
Red Hat Data Grid 7.2

Administration and Configuration Guide

For use with Red Hat JBoss Data Grid 7.2

Last Updated: 2019-11-15

Red Hat Data Grid 7.2 Administration and Configuration Guide

For use with Red Hat JBoss Data Grid 7.2

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide presents information about the administration and configuration of Red Hat JBoss Data
Grid 7.2

. .

. .

. .

. .

. .

. .

Table of Contents

PART I. INTRODUCTION

CHAPTER 1. SETTING UP RED HAT JBOSS DATA GRID
1.1. PREREQUISITES
1.2. STEPS TO SET UP RED HAT JBOSS DATA GRID

PART II. MANAGING JVM MEMORY

CHAPTER 2. EVICTION AND EXPIRATION
2.1. OVERVIEW OF EVICTION AND EXPIRATION
2.2. CONFIGURING EVICTION

2.2.1. Eviction Types
2.2.2. Storage Types
2.2.3. Adding the Memory Element
2.2.4. Specifying the Storage Type
2.2.5. Specifying the Eviction Type
2.2.6. Setting the Cache Size
2.2.7. Tuning the Off Heap Configuration
2.2.8. Setting the Eviction Strategy

2.2.8.1. Eviction Strategies
2.2.9. Configuring Passivation

2.3. CONFIGURING EXPIRATION
2.3.1. Expiration Parameters
2.3.2. Configuring Expiration
2.3.3. Expiration Behavior

PART III. MONITORING YOUR CACHE

CHAPTER 3. SET UP LOGGING
3.1. ABOUT LOGGING
3.2. SUPPORTED APPLICATION LOGGING FRAMEWORKS

3.2.1. Supported Application Logging Frameworks
3.2.2. About JBoss Logging
3.2.3. JBoss Logging Features

3.3. BOOT LOGGING
3.3.1. Boot Logging
3.3.2. Configure Boot Logging
3.3.3. Default Log File Locations

3.4. LOGGING ATTRIBUTES
3.4.1. About Log Levels
3.4.2. Supported Log Levels
3.4.3. About Log Categories
3.4.4. About the Root Logger
3.4.5. About Log Handlers
3.4.6. Log Handler Types
3.4.7. Selecting Log Handlers
3.4.8. About Log Formatters

3.5. LOGGING SAMPLE CONFIGURATIONS
3.5.1. Logging Sample Configuration Location
3.5.2. Sample XML Configuration for the Root Logger
3.5.3. Sample XML Configuration for a Log Category
3.5.4. Sample XML Configuration for a Console Log Handler

16

17
17
17

20

21
21
21
21
21
22
22
23
23
24
24
25
25
25
26
26
27

28

29
29
29
29
29
29
30
30
30
30
30
30
31
32
32
33
33
34
35
35
35
35
36
36

Table of Contents

1

. .

. .

. .

. .

. .

. .

. .

3.5.5. Sample XML Configuration for a File Log Handler
3.5.6. Sample XML Configuration for a Periodic Log Handler
3.5.7. Sample XML Configuration for a Size Log Handler
3.5.8. Sample XML Configuration for a Async Log Handler

PART IV. SET UP CACHE MODES

CHAPTER 4. CACHE MODES
4.1. CACHE MODES
4.2. ABOUT CACHE CONTAINERS
4.3. LOCAL MODE

4.3.1. Local Mode
4.3.2. Configure Local Mode

4.4. CLUSTERED MODES
4.4.1. Clustered Modes
4.4.2. Asynchronous and Synchronous Operations
4.4.3. About Asynchronous Communications
4.4.4. Cache Mode Troubleshooting

4.4.4.1. Invalid Data in ReadExternal
4.4.4.2. Cluster Physical Address Retrieval

CHAPTER 5. SET UP DISTRIBUTION MODE
5.1. ABOUT DISTRIBUTION MODE
5.2. CONSISTENT HASHING IN DISTRIBUTION MODE
5.3. LOCATING ENTRIES IN DISTRIBUTION MODE
5.4. RETURN VALUES IN DISTRIBUTION MODE
5.5. CONFIGURE DISTRIBUTION MODE
5.6. SYNCHRONOUS AND ASYNCHRONOUS DISTRIBUTION

CHAPTER 6. SET UP REPLICATION MODE
6.1. ABOUT REPLICATION MODE
6.2. OPTIMIZED REPLICATION MODE USAGE
6.3. CONFIGURE REPLICATION MODE
6.4. SYNCHRONOUS AND ASYNCHRONOUS REPLICATION

6.4.1. Synchronous and Asynchronous Replication
6.4.2. Troubleshooting Asynchronous Replication Behavior

6.5. THE REPLICATION QUEUE
6.5.1. The Replication Queue
6.5.2. Replication Queue Usage

6.6. ABOUT REPLICATION GUARANTEES
6.7. REPLICATION TRAFFIC ON INTERNAL NETWORKS

CHAPTER 7. SET UP INVALIDATION MODE
7.1. ABOUT INVALIDATION MODE
7.2. CONFIGURE INVALIDATION MODE
7.3. SYNCHRONOUS/ASYNCHRONOUS INVALIDATION
7.4. THE L1 CACHE AND INVALIDATION

CHAPTER 8. STATE TRANSFER
8.1. STATE TRANSFER
8.2. NON-BLOCKING STATE TRANSFER
8.3. SUPPRESS STATE TRANSFER VIA JMX
8.4. THE REBALANCINGENABLED ATTRIBUTE

PART V. ENABLING APIS

37
38
39
40

41

42
42
42
43
43
43
44
44
44
44
45
45
45

46
46
46
47
47
47
48

49
49
49
49
50
50
50
50
50
51
51
51

52
52
52
52
53

54
54
54
55
55

56

Red Hat Data Grid 7.2 Administration and Configuration Guide

2

. .

. .

. .

. .

. .

. .

. .

. .

CHAPTER 9. ENABLING APIS DECLARATIVELY
9.1. ENABLING APIS DECLARATIVELY
9.2. BATCHING API
9.3. GROUPING API
9.4. EXTERNALIZABLE API

9.4.1. The Externalizable API
9.4.2. Register the Advanced Externalizer (Declaratively)
9.4.3. Configuring the Deserialization Whitelist
9.4.4. Custom Externalizer ID Values

9.4.4.1. Custom Externalizer ID Values
9.4.4.2. Customize the Externalizer ID (Declaratively)

CHAPTER 10. SET UP AND CONFIGURE THE INFINISPAN QUERY API
10.1. SET UP INFINISPAN QUERY

10.1.1. Infinispan Query Dependencies in Library Mode
10.2. DIRECTORY PROVIDERS

10.2.1. Directory Providers
10.2.2. RAM Directory Provider
10.2.3. Filesystem Directory Provider
10.2.4. Infinispan Directory Provider

10.3. CONFIGURE INDEXING
10.3.1. Configure the Index in Remote Client-Server Mode
10.3.2. Automatic Indexing
10.3.3. Rebuilding the Index

10.4. TUNING THE INDEX
10.4.1. Near-Realtime Index Manager
10.4.2. Tuning Infinispan Directory
10.4.3. Per-Index Configuration

CHAPTER 11. THE HEALTH CHECK API
11.1. THE HEALTH CHECK API
11.2. ACCESSING THE HEALTH API USING JMX
11.3. ACCESSING THE HEALTH CHECK API USING THE CLI
11.4. ACCESSING THE HEALTH CHECK API USING THE MANAGEMENT REST INTERFACE

PART VI. REMOTE CLIENT-SERVER MODE INTERFACES

CHAPTER 12. REMOTE CLIENT-SERVER MODE INTERFACES

CHAPTER 13. THE HOT ROD INTERFACE
13.1. ABOUT HOT ROD
13.2. THE BENEFITS OF USING HOT ROD OVER MEMCACHED
13.3. HOT ROD HASH FUNCTIONS
13.4. THE HOT ROD INTERFACE CONNECTOR

13.4.1. The Hot Rod Interface Connector
13.4.2. Configure Hot Rod Connectors

CHAPTER 14. THE REST INTERFACE
14.1. THE REST INTERFACE
14.2. THE REST INTERFACE CONNECTOR

14.2.1. The REST Interface Connector
14.2.2. Configure REST Connectors

CHAPTER 15. THE MEMCACHED INTERFACE
15.1. THE MEMCACHED INTERFACE

57
57
57
57
58
58
58
59
59
59
60

61
61
61
61
61
61

62
62
63
63
64
65
65
65
65
66

67
67
67
68
69

72

73

74
74
74
75
75
75
75

78
78
78
78
78

79
79

Table of Contents

3

. .

. .

. .

. .

. .

. .

15.2. ABOUT MEMCACHED SERVERS
15.3. MEMCACHED STATISTICS
15.4. THE MEMCACHED INTERFACE CONNECTOR

15.4.1. The Memcached Interface Connector
15.4.2. Configure Memcached Connectors

PART VII. SET UP LOCKING FOR THE CACHE

CHAPTER 16. LOCKING
16.1. LOCKING
16.2. CONFIGURE LOCKING (REMOTE CLIENT-SERVER MODE)
16.3. CONFIGURE LOCKING (LIBRARY MODE)
16.4. LOCKING TYPES

16.4.1. About Optimistic Locking
16.4.2. About Pessimistic Locking
16.4.3. Pessimistic Locking Types
16.4.4. Explicit Pessimistic Locking Example
16.4.5. Implicit Pessimistic Locking Example
16.4.6. Configure Locking Mode (Remote Client-Server Mode)
16.4.7. Configure Locking Mode (Library Mode)

16.5. LOCKING OPERATIONS
16.5.1. About the LockManager
16.5.2. About Lock Acquisition
16.5.3. About Concurrency Levels

CHAPTER 17. SET UP LOCK STRIPING
17.1. ABOUT LOCK STRIPING
17.2. CONFIGURE LOCK STRIPING (REMOTE CLIENT-SERVER MODE)
17.3. CONFIGURE LOCK STRIPING (LIBRARY MODE)

CHAPTER 18. SET UP ISOLATION LEVELS
18.1. ABOUT ISOLATION LEVELS
18.2. ABOUT READ_COMMITTED
18.3. ABOUT REPEATABLE_READ

PART VIII. SET UP AND CONFIGURE A CACHE STORE

CHAPTER 19. CACHE STORES
19.1. CACHE STORES
19.2. CACHE LOADERS AND CACHE WRITERS
19.3. CACHE STORE CONFIGURATION

19.3.1. Configuring the Cache Store
19.3.2. Configure the Cache Store using XML (Library Mode)
19.3.3. About SKIP_CACHE_LOAD Flag
19.3.4. About the SKIP_CACHE_STORE Flag
19.3.5. About the SKIP_SHARED_CACHE_STORE Flag

19.4. SHARED CACHE STORES
19.4.1. Shared Cache Stores
19.4.2. Invalidation Mode and Shared Cache Stores
19.4.3. The Cache Store and Cache Passivation
19.4.4. Application Cachestore Registration

19.5. CONNECTION FACTORIES
19.5.1. Connection Factories
19.5.2. About ManagedConnectionFactory
19.5.3. About SimpleConnectionFactory

79
79
81
81
81

83

84
84
84
84
85
85
85
85
86
86
86
86
87
87
87
87

88
88
88
88

90
90
90
90

92

93
93
93
93
93
93
94
94
94
94
94
95
95
95
95
95
95
95

Red Hat Data Grid 7.2 Administration and Configuration Guide

4

. .

19.5.4. About PooledConnectionFactory

CHAPTER 20. CACHE STORE IMPLEMENTATIONS
20.1. CACHE STORES
20.2. CACHE STORE COMPARISON
20.3. CACHE STORE CONFIGURATION DETAILS (LIBRARY MODE)
20.4. CACHE STORE CONFIGURATION DETAILS (REMOTE CLIENT-SERVER MODE)
20.5. SINGLE FILE CACHE STORE

20.5.1. Single File Cache Store
20.5.2. Single File Store Configuration (Remote Client-Server Mode)
20.5.3. Single File Store Configuration (Library Mode)
20.5.4. Upgrade JBoss Data Grid Cache Stores

20.6. LEVELDB CACHE STORE
20.6.1. LevelDB Cache Store
20.6.2. Configuring LevelDB Cache Store (Remote Client-Server Mode)
20.6.3. LevelDB Cache Store Sample XML Configuration (Library Mode)
20.6.4. Configure a LevelDB Cache Store Using JBoss Operations Network

20.7. JDBC BASED CACHE STORES
20.7.1. JDBC Based Cache Stores
20.7.2. JdbcBinaryStores

20.7.2.1. JdbcBinaryStores
20.7.2.2. JdbcBinaryStore Configuration (Remote Client-Server Mode)
20.7.2.3. JdbcBinaryStore Configuration (Library Mode)

20.7.3. JdbcStringBasedStores
20.7.3.1. JdbcStringBasedStores
20.7.3.2. JdbcStringBasedStore Configuration (Remote Client-Server Mode)
20.7.3.3. JdbcStringBasedStore Configuration (Library Mode)
20.7.3.4. JdbcStringBasedStore Multiple Node Configuration (Remote Client-Server Mode)

20.7.4. JdbcMixedStores
20.7.4.1. JdbcMixedStores
20.7.4.2. JdbcMixedStore Configuration (Remote Client-Server Mode)
20.7.4.3. JdbcMixedStore Configuration (Library Mode)

20.7.5. Cache Store Troubleshooting
20.7.5.1. IOExceptions with JdbcStringBasedStore

20.8. THE REMOTE CACHE STORE
20.8.1. Remote Cache Stores
20.8.2. Remote Cache Store Configuration (Remote Client-Server Mode)
20.8.3. Remote Cache Store Configuration (Library Mode)
20.8.4. Define the Outbound Socket for the Remote Cache Store

20.9. JPA CACHE STORE
20.9.1. JPA Cache Stores
20.9.2. JPA Cache Store Sample XML Configuration (Library Mode)
20.9.3. Storing Metadata in the Database
20.9.4. Deploying JPA Cache Stores in Various Containers

20.10. CASSANDRA CACHE STORE
20.10.1. Cassandra Cache Store
20.10.2. Enabling the Cassandra Cache Store
20.10.3. Cassandra Cache Store Sample XML Configuration (Remote Client-Server Mode)
20.10.4. Cassandra Cache Store Sample XML Configuration (Library Mode)
20.10.5. Cassandra Configuration Parameters

20.11. CUSTOM CACHE STORES
20.11.1. Custom Cache Stores
20.11.2. Custom Cache Store Maven Archetype

96

97
97
97
97

102
104
104
105
105
106
106
106
106
107
107
110
110
110
110
111
111

112
112
112
113
113
114
114
114
115
115
116
116
116
116
116
117
117
117
117
118
118
119

120
120
120
121
121
122
122
123

Table of Contents

5

. .

. .

. .

. .

. .

. .

. .

20.11.3. Custom Cache Store Configuration (Remote Client-Server Mode)
20.11.3.1. Custom Cache Store Configuration (Remote Client-Server Mode)
20.11.3.2. Option 1: Add Custom Cache Store using deployments (Remote Client-Server Mode)
20.11.3.3. Option 2: Add Custom Cache Store using the CLI (Remote Client-Server Mode)
20.11.3.4. Option 3: Add Custom Cache Store using JON (Remote Client-Server Mode)

20.11.4. Custom Cache Store Configuration (Library Mode)

PART IX. SET UP PASSIVATION

CHAPTER 21. ACTIVATION AND PASSIVATION MODES
21.1. ACTIVATION AND PASSIVATION MODES
21.2. PASSIVATION MODE BENEFITS
21.3. CONFIGURE PASSIVATION
21.4. EVICATION AND PASSIVATION

21.4.1. Eviction and Passivation
21.4.2. Eviction and Passivation Usage
21.4.3. Cache Loader Behavior with Passivation Disabled vs Enabled
21.4.4. Eviction Examples

PART X. SET UP CACHE WRITING

CHAPTER 22. CACHE WRITING MODES
22.1. CACHE WRITING MODES
22.2. WRITE-THROUGH CACHING

22.2.1. Write-Through Caching
22.2.2. Write-Through Caching Benefits and Disadvantages
22.2.3. Write-Through Caching Configuration (Library Mode)

22.3. WRITE-BEHIND CACHING
22.3.1. Write-Behind Caching
22.3.2. About Unscheduled Write-Behind Strategy
22.3.3. Unscheduled Write-Behind Strategy Configuration (Remote Client-Server Mode)
22.3.4. Unscheduled Write-Behind Strategy Configuration (Library Mode)

PART XI. MONITOR CACHES AND CACHE MANAGERS

CHAPTER 23. SET UP JAVA MANAGEMENT EXTENSIONS (JMX)
23.1. ABOUT JAVA MANAGEMENT EXTENSIONS (JMX)
23.2. USING JMX WITH RED HAT JBOSS DATA GRID
23.3. JMX STATISTIC LEVELS
23.4. ENABLING JMX FOR CACHE INSTANCES
23.5. ENABLING JMX FOR CACHEMANAGERS
23.6. DISABLING THE CACHESTORE VIA JMX WHEN USING ROLLING UPGRADES
23.7. MULTIPLE JMX DOMAINS
23.8. MBEANS

23.8.1. MBeans
23.8.2. Understanding MBeans
23.8.3. Registering MBeans in Non-Default MBean Servers

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)
24.1. ABOUT JBOSS OPERATIONS NETWORK (JON)
24.2. DOWNLOAD JBOSS OPERATIONS NETWORK (JON)

24.2.1. Prerequisites for Installing JBoss Operations Network (JON)
24.2.2. Download JBoss Operations Network
24.2.3. Remote JMX Port Values
24.2.4. Download JBoss Operations Network (JON) Plugin

124
124
124
125
125
126

128

129
129
129
129
129
129
130
130
130

132

133
133
133
133
133
133
134
134
134
134
135

136

137
137
137
137
137
138
138
138
138
138
139
139

141
141
141
141
141

142
142

Red Hat Data Grid 7.2 Administration and Configuration Guide

6

. .

. .

24.3. JBOSS OPERATIONS NETWORK SERVER INSTALLATION
24.4. JBOSS OPERATIONS NETWORK AGENT
24.5. JBOSS OPERATIONS NETWORK FOR REMOTE CLIENT-SERVER MODE

24.5.1. JBoss Operations Network for Remote Client-Server Mode
24.5.2. Installing the JBoss Operations Network Plug-in (Remote Client-Server Mode)

24.6. JBOSS OPERATIONS NETWORK REMOTE-CLIENT SERVER PLUGIN
24.6.1. JBoss Operations Network Plugin Metrics
24.6.2. JBoss Operations Network Plugin Operations
24.6.3. JBoss Operations Network Plugin Attributes
24.6.4. Create a New Cache Using JBoss Operations Network (JON)

24.7. JBOSS OPERATIONS NETWORK FOR LIBRARY MODE
24.7.1. JBoss Operations Network for Library Mode
24.7.2. Installing the JBoss Operations Network Plug-in (Library Mode)
24.7.3. Monitoring of JBoss Data Grid Instances in Library Mode

24.7.3.1. Prerequisites
24.7.3.2. Manually Adding JBoss Data Grid Instances in Library Mode
24.7.3.3. Monitor Custom Applications Using Library Mode Deployed On JBoss Enterprise Application
Platform

24.7.3.3.1. Monitor an Application Deployed in Standalone Mode
24.7.3.3.2. Monitor an Application Deployed in Domain Mode

24.8. JBOSS OPERATIONS NETWORK PLUG-IN QUICKSTART
24.9. OTHER MANAGEMENT TOOLS AND OPERATIONS

24.9.1. Other Management Tools and Operations
24.9.2. Accessing Data via URLs
24.9.3. Limitations of Map Methods

PART XII. RED HAT JBOSS DATA GRID WEB ADMINISTRATION

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE
25.1. ABOUT JBOSS DATA GRID ADMINISTRATION CONSOLE
25.2. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE PREREQUISITES
25.3. RED HAT JBOSS DATA GRID ADMINISTATION CONSOLE GETTING STARTED

25.3.1. Red Hat JBoss Data Grid Administration Console Getting Started
25.3.2. Adding Management User
25.3.3. Logging in the JBoss Data Grid Administration Console

25.4. DASHBOARD VIEW
25.4.1. Dashboard View
25.4.2. Cache Containers View
25.4.3. Clusters View
25.4.4. Status Events View

25.5. CACHE ADMINISTRATION
25.5.1. Adding a New Cache
25.5.2. Editing Cache Configuration
25.5.3. Cache Statistics and Properties View
25.5.4. Enable and Disable Caches
25.5.5. Cache Flush and Clear

Flushing a Cache
Clearing a Cache

25.5.6. Server Tasks Execution
25.5.7. Server Tasks

25.5.7.1. New Server Task
25.5.7.2. Server Tasks View

25.6. CACHE CONTAINER CONFIGURATION

142
143
143
143
143
144
144
148
149
149
150
150
150
153
153
154

159
159
160
161
161
161
161
161

163

164
164
164
164
164
164
165
165
165
165
166
166
167
167
169
172
175
178
178
180
182
182
182
183
184

Table of Contents

7

. .

. .

. .

25.6.1. Cache Container Configuration
25.6.2. Defining Protocol Buffer Schema
25.6.3. Transport Setting
25.6.4. Defining Thread Pools
25.6.5. Adding New Security Role
25.6.6. Creating Cache Configuration Template

25.7. CLUSTER ADMINISTRATION
25.7.1. Cluster Nodes View
25.7.2. Cluster Nodes Mismatch
25.7.3. Cluster Rebalancing
25.7.4. Cluster Partition Handling
25.7.5. Cluster Events
25.7.6. Adding Nodes
25.7.7. Node Statistics and Properties View
25.7.8. Node Performance Metrics View
25.7.9. Disabling a Node
25.7.10. Cluster Shutdown and Restart

25.7.10.1. Cluster Shutdown
25.7.10.2. Cluster Start

PART XIII. SECURING DATA IN RED HAT JBOSS DATA GRID

CHAPTER 26. INTRODUCTION
26.1. SECURING DATA IN RED HAT JBOSS DATA GRID

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION
27.1. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION
27.2. PERMISSIONS
27.3. ROLE MAPPING
27.4. CONFIGURING AUTHENTICATION AND ROLE MAPPING USING LOGIN MODULES
27.5. CONFIGURING RED HAT JBOSS DATA GRID FOR AUTHORIZATION
27.6. AUTHORIZATION USING A SECURITYMANAGER
27.7. SECURITYMANAGER IN JAVA

27.7.1. About the Java Security Manager
27.7.2. About Java Security Manager Policies
27.7.3. Write a Java Security Manager Policy
27.7.4. Run Red Hat JBoss Data Grid Server Within the Java Security Manager

27.8. DATA SECURITY FOR REMOTE CLIENT SERVER MODE
27.8.1. About Security Realms
27.8.2. Add a New Security Realm
27.8.3. Add a User to a Security Realm
27.8.4. Configuring Security Realms Declaratively
27.8.5. Loading Roles from LDAP for Authorization (Remote Client-Server Mode)

username-to-dn
The Group Search
General Group Searching

27.9. SECURING INTERFACES
27.9.1. Hot Rod Interface Security

27.9.1.1. Publish Hot Rod Endpoints as a Public Interface
27.9.1.2. Encryption of communication between Hot Rod Server and Hot Rod client
27.9.1.3. Securing Hot Rod to LDAP Server using SSL
27.9.1.4. User Authentication over Hot Rod Using SASL

27.9.1.4.1. User Authentication over Hot Rod Using SASL
27.9.1.4.2. Configure Hot Rod Authentication (GSSAPI/Kerberos)

184
185
186
187
190
191

193
193
194
194
198
199

200
203
203
204
205
205
206

208

209
209

210
210
210
212
213
214
215
217
217
217
218
219

220
220
220
221
221
222
223
224
226
227
227
227
228
229
229
229
230

Red Hat Data Grid 7.2 Administration and Configuration Guide

8

. .

. .

. .

. .

27.9.1.4.3. Configure Hot Rod Authentication (MD5)
27.9.1.4.4. Configure Hot Rod Using LDAP/Active Directory
27.9.1.4.5. Configure Hot Rod Authentication (X.509)

27.9.2. REST Interface Security
27.9.2.1. Publish REST Endpoints as a Public Interface
27.9.2.2. Enable Security for the REST Endpoint

27.9.3. Memcached Interface Security
27.9.3.1. Publish Memcached Endpoints as a Public Interface

27.10. ACTIVE DIRECTORY AUTHENTICATION (NON-KERBEROS)
27.11. ACTIVE DIRECTORY AUTHENTICATION USING KERBEROS (GSSAPI)
27.12. THE SECURITY AUDIT LOGGER

27.12.1. The Security Audit Logger
27.12.2. Configure the Security Audit Logger (Library Mode)
27.12.3. Configure the Security Audit Logger (Remote Client-Server Mode)
27.12.4. Custom Audit Loggers

CHAPTER 28. SECURITY FOR CLUSTER TRAFFIC
28.1. NODE AUTHENTICATION AND AUTHORIZATION (REMOTE CLIENT-SERVER MODE)

28.1.1. Node Authentication and Authorization (Remote Client-Server Mode)
28.1.2. Configure Node Authentication for Cluster Security (DIGEST-MD5)
28.1.3. Configure Node Authentication for Cluster Security (GSSAPI/Kerberos)

28.2. CONFIGURE NODE SECURITY IN LIBRARY MODE
28.2.1. Configure Node Security in Library Mode
28.2.2. Simple Authorizing Callback Handler
28.2.3. Configure Node Authentication for Library Mode (DIGEST-MD5)
28.2.4. Configure Node Authentication for Library Mode (GSSAPI)

28.3. JGROUPS ENCRYPTION
28.3.1. JGroups Encryption
28.3.2. Configuring JGroups Encryption Protocols
28.3.3. SYM_ENCRYPT: Using a Key Store
28.3.4. ASYM_ENCRYPT: Configured with Algorithms and Key Sizes
28.3.5. JGroups Encryption Configuration Parameters

PART XIV. COMMAND LINE TOOLS

CHAPTER 29. INTRODUCTION
29.1. COMMAND LINE TOOLS

CHAPTER 30. RED HAT JBOSS DATA GRID CLIS
30.1. JBOSS DATA GRID CLIS
30.2. RED HAT JBOSS DATA GRID LIBRARY MODE CLI

30.2.1. Red Hat JBoss Data Grid Library Mode CLI
30.2.2. Start the Library Mode CLI (Server)
30.2.3. Start the Library Mode CLI (Client)
30.2.4. CLI Client Switches for the Command Line
30.2.5. Connect to the Application

30.3. RED HAT JBOSS DATA GRID SERVER CLI
30.3.1. Red Hat Data Grid Server Mode CLI
30.3.2. Start the Server Mode CLI

30.4. CLI COMMANDS
30.4.1. CLI Commands
30.4.2. The abort Command
30.4.3. The begin Command
30.4.4. The cache Command

231
232
233
234
234
234
236
236
236
236
237
237
238
238
239

240
240
240
241
242
243
243
244
244
245
245
245
246
246
247
248

250

251
251

252
252
252
252
252
252
252
253
253
253
254
254
254
254
254
254

Table of Contents

9

. .

. .

. .

. .

30.4.5. The clearcache Command
30.4.6. The commit Command
30.4.7. The container Command
30.4.8. The create Command
30.4.9. The deny Command
30.4.10. The disconnect Command
30.4.11. The encoding Command
30.4.12. The end Command
30.4.13. The evict Command
30.4.14. The get Command
30.4.15. The grant Command
30.4.16. The info Command
30.4.17. The locate Command
30.4.18. The put Command
30.4.19. The replace Command
30.4.20. The roles command
30.4.21. The rollback Command
30.4.22. The site Command
30.4.23. The start Command
30.4.24. The stats Command
30.4.25. The upgrade Command
30.4.26. The version Command

PART XV. OTHER RED HAT JBOSS DATA GRID FUNCTIONS

CHAPTER 31. SET UP THE L1 CACHE
31.1. ABOUT THE L1 CACHE
31.2. L1 CACHE CONFIGURATION

31.2.1. L1 Cache Configuration (Library Mode)
31.2.2. L1 Cache Configuration (Remote Client-Server Mode)

CHAPTER 32. SET UP TRANSACTIONS
32.1. ABOUT TRANSACTIONS

32.1.1. About Transactions
32.1.2. About the Transaction Manager
32.1.3. XA Resources and Synchronizations
32.1.4. Optimistic and Pessimistic Transactions
32.1.5. Write Skew Checks
32.1.6. Transactions Spanning Multiple Cache Instances

32.2. CONFIGURE TRANSACTIONS
32.2.1. Configure Transactions (Library Mode)
32.2.2. Configure Transactions (Remote Client-Server Mode)

32.3. TRANSACTION RECOVERY
32.3.1. Transaction Recovery
32.3.2. Transaction Recovery Process
32.3.3. Transaction Recovery Example

32.4. DEADLOCK DETECTION
32.4.1. Deadlock Detection
32.4.2. Enable Deadlock Detection

CHAPTER 33. CONFIGURE JGROUPS
33.1. ABOUT JGROUPS
33.2. CONFIGURE RED HAT JBOSS DATA GRID INTERFACE BINDING (REMOTE CLIENT-SERVER MODE)

255
255
255
255
255
256
256
256
256
256
257
257
257
258
258
258
258
259
259
259
260
260

261

262
262
262
262
262

264
264
264
264
264
264
265
265
265
265
266
267
267
267
267
268
268
268

269
269

269

Red Hat Data Grid 7.2 Administration and Configuration Guide

10

. .

. .

. .

. .

33.2.1. Interfaces
33.2.2. Binding Sockets

33.2.2.1. Binding Sockets
33.2.2.2. Binding a Single Socket Example
33.2.2.3. Binding a Group of Sockets Example

33.2.3. Configure JGroups Socket Binding
33.3. CONFIGURE JGROUPS (LIBRARY MODE)

33.3.1. Configure JGroups for Clustered Modes
33.3.2. JGroups Transport Protocols

33.3.2.1. JGroups Transport Protocols
33.3.2.2. The UDP Transport Protocol
33.3.2.3. The TCP Transport Protocol
33.3.2.4. Using the TCPPing Protocol

33.3.3. Pre-Configured JGroups Files
33.3.3.1. Pre-Configured JGroups Files
33.3.3.2. default-jgroups-udp.xml
33.3.3.3. default-jgroups-tcp.xml
33.3.3.4. default-jgroups-ec2.xml
33.3.3.5. default-jgroups-google.xml
33.3.3.6. default-jgroups-kubernetes.xml

33.4. TEST MULTICAST USING JGROUPS
33.4.1. Test Multicast Using JGroups
33.4.2. Testing With Different Red Hat JBoss Data Grid Versions
33.4.3. Testing Multicast Using JGroups

CHAPTER 34. USE RED HAT JBOSS DATA GRID WITH AMAZON WEB SERVICES
34.1. THE S3_PING JGROUPS DISCOVERY PROTOCOL
34.2. S3_PING CONFIGURATION OPTIONS

34.2.1. S3_PING Configuration Options
34.2.2. Using Private S3 Buckets
34.2.3. Using Pre-Signed URLs

34.2.3.1. Using Pre-Signed URLs
34.2.3.2. Generating Pre-Signed URLs
34.2.3.3. Set Pre-Signed URLs Using the Command Line

34.2.4. Using Public S3 Buckets
34.3. UTILIZING AN ELASTIC IP ADDRESS

CHAPTER 35. USE RED HAT JBOSS DATA GRID WITH GOOGLE COMPUTE ENGINE
35.1. THE GOOGLE_PING PROTOCOL
35.2. GOOGLE_PING CONFIGURATION

35.2.1. GOOGLE_PING Configuration
35.2.2. Starting the Server in Google Compute Engine

35.3. UTILIZING A STATIC IP ADDRESS

CHAPTER 36. HIGH AVAILABILITY USING SERVER HINTING
36.1. SERVER HINTING
36.2. ESTABLISHING SERVER HINTING WITH JGROUPS
36.3. CONFIGURING SERVER HINTING

CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION
37.1. CROSS-DATACENTER REPLICATION
37.2. CROSS-DATACENTER REPLICATION OPERATIONS
37.3. CONFIGURE CROSS-DATACENTER REPLICATION

37.3.1. Configure Cross-Datacenter Replication (Remote Client-Server Mode)

269
270
270
270
270
270
272
272
272
272
272
273
273
273
273
273
274
275
276
277
278
278
278
282

284
284
284
284
284
285
285
285
286
287
287

288
288
288
288
288
289

290
290
290
290

292
292
292
294
294

Table of Contents

11

. .

. .

. .

37.3.2. Configure Cross-Datacenter Replication (Library Mode)
37.3.2.1. Configure Cross-Datacenter Replication Declaratively

37.4. TAKING A SITE OFFLINE
37.4.1. Taking a Site Offline
37.4.2. Taking a Site Offline
37.4.3. Taking a Site Offline via JBoss Operations Network (JON)
37.4.4. Taking a Site Offline via the CLI
37.4.5. Bring a Site Back Online

37.5. STATE TRANSFER BETWEEN SITES
37.5.1. State Transfer Between Sites
37.5.2. Active-Passive State Transfer
37.5.3. Active-Active State Transfer
37.5.4. State Transfer Configuration

37.6. CONFIGURE MULTIPLE SITE MASTERS
37.6.1. Configure Multiple Site Masters
37.6.2. Multiple Site Master Operations
37.6.3. Configure Multiple Site Masters (Remote Client-Server Mode)
37.6.4. Configure Multiple Site Masters (Library Mode)

37.7. CROSS-DATACENTER REPLICATION CONCERNS

CHAPTER 38. ROLLING UPGRADES
38.1. PERFORMING ROLLING UPGRADES

38.1.1. Setting Up the Target Cluster
38.1.2. Migrating Data to the Target Cluster
38.1.3. Finalizing Rolling Upgrades

CHAPTER 39. EXTERNALIZE SESSIONS
39.1. EXTERNALIZE SESSIONS
39.2. EXTERNALIZE HTTP SESSION FROM JBOSS EAP TO JBOSS DATA GRID
39.3. EXTERNALIZE HTTP SESSIONS FROM JBOSS WEB SERVER (JWS) TO JBOSS DATA GRID

39.3.1. Externalize HTTP Session from JBoss Web Server (JWS) to JBoss Data Grid
39.3.2. Prerequisites
39.3.3. Installation
39.3.4. Session Management Details
39.3.5. Configure the JBoss Web Server Session Manager

CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT BRAIN)
40.1. NETWORK PARTITION RECOVERY
40.2. DETECTING AND RECOVERING FROM A SPLIT-BRAIN PROBLEM
40.3. PARTITION HANDLING STRATEGIES

40.3.1. ALLOW_READ_WRITES
40.3.2. DENY_READ_WRITES

40.3.2.1. Partition Recovery Example with DENY_READ_WRITE
40.3.3. ALLOW_READS

40.4. DETECTING AND RECOVERING FROM SUCCESSIVE NODE FAILURES
40.5. CONFLICT MANAGER

40.5.1. Detecting Conflicts
40.5.2. Merge Policies

40.6. SPLIT BRAIN TIMING: DETECTING A SPLIT
40.7. SPLIT BRAIN TIMING: RECOVERING FROM A SPLIT

40.7.1. Considerations with Garbage Collection
40.8. CONFIGURING PARTITION HANDLING

40.8.1. Example Configurations
40.8.2. Configuration of Partition Handling Between Releases

295
295
297
297
298
298
298
299
299
299
300
301
302
302
302
302
302
303
303

305
305
305
306
307

308
308
308
309
309
310
310
310
310

313
313
314
314
314
314
315
317
317
318
318
318
319
319

320
320
320
321

Red Hat Data Grid 7.2 Administration and Configuration Guide

12

. .

. .

. .

. .

. .

. .

. .

40.8.2.1. No Partition Handling Configuration or Partition Handling Disabled
40.8.2.2. Partition Handling Enabled

40.9. CREATING CUSTOM MERGE POLICIES
40.9.1. Specifying Custom Merge Policies

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID
A.1. SUPPORTED JGROUPS PROTOCOLS
A.2. TCP DEFAULT AND RECOMMENDED VALUES
A.3. UDP DEFAULT AND RECOMMENDED VALUES
A.4. THE TCPGOSSIP JGROUPS PROTOCOL
A.5. TCPGOSSIP CONFIGURATION OPTIONS
A.6. JBOSS DATA GRID JGROUPS CONFIGURATION FILES

APPENDIX B. HOTROD.PROPERTIES
B.1. HOTROD.PROPERTIES

APPENDIX C. CONNECTING WITH JCONSOLE
C.1. CONNECT TO JDG VIA JCONSOLE

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID
D.1. ACTIVATION
D.2. CACHE
D.3. CACHECONTAINERSTATS
D.4. CACHELOADER
D.5. CACHEMANAGER
D.6. CACHESTORE
D.7. CLUSTERCACHESTATS
D.8. CLUSTERCONTAINERSTATS
D.9. DEADLOCKDETECTINGLOCKMANAGER
D.10. DISTRIBUTIONMANAGER
D.11. INTERPRETER
D.12. INVALIDATION
D.13. LOCKMANAGER
D.14. LOCALTOPOLOGYMANAGER
D.15. MASSINDEXER
D.16. PASSIVATION
D.17. RECOVERYADMIN
D.18. ROLLINGUPGRADEMANAGER
D.19. RPCMANAGER
D.20. STATETRANSFERMANAGER
D.21. STATISTICS
D.22. TRANSACTIONS
D.23. TRANSPORT
D.24. XSITEADMIN

APPENDIX E. CONFIGURATION RECOMMENDATIONS
E.1. TIMEOUT VALUES

APPENDIX F. PERFORMANCE RECOMMENDATIONS
F.1. CONCURRENT STARTUP FOR LARGE CLUSTERS

APPENDIX G. REFERENCES
G.1. ABOUT CONSISTENCY
G.2. ABOUT CONSISTENCY GUARANTEE
G.3. ABOUT JBOSS CACHE

321
321
321

322

324
324
329
335
342
343
343

344
344

347
347

351
351
351
352
354
355
357
357
360
361

362
363
363
364
364
365
365
366
367
367
368
369
371
372
373

375
375

376
376

377
377
377
377

Table of Contents

13

G.4. ABOUT RELAY2
G.5. ABOUT RETURN VALUES
G.6. ABOUT RUNNABLE INTERFACES
G.7. ABOUT TWO PHASE COMMIT (2PC)
G.8. ABOUT KEY-VALUE PAIRS
G.9. REQUESTING A FULL BYTE ARRAY

377
377
378
378
378
378

Red Hat Data Grid 7.2 Administration and Configuration Guide

14

Table of Contents

15

PART I. INTRODUCTION

Red Hat Data Grid 7.2 Administration and Configuration Guide

16

CHAPTER 1. SETTING UP RED HAT JBOSS DATA GRID

1.1. PREREQUISITES

The only prerequisites to set up Red Hat JBoss Data Grid is a Java Virtual Machine and that the most
recent supported version of the product is installed on your system.

1.2. STEPS TO SET UP RED HAT JBOSS DATA GRID

The following steps outline the necessary (and optional, where stated) steps for a first time basic
configuration of Red Hat JBoss Data Grid. It is recommended that the steps are followed in the order
specified and not skipped unless they are identified as optional steps.

Set Up JBoss Data Grid

1. Set Up the Cache Manager
The foundation of a JBoss Data Grid configuration is a cache manager. Cache managers can
retrieve cache instances and create cache instances quickly and easily using previously specified
configuration templates. For details about setting up a cache manager, refer to the Cache
Manager section in the JBoss Data Grid Getting Started Guide .

2. Set Up JVM Memory Management
An important step in configuring your JBoss Data Grid is to set up memory management for
your Java Virtual Machine (JVM). JBoss Data Grid offers features such as eviction and
expiration to help manage the JVM memory.

a. Set Up Eviction
Use eviction to specify the logic used to remove entries from the in-memory cache
implementation based on how often they are used. JBoss Data Grid offers different eviction
strategies for finer control over entry eviction in your data grid. Eviction strategies and
instructions to configure them are available in Configuring Eviction.

b. Set Up Expiration
To set upper limits to an entry’s time in the cache, attach expiration information to each
entry. Use expiration to set up the maximum period an entry is allowed to remain in the
cache and how long the retrieved entry can remain idle before being removed from the
cache. For details, see Configuring Expiration.

3. Monitor Your Cache
JBoss Data Grid uses logging via JBossLogging to help users monitor their caches.

a. Set Up Logging
It is not mandatory to set up logging for your JBoss Data Grid, but it is highly recommended.
JBoss Data Grid uses JBossLogging, which allows the user to easily set up automated
logging for operations in the data grid. Logs can subsequently be used to troubleshoot
errors and identify the cause of an unexpected failure. For details, see Set Up Logging.

4. Set Up Cache Modes
Cache modes are used to specify whether a cache is local (simple, in-memory cache) or a
clustered cache (replicates state changes over a small subset of nodes). Additionally, if a cache
is clustered, either replication, distribution or invalidation mode must be applied to determine
how the changes propagate across the subset of nodes. For details, see Set Up Cache Modes.

5. Set Up Locking for the Cache

CHAPTER 1. SETTING UP RED HAT JBOSS DATA GRID

17

When replication or distribution is in effect, copies of entries are accessible across multiple
nodes. As a result, copies of the data can be accessed or modified concurrently by different
threads. To maintain consistency for all copies across nodes, configure locking. For details, see
Set Up Locking for the Cache and Set Up Isolation Levels.

6. Set Up and Configure a Cache Store
JBoss Data Grid offers the passivation feature (or cache writing strategies if passivation is
turned off) to temporarily store entries removed from memory in a persistent, external cache
store. To set up passivation or a cache writing strategy, you must first set up a cache store.

a. Set Up a Cache Store
The cache store serves as a connection to the persistent store. Cache stores are primarily
used to fetch entries from the persistent store and to push changes back to the persistent
store. For details, see Set Up and Configure a Cache Store .

b. Set Up Passivation
Passivation stores entries evicted from memory in a cache store. This feature allows entries
to remain available despite not being present in memory and prevents potentially expensive
write operations to the persistent cache. For details, see Set Up Passivation.

c. Set Up a Cache Writing Strategy
If passivation is disabled, every attempt to write to the cache results in writing to the cache
store. This is the default Write-Through cache writing strategy. Set the cache writing
strategy to determine whether these cache store writes occur synchronously or
asynchronously. For details, see Set Up Cache Writing .

7. Monitor Caches and Cache Managers
JBoss Data Grid includes three primary tools to monitor the cache and cache managers once
the data grid is up and running.

a. Set Up JMX
JMX is the standard statistics and management tool used for JBoss Data Grid. Depending
on the use case, JMX can be configured at a cache level or a cache manager level or both.
For details, see Set Up Java Management Extensions (JMX) .

b. Access the Administration Console
Red Hat JBoss Data Grid 7.2.1 introduces an Administration Console, allowing for web-
based monitoring and management of caches and cache managers. For usage details refer
to Red Hat JBoss Data Grid Administration Console Getting Started .

c. Set Up Red Hat JBoss Operations Network (JON)
Red Hat JBoss Operations Network (JON) is the second monitoring solution available for
JBoss Data Grid. JBoss Operations Network (JON) offers a graphical interface to monitor
runtime parameters and statistics for caches and cache managers. For details, see Set Up
Jboss Operations Network(JON).

NOTE

The JON plugin has been deprecated in JBoss Data Grid 7.2 and is expected
to be removed in a subsequent version.

8. Introduce Topology Information
Optionally, introduce topology information to your data grid to specify where specific types of
information or objects in your data grid are located. Server hinting is one of the ways to
introduce topology information in JBoss Data Grid.

Red Hat Data Grid 7.2 Administration and Configuration Guide

18

a. Set Up Server Hinting
When set up, server hinting provides high availability by ensuring that the original and
backup copies of data are not stored on the same physical server, rack or data center. This
is optional in cases such as a replicated cache, where all data is backed up on all servers,
racks and data centers. For details, see High Availability Using Server Hinting .

The subsequent chapters detail each of these steps towards setting up a standard JBoss Data Grid
configuration.

CHAPTER 1. SETTING UP RED HAT JBOSS DATA GRID

19

PART II. MANAGING JVM MEMORY

Red Hat Data Grid 7.2 Administration and Configuration Guide

20

CHAPTER 2. EVICTION AND EXPIRATION
Eviction and expiration are strategies for preventing OutOfMemoryError exceptions in the Java heap
space. In other words, eviction and expiration ensure that Red Hat JBoss Data Grid does not run out of
memory.

2.1. OVERVIEW OF EVICTION AND EXPIRATION

Eviction

Removes unused entries from memory after the number of entries in the cache reaches a
maximum limit.

The operation is local to a single cache instance. It removes entries from memory only.

Executes each time an entry is added or updated in the cache.

Expiration

Removes entries from memory after a certain amount of time.

The operation is cluster-wide. It removes entries from memory across all cache instances and
also removes entries from the cache store.

Expiration operations are processed by threads that you can configure with the
ExpirationManager interface.

2.2. CONFIGURING EVICTION

You configure Red Hat JBoss Data Grid to perform eviction with the <memory /> element in your
cache configuration. Alternatively, you can use the MemoryConfigurationBuilder class to configure
eviction programmatically.

2.2.1. Eviction Types

Eviction types define the maximum limit for entries in the cache.

COUNT

Measures the number of entries in the cache. When the count exceeds the maximum, JBoss Data
Grid evicts unused entries.

MEMORY

Measures the amount of memory that all entries in the cache take up. When the total amount of
memory exceeds the maximum, JBoss Data Grid evicts unused entries.

2.2.2. Storage Types

Storage types define how JBoss Data Grid stores entries in the cache.

Storage Type Description Eviction Type Policy

CHAPTER 2. EVICTION AND EXPIRATION

21

OBJECT Stores entries as objects
in the Java heap. This is
the default storage
type.

COUNT TinyLFU

BINARY Stores entries as
bytes[] in the Java
heap.

COUNT or MEMORY TinyLFU

OFFHEAP Stores entries as
bytes[] in native
memory outside the
Java.

COUNT or MEMORY LRU

Storage Type Description Eviction Type Policy

IMPORTANT

The BINARY and OFF-HEAP storage types both violate object equality. This occurs
because equality is determined by the equivalence of the resulting bytes[] that the
storage types generate instead of the object instances.

NOTE

Red Hat JBoss Data Grid includes the Caffeine caching library that implements a
variation of the Least Frequently Used (LFU) cache replacement algorithm known as
TinyLFU. For OFFHEAP JBoss Data Grid uses a custom implementation of the Least
Recently Used (LRU) algorithm.

2.2.3. Adding the Memory Element

The <memory> element controls how Red Hat JBoss Data Grid stores entries in memory.

For example, as a starting point to configure eviction for a standalone cache, add the <memory>
element as follows:

2.2.4. Specifying the Storage Type

Define the storage type as a child element under <memory>, as follows:

OBJECT

<local-cache ...>
 <memory>
 </memory>
</local-cache>

<memory>
 <object/>
</memory>

Red Hat Data Grid 7.2 Administration and Configuration Guide

22

BINARY

OFFHEAP

2.2.5. Specifying the Eviction Type

Include the eviction attribute with the value set to COUNT or MEMORY.

OBJECT

TIP

The OBJECT storage type supports COUNT only so you do not need to explicitly set the eviction
type.

BINARY

OFFHEAP

2.2.6. Setting the Cache Size

Include the size attribute with a value set to a number greater than zero.

For COUNT, the size attribute sets the maximum number of entries the cache can hold before
eviction starts.

For MEMORY, the size attribute sets the maximum number of bytes the cache can take from
memory before eviction starts. For example, a value of 10000000000 is 10 GB.

</memory>

<memory>
 <binary/>
</memory>

<memory>
 <offheap/>
</memory>

<memory>
 <object/>
</memory>

<memory>
 <binary eviction="COUNT"/>
</memory>

<memory>
 <offheap eviction="MEMORY"/>
</memory>

CHAPTER 2. EVICTION AND EXPIRATION

23

TIP

Try different cache sizes to determine the optimal setting. A cache size that is too large can cause Red
Hat JBoss Data Grid to run out of memory. At the same time, a cache size that is too small wastes
available memory.

OBJECT

BINARY

OFFHEAP

2.2.7. Tuning the Off Heap Configuration

Include the address-count attribute when using OFFHEAP storage to prevent collisions that might
decrease performance. This attribute specifies the number of pointers that are available in the hash
map.

Set the value of the address-count attribute to a number that is greater than the number of cache
entries. By default address-count is 2^20, or 1048576. The parameter is always rounded up to a power
of 2.

2.2.8. Setting the Eviction Strategy

Eviction strategies control how Red Hat JBoss Data Grid performs eviction. You set eviction strategies
with the strategy attribute.

The default strategy is NONE, which disables eviction unless you explicitly configure it. For example,
here are two configurations that have the same effect:

<memory>
 <object size="100000"/>
</memory>

<memory>
 <binary eviction="COUNT" size="100000"/>
</memory>

<memory>
 <offheap eviction="MEMORY" size="10000000000"/>
</memory>

<memory>
 <offheap eviction="MEMORY" size="10000000000" address-count="1048576"/>
</memory>

<memory/>

<memory>
 <object strategy="NONE"/>
</memory>

Red Hat Data Grid 7.2 Administration and Configuration Guide

24

When you configure eviction, you implicitly use the REMOVE strategy. For example, the following two
configurations have the same effect:

2.2.8.1. Eviction Strategies

Strategy Description

NONE JBoss Data Grid does not evict entries. This is the
default setting unless you configure eviction.

REMOVE JBoss Data Grid removes entries from memory so
that the cache does not exceed the configured size.
This is the default setting when you configure
eviction.

MANUAL JBoss Data Grid does not perform eviction. Eviction
takes place manually by invoking the evict() method
from the Cache API.

EXCEPTION JBoss Data Grid does not write new entries to the
cache if doing so would exceed the configured size.
Instead of writing new entries to the cache, JBoss
Data Grid throws a ContainerFullException.

2.2.9. Configuring Passivation

Passivation configures Red Hat JBoss Data Grid to write entries to a persistent cache store when it
removes those entries from memory. In this way, passivation ensures that only a single copy of an entry is
maintained, either in-memory or in a cache store but not both.

For more information, see Setting Up Passivation.

2.3. CONFIGURING EXPIRATION

You configure Red Hat JBoss Data Grid to perform expiration at either the entry or cache level.

If you configure expiration for the cache, all entries in that cache inherit that configuration. However,
configuring expiration for specific entries takes precedence over configuration for the cache.

You configure expiration for a cache with the <expiration /> element. Alternatively, you can use the
ExpirationConfigurationBuilder class to programmatically configure expiration for a cache.

You configure expiration for specific entries with the Cache API.

<memory>
 <object/>
</memory>

<memory>
 <object strategy="REMOVE"/>
</memory>

CHAPTER 2. EVICTION AND EXPIRATION

25

2.3.1. Expiration Parameters

Expiration parameters configure the amount of time entries can remain in the cache.

lifespan

Specifies how long entries can remain in the cache before they expire. The default value is -1, which
is unlimited time.

max-idle

Specifies how long entries can remain idle before they expire. An entry in the cache is idle when no
operation is performed with the key. The default value is -1, which is unlimited time.

interval

Specifies the amount of time between expiration operations. The default value is 60000.

NOTE

While expiration parameters, lifespan and max-idle, are replicated across the cluster,
only the value of the lifespan parameter is replicated along with cache entries. For this
reason, you should not use the max-idle parameter with clustered caches. For more
information on the limitations of using max-idle in clusters, see Red Hat knowledgebase
workaround.

2.3.2. Configuring Expiration

Configure Red Hat JBoss Data Grid to perform expiration for a cache as follows:

1. Add the <expiration /> element

2. Configure the lifespan attribute.
Specify the amount of time, in milliseconds, that an entry can remain in memory as the value, for
example:

3. Configure the max-idle attribute.
Specify the amount of time, in milliseconds, that an entry can remain idle as the value, for
example:

4. Configure the interval attribute.
Specify the amount of time, in milliseconds, that Red Hat JBoss Data Grid waits between
expiration operations, for example:

TIP

Set a value of -1 to disable periodic expiration.

<expiration />

<expiration lifespan="1000" />

<expiration lifespan="1000" max-idle="1000" />

<expiration lifespan="1000" max-idle="1000" interval="120000" />

Red Hat Data Grid 7.2 Administration and Configuration Guide

26

https://access.redhat.com/solutions/3386951

2.3.3. Expiration Behavior

Red Hat JBoss Data Grid cannot always expire entries immediately when they reach the time limit.
Instead, JBoss Data Grid marks entries as expired and removes them when:

Writing entries to the cache store.

The maintenance thread that processes expiration identifies entries as expired.

This behavior might indicate that JBoss Data Grid is not performing expiration as expected. However it
is the case that the entries are marked as expired but not yet removed from either the memory or the
cache store.

To ensure that users cannot receive expired entries, JBoss Data Grid returns null values for entries that
are marked as expired but not yet removed.

CHAPTER 2. EVICTION AND EXPIRATION

27

PART III. MONITORING YOUR CACHE

Red Hat Data Grid 7.2 Administration and Configuration Guide

28

CHAPTER 3. SET UP LOGGING

3.1. ABOUT LOGGING

Red Hat JBoss Data Grid provides highly configurable logging facilities for both its own internal use and
for use by deployed applications. The logging subsystem is based on JBossLogManager and it supports
several third party application logging frameworks in addition to JBossLogging.

The logging subsystem is configured using a system of log categories and log handlers. Log categories
define what messages to capture, and log handlers define how to deal with those messages (write to
disk, send to console, etc).

After a JBoss Data Grid cache is configured with operations such as eviction and expiration, logging
tracks relevant activity (including errors or failures).

When set up correctly, logging provides a detailed account of what occurred in the environment and
when. Logging also helps track activity that occurred just before a crash or problem in the environment.
This information is useful when troubleshooting or when attempting to identify the source of a crash or
error.

3.2. SUPPORTED APPLICATION LOGGING FRAMEWORKS

3.2.1. Supported Application Logging Frameworks

Red Hat JBoss LogManager supports the following logging frameworks:

JBoss Logging, which is included with Red Hat JBoss Data Grid 7.

Apache Commons Logging

Simple Logging Facade for Java (SLF4J)

Apache log4j

Java SE Logging (java.util.logging)

3.2.2. About JBoss Logging

JBoss Logging is the application logging framework that is included in JBoss Enterprise Application
Platform 7. As a result of this inclusion, Red Hat JBoss Data Grid 7 also uses JBoss Logging.

JBoss Logging provides an easy way to add logging to an application. Add code to the application that
uses the framework to send log messages in a defined format. When the application is deployed to an
application server, these messages can be captured by the server and displayed and/or written to file
according to the server’s configuration.

3.2.3. JBoss Logging Features

JBossLogging includes the following features:

Provides an innovative, easy to use typed logger.

Full support for internationalization and localization. Translators work with message bundles in
properties files while developers can work with interfaces and annotations.

CHAPTER 3. SET UP LOGGING

29

http://commons.apache.org/logging/
http://www.slf4j.org/
http://logging.apache.org/log4j/1.2/
http://download.oracle.com/javase/6/docs/api/java/util/logging/package-summary.html

Build-time tooling to generate typed loggers for production, and runtime generation of typed
loggers for development.

3.3. BOOT LOGGING

3.3.1. Boot Logging

The boot log is the record of events that occur while the server is starting up (or booting). Red Hat
JBoss Data Grid also includes a server log, which includes log entries generated after the server
concludes the boot process.

3.3.2. Configure Boot Logging

Edit the logging.properties file to configure the boot log. This file is a standard Java properties file and
can be edited in a text editor. Each line in the file has the format of property=value.

In Red Hat JBoss Data Grid, the logging.properties file is available in the
$JDG_HOME/standalone/configuration folder.

3.3.3. Default Log File Locations

The following table provides a list of log files in Red Hat JBoss Data Grid and their locations:

Table 3.1. Default Log File Locations

Log File Location Description

boot.log $JDG_HOME/standalone/log/ The Server Boot Log. Contains
log messages related to the start
up of the server.

By default this file is prepended to
the server.log . This file may be
created independently of the
server.log by defining the
org.jboss.boot.log property in
logging.properties .

server.log $JDG_HOME/standalone/log/ The Server Log. Contains all log
messages once the server has
launched.

3.4. LOGGING ATTRIBUTES

3.4.1. About Log Levels

Log levels are an ordered set of enumerated values that indicate the nature and severity of a log
message. The level of a given log message is specified by the developer using the appropriate methods
of their chosen logging framework to send the message.

Red Hat JBoss Data Grid supports all the log levels used by the supported application logging
frameworks. The six most commonly used log levels are (ordered by lowest to highest severity):

Red Hat Data Grid 7.2 Administration and Configuration Guide

30

1. TRACE

2. DEBUG

3. INFO

4. WARN

5. ERROR

6. FATAL

Log levels are used by log categories and handlers to limit the messages they are responsible for. Each
log level has an assigned numeric value which indicates its order relative to other log levels. Log
categories and handlers are assigned a log level and they only process log messages of that numeric
value or higher. For example a log handler with the level of WARN will only record messages of the
levels WARN, ERROR and FATAL.

3.4.2. Supported Log Levels

The following table lists log levels that are supported in Red Hat JBoss Data Grid. Each entry includes
the log level, its value and description. The log level values indicate each log level’s relative value to
other log levels. Additionally, log levels in different frameworks may be named differently, but have a log
value consistent to the provided list.

Table 3.2. Supported Log Levels

Log Level Value Description

FINEST 300 -

FINER 400 -

TRACE 400 Used for messages that provide
detailed information about the
running state of an application.
TRACE level log messages are
captured when the server runs
with the TRACE level enabled.

DEBUG 500 Used for messages that indicate
the progress of individual
requests or activities of an
application. DEBUG level log
messages are captured when the
server runs with the DEBUG level
enabled.

FINE 500 -

CONFIG 700 -

CHAPTER 3. SET UP LOGGING

31

INFO 800 Used for messages that indicate
the overall progress of the
application. Used for application
start up, shut down and other
major lifecycle events.

WARN 900 Used to indicate a situation that is
not in error but is not considered
ideal. Indicates circumstances
that can lead to errors in the
future.

WARNING 900 -

ERROR 1000 Used to indicate an error that has
occurred that could prevent the
current activity or request from
completing but will not prevent
the application from running.

SEVERE 1000 -

FATAL 1100 Used to indicate events that
could cause critical service failure
and application shutdown and
possibly cause JBoss Data Grid to
shut down.

Log Level Value Description

3.4.3. About Log Categories

Log categories define a set of log messages to capture and one or more log handlers which will process
the messages.

The log messages to capture are defined by their Java package of origin and log level. Messages from
classes in that package and of that log level or higher (with greater or equal numeric value) are captured
by the log category and sent to the specified log handlers. As an example, the WARNING log level
results in log values of 900, 1000 and 1100 are captured.

Log categories can optionally use the log handlers of the root logger instead of their own handlers.

3.4.4. About the Root Logger

The root logger captures all log messages sent to the server (of a specified level) that are not captured
by a log category. These messages are then sent to one or more log handlers.

By default the root logger is configured to use a console and a periodic log handler. The periodic log
handler is configured to write to the file server.log . This file is sometimes referred to as the server log.

Red Hat Data Grid 7.2 Administration and Configuration Guide

32

3.4.5. About Log Handlers

Log handlers define how captured log messages are recorded by Red Hat JBoss Data Grid. The six
types of log handlers configurable in JBoss Data Grid are:

Console

File

Periodic

Size

Async

Custom

Log handlers direct specified log objects to a variety of outputs (including the console or specified log
files). Some log handlers used in JBoss Data Grid are wrapper log handlers, used to direct other log
handlers' behavior.

Log handlers are used to direct log outputs to specific files for easier sorting or to write logs for specific
intervals of time. They are primarily useful to specify the kind of logs required and where they are stored
or displayed or the logging behavior in JBoss Data Grid.

3.4.6. Log Handler Types

The following table lists the different types of log handlers available in Red Hat JBoss Data Grid:

Table 3.3. Log Handler Types

Log Handler Type Description Use Case

Console Console log handlers write log
messages to either the host
operating system’s standard out
(stdout) or standard error
(stderr) stream. These messages
are displayed when JBoss Data
Grid is run from a command line
prompt.

The Console log handler is
preferred when JBoss Data Grid
is administered using the
command line. In such a case, the
messages from a Console log
handler are not saved unless the
operating system is configured to
capture the standard out or
standard error stream.

File File log handlers are the simplest
log handlers. Their primary use is
to write log messages to a
specified file.

File log handlers are most useful if
the requirement is to store all log
entries according to the time in
one place.

CHAPTER 3. SET UP LOGGING

33

Periodic Periodic file handlers write log
messages to a named file until a
specified period of time has
elapsed. Once the time period has
elapsed, the specified time stamp
is appended to the file name. The
handler then continues to write
into the newly created log file with
the original name.

The Periodic file handler can be
used to accumulate log messages
on a weekly, daily, hourly or other
basis depending on the
requirements of the environment.

Size Size log handlers write log
messages to a named file until the
file reaches a specified size. When
the file reaches a specified size, it
is renamed with a numeric prefix
and the handler continues to write
into a newly created log file with
the original name. Each size log
handler must specify the
maximum number of files to be
kept in this fashion.

The Size handler is best suited to
an environment where the log file
size must be consistent.

Async Async log handlers are wrapper
log handlers that provide
asynchronous behavior for one or
more other log handlers. These
are useful for log handlers that
have high latency or other
performance problems such as
writing a log file to a network file
system.

The Async log handlers are best
suited to an environment where
high latency is a problem or when
writing to a network file system.

Custom Custom log handlers enable to
you to configure new types of log
handlers that have been
implemented. A custom handler
must be implemented as a Java
class that extends
java.util.logging.Handler and
be contained in a module.

Custom log handlers create
customized log handler types and
are recommended for advanced
users.

Log Handler Type Description Use Case

3.4.7. Selecting Log Handlers

The following are the most common uses for each of the log handler types available for Red Hat JBoss
Data Grid:

The Console log handler is preferred when JBoss Data Grid is administered using the command
line. In such a case, errors and log messages appear on the console window and are not saved
unless separately configured to do so.

Red Hat Data Grid 7.2 Administration and Configuration Guide

34

The File log handler is used to direct log entries into a specified file. This simplicity is useful if
the requirement is to store all log entries according to the time in one place.

The Periodic log handler is similar to the File handler but creates files according to the
specified period. As an example, this handler can be used to accumulate log messages on a
weekly, daily, hourly or other basis depending on the requirements of the environment.

The Size log handler also writes log messages to a specified file, but only while the log file size is
within a specified limit. Once the file size reaches the specified limit, log files are written to a new
log file. This handler is best suited to an environment where the log file size must be consistent.

The Async log handler is a wrapper that forces other log handlers to operate asynchronously.
This is best suited to an environment where high latency is a problem or when writing to a
network file system.

The Custom log handler creates new, customized types of log handlers. This is an advanced log
handler.

3.4.8. About Log Formatters

A log formatter is the configuration property of a log handler. The log formatter defines the appearance
of log messages that originate from the relevant log handler. The log formatter is a string that uses the
same syntax as the java.util.Formatter class.

See http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html for more information.

3.5. LOGGING SAMPLE CONFIGURATIONS

3.5.1. Logging Sample Configuration Location

All of the sample configurations presented in this section should be placed inside the server’s
configuration file, typically either standalone.xml or clustered.xml for standalone instances, or
domain.xml for managed domain instances.

3.5.2. Sample XML Configuration for the Root Logger

The following procedure demonstrates a sample configuration for the root logger.

Procedure: Configure the Root Logger

1. The level property sets the maximum level of log message that the root logger records.

<subsystem xmlns="urn:jboss:domain:logging:3.0">
 <root-logger>
 <level name="INFO"/>

2. handlers is a list of log handlers that are used by the root logger.

<subsystem xmlns="urn:jboss:domain:logging:3.0">
 <root-logger>
 <level name="INFO"/>
 <handlers>
 <handler name="CONSOLE"/>
 <handler name="FILE"/>

CHAPTER 3. SET UP LOGGING

35

http://docs.oracle.com/javase/6/docs/api/java/util/Formatter.html

 </handlers>
 </root-logger>
 </subsystem>

3.5.3. Sample XML Configuration for a Log Category

The following procedure demonstrates a sample configuration for a log category.

Configure a Log Category

<subsystem xmlns="urn:jboss:domain:logging:3.0">
 <logger category="com.company.accounts.rec" use-parent-handlers="true">
 <level name="WARN"/>
 <handlers>
 <handler name="accounts-rec"/>
 </handlers>
 </logger>
</subsystem>

1. Use the category property to specify the log category from which log messages will be
captured.
The use-parent-handlers is set to "true" by default. When set to "true", this category will use
the log handlers of the root logger in addition to any other assigned handlers.

2. Use the level property to set the maximum level of log message that the log category records.

3. The handlers element contains a list of log handlers.

3.5.4. Sample XML Configuration for a Console Log Handler

The following procedure demonstrates a sample configuration for a console log handler.

Configure the Console Log Handler

<subsystem xmlns="urn:jboss:domain:logging:3.0">
 <console-handler name="CONSOLE" autoflush="true">
 <level name="INFO"/>
 <encoding value="UTF-8"/>
 <target name="System.out"/>
 <filter-spec value="not(match("JBAS.*"))"/>
 <formatter>
 <pattern-formatter pattern="%K{level}%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/>
 </formatter>
 </console-handler>
</subsystem>

1. Add the Log Handler Identifier Information
The name property sets the unique identifier for this log handler.

When autoflush is set to "true" the log messages will be sent to the handler’s target
immediately upon request.

2. Set the level Property
The level property sets the maximum level of log messages recorded.

Red Hat Data Grid 7.2 Administration and Configuration Guide

36

3. Set the encoding Output
Use encoding to set the character encoding scheme to be used for the output.

4. Define the target Value
The target property defines the system output stream where the output of the log handler
goes. This can be System.err for the system error stream, or System.out for the standard out
stream.

5. Define the filter-spec Property
The filter-spec property is an expression value that defines a filter. The example provided
defines a filter that does not match a pattern: not(match("JBAS.*")).

6. Specify the formatter
Use formatter to list the log formatter used by the log handler.

3.5.5. Sample XML Configuration for a File Log Handler

The following procedure demonstrates a sample configuration for a file log handler.

Configure the File Log Handler

<file-handler name="accounts-rec-trail" autoflush="true">
 <level name="INFO"/>
 <encoding value="UTF-8"/>
 <file relative-to="jboss.server.log.dir" path="accounts-rec-trail.log"/>
 <formatter>
 <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/>
 </formatter>
 <append value="true"/>
</file-handler>

1. Add the File Log Handler Identifier Information
The name property sets the unique identifier for this log handler.

When autoflush is set to "true" the log messages will be sent to the handler’s target
immediately upon request.

2. Set the level Property
The level property sets the maximum level of log message that the root logger records.

3. Set the encoding Output
Use encoding to set the character encoding scheme to be used for the output.

4. Set the file Object
The file object represents the file where the output of this log handler is written to. It has two
configuration properties: relative-to and path.

The relative-to property is the directory where the log file is written to. JBoss Enterprise
Application Platform 6 file path variables can be specified here. The jboss.server.log.dir
variable points to the log/ directory of the server.

The path property is the name of the file where the log messages will be written. It is a relative
path name that is appended to the value of the relative-to property to determine the complete
path.

CHAPTER 3. SET UP LOGGING

37

5. Specify the formatter
Use formatter to list the log formatter used by the log handler.

6. Set the append Property
When the append property is set to "true", all messages written by this handler will be
appended to an existing file. If set to "false" a new file will be created each time the application
server launches. Changes to append require a server reboot to take effect.

3.5.6. Sample XML Configuration for a Periodic Log Handler

The following procedure demonstrates a sample configuration for a periodic log handler.

Configure the Periodic Log Handler

<periodic-rotating-file-handler name="FILE" autoflush="true">
 <level name="INFO"/>
 <encoding value="UTF-8"/>
 <formatter>
 <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/>
 </formatter>
 <file relative-to="jboss.server.log.dir" path="server.log"/>
 <suffix value=".yyyy-MM-dd"/>
 <append value="true"/>
</periodic-rotating-file-handler>

1. Add the Periodic Log Handler Identifier Information
The name property sets the unique identifier for this log handler.

When autoflush is set to "true" the log messages will be sent to the handler’s target
immediately upon request.

2. Set the level Property
The level property sets the maximum level of log message that the root logger records.

3. Set the encoding Output
Use encoding to set the character encoding scheme to be used for the output.

4. Specify the formatter
Use formatter to list the log formatter used by the log handler.

5. Set the file Object
The file object represents the file where the output of this log handler is written to. It has two
configuration properties: relative-to and path.

The relative-to property is the directory where the log file is written to. JBoss Enterprise
Application Platform 6 file path variables can be specified here. The jboss.server.log.dir
variable points to the log/ directory of the server.

The path property is the name of the file where the log messages will be written. It is a relative
path name that is appended to the value of the relative-to property to determine the complete
path.

6. Set the suffix Value
The suffix is appended to the filename of the rotated logs and is used to determine the
frequency of rotation. The format of the suffix is a dot (.) followed by a date string, which is

Red Hat Data Grid 7.2 Administration and Configuration Guide

38

parsable by the java.text.SimpleDateFormat class. The log is rotated on the basis of the
smallest time unit defined by the suffix. For example, yyyy-MM-dd will result in daily log
rotation. See http://docs.oracle.com/javase/6/docs/api/index.html?
java/text/SimpleDateFormat.html

7. Set the append Property
When the append property is set to "true", all messages written by this handler will be
appended to an existing file. If set to "false" a new file will be created each time the application
server launches. Changes to append require a server reboot to take effect.

3.5.7. Sample XML Configuration for a Size Log Handler

The following procedure demonstrates a sample configuration for a size log handler.

Configure the Size Log Handler

<size-rotating-file-handler name="accounts_debug" autoflush="false">
 <level name="DEBUG"/>
 <encoding value="UTF-8"/>
 <file relative-to="jboss.server.log.dir" path="accounts-debug.log"/>
 <rotate-size value="500k"/>
 <max-backup-index value="5"/>
 <formatter>
 <pattern-formatter pattern="%d{HH:mm:ss,SSS} %-5p [%c] (%t) %s%E%n"/>
 </formatter>
 <append value="true"/>
</size-rotating-file-handler>

1. Add the Size Log Handler Identifier Information
The name property sets the unique identifier for this log handler.

When autoflush is set to "true" the log messages will be sent to the handler’s target
immediately upon request.

2. Set the level Property
The level property sets the maximum level of log message that the root logger records.

3. Set the encoding Object
Use encoding to set the character encoding scheme to be used for the output.

4. Set the file Object
The file object represents the file where the output of this log handler is written to. It has two
configuration properties: relative-to and path.

The relative-to property is the directory where the log file is written to. JBoss Enterprise
Application Platform 6 file path variables can be specified here. The jboss.server.log.dir
variable points to the log/ directory of the server.

The path property is the name of the file where the log messages will be written. It is a relative
path name that is appended to the value of the relative-to property to determine the complete
path.

5. Specify the rotate-size Value

The maximum size that the log file can reach before it is rotated. A single character appended

CHAPTER 3. SET UP LOGGING

39

http://docs.oracle.com/javase/6/docs/api/index.html?java/text/SimpleDateFormat.html

The maximum size that the log file can reach before it is rotated. A single character appended
to the number indicates the size units: b for bytes, k for kilobytes, m for megabytes, g for
gigabytes. For example: 50m for 50 megabytes.

6. Set the max-backup-index Number
The maximum number of rotated logs that are kept. When this number is reached, the oldest log
is reused.

7. Specify the formatter
Use formatter to list the log formatter used by the log handler.

8. Set the append Property
When the append property is set to "true", all messages written by this handler will be
appended to an existing file. If set to "false" a new file will be created each time the application
server launches. Changes to append require a server reboot to take effect.

3.5.8. Sample XML Configuration for a Async Log Handler

The following procedure demonstrates a sample configuration for an async log handler

Configure the Async Log Handler

<async-handler name="Async_NFS_handlers">
 <level name="INFO"/>
 <queue-length value="512"/>
 <overflow-action value="block"/>
 <subhandlers>
 <handler name="FILE"/>
 <handler name="accounts-record"/>
 </subhandlers>
</async-handler>

1. The name property sets the unique identifier for this log handler.

2. The level property sets the maximum level of log message that the root logger records.

3. The queue-length defines the maximum number of log messages that will be held by this
handler while waiting for sub-handlers to respond.

4. The overflow-action defines how this handler responds when its queue length is exceeded. This
can be set to BLOCK or DISCARD. BLOCK makes the logging application wait until there is
available space in the queue. This is the same behavior as an non-async log handler. DISCARD
allows the logging application to continue but the log message is deleted.

5. The subhandlers list is the list of log handlers to which this async handler passes its log
messages.

Red Hat Data Grid 7.2 Administration and Configuration Guide

40

PART IV. SET UP CACHE MODES

PART IV. SET UP CACHE MODES

41

CHAPTER 4. CACHE MODES

4.1. CACHE MODES

Red Hat JBoss Data Grid provides two modes:

Local mode is the only non-clustered cache mode offered in JBoss Data Grid. In local mode,
JBoss Data Grid operates as a simple single-node in-memory data cache. Local mode is most
effective when scalability and failover are not required and provides high performance in
comparison with clustered modes.

Clustered mode replicates state changes to a subset of nodes. The subset size should be
sufficient for fault tolerance purposes, but not large enough to hinder scalability. Before
attempting to use clustered mode, it is important to first configure JGroups for a clustered
configuration. For details about configuring JGroups, see Configure JGroups (Library Mode)

4.2. ABOUT CACHE CONTAINERS

Cache containers are used in Red Hat JBoss Data Grid’s Remote Client-Server mode as a starting point
for a cache. The cache-container element acts as a parent of one or more (local or clustered) caches.
To add clustered caches to the container, transport must be defined.

The following procedure demonstrates a sample cache container configuration:

How to Configure the Cache Container

<subsystem xmlns="urn:infinispan:server:core:8.5"
 default-cache-container="local">
 <cache-container name="local"
 default-cache="default"
 statistics="true"
 start="EAGER">
 <local-cache name="default"
 statistics="false">
 <!-- Additional configuration information here -->
 </local-cache>
 </cache-container>
</subsystem>

1. Configure the Cache Container
The cache-container element specifies information about the cache container using the
following parameters:

a. The name parameter defines the name of the cache container.

b. The default-cache parameter defines the name of the default cache used with the cache
container.

c. The statistics attribute is optional and is true by default. Statistics are useful in monitoring
JBoss Data Grid via JMX or JBoss Operations Network, however they adversely affect
performance. Disable this attribute by setting it to false if it is not required.

d. The start parameter indicates when the cache container starts, i.e. whether it will start lazily

Red Hat Data Grid 7.2 Administration and Configuration Guide

42

d. The start parameter indicates when the cache container starts, i.e. whether it will start lazily
when requested or "eagerly" when the server starts up. Valid values for this parameter are
EAGER and LAZY.

2. Configure Per-cache Statistics
If statistics are enabled at the container level, per-cache statistics can be selectively disabled
for caches that do not require monitoring by setting the statistics attribute to false.

4.3. LOCAL MODE

4.3.1. Local Mode

Using Red Hat JBoss Data Grid’s local mode instead of a map provides a number of benefits.

Caches offer features that are unmatched by simple maps, such as:

Write-through and write-behind caching to persist data.

Entry eviction to prevent the Java Virtual Machine (JVM) running out of memory.

Support for entries that expire after a defined period.

JBoss Data Grid is built around a high performance, read-based data container that uses techniques
such as optimistic and pessimistic locking to manage lock acquisitions.

JBoss Data Grid also uses compare-and-swap and other lock-free algorithms, resulting in high
throughput multi-CPU or multi-core environments. Additionally, JBoss Data Grid’s Cache API extends
the JDK's ConcurrentMap, resulting in a simple migration process from a map to JBoss Data Grid.

4.3.2. Configure Local Mode

A local cache can be added to any cache container in both Library Mode and Remote Client-Server
Mode. The following example demonstrates how to add the local-cache element.

The local-cache Element

<cache-container name="local"
 default-cache="default"
 statistics="true">
 <local-cache name="default"
 statistics="true">
 <!-- Additional configuration information here -->
 </local-cache>
</cache-container>

The local-cache element specifies information about the local cache used with the cache container
using the following parameters: . The name parameter specifies the name of the local cache to use. . If
statistics are enabled at the container level, per-cache statistics can be selectively disabled for caches
that do not require monitoring by setting the statistics attribute to false.

Local and clustered caches are able to coexist in the same cache container, however where the
container is without a <transport/> it can only contain local caches. The container used in the example
can only contain local caches as it does not have a <transport/>.

The cache interface extends the ConcurrentMap and is compatible with multiple cache systems.

CHAPTER 4. CACHE MODES

43

4.4. CLUSTERED MODES

4.4.1. Clustered Modes

Red Hat JBoss Data Grid offers the following clustered modes:

Replication Mode replicates any entry that is added across all cache instances in the cluster.

Invalidation Mode does not share any data, but signals remote caches to initiate the removal of
invalid entries.

Distribution Mode stores each entry on a subset of nodes instead of on all nodes in the cluster.

The clustered modes can be further configured to use synchronous or asynchronous transport for
network communications.

4.4.2. Asynchronous and Synchronous Operations

When a clustered mode (such as invalidation, replication or distribution) is used, data is propagated to
other nodes in either a synchronous or asynchronous manner.

If synchronous mode is used, the sender waits for responses from receivers before allowing the thread
to continue, whereas asynchronous mode transmits data but does not wait for responses from other
nodes in the cluster to continue operations.

JBoss Data Grid clusters are configured to use synchronous operations by default.

4.4.3. About Asynchronous Communications

Asynchronous mode prioritizes speed over consistency, which is ideal for use cases such as HTTP
session replications with sticky sessions enabled. Such a session (or data for other use cases) is always
accessed on the same cluster node, unless this node fails. If data consistency is required for your use
case, you should use synchronous operations.

Additionally, it is not possible for JBoss Data Grid nodes to determine if asynchronous operations
succeed because receiving nodes do not send status for operations back to the originating nodes.

In JBoss Data Grid, distributed and replicated caches are represented by the distributed-cache and
replicated-cache elements.

Each of these elements contains a mode property, the value of which can be set to SYNC for
synchronous, which is the default, or ASYNC for asynchronous communications.

Asynchronous Communications Example Configuration

NOTE

<replicated-cache name="default"
 statistics="true"
 mode="ASYNC">
 <!-- Additional configuration information here -->
</replicated-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

44

NOTE

The preceding configuration is valid for both JBoss Data Grid usage modes (Library
mode and Remote Client-Server mode). However, this configuration does not apply to
local caches local-cache because they are not clustered and do not communicate with
other nodes.

4.4.4. Cache Mode Troubleshooting

4.4.4.1. Invalid Data in ReadExternal

If invalid data is passed to readExternal, it can be because when using Cache.putAsync(), starting
serialization can cause your object to be modified, causing the datastream passed to readExternal to be
corrupted. This can be resolved if access to the object is synchronized.

4.4.4.2. Cluster Physical Address Retrieval

How can the physical addresses of the cluster be retrieved?

The physical address can be retrieved using an instance method call. For example:
AdvancedCache.getRpcManager().getTransport().getPhysicalAddresses() .

CHAPTER 4. CACHE MODES

45

CHAPTER 5. SET UP DISTRIBUTION MODE

5.1. ABOUT DISTRIBUTION MODE

In distribution mode, Red Hat JBoss Data Grid stores cache entries across a subset of nodes in the
cluster instead of replicating entries on each node. This improves JBoss Data Grid scalability.

5.2. CONSISTENT HASHING IN DISTRIBUTION MODE

Red Hat JBoss Data Grid uses an algorithm based on consistent hashing to distribute cache entries on
nodes across clusters. JBoss Data Grid splits keys in distributed caches into fixed numbers of hash
space segments, using MurmurHash3 by default.

Segments are distributed across the cluster to nodes that act as primary and backup owners. Primary
owners coordinate locking and write operations for the keys in each segment. Backup owners provide
redundancy in the event the primary owner becomes unavailable.

You configure the number of owners with the owners attribute. This attribute defines how many copies
of each entry are available across the cluster. The default value is 2, a primary owner and one backup
owner.

You can configure the number of hash space segments with the segments attribute. This attribute
defines the hash space segments for the named cache across the cluster. The cache always has the
configured number of hash segments available across the JBoss Data Grid cluster, no matter how many
nodes join or leave.

Additionally, the key-to-segment mapping is fixed. In other words, keys always map to the same
segments, regardless of changes to the cluster topology.

The default number of segments is 256, which is suitable for JBoss Data Grid clusters of 25 nodes or
less. The recommended value is 20 * the number of nodes for each cluster, which allows you to add
nodes and still have capacity.

However, any value within the range of 10 * the number of nodes and 100 * the number of nodes per
cluster is fine.

With a perfect segment-to-node mapping, nodes are:

primary owner for segments calculated as number of segments / number of nodes

any kind of owner for segments calculated as number of owners * number of segments /
number of nodes

However, JBoss Data Grid does not always distribute segments evenly and can map more segments to
some nodes than others.

Consider a scenario where a cluster has 10 nodes and there are 20 segments per node. If segments are
distributed evenly across the cluster, each node is the primary owner for 2 segments. If segments are
not distributed evenly, some nodes are primary owners for 3 segments, which represents an increase of
50% for the planned capacity.

Likewise, if the number of owners is 2, each node should own 4 segments. However it could be the case
that some nodes are owners for 5 segments, which represents a 25% increase for the planned capacity.

NOTE

Red Hat Data Grid 7.2 Administration and Configuration Guide

46

NOTE

You must restart the JBoss Data Grid cluster for changes to the number of segments to
take effect.

5.3. LOCATING ENTRIES IN DISTRIBUTION MODE

The consistent hash algorithm used in Red Hat JBoss Data Grid’s distribution mode can locate entries
deterministically, without multicasting a request or maintaining expensive metadata.

A PUT operation can result in as many remote calls as specified by the owners parameter, while a GET
operation executed on any node in the cluster results in a single remote call. In the background, the GET
operation results in the same number of remote calls as a PUT operation (specifically the value of the
owners parameter), but these occur in parallel and the returned entry is passed to the caller as soon as
one returns.

5.4. RETURN VALUES IN DISTRIBUTION MODE

In Red Hat JBoss Data Grid’s distribution mode, a synchronous request is used to retrieve the previous
return value if it cannot be found locally. A synchronous request is used for this task irrespective of
whether distribution mode is using asynchronous or synchronous processes.

5.5. CONFIGURE DISTRIBUTION MODE

Distribution mode is a clustered mode in Red Hat JBoss Data Grid. Distribution mode can be added to
any cache container, in both Library Mode and Remote Client-Server Mode, using the following
procedure:

The distributed-cache Element

The distributed-cache element configures settings for the distributed cache using the following
parameters:

1. The name parameter provides a unique identifier for the cache.

2. If statistics are enabled at the container level, per-cache statistics can be selectively disabled
for caches that do not require monitoring by setting the statistics attribute to false.

IMPORTANT

JGroups must be appropriately configured for clustered mode before attempting to load
this configuration.

<cache-container name="clustered"
 default-cache="default"
 statistics="true">
 <!-- Additional configuration information here -->
 <distributed-cache name="default"
 statistics="true">
 <!-- Additional configuration information here -->
 </distributed-cache>
</cache-container>

CHAPTER 5. SET UP DISTRIBUTION MODE

47

5.6. SYNCHRONOUS AND ASYNCHRONOUS DISTRIBUTION

To elicit meaningful return values from certain public API methods, it is essential to use synchronized
communication when using distribution mode.

Communication Mode example

For example, with three nodes in a cluster, node A, B and C, and a key K that maps nodes A and B.
Perform an operation on node C that requires a return value, for example Cache.remove(K). To
execute successfully, the operation must first synchronously forward the call to both node A and B, and
then wait for a result returned from either node A or B. If asynchronous communication was used, the
usefulness of the returned values cannot be guaranteed, despite the operation behaving as expected.

Red Hat Data Grid 7.2 Administration and Configuration Guide

48

CHAPTER 6. SET UP REPLICATION MODE

6.1. ABOUT REPLICATION MODE

Red Hat JBoss Data Grid’s replication mode is a simple clustered mode. Cache instances automatically
discover neighboring instances on other Java Virtual Machines (JVM) on the same network and
subsequently form a cluster with the discovered instances. Any entry added to a cache instance is
replicated across all cache instances in the cluster and can be retrieved locally from any cluster cache
instance.

In JBoss Data Grid’s replication mode, return values are locally available before the replication occurs.

6.2. OPTIMIZED REPLICATION MODE USAGE

Replication mode is used for state sharing across a cluster; however, if you have a replicated cache and a
large number of nodes are in use then there will be many writes to the replicated cache to keep all of the
nodes synchronized. The amount of work performed will depend on many factors and on the specific use
case, and for this reason it is recommended to ensure that each workload is tested thoroughly to
determine if replication mode will be beneficial with the number of planned nodes. For many situations
replication mode is not recommended once there are ten servers; however, in some workloads, such as if
load read is important, this mode may be beneficial.

Red Hat JBoss Data Grid can be configured to use UDP multicast, which improves performance to a
limited degree for larger clusters.

6.3. CONFIGURE REPLICATION MODE

Replication mode is a clustered cache mode in Red Hat JBoss Data Grid. Replication mode can be
added to any cache container, in both Library Mode and Remote Client-Server Mode, using the
following procedure.

The replicated-cache Element

IMPORTANT

JGroups must be appropriately configured for clustered mode before attempting to load
this configuration.

The replicated-cache element configures settings for the distributed cache using the following
parameters:

1. The name parameter provides a unique identifier for the cache.

<cache-container name="clustered"
 default-cache="default"
 statistics="true">
 <!-- Additional configuration information here -->
 <replicated-cache name="default"
 statistics="true">
 <!-- Additional configuration information here -->
 </replicated-cache>
</cache-container>

CHAPTER 6. SET UP REPLICATION MODE

49

2. If statistics are enabled at the container level, per-cache statistics can be selectively disabled
for caches that do not require monitoring by setting the statistics attribute to false.

For details about the cache-container and locking, see the appropriate chapter.

6.4. SYNCHRONOUS AND ASYNCHRONOUS REPLICATION

6.4.1. Synchronous and Asynchronous Replication

Replication mode can be synchronous or asynchronous depending on the problem being addressed.

Synchronous replication blocks a thread or caller (for example on a put() operation) until the
modifications are replicated across all nodes in the cluster. By waiting for acknowledgments,
synchronous replication ensures that all replications are successfully applied before the
operation is concluded.

Asynchronous replication operates significantly faster than synchronous replication because it
does not need to wait for responses from nodes. Asynchronous replication performs the
replication in the background and the call returns immediately. Errors that occur during
asynchronous replication are written to a log. As a result, a transaction can be successfully
completed despite the fact that replication of the transaction may not have succeeded on all
the cache instances in the cluster.

6.4.2. Troubleshooting Asynchronous Replication Behavior

In some instances, a cache configured for asynchronous replication or distribution may wait for
responses, which is synchronous behavior. This occurs because caches behave synchronously when both
state transfers and asynchronous modes are configured. This synchronous behavior is a prerequisite for
state transfer to operate as expected.

Use one of the following to remedy this problem:

Disable state transfer and use a ClusteredCacheLoader to lazily look up remote state as and
when needed.

Enable state transfer and REPL_SYNC. Use the Asynchronous API (for example, the
cache.putAsync(k, v)) to activate 'fire-and-forget' capabilities.

Enable state transfer and REPL_ASYNC. All RPCs end up becoming synchronous, but client
threads will not be held up if a replication queue is enabled (which is recommended for
asynchronous mode).

6.5. THE REPLICATION QUEUE

6.5.1. The Replication Queue

In replication mode, Red Hat JBoss Data Grid uses a replication queue to replicate changes across
nodes based on the following:

Previously set intervals.

The queue size exceeding the number of elements.

A combination of previously set intervals and the queue size exceeding the number of elements.

Red Hat Data Grid 7.2 Administration and Configuration Guide

50

The replication queue ensures that during replication, cache operations are transmitted in batches
instead of individually. As a result, a lower number of replication messages are transmitted and fewer
envelopes are used, resulting in improved JBoss Data Grid performance.

A disadvantage of using the replication queue is that the queue is periodically flushed based on the time
or the queue size. Such flushing operations delay the realization of replication, distribution, or
invalidation operations across cluster nodes. When the replication queue is disabled, the data is directly
transmitted and therefore the data arrives at the cluster nodes faster.

A replication queue is used in conjunction with asynchronous mode.

6.5.2. Replication Queue Usage

When using the replication queue, do one of the following:

Disable asynchronous marshalling.

Set the max-threads count value to 1 for the executor attribute of the transport element. The
executor is only available in Library Mode, and is therefore defined in its configuration file as
follows:

To implement either of these solutions, the replication queue must be in use in asynchronous mode.
Asynchronous mode can be set by defining mode="ASYNC", as seen in the following example:

Replication Queue in Asynchronous Mode

The replication queue allows requests to return to the client faster, therefore using the replication queue
together with asynchronous marshalling does not present any significant advantages.

6.6. ABOUT REPLICATION GUARANTEES

In a clustered cache, the user can receive synchronous replication guarantees as well as the parallelism
associated with asynchronous replication. Red Hat JBoss Data Grid provides an asynchronous API for
this purpose.

The asynchronous methods used in the API return Futures, which can be queried. The queries block the
thread until a confirmation is received about the success of any network calls used.

6.7. REPLICATION TRAFFIC ON INTERNAL NETWORKS

Some cloud providers charge less for traffic over internal IP addresses than for traffic over public IP
addresses, or do not charge at all for internal network traffic (for example,). To take advantage of lower
rates, you can configure Red Hat JBoss Data Grid to transfer replication traffic using the internal
network. With such a configuration, it is difficult to know the internal IP address you are assigned. JBoss
Data Grid uses JGroups interfaces to solve this problem.

<transport executor="infinispan-transport"/>

<replicated-cache name="asyncCache"
 mode="ASYNC"
 statistics="true"
 <!-- Additional configuration information here -->
</replicated-cache>

CHAPTER 6. SET UP REPLICATION MODE

51

CHAPTER 7. SET UP INVALIDATION MODE

7.1. ABOUT INVALIDATION MODE

Invalidation is a clustered mode that does not share any data, but instead removes potentially obsolete
data from remote caches. Using this cache mode requires another, more permanent store for the data
such as a database.

Red Hat JBoss Data Grid, in such a situation, is used as an optimization for a system that performs many
read operations and prevents database usage each time a state is needed.

When invalidation mode is in use, data changes in a cache prompts other caches in the cluster to evict
their outdated data from memory.

7.2. CONFIGURE INVALIDATION MODE

Invalidation mode is a clustered mode in Red Hat JBoss Data Grid. Invalidation mode can be added to
any cache container, in both Library Mode and Remote Client-Server Mode, using the following
procedure:

The invalidation-cache Element

The invalidation-cache element configures settings for the distributed cache using the following
parameters:

1. The name parameter provides a unique identifier for the cache.

2. If statistics are enabled at the container level, per-cache statistics can be selectively disabled
for caches that do not require monitoring by setting the statistics attribute to false.

IMPORTANT

JGroups must be appropriately configured for clustered mode before attempting to load
this configuration.

For details about the cache-container see the appropriate chapter.

7.3. SYNCHRONOUS/ASYNCHRONOUS INVALIDATION

In Red Hat JBoss Data Grid’s Library mode, invalidation operates either asynchronously or
synchronously.

Synchronous invalidation blocks the thread until all caches in the cluster have received
invalidation messages and evicted the obsolete data.

<cache-container name="local"
 default-cache="default"
 statistics="true">
 <invalidation-cache name="default"
 statistics="true">
 <!-- Additional configuration information here -->
 </invalidation-cache>
</cache-container>

Red Hat Data Grid 7.2 Administration and Configuration Guide

52

Asynchronous invalidation operates in a fire-and-forget mode that allows invalidation messages
to be broadcast without blocking a thread to wait for responses.

7.4. THE L1 CACHE AND INVALIDATION

An invalidation message is generated each time a key is updated. This message is multicast to each node
that contains data that corresponds to current L1 cache entries. The invalidation message ensures that
each of these nodes marks the relevant entry as invalidated.

CHAPTER 7. SET UP INVALIDATION MODE

53

CHAPTER 8. STATE TRANSFER

8.1. STATE TRANSFER

State transfer is a basic data grid or clustered cache functionality. Without state transfer, data would be
lost as nodes are added to or removed from the cluster.

State transfer adjusts the cache’s internal state in response to a change in a cache membership. The
change can be when a node joins or leaves, when two or more cluster partitions merge, or a combination
of joins, leaves, and merges. State transfer occurs automatically in Red Hat JBoss Data Grid whenever a
node joins or leaves the cluster.

In Red Hat JBoss Data Grid’s replication mode, a new node joining the cache receives the entire cache
state from the existing nodes. In distribution mode, the new node receives only a part of the state from
the existing nodes, and the existing nodes remove some of their state in order to keep owners copies of
each key in the cache (as determined through consistent hashing). In invalidation mode the initial state
transfer is similar to replication mode, the only difference being that the nodes are not guaranteed to
have the same state. When a node leaves, a replicated mode or invalidation mode cache does not
perform any state transfer. A distributed cache needs to make additional copies of the keys that were
stored on the leaving nodes, again to keep owners copies of each key.

A State Transfer transfers both in-memory and persistent state by default, but both can be disabled in
the configuration. When State Transfer is disabled a ClusterLoader must be configured, otherwise a
node will become the owner or backup owner of a key without the data being loaded into its cache. In
addition, if State Transfer is disabled in distributed mode then a key will occasionally have less than
owners owners.

8.2. NON-BLOCKING STATE TRANSFER

Non-Blocking State Transfer in Red Hat JBoss Data Grid minimizes the time in which a cluster or node
is unable to respond due to a state transfer in progress. Non-blocking state transfer is a core
architectural improvement with the following goals:

Minimize the interval(s) where the entire cluster cannot respond to requests because of a state
transfer in progress.

Minimize the interval(s) where an existing member stops responding to requests because of a
state transfer in progress.

Allow state transfer to occur with a drop in the performance of the cluster. However, the drop in
the performance during the state transfer does not throw any exception, and allows processes
to continue.

Allows a GET operation to successfully retrieve a key from another node without returning a null
value during a progressive state transfer.

For simplicity, the total order-based commit protocol uses a blocking version of the currently
implemented state transfer mechanism. The main differences between the regular state transfer and
the total order state transfer are:

The blocking protocol queues the transaction delivery during the state transfer.

State transfer control messages (such as CacheTopologyControlCommand) are sent according
to the total order information.

The total order-based commit protocol works with the assumption that all the transactions are delivered

Red Hat Data Grid 7.2 Administration and Configuration Guide

54

The total order-based commit protocol works with the assumption that all the transactions are delivered
in the same order and they see the same data set. So, no transactions are validated during the state
transfer because all the nodes must have the most recent key or values in memory.

Using the state transfer and blocking protocol in this manner allows the state transfer and transaction
delivery on all on the nodes to be synchronized. However, transactions that are already involved in a
state transfer (sent before the state transfer began and delivered after it concludes) must be resent.
When resent, these transactions are treated as new joiners and assigned a new total order value.

8.3. SUPPRESS STATE TRANSFER VIA JMX

State transfer can be suppressed using JMX in order to bring down and relaunch a cluster for
maintenance. This operation permits a more efficient cluster shutdown and startup, and removes the
risk of Out Of Memory errors when bringing down a grid.

When a new node joins the cluster and rebalancing is suspended, the getCache() call will timeout after
stateTransfer.timeout expires unless rebalancing is re-enabled or stateTransfer.awaitInitialTransferis
set to false.

Disabling state transfer and rebalancing can be used for partial cluster shutdown or restart, however
there is the possibility that data may be lost in a partial cluster shutdown due to state transfer being
disabled.

8.4. THE REBALANCINGENABLED ATTRIBUTE

Suppressing rebalancing can only be triggered via the rebalancingEnabled JMX attribute, and requires
no specific configuration.

The rebalancingEnabled attribute can be modified for the entire cluster from the
LocalTopologyManager JMX Mbean on any node. This attribute is true by default, and is configurable
programmatically.

Servers such as Hot Rod attempt to start all caches declared in the configuration during startup. If
rebalancing is disabled, the cache will fail to start. Therefore, it is mandatory to use the following setting
in a server environment:

<state-transfer enabled="true" await-initial-transfer="false"/>

CHAPTER 8. STATE TRANSFER

55

PART V. ENABLING APIS

Red Hat Data Grid 7.2 Administration and Configuration Guide

56

CHAPTER 9. ENABLING APIS DECLARATIVELY

9.1. ENABLING APIS DECLARATIVELY

The various APIs that JBoss Data Grid provides are fully documented in the JBoss Data Grid Developer
Guide ; however, Administrators can enable these declaratively by adding elements to the configuration
file. The following sections discuss methods on implementing the various APIs.

9.2. BATCHING API

Batching allows atomicity and some characteristics of a transaction, but does not allow full-blown JTA or
XA capabilities. Batching is typically lighter and cheaper than a full-blown transaction, and should be
used whenever the only participant in the transaction is the JBoss Data Grid cluster. If the transaction
involves multiple systems then JTA Transactions should be used. For example, consider a transaction
which transfers money from one bank account to another. If both accounts are stored within the JBoss
Data Grid cluster then batching could be used; however, if only one account is inside the cluster, with the
second being in an external database, then distributed transactions are required.

NOTE

Transaction batching is only available in JBoss Data Grid’s Library Mode.

Enabling the Batching API

Batching may be enabled on a per-cache basis by defining a transaction mode of BATCH. The following
example demonstrates this:

By default invocation batching is disabled; in addition, a transaction manager is not required to use
batching.

9.3. GROUPING API

The grouping API allows a group of entries to be co-located on the same node, instead of the default
behavior of having each entry being stored on a node corresponding to a calculated hash code of the
entry. By default JBoss Data Grid will take a hash code of each key when it is stored and map that key to
a hash segment; this allows an algorithm to be used to determine the node that contains the key,
allowing each node in the cluster to know which node contains the key without distributing ownership
information. This behavior reduces overhead and improves redundancy as the ownership information
does not need to be replicated should a node fail.

By enabling the grouping API the hash of the key is ignored when deciding which node to store the entry
on. Instead, a hash of the group is obtained and used in its place, while the hash of the key is used
internally to prevent performance degradation. When the group API is in use every node can still
determine the owners of the key, and due to this reason the group may not be manually specified. A
group may either be intrinsic to the entry, generated by the key class, or extrinsic to the entry,
generated by an external function.

Enabling the Grouping API

The grouping API may be enabled on a per-cache basis by adding the groups element as seen in the

<local-cache name="batchingCache">
 <transaction mode="BATCH"/>
</local-cache>

CHAPTER 9. ENABLING APIS DECLARATIVELY

57

The grouping API may be enabled on a per-cache basis by adding the groups element as seen in the
following example:

Defining an Extrinsic Group

Assuming a custom Grouper exists it may be defined by passing in the classname as seen below:

9.4. EXTERNALIZABLE API

9.4.1. The Externalizable API

An Externalizer is a class that can:

Marshall a given object type to a byte array.

Unmarshall the contents of a byte array into an instance of the object type.

Externalizers are used by Red Hat JBoss Data Grid and allow users to specify how their object types are
serialized. The marshalling infrastructure used in Red Hat JBoss Data Grid builds upon JBoss
Marshalling and provides efficient payload delivery and allows the stream to be cached. The stream
caching allows data to be accessed multiple times, whereas normally a stream can only be read once.

The Externalizable interface uses and extends serialization. This interface is used to control serialization
and deserialization in Red Hat JBoss Data Grid.

9.4.2. Register the Advanced Externalizer (Declaratively)

After the advanced externalizer is set up, register it for use with Red Hat JBoss Data Grid. This
registration is done declaratively (via XML) as follows:

Register the Advanced Externalizer

1. Add the serialization element to the cache-container element.

2. Add the advanced-externalizer element, defining the custom Externalizer with the class
attribute. Replace the Book$BookExternalizer values as required.

<distributed-cache name="groupingCache">
 <groups enabled="true"/>
</distributed-cache>

<distributed-cache name="groupingCache">
 <groups enabled="true">
 <grouper class="com.acme.KXGrouper" />
 </groups>
</distributed-cache>

<infinispan>
 <cache-container>
 <serialization>
 <advanced-externalizer class="Book$BookExternalizer" />
 </serialization>
 </cache-container>
</infinispan>

Red Hat Data Grid 7.2 Administration and Configuration Guide

58

9.4.3. Configuring the Deserialization Whitelist

For security reasons, the Red Hat JBoss Data Grid server does not deserialize objects of an arbitrary
class. JBoss Data Grid allows deserialization only for strings and primitives. If you want JBoss Data Grid
to deserialize objects for other Java class instances, you must configure a deserialization whitelist.

Add the following system properties to the JVM at start up:

-Dinfinispan.deserialization.whitelist.classes Specifies the fully qualified names of one or
more Java classes. JBoss Data Grid deserializes objects that belong to those classes.

-Dinfinispan.deserialization.whitelist.regexps Specifies one or more regular expressions.
JBoss Data Grid deserializes objects that belong to any class that matches those expressions.

NOTE

Both system properties are optional. You can specify a combination of both properties or
specify either property by itself.

For example, the following system properties enable deserialization for the
com.foo.bar.spotprice.Price and com.foo.bar.spotprice.Currency classes as well as for any classes
that match the .*SpotPrice.* expression:

If you want to configure the whitelist so that JBoss Data Grid allows deserialization for any Java class,
specify the following:

For information on configuring clients to restrict deserialization to specific Java classes, see Restricting
Deserialization to Specific Java Classes in the Developer Guide.

9.4.4. Custom Externalizer ID Values

9.4.4.1. Custom Externalizer ID Values

Advanced externalizers can be assigned custom IDs if desired. Some ID ranges are reserved for other
modules or frameworks and must be avoided:

Table 9.1. Reserved Externalizer ID Ranges

ID Range Reserved For

1000-1099 The Infinispan Tree Module

1100-1199 Red Hat JBoss Data Grid Server modules

1200-1299 Hibernate Infinispan Second Level Cache

-
Dinfinispan.deserialization.whitelist.classes=com.foo.bar.spotprice.Price,com.foo.bar.spotprice.Currency

-Dinfinispan.deserialization.whitelist.regexps=.*SpotPrice.*

-Dinfinispan.deserialization.whitelist.regexps=.*

CHAPTER 9. ENABLING APIS DECLARATIVELY

59

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/developer_guide/#client-deserialization-addjavaserialwhitelist

1300-1399 JBoss Data Grid Lucene Directory

1400-1499 Hibernate OGM

1500-1599 Hibernate Search

1600-1699 Infinispan Query Module

1700-1799 Infinispan Remote Query Module

1800-1849 JBoss Data Grid Scripting Module

1850-1899 JBoss Data Grid Server Event Logger Module

1900-1999 JBoss Data Grid Remote Store

ID Range Reserved For

9.4.4.2. Customize the Externalizer ID (Declaratively)

Customize the advanced externalizer ID declaratively (via XML) as follows:

Customizing the Externalizer ID (Declaratively)

1. Add the serialization element to the cache-container element.

2. Add the advanced-externalizer element to add information about the new advanced
externalizer.

3. Define the externalizer ID using the id attribute. Ensure that the selected ID is not from the
range of IDs reserved for other modules.

4. Define the externalizer class using the class attribute. Replace the Book$BookExternalizer
values as required.

<infinispan>
 <cache-container>
 <serialization>
 <advanced-externalizer id="123"
 class="Book$BookExternalizer"/>
 </serialization>
 </cache-container>
</infinispan>

Red Hat Data Grid 7.2 Administration and Configuration Guide

60

CHAPTER 10. SET UP AND CONFIGURE THE INFINISPAN
QUERY API

10.1. SET UP INFINISPAN QUERY

10.1.1. Infinispan Query Dependencies in Library Mode

To use the JBoss Data Grid Infinispan Query via Maven, add the following dependencies:

Non-Maven users must install all of the infinispan-embedded-query.jar and infinispan-embedded.jar files
from the JBoss Data Grid distribution.

WARNING

The Infinispan query API directly exposes the Hibernate Search and the Lucene
APIs and cannot be embedded within the infinispan-embedded-query.jar file. Do not
include other versions of Hibernate Search and Lucene in the same deployment as
infinispan-embedded-query . This action will cause classpath conflicts and result in
unexpected behavior.

10.2. DIRECTORY PROVIDERS

10.2.1. Directory Providers

The following directory providers are supported in Infinispan Query:

RAM Directory Provider

Filesystem Directory Provider

Infinispan Directory Provider

10.2.2. RAM Directory Provider

Storing the global index locally in Red Hat JBoss Data Grid’s Query Module allows each node to

maintain its own index.

use Lucene's in-memory or filesystem-based index directory.

The following example demonstrates an in-memory, RAM-based index store:

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-embedded-query</artifactId>
 <version>${infinispan.version}</version>
</dependency>



CHAPTER 10. SET UP AND CONFIGURE THE INFINISPAN QUERY API

61

10.2.3. Filesystem Directory Provider

To configure the storage of indexes, set the appropriate properties when enabling indexing in the JBoss
Data Grid configuration.

This example shows a disk-based index store:

Disk-based Index Store

10.2.4. Infinispan Directory Provider

In addition to the Lucene directory implementations, Red Hat JBoss Data Grid also ships with an
infinispan-directory module.

NOTE

Red Hat JBoss Data Grid only supports infinispan-directory in the context of the
Querying feature, not as a standalone feature.

The infinispan-directory allows Lucene to store indexes within the distributed data grid. This allows the
indexes to be distributed, stored in-memory, and optionally written to disk using the cache store for
durability.

Sharing the same index instance using the Infinispan Directory Provider introduces a write contention
point, as only one instance can write on the same index at the same time.

IMPORTANT

By default the exclusive_index_use is set to true, as this provides major performance
increases; however, if external applications access the same index in use by Infinispan this
property must be set to false. The default value is recommended for the majority of
applications and use cases due to the performance increases, so only change this if
absolutely necessary.

InfinispanIndexManager provides a default back end that sends all updates to master node which later
applies the updates to the index. In case of master node failure, the update can be lost, therefore
keeping the cache and index non-synchronized. Non-default back ends are not supported.

Enable Shared Indexes

<local-cache name="indexesInMemory">
 <indexing index="LOCAL">
 <property name="default.directory_provider">ram</property>
 </indexing>
</local-cache>

<local-cache name="indexesInInfinispan">
 <indexing index="ALL">
 <property name="default.directory_provider">filesystem</property>
 <property name="default.indexBase">/tmp/ispn_index</property>
 </indexing>
</local-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

62

When using an indexed, clustered cache ensure that the caches containing the index data are also
clustered, as described in Tuning Infinispan Directory .

10.3. CONFIGURE INDEXING

10.3.1. Configure the Index in Remote Client-Server Mode

In Remote Client-Server Mode, index configuration depends on the provider and its configuration. The
indexing mode depends on the provider and whether or not it is local or distributed.

The following indexing modes are supported:

NONE

LOCAL = indexLocalOnly="true"

ALL = indexLocalOnly="false"

Index configuration in Remote Client-Server Mode is as follows:

Configuration in Remote Client-Server Mode

Configure Lucene Caches

By default the Lucene caches will be created as local caches; however, with this configuration the
Lucene search results are not shared between nodes in the cluster. To prevent this define the caches
required by Lucene in a clustered mode, as seen in the following configuration snippet:

Configuring the Lucene cache in Remote Client-Server Mode

These caches are discussed in further detail at in the Red Hat JBoss Data Grid Developer Guide .

<local-cache name="indexesInInfinispan">
 <indexing index="ALL">
 <property name="default.directory_provider">infinispan</property>
 <property
name="default.indexmanager">org.infinispan.query.indexmanager.InfinispanIndexManager</property
>
 </indexing>
</local-cache>

<indexing index="LOCAL">
 <property name="default.directory_provider">ram</property>
 <!-- Additional configuration information here -->
</indexing>

<cache-container name="clustered" default-cache="repltestcache">
 [...]
 <replicated-cache name="LuceneIndexesMetadata" />
 <distributed-cache name="LuceneIndexesData" />
 <replicated-cache name="LuceneIndexesLocking" />
 [...]
</cache-container>

CHAPTER 10. SET UP AND CONFIGURE THE INFINISPAN QUERY API

63

10.3.2. Automatic Indexing

You can use the auto-config attribute to automatically configure indexing based on the cache type.

Replicated and local caches: Indexing is persisted to disk and is not shared with other processes.
Indexing is also configured so that there is minimum delay between the time an object is
indexed and the time it becomes available for searches.

Distributed caches: Indexing is handled internally to Red Hat JBoss Data Grid as a master-slave
mechanism so that indexing operations are delegated to a single node that writes to the index.

The following XML snippet shows a local cache configuration with the auto-config attribute:

The auto-config attribute adds properties to the cache. You can tune the indexing behavior by re-
defining the properties or adding new properties.

Table 10.1. Properties for Replicated and Local Caches

Property Value Description

default.directory_provider filesystem Use a filesystem to store the
index.

default.exclusive_index_use true Perform indexing operations in
exclusive mode. This mode allows
Hibernate Search to optimize
writes.

default.indexmanager near-real-time Use Lucene’s Near-Real-Time
(NRT) search feature.

default.reader.strategy shared Reuse the index reader across
several queries.

Table 10.2. Properties for Distributed Caches

Property Value Description

default.directory_provider infinispan Store indexes interally to JBoss
Data Grid.

default.exclusive_index_use true Perform indexing operations in
exclusive mode. This mode allows
Hibernate Search to optimize
writes.

<local-cache name="default">
 <indexing index="LOCAL" auto-config="true">
 </indexing>
</local-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

64

default.indexmanager org.infinispan.query.indexmanage
r.InfinispanIndexManager

Delegate index write operations
to a single node in the cluster.

default.reader.strategy shared Reuse the index reader across
several queries.

Property Value Description

10.3.3. Rebuilding the Index

You can manually rebuild the Lucene index if required. However, you do not usually need to rebuild the
index manually because JBoss Data Grid maintains the index during normal operation.

Rebuilding the index actually reconstructs the entire index from the data store, which requires JBoss
Data Grid to process all data in the grid and can take a very long time to complete. You should only need
to rebuild the Lucene index if:

The definition of what is indexed in the types has changed.

A parameter affecting how the index is defined, such as the Analyser changes.

The index is destroyed or corrupted, possibly due to a system administration error.

Rebuilding the index may be performed by executing the Start operation on the MassIndexer MBean.

10.4. TUNING THE INDEX

10.4.1. Near-Realtime Index Manager

By default, each update is immediately flushed into the index. In order to achieve better throughput, the
updates can be batched. However, this can result in a lag between the update and query — the query can
see outdated data. If this is acceptable, you can use the Near-Realtime Index Manager by setting the
following.

10.4.2. Tuning Infinispan Directory

Lucene directory uses three caches to store the index:

Data cache

Metadata cache

Locking cache

Configuration for these caches can be set explicitly, specifying the cache names as in the example
below, and configuring those caches as usual. All of these caches must be clustered unless Infinispan
Directory is used in local mode.

Tuning the Infinispan Directory

<property name="default.indexmanager">near-real-time</property>

CHAPTER 10. SET UP AND CONFIGURE THE INFINISPAN QUERY API

65

10.4.3. Per-Index Configuration

The indexing properties in examples above apply for all indices - this is because we use the default.
prefix for each property. To specify different configuration for each index, replace default with the
index name. By default, this is the full class name of the indexed object, however you can override the
index name in the @Indexed annotation.

<distributed-cache name="indexedCache" >
 <indexing index="LOCAL">
 <property
name="default.indexmanager">org.infinispan.query.indexmanager.InfinispanIndexManager</property
>
 <property name="default.metadata_cachename">lucene_metadata_repl</property>
 <property name="default.data_cachename">lucene_data_dist</property>
 <property name="default.locking_cachename">lucene_locking_repl</property>
 </indexing>
</distributed-cache>

<replicated-cache name="lucene_metadata_repl" />

<distributed-cache name="lucene_data_dist" />

<replicated-cache name="lucene_locking_repl" />

Red Hat Data Grid 7.2 Administration and Configuration Guide

66

CHAPTER 11. THE HEALTH CHECK API

11.1. THE HEALTH CHECK API

The Health Check API allows users to monitor the health of the cluster, and the caches contained within.
This information is particularly important when working in a cloud environment, as it provides a method
of querying to report the status of the cluster or cache.

This API exposes the following information:

The name of the cluster.

The number of machines in the cluster.

The overall status of the cluster or cache, represented in one of three values:

Healthy - The entity is healthy.

Unhealthy - The entity is unhealthy. This value indicates that one or more caches are in a
degraded state.

Rebalancing - The entity is operational, but a rebalance is in progress. Cluster nodes should
not be adjusted when this value is reported.

The status of each cache.

A tail of the server log.

For information on using the Health Check API programmatically, refer to the JBoss Data Grid
Developer Guide.

11.2. ACCESSING THE HEALTH API USING JMX

The Health Check API may be accessed through JMX, as seen in the following steps:

1. Connect to the JBoss Data Grid node using JMX, such as by Connecting to JDG via JConsole .

2. Expand jboss.datagrid-infinispan.

3. Expand CacheManager.

4. Select the desired cache manager. By default the cache manager will be named local, if the
server was started in local mode, or clustered, if the server was started in a clustered mode.

5. Expand the CacheContainerHealth object.

6. The Health Check API attributes are now available to be viewed.

An example of this using JConsole is seen below:

CHAPTER 11. THE HEALTH CHECK API

67

11.3. ACCESSING THE HEALTH CHECK API USING THE CLI

The Health Check API may be accessed using the included CLI. Once connected to the server use the
following command, substituting the desired cache container for CONTAINERNAME:

/subsystem=datagrid-infinispan/cache-container=CONTAINERNAME/health=HEALTH:read-
resource(include-runtime=true)

The following demonstrates sample output from the above command, using the clustered cache-
container:

[standalone@localhost:9990 health=HEALTH] /subsystem=datagrid-infinispan/cache-
container=clustered/health=HEALTH:read-resource(include-runtime=true)
{
 "outcome" => "success",
 "result" => {
 "cache-health" => [
 "default",
 "HEALTHY",
 "_protobuf_metadata", "HEALTHY", "memcachedCache", "HEALTHY", "repl", "HEALTHY",
"_script_cache",
 "HEALTHY"
],

Red Hat Data Grid 7.2 Administration and Configuration Guide

68

 "cluster-health" => "HEALTHY",
 "cluster-name" => "clustered",
 "free-memory" => 936823L,
 "log-tail" => [
 "2018-03-04 16:22:28,138 INFO [org.infinispan.server.endpoint] (MSC service thread 1-7)
DGENDPT10001: MemcachedServer listening on 127.0.0.1:11211",
 "2018-03-04 16:22:28,146 INFO [org.infinispan.server.endpoint] (MSC service thread 1-3)
DGENDPT10000: REST starting",
 "2018-03-04 16:22:28,188 INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-3)
DGISPN0001: Started _protobuf_metadata cache from clustered container", "2018-03-04
16:22:28,195 INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-3) DGISPN0001:
Started _script_cache cache from clustered container",
 "2018-03-04 16:22:28,515 INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-4)
DGISPN0001: Started ___hotRodTopologyCache cache from clustered container",
 "2018-03-04 16:22:28,552 INFO [org.infinispan.rest.NettyRestServer] (MSC service thread 1-
3) ISPN012003: REST server starting, listening on 127.0.0.1:8080",
 "2018-03-04 16:22:28,552 INFO [org.infinispan.server.endpoint] (MSC service thread 1-3)
DGENDPT10002: REST mapped to /rest",
 "2018-03-04 16:22:28,613 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0060: Http
management interface listening on http://127.0.0.1:9990/management",
 "2018-03-04 16:22:28,613 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0051:
Admin console listening on http://127.0.0.1:9990",
 "2018-03-04 16:22:28,613 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025:
Data Grid 7.2.0 (WildFly Core 2.1.10.Final-redhat-1) started in 7608ms - Started 196 of 235 services
(119 services are lazy, passive or on-demand)"
],
 "number-of-cpus" => 8,
 "number-of-nodes" => 1,
 "total-memory" => 1280000L
 }
}

11.4. ACCESSING THE HEALTH CHECK API USING THE MANAGEMENT
REST INTERFACE

The Health Check API is integrated into the Management REST interface as Metrics (read-only runtime
resources).

IMPORTANT

Due to the metrics being exposed in runtime a HTTP POST method must be used instead
of the typical HTTP GET.

To access these Metrics a HTTP POST method must be sent that contains valid user credentials. The
following command demonstrates one such request:

curl --digest -L -D - "http://JDGADDRESS:_JDGPORT_/management/subsystem/datagrid-
infinispan/cache-container/CONTAINERNAME/health/HEALTH?operation=resource&include-
runtime=true&json.pretty=1" --header "Content-Type: application/json" -u username:password

The following properties should be substituted from the above command:

JDGADDRESS - This should be the hostname or IP address where the JBoss Data Grid server
is located.

CHAPTER 11. THE HEALTH CHECK API

69

JDGPORT - This should be the port where the management interface is listening. By default
this is 9990.

CONTAINERNAME - This should be the name of the cache container to query. By default the
cache manager will be named local, if the server was started in local mode, or clustered, if the
server was started in a clustered mode.

username - The username for accessing the Administration Console.

password - The associated password for accessing the Administration Console.

If successful, a 200 response should be received along with the health status, such as seen below:

HTTP/1.1 401 Unauthorized
Connection: keep-alive
WWW-Authenticate: Digest
realm="ManagementRealm",domain="/management",nonce="n1btFIY4yugNMTQ4ODY2NDY3NjUxMy
4utKorhon/y+zSHie9V58=",opaque="00000000000000000000000000000000",algorithm=MD5,qop="au
th"
X-Frame-Options: SAMEORIGIN
Content-Length: 77
Content-Type: text/html
Date: Sat, 04 Mar 2018 21:57:56 GMT

HTTP/1.1 200 OK
Connection: keep-alive
X-Frame-Options: SAMEORIGIN
Authentication-Info:
nextnonce="n1btFIY4yugNMTQ4ODY2NDY3NjUxMy4utKorhon/y+zSHie9V58=",qop="auth",rspauth="0
9ab5888ea71413b56dd724c13825a08",cnonce="MzdjOTMyZWQ2OTk5Y2Q0NmNlYzcxYzE2Zjg5Nzdj
ZDE=",nc=00000001
Content-Type: application/json; charset=utf-8
Content-Length: 2108
Date: Sat, 04 Mar 2018 21:57:56 GMT

{
 "cache-health" : [
 "default",
 "HEALTHY",
 "___protobuf_metadata",
 "HEALTHY",
 "memcachedCache",
 "HEALTHY",
 "repl",
 "HEALTHY",
 "___script_cache",
 "HEALTHY"
],
 "cluster-health" : "HEALTHY",
 "cluster-name" : "clustered",
 "free-memory" : 1198983,
 "log-tail" : [
 "2018-03-04 16:22:28,138 INFO [org.infinispan.server.endpoint] (MSC service thread 1-7)
DGENDPT10001: MemcachedServer listening on 127.0.0.1:11211",
 "2018-03-04 16:22:28,146 INFO [org.infinispan.server.endpoint] (MSC service thread 1-3)
DGENDPT10000: REST starting",

Red Hat Data Grid 7.2 Administration and Configuration Guide

70

 "2018-03-04 16:22:28,188 INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-3)
DGISPN0001: Started ___protobuf_metadata cache from clustered container",
 "2018-03-04 16:22:28,195 INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-3)
DGISPN0001: Started ___script_cache cache from clustered container",
 "2018-03-04 16:22:28,515 INFO [org.jboss.as.clustering.infinispan] (MSC service thread 1-4)
DGISPN0001: Started ___hotRodTopologyCache cache from clustered container",
 "2018-03-04 16:22:28,552 INFO [org.infinispan.rest.NettyRestServer] (MSC service thread 1-3)
ISPN012003: REST server starting, listening on 127.0.0.1:8080",
 "2018-03-04 16:22:28,552 INFO [org.infinispan.server.endpoint] (MSC service thread 1-3)
DGENDPT10002: REST mapped to /rest",
 "2018-03-04 16:22:28,613 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0060: Http
management interface listening on http://127.0.0.1:9990/management",
 "2018-03-04 16:22:28,613 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0051: Admin
console listening on http://127.0.0.1:9990",
 "2018-03-04 16:22:28,613 INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: Data
Grid 7.2.0 (WildFly Core 2.1.10.Final-redhat-1) started in 7608ms - Started 196 of 235 services (119
services are lazy, passive or on-demand)"
],
 "number-of-cpus" : 8,
 "number-of-nodes" : 1,
 "total-memory" : 1280000

CHAPTER 11. THE HEALTH CHECK API

71

PART VI. REMOTE CLIENT-SERVER MODE INTERFACES

Red Hat Data Grid 7.2 Administration and Configuration Guide

72

CHAPTER 12. REMOTE CLIENT-SERVER MODE INTERFACES
Red Hat JBoss Data Grid offers the following APIs to interact with the data grid in Remote Client-
Server mode:

The Hot Rod Interface, including the RemoteCache API

The Asynchronous API (can only be used in conjunction with the Hot Rod Client in Remote
Client-Server Mode)

The REST Interface

The Memcached Interface

CHAPTER 12. REMOTE CLIENT-SERVER MODE INTERFACES

73

CHAPTER 13. THE HOT ROD INTERFACE

13.1. ABOUT HOT ROD

Hot Rod is a binary TCP client-server protocol used in Red Hat JBoss Data Grid. It was created to
overcome deficiencies in other client/server protocols, such as Memcached.

Hot Rod will failover on a server cluster that undergoes a topology change. Hot Rod achieves this by
providing regular updates to clients about the cluster topology.

Hot Rod enables clients to do smart routing of requests in partitioned or distributed Red Hat JBoss Data
Grid server clusters. To do this, Hot Rod allows clients to determine the partition that houses a key and
then communicate directly with the server that has the key. This functionality relies on Hot Rod updating
the cluster topology with clients, and that the clients use the same consistent hash algorithm as the
servers.

Red Hat JBoss Data Grid contains a server module that implements the Hot Rod protocol. The Hot Rod
protocol facilitates faster client and server interactions in comparison to other text-based protocols and
allows clients to make decisions about load balancing, failover and data location operations.

13.2. THE BENEFITS OF USING HOT ROD OVER MEMCACHED

Red Hat JBoss Data Grid offers a choice of protocols for allowing clients to interact with the server in a
Remote Client-Server environment. When deciding between using memcached or Hot Rod, the
following should be considered.

Memcached

The memcached protocol causes the server endpoint to use the memcached text wire protocol.
The memcached wire protocol has the benefit of being commonly used, and is available for almost
any platform. All of JBoss Data Grid’s functions, including clustering, state sharing for scalability, and
high availability, are available when using memcached.
However the memcached protocol lacks dynamicity, resulting in the need to manually update the list
of server nodes on your clients in the event one of the nodes in a cluster fails. Also, memcached
clients are not aware of the location of the data in the cluster. This means that they will request data
from a non-owner node, incurring the penalty of an additional request from that node to the actual
owner, before being able to return the data to the client. This is where the Hot Rod protocol is able to
provide greater performance than memcached.

Hot Rod

JBoss Data Grid’s Hot Rod protocol is a binary wire protocol that offers all the capabilities of
memcached, while also providing better scaling, durability, and elasticity.
The Hot Rod protocol does not need the hostnames and ports of each node in the remote cache,
whereas memcached requires these parameters to be specified. Hot Rod clients automatically detect
changes in the topology of clustered Hot Rod servers; when new nodes join or leave the cluster,
clients update their Hot Rod server topology view. Consequently, Hot Rod provides ease of
configuration and maintenance, with the advantage of dynamic load balancing and failover.

Additionally, the Hot Rod wire protocol uses smart routing when connecting to a distributed cache.
This involves sharing a consistent hash algorithm between the server nodes and clients, resulting in
faster read and writing capabilities than memcached.

Red Hat Data Grid 7.2 Administration and Configuration Guide

74

WARNING

When using JCache over Hot Rod it is not possible to create remote clustered
caches, as the operation is executed on a single node as opposed to the entire
cluster; however, once a cache has been created on the cluster it may be obtained
using the cacheManager.getCache method.

It is recommended to create caches using either configuration files or the CLI.

13.3. HOT ROD HASH FUNCTIONS

Hot Rod uses the same algorithm as on the server. The Hot Rod client always connects to the primary
owner of the key, which is the first node in the list of owners. For more information about consistent
hashing in Red Hat JBoss Data Grid, see Distribution Mode’s Consistent Hash Algorithm.

13.4. THE HOT ROD INTERFACE CONNECTOR

13.4.1. The Hot Rod Interface Connector

The following enables a Hot Rod server using the hotrod socket binding.

The connector creates a supporting topology cache with default settings. These settings can be tuned
by adding the <topology-state-transfer /> child element to the connector as follows:

The Hot Rod connector can be tuned with additional settings. See Configure Hot Rod Connectors for
more information on how to configure the Hot Rod connector.

NOTE

The Hot Rod connector can provide security and authentication, using TLS/SSL and
SASL, respectively. See the Securing Interfaces section of the Developer Guide for more
information.

13.4.2. Configure Hot Rod Connectors

The following procedure describes the attributes used to configure the Hot Rod connector in Red Hat
JBoss Data Grid’s Remote Client-Server Mode. Both the hotrod-connector and topology-state-
transfer elements must be configured based on the following procedure.



<hotrod-connector socket-binding="hotrod"
 cache-container="local" />

<hotrod-connector socket-binding="hotrod"
 cache-container="local">
 <topology-state-transfer lazy-retrieval="false"
 lock-timeout="1000"
 replication-timeout="5000" />
</hotrod-connector>

CHAPTER 13. THE HOT ROD INTERFACE

75

Configuring Hot Rod Connectors for Remote Client-Server Mode

1. The hotrod-connector element defines the configuration elements for use with Hot Rod.

The socket-binding parameter specifies the socket binding port used by the Hot Rod
connector. This is a mandatory parameter.

The cache-container parameter names the cache container used by the Hot Rod
connector. This is a mandatory parameter.

The worker-threads parameter specifies the number of worker threads available for the
Hot Rod connector. The default value for this parameter is 160. This is an optional
parameter.

The idle-timeout parameter specifies the time, in seconds, that the connector can remain
idle before the connection times out. The default value for this parameter is 0, which means
that no timeout period is set. This is an optional parameter.

The tcp-nodelay parameter specifies whether TCP packets will be delayed and sent out in
batches. Valid values for this parameter are true and false. The default value for this
parameter is true. This is an optional parameter.

The send-buffer-size parameter indicates the size of the send buffer for the Hot Rod
connector. The default value for this parameter is the size of the TCP stack buffer. This is
an optional parameter.

The receive-buffer-size parameter indicates the size of the receive buffer for the Hot Rod
connector. The default value for this parameter is the size of the TCP stack buffer. This is
an optional parameter.

2. The topology-state-transfer element specifies the topology state transfer configurations for
the Hot Rod connector. This element can only occur once within a hotrod-connector element.

The lock-timeout parameter specifies the time (in milliseconds) after which the operation
attempting to obtain a lock times out. The default value for this parameter is 10 seconds.
This is an optional parameter.

The replication-timeout parameter specifies the time (in milliseconds) after which the
replication operation times out. The default value for this parameter is 10 seconds. This is
an optional parameter.

<subsystem xmlns="urn:infinispan:server:endpoint:8.1">
 <hotrod-connector socket-binding="hotrod"
 cache-container="local"
 worker-threads="${VALUE}"
 idle-timeout="${SECONDS}"
 tcp-nodelay="${TRUE/FALSE}"
 send-buffer-size="${VALUE}"
 receive-buffer-size="${VALUE}" >
 <topology-state-transfer lock-timeout"="${MILLISECONDS}"
 replication-timeout="${MILLISECONDS}"
 external-host="${HOSTNAME}"
 external-port="${PORT}"
 lazy-retrieval="${TRUE/FALSE}" />
 </hotrod-connector>
</subsystem>

Red Hat Data Grid 7.2 Administration and Configuration Guide

76

The external-host parameter specifies the hostname sent by the Hot Rod server to clients
listed in the topology information. The default value for this parameter is the host address.
This is an optional parameter.

The external-port parameter specifies the port sent by the Hot Rod server to clients listed
in the topology information. The default value for this parameter is the configured port.
This is an optional parameter.

The lazy-retrieval parameter indicates whether the Hot Rod connector will carry out
retrieval operations lazily. The default value for this parameter is true. This is an optional
parameter.

CHAPTER 13. THE HOT ROD INTERFACE

77

CHAPTER 14. THE REST INTERFACE

14.1. THE REST INTERFACE

Red Hat JBoss Data Grid provides a REST interface, allowing for loose coupling between the client and
server. Its primary benefit is interoperability with existing HTTP clients, along with providing a connection
for php clients. In addition, the need for specific versions of client libraries and bindings is eliminated.

The REST API introduces an overhead, and requires a REST client or custom code to understand and
create REST calls. It is recommended to use the Hot Rod client where performance is a concern.

To interact with Red Hat JBoss Data Grid’s REST API only a HTTP client library is required. For Java, this
may be the Apache HTTP Commons Client, or the java.net API.

IMPORTANT

The following examples assume that REST security is disabled on the REST connector.
To disable REST security remove the authentication and encryption elements from the
connector.

14.2. THE REST INTERFACE CONNECTOR

14.2.1. The REST Interface Connector

The REST connector differs from the Hot Rod and Memcached connectors because it requires a web
subsystem. Therefore configurations such as socket-binding, worker threads, timeouts, etc, must be
performed on the web subsystem.

Once the REST interface has been enabled on the server it may be used normally for adding, removing,
and retrieving data. For information on these processes refer to the JBoss Data Grid Developer Guide .

14.2.2. Configure REST Connectors

Use the following procedure to configure the rest-connector element in Red Hat JBoss Data Grid’s
Remote Client-Server mode.

Configuring REST Connectors for Remote Client-Server Mode

The rest-connector element specifies the configuration information for the REST connector.

1. The cache-container parameter names the cache container used by the REST connector. This
is a mandatory parameter.

2. The context-path parameter specifies the context path for the REST connector. The default
value for this parameter is an empty string (""). This is an optional parameter.

<subsystem xmlns="urn:infinispan:server:endpoint:8.1">
 <rest-connector cache-container="local"
 context-path="${CONTEXT_PATH}"/>
</subsystem>

Red Hat Data Grid 7.2 Administration and Configuration Guide

78

CHAPTER 15. THE MEMCACHED INTERFACE

15.1. THE MEMCACHED INTERFACE

Memcached is an in-memory caching system used to improve response and operation times for
database-driven websites. The Memcached caching system defines a text based protocol called the
Memcached protocol. The Memcached protocol uses in-memory objects or (as a last resort) passes to a
persistent store such as a special memcached database.

Red Hat JBoss Data Grid offers a server that uses the Memcached protocol, removing the necessity to
use Memcached separately with JBoss Data Grid. Additionally, due to JBoss Data Grid’s clustering
features, its data failover capabilities surpass those provided by Memcached.

15.2. ABOUT MEMCACHED SERVERS

Red Hat JBoss Data Grid contains a server module that implements the memcached protocol. This
allows memcached clients to interact with one or multiple JBoss Data Grid based memcached servers.

The servers can be either:

Standalone, where each server acts independently without communication with any other
memcached servers.

Clustered, where servers replicate and distribute data to other memcached servers.

15.3. MEMCACHED STATISTICS

The following table contains a list of valid statistics available using the memcached protocol in Red Hat
JBoss Data Grid.

Table 15.1. Memcached Statistics

Statistic Data Type Details

uptime 32-bit unsigned integer. Contains the time (in seconds)
that the memcached instance has
been available and running.

time 32-bit unsigned integer. Contains the current time.

version String Contains the current version.

curr_items 32-bit unsigned integer. Contains the number of items
currently stored by the instance.

total_items 32-bit unsigned integer. Contains the total number of
items stored by the instance
during its lifetime.

CHAPTER 15. THE MEMCACHED INTERFACE

79

cmd_get 64-bit unsigned integer Contains the total number of get
operation requests (requests to
retrieve data).

cmd_set 64-bit unsigned integer Contains the total number of set
operation requests (requests to
store data).

get_hits 64-bit unsigned integer Contains the number of keys that
are present from the keys
requested.

get_misses 64-bit unsigned integer Contains the number of keys that
were not found from the keys
requested.

delete_hits 64-bit unsigned integer Contains the number of keys to
be deleted that were located and
successfully deleted.

delete_misses 64-bit unsigned integer Contains the number of keys to
be deleted that were not located
and therefore could not be
deleted.

incr_hits 64-bit unsigned integer Contains the number of keys to
be incremented that were located
and successfully incremented

incr_misses 64-bit unsigned integer Contains the number of keys to
be incremented that were not
located and therefore could not
be incremented.

decr_hits 64-bit unsigned integer Contains the number of keys to
be decremented that were
located and successfully
decremented.

decr_misses 64-bit unsigned integer Contains the number of keys to
be decremented that were not
located and therefore could not
be decremented.

cas_hits 64-bit unsigned integer Contains the number of keys to
be compared and swapped that
were found and successfully
compared and swapped.

Statistic Data Type Details

Red Hat Data Grid 7.2 Administration and Configuration Guide

80

cas_misses 64-bit unsigned integer Contains the number of keys to
be compared and swapped that
were not found and therefore not
compared and swapped.

cas_badval 64-bit unsigned integer Contains the number of keys
where a compare and swap
occurred but the original value did
not match the supplied value.

evictions 64-bit unsigned integer Contains the number of eviction
calls performed.

bytes_read 64-bit unsigned integer Contains the total number of
bytes read by the server from the
network.

bytes_written 64-bit unsigned integer Contains the total number of
bytes written by the server to the
network.

Statistic Data Type Details

15.4. THE MEMCACHED INTERFACE CONNECTOR

15.4.1. The Memcached Interface Connector

The following enables a Memcached server using the memcached socket binding, and exposes the
memcachedCache cache declared in the local container, using defaults for all other settings.

Due to the limitations in the Memcached protocol, only one cache can be exposed by a connector. To
expose more than one cache, declare additional memcached-connectors on different socket-bindings.
See Configure Memcached Connectors.

15.4.2. Configure Memcached Connectors

The following procedure describes the attributes used to configure the memcached connector within
the connectors element in Red Hat JBoss Data Grid’s Remote Client-Server Mode.

Configuring the Memcached Connector in Remote Client-Server Mode

The memcached-connector element defines the configuration elements for use with memcached.

<memcached-connector socket-binding="memcached"
 cache-container="local"/>

<subsystem xmlns="urn:infinispan:server:endpoint:8.1">
<memcached-connector socket-binding="memcached"
 cache-container="local"

CHAPTER 15. THE MEMCACHED INTERFACE

81

1. The socket-binding parameter specifies the socket binding port used by the memcached
connector. This is a mandatory parameter.

2. The cache-container parameter names the cache container used by the memcached
connector. This is a mandatory parameter.

3. The worker-threads parameter specifies the number of worker threads available for the
memcached connector. The default value for this parameter is 160. This is an optional
parameter.

4. The idle-timeout parameter specifies the time, in seconds, that the connector can remain idle
before the connection times out. The default value for this parameter is 0, which means that no
timeout period is set. This is an optional parameter.

5. The tcp-nodelay parameter specifies whether TCP packets will be delayed and sent out in
batches. Valid values for this parameter are true and false. The default value for this parameter
is true. This is an optional parameter.

6. The send-buffer-size parameter indicates the size of the send buffer for the memcached
connector. The default value for this parameter is the size of the TCP stack buffer. This is an
optional parameter.

7. The receive-buffer-size parameter indicates the size of the receive buffer for the memcached
connector. The default value for this parameter is the size of the TCP stack buffer. This is an
optional parameter.

 worker-threads="${VALUE}"
 idle-timeout="{SECONDS}"
 tcp-nodelay="{TRUE/FALSE}"
 send-buffer-size="{VALUE}"
 receive-buffer-size="${VALUE}" />
</subsystem>

Red Hat Data Grid 7.2 Administration and Configuration Guide

82

PART VII. SET UP LOCKING FOR THE CACHE

PART VII. SET UP LOCKING FOR THE CACHE

83

CHAPTER 16. LOCKING

16.1. LOCKING

Red Hat JBoss Data Grid provides locking mechanisms to prevent dirty reads (where a transaction
reads an outdated value before another transaction has applied changes to it) and non-repeatable
reads.

16.2. CONFIGURE LOCKING (REMOTE CLIENT-SERVER MODE)

In Remote Client-Server mode, locking is configured using the locking element within the cache tags
(for example, invalidation-cache, distributed-cache, replicated-cache or local-cache).

NOTE

The default isolation mode for the Remote Client-Server mode configuration is
READ_COMMITTED. If the isolation attribute is included to explicitly specify an isolation
mode, it is ignored, a warning is thrown, and the default value is used instead.

The following is a sample procedure of a basic locking configuration for a default cache in Red Hat
JBoss Data Grid’s Remote Client-Server mode.

Configure Locking (Remote Client-Server Mode)

1. The acquire-timeout parameter specifies the number of milliseconds after which lock
acquisition will time out.

2. The concurrency-level parameter defines the number of lock stripes used by the LockManager.

3. The striping parameter specifies whether lock striping will be used for the local cache.

16.3. CONFIGURE LOCKING (LIBRARY MODE)

For Library mode, the locking element and its parameters are set within the default element found
within cache element. An example of this configuration on a local cache is below:

Configure Locking (Library Mode)

<distributed-cache name="distributedCache">
 <locking acquire-timeout="30000"
 concurrency-level="1000"
 striping="false" />
 <!-- Additional configuration here -->
</distributed-cache>

<local-cache name="default">
 <locking concurrency-level="${VALUE}"
 isolation="${LEVEL}"
 acquire-timeout="${TIME}"
 striping="${TRUE/FALSE}"
 write-skew="${TRUE/FALSE}" />
</local-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

84

1. The concurrency-level parameter specifies the concurrency level for the lock container. Set
this value according to the number of concurrent threads interacting with the data grid.

2. The isolation parameter specifies the cache’s isolation level. Valid isolation levels are
READ_COMMITTED and REPEATABLE_READ. For details about isolation levels, see About
Isolation Levels.

3. The acquire-timeout parameter specifies time (in milliseconds) after which a lock acquisition
attempt times out.

4. The striping parameter specifies whether a pool of shared locks are maintained for all entries
that require locks. If set to FALSE, locks are created for each entry in the cache. For details, see
About Lock Striping.

5. The write-skew parameter is only valid if the isolation is set to REPEATABLE_READ. If this
parameter is set to FALSE, a disparity between a working entry and the underlying entry at write
time results in the working entry overwriting the underlying entry. If the parameter is set to
TRUE, such conflicts (namely write skews) throw an exception. The write-skew parameter can
be only used with OPTIMISTIC transactions and it requires entry versioning to be enabled, with
SIMPLE versioning scheme.

16.4. LOCKING TYPES

16.4.1. About Optimistic Locking

Optimistic locking allows multiple transactions to complete simultaneously by deferring lock acquisition
to the transaction prepare time.

Optimistic mode assumes that multiple transactions can complete without conflict. It is ideal where
there is little contention between multiple transactions running concurrently, as transactions can commit
without waiting for other transaction locks to clear. With write-skew enabled, transactions in optimistic
locking mode roll back if one or more conflicting modifications are made to the data before the
transaction completes.

16.4.2. About Pessimistic Locking

Pessimistic locking is also known as eager locking.

Pessimistic locking prevents more than one transaction to modify a value of a key by enforcing cluster-
wide locks on each write operation. Locks are only released once the transaction is completed either
through committing or being rolled back.

Pessimistic mode is used where a high contention on keys is occurring, resulting in inefficiencies and
unexpected roll back operations.

16.4.3. Pessimistic Locking Types

Red Hat JBoss Data Grid includes explicit pessimistic locking and implicit pessimistic locking:

Explicit Pessimistic Locking, which uses the JBoss Data Grid Lock API to allow cache users to
explicitly lock cache keys for the duration of a transaction. The Lock call attempts to obtain
locks on specified cache keys across all nodes in a cluster. This attempt either fails or succeeds
for all specified cache keys. All locks are released during the commit or rollback phase.

Implicit Pessimistic Locking ensures that cache keys are locked in the background as they are

CHAPTER 16. LOCKING

85

accessed for modification operations. Using Implicit Pessimistic Locking causes JBoss Data
Grid to check and ensure that cache keys are locked locally for each modification operation.
Discovering unlocked cache keys causes JBoss Data Grid to request a cluster-wide lock to
acquire a lock on the unlocked cache key.

16.4.4. Explicit Pessimistic Locking Example

The following is an example of explicit pessimistic locking that depicts a transaction that runs on one of
the cache nodes:

Transaction with Explicit Pessimistic Locking

1. When the line cache.lock(K) executes, a cluster-wide lock is acquired on K.

2. When the line cache.put(K,V5) executes, it guarantees success.

3. When the line tx.commit() executes, the locks held for this process are released.

16.4.5. Implicit Pessimistic Locking Example

An example of implicit pessimistic locking using a transaction that runs on one of the cache nodes is as
follows:

Transaction with Implicit Pessimistic locking

1. When the line cache.put(K,V) executes, a cluster-wide lock is acquired on K.

2. When the line cache.put(K2,V2) executes, a cluster-wide lock is acquired on K2.

3. When the line cache.put(K,V5) executes, the lock acquisition is non operational because a
cluster-wide lock for K has been previously acquired. The put operation will still occur.

4. When the line tx.commit() executes, all locks held for this transaction are released.

16.4.6. Configure Locking Mode (Remote Client-Server Mode)

To configure a locking mode in Red Hat JBoss Data Grid’s Remote Client-Server mode, use the
transaction element as follows:

16.4.7. Configure Locking Mode (Library Mode)

tx.begin()
cache.lock(K)
cache.put(K,V5)
tx.commit()

tx.begin()
cache.put(K,V)
cache.put(K2,V2)
cache.put(K,V5)
tx.commit()

<transaction locking="{OPTIMISTIC/PESSIMISTIC}" />

Red Hat Data Grid 7.2 Administration and Configuration Guide

86

In Red Hat JBoss Data Grid’s Library mode, the locking mode is set within the transaction element as
follows:

Set the locking value to OPTIMISTIC or PESSIMISTIC to configure the locking mode used for the
transactional cache.

16.5. LOCKING OPERATIONS

16.5.1. About the LockManager

The LockManager component is responsible for locking an entry before a write process initiates. The
LockManager uses a LockContainer to locate, hold and create locks. There are two types of
LockContainers JBoss Data Grid uses internally and their choice is dependent on the useLockStriping
setting. The first type offers support for lock striping while the second type supports one lock per entry.

See Also: Set Up Lock Striping

16.5.2. About Lock Acquisition

Red Hat JBoss Data Grid acquires remote locks lazily by default. The node running a transaction locally
acquires the lock while other cluster nodes attempt to lock cache keys that are involved in a two phase
prepare/commit phase. JBoss Data Grid can lock cache keys in a pessimistic manner either explicitly or
implicitly.

16.5.3. About Concurrency Levels

Concurrency refers to the number of threads simultaneously interacting with the data grid. In Red Hat
JBoss Data Grid, concurrency levels refer to the number of concurrent threads used within a lock
container.

In JBoss Data Grid, concurrency levels determine the size of each striped lock container. Additionally,
concurrency levels tune all related JDK ConcurrentHashMap based collections, such as those internal
to DataContainers.

<transaction transaction-manager-lookup="{TransactionManagerLookupClass}"
 mode="{NONE, BATCH, NON_XA, NON_DURABLE_XA, FULL_XA}"
 locking="{OPTIMISTIC,PESSIMISTIC}">
</transaction>

CHAPTER 16. LOCKING

87

CHAPTER 17. SET UP LOCK STRIPING

17.1. ABOUT LOCK STRIPING

Lock Striping allocates locks from a shared collection of (fixed size) locks in the cache. Lock allocation is
based on the hash code for each entry’s key. Lock Striping provides a highly scalable locking mechanism
with fixed overhead. However, this comes at a cost of potentially unrelated entries being blocked by the
same lock.

Lock Striping is disabled by default in Red Hat JBoss Data Grid. If lock striping remains disabled, a new
lock is created for each entry. This alternative approach can provide greater concurrent throughput, but
also results in additional memory usage, garbage collection churn, and other disadvantages.

17.2. CONFIGURE LOCK STRIPING (REMOTE CLIENT-SERVER MODE)

Lock striping in Red Hat JBoss Data Grid’s Remote Client-Server mode is enabled by setting the
striping element to true.

Lock Striping (Remote Client-Server Mode)

NOTE

The default isolation mode for the Remote Client-Server mode configuration is
READ_COMMITTED. If the isolation attribute is included to explicitly specify an isolation
mode, it is ignored, a warning is thrown, and the default value is used instead.

The locking element uses the following attributes:

The acquire-timeout attribute specifies the maximum time to attempt a lock acquisition. The
default value for this attribute is 10000 milliseconds.

The concurrency-level attribute specifies the concurrency level for lock containers. Adjust this
value according to the number of concurrent threads interacting with JBoss Data Grid. The
default value for this attribute is 32.

The striping attribute specifies whether a shared pool of locks is maintained for all entries that
require locking (true). If set to false, a lock is created for each entry. Lock striping controls the
memory footprint but can reduce concurrency in the system. The default value for this attribute
is false.

17.3. CONFIGURE LOCK STRIPING (LIBRARY MODE)

Lock striping is disabled by default in Red Hat JBoss Data Grid. Configure lock striping in JBoss Data
Grid’s Library mode using the striping parameter as demonstrated in the following procedure.

Configure Lock Striping (Library Mode)

<locking acquire-timeout="20000"
 concurrency-level="500"
 striping="true" />

<local-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

88

1. The concurrency-level is used to specify the size of the shared lock collection use when lock
striping is enabled.

2. The isolation parameter specifies the cache’s isolation level. Valid isolation levels are
READ_COMMITTED and REPEATABLE_READ.

3. The acquire-timeout parameter specifies time (in milliseconds) after which a lock acquisition
attempt times out.

4. The striping parameter specifies whether a pool of shared locks are maintained for all entries
that require locks. If set to FALSE, locks are created for each entry in the cache. If set to TRUE,
lock striping is enabled and shared locks are used as required from the pool.

5. The write-skew check determines if a modification to the entry from a different transaction
should roll back the transaction. Write skew set to true requires isolation_level set to
REPEATABLE_READ. The default value for write-skew and isolation_level are FALSE and
READ_COMMITTED respectively. The write-skew parameter can be only used with
OPTIMISTIC transactions and it requires entry versioning to be enabled, with SIMPLE
versioning scheme.

 <locking concurrency-level="${VALUE}"
 isolation="${LEVEL}"
 acquire-timeout="${TIME}"
 striping="${TRUE/FALSE}"
 write-skew="${TRUE/FALSE}" />
</local-cache>

CHAPTER 17. SET UP LOCK STRIPING

89

CHAPTER 18. SET UP ISOLATION LEVELS

18.1. ABOUT ISOLATION LEVELS

Isolation levels determine when readers can view a concurrent write. READ_COMMITTED and
REPEATABLE_READ are the two isolation modes offered in Red Hat JBoss Data Grid.

READ_COMMITTED. This isolation level is applicable to a wide variety of requirements. This is
the default value in Remote Client-Server and Library modes.

REPEATABLE_READ.

IMPORTANT

The only valid value for locks in Remote Client-Server mode is the default
READ_COMMITTED value. The value explicitly specified with the isolation value
is ignored.

If the locking element is not present in the configuration, the default isolation
value is READ_COMMITTED.

For isolation mode configuration examples in JBoss Data Grid, see the lock striping configuration
samples:

See Configure Lock Striping (Remote Client-Server Mode) for a Remote Client-Server mode
configuration sample.

See Configure Lock Striping (Library Mode) for a Library mode configuration sample.

18.2. ABOUT READ_COMMITTED

READ_COMMITTED is one of two isolation modes available in Red Hat JBoss Data Grid.

In JBoss Data Grid’s READ_COMMITTED mode, write operations are made to copies of data rather
than the data itself. A write operation blocks other data from being written, however writes do not block
read operations. As a result, both READ_COMMITTED and REPEATABLE_READ modes permit read
operations at any time, regardless of when write operations occur.

In READ_COMMITTED mode multiple reads of the same key within a transaction can return different
results due to write operations in different transactions modifying data between reads. This
phenomenon is known as non-repeatable reads and is avoided in REPEATABLE_READ mode.

18.3. ABOUT REPEATABLE_READ

REPEATABLE_READ is one of two isolation modes available in Red Hat JBoss Data Grid.

Traditionally, REPEATABLE_READ does not allow write operations while read operations are in
progress, nor does it allow read operations when write operations occur. This prevents the "non-
repeatable read" phenomenon, which occurs when a single transaction has two read operations on the
same row but the retrieved values differ (possibly due to a write operation modifying the value between
the two read operations).

JBoss Data Grid’s REPEATABLE_READ isolation mode preserves the value of an entry before a
modification occurs. As a result, the "non-repeatable read" phenomenon is avoided because a second

Red Hat Data Grid 7.2 Administration and Configuration Guide

90

read operation on the same entry retrieves the preserved value rather than the new modified value. As a
result, the two values retrieved by the two read operations in a single transaction will always match, even
if a write operation occurs in a different transaction between the two reads.

CHAPTER 18. SET UP ISOLATION LEVELS

91

PART VIII. SET UP AND CONFIGURE A CACHE STORE

Red Hat Data Grid 7.2 Administration and Configuration Guide

92

CHAPTER 19. CACHE STORES

19.1. CACHE STORES

The cache store connects Red Hat JBoss Data Grid to the persistent data store. Cache stores are
associated with individual caches. Different caches attached to the same cache manager can have
different cache store configurations.

NOTE

If a clustered cache is configured with an unshared cache store (where shared is set to
false), on node join, stale entries which might have been removed from the cluster might
still be present in the stores and can reappear.

19.2. CACHE LOADERS AND CACHE WRITERS

Integration with the persistent store is done through the following SPIs located in
org.infinispan.persistence.spi:

CacheLoader

CacheWriter

AdvancedCacheLoader

AdvancedCacheWriter

CacheLoader and CacheWriter provide basic methods for reading and writing to a store.
CacheLoader retrieves data from a data store when the required data is not present in the cache, and
CacheWriter is used to enforce entry passivation and activation on eviction in a cache.

AdvancedCacheLoader and AdvancedCacheWriter provide operations to manipulate the underlying
storage in bulk: parallel iteration and purging of expired entries, clear and size.

The org.infinispan.persistence.file.SingleFileStore is a good starting point to write your own store
implementation.

NOTE

Previously, JBoss Data Grid used the old API (CacheLoader, extended by CacheStore),
which is also still available.

19.3. CACHE STORE CONFIGURATION

19.3.1. Configuring the Cache Store

Cache stores can be configured in a chain. Cache read operations checks each cache store in the order
configured until a valid non-null element of data has been located. Write operations affect all cache
stores unless the ignoreModifications element has been set to "true" for a specific cache store.

19.3.2. Configure the Cache Store using XML (Library Mode)

The following example demonstrates cache store configuration using XML in JBoss Data Grid’s Library

CHAPTER 19. CACHE STORES

93

The following example demonstrates cache store configuration using XML in JBoss Data Grid’s Library
mode:

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

19.3.3. About SKIP_CACHE_LOAD Flag

In Red Hat JBoss Data Grid’s Remote Client-Server mode, when the cache is preloaded from a cache
store and eviction is disabled, read requests go to the memory. If the entry is not found in a memory
during a read request, it accesses the cache store which may impact the read performance.

To avoid referring to the cache store when a key is not found in the memory, use the
SKIP_CACHE_LOAD flag.

19.3.4. About the SKIP_CACHE_STORE Flag

When the SKIP_CACHE_STORE Flag is used then the cache store will not be considered for the
specified cache operations. This flag can be useful to place an entry in the cache without having it
included in the configured cache store, along with determining if an entry is found within a cache without
retrieving it from the associated cache store.

19.3.5. About the SKIP_SHARED_CACHE_STORE Flag

When the SKIP_SHARED_CACHE_STORE Flag is enabled then any shared cache store will not be
considered for the specified cache operations. This flag can be useful to place an entry in the cache
without having it included in the shared cache store, along with determining if an entry is found within a
cache without retrieving it from the shared cache store.

19.4. SHARED CACHE STORES

19.4.1. Shared Cache Stores

A shared cache store is a cache store that is shared by multiple cache instances.

A shared cache store is useful when all instances in a cluster communicate with the same remote, shared
database using the same JDBC settings. In such an instance, configuring a shared cache store prevents
the unnecessary repeated write operations that occur when various cache instances attempt to write
the same data to the cache store.

<persistence passivation="false">
 <file-store shared="false"
 preload="true"
 fetch-state="true"
 purge-startup="false"
 singleton="true"
 location="${java.io.tmpdir}" >
 <write-behind enabled="true"
 flush-lock-timeout="15000"
 thread-pool-size="5" />
 </singleFile>
</persistence>

Red Hat Data Grid 7.2 Administration and Configuration Guide

94

19.4.2. Invalidation Mode and Shared Cache Stores

When used in conjunction with a shared cache store, Red Hat JBoss Data Grid’s invalidation mode
causes remote caches to see the shared cache store to retrieve modified data.

The benefits of using invalidation mode in conjunction with shared cache stores include the following:

Compared to replication messages, which contain the updated data, invalidation messages are
much smaller and result in reduced network traffic.

The remaining cluster caches look up modified data from the shared cache store lazily and only
when required to do so, resulting in further reduced network traffic.

19.4.3. The Cache Store and Cache Passivation

In Red Hat JBoss Data Grid, a cache store can be used to enforce the passivation of entries and to
activate eviction in a cache. Whether passivation mode or activation mode are used, the configured
cache store both reads from and writes to the data store.

When passivation is disabled in JBoss Data Grid, after the modification, addition or removal of an
element is carried out the cache store steps in to persist the changes in the store.

19.4.4. Application Cachestore Registration

It is not necessary to register an application cache store for an isolated deployment. This is not a
requirement in Red Hat JBoss Data Grid because lazy deserialization is used to work around this
problem.

19.5. CONNECTION FACTORIES

19.5.1. Connection Factories

In Red Hat JBoss Data Grid, all JDBC cache stores rely on a ConnectionFactory implementation to
obtain a database connection. This process is also known as connection management or pooling.

A connection factory can be specified using the ConnectionFactoryClass configuration attribute.
JBoss Data Grid includes the following ConnectionFactory implementations:

ManagedConnectionFactory

SimpleConnectionFactory.

PooledConnectionFactory.

19.5.2. About ManagedConnectionFactory

ManagedConnectionFactory is a connection factory that is ideal for use within managed environments
such as application servers. This connection factory can explore a configured location in the JNDI tree
and delegate connection management to the DataSource.

19.5.3. About SimpleConnectionFactory

SimpleConnectionFactory is a connection factory that creates database connections on a per
invocation basis. This connection factory is not designed for use in a production environment.

CHAPTER 19. CACHE STORES

95

19.5.4. About PooledConnectionFactory

PooledConnectionFactory is a connection factory based on C3P0, and is typically recommended for
standalone deployments as opposed to deployments utilizing a servlet container, such as JBoss EAP.
This connection factory functions by allowing the user to define a set of parameters which may be used
for all DataSource instances generated by the factory.

Red Hat Data Grid 7.2 Administration and Configuration Guide

96

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

20.1. CACHE STORES

The cache store connects Red Hat JBoss Data Grid to the persistent data store. Cache stores are
associated with individual caches. Different caches attached to the same cache manager can have
different cache store configurations.

NOTE

If a clustered cache is configured with an unshared cache store (where shared is set to
false), on node join, stale entries which might have been removed from the cluster might
still be present in the stores and can reappear.

20.2. CACHE STORE COMPARISON

Select a cache store based on your requirements. The following is a summary of high level differences
between the cache stores available in Red Hat JBoss Data Grid:

The Single File Cache Store is a local file cache store. It persists data locally for each node of the
clustered cache. The Single File Cache Store provides superior read and write performance, but
keeps keys in memory which limits its use when persisting large data sets at each node. See
Single File Cache Store for details.

The LevelDB file cache store is a local file cache store which provides high read and write
performance. It does not have the limitation of Single File Cache Store of keeping keys in
memory. See LevelDB Cache Store for details.

The JDBC cache store is a cache store that may be shared, if required. When using it, all nodes
of a clustered cache persist to a single database or a local JDBC database for every node in the
cluster. The shared cache store lacks the scalability and performance of a local cache store such
as the LevelDB cache store, but it provides a single location for persisted data. The JDBC cache
store persists entries as binary blobs, which are not readable outside JBoss Data Grid. See
JDBC Based Cache Stores for details.

The JPA Cache Store (supported in Library mode only) is a shared cache store like JDBC cache
store, but preserves schema information when persisting to the database. Therefore, the
persisted entries can be read outside JBoss Data Grid. See JPA Cache Store for details.

20.3. CACHE STORE CONFIGURATION DETAILS (LIBRARY MODE)

The following lists contain details about the configuration elements and parameters for cache store
elements in JBoss Data Grid’s Library mode. The following list is meant to highlight certain parameters
on each element, and a full list may be found in the schemas.

The persistence Element

The passivation parameter affects the way in which Red Hat JBoss Data Grid interacts with
stores. When an object is evicted from in-memory cache, passivation writes it to a secondary
data store, such as a system or a database. Valid values for this parameter are true and false but
passivation is set to false by default.

The file-store Element

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

97

The shared parameter indicates that the cache store is shared by different cache instances.
For example, where all instances in a cluster use the same JDBC settings to talk to the same
remote, shared database. shared is false by default. When set to true, it prevents duplicate
data being written to the cache store by different cache instances. For the LevelDB cache
stores, this parameter must be excluded from the configuration, or set to false because sharing
this cache store is not supported.

The preload parameter is set to false by default. When set to true the data stored in the cache
store is preloaded into the memory when the cache starts. This allows data in the cache store to
be available immediately after startup and avoids cache operations delays as a result of loading
data lazily. Preloaded data is only stored locally on the node, and there is no replication or
distribution of the preloaded data. Red Hat JBoss Data Grid will only preload up to the
maximum configured number of entries in eviction.

The fetch-state parameter determines whether or not to fetch the persistent state of a cache
and apply it to the local cache store when joining the cluster. If the cache store is shared the
fetch persistent state is ignored, as caches access the same cache store. A configuration
exception will be thrown when starting the cache service if more than one cache store has this
property set to true. The fetch-state property is false by default.

In order to speed up lookups, the single file cache store keeps an index of keys and their
corresponding position in the file. To avoid this index resulting in memory consumption
problems, this cache store can be bounded by a maximum number of entries that it stores,
defined by the max-entries parameter. If this limit is exceeded, entries are removed
permanently using the LRU algorithm both from the in-memory index and the underlying file
based cache store. The default value is -1, allowing unlimited entries.

The singleton parameter enables a singleton store cache store. SingletonStore is a delegating
cache store used when only one instance in a cluster can interact with the underlying store;
however, singleton parameter is not recommended for file-store. The default value is false.

The purge parameter controls whether cache store is purged when it starts up.

The location configuration element sets a location on disk where the store can write.

The write-behind Element

The write-behind element contains parameters that configure various aspects of the cache store.

The thread-pool-size parameter specifies the number of threads that concurrently apply
modifications to the store. The default value for this parameter is 1.

The flush-lock-timeout parameter specifies the time to acquire the lock which guards the state
to be flushed to the cache store periodically. The default value for this parameter is 1.

The modification-queue-size parameter specifies the size of the modification queue for the
asynchronous store. If updates are made at a rate that is faster than the underlying cache store
can process this queue, then the asynchronous store behaves like a synchronous store for that
period, blocking until the queue can accept more elements. The default value for this parameter
is 1024 elements.

The shutdown-timeout parameter specifies maximum amount of time that can be taken to
stop the cache store. Default value for this parameter is 25000 milliseconds.

The remote-store Element

The cache attribute specifies the name of the remote cache to which it intends to connect in

Red Hat Data Grid 7.2 Administration and Configuration Guide

98

The cache attribute specifies the name of the remote cache to which it intends to connect in
the remote Infinispan cluster. The default cache will be used if the remote cache name is
unspecified.

The fetch-state attribute, when set to true, ensures that the persistent state is fetched when
the remote cache joins the cluster. If multiple cache stores are chained, only one cache store
can have this property set to true . The default for this value is false.

The shared attribute is set to true when multiple cache instances share a cache store, which
prevents multiple cache instances writing the same modification individually. The default for
this attribute is false.

The preload attribute ensures that the cache store data is pre-loaded into memory and is
immediately accessible after starting up. The disadvantage of setting this to true is that the
start up time increases. The default value for this attribute is false.

The singleton parameter enables the SingletonStore delegating cache store, used in situations
when only one instance in a cluster should interact with the underlying store. The default value is
false.

The purge attribute ensures that the cache store is purged during the start up process. The
default value for this attribute is false.

The tcp-no-delay attribute triggers the TCPNODELAY stack. The default value for this
attribute is true.

The ping-on-start attribute sends a ping request to a back end server to fetch the cluster
topology. The default value for this attribute is true.

The key-size-estimate attribute provides an estimation of the key size. The default value for
this attribute is 64.

The value-size-estimate attribute specifies the size of the byte buffers when serializing and
deserializing values. The default value for this attribute is 512.

The force-return-values attribute sets whether FORCE_RETURN_VALUE is enabled for all
calls. The default value for this attribute is false.

The remote-server Element

Create a remote-server element within the remote-store element to define the server information.

The host attribute configures the host address.

The port attribute configures the port used by the Remote Cache Store. This defaults to 11222.

The connection-pool Element (Remote Store)

The max-active parameter indicates the maximum number of active connections for each
server at a time. The default value for this attribute is -1 which indicates an infinite number of
active connections.

The max-idle parameter indicates the maximum number of idle connections for each server at a
time. The default value for this attribute is -1 which indicates an infinite number of idle
connections.

The max-total parameter indicates the maximum number of persistent connections within the

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

99

The max-total parameter indicates the maximum number of persistent connections within the
combined set of servers. The default setting for this attribute is -1 which indicates an infinite
number of connections.

The min-idle-time parameter sets a target value for the minimum number of idle connections
(per server) that should always be available. If this parameter is set to a positive number and
timeBetweenEvictionRunsMillis 0, each time the idle connection eviction thread runs, it will try
to create enough idle instances so that there will be minIdle idle instances available for each
server. The default setting for this parameter is 1.

The eviction-interval parameter indicates how long the eviction thread should sleep before
"runs" of examining idle connections. When non-positive, no eviction thread will be launched.
The default setting for this parameter is 120000 milliseconds, or 2 minutes.

The min-evictable-idle-time parameter specifies the minimum amount of time that an
connection may sit idle in the pool before it is eligible for eviction due to idle time. When non-
positive, no connection will be dropped from the pool due to idle time alone. This setting has no
effect unless timeBetweenEvictionRunsMillis 0. The default setting for this parameter is
1800000, or (30 minutes).

The test-idle parameter indicates whether or not idle connections should be validated by
sending an TCP packet to the server, during idle connection eviction runs. Connections that fail
to validate will be dropped from the pool. This setting has no effect unless
timeBetweenEvictionRunsMillis 0. The default setting for this parameter is true.

The leveldb-store Element

The relative-to parameter specifies the base directory in which to store the cache state.

The path parameter specifies the location within the relative-to parameter to store the cache
state.

The shared parameter specifies whether the cache store is shared. The only supported value
for this parameter in the LevelDB cache store is false.

The preload parameter specifies whether the cache store will be pre-loaded. Valid values are
true and false.

The block-size parameter defines the block size of the cache store.

The singleton parameter enables the SingletonStore delegating cache store, used in situations
when only one instance in a cluster should interact with the underlying store. The default value is
false.

The cache-size parameter defines the cache size of the cache store.

The clear-threshold parameter defines the cache clear threshold of the cache store.

The jpa-store Element

The persistence-unit attribute specifies the name of the JPA cache store.

The entity-class attribute specifies the fully qualified class name of the JPA entity used to
store the cache entry value.

The batch-size (optional) attribute specifies the batch size for cache store streaming. The
default value for this attribute is 100.

Red Hat Data Grid 7.2 Administration and Configuration Guide

100

The store-metadata (optional) attribute specifies whether the cache store keeps the metadata
(for example expiration and versioning information) with the entries. The default value for this
attribute is true.

The singleton parameter enables the SingletonStore delegating cache store, used in situations
when only one instance in a cluster should interact with the underlying store. The default value is
false.

The binary-keyed-jdbc-store, string-keyed-jdbc-store, and mixed-keyed-jdbc-store Elements

The fetch-state parameter determines whether the persistent state is fetched when joining a
cluster. Set this to true if using a replication and invalidation in a clustered environment.
Additionally, if multiple cache stores are chained, only one cache store can have this property
enabled. If a shared cache store is used, the cache does not allow a persistent state transfer
despite this property being set to true. The fetch-state parameter is false by default.

The singleton parameter enables the SingletonStore delegating cache store, used in situations
when only one instance in a cluster should interact with the underlying store. The default value is
false.

The purge parameter specifies whether the cache store is purged when initially started.

The key-to-string-mapper parameter specifies the class name used to map keys to strings for
the database tables.

The connection-pool Element (JDBC Store)

The connection-url parameter specifies the JDBC driver-specific connection URL.

The username parameter contains the username used to connect via the connection-url.

The password parameter contains the password to use when connecting via the connection-
url

The driver parameter specifies the class name of the driver used to connect to the database.

The binary-keyed-table and string-keyed-table Elements

The prefix attribute defines the string prepended to name of the target cache when composing
the name of the cache bucket table.

The drop-on-exit parameter specifies whether the database tables are dropped upon
shutdown.

The create-on-start parameter specifies whether the database tables are created by the store
on startup.

The fetch-size parameter specifies the size to use when querying from this table. Use this
parameter to avoid heap memory exhaustion when the query is large.

The batch-size parameter specifies the batch size used when modifying this table.

The id-column, data-column, and timestamp-column Elements

The name parameter specifies the name of the column used.

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

101

The type parameter specifies the type of the column used.

The custom-store Element

The class parameter specifies the class name of the cache store implementation.

The preload parameter specifies whether to load entries into the cache during start up. Valid
values for this parameter are true and false.

The shared parameter specifies whether the cache store is shared. This is used when multiple
cache instances share a cache store. Valid values for this parameter are true and false.

The property Element

A property may be defined inside of a cache store, with the entry between the property tags being the
stored value. For instance, in the below example a value of 1 is defined for minOccurs.

The name attribute specifies the name of the property.

20.4. CACHE STORE CONFIGURATION DETAILS (REMOTE CLIENT-
SERVER MODE)

The following tables contain details about the configuration elements and parameters for cache store
elements in JBoss Data Grid’s Remote Client-Server mode. The following list is meant to highlight
certain parameters on each element, and a full list may be found in the schemas.

The local-cache Element

The name parameter of the local-cache attribute is used to specify a name for the cache.

The statistics parameter specifies whether statistics are enabled at the container level. Enable
or disable statistics on a per-cache basis by setting the statistics attribute to false.

The file-store Element

The name parameter of the file-store element is used to specify a name for the file store.

The passivation parameter determines whether entries in the cache are passivated (true) or if
the cache store retains a copy of the contents in memory (false).

The purge parameter specifies whether or not the cache store is purged when it is started. Valid
values for this parameter are true and false.

The shared parameter is used when multiple cache instances share a cache store. This
parameter can be set to prevent multiple cache instances writing the same modification
multiple times. Valid values for this parameter are true and false. However, the shared
parameter is not recommended for the LevelDB cache store because this cache store cannot
be shared.

The relative-to property is the directory where the file-store stores the data. It is used to define
a named path.

The path property is the name of the file where the data is stored. It is a relative path name that

<property name="minOccurs">1</property>

Red Hat Data Grid 7.2 Administration and Configuration Guide

102

The path property is the name of the file where the data is stored. It is a relative path name that
is appended to the value of the relative-to property to determine the complete path.

The max-entries parameter provides maximum number of entries allowed. The default value is
-1 for unlimited entries.

The fetch-state parameter when set to true fetches the persistent state when joining a cluster.
If multiple cache stores are chained, only one of them can have this property enabled. Persistent
state transfer with a shared cache store does not make sense, as the same persistent store that
provides the data will just end up receiving it. Therefore, if a shared cache store is used, the
cache does not allow a persistent state transfer even if a cache store has this property set to
true. It is recommended to set this property to true only in a clustered environment. The default
value for this parameter is false.

The preload parameter when set to true, loads the data stored in the cache store into memory
when the cache starts. However, setting this parameter to true affects the performance as the
startup time is increased. The default value for this parameter is false.

The singleton parameter enables a singleton store cache store. SingletonStore is a delegating
cache store used when only one instance in a cluster can interact with the underlying store;
however, singleton parameter is not recommended for file-store. The default value is false.

The store Element

The class parameter specifies the class name of the cache store implementation.

The property Element

The name parameter specifies the name of the property.

The value parameter specifies the value assigned to the property.

The remote-store Element

The cache parameter defines the name for the remote cache. If left undefined, the default
cache is used instead.

The socket-timeout parameter sets whether the value defined in SO_TIMEOUT (in
milliseconds) applies to remote Hot Rod servers on the specified timeout. A timeout value of 0
indicates an infinite timeout. The default value is 60,000 ms, or one minute.

The tcp-no-delay sets whether TCP_NODELAY applies on socket connections to remote Hot
Rod servers.

The hotrod-wrapping sets whether a wrapper is required for Hot Rod on the remote store.

The singleton parameter enables the SingletonStore delegating cache store, used in situations
when only one instance in a cluster should interact with the underlying store. The default value is
false.

The remote-server Element

The outbound-socket-binding parameter sets the outbound socket binding for the remote
server.

The binary-keyed-jdbc-store, string-keyed-jdbc-store, and mixed-keyed-jdbc-store Elements

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

103

The datasource parameter defines the name of a JNDI for the datasource.

The passivation parameter determines whether entries in the cache are passivated (true) or if
the cache store retains a copy of the contents in memory (false).

The preload parameter specifies whether to load entries into the cache during start up. Valid
values for this parameter are true and false.

The purge parameter specifies whether or not the cache store is purged when it is started. Valid
values for this parameter are true and false.

The shared parameter is used when multiple cache instances share a cache store. This
parameter can be set to prevent multiple cache instances writing the same modification
multiple times. Valid values for this parameter are true and false.

The singleton parameter enables a singleton store cache store. SingletonStore is a delegating
cache store used when only one instance in a cluster can interact with the underlying store

The binary-keyed-table and string-keyed-table Elements

The prefix parameter specifies a prefix string for the database table name.

The id-column, data-column, and timestamp-column Elements

The name parameter specifies the name of the database column.

The type parameter specifies the type of the database column.

The leveldb-store Element

The relative-to parameter specifies the base directory to store the cache state. This value
defaults to jboss.server.data.dir.

The path parameter defines where, within the directory specified in the relative-to parameter,
the cache state is stored. If undefined, the path defaults to the cache container name.

The passivation parameter specifies whether passivation is enabled for the LevelDB cache
store. Valid values are true and false.

The singleton parameter enables the SingletonStore delegating cache store, used in situations
when only one instance in a cluster should interact with the underlying store. The default value is
false.

The purge parameter specifies whether the cache store is purged when it starts up. Valid values
are true and false.

20.5. SINGLE FILE CACHE STORE

20.5.1. Single File Cache Store

Red Hat JBoss Data Grid includes one file system based cache store: the SingleFileCacheStore.

The SingleFileCacheStore is a simple file system based implementation and a replacement to the older
file system based cache store: the FileCacheStore.

Red Hat Data Grid 7.2 Administration and Configuration Guide

104

SingleFileCacheStore stores all key/value pairs and their corresponding metadata information in a
single file. To speed up data location, it also keeps all keys and the positions of their values and
metadata in memory. Hence, using the single file cache store slightly increases the memory required,
depending on the key size and the amount of keys stored. Hence SingleFileCacheStore is not
recommended for use cases where the keys are too big.

To reduce memory consumption, the size of the cache store can be set to a fixed number of entries to
store in the file; however, this works only when JBoss Data Grid is used as a cache. When JBoss Data
Grid is used this way, data which is not present in the cache can be recomputed or re-retrieved from the
authoritative data store and stored in the JBoss Data Grid cache. This limitation exists so that once the
maximum number of entries is reached older data in the cache store is removed. If JBoss Data Grid were
used as an authoritative data store in this scenario it would lead to potential data loss.

Due to its limitations, SingleFileCacheStore can be used in a limited capacity in production
environments. It can not be used on shared file system (such as NFS and Windows shares) due to a lack
of proper file locking, resulting in data corruption. Furthermore, file systems are not inherently
transactional, resulting in file writing failures during the commit phase if the cache is used in a
transactional context.

20.5.2. Single File Store Configuration (Remote Client-Server Mode)

The following is an example of a Single File Store configuration for Red Hat JBoss Data Grid’s Remote
Client-Server mode:

<local-cache name="default" statistics="true">
 <file-store name="myFileStore"
 passivation="true"
 purge="true"
 relative-to="{PATH}"
 path="{DIRECTORY}"
 max-entries="10000"
 fetch-state="true"
 preload="false" />
</local-cache>

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Remote Client-Server Mode).

20.5.3. Single File Store Configuration (Library Mode)

In Red Hat JBoss Grid’s Library mode, configure a Single File Cache Store as follows:.

<local-cache name="writeThroughToFile">
 <persistence passivation="false">
 <file-store fetch-state="true"
 purge="false"
 shared="false"
 preload="false"
 location="/tmp/Another-FileCacheStore-Location"
 max-entries="100">
 <write-behind enabled="true"
 threadPoolSize="500"
 flush-lock-timeout="1"
 modification-queue-size="1024"
 shutdown-timeout="25000"/>

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

105

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

20.5.4. Upgrade JBoss Data Grid Cache Stores

Red Hat JBoss Data Grid 7 stores data in a different format than previous versions of JBoss Data Grid.
As a result, the newer version of JBoss Data Grid cannot read data stored by older versions. Use rolling
upgrades to upgrade persisted data from the format used by the old JBoss Data Grid to the new
format. Additionally, the newer version of JBoss Data Grid also stores persistence configuration
information in a different location.

Rolling upgrades is the process by which a JBoss Data Grid installation is upgraded without a service
shutdown. For JBoss Data Grid servers, this procedure refers to the server side components. The
upgrade can be due to either hardware or software change, such as upgrading JBoss Data Grid.

Rolling upgrades are only available in JBoss Data Grid’s Remote Client-Server mode.

20.6. LEVELDB CACHE STORE

20.6.1. LevelDB Cache Store

LevelDB is a key-value storage engine that provides an ordered mapping from string keys to string
values.

The LevelDB Cache Store uses two filesystem directories. Each directory is configured for a LevelDB
database. One directory stores the non-expired data and the second directory stores the keys pending
to be purged permanently.

20.6.2. Configuring LevelDB Cache Store (Remote Client-Server Mode)

Procedure: To configure LevelDB Cache Store:

1. Add the following elements to a cache definition in standalone.xml to configure the database:

<leveldb-store path="/path/to/leveldb/data"
 passivation="false"
 purge="false" >
 <leveldb-expiration path="/path/to/leveldb/expires/data" />
 <implementation type="JNI" />
</leveldb-store>

NOTE

Directories will be automatically created if they do not exist.

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Remote Client-Server Mode).

 </singleFile>
 </persistence>
 </local-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

106

20.6.3. LevelDB Cache Store Sample XML Configuration (Library Mode)

The following is a sample XML configuration of LevelDB Cache Store:

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

20.6.4. Configure a LevelDB Cache Store Using JBoss Operations Network

Use the following procedure to set up a new LevelDB cache store using the JBoss Operations Network.

1. Ensure that Red Hat JBoss Operations Network 3.2 or higher is installed and started.

2. Install the Red Hat JBoss Data Grid Plugin Pack for JBoss Operations Network 3.2.0.

3. Ensure that JBoss Data Grid is installed and started.

4. Import JBoss Data Grid server into the inventory.

5. Configure the JBoss Data Grid connection settings.

6. Create a new LevelDB cache store as follows:

Figure 20.1. Create a new LevelDB Cache Store

a. Right-click the default cache.

b. In the menu, mouse over the option.

<local-cache name="vehicleCache">
 <persistence passivation="false">
 <leveldb-store xmlns="urn:infinispan:config:store:leveldb:8.0
 relative-to="/path/to/leveldb/data"
 shared="false"
 preload="true"/>
 </persistence>
 </local-cache>

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

107

c. In the submenu, click menu:LevelDB Store[] .

7. Name the new LevelDB cache store as follows:

Figure 20.2. Name the new LevelDB Cache Store

a. In the Resource Create Wizard that appears, add a name for the new LevelDB Cache Store.

b. Click btn:[Next] to continue.

8. Configure the LevelDB Cache Store settings as follows:

Figure 20.3. Configure the LevelDB Cache Store Settings

a. Use the options in the configuration window to configure a new LevelDB cache store.

b. Click menu:Finish[] to complete the configuration.

Red Hat Data Grid 7.2 Administration and Configuration Guide

108

9. Schedule a restart operation as follows:

Figure 20.4. Schedule a Restart Operation

a. In the screen’s left panel, expand the JBoss AS7 Standalone Servers entry, if it is not
currently expanded.

b. Click JDG (0.0.0.0:9990) from the expanded menu items.

c. In the screen’s right panel, details about the selected server display. Click the
menu:Operations[] tab.

d. In the Operation drop-down box, select the Restart operation.

e. Select the radio button for the Now entry.

f. Click menu:Schedule[] to restart the server immediately.

10. Discover the new LevelDB cache store as follows:

Figure 20.5. Discover the New LevelDB Cache Store

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

109

Figure 20.5. Discover the New LevelDB Cache Store

a. In the screen’s left panel, select each of the following items in the specified order to expand
them: menu:JBoss AS7 Standalong Servers[JDG (0.0.0.0:9990) > infinispan > Cache
Containers > local > Caches > default > LevelDB Stores]

b. Click the name of your new LevelDB Cache Store to view its configuration information in the
right panel.

20.7. JDBC BASED CACHE STORES

20.7.1. JDBC Based Cache Stores

Red Hat JBoss Data Grid offers several cache stores for use with common data storage formats. JDBC
based cache stores are used with any cache store that exposes a JDBC driver. JBoss Data Grid offers
the following JDBC based cache stores depending on the key to be persisted:

JdbcBinaryStore.

JdbcStringBasedStore.

JdbcMixedStore.

IMPORTANT

Both Binary and Mixed JDBC stores are deprecated in JBoss Data Grid 7.2, and are not
recommended for production use. It is recommended to utilize a String Based store
instead.

20.7.2. JdbcBinaryStores

20.7.2.1. JdbcBinaryStores

The JdbcBinaryStore supports all key types. It stores all keys with the same hash value (hashCode
method on the key) in the same table row/blob. The hash value common to the included keys is set as

Red Hat Data Grid 7.2 Administration and Configuration Guide

110

the primary key for the table row/blob. As a result of this hash value, JdbcBinaryStore offers excellent
flexibility but at the cost of concurrency and throughput.

As an example, if three keys (k1, k2 and k3) have the same hash code, they are stored in the same table
row. If three different threads attempt to concurrently update k1, k2 and k3, they must do it sequentially
because all three keys share the same row and therefore cannot be simultaneously updated.

IMPORTANT

Binary JDBC stores are deprecated in JBoss Data Grid 7.2, and are not recommended for
production use. It is recommended to utilize a String Based store instead.

20.7.2.2. JdbcBinaryStore Configuration (Remote Client-Server Mode)

The following is a configuration for JdbcBinaryStore using Red Hat JBoss Data Grid’s Remote Client-
Server mode with Passivation enabled:

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Remote Client-Server Mode).

20.7.2.3. JdbcBinaryStore Configuration (Library Mode)

The following is a sample configuration for the JdbcBinaryStore:

<local-cache name="customCache">
 <!-- Additional configuration elements here -->
 <binary-keyed-jdbc-store datasource="java:jboss/datasources/JdbcDS"
 passivation="${true/false}"
 preload="${true/false}"
 purge="${true/false}">
 <binary-keyed-table prefix="JDG">
 <id-column name="id"
 type="${id.column.type}"/>
 <data-column name="datum"
 type="${data.column.type}"/>
 <timestamp-column name="version"
 type="${timestamp.column.type}"/>
 </binary-keyed-table>
 </binary-keyed-jdbc-store>
</local-cache>

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:8.5 http://www.infinispan.org/schemas/infinispan-
config-8.5.xsd
 urn:infinispan:config:store:jdbc:8.0 http://www.infinispan.org/schemas/infinispan-cachestore-
jdbc-config-8.0.xsd"
 xmlns="urn:infinispan:config:8.5">
 <!-- Additional configuration elements here -->
 <persistence>
 <binary-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:8.0
 fetch-state="false"
 purge="false">
 <connection-pool connection-url="jdbc:h2:mem:infinispan_binary_based;DB_CLOSE_DELAY=-
1"

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

111

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

20.7.3. JdbcStringBasedStores

20.7.3.1. JdbcStringBasedStores

The JdbcStringBasedStore stores each entry in its own row in the table, instead of grouping multiple
entries into each row, resulting in increased throughput under a concurrent load. It also uses a
(pluggable) bijection that maps each key to a String object. The key-to-string-mapper interface
defines the bijection.

Red Hat JBoss Data Grid includes a default implementation called DefaultTwoWayKey2StringMapper
that handles primitive types.

20.7.3.2. JdbcStringBasedStore Configuration (Remote Client-Server Mode)

The following is a sample JdbcStringBasedStore for Red Hat JBoss Data Grid’s Remote Client-Server
mode:

For details about the elements and parameters used in this sample configuration, see Cache Store

 username="sa"
 driver="org.h2.Driver"/>
 <binary-keyed-table dropOnExit="true"
 createOnStart="true"
 prefix="ISPN_BUCKET_TABLE">
 <id-column name="ID_COLUMN"
 type="VARCHAR(255)" />
 <data-column name="DATA_COLUMN"
 type="BINARY" />
 <timestamp-column name="TIMESTAMP_COLUMN"
 type="BIGINT" />
 </binary-keyed-table>
 </binary-keyed-jdbc-store>
</persistence>

<local-cache name="customCache">
 <!-- Additional configuration elements here -->
 <string-keyed-jdbc-store datasource="java:jboss/datasources/JdbcDS"
 passivation="true"
 preload="false"
 purge="false"
 shared="false"
 singleton="true">
 <string-keyed-table prefix="JDG">
 <id-column name="id"
 type="${id.column.type}"/>
 <data-column name="datum"
 type="${data.column.type}"/>
 <timestamp-column name="version"
 type="${timestamp.column.type}"/>
 </string-keyed-table>
 </string-keyed-jdbc-store>
</local-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

112

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Remote Client-Server Mode).

20.7.3.3. JdbcStringBasedStore Configuration (Library Mode)

The following is a sample configuration for the JdbcStringBasedStore:

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

20.7.3.4. JdbcStringBasedStore Multiple Node Configuration (Remote Client-Server
Mode)

The following is a configuration for the JdbcStringBasedStore in Red Hat JBoss Data Grid’s Remote
Client-Server mode. This configuration is used when multiple nodes must be used.

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:8.5 http://www.infinispan.org/schemas/infinispan-
config-8.5.xsd
 urn:infinispan:config:store:jdbc:8.0 http://www.infinispan.org/schemas/infinispan-cachestore-
jdbc-config-8.0.xsd"
 xmlns="urn:infinispan:config:8.5">
 <!-- Additional configuration elements here -->
 <persistence>
 <string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:8.0"
 fetch-state="false"
 purge="false"
 key2StringMapper="org.infinispan.loaders.keymappers.DefaultTwoWayKey2StringMapper">
 <dataSource jndiUrl="java:jboss/datasources/JdbcDS"/>
 <string-keyed-table dropOnExit="true"
 createOnStart="true"
 prefix="ISPN_STRING_TABLE">
 <id-column name="ID_COLUMN"
 type="VARCHAR(255)" />
 <data-column name="DATA_COLUMN"
 type="BINARY" />
 <timestamp-column name="TIMESTAMP_COLUMN"
 type="BIGINT" />
 </string-keyed-table>
 </string-keyed-jdbc-store>
 </persistence>

<subsystem xmlns="urn:infinispan:server:core:8.5" default-cache-container="default">
 <cache-container <!-- Additional configuration information here --> >
 <!-- Additional configuration elements here -->
 <replicated-cache>
 <!-- Additional configuration elements here -->
 <string-keyed-jdbc-store datasource="java:jboss/datasources/JdbcDS"
 fetch-state="true"
 passivation="false"
 preload="false"
 purge="false"
 shared="false"
 singleton="true">

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

113

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Remote Client-Server Mode).

20.7.4. JdbcMixedStores

20.7.4.1. JdbcMixedStores

The JdbcMixedStore is a hybrid implementation that delegates keys based on their type to either the
JdbcBinaryStore or JdbcStringBasedStore.

IMPORTANT

Mixed JDBC stores are deprecated in JBoss Data Grid 7.2, and are not recommended for
production use. It is recommended to utilize a String Based store instead.

20.7.4.2. JdbcMixedStore Configuration (Remote Client-Server Mode)

The following is a configuration for a JdbcMixedStore for Red Hat JBoss Data Grid’s Remote Client-
Server mode:

 <string-keyed-table prefix="JDG">
 <id-column name="id"
 type="${id.column.type}"/>
 <data-column name="datum"
 type="${data.column.type}"/>
 <timestamp-column name="version"
 type="${timestamp.column.type}"/>
 </string-keyed-table>
 </string-keyed-jdbc-store>
 </replicated-cache>
 </cache-container>
</subsystem>

<local-cache name="customCache">
 <mixed-keyed-jdbc-store datasource="java:jboss/datasources/JdbcDS"
 passivation="true"
 preload="false"
 purge="false">
 <binary-keyed-table prefix="MIX_BKT2">
 <id-column name="id"
 type="${id.column.type}"/>
 <data-column name="datum"
 type="${data.column.type}"/>
 <timestamp-column name="version"
 type="${timestamp.column.type}"/>
 </binary-keyed-table>
 <string-keyed-table prefix="MIX_STR2">
 <id-column name="id"
 type="${id.column.type}"/>
 <data-column name="datum"
 type="${data.column.type}"/>
 <timestamp-column name="version"
 type="${timestamp.column.type}"/>

Red Hat Data Grid 7.2 Administration and Configuration Guide

114

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Remote Client-Server Mode).

20.7.4.3. JdbcMixedStore Configuration (Library Mode)

The following is a sample configuration for the JdbcMixedStore:

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

20.7.5. Cache Store Troubleshooting

 </string-keyed-table>
 </mixed-keyed-jdbc-store>
</local-cache>

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:8.5 http://www.infinispan.org/schemas/infinispan-
config-8.5.xsd
 urn:infinispan:config:store:jdbc:8.0 http://www.infinispan.org/schemas/infinispan-cachestore-
jdbc-config-8.0.xsd"
 xmlns="urn:infinispan:config:8.5">
 <!-- Additional configuration elements here -->
 <persistence>
 <mixed-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:8.0"
 fetch-state="false"
 purge="false"
 key-to-string-
mapper="org.infinispan.persistence.keymappers.DefaultTwoWayKey2StringMapper">
 <connection-pool connection-url="jdbc:h2:mem:infinispan_binary_based;DB_CLOSE_DELAY=-1"
 username="sa"
 driver="org.h2.Driver"/>
 <binary-keyed-table dropOnExit="true"
 createOnStart="true"
 prefix="ISPN_BUCKET_TABLE_BINARY">
 <id-column name="ID_COLUMN"
 type="VARCHAR(255)" />
 <data-column name="DATA_COLUMN"
 type="BINARY" />
 <timestamp-column name="TIMESTAMP_COLUMN"
 type="BIGINT" />
 </binary-keyed-table>
 <string-keyed-table dropOnExit="true"
 createOnStart="true"
 prefix="ISPN_BUCKET_TABLE_STRING">
 <id-column name="ID_COLUMN"
 type="VARCHAR(255)" />
 <data-column name="DATA_COLUMN"
 type="BINARY" />
 <timestamp-column name="TIMESTAMP_COLUMN"
 type="BIGINT" />
 </string-keyed-table>
 </mixed-keyed-jdbc-store>
</persistence>

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

115

20.7.5.1. IOExceptions with JdbcStringBasedStore

An IOException Unsupported protocol version 48 error when using JdbcStringBasedStore indicates
that your data column type is set to VARCHAR, CLOB or something similar instead of the correct type,
BLOB or VARBINARY. Despite its name, JdbcStringBasedStore only requires that the keys are strings
while the values can be any data type, so that they can be stored in a binary column.

20.8. THE REMOTE CACHE STORE

20.8.1. Remote Cache Stores

The RemoteCacheStore is an implementation of the cache loader that stores data in a remote Red Hat
JBoss Data Grid cluster. The RemoteCacheStore uses the Hot Rod client-server architecture to
communicate with the remote cluster.

For remote cache stores, Hot Rod provides load balancing, fault tolerance and the ability to fine tune
the connection between the RemoteCacheStore and the cluster.

20.8.2. Remote Cache Store Configuration (Remote Client-Server Mode)

The following is a sample remote cache store configuration for Red Hat JBoss Data Grid’s Remote
Client-Server mode:

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Remote Client-Server Mode).

20.8.3. Remote Cache Store Configuration (Library Mode)

The following is a sample remote cache store configuration for Red Hat JBoss Data Grid’s Library mode:

<remote-store cache="default"
 socket-timeout="60000"
 tcp-no-delay="true"
 hotrod-wrapping="true">
 <remote-server outbound-socket-binding="remote-store-hotrod-server" />
</remote-store>

<persistence passivation="false">
 <remote-store xmlns="urn:infinispan:config:store:remote:8.0"
 cache="default"
 fetch-state="false"
 shared="true"
 preload="false"
 purge="false"
 tcp-no-delay="true"
 key-size-estimate="62"
 value-size-estimate="512"
 force-return-values="false">
 <remote-server host="127.0.0.1"
 port="1971" />
 <connectionPool max-active="99"
 max-idle="97"

Red Hat Data Grid 7.2 Administration and Configuration Guide

116

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

20.8.4. Define the Outbound Socket for the Remote Cache Store

The Hot Rod server used by the remote cache store is defined using the outbound-socket-binding
element in a standalone.xml file.

An example of this configuration in the standalone.xml file is as follows:

Define the Outbound Socket

20.9. JPA CACHE STORE

20.9.1. JPA Cache Stores

The JPA (Java Persistence API) Cache Store stores cache entries in the database using a formal
schema, which allows other applications to read the persisted data and load data provided by other
applications into Red Hat JBoss Data Grid. The database should not be used by the other applications
concurrently with JBoss Data Grid.

IMPORTANT

In Red Hat JBoss Data Grid, JPA cache stores are only supported in Library mode.

20.9.2. JPA Cache Store Sample XML Configuration (Library Mode)

To configure JPA Cache Stores using XML in Red Hat JBoss Data Grid, add the following configuration
to the infinispan.xml file:

<local-cache name="users">
 <!-- Insert additional configuration elements here -->
 <persistence passivation="false">
 <jpa-store xmlns="urn:infinispan:config:store:jpa:8.0"
 shared="true"
 preload="true"

 max-total="98" />
 </remote-store>
</persistence>

<server>
 <!-- Additional configuration elements here -->
 <socket-binding-group name="standard-sockets"
 default-interface="public"
 port-offset="${jboss.socket.binding.port-offset:0}">
 <!-- Additional configuration elements here -->
 <outbound-socket-binding name="remote-store-hotrod-server">
 <remote-destination host="remote-host"
 port="11222"/>
 </outbound-socket-binding>
 </socket-binding-group>
</server>

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

117

 persistence-unit="MyPersistenceUnit"
 entity-class="org.infinispan.loaders.jpa.entity.User" />
 </persistence>
</local-cache>

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

20.9.3. Storing Metadata in the Database

When storeMetadata is set to true (default value), meta information about the entries such as
expiration, creation and modification timestamps, and versioning is stored in the database. JBoss Data
Grid stores the metadata in an additional table named _ispn_metadata_ because the entity table has a
fixed layout that cannot accommodate the metadata.

The structure of this table depends on the database in use. Enable the automatic creation of this table
using the same database as the test environment and then transfer the structure to the production
database.

Configure persistence.xml for Metadata Entities

1. Using Hibernate as the JPA implementation allows automatic creation of these tables using the
property hibernate.hbm2ddl.auto in persistence.xml as follows:

2. Declare the metadata entity class to the JPA provider by adding the following to
persistence.xml :

As outlined, metadata is always stored in a new table. If metadata information collection and storage is
not required, set the storeMetadata attribute to false in the JPA Store configuration.

20.9.4. Deploying JPA Cache Stores in Various Containers

Red Hat JBoss Data Grid JPA Cache Store implementations are deployed normally for all supported
containers, except Red Hat JBoss Enterprise Application Platform. The JBoss Data Grid JBoss EAP
modules contain the JPA cache store and related libraries such as Hibernate. As a result, the relevant
libraries are not packaged inside the application, but instead the application refers to the libraries in the
JBoss EAP modules that have them installed.

These modules are not required for containers other than JBoss EAP. As a result, all the relevant
libraries are packaged in the application’s WAR/EAR file, such as with the following Maven dependency:

Deploy JPA Cache Stores in JBoss EAP 6.3.x and earlier

To add dependencies from the JBoss Data Grid modules to the application’s classpath, provide

<property name="hibernate.hbm2ddl.auto" value="update"/>

<class>org.infinispan.persistence.jpa.impl.MetadataEntity</class>

<dependency>
 <groupId>org.infinispan</groupId>
 <artifactId>infinispan-cachestore-jpa</artifactId>
 <version>{FullInfinispanVersion}</version>
</dependency>

Red Hat Data Grid 7.2 Administration and Configuration Guide

118

To add dependencies from the JBoss Data Grid modules to the application’s classpath, provide
the JBoss EAP deployer a list of dependencies in one of the following ways:

Add a dependency configuration to the MANIFEST.MF file:

Manifest-Version: 1.0
Dependencies: org.infinispan:jdg-7.2 services, org.infinispan.persistence.jpa:jdg-7.2
services

Add a dependency configuration to the jboss-deployment-structure.xml file:

Deploy JPA Cache Stores in JBoss EAP 6.4 and later

1. Add the following property in persistence.xml :

2. Add the following dependencies to the jboss-deployment-structure.xml :

3. Add any additional dependencies, such as additional JDG modules, are in use add these to the
dependencies section in jboss-deployment-structure.xml .

IMPORTANT

JPA Cache Store is not supported in Apache Karaf in JBoss Data Grid 7.2.

20.10. CASSANDRA CACHE STORE

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <deployment>
 <dependencies>
 <module name="org.infinispan.persistence.jpa" slot="jdg-7.2" services="export"/>
 <module name="org.infinispan" slot="jdg-7.2" services="export"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

<persistence-unit>
 [...]
 <properties>
 <property name="jboss.as.jpa.providerModule" value="application" />
 </properties>
</persistence-unit>

<jboss-deployment-structure>
 <deployment>
 <dependencies>
 <module name="org.infinispan" slot="jdg-7.2"/>
 <module name="org.jgroups" slot="jdg-7.2"/>
 <module name="org.infinispan.persistence.jpa" slot="jdg-7.2" services="export"/>
 <module name="org.hibernate"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

119

20.10.1. Cassandra Cache Store

Red Hat JBoss Data Grid allows Apache Cassandra to function as a Cache Store, leveraging their
distributed database architecture to provide a virtually unlimited, horizontally scalable persistent store
for cache entries.

In order to use the Cassandra Cache Store an appropriate keyspace must first be created on the
Cassandra database. This may either be performed automatically or by enabling the auto-create-
keyspace parameter in the cache store configuration. A sample keyspace creation is demonstrated
below:

CREATE KEYSPACE IF NOT EXISTS Infinispan WITH replication = {'class':'SimpleStrategy',
'replication_factor':1};
CREATE TABLE Infinispan.InfinispanEntries (key blob PRIMARY KEY, value blob, metadata blob);

20.10.2. Enabling the Cassandra Cache Store

The Cassandra Cache Store is included based on the downloaded distribution. The following indicates
where this is located, and steps to enable it if required:

Library Mode - The infinispan-cachestore-cassandra-8.5.0.Final-redhat-9-deployable.jar is
included in the jboss-datagrid-${jdg-version}-library/ directory, and may be added to any
projects that are using the Cassandra Cache Store.

Remote Client-Server Mode - The Cassandra Cache Store is prepackaged in the modules/
directory of the server, and may be used by default with no additional configuration necessary.

JBoss Data Grid modules for JBoss EAP - The Cassandra Cache Store is included in the
modules distributed, and may be added by using the org.infinispan.persistence.cassandra as
the module name.

20.10.3. Cassandra Cache Store Sample XML Configuration (Remote Client-Server
Mode)

In Remote Client-Server mode the Cassandra Cache Store is defined by using the class
org.infinispan.persistence.cassandra.CassandraStore and defining the properties individually within
the store.

The following configuration snippet provides an example on how to define a Cassandra Cache Store
inside of an xml file:

<local-cache name="cassandracache">
 <locking acquire-timeout="30000" concurrency-level="1000" striping="false"/>
 <transaction mode="NONE"/>
 <store name="cassstore1"
 class="org.infinispan.persistence.cassandra.CassandraStore"
 shared="true"
 passivation="false">
 <property name="autoCreateKeyspace">true</property>
 <property name="keyspace">store1</property>
 <property name="entryTable">entries1</property>
 <property name="consistencyLevel">LOCAL_ONE</property>
 <property name="serialConsistencyLevel">SERIAL</property>
 <property name="servers">127.0.0.1[9042],127.0.0.1[9041]</property>
 <property name="connectionPool.heartbeatIntervalSeconds">30</property>

Red Hat Data Grid 7.2 Administration and Configuration Guide

120

20.10.4. Cassandra Cache Store Sample XML Configuration (Library Mode)

In Library Mode the Cassandra Cache Store may be configured using two different methods:

Option 1: Using the same method discussed for Remote Client-Server Mode, found in
Cassandra Cache Store Sample XML Configuration (Remote Client-Server Mode) .

Option 2: Using the cassandra-store schema. The following snippet shows an example
configuration defining a Cassandra Cache Store:

20.10.5. Cassandra Configuration Parameters

When defining a backing Cassandra instance in Library Mode one or more cassandra-server elements
may be specified in the configuration. Each of the elements has the following properties:

Table 20.1. Cassandra Server Configuration Parameters

Parameter Name Description Default Value

host The hostname or ip address of a
Cassandra server.

127.0.0.1

port The port on which the server is
listening.

9042

The following properties may be configured on the Cassandra Cache Store:

Table 20.2. Cassandra Configuration Parameter

 <property name="connectionPool.idleTimeoutSeconds">120</property>
 <property name="connectionPool.poolTimeoutMillis">5</property>
 </store>
</local-cache>

<cache-container default-cache="cassandracache">
 <local-cache name="cassandracache">
 <persistence passivation="false">
 <cassandra-store xmlns="urn:infinispan:config:store:cassandra:8.2"
 auto-create-keyspace="true"
 keyspace="Infinispan"
 entry-table="InfinispanEntries" shared="true">
 <cassandra-server host="127.0.0.1" port="9042" />
 <connection-pool heartbeat-interval-seconds="30"
 idle-timeout-seconds="120"
 pool-timeout-millis="5" />
 </cassandra-store>
 </persistence>
 </local-cache>
</cache-container>

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

121

Parameter Name Description Default Value

auto-create-keyspace Determines whether the keyspace
and entry table should be
automatically created on startup.

true

keyspace Name of the keyspace to use. Infinispan

entry-table Name of the table storing entries. InfinispanEntries

consistency-level Consistency level to use for the
queries.

LOCAL_ONE

serial-consistency-level Serial consistency level to use for
the queries.

SERIAL

A connection-pool may also be defined with the following elements:

Table 20.3. Connection Pool Configuration Parameters

Parameter Name Description Default Value

pool-timeout-millis Time that the driver blocks when
no connection from hosts pool is
available. After this timeout, the
driver will try the next host.

5

heartbeat-interval-seconds Application-side heartbeat to
avoid the connections being
dropped when no activity is
happening. Set to 0 to disable.

30

idle-timeout-seconds Timeout before an idle connection
is removed.

120

20.11. CUSTOM CACHE STORES

20.11.1. Custom Cache Stores

Custom cache stores are a customized implementation of Red Hat JBoss Data Grid cache stores.

In order to create a custom cache store (or loader), implement all or a subset of the following interfaces
based on the need:

CacheLoader

CacheWriter

Red Hat Data Grid 7.2 Administration and Configuration Guide

122

AdvancedCacheLoader

AdvancedCacheWriter

ExternalStore

AdvancedLoadWriteStore

See Cache Loaders and Cache Writers for individual functions of the interfaces.

NOTE

If the AdvancedCacheWriter is not implemented, the expired entries cannot be purged
or cleared using the given writer.

NOTE

If the AdvancedCacheLoader is not implemented, the entries stored in the given loader
will not be used for preloading.

To migrate the existing cache store to the new API or to write a new store implementation, use
SingleFileStore as an example. To view the SingleFileStore example code, download the JBoss Data
Grid source code.

Use the following procedure to download SingleFileStore example code from the Customer Portal:

Download JBoss Data Grid Source Code

1. To access the Red Hat Customer Portal, navigate to https://access.redhat.com/home in a
browser.

2. Click menu:Downloads[] .

3. In the section labeled JBoss Development and Management , click menu:Red Hat JBoss Data
Grid[] .

4. Enter the relevant credentials in the Red Hat Login and Password fields and click menu:Log In[]
.

5. From the list of downloadable files, locate Red Hat JBoss Data Grid 7 Source Code and click
menu:Download[] . Save and unpack it in a desired location.

6. Locate the SingleFileStore source code by navigating through jboss-datagrid-7.2.3-
sources/infinispan-8.5.3.Final-redhat-
00002/core/src/main/java/org/infinispan/persistence/file/SingleFileStore.java .

20.11.2. Custom Cache Store Maven Archetype

An easy way to get started with developing a Custom Cache Store is to use the Maven archetype;
creating an archetype will generate a new Maven project with the correct directory layout and sample
code.

Generate a Maven Archetype

1. Ensure the JBoss Data Grid Maven repository has been installed by following the instructions in

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

123

https://access.redhat.com/home

1. Ensure the JBoss Data Grid Maven repository has been installed by following the instructions in
the Red Hat JBoss Data Grid Getting Started Guide .

2. Open a command prompt and execute the following command to generate an archetype in the
current directory:

NOTE

The above command has been broken into multiple lines for readability; however,
when executed this command and all arguments must be on a single line.

20.11.3. Custom Cache Store Configuration (Remote Client-Server Mode)

20.11.3.1. Custom Cache Store Configuration (Remote Client-Server Mode)

The following is a sample configuration for a custom cache store in Red Hat JBoss Data Grid’s Remote
Client-Server mode:

Custom Cache Store Configuration

See the reference information for the elements and parameters in the preceding configuration example:

Cache Store Configuration Details (Remote Client-Server Mode)

Configuration Schema

20.11.3.2. Option 1: Add Custom Cache Store using deployments (Remote Client-Server
Mode)

Deploy Custom Cache Store .jar file to JDG server using deployments

1. Add the following Java service loader file META-
INF/services/org.infinispan.persistence.spi.AdvancedLoadWriteStore to the module and
add a reference to the Custom Cache Store Class, such as seen below:

2. Copy the jar to the $JDG_HOME/standalone/deployments/ directory.

3. If the .jar file is available the server the following message will be displayed in the logs:

mvn -Dmaven.repo.local="path/to/unzipped/jboss-datagrid-7.2.x-maven-repository/"
 archetype:generate
 -DarchetypeGroupId=org.infinispan
 -DarchetypeArtifactId=custom-cache-store-archetype
 -DarchetypeVersion=8.5.0.Final-redhat-9

<distributed-cache name="cacheStore" mode="SYNC" segments="256" owners="2" remote-
timeout="30000">
 <store class="my.package.CustomCacheStore">
 <property name="customStoreProperty">10</property>
 </store>
</distributed-cache>

my.package.CustomCacheStore

Red Hat Data Grid 7.2 Administration and Configuration Guide

124

https://access.redhat.com/webassets/avalon/d/red-hat-jboss-data-grid/7.2/Configuration/infinispan-config-8.5.html

4. In the infinispan-core subsystem add an entry for the cache inside a cache-container,
specifying the class that overrides one of the interfaces from Custom Cache Stores :

20.11.3.3. Option 2: Add Custom Cache Store using the CLI (Remote Client-Server Mode)

Deploying Custom Cache Store .jar file to JDG server using the CLI

1. Connect to the JDG server by running the below command:

2. Deploy the .jar file by executing the following command:

20.11.3.4. Option 3: Add Custom Cache Store using JON (Remote Client-Server Mode)

Deploying Custom Cache Store .jar file to JDG server using JBoss Operation Network

1. Log into JON.

2. Navigate to Bundles along the upper bar.

3. Click the New button and choose the Recipe radio button.

4. Insert a deployment bundle file content that references the store, similar to the following
example:

JBAS010287: Registering Deployed Cache Store service for store
'my.package.CustomCacheStore'

<subsystem xmlns="urn:infinispan:server:core:8.5">
 [...]
 <distributed-cache name="cacheStore" mode="SYNC" segments="256" owners="2" remote-
timeout="30000"">
 <store class="my.package.CustomCacheStore">
 <!-- If custom properties are included these may be specified as below -->
 <property name="customStoreProperty">10</property>
 </store>
 </distributed-cache>
 [...]
</subsystem>

[$JDG_HOME] $ bin/cli.sh --connect --controller=$IP:$PORT

deploy /path/to/artifact.jar

<?xml version="1.0"?>
<project name="cc-bundle" default="main" xmlns:rhq="antlib:org.rhq.bundle">

 <rhq:bundle name="Mongo DB Custom Cache Store" version="1.0" description="Custom
Cache Store">
 <rhq:deployment-unit name="JDG" compliance="full">
 <rhq:file name="custom-store.jar"/>
 </rhq:deployment-unit>
 </rhq:bundle>

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

125

5. Proceed with Next button to Bundle Groups configuration wizard page and proceed with Next
button once again.

6. Locate custom cache store .jar file using file uploader and Upload the file.

7. Proceed with Next button to Summary configuration wizard page. Proceed with Finish button
in order to finish bundle configuration.

8. Navigate back to the Bundles tab along the upper bar.

9. Select the newly created bundle and click Deploy button.

10. Enter Destination Name and choose the proper Resource Group; this group should only
consist of JDG servers.

11. Choose Install Directory from Base Location's radio box group.

12. Enter /standalone/deployments in Deployment Directory text field below.

13. Proceed with the wizard using the default options.

14. Validate the deployment using the following command on the server’s host:

15. Confirm the bundle has been installed in $JDG_HOME/standalone/deployments.

Once the above steps are completed the .jar file will be successfully uploaded and registered by the
JDG server.

NOTE

The JON plugin has been deprecated in JBoss Data Grid 7.2 and is expected to be
removed in a subsequent version.

20.11.4. Custom Cache Store Configuration (Library Mode)

NOTE

Custom Cache Store classes must be in the JBoss Data Grid classpath. Either package
the Custom Cache Store with JBoss Data Grid or define it as an EAP module that you list
as a dependency.

The following is a sample configuration for a custom cache store in Red Hat JBoss Data Grid’s Library
mode:

Custom Cache Store Configuration

 <target name="main" />

</project>

find $JDG_HOME -name "custom-store.jar"

<persistence>
 <store class="org.infinispan.custom.CustomCacheStore"

Red Hat Data Grid 7.2 Administration and Configuration Guide

126

For details about the elements and parameters used in this sample configuration, see Cache Store
Configuration Details (Library Mode).

 preload="true"
 shared="true">
 <property name="customStoreProperty">10</property>
 </store>
</persistence>

CHAPTER 20. CACHE STORE IMPLEMENTATIONS

127

PART IX. SET UP PASSIVATION

Red Hat Data Grid 7.2 Administration and Configuration Guide

128

CHAPTER 21. ACTIVATION AND PASSIVATION MODES

21.1. ACTIVATION AND PASSIVATION MODES

Activation is the process of restoring an entry from the data store into the in-memory cache. Activation
occurs when a thread attempts to access an entry that is in the store but not the memory (namely a
passivated entry).

Passivation mode allows entries to be stored in the cache store after they are evicted from memory.
Passivation prevents unnecessary and potentially expensive writes to the cache store. It is used for
entries that are frequently used or referenced and therefore not evicted from memory.

While passivation is enabled, the cache store is used as an overflow tank, similar to virtual memory
implementation in operating systems that swap memory pages to disk.

The passivation flag is used to toggle passivation mode, a mode that stores entries in the cache store
only after they are evicted from memory.

21.2. PASSIVATION MODE BENEFITS

The primary benefit of passivation mode is that it prevents unnecessary and potentially expensive writes
to the cache store. This is particularly useful if an entry is frequently used or referenced and therefore is
not evicted from memory.

21.3. CONFIGURE PASSIVATION

In Red Hat JBoss Data Grid’s Remote Client-Server mode, add the passivation parameter to the cache
store element to toggle passivation for it:

Toggle Passivation in Remote Client-Server Mode

In Library mode, add the passivation parameter to the persistence element to toggle passivation:

Toggle Passivation in Library Mode

21.4. EVICATION AND PASSIVATION

21.4.1. Eviction and Passivation

To ensure that a single copy of an entry remains, either in memory or in a cache store, use passivation in
conjunction with eviction.

The primary reason to use passivation instead of a normal cache store is that updating entries require

<local-cache name="customCache"/>
 <!-- Additional configuration elements for local-cache here -->
 <file-store passivation="true"
 <!-- Additional configuration elements for file-store here -->
</local-cache>

<persistence passivation="true">
 <!-- Additional configuration elements here -->
</persistence>

CHAPTER 21. ACTIVATION AND PASSIVATION MODES

129

The primary reason to use passivation instead of a normal cache store is that updating entries require
less resources when passivation is in use. This is because passivation does not require an update to the
cache store.

21.4.2. Eviction and Passivation Usage

If the eviction policy caused the eviction of an entry from the cache while passivation is enabled, the
following occur as a result:

A notification regarding the passivated entry is emitted to the cache listeners.

The evicted entry is stored.

When an attempt to retrieve an evicted entry is made, the entry is lazily loaded into memory from the
cache loader. After the entry and its children are loaded a notification regarding the entry’s activation is
sent to the cache listeners.

NOTE

Entries which have been activated, will continue to exist in the cache store if it has been
configured as shared. This happens because backup owners might still need to access it.

21.4.3. Cache Loader Behavior with Passivation Disabled vs Enabled

With passivation disabled, when an element is modified, added, or removed, the modification is persisted
in the backend store via the cache loader. There is no direct relationship between eviction and cache
loading. When eviction is not in use, the persistent store is effectively a copy of what’s in memory. If
eviction is in use, the persistent store is effectively a superset of what’s in memory (i.e. it includes entries
that have been evicted from memory).

When passivation is enabled and the cache store is unshared, there is a direct relationship between
eviction and the cache loader. Writes to the persistent store via the cache loader only occur as part of
the eviction process. Data is deleted from the persistent store when the application reads it back into
memory. In this case, the data in memory and data in the persistent store are two subsets of the total
information set, with no intersection between the subsets. With a shared store, entries which have been
passivated in the past will continue to exist in the store, although they may have a stale value if this has
been overwritten in memory.

21.4.4. Eviction Examples

The following example indicates the state of the memory and the persistent store during eviction
operations in three different configurations: passivation off, passivation on with a cache store with
shared off, and passivation on with a cache store with shared on.

Operation Passivation Off Passivation On, Shared
Off

Passivation On, Shared
On

Insert keyOne Memory: keyOne
Disk: keyOne

Memory: keyOne
Disk: (none)

Memory: keyOne
Disk: (none)

Insert keyTwo Memory: keyOne,
keyTwo
Disk: keyOne, keyTwo

Memory: keyOne,
keyTwo
Disk: (none)

Memory: keyOne,
keyTwo
Disk: (none)

Red Hat Data Grid 7.2 Administration and Configuration Guide

130

Eviction thread runs,
evicts keyOne

Memory: keyTwo
Disk: keyOne, keyTwo

Memory: keyTwo
Disk: keyOne

Memory: keyTwo
Disk: keyOne

Read keyOne Memory: keyOne,
keyTwo
Disk: keyOne, keyTwo

Memory: keyOne,
keyTwo
Disk: (none)

Memory: keyOne,
keyTwo
Disk: keyOne

Eviction thread runs,
evicts keyTwo

Memory: keyOne
Disk: keyOne, keyTwo

Memory: keyOne
Disk: keyTwo

Memory: keyOne
Disk: keyOne, keyTwo

Remove keyTwo Memory: keyOne
Disk: keyOne

Memory: keyOne
Disk: (none)

Memory: keyOne
Disk: keyOne

Operation Passivation Off Passivation On, Shared
Off

Passivation On, Shared
On

CHAPTER 21. ACTIVATION AND PASSIVATION MODES

131

PART X. SET UP CACHE WRITING

Red Hat Data Grid 7.2 Administration and Configuration Guide

132

CHAPTER 22. CACHE WRITING MODES

22.1. CACHE WRITING MODES

Red Hat JBoss Data Grid presents configuration options with a single or multiple cache stores. This
allows it to store data in a persistent location, for example a shared JDBC database or a local file
system. JBoss Data Grid supports two caching modes:

Write-Through (Synchronous)

Write-Behind (Asynchronous)

22.2. WRITE-THROUGH CACHING

22.2.1. Write-Through Caching

The Write-Through (or Synchronous) mode in Red Hat JBoss Data Grid ensures that when clients
update a cache entry (usually via a Cache.put() invocation), the call does not return until JBoss Data
Grid has located and updated the underlying cache store. This feature allows updates to the cache store
to be concluded within the client thread boundaries.

22.2.2. Write-Through Caching Benefits and Disadvantages

Write-Through Caching Benefits

The primary advantage of the Write-Through mode is that the cache and cache store are updated
simultaneously, which ensures that the cache store remains consistent with the cache contents.

Write-Through Caching Disadvantages

Due to the cache store being updated simultaneously with the cache entry, there is a possibility of
reduced performance for cache operations that occur concurrently with the cache store accesses and
updates.

22.2.3. Write-Through Caching Configuration (Library Mode)

No specific configuration operations are required to configure a Write-Through or synchronous cache
store. All cache stores are Write-Through or synchronous unless explicitly marked as Write-Behind or
asynchronous. The following procedure demonstrates a sample configuration file of a Write-Through
unshared local file cache store.

Configure a Write-Through Local File Cache Store

1. The name parameter specifies the name of the local-cache to use.

<local-cache name="persistentCache">
 <persistence>
 <file-store fetch-state="true"
 purge="false"
 shared="false"
 location="${java.io.tmpdir}"/>
 </persistence>
</local-cache>

CHAPTER 22. CACHE WRITING MODES

133

2. The fetch-state parameter determines whether the persistent state is fetched when joining a
cluster. Set this to true if using a replication and invalidation in a clustered environment.
Additionally, if multiple cache stores are chained, only one cache store can have this property
enabled. If a shared cache store is used, the cache does not allow a persistent state transfer
despite this property being set to true. The fetch-state parameter is false by default.

3. The purge parameter specifies whether the cache is purged when initially started.

4. The shared parameter is used when multiple cache instances share a cache store and is now
defined at the cache store level. This parameter can be set to prevent multiple cache instances
writing the same modification multiple times. Valid values for this parameter are true and false.

22.3. WRITE-BEHIND CACHING

22.3.1. Write-Behind Caching

In Red Hat JBoss Data Grid’s Write-Behind (Asynchronous) mode, cache updates are asynchronously
written to the cache store. Asynchronous updates ensure that cache store updates are carried out by a
thread different from the client thread interacting with the cache.

One of the foremost advantages of the Write-Behind mode is that the cache operation performance is
not affected by the underlying store update. However, because of the asynchronous updates, for a brief
period the cache store contains stale data compared to the cache.

22.3.2. About Unscheduled Write-Behind Strategy

In the Unscheduled Write-Behind Strategy mode, Red Hat JBoss Enterprise Data Grid attempts to store
changes as quickly as possible by applying pending changes in parallel. This results in multiple threads
waiting for modifications to conclude. Once these modifications are concluded, the threads become
available and the modifications are applied to the underlying cache store.

This strategy is ideal for cache stores with low latency and low operational costs. An example of this is a
local unshared file based cache store in which the cache store is local to the cache itself. Using this
strategy the period of time where an inconsistency exists between the contents of the cache and the
contents of the cache store is reduced to the shortest possible interval.

22.3.3. Unscheduled Write-Behind Strategy Configuration (Remote Client-Server
Mode)

To set the write-behind strategy in Red Hat JBoss Data Grid’s Remote Client-Server mode, add the
write-behind element to the target cache store configuration as follows:

The write-behind Element

<file-store passivation="false"
 path="${PATH}"
 purge="true"
 shared="false">
 <write-behind modification-queue-size="1024"
 shutdown-timeout="25000"
 flush-lock-timeout="15000"
 thread-pool-size="5" />
</file-store>

Red Hat Data Grid 7.2 Administration and Configuration Guide

134

The write-behind element uses the following configuration parameters:

1. The modification-queue-size parameter sets the modification queue size for the asynchronous
store. If updates occur faster than the cache store can process the queue, the asynchronous
store behaves like a synchronous store. The store behavior remains synchronous and blocks
elements until the queue is able to accept them, after which the store behavior becomes
asynchronous again.

2. The shutdown-timeout parameter specifies the time in milliseconds after which the cache
store is shut down. When the store is stopped some modifications may still need to be applied.
Setting a large timeout value will reduce the chance of data loss. The default value for this
parameter is 25000.

3. The flush-lock-timeout parameter specifies the time (in milliseconds) to acquire the lock that
guards the state to be periodically flushed. The default value for this parameter is 15000.

4. The thread-pool-size parameter specifies the size of the thread pool. The threads in this thread
pool apply modifications to the cache store. The default value for this parameter is 5.

22.3.4. Unscheduled Write-Behind Strategy Configuration (Library Mode)

To enable the write-behind strategy of the cache entries to a store, add the async element to the store
configuration as follows:

The async Element

1. The async element uses the following configuration parameters: . The modificationQueueSize
parameter sets the modification queue size for the asynchronous store. If updates occur faster
than the cache store can process the queue, the asynchronous store behaves like a synchronous
store. The store behavior remains synchronous and blocks elements until the queue is able to
accept them, after which the store behavior becomes asynchronous again.

2. The shutdownTimeout parameter specifies the time in milliseconds after which the cache
store is shut down. This provides time for the asynchronous writer to flush data to the store
when a cache is shut down. The default value for this parameter is 25000.

3. The flushLockTimeout parameter specifies the time (in milliseconds) to acquire the lock that
guards the state to be periodically flushed. The default value for this parameter is 15000.

4. The threadPoolSize parameter specifies the number of threads that concurrently apply
modifications to the store. The default value for this parameter is 5.

<persistence>
 <singleFile location="${LOCATION}">
 <async enabled="true"
 modificationQueueSize="1024"
 shutdownTimeout="25000"
 flushLockTimeout="15000"
 threadPoolSize="5"/>
 </singleFile>
</persistence>

CHAPTER 22. CACHE WRITING MODES

135

PART XI. MONITOR CACHES AND CACHE MANAGERS

Red Hat Data Grid 7.2 Administration and Configuration Guide

136

CHAPTER 23. SET UP JAVA MANAGEMENT EXTENSIONS
(JMX)

23.1. ABOUT JAVA MANAGEMENT EXTENSIONS (JMX)

Java Management Extension (JMX) is a Java based technology that provides tools to manage and
monitor applications, devices, system objects, and service oriented networks. Each of these objects is
managed, and monitored by MBeans.

JMX is the de facto standard for middleware management and administration. As a result, JMX is used
in Red Hat JBoss Data Grid to expose management and statistical information.

23.2. USING JMX WITH RED HAT JBOSS DATA GRID

Management in Red Hat JBoss Data Grid instances aims to expose as much relevant statistical
information as possible. This information allows administrators to view the state of each instance. While a
single installation can comprise of tens or hundreds of such instances, it is essential to expose and
present the statistical information for each of them in a clear and concise manner.

In JBoss Data Grid, JMX is used in conjunction with JBoss Operations Network (JON) to expose this
information and present it in an orderly and relevant manner to the administrator.

23.3. JMX STATISTIC LEVELS

JMX statistics can be enabled at two levels:

At the cache level, where management information is generated by individual cache instances.

At the CacheManager level, where the CacheManager is the entity that governs all cache
instances created from it. As a result, the management information is generated for all these
cache instances instead of individual caches.

IMPORTANT

In Red Hat JBoss Data Grid, statistics are enabled by default in Remote Client-Server
mode and disabled by default for Library mode. While statistics are useful in assessing the
status of JBoss Data Grid, they adversely affect performance and must be disabled if
they are not required.

23.4. ENABLING JMX FOR CACHE INSTANCES

You can enable JMX statistics at the Cache level either declaratively or programmatically.

Declaratively Enabling JMX at the Cache Level

Add the statistics attribute to the target <*-cache> element as follows:

Programmatically Enabling JMX at the Cache Level

Programmatically enable JMX at the cache level as follows:

<*-cache statistics="true">

CHAPTER 23. SET UP JAVA MANAGEMENT EXTENSIONS (JMX)

137

23.5. ENABLING JMX FOR CACHEMANAGERS

You can enable JMX statistics at the CacheManager level either declaratively or programmatically.

Declaratively Enabling JMX at the CacheManager Level

Add the statistics attribute to the <cache-container> element as follows:

Programmatically Enabling JMX at the CacheManager Level

Programmatically enable JMX at the CacheManager level as follows:

23.6. DISABLING THE CACHESTORE VIA JMX WHEN USING ROLLING
UPGRADES

Red Hat JBoss Data Grid allows the CacheStore to be disabled via JMX by invoking the
disconnectSource operation on the RollingUpgradeManager MBean.

See Also: RollingUpgradeManager

23.7. MULTIPLE JMX DOMAINS

Multiple JMX domains are used when multiple CacheManager instances exist on a single virtual machine,
or if the names of cache instances in different CacheManagers clash.

To resolve this issue, name each CacheManager in manner that allows it to be easily identified and used
by monitoring tools such as JMX and JBoss Operations Network.

Set a CacheManager Name Declaratively

Add the following snippet to the relevant CacheManager configuration:

23.8. MBEANS

23.8.1. MBeans

An MBean represents a manageable resource such as a service, component, device or an application.

Red Hat JBoss Data Grid provides MBeans that monitor and manage multiple aspects. For example,
MBeans that provide statistics on the transport layer are provided. If a JBoss Data Grid server is
configured with JMX statistics, an MBean that provides information such as the hostname, port, bytes
read, bytes written and the number of worker threads exists at the following location:

Configuration configuration = new
ConfigurationBuilder().jmxStatistics().enable().build();

<cache-container statistics="true">

GlobalConfiguration globalConfiguration = new
GlobalConfigurationBuilder().globalJmxStatistics().enable().build();

<globalJmxStatistics enabled="true" cacheManagerName="Hibernate2LC"/>

Red Hat Data Grid 7.2 Administration and Configuration Guide

138

jboss.infinispan:type=Server,name=<Memcached|Hotrod>,component=Transport

MBeans are available under two JMX domains:

jboss.as - these MBeans are created by the server subsystem.

jboss.infinispan - these MBeans are symmetric to those created by embedded mode.

Only the MBeans under jboss.infinispan should be used for Red Hat JBoss Data Grid, as the ones under
jboss.as are for Red Hat JBoss Enterprise Application Platform.

NOTE

A full list of available MBeans, their supported operations and attributes, is available in the
Appendix

23.8.2. Understanding MBeans

When JMX reporting is enabled at either the Cache Manager or Cache level, use a standard JMX GUI
such as JConsole or VisualVM to connect to a Java Virtual Machine running Red Hat JBoss Data Grid.
When connected, the following MBeans are available:

If Cache Manager-level JMX statistics are enabled, an MBean named
jboss.infinispan:type=CacheManager,name="DefaultCacheManager" exists, with properties
specified by the Cache Manager MBean.

If the cache-level JMX statistics are enabled, multiple MBeans display depending on the
configuration in use. For example, if a write behind cache store is configured, an MBean that
exposes properties that belong to the cache store component is displayed. All cache-level
MBeans use the same format:

jboss.infinispan:type=Cache,name="<name-of-cache>(<cache-mode>)",manager="<name-
of-cache-manager>",component=<component-name>

In this format:

Specify the default name for the cache using the cache-container element’s default-
cache attribute.

The cache-mode is replaced by the cache mode of the cache. The lower case version of the
possible enumeration values represents the cache mode.

The component-name is replaced by one of the JMX component names from the JMX
reference documentation.

As an example, the cache store JMX component MBean for a default cache configured for synchronous
distribution would be named as follows:

jboss.infinispan:type=Cache,name="default(dist_sync)", manager="default",component=CacheStore

Each cache and cache manager name is within quotation marks to prevent the use of unsupported
characters in these user-defined names.

23.8.3. Registering MBeans in Non-Default MBean Servers

CHAPTER 23. SET UP JAVA MANAGEMENT EXTENSIONS (JMX)

139

The default location where all the MBeans used are registered is the standard JVM MBeanServer
platform. Users can set up an alternative MBeanServer instance as well. Implement the
MBeanServerLookup interface to ensure that the getMBeanServer() method returns the desired (non
default) MBeanServer.

To set up a non default location to register your MBeans, create the implementation and then configure
Red Hat JBoss Data Grid with the fully qualified name of the class. An example is as follows:

To Add the Fully Qualified Domain Name Declaratively

Add the following snippet:

<globalJmxStatistics enabled="true" mBeanServerLookup="com.acme.MyMBeanServerLookup"/>

Red Hat Data Grid 7.2 Administration and Configuration Guide

140

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

24.1. ABOUT JBOSS OPERATIONS NETWORK (JON)

The JBoss Operations Network (JON) is JBoss' administration and management platform used to
develop, test, deploy and monitor the application life cycle. JBoss Operations Network is JBoss'
enterprise management solution and is recommended for the management of multiple Red Hat JBoss
Data Grid instances across servers. JBoss Operations Network’s agent and auto discovery features
facilitate monitoring the Cache Manager and Cache instances in JBoss Data Grid. JBoss Operations
Network presents graphical views of key runtime parameters and statistics and allows administrators to
set thresholds and be notified if usage exceeds or falls under the set thresholds.

IMPORTANT

In Red Hat JBoss Data Grid Remote Client-Server mode, statistics are enabled by
default. While statistics are useful in assessing the status of JBoss Data Grid, they
adversely affect performance and must be disabled if they are not required. In JBoss
Data Grid Library mode, statistics are disabled by default and must be explicitly enabled
when required.

IMPORTANT

To achieve full functionality of JBoss Operations Network library plugin for JBoss Data
Grid’s Library mode, upgrade to JBoss Operations Network 3.3.0 with patch Update 04
or higher. For information on upgrading the JBoss Operations Network, see the
Upgrading JBoss ON section in the JBoss Operations Network Installation Guide .

NOTE

JBoss Data Grid will support the JON plugin until its end of life in June 2019.

24.2. DOWNLOAD JBOSS OPERATIONS NETWORK (JON)

24.2.1. Prerequisites for Installing JBoss Operations Network (JON)

In order to install JBoss Operations Network in Red Hat JBoss Data Grid, the following is required:

A Linux, Windows, or Mac OSX operating system, and an x86_64, i686, or ia64 processor.

Java 6 or higher is required to run both the JBoss Operations Network Server and the JBoss
Operations Network Agent.

Synchronized clocks on JBoss Operations Network Servers and Agents.

An external database must be installed.

24.2.2. Download JBoss Operations Network

Use the following procedure to download Red Hat JBoss Operations Network (JON) from the
Customer Portal:

Download JBoss Operations Network

1. To access the Red Hat Customer Portal, navigate to https://access.redhat.com/home in a

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

141

1. To access the Red Hat Customer Portal, navigate to https://access.redhat.com/home in a
browser.

2. Click Downloads.

3. In the section labeled JBoss Development and Management , click Red Hat JBoss Data Grid.

4. Enter the relevant credentials in the Red Hat Login and Password fields and click Log In.

5. Select the appropriate version in the Version drop down menu list.

6. Click the Download button next to the desired download file.

24.2.3. Remote JMX Port Values

A port value must be provided to allow Red Hat JBoss Data Grid instances to be located. The value itself
can be any available port.

Provide unique (and available) remote JMX ports to run multiple JBoss Data Grid instances on a single
machine. A locally running JBoss Operations Network agent can discover each instance using the
remote port values.

24.2.4. Download JBoss Operations Network (JON) Plugin

Download Installation Files

1. Open http://access.redhat.com in a web browser.

2. Click Downloads in the menu across the top of the page.

3. Click Red Hat JBoss Operations Network in the list under JBoss Development and
Management.

4. Enter your login information.
You are taken to the Software Downloads page.

5. Download the JBoss Operations Network Plugin
If you intend to use the JBoss Operations Network plugin for JBoss Data Grid, select JBoss
ON for Data Grid from either the Product drop-down box, or the menu on the left.

If you intend to use the JBoss Operations Network plugin for JBoss Enterprise Web Server,
select JBoss ON for Web Server from either the Product drop-down box, or the menu on the
left.

a. Click the Red Hat JBoss Operations Network VERSION Base Distribution Download button.

b. Repeat the steps to download the Data Grid Management Plugin Pack for JBoss ON
VERSION

24.3. JBOSS OPERATIONS NETWORK SERVER INSTALLATION

The core of JBoss Operations Network is the server, which communicates with agents, maintains the
inventory, manages resource settings, interacts with content providers, and provides a central
management UI.

NOTE

Red Hat Data Grid 7.2 Administration and Configuration Guide

142

https://access.redhat.com/home
http://access.redhat.com

NOTE

For more detailed information about configuring JBoss Operations Network, see the
JBoss Operations Network Installation Guide .

24.4. JBOSS OPERATIONS NETWORK AGENT

The JBoss Operations Network Agent is a standalone Java application. Only one agent is required per
machine, regardless of how many resources you require the agent to manage.

The JBoss Operations Network Agent does not ship fully configured. Once the agent has been installed
and configured it can be run as a Windows service from a console, or run as a daemon or init.d script in a
UNIX environment.

A JBoss Operations Network Agent must be installed on each of the machines being monitored in order
to collect data.

The JBoss Operations Network Agent is typically installed on the same machine on which Red Hat
JBoss Data Grid is running, however where there are multiple machines an agent must be installed on
each machine.

NOTE

For more detailed information about configuring JBoss Operations Network agents, see
the JBoss Operations Network Installation Guide .

24.5. JBOSS OPERATIONS NETWORK FOR REMOTE CLIENT-SERVER
MODE

24.5.1. JBoss Operations Network for Remote Client-Server Mode

In Red Hat JBoss Data Grid’s Remote Client-Server mode, the JBoss Operations Network plug-in is
used to

initiate and perform installation and configuration operations.

monitor resources and their metrics.

In Remote Client-Server mode, the JBoss Operations Network plug-in uses JBoss Enterprise
Application Platform’s management protocol to obtain metrics and perform operations on the JBoss
Data Grid server.

24.5.2. Installing the JBoss Operations Network Plug-in (Remote Client-Server
Mode)

The following procedure details how to install the JBoss Operations Network plug-ins for Red Hat
JBoss Data Grid’s Remote Client-Server mode.

1. Install the plug-ins

a. Copy the JBoss Data Grid server rhq plug-in to $JON_SERVER_HOME/plugins .

b. Copy the JBoss Enterprise Application Platform plug-in to $JON_SERVER_HOME/plugins .

The server will automatically discover plug-ins here and deploy them. The plug-ins will be

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

143

The server will automatically discover plug-ins here and deploy them. The plug-ins will be
removed from the plug-ins directory after successful deployment.

2. Obtain plug-ins
Obtain all available plug-ins from the JBoss Operations Network server. To do this, type the
following into the agent’s console:

plugins update

3. List installed plug-ins
Ensure the JBoss Enterprise Application Platform plug-in and the JBoss Data Grid server rhq
plug-in are installed correctly using the following:

plugins info

JBoss Operation Network can now discover running JBoss Data Grid servers.

24.6. JBOSS OPERATIONS NETWORK REMOTE-CLIENT SERVER
PLUGIN

24.6.1. JBoss Operations Network Plugin Metrics

Table 24.1. JBoss Operations Network Traits for the Cache Container (Cache Manager)

Trait Name Display Name Description

cache-manager-status Cache Container Status The current runtime status of a
cache container.

cluster-name Cluster Name The name of the cluster.

members Cluster Members The names of the members of the
cluster.

coordinator-address Coordinator Address The coordinator node’s address.

local-address Local Address The local node’s address.

version Version The cache manager version.

defined-cache-names Defined Cache Names The caches that have been
defined for this manager.

Table 24.2. JBoss Operations Network Metrics for the Cache Container (Cache Manager)

Metric Name Display Name Description

cluster-size Cluster Size How many members are in the
cluster.

Red Hat Data Grid 7.2 Administration and Configuration Guide

144

defined-cache-count Defined Cache Count How many caches that have been
defined for this manager.

running-cache-count Running Cache Count How many caches are running
under this manager.

created-cache-count Created Cache Count How many caches have actually
been created under this manager.

Metric Name Display Name Description

Table 24.3. JBoss Operations Network Traits for the Cache

Trait Name Display Name Description

cache-status Cache Status The current runtime status of a
cache.

cache-name Cache Name The current name of the cache.

version Version The cache version.

Table 24.4. JBoss Operations Network Metrics for the Cache

Metric Name Display Name Description

cache-status Cache Status The current runtime status of a
cache.

number-of-locks-available [LockManager] Number of locks
available

The number of exclusive locks
that are currently available.

concurrency-level [LockManager] Concurrency level The LockManager’s configured
concurrency level.

average-read-time [Statistics] Average read time Average number of milliseconds
required for a read operation on
the cache to complete.

hit-ratio [Statistics] Hit ratio The result (in percentage) when
the number of hits (successful
attempts) is divided by the total
number of attempts.

elapsed-time [Statistics] Seconds since cache
started

The number of seconds since the
cache started.

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

145

read-write-ratio [Statistics] Read/write ratio The read/write ratio (in
percentage) for the cache.

average-write-time [Statistics] Average write time Average number of milliseconds a
write operation on a cache
requires to complete.

hits [Statistics] Number of cache hits Number of cache hits.

evictions [Statistics] Number of cache
evictions

Number of cache eviction
operations.

remove-misses [Statistics] Number of cache
removal misses

Number of cache removals where
the key was not found.

time-since-reset [Statistics] Seconds since cache
statistics were reset

Number of seconds since the last
cache statistics reset.

number-of-entries [Statistics] Number of current
cache entries

Number of entries currently in the
cache.

stores [Statistics] Number of cache puts Number of cache put operations

remove-hits [Statistics] Number of cache
removal hits

Number of cache removal
operation hits.

misses [Statistics] Number of cache
misses

Number of cache misses.

success-ratio [RpcManager] Successful
replication ratio

Successful replications as a ratio
of total replications in numeric
double format.

replication-count [RpcManager] Number of
successful replications

Number of successful replications

replication-failures [RpcManager] Number of failed
replications

Number of failed replications

average-replication-time [RpcManager] Average time
spent in the transport layer

The average time (in milliseconds)
spent in the transport layer.

commits [Transactions] Commits Number of transaction commits
performed since the last reset.

Metric Name Display Name Description

Red Hat Data Grid 7.2 Administration and Configuration Guide

146

prepares [Transactions] Prepares Number of transaction prepares
performed since the last reset.

rollbacks [Transactions] Rollbacks Number of transaction rollbacks
performed since the last reset.

invalidations [Invalidation] Number of
invalidations

Number of invalidations.

passivations [Passivation] Number of cache
passivations

Number of passivation events.

activations [Activations] Number of cache
entries activated

Number of activation events.

cache-loader-loads [Activation] Number of cache
store loads

Number of entries loaded from
the cache store.

cache-loader-misses [Activation] Number of cache
store misses

Number of entries that did not
exist in the cache store.

cache-loader-stores [CacheStore] Number of cache
store stores

Number of entries stored in the
cache stores.

Metric Name Display Name Description

NOTE

Gathering of some of these statistics is disabled by default.

JBoss Operations Network Metrics for Connectors

The metrics provided by the JBoss Operations Network (JON) plugin for Red Hat JBoss Data Grid are
for REST and Hot Rod endpoints only. For the REST protocol, the data must be taken from the Web
subsystem metrics. For details about each of these endpoints, see the Getting Started Guide .

Table 24.5. JBoss Operations Network Metrics for the Connectors

Metric Name Display Name Description

bytesRead Bytes Read Number of bytes read.

bytesWritten Bytes Written Number of bytes written.

NOTE

Gathering of these statistics is disabled by default.

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

147

24.6.2. JBoss Operations Network Plugin Operations

Table 24.6. JBoss ON Plugin Operations for the Cache

Operation Name Description

Start Cache Starts the cache.

Stop Cache Stops the cache.

Clear Cache Clears the cache contents.

Reset Statistics Resets statistics gathered by the cache.

Reset Activation Statistics Resets activation statistics gathered by the cache.

Reset Invalidation Statistics Resets invalidations statistics gathered by the cache.

Reset Passivation Statistics Resets passivation statistics gathered by the cache.

Reset Rpc Statistics Resets replication statistics gathered by the cache.

Remove Cache Removes the given cache from the cache-container.

Record Known Global Keyset Records the global known keyset to a well-known key
for retrieval by the upgrade process.

Synchronize Data Synchronizes data from the old cluster to this using
the specified migrator.

Disconnect Source Disconnects the target cluster from the source
cluster according to the specified migrator.

JBoss Operations Network Plugin Operations for the Cache Backups

The cache backups used for these operations are configured using cross-datacenter replication. In the
JBoss Operations Network (JON) User Interface, each cache backup is the child of a cache. For more
information about cross-datacenter replication, see Set Up Cross-Datacenter Replication .

Table 24.7. JBoss Operations Network Plugin Operations for the Cache Backups

Operation Name Description

status Display the site status.

bring-site-online Brings the site online.

take-site-offline Takes the site offline.

Red Hat Data Grid 7.2 Administration and Configuration Guide

148

Cache (Transactions)

Red Hat JBoss Data Grid does not support using Transactions in Remote Client-Server mode. As a
result, none of the endpoints can use transactions.

24.6.3. JBoss Operations Network Plugin Attributes

Table 24.8. JBoss ON Plugin Attributes for the Cache (Transport)

Attribute Name Type Description

cluster string The name of the group
communication cluster.

executor string The executor used for the
transport.

lock-timeout long The timeout period for locks on
the transport. The default value is
240000.

machine string A machine identifier for the
transport.

rack string A rack identifier for the transport.

site string A site identifier for the transport.

stack string The JGroups stack used for the
transport.

24.6.4. Create a New Cache Using JBoss Operations Network (JON)

Use the following steps to create a new cache using JBoss Operations Network (JON) for Remote
Client-Server mode.

Creating a new cache in Remote Client-Server mode

1. Log into the JBoss Operations Network Console.

a. From the JBoss Operations Network console, click Inventory.

b. Select Servers from the Resources list on the left of the console.

2. Select the specific Red Hat JBoss Data Grid server from the servers list.

a. Below the server name, click infinispan and then Cache Containers.

3. Select the desired cache container that will be parent for the newly created cache.

a. Right-click the selected cache container. For example, clustered.

b. In the context menu, navigate to Create Child and select Cache.

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

149

4. Create a new cache in the resource create wizard.

a. Enter the new cache name and click Next.

b. Set the cache attributes in the Deployment Options and click Finish.

NOTE

Refresh the view of caches in order to see newly added resource. It may take several
minutes for the Resource to show up in the Inventory.

24.7. JBOSS OPERATIONS NETWORK FOR LIBRARY MODE

24.7.1. JBoss Operations Network for Library Mode

In Red Hat JBoss Data Grid’s Library mode, the JBoss Operations Network plug-in is used to

initiate and perform installation and configuration operations.

monitor resources and their metrics.

In Library mode, the JBoss Operations Network plug-in uses JMX to obtain metrics and perform
operations on an application using the JBoss Data Grid library.

24.7.2. Installing the JBoss Operations Network Plug-in (Library Mode)

Use the following procedure to install the JBoss Operations Network plug-in for Red Hat JBoss Data
Grid’s Library mode.

Install JBoss Operations Network Library Mode Plug-in

1. Open the JBoss Operations Network Console

a. From the JBoss Operations Network console, select Administration.

b. Select Agent Plugins from the Configuration options on the left side of the console.

Figure 24.1. JBoss Operations Network Console for JBoss Data Grid

Red Hat Data Grid 7.2 Administration and Configuration Guide

150

Figure 24.1. JBoss Operations Network Console for JBoss Data Grid

2. Upload the Library Mode Plug-in

a. Click Browse, locate the InfinispanPlugin on your local file system.

b. Click Upload to add the plug-in to the JBoss Operations Network Server.

Figure 24.2. Upload the InfinispanPlugin.

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

151

Figure 24.2. Upload the InfinispanPlugin.

3. Scan for Updates

a. Once the file has successfully uploaded, click Scan For Updates at the bottom of the
screen.

b. The InfinispanPlugin will now appear in the list of installed plug-ins.

Figure 24.3. Scan for Updated Plug-ins.

Red Hat Data Grid 7.2 Administration and Configuration Guide

152

Figure 24.3. Scan for Updated Plug-ins.

24.7.3. Monitoring of JBoss Data Grid Instances in Library Mode

24.7.3.1. Prerequisites

The following is a list of common prerequisites for Monitor an Application Deployed in Standalone
Mode, Monitor an Application Deployed in Domain Mode , and Manually Adding JBoss Data Grid
Instances in Library Mode.

A correctly configured instance of JBoss Operations Network (JON) 3.2.0 with patch Update
02 or higher version.

A running instance of JON Agent on the server where the application will run. For more
information, see JBoss Operations Network Agent .

An operational instance of the RHQ agent with a full JDK. Ensure that the agent has access to
the tools.jar file from the JDK in particular. In the JON agent’s environment file (bin/rhq-env.sh
), set the value of the RHQ_AGENT_JAVA_HOME property to point to a full JDK home.

The RHQ agent must have been initiated using the same user as the JBoss Enterprise
Application Platform instance. As an example, running the JON agent as a user with root
privileges and the JBoss Enterprise Application Platform process under a different user does
not work as expected and must be avoided.

An installed JON plugin for JBoss Data GridLibrary Mode. For more information, see Installing
the JBoss Operations Network Plug-in (Library Mode)

Generic JMX plugin from JBoss Operation Networks 3.2.0 with patch Update 02 or better
version in use.

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

153

A custom application using Red Hat JBoss Data Grid’s Library mode with enabled JMX statistics
for library mode caches in order to make statistics and monitoring working. For details how to
enable JMX statistics for cache instances, see Enable JMX for Cache Instances and to enable
JMX for cache managers see Enable JMX for CacheManagers .

The Java Virtual Machine (JVM) must be configured to expose the JMX MBean Server. For the
Oracle/Sun JDK, see
http://docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html

A correctly added and configured management user for JBoss Enterprise Application Platform.

24.7.3.2. Manually Adding JBoss Data Grid Instances in Library Mode

To add Red Hat JBoss Data Grid instances to JBoss Operations Network manually, use the following
procedure in the JBoss Operations Network interface.

Add JBoss Data Grid Instances in Library Mode

1. Import the Platform

a. Navigate to the Inventory and select Discovery Queue from the Resources list on the left
of the console.

b. Select the platform on which the application is running and click Import at the bottom of
the screen.

Figure 24.4. Import the Platform from the menu:Discovery Queue[].

2. Access the Servers on the Platform

a. The jdg Platform now appears in the Platforms list.

Red Hat Data Grid 7.2 Administration and Configuration Guide

154

http://docs.oracle.com/javase/1.5.0/docs/guide/management/agent.html

b. Click on the Platform to access the servers that are running on it.

Figure 24.5. Open the jdg Platform to view the list of servers.

3. Import the JMX Server

a. From the Inventory tab, select Child Resources.

b. Click the Import button at the bottom of the screen and select the JMX Server** option
from the list.

Figure 24.6. Import the JMX Server

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

155

Figure 24.6. Import the JMX Server

4. Enable JDK Connection Settings

a. In the Resource Import Wizard window, specify JDK 8 from the list of Connection
Settings Template options.

Figure 24.7. Select the JDK 5 Template.

Red Hat Data Grid 7.2 Administration and Configuration Guide

156

Figure 24.7. Select the JDK 5 Template.

5. Modify the Connector Address

a. In the Deployment Options menu, modify the supplied Connector Address with the
hostname and JMX port of the process containing the Infinispan Library.

b. Enter the JMX connector address of the new JBoss Data Grid instance you want to
monitor. For example:
Connector Address:

service:jmx:rmi://127.0.0.1/jndi/rmi://127.0.0.1:7997/jmxrmi

NOTE

The connector address varies depending on the host and the JMX port
assigned to the new instance. In this case, instances require the following
system properties at start up:

-Dcom.sun.management.jmxremote.port=7997 -
Dcom.sun.management.jmxremote.ssl=false -
Dcom.sun.management.jmxremote.authenticate=false

c. Specify the Principal and Credentials information if required.

d. Click Finish.

Figure 24.8. Modify the values in the Deployment Options screen.

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

157

Figure 24.8. Modify the values in the Deployment Options screen.

6. View Cache Statistics and Operations

a. Click Refresh to refresh the list of servers.

b. The JMX Servers tree in the panel on the left side of the screen contains the Infinispan
Cache Managers node, which contains the available cache managers. The available cache
managers contain the available caches.

c. Select a cache from the available caches to view metrics.

d. Select the Monitoring tab.

e. The Tables view shows statistics and metrics.

f. The Operations tab provides access to the various operations that can be performed on
the services.

Figure 24.9. Metrics and operational data relayed through JMX is now available in the

Red Hat Data Grid 7.2 Administration and Configuration Guide

158

Figure 24.9. Metrics and operational data relayed through JMX is now available in the
JBoss Operations Network console.

24.7.3.3. Monitor Custom Applications Using Library Mode Deployed On JBoss Enterprise
Application Platform

24.7.3.3.1. Monitor an Application Deployed in Standalone Mode

Use the following instructions to monitor an application deployed in JBoss Enterprise Application
Platform using its standalone mode:

Monitor an Application Deployed in Standalone Mode

1. Start the JBoss Enterprise Application Platform Instance
Start the JBoss Enterprise Application Platform instance as follows:

a. Enter the following command at the command line or change standalone configuration file
(/bin/standalone.conf) respectively:

JAVA_OPTS="$JAVA_OPTS -Dorg.rhq.resourceKey=MyEAP"

b. Start the JBoss Enterprise Application Platform instance in standalone mode as follows:

$JBOSS_HOME/bin/standalone.sh

2. Deploy the Red Hat JBoss Data Grid Application
Deploy the WAR file that contains the JBoss Data Grid Library mode application with
globalJmxStatistics and jmxStatistics enabled.

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

159

3. Run JBoss Operations Network (JON) Discovery
Run the discovery --full command in the JBoss Operations Network (JON) agent.

4. Locate Application Server Process
In the JBoss Operations Network (JON) web interface, the JBoss Enterprise Application
Platform process is listed as a JMX server.

5. Import the Process Into Inventory
Import the process into the JBoss Operations Network (JON) inventory.

6. Optional: Run Discovery Again
If required, run the discovery --full command again to discover the new resources.

24.7.3.3.2. Monitor an Application Deployed in Domain Mode

Use the following instructions to monitor an application deployed in JBoss Enterprise Application
Platform 6 using its domain mode:

Monitor an Application Deployed in Domain Mode

1. Edit the Host Configuration
Edit the domain/configuration/host.xml file to replace the server element with the following
configuration:

2. Start JBoss Enterprise Application Platform 6
Start JBoss Enterprise Application Platform 6 in domain mode:

$JBOSS_HOME/bin/domain.sh

3. Deploy the Red Hat JBoss Data Grid Application
Deploy the WAR file that contains the JBoss Data Grid Library mode application with
globalJmxStatistics and jmxStatistics enabled.

4. Run Discovery in JBoss Operations Network (JON)
If required, run the discovery --full command for the JBoss Operations Network (JON) agent
to discover the new resources.

<servers>
 <server name="server-one" group="main-server-group">
 <jvm name="default">
 <jvm-options>
 <option value="-Dorg.rhq.resourceKey=EAP1"/>
 </jvm-options>
 </jvm>
 </server>
 <server name="server-two" group="main-server-group" auto-start="true">
 <socket-bindings port-offset="150"/>
 <jvm name="default">
 <jvm-options>
 <option value="-Dorg.rhq.resourceKey=EAP2"/>
 </jvm-options>
 </jvm>
 </server>
</servers>

Red Hat Data Grid 7.2 Administration and Configuration Guide

160

24.8. JBOSS OPERATIONS NETWORK PLUG-IN QUICKSTART

For testing or demonstrative purposes with a single JBoss Operations Network agent, upload the plug-
in to the server then type "plugins update" at the agent command line to force a retrieval of the latest
plugins from the server.

24.9. OTHER MANAGEMENT TOOLS AND OPERATIONS

24.9.1. Other Management Tools and Operations

Managing Red Hat JBoss Data Grid instances requires exposing significant amounts of relevant
statistical information. This information allows administrators to get a clear view of each JBoss Data Grid
node’s state. A single installation can comprise of tens or hundreds of JBoss Data Grid nodes and it is
important to provide this information in a clear and concise manner. JBoss Operations Network is one
example of a tool that provides runtime visibility. Other tools, such as JConsole can be used where JMX
is enabled.

24.9.2. Accessing Data via URLs

Caches that have been configured with a REST interface have access to Red Hat JBoss Data Grid using
RESTful HTTP access.

The RESTful service only requires a HTTP client library, eliminating the need for tightly coupled client
libraries and bindings. For more information about how to retrieve data using the REST interface, refer
to the JBoss Data Grid Developer Guide .

HTTP put() and post() methods place data in the cache, and the URL used determines the cache name
and key(s) used. The data is the value placed into the cache, and is placed in the body of the request.

A Content-Type header must be set for these methods. GET and HEAD methods are used for data
retrieval while other headers control cache settings and behavior.

NOTE

It is not possible to have conflicting server modules interact with the data grid. Caches
must be configured with a compatible interface in order to have access to JBoss Data
Grid.

24.9.3. Limitations of Map Methods

Specific Map methods, such as size(), values(), keySet() and entrySet(), can be used with certain
limitations with Red Hat JBoss Data Grid as they are unreliable. These methods do not acquire locks
(global or local) and concurrent modification, additions and removals are excluded from consideration in
these calls.

The listed methods have a significant impact on performance. As a result, it is recommended that these
methods are used for informational and debugging purposes only.

Performance Concerns

In JBoss Data Grid 7.2 the map methods size(), values(), keySet(), and entrySet() include entries in the
cache loader by default. The cache loader in use will determine the performance of these commands;
for instance, when using a database these methods will run a complete scan of the table where data is

CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)

161

stored, which may result in slower processing. To not load entries from the cache loader, and avoid any
potential performance hit, use Cache.getAdvancedCache().withFlags(Flag.SKIP_CACHE_LOAD)
before executing the desired method.

Understanding the size() Method (Embedded Caches)

In JBoss Data Grid 7.2 the Cache.size() method provides a count of all elements in both this cache and
cache loader across the entire cluster. When using a loader or remote entries, only a subset of entries is
held in memory at any given time to prevent possible memory issues, and the loading of all entries may
be slow.

In this mode of operation, the result returned by the size() method is affected by the flags
org.infinispan.context.Flag#CACHE_MODE_LOCAL, to force it to return the number of entries
present on the local node, and org.infinispan.context.Flag#SKIP_CACHE_LOAD, to ignore any
passivated entries. Either of these flags may be used to increase performance of this method, at the
cost of not returning a count of all elements across the entire cluster.

Understanding the size() Method (Remote Caches)

In JBoss Data Grid 7.2 the Hot Rod protocol contain a dedicated SIZE operation, and the clients use this
operation to calculate the size of all entries.

Red Hat Data Grid 7.2 Administration and Configuration Guide

162

PART XII. RED HAT JBOSS DATA GRID WEB ADMINISTRATION

PART XII. RED HAT JBOSS DATA GRID WEB ADMINISTRATION

163

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION
CONSOLE

25.1. ABOUT JBOSS DATA GRID ADMINISTRATION CONSOLE

The Red Hat JBoss Data Grid Administration Console allows administrators to monitor caches and
JBoss Data Grid clusters, while providing a web interface for making dynamic changes to caches, cache-
containers, and cluster nodes.

25.2. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE
PREREQUISITES

The Red Hat JBoss Data Grid Administration Console is only available in Remote Client-Server Mode.

25.3. RED HAT JBOSS DATA GRID ADMINISTATION CONSOLE
GETTING STARTED

25.3.1. Red Hat JBoss Data Grid Administration Console Getting Started

The Administration Console is started automatically when JBoss Data Grid is running in Remote Client-
Server Mode. A management user must be added to the server instance, which will then be used to
access the web console.

25.3.2. Adding Management User

In order to use the JBoss Data Grid Administration Console, a new management user must be created.
To add a new user, execute the add-user.sh utility script within the bin folder of your JBoss Data Grid
Server installation and enter the requested information.

The following procedure outlines the steps to add a new management user:

Adding a Management User

1. Run the add-user script within the bin folder as follows:

./add-user.sh

2. Select the option for the type of user to be added. For management user, select option a.

3. Set the Username and password as per the listed recommendations.

4. Enter the name of the group or groups in which the user has to be added. Leave blank for no
group.

NOTE

See the Download and Install JBoss Data Grid section in the Red Hat JBoss Data
Grid Getting Started Guide for download and installation details.

5. Confirm if you need the user to be used for Application Server process connection.

NOTE

Red Hat Data Grid 7.2 Administration and Configuration Guide

164

NOTE

Before proceeding, make sure $JBOSS_HOME is not set to a different
installation. Otherwise, you may get unpredictable results.

25.3.3. Logging in the JBoss Data Grid Administration Console

Once the JBoss Data Grid server is running, in either domain or standalone mode, the JBoss Data Grid
Administration Console may be accessed at the following login page:

http://${jboss.bind.address.management}:9990/console/index.html

Figure 25.1. JBoss Data Grid Administration Console Login Screen

Enter the user credentials to log in. After logging in, the cache container view is displayed.

25.4. DASHBOARD VIEW

25.4.1. Dashboard View

The Dashboard view is split into 3 tabs namely:

Caches

Clusters

Status Events

NOTE

The Clusters and Status Events tabs are not available when running JBoss Data Grid in
standalone non-clustered mode.

25.4.2. Cache Containers View

The first default view after logging in is the Cache Container list. A Cache Container is the primary
mechanism for treating a cache instance and is used as a starting point for using a cache itself.

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

165

Cache centric view presents the list of configured caches. It is used for viewing and adding caches to
clusters, adding and adjusting new cache configurations, adding and configuring endpoints and other
cache related administrative tasks.

Figure 25.2. Cache Containers View

In this instance, there is one cache container with the name clustered with two caches deployed on the
cluster group with UDP transport and three Endpoints attached to it. There are no remote sites
configured for this cache container.

25.4.3. Clusters View

The Cluster tab presents the summary of the clusters along with the current status, number of hosts and
number of nodes.

Figure 25.3. Clusters View

NOTE

The Cluster view will not appear when the server is running in standalone non-clustered
mode.

25.4.4. Status Events View

The JBoss Data Grid Administration Console displays the cluster wide events such as local rebalancing,
cluster start and stop, cluster-split and cluster-merge events in a consolidated section. To view the
detailed status events, navigate to the Status Events tab from the Dashboard.

Figure 25.4. Status Events View

Red Hat Data Grid 7.2 Administration and Configuration Guide

166

Figure 25.4. Status Events View

The status events are displayed with the associated timestamp and the event description.

NOTE

The Status Events view will not appear when the server is running in standalone non-
clustered mode.

25.5. CACHE ADMINISTRATION

25.5.1. Adding a New Cache

To add a new cache, follow these steps:

Adding a New Cache

1. In the Cache Containers view, click on the name of the cache container.

Figure 25.5. Cache Containers View

2. The Caches view is displayed listing all the configured caches. Click Add Cache to add and

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

167

2. The Caches view is displayed listing all the configured caches. Click Add Cache to add and
configure a new cache. The new cache creation window is opened.

Figure 25.6. Add Cache

3. Enter the new cache name, select the base configuration template from the drop-down menu,
check the Edit button, and click Next. If the Edit button is not selected then the cache will be
immediately created using the selected template.

Figure 25.7. Cache Properties

4. The cache configuration screen is displayed. Enter the cache parameters and click Create.

Figure 25.8. Cache Configuration

Red Hat Data Grid 7.2 Administration and Configuration Guide

168

Figure 25.8. Cache Configuration

5. A confirmation screen is displayed. Click Create to create the cache.

Figure 25.9. Cache Confirmation

25.5.2. Editing Cache Configuration

The JBoss Data Grid Administration Console allows administrators to edit the configuration of an
existing cache.

The following procedure outlines the steps to edit a cache configuration:

Editing Cache Configuration

1. Log into the JBoss Data Grid Administration Console and click on the cache container name.

Figure 25.10. Cache Containers

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

169

Figure 25.10. Cache Containers

2. In the Caches view, click on the cache name.

Figure 25.11. Caches View

3. The cache statistics and properties page is displayed. On the right hand side, click the
Configuration tab.

Figure 25.12. Cache Configuration Button

4. The edit cache configuration interface is opened. The editable cache properties are found in the
cache properties menu at the left hand side.

Figure 25.13. Editing Cache Configuration Interface

Red Hat Data Grid 7.2 Administration and Configuration Guide

170

Figure 25.13. Editing Cache Configuration Interface

5. Select the cache configuration property to be edited from the cache properties menu along the
left-hand side. To get a description on the cache configuration parameters, hover the cursor
over the information icon to the right of each field. The parameter description is presented in
form of a tooltip.

Figure 25.14. Cache configuration paramaters

6. The General property is selected by default. Edit the required values in the given parameter
input fields and click Apply changes below

7. The restart dialogue box appears. Click Restart Now to apply the changes, or Restart Later to
continue editing the cache properties.

Figure 25.15. Restart Dialogue Box

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

171

Figure 25.15. Restart Dialogue Box

NOTE

In standalone mode the dialog instead contains the following text:

Config changes will only be made available after you manually restart the
server!

25.5.3. Cache Statistics and Properties View

The JBoss Data Grid Administration Console allows administrators to view all the cache statistics
including the average time for reads, average times for writes, total number of entries, total number of
reads, total number of failed reads and total number of writes.

To view the cache statistics, follow these steps:

Viewing Cache Statistics

1. Navigate to the list of caches by clicking on the name of the cache container in the Cache
Container view.

2. Click on the name of the cache from the list of caches. Optionally you can use the cache filter
on the left side to filter caches. The caches can be filtered by a keyword, substring or by
selecting the type, the trait, and the status.

Figure 25.16. Caches View

Red Hat Data Grid 7.2 Administration and Configuration Guide

172

Figure 25.16. Caches View

3. The next page displays the comprehensive cache statistics under the headings: Cache content,
Operations performance and Caching Activity.

Figure 25.17. Cache Statistics

4. Additional cache statistics are displayed under the headings: Entries Lifecycle, Cache Loader
and Locking

Figure 25.18. Cache Statistics

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

173

5. To view cache properties, click on Configuration at the right hand side.

Figure 25.19. Configuration Button

6. The cache properties menu is displayed at the left hand side.

Figure 25.20. Cache Properties Menu

To view on which node a cache resides, click on the Nodes tab next to the General Status tab on the
cache statistics page.

Figure 25.21. General Status Tab

Red Hat Data Grid 7.2 Administration and Configuration Guide

174

Figure 25.21. General Status Tab

The name of the Node(s) is displayed along with the read-write statistics.

Figure 25.22. Cache Node Labels

25.5.4. Enable and Disable Caches

The following procedure outlines the steps to disable a cache:

Disabling a Cache

1. Navigate to the caches view by clicking on the name of the cache container in the Cache
Container view. Click on the name of the cache to be disabled.

Figure 25.23. Caches View

2. The cache statistics will be displayed. On the right hand side of the interface, click on the
Actions tab and then click Disable.

Figure 25.24. Cache Disable

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

175

Figure 25.24. Cache Disable

3. A confirmation dialogue box will appear. Click Disable to disable the cache.

Figure 25.25. Cache Disable Confirmation

4. A subsequent dialogue box appears. Click Ok.

Figure 25.26. Confirmation Box

Red Hat Data Grid 7.2 Administration and Configuration Guide

176

5. The selected cache is disabled successfully with a visual indicator Disabled next to the cache
name label.

Figure 25.27. Disabled Cache

The following procedure outlines the steps to enable a cache:

Enabling a Cache

1. To enable a cache, click on the specific disabled cache from the Cache view.

Figure 25.28. Caches View

2. On the right hand side of the interface, click on the Actions tab.

3. From the Actions tab, click Enable

Figure 25.29. Actions Menu

4. A confirmation dialogue box appears. Click Enable.

Figure 25.30. Confirmation Box

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

177

Figure 25.30. Confirmation Box

5. A subsequent dialogue box appears. Click Ok

Figure 25.31. Information Box

6. The selected cache is enabled successfully with a visual indicator Enabled next to the cache
name label.

Figure 25.32. Cache Enabled

25.5.5. Cache Flush and Clear

The JBoss Data Grid Administration Console allows administrators to remove all the entries from a
cache and the cache stores through the cache Clear operation. The console also provides the Flush
operation to store the entries from the cache memory to the cache store. These entries are not
removed from the cache memory, as during a Clear operation.

Flushing a Cache
To flush a cache, follow these steps:

Flushing a Cache

1. In the Cache Containers view, click on the name of the cache container.

2. The Caches view is displayed. Click on the cache to be flushed.

Figure 25.33. Caches View

Red Hat Data Grid 7.2 Administration and Configuration Guide

178

Figure 25.33. Caches View

3. The cache statistics page is displayed. At the right hand side, click Actions.

Figure 25.34. Actions Button

4. From the Actions menu, click Flush.

Figure 25.35. Actions Menu

5. A confirmation dialogue box appears. Click Flush.

Figure 25.36. Cache Flush Confirmation Box

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

179

Figure 25.36. Cache Flush Confirmation Box

6. The cache is successfully flushed. Click Ok.

Figure 25.37. Cache Flush Information Box

Clearing a Cache
To clear a cache, follow these steps:

Clearing a Cache

1. In the Cache Containers view, click on the name of the cache container.

2. The Caches view is displayed. Click on the cache to be cleared.

Figure 25.38. Caches View

3. On the cache statistics page, at the right hand side, click Actions.

4. From the Actions menu, click Clear.

Figure 25.39. Clear Button

Red Hat Data Grid 7.2 Administration and Configuration Guide

180

Figure 25.39. Clear Button

5. A confirmation dialogue box appears. Click Clear.

Figure 25.40. Confirmation Box

6. The cache is successfully cleared. Click Ok.

Figure 25.41. Information Box

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

181

Figure 25.41. Information Box

25.5.6. Server Tasks Execution

The JBoss Data Grid Administration Console allows administrators to start a server script job on the
JBoss Data Grid cluster.

25.5.7. Server Tasks

25.5.7.1. New Server Task

The following procedure outlines the steps to launch a new server task:

NOTE

Launching a new task is not supported if the server is running in standalone non-clustered
mode.

Launching a New Server Task

1. In the Cache Containers view of the JBoss Data Grid Administration Console, click on the name
of the Cache container.

2. On the cache view page, click the Task Execution tab.

Figure 25.42. Task Execution

3. In the Tasks execution tab, click Launch new task.

Figure 25.43. Launch New Task

Red Hat Data Grid 7.2 Administration and Configuration Guide

182

Figure 25.43. Launch New Task

4. Enter the new task properties and click Launch task.

Figure 25.44. Task Properties

25.5.7.2. Server Tasks View

After the server task is launched, it can be viewed in the Task execution tab along with the other running
tasks. The set of completed server script jobs with the start time and end time can be viewed.
Additionally, number of successful executions and number of failed executions can also be viewed.

Figure 25.45. Server Tasks View

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

183

Figure 25.45. Server Tasks View

Figure 25.46. Task Start/End Time

25.6. CACHE CONTAINER CONFIGURATION

25.6.1. Cache Container Configuration

The JBoss Data Grid Administration Console allows users to view and set Cache Container level settings
such as transport, thread pools, security, cache templates, deployment of remote Executables/Scripts.
Each cache container is associated with a cluster.

The following procedure outlines the steps to aceess the Cache Container Configuration settings:

Accessing Cache Container Configuration Settings

1. In the Cache Container View, click on the name of the cache container.

Figure 25.47. Cache Container View

Red Hat Data Grid 7.2 Administration and Configuration Guide

184

Figure 25.47. Cache Container View

2. Click Configuration setting button at the top right hand side of the interface.

Figure 25.48. Configuration

The Cache Container Configuration interface is displayed.

Figure 25.49. Cache Container Configuration

25.6.2. Defining Protocol Buffer Schema

A Protocol Buffer Schema is defined in the Cache Container Configuration interface.

The following procedure outlines the steps to define a protobuf schema:

Defining a Protobuf Schema

1. Click Add at the right hand side of the Schema tab to launch the create schema window.

2. Enter the schema name and the schema in the respective fields and click Create Schema.

Figure 25.50. New Schema

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

185

Figure 25.50. New Schema

3. The protocol buffer schema is added.

Figure 25.51. Protocol Buffer

25.6.3. Transport Setting

To access the Transport setting, click on the Transport tab in the Cache Container Configuration
interface. Enter the Transport settings and click Save .

Figure 25.52. Transport Setting

A dialog box will prompt to restart the server due to configuration changes. Restart to apply the
changes.

Figure 25.53. Restart Confirmation

Red Hat Data Grid 7.2 Administration and Configuration Guide

186

Figure 25.53. Restart Confirmation

25.6.4. Defining Thread Pools

To define thread pools for different cache related operations, click on the Thread Pools tab in the
Cache Container Configuration interface.

The JBoss Data Grid Administration Console allows administrators to set Thread Pool values for the
following cache level operations:

Async Operations

Figure 25.54. Async Operations

The currently set value for each parameter is set by the console. Hover the cursor over the information
icon to view the parameter description in form of a tooltip. To change a thread pool value, enter the new
value in the parameter field and click Save . A server restart is needed after every change of values.

Expiration

For Expiration settings, the user can set values for the following parameters:

Figure 25.55. Expiration Values

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

187

Figure 25.55. Expiration Values

Listener

For Listener settings, the user can set values for the following parameters:

Figure 25.56. Listener Values

Persistence

For Persistence settings, the user can set values for the following parameters:

Figure 25.57. Persistence Values

Remote Commands

For Remote Commands settings, the user can set values for the following parameters:

Figure 25.58. Remote Commands

Red Hat Data Grid 7.2 Administration and Configuration Guide

188

Figure 25.58. Remote Commands

Replication Queue

For Replication Queue settings, the user can set values for the following parameters:

Figure 25.59. Replication Queue Values

State Transfer

For Listener settings, the user can set values for the following parameters:

Figure 25.60. State Transfer Values

Transport

For Transport settings, the user can set values for the following parameters:

Figure 25.61. Transport Values

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

189

Figure 25.61. Transport Values

25.6.5. Adding New Security Role

The following procedure outlines the steps to add a new security role:

Adding a Security Role

1. Click on the Security tab. If authorization is not defined for a cache container, click Yes to
define.

Figure 25.62. Define Authorization

2. Select the Role Mapper from the drop-down menu. Click Add to launch the permissions
window.

Figure 25.63. Role Mapper Selection

3. In the Permissions window, enter the name of the new role and assign the permissions by
checking the required check-boxes. Click Save changes to save the role.

Figure 25.64. Role Permissions

Red Hat Data Grid 7.2 Administration and Configuration Guide

190

Figure 25.64. Role Permissions

4. The new security role is added.

Figure 25.65. New Security Role

25.6.6. Creating Cache Configuration Template

The Templates tab in the Cache Container Configuration interface lists all the configured and available
cache templates.

Figure 25.66. Cache Templates View

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

191

Figure 25.66. Cache Templates View

The following procedure outlines the steps to create a new Cache configuration template :

Creating New Cache Configuration Template

1. Click Create new Template on the right hand side of the templates list.

2. Enter the cache configuration template name and select the base configuration from the drop-
down and click Next.

Figure 25.67. Cache Configuration Template

3. Set the cache template attributes for the various cache operations such as Locking, Expiration,
Indexing and others.

Figure 25.68. Cache Configuration Template

Red Hat Data Grid 7.2 Administration and Configuration Guide

192

Figure 25.68. Cache Configuration Template

4. After entering the values, click Create to create the Cache Template.

25.7. CLUSTER ADMINISTRATION

25.7.1. Cluster Nodes View

Clusters centric view allows to view the nodes created for each server group and the list of deployed
servers can be viewed. In Clusters view, you can add new nodes to the cluster group and view
performance metrics of the particular nodes.

NOTE

The Cluster view will not appear when the server is running in standalone non-clustered
mode. When running in standalone clustered mode the Cluster view will be displayed, but
no operations on cluster nodes may be performed.

To access the Clusters view, navigate to the Clusters tab from the Dashboard and click on the name of
the cluster.

Figure 25.69. Nodes View

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

193

Figure 25.69. Nodes View

25.7.2. Cluster Nodes Mismatch

The total number of server nodes on the JBoss Data Grid cluster should ideally match the number of
nodes shown in the JBoss Data Grid Administration Console. If in case, due to some reason, the
expected nodes in the console do not match with the exact number of nodes on the JBoss Data Grid
physical cluster, the console issues a mismatch warning by displaying the number of nodes detected and
the number of expected nodes. Knowing the expected number of server nodes helps in handling
Network Partitions.

If nodes mismatch occurs, it can be viewed in the clusters view, above the list of nodes as a warning. To
access the Clusters view, navigate to the Clusters tab from the Dashboard and click on the name of the
cluster.

In the following screen, the Console alerts the user in the form of a warning. The expected number of
server nodes are 5 but only 3 are detected by the console.

Figure 25.70. Cluster Nodes Mismatch

25.7.3. Cluster Rebalancing

The Red Hat JBoss Data Grid Administration Console allows the user to enable and disable cluster
rebalancing at the cache container and cache levels.

NOTE

Red Hat Data Grid 7.2 Administration and Configuration Guide

194

NOTE

Cluster rebalancing is enabled by default.

The following procedure outlines the steps to enable and disable cluster rebalancing at a cache
container level :

Enable and Disable Rebalancing

1. From the cache container view, click on the name of the cache container.

2. In the caches view, at the right hand side, click on Actions.

3. A callout menu is opened. Click Disable Rebalancing.

4. A confirmation dialogue box appears. Click Accept.

5. Cluster rebalancing is successfully disabled.

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

195

6. To enable rebalancing, click Actions Enable Rebalancing.

7. A confirmation dialogue box appears. Click Accept.

Rebalancing is successfully enabled.

The following procedure outlines the steps to enable and disable cluster rebalancing at a cache level :

Enable and Disable Rebalancing

Red Hat Data Grid 7.2 Administration and Configuration Guide

196

1. From the cache container view, click on the name of the cache container.

2. In the caches view, click on a specific cache.

3. The cache statistics page is displayed. At the right hand side, click Actions.

4. From the callout menu, click Disable Rebalance.

5. A confirmation dialogue box appears. Click Disable Rebalance.

6. The rebalancing for the cache is successfully disabled.

7. To enable cache level rebalancing, click Enable rebalance from the Actions menu.

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

197

8. A confirmation dialogue box appears. Click Enable rebalance.

The rebalancing for the cache is successfully enabled.

25.7.4. Cluster Partition Handling

The JBoss Data Grid Administration Console alerts the user with a visual warning when the cluster
changes state to DEGRADED.

The assumed causes for a DEGRADED cluster are occurrence of a network partition, unreachable
node(s) or unexpected extra nodes.

The visual warning is displayed in the Clusters view.

To access the Clusters view, navigate to the Clusters tab from the Dashboard and click on the name of
the cluster.

Red Hat Data Grid 7.2 Administration and Configuration Guide

198

In the following screen, the visual warning DEGRADED is displayed next to the cluster name JDG
Cluster #1.

Figure 25.71. Network Partition Warning

This visual warning for a DEGRADED cluster is shown at Cluster, Cache Container, and Cache levels of
the console.

NOTE

Partitions can enter Degraded mode only if the DENY_READ_WRITES partition
handling strategy is configured. Otherwise all partitions are AVAILABLE in the JBoss
Data Grid Administration Console.

25.7.5. Cluster Events

The JBoss Data Grid Console displays the cluster wide events such as cluster-split and cluster-merge
events in a consolidated section.

NOTE

Cluster Events are not available when the server is running in standalone non-clustered
mode.

Along with the cluster events, the console displays the timestamp of the associated event. Cluster
events can be viewed in the Cache containers page, the Clusters view page and also in the Status
Events tab of the Dashboard.

To view cluster events on the cache containers page, navigate to the default cache containers view
which is the default landing interface after logging into the console. The Cluster events are displayed at
the right hand side in a consolidated section under the title Latest Grid Events

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

199

To view the cluster events on the Clusters view page, navigate to the Clusters view by clicking on the
Clusters tab. The Cluster events are displayed at the right hand side in a consolidated section under the
title Latest status Events

25.7.6. Adding Nodes

The JBoss Data Grid Administration Console allows administrators to configure new nodes.

Red Hat Data Grid 7.2 Administration and Configuration Guide

200

The following procedure outlines the steps to add a new Node:

Adding a New Node

1. In the Dashboard view, click Cluster tab.

Figure 25.72. Clusters Tab

2. Click on the name of the cluster where the new node has to be added.

Figure 25.73. Cluster Selection

3. Click Add Node.

Figure 25.74. Add Node Created

4. The node configuration window is opened. Enter the node properties in the respective fields
and click Create

Figure 25.75. Node Properties

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

201

Figure 25.75. Node Properties

5. The system boots up.

Figure 25.76. System Boot

6. The new node is successfully created.

Figure 25.77. New Node

Red Hat Data Grid 7.2 Administration and Configuration Guide

202

Figure 25.77. New Node

25.7.7. Node Statistics and Properties View

JBoss Data Grid Administration Console allows users to view the average time for reads, average times
for writes, total number of entries, total number of reads, total number of failed reads, total number of
writes and other data.

To view the Node statistics, click on the name of the Node in the Clusters tab on the JBoss Data Grid
Administration Console.

Figure 25.78. Nodes Statistics

25.7.8. Node Performance Metrics View

To view the Node performance metrics, click on the name of the node in the Clusters tab of the JBoss
Data Grid Administration Console

Figure 25.79. Node Performance Metrics

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

203

Figure 25.79. Node Performance Metrics

25.7.9. Disabling a Node

The JBoss Data Grid Administration Console allows administrators to disable nodes.

To disable a node of a cluster, follow these steps:

Adding a New Node

1. Click on the name of the cluster in the Cluster View of the JBoss Data Grid Administration
Console.

2. In the Nodes view, click on the node to be disabled.

Figure 25.80. Nodes View

3. The Node statistics view is opened. Click on the Actions tab located at the right hand side of the
page and then click Stop.

Figure 25.81. Nodes Stop

Red Hat Data Grid 7.2 Administration and Configuration Guide

204

4. A confirmation box appears. Click Stop to shut down the node.

Figure 25.82. Confirmation Box

25.7.10. Cluster Shutdown and Restart

25.7.10.1. Cluster Shutdown

JBoss Data Grid Administration Console allows convenient and controlled shutdown of JBoss Data Grid
clusters for maintenance purposes. For caches with a configured cache store, the data will be persisted
without any data loss.For caches without a configured cache store, data will be lost after cluster
shutdown.

To shut down or stop a cluster, follow these steps:

Shutting Down Cluster

1. Navigate to the Clusters view in the JBoss Data Grid Administration console and click on the
name of the cluster.

Figure 25.83. Clusters View

2. On the Nodes view page, locate the Actions tab to the top right hand side of the interface. Click
on Actions tab and then click Stop.

Figure 25.84. Cluster Stop

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

205

Figure 25.84. Cluster Stop

3. A confirmation box will appear. To confirm, click Stop.

Figure 25.85. Confirmation Box

25.7.10.2. Cluster Start

JBoss Data Grid Administration Console allows restarting a stopped cluster. The cache data is preloaded
without any data loss for caches with configured cache-store. Caches without a configured cache store,
will initially contain no data.

Preloading will only happen if preload is enabled on the cache store. If the local cache state on one of
the nodes is corrupt, the cache will not start and manual intervention will be required.

To a cluster, follow these steps:

Starting Cluster

1. Navigate to the Clusters view in the JBoss Data Grid Administration console and click on the
name of the cluster.

2. On the Nodes view page, locate the Actions tab to the top right hand side of the interface. Click
on Actions tab and then click Start.

Figure 25.86. Cluster Start

Red Hat Data Grid 7.2 Administration and Configuration Guide

206

Figure 25.86. Cluster Start

3. A confirmation box will appear. Click Start to start the cluster.

CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE

207

PART XIII. SECURING DATA IN RED HAT JBOSS DATA GRID

Red Hat Data Grid 7.2 Administration and Configuration Guide

208

CHAPTER 26. INTRODUCTION

26.1. SECURING DATA IN RED HAT JBOSS DATA GRID

In Red Hat JBoss Data Grid, data security can be implemented in the following ways:

Role-based Access Control

JBoss Data Grid features role-based access control for operations on designated secured caches. Roles
can be assigned to users who access your application, with roles mapped to permissions for cache and
cache-manager operations. Only authenticated users are able to perform the operations that are
authorized for their role.

In Library mode, data is secured via role-based access control for CacheManagers and Caches, with
authentication delegated to the container or application. In Remote Client-Server mode, JBoss Data
Grid is secured by passing identity tokens from the Hot Rod client to the server, and role-based access
control of Caches and CacheManagers.

Node Authentication and Authorization

Node-level security requires new nodes or merging partitions to authenticate before joining a cluster.
Only authenticated nodes that are authorized to join the cluster are permitted to do so. This provides
data protection by preventing unauthorized servers from storing your data.

Encrypted Communications Within the Cluster

JBoss Data Grid increases data security by supporting encrypted communications between the nodes in
a cluster by using a user-specified cryptography algorithm, as supported by Java Cryptography
Architecture (JCA).

JBoss Data Grid also provides audit logging for operations, and the ability to encrypt communication
between the Hot Rod Client and Server using Transport Layer Security (TLS/SSL).

CHAPTER 26. INTRODUCTION

209

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY:
AUTHORIZATION AND AUTHENTICATION

27.1. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND
AUTHENTICATION

Red Hat JBoss Data Grid is able to perform authorization on CacheManagers and Caches. JBoss Data
Grid authorization is built on standard security features available in a JDK, such as JAAS and the
SecurityManager.

If an application attempts to interact with a secured CacheManager and Cache, it must provide an
identity which JBoss Data Grid’s security layer can validate against a set of required roles and
permissions. Once validated, the client is issued a token for subsequent operations. Where access is
denied, an exception indicating a security violation is thrown.

When a cache has been configured for with authorization, retrieving it returns an instance of
SecureCache. SecureCache is a simple wrapper around a cache, which checks whether the "current
user" has the permissions required to perform an operation. The "current user" is a Subject associated
with the AccessControlContext.

JBoss Data Grid maps Principals names to roles, which in turn, represent one or more permissions. The
following diagram represents these relationships:

Figure 27.1. Roles and Permissions Mapping

27.2. PERMISSIONS

Access to a CacheManager or a Cache is controlled using a set of required permissions. Permissions
control the type of action that is performed on the CacheManager or Cache, rather than the type of
data being manipulated. Some of these permissions can apply to specifically name entities, such as a
named cache. Different types of permissions are available depending on the entity.

Table 27.1. CacheManager Permissions

Red Hat Data Grid 7.2 Administration and Configuration Guide

210

Permission Function Description

CONFIGURATION defineConfiguration Whether a new cache
configuration can be defined.

LISTEN addListener Whether listeners can be
registered against a cache
manager.

LIFECYCLE stop, start Whether the cache manager can
be stopped or started
respectively.

ALL A convenience permission which
includes all of the above.

Table 27.2. Cache Permissions

Permission Function Description

READ get, contains Whether entries can be retrieved
from the cache.

WRITE put, putIfAbsent, replace, remove,
evict

Whether data can be
written/replaced/removed/evicte
d from the cache.

EXEC distexec, mapreduce Whether code execution can be
run against the cache.

LISTEN addListener Whether listeners can be
registered against a cache.

BULK_READ keySet, values, entrySet,query Whether bulk retrieve operations
can be executed.

BULK_WRITE clear, putAll Whether bulk write operations can
be executed.

LIFECYCLE start, stop Whether a cache can be started /
stopped.

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

211

ADMIN getVersion, addInterceptor*,
removeInterceptor,
getInterceptorChain,
getEvictionManager,
getComponentRegistry,
getDistributionManager,
getAuthorizationManager, evict,
getRpcManager,
getCacheConfiguration,
getCacheManager,
getInvocationContextContainer,
setAvailability, getDataContainer,
getStats, getXAResource

Whether access to the underlying
components/internal structures is
allowed.

ALL A convenience permission which
includes all of the above.

ALL_READ Combines READ and
BULK_READ.

ALL_WRITE Combines WRITE and
BULK_WRITE.

Permission Function Description

NOTE

Some permissions may need to be combined with others in order to be useful. For
example, EXEC with READ or with WRITE.

27.3. ROLE MAPPING

In order to convert the Principals in a Subject into a set of roles used for authorization, a
PrincipalRoleMapper must be specified in the global configuration. Red Hat JBoss Data Grid ships with
three mappers, and also allows you to provide a custom mapper.

Table 27.3. Mappers

Mapper Name Java XML Description

IdentityRoleMapper org.infinispan.security.im
pl.IdentityRoleMapper

<identity-role-mapper
/>

Uses the Principal name
as the role name.

Red Hat Data Grid 7.2 Administration and Configuration Guide

212

CommonNameRoleMap
per

org.infinispan.security.im
pl.CommonRoleMapper

<common-name-role-
mapper />

If the Principal name is a
Distinguished Name
(DN), this mapper
extracts the Common
Name (CN) and uses it
as a role name. For
example the DN
cn=managers,ou=pe
ople,dc=example,dc
=com will be mapped to
the role managers.

ClusterRoleMapper org.infinispan.security.im
pl.ClusterRoleMapper

<cluster-role-mapper /> Uses the
ClusterRegistry to
store principal to role
mappings. This allows
the use of the CLI’s
GRANT and DENY
commands to
add/remove roles to a
Principal.

Custom Role Mapper <custom-role-mapper
class="a.b.c" />

Supply the fully-
qualified class name of
an implementation of
org.infinispan.securi
ty.impl.PrincipalRole
Mapper

Mapper Name Java XML Description

27.4. CONFIGURING AUTHENTICATION AND ROLE MAPPING USING
LOGIN MODULES

When using the authentication login-module for querying roles from LDAP, you must implement your
own mapping of Principals to Roles, as custom classes are in use. An example implementation of this
conversion is found in the JBoss Data Grid Developer Guide , while a declarative configuration example
is below:

Example of LDAP Login Module Configuration

 <security-domain name="ispn-secure" cache-type="default">
 <authentication>
 <login-module code="org.jboss.security.auth.spi.LdapLoginModule" flag="required">
 <module-option name="java.naming.factory.initial"
value="com.sun.jndi.ldap.LdapCtxFactory"/>
 <module-option name="java.naming.provider.url" value="ldap://localhost:389"/>
 <module-option name="java.naming.security.authentication" value="simple"/>
 <module-option name="principalDNPrefix" value="uid="/>
 <module-option name="principalDNSuffix" value=",ou=People,dc=infinispan,dc=org"/>
 <module-option name="rolesCtxDN" value="ou=Roles,dc=infinispan,dc=org"/>
 <module-option name="uidAttributeID" value="member"/>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

213

Example of Login Module Configuration

When using GSSAPI authentication, this would typically involve using LDAP for role mapping, with the
JBoss Data Grid server authenticating itself to the LDAP server via GSSAPI. For an example on
configuring this authentication to an Active Directory server refer to Active Directory Authentication
Using Kerberos (GSSAPI).

IMPORTANT

For information on configuring an LDAP server, or specifying users and roles in an LDAP
server, refer to the Red Hat Directory Server Administration Guide .

27.5. CONFIGURING RED HAT JBOSS DATA GRID FOR
AUTHORIZATION

Authorization is configured at two levels: the cache container (CacheManager), and at the single cache.

CacheManager

The following is an example configuration for authorization at the CacheManager level:

CacheManager Authorization (Declarative Configuration)

Each cache container determines:

 <module-option name="matchOnUserDN" value="true"/>
 <module-option name="roleAttributeID" value="cn"/>
 <module-option name="roleAttributeIsDN" value="false"/>
 <module-option name="searchScope" value="ONELEVEL_SCOPE"/>
 </login-module>
 </authentication>
</security-domain>

<security-domain name="krb-admin" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="useKeyTab" value="true"/>
 <module-option name="principal" value="admin@INFINISPAN.ORG"/>
 <module-option name="keyTab" value="${basedir}/keytab/admin.keytab"/>
 </login-module>
 </authentication>
</security-domain>

<cache-container name="local" default-cache="default">
 <security>
 <authorization>
 <identity-role-mapper />
 <role name="admin" permissions="ALL"/>
 <role name="reader" permissions="READ"/>
 <role name="writer" permissions="WRITE"/>
 <role name="supervisor" permissions="ALL_READ ALL_WRITE"/>
 </authorization>
 </security>
</cache-container>

Red Hat Data Grid 7.2 Administration and Configuration Guide

214

whether to use authorization.

a class which will map principals to a set of roles.

a set of named roles and the permissions they represent.

You can choose to use only a subset of the roles defined at the container level.

Roles

Roles may be applied on a cache-per-cache basis, using the roles defined at the cache-container level,
as follows:

Defining Roles

IMPORTANT

Any cache that is intended to require authentication must have a listing of roles defined;
otherwise authentication is not enforced as the no-anonymous policy is defined by the
cache’s authorization.

IMPORTANT

The REST protocol is not supported for use with authorization, and any attempts to
access a cache with authorization enabled will result in a SecurityException.

27.6. AUTHORIZATION USING A SECURITYMANAGER

In Red Hat JBoss Data Grid’s Remote Client-Server mode, authorization is able to work without a
SecurityManager for basic cache operations. In Library mode, a SecurityManager may also be used to
perform some of the more complex tasks, such as distexec and query among others.

In order to enforce access restrictions, enable the SecurityManager in your JVM using one of the
following methods:

Command Line

java -Djava.security.manager ...

Programmaticaly

System.setSecurityManager(new SecurityManager());

Using the JDK’s default implementation is not required; however, an appropriate policy file must be
supplied. The policy file defines a set of permissions, which the SecurityManager examines when an
application performs an action. If the action is allowed by the policy file, then the SecurityManager will
permit the action to take place; however, if the action is not allowed by the policy then the
SecurityManager denies that action.

<local-cache name="secured">
 <security>
 <authorization roles="admin reader writer supervisor"/>
 </security>
</local-cache>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

215

Example policy files are below:

Library Mode Security Policy File Example

// Grant permissions to all of the Infinispan libraries. Modify the URLs of the codebases below to
actually point to the physical location of the infinispan-embedded uberjar in your environment

grant codeBase "file://path/to/infinispan-embedded-${version}.jar" {
 permission java.lang.RuntimePermission "accessDeclaredMembers";
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

 // Modify this depending on the naming and location of your configuration files
 permission java.io.FilePermission ".${/}jgroups.xml", "read";
 permission java.util.PropertyPermission "*" "read";
 permission java.net.SocketPermission "*";

 permission java.util.PropertyPermission "*" "read";

 // Modify this depending on the naming and location of your configuration files
 permission java.io.FilePermission ".${/}infinispan.xml", "read";
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";

 // ForkJoin backport
 permission java.lang.RuntimePermission "accessClassInPackage.sun.misc";

 // Infinispan shutdown hooks
 permission java.lang.RuntimePermission "shutdownHooks";
 permission java.util.PropertyPermission "user.dir" "read";

 // ConcurrentHashMap backports
 permission java.util.PropertyPermission "java.util.concurrent.ForkJoinPool.common.parallelism"
"read";
 permission java.util.PropertyPermission
"java.util.concurrent.ForkJoinPool.common.exceptionHandler" "read";
 permission java.util.PropertyPermission "java.util.concurrent.ForkJoinPool.common.threadFactory"
"read";

 // Infinispan security
 permission javax.security.auth.AuthPermission "doAs";
 permission javax.security.auth.AuthPermission "getSubject";
 permission org.infinispan.security.CachePermission "ALL";
}

Remote Client-Server Security Policy File Example

// Grant permissions to all of the Infinispan libraries. Modify the URLs of the codebases below to
actually point to the physical location of the libraries in your environment

grant codeBase "file://$JDG_HOME/modules/system/layers/base/org/jboss/marshalling/main/jboss-
marshalling-osgi-${version}.jar" {
 permission java.lang.RuntimePermission "accessDeclaredMembers";
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
}

grant codeBase "file://$JDG_HOME/modules/system/layers/base/org/jgroups/main/jgroups-

Red Hat Data Grid 7.2 Administration and Configuration Guide

216

${version}.jar" {
 // Modify this depending on the naming and location of your configuration files
 permission java.io.FilePermission ".${/}jgroups.xml", "read";
 permission java.util.PropertyPermission "*" "read";
 permission java.net.SocketPermission "*";
}

grant codeBase
"file://$JDG_HOME/modules/system/layers/base/org/infinispan/commons/main/infinispan-
commons.jar" {
 permission java.util.PropertyPermission "*" "read";
}

grant codeBase "file://$JDG_HOME/modules/system/layers/base/org/infinispan/main/infinispan-
core.jar" {
 // Modify this depending on the naming and location of your configuration files
 permission java.io.FilePermission ".${/}infinispan.xml", "read";
 permission java.lang.reflect.ReflectPermission "suppressAccessChecks";
 permission java.lang.RuntimePermission "accessClassInPackage.sun.misc"; // ForkJoin backport
 permission java.lang.RuntimePermission "shutdownHooks"; // Infinispan shutdown hooks
 permission java.util.PropertyPermission "user.dir" "read";

 // ConcurrentHashMap backport
 permission java.util.PropertyPermission "java.util.concurrent.ForkJoinPool.common.parallelism"
"read";
 permission java.util.PropertyPermission
"java.util.concurrent.ForkJoinPool.common.exceptionHandler" "read";
 permission java.util.PropertyPermission "java.util.concurrent.ForkJoinPool.common.threadFactory"
"read";

 // Infinispan security
 permission javax.security.auth.AuthPermission "doAs";
 permission javax.security.auth.AuthPermission "getSubject";
 permission org.infinispan.security.CachePermission "ALL";
}

27.7. SECURITYMANAGER IN JAVA

27.7.1. About the Java Security Manager

Java Security Manager

The Java Security Manager is a class that manages the external boundary of the Java
Virtual Machine (JVM) sandbox, controlling how code executing within the JVM can
interact with resources outside the JVM. When the Java Security Manager is activated,
the Java API checks with the security manager for approval before executing a wide
range of potentially unsafe operations.

The Java Security Manager uses a security policy to determine whether a given action will be permitted
or denied.

27.7.2. About Java Security Manager Policies

Security Policy

A set of defined permissions for different classes of code. The Java Security Manager

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

217

A set of defined permissions for different classes of code. The Java Security Manager
compares actions requested by applications against the security policy. If an action is
allowed by the policy, the Security Manager will permit that action to take place. If the
action is not allowed by the policy, the Security Manager will deny that action. The
security policy can define permissions based on the location of code, on the code’s
signature, or based on the subject’s principals.

The Java Security Manager and the security policy used are configured using the Java Virtual Machine
options java.security.manager and java.security.policy.

Basic Information

A security policy’s entry consists of the following configuration elements, which are connected to the
policytool:

CodeBase

The URL location (excluding the host and domain information) where the code originates from. This
parameter is optional.

SignedBy

The alias used in the keystore to reference the signer whose private key was used to sign the code.
This can be a single value or a comma-separated list of values. This parameter is optional. If omitted,
presence or lack of a signature has no impact on the Java Security Manager.

Principals

A list of principal_type/principal_name pairs, which must be present within the executing thread’s
principal set. The Principals entry is optional. If it is omitted, it signifies that the principals of the
executing thread will have no impact on the Java Security Manager.

Permissions

A permission is the access which is granted to the code. Many permissions are provided as part of the
Java Enterprise Edition 6 (Java EE 6) specification. This document only covers additional
permissions which are provided by JBoss EAP 6.

IMPORTANT

Refer to your container documentation on how to configure the security policy, as it may
differ depending on the implementation.

27.7.3. Write a Java Security Manager Policy

Introduction

An application called policytool is included with most JDK and JRE distributions, for the purpose of
creating and editing Java Security Manager security policies. Detailed information about policytool is
linked from http://docs.oracle.com/javase/6/docs/technotes/tools/.

Setup a new Java Security Manager Policy

1. Start policytool
Start the policytool tool in one of the following ways.

a. Red Hat Enterprise Linux
From your GUI or a command prompt, run /usr/bin/policytool.

b. Microsoft Windows Server

Run policytool.exe from your Start menu or from the bin\ of your Java installation. The

Red Hat Data Grid 7.2 Administration and Configuration Guide

218

http://docs.oracle.com/javase/6/docs/technotes/tools/

Run policytool.exe from your Start menu or from the bin\ of your Java installation. The
location can vary.

2. Create a policy.
To create a policy, select Add Policy Entry. Add the parameters you need, then click Done. .

3. Edit an existing policy.
Select the policy from the list of existing policies, and select the Edit Policy Entry button. Edit
the parameters as needed.

4. Delete an existing policy.
Select the policy from the list of existing policies, and select the Remove Policy Entry button.

27.7.4. Run Red Hat JBoss Data Grid Server Within the Java Security Manager

To specify a Java Security Manager policy, you need to edit the Java options passed to the server
instance during the bootstrap process. For this reason, you cannot pass the parameters as options to
the standalone.sh script. The following procedure guides you through the steps of configuring your
instance to run within a Java Security Manager policy.

Prerequisites

Before you following this procedure, you need to write a security policy, using the policytool command
which is included with your Java Development Kit (JDK). This procedure assumes that your policy is
located at JDG_HOME/bin/server.policy . As an alternative, write the security policy using any text editor
and manually save it as JDG_HOME/bin/server.policy * The JBoss Data Grid server must be completely
stopped before you edit any configuration files.

Perform the following procedure for each physical host or instance in your environment.

Configure the Security Manager for JBoss Data Grid Server

1. Open the configuration file.
Open the configuration file for editing. This location of this file is listed below by OS. Note that
this is not the executable file used to start the server, but a configuration file that contains
runtime parameters. For Linux: JDG_HOME/bin/standalone.conf For Windows:
JDG_HOME\bin\standalone.conf.bat

2. Add the Java options to the file.
To ensure the Java options are used, add them to the code block that begins with:

if ["x$JAVA_OPTS" = "x"]; then

You can modify the -Djava.security.policy value to specify the exact location of your security
policy. It should go onto one line only, with no line break. Using == when setting the -
Djava.security.policy property specifies that the security manager will use only the specified
policy file. Using = specifies that the security manager will use the specified policy combined
with the policy set in the policy.url section of JAVA_HOME/lib/security/java.security .

IMPORTANT

JBoss Enterprise Application Platform releases from 6.2.2 onwards require that
the system property jboss.modules.policy-permissions is set to true.

standalone.conf

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

219

JAVA_OPTS="$JAVA_OPTS -Djava.security.manager -
Djava.security.policy==$PWD/server.policy -Djboss.home.dir=$JBOSS_HOME -
Djboss.modules.policy-permissions=true"

standalone.conf.bat

set "JAVA_OPTS=%JAVA_OPTS% -Djava.security.manager -
Djava.security.policy==\path\to\server.policy -Djboss.home.dir=%JBOSS_HOME% -
Djboss.modules.policy-permissions=true"

3. Start the server.
Start the server as normal.

27.8. DATA SECURITY FOR REMOTE CLIENT SERVER MODE

27.8.1. About Security Realms

A security realm is a series of mappings between users and passwords, and users and roles. Security
realms are a mechanism for adding authentication and authorization to your EJB and Web applications.
Red Hat JBoss Data Grid Server provides two security realms by default:

ManagementRealm stores authentication information for the Management API, which provides
the functionality for the Management CLI and web-based Management Console. It provides an
authentication system for managing JBoss Data Grid Server itself. You could also use the
ManagementRealm if your application needed to authenticate with the same business rules you
use for the Management API.

ApplicationRealm stores user, password, and role information for Web Applications and EJBs.

Each realm is stored in two files on the filesystem:

REALM-users.properties stores usernames and hashed passwords.

REALM-roles.properties stores user-to-role mappings.

mgmt-groups.properties stores user-to-role mapping file for ManagementRealm.

The properties files are stored in the standalone/configuration/ directories. The files are written
simultaneously by the add-user.sh or add-user.bat command. When you run the command, the first
decision you make is which realm to add your new user to.

27.8.2. Add a New Security Realm

1. Run the Management CLI
Start the cli.sh or cli.bat command and connect to the server.

2. Create the new security realm itself
Run the following command to create a new security realm named MyDomainRealm on a
domain controller or a standalone server.

/host=master/core-service=management/security-realm=MyDomainRealm:add()

3. Create the reference to the properties file which will store information about the new realm’s

Red Hat Data Grid 7.2 Administration and Configuration Guide

220

3. Create the reference to the properties file which will store information about the new realm’s
users
Run the below command to define the location of the new security realm’s properties file; this
file contains information regarding the users of this security realm. The following command
references a file named myfile.properties in the jboss.server.config.dir.

NOTE

The newly-created properties file is not managed by the included add-user.sh
and add-user.bat scripts. It must be managed externally.

/host=master/core-service=management/security-
realm=MyDomainRealm/authentication=properties:add(path="myfile.properties",relative-
to="jboss.server.config.dir")

4. Reload the server
Reload the server so the changes will take effect.

:reload

Result

The new security realm is created. When you add users and roles to this new realm, the information will
be stored in a separate file from the default security realms. You can manage this new file using your
own applications or procedures.

27.8.3. Add a User to a Security Realm

1. Run the add-user.sh or add-user.bat command
Open a terminal and change directories to the JDG_HOME/bin/ directory. If you run Red Hat
Enterprise Linux or another UNIX-like operating system, run add-user.sh. If you run Microsoft
Windows Server, run add-user.bat.

2. Choose whether to add a Management User or Application User
For this procedure, type b to add an Application User.

3. Choose the realm this user will be added to
By default, the only available realms are the ManagementRealm and ApplicationRealm;
however, if a custom realm has been added, then its name may be entered instead.

4. Type the username, password, and roles, when prompted
Type the desired username, password, and optional roles when prompted. Verify your choice by
typing yes, or type no to cancel the changes. The changes are written to each of the properties
files for the security realm.

27.8.4. Configuring Security Realms Declaratively

In Remote Client-Server mode, a Hot Rod endpoint must specify a security realm.

The security realm declares an authentication and an authorization section.

Configuring Security Realms Declaratively

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

221

The server-identities parameter can also be used to specify certificates.

27.8.5. Loading Roles from LDAP for Authorization (Remote Client-Server Mode)

An LDAP directory contains entries for user accounts and groups, cross referenced by attributes.
Depending on the LDAP server configuration, a user entity may map the groups the user belongs to
through memberOf attributes; a group entity may map which users belong to it through uniqueMember
attributes; or both mappings may be maintained by the LDAP server.

Users generally authenticate against the server using a simple user name. When searching for group
membership information, depending on the directory server in use, searches could be performed using
this simple name or using the distinguished name of the user’s entry in the directory.

The authentication step of a user connecting to the server always happens first. Once the user is
successfully authenticated the server loads the user’s groups. The authentication step and the
authorization step each require a connection to the LDAP server. The realm optimizes this process by
reusing the authentication connection for the group loading step. As will be shown within the
configuration steps below it is possible to define rules within the authorization section to convert a user’s
simple user name to their distinguished name. The result of a "user name to distinguished name
mapping" search during authentication is cached and reused during the authorization query when the
force attribute is set to "false". When force is true, the search is performed again during authorization
(while loading groups). This is typically done when different servers perform authentication and
authorization.

<security-realms>
 <security-realm name="ManagementRealm">
 <authentication>
 <local default-user="$local" skip-group-loading="true"/>
 <properties path="mgmt-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
 <authorization map-groups-to-roles="false">
 <properties path="mgmt-groups.properties" relative-to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
 <security-realm name="ApplicationRealm">
 <authentication>
 <local default-user="$local" allowed-users="*" skip-group-loading="true"/>
 <properties path="application-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="application-roles.properties" relative-to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
 </security-realms>

<authorization>
 <ldap connection="...">
 <!-- OPTIONAL -->
 <username-to-dn force="true">
 <!-- Only one of the following. -->
 <username-is-dn />
 <username-filter base-dn="..." recursive="..." user-dn-attribute="..." attribute="..." />
 <advanced-filter base-dn="..." recursive="..." user-dn-attribute="..." filter="..." />
 </username-to-dn>

Red Hat Data Grid 7.2 Administration and Configuration Guide

222

IMPORTANT

These examples specify some attributes with their default values. This is done for
demonstration. Attributes that specify their default values are removed from the
configuration when it is persisted by the server. The exception is the force attribute. It is
required, even when set to the default value of false.

username-to-dn
The username-to-dn element specifies how to map the user name to the distinguished name of their
entry in the LDAP directory. This element is only required when both of the following are true:

The authentication and authorization steps are against different LDAP servers.

The group search uses the distinguished name.

1:1 username-to-dn

This specifies that the user name entered by the remote user is the user’s distinguished
name.

+ This defines a 1:1 mapping and there is no additional configuration.

username-filter

The next option is very similar to the simple option described above for the authentication step. A
specified attribute is searched for a match against the supplied user name.

+ The attributes that can be set here are:

base-dn: The distinguished name of the context to begin the search.

recursive: Whether the search will extend to sub contexts. Defaults to false.

attribute: The attribute of the users entry to try and match against the supplied user name.
Defaults to uid.

user-dn-attribute: The attribute to read to obtain the users distinguished name. Defaults to dn.

 <group-search group-name="..." iterative="..." group-dn-attribute="..." group-name-attribute="..." >
 <!-- One of the following -->
 <group-to-principal base-dn="..." recursive="..." search-by="...">
 <membership-filter principal-attribute="..." />
 </group-to-principal>
 <principal-to-group group-attribute="..." />
 </group-search>
 </ldap>
</authorization>

<username-to-dn force="false">
 <username-is-dn />
</username-to-dn>

<username-to-dn force="true">
 <username-filter base-dn="dc=people,dc=harold,dc=example,dc=com" recursive="false"
attribute="sn" user-dn-attribute="dn" />
</username-to-dn>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

223

advanced-filter

The final option is to specify an advanced filter, as in the authentication section this is an
opportunity to use a custom filter to locate the users distinguished name.

+ For the attributes that match those in the username-filter example, the meaning and default values
are the same. There is one new attribute:

filter: Custom filter used to search for a user’s entry where the user name will be substituted in
the {0} place holder.

IMPORTANT

The XML must remain valid after the filter is defined so if any special characters
are used such as & ensure the proper form is used. For example & for the &
character.

The Group Search

There are two different styles that can be used when searching for group membership information. The
first style is where the user’s entry contains an attribute that references the groups the user is a member
of. The second style is where the group contains an attribute referencing the users entry.

When there is a choice of which style to use Red Hat recommends that the configuration for a user’s
entry referencing the group is used. This is because with this method group information can be loaded
by reading attributes of known distinguished names without having to perform any searches. The other
approach requires extensive searches to identify the groups that reference the user.

Before describing the configuration here are some LDIF examples to illustrate this.

Principal to Group - LDIF example.

This example illustrates where we have a user TestUserOne who is a member of GroupOne, GroupOne
is in turn a member of GroupFive. The group membership is shown by the use of a memberOf attribute
which is set to the distinguished name of the group of which the user (or group) is a member.

It is not shown here but a user could potentially have multiple memberOf attributes set, one for each
group of which the user is directly a member.

dn: uid=TestUserOne,ou=users,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: inetOrgPerson
objectClass: uidObject
objectClass: person
objectClass: organizationalPerson
cn: Test User One
sn: Test User One
uid: TestUserOne
distinguishedName: uid=TestUserOne,ou=users,dc=principal-to-group,dc=example,dc=org

<username-to-dn force="true">
 <advanced-filter base-dn="dc=people,dc=harold,dc=example,dc=com" recursive="false"
filter="sAMAccountName={0}" user-dn-attribute="dn" />
</username-to-dn>

Red Hat Data Grid 7.2 Administration and Configuration Guide

224

memberOf: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
memberOf: uid=Slashy/Group,ou=groups,dc=principal-to-group,dc=example,dc=org
userPassword::
e1NTSEF9WFpURzhLVjc4WVZBQUJNbEI3Ym96UVAva0RTNlFNWUpLOTdTMUE9PQ==

dn: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: group
objectClass: uidObject
uid: GroupOne
distinguishedName: uid=GroupOne,ou=groups,dc=principal-to-group,dc=example,dc=org
memberOf: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-group,dc=example,dc=org

dn: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-group,dc=example,dc=org
objectClass: extensibleObject
objectClass: top
objectClass: groupMember
objectClass: group
objectClass: uidObject
uid: GroupFive
distinguishedName: uid=GroupFive,ou=subgroups,ou=groups,dc=principal-to-
group,dc=example,dc=org

Group to Principal - LDIF Example

This example shows the same user TestUserOne who is a member of GroupOne which is in turn a
member of GroupFive - however in this case it is an attribute uniqueMember from the group to the
user being used for the cross reference.

Again the attribute used for the group membership cross reference can be repeated, if you look at
GroupFive there is also a reference to another user TestUserFive which is not shown here.

dn: uid=TestUserOne,ou=users,dc=group-to-principal,dc=example,dc=org
objectClass: top
objectClass: inetOrgPerson
objectClass: uidObject
objectClass: person
objectClass: organizationalPerson
cn: Test User One
sn: Test User One
uid: TestUserOne
userPassword::
e1NTSEF9SjR0OTRDR1ltaHc1VVZQOEJvbXhUYjl1dkFVd1lQTmRLSEdzaWc9PQ==

dn: uid=GroupOne,ou=groups,dc=group-to-principal,dc=example,dc=org
objectClass: top
objectClass: groupOfUniqueNames
objectClass: uidObject
cn: Group One
uid: GroupOne
uniqueMember: uid=TestUserOne,ou=users,dc=group-to-principal,dc=example,dc=org

dn: uid=GroupFive,ou=subgroups,ou=groups,dc=group-to-principal,dc=example,dc=org
objectClass: top

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

225

objectClass: groupOfUniqueNames
objectClass: uidObject
cn: Group Five
uid: GroupFive
uniqueMember: uid=TestUserFive,ou=users,dc=group-to-principal,dc=example,dc=org
uniqueMember: uid=GroupOne,ou=groups,dc=group-to-principal,dc=example,dc=org

General Group Searching
Before looking at the examples for the two approaches shown above we first need to define the
attributes common to both of these.

group-name: This attribute is used to specify the form that should be used for the group name
returned as the list of groups of which the user is a member. This can either be the simple form
of the group name or the group’s distinguished name. If the distinguished name is required this
attribute can be set to DISTINGUISHED_NAME. Defaults to SIMPLE.

iterative: This attribute is used to indicate if, after identifying the groups a user is a member of,
we should also iteratively search based on the groups to identify which groups the groups are a
member of. If iterative searching is enabled we keep going until either we reach a group that is
not a member if any other groups or a cycle is detected. Defaults to false.

Cyclic group membership is not a problem. A record of each search is kept to prevent groups that have
already been searched from being searched again.

IMPORTANT

For iterative searching to work the group entries need to look the same as user entries.
The same approach used to identify the groups a user is a member of is then used to
identify the groups of which the group is a member. This would not be possible if for
group to group membership the name of the attribute used for the cross reference
changes or if the direction of the reference changes.

group-dn-attribute: On an entry for a group which attribute is its distinguished name. Defaults
to dn.

group-name-attribute: On an entry for a group which attribute is its simple name. Defaults to
uid.

Principal to Group Example Configuration

Based on the example LDIF from above here is an example configuration iteratively loading a user’s
groups where the attribute used to cross reference is the memberOf attribute on the user.

<group-search group-name="..." iterative="..." group-dn-attribute="..." group-name-attribute="..." >
 ...
</group-search>

<authorization>
 <ldap connection="LocalLdap">
 <username-to-dn>
 <username-filter base-dn="ou=users,dc=principal-to-group,dc=example,dc=org"
recursive="false" attribute="uid" user-dn-attribute="dn" />
 </username-to-dn>
 <group-search group-name="SIMPLE" iterative="true" group-dn-attribute="dn" group-name-
attribute="uid">

Red Hat Data Grid 7.2 Administration and Configuration Guide

226

The most important aspect of this configuration is that the principal-to-group element has been added
with a single attribute.

group-attribute: The name of the attribute on the user entry that matches the distinguished
name of the group the user is a member of. Defaults to memberOf.

Group to Principal Example Configuration

This example shows an iterative search for the group to principal LDIF example shown above.

Here an element group-to-principal is added. This element is used to define how searches for groups
that reference the user entry will be performed. The following attributes are set:

base-dn: The distinguished name of the context to use to begin the search.

recursive: Whether sub-contexts also be searched. Defaults to false.

search-by: The form of the role name used in searches. Valid values are SIMPLE and
DISTINGUISHED_NAME. Defaults to DISTINGUISHED_NAME.

Within the group-to-principal element there is a membership-filter element to define the cross
reference.

principal-attribute: The name of the attribute on the group entry that references the user
entry. Defaults to member.

27.9. SECURING INTERFACES

27.9.1. Hot Rod Interface Security

27.9.1.1. Publish Hot Rod Endpoints as a Public Interface

Red Hat JBoss Data Grid’s Hot Rod server operates as a management interface as a default. To extend

 <principal-to-group group-attribute="memberOf" />
 </group-search>
 </ldap>
</authorization>

<authorization>
 <ldap connection="LocalLdap">
 <username-to-dn>
 <username-filter base-dn="ou=users,dc=group-to-principal,dc=example,dc=org"
recursive="false" attribute="uid" user-dn-attribute="dn" />
 </username-to-dn>
 <group-search group-name="SIMPLE" iterative="true" group-dn-attribute="dn" group-name-
attribute="uid">
 <group-to-principal base-dn="ou=groups,dc=group-to-principal,dc=example,dc=org"
recursive="true" search-by="DISTINGUISHED_NAME">
 <membership-filter principal-attribute="uniqueMember" />
 </group-to-principal>
 </group-search>
 </ldap>
 </authorization>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

227

Red Hat JBoss Data Grid’s Hot Rod server operates as a management interface as a default. To extend
its operations to a public interface, alter the value of the interface parameter in the socket-binding
element from management to public as follows:

27.9.1.2. Encryption of communication between Hot Rod Server and Hot Rod client

Hot Rod can be encrypted using TLS/SSL, and has the option to require certificate-based client
authentication.

Use the following procedure to secure the Hot Rod connector using SSL.

Secure Hot Rod Using SSL/TLS

1. Generate a Keystore
Create a Java Keystore using the keytool application distributed with the JDK and add your
certificate to it. The certificate can be either self signed, or obtained from a trusted CA
depending on your security policy.

2. Place the Keystore in the Configuration Directory
Put the keystore in the ~/JDG_HOME/standalone/configuration directory with the standalone-
hotrod-ssl.xml file from the ~/JDG_HOME/docs/examples/configs directory.

3. Declare an SSL Server Identify
Declare an SSL server identity within a security realm in the management section of the
configuration file. The SSL server identity must specify the path to a keystore and its secret key.

See Configure Hot Rod Authentication (X.509) for details about these parameters.

4. Add the Security Element
Add the security element to the Hot Rod connector as follows:

5. Optionally Configure Client Certificate Authentication
If you require the server to authenticate the client certificate, create a truststore that contains
the valid client certificates and set the require-ssl-client-auth attribute to true.

6. Start the Server
Start the server using the following:

bin/standalone.sh -c standalone-hotrod-ssl.xml

<socket-binding name="hotrod" interface="public" port="11222" />

<server-identities>
 <ssl protocol="...">
 <keystore path="..." relative-to="..." keystore-
password="${VAULT::VAULT_BLOCK::ATTRIBUTE_NAME::ENCRYPTED_VALUE}" />
 </ssl>
 <secret value="..." />
</server-identities>

<hotrod-connector socket-binding="hotrod" cache-container="local">
 <encryption security-realm="ApplicationRealm" require-ssl-client-auth="false" />
</hotrod-connector>

Red Hat Data Grid 7.2 Administration and Configuration Guide

228

 This will start a server with a Hot Rod endpoint on port 11222.
This endpoint will only accept SSL connections.

IMPORTANT

To prevent plain text passwords from appearing in configurations or source codes, plain
text passwords should be changed to Vault passwords. For more information about how
to set up Vault passwords, see the Password Vault section of the JBoss Enterprise
Application Platform security documentation. .

27.9.1.3. Securing Hot Rod to LDAP Server using SSL

When connecting to an LDAP server with SSL enabled it may be necessary to specify a trust store or
key store containing the appropriate certificates.

Encryption of communication between Hot Rod Server and Hot Rod client describes how to set up SSL
for Hot Rod client-server communication. This can be used, for example, for secure Hot Rod client
authentication with PLAIN username/password. When the username/password is checked against
credentials in LDAP, a secure connection from the Hot Rod server to the LDAP server is also required.
To enable connection from the Hot Rod server to LDAP via SSL, a security realm must be defined as
follows:

Hot Rod Client Authentication to LDAP Server

IMPORTANT

To prevent plain text passwords from appearing in configurations or source codes, plain
text passwords should be changed to Vault passwords. For more information about how
to set up Vault passwords, see the Red Hat Enterprise Application Platform Security Guide
.

27.9.1.4. User Authentication over Hot Rod Using SASL

27.9.1.4.1. User Authentication over Hot Rod Using SASL

User authentication over Hot Rod can be implemented using the following Simple Authentication and
Security Layer (SASL) mechanisms:

<management>
 <security-realms>
 <security-realm name="LdapSSLRealm">
 <authentication>
 <truststore path="ldap.truststore" relative-to="jboss.server.config.dir" keystore-
password=${VAULT::VAULT_BLOCK::ATTRIBUTE_NAME::ENCRYPTED_VALUE} />
 </authentication>
 </security-realm>
 </security-realms>
 <outbound-connections>
 <ldap name="LocalLdap" url="ldaps://localhost:10389" search-
dn="uid=wildfly,dc=simple,dc=wildfly,dc=org" search-credential="secret" security-
realm="LdapSSLRealm" />
 </outbound-connections>
 </management>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

229

https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html-single/how_to_configure_server_security/#password_vault

PLAIN is the least secure mechanism because credentials are transported in plain text format.
However, it is also the simplest mechanism to implement. This mechanism can be used in
conjunction with encryption (SSL) for additional security.

DIGEST-MD5 is a mechanism than hashes the credentials before transporting them. As a result,
it is more secure than the PLAIN mechanism.

GSSAPI is a mechanism that uses Kerberos tickets. As a result, it requires a correctly configured
Kerberos Domain Controller (for example, Microsoft Active Directory).

EXTERNAL is a mechanism that obtains the required credentials from the underlying transport
(for example, from a X.509 client certificate) and therefore requires client certificate encryption
to work correctly.

27.9.1.4.2. Configure Hot Rod Authentication (GSSAPI/Kerberos)

Use the following steps to set up Hot Rod Authentication using the SASL GSSAPI/Kerberos mechanism:

Configure SASL GSSAPI/Kerberos Authentication - Server-side Configuration

1. Define a Kerberos security login module using the security domain subsystem:

2. Ensure that the cache-container has authorization roles defined, and these roles are applied in
the cache’s authorization block as seen in Configuring Red Hat JBoss Data Grid for
Authorization.

3. Configure a Hot Rod connector as follows:

<system-properties>
 <property name="java.security.krb5.conf" value="/tmp/infinispan/krb5.conf"/>
 <property name="java.security.krb5.debug" value="true"/>
 <property name="jboss.security.disable.secdomain.option" value="true"/>
</system-properties>

<security-domain name="infinispan-server" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="debug" value="true"/>
 <module-option name="storeKey" value="true"/>
 <module-option name="refreshKrb5Config" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="doNotPrompt" value="true"/>
 <module-option name="keyTab" value="/tmp/infinispan/infinispan.keytab"/>
 <module-option name="principal" value="HOTROD/localhost@INFINISPAN.ORG"/>
 </login-module>
 </authentication>
</security-domain>

<hotrod-connector socket-binding="hotrod"
 cache-container="default">
 <authentication security-realm="ApplicationRealm">
 <sasl server-name="node0"
 mechanisms="{mechanism_name}"
 qop="{qop_name}"
 strength="{value}">

Red Hat Data Grid 7.2 Administration and Configuration Guide

230

The server-name attribute specifies the name that the server declares to incoming clients.
The client configuration must also contain the same server name value.

The server-context-name attribute specifies the name of the login context used to
retrieve a server subject for certain SASL mechanisms (for example, GSSAPI).

The mechanisms attribute specifies the authentication mechanism in use. See User
Authentication over Hot Rod Using SASL for a list of supported mechanisms.

The qop attribute specifies the SASL quality of protection value for the configuration.
Supported values for this attribute are auth (authentication), auth-int (authentication and
integrity, meaning that messages are verified against checksums to detect tampering), and
auth-conf (authentication, integrity, and confidentiality, meaning that messages are also
encrypted). Multiple values can be specified, for example, auth-int auth-conf. The ordering
implies preference, so the first value which matches both the client and server’s preference
is chosen.

The strength attribute specifies the SASL cipher strength. Valid values are low, medium,
and high.

The no-anonymous element within the policy element specifies whether mechanisms that
accept anonymous login are permitted. Set this value to false to permit and true to deny.

4. Perform the Client-Side configuration on each client. As the Hot Rod client is configured
programmatically information on this configuration is found in the JBoss Data Grid Developer
Guide .

27.9.1.4.3. Configure Hot Rod Authentication (MD5)

Use the following steps to set up Hot Rod Authentication using the SASL MD5 mechanism:

Configure Hot Rod Authentication (MD5)

1. Set up the Hot Rod Connector configuration by adding the sasl element to the authentication
element (for details on the authentication element, see Configuring Security Realms
Declaratively) as follows:

The server-name attribute specifies the name that the server declares to incoming clients.
The client configuration must also contain the same server name value.

 <policy>
 <no-anonymous value="true" />
 </policy>
 <property name="com.sun.security.sasl.digest.utf8">true</property>
 </sasl>
 </authentication>
</hotrod-connector>

<hotrod-connector socket-binding="hotrod"
 cache-container="default">
 <authentication security-realm="ApplicationRealm">
 <sasl server-name="myhotrodserver"
 mechanisms="DIGEST-MD5"
 qop="auth" />
 </authentication>
</hotrod-connector>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

231

The mechanisms attribute specifies the authentication mechanism in use. See User
Authentication over Hot Rod Using SASL for a list of supported mechanisms.

The qop attribute specifies the SASL quality of production value for the configuration.
Supported values for this attribute are auth, auth-int, and auth-conf.

2. Configure each client to be connected to the Hot Rod connector. As this step is performed
programmatically instructions are found in JBoss Data Grid’s Developer Guide .

27.9.1.4.4. Configure Hot Rod Using LDAP/Active Directory

Use the following to configure authentication over Hot Rod using LDAP or Microsoft Active Directory:

<security-realms>
 <security-realm name="ApplicationRealm">
 <authentication>
 <ldap connection="ldap_connection"
 recursive="true"
 base-dn="cn=users,dc=infinispan,dc=org">
 <username-filter attribute="cn" />
 </ldap>
 </authentication>
 </security-realm>
</security-realms>
<outbound-connections>
 <ldap name="ldap_connection"
 url="ldap://my_ldap_server"
 search-dn="CN=test,CN=Users,DC=infinispan,DC=org"
 search-credential="Test_password"/>
</outbound-connections>

The following are some details about the elements and parameters used in this configuration:

The security-realm element’s name parameter specifies the security realm to reference to use
when establishing the connection.

The authentication element contains the authentication details.

The ldap element specifies how LDAP searches are used to authenticate a user. First, a
connection to LDAP is established and a search is conducted using the supplied user name to
identify the distinguished name of the user. A subsequent connection to the server is
established using the password supplied by the user. If the second connection succeeds, the
authentication is a success.

The connection parameter specifies the name of the connection to use to connect to
LDAP.

The (optional) recursive parameter specifies whether the filter is executed recursively. The
default value for this parameter is false.

The base-dn parameter specifies the distinguished name of the context to use to begin the
search from.

The (optional) user-dn parameter specifies which attribute to read for the user’s
distinguished name after the user is located. The default value for this parameter is dn.

Red Hat Data Grid 7.2 Administration and Configuration Guide

232

The outbound-connections element specifies the name of the connection used to connect to
the LDAP directory.

The ldap element specifies the properties of the outgoing LDAP connection.

The name parameter specifies the unique name used to reference this connection.

The url parameter specifies the URL used to establish the LDAP connection.

The search-dn parameter specifies the distinguished name of the user to authenticate and
to perform the searches.

The search-credential parameter specifies the password required to connect to LDAP as
the search-dn.

The (optional) initial-context-factory parameter allows the overriding of the initial context
factory. the default value of this parameter is com.sun.jndi.ldap.LdapCtxFactory.

27.9.1.4.5. Configure Hot Rod Authentication (X.509)

The X.509 certificate can be installed at the node, and be made available to other nodes for
authentication purposes for inbound and outbound SSL connections. This is enabled using the <server-
identities/> element of a security realm definition, which defines how a server appears to external
applications. This element can be used to configure a password to be used when establishing a remote
connection, as well as the loading of an X.509 key.

The following example shows how to install an X.509 certificate on the node.

In the provided example, the SSL element contains the <keystore/> element, which is used to define how
to load the key from the file-based keystore. The following parameters ave available for this element.

Table 27.4. <server-identities/> Options

Parameter Mandatory/Optional Description

path Mandatory This is the path to the keystore,
this can be an absolute path or
relative to the next attribute.

relative-to Optional The name of a service
representing a path the keystore
is relative to.

<security-realm name="ApplicationRealm">
 <server-identities>
 <ssl protocol="...">
 <keystore path="..." relative-to="..." keystore-password="..." alias="..." key-password="..." />
 </ssl>
 </server-identities>

 [... authentication/authorization ...]

</security-realms>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

233

keystore-password Mandatory The password required to open
the keystore.

alias Optional The alias of the entry to use from
the keystore - for a keystore with
multiple entries in practice the
first usable entry is used but this
should not be relied on and the
alias should be set to guarantee
which entry is used.

key-password Optional The password to load the key
entry, if omitted the keystore-
password will be used instead.

Parameter Mandatory/Optional Description

NOTE

If the following error occurs, specify a key-password as well as an alias to ensure only
one key is loaded.

UnrecoverableKeyException: Cannot recover key

27.9.2. REST Interface Security

27.9.2.1. Publish REST Endpoints as a Public Interface

Red Hat JBoss Data Grid’s REST server operates as a management interface by default. To extend its
operations to a public interface, alter the value of the interface parameter in the socket-binding
element from management to public as follows:

27.9.2.2. Enable Security for the REST Endpoint

Use the following procedure to enable security for the REST endpoint in Red Hat JBoss Data Grid.

NOTE

The REST endpoint supports any of the JBoss Enterprise Application Platform security
subsystem providers.

Enable Security for the REST Endpoint

To enable security for JBoss Data Grid when using the REST interface, make the following changes to
standalone.xml:

<socket-binding name="http"
 interface="public"
 port="8080"/>

Red Hat Data Grid 7.2 Administration and Configuration Guide

234

1. Ensure that the rest endpoint defines a valid configuration for the authentication attribute. An
example configuration is below:

2. Check Security Domain Declaration
Ensure that the security subsystem contains the corresponding security-domain declaration.
For details about setting up security-domain declarations, see the JBoss Enterprise Application
Platform 7 documentation.

3. Add an Application User
Run the relevant script and enter the configuration settings to add an application user.

a. Run the adduser.sh script (located in $JDG_HOME/bin).

i. On a Windows system, run the adduser.bat file (located in $JDG_HOME/bin) instead.

b. When prompted about the type of user to add, select Application User (application-
users.properties) by entering b.

c. Accept the default value for realm (ApplicationRealm) by pressing the return key.

d. Specify a username and password.

e. When prompted for a group, enter REST.

f. Ensure the username and application realm information is correct when prompted and enter
"yes" to continue.

4. Verify the Created Application User
Ensure that the created application user is correctly configured.

a. Check the configuration listed in the application-users.properties file (located in
$JDG_HOME/standalone/configuration/). The following is an example of what the correct
configuration looks like in this file:

user1=2dc3eacfed8cf95a4a31159167b936fc

b. Check the configuration listed in the application-roles.properties file (located in
$JDG_HOME/standalone/configuration/). The following is an example of what the correct
configuration looks like in this file:

user1=REST

5. Test the Server
Start the server and enter the following link in a browser window to access the REST endpoint:

http://localhost:8080/rest/namedCache

NOTE

<subsystem xmlns="urn:infinispan:server:endpoint:8.1">
 <rest-connector socket-binding="rest" cache-container="security">
 <authentication security-realm="ApplicationRealm" auth-method="BASIC"/>
 </rest-connector>
</subsystem>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

235

NOTE

If testing using a GET request, a 405 response code is expected and indicates
that the server was successfully authenticated.

27.9.3. Memcached Interface Security

27.9.3.1. Publish Memcached Endpoints as a Public Interface

Red Hat JBoss Data Grid’s memcached server operates as a management interface by default. It is
possible to extend the memcached operations to a public interface, but there is no additional security
available for this interface. If security is a concern then it is recommended to keep this interface on an
isolated, internal network, or to use either the REST or Hot Rod interfaces.

To configure the memcached interface as a public interface, alter the value of the interface parameter
in the socket-binding element from management to public as follows:

<socket-binding name="memcached"
 interface="public"
 port="11211" />

27.10. ACTIVE DIRECTORY AUTHENTICATION (NON-KERBEROS)

See Example of LDAP Login Module Configuration for a non-Kerberos Active Directory Authentication
configuration example.

27.11. ACTIVE DIRECTORY AUTHENTICATION USING KERBEROS
(GSSAPI)

When using Red Hat JBoss Data Grid with Microsoft Active Directory, data security can be enabled via
Kerberos authentication. To configure Kerberos authentication for Microsoft Active Directory, use the
following procedure.

Configure Kerberos Authentication for Active Directory (Library Mode)

1. Configure JBoss EAP server to authenticate itself to Kerberos. This can be done by configuring
a dedicated security domain, for example:

2. The security domain for authentication must be configured correctly for JBoss EAP, an

<security-domain name="ldap-service" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="refreshKrb5Config" value="true"/>
 <module-option name="principal" value="ldap/localhost@INFINISPAN.ORG"/>
 <module-option name="keyTab" value="${basedir}/keytab/ldap.keytab"/>
 <module-option name="doNotPrompt" value="true"/>
 </login-module>
 </authentication>
</security-domain>

Red Hat Data Grid 7.2 Administration and Configuration Guide

236

2. The security domain for authentication must be configured correctly for JBoss EAP, an
application must have a valid Kerberos ticket. To initiate the Kerberos ticket, you must reference
another security domain using

<module-option name="usernamePasswordDomain" value="krb-admin"/>

This points to the standard Kerberos login module described in Step 3.

3. The security domain authentication configuration described in the previous step points to the
following standard Kerberos login module:

27.12. THE SECURITY AUDIT LOGGER

27.12.1. The Security Audit Logger

Red Hat JBoss Data Grid includes a logger to audit security logs for the cache, specifically whether a
cache or a cache manager operation was allowed or denied for various operations.

The default audit logger is org.infinispan.security.impl.DefaultAuditLogger. This logger outputs audit
logs using the available logging framework (for example, JBoss Logging) and provides results at the
TRACE level and the AUDIT category.

To send the AUDIT category to either a log file, a JMS queue, or a database, use the appropriate log

<security-domain name="ispn-admin" cache-type="default">
 <authentication>
 <login-module code="SPNEGO" flag="requisite">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="serverSecurityDomain" value="ldap-service"/>
 <module-option name="usernamePasswordDomain" value="krb-admin"/>
 </login-module>
 <login-module code="AdvancedAdLdap" flag="required">
 <module-option name="password-stacking" value="useFirstPass"/>
 <module-option name="bindAuthentication" value="GSSAPI"/>
 <module-option name="jaasSecurityDomain" value="ldap-service"/>
 <module-option name="java.naming.provider.url" value="ldap://localhost:389"/>
 <module-option name="baseCtxDN" value="ou=People,dc=infinispan,dc=org"/>
 <module-option name="baseFilter" value="(krb5PrincipalName={0})"/>
 <module-option name="rolesCtxDN" value="ou=Roles,dc=infinispan,dc=org"/>
 <module-option name="roleFilter" value="(member={1})"/>
 <module-option name="roleAttributeID" value="cn"/>
 </login-module>
 </authentication>
</security-domain>

<security-domain name="krb-admin" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="useKeyTab" value="true"/>
 <module-option name="principal" value="admin@INFINISPAN.ORG"/>
 <module-option name="keyTab" value="${basedir}/keytab/admin.keytab"/>
 </login-module>
 </authentication>
</security-domain>

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

237

To send the AUDIT category to either a log file, a JMS queue, or a database, use the appropriate log
appender.

27.12.2. Configure the Security Audit Logger (Library Mode)

Use the following to configure the audit logger in Red Hat JBoss Data Grid:

27.12.3. Configure the Security Audit Logger (Remote Client-Server Mode)

Use the following code to configure the audit logger in Red Hat JBoss Data Grid Remote Client-Server
Mode.

To use a different audit logger, specify it in the authorization element. The authorization element must
be within the cache-container element in the Infinispan subsystem (in the standalone.xml configuration
file).

NOTE

The default audit logger for server mode is
org.jboss.as.clustering.infinispan.subsystem.ServerAuditLogger which sends the log
messages to the server audit log. See the Management Interface Audit Logging chapter in
the JBoss Enterprise Application Platform Administration and Configuration Guide for
more information.

<infinispan>
 ...
 <global-security>
 <authorization audit-logger = "org.infinispan.security.impl.DefaultAuditLogger">
 ...
 </authorization>
 </global-security>
 ...
</infinispan>

<cache-container name="local" default-cache="default">
 <security>
 <authorization audit-logger="org.infinispan.security.impl.DefaultAuditLogger">
 <identity-role-mapper/>
 <role name="admin" permissions="ALL"/>
 <role name="reader" permissions="READ"/>
 <role name="writer" permissions="WRITE"/>
 <role name="supervisor" permissions="ALL_READ ALL_WRITE"/>
 </authorization>
 </security>
 <local-cache name="default">
 <locking isolation="NONE" acquire-timeout="30000" concurrency-level="1000" striping="false"/>
 <transaction mode="NONE"/>
 <security>
 <authorization roles="admin reader writer supervisor"/>
 </security>
 </local-cache>
 [...]
</cache-container>

Red Hat Data Grid 7.2 Administration and Configuration Guide

238

27.12.4. Custom Audit Loggers

Users can implement custom audit loggers in Red Hat JBoss Data Grid Library and Remote Client-
Server Mode. The custom logger must implement the org.infinispan.security.AuditLogger interface. If
no custom logger is provided, the default logger (DefaultAuditLogger) is used.

CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION

239

CHAPTER 28. SECURITY FOR CLUSTER TRAFFIC

28.1. NODE AUTHENTICATION AND AUTHORIZATION (REMOTE
CLIENT-SERVER MODE)

28.1.1. Node Authentication and Authorization (Remote Client-Server Mode)

Security can be enabled at node level via SASL protocol, which enables node authentication against a
security realm. This requires nodes to authenticate each other when joining or merging with a cluster.
For detailed information about security realms, see About Security Realms .

The following example depicts the <sasl /> element, which leverages the SASL protocol. Both DIGEST-
MD5 or GSSAPI mechanisms are currently supported.

Configure SASL Authentication

In the provided example, the nodes use the DIGEST-MD5 mechanism to authenticate against the
ClusterRealm. In order to join, nodes must have the cluster role.

The cluster-role attribute determines the role all nodes must belong to in the security realm in order to
JOIN or MERGE with the cluster. Unless it has been specified, the cluster-role attribute is the name of
the clustered <cache-container> by default. Each node identifies itself using the client-name property.
If none is specified, the hostname on which the server is running will be used.

This name can also be overridden by specifying the jboss.node.name system property that can be
overridden on the command line. For example:

$ standalone.sh -Djboss.node.name=node001

NOTE

<management>
 <security-realms>
 <!-- Additional configuration information here -->
 <security-realm name="ClusterRealm">
 <authentication>
 <properties path="cluster-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="cluster-roles.properties" relative-to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
 </security-realms>
 <!-- Additional configuration information here -->
 </security-realms>
</management>

<stack name="udp">
 <!-- Additional configuration information here -->
 <sasl mech="DIGEST-MD5" security-realm="ClusterRealm" cluster-role="cluster">
 <property name="client_name">node1</property>
 <property name="client_password">password</property>
 </sasl>
 <!-- Additional configuration information here -->
</stack>

Red Hat Data Grid 7.2 Administration and Configuration Guide

240

NOTE

JGroups AUTH protocol is not integrated with security realms, and its use is not
advocated for Red Hat JBoss Data Grid.

28.1.2. Configure Node Authentication for Cluster Security (DIGEST-MD5)

The following example demonstrates how to use DIGEST-MD5 with a properties-based security realm,
with a dedicated realm for cluster node.

Using the DIGEST-MD5 Mechanism

In the provided example, supposing the hostnames of the various nodes are node001, node002,
node003, the cluster-users.properties will contain:

<management>
 <security-realms>
 <security-realm name="ClusterRealm">
 <authentication>
 <properties path="cluster-users.properties" relative-to="jboss.server.config.dir"/>
 </authentication>
 <authorization>
 <properties path="cluster-roles.properties" relative-to="jboss.server.config.dir"/>
 </authorization>
 </security-realm>
 </security-realms>
</management>
<subsystem xmlns="urn:infinispan:server:jgroups:8.0" default-
stack="${jboss.default.jgroups.stack:udp}">
 <stack name="udp">
 <transport type="UDP" socket-binding="jgroups-udp"/>
 <protocol type="PING"/>
 <protocol type="MERGE2"/>
 <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>
 <protocol type="FD_ALL"/>
 <protocol type="pbcast.NAKACK"/>
 <protocol type="UNICAST2"/>
 <protocol type="pbcast.STABLE"/>
 <protocol type="pbcast.GMS"/>
 <protocol type="UFC"/>
 <protocol type="MFC"/>
 <protocol type="FRAG3"/>
 <protocol type="RSVP"/>
 <sasl security-realm="ClusterRealm" mech="DIGEST-MD5">
 <property name="client_password>...</property>
 </sasl>
 </stack>
</subsystem>
<subsystem xmlns="urn:infinispan:server:core:8.4" default-cache-container="clustered">
 <cache-container name="clustered" default-cache="default">
 <transport executor="infinispan-transport" lock-timeout="60000" stack="udp"/>
 <!-- various clustered cache definitions here -->
 </cache-container>
</subsystem>

CHAPTER 28. SECURITY FOR CLUSTER TRAFFIC

241

node001=/<node001passwordhash>/

node002=/<node002passwordhash>/

node003=/<node003passwordhash>/

The cluster-roles.properties will contain:

node001=clustered

node002=clustered

node003=clustered

To generate these values, the following add-users.sh script can be used:

$ add-user.sh -up cluster-users.properties -gp cluster-roles.properties -r ClusterRealm -u node001 -g
clustered -p <password>

The MD5 password hash of the node must also be placed in the " client_password" property of the
<sasl/> element.

NOTE

To increase security, it is recommended that this password be stored using a Vault. For
more information about vault expressions, see the Red Hat Enterprise Application
Platform Security Guide

Once node security has been set up as discussed here, the cluster coordinator will validate each JOINing
and MERGEing node’s credentials against the realm before letting the node become part of the cluster
view.

28.1.3. Configure Node Authentication for Cluster Security (GSSAPI/Kerberos)

When using the GSSAPI mechanism, the client_name is used as the name of a Kerberos-enabled login
module defined within the security domain subsystem. For a full procedure on how to do this, see
Configure Hot Rod Authentication (GSSAPI/Kerberos) .

Using the Kerberos Login Module

<property name="client_password>...</property>

<security-domain name="krb-node0" cache-type="default">
 <authentication>
 <login-module code="Kerberos" flag="required">
 <module-option name="storeKey" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="refreshKrb5Config" value="true"/>
 <module-option name="principal" value="jgroups/node0/clustered@INFINISPAN.ORG"/>
 <module-option name="keyTab"
value="${jboss.server.config.dir}/keytabs/jgroups_node0_clustered.keytab"/>
 <module-option name="doNotPrompt" value="true"/>

Red Hat Data Grid 7.2 Administration and Configuration Guide

242

The following property must be set in the <sasl/> element to reference it:

As a result, the authentication section of the security realm is ignored, as the nodes will be validated
against the Kerberos Domain Controller. The authorization configuration is still required, as the node
principal must belong to the required cluster-role.

In all cases, it is recommended that a shared authorization database, such as LDAP, be used to validate
node membership in order to simplify administration.

By default, the principal of the joining node must be in the following format:

jgroups/$NODE_NAME/$CACHE_CONTAINER_NAME@REALM

28.2. CONFIGURE NODE SECURITY IN LIBRARY MODE

28.2.1. Configure Node Security in Library Mode

In Library mode, node authentication is configured directly in the JGroups configuration. JGroups can
be configured so that nodes must authenticate each other when joining or merging with a cluster. The
authentication uses SASL and is enabled by adding the SASL protocol to your JGroups XML
configuration.

SASL relies on JAAS notions, such as CallbackHandlers, to obtain certain information necessary for
the authentication handshake. Users must supply their own CallbackHandlers on both client and server
sides.

IMPORTANT

The JAAS API is only available when configuring user authentication and authorization,
and is not available for node security.

NOTE

In the provided example, CallbackHandler classes are examples only, and not contained
in the Red Hat JBoss Data Grid release. Users must provide the appropriate
CallbackHandler classes for their specific LDAP implementation.

Setting Up SASL Authentication in JGroups

 </login-module>
 </authentication>
</security-domain>

<sasl <!-- Additional configuration information here --> >
 <property name="login_module_name">
 <!-- Additional configuration information here -->
 </property>
</sasl>

<SASL mech="DIGEST-MD5"
 client_name="node_user"
 client_password="node_password"

CHAPTER 28. SECURITY FOR CLUSTER TRAFFIC

243

The above example uses the DIGEST-MD5 mechanism. Each node must declare the user and password
it will use when joining the cluster.

IMPORTANT

The SASL protocol must be placed before the GMS protocol in order for authentication
to take effect.

28.2.2. Simple Authorizing Callback Handler

For instances where a more complex Kerberos or LDAP approach is not needed the
SimpleAuthorizingCallbackHandler class may be used. To enable this set both the
server_callback_handler and the client_callback_handler to
org.jgroups.auth.sasl.SimpleAuthorizingCallbackHandler , as seen in the below example:

The SimpleAuthorizingCallbackHandler may be configured either programmatically, by passing the
constructor an instance of of java.util.Properties , or via standard Java system properties, set on the
command line using the -DpropertyName=propertyValue notation. The following properties are
available:

sasl.credentials.properties - the path to a property file which contains principal/credential
mappings represented as principal=password .

sasl.local.principal - the name of the principal that is used to identify the local node. It must
exist in the sasl.credentials.properties file.

sasl.roles.properties - (optional) the path to a property file which contains principal/roles
mappings represented as principal=role1,role2,role3 .

sasl.role - (optional) if present, authorizes joining nodes only if their principal is.

sasl.realm - (optional) the name of the realm to use for the SASL mechanisms that require it

28.2.3. Configure Node Authentication for Library Mode (DIGEST-MD5)

The behavior of a node differs depending on whether it is the coordinator node or any other node. The
coordinator acts as the SASL server, with the joining or merging nodes behaving as SASL clients. When
using the DIGEST-MD5 mechanism in Library mode, the server and client callback must be specified so
that the server and client are aware of how to obtain the credentials. Therefore, two CallbackHandlers
are required:

The server_callback_handler_class is used by the coordinator.

server_callback_handler_class="org.example.infinispan.security.JGroupsSaslServerCallbackHandler"

client_callback_handler_class="org.example.infinispan.security.JGroupsSaslClientCallbackHandler"
 sasl_props="com.sun.security.sasl.digest.realm=test_realm" />

<SASL mech="DIGEST-MD5"
 client_name="node_user"
 client_password="node_password"
 server_callback_handler_class="org.jgroups.auth.sasl.SimpleAuthorizingCallbackHandler"
 client_callback_handler_class="org.jgroups.auth.sasl.SimpleAuthorizingCallbackHandler"
 sasl_props="com.sun.security.sasl.digest.realm=test_realm" />

Red Hat Data Grid 7.2 Administration and Configuration Guide

244

The client_callback_handler_class is used by other nodes.

The following example demonstrates these CallbackHandlers.

Callback Handlers

JGroups is designed so that all nodes are able to act as coordinator or client depending on cluster
behavior, so if the current coordinator node goes down, the next node in the succession chain will
become the coordinator. Given this behavior, both server and client callback handlers must be identified
within SASL for Red Hat JBoss Data Grid implementations.

28.2.4. Configure Node Authentication for Library Mode (GSSAPI)

When performing node authentication in Library mode using the GSSAPI mechanism, the
login_module_name parameter must be specified instead of callback.

This login module is used to obtain a valid Kerberos ticket, which is used to authenticate a client to the
server. The server_name must also be specified, as the client principal is constructed as
jgroups/$server_name@REALM .

Specifying the login module and server on the coordinator node

On the coordinator node, the server_callback_handler_class must be specified for node
authorization. This will determine if the authenticated joining node has permission to join the cluster.

NOTE

The server principal is always constructed as jgroups/server_name, therefore the server
principal in Kerberos must also be jgroups/server_name. For example, if the server name
in Kerberos is jgroups/node1/mycache, then the server name must be node1/mycache.

28.3. JGROUPS ENCRYPTION

28.3.1. JGroups Encryption

JGroups includes the SYM_ENCRYPT and ASYM_ENCRYPT protocols to provide encryption for
cluster traffic.

IMPORTANT

<SASL mech="DIGEST-MD5"
 client_name="node_name"
 client_password="node_password"
 client_callback_handler_class="${CLIENT_CALLBACK_HANDLER_IN_CLASSPATH}"
 server_callback_handler_class="${SERVER_CALLBACK_HANDLER_IN_CLASSPATH}"
 sasl_props="com.sun.security.sasl.digest.realm=test_realm"
/>

<SASL mech="GSSAPI"
 server_name="node0/clustered"
 login_module_name="krb-node0"

server_callback_handler_class="org.infinispan.test.integration.security.utils.SaslPropCallbackHandler"
/>

CHAPTER 28. SECURITY FOR CLUSTER TRAFFIC

245

IMPORTANT

The ENCRYPT protocol has been deprecated and should not be used in production
environments. It is recommended to use either SYM_ENCRYPT or ASYM_ENCRYPT

By default, both of these protocols only encrypt the message body; they do not encrypt message
headers. To encrypt the entire message, including all headers, as well as destination and source
addresses, the property encrypt_entire_message must be true. When defining these protocols they
should be placed directly under NAKACK2.

Both protocols may be used to encrypt and decrypt communication in JGroups, and are used in the
following ways:

SYM_ENCRYPT: Configured with a secret key in a keystore using the JCEKS store type.

ASYM_ENCRYPT: Configured with algorithms and key sizes. In this scenario the secret key is
not retrieved from the keystore, but instead generated by the coordinator and distributed to
new members. Once a member joins the cluster they send a request for the secret key to the
coordinator; the coordinator responds with the secret key back to the new member encrypted
with the member’s public key.

Each message is identified as encrypted with a specific encryption header identifying the encrypt header
and an MD5 digest identifying the version of the key being used to encrypt and decrypt messages.

28.3.2. Configuring JGroups Encryption Protocols

JGroups encryption protocols are placed in the JGroups configuration file, and there are three methods
of including this file depending on how JBoss Data Grid is in use:

Standard Java properties can also be used in the configuration, and it is possible to pass the
path to JGroups configuration via the -D option during start up.

The default, pre-configured JGroups files are packaged in infinispan-embedded.jar ,
alternatively, you can create your own configuration file. See Configure JGroups (Library Mode)
for instructions on how to set up JBoss Data Grid to use custom JGroups configurations in
library mode.

In Remote Client-Server mode, the JGroups configuration is part of the main server
configuration file.

When defining both the SYM_ENCRYPT and ASYM_ENCRYPT protocols, place them directly above
NAKACK2 in the configuration file.

28.3.3. SYM_ENCRYPT: Using a Key Store

SYM_ENCRYPT uses store type JCEKS. To generate a keystore compatible with JCEKS, use the
following command line options to keytool:

$ keytool -genseckey -alias myKey -keypass changeit -storepass changeit -keyalg Blowfish -keysize
56 -keystore defaultStore.keystore -storetype JCEKS

SYM_ENCRYPT can then be configured by adding the following information to the JGroups file used by
the application.

<SYM_ENCRYPT sym_algorithm="AES"

Red Hat Data Grid 7.2 Administration and Configuration Guide

246

NOTE

The defaultStore.keystore must be found in the classpath.

28.3.4. ASYM_ENCRYPT: Configured with Algorithms and Key Sizes

In this encryption mode, the coordinator selects the secretKey and distributes it to all peers. There is no
keystore, and keys are distributed using a public/private key exchange. Instead, encryption occurs as
follows:

1. The secret key is generated and distributed by the coordinator.

2. When a view change occurs, a peer requests the secret key by sending a key request with its own
public key.

3. The coordinator encrypts the secret key with the public key, and sends it back to the peer.

4. The peer then decrypts and installs the key as its own secret key.

5. Any further communications are encrypted and decrypted using the secret key.

ASYM_ENCRYPT Example

In the provided example, ASYM_ENCRYPT has been placed immediately before NAKACK2, and
encrypt_entire_message has been enabled, indicating that the message headers will be encrypted
along with the message body. This means that the NAKACK2 and UNICAST3 protocols are also
encrypted. In addition, AUTH has been included as part of the configuration, so that only authenticated
nodes may request the secret key from the coordinator.

View changes that identify a new controller result in a new secret key being generated and distributed to
all peers. This is a substantial overhead in an application with high peer churn. A new secret key may
optionally be generated when a cluster member leaves by setting change_key_on_leave to true.

 encrypt_entire_message="true"
 keystore_name="defaultStore.keystore"
 store_password="changeit"
 alias="myKey"/>

 ...
 <VERIFY_SUSPECT/>
 <ASYM_ENCRYPT encrypt_entire_message="true"
 sym_keylength="128"
 sym_algorithm="AES/ECB/PKCS5Padding"
 asym_keylength="512"
 asym_algorithm="RSA"/>

 <pbcast.NAKACK2/>
 <UNICAST3/>
 <pbcast.STABLE/>
 <FRAG3/>
 <AUTH auth_class="org.jgroups.auth.MD5Token"
 auth_value="chris"
 token_hash="MD5"/>
 <pbcast.GMS join_timeout="2000" />

CHAPTER 28. SECURITY FOR CLUSTER TRAFFIC

247

When encrypting an entire message, the message must be marshalled into a byte buffer before being
encrypted, resulting in decreased performance.

28.3.5. JGroups Encryption Configuration Parameters

The following table provides configuration parameters for the ENCRYPT JGroups protocol, which both
SYM_ENCRYPT and ASYM_ENCRYPT extend:

Table 28.1. ENCRYPT Configuration Parameters

Name Description

asym_algorithm Cipher engine transformation for asymmetric
algorithm. Default is RSA.

asym_keylength Initial public/private key length. Default is 512.

asym_provider Cryptographic Service Provider. Default is Bouncy
Castle Provider.

encrypt_entire_message By default only the message body is encrypted.
Enabling encrypt_entire_message ensures that
all headers, destination and source addresses, and
the message body is encrypted.

sym_algorithm Cipher engine transformation for symmetric
algorithm. Default is AES.

sym_keylength Initial key length for matching symmetric algorithm.
Default is 128.

sym_provider Cryptographic Service Provider. Default is Bouncy
Castle Provider.

The following table provides a list of the SYM_ENCRYPT protocol parameters

Table 28.2. SYM_ENCRYPT Configuration Parameters

Name Description

alias Alias used for recovering the key. Change the default.

key_password Password for recovering the key. Change the default.

keystore_name File on classpath that contains keystore repository.

store_password Password used to check the integrity/unlock the
keystore. Change the default.

The following table provides a list of the ASYM_ENCRYPT protocol parameters

Red Hat Data Grid 7.2 Administration and Configuration Guide

248

Table 28.3. ASYM_ENCRYPT Configuration Parameters

Name Description

change_key_on_leave When a member leaves the view, change the secret
key, preventing old members from eavesdropping.

CHAPTER 28. SECURITY FOR CLUSTER TRAFFIC

249

PART XIV. COMMAND LINE TOOLS

Red Hat Data Grid 7.2 Administration and Configuration Guide

250

CHAPTER 29. INTRODUCTION

29.1. COMMAND LINE TOOLS

Red Hat JBoss Data Grid includes two command line tools for interacting with the caches in the data
grid:

The JBoss Data Grid Library CLI. For more information, see Red Hat JBoss Data Grid Library
Mode CLI.

The JBoss Data Grid Server CLI. For more information, see Red Hat JBoss Data Grid Server
CLI.

CHAPTER 29. INTRODUCTION

251

CHAPTER 30. RED HAT JBOSS DATA GRID CLIS

30.1. JBOSS DATA GRID CLIS

Red Hat JBoss Data Grid includes two Command Line Interfaces: a Library Mode CLI (see Red Hat
JBoss Data Grid Library Mode CLI for details) and a Server Mode CLI (see Red Hat JBoss Data Grid
Server CLI for details).

30.2. RED HAT JBOSS DATA GRID LIBRARY MODE CLI

30.2.1. Red Hat JBoss Data Grid Library Mode CLI

Red Hat JBoss Data Grid includes the Red Hat JBoss Data Grid Library Mode Command Line Interface
(CLI) that is used to inspect and modify data within caches and internal components (such as
transactions, cross-datacenter replication sites, and rolling upgrades). The JBoss Data Grid Library
Mode CLI can also be used for more advanced operations such as transactions.

30.2.2. Start the Library Mode CLI (Server)

Start the Red Hat JBoss Data Grid CLI’s server-side module with the standalone and domain files. For
Linux, use the standalone.sh or domain.sh script and for Windows, use the standalone.bat or domain.bat
file.

30.2.3. Start the Library Mode CLI (Client)

Start the Red Hat JBoss Data Grid CLI client using the cli files in the bin directory. For Linux, run
bin/cli.sh and for Windows, run bin\cli.bat .

When starting up the CLI client, specific command line switches can be used to customize the start up.

30.2.4. CLI Client Switches for the Command Line

The listed command line switches are appended to the command line when starting the Red Hat JBoss
Data Grid CLI command:

Table 30.1. CLI Client Command Line Switches

Short Option Long Option Description

-c --connect=${URL} Connects to a running Red Hat
JBoss Data Grid instance. For
example, for JMX over RMI use
jmx://[username[:password]]
@host:port[/container[/cach
e]] and for JMX over JBoss
Remoting use
remoting://[username[:pass
word]]@host:port[/container[
/cache]]

Red Hat Data Grid 7.2 Administration and Configuration Guide

252

-f --file=${FILE} Read the input from the specified
file rather than using interactive
mode. If the value is set to - then
the stdin is used as the input.

-h --help Displays the help information.

-v --version Displays the CLI version
information.

Short Option Long Option Description

30.2.5. Connect to the Application

Use the following command to connect to the application using the CLI:

[disconnected//]> connect 127.0.0.1:9990
[standalone@127.0.0.1:9990/>

NOTE

The port value 9990 depends on the value the JVM is started with. This port may be
changed by starting the JVM with the -
Dcom.sun.management.jmxremote.port=$PORT_NUMBER command line parameter.
When the remoting protocol (remoting://localhost:9990) is used, the Red Hat JBoss
Data Grid server administration port is used (the default is port 9990).

The command line prompt displays the active connection information, along with the current directory.

Use the container command to select a cache manager, and then select a cache with the cache
command. A cache must be selected before performing cache operations. The CLI supports tab
completion, therefore using the cache and pressing the tab button displays a list of active caches. The
following example assumes a cache manager, MyCacheManager, defined in the configuration.

[standalone@127.0.0.1:9990/> container MyCacheManager
[standalone@127.0.0.1:9990/MyCacheManager/> cache
default namedCache
[standalone@127.0.0.1:9990/MyCacheManager/]> cache default
[standalone@127.0.0.1:9990/MyCacheManager/default]>

Additionally, pressing tab displays a list of valid commands for the CLI.

30.3. RED HAT JBOSS DATA GRID SERVER CLI

30.3.1. Red Hat Data Grid Server Mode CLI

Red Hat JBoss Data Grid includes a new Remote Client-Server mode CLI. This CLI can only be used for
specific use cases, such as manipulating the server subsystem for the following:

configuration

CHAPTER 30. RED HAT JBOSS DATA GRID CLIS

253

management

obtaining metrics

30.3.2. Start the Server Mode CLI

Use the following commands to run the JBoss Data Grid Server CLI from the command line:

For Linux:

$ JDG_HOME/bin/cli.sh

For Windows:

C:\>JDG_HOME\bin\cli.bat

30.4. CLI COMMANDS

30.4.1. CLI Commands

Unless specified otherwise, all listed commands for the JBoss Data Grid CLIs can be used with both the
Library Mode and Server Mode CLIs. Specifically, the deny (see The deny Command), grant (see The
grant Command), and roles (see The roles command) commands are only available on the Server Mode
CLI.

30.4.2. The abort Command

The abort command aborts a running batch initiated using the start command. Batching must be
enabled for the specified cache. The following is a usage example:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> start
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> abort
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> get a
null

30.4.3. The begin Command

The begin command starts a transaction. This command requires transactions enabled for the cache it
targets. An example of this command’s usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> begin
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put b b
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> commit

30.4.4. The cache Command

The cache command specifies the default cache used for all subsequent operations. If invoked without
any parameters, it shows the currently selected cache. An example of its usage is as follows:

Red Hat Data Grid 7.2 Administration and Configuration Guide

254

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> cache default
[standalone@127.0.0.1:9990/MyCacheManager/default]> cache
default
[standalone@127.0.0.1:9990/MyCacheManager/default]>

30.4.5. The clearcache Command

The clearcache command clears all content from the cache. An example of its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> clearcache
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> get a
null

30.4.6. The commit Command

The commit command commits changes to an ongoing transaction. An example of its usage is as
follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> begin
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put b b
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> commit

30.4.7. The container Command

The container command selects the default cache container (cache manager). When invoked without
any parameters, it lists all available containers. An example of its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> container
MyCacheManager OtherCacheManager
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> container OtherCacheManager
[standalone@127.0.0.1:9990/OtherCacheManager/]>

30.4.8. The create Command

The create command creates a new cache based on the configuration of an existing cache definition. An
example of its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> create newCache like namedCache
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> cache newCache
[standalone@127.0.0.1:9990/MyCacheManager/newCache]>

30.4.9. The deny Command

When authorization is enabled and the role mapper has been configured to be the ClusterRoleMapper,
principal to role mappings are stored within the cluster registry (a replicated cache available to all
nodes). The deny command can be used to deny roles previously assigned to a principal:

[standalone@127.0.0.1:9990]> deny supervisor to user1

NOTE

CHAPTER 30. RED HAT JBOSS DATA GRID CLIS

255

NOTE

The deny command is only available to the JBoss Data Grid Server Mode CLI.

30.4.10. The disconnect Command

The disconnect command disconnects the currently active connection, which allows the CLI to connect
to another instance. An example of its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> disconnect
[disconnected//]

30.4.11. The encoding Command

The encoding command sets a default codec to use when reading and writing entries to and from a
cache. If invoked with no arguments, the currently selected codec is displayed. An example of its usage
is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> encoding
none
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> encoding --list
memcached
hotrod
none
rest
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> encoding hotrod

30.4.12. The end Command

The end command ends a running batch initiated using the start command. An example of its usage is
as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> start
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> end
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> get a
a

30.4.13. The evict Command

The evict command evicts an entry associated with a specific key from the cache. An example of it
usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> evict a

30.4.14. The get Command

The get command shows the value associated with a specified key. For primitive types and Strings, the
get command prints the default representation. For other objects, a JSON representation of the object
is printed. An example of its usage is as follows:

Red Hat Data Grid 7.2 Administration and Configuration Guide

256

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> get a
a

30.4.15. The grant Command

When authorization is enabled and the role mapper has been configured to be the ClusterRoleMapper,
the principal to role mappings are stored within the cluster registry (a replicated cache available to all
nodes). The grant command can be used to grant new roles to a principal as follows:

[standalone@127.0.0.1:9990]> grant supervisor to user1

NOTE

The grant command is only available to the JBoss Data Grid Server Mode CLI.

30.4.16. The info Command

The info command displays the configuration of a selected cache or container. An example of its usage
is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> info
GlobalConfiguration{asyncListenerExecutor=ExecutorFactoryConfiguration{factory=org.infinispan.execut
ors.DefaultExecutorFactory@98add58},
asyncTransportExecutor=ExecutorFactoryConfiguration{factory=org.infinispan.executors.DefaultExecuto
rFactory@7bc9c14c},
evictionScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.infinispan.executors.D
efaultScheduledExecutorFactory@7ab1a411},
replicationQueueScheduledExecutor=ScheduledExecutorFactoryConfiguration{factory=org.infinispan.ex
ecutors.DefaultScheduledExecutorFactory@248a9705},
globalJmxStatistics=GlobalJmxStatisticsConfiguration{allowDuplicateDomains=true, enabled=true,
jmxDomain='jboss.infinispan',
mBeanServerLookup=org.jboss.as.clustering.infinispan.MBeanServerProvider@6c0dc01,
cacheManagerName='local', properties={}}, transport=TransportConfiguration{clusterName='ISPN',
machineId='null', rackId='null', siteId='null', strictPeerToPeer=false, distributedSyncTimeout=240000,
transport=null, nodeName='null', properties={}},
serialization=SerializationConfiguration{advancedExternalizers=
{1100=org.infinispan.server.core.CacheValue$Externalizer@5fabc91d,
1101=org.infinispan.server.memcached.MemcachedValue$Externalizer@720bffd,
1104=org.infinispan.server.hotrod.ServerAddress$Externalizer@771c7eb2},
marshaller=org.infinispan.marshall.VersionAwareMarshaller@6fc21535, version=52,
classResolver=org.jboss.marshalling.ModularClassResolver@2efe83e5},
shutdown=ShutdownConfiguration{hookBehavior=DONT_REGISTER}, modules={},
site=SiteConfiguration{localSite='null'}}

30.4.17. The locate Command

The locate command displays the physical location of a specified entry in a distributed cluster. An
example of its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> locate a
[host/node1,host/node2]

CHAPTER 30. RED HAT JBOSS DATA GRID CLIS

257

30.4.18. The put Command

The put command inserts an entry into the cache. If a mapping exists for a key, the put command
overwrites the old value. The CLI allows control over the type of data used to store the key and value.
An example of its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put b 100
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put c 4139l
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put d true
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put e { "package.MyClass": {"i": 5,
"x": null, "b": true } }

Optionally, the put can specify a life span and maximum idle time value as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a expires 10s
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a expires 10m maxidle 1m

30.4.19. The replace Command

The replace command replaces an existing entry in the cache with a specified new value. An example of
its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> replace a b
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> get a
b
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> replace a b c
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> get a
c
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> replace a b d
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> get a
c

30.4.20. The roles command

When authorization is enabled and the role mapper has been configured to be the ClusterRoleMapper,
the principal to role mappings are stored within the cluster registry (a replicated cache available to all
nodes). The roles command can be used to list the roles associated to a specific user, or to all users if
one is not given:

[standalone@127.0.0.1:9990]> roles user1
[supervisor, reader]

NOTE

The roles command is only available to the JBoss Data Grid Server Mode CLI.

30.4.21. The rollback Command

The rollback command rolls back any changes made by an ongoing transaction. An example of its usage
is as follows:

Red Hat Data Grid 7.2 Administration and Configuration Guide

258

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> begin
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put b b
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> rollback

30.4.22. The site Command

The site command performs administration tasks related to cross-datacenter replication. This command
also retrieves information about the status of a site and toggles the status of a site. An example of its
usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> site --status NYC
online
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> site --offline NYC
ok
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> site --status NYC
offline
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> site --online NYC

30.4.23. The start Command

The start command initiates a batch of operations. An example of its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> start
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put a a
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> put b b
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> end

30.4.24. The stats Command

The stats command displays statistics for the cache. An example of its usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> stats
Statistics: {
 averageWriteTime: 143
 evictions: 10
 misses: 5
 hitRatio: 1.0
 readWriteRatio: 10.0
 removeMisses: 0
 timeSinceReset: 2123
 statisticsEnabled: true
 stores: 100
 elapsedTime: 93
 averageReadTime: 14
 removeHits: 0
 numberOfEntries: 100
 hits: 1000
}
LockManager: {
 concurrencyLevel: 1000

CHAPTER 30. RED HAT JBOSS DATA GRID CLIS

259

 numberOfLocksAvailable: 0
 numberOfLocksHeld: 0
}

30.4.25. The upgrade Command

The upgrade command implements the rolling upgrade procedure. For details about rolling upgrades,
refer to Rolling Upgrades.

An example of the upgrade command’s use is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> upgrade --synchronize=hotrod --all
[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> upgrade --disconnectsource=hotrod
--all

30.4.26. The version Command

The version command displays version information for the CLI client and server. An example of its
usage is as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache]> version
Client Version 5.2.1.Final
Server Version 5.2.1.Final

Red Hat Data Grid 7.2 Administration and Configuration Guide

260

PART XV. OTHER RED HAT JBOSS DATA GRID FUNCTIONS

PART XV. OTHER RED HAT JBOSS DATA GRID FUNCTIONS

261

CHAPTER 31. SET UP THE L1 CACHE

31.1. ABOUT THE L1 CACHE

The Level 1 (or L1) cache stores remote cache entries after they are initially accessed, preventing
unnecessary remote fetch operations for each subsequent use of the same entries. The L1 cache is only
available when Red Hat JBoss Data Grid’s cache mode is set to distribution. In other cache modes any
configuration related to the L1 cache is ignored.

When caches are configured with distributed mode, the entries are evenly distributed between all
clustered caches. Each entry is copied to a desired number of owners, which can be less than the total
number of caches. As a result, the system’s scalability is improved but also means that some entries are
not available on all nodes and must be fetched from their owner node. In this situation, configure the
Cache component to use the L1 Cache to temporarily store entries that it does not own to prevent
repeated fetching for subsequent uses.

Each time a key is updated an invalidation message is generated. This message is multicast to each node
that contains data that corresponds to current L1 cache entries. The invalidation message ensures that
each of these nodes marks the relevant entry as invalidated. Also, when the location of an entry changes
in the cluster, the corresponding L1 cache entry is invalidated to prevent outdated cache entries.

31.2. L1 CACHE CONFIGURATION

31.2.1. L1 Cache Configuration (Library Mode)

The following sample configuration shows the L1 cache default values in Red Hat JBoss Data Grid’s
Library Mode.

L1 Cache Configuration in Library Mode

The following attributes control the L1 cache behavior:

The l1-lifespan attribute indicates the maximum lifespan in milliseconds of entries placed in the
L1 cache, and is not allowed in non-distributed caches. By default L1 this value is 0, indicating
that L1 caching is disabled, and is only enabled if a positive value is defined.

The l1-cleanup-interval parameter controls how often a cleanup task to prune L1 tracking data
is run, in milliseconds, and by default is defined to 10 minutes.

31.2.2. L1 Cache Configuration (Remote Client-Server Mode)

The following sample configuration shows the L1 cache default value of 0, indicating it is disabled, in Red
Hat JBoss Data Grid’s Remote Client-Server mode:

L1 Cache Configuration for Remote Client-Server Mode

<distributed-cache name="distributed_cache"
 l1-lifespan="0"
 l1-cleanup-interval="60000"/>

<distributed-cache l1-lifespan="0">
 <!-- Additional configuration information here -->
</distributed-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

262

The l1-lifespan element is added to a distributed-cache element to enable L1 caching and to set the
life span of the L1 cache entries for the cache. This element is only valid for distributed caches.

If l1-lifespan is set to 0 or a negative number (-1), L1 caching is disabled. L1 caching is enabled when the
l1-lifespan value is greater than 0.

IMPORTANT

When the cache is accessed remotely via the Hot Rod protocol, the client accesses the
owner node directly. Therefore, using L1 Cache via the Hot Rod protocol is not
recommended; instead, refer to the Near Caching section in the JBoss Data Grid
Developer Guide . Other remote clients (Memcached, REST) cannot target the owner,
therefore, using L1 Cache may increase the performance (at the cost of higher memory
consumption).

NOTE

In Remote Client-Server mode, the L1 cache was enabled by default when distributed
cache was used, even if the l1-lifespan attribute is not set. The default lifespan value was
10 minutes. Since JBoss Data Grid 6.3, the default lifespan is 0 which disables the L1
cache. Set a non-zero value for the l1-lifespan parameter to enable the L1 cache.

CHAPTER 31. SET UP THE L1 CACHE

263

CHAPTER 32. SET UP TRANSACTIONS

32.1. ABOUT TRANSACTIONS

32.1.1. About Transactions

A transaction consists of a collection of interdependent or related operations or tasks. All operations
within a single transaction must succeed for the overall success of the transaction. If any operations
within a transaction fail, the transaction as a whole fails and rolls back any changes. Transactions are
particularly useful when dealing with a series of changes as part of a larger operation.

In Red Hat JBoss Data Grid, transactions are only available in Library mode.

32.1.2. About the Transaction Manager

In Red Hat JBoss Data Grid, the Transaction Manager coordinates transactions across a single or
multiple resources. The responsibilities of a Transaction Manager include:

initiating and concluding transactions

managing information about each transaction

coordinating transactions as they operate over multiple resources

recovering from a failed transaction by rolling back changes

32.1.3. XA Resources and Synchronizations

XA Resources are fully fledged transaction participants. In the prepare phase (see About Two Phase
Commit (2PC) for details), the XA Resource returns a vote with either the value OK or ABORT. If the
Transaction Manager receives OK votes from all XA Resources, the transaction is committed, otherwise
it is rolled back.

Synchronizations are a type of listener that receive notifications about events leading to the transaction
life cycle. Synchronizations receive an event before and after the operation completes.

Unless recovery is required, it is not necessary to register as a full XA resource. An advantage of
synchronizations is that they allow the Transaction Manager to optimize 2PC (Two Phase Commit) with
a 1PC (One Phase Commit) where only one other resource is enlisted with that transaction (last
resource commit optimization). This makes registering a synchronization more efficient.

However, if the operation fails in the prepare phase within Red Hat JBoss Data Grid, the transaction is
not rolled back and if there are more participants in the transaction, they can ignore this failure and
commit. Additionally, errors encountered in the commit phase are not propagated to the application
code that commits the transaction.

By default JBoss Data Grid registers to the transaction as a synchronization.

32.1.4. Optimistic and Pessimistic Transactions

Pessimistic transactions acquire the locks when the first write operation on the key executes. After the
key is locked, no other transaction can modify the key until this transaction is committed or rolled back.
It is up to the application code to acquire the locks in correct order to prevent deadlocks.

Red Hat Data Grid 7.2 Administration and Configuration Guide

264

With optimistic transactions locks are acquired at transaction prepare time and are held until the
transaction commits (or rolls back). Also, Red Hat JBoss Data Grid sorts keys for all entries modified
within a transaction automatically, preventing any deadlocks occurring due to the incorrect order of
keys being locked. This results in:

less messages being sent during the transaction execution

locks held for shorter periods

improved throughput

NOTE

Read operations never acquire any locks. Acquiring the lock for a read operation on
demand is possible only with pessimistic transactions, using the FORCE_WRITE_LOCK
flag with the operation.

32.1.5. Write Skew Checks

A common use case for entries is that they are read and subsequently written in a transaction. However,
a third transaction can modify the entry between these two operations. In order to detect such a
situation and roll back a transaction Red Hat JBoss Data Grid offers entry versioning and write skew
checks. If the modified version is not the same as when it was last read during the transaction, the write
skew checks throws an exception and the transaction is rolled back.

Enabling write skew check requires the REPEATABLE_READ isolation level. Also, in clustered mode
(distributed or replicated modes), set up entry versioning. For local mode, entry versioning is not
required.

IMPORTANT

With optimistic transactions, write skew checks are required for (atomic) conditional
operations.

32.1.6. Transactions Spanning Multiple Cache Instances

Each cache operates as a separate, standalone Java Transaction API (JTA) resource. However,
components can be internally shared by Red Hat JBoss Data Grid for optimization, but this sharing does
not affect how caches interact with a Java Transaction API (JTA) Manager.

32.2. CONFIGURE TRANSACTIONS

32.2.1. Configure Transactions (Library Mode)

In Red Hat JBoss Data Grid, transactions in Library mode can be configured with synchronization and
transaction recovery. Transactions in their entirety (which includes synchronization and transaction
recovery) are not available in Remote Client-Server mode.

In order to execute a cache operation, the cache requires a reference to the environment’s Transaction
Manager. Configure the cache with the class name that belongs to an implementation of the
TransactionManagerLookup interface. When initialized, the cache creates an instance of the specified
class and invokes its getTransactionManager() method to locate and return a reference to the
Transaction Manager.

CHAPTER 32. SET UP TRANSACTIONS

265

In Library mode, transactions are configured as follows:

Configure Transactions in Library Mode (XML Configuration)

1. Enable transactions by defining a mode. By default the mode is NONE, therefore disabling
transactions. Valid transaction modes are BATCH, NON_XA, NON_DURABLE_XA, FULL_XA.

2. Define a stop-timeout, so that if there are any ongoing transactions when a cache is stopped
the instance will wait for ongoing transactions to finish. Defaults to 30000 milliseconds.

3. Enable auto-commit, so that single operation transactions do not need to be manually initiated.
Defaults to true.

4. Define the commit protocol in use. Valid commit protocols are DEFAULT and TOTAL_ORDER.

5. Define the name of the recovery-cache, where recovery related information is kept. Defaults to
recoveryInfoCacheName.

6. Enable versioning of entries by defining the scheme attribute as SIMPLE. Defaults to NONE,
indicating that versioning is disabled.

32.2.2. Configure Transactions (Remote Client-Server Mode)

Red Hat JBoss Data Grid does not offer transactions in Remote Client-Server mode. The default
configuration is non-transactional, which is set as follows:

Default Transaction Configuration in Remote Client-Server Mode

IMPORTANT

JBoss Data Grid in Remote Client-Server mode does not support transactions directly.
However, if you use conditional operators such as replaceWithVersion, putIfAbsent, or
removeWithVersion you should enable transactions.

To enable transactions for the use of conditional operators use the following configuration:

Transaction Configuration for Conditional Operators in Remote Client-Server Mode

<local-cache name="default" <!-- Additional configuration information here -->>
 <transaction mode="BATCH"
 stop-timeout="60000"
 auto-commit="true"
 protocol="DEFAULT"
 recovery-cache="recoveryCache">
 <locking <!-- Additional configuration information here --> >
 <versioning scheme="SIMPLE"/>
 <!-- Additional configuration information here -->
</local-cache>

<cache>
 <!-- Additional configuration elements here -->
 <transaction mode="NONE" />
 <!-- Additional configuration elements here -->
</cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

266

32.3. TRANSACTION RECOVERY

32.3.1. Transaction Recovery

The Transaction Manager coordinates the recovery process and works with Red Hat JBoss Data Grid to
determine which transactions require manual intervention to complete operations. This process is known
as transaction recovery.

JBoss Data Grid uses JMX for operations that explicitly force transactions to commit or roll back. These
methods receive byte arrays that describe the XID instead of the number associated with the relevant
transactions.

The System Administrator can use such JMX operations to facilitate automatic job completion for
transactions that require manual intervention. This process uses the Transaction Manager’s transaction
recovery process and has access to the Transaction Manager’s XID objects.

32.3.2. Transaction Recovery Process

The following process outlines the transaction recovery process in Red Hat JBoss Data Grid.

The Transaction Recovery Process

1. The Transaction Manager creates a list of transactions that require intervention.

2. The system administrator, connected to JBoss Data Grid using JMX, is presented with the list
of transactions (including transaction IDs) using email or logs. The status of each transaction is
either COMMITTED or PREPARED. If some transactions are in both COMMITTED and
PREPARED states, it indicates that the transaction was committed on some nodes while in the
preparation state on others.

3. The System Administrator visually maps the XID received from the Transaction Manager to a
JBoss Data Grid internal ID. This step is necessary because the XID (a byte array) cannot be
conveniently passed to the JMX tool and then reassembled by JBoss Data Grid without this
mapping.

4. The system administrator forces the commit or rollback process for a transaction based on the
mapped internal ID.

32.3.3. Transaction Recovery Example

The following example describes how transactions are used in a situation where money is transferred
from an account stored in a database to an account stored in Red Hat JBoss Data Grid.

Money Transfer from an Account Stored in a Database to an Account in JBoss Data Grid

1. The TransactionManager.commit() method is invoked to run the two phase commit protocol
between the source (the database) and the destination (JBoss Data Grid) resources.

2. The TransactionManager tells the database and JBoss Data Grid to initiate the prepare phase

<cache>
 <!-- Additional configuration elements here -->
 <transaction mode="NON_XA" />
 <!-- Additional configuration elements here -->
</cache>

CHAPTER 32. SET UP TRANSACTIONS

267

2. The TransactionManager tells the database and JBoss Data Grid to initiate the prepare phase
(the first phase of a Two Phase Commit).

During the commit phase, the database applies the changes but JBoss Data Grid fails before receiving
the Transaction Manager’s commit request. As a result, the system is in an inconsistent state due to an
incomplete transaction. Specifically, the amount to be transferred has been subtracted from the
database but is not yet visible in JBoss Data Grid because the prepared changes could not be applied.

Transaction recovery is used here to reconcile the inconsistency between the database and JBoss Data
Grid entries.

NOTE

To use JMX to manage transaction recoveries, JMX support must be explicitly enabled.

32.4. DEADLOCK DETECTION

32.4.1. Deadlock Detection

A deadlock occurs when multiple processes or tasks wait for the other to release a mutually required
resource. Deadlocks can significantly reduce the throughput of a system, particularly when multiple
transactions operate against one key set.

Red Hat JBoss Data Grid provides deadlock detection to identify such deadlocks. Deadlock detection is
enabled by default.

32.4.2. Enable Deadlock Detection

Deadlock detection in Red Hat JBoss Data Grid is enabled by default, and may be configured by
adjusting the deadlock-detection-spin attribute of the cache configuration element, as seen below:

<local-cache [...] deadlock-detection-spin="1000"/>

The deadlock-detection-spin attribute defines how often lock acquisition is attempted within the
maximum time allowed to acquire a particular lock (in milliseconds). This value defaults to 100
milliseconds, and negative values disable deadlock detection.

Deadlock detection can only be applied to individual caches. Deadlocks that are applied on more than
one cache cannot be detected by JBoss Data Grid.

Red Hat Data Grid 7.2 Administration and Configuration Guide

268

CHAPTER 33. CONFIGURE JGROUPS

33.1. ABOUT JGROUPS

JGroups is the underlying group communication library used to connect Red Hat JBoss Data Grid
instances. For a full list of JGroups protocols supported in JBoss Data Grid, see Supported JGroups
Protocols.

33.2. CONFIGURE RED HAT JBOSS DATA GRID INTERFACE BINDING
(REMOTE CLIENT-SERVER MODE)

33.2.1. Interfaces

Red Hat JBoss Data Grid allows users to specify an interface type rather than a specific (unknown) IP
address.

NOTE

If you use JBoss Data Grid as a containerized image with OpenShift, you must set
environment variables to change the XML configuration during pod creation. See the
Data Grid for OpenShift Guide .

link-local: Uses a 169.x.x.x or 254.x.x.x address. This suits the traffic within one box.

<interfaces>
 <interface name="link-local">
 <link-local-address/>
 </interface>
 <!-- Additional configuration elements here -->
</interfaces>

site-local: Uses a private IP address, for example 192.168.[replaceable]x.[replaceable]x````.
This prevents extra bandwidth charged from GoGrid, and similar providers.

<interfaces>
 <interface name="site-local">
 <site-local-address/>
 </interface>
 <!-- Additional configuration elements here -->
</interfaces>

global: Picks a public IP address. This should be avoided for replication traffic.

<interfaces>
 <interface name="global">
 <any-address/>
 </interface>
 <!-- Additional configuration elements here -->
</interfaces>

non-loopback: Uses the first address found on an active interface that is not a 127.x.x.x

CHAPTER 33. CONFIGURE JGROUPS

269

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/data_grid_for_openshift/

non-loopback: Uses the first address found on an active interface that is not a 127.x.x.x
address.

<interfaces>
 <interface name="non-loopback">
 <not>
 <loopback />
 </not>
 </interface>
</interfaces>

33.2.2. Binding Sockets

33.2.2.1. Binding Sockets

Socket bindings provide a method of associating a name with networking details, such as an interface, a
port, a multicast-address, or other details. Sockets may be bound to the interface either individually or
using a socket binding group.

33.2.2.2. Binding a Single Socket Example

The following is an example depicting the use of JGroups interface socket binding to bind an individual
socket using the socket-binding element.

Socket Binding

33.2.2.3. Binding a Group of Sockets Example

The following is an example depicting the use of Groups interface socket bindings to bind a group, using
the socket-binding-group element:

Bind a Group

The two sample socket bindings in the example are bound to the same default-interface (global),
therefore the interface attribute does not need to be specified.

33.2.3. Configure JGroups Socket Binding

Each JGroups stack, configured in the JGroups subsystem, uses a specific socket binding. Set up the
socket binding as follows:

JGroups UDP Socket Binding Configuration

<socket-binding name="jgroups-udp" <!-- Additional configuration elements here --> interface="site-
local"/>

<socket-binding-group name="ha-sockets" default-interface="global">
 <!-- Additional configuration elements here -->
 <socket-binding name="jgroups-tcp" port="7600"/>
 <socket-binding name="jgroups-tcp-fd" port="57600"/>
 <!-- Additional configuration elements here -->
</socket-binding-group>

Red Hat Data Grid 7.2 Administration and Configuration Guide

270

The following example utilizes UDP automatically form the cluster. In this example the jgroups-udp
socket binding is defined for the transport:

JGroups TCP Socket Binding Configuration

The following example uses TCP to establish direct communication between two clusters nodes. In the
example below node1 is located at 192.168.1.2:7600, and node2 is located at 192.168.1.3:7600. The port
in use will be defined by the jgroups-tcp property in the socket-binding section.

The decision of UDP vs TCP must be made in each environment. By default JGroups uses UDP, as it
allows for dynamic detection of clustered members and scales better in larger clusters due to a smaller

<subsystem xmlns="urn:jboss:domain:jgroups:3.0" default-stack="udp">
 <stack name="udp">
 <transport type="UDP" socket-binding="jgroups-udp">
 <!-- Additional configuration elements here -->
 </transport>
 <protocol type="PING"/>
 <protocol type="MERGE3"/>
 <protocol type="FD_SOCK" socket-binding="jgroups-udp-fd"/>
 <protocol type="FD_ALL"/>
 <protocol type="VERIFY_SUSPECT"/>
 <protocol type="pbcast.NAKACK2"/>
 <protocol type="UNICAST3"/>
 <protocol type="pbcast.STABLE"/>
 <protocol type="pbcast.GMS"/>
 <protocol type="UFC"/>
 <protocol type="MFC"/>
 <protocol type="FRAG3"/>
 </stack>
</subsystem>

<subsystem xmlns="urn:infinispan:server:jgroups:8.0" default-stack="tcp">
 <stack name="tcp">
 <transport type="TCP" socket-binding="jgroups-tcp"/>
 <protocol type="TCPPING">
 <property name="initial_hosts">192.168.1.2[7600],192.168.1.3[7600]</property>
 <property name="num_initial_members">2</property>
 <property name="port_range">0</property>
 <property name="timeout">2000</property>
 </protocol>
 <protocol type="MERGE3"/>
 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>
 <protocol type="FD_ALL"/>
 <protocol type="VERIFY_SUSPECT"/>
 <protocol type="pbcast.NAKACK2">
 <property name="use_mcast_xmit">false</property>
 </protocol>
 <protocol type="UNICAST3"/>
 <protocol type="pbcast.STABLE"/>
 <protocol type="pbcast.GMS"/>
 <protocol type="MFC"/>
 <protocol type="FRAG3"/>
 </stack>
</subsystem>

CHAPTER 33. CONFIGURE JGROUPS

271

network footprint. In addition, when using UDP only one packet per cluster is required, as multicast
packets are received by all subscribers to the multicast address; however, in environments where
multicast traffic is prohibited, or if UDP traffic can not reach the remote cluster nodes, such as when
cluster members are on separate VLANs, TCP traffic can be used to create a cluster.

IMPORTANT

When using UDP as the JGroups transport, the socket binding has to specify the regular
(unicast) port, multicast address, and multicast port.

33.3. CONFIGURE JGROUPS (LIBRARY MODE)

33.3.1. Configure JGroups for Clustered Modes

Red Hat JBoss Data Grid must have an appropriate JGroups configuration in order to operate in
clustered mode.

JGroups XML Configuration

JBoss Data Grid will first search for jgroups.xml in the classpath; if no instances are found in the
classpath it will then search for an absolute path name.

33.3.2. JGroups Transport Protocols

33.3.2.1. JGroups Transport Protocols

A transport protocol is the protocol at the bottom of a protocol stack. Transport Protocols are
responsible for sending and receiving messages from the network.

Red Hat JBoss Data Grid ships with both UDP and TCP transport protocols.

33.3.2.2. The UDP Transport Protocol

UDP is a transport protocol that uses:

IP multicasting to send messages to all members of a cluster.

UDP datagrams for unicast messages, which are sent to a single member.

When the UDP transport is started, it opens a unicast socket and a multicast socket. The unicast socket
is used to send and receive unicast messages, the multicast socket sends and receives multicast sockets.
The physical address of the channel will be the same as the address and port number of the unicast
socket.

UDP is the default transport protocol used in JBoss Data Grid as it allows for dynamic discovery of

<infinispan xmlns="urn:infinispan:config:8.5">
 <jgroups>
 <stack-file name="jgroupsStack" path="/path/to/jgroups/xml/jgroups.xml}"/>
 </jgroups>
 <cache-container name="default" default-cache="default">
 <transport stack="jgroupsStack" lock-timeout="600000" cluster="default" />
 </cache-container>
</infinispan>

Red Hat Data Grid 7.2 Administration and Configuration Guide

272

UDP is the default transport protocol used in JBoss Data Grid as it allows for dynamic discovery of
additional cluster nodes, and scales well with cluster sizes.

33.3.2.3. The TCP Transport Protocol

TCP/IP is a replacement transport for UDP in situations where IP multicast cannot be used, such as
operations over a WAN where routers may discard IP multicast packets.

TCP is a transport protocol used to send unicast and multicast messages.

When sending multicast messages, TCP sends multiple unicast messages.

As IP multicasting cannot be used to discover initial members, another mechanism must be used to find
initial membership.

33.3.2.4. Using the TCPPing Protocol

Some networks only allow TCP to be used. The pre-configured default-configs/default-jgroups-tcp.xml
includes the MPING protocol, which uses UDP multicast for discovery. When UDP multicast is not
available, the MPING protocol, has to be replaced by a different mechanism. The recommended
alternative is the TCPPING protocol. The TCPPING configuration contains a static list of IP addresses
which are contacted for node discovery.

Configure the JGroups Subsystem to Use TCPPING

33.3.3. Pre-Configured JGroups Files

33.3.3.1. Pre-Configured JGroups Files

Red Hat JBoss Data Grid ships with pre-configured JGroups files in infinispan-embedded.jar, available
on the classpath by default.

These JGroups configuration files contain default settings that you should adjust and tune to achieve
optimal network performance.

To use a JGroups configuration file, replace jgroups.xml with one of the following:

default-configs/default-jgroups-udp.xml

default-configs/default-jgroups-tcp.xml

default-configs/default-jgroups-ec2.xml

default-configs/default-jgroups-google.xml

default-configs/default-jgroups-kubernetes.xml

33.3.3.2. default-jgroups-udp.xml

uses UDP for transport and UDP multicast for discovery, allowing for dynamic discovery of
nodes.

<TCP bind_port="7800" />
<TCPPING initial_hosts="${jgroups.tcpping.initial_hosts:HostA[7800],HostB[7801]}"
 port_range="1" />

CHAPTER 33. CONFIGURE JGROUPS

273

is suitable for larger clusters because it requires less resources than TCP.

is recommended for clusters that send the same information to all nodes, such as when using
Invalidation or Replication modes.

Add the following system properties to the JVM at start up to configure these settings:

Table 33.1. default-jgroups-udp.xml System Properties

System Property Description Default Required?

jgroups.udp.mcast_addr IP address to use for
multicast (both for
communications and
discovery). Must be a
valid Class D IP address,
suitable for IP multicast

228.6.7.8 No

jgroups.udp.mcast_port Port to use for multicast
socket

46655 No

jgroups.ip_ttl Specifies the time-to-
live (TTL) for IP
multicast packets. The
value here refers to the
number of network hops
a packet is allowed to
make before it is
dropped

2 No

jgroups.thread_pool.min
_threads

Minimum thread pool
size for the thread pool

0 No

jgroups.thread_pool.max
_threads

Maximum thread pool
size for the thread pool

200 No

jgroups.join_timeout The maximum number
of milliseconds to wait
for a new node JOIN
request to succeed

5000 No

33.3.3.3. default-jgroups-tcp.xml

uses TCP for transport and UDP multicast for discovery.

is typically used where multicast UDP is not an option.

is recommended for point-to-point (unicast) communication, such as when using Distribution
mode because it has a more refined method of flow control.

Add the following system properties to the JVM at start up to configure these settings:

Table 33.2. default-jgroups-tcp.xml System Properties

Red Hat Data Grid 7.2 Administration and Configuration Guide

274

System Property Description Default Required?

jgroups.tcp.address IP address to use for the
TCP transport.

127.0.0.1 Not required, but should
be changed for
clustering servers
located on different
systems

jgroups.tcp.port Port to use for TCP
socket

7800 No

jgroups.thread_pool.min
_threads

Minimum thread pool
size for the thread pool

0 No

jgroups.thread_pool.max
_threads

Maximum thread pool
size for the thread pool

200 No

jgroups.mping.mcast_ad
dr

IP address to use for
multicast (for
discovery). Must be a
valid Class D IP address,
suitable for IP multicast.

228.2.4.6 No

jgroups.mping.mcast_po
rt

Port to use for multicast
socket

43366 No

jgroups.udp.ip_ttl Specifies the time-to-
live (TTL) for IP
multicast packets. The
value here refers to the
number of network hops
a packet is allowed to
make before it is
dropped

2 No

jgroups.join_timeout The maximum number
of milliseconds to wait
for a new node JOIN
request to succeed

5000 No

33.3.3.4. default-jgroups-ec2.xml

uses TCP for transport and S3_PING for discovery.

is suitable on EC2 nodes where UDP multicast is not available.

Add the following system properties to the JVM at start up to configure these settings:

Table 33.3. default-jgroups-ec2.xml System Properties

CHAPTER 33. CONFIGURE JGROUPS

275

System Property Description Default Required?

jgroups.tcp.address IP address to use for the
TCP transport.

127.0.0.1 Not required, but should
be changed for
clustering servers
located on different EC2
nodes

jgroups.tcp.port Port to use for TCP
socket

7800 No

jgroups.thread_pool.min
_threads

Minimum thread pool
size for the thread pool

0 No

jgroups.thread_pool.max
_threads

Maximum thread pool
size for the thread pool

200 No

jgroups.s3.access_key The Amazon S3 access
key used to access an S3
bucket

 Yes

jgroups.s3.secret_acces
s_key

The Amazon S3 secret
key used to access an S3
bucket

 Yes

jgroups.s3.bucket Name of the Amazon S3
bucket to use. Must be
unique and must already
exist

 Yes

jgroups.s3.pre_signed_d
elete_url

The pre-signed URL to
be used for the DELETE
operation.

 Yes

jgroups.s3.pre_signed_p
ut_url

The pre-signed URL to
be used for the PUT
operation.

 Yes

jgroups.s3.prefix If set, S3_PING searches
for a bucket with a name
that starts with the
prefix value.

 No

jgroups.join_timeout The maximum number
of milliseconds to wait
for a new node JOIN
request to succeed

5000 No

33.3.3.5. default-jgroups-google.xml

uses TCP for transport and GOOGLE_PING for discovery.

Red Hat Data Grid 7.2 Administration and Configuration Guide

276

is suitable on Google Compute Engine nodes where UDP multicast is not available.

Add the following system properties to the JVM at start up to configure these settings:

Table 33.4. default-jgroups-google.xml System Properties

System Property Description Default Required?

jgroups.tcp.address IP address to use for the
TCP transport.

127.0.0.1 Not required, but should
be changed for
clustering systems
located on different
nodes

jgroups.tcp.port Port to use for TCP
socket

7800 No

jgroups.thread_pool.min
_threads

Minimum thread pool
size for the thread pool

0 No

jgroups.thread_pool.max
_threads

Maximum thread pool
size for the thread pool

200 No

jgroups.google.access_k
ey

The Google Compute
Engine User’s access
key used to access the
bucket

 Yes

jgroups.google.secret_a
ccess_key

The Google Compute
Engine User’s secret
access key used to
access the bucket

 Yes

jgroups.google.bucket Name of the Google
Compute Engine bucket
to use. Must be unique
and already exist

 Yes

jgroups.join_timeout The maximum number
of milliseconds to wait
for a new node JOIN
request to succeed

5000 No

33.3.3.6. default-jgroups-kubernetes.xml

uses TCP for transport and KUBE_PING for discovery.

is suitable for Kubernetes and OpenShift nodes where UDP multicast is not available.

Add the following system properties to the JVM at start up to configure these settings:

Table 33.5. default-jgroups-kubernetes.xml System Properties

CHAPTER 33. CONFIGURE JGROUPS

277

System Property Description Default Required?

jgroups.tcp.address IP address to use for the
TCP transport.

eth0 Not required, but should
be changed for
clustering systems
located on different
nodes

jgroups.tcp.port Port to use for TCP
socket

7800 No

33.4. TEST MULTICAST USING JGROUPS

33.4.1. Test Multicast Using JGroups

Learn how to ensure that the system has correctly configured multicasting within the cluster.

33.4.2. Testing With Different Red Hat JBoss Data Grid Versions

The following table details which Red Hat JBoss Data Grid versions are compatible with this multicast
test:

NOTE

${infinispan.version} corresponds to the version of Infinispan included in the specific
release of JBoss Data Grid. This will appear in a x.y.z format, with the major version, minor
version, and revision being included.

Table 33.6. Testing with Different JBoss Data Grid Versions

Version Test Case Details

JBoss Data Grid 7.2.0 Available The location of the test classes
depends on the distribution:

For library mode, they
are inside the infinispan-
embedded-
${infinispan.version}.Final-
redhat-# JAR file

For Remote Client-
Server mode, they are in
the JGroups JAR file in
the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main/
directory."

Red Hat Data Grid 7.2 Administration and Configuration Guide

278

JBoss Data Grid 7.1.0 Available The location of the test classes
depends on the distribution:

For library mode, they
are inside the infinispan-
embedded-
${infinispan.version}.Final-
redhat-# JAR file

For Remote Client-
Server mode, they are in
the JGroups JAR file in
the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main/
directory."

JBoss Data Grid 7.0.0 Available The location of the test classes
depends on the distribution:

For library mode, they
are inside the infinispan-
embedded-
${infinispan.version}.Final-
redhat-# JAR file

For Remote Client-
Server mode, they are in
the JGroups JAR file in
the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main/
directory."

JBoss Data Grid 6.6.0 Available The location of the test classes
depends on the distribution:

For library mode, they
are inside the infinispan-
embedded-
${infinispan.version}.Final-
redhat-# JAR file

For Remote Client-
Server mode, they are in
the JGroups JAR file in
the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main/
directory."

Version Test Case Details

CHAPTER 33. CONFIGURE JGROUPS

279

JBoss Data Grid 6.5.1 Available The location of the test classes
depends on the distribution:

For library mode, they
are inside the infinispan-
embedded-
${infinispan.version}.Final-
redhat-# JAR file

For Remote Client-
Server mode, they are in
the JGroups JAR file in
the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main/
directory."

JBoss Data Grid 6.5.0 Available The location of the test classes
depends on the distribution:

For library mode, they
are inside the infinispan-
embedded-
${infinispan.version}.Final-
redhat-# JAR file

For Remote Client-
Server mode, they are in
the JGroups JAR file in
the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main/
directory."

JBoss Data Grid 6.4.0 Available The location of the test classes
depends on the distribution:

For library mode, they
are inside the infinispan-
embedded-
${infinispan.version}.Final-
redhat-# JAR file

For Remote Client-
Server mode, they are in
the JGroups JAR file in
the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main/
directory."

Version Test Case Details

Red Hat Data Grid 7.2 Administration and Configuration Guide

280

JBoss Data Grid 6.3.0 Available The location of the test classes
depends on the distribution:

In Library mode, they are
in the JGroups JAR file
in the lib directory.

In Remote Client-Server
mode, they are in the
JGroups JAR file in the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main .

JBoss Data Grid 6.2.1 Available The location of the test classes
depends on the distribution:

In Library mode, they are
in the JGroups JAR file
in the lib directory.

In Remote Client-Server
mode, they are in the
JGroups JAR file in the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main

JBoss Data Grid 6.2.0 Available The location of the test classes
depends on the distribution:

In Library mode, they are
in the JGroups JAR file
in the lib directory.

In Remote Client-Server
mode, they are in the
JGroups JAR file in the
${JDG_HOME}/modules
/system/layers/base/org
/jgroups/main .

Version Test Case Details

CHAPTER 33. CONFIGURE JGROUPS

281

JBoss Data Grid 6.1.0 Available The location of the test classes
depends on the distribution:

In Library mode, they are
in the JGroups JAR file
in the lib directory.

In Remote Client-Server
mode, they are in the
JGroups JAR file in the
${JDG_HOME}/modules
/org/jgroups/main/
directory.

JBoss Data Grid 6.0.1 Not Available This version of JBoss Data Grid is
based on JBoss Enterprise
Application Platform 6.0, which
does not include the test classes
used for this test.

JBoss Data Grid 6.0.0 Not Available This version of JBoss Data Grid is
based on JBoss Enterprise
Application Server 6.0, which
does not include the test classes
used for this test.

Version Test Case Details

33.4.3. Testing Multicast Using JGroups

The following procedure details the steps to test multicast using JGroups if you are using Red Hat JBoss
Data Grid:

Prerequisites

Ensure that the following prerequisites are met before starting the testing procedure.

1. Set the bind_addr value to the appropriate IP address for the instance.

2. For added accuracy, set mcast_addr and port values that are the same as the cluster
communication values.

3. Start two command line terminal windows. Navigate to the location of the JGroups JAR file for
one of the two nodes in the first terminal and the same location for the second node in the
second terminal.

Test Multicast Using JGroups

1. Run the Multicast Server on Node One
Run the following command on the command line terminal for the first node (replace jgroups.jar
with the infinispan-embedded.jar for Library mode):

java -cp jgroups.jar org.jgroups.tests.McastReceiverTest -mcast_addr 230.1.2.3 -port 5555 -
bind_addr $YOUR_BIND_ADDRESS

Red Hat Data Grid 7.2 Administration and Configuration Guide

282

2. Run the Multicast Server on Node Two
Run the following command on the command line terminal for the second node (replace
jgroups.jar with the infinispan-embedded.jar for Library mode):

java -cp jgroups.jar org.jgroups.tests.McastSenderTest -mcast_addr 230.1.2.3 -port 5555 -
bind_addr $YOUR_BIND_ADDRESS

3. Transmit Information Packets
Enter information on instance for node two (the node sending packets) and press enter to send
the information.

4. View Receives Information Packets
View the information received on the node one instance. The information entered in the
previous step should appear here.

5. Confirm Information Transfer
Repeat steps 3 and 4 to confirm all transmitted information is received without dropped
packets.

6. Repeat Test for Other Instances
Repeat steps 1 to 4 for each combination of sender and receiver. Repeating the test identifies
other instances that are incorrectly configured.

Result

All information packets transmitted from the sender node must appear on the receiver node. If the sent
information does not appear as expected, multicast is incorrectly configured in the operating system or
the network.

CHAPTER 33. CONFIGURE JGROUPS

283

CHAPTER 34. USE RED HAT JBOSS DATA GRID WITH
AMAZON WEB SERVICES

34.1. THE S3_PING JGROUPS DISCOVERY PROTOCOL

S3_PING is a discovery protocol that is ideal for use with Amazon’s Elastic Compute Cloud (EC2)
because EC2 does not allow multicast and therefore MPING is not allowed.

Each EC2 instance adds a small file to an S3 data container, known as a bucket. Each instance then reads
the files in the bucket to discover the other members of the cluster.

34.2. S3_PING CONFIGURATION OPTIONS

34.2.1. S3_PING Configuration Options

Red Hat JBoss Data Grid works with Amazon Web Services in two ways:

In Library mode, use JGroups' default-configs/default-jgroups-ec2.xml file (see default-
jgroups-ec2.xml for details) or use the S3_PING protocol.

In Remote Client-Server mode, use JGroups' S3_PING protocol.

In Library and Remote Client-Server mode, there are three ways to configure the S3_PING protocol for
clustering to work in Amazon AWS:

Use Private S3 Buckets. These buckets use Amazon AWS credentials.

Use Pre-Signed URLs. These pre-assigned URLs are assigned to buckets with private write and
public read rights.

Use Public S3 Buckets. These buckets do not have any credentials.

34.2.2. Using Private S3 Buckets

This configuration requires access to a private bucket that can only be accessed with the appropriate
AWS credentials. To confirm that the appropriate permissions are available, confirm that the user has
the following permissions for the bucket:

List

Upload/Delete

View Permissions

Edit Permissions

Ensure that the S3_PING configuration includes the following properties:

the location where the bucket is found.

the access_key and secret_access_key properties for the AWS user.

NOTE

Red Hat Data Grid 7.2 Administration and Configuration Guide

284

NOTE

If a 403 error displays when using this configuration, verify that the properties have the
correct values. If the problem persists, confirm that the system time in the EC2 node is
correct. Amazon S3 rejects requests with a time stamp that is more than 15 minutes old
compared to their server’s times for security purposes.

Start the Red Hat JBoss Data Grid Server with a Private Bucket

Run the following command from the top level of the server directory to start the Red Hat JBoss Data
Grid server using a private S3 bucket:

bin/standalone.sh
 -c cloud.xml
 -Djboss.node.name={node_name}
 -Djboss.socket.binding.port-offset={port_offset}
 -Djboss.default.jgroups.stack=s3-private
 -Djgroups.s3.bucket={s3_bucket_name}
 -Djgroups.s3.access_key={access_key}
 -Djgroups.s3.secret_access_key={secret_access_key}

1. Replace {node_name} with the server’s desired node name.

2. Replace {port_offset} with the port offset. To use the default ports specify this as 0.

3. Replace {s3_bucket_name} with the appropriate bucket name.

4. Replace {access_key} with the user’s access key.

5. Replace {secret_access_key} with the user’s secret access key.

34.2.3. Using Pre-Signed URLs

34.2.3.1. Using Pre-Signed URLs

For this configuration, create a publically readable bucket in S3 by setting the List permissions to
Everyone to allow public read access. Each node in the cluster may share a pre-signed URL that points
to a single file, allowing a single file to be shared across every node in the cluster. This URL points to a
unique file and can include a folder path within the bucket.

NOTE

Longer paths will cause errors in S3_PING . For example, a path such as
my_bucket/DemoCluster/jgroups.list works while a longer path such as
my_bucket/Demo/Cluster/jgroups.list will not.

34.2.3.2. Generating Pre-Signed URLs

JGroup’s S3_PING class includes a utility method to generate pre-signed URLs. The last argument for
this method is the time when the URL expires expressed in the number of seconds since the Unix epoch
(January 1, 1970).

The syntax to generate a pre-signed URL is as follows:

CHAPTER 34. USE RED HAT JBOSS DATA GRID WITH AMAZON WEB SERVICES

285

String Url = S3_PING.generatePreSignedUrl("{access_key}", "{secret_access_key}", "{operation}", "
{bucket_name}", "{path}", {seconds});

1. Replace {operation} with either PUT or DELETE.

2. Replace {access_key} with the user’s access key.

3. Replace {secret_access_key} with the user’s secret access key.

4. Replace {bucket_name} with the name of the bucket.

5. Replace {path} with the desired path to the file within the bucket.

6. Replace {seconds} with the number of seconds since the Unix epoch (January 1, 1970) that the
path remains valid.

Generate a Pre-Signed URL

String putUrl = S3_PING.generatePreSignedUrl("access_key", "secret_access_key", "put",
"my_bucket", "DemoCluster/jgroups.list", 1234567890);

Ensure that the S3_PING configuration includes the pre_signed_put_url and pre_signed_delete_url
properties generated by the call to S3_PING.generatePreSignedUrl(). This configuration is more
secure than one using private S3 buckets, because the AWS credentials are not stored on each node in
the cluster

NOTE

If a pre-signed URL is entered into an XML file, then the & characters in the URL must be
replaced with its XML entity (&).

34.2.3.3. Set Pre-Signed URLs Using the Command Line

To set the pre-signed URLs using the command line, use the following guidelines:

Enclose the URL in double quotation marks (" ").

In the URL, each occurrence of the ampersand (&) character must be escaped with a backslash
(\)

Start a JBoss Data Grid Server with a Pre-Signed URL

bin/standalone.sh
 -c cloud.xml
 -Djboss.node.name={node_name}
 -Djboss.socket.binding.port-offset={port_offset}
 -Djboss.default.jgroups.stack=s3-presigned
 -Djgroups.s3.pre_signed_delete_url="http://{s3_bucket_name}.s3.amazonaws.com/jgroups.list?
AWSAccessKeyId={access_key}\&Expires={expiration_time}\&Signature={signature}"
 -Djgroups.s3.pre_signed_put_url="http://{s3_bucket_name}.s3.amazonaws.com/jgroups.list?
AWSAccessKeyId={access_key}\&Expires={expiration_time}\&Signature={signature}"

1. Replace {node_name} with the server’s desired node name.

Red Hat Data Grid 7.2 Administration and Configuration Guide

286

2. Replace {port_offset} with the port offset. To use the default ports specify this as 0.

3. Replace {s3_bucket_name} with the appropriate bucket name.

4. Replace {access_key} with the user’s access key.

5. Replace {expiration_time} with the values for the URL that are passed into the
S3_PING.generatePreSignedUrl() method.

6. Replace {signature} with the values generated by the S3_PING.generatePreSignedUrl()
method.

34.2.4. Using Public S3 Buckets

This configuration involves an S3 bucket that has public read and write permissions, which means that
Everyone has permissions to List , Upload/Delete , View Permissions , and Edit Permissions for the
bucket.

The location property must be specified with the bucket name for this configuration. This configuration
method is the least secure because any user who knows the name of the bucket can upload and store
data in the bucket and the bucket creator’s account is charged for this data.

To start the Red Hat JBoss Data Grid server, use the following command:

bin/standalone.sh
 -c cloud.xml
 -Djboss.node.name={node_name}
 -Djboss.socket.binding.port-offset={port_offset}
 -Djboss.default.jgroups.stack=s3-public
 -Djgroups.s3.bucket={s3_bucket_name}

1. Replace {node_name} with the server’s desired node name.

2. Replace {port_offset} with the port offset. To use the default ports specify this as 0.

3. Replace {s3_bucket_name} with the appropriate bucket name.

34.3. UTILIZING AN ELASTIC IP ADDRESS

While each node in the cluster is able to discover other nodes in the cluster using the S3_PING protocol,
all network traffic is over the internal private network. It is recommended to configure an Elastic IP, or
static IP, for a single node, so that a consistent address is available for configuring the cluster, such as
through the Administration Console, across restarts. If no Elastic IP is configured each instance will
contain a randomized IP address on its public network whenever it is started.

Full instructions for configuring an Elastic IP address may be found in Amazon’s Getting Started Guide.

CHAPTER 34. USE RED HAT JBOSS DATA GRID WITH AMAZON WEB SERVICES

287

http://docs.aws.amazon.com/AmazonVPC/latest/GettingStartedGuide/getting-started-assign-eip.html

CHAPTER 35. USE RED HAT JBOSS DATA GRID WITH
GOOGLE COMPUTE ENGINE

35.1. THE GOOGLE_PING PROTOCOL

GOOGLE_PING is a discovery protocol used by JGroups during cluster formation. It is ideal to use with
Google Compute Engine (GCE) and uses Google Cloud Storage to store information about individual
cluster members.

35.2. GOOGLE_PING CONFIGURATION

35.2.1. GOOGLE_PING Configuration

Red Hat JBoss Data Grid works with Google Compute Engine in the following way:

In Library mode, use the JGroups' configuration file default-configs/default-jgroups-google.xml
or use the GOOGLE_PING protocol in an existing configuration file.

In Remote Client-Server mode, define the properties on the command line when you start the
server to use the JGroups Google stack (see example in Starting the Server in Google
Compute Engine).

To configure the GOOGLE_PING protocol to work in Google Compute Engine in Library and Remote
Client-Server mode:

Use JGroups bucket. These buckets use Google Compute Engine credentials.

Use the access key.

Use the secret access key.

NOTE

Only the TCP protocol is supported in Google Compute Engine since multicasts are not
allowed.

35.2.2. Starting the Server in Google Compute Engine

This configuration requires access to a bucket that can only be accessed with the appropriate Google
Compute Engine credentials.

Ensure that the GOOGLE_PING configuration includes the following properties:

the access_key and the secret_access_key properties for the Google Compute Engine user.

Start the Red Hat JBoss Data Grid Server with a Bucket

Run the following command from the top level of the server directory to start the Red Hat JBoss Data
Grid server using a bucket:

bin/standalone.sh
 -c cloud.xml
 -Djboss.node.name={node_name}

Red Hat Data Grid 7.2 Administration and Configuration Guide

288

 -Djboss.socket.binding.port-offset={port_offset}
 -Djboss.default.jgroups.stack=google
 -Djgroups.google.bucket={google_bucket_name}
 -Djgroups.google.access_key={access_key}
 -Djgroups.google.secret_access_key={secret_access_key}

1. Replace {node_name} with the server’s desired node name.

2. Replace {port_offset} with the port offset. To use the default ports specify this as 0.

3. Replace {google_bucket_name} with the appropriate bucket name.

4. Replace {access_key} with the user’s access key.

5. Replace {secret_access_key} with the user’s secret access key.

35.3. UTILIZING A STATIC IP ADDRESS

While each node in the cluster is able to discover other nodes in the cluster using the GOOGLE_PING
protocol, all network traffic is over the internal private network. It is recommended to configure an
external static IP address for a single node, so that a consistent address is available for configuring the
cluster, such as through the Administration Console, across restarts. If no static address is configured
each instance will contain a randomized IP address on its public network whenever it is started.

Full instructions for configuring an external static IP address may be found in Google’s Configuring an
Instance’s IP Address documentation.

CHAPTER 35. USE RED HAT JBOSS DATA GRID WITH GOOGLE COMPUTE ENGINE

289

https://cloud.google.com/compute/docs/configure-instance-ip-addresses

CHAPTER 36. HIGH AVAILABILITY USING SERVER HINTING

36.1. SERVER HINTING

Server Hinting helps you achieve high availability with your Red Hat JBoss Data Grid deployment.

To use Server Hinting, you provide information about the physical topology with attributes that identify
servers, racks, or data centers to achieve more resilience with your data in the event that all the nodes in
a given physical location become unavailable.

When you configure Server Hinting, JBoss Data Grid uses the location information you provided to
distribute data across the cluster so that backup copies of data are stored on as many servers, racks, and
data centers as possible.

In some cases JBoss Data Grid stores copies of data on nodes that share the same physical location.
For example, if the number of owners for segments is greater than the number of distinct sites, then
JBoss Data Grid assigns more than one owner for a given segment in the same site.

NOTE

Server Hinting does not apply to total replication, which requires complete copies of data
on every node.

Consistent Hashing controls how data is distributed across nodes. JBoss Data Grid uses
TopologyAwareSyncConsistentHashFactory if you enable Server Hinting. For policy configuration
details, see ConsistentHashFactories in the Developer Guide.

36.2. ESTABLISHING SERVER HINTING WITH JGROUPS

When setting up a clustered environment in Red Hat JBoss Data Grid, Server Hinting is configured when
establishing JGroups configuration.

JBoss Data Grid ships with several JGroups files pre-configured for clustered mode. These files can be
used as a starting point when configuring Server Hinting in JBoss Data Grid.

See Also: Pre-Configured JGroups Files

36.3. CONFIGURING SERVER HINTING

You configure Server Hinting with the following attributes:

cluster identifies the cluster where the node runs. Note that nodes with different cluster names
are not visible to each other. As a result, multiple clusters can use the same multicast address if
the cluster names are different.

machine identifies the physical host where the node runs.

rack identifies the rack that contains the physical host where the node runs.

site identifies the data center where the node runs.

node-name is the name of the JBoss Data Grid instance, or node. Having unique names for
each node helps identify them for diagnostics, but is not required. In Remote Client-Server
mode, the default value is a combination of the host name and a random number. In Library

Red Hat Data Grid 7.2 Administration and Configuration Guide

290

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/developer_guide/#consistenthashfactories

mode, the default value is the host name appended with a random number, which is added even
when the node name is set in the configuration.

In Remote Client-Server mode, you configure Server Hinting in the JGroups subsystem on the
transport element for the default stack, as in the following example:

In Library mode, you configure Server Hinting at the transport level, as in the following example:

<subsystem xmlns="urn:jboss:domain:jgroups:3.0"
 default-stack="${jboss.default.jgroups.stack:udp}">
 <stack name="udp">
 <transport type="UDP"
 socket-binding="jgroups-udp"
 site="${jboss.jgroups.transport.site:s1}"
 rack="${jboss.jgroups.transport.rack:r1}"
 machine="${jboss.jgroups.transport.machine:m1}">
 <!-- Additional configuration elements here -->
 </transport>
 </stack>
</subsystem>

<transport cluster = "MyCluster"
 machine = "LinuxServer01"
 rack = "Rack01"
 site = "US-WestCoast"
 node-name = "Node01" />

CHAPTER 36. HIGH AVAILABILITY USING SERVER HINTING

291

CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION

37.1. CROSS-DATACENTER REPLICATION

In Red Hat JBoss Data Grid, Cross-Datacenter Replication allows the administrator to create data
backups in multiple clusters. These clusters can be at the same physical location or different ones.
JBoss Data Grid’s Cross-Site Replication implementation is based on JGroups' RELAY2 protocol.

Cross-Datacenter Replication ensures data redundancy across clusters. In addition to creating backups
for data restoration, these datasets may also be used in an active-active mode. When configured in this
manner systems in separate environments are able to handle sessions should one cluster fail. Ideally,
each of these clusters should be in a different physical location than the others.

37.2. CROSS-DATACENTER REPLICATION OPERATIONS

Red Hat JBoss Data Grid’s Cross-Datacenter Replication operation is explained through the use of an
example, as follows:

Figure 37.1. Cross-Datacenter Replication Example

Red Hat Data Grid 7.2 Administration and Configuration Guide

292

Figure 37.1. Cross-Datacenter Replication Example

Three sites are configured in this example: LON, NYC and SFO. Each site hosts a running JBoss Data
Grid cluster made up of three to four physical nodes.

The Users cache is active in all three sites - LON, NYC and SFO. Changes to the Users cache at the
any one of these sites will be replicated to the other two as long as the cache defines the other two sites
as its backups through configuration. The Orders cache, however, is only available locally at the LON
site because it is not replicated to the other sites.

The Users cache can use different replication mechanisms each site. For example, it can back up data
synchronously to SFO and asynchronously to NYC and LON.

The Users cache can also have a different configuration from one site to another. For example, it can be
configured as a distributed cache with owners set to 2 in the LON site, as a replicated cache in the NYC
site and as a distributed cache with owners set to 1 in the SFO site.

JGroups is used for communication within each site as well as inter-site communication. Specifically, a

CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION

293

JGroups is used for communication within each site as well as inter-site communication. Specifically, a
JGroups protocol called RELAY2 facilitates communication between sites. For more information, see
About RELAY2.

37.3. CONFIGURE CROSS-DATACENTER REPLICATION

37.3.1. Configure Cross-Datacenter Replication (Remote Client-Server Mode)

In Red Hat JBoss Data Grid’s Remote Client-Server mode, cross-datacenter replication is set up as
follows:

Set Up Cross-Datacenter Replication

1. Set Up RELAY
Add the following configuration to the standalone.xml file to set up RELAY :

The RELAY protocol creates an additional stack (running parallel to the existing UDP stack) to
communicate with the remote site. In the above example the xsite channel references the
current tcp stack. If a TCP based stack is used for the local cluster, two TCP based stack
configurations are required: one for local communication and one to connect to the remote site.
For an illustration, see Cross-Datacenter Replication Operations.

2. Set Up Sites
Use the following configuration in the standalone.xml file to set up sites for each distributed
cache in the cluster:

3. Configure the Transport
In our first step we indicated the remote datacenters would be connecting over TCP, via the
xsite channel. Now the TCP stack is configured to point to the remote sites:

<subsystem xmlns="urn:infinispan:server:jgroups:8.0">
 <channels default="cluster">
 <channel name="cluster"/>
 <channel name="xsite" stack="tcp"/>
 </channels>
 <stacks default="udp">
 <stack name="udp">
 <transport type="UDP" socket-binding="jgroups-udp"/>
 <...other protocols...>
 <relay site="LON">
 <remote-site name="NYC" channel="xsite"/>
 <remote-site name="SFO" channel="xsite"/>
 </relay>
 </stack>
 </stacks>
</subsystem>

<distributed-cache name="namedCache">
 <!-- Additional configuration elements here -->
 <backups>
 <backup site="{FIRSTSITENAME}" strategy="{SYNC/ASYNC}" />
 <backup site="{SECONDSITENAME}" strategy="{SYNC/ASYNC}" />
 </backups>
</distributed-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

294

4. Configure the Backup Sites
Repeat steps 1-3 for each site in this configuration, adjusting the site names in the RELAY
configuration as appropriate.

A cross-datacenter example configuration file may be found at
$JDG_SERVER/docs/examples/configs/clustered-xsite.xml .

37.3.2. Configure Cross-Datacenter Replication (Library Mode)

37.3.2.1. Configure Cross-Datacenter Replication Declaratively

When configuring Cross-Datacenter Replication, the relay.RELAY2 protocol creates an additional stack
(running parallel to the existing TCP stack) to communicate with the remote site. If a TCP -based stack
is used for the local cluster, two TCP based stack configurations are required: one for local
communication and one to connect to the remote site.

In JBoss Data Grid Library mode, cross-datacenter replication is set up as follows:

Setting Up Cross-Datacenter Replication

1. Configure the Local Site

<stack name="tcp">
 <transport type="TCP" socket-binding="jgroups-tcp"/>
 <protocol type="TCPPING">
 <property
name="initial_hosts">lon.hostname[7600],nyc.hostname[7600],sfo.hostname[7600]"</propert
y>
 <property name="ergonomics">false</property>
 </protocol>
 <!-- Additional configuration elements here -->
</stack>

<infinispan
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:infinispan:config:8.5
http://www.infinispan.org/schemas/infinispan-config-8.5.xsd"
 xmlns="urn:infinispan:config:8.5">

 <jgroups>
 <stack-file name="udp" path="jgroups-with-relay.xml"/>
 </jgroups>

 <cache-container default-cache="default">
 <transport cluster="infinispan-cluster" lock-timeout="50000"
 stack="udp" node-name="node1"
 machine="machine1" rack="rack1" site="LON"/>
 <local-cache name="default">
 <backups>
 <backup site="NYC" strategy="SYNC" failure-policy="IGNORE" timeout="12003"/>
 <backup site="SFO" strategy="ASYNC"/>
 </backups>
 </local-cache>

CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION

295

a. Add the site attribute to the transport element to define the local site (in this example, the
local site is named LON).

b. Cross-site replication requires a non-default JGroups configuration. Define the jgroups
element and define a custom stack-file, passing in the name of the file to be referenced
and the location to this custom configuration. In this example, the JGroups configuration
file is named jgroups-with-relay.xml .

c. Configure the cache in site LON to back up to the sites NYC and SFO.

d. Configure the back up caches:

i. Configure the cache in site NYC to receive back up data from LON:

ii. Configure the cache in site SFO to receive back up data from LON:

2. Add the Contents of the Configuration File
As a default, Red Hat JBoss Data Grid includes JGroups configuration files such as default-
configs/default-jgroups-tcp.xml and default-configs/default-jgroups-udp.xml in the infinispan-
embedded-{VERSION}.jar package.

Copy the JGroups configuration to a new file (in this example, it is named jgroups-with-relay.xml
) and add the provided configuration information to this file. Note that the relay.RELAY2
protocol configuration must be the last protocol in the configuration stack.

3. Configure the relay.xml File
Set up the relay.RELAY2 configuration in the relay.xml file. This file describes the global cluster
configuration.

 <!-- Additional configuration information here -->
</infinispan>

 <local-cache name="backupNYC">
 <backups/>
 <backup-for remote-cache="default" remote-site="LON"/>
 </local-cache>

 <local-cache name="backupSFO">
 <backups/>
 <backup-for remote-cache="default" remote-site="LON"/>
 </local-cache>

<config>
 ...
 <relay.RELAY2 site="LON"
 config="relay.xml"
 relay_multicasts="false" />
</config>

<RelayConfiguration>
 <sites>
 <site name="LON"
 id="0">
 <bridges>

Red Hat Data Grid 7.2 Administration and Configuration Guide

296

4. Configure the Global Cluster
The file jgroups-global.xml referenced in relay.xml contains another JGroups configuration
which is used for the global cluster: communication between sites.

The global cluster configuration is usually TCP -based and uses the TCPPING protocol (instead
of PING or MPING) to discover members. Copy the contents of default-configs/default-
jgroups-tcp.xml into jgroups-global.xml and add the following configuration in order to configure
TCPPING :

Replace the hostnames (or IP addresses) in TCPPING.initial_hosts with those used for your
site masters. The ports (7800 in this example) must match the TCP.bind_port.

For more information about the TCPPING protocol, see Using the TCPPing Protocol.

37.4. TAKING A SITE OFFLINE

37.4.1. Taking a Site Offline

In Red Hat JBoss Data Grid’s Cross-datacenter replication configuration, if backing up to one site fails a
certain number of times during a time interval, that site can be marked as offline automatically. This
feature removes the need for manual intervention by an administrator to mark the site as offline.

It is possible to configure JBoss Data Grid to take down a site automatically when specified conditions
are met, or for an administrator to manually take down a site:

Configure automatically taking a site offline:

 <bridge config="jgroups-global.xml"
 name="global"/>
 </bridges>
 </site>
 <site name="NYC"
 id="1">
 <bridges>
 <bridge config="jgroups-global.xml"
 name="global"/>
 </bridges>
 </site>
 <site name="SFO"
 id="2">
 <bridges>
 <bridge config="jgroups-global.xml"
 name="global"/>
 </bridges>
 </site>
 </sites>
</RelayConfiguration>

<config>
 <TCP bind_port="7800" ... />
 <TCPPING initial_hosts="lon.hostname[7800],nyc.hostname[7800],sfo.hostname[7800]"
 ergonomics="false" />
 <!-- Rest of the protocols -->
</config>

CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION

297

Declaratively in Remote Client-Server mode.

Declaratively in Library mode.

Using the programmatic method.

Manually taking a site offline:

Using JBoss Operations Network (JON).

Using the JBoss Data Grid Command Line Interface (CLI).

37.4.2. Taking a Site Offline

To take a site offline in either mode of JBoss Data Grid, add the take-offline element to the backup
element. This will configure when a site is automatically taken offline.

IMPORTANT

You can take sites offline automatically with the SYNC backup strategy only. If the
backup strategy is ASYNC then you must take sites offline manually.

Taking a Site Offline in Remote Client-Server Mode

The take-offline element use the following parameters to configure when to take a site offline:

The after-failures parameter specifies the number of times attempts to contact a site can fail
before the site is taken offline.

The min-wait parameter specifies the number (in milliseconds) to wait to mark an unresponsive
site as offline. The site is offline when the min-wait period elapses after the first attempt, and
the number of failed attempts specified in the after-failures parameter occur.

37.4.3. Taking a Site Offline via JBoss Operations Network (JON)

A site can be taken offline in Red Hat JBoss Data Grid using the JBoss Operations Network operations.
For a list of the metrics, see JBoss Operations Network Plugin Operations .

37.4.4. Taking a Site Offline via the CLI

Use Red Hat JBoss Data Grid’s Command Line Interface (CLI) to manually take a site from a cross-
datacenter replication configuration down if it is unresponsive using the site command.

The site command can be used to check the status of a site as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache] site --status ${SITENAME}

The result of this command would either be online or offline according to the current status of the
named site.

<backup site="${sitename}" strategy="SYNC" failure-policy="FAIL">
 <take-offline after-failures="${NUMBER}"
 min-wait="${PERIOD}" />
</backup>

Red Hat Data Grid 7.2 Administration and Configuration Guide

298

The command can be used to bring a site online or offline by name as follows:

[standalone@127.0.0.1:9990/MyCacheManager/namedCache] site --offline ${SITENAME}

[standalone@127.0.0.1:9990/MyCacheManager/namedCache] site --online ${SITENAME}

If the command is successful, the output ok displays after the command. As an alternate, the site can
also be brought online using JMX (see Bring a Site Back Online for details).

For more information about the JBoss Data Grid CLI and its commands, see the Developer Guide 's
chapter on the JBoss Data Grid Command Line Interface (CLI)

37.4.5. Bring a Site Back Online

After a site is taken offline, the site can be brought back online either using the JMX console to invoke
the bringSiteOnline([replaceable]siteName) operation on the XSiteAdmin MBean (See XSiteAdmin
for details) or using the CLI (see Taking a Site Offline via the CLI for details).

37.5. STATE TRANSFER BETWEEN SITES

37.5.1. State Transfer Between Sites

When an offline master site is back online, it is necessary to synchronize its state with the latest data
from the backup site. State transfer allows state to be transferred from one site to another, meaning the
master site is synchronized and made consistent with the backup site. Similarly, when a backup site
becomes available, state transfer can be utilized to make it consistent with the master site.

Consider a scenario of two sites - Master site A and Backup site B. Clients can originally access only
Master site A whereas Backup Site B acts as an invisible backup. Cross Site State Transfer can be
pushed bidirectionally. When the new backup site B goes online, in order to synchronize its state with the
master site A, a State Transfer can be initiated to push the state from the Master site A to the Backup
site B.

Similarly, when the Master site A is brought back online, in order to synchronize it with the Backup site B,
a State Transfer can be initiated to push the state from Backup site B to Master Site A.

The use cases applies for both Active-Passive and Active-Active State Transfer. The difference is that
during Active-Active State Transfer we assume that cache operations can be performed in the site,
which consumes state.

A system administrator or an authorized entity initiates the state transfer manually using JMX. The
system administrator invokes the pushState(SiteName String) operation available in the
XSiteAdminOperations MBean.

The following interface shows the pushState(SiteName String) operation in JConsole:

Figure 37.2. PushState Operation

CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION

299

Figure 37.2. PushState Operation

State transfer is also invoked using the Command Line Interface (CLI) by the site push sitename
command. For example, when the master site is brought back online, the system administrator invokes
the state transfer operation in the backup site, specifying the master site name that is to receive the
state.

The master site can be offline at the time of the push operation. On successful state transfer, the state
data common to both the sites is overwritten on the master site. For example, if key A exists on the
master site but not on the backup site, key A will not be deleted from the master site. Whereas, if key B
exists on the backup as well as the master site, key B is overwritten on the master site.

NOTE

Updates on keys performed after initiating state transfer are not overwritten by incoming
state transfer.

Cross-site state transfer can be transactional and supports 1PC and 2PC transaction options. 1PC and
2PC options define whether data modified inside a transaction is backed up to a remote site in one or
two phases. 2PC includes a prepare phase in which backup sites acknowledges that transaction has been
successfully prepared. Both options are supported.

37.5.2. Active-Passive State Transfer

The active-passive state transfer is used when cross-site replication is used to back up the master site.
The master site processes all the requests but if it goes offline, the backup site starts to handle them.
When the master site is back online, it receives the state from the backup site and starts to handle the
client requests. In Active-Passive state transfer mode, transactional writes happen concurrently with
state transfer on the site which sends the state.

In active-passive state transfer mode, the client read-write requests occurs only on the backup site. The

Red Hat Data Grid 7.2 Administration and Configuration Guide

300

In active-passive state transfer mode, the client read-write requests occurs only on the backup site. The
master site acts as an invisible backup until the client requests are switched to it when the state transfer
is completed. The active-passive state transfer mode is fully supported in cross-datacenter replication.

When an Active-Passive State Transfer is interrupted by a network failure, the System Administrator
invokes the JMX operation manually to resume the state transfer. To transfer the state, for example
from Master site A to Backup site B, invoke the JMX operation on Master site A. Similarly, to transfer
state from Backup site B to Master site A, invoke the JMX operation on the Backup site B.

The JMX operation is invoked on the site from which the state is transferred to the other site that is
online to synchronize the states.

For example, there is a running backup site and the system administrator wants to bring back the master
site online. To use active-passive state transfer, the system administrator will perform the following
steps.

Boot the Red Hat JBoss Data Grid cluster in the master site.

Command the backup site to push state to the master site.

Wait until the state transfer is complete.

Make the clients aware that the master site is available to process the requests.

37.5.3. Active-Active State Transfer

In active-active state transfer mode, the client requests occur concurrently in both the sites while the
state transfer is in progress. The current implementation supports handling requests in the new site while
the state transfer is in progress, which may break the data consistency.

WARNING

Active-active state transfer mode is not fully supported, as it may lead to data
inconsistencies.

NOTE

In active-active state transfer mode, both the sites, the master and the backup sites
share the same role. There is no clear distinction between the master and backup sites in
the active-active state transfer mode

For example, there is a running site and the system administrator wants to bring a new site online. To use
active-active state transfer, the system administrator must perform the following steps.

Boot the Red Hat JBoss Data Grid cluster in the new site.

Command the running site to push state to the new site.

Make the clients aware that the new site is available to process the requests.



CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION

301

37.5.4. State Transfer Configuration

State transfer between sites is not enabled or disabled but it allows to tune some parameters. The only
configuration is done by the system administrator while configuring the load balancer to switch the
request to the master site during or after the state transfer. The implementation handles a case in which
a key is updated by a client before it receives the state, ignoring when it is delivered.

The following are default parameter values:

37.6. CONFIGURE MULTIPLE SITE MASTERS

37.6.1. Configure Multiple Site Masters

A standard Red Hat JBoss Data Grid cross-datacenter replication configuration includes one master
node for each site. The master node is a gateway for other nodes to communicate with the master
nodes at other sites.

This standard configuration works for a simple cross-datacenter replication configuration. However, with
a larger volume of traffic between the sites, passing traffic through a single master node can create a
bottleneck, which slows communication across nodes.

In JBoss Data Grid, configure multiple master nodes for each site to optimize traffic across multiple
sites.

37.6.2. Multiple Site Master Operations

When multiple site masters are enabled and configured, the master nodes in each site joins the local
cluster (i.e. the local site) as well as the global cluster (which includes nodes that are members of
multiple sites).

Each node that acts as a site master and maintains a routing table that consists of a list of target sites
and site masters. When a message arrives, a random master node for the destination site is selected.
The message is then forwarded to the random master node, where it is sent to the destination node
(unless the randomly selected node was the destination).

37.6.3. Configure Multiple Site Masters (Remote Client-Server Mode)

Prerequisites

Configure Cross-Datacenter Replication for Red Hat JBoss Data Grid’s Remote Client-Server Mode.

Set Multiple Site Masters in Remote Client-Server Mode

<backups>
 <backup site="NYC"
 strategy="SYNC"
 failure-policy="FAIL">
 <state-transfer chunk-size="512"
 timeout="1200000"
 max-retries="30"
 wait-time="2000" />
 </backup>
</backups>

Red Hat Data Grid 7.2 Administration and Configuration Guide

302

1. Locate the Target Configuration
Locate the target site’s configuration in the clustered-xsite.xml example configuration file. The
sample configuration looks like example provided above.

2. Configure Maximum Sites
Use the max_site_masters property to determine the maximum number of master nodes
within the site. Set this value to the number of nodes in the site to make every node a master.

3. Configure Site Master
Use the can_become_site_master property to allow the node to become the site master. This
flag is set to true as a default. Setting this flag to false prevents the node from becoming a site
master. This is required in situations where the node does not have a network interface
connected to the external network.

37.6.4. Configure Multiple Site Masters (Library Mode)

To configure multiple site masters in Red Hat JBoss Data Grid’s Library Mode:

Configure Multiple Site Masters (Library Mode)

1. Configure Cross-Datacenter Replication
Configure Cross-Datacenter Replication in JBoss Data Grid. Use the instructions in Configure
Cross-Datacenter Replication Declaratively for an XML configuration. For instructions on a
programmatic configuration refer to the JBoss Data Grid Developer Guide.

2. Add the Contents of the Configuration File
Add the can_become_site_master and max_site_masters parameters to the configuration as
follows:

Set the max_site_masters value to the number of nodes in the cluster to make all nodes
masters.

37.7. CROSS-DATACENTER REPLICATION CONCERNS

When using Cross-Datacenter Replication in active-active mode, where each site is using the other as an
active backup, there may be issues if the same key is written to both locations simultaneously.

<relay site="LON">
 <remote-site name="NYC" stack="tcp" cluster="global"/>
 <remote-site name="SFO" stack="tcp" cluster="global"/>
 <property name="relay_multicasts">false</property>
 <property name="max_site_masters">16</property>
 <property name="can_become_site_master">true</property>
</relay>

<config>
 <!-- Additional configuration information here -->
 <relay.RELAY2 site="LON"
 config="relay.xml"
 relay_multicasts="false"
 can_become_site_master="true"
 max_site_masters="16"/>
</config>

CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION

303

Consider the following image:

In this scenario both LON and NYC are backing up the Users cache to the other location. If the same
entry were edited in both locations simultaneously, each site would update their local copy and then
replicate this copy to the other site. This replication would overwrite the local copy’s value with the newly
received, replicated, copy, resulting in LON and NYC swapping the expected value. The following
example demonstrates this:

1. Both LON and NYC have an entry in the Users cache with a key of 1 and a value of Smith.

2. LON updates the value to Johnson.

3. NYC updates the value to Williams.

4. The cache is replicated to its backups, resulting in LON containing a value of Williams, and NYC
containing a value of Johnson.

Red Hat Data Grid 7.2 Administration and Configuration Guide

304

CHAPTER 38. ROLLING UPGRADES

38.1. PERFORMING ROLLING UPGRADES

Upgrade Red Hat JBoss Data Grid clusters without downtime or data loss.

You can perform rolling upgrades only:

in Remote Client-Server mode.

using the Hot Rod protocol.

TIP

See the following Red Hat KCS solutions for additional detail:

How to use rolling upgrade for RHDG

How to update a JDG cluster in case of new JDG version or configuration changes

38.1.1. Setting Up the Target Cluster

The target cluster is the desired version of JBoss Data Grid to which you migrate data.

NOTE

Rolling upgrades are supported from JBoss Data Grid version 6.6.2.

1. Start the target cluster with unique network properties or a different JGroups cluster name to
keep it separate from the source cluster.

2. Configure a RemoteCacheStore on each node in the target cluster for each cache you want to
migrate from the source cluster.

NOTE

The RemoteCacheStore on the target cluster is in addition to any other
persistent store.

RemoteCacheStore settings

remote-server must point to the source cluster via the outbound-socket-binding
property.

remoteCacheName must match the cache name on the source cluster.

hotrod-wrapping must be true (enabled).

shared must be true (enabled).

purge must be false (disabled).

passivation must be false (disabled).

CHAPTER 38. ROLLING UPGRADES

305

https://access.redhat.com/solutions/2979441
https://access.redhat.com/solutions/1604853

protocol-version matches the Hot Rod protocol version of the source cluster.

JBoss Data Grid Version Hot Rod Protocol Version

7.2 2.6

7.1 2.6

7.0 2.5

6.6.2 2.4 (Requires 2.5.)
If you plan to perform a rolling upgrade from
JBoss Data Grid version 6.6.2, contact your
Red Hat support team to upgrade to Hot
Rod version 2.5.

Example RemoteCacheStore Configuration

38.1.2. Migrating Data to the Target Cluster

1. Configure the target cluster to handle all client requests instead of the source cluster:

a. Configure all clients to point to the target cluster instead of the source cluster.

b. Restart each client node.
The target cluster lazily loads data from the source cluster on demand via
RemoteCacheStore.

2. Fetch data from the source cluster.

NOTE

You synchronize data on the target cluster to fetch data from the source cluster.
If you are migrating from JBoss Data Grid 6.6.2, you must synchronize data on
each node in the target cluster.

<distributed-cache>
 <remote-store cache="MyCache" socket-timeout="60000" tcp-no-delay="true" protocol-version="2.5"
shared="true" hotrod-wrapping="true" purge="false" passivation="false">
 <remote-server outbound-socket-binding="remote-store-hotrod-server"/>
 </remote-store>
</distributed-cache>
...
<socket-binding-group name="standard-sockets" default-interface="public" port-
offset="${jboss.socket.binding.port-offset:0}">
 ...
 <outbound-socket-binding name="remote-store-hotrod-server">
 <remote-destination host="198.51.100.0" port="11222"/>
 </outbound-socket-binding>
 ...
</socket-binding-group>

Red Hat Data Grid 7.2 Administration and Configuration Guide

306

Do one of the following on the target cluster for each cache that you want to migrate:

JMX

Invoke the synchronizeData operation and specify the hotrod parameter on the
RollingUpgradeManager MBean. See RollingUpgradeManager.

CLI

Data migrates to all nodes in the target cluster in parallel, with each node receiving a subset
of the data.

Use the following parameters to tune the operation:

read-batch configures the number of entries to read from the source cluster at a time.
The default value is 10000.

write-threads configures the number of threads used to write data. The default value is
the number of processors available.
For example:

synchronize-data(migrator-name=hotrod, read-batch=100000, write-threads=3)

The synchronizeData method call is blocking so no other operations are performed until the data
migration is complete.

38.1.3. Finalizing Rolling Upgrades

After the target cluster fetches all data from the source cluster, do the following:

1. Disable the RemoteCacheStore on the target cluster.

NOTE

You must complete this step on each node in the target cluster.

Do one of the following:

JMX

Invoke the disconnectSource operation and specify the hotrod parameter on the
RollingUpgradeManager MBean. See RollingUpgradeManager.

CLI

2. Decommission the source cluster.

$ JDG_HOME/bin/cli.sh --connect controller=127.0.0.1:9990 -c "/subsystem=datagrid-
infinispan/cache-container=clustered/distributed-cache=MyCache:synchronize-
data(migrator-name=hotrod)"

$ JDG_HOME/bin/cli.sh --connect controller=127.0.0.1:9990 -c "/subsystem=datagrid-
infinispan/cache-container=clustered/distributed-cache=MyCache:disconnect-
source(migrator-name=hotrod)"

CHAPTER 38. ROLLING UPGRADES

307

CHAPTER 39. EXTERNALIZE SESSIONS

39.1. EXTERNALIZE SESSIONS

Red Hat JBoss Data Grid can be used as an external cache for containers, such as JBoss Enterprise
Application Platform (EAP). This allows JBoss Data Grid to store HTTP Sessions, among other data,
independent of the application layer, which provides the following benefits:

Application Elasticity

By making the application stateless additional nodes may be added to the EAP cluster without
expensive data rebalancing operations. The EAP cluster may also be replaced without downtime by
keeping the state in the JBoss Data Grid layer, as upgraded nodes may be brought online and retrieve
the sessions.

Failover Across Data Centers

Should a data center become unavailable the session data persists, as it is stored safely within the JBoss
Data Grid cluster. This allows a load balancer to redirect incoming requests to a second cluster to
retrieve the session information.

Reduced Memory Footprint

There is reduced memory pressure, resulting in shorter garbage collection time and frequency of
collections, as the HTTP Sessions have been moved out of the application layer and into the backing
caches.

39.2. EXTERNALIZE HTTP SESSION FROM JBOSS EAP TO JBOSS
DATA GRID

The following procedure applies for both standalone and domain mode of EAP; however, in domain
mode each server group requires a unique remote cache configured.

While multiple server groups can utilize the same Red Hat JBoss Data Grid cluster the respective
remote caches will be unique to the EAP server group.

NOTE

The following procedures have been tested and validated on JBoss EAP 7.0 and JBoss
Data Grid 7.0.

Externalize HTTP Sessions

1. Ensure the remote cache containers are defined in EAP’s infinispan subsystem; in the example
below the cache attribute in the remote-store element defines the cache name on the remote
JBoss Data Grid server:

<subsystem xmlns="urn:jboss:domain:infinispan:4.0">
 [...]
 <cache-container name="web" default-cache="dist"
module="org.wildfly.clustering.web.infinispan" statistics-enabled="true">
 <transport lock-timeout="60000"/>
 <invalidation-cache name="jdg">
 <locking isolation="REPEATABLE_READ"/>
 <transaction mode="BATCH"/>

Red Hat Data Grid 7.2 Administration and Configuration Guide

308

2. Define the location of the remote Red Hat JBoss Data Grid server by adding the networking
information to the socket-binding-group:

3. Repeat the above steps for each cache-container and each Red Hat JBoss Data Grid server.
Each server defined must have a separate <outbound-socket-binding> element defined.

4. Add passivation and cache information into the application’s jboss-web.xml. In the following
example web is the name of the cache container, and jdg is the name of the default cache
located in this container. An example file is shown below:

NOTE

The passivation timeouts above are provided assuming that a typical session is
abandoned within 15 minutes and uses the default HTTP session timeout in JBoss EAP of
30 minutes. These values may need to be adjusted based on each application’s workload.

39.3. EXTERNALIZE HTTP SESSIONS FROM JBOSS WEB SERVER
(JWS) TO JBOSS DATA GRID

39.3.1. Externalize HTTP Session from JBoss Web Server (JWS) to JBoss Data Grid

A session manager has been provided as part of the JBoss Data Grid distribution, allowing JWS users to

 <remote-store remote-servers="remote-jdg-server1 remote-jdg-server2"
 cache="default" socket-timeout="60000"
 preload="true" passivation="false" purge="false" shared="true"/>
 </invalidation-cache>
 </cache-container>
</subsystem>

<socket-binding-group ...>
 <outbound-socket-binding name="remote-jdg-server1">
 <remote-destination host="JDGHostName1" port="11222"/>
 </outbound-socket-binding>
 <outbound-socket-binding name="remote-jdg-server2">
 <remote-destination host="JDGHostName2" port="11222"/>
 </outbound-socket-binding>
</socket-binding-group>

<?xml version="1.0" encoding="UTF-8"?>
<jboss-web xmlns="http://www.jboss.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.jboss.com/xml/ns/javaee
http://www.jboss.org/j2ee/schema/jboss-web_10_0.xsd"
 version="10.0">

 <distributable/>

 <replication-config>
 <replication-granularity>SESSION</replication-granularity>
 <cache-name>web.jdg</cache-name>
 </replication-config>

</jboss-web>

CHAPTER 39. EXTERNALIZE SESSIONS

309

A session manager has been provided as part of the JBoss Data Grid distribution, allowing JWS users to
externalize sessions to JBoss Data Grid by integrating with an extension of Tomcat’s Manager. This
allows the Tomcat layer to remain stateless while providing session management persistence.

39.3.2. Prerequisites

This manager requires the following versions, or later, be installed:

JBoss Web Server 3.0

JBoss Data Grid 7.1

39.3.3. Installation

Complete the following steps to install this manager for either Tomcat 7 or Tomcat 8:

1. Download one of the following from the JBoss Data Grid product page:

jboss-datagrid-7.2.0-tomcat7-session-client.zip

jboss-datagrid-7.2.0-tomcat8-session-client.zip

2. Extract the archive.

3. Copy the lib/ directory from the extracted archive into $CATALINA_HOME.

4. Define the implementation of the Session Manager in context.xml, as seen below:

39.3.4. Session Management Details

When using the HotRodManager all sessions are placed into the default cache located on the Remote
JBoss Data Grid server. Cache names are not configurable.

Sessions stored in JBoss Web Server are all mutable by default. If an object changes during the course
of the request then it will be replicated after the request ends. To define immutable objects, use one of
the following annotations:

The Wildfly specific annotation - org.wildfly.clustering.web.annotation.Immutable.

Any generic immutable annotation.

Any known immutable type from the JDK implementation.

Objects may have custom marshalling by defining an Externalizer. By default the Wildfly Externalizer is
recognized; however, any implementation of this Externalizer may be used. Additionally, non-
serializable objects may be stored without issue as long as they have an Externalizer defined.

39.3.5. Configure the JBoss Web Server Session Manager

The HotRodManager is configured by defining properties on the Manager element inside of

<Manager className="org.wildfly.clustering.tomcat.hotrod.HotRodManager"
 server_list="www.server1.com:7600;www.server2.com:7600"
 <!-- Additional Configuration Elements -->
 />

Red Hat Data Grid 7.2 Administration and Configuration Guide

310

The HotRodManager is configured by defining properties on the Manager element inside of
context.xml. These are pulled from two separate lists:

org.apache.catalina.Manager - As the session manager implements this class many of the
Common Attributes are configurable.

ConfigurationParameters - This session manager also uses the HotRod Configuration
Properties.

The following table displays all of the configurable elements

Table 39.1. Common Attributes from Tomcat’s Manager

Attribute Description

name The name of this cluster manager. The name is used
to identify a session manager on a node. The name
might get modified by the Cluster element to make
it unique to the container.

sessionIdLength The length of session ids created by this Manager,
measured in bytes, excluding subsequent conversion
to a hexadecimal string and excluding any JVM route
information used for load balancing. This attribute is
deprecated. Set the length on a nested
SessionIdGenerator element instead.

secureRandomClass Name of the Java class that extends
java.security.SecureRandom to use to generate
session IDs. If not specified, the default value is
java.security.SecureRandom.

secureRandomProvider Name of the provider to use to create the
java.security.SecureRandom instances that
generate session IDs. If an invalid algorithm and/or
provider is specified, the Manager will use the
platform default provider and the default algorithm.
If not specified, the platform default provider will be
used.

secureRandomAlgorithm Name of the algorithm to use to create the
java.security.SecureRandom instances that
generate session IDs. If an invalid algorithm and/or
provider is specified, the Manager will use the
platform default provider and the default algorithm.
If not specified, the default algorithm of SHA1PRNG
will be used. If the default algorithm is not supported,
the platform default will be used. To specify that the
platform default should be used, do not set the
secureRandomProvider attribute and set this
attribute to the empty string.

CHAPTER 39. EXTERNALIZE SESSIONS

311

recordAllActions Flag whether send all actions for session across
Tomcat cluster nodes. If set to false, if already done
something to the same attribute, make sure don’t
send multiple actions across Tomcat cluster nodes. In
that case, sends only the actions that have been
added at last. Default is false.

Attribute Description

There is also a property specific to the JWS HotRodManager, shown below:

Attribute Description

persistenceStrategy Determines whether or not all attributes that
compose a session should be serialized together
(COARSE) or individually (FINE). When using a
COARSE strategy relationships between objects will
be preserved. FINE uses less memory, as only the
attributes that have changed are serialized. Defaults
to COARSE.

In addition to the attributes inherited from Tomcat, the HotRodManager may use any of the properties
typically available to a RemoteCacheManager. These are outlined in HotRod Properties.

When using HotRod properties only the property name itself is required. For instance, to configure TCP
KEEPALIVE and TCP NODELAY on the manager the following xml snippet would be used:

<Manager className="org.wildfly.clustering.tomcat.hotrod.HotRodManager"
 tcp_no_delay="true"
 tcp_keep_alive="true"/>

Red Hat Data Grid 7.2 Administration and Configuration Guide

312

CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT
BRAIN)

40.1. NETWORK PARTITION RECOVERY

Network Partitions occur when a cluster breaks into two or more partitions. As a result, the nodes in
each partition are unable to locate or communicate with nodes in the other partitions. This results in an
unintentionally partitioned network.

In the event of a network partition in a distributed system like Red Hat JBoss Data Grid, the CAP
(Brewer’s) theorem becomes relevant. The CAP theorem states that in the event of a Network Partition
[P], a distributed system can provide either Consistency [C] or Availability [A] for the data, but not both.

By default, reads and writes are enabled on all nodes in JBoss Data Grid. During a network partition, the
partitions continue to remain Available [A], at the cost of Consistency [C].

In JBoss Data Grid, a cache consists of data stored on a number of nodes. To prevent data loss if a node
fails, JBoss Data Grid replicates a data item over multiple nodes. In distribution mode, this redundancy is
configured using the owners configuration attribute, which specifies the number of replicas for each
cache entry in the cache. As a result, as long as the number of nodes that have failed are less than the
value of owners, JBoss Data Grid retains a copy of the lost data and can recover.

NOTE

In JBoss Data Grid’s replication mode, however, owners is always equal to the number of
nodes in the cache, because each node contains a copy of every data item in the cache in
this mode.

In certain cases, a number of nodes greater than the value of owners can disappear from the cache.
Two common reasons for this are:

Split-Brain: Usually, as the result of a router crash, the cache is divided into two or more
partitions. Each of the partitions operates independently of the other and each may contain
different versions of the same data.

Sucessive Crashed Nodes: A number of nodes greater than the value of owners crashes in
succession for any reason. JBoss Data Grid is unable to properly balance the state between
crashes, and the result is partial data loss.

The partition handling functionality described in this section determines what operations can be
performed on a cache in the event of a split-brain scenario. JBoss Data Grid provides multiple partition
handling strategies, which, in terms of the CAP theorem, determine whether availability or consistency is
ensured. The provided strategies are listed in the table below:

Table 40.1. Parition Handling Strategies

Strategy Name Description CAP

ALLOW_READ_WRITES Allows entries on each partition to
diverge, with conflicts resolved
during merge. This is the default
partition handling strategy in
JBoss Data Grid.

Availability

CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT BRAIN)

313

DENY_READ_WRITES If the partition does not have all
owners for a given segment, both
reads and writes are denied for all
keys in that segment.

Consistency

ALLOW_READS Allows reads for a given key if it
exists in this partition, but only
allows writes if this partition
contains all owners of a segment.

Availability

Strategy Name Description CAP

40.2. DETECTING AND RECOVERING FROM A SPLIT-BRAIN PROBLEM

When a Split-Brain occurs in the data grid, each network partition installs its own JGroups view with
nodes from other partitions removed. The partitions remain unaware of each other, therefore there is no
way to determine how many partitions the network has split into. Red Hat JBoss Data Grid assumes the
cache has unexpectedly split if one or more nodes disappear from the JGroups cache without sending
an explicit leaving message, while in reality the cause can be physical (crashed switches, cable failure,
etc.) to virtual (stop-the-world garbage collection).

This state is dangerous because each of the newly split partitions operates independently and can store
conflicting updates for the same data entries.

NOTE

A possible limitation is that if two partitions start as isolated partitions and do not merge,
they can read and write inconsistent data. JBoss Data Grid does not identify such
partitions as split partitions.

40.3. PARTITION HANDLING STRATEGIES

JBoss Data Grid provides multiple partition handling strategies that can provide either data consistency
or data availability. Application requirements should determine which strategy to use. For example, when
data read from the system must be accurate, DENY_READ_WRITES may be the best choice, as it
ensures data consistency.

40.3.1. ALLOW_READ_WRITES

When JBoss Data Grid is configured to use ALLOW_READ_WRITES, each partition continues to
function as an independent cluster, with all partitions remaining in AVAILABLE mode. This means each
partition may only see part of the data, and each partition could write conflicting updates to the cache.
During a partition merge these conflicts are automatically resolved by utilising the ConflictManager and
the configured EntryMergePolicy. The default partition handling strategy for JBoss Data Grid is
ALLOW_READ_WRITES and the default merge policy is PREFERRED_ALWAYS. That is, if conflicts
arise due to a split-brain scenario, upon merge, the preferredEntry cache entry will be used to resolve
the conflict.

40.3.2. DENY_READ_WRITES

When DENY_READ_WRITES is configured, and JBoss Data Grid suspects one or more nodes are no
longer accessible, each partition does not start a rebalance immediately, but first it checks whether it

Red Hat Data Grid 7.2 Administration and Configuration Guide

314

should enter degraded mode instead. To enter Degraded Mode, one of the following conditions must be
true:

At least one segment has lost all its owners, which means that a number of nodes equal to or
greater than the value of owners have left the JGroups view.

The partition does not contain a majority of nodes (greater than half) of the nodes from the
latest stable topology. The stable topology is updated each time a rebalance operation
successfully concludes and the coordinator determines that additional rebalancing is not
required.

If neither of the conditions are met, the partition continues normal operations and JBoss Data Grid
attempts to rebalance its nodes. If at least one of these conditions is met, at most one partition can
remain in Available mode. Other partitions will enter Degraded Mode.

When a partition enters into Degraded Mode, it only allows read/write access to those entries for which
all owners (copies) of the entry exist on nodes within the same partition. Read and write requests for an
entry for which one or more of its owners (copies) exist on nodes that have disappeared from the
partition are rejected with an AvailabilityException.

This guarantees partitions cannot write different values for the same key (cache is consistent), and also
that one partition can not read keys that have been updated in the other partitions (no stale data).

40.3.2.1. Partition Recovery Example with DENY_READ_WRITE

In this example, a distributed cache is configured on a four node cluster with four data entries (k1, k2, k3
and k4). The parameter owners is set to 2, so the four data entries each have two copies in the cache.

Figure 40.1. Cache Before and After a Network Partition

After the network partition occurs, Partitions 1 and 2 enter Degraded Mode (depicted in the diagram as

CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT BRAIN)

315

grayed-out nodes). Within each partition, an entry will only be available for read or write operations if
both its copies are in the same partition. In Partition 1, the data entry k1 is available for reads and writes
because owners equals 2 and both copies of the entry remain in Partition 1. In Partition 2, k4 is available
for reads and writes for the same reason. The entries k2 and k3 become unavailable in both partitions,
as neither partition contains all copies of these entries. A new entry k5 can be written to a partition only if
that partition were to own both copies of k5.

Figure 40.2. Cache After Partitions Are Merged

JBoss Data Grid subsequently merges the two split partitions into a single cache. No state transfer is
required and the cache returns to Available Mode with four nodes and four data entries (k1, k2, k3 and
k4).

WARNING

Data consistency can be at risk from the time (t1) when the cache physically split to
the time (t2) when JBoss Data Grid detects the connectivity change and changes
the state of the partitions:

Transactional writes that were in progress at t1 when the split physically
occurred may be rolled back on some of the owners. This can result in
inconsistency between the copies (after the partitions rejoin) of an entry
that is affected by such a write. However, transactional writes that started
after t1 will fail as expected.

If the write is non-transactional, then during this time window, a value
written only in a minor partition (due to physical split and because the
partition has not yet been Degraded) can be lost when partitions rejoin, if
this minor partition receives state from a primary (Available) partition upon
rejoin. If the partition does not receive state upon rejoin (i.e. all partitions are
degraded), then the value is not lost, but an inconsistency can remain.

There is also a possibility of a stale read in a minor partition during this
transition period, as an entry is still Available until the minor partition enters
Degraded state.



Red Hat Data Grid 7.2 Administration and Configuration Guide

316

When partitions merge after a network partition has occurred:

If one of the partitions was Available during the network partition, then the joining partition(s)
are wiped out and state transfer occurs from the Available (primary) partition to the joining
nodes.

If all joining partitions were Degraded during the Split Brain, then no state transfer occurs during
the merge. The combined cache is then Available only if the merging partitions contain a simple
majority of the members in the latest stable topology (one with the highest topology ID) and
has at least an owner for each segment (i.e. keys are not lost).

WARNING

Between the time (t1) when partitions begin merging to the time (t2) when the
merge is complete, nodes reconnect through a series of merge events. During this
time window, it is possible that a node can be reported as having temporarily left
the cluster. For a Transactional cache, if during this window between t1 and t2, such
a node is executing a transaction that spans other nodes, then this transaction may
not execute on the remote node, but still succeed on the originating node. The
result is a potential stale value for affected entries on a node that did not commit
this transaction.

After t2, once the merge has completed on all nodes, this situation will not occur for
subsequent transactions. However, an inconsistency introduced on entries that were
affected by a transaction in progress during the time window between t1 and t2 is
not resolved until these entries are subsequently updated or deleted. Until then, a
read on such impacted entries can potentially return the stale value.

40.3.3. ALLOW_READS

Partitions are handled in the same manner as DENY_READ_WRITES, except that when a partition is in
DEGRADED mode read operations on a partially owned key will not throw an AvailabilityException.

40.4. DETECTING AND RECOVERING FROM SUCCESSIVE NODE
FAILURES

Nodes can leave a cluster for reasons other than network failures. For example, a process might stop
running or the JVM pauses due to Garbage Collection (GC). However, Red Hat JBoss Data Grid cannot
detect these different causes. When a node leaves the JGroups cluster abruptly, JBoss Data Grid
handles it as a network failure.

If only one node leaves a cluster and there are backup owners (numOwners) then:

The cluster remains available.

JBoss Data Grid attempts to create new replicas of the lost data.

If multiple nodes leave a cluster, it is possible that unrecoverable data loss can occur. For example,
additional nodes crash while JBoss Data Grid is attempting to create replicas of data that were lost
during a previous node crash. In this case, all copies of data for some entries might no longer be available



CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT BRAIN)

317

on any node in the cluster.

Either the DENY_READ_WRITES or ALLOW_READS partition handling strategy causes JBoss Data
Grid to enter DEGRADED mode when it detects one or more nodes are no longer available. These
strategies help prevent unrecoverable data loss even if a Split-Brain has not occurred.

Data loss can also occur when nodes are shut down in rapid succession, or not gracefully, if those nodes
are all owners for data that was stored on those nodes only.

When you shut down nodes gracefully, JBoss Data Grid knows that the nodes cannot come back.
However, the cluster does not track how each node leaves the cluster. As a result, the cache still enters
DEGRADED mode as if those nodes had crashed.

When nodes crash or are shut down in rapid succession, it is not possible for the cluster to recover its
state unless you stop it and then repopulate the data from an external source when you restart the
cluster. For this reason, you should configure the numOwners parameter so that there is an adequate
number of data copies to prevent data loss from successive node failures.

Alternatively, if you can tolerate some data loss, you can force JBoss Data Grid into AVAILABLE mode
from DEGRADED mode using the Cache JMX MBean. See Cache JMX MBean .

Likewise, the AdvancedCache interface lets you read and change the cache availability. See The
AdvancedCache Interface in the Developer Guide.

40.5. CONFLICT MANAGER

The most basic function of the conflict manager is to allow the retrieval of all stored replica values for a
given key. This provides the opportunity to process a stream of cache entries whose stored replicas
have conflicting values. By using implementations of the EntryMergePolicy interface it is possible for
conflicts to be resolved automatically.

40.5.1. Detecting Conflicts

The conflict manager detects conflicts by comparing each of the stored values for a given key. The
result of the .equals method on the stored values is used to determine whether all values are equal. If all
values are equal then no conflicts exist for the key, otherwise a conflict has occurred. Note that null
values are returned if no entry exists on a given node. JBoss Data Grid indicates a conflict has occurred
if both a null and non-null value exist for a given key.

40.5.2. Merge Policies

If a conflict between one or more replicas of a given CacheEntry exists, a conflict resolution algorithm
can be used to resolve it. JBoss Data Grid provides the EntryMergePolicy interface for this purpose.
This interface consists of a single method, merge, whose returned CacheEntry is used as the resolved
entry for a given key. When a non-null CacheEntry is returned, this entry’s value is put to all replicas in
the cache. However, when the merge implementation returns a null value, all replicas associated with the
conflicting key are removed from the cache.

The merge method takes two parameters, preferredEntry, and otherEntries. In the context of a
partition merge, the preferredEntry is the CacheEntry associated with the partition whose coordinator
is conducting the merge (or if multiple entries exist in this partition, it is the primary replica). However, in
all other contexts, the preferredEntry is the primary replica. The second parameter, otherEntries, is a
list of all other entries associated with the key for which a conflict was detected.

NOTE

Red Hat Data Grid 7.2 Administration and Configuration Guide

318

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#cache
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/developer_guide/#the_advancedcache_interface

NOTE

EntryMergePolicy::merge is only called when a conflict has been detected, it is not called
if all CacheEntrys are the same.

The following table describes the merge policies that JBoss Data Grid provides:

Table 40.2. Merge Policies

Policy Description Possible Risks

MergePolicies.NONE Do not attempt to resolve
conflicts on merge. This is the
default merge policy.

Nodes drop segments if they no
longer own the segments. This
can lead to the loss of segments.

MergePolicies.PREFERRED_
ALWAYS

Always use the preferredEntry. Even the preferredEntry is
taken from the majority of nodes,
it could be the case that the
minority was last updated,
resulting in old entries.

MergePolicies.PREFERRED_
NON_NULL

Use the preferredEntry if it is
non-null, otherwise use the first
entry from otherEntries.

This policy could restore deleted
entries.

MergePolicies.REMOVE_ALL Always remove the key and value
from the cache when a conflict is
detected.

This policy results in the loss of all
entries that are modified
concurrently and have different
values.

NOTE

Along with the implementations of the EntryMergePolicy interface that JBoss Data Grid
provides, you can also create custom implementations. See Creating Custom Merge
Policies.

40.6. SPLIT BRAIN TIMING: DETECTING A SPLIT

When using the FD_ALL protocol a given node becomes suspected after the following amount of
milliseconds have passed:

FD_ALL.timeout + FD_ALL.interval + VERIFY_SUSPECT.timeout +
GMS.view_ack_collection_timeout

40.7. SPLIT BRAIN TIMING: RECOVERING FROM A SPLIT

After a split occurs JBoss Data Grid will merge the partitions back, and the maximum time to detect a
merge after the network partition is healed is:

3.1 * MERGE3.max_interval

In some cases multiple merges will occur after a split so that the cluster may contain all available

CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT BRAIN)

319

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#creating_custom_merge_policies

In some cases multiple merges will occur after a split so that the cluster may contain all available
partitions. In this case, where multiple merges occur, time should be allowed for all of these to complete,
and as there may be as many as three merges occurring sequentially the total delay should be no more
than the following:

10 * MERGE3.max_interval

40.7.1. Considerations with Garbage Collection

A Java Virtual Machine (JVM) provides the runtime environment for Red Hat JBoss Data Grid. Garbage
Collection (GC) in the JVM can cause splits and impact the behavior of the conflict manager.

It is important to monitor GC when you deploy JBoss Data Grid so that "stop-the-world" suspension of
the JVM does not negatively impact performance of your cluster.

Long GC times can increase the amount of time it takes JBoss Data Grid to detect and recover from
splits. In some cases, GC can cause JBoss Data Grid to exceed the maximum time to detect a split.

Additionally, when merging partitions after a split, JBoss Data Grid attempts to confirm all nodes are
present in the cluster. Because no timeout or upper bound applies to the response time from nodes, the
operation to merge the cluster view can be delayed. This can result from network issues as well as long
GC times.

Another scenario in which GC can impact performance through partition handling is when GC suspends
the JVM, causing one or more nodes to leave the cluster. When this occurs, and suspended nodes
resume after GC completes, the nodes can have out of date or conflicting cluster topologies.

If the merge policy is configured to detect conflicts, JBoss Data Grid attempts to resolve conflicts
before merging the nodes. However the merge policy is enforced only if more than one node in the
cluster is suspended due to GC. In cases where JBoss Data Grid detects a single suspended node, it
clears the out of date topology without attempting to resolve conflicts. JBoss Data Grid then
rebalances the nodes after the merge completes.

40.8. CONFIGURING PARTITION HANDLING

Unless the cache is distributed or replicated, partition handling configuration is ignored. The default
partition handling strategy is ALLOW_READ_WRITES and the default EntryMergePolicy is
MergePolicies::NONE.

40.8.1. Example Configurations

Declarative Configuration (Library Mode)

Enable partition handling declaratively as follows:

Declarative Configuration (Remote Client-server Mode)

Enable partition handling declaratively in remote client-server mode by using the following
configuration:

<distributed-cache name="distributed_cache"
 l1-lifespan="20000">
 <partition-handling when-split="DENY_READ_WRITES" merge-policy="REMOVE_ALL"/>
</distributed-cache>

Red Hat Data Grid 7.2 Administration and Configuration Guide

320

A programmatic configuration example of partition handling is included in the Developer Guide.

40.8.2. Configuration of Partition Handling Between Releases

If you migrate the configuration from a previous release, there are specific changes that apply to
partition handling.

In JBoss Data Grid 7.1 and earlier, you could disable or enable partition handling. Either option provides
specific functionality that is limited to a subset of what you can now configure in JBoss Data Grid.

40.8.2.1. No Partition Handling Configuration or Partition Handling Disabled

If the partition-handling element is not specified in the configuration or if the configuration is as
follows:

Then it is equivalent to the following configuration:

This configuration enables the conflict manager. If you do not want to enable the conflict manager, set
the merge policy to PREFERRED_ALWAYS.

40.8.2.2. Partition Handling Enabled

The preceding configuration from JBoss Data Grid 7.1 and earlier is equivalent to the following
configuration:

This configuration enables partition handling with similar behavior to JBoss Data Grid 7.1 and earlier. No
merge policy is necessary because different data cannot be written to copies of the entry on different
nodes given that the DENY_READ_WRITES strategy is configured.

NOTE

To find out more about merge policies in JBoss Data Grid 7.2, see Merge Policies.

40.9. CREATING CUSTOM MERGE POLICIES

<subsystem xmlns="urn:infinispan:server:core:8.5" default-cache-container="clustered">
 <cache-container name="clustered" default-cache="default" statistics="true">
 <distributed-cache name="default" >
 <partition-handling when-split="DENY_READ_WRITES" merge-policy="REMOVE_ALL"/>
 <locking isolation="READ_COMMITTED" acquire-timeout="30000"
 concurrency-level="1000" striping="false"/>
 </distributed-cache>
 </cache-container>
</subsystem>

<partition-handling enabled="false">

<partition-handling when-split="ALLOW_READ_WRITES" merge-policy="NONE"/>

<partition-handling enabled="true">

<partition-handling when-split="DENY_READ_WRITES" merge-policy="NONE"/>

CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT BRAIN)

321

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/developer_guide/#cache_level_configuration_examples
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/administration_and_configuration_guide/#merge_policies

A custom merge policy is an implementation of the EntryMergePolicy interface such as the following:

To use custom merge policies in Remote Client-Server Mode, you must package the implementation
class files to JBoss Data Grid in a JAR file that contains the following file:

META-INF/services/org.infinispan.conflict.EntryMergePolicy

This file must provide the fully qualified class name of the EntryMergePolicy implementation.

In Library Mode, you should ensure that the custom merge policy is on the classpath.

Data Interoperability with Custom Merge Policies

When using JBoss Data Grid in Remote Client-Server Mode, custom merge policies that exchange data
with the cache must be able to handle data interoperability. JBoss Data Grid stores cache entries in a
marshalled format and returns key/value pairs to custom merge policies as byte arrays.

To handle cache entries in a marshalled format, custom merge policies must be able to perform
marshalling. Alternatively you can configure the media type for data in the cache so that JBoss Data
Grid converts between storage formats.

NOTE

In cases where your custom merge policy depends on metadata associated with cache
entries only, you do not need to configure your merge policy to handle marshalling.

For more information, see the following sections in the Developer Guide:

Configuring Media Types

Endpoint Interoperability

40.9.1. Specifying Custom Merge Policies

You can declaratively configure custom merge policies as follows:

Alternatively, you can programmatically configure custom merge policies as follows:

public class CustomMergePolicy implements EntryMergePolicy<String, String> {

 @Override
 public CacheEntry<String, String> merge(CacheEntry<String, String> preferredEntry,
List<CacheEntry<String, String>> otherEntries) {
 // decide which entry should be used

 return the_solved_CacheEntry;
 }

<distributed-cache name="the-default-cache">
 <partition-handling when-split="DENY_READ_WRITES" merge-
policy="org.example.CustomMergePolicy"/>
</distributed-cache>

ConfigurationBuilder dcc = new ConfigurationBuilder();
dcc.clustering().partitionHandling()

Red Hat Data Grid 7.2 Administration and Configuration Guide

322

https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/developer_guide/#media.types.configuring
https://access.redhat.com/documentation/en-us/red_hat_jboss_data_grid/7.2/html-single/developer_guide/#endpoint.interoperability

 .whenSplit(PartitionHandling.DENY_READ_WRITES)
 .mergePolicy(new CustomMergePolicy());

CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT BRAIN)

323

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR
JBOSS DATA GRID

A.1. SUPPORTED JGROUPS PROTOCOLS

The table contains a list of the JGroups protocols supported in JBoss Data Grid.

Table A.1. Supported JGroups Protocols

Protocol Details

TCP TCP/IP is a replacement transport for UDP in
situations where IP multicast cannot be used, such as
operations over a WAN where routers may discard IP
multicast packets.

TCP is a transport protocol used to send unicast and
multicast messages.

When sending multicast messages, TCP
sends multiple unicast messages.

When using TCP, each message to all
cluster members is sent as multiple unicast
messages, or one to each member.

As IP multicasting cannot be used to discover initial
members, another mechanism must be used to find
initial membership.

Red Hat JBoss Data Grid’s Hot Rod is a custom TCP
client/server protocol.

UDP UDP is a transport protocol that uses:

IP multicasting to send messages to all
members of a cluster.

UDP datagrams for unicast messages, which
are sent to a single member.

When the UDP transport is started, it opens a unicast
socket and a multicast socket. The unicast socket is
used to send and receive unicast messages, the
multicast socket sends and receives multicast
sockets. The physical address of the channel with be
the same as the address and port number of the
unicast socket.

Red Hat Data Grid 7.2 Administration and Configuration Guide

324

PING The PING protocol is used for the initial discovery of
members. It is used to detect the coordinator, which
is the oldest member, by multicasting PING requests
to an IP multicast address.

Each member responds to the ping with a packet
containing the coordinator’s and their own address.
After a specified number of milliseconds (N) or
replies (M), the joiner determines the coordinator
from the responses and sends it a JOIN request
(handled by GMS). If there is no response, the joiner
is considered the first member of the group.

PING differs from TCPPING because it used
dynamic discovery, which means that a member does
not need to know in advance where the other cluster
members are. PING uses the transport’s IP
multicasting abilities to send a discovery request to
the cluster. As a result, PING requires UDP as
transport.

TCPPING The TCCPING protocol uses a set of known members
and pings them for discovery. This protocol has a
static configuration.

MPING The MPING (Multicast PING) protocol uses IP
multicast to discover the initial membership. It can be
used with all transports, but is usually used in
combination with TCP.

S3_PING S3_PING is a discovery protocol that is ideal for use
with Amazon’s Elastic Compute Cloud (EC2) because
EC2 does not allow multicast and therefore MPING is
not allowed.

Each EC2 instance adds a small file to an S3 data
container, known as a bucket. Each instance then
reads the files in the bucket to discover the other
members of the cluster.

JDBC_PING JDBC_PING is a discovery protocol that utilizes a
shared database to store information regarding
nodes in the cluster.

TCPGOSSIP TCPGOSSIP is a discovery protocol that uses one or
more configured GossipRouter processes to store
information about the nodes in the cluster.

Protocol Details

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

325

MERGE3 The MERGE3 protocol is available in JGroups 3.1
onwards. Unlike MERGE2, in MERGE3, all members
periodically send an INFO message with their address
(UUID), logical name, physical address and View ID.
Periodically, each coordinator reviews the INFO
details to ensure that there are no inconsistencies.

FD_ALL Used for failure detection, FD_ALL uses a simple
heartbeat protocol. Each member maintains a table
of all other members (except itself) and periodically
multicasts a heartbeat. For example, when data or a
heartbeat from P is received, the timestamp for P is
set to the current time. Periodically, expired
members are identified using the timestamp values.

FD_SOCK FD_SOCK is a failure detection protocol based on a
ring of TCP sockets created between cluster
members. Each cluster member connects to its
neighbor (the last member connects to the first
member), which forms a ring. Member B is suspected
when its neighbor A detects an abnormal closing of
its TCP socket (usually due to node B crashing).
However, if member B is leaving gracefully, it informs
member A and does not become suspected when it
does exit.

FD_HOST FD_HOST is a failure detection protocol that detects
the crashing or hanging of entire hosts and suspects
all cluster members of that host through ICMP ping
messages or custom commands. FD_HOST does not
detect the crashing or hanging of single members on
the local hosts, but only checks whether all the other
hosts in the cluster are live and available. It is
therefore used in conjunction with other failure
detection protocols such as FD_ALL and FD_SOCK.
This protocol is typically used when multiple cluster
members are running on the same physical box.

The FD_HOST protocol is supported on Windows for
JBoss Data Grid. The cmd parameter must be set to
ping.exe and the ping count must be specified.

VERIFY_SUSPECT The VERIFY_SUSPECT protocol verifies whether a
suspected member is dead by pinging the member
before excluding it. If the member responds, the
suspect message is discarded.

Protocol Details

Red Hat Data Grid 7.2 Administration and Configuration Guide

326

NAKACK2 The NAKACK2 protocol is a successor to the
NAKACK protocol and was introduced in JGroups 3.1.

The NACKACK2 protocol is used for multicast
messages and uses NAK. Each message is tagged
with a sequence number. The receiver tracks the
sequence numbers and delivers the messages in
order. When a gap in the sequence numbers is
detected, the receiver asks the sender to retransmit
the missing message.

UNICAST3 The UNICAST3 protocol provides reliable delivery
(no message sent by a sender is lost because they
are sent in a numbered sequence) and uses the FIFO
(First In First Out) properties for point to point
messages between a sender and a receiver.

UNICAST3 uses positive acks for retransmission. For
example, sender A keeps sending message M until
receiver B receives message M and returns an ack to
indicate a successful delivery. Sender A keeps
resending message M until it receives an ack from B,
until B leaves the cluster, or A crashes.

STABLE The STABLE protocol is a garbage collector for
messages that have been viewed by all members in a
cluster. Each member stores all messages because
retransmission may be required. A message can only
be removed from the retransmission buffers when all
members have seen the message. The STABLE
protocol periodically gossips its highest and lowest
messages seen. The lowest value is used to compute
the min (all lowest sequence numbers for all
members) and messages with a sequence number
below the min value can be discarded

GMS The GMS protocol is the group membership protocol.
This protocol handles joins/leaves/crashes
(suspicions) and emits new views accordingly.

MFC MFC is the Multicast version of the flow control
protocol.

UFC UFC is the Unicast version of the flow control
protocol.

Protocol Details

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

327

FRAG3 The FRAG3 protocol fragments large messages into
smaller ones and then sends the smaller messages.
At the receiver side, the smaller fragments are
reassembled into larger, complete messages and
delivered to the application. FRAG3 is used for both
multicast and unicast messages.

SYM_ENCRYPT JGroups includes the SYM_ENCRYPT protocol to
provide encryption for cluster traffic. By default,
encryption only encrypts the message body; it does
not encrypt message headers. To encrypt the entire
message, including all headers, as well as destination
and source addresses, the property
encrypt_entire_message must be true. When
defining this protocol it should be placed directly
under NAKACK2.

The SYM_ENCRYPT layer is used to encrypt and
decrypt communication in JGroups by defining a
secret key in a keystore.

Each message is identified as encrypted with a
specific encryption header identifying the encrypt
header and an MD5 digest identifying the version of
the key being used to encrypt and decrypt
messages.

ASYM_ENCRYPT JGroups includes the ASYM_ENCRYPT protocol to
provide encryption for cluster traffic. By default,
encryption only encrypts the message body; it does
not encrypt message headers. To encrypt the entire
message, including all headers, as well as destination
and source addresses, the property
encrypt_entire_message must be true. When
defining this protocol it should be placed directly
under NAKACK2.

The ASYM_ENCRYPT layer is used to encrypt and
decrypt communication in JGroups by having a
coordinator generate a secret key using defined
algorithms and key sizes.

Each message is identified as encrypted with a
specific encryption header identifying the encrypt
header and an MD5 digest identifying the version of
the key being used to encrypt and decrypt
messages.

Protocol Details

Red Hat Data Grid 7.2 Administration and Configuration Guide

328

SASL The SASL (Simple Authentication and Security
Layer) protocol is a framework that provides
authentication and data security services in
connection-oriented protocols using replaceable
mechanisms. Additionally, SASL provides a
structured interface between protocols and
mechanisms.

RELAY2 The RELAY protocol bridges two remote clusters by
creating a connection between one node in each site.
This allows multicast messages sent out in one site to
be relayed to the other and vice versa.

JGroups includes the RELAY2 protocol, which is
used for communication between sites in Red Hat
JBoss Data Grid’s Cross-Site Replication.

The RELAY2 protocol works similarly to RELAY but
with slight differences. Unlike RELAY, the RELAY2
protocol:

connects more than two sites.

connects sites that operate autonomously
and are unaware of each other.

offers both unicast and multicast routing
between sites.

Protocol Details

A.2. TCP DEFAULT AND RECOMMENDED VALUES

To learn more about JGroups and using TCP and UDP, see Configure JGroups (Library Mode) .

NOTE

Values in JGroups Default Value indicate values that are configured internally to
JGroups, but may be overridden by a custom configuration file or by a JGroups
configuration file shipped with JBoss Data Grid.

Values in JBoss Data Grid Configured Values indicate values that are in use by
default when using one of the configuration files for JGroups as shipped with
JBoss Data Grid. It is recommended to use these values when custom
configuration files for JGroups are in use with JBoss Data Grid. For more
information on the configuration files included with JBoss Data Grid refer to
JBoss Data Grid JGroups Configuration Files .

Table A.2. Recommended and Default Values for TCP

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

329

Parameter JGroups Default Value JBoss Data Grid Configured
Values

bind_addr Any non-loopback Set address on specific interface

bind_port Any free port Set specific port

loopback true Same as default

port_range 50 Set based on desired range of
ports

recv_buf_size 150,000 Same as default

send_buf_size 150,000 640,000

sock_conn_timeout 2,000 300

bundler_type transfer-queue no-bundler

max_bundle_size 64,000 64,000

enable_diagnostics true false

thread_pool.enabled true Same as default

thread_pool.min_threads 2 This should equal the number of
nodes

thread_pool.max_threads 30 This should be higher than
thread_pool.min_threads. For
example, for a smaller grid (2-10
nodes), set this value to twice the
number of nodes, but for a larger
grid (20 or more nodes), the ratio
should be lower. As an example, if
a grid contains 20 nodes, set this
value to 25 and if the grid
contains 100 nodes, set the value
to 110.

thread_pool.keep_alive_time 30,000 60,000

NOTE

Red Hat JBoss Data Grid 7.2 uses JGroups 4.0.4.Final, in which the TCPPING timeout
value no longer exists. Use the pbcast.GMS join_timeout value to indicate the timeout
period instead.

Red Hat Data Grid 7.2 Administration and Configuration Guide

330

Recommended Values for S3_PING

See S3_PING Configuration Options for details about configuring S3_PING for JBoss Data Grid.

Recommended Values for TCPGOSSIP

See TCPGOSSIP Configuration Options for details about configuring TCPGOSSIP for JBoss Data Grid.

Table A.3. Recommended Values for MPING

Parameter JGroups Default Value JBoss Data Grid Configured
Values

bind_addr Any non-loopback Set address on specific interface

break_on_coord_rsp true Same as default

mcast_addr 230.5.6.7 228.2.4.6

mcast_port 7555 43366

ip_ttl 8 2

NOTE

In JGroups 3.6.1, the MPING timeout value was removed and the pbcast.GMS
join_timeout value indicates the timeout period instead.

Table A.4. Recommended Values for MERGE3

Parameter JGroups Default Value JBoss Data Grid Configured
Values

min_interval 1,000 10,000

max_interval 10,000 30,000

Table A.5. Recommended Values for FD_SOCK

Parameter JGroups Default Value JBoss Data Grid Configured
Values

client_bind_por 0 (randomly selects a port and
uses it)

Same as default

get_cache_timeout 1000 milliseconds Same as default

keep_alive true Same as default

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

331

num_tries 3 Same as default

start_port 0 (randomly selects a port and
uses it)

Same as default

suspect_msg_interval 5000 milliseconds. Same as default

Parameter JGroups Default Value JBoss Data Grid Configured
Values

Table A.6. Recommended Values for FD_ALL

Parameter JGroups Default Value JBoss Data Grid Configured
Values

timeout 40,000 60,000. The FD_ALL timeout
value is set to two times the
longest possible stop the world
garbage collection pause in the
CMS garbage collector. In a well-
tuned JVM, the longest pause is
proportional to heap size and
should not exceed 1 second per
GB of heap. For example, an 8GB
heap should not have a pause
longer than 8 seconds, so the
FD_ALL timeout value must be
set to 16 seconds. If longer
garbage collection pauses are
used, then this timeout value
should be increased to avoid false
failure detection on a node.

interval 8,000 15,000. The FD_ALL interval
value must be at least four times
smaller than the value set for
FD_ALL’s timeout value.

timeout_check_interval 2,000 5,000

Table A.7. Recommended Values for FD_HOST

Parameter JGroups Default Value JBoss Data Grid Configured
Values

check_timeout 3,000 5,000

cmd InetAddress.isReachable() (ICMP
ping)

-

Red Hat Data Grid 7.2 Administration and Configuration Guide

332

interval 20,000 15,000. The interval value for
FD_HOST must be four times
smaller than FD_HOST’s timeout
value.

timeout 60,000 60,000.

Parameter JGroups Default Value JBoss Data Grid Configured
Values

Table A.8. Recommended Values for VERIFY_SUSPECT

Parameter JGroups Default Value JBoss Data Grid Configured
Values

timeout 2,000 5,000

Table A.9. Recommended Values for pbcast.NAKACK2

Parameter JGroups Default Value JBoss Data Grid Configured
Values

use_mcast_xmit true false

xmit_interval 1,000 100

xmit_table_num_rows 50 Same as default

xmit_table_msgs_per_row 10,000 1,024

xmit_table_max_compaction_time 10,000 30,000

max_msg_batch_size 100 Same as default

resend_last_seqno false true

Table A.10. Recommended Values for UNICAST3

Parameter JGroups Default Value JBoss Data Grid Configured
Values

xmit_interval 500 100

xmit_table_num_rows 100 50

xmit_table_msgs_per_row 1,0000 1,024

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

333

xmit_table_max_compaction_time 600,000 30,000

max_msg_batch_size 500 100

conn_close_timeout 60,000 No recommended value.

conn_expiry_timeout 120,000 0

Parameter JGroups Default Value JBoss Data Grid Configured
Values

Table A.11. Recommended Values for pbcast.STABLE

Parameter JGroups Default Value JBoss Data Grid Configured
Values

stability_delay 6,000 500

desired_avg_gossip 20,000 5,000

max_bytes 2,000,000 1,000,000

Table A.12. Recommended Values for pbcast.GMS

Parameter JGroups Default Value JBoss Data Grid Configured
Values

print_local_addr true false

join_timeout 5,000 Same as default

view_bundling true Same as default

Table A.13. Recommended Values for MFC

Parameter JGroups Default Value JBoss Data Grid Configured
Values

max_credits 500,000 2,000,000

min_threshold 0.40 Same as default

Table A.14. Recommended Values for FRAG3

Red Hat Data Grid 7.2 Administration and Configuration Guide

334

Parameter JGroups Default Value JBoss Data Grid Configured
Values

frag_size 60,000 Same as default

Table A.15. Recommended Values for SYM_ENCRYPT

Parameter JGroups Default Value JBoss Data Grid Configured
Values

sym_algorithm AES -

sym_keylength 128 -

provider Bouncy Castle Provider -

Table A.16. Recommended Values for ASYM_ENCRYPT

Parameter JGroups Default Value JBoss Data Grid Configured
Values

asym_algorithm RSA -

asym_keylength 512 -

sym_provider Bouncy Castle Provider -

change_key_on_leave false -

Recommended Values for SASL

See the Red Hat JBoss Data Grid Developer Guide 's User Authentication over Hot Rod Using SASL
section for details.

Recommended Values for RELAY2

See Set Up Cross-Datacenter Replication for details.

A.3. UDP DEFAULT AND RECOMMENDED VALUES

To learn more about JGroups and using TCP and UDP, see Configure JGroups (Library Mode) .

NOTE

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

335

NOTE

Values in JGroups Default Value indicate values that are configured internally to
JGroups, but may be overridden by a custom configuration file or by a JGroups
configuration file shipped with JBoss Data Grid.

Values in JBoss Data Grid Configured Values indicate values that are in use by
default when using one of the configuration files for JGroups as shipped with
JBoss Data Grid. It is recommended to use these values when custom
configuration files for JGroups are in use with JBoss Data Grid. For more
information on the configuration files included with JBoss Data Grid refer to
JBoss Data Grid JGroups Configuration Files .

Table A.17. Recommended Values for UDP

Parameter JGroups Default Value JBoss Data Grid Configured
Values

bind_addr Any non-loopback Set address on specific interface

bind_port Any free port Set specific port

loopback true true

port_range 50 Set based on desired range of
ports

mcast_addr 228.8.8.8 228.6.7.8

mcast_port 7600 46655

tos 8 Same as default

ucast_recv_buf_size 64,000 5,000,000

ucast_send_buf_size 100,000 2,000,000

mcast_recv_buf_size 500,000 5,000,000

mcast_send_buf_size 100,000 1,000,000

ip_ttl 8 2

thread_naming_pattern cl pl

bundler_type transfer-queue no-bundler

max_bundle_size 64,000 8700

Red Hat Data Grid 7.2 Administration and Configuration Guide

336

enable_diagnostics true false

thread_pool.enabled true Same as default

thread_pool.min_threads 2 This should equal the number of
nodes.

thread_pool.max_threads 30 This should be higher than
thread_pool.min_threads. For
example, for a smaller grid (2-10
nodes), set this value to twice the
number of nodes, but for a larger
grid (20 or more nodes), the ratio
should be lower. As an example, if
a grid contains 20 nodes, set this
value to 25 and if the grid
contains 100 nodes, set the value
to 110.

thread_pool.keep_alive_time 30,000 60,000

Parameter JGroups Default Value JBoss Data Grid Configured
Values

NOTE

In JGroups 3.5, the PING timeout value is removed and the pbcast.GMS join_timeout
value indicates the timeout period instead.

Table A.18. Recommended Values for MERGE3

Parameter JGroups Default Value JBoss Data Grid Configured
Values

min_interval 1,000 10,000

max_interval 10,000 30,000

Table A.19. Recommended Values for FD_SOCK

Parameter JGroups Default Value JBoss Data Grid Configured
Values

client_bind_por 0 (randomly selects a port and
uses it)

Same as default

get_cache_timeout 1000 milliseconds Same as default

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

337

keep_alive true Same as default

num_tries 3 Same as default

start_port 0 (randomly selects a port and
uses it)

Same as default

suspect_msg_interval 5000 milliseconds. Same as default

Parameter JGroups Default Value JBoss Data Grid Configured
Values

Table A.20. Recommended Values for FD_ALL

Parameter JGroups Default Value JBoss Data Grid Configured
Values

timeout 40,000 60,000. The FD_ALL timeout
value is set to two times the
longest possible stop the world
garbage collection pause in the
CMS garbage collector. In a well-
tuned JVM, the longest pause is
proportional to heap size and
should not exceed 1 second per
GB of heap. For example, an 8GB
heap should not have a pause
longer than 8 seconds, so the
FD_ALL timeout value must be
set to 16 seconds. If longer
garbage collection pauses are
used, then this timeout value
should be increased to avoid false
failure detection on a node.

interval 8,000 15,000. The FD_ALL interval
value must be at least four times
smaller than the value set for
FD_ALL’s timeout value.

timeout_check_interval 2,000 5,000

Table A.21. Recommended Values for FD_HOST

Parameter JGroups Default Value JBoss Data Grid Configured
Values

check_timeout 3,000 5,000

Red Hat Data Grid 7.2 Administration and Configuration Guide

338

cmd InetAddress.isReachable() (ICMP
ping)

-

interval 20,000 15,000. The interval value for
FD_HOST must be four times
smaller than FD_HOST’s timeout
value.

timeout - 60,000.

Parameter JGroups Default Value JBoss Data Grid Configured
Values

Table A.22. Recommended Values for VERIFY_SUSPECT

Parameter JGroups Default Value JBoss Data Grid Configured
Values

timeout 2,000 5,000

Table A.23. Recommended Values for pbcast.NAKACK2

Parameter JGroups Default Value JBoss Data Grid Configured
Values

use_mcast_xmit true Same as default

xmit_interval 1,000 100

xmit_table_num_rows 50 Same as default

xmit_table_msgs_per_row 10,000 1,024

xmit_table_max_compaction_time 10,000 30,000

max_msg_batch_size 100 Same as default

resend_last_seqno false true

Table A.24. Recommended Values for UNICAST3

Parameter JGroups Default Value JBoss Data Grid Configured
Values

xmit_interval 500 100

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

339

xmit_table_num_rows 100 50

xmit_table_msgs_per_row 1,0000 1,024

xmit_table_max_compaction_time 600,000 30,000

max_msg_batch_size 500 100

conn_close_timeout 60,000 No recommended value

conn_expiry_timeout 120,000 0

Parameter JGroups Default Value JBoss Data Grid Configured
Values

Table A.25. Recommended Values for pbcast.STABLE

Parameter JGroups Default Value JBoss Data Grid Configured
Values

stability_delay 6,000 500

desired_avg_gossip 20,000 5,000

max_bytes 2,000,000 1,000,000

Table A.26. Recommended Values for pbcast.GMS

Parameter JGroups Default Value JBoss Data Grid Configured
Values

print_local_addr true false

join_timeout 5,000 Same as default

view_bundling true Same as default

Table A.27. Recommended Values for UFC

Parameter JGroups Default Value JBoss Data Grid Configured
Values

max_credits 500,000 2,000,000

min_threshold 0.40 Same as default

Red Hat Data Grid 7.2 Administration and Configuration Guide

340

Table A.28. Recommended Values for MFC

Parameter JGroups Default Value JBoss Data Grid Configured
Values

max_credits 500,000 2,000,000

min_threshold 0.40 Same as default

Table A.29. Recommended Values for FRAG3

Parameter JGroups Default Value JBoss Data Grid Configured
Values

frag_size 60,000 Same as default

Table A.30. Recommended Values for SYM_ENCRYPT

Parameter JGroups Default Value JBoss Data Grid Configured
Values

sym_algorithm AES -

sym_keylength 128 -

provider Bouncy Castle Provider -

Table A.31. Recommended Values for ASYM_ENCRYPT

Parameter JGroups Default Value JBoss Data Grid Configured
Values

asym_algorithm RSA -

asym_keylength 512 -

provider Bouncy Castle Provider -

change_key_on_leave false -

Recommended Values for SASL

See the Red Hat JBoss Data Grid Developer Guide 's User Authentication over Hot Rod Using SASL
section for details.

Recommended Values for RELAY2

See Set Up Cross-Datacenter Replication for details.

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

341

A.4. THE TCPGOSSIP JGROUPS PROTOCOL

The TCPGOSSIP discovery protocol uses one or more configured GossipRouter processes to store
information about the nodes in the cluster.

IMPORTANT

It is vital that the GossipRouter process consistently be available to all nodes in the
cluster, as without this process it will not be possible to add additional nodes. For this
reason it is strongly recommended to deploy this process in a highly available method; for
example, an Availability Set with multiple virtual machines may be used.

Running the GossipRouter

The GossipRouter is included in the JGroups jar file, and must be running before any nodes are started.
This process may be started by pointing to the GossipRouter class in the JGroups jar file included with
JBoss Data Grid:

java -classpath jgroups-${jgroups.version}.jar org.jgroups.stack.GossipRouter -bindaddress
IP_ADDRESS -port PORT

In the event that multiple GossipRouters are available, and specified, a node will always register with all
specified GossipRouters; however, it will only retrieve information from the first available GossipRouter.
If a GossipRouter is unavailable it will be marked as failed and removed from the list, with a background
thread started to periodically attempt reconnecting to the failed GossipRouter. Once the thread
successfully reconnects the GossipRouter will be reinserted into the list.

Configuring JBoss Data Grid to use TCPGOSSIP (Library Mode)

In Library Mode the JGroups xml file should be used to configure TCPGOSSIP; however, there is no
TCPGOSSIP configuration included by default. It is recommended to use one of the preexisting files
specified in Pre-Configured JGroups Files and then adjust the configuration to include TCPGOSSIP.
For instance, default-configs/default-jgroups-ec2.xml could be selected and the S3_PING protocol
removed, and then the following block added in its place:

Configuring JBoss Data Grid to use TCPGOSSIP (Remote Client-Server Mode)

In Remote Client-Server Mode a stack may be defined for TCPGOSSIP in the jgroups subsystem of
the server’s configuration file.

The following snippet shows an example of this configuration:

<TCPGOSSIP initial_hosts="IP_ADDRESS_0[PORT_0],IP_ADDRESS_1[PORT_1]" />

<subsystem xmlns="urn:infinispan:server:jgroups:8.0" default-
stack="${jboss.default.jgroups.stack:tcpgossip}">
[...]
 <stack name="jdbc_ping">
 <transport type="TCP" socket-binding="jgroups-tcp"/>
 <protocol type="TCPGOSSIP">
 <property
name="initial_hosts">IP_ADDRESS_0[PORT_0],IP_ADDRESS_1[PORT_1]</property>
 </protocol>
 <protocol type="MERGE3"/>
 <protocol type="FD_SOCK" socket-binding="jgroups-tcp-fd"/>

Red Hat Data Grid 7.2 Administration and Configuration Guide

342

A.5. TCPGOSSIP CONFIGURATION OPTIONS

The following TCPGOSSIP specific properties may be configured:

initial_hosts - Comma delimited list of hosts to be contacted for initial membership.

reconnect_interval - Interval (in milliseconds) by which a disconnected node attempts to
reconnect to the Gossip Router.

sock_conn_timeout - Max time (in milliseconds) allowed for socket creation. Defaults to 1000.

A.6. JBOSS DATA GRID JGROUPS CONFIGURATION FILES

The following configuration files are included with JBoss Data Grid and contain the recommended
values for JGroups. All of the following files are included in infinispan-embedded-${infinispan.version}.jar
found with the Library mode distribution.

default-configs/default-jgroups-ec2.xml

default-configs/default-jgroups-google.xml

default-configs/default-jgroups-tcp.xml

default-configs/default-jgroups-udp.xml

 <protocol type="FD_ALL"/>
 <protocol type="VERIFY_SUSPECT"/>
 <protocol type="pbcast.NAKACK2">
 <property name="use_mcast_xmit">false</property>
 </protocol>
 <protocol type="UNICAST3"/>
 <protocol type="pbcast.STABLE"/>
 <protocol type="pbcast.GMS"/>
 <protocol type="MFC"/>
 <protocol type="FRAG3"/>
 </stack>
[...]
</subsystem>

APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID

343

APPENDIX B. HOTROD.PROPERTIES

B.1. HOTROD.PROPERTIES

The following is a list of parameters that may be used to configure the behavior of a
RemoteCacheManager. These elements are placed into the hotrod-client.properties file which is read
when starting the application.

Table B.1. Hotrod-Client Configuration Properties

Name Description

infinispan.client.hotrod.request_balancing_strategy For replicated (vs. distributed) Hot Rod server
clusters, the client balances requests to the servers
according to this strategy. Defaults to
org.infinispan.client.hotrod.impl.transport.tc
p.RoundRobinBalancingStrategy

infinispan.client.hotrod.server_list This is the initial list of Hot Rod servers to connect to,
specified in the following format:
host1:port1;host2:port2…​ At least one host:port must
be specified. Defaults to 127.0.0.1:11222.

infinispan.client.hotrod.force_return_values Whether or not to implicitly force return values for all
calls. Defaults to false.

infinispan.client.hotrod.tcp_no_delay Affects TCP NODELAY on the TCP stack. Defaults
to true.

infinispan.client.hotrod.tcp_keep_alive Affects TCP KEEPALIVE on the TCP stack. Defaults
to false.

infinispan.client.hotrod.ping_on_startup If true, a ping request is sent to a back end server in
order to fetch cluster’s topology. Defaults to true.

infinispan.client.hotrod.transport_factory Controls which tansport to use. Currently only the
TcpTransport is supported. Defaults to
org.infinispan.client.hotrod.impl.transport.tc
p.TcpTransportFactory.

infinispan.client.hotrod.marshaller Allows you to specify a custom
org.infinispan.marshall.Marshaller
implementation to serialize and deserialize user
objects. For portable serialization payloads, you
should configure the marshaller to be
org.infinispan.client.hotrod.marshall.ProtoStr
eamMarshaller. Defaults to
org.infinispan.marshall.jboss.GenericJBoss
Marshaller.

Red Hat Data Grid 7.2 Administration and Configuration Guide

344

infinispan.client.hotrod.async_executor_factory Allows you to specify a custom asynchronous
executor for async calls. Defaults to
org.infinispan.client.hotrod.impl.async.Defau
ltAsyncExecutorFactory.

infinispan.client.hotrod.default_executor_factory.poo
l_size

If the default executor is used, this configures the
number of threads to initialize the executor with.
Defaults to 10.

infinispan.client.hotrod.default_executor_factory.que
ue_size

If the default executor is used, this configures the
queue size to initialize the executor with. Defaults to
100000.

infinispan.client.hotrod.hash_function_impl.1 This specifies the version of the hash function and
consistent hash algorithm in use, and is closely tied
with the HotRod server version used. By default it
uses the hash function specified by the server in the
responses as indicated in
org.infinispan.client.hotrod.impl.consistenth
ash.ConsistentHashFactory.

infinispan.client.hotrod.key_size_estimate This hint allows sizing of byte buffers when serializing
and deserializing keys, to minimize array resizing.
Defaults to 64.

infinispan.client.hotrod.value_size_estimate This hint allows sizing of byte buffers when serializing
and deserializing values, to minimize array resizing.
Defaults to 512.

infinispan.client.hotrod.socket_timeout This property defines the maximum socket read
timeout before giving up waiting for bytes from the
server. Defaults to 60000 (60 seconds).

infinispan.client.hotrod.protocol_version This property defines the protocol version that this
client should use. Defaults to 2.0.

infinispan.client.hotrod.connect_timeout This property defines the maximum socket connect
timeout before giving up connecting to the server.
Defaults to 60000 (60 seconds).

infinispan.client.hotrod.max_retries This property defines the maximum number of retries
in case of a recoverable error. A valid value should be
greater or equals to 0 (zero). Zero mean no retry.
Defaults to 10.

Name Description

APPENDIX B. HOTROD.PROPERTIES

345

infinispan.client.hotrod.use_ssl This property defines if SSL is enabled. Defaults to
false.

infinispan.client.hotrod.key_store_file_name Specifies the filename of a keystore to use to create
the SSLContext. A key_store_password must
also be defined.

infinispan.client.hotrod.key_store_password Specifies the password needed to open the keystore.
A key_store_file_name must also be defined.

infinispan.client.hotrod.trust_store_file_name Specifies the filename of a truststore to use to
create the SSLContext. A
trust_store_password must also be defined.

infinispan.client.hotrod.trust_store_password Specified the password needed to open the
truststore. A trust_store_file_name must also be
defined.

Name Description

Red Hat Data Grid 7.2 Administration and Configuration Guide

346

APPENDIX C. CONNECTING WITH JCONSOLE

C.1. CONNECT TO JDG VIA JCONSOLE

JConsole is a JMX GUI that allows a user to connect to a JVM, either local or remote, to monitor the
JVM, its MBeans, and execute operations.

Add Management User to JBoss Data Grid

Before being able to connect to a remote JBoss Data Grid instance a user will need to be created; to
add a user execute the following steps on the remote instance.

1. Navigate to the bin directory

cd $JDG_HOME/bin

2. Execute the add-user.sh script.

./add-user.sh

3. Accept the default option of ManagementUser by pressing return.

4. Accept the default option of ManagementRealm by pressing return.

5. Enter the desired username. In this example jmxadmin will be used.

6. Enter and confirm the password.

7. Accept the default option of no groups by pressing return.

8. Confirm that the desired user will be added to the ManagementRealm by entering yes.

9. Enter no as this user will not be used for connections between processes.

10. The following image shows an example execution run.

Figure C.1. Execution of add-user.sh

Binding the Management Interface

By default JBoss Data Grid will start with the management interface binding to 127.0.0.1. In order to
connect remotely this interface must be bound to an IP address that is visible by the network. Either of
the following options will correct this:

Option 1: Runtime - By adjusting the jboss.bind.address.management property on startup a

APPENDIX C. CONNECTING WITH JCONSOLE

347

Option 1: Runtime - By adjusting the jboss.bind.address.management property on startup a
new IP address can be specified. In the following example JBoss Data Grid is starting with this
bound to 192.168.122.5:

./standalone.sh ... -Djboss.bind.address.management=192.168.122.5

Option 2: Configuration - Adjust the jboss.bind.address.management in the configuration
file. This is found in the interfaces subsystem. A snippet of the configuration file, with the IP
adjusted to 192.168.122.5, is provided below:

<interfaces>
 <interface name="management">
 <inet-address value="${jboss.bind.address.management:192.168.122.5}"/>
 </interface>
 [...]
</interface>

Running JConsole

A jconsole.sh script is provided in the $JDG_HOME/bin directory. Executing this script will launch
JConsole.

Connecting to a remote JBoss Data Grid instance using JConsole.

1. Execute the $JDG_HOME/bin/jconsole.sh script. This will result in the following window
appearing:

Figure C.2. JConsole

Red Hat Data Grid 7.2 Administration and Configuration Guide

348

Figure C.2. JConsole

2. Select Remote Process.

3. Enter service:jmx:remote://$IP:9990 in the text area.

4. Enter the username and password, created from the add-user.sh script.

5. Click Connect to initiate the connection.

6. Once connected ensure that the cache-related nodes may be viewed. The following screenshot
shows such a node.

Figure C.3. JConsole: Showing a Cache

APPENDIX C. CONNECTING WITH JCONSOLE

349

Figure C.3. JConsole: Showing a Cache

Red Hat Data Grid 7.2 Administration and Configuration Guide

350

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

D.1. ACTIVATION

org.infinispan.eviction.ActivationManagerImpl

Activates entries that have been passivated to the CacheStore by loading the entries into memory.

Table D.1. Attributes

Name Description Type Writable

activations Number of activation
events.

String No

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

Table D.2. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.2. CACHE

org.infinispan.CacheImpl

The Cache component represents an individual cache instance.

Table D.3. Attributes

Name Description Type Writable

cacheName Returns the cache name. String No

cacheStatus Returns the cache
status.

String No

configurationAsProperti
es

Returns the cache
configuration in form of
properties.

Properties No

version Returns the version of
Infinispan

String No

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

351

cacheAvailability Returns the cache
availability

String Yes

Name Description Type Writable

Table D.4. Operations

Name Description Signature

start Starts the cache. void start()

stop Stops the cache. void stop()

clear Clears the cache. void clear()

D.3. CACHECONTAINERSTATS

org.infinispan.stats.impl.CacheContainerStatsImpl

The CacheContainerStats component contains statistics such as timings, hit/miss ratio, and operation
information.

Table D.5. Attributes

Name Description Type Writable

averageReadTime Cache container total
average number of
milliseconds for all read
operations in this cache
container.

long No

averageReadTimeNanos Cache container total
average number of
nanoseconds for all read
operations in this cache
container.

long No

averageRemoveTime Cache container total
average number of
milliseconds for all
remove operations in
this cache container.

long No

averageRemoveTimeNa
nos

Cache container total
average number of
nanoseconds for all
remove operations in
this cache container.

long No

Red Hat Data Grid 7.2 Administration and Configuration Guide

352

averageWriteTime Cache container total
average number of
milliseconds for all write
operations in this cache
container.

long No

averageWriteTimeNano
s

Cache container total
average number of
nanoseconds for all write
operations in this cache
container.

long No

currentNumberOfEntrie
sInMemory

Total number of entries
that are currently in
memory for all caches in
this cache container.

int No

dataMemoryUsed Amount of memory, in
bytes, allocated for a
cache container for
entries when eviction is
enabled.

long No

evictions Cache container total
number of cache
eviction operations.

long No

hitRatio Cache container total
percentage
hit/(hit+miss) ratio for
this cache.

double No

hits Cache container total
number of cache
attribute hits.

long No

misses Cache container total
number of cache
attribute misses.

long No

numberOfEntries Cache container total
number of entries
currently in all caches
from this cache
container.

int No

Name Description Type Writable

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

353

offHeapMemoryUsed Amount of off-heap
memory, in bytes, that
this cache container
uses.

long No

readWriteRatio Cache container
read/writes ratio in all
caches from this cache
container.

double No

removeHits Cache container total
number of removal hits.

double No

removeMisses Cache container total
number of cache
removals where keys
were not found.

long No

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

stores Cache container total
number of cache
attribute put operations.

long No

timeSinceReset Number of seconds
since the statistics were
reset for the cache
container.

long No

Name Description Type Writable

D.4. CACHELOADER

org.infinispan.interceptors.CacheLoaderInterceptor

This component loads entries from a CacheStore into memory.

Table D.6. Attributes

Name Description Type Writable

cacheLoaderLoads Number of entries
loaded from the cache
store.

long No

Red Hat Data Grid 7.2 Administration and Configuration Guide

354

cacheLoaderMisses Number of entries that
did not exist in cache
store.

long No

stores Returns a collection of
cache loader types
which are configured
and enabled.

Collection No

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

Name Description Type Writable

Table D.7. Operations

Name Description Signature

disableStore Disable all cache loaders of a
given type, where type is a fully
qualified class name of the cache
loader to disable.

void disableStore(String
storeType)

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.5. CACHEMANAGER

org.infinispan.manager.DefaultCacheManager

The CacheManager component acts as a manager, factory, and container for caches in the system.

Table D.8. Attributes

Name Description Type Writable

cacheManagerStatus The status of the cache
manager instance.

String No

clusterMembers Lists members in the
cluster.

String No

clusterName Cluster name. String No

clusterSize Size of the cluster in the
number of nodes.

int No

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

355

createdCacheCount The total number of
created caches,
including the default
cache.

String No

definedCacheCount The total number of
defined caches,
excluding the default
cache.

String No

definedCacheNames The defined cache
names and their
statuses. The default
cache is not included in
this representation.

String No

name The name of this cache
manager.

String No

nodeAddress The network address
associated with this
instance.

String No

physicalAddresses The physical network
addresses associated
with this instance.

String No

runningCacheCount The total number of
running caches,
including the default
cache.

String No

version Infinispan version. String No

globalConfigurationAsPr
operties

Global configuration
properties

Properties No

Name Description Type Writable

Table D.9. Operations

Name Description Signature

startCache Starts the default cache
associated with this cache
manager.

void startCache()

Red Hat Data Grid 7.2 Administration and Configuration Guide

356

startCache Starts a named cache from this
cache manager.

void startCache (String p0)

Name Description Signature

D.6. CACHESTORE

org.infinispan.interceptors.CacheWriterInterceptor

The CacheStore component stores entries to a CacheStore from memory.

Table D.10. Attributes

Name Description Type Writable

writesToTheStores Number of writes to the
store.

long No

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

Table D.11. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.7. CLUSTERCACHESTATS

org.infinispan.stats.impl.ClusterCacheStatsImpl

The ClusterCacheStats component contains statistics such as timings, hit/miss ratio, and operation
information for the whole cluster.

Table D.12. Attributes

Name Description Type Writable

activations The total number of
activations in the cluster.

long No

averageReadTime Cluster-wide total
average number of
milliseconds for a read
operation on the cache.

long No

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

357

averageReadTimeNanos Cluster-wide total
average number of
nanoseconds for a read
operation on the cache.

long No

averageRemoveTime Cluster-wide total
average number of
milliseconds for a
remove operation in the
cache.

long No

averageRemoveTimeNa
nos

Cluster-wide total
average number of
nanoseconds for a
remove operation in the
cache.

long No

averageWriteTime Cluster-wide average
number of milliseconds
for a write operation in
the cache.

long No

averageWriteTimeNano
s

Cluster-wide average
number of nanoseconds
for a write operation in
the cache.

long No

cacheLoaderLoads The total number of
cacheloader load
operations in the cluster.

long No

cacheLoaderMisses The total number of
cacheloader load misses
in the cluster.

long No

currentNumberOfEntrie
sInMemory

Cluster-wide total
number of entries
currently stored in
memory.

int No

dataMemoryUsed Amount of memory, in
bytes, allocated across
the cluster for entries in
the cache when eviction
is enabled.

long No

evictions Cluster-wide total
number of cache
eviction operations.

long No

Name Description Type Writable

Red Hat Data Grid 7.2 Administration and Configuration Guide

358

hitRatio Cluster-wide total
percentage
hit/(hit+miss) ratio for
this cache.

double No

hits Cluster-wide total
number of cache hits.

long No

invalidations The total number of
invalidations in the
cluster.

long No

misses Cluster-wide total
number of cache
attribute misses.

long No

numberOfEntries Cluster-wide total
number of entries
currently in the cache.

int No

numberOfLocksAvailabl
e

Total number of
exclusive locks available
in the cluster.

int No

numberOfLocksHeld The total number of
locks held in the cluster.

int No

offHeapMemoryUsed Cluster-wide amount of
off-heap memory, in
bytes, that this cache
uses.

long No

passivations The total number of
passivations in the
cluster.

long No

readWriteRatio Cluster-wide
read/writes ratio for the
cache.

double No

removeHits Cluster-wide total
number of cache
removal hits.

double No

removeMisses Cluster-wide total
number of cache
removals where keys
were not found.

long No

Name Description Type Writable

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

359

staleStatsThreshold Returns the threshold
for refreshing cluster-
wide stats in
milliseconds.

long Yes

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

storeWrites The total number of
cachestore store
operations in the cluster.

long No

stores Cluster-wide total
number of cache
attribute put operations.

long No

timeSinceReset Number of seconds
since the cluster-wide
statistics were last reset.

long No

timeSinceStart Number of seconds
since the first cache
node started.

long No

Name Description Type Writable

Table D.13. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.8. CLUSTERCONTAINERSTATS

org.infinispan.stats.impl.ClusterContainerStatsImpl

The ClusterContainerStats component contains statistics on Java Virtual Machines (JVM) memory for
the whole cluster.

Table D.14. Attributes

Name Description Type Writable

timeSinceReset Number of seconds
since the cluster-wide
statistics were last reset.

long No

Red Hat Data Grid 7.2 Administration and Configuration Guide

360

memoryAvailable Amount of free memory,
in bytes, for JVMs
across the cluster.

long No

memoryMax Maximum amount of
memory, in bytes, that
JVMs across the cluster
will attempt to use.

long No

memoryTotal Total amount of
memory, in bytes, in
JVMs across the cluster.

long No

memoryUsed Amount of memory, in
bytes, used by JVMs
across the cluster.

long No

staleStatsThreshold Returns the threshold
for refreshing cluster-
wide stats in
milliseconds.

long Yes

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

Name Description Type Writable

Table D.15. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.9. DEADLOCKDETECTINGLOCKMANAGER

org.infinispan.util.concurrent.locks.DeadlockDetectingLockManager

This component provides information about the number of deadlocks that were detected.

Table D.16. Attributes

Name Description Type Writable

detectedLocalDeadlock
s

Number of local
transactions that were
rolled back due to
deadlocks.

long No

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

361

detectedRemoteDeadlo
cks

Number of remote
transactions that were
rolled back due to
deadlocks.

long No

overlapWithNotDeadloc
kAwareLockOwners

Number of situations
when we try to
determine a deadlock
and the other lock owner
is NOT a transaction. In
this scenario we cannot
run the deadlock
detection mechanism.

long No

totalNumberOfDetecte
dDeadlocks

Total number of local
detected deadlocks.

long No

concurrencyLevel The concurrency level
that the MVCC Lock
Manager has been
configured with.

int No

numberOfLocksAvailabl
e

The number of exclusive
locks that are available.

int No

numberOfLocksHeld The number of exclusive
locks that are held.

int No

Name Description Type Writable

Table D.17. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.10. DISTRIBUTIONMANAGER

org.infinispan.distribution.DistributionManagerImpl

The DistributionManager component handles the distribution of content across a cluster.

NOTE

The DistrubutionManager component is only available in clustered mode.

Table D.18. Operations

Red Hat Data Grid 7.2 Administration and Configuration Guide

362

Name Description Signature

isAffectedByRehash Determines whether a given key is
affected by an ongoing rehash.

boolean
isAffectedByRehash(Object p0)

isLocatedLocally Indicates whether a given key is
local to this instance of the cache.
Only works with String keys.

boolean isLocatedLocally(String
p0)

locateKey Locates an object in a cluster.
Only works with String keys.

List locateKey(String p0)

D.11. INTERPRETER

org.infinispan.cli.interpreter.Interpreter

The Interpreter component executes command line interface (CLI operations).

Table D.19. Attributes

Name Description Type Writable

cacheNames Retrieves a list of caches
for the cache manager.

String[] No

Table D.20. Operations

Name Description Signature

createSessionId Creates a new interpreter session. String createSessionId(String
cacheName)

execute Parses and executes IspnCliQL
statements.

String execute(String p0, String
p1)

D.12. INVALIDATION

org.infinispan.interceptors.InvalidationInterceptor

The Invalidation component invalidates entries on remote caches when entries are written locally.

Table D.21. Attributes

Name Description Type Writable

invalidations Number of invalidations. long No

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

363

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

Name Description Type Writable

Table D.22. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.13. LOCKMANAGER

org.infinispan.util.concurrent.locks.LockManagerImpl

The LockManager component handles MVCC locks for entries.

Table D.23. Attributes

Name Description Type Writable

concurrencyLevel The concurrency level
that the MVCC Lock
Manager has been
configured with.

int No

numberOfLocksAvailabl
e

The number of exclusive
locks that are available.

int No

numberOfLocksHeld The number of exclusive
locks that are held.

int No

D.14. LOCALTOPOLOGYMANAGER

org.infinispan.topology.LocalTopologyManagerImpl

The LocalTopologyManager component controls the cache membership and state transfer in Red Hat
JBoss Data Grid.

NOTE

The LocalTopologyManager component is only available in clustered mode.

Table D.24. Attributes

Red Hat Data Grid 7.2 Administration and Configuration Guide

364

Name Description Type Writable

rebalancingEnabled If false, newly started
nodes will not join the
existing cluster nor will
the state be transferred
to them. If any of the
current cluster members
are stopped when
rebalancing is disabled,
the nodes will leave the
cluster but the state will
not be rebalanced
among the remaining
nodes. This will result in
fewer copies than
specified by the owners
attribute until
rebalancing is enabled
again.

boolean Yes

clusterAvailability If AVAILABLE the
node is currently
operating regularly. If
DEGRADED then data
can not be safely
accessed due to either a
network split, or
successive nodes
leaving.

String No

D.15. MASSINDEXER

org.infinispan.query.MassIndexer

The MassIndexer component rebuilds the index using cached data.

Table D.25. Operations

Name Description Signature

start Starts rebuilding the index. void start()

NOTE

This operation is available only for caches with indexing enabled. For more information,
see the Red Hat JBoss Data Grid Developer Guide

D.16. PASSIVATION

org.infinispan.eviction.PassivationManager

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

365

The Passivation component handles the passivation of entries to a CacheStore on eviction.

Table D.26. Attributes

Name Description Type Writable

passivations Number of passivation
events.

String No

statisticsEnabled Enables or disables the
gathering of statistics by
this component

boolean Yes

Table D.27. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.17. RECOVERYADMIN

org.infinispan.transaction.xa.recovery.RecoveryAdminOperations

The RecoveryAdmin component exposes tooling for handling transaction recovery.

Table D.28. Operations

Name Description Signature

forceCommit Forces the commit of an in-doubt
transaction.

String forceCommit(long p0)

forceCommit Forces the commit of an in-doubt
transaction

String forceCommit(int p0, byte[]
p1, byte[] p2)

forceRollback Forces the rollback of an in-doubt
transaction.

String forceRollback(long p0)

forceRollback Forces the rollback of an in-doubt
transaction

String forceRollback(int p0,
byte[] p1, byte[] p2)

forget Removes recovery info for the
given transaction.

String forget(long p0)

forget Removes recovery info for the
given transaction.

String forget(int p0, byte[] p1,
byte[] p2)

Red Hat Data Grid 7.2 Administration and Configuration Guide

366

showInDoubtTransactions Shows all the prepared
transactions for which the
originating node crashed.

String
showInDoubtTransactions()

Name Description Signature

D.18. ROLLINGUPGRADEMANAGER

org.infinispan.upgrade.RollingUpgradeManager

The RollingUpgradeManager component handles the control hooks in order to migrate data from one
version of Red Hat JBoss Data Grid to another.

Table D.29. Operations

Name Description Signature

disconnectSource Disconnects the target cluster
from the source cluster according
to the specified migrator.

void disconnectSource(String p0)

recordKnownGlobalKeyset Dumps the global known keyset
to a well-known key for retrieval
by the upgrade process.

void recordKnownGlobalKeyset()

synchronizeData Synchronizes data from the old
cluster to this using the specified
migrator.

long synchronizeData(String p0)

D.19. RPCMANAGER

org.infinispan.remoting.rpc.RpcManagerImpl

The RpcManager component manages all remote calls to remote cache instances in the cluster.

NOTE

The RpcManager component is only available in clustered mode.

Table D.30. Attributes

Name Description Type Writable

averageReplicationTime The average time spent
in the transport layer, in
milliseconds.

long No

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

367

committedViewAsString Retrieves the committed
view.

String No

pendingViewAsString Retrieves the pending
view.

String No

replicationCount Number of successful
replications.

long No

replicationFailures Number of failed
replications.

long No

successRatio Successful replications
as a ratio of total
replications.

String No

successRatioFloatingPoi
nt

Successful replications
as a ratio of total
replications in numeric
double format.

double No

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

Name Description Type Writable

Table D.31. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

setStatisticsEnabled Whether statistics should be
enabled or disabled (true/false)

void
setStatisticsEnabled(boolean
enabled)

D.20. STATETRANSFERMANAGER

org.infinispan.statetransfer.StateTransferManager

The StateTransferManager component handles state transfer in Red Hat JBoss Data Grid.

NOTE

The StateTransferManager component is only available in clustered mode.

Red Hat Data Grid 7.2 Administration and Configuration Guide

368

Table D.32. Attributes

Name Description Type Writable

joinComplete If true, the cluster
topology is updated to
include the node. If
false, the node is not yet
joined to the cluster.

boolean No

stateTransferInProgr
ess

Checks whether there is
a pending inbound state
transfer on this node.

boolean No

rebalancingStatus Checks if there is a state
transfer in progress for
the cache.

String No

D.21. STATISTICS

org.infinispan.interceptors.CacheMgmtInterceptor

The CacheMgmtInterceptor component handles general statistics such as timings, hit/miss ratio, etc.

Table D.33. Attributes

Name Description Type Writable

averageReadTime Average number of
milliseconds for a read
operation on the cache.

long No

averageReadTimeNanos Average number of
nanoseconds for a read
operation on the cache.

long No

averageRemoveTime Average number of
milliseconds for a
remove operation in the
cache

long No

averageRemoveTimeNa
nos

Average number of
nanoseconds for a
remove operation in the
cache

long No

averageWriteTime Average number of
milliseconds for a write
operation in the cache.

long No

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

369

averageWriteTimeNano
s

Average number of
nanoseconds for a write
operation in the cache.

long No

dataMemoryUsed Amount of memory, in
bytes, allocated for the
cache entries when
eviction is enabled.

long No

elapsedTime Number of seconds
since cache started.

long No

evictions Number of cache
eviction operations.

long No

hitRatio Percentage
hit/(hit+miss) ratio for
the cache.

double No

hits Number of cache
attribute hits.

long No

misses Number of cache
attribute misses.

long No

numberOfEntries Number of entries
currently in the cache.

int No

numberOfEntriesInMem
ory

Total number of entries
that are currently in
memory excluding
expired entries.

int No

offHeapMemoryUsed Amount of off-heap
memory, in bytes, that is
allocated.

long No

readWriteRatio Read/writes ratio for the
cache.

double No

removeHits Number of cache
removal hits.

long No

removeMisses Number of cache
removals where keys
were not found.

long No

Name Description Type Writable

Red Hat Data Grid 7.2 Administration and Configuration Guide

370

requiredMinimumNumb
erOfNodes

Number of nodes that
are required to
guarantee data
consistency.

int No

stores Number of cache
attribute PUT
operations.

long No

timeSinceReset Number of seconds
since the cache
statistics were last reset.

long No

timeSinceStart Number of seconds
since the cache started.

long No

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

Name Description Type Writable

Table D.34. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.22. TRANSACTIONS

org.infinispan.interceptors.TxInterceptor

The Transactions component manages the cache’s participation in JTA transactions.

Table D.35. Attributes

Name Description Type Writable

commits Number of transaction
commits performed
since last reset.

long No

prepares Number of transaction
prepares performed
since last reset.

long No

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

371

rollbacks Number of transaction
rollbacks performed
since last reset.

long No

statisticsEnabled Enables or disables the
gathering of statistics by
this component.

boolean Yes

Name Description Type Writable

Table D.36. Operations

Name Description Signature

resetStatistics Resets statistics gathered by this
component.

void resetStatistics()

D.23. TRANSPORT

org.infinispan.server.core.transport.NettyTransport

The Transport component manages read and write operations to and from the server.

Table D.37. Attributes

Name Description Type Writable

hostName Returns the host to
which the transport
binds.

String No

idleTimeout Returns the idle timeout. String No

numberOfGlobalConnec
tions

Returns a count of
active connections in
the cluster. This
operation will make
remote calls to
aggregate results, so
latency may have an
impact on the speed of
calculation for this
attribute.

Integer false

numberOfLocalConnect
ions

Returns a count of
active connections this
server.

Integer No

Red Hat Data Grid 7.2 Administration and Configuration Guide

372

numberWorkerThreads Returns the number of
worker threads.

String No

port Returns the port to
which the transport
binds.

String receiveBufferSize

Returns the receive
buffer size.

String No sendBufferSize

Returns the send buffer
size.

String No totalBytesRead

Returns the total
number of bytes read by
the server from clients,
including both protocol
and user information.

String No totalBytesWritten

Returns the total
number of bytes written
by the server back to
clients, including both
protocol and user
information.

String No tcpNoDelay

Name Description Type Writable

D.24. XSITEADMIN

org.infinispan.xsite.XSiteAdminOperations

The XSiteAdmin component exposes tooling for backing up data to remote sites.

Table D.38. Operations

Name Description Signature

bringSiteOnline Brings the given site back online
on all the cluster.

String bringSiteOnline(String p0)

amendTakeOffline Amends the values for
'TakeOffline' functionality on all
the nodes in the cluster.

String amendTakeOffline(String
p0, int p1, long p2)

getTakeOfflineAfterFailures Returns the value of the
'afterFailures' for the 'TakeOffline'
functionality.

String
getTakeOfflineAfterFailures(Strin
g p0)

APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID

373

getTakeOfflineMinTimeToWait Returns the value of the
'minTimeToWait' for the
'TakeOffline' functionality.

String
getTakeOfflineMinTimeToWait(S
tring p0)

setTakeOfflineAfterFailures Amends the values for
'afterFailures' for the 'TakeOffline'
functionality on all the nodes in
the cluster.

String
setTakeOfflineAfterFailures(Strin
g p0, int p1)

setTakeOfflineMinTimeToWait Amends the values for
'minTimeToWait' for the
'TakeOffline' functionality on all
the nodes in the cluster.

String
setTakeOfflineMinTimeToWait(St
ring p0, long p1)

siteStatus Check whether the given backup
site is offline or not.

String siteStatus(String p0)

status Returns the status(offline/online)
of all the configured backup sites.

String status()

takeSiteOffline Takes this site offline in all nodes
in the cluster.

String takeSiteOffline(String p0)

pushState Starts the cross-site state
transfer to the site name
specified.

String pushState(String p0)

cancelPushState Cancels the cross-site state
transfer to the site name
specified.

String cancelPushState(String
p0)

getSendingSiteName Returns the site name that is
pushing state to this site.

String getSendingSiteName()

cancelReceiveState Restores the site to the normal
state. It is used when the link
between the sites is broken during
the state transfer.

String cancelReceiveState(String
p0)

getPushStateStatus Returns the status of completed
and running cross-site state
transfer.

String getPushStateStatus()

clearPushStateStatus Clears the status of completed
cross-site state transfer.

String clearPushStateStatus()

Name Description Signature

Red Hat Data Grid 7.2 Administration and Configuration Guide

374

APPENDIX E. CONFIGURATION RECOMMENDATIONS

E.1. TIMEOUT VALUES

Table E.1. Timeout Value Recommendations for JBoss Data Grid

Timeout Value Parent Element Default Value Recommended Value

distributedSyncTimeout transport 240,000 (4 minutes) Same as default

lockAcquisitionTimeout locking 10,000 (10 seconds) Same as default

cacheStopTimeout transaction 30,000 (30 seconds) Same as default

completedTxTimeout transaction 60,000 (60 seconds) Same as default

replTimeout sync 15,000 (15 seconds) Same as default

timeout stateTransfer 240,000 (4 minutes) Same as default

timeout backup 10,000 (10 seconds) Same as default

flushLockTimeout async 1 (1 millisecond) Same as default. Note
that this value applies to
asynchronous cache
stores, but not
asynchronous caches.

shutdownTimeout async 25,000 (25 seconds) Same as default. Note
that this value applies to
asynchronous cache
stores, but not
asynchronous caches.

pushStateTimeout singletonStore 10,000 (10 seconds) Same as default.

backup replicationTimeout 10,000 (10 seconds) remoteCallTimeout

APPENDIX E. CONFIGURATION RECOMMENDATIONS

375

APPENDIX F. PERFORMANCE RECOMMENDATIONS

F.1. CONCURRENT STARTUP FOR LARGE CLUSTERS

When starting a large number of instances, each managing a large number of caches, in parallel this may
take a while as rebalancing attempts to distribute the data evenly as each node joins the cluster. To limit
the number of rebalancing attempts made during the initial startup of the cluster disable rebalancing
temporarily by following the below steps:

1. Start the first node in the cluster.

2. Set JMX attribute
jboss.infinispan/CacheManager/"clustered"/LocalTopologyManager/rebalancingEnabled
to false, as seen in LocalTopologyManager.

3. Start the remaining nodes in the cluster.

4. Re-enable the JMX attribute
jboss.infinispan/CacheManager/"clustered"/LocalTopologyManager/rebalancingEnabled
by setting this value back to true, as seen in LocalTopologyManager.

Red Hat Data Grid 7.2 Administration and Configuration Guide

376

APPENDIX G. REFERENCES

G.1. ABOUT CONSISTENCY

Consistency is the policy that states whether it is possible for a data record on one node to vary from
the same data record on another node.

For example, due to network speeds, it is possible that a write operation performed on the master node
has not yet been performed on another node in the store, a strong consistency guarantee will ensure
that data which is not yet fully replicated is not returned to the application.

G.2. ABOUT CONSISTENCY GUARANTEE

Despite the locking of a single owner instead of all owners, Red Hat JBoss Data Grid’s consistency
guarantee remains intact. Consider the following situation:

1. If Key K is hashed to nodes {A,B} and transaction TX1 acquires a lock for K on, for example,
node A and

2. If another cache access occurs on node B, or any other node, and TX2 attempts to lock K, this
access attempt fails with a timeout because the transaction TX1 already holds a lock on K.

This lock acquisition attempt always fails because the lock for key K is always deterministically acquired
on the same node of the cluster, irrespective of the transaction’s origin.

G.3. ABOUT JBOSS CACHE

Red Hat JBoss Cache is a tree-structured, clustered, transactional cache that can also be used in a
standalone, non-clustered environment. It caches frequently accessed data in-memory to prevent data
retrieval or calculation bottlenecks that occur while enterprise features such as Java Transactional API
(JTA) compatibility, eviction and persistence are provided.

JBoss Cache is the predecessor to Infinispan and Red Hat JBoss Data Grid.

G.4. ABOUT RELAY2

The RELAY protocol bridges two remote clusters by creating a connection between one node in each
site. This allows multicast messages sent out in one site to be relayed to the other and vice versa.

JGroups includes the RELAY2 protocol, which is used for communication between sites in Red Hat
JBoss Data Grid’s Cross-Site Replication.

The RELAY2 protocol works similarly to RELAY but with slight differences. Unlike RELAY , the RELAY2
protocol:

connects more than two sites.

connects sites that operate autonomously and are unaware of each other.

offers both unicasts and multicast routing between sites.

G.5. ABOUT RETURN VALUES

Values returned by cache operations are referred to as return values. In Red Hat JBoss Data Grid, these

APPENDIX G. REFERENCES

377

Values returned by cache operations are referred to as return values. In Red Hat JBoss Data Grid, these
return values remain reliable irrespective of which cache mode is employed and whether synchronous or
asynchronous communication is used.

G.6. ABOUT RUNNABLE INTERFACES

A Runnable Interface (also known as a Runnable) declares a single run() method, which executes the
active part of the class' code. The Runnable object can be executed in its own thread after it is passed
to a thread constructor.

G.7. ABOUT TWO PHASE COMMIT (2PC)

A Two Phase Commit protocol (2PC) is a consensus protocol used to atomically commit or roll back
distributed transactions. It is successful when faced with cases of temporary system failures, including
network node and communication failures, and is therefore widely utilized.

G.8. ABOUT KEY-VALUE PAIRS

A key-value pair (KVP) is a set of data consisting of a key and a value.

A key is unique to a particular data entry. It consists of entry data attributes from the related
entry.

A value is the data assigned to and identified by the key.

G.9. REQUESTING A FULL BYTE ARRAY

How can I request the Red Hat JBoss Data Grid return a full byte array instead of partial
byte array contents?

As a default, JBoss Data Grid only partially prints byte arrays to logs to avoid unnecessarily printing large
byte arrays. This occurs when either:

JBoss Data Grid caches are configured for lazy deserialization. Lazy deserialization is not
available in JBoss Data Grid’s Remote Client-Server mode.

A Memcached or Hot Rod server is run.

In such cases, only the first ten positions of the byte array display in the logs. To display the complete
contents of the byte array in the logs, pass the -Dinfinispan.arrays.debug=true system property at
start up.

Partial Byte Array Log

2010-04-14 15:46:09,342 TRACE [ReadCommittedEntry] (HotRodWorker-1-1) Updating entry
(key=CacheKey{data=ByteArray{size=19, hashCode=1b3278a,
array=[107, 45, 116, 101, 115, 116, 82, 101, 112, 108, ..]}}
removed=false valid=true changed=true created=true value=CacheValue{data=ByteArray{size=19,
array=[118, 45, 116, 101, 115, 116, 82, 101, 112, 108, ..]},
version=281483566645249}]
And here's a log message where the full byte array is shown:
2010-04-14 15:45:00,723 TRACE [ReadCommittedEntry] (Incoming-2,Infinispan-Cluster,eq-6834)
Updating entry
(key=CacheKey{data=ByteArray{size=19, hashCode=6cc2a4,

Red Hat Data Grid 7.2 Administration and Configuration Guide

378

array=[107, 45, 116, 101, 115, 116, 82, 101, 112, 108, 105, 99, 97, 116, 101, 100, 80, 117, 116]}}
removed=false valid=true changed=true created=true value=CacheValue{data=ByteArray{size=19,
array=[118, 45, 116, 101, 115, 116, 82, 101, 112, 108, 105, 99, 97, 116, 101, 100, 80, 117, 116]},
version=281483566645249}]

APPENDIX G. REFERENCES

379

	Table of Contents
	PART I. INTRODUCTION
	CHAPTER 1. SETTING UP RED HAT JBOSS DATA GRID
	1.1. PREREQUISITES
	1.2. STEPS TO SET UP RED HAT JBOSS DATA GRID

	PART II. MANAGING JVM MEMORY
	CHAPTER 2. EVICTION AND EXPIRATION
	2.1. OVERVIEW OF EVICTION AND EXPIRATION
	2.2. CONFIGURING EVICTION
	2.2.1. Eviction Types
	2.2.2. Storage Types
	2.2.3. Adding the Memory Element
	2.2.4. Specifying the Storage Type
	2.2.5. Specifying the Eviction Type
	2.2.6. Setting the Cache Size
	2.2.7. Tuning the Off Heap Configuration
	2.2.8. Setting the Eviction Strategy
	2.2.8.1. Eviction Strategies

	2.2.9. Configuring Passivation

	2.3. CONFIGURING EXPIRATION
	2.3.1. Expiration Parameters
	2.3.2. Configuring Expiration
	2.3.3. Expiration Behavior

	PART III. MONITORING YOUR CACHE
	CHAPTER 3. SET UP LOGGING
	3.1. ABOUT LOGGING
	3.2. SUPPORTED APPLICATION LOGGING FRAMEWORKS
	3.2.1. Supported Application Logging Frameworks
	3.2.2. About JBoss Logging
	3.2.3. JBoss Logging Features

	3.3. BOOT LOGGING
	3.3.1. Boot Logging
	3.3.2. Configure Boot Logging
	3.3.3. Default Log File Locations

	3.4. LOGGING ATTRIBUTES
	3.4.1. About Log Levels
	3.4.2. Supported Log Levels
	3.4.3. About Log Categories
	3.4.4. About the Root Logger
	3.4.5. About Log Handlers
	3.4.6. Log Handler Types
	3.4.7. Selecting Log Handlers
	3.4.8. About Log Formatters

	3.5. LOGGING SAMPLE CONFIGURATIONS
	3.5.1. Logging Sample Configuration Location
	3.5.2. Sample XML Configuration for the Root Logger
	3.5.3. Sample XML Configuration for a Log Category
	3.5.4. Sample XML Configuration for a Console Log Handler
	3.5.5. Sample XML Configuration for a File Log Handler
	3.5.6. Sample XML Configuration for a Periodic Log Handler
	3.5.7. Sample XML Configuration for a Size Log Handler
	3.5.8. Sample XML Configuration for a Async Log Handler

	PART IV. SET UP CACHE MODES
	CHAPTER 4. CACHE MODES
	4.1. CACHE MODES
	4.2. ABOUT CACHE CONTAINERS
	4.3. LOCAL MODE
	4.3.1. Local Mode
	4.3.2. Configure Local Mode

	4.4. CLUSTERED MODES
	4.4.1. Clustered Modes
	4.4.2. Asynchronous and Synchronous Operations
	4.4.3. About Asynchronous Communications
	4.4.4. Cache Mode Troubleshooting
	4.4.4.1. Invalid Data in ReadExternal
	4.4.4.2. Cluster Physical Address Retrieval

	CHAPTER 5. SET UP DISTRIBUTION MODE
	5.1. ABOUT DISTRIBUTION MODE
	5.2. CONSISTENT HASHING IN DISTRIBUTION MODE
	5.3. LOCATING ENTRIES IN DISTRIBUTION MODE
	5.4. RETURN VALUES IN DISTRIBUTION MODE
	5.5. CONFIGURE DISTRIBUTION MODE
	5.6. SYNCHRONOUS AND ASYNCHRONOUS DISTRIBUTION

	CHAPTER 6. SET UP REPLICATION MODE
	6.1. ABOUT REPLICATION MODE
	6.2. OPTIMIZED REPLICATION MODE USAGE
	6.3. CONFIGURE REPLICATION MODE
	6.4. SYNCHRONOUS AND ASYNCHRONOUS REPLICATION
	6.4.1. Synchronous and Asynchronous Replication
	6.4.2. Troubleshooting Asynchronous Replication Behavior

	6.5. THE REPLICATION QUEUE
	6.5.1. The Replication Queue
	6.5.2. Replication Queue Usage

	6.6. ABOUT REPLICATION GUARANTEES
	6.7. REPLICATION TRAFFIC ON INTERNAL NETWORKS

	CHAPTER 7. SET UP INVALIDATION MODE
	7.1. ABOUT INVALIDATION MODE
	7.2. CONFIGURE INVALIDATION MODE
	7.3. SYNCHRONOUS/ASYNCHRONOUS INVALIDATION
	7.4. THE L1 CACHE AND INVALIDATION

	CHAPTER 8. STATE TRANSFER
	8.1. STATE TRANSFER
	8.2. NON-BLOCKING STATE TRANSFER
	8.3. SUPPRESS STATE TRANSFER VIA JMX
	8.4. THE REBALANCINGENABLED ATTRIBUTE

	PART V. ENABLING APIS
	CHAPTER 9. ENABLING APIS DECLARATIVELY
	9.1. ENABLING APIS DECLARATIVELY
	9.2. BATCHING API
	9.3. GROUPING API
	9.4. EXTERNALIZABLE API
	9.4.1. The Externalizable API
	9.4.2. Register the Advanced Externalizer (Declaratively)
	9.4.3. Configuring the Deserialization Whitelist
	9.4.4. Custom Externalizer ID Values
	9.4.4.1. Custom Externalizer ID Values
	9.4.4.2. Customize the Externalizer ID (Declaratively)

	CHAPTER 10. SET UP AND CONFIGURE THE INFINISPAN QUERY API
	10.1. SET UP INFINISPAN QUERY
	10.1.1. Infinispan Query Dependencies in Library Mode

	10.2. DIRECTORY PROVIDERS
	10.2.1. Directory Providers
	10.2.2. RAM Directory Provider
	10.2.3. Filesystem Directory Provider
	10.2.4. Infinispan Directory Provider

	10.3. CONFIGURE INDEXING
	10.3.1. Configure the Index in Remote Client-Server Mode
	10.3.2. Automatic Indexing
	10.3.3. Rebuilding the Index

	10.4. TUNING THE INDEX
	10.4.1. Near-Realtime Index Manager
	10.4.2. Tuning Infinispan Directory
	10.4.3. Per-Index Configuration

	CHAPTER 11. THE HEALTH CHECK API
	11.1. THE HEALTH CHECK API
	11.2. ACCESSING THE HEALTH API USING JMX
	11.3. ACCESSING THE HEALTH CHECK API USING THE CLI
	11.4. ACCESSING THE HEALTH CHECK API USING THE MANAGEMENT REST INTERFACE

	PART VI. REMOTE CLIENT-SERVER MODE INTERFACES
	CHAPTER 12. REMOTE CLIENT-SERVER MODE INTERFACES
	CHAPTER 13. THE HOT ROD INTERFACE
	13.1. ABOUT HOT ROD
	13.2. THE BENEFITS OF USING HOT ROD OVER MEMCACHED
	13.3. HOT ROD HASH FUNCTIONS
	13.4. THE HOT ROD INTERFACE CONNECTOR
	13.4.1. The Hot Rod Interface Connector
	13.4.2. Configure Hot Rod Connectors

	CHAPTER 14. THE REST INTERFACE
	14.1. THE REST INTERFACE
	14.2. THE REST INTERFACE CONNECTOR
	14.2.1. The REST Interface Connector
	14.2.2. Configure REST Connectors

	CHAPTER 15. THE MEMCACHED INTERFACE
	15.1. THE MEMCACHED INTERFACE
	15.2. ABOUT MEMCACHED SERVERS
	15.3. MEMCACHED STATISTICS
	15.4. THE MEMCACHED INTERFACE CONNECTOR
	15.4.1. The Memcached Interface Connector
	15.4.2. Configure Memcached Connectors

	PART VII. SET UP LOCKING FOR THE CACHE
	CHAPTER 16. LOCKING
	16.1. LOCKING
	16.2. CONFIGURE LOCKING (REMOTE CLIENT-SERVER MODE)
	16.3. CONFIGURE LOCKING (LIBRARY MODE)
	16.4. LOCKING TYPES
	16.4.1. About Optimistic Locking
	16.4.2. About Pessimistic Locking
	16.4.3. Pessimistic Locking Types
	16.4.4. Explicit Pessimistic Locking Example
	16.4.5. Implicit Pessimistic Locking Example
	16.4.6. Configure Locking Mode (Remote Client-Server Mode)
	16.4.7. Configure Locking Mode (Library Mode)

	16.5. LOCKING OPERATIONS
	16.5.1. About the LockManager
	16.5.2. About Lock Acquisition
	16.5.3. About Concurrency Levels

	CHAPTER 17. SET UP LOCK STRIPING
	17.1. ABOUT LOCK STRIPING
	17.2. CONFIGURE LOCK STRIPING (REMOTE CLIENT-SERVER MODE)
	17.3. CONFIGURE LOCK STRIPING (LIBRARY MODE)

	CHAPTER 18. SET UP ISOLATION LEVELS
	18.1. ABOUT ISOLATION LEVELS
	18.2. ABOUT READ_COMMITTED
	18.3. ABOUT REPEATABLE_READ

	PART VIII. SET UP AND CONFIGURE A CACHE STORE
	CHAPTER 19. CACHE STORES
	19.1. CACHE STORES
	19.2. CACHE LOADERS AND CACHE WRITERS
	19.3. CACHE STORE CONFIGURATION
	19.3.1. Configuring the Cache Store
	19.3.2. Configure the Cache Store using XML (Library Mode)
	19.3.3. About SKIP_CACHE_LOAD Flag
	19.3.4. About the SKIP_CACHE_STORE Flag
	19.3.5. About the SKIP_SHARED_CACHE_STORE Flag

	19.4. SHARED CACHE STORES
	19.4.1. Shared Cache Stores
	19.4.2. Invalidation Mode and Shared Cache Stores
	19.4.3. The Cache Store and Cache Passivation
	19.4.4. Application Cachestore Registration

	19.5. CONNECTION FACTORIES
	19.5.1. Connection Factories
	19.5.2. About ManagedConnectionFactory
	19.5.3. About SimpleConnectionFactory
	19.5.4. About PooledConnectionFactory

	CHAPTER 20. CACHE STORE IMPLEMENTATIONS
	20.1. CACHE STORES
	20.2. CACHE STORE COMPARISON
	20.3. CACHE STORE CONFIGURATION DETAILS (LIBRARY MODE)
	20.4. CACHE STORE CONFIGURATION DETAILS (REMOTE CLIENT-SERVER MODE)
	20.5. SINGLE FILE CACHE STORE
	20.5.1. Single File Cache Store
	20.5.2. Single File Store Configuration (Remote Client-Server Mode)
	20.5.3. Single File Store Configuration (Library Mode)
	20.5.4. Upgrade JBoss Data Grid Cache Stores

	20.6. LEVELDB CACHE STORE
	20.6.1. LevelDB Cache Store
	20.6.2. Configuring LevelDB Cache Store (Remote Client-Server Mode)
	20.6.3. LevelDB Cache Store Sample XML Configuration (Library Mode)
	20.6.4. Configure a LevelDB Cache Store Using JBoss Operations Network

	20.7. JDBC BASED CACHE STORES
	20.7.1. JDBC Based Cache Stores
	20.7.2. JdbcBinaryStores
	20.7.2.1. JdbcBinaryStores
	20.7.2.2. JdbcBinaryStore Configuration (Remote Client-Server Mode)
	20.7.2.3. JdbcBinaryStore Configuration (Library Mode)

	20.7.3. JdbcStringBasedStores
	20.7.3.1. JdbcStringBasedStores
	20.7.3.2. JdbcStringBasedStore Configuration (Remote Client-Server Mode)
	20.7.3.3. JdbcStringBasedStore Configuration (Library Mode)
	20.7.3.4. JdbcStringBasedStore Multiple Node Configuration (Remote Client-Server Mode)

	20.7.4. JdbcMixedStores
	20.7.4.1. JdbcMixedStores
	20.7.4.2. JdbcMixedStore Configuration (Remote Client-Server Mode)
	20.7.4.3. JdbcMixedStore Configuration (Library Mode)

	20.7.5. Cache Store Troubleshooting
	20.7.5.1. IOExceptions with JdbcStringBasedStore

	20.8. THE REMOTE CACHE STORE
	20.8.1. Remote Cache Stores
	20.8.2. Remote Cache Store Configuration (Remote Client-Server Mode)
	20.8.3. Remote Cache Store Configuration (Library Mode)
	20.8.4. Define the Outbound Socket for the Remote Cache Store

	20.9. JPA CACHE STORE
	20.9.1. JPA Cache Stores
	20.9.2. JPA Cache Store Sample XML Configuration (Library Mode)
	20.9.3. Storing Metadata in the Database
	20.9.4. Deploying JPA Cache Stores in Various Containers

	20.10. CASSANDRA CACHE STORE
	20.10.1. Cassandra Cache Store
	20.10.2. Enabling the Cassandra Cache Store
	20.10.3. Cassandra Cache Store Sample XML Configuration (Remote Client-Server Mode)
	20.10.4. Cassandra Cache Store Sample XML Configuration (Library Mode)
	20.10.5. Cassandra Configuration Parameters

	20.11. CUSTOM CACHE STORES
	20.11.1. Custom Cache Stores
	20.11.2. Custom Cache Store Maven Archetype
	20.11.3. Custom Cache Store Configuration (Remote Client-Server Mode)
	20.11.3.1. Custom Cache Store Configuration (Remote Client-Server Mode)
	20.11.3.2. Option 1: Add Custom Cache Store using deployments (Remote Client-Server Mode)
	20.11.3.3. Option 2: Add Custom Cache Store using the CLI (Remote Client-Server Mode)
	20.11.3.4. Option 3: Add Custom Cache Store using JON (Remote Client-Server Mode)

	20.11.4. Custom Cache Store Configuration (Library Mode)

	PART IX. SET UP PASSIVATION
	CHAPTER 21. ACTIVATION AND PASSIVATION MODES
	21.1. ACTIVATION AND PASSIVATION MODES
	21.2. PASSIVATION MODE BENEFITS
	21.3. CONFIGURE PASSIVATION
	21.4. EVICATION AND PASSIVATION
	21.4.1. Eviction and Passivation
	21.4.2. Eviction and Passivation Usage
	21.4.3. Cache Loader Behavior with Passivation Disabled vs Enabled
	21.4.4. Eviction Examples

	PART X. SET UP CACHE WRITING
	CHAPTER 22. CACHE WRITING MODES
	22.1. CACHE WRITING MODES
	22.2. WRITE-THROUGH CACHING
	22.2.1. Write-Through Caching
	22.2.2. Write-Through Caching Benefits and Disadvantages
	22.2.3. Write-Through Caching Configuration (Library Mode)

	22.3. WRITE-BEHIND CACHING
	22.3.1. Write-Behind Caching
	22.3.2. About Unscheduled Write-Behind Strategy
	22.3.3. Unscheduled Write-Behind Strategy Configuration (Remote Client-Server Mode)
	22.3.4. Unscheduled Write-Behind Strategy Configuration (Library Mode)

	PART XI. MONITOR CACHES AND CACHE MANAGERS
	CHAPTER 23. SET UP JAVA MANAGEMENT EXTENSIONS (JMX)
	23.1. ABOUT JAVA MANAGEMENT EXTENSIONS (JMX)
	23.2. USING JMX WITH RED HAT JBOSS DATA GRID
	23.3. JMX STATISTIC LEVELS
	23.4. ENABLING JMX FOR CACHE INSTANCES
	23.5. ENABLING JMX FOR CACHEMANAGERS
	23.6. DISABLING THE CACHESTORE VIA JMX WHEN USING ROLLING UPGRADES
	23.7. MULTIPLE JMX DOMAINS
	23.8. MBEANS
	23.8.1. MBeans
	23.8.2. Understanding MBeans
	23.8.3. Registering MBeans in Non-Default MBean Servers

	CHAPTER 24. SET UP JBOSS OPERATIONS NETWORK (JON)
	24.1. ABOUT JBOSS OPERATIONS NETWORK (JON)
	24.2. DOWNLOAD JBOSS OPERATIONS NETWORK (JON)
	24.2.1. Prerequisites for Installing JBoss Operations Network (JON)
	24.2.2. Download JBoss Operations Network
	24.2.3. Remote JMX Port Values
	24.2.4. Download JBoss Operations Network (JON) Plugin

	24.3. JBOSS OPERATIONS NETWORK SERVER INSTALLATION
	24.4. JBOSS OPERATIONS NETWORK AGENT
	24.5. JBOSS OPERATIONS NETWORK FOR REMOTE CLIENT-SERVER MODE
	24.5.1. JBoss Operations Network for Remote Client-Server Mode
	24.5.2. Installing the JBoss Operations Network Plug-in (Remote Client-Server Mode)

	24.6. JBOSS OPERATIONS NETWORK REMOTE-CLIENT SERVER PLUGIN
	24.6.1. JBoss Operations Network Plugin Metrics
	24.6.2. JBoss Operations Network Plugin Operations
	24.6.3. JBoss Operations Network Plugin Attributes
	24.6.4. Create a New Cache Using JBoss Operations Network (JON)

	24.7. JBOSS OPERATIONS NETWORK FOR LIBRARY MODE
	24.7.1. JBoss Operations Network for Library Mode
	24.7.2. Installing the JBoss Operations Network Plug-in (Library Mode)
	24.7.3. Monitoring of JBoss Data Grid Instances in Library Mode
	24.7.3.1. Prerequisites
	24.7.3.2. Manually Adding JBoss Data Grid Instances in Library Mode
	24.7.3.3. Monitor Custom Applications Using Library Mode Deployed On JBoss Enterprise Application Platform

	24.8. JBOSS OPERATIONS NETWORK PLUG-IN QUICKSTART
	24.9. OTHER MANAGEMENT TOOLS AND OPERATIONS
	24.9.1. Other Management Tools and Operations
	24.9.2. Accessing Data via URLs
	24.9.3. Limitations of Map Methods

	PART XII. RED HAT JBOSS DATA GRID WEB ADMINISTRATION
	CHAPTER 25. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE
	25.1. ABOUT JBOSS DATA GRID ADMINISTRATION CONSOLE
	25.2. RED HAT JBOSS DATA GRID ADMINISTRATION CONSOLE PREREQUISITES
	25.3. RED HAT JBOSS DATA GRID ADMINISTATION CONSOLE GETTING STARTED
	25.3.1. Red Hat JBoss Data Grid Administration Console Getting Started
	25.3.2. Adding Management User
	25.3.3. Logging in the JBoss Data Grid Administration Console

	25.4. DASHBOARD VIEW
	25.4.1. Dashboard View
	25.4.2. Cache Containers View
	25.4.3. Clusters View
	25.4.4. Status Events View

	25.5. CACHE ADMINISTRATION
	25.5.1. Adding a New Cache
	25.5.2. Editing Cache Configuration
	25.5.3. Cache Statistics and Properties View
	25.5.4. Enable and Disable Caches
	25.5.5. Cache Flush and Clear
	Flushing a Cache
	Clearing a Cache

	25.5.6. Server Tasks Execution
	25.5.7. Server Tasks
	25.5.7.1. New Server Task
	25.5.7.2. Server Tasks View

	25.6. CACHE CONTAINER CONFIGURATION
	25.6.1. Cache Container Configuration
	25.6.2. Defining Protocol Buffer Schema
	25.6.3. Transport Setting
	25.6.4. Defining Thread Pools
	25.6.5. Adding New Security Role
	25.6.6. Creating Cache Configuration Template

	25.7. CLUSTER ADMINISTRATION
	25.7.1. Cluster Nodes View
	25.7.2. Cluster Nodes Mismatch
	25.7.3. Cluster Rebalancing
	25.7.4. Cluster Partition Handling
	25.7.5. Cluster Events
	25.7.6. Adding Nodes
	25.7.7. Node Statistics and Properties View
	25.7.8. Node Performance Metrics View
	25.7.9. Disabling a Node
	25.7.10. Cluster Shutdown and Restart
	25.7.10.1. Cluster Shutdown
	25.7.10.2. Cluster Start

	PART XIII. SECURING DATA IN RED HAT JBOSS DATA GRID
	CHAPTER 26. INTRODUCTION
	26.1. SECURING DATA IN RED HAT JBOSS DATA GRID

	CHAPTER 27. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION
	27.1. RED HAT JBOSS DATA GRID SECURITY: AUTHORIZATION AND AUTHENTICATION
	27.2. PERMISSIONS
	27.3. ROLE MAPPING
	27.4. CONFIGURING AUTHENTICATION AND ROLE MAPPING USING LOGIN MODULES
	27.5. CONFIGURING RED HAT JBOSS DATA GRID FOR AUTHORIZATION
	27.6. AUTHORIZATION USING A SECURITYMANAGER
	27.7. SECURITYMANAGER IN JAVA
	27.7.1. About the Java Security Manager
	27.7.2. About Java Security Manager Policies
	27.7.3. Write a Java Security Manager Policy
	27.7.4. Run Red Hat JBoss Data Grid Server Within the Java Security Manager

	27.8. DATA SECURITY FOR REMOTE CLIENT SERVER MODE
	27.8.1. About Security Realms
	27.8.2. Add a New Security Realm
	27.8.3. Add a User to a Security Realm
	27.8.4. Configuring Security Realms Declaratively
	27.8.5. Loading Roles from LDAP for Authorization (Remote Client-Server Mode)
	username-to-dn
	The Group Search
	General Group Searching

	27.9. SECURING INTERFACES
	27.9.1. Hot Rod Interface Security
	27.9.1.1. Publish Hot Rod Endpoints as a Public Interface
	27.9.1.2. Encryption of communication between Hot Rod Server and Hot Rod client
	27.9.1.3. Securing Hot Rod to LDAP Server using SSL
	27.9.1.4. User Authentication over Hot Rod Using SASL

	27.9.2. REST Interface Security
	27.9.2.1. Publish REST Endpoints as a Public Interface
	27.9.2.2. Enable Security for the REST Endpoint

	27.9.3. Memcached Interface Security
	27.9.3.1. Publish Memcached Endpoints as a Public Interface

	27.10. ACTIVE DIRECTORY AUTHENTICATION (NON-KERBEROS)
	27.11. ACTIVE DIRECTORY AUTHENTICATION USING KERBEROS (GSSAPI)
	27.12. THE SECURITY AUDIT LOGGER
	27.12.1. The Security Audit Logger
	27.12.2. Configure the Security Audit Logger (Library Mode)
	27.12.3. Configure the Security Audit Logger (Remote Client-Server Mode)
	27.12.4. Custom Audit Loggers

	CHAPTER 28. SECURITY FOR CLUSTER TRAFFIC
	28.1. NODE AUTHENTICATION AND AUTHORIZATION (REMOTE CLIENT-SERVER MODE)
	28.1.1. Node Authentication and Authorization (Remote Client-Server Mode)
	28.1.2. Configure Node Authentication for Cluster Security (DIGEST-MD5)
	28.1.3. Configure Node Authentication for Cluster Security (GSSAPI/Kerberos)

	28.2. CONFIGURE NODE SECURITY IN LIBRARY MODE
	28.2.1. Configure Node Security in Library Mode
	28.2.2. Simple Authorizing Callback Handler
	28.2.3. Configure Node Authentication for Library Mode (DIGEST-MD5)
	28.2.4. Configure Node Authentication for Library Mode (GSSAPI)

	28.3. JGROUPS ENCRYPTION
	28.3.1. JGroups Encryption
	28.3.2. Configuring JGroups Encryption Protocols
	28.3.3. SYM_ENCRYPT: Using a Key Store
	28.3.4. ASYM_ENCRYPT: Configured with Algorithms and Key Sizes
	28.3.5. JGroups Encryption Configuration Parameters

	PART XIV. COMMAND LINE TOOLS
	CHAPTER 29. INTRODUCTION
	29.1. COMMAND LINE TOOLS

	CHAPTER 30. RED HAT JBOSS DATA GRID CLIS
	30.1. JBOSS DATA GRID CLIS
	30.2. RED HAT JBOSS DATA GRID LIBRARY MODE CLI
	30.2.1. Red Hat JBoss Data Grid Library Mode CLI
	30.2.2. Start the Library Mode CLI (Server)
	30.2.3. Start the Library Mode CLI (Client)
	30.2.4. CLI Client Switches for the Command Line
	30.2.5. Connect to the Application

	30.3. RED HAT JBOSS DATA GRID SERVER CLI
	30.3.1. Red Hat Data Grid Server Mode CLI
	30.3.2. Start the Server Mode CLI

	30.4. CLI COMMANDS
	30.4.1. CLI Commands
	30.4.2. The abort Command
	30.4.3. The begin Command
	30.4.4. The cache Command
	30.4.5. The clearcache Command
	30.4.6. The commit Command
	30.4.7. The container Command
	30.4.8. The create Command
	30.4.9. The deny Command
	30.4.10. The disconnect Command
	30.4.11. The encoding Command
	30.4.12. The end Command
	30.4.13. The evict Command
	30.4.14. The get Command
	30.4.15. The grant Command
	30.4.16. The info Command
	30.4.17. The locate Command
	30.4.18. The put Command
	30.4.19. The replace Command
	30.4.20. The roles command
	30.4.21. The rollback Command
	30.4.22. The site Command
	30.4.23. The start Command
	30.4.24. The stats Command
	30.4.25. The upgrade Command
	30.4.26. The version Command

	PART XV. OTHER RED HAT JBOSS DATA GRID FUNCTIONS
	CHAPTER 31. SET UP THE L1 CACHE
	31.1. ABOUT THE L1 CACHE
	31.2. L1 CACHE CONFIGURATION
	31.2.1. L1 Cache Configuration (Library Mode)
	31.2.2. L1 Cache Configuration (Remote Client-Server Mode)

	CHAPTER 32. SET UP TRANSACTIONS
	32.1. ABOUT TRANSACTIONS
	32.1.1. About Transactions
	32.1.2. About the Transaction Manager
	32.1.3. XA Resources and Synchronizations
	32.1.4. Optimistic and Pessimistic Transactions
	32.1.5. Write Skew Checks
	32.1.6. Transactions Spanning Multiple Cache Instances

	32.2. CONFIGURE TRANSACTIONS
	32.2.1. Configure Transactions (Library Mode)
	32.2.2. Configure Transactions (Remote Client-Server Mode)

	32.3. TRANSACTION RECOVERY
	32.3.1. Transaction Recovery
	32.3.2. Transaction Recovery Process
	32.3.3. Transaction Recovery Example

	32.4. DEADLOCK DETECTION
	32.4.1. Deadlock Detection
	32.4.2. Enable Deadlock Detection

	CHAPTER 33. CONFIGURE JGROUPS
	33.1. ABOUT JGROUPS
	33.2. CONFIGURE RED HAT JBOSS DATA GRID INTERFACE BINDING (REMOTE CLIENT-SERVER MODE)
	33.2.1. Interfaces
	33.2.2. Binding Sockets
	33.2.2.1. Binding Sockets
	33.2.2.2. Binding a Single Socket Example
	33.2.2.3. Binding a Group of Sockets Example

	33.2.3. Configure JGroups Socket Binding

	33.3. CONFIGURE JGROUPS (LIBRARY MODE)
	33.3.1. Configure JGroups for Clustered Modes
	33.3.2. JGroups Transport Protocols
	33.3.2.1. JGroups Transport Protocols
	33.3.2.2. The UDP Transport Protocol
	33.3.2.3. The TCP Transport Protocol
	33.3.2.4. Using the TCPPing Protocol

	33.3.3. Pre-Configured JGroups Files
	33.3.3.1. Pre-Configured JGroups Files
	33.3.3.2. default-jgroups-udp.xml
	33.3.3.3. default-jgroups-tcp.xml
	33.3.3.4. default-jgroups-ec2.xml
	33.3.3.5. default-jgroups-google.xml
	33.3.3.6. default-jgroups-kubernetes.xml

	33.4. TEST MULTICAST USING JGROUPS
	33.4.1. Test Multicast Using JGroups
	33.4.2. Testing With Different Red Hat JBoss Data Grid Versions
	33.4.3. Testing Multicast Using JGroups

	CHAPTER 34. USE RED HAT JBOSS DATA GRID WITH AMAZON WEB SERVICES
	34.1. THE S3_PING JGROUPS DISCOVERY PROTOCOL
	34.2. S3_PING CONFIGURATION OPTIONS
	34.2.1. S3_PING Configuration Options
	34.2.2. Using Private S3 Buckets
	34.2.3. Using Pre-Signed URLs
	34.2.3.1. Using Pre-Signed URLs
	34.2.3.2. Generating Pre-Signed URLs
	34.2.3.3. Set Pre-Signed URLs Using the Command Line

	34.2.4. Using Public S3 Buckets

	34.3. UTILIZING AN ELASTIC IP ADDRESS

	CHAPTER 35. USE RED HAT JBOSS DATA GRID WITH GOOGLE COMPUTE ENGINE
	35.1. THE GOOGLE_PING PROTOCOL
	35.2. GOOGLE_PING CONFIGURATION
	35.2.1. GOOGLE_PING Configuration
	35.2.2. Starting the Server in Google Compute Engine

	35.3. UTILIZING A STATIC IP ADDRESS

	CHAPTER 36. HIGH AVAILABILITY USING SERVER HINTING
	36.1. SERVER HINTING
	36.2. ESTABLISHING SERVER HINTING WITH JGROUPS
	36.3. CONFIGURING SERVER HINTING

	CHAPTER 37. SET UP CROSS-DATACENTER REPLICATION
	37.1. CROSS-DATACENTER REPLICATION
	37.2. CROSS-DATACENTER REPLICATION OPERATIONS
	37.3. CONFIGURE CROSS-DATACENTER REPLICATION
	37.3.1. Configure Cross-Datacenter Replication (Remote Client-Server Mode)
	37.3.2. Configure Cross-Datacenter Replication (Library Mode)
	37.3.2.1. Configure Cross-Datacenter Replication Declaratively

	37.4. TAKING A SITE OFFLINE
	37.4.1. Taking a Site Offline
	37.4.2. Taking a Site Offline
	37.4.3. Taking a Site Offline via JBoss Operations Network (JON)
	37.4.4. Taking a Site Offline via the CLI
	37.4.5. Bring a Site Back Online

	37.5. STATE TRANSFER BETWEEN SITES
	37.5.1. State Transfer Between Sites
	37.5.2. Active-Passive State Transfer
	37.5.3. Active-Active State Transfer
	37.5.4. State Transfer Configuration

	37.6. CONFIGURE MULTIPLE SITE MASTERS
	37.6.1. Configure Multiple Site Masters
	37.6.2. Multiple Site Master Operations
	37.6.3. Configure Multiple Site Masters (Remote Client-Server Mode)
	37.6.4. Configure Multiple Site Masters (Library Mode)

	37.7. CROSS-DATACENTER REPLICATION CONCERNS

	CHAPTER 38. ROLLING UPGRADES
	38.1. PERFORMING ROLLING UPGRADES
	38.1.1. Setting Up the Target Cluster
	38.1.2. Migrating Data to the Target Cluster
	38.1.3. Finalizing Rolling Upgrades

	CHAPTER 39. EXTERNALIZE SESSIONS
	39.1. EXTERNALIZE SESSIONS
	39.2. EXTERNALIZE HTTP SESSION FROM JBOSS EAP TO JBOSS DATA GRID
	39.3. EXTERNALIZE HTTP SESSIONS FROM JBOSS WEB SERVER (JWS) TO JBOSS DATA GRID
	39.3.1. Externalize HTTP Session from JBoss Web Server (JWS) to JBoss Data Grid
	39.3.2. Prerequisites
	39.3.3. Installation
	39.3.4. Session Management Details
	39.3.5. Configure the JBoss Web Server Session Manager

	CHAPTER 40. HANDLING NETWORK PARTITIONS (SPLIT BRAIN)
	40.1. NETWORK PARTITION RECOVERY
	40.2. DETECTING AND RECOVERING FROM A SPLIT-BRAIN PROBLEM
	40.3. PARTITION HANDLING STRATEGIES
	40.3.1. ALLOW_READ_WRITES
	40.3.2. DENY_READ_WRITES
	40.3.2.1. Partition Recovery Example with DENY_READ_WRITE

	40.3.3. ALLOW_READS

	40.4. DETECTING AND RECOVERING FROM SUCCESSIVE NODE FAILURES
	40.5. CONFLICT MANAGER
	40.5.1. Detecting Conflicts
	40.5.2. Merge Policies

	40.6. SPLIT BRAIN TIMING: DETECTING A SPLIT
	40.7. SPLIT BRAIN TIMING: RECOVERING FROM A SPLIT
	40.7.1. Considerations with Garbage Collection

	40.8. CONFIGURING PARTITION HANDLING
	40.8.1. Example Configurations
	40.8.2. Configuration of Partition Handling Between Releases
	40.8.2.1. No Partition Handling Configuration or Partition Handling Disabled
	40.8.2.2. Partition Handling Enabled

	40.9. CREATING CUSTOM MERGE POLICIES
	40.9.1. Specifying Custom Merge Policies

	APPENDIX A. RECOMMENDED JGROUPS VALUES FOR JBOSS DATA GRID
	A.1. SUPPORTED JGROUPS PROTOCOLS
	A.2. TCP DEFAULT AND RECOMMENDED VALUES
	A.3. UDP DEFAULT AND RECOMMENDED VALUES
	A.4. THE TCPGOSSIP JGROUPS PROTOCOL
	A.5. TCPGOSSIP CONFIGURATION OPTIONS
	A.6. JBOSS DATA GRID JGROUPS CONFIGURATION FILES

	APPENDIX B. HOTROD.PROPERTIES
	B.1. HOTROD.PROPERTIES

	APPENDIX C. CONNECTING WITH JCONSOLE
	C.1. CONNECT TO JDG VIA JCONSOLE

	APPENDIX D. JMX MBEANS IN RED HAT JBOSS DATA GRID
	D.1. ACTIVATION
	D.2. CACHE
	D.3. CACHECONTAINERSTATS
	D.4. CACHELOADER
	D.5. CACHEMANAGER
	D.6. CACHESTORE
	D.7. CLUSTERCACHESTATS
	D.8. CLUSTERCONTAINERSTATS
	D.9. DEADLOCKDETECTINGLOCKMANAGER
	D.10. DISTRIBUTIONMANAGER
	D.11. INTERPRETER
	D.12. INVALIDATION
	D.13. LOCKMANAGER
	D.14. LOCALTOPOLOGYMANAGER
	D.15. MASSINDEXER
	D.16. PASSIVATION
	D.17. RECOVERYADMIN
	D.18. ROLLINGUPGRADEMANAGER
	D.19. RPCMANAGER
	D.20. STATETRANSFERMANAGER
	D.21. STATISTICS
	D.22. TRANSACTIONS
	D.23. TRANSPORT
	D.24. XSITEADMIN

	APPENDIX E. CONFIGURATION RECOMMENDATIONS
	E.1. TIMEOUT VALUES

	APPENDIX F. PERFORMANCE RECOMMENDATIONS
	F.1. CONCURRENT STARTUP FOR LARGE CLUSTERS

	APPENDIX G. REFERENCES
	G.1. ABOUT CONSISTENCY
	G.2. ABOUT CONSISTENCY GUARANTEE
	G.3. ABOUT JBOSS CACHE
	G.4. ABOUT RELAY2
	G.5. ABOUT RETURN VALUES
	G.6. ABOUT RUNNABLE INTERFACES
	G.7. ABOUT TWO PHASE COMMIT (2PC)
	G.8. ABOUT KEY-VALUE PAIRS
	G.9. REQUESTING A FULL BYTE ARRAY

