: 30s 1h; start=3-JAN-2020, end=4-JAN-2020, repeat-limit=50)

In this example, the rule is scheduled for every hour, after a delay of 30 seconds each hour, beginning on
3 January 2020 and ending either on 4 January 2020 or when the cycle repeats 50 times.

If the system is paused (for example, the session is serialized and then later deserialized), the rule is
scheduled only one time to recover from missing activations regardless of how many activations were
missed during the pause, and then the rule is subsequently scheduled again to continue in sync with the
timer setting.

The calendar attribute in DRL rules is a Quartz calendar definition for scheduling a rule and supports
the following format:

Calendar attribute format
I calendars "<definition or registered name>"
Example calendar attributes

/I Exclude non-business hours
calendars "™ * 0-7,18-23 ? * *"

/' Weekdays only, as registered in the KIE session
calendars "weekday"

You can adapt a Quartz calendar based on the Quartz calendar APl and then register the calendar in the
KIE session, as shown in the following example:

Adapting a Quartz Calendar

I Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar quartzCal)
Registering the calendar in the KIE session

I ksession.getCalendars().set( "weekday", weekDayCal );

You can use calendars with standard rules and with rules that use timers. The calendar attribute can
contain one or more comma-separated calendar names written as String literals.

The following example rules use both calendars and timers to schedule the rules:

Example rules with calendars and timers

rule "Weekdays are high priority"
calendars "weekday"
timer (int:0 1h)
when

225


http://www.quartz-scheduler.org/

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Alarm()
then
send( "priority high - we have an alarm" );
end

rule "Weekends are low priority"
calendars "weekend"
timer (int:0 4h)
when
Alarm()
then
send( "priority low - we have an alarm" );
end

16.8. RULE CONDITIONS IN DRL (WHEN)

The when part of a DRL rule (also known as the Left Hand Side (LHS) of the rule) contains the
conditions that must be met to execute an action. Conditions consist of a series of stated patterns and
constraints, with optional bindings and supported rule condition elements (keywords), based on the
available data objects in the package. For example, if a bank requires loan applicants to have over 21
years of age, then the when condition of an "Underage" rule would be Applicant( age < 21).

NOTE

DRL uses when instead of if because if is typically part of a procedural execution flow
during which a condition is checked at a specific point in time. In contrast, when indicates
that the condition evaluation is not limited to a specific evaluation sequence or point in
time, but instead occurs continually at any time. Whenever the condition is met, the
actions are executed.

If the when section is empty, then the conditions are considered to be true and the actions in the then
section are executed the first time a fireAllRules() call is made in the decision engine. This is useful if
you want to use rules to set up the decision engine state.

The following example rule uses empty conditions to insert a fact every time the rule is executed:

Example rule without conditions

rule "Always insert applicant”
when
// Empty
then // Actions to be executed once
insert( new Applicant() );
end

/I The rule is internally rewritten in the following way:

rule "Always insert applicant”
when
eval( true)
then
insert( new Applicant() );
end

226



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

If rule conditions use multiple patterns with no defined keyword conjunctions (such as and, or, or not),
the default conjunction is and:

Example rule without keyword conjunctions

rule "Underage"
when
application : LoanApplication()
Applicant( age < 21)
then
/I Actions
end

/I The rule is internally rewritten in the following way:

rule "Underage"
when
application : LoanApplication()
and Applicant( age < 21 )
then
/I Actions
end

16.8.1. Patterns and constraints

A pattern in a DRL rule condition is the segment to be matched by the decision engine. A pattern can
potentially match each fact that is inserted into the working memory of the decision engine. A pattern
can also contain constraints to further define the facts to be matched.

In the simplest form, with no constraints, a pattern matches a fact of the given type. In the following
example, the type is Person, so the pattern will match against all Person objects in the working memory
of the decision engine:

Example pattern for a single fact type
I Person()

The type does not need to be the actual class of some fact object. Patterns can refer to superclasses or
even interfaces, potentially matching facts from many different classes. For example, the following
pattern matches all objects in the working memory of the decision engine:

Example pattern for all objects
I Object() // Matches all objects in the working memory

The parentheses of a pattern enclose the constraints, such as the following constraint on the person’s
age:

Example pattern with a constraint

I Person( age == 50)

227



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

A constraint is an expression that returns true or false. Pattern constraints in DRL are essentially Java
expressions with some enhancements, such as property access, and some differences, such as equals()
and lequals() semantics for == and != (instead of the usual same and not same semantics).

Any JavaBeans property can be accessed directly from pattern constraints. A bean property is exposed
internally using a standard JavaBeans getter that takes no arguments and returns something. For
example, the age property is written as age in DRL instead of the getter getAge():

DRL constraint syntax with JavaBeans properties

Person( age == 50)
/[ This is the same as the following getter format:

Person( getAge() == 50)

Red Hat Decision Manager uses the standard JDK Introspector class to achieve this mapping, so it
follows the standard JavaBeans specification. For optimal decision engine performance, use the
property access format, such as age, instead of using getters explicitly, such as getAge().

' WARNING
A Do not use property accessors to change the state of the object in a way that might

affect the rules because the decision engine caches the results of the match
between invocations for higher efficiency.

For example, do not use property accessors in the following ways:

public int getAge() {
age++; // Do not do this.
return age;

}

public int getAge() {
Date now = DateUtil.now(); / Do not do this.
return DateUltil.differencelnYears(now, birthday);

}

Instead of following the second example, insert a fact that wraps the current date in
the working memory and update that fact between fireAllRules() as needed.

However, if the getter of a property cannot be found, the compiler uses the property name as a fallback
method name, without arguments:

Fallback method if object is not found

Person( age == 50)

/I'If "Person.getAge()’ does not exist, the compiler uses the following syntax:

228



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

I Person( age() == 50)

You can also nest access properties in patterns, as shown in the following example. Nested properties
are indexed by the decision engine.

Example pattern with nested property access

Person( address.houseNumber == 50 )
/[ This is the same as the following format:

Person( getAddress().getHouseNumber() == 50 )

' WARNING
A In stateful KIE sessions, use nested accessors carefully because the working

memory of the decision engine is not aware of any of the nested values and does
not detect when they change. Either consider the nested values immutable while
any of their parent references are inserted into the working memory, or, if you want
to modify a nested value, mark all of the outer facts as updated. In the previous
example, when the houseNumber property changes, any Person with that
Address must be marked as updated.

You can use any Java expression that returns a boolean value as a constraint inside the parentheses of
a pattern. Java expressions can be mixed with other expression enhancements, such as property access:

Example pattern with a constraint using property access and Java expression
I Person( age == 50)

You can change the evaluation priority by using parentheses, as in any logical or mathematical
expression:

Example evaluation order of constraints
I Person( age > 100 && (age % 10==0))

You can also reuse Java methods in constraints, as shown in the following example:

Example constraints with reused Java methods

I Person( Math.round( weight / ( height * height ) ) < 25.0)

229



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

' WARNING
A Do not use constraints to change the state of the object in a way that might affect

the rules because the decision engine caches the results of the match between
invocations for higher efficiency. Any method that is executed on a fact in the rule
conditions must be a read-only method. Also, the state of a fact should not change
between rule invocations unless those facts are marked as updated in the working
memory on every change.

For example, do not use a pattern constraint in the following ways:

I Person( incrementAndGetAge() == 10 ) // Do not do this.

I Person( System.currentTimeMillis() % 1000 == 0 ) // Do not do this.

Standard Java operator precedence applies to constraint operators in DRL, and DRL operators follow
standard Java semantics except for the == and != operators.

The == operator uses null-safe equals() semantics instead of the usual same semantics. For example,
the pattern Person( firstName == "John" ) is similar to
java.util.Objects.equals(person.getFirstName(), "John"), and because "John" is not null, the pattern
is also similar to "John".equals(person.getFirstName()).

The = operator uses null-safe lequals() semantics instead of the usual not same semantics. For
example, the pattern Person( firstName != "John") is similar to
ljava.util.Objects.equals(person.getFirstName(), "John").

If the field and the value of a constraint are of different types, the decision engine uses type coercion to
resolve the conflict and reduce compilation errors. For instance, if "ten" is provided as a string in a
numeric evaluator, a compilation error occurs, whereas "10" is coerced to a numeric 10. In coercion, the

field type always takes precedence over the value type:

Example constraint with a value that is coerced
I Person( age == "10") // "10" is coerced to 10

For groups of constraints, you can use a delimiting comma , to use implicit and connective semantics:

Example patterns with multiple constraints

// Person is at least 50 years old and weighs at least 80 kilograms:
Person( age > 50, weight > 80 )

// Person is at least 50 years old, weighs at least 80 kilograms, and is taller than 2 meters:
Person( age > 50, weight > 80, height > 2 )

230



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

NOTE

Although the && and , operators have the same semantics, they are resolved with
different priorities. The && operator precedes the || operator, and both the && and ||
operators together precede the, operator. Use the comma operator at the top-level
constraint for optimal decision engine performance and human readability.

You cannot embed a comma operator in a composite constraint expression, such as in parentheses:

Example of misused comma in composite constraint expression

/I Do not use the following format:
Person( ( age > 50, weight > 80 ) || height > 2)

/I Use the following format instead:
Person( ( age > 50 && weight > 80 ) || height > 2 )

16.8.2. Bound variables in patterns and constraints

You can bind variables to patterns and constraints to refer to matched objects in other portions of a
rule. Bound variables can help you define rules more efficiently or more consistently with how you
annotate facts in your data model. To differentiate more easily between variables and fields in a rule, use
the standard format $variable for variables, especially in complex rules. This convention is helpful but
not required in DRL.

For example, the following DRL rule uses the variable $p for a pattern with the Person fact:

Pattern with a bound variable

rule "simple rule"
when
$p : Person()
then
System.out.printin( "Person " + $p );
end

Similarly, you can also bind variables to properties in pattern constraints, as shown in the following
example:

/I Two persons of the same age:
Person( $firstAge : age ) / Binding
Person( age == $firstAge ) // Constraint expression

231



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

NOTE

Constraint binding considers only the first atomic expression that follows it. In the
following example the pattern only binds the age of the person to the variable $a:

I Person( $a : age *2 <100)

For clearer and more efficient rule definitions, separate constraint bindings and
constraint expressions. Although mixed bindings and expressions are supported, which
can complicate patterns and affect evaluation efficiency.

/I Do not use the following format:
Person( $a : age *2 <100)

/I Use the following format instead:
Person(age *2 < 100, $a : age )

In the preceding example, if you want to bind to the variable $a the double of the person’s
age, you must make it an atomic expression by wrapping it in parentheses as shown in the
following example:

I Person( $a : (age * 2) )

The decision engine does not support bindings to the same declaration, but does support unification of
arguments across several properties. While positional arguments are always processed with unification,
the unification symbol := exists for named arguments.

The following example patterns unify the age property across two Person facts:

Example pattern with unification

Person( $age := age)
Person( $age := age)

Unification declares a binding for the first occurrence and constrains to the same value of the bound
field for sequence occurrences.

16.8.3. Nested constraints and inline casts

In some cases, you might need to access multiple properties of a nested object, as shown in the following
example:

Example pattern to access multiple properties
I Person( name == "mark", address.city == "london", address.country == "uk" )

You can group these property accessors to nested objects with the syntax .( <constraints> ) for more
readable rules, as shown in the following example:

Example pattern with grouped constraints

I Person( name == "mark", address.( city == "london", country == "uk") )

232



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

NOTE

The period prefix . differentiates the nested object constraints from a method call.

When you work with nested objects in patterns, you can use the syntax <types#<subtype> to cast to a
subtype and make the getters from the parent type available to the subtype. You can use either the
object name or fully qualified class name, and you can cast to one or multiple subtypes, as shown in the
following examples:

Example patterns with inline casting to a subtype

// Inline casting with subtype name:
Person( name == "mark", address#LongAddress.country == "uk" )

/I Inline casting with fully qualified class name:
Person( name == "mark", address#org.domain.LongAddress.country == "uk" )

/I Multiple inline casts:
Person( name == "mark", address#LongAddress.country#DetailedCountry.population > 10000000 )

These example patterns cast Address to LongAddress, and additionally to DetailedCountry in the last
example, making the parent getters available to the subtypes in each case.

You can use the instanceof operator to infer the results of the specified type in subsequent uses of
that field with the pattern, as shown in the following example:

I Person( name == "mark", address instanceof LongAddress, address.country == "uk" )

If aninline cast is not possible (for example, if instanceof returns false), the evaluation is considered
false.

16.8.4. Date literal in constraints

By default, the decision engine supports the date format dd-mmm-yyyy. You can customize the date
format, including a time format mask if needed, by providing an alternative format mask with the system
property drools.dateformat="dd-mmm-yyyy hh:mm". You can also customize the date format by
changing the language locale with the drools.defaultlanguage and drools.defaultcountry system
properties (for example, the locale of Thailand is set as drools.defaultlanguage=th and
drools.defaultcountry=TH).

Example pattern with a date literal restriction

I Person( bornBefore < "27-Oct-2009" )

16.8.5. Supported operators in DRL pattern constraints

DRL supports standard Java semantics for operators in pattern constraints, with some exceptions and
with some additional operators that are unique in DRL. The following list summarizes the operators that
are handled differently in DRL constraints than in standard Java semantics or that are unique in DRL
constraints.

), #

Use the .() operator to group property accessors to nested objects, and use the # operator to cast to

233



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

a

234

a subtype in nested objects. Casting to a subtype makes the getters from the parent type available to
the subtype. You can use either the object name or fully qualified class name, and you can cast to
one or multiple subtypes.

Example patterns with nested objects

// ' Ungrouped property accessors:
Person( name == "mark", address.city == "london", address.country == "uk" )

/I Grouped property accessors:
Person( hame == "mark", address.( city == "london", country == "uk") )

NOTE

The period prefix . differentiates the nested object constraints from a method call.

Example patterns with inline casting to a subtype

// Inline casting with subtype name:
Person( name == "mark", address#LongAddress.country == "uk" )

/I Inline casting with fully qualified class name:
Person( name == "mark", address#org.domain.LongAddress.country == "uk" )

/I Multiple inline casts:
Person( name == "mark", address#LongAddress.country#DetailedCountry.population > 10000000
)

Use this operator to dereference a property in a null-safe way. The value to the left of the !. operator
must be not null (interpreted as != null) in order to give a positive result for pattern matching.

Example constraint with null-safe dereferencing

Person( $streetName : address!.street )
/[ This is internally rewritten in the following way:

Person( address != null, $streetName : address.street )

Use this operator to access a List value by index or a Map value by key.

Example constraints with List and Map access

/I The following format is the same as “childList(0).getAge() == 18":
Person(childList[0].age == 18)

/I The following format is the same as “credentialMap.get("jdoe").isValid() :
Person(credentialMap["jdoe"].valid)



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

<, <=z, 3, >=

Use these operators on properties with natural ordering. For example, for Date fields, the < operator
means before, and for String fields, the operator means alphabetically before. These properties
apply only to comparable properties.

Example constraints with before operator

Person( birthDate < $otherBirthDate )

Person( firstName < $otherFirstName )

I

Use these operators as equals() and !equals() methods in constraints, instead of the usual same
and not same semantics.

Example constraint with null-safe equality

Person( firstName == "John" )
/[ This is similar to the following formats:

java.util.Objects.equals(person.getFirstName(), "John")
"John".equals(person.getFirstName())

Example constraint with null-safe not equality
Person( firstName = "John" )
/[ This is similar to the following format:
liava.util.Objects.equals(person.getFirstName(), "John")

&&, ||

Use these operators to create an abbreviated combined relation condition that adds more than one
restriction on a field. You can group constraints with parentheses () to create a recursive syntax
pattern.

Example constraints with abbreviated combined relation

/I Simple abbreviated combined relation condition using a single "&&:
Person(age > 30 && < 40)

/I Complex abbreviated combined relation using groupings:
Person(age ((> 30 && < 40) || (> 20 && < 25)))

/I Mixing abbreviated combined relation with constraint connectives:
Person(age > 30 && < 40 || location == "london")

matches, not matches

Use these operators to indicate that a field matches or does not match a specified Java regular
expression. Typically, the regular expression is a String literal, but variables that resolve to a valid

235



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

regular expression are also supported. These operators apply only to String properties. If you use
matches against a null value, the resulting evaluation is always false. If you use not matches against
a null value, the resulting evaluation is always true. As in Java, regular expressions that you write as
String literals must use a double backslash \\ to escape.

Example constraint to match or not match a regular expression
Person( country matches "(USA)?\S*UK" )
Person( country not matches "(USA)?\S*UK" )

contains, not contains

Use these operators to verify whether a field that is an Array or a Collection contains or does not
contain a specified value. These operators apply to Array or Collection properties, but you can also
use these operators in place of String.contains() and !String.contains() constraints checks.

Example constraints with contains and not contains for a Collection

/I Gollection with a specified field:
FamilyTree( countries contains "UK" )

FamilyTree( countries not contains "UK" )
/I Collection with a variable:
FamilyTree( countries contains $var )

FamilyTree( countries not contains $var )
Example constraints with contains and not contains for a String literal

/I Sting literal with a specified field:
Person( fullName contains "Jr")

Person( fullName not contains "Jr")
// String literal with a variable:
Person( fullName contains $var )

Person( fullName not contains $var )

et NOTE

For backward compatibility, the excludes operator is a supported synonym for not
contains.

memberOf, not memberOf

Use these operators to verify whether a field is a member of or is not a member of an Array or a
Collection that is defined as a variable. The Array or Collection must be a variable.

Example constraints with memberOf and not memberOf with a Collection

236



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

FamilyTree( person memberOf $europeanDescendants )

FamilyTree( person not memberOf $europeanDescendants )

soundslike
Use this operator to verify whether a word has almost the same sound, using English pronunciation,
as the given value (similar to the matches operator). This operator uses the Soundex algorithm.

Example constraint with soundslike

/[ Match firstName "Jon" or "John™:
Person( firstName soundslike "John" )

str
Use this operator to verify whether a field that is a String starts with or ends with a specified value.
You can also use this operator to verify the length of the String.

Example constraints with str

/I Verify what the String starts with:
Message( routingValue str[startsWith] "R1" )

/I Verify what the String ends with:
Message( routingValue strlendsWith] "R2" )

/I Verify the length of the String:
Message( routingValue str[length] 17)

in, notin

Use these operators to specify more than one possible value to match in a constraint (compound
value restriction). This functionality of compound value restriction is supported only in the in and not
in operators. The second operand of these operators must be a comma-separated list of values
enclosed in parentheses. You can provide values as variables, literals, return values, or qualified
identifiers. These operators are internally rewritten as a list of multiple restrictions using the
operators == or !=.

Example constraints with in and notin

Person( $color : favoriteColor )
Color( type in ( "red", "blue", $color ) )

Person( $color : favoriteColor )
Color( type notin ( "red", "blue", $color ) )

16.8.6. Operator precedence in DRL pattern constraints

DRL supports standard Java operator precedence for applicable constraint operators, with some
exceptions and with some additional operators that are unique in DRL. The following table lists DRL
operator precedence where applicable, from highest to lowest precedence:

237



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Table 16.2. Operator precedence in DRL pattern constraints

Operator type Operators Notes

Nested or null-safe property ., .(), ! Not standard Java semantics

access

List orMap access I Not standard Java semantics

Constraint binding : Not standard Java semantics

Multiplicative * 1%

Additive + -

Shift >>, >>>, <<

Relational < <=,> >= instanceof

Equality ==!= Uses equals() and lequals() semantics, not
standard Java same and hot same
semantics

Non-short-circuiting AND &

Non-short-circuiting A

exclusive OR

Non-short-circuiting

inclusive OR

Logical AND &&

Logical OR I

Ternary ?:

Comma-separated AND , Not standard Java semantics

16.8.7. Supported rule condition elements in DRL (keywords)

DRL supports the following rule condition elements (keywords) that you can use with the patterns that
you define in DRL rule conditions:

and

Use this to group conditional components into a logical conjunction. Infix and prefix and are
supported. You can group patterns explicitly with parentheses (). By default, all listed patterns are
combined with and when no conjunction is specified.

Examnble natterns with and

238



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

/Infix "and’:
Color( colorType : type ) and Person( favoriteColor == colorType )

/lInfix "and” with grouping:
(Color( colorType : type ) and (Person( favoriteColor == colorType ) or Person( favoriteColor ==
colorType))

// Prefix "and’:
(and Color( colorType : type ) Person( favoriteColor == colorType ))

/I Default implicit “and:
Color( colorType : type )
Person( favoriteColor == colorType )

NOTE

Do not use a leading declaration binding with the and keyword (as you can with or, for
example). A declaration can only reference a single fact at a time, and if you use a
declaration binding with and, then when and is satisfied, it matches both facts and

results in an error.

Example misuse of and

/I Gauses compile error:
$person : (Person( name == "Romeo" ) and Person( name == "Juliet"))

Use this to group conditional components into a logical disjunction. Infix and prefix or are supported.
You can group patterns explicitly with parentheses (). You can also use pattern binding with or, but
each pattern must be bound separately.

Example patterns with or

/Infix “or’:

Color( colorType : type ) or Person( favoriteColor == colorType )

/lInfix “or” with grouping:

(Color( colorType : type ) or (Person( favoriteColor == colorType ) and Person( favoriteColor ==
colorType))

/I Prefix “or’:
(or Color( colorType : type ) Person( favoriteColor == colorType ))

Example patterns with or and pattern binding

pensioner : (Person( sex == "f", age > 60 ) or Person( sex == "m", age > 65))

(or pensioner : Person( sex == "f", age > 60 )
pensioner : Person( sex == "m", age > 65))

The decision engine does not directly interpret the or element but uses logical transformations to

239



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

rewrite a rule with or as a number of sub-rules. This process ultimately results in a rule that has a
single or as the root node and one sub-rule for each of its condition elements. Each sub-rule is
activated and executed like any normal rule, with no special behavior or interaction between the sub-
rules.

Therefore, consider the or condition element a shortcut for generating two or more similar rules that,
in turn, can create multiple activations when two or more terms of the disjunction are true.

exists

Use this to specify facts and constraints that must exist. This option is triggered on only the first
match, not subsequent matches. If you use this element with multiple patterns, enclose the patterns
with parentheses ().

Example patterns with exists

exists Person( firstName == "John")
exists (Person( firstName == "John", age == 42))

exists (Person( firstName == "John" ) and
Person( lastName == "Doe"))

not

Use this to specify facts and constraints that must not exist. If you use this element with multiple
patterns, enclose the patterns with parentheses ().

Example patterns with not

not Person( firstName == "John")
not (Person( firstName == "John", age == 42))

not (Person( firstName == "John" ) and
Person( lastName == "Doe"))

forall

Use this to verify whether all facts that match the first pattern match all the remaining patterns.
When a forall construct is satisfied, the rule evaluates to true. This element is a scope delimiter, so it
can use any previously bound variable, but no variable bound inside of it is available for use outside of
it.

Example rule with forall

rule "All full-time employees have red ID badges"
when
forall( $emp : Employee( type == "fulltime" )
Employee( this == $emp, badgeColor = "red" ) )
then
// True, all full-time employees have red ID badges.
end

240



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

In this example, the rule selects all Employee objects whose type is "fulltime". For each fact that
matches this pattern, the rule evaluates the patterns that follow (badge color) and if they match, the
rule evaluates to true.

To state that all facts of a given type in the working memory of the decision engine must match a set
of constraints, you can use forall with a single pattern for simplicity.

Example rule with forall and a single pattern

rule "All full-time employees have red ID badges"

when
forall( Employee( badgeColor = "red" ) )
then
// True, all full-time employees have red ID badges.
end

You can use forall constructs with multiple patterns or nest them with other condition elements, such
as inside a not element construct.

Example rule with forall and multiple patterns

rule "All employees have health and dental care programs"
when
forall( $emp : Employee()
HealthCare( employee == $emp )
DentalCare( employee == $emp )
)
then
// True, all employees have health and dental care.
end

Example rule with forall and not

rule "Not all employees have health and dental care"
when
not ( forall( $emp : Employee()
HealthCare( employee == $emp )
DentalCare( employee == $emp ) )

)

then
/I True, not all employees have health and dental care.
end
P NOTE

The format forall( p1 p2 p3 ...) is equivalent to not( p1 and not( and p2 p3 ... )).

from

Use this to specify a data source for a pattern. This enables the decision engine to reason over data
that is not in the working memory. The data source can be a sub-field on a bound variable or the
result of a method call. The expression used to define the object source is any expression that
follows regular MVEL syntax. Therefore, the from element enables you to easily use object property
navigation, execute method calls, and access maps and collection elements.

241



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Example rule with from and pattern binding

rule "Validate zipcode"
when
Person( $personAddress : address )
Address( zipcode == "23920W" ) from $personAddress
then
/I Zip code is okay.
end

Example rule with from and a graph notation

rule "Validate zipcode"
when
$p : Person()
$a : Address( zipcode == "23920W" ) from $p.address
then
/I Zip code is okay.
end

Example rule with from to iterate over all objects

rule "Apply 10% discount to all items over US$ 100 in an order"
when
$order : Order()
$item : Orderltem( value > 100 ) from $order.items
then
/I Apply discount to “$item".
end

NOTE

For large collections of objects, instead of adding an object with a large graph that the
decision engine must iterate over frequently, add the collection directly to the KIE
session and then join the collection in the condition, as shown in the following
example:

when
$order : Order()
Orderltem( value > 100, order == $order )

Example rule with from and lock-on-active rule attribute

rule "Assign people in North Carolina (NC) to sales region 1"
ruleflow-group "test"
lock-on-active true
when
$p : Person()
$a : Address( state == "NC" ) from $p.address
then
modify ($p) {} // Assign the person to sales region 1.
end

242



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

rule "Apply a discount to people in the city of Raleigh"
ruleflow-group "test"
lock-on-active true
when
$p : Person()
$a : Address( city == "Raleigh" ) from $p.address
then
modify ($p) {} // Apply discount to the person.
end

IMPORTANT

Using from with lock-on-active rule attribute can result in rules not being executed.
You can address this issue in one of the following ways:

® Avoid using the from element when you can insert all facts into the working
memory of the decision engine or use nested object references in your
constraint expressions.

® Place the variable used in the modify() block as the last sentence in your rule
condition.

® Avoid using the lock-on-active rule attribute when you can explicitly manage
how rules within the same ruleflow group place activations on one another.

The pattern that contains a from clause cannot be followed by another pattern starting with a
parenthesis. The reason for this restriction is that the DRL parser reads the from expression as
"from $I (String() or Number())" and it cannot differentiate this expression from a function call. The
simplest workaround to this is to wrap the from clause in parentheses, as shown in the following
example:

Example rules with from used incorrectly and correctly

/I Do not use “from’ in this way:
rule R
when
$I : List()
String() from $I
(String() or Number())
then
/I Actions
end

/' Use “from’ in this way instead:
rule R
when
$I : List()
(String() from $I)
(String() or Number())
then
/I Actions
end

243



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

entry-point
Use this to define an entry point, or event stream, corresponding to a data source for the pattern.
This element is typically used with the from condition element. You can declare an entry point for
events so that the decision engine uses data from only that entry point to evaluate the rules. You can
declare an entry point either implicitly by referencing it in DRL rules or explicitly in your Java
application.

Example rule with from entry-point

rule "Authorize withdrawal"
when
WithdrawRequest( $ai : accountld, $am : amount ) from entry-point "ATM Stream"
CheckingAccount( accountld == $ai, balance > $am )
then
/I Authorize withdrawal.
end

Example Java application code with EntryPoint object and inserted facts

import org.kie.api.runtime.KieSession;
import org.kie.api.runtime.rule.EntryPoint;

// Create your KIE base and KIE session as usual:
KieSession session = ...

// Create a reference to the entry point:
EntryPoint atmStream = session.getEntryPoint("ATM Stream");

// Start inserting your facts into the entry point:
atmStream.insert(aWithdrawRequest);

collect

Use this to define a collection of objects that the rule can use as part of the condition. The rule
obtains the collection either from a specified source or from the working memory of the decision
engine. The result pattern of the collect element can be any concrete class that implements the
java.util.Collection interface and provides a default no-arg public constructor. You can use Java
collections like List, LinkedList, and HashSet, or your own class. If variables are bound before the
collect element in a condition, you can use the variables to constrain both your source and result
patterns. However, any binding made inside the collect element is not available for use outside of it.

Example rule with collect

import java.util.List

rule "Raise priority when system has more than three pending alarms"
when
$system : System()
$alarms : List( size >= 3)
from collect( Alarm( system == $system, status == 'pending') )
then
// Raise priority because “$system’ has three or more “$alarms” pending.
end

244



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

In this example, the rule assesses all pending alarms in the working memory of the decision engine for
each given system and groups them in a List. If three or more alarms are found for a given system,
the rule is executed.

You can also use the collect element with nested from elements, as shown in the following example:

Example rule with collect and nested from

import java.util.LinkedList;

rule "Send a message to all parents”
when
$town : Town( name == 'Paris')
$mothers : LinkedList()
from collect( Person( children > 0)
from $town.getPeople()
)
then
// Send a message to all parents.
end

accumulate

Use this to iterate over a collection of objects, execute custom actions for each of the elements, and
return one or more result objects (if the constraints evaluate to true). This element is a more flexible
and powerful form of the collect condition element. You can use predefined functions in your
accumulate conditions or implement custom functions as needed. You can also use the abbreviation
acc for accumulate in rule conditions.

Use the following format to define accumulate conditions in rules:

Preferred format for accumulate

I accumulate( <source pattern>; <functions> [;<constraints>] )

NOTE

Although the decision engine supports alternate formats for the accumulate element
for backward compatibility, this format is preferred for optimal performance in rules
and applications.

The decision engine supports the following predefined accumulate functions. These functions
accept any expression as input.

® average
® min

® max

e count

® sum

o collectList

245



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

e collectSet

In the following example rule, min, max, and average are accumulate functions that calculate the
minimum, maximum, and average temperature values over all the readings for each sensor:

Example rule with accumulate to calculate temperature values

rule "Raise alarm"
when
$s : Sensor()
accumulate( Reading( sensor == $s, $temp : temperature );
$min : min( $temp ),
$max : max( $temp ),
$avg : average( $temp );
$min < 20, $avg > 70)
then
// Raise the alarm.
end

The following example rule uses the average function with accumulate to calculate the average
profit for all items in an order:

Example rule with accumulate to calculate average profit

rule "Average profit"
when
$order : Order()
accumulate( Orderltem( order == $order, $cost : cost, $price : price );
$avgProfit : average( 1 - $cost / $price ) )
then
/I Average profit for “$order” is “$avgProfit.
end

To use custom, domain-specific functions in accumulate conditions, create a Java class that
implements the org.kie.api.runtime.rule.AccumulateFunction interface. For example, the following
Java class defines a custom implementation of an AverageData function:

Example Java class with custom implementation of average function

// An implementation of an accumulator capable of calculating average values

public class AverageAccumulateFunction implements
org.kie.api.runtime.rule.AccumulateFunction<AverageAccumulateFunction.AverageData> {

public void readExternal(Objectinput in) throws IOException, ClassNotFoundException {

}

public void writeExternal(ObjectOutput out) throws IOException {

}

public static class AverageData implements Externalizable {
public int  count = 0;
public double total = 0;

246



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

public AverageData() {}

public void readExternal(Objectinput in) throws IOException, ClassNotFoundException {
count = in.readint();
total =in.readDouble();

}

public void writeExternal(ObjectOutput out) throws IOException {
out.writelnt(count);
out.writeDouble(total);

}
}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#createContext()
Y/
public AverageData createContext() {
return new AverageData();

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#init(java.io.Serializable)
Vi
public void init(AverageData context) {
context.count = 0;
context.total = 0;

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#accumulate(java.io.Serializable,
java.lang.Object)
Y/
public void accumulate(AverageData context,
Object value) {
context.count++;
context.total += ((Number) value).doubleValue();

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#reverse(java.io.Serializable,
java.lang.Object)
Y/
public void reverse(AverageData context, Object value) {
context.count--;
context.total -= ((Number) value).doubleValue();

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#getResult(java.io.Serializable)
Y
public Object getResult(AverageData context) {
return new Double( context.count == 0 ? 0 : context.total / context.count );

}

247



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#supportsReverse()
Y/
public boolean supportsReverse() {
return true;

}

/* (non-Javadoc)
* @see org.kie.api.runtime.rule.AccumulateFunction#getResultType()
Y/
public Class< ? > getResultType() {
return Number.class;

}

To use the custom function in a DRL rule, import the function using the import accumulate
statement:

Format to import a custom function
I import accumulate <class_name> <function_name>
Example rule with the imported average function

import accumulate AverageAccumulateFunction.AverageData average

rule "Average profit"
when
$order : Order()
accumulate( Orderltem( order == $order, $cost : cost, $price : price );
$avgProfit : average( 1 - $cost / $price ) )
then
/I Average profit for “$order” is “$avgProfit.
end

16.8.8. OOPath syntax with graphs of objects in DRL rule conditions

OOPath is an object-oriented syntax extension of XPath that is designed for browsing graphs of objects
in DRL rule condition constraints. OOPath uses the compact notation from XPath for navigating
through related elements while handling collections and filtering constraints, and is specifically useful for
graphs of objects.

When the field of a fact is a collection, you can use the from condition element (keyword) to bind and
reason over all the items in that collection one by one. If you need to browse a graph of objects in the
rule condition constraints, the extensive use of the from condition element results in a verbose and
repetitive syntax, as shown in the following example:

Example rule that browses a graph of objects with from

rule "Find all grades for Big Data exam"
when
$student: Student( $plan: plan )

248



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

$exam: Exam( course == "Big Data" ) from $plan.exams
$grade: Grade() from $exam.grades
then
/I Actions
end

In this example, the domain model contains a Student object with a Plan of study. The Plan can have
zero or more Exam instances and an Exam can have zero or more Grade instances. Only the root object
of the graph, the Student in this case, needs to be in the working memory of the decision engine for this
rule setup to function.

As a more efficient alternative to using extensive from statements, you can use the abbreviated
OOPath syntax, as shown in the following example:

Example rule that browses a graph of objects with OOPath syntax

rule "Find all grades for Big Data exam"
when
Student( $grade: /plan/exams[course == "Big Data")/grades )
then
/I Actions
end

Formally, the core grammar of an OOPath expression is defined in extended Backus-Naur form (EBNF)
notation in the following way:

EBNF notation for OOPath expressions

OOPExpr=[ID (™" |™"=")] ("/"|"?/") OOPSegment { ("/"|"?/"|"." ) OOPSegment } ;
OOPSegment = ID ["#" ID] ["[" ( Number | Constraints ) "]"]

In practice, an OOPath expression has the following features and capabilities:

® Starts with a forward slash / or with a question mark and forward slash ?/if it is a non-reactive
OOPath expression (described later in this section).

® Can dereference a single property of an object with the period . operator.

e Can dereference multiple properties of an object with the forward slash / operator. If a
collection is returned, the expression iterates over the values in the collection.

e Can filter out traversed objects that do not satisfy one or more constraints. The constraints are
written as predicate expressions between square brackets, as shown in the following example:

Constraints as a predicate expression
I Student( $grade: /plan/exams[ course == "Big Data" ]/grades )

e Can downcast a traversed object to a subclass of the class declared in the generic collection.
Subsequent constraints can also safely access the properties declared only in that subclass, as
shown in the following example. Objects that are not instances of the class specified in this inline
cast are automatically filtered out.

Constraints with downcast objects

249



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

I Student( $grade: /plan/exams#AdvancedExam[ course == "Big Data", level > 3 J/grades )

® Can backreference an object of the graph that was traversed before the currently iterated
graph. For example, the following OOPath expression matches only the grades that are above
the average for the passed exam:

Constraints with backreferenced object
I Student( $grade: /plan/exams/grades| result > ../averageResult ] )

® Can recursively be another OOPath expression, as shown in the following example:

Recursive constraint expression
I Student( $exam: /plan/exams][ /grades| result >20]])

® Can access objects by their index between square brackets [], as shown in the following
example. To adhere to Java convention, OOPath indexes are O-based, while XPath indexes are
1-based.

Constraints with access to objects by index
I Student( $grade: /plan/exams[0]/grades )

OOPath expressions can be reactive or non-reactive. The decision engine does not react to updates
involving a deeply nested object that is traversed during the evaluation of an OOPath expression.

To make these objects reactive to changes, modify the objects to extend the class
org.drools.core.phreak.ReactiveObject. After you modify an object to extend the ReactiveObject
class, the domain object invokes the inherited method notifyModification to notify the decision engine
when one of the fields has been updated, as shown in the following example:

Example object method to notify the decision engine that an exam has been moved to a
different course

public void setCourse(String course) {
this.course = course;
notifyModification(this);
}

With the following corresponding OOPath expression, when an exam is moved to a different course, the
rule is re-executed and the list of grades matching the rule is recomputed:

Example OOPath expression from "Big Data" rule
I Student( $grade: /plan/exams| course == "Big Data" ]/grades )

You can also use the ?/ separator instead of the / separator to disable reactivity in only one sub-portion
of an OOPath expression, as shown in the following example:

Example OOPath expression that is partially non-reactive

I Student( $grade: /plan/exams[ course == "Big Data" ]?/grades )

250



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

With this example, the decision engine reacts to a change made to an exam or if an exam is added to the
plan, but not if a new grade is added to an existing exam.

If an OOPath portion is non-reactive, all remaining portions of the OOPath expression also become non-
reactive. For example, the following OOPath expression is completely non-reactive:

Example OOPath expression that is completely non-reactive
I Student( $grade: ?/plan/exams| course == "Big Data" ]/grades )

For this reason, you cannot use the ?/ separator more than once in the same OOPath expression. For
example, the following expression causes a compilation error:

Example OOPath expression with duplicate non-reactivity markers
I Student( $grade: /plan?/exams| course == "Big Data" ]?/grades )

Another alternative for enabling OOPath expression reactivity is to use the dedicated implementations
for List and Set interfaces in Red Hat Decision Manager. These implementations are the ReactiveList
and ReactiveSet classes. A ReactiveCollection class is also available. The implementations also provide
reactive support for performing mutable operations through the Iterator and Listlterator classes.

The following example class uses these classes to configure OOPath expression reactivity:

Example Java class to configure OOPath expression reactivity

public class School extends AbstractReactiveObject {
private String name;
private final List<Child> children = new ReactiveList<Child>(); ﬂ

public void setName(String name) {
this.name = name;
notifyModification(); @)

}

public void addChild(Child child) {
children.add(child); €)
// No need to call "notifyModification()” here

}
}

ﬂ Uses the ReactiveList instance for reactive support over the standard Java List instance.
9 Uses the required notifyModification() method for when a field is changed in reactive support.
9 The children field is a ReactiveList instance, so the notifyModification() method call is not

required. The notification is handled automatically, like all other mutating operations performed
over the children field.

16.9. RULE ACTIONS IN DRL (THEN)

The then part of the rule (also known as the Right Hand Side (RHS) of the rule) contains the actions to

251



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

be performed when the conditional part of the rule has been met. Actions consist of one or more
methods that execute consequences based on the rule conditions and on available data objects in the
package. For example, if a bank requires loan applicants to be over 21 years of age (with a rule condition
Applicant( age < 21)) and a loan applicant is under 21years old, the then action of an "Underage" rule
would be setApproved( false ), declining the loan because the applicant is under age.

The main purpose of rule actions is to insert, delete, or modify data in the working memory of the
decision engine. Effective rule actions are small, declarative, and readable. If you need to use imperative
or conditional code in rule actions, then divide the rule into multiple smaller and more declarative rules.

Example rule for loan application age limit

rule "Underage"
when
application : LoanApplication()
Applicant( age < 21)
then
application.setApproved( false );
application.setExplanation( "Underage" );
end

16.9.1. Supported rule action methods in DRL

DRL supports the following rule action methods that you can use in DRL rule actions. You can use these
methods to modify the working memory of the decision engine without having to first reference a
working memory instance. These methods act as shortcuts to the methods provided by the
RuleContext class in your Red Hat Decision Manager distribution.

For all rule action methods, download the Red Hat Process Automation Manager 7.13.5 Source
Distribution ZIP file from the Red Hat Customer Portal and navigate to ~/rhpam-7.13.5-
sources/src/kie-api-parent-$VERSION/kie-
api/src/main/java/org/kie/api/runtime/rule/RuleContext.java.

set

Use this to set the value of a field.

I set<field> ( <value>)

Example rule action to set the values of a loan application approval

$application.setApproved ( false );
$application.setExplanation( "has been bankrupt" );

modify

Use this to specify fields to be modified for a fact and to notify the decision engine of the change.
This method provides a structured approach to fact updates. It combines the update operation with
setter calls to change object fields.

modify ( <fact-expression> ) {
<expression>,
<expressions>,

252


https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

Example rule action to modify a loan application amount and approval

modify( LoanApplication ) {
setAmount( 100 ),
setApproved ( true )

update

Use this to specify fields and the entire related fact to be updated and to notify the decision engine
of the change. After a fact has changed, you must call update before changing another fact that
might be affected by the updated values. To avoid this added step, use the modify method instead.

update ( <object, <handle>) // Informs the decision engine that an object has changed

update ( <object>) // Causes "KieSession' to search for a fact handle of the object

Example rule action to update a loan application amount and approval

LoanApplication.setAmount( 100 );
update( LoanApplication );

NOTE
?
If you provide property-change listeners, you do not need to call this method when an
object changes. For more information about property-change listeners, see Decision
? engine in Red Hat Decision Manager.
insert

Use this to insert a new fact into the working memory of the decision engine and to define resulting
fields and values as needed for the fact.

I insert( new <object> );
Example rule action to insert a new loan applicant object

I insert( new Applicant() );

insertLogical

Use this to insert a new fact logically into the decision engine. The decision engine is responsible for
logical decisions on insertions and retractions of facts. After regular or stated insertions, facts must
be retracted explicitly. After logical insertions, the facts that were inserted are automatically
retracted when the conditions in the rules that inserted the facts are no longer true.

I insertLogical( new <object> );
Example rule action to logically insert a new loan applicant object

I insertLogical( new Applicant() );

253


https://access.redhat.com/documentation/en-us/red_hat_decision_manager/7.13/html-single/developing_decision_services_in_red_hat_decision_manager#property-change-listeners-con_decision-engine

Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

delete

Use this to remove an object from the decision engine. The keyword retract is also supported in DRL
and executes the same action, but delete is typically preferred in DRL code for consistency with the
keyword insert.

I delete( <object> );
Example rule action to delete a loan applicant object

I delete( Applicant );

16.9.2. Other rule action methods from drools variable

In addition to the standard rule action methods, the decision engine supports methods in conjunction
with the predefined drools variable that you can also use in rule actions.

You can use the drools variable to call methods from the org.kie.api.runtime.rule.RuleContext class in
your Red Hat Decision Manager distribution, which is also the class that the standard rule action
methods are based on. For all drools rule action options, download the Red Hat Process Automation
Manager 7.13.5 Source Distribution ZIP file from the Red Hat Customer Portal and navigate to
~/rhpam-7.13.5-sources/src/kie-api-parent-$VERSION/kie-
api/src/main/java/org/kie/api/runtime/rule/RuleContext.java.

The drools variable contains methods that provide information about the firing rule and the set of facts
that activated the firing rule:

e drools.getRule().getName(): Returns the name of the currently firing rule.

e drools.getMatch(): Returns the Match that activated the currently firing rule. It contains
information that is useful for logging and debugging purposes, for instance
drools.getMatch().getObjects() returns the list of objects, enabling rule to fire in the proper

tuple order.

From the drools variable, you can also obtain a reference to the KieRuntime providing useful methods
to interact with the running session, for example:

e drools.getKieRuntime().halt(): Terminates rule execution if a user or application previously
called fireUntilHalt(). When a user or application calls fireUntilHalt() method, the decision
engine starts in active mode and evaluates rules until the user or application explicitly calls
halt() method. Otherwise, by default, the decision engine runs in passive mode and evaluates
rules only when a user or an application explicitly calls fireAllRules() method.

e drools.getKieRuntime().getAgenda(): Returns a reference to the KIE session Agenda, and in
turn provides access to rule activation groups, rule agenda groups, and ruleflow groups.

Example call to access agenda group "CleanUp" and set the focus
I drools.getKieRuntime().getAgenda().getAgendaGroup( "CleanUp" ).setFocus();

+ This example sets the focus to a specified agenda group to which the rule belongs.

e drools.getKieRuntime().setGlobal(), ~.getGlobal(), ~.getGlobals(): Sets or retrieves global
variables.

254


https://access.redhat.com/jbossnetwork/restricted/listSoftware.html

CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

e drools.getKieRuntime().getEnvironment(): Returns the runtime Environment, similar to your
operating system environment.

e drools.getKieRuntime().getQueryResults(<string> query): Runs a query and returns the
results.

16.9.3. Advanced rule actions with conditional and nhamed consequences

In general, effective rule actions are small, declarative, and readable. However, in some cases, the
limitation of having a single consequence for each rule can be challenging and lead to verbose and
repetitive rule syntax, as shown in the following example rules:

Example rules with verbose and repetitive syntax

rule "Give 10% discount to customers older than 60"
when
$customer : Customer( age > 60 )
then
modify($customer) { setDiscount( 0.1) };
end

rule "Give free parking to customers older than 60"
when
$customer : Customer( age > 60 )
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
end

A partial solution to the repetition is to make the second rule extend the first rule, as shown in the
following modified example:

Partially enhanced example rules with an extended condition

rule "Give 10% discount to customers older than 60"
when
$customer : Customer( age > 60 )
then
modify($customer) { setDiscount( 0.1) };
end

rule "Give free parking to customers older than 60"
extends "Give 10% discount to customers older than 60"

when
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
end

As a more efficient alternative, you can consolidate the two rules into a single rule with modified
conditions and labelled corresponding rule actions, as shown in the following consolidated example:

Consolidated example rule with conditional and named consequences

255



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

rule "Give 10% discount and free parking to customers older than 60"
when
$customer : Customer( age > 60 )
do[giveDiscount]
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
then[giveDiscount]
modify($customer) { setDiscount( 0.1) };
end

This example rule uses two actions: the usual default action and another action named giveDiscount.
The giveDiscount action is activated in the condition with the keyword do when a customer older than
60 years old is found in the KIE base, regardless of whether or not the customer owns a car.

You can configure the activation of a named consequence with an additional condition, such as the if
statement in the following example. The condition in the if statement is always evaluated on the pattern
that immediately precedesiit.

Consolidated example rule with an additional condition

rule "Give free parking to customers older than 60 and 10% discount to golden ones among them"
when
$customer : Customer( age > 60 )
if (type == "Golden" ) do[giveDiscount]
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
then[giveDiscount]
modify($customer) { setDiscount( 0.1) };
end

You can also evaluate different rule conditions using a nested if and else if construct, as shown in the
following more complex example:

Consolidated example rule with more complex conditions

rule "Give free parking and 10% discount to over 60 Golden customer and 5% to Silver ones"
when
$customer : Customer( age > 60 )
if (type == "Golden" ) do[giveDiscount10]
else if ( type == "Silver" ) break[giveDiscount5]
$car : Car( owner == $customer )
then
modify($car) { setFreeParking( true ) };
then[giveDiscount10]
modify($customer) { setDiscount( 0.1) };
then[giveDiscount5]
modify($customer) { setDiscount( 0.05) };
end

This example rule gives a 10% discount and free parking to Golden customers over 60, but only a 5%
discount without free parking to Silver customers. The rule activates the consequence named
giveDiscount5 with the keyword break instead of do. The keyword do schedules a consequence in the

256



CHAPTER 16. DRL (DROOLS RULE LANGUAGE) RULES

decision engine agenda, enabling the remaining part of the rule conditions to continue being evaluated,

while break blocks any further condition evaluation. If a named consequence does not correspond to

any condition with do but is activated with break, the rule fails to compile because the conditional part

of the rule is never reached.

16.10. COMMENTS IN DRL FILES

DRL supports single-line comments prefixed with a double forward slash // and multi-line comments

enclosed with a forward slash and asterisk /* ... */. You can use DRL comments to annotate rules or any
related components in DRL files. DRL comments are ignored by the decision engine when the DRL file is

processed.

Example rule with comments

rule "Underage"
// This is a single-line comment.
when
$application : LoanApplication() // This is an in-line comment.
Applicant( age < 21)
then
/* This is a multi-line comment
in the rule actions. */
$application.setApproved( false );
$application.setExplanation( "Underage" );
end

IMPORTANT

The hash symbol #is not supported for DRL comments.

16.11. ERROR MESSAGES FOR DRL TROUBLESHOOTING

Red Hat Decision Manager provides standardized messages for DRL errors to help you troubleshoot
and resolve problems in your DRL files. The error messages use the following format:

Figure 16.1. Error message format for DRL file problems

[ERR 101] Line &:35 no viable alternative at input *)' in rule “test rule® in pattern WorkerPerformanceContext

1st 2nd
Block Block

3rd Block dth Block 5th Block

® st Block: Error code

® 2nd Block:Line and column in the DRL source where the error occurred

e 3rd Block: Description of the problem

® 4th Block: Component in the DRL source (rule, function, query) where the error occurred
e 5th Block:Pattern in the DRL source where the error occurred (if applicable)

Red Hat Decision Manager supports the following standardized error messages:

101: no viable alternative

257



Red Hat Decision Manager 7.13 Developing decision services in Red Hat Decision Manager

Indicates that the parser reached a decision point but could not identify an alt