
Red Hat CodeReady Workspaces 1.1

Administration Guide

Installing and administering Red Hat CodeReady Workspaces 1.1.0

Last Updated: 2019-05-03

Red Hat CodeReady Workspaces 1.1 Administration Guide

Installing and administering Red Hat CodeReady Workspaces 1.1.0

Supriya Takkhi
sbharadw@redhat.com

Robert Kratky
rkratky@redhat.com

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Information for administrators installing and operating Red Hat CodeReady Workspaces.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING RED HAT CODEREADY WORKSPACES

CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT V3
2.1. DOWNLOADING THE CODEREADY WORKSPACES DEPLOYMENT SCRIPT
2.2. RUNNING THE CODEREADY WORKSPACES DEPLOYMENT SCRIPT

2.2.1. Deploying CodeReady Workspaces with default settings
2.2.2. Deploying CodeReady Workspaces with a self-signed certificate and OpenShift oAuth
2.2.3. Deploying CodeReady Workspaces with a public certificate
2.2.4. Deploying CodeReady Workspaces with external Red Hat Single Sign-On
2.2.5. Deploying CodeReady Workspaces with external Red Hat SSO and PostgreSQL

2.3. VIEWING CODEREADY WORKSPACES INSTALLATION LOGS
2.3.1. Viewing CodeReady Workspaces installation logs in the terminal
2.3.2. Viewing CodeReady Workspaces installation logs in the OpenShift console

2.4. CONFIGURING CODEREADY WORKSPACES TO WORK BEHIND AN HTTPS PROXY SERVER
2.5. CODEREADY WORKSPACES DEPLOYMENT SCRIPT PARAMETERS

CHAPTER 3. INSTALLING CODEREADY WORKSPACES FROM OPERATOR HUB

CHAPTER 4. INSTALLING CODEREADY WORKSPACES IN RESTRICTED ENVIRONMENTS
4.1. PREPARING CODEREADY WORKSPACES DEPLOYMENT FROM A LOCAL REGISTRY
4.2. RUNNING THE CODEREADY WORKSPACES DEPLOYMENT SCRIPT IN A RESTRICTED ENVIRONMENT

4.3. STARTING WORKSPACES IN RESTRICTED ENVIRONMENTS
4.4. MAKING CODEREADY WORKSPACES IMAGES AVAILABLE FROM A LOCAL REGISTRY

CHAPTER 5. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT DEDICATED

CHAPTER 6. UPGRADING CODEREADY WORKSPACES
6.1. UPGRADING CODEREADY WORKSPACES MANUALLY
6.2. UPGRADING CODEREADY WORKSPACES USING A MIGRATION SCRIPT

CHAPTER 7. UNINSTALLING CODEREADY WORKSPACES

CHAPTER 8. VIEWING CODEREADY WORKSPACES OPERATION LOGS
8.1. VIEWING CODEREADY WORKSPACES OPERATION LOGS IN THE TERMINAL
8.2. VIEWING CODEREADY WORKSPACES OPERATION LOGS IN THE OPENSHIFT CONSOLE

CHAPTER 9. USING THE CHE 7 IDE IN CODEREADY WORKSPACES

CHAPTER 10. USING THE ANALYTICS PLUG-IN IN CODEREADY WORKSPACES

CHAPTER 11. USING VERSION CONTROL
11.1. GENERATING AND UPLOADING SSH KEYS

11.1.1. Using existing SSH keys
11.2. CONFIGURING GITHUB OAUTH
11.3. CONFIGURING GITLAB OAUTH
11.4. SUBMITTING PULL REQUESTS USING THE BUILT-IN PULL REQUEST PANEL
11.5. SAVING COMMITTER NAME AND EMAIL
11.6. INTERACTING WITH GIT FROM A WORKSPACE
11.7. GIT STATUS HIGHLIGHTING IN THE PROJECT TREE AND EDITOR
11.8. PERFORMING GIT OPERATIONS

11.8.1. Commiting
11.8.2. Pushing and pulling
11.8.3. Managing branches

8

9
10
10
12
13
14
14
14
16
16
16
17
18

21

26
26

27
28
32

36

37
37
38

40

41
41

42

44

46

47
47
47
50
52
52
52
52
53
54
54
55
56

Table of Contents

1

. .

. .

11.9. REVIEWING CHANGED FILES

CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION GUIDE
12.1. RAM PREREQUISITES

12.1.1. Setting default workspace RAM limits
12.2. REQUIREMENTS FOR RESOURCE ALLOCATION AND QUOTAS
12.3. SETTING UP THE PROJECT WORKSPACE

12.3.1. Setting up a single OpenShift project
12.3.2. Setting up a multi OpenShift project

12.4. HOW THE CODEREADY WORKSPACES SERVER USES PVCS AND PVS FOR STORAGE
12.4.1. Storage requirements for CodeReady Workspaces infrastructure
12.4.2. Storage strategies for workspaces
12.4.3. Unique PVC strategy
12.4.4. Common PVC Strategy

12.4.4.1. How the common PVC strategy works
12.4.4.2. Enabling the common strategy
12.4.4.3. Restrictions on using the common PVC strategy

12.4.5. Per workspace PVC strategy
12.4.5.1. How the per-workspace PVC strategy works

12.5. UPDATING YOUR CODEREADY WORKSPACES DEPLOYMENT
12.6. SCALABILITY
12.7. GDPR
12.8. DEBUG MODE
12.9. PRIVATE DOCKER REGISTRIES
12.10. CODEREADY WORKSPACES SERVER LOGS
12.11. WORKSPACE LOGS
12.12. CODEREADY WORKSPACES MASTER STATES
12.13. WORKSPACE TERMINATION GRACE PERIOD
12.14. AUTO-STOPPING A WORKSPACE WHEN ITS PODS ARE REMOVED
12.15. UPDATING CODEREADY WORKSPACES WITHOUT STOPPING ACTIVE WORKSPACES

12.15.1. Performing a recreate update
12.15.2. Performing a rolling update

12.15.2.1. Known issues
12.15.3. Updating with database migrations or API incompatibility

12.16. DELETING DEPLOYMENTS
12.17. MONITORING CODEREADY WORKSPACES MASTER SERVER
12.18. CREATING WORKSPACE OBJECTS IN PERSONAL NAMESPACES
12.19. OPENSHIFT IDENTITY PROVIDER REGISTRATION
12.20. CONFIGURING CODEREADY WORKSPACES
12.21. PROVIDING THE OPENSHIFT CERTIFICATE TO KEYCLOAK

CHAPTER 13. MANAGING USERS
13.1. AUTHORIZATION AND USER MANAGEMENT
13.2. CONFIGURING CODEREADY WORKSPACES TO WORK WITH KEYCLOAK
13.3. CONFIGURING KEYCLOAK TOKENS
13.4. SETTING UP USER FEDERATION
13.5. ENABLING AUTHENTICATION WITH SOCIAL ACCOUNTS AND BROKERING
13.6. USING PROTOCOL-BASED PROVIDERS
13.7. MANAGING USERS
13.8. CONFIGURING SMTP AND EMAIL NOTIFICATIONS
13.9. CODEREADY WORKSPACES AUTHENTICATION

13.9.1. Authentication on CodeReady Workspaces Master
13.9.1.1. OpenId

57

61
61
61
61
61
61

62
62
62
62
63
63
63
63
63
64
64
64
65
65
65
65
65
65
66
66
66
67
67
67
68
68
68
69
69
70
71
71

73
73
73
73
74
74
76
76
76
76
76
76

Red Hat CodeReady Workspaces 1.1 Administration Guide

2

. .

13.9.1.1.1. User Profile
13.9.1.1.2. Obtaining Token From Keycloak

13.9.1.2. Other authentication implementations
13.9.1.3. OAuth

13.9.2. Authentication on CodeReady Workspaces Agents
13.9.2.1. Machine JWT Token
13.9.2.2. Authentication schema
13.9.2.3. Obtaining Machine Token

13.9.3. Using Swagger or REST Clients
13.10. PERMISSIONS

13.10.1. Overview
13.10.2. Workspace permissions
13.10.3. Organization permissions
13.10.4. System permissions
13.10.5. manageSystem permission
13.10.6. monitorSystem permission
13.10.7. Super-privileged mode
13.10.8. Stack permissions
13.10.9. Permissions API
13.10.10. Listing permissions
13.10.11. Listing permissions for a user
13.10.12. Listing permissions for all users
13.10.13. Assigning permissions
13.10.14. Sharing permissions

13.11. ORGANIZATIONS
13.11.1. Organizations in CodeReady Workspaces

13.11.1.1. Roles in an organization
13.11.1.2. Root organizations and sub-organizations
13.11.1.3. Creating an organization
13.11.1.4. Displaying the list of organizations
13.11.1.5. Adding members to organizations
13.11.1.6. Workspaces in organizations
13.11.1.7. Setting email notifications
13.11.1.8. Creating sub-organizations
13.11.1.9. Adding members to sub-organizations
13.11.1.10. Organization and sub-organization administration
13.11.1.11. Renaming an organization or sub-organization
13.11.1.12. Leaving an organization or sub-organization
13.11.1.13. Deleting an organization or sub-organization
13.11.1.14. Allocating resources for organizations
13.11.1.15. Managing limits
13.11.1.16. Updating organization and sub-organization member roles
13.11.1.17. Removing members from an organization and sub-organization

13.12. RESOURCE MANAGEMENT
13.12.1. Overview
13.12.2. Resource API
13.12.3. Distributing resources
13.12.4. Configuring workspaces and resources
13.12.5. Unit formats
13.12.6. Resource-free API
13.12.7. Organization Resource API

CHAPTER 14. ADMINISTERING WORKSPACES

77
78
78
78
79
79
80
81
81

82
82
82
83
83
83
84
85
85
86
86
86
87
87
88
88
88
88
89
89
89
89
89
89
90
90
90
90
91
91
91
91
91

92
92
92
93
93
93
94
95
95

97

Table of Contents

3

14.1. WORKSPACE
14.2. ENVIRONMENT
14.3. MACHINE
14.4. RECIPE
14.5. BOOTSTRAPPER
14.6. INSTALLER
14.7. VOLUME
14.8. ENVIRONMENT VARIABLES
14.9. WHAT IS NEXT?
14.10. MANAGING WORKSPACES

14.10.1. Creating workspaces
14.10.1.1. Creating a workspace from stacks in the dashboard
14.10.1.2. Duplicating an existing stack
14.10.1.3. Creating a custom stack from a custom recipe

14.10.2. Starting workspaces
14.10.3. Managing a workspace

14.11. COMMANDS AND IDE MACROS
14.11.1. Command Overview
14.11.2. Command Goals
14.11.3. Command Context
14.11.4. Managing Commands
14.11.5. Macros list
14.11.6. Macros Auto-Completion
14.11.7. Use Commands
14.11.8. Command Palette
14.11.9. Command Toolbar
14.11.10. Authoring Command Instructions
14.11.11. Macros
14.11.12. Environment Variables

14.12. STACKS
14.12.1. Stack overview
14.12.2. Importing community supported stacks and applications
14.12.3. Sharing stacks and system stacks
14.12.4. Loading stacks
14.12.5. Creating stacks in CodeReady Workspaces

14.12.5.1. Building a custom stack
14.12.5.1.1. Building a Docker image
14.12.5.1.2. Uploading an image to the registry
14.12.5.1.3. Creating a custom stack

14.12.5.2. Sharing stacks
14.13. RECIPES

14.13.1. Supported Recipe Formats
14.13.2. Docker-formatted container image requirements and limitations
14.13.3. Dockerfile definition and limitations
14.13.4. Running multi-container workspaces using Compose files

14.13.4.1. Accessing remote files
14.13.4.2. Using private repositories
14.13.4.3. Configuring privileged access
14.13.4.4. Special considerations when using Compose files

14.13.5. Kubernetes YAML limitations and restrictions
14.14. SERVERS

14.14.1. What are servers?
14.14.2. Preview URLs

97
97
97
97
97
97
98
98
98
98
98
98
99

100
101
101
102
102
102
103
103
104
105
105
106
106
108
109
110
110
110
111
111

112
113
114
114
114
114
114
115
115
115
115
115
116
116
116
116
117
119
119

120

Red Hat CodeReady Workspaces 1.1 Administration Guide

4

14.14.3. Getting preview URLs
14.14.4. Exposing internal servers
14.14.5. Exposing secure servers

14.15. INSTALLERS
14.15.1. What are installers?
14.15.2. How installers work
14.15.3. What happens when enabling and disabling installers
14.15.4. Troubleshooting installer failures

14.15.4.1. Permission denied failure
14.15.4.2. Permission to files and directories failures

14.15.5. Installer registry and REST API
14.16. VOLUMES

14.16.1. Default volumes for workspace containers
14.16.2. Adding volumes
14.16.3. Configuring workspaces

14.17. ENVIRONMENT VARIABLES
14.18. PROJECTS

14.18.1. Creating projects in workspaces
14.18.2. Defining project types
14.18.3. Creating a sub-project
14.18.4. Navigating the project tree

14.19. TROUBLESHOOTING FAILURES IN STARTING THE WORKSPACE
14.19.1. Incorrect environment recipes

14.19.1.1. Viewing logs from a failed workspace start
14.19.2. Restrictive network settings

14.19.2.1. Troubleshooting network setting when workspace agent cannot be reached
14.19.3. Failure in bootstrapping

14.20. WORKSPACE DATA MODEL
14.20.1. Environment recipes
14.20.2. Projects
14.20.3. Commands
14.20.4. Runtime

14.21. GETTING STARTED WITH FACTORIES
14.21.1. Trying a factory
14.21.2. Using factories
14.21.3. Invoking factories using their unique hashcodes
14.21.4. Invoking a named factory
14.21.5. Invoking a factory for a specific git repository
14.21.6. Next steps
14.21.7. Creating Factories

14.21.7.1. Creating a factory in the dashboard
14.21.7.2. Creating a factory in the IDE
14.21.7.3. Creating a factory based on a repository

14.21.7.3.1. Customizing URL factories
14.21.7.4. Configuring factory policies

14.21.7.4.1. Setting factory limitations
14.21.7.4.2. Setting factory multiplicity

14.21.7.5. Customizing the IDE
14.21.7.6. Lifecycle Events
14.21.7.7. Factory actions
14.21.7.8. Finding and replacing variables
14.21.7.9. Pull request workflow
14.21.7.10. Repository badging

121
121
121
122
122
123
123
123
123
124
124
124
124
124
125
125
126
126
127
128
128
128
128
129
129
129
129
130
130
131

133
133
134
134
134
135
135
135
135
135
135
136
136
136
137
137
137
137
137
138
138
138
139

Table of Contents

5

14.21.7.11. Next steps
14.21.8. Factories JSON Reference

14.21.8.1. Mixins
14.21.8.2. Pull Request mixin attributes
14.21.8.3. Policies
14.21.8.4. Limitations
14.21.8.5. Multiplicity
14.21.8.6. Customizing the IDE
14.21.8.7. Action: Open File
14.21.8.8. Action: Find and Replace
14.21.8.9. Creator

139
139
140
141
141

142
142
142
144
145
145

Red Hat CodeReady Workspaces 1.1 Administration Guide

6

Table of Contents

7

CHAPTER 1. UNDERSTANDING RED HAT CODEREADY
WORKSPACES

Red Hat CodeReady Workspaces is a developer workspace server and cloud IDE. Workspaces are
defined as project code files and all of their dependencies neccessary to edit, build, run, and debug
them. Each workspace has its own private IDE hosted within it. The IDE is accessible through a browser.
The browser downloads the IDE as a single-page web application.

Red Hat CodeReady Workspaces provides:

Workspaces that include runtimes and IDEs

RESTful workspace server

A browser-based IDE

Plugins for languages, framework, and tools

An SDK for creating plugins and assemblies

Additional resources

See Red Hat CodeReady Workspaces CodeReady Workspaces 1.1.0 Release Notes and Known Issues for
more details about the current version.

Red Hat CodeReady Workspaces 1.1 Administration Guide

8

https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/1.1/html/release_notes_and_known_issues/

CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON
OPENSHIFT V3

This section describes how to obtain installation files for Red Hat CodeReady Workspaces and how to
use them to deploy the product on an instance of OpenShift (such as Red Hat OpenShift Container
Platform) v3.

Prerequisites

Minimum hardware requirements

Minimum 5 GB RAM to run CodeReady Workspaces. The Red Hat Single Sign-On (Red Hat
SSO) authorization server and the PostgreSQL database require extra RAM. CodeReady
Workspaces uses RAM in the following distribution:

The CodeReady Workspaces server: Approximately 750 MB

Red Hat SSO: Approximately 1 GB

PostgreSQL: Approximately 515 MB

Workspaces: 2 GB of RAM per workspace. The total workspace RAM depends on the size of
the workspace runtime(s) and the number of concurrent workspace pods.

Software requirements

CodeReady Workspaces deployment script and configuration file

Container images required for deployment:

registry.access.redhat.com/codeready-workspaces/server:1.1

registry.access.redhat.com/codeready-workspaces/server-operator:1.1

registry.access.redhat.com/rhscl/postgresql-96-rhel7:1-25

registry.access.redhat.com/redhat-sso-7/sso72-openshift:1.2-8

registry.access.redhat.com/rhel7-minimal:7.6-154

Container images with preconfigured stacks for creating workspaces:

registry.access.redhat.com/codeready-workspaces/stacks-java:latest

registry.access.redhat.com/codeready-workspaces/stacks-node:latest

registry.access.redhat.com/codeready-workspaces/stacks-php:latest

registry.access.redhat.com/codeready-workspaces/stacks-python:latest

registry.access.redhat.com/codeready-workspaces/stacks-dotnet:latest

registry.access.redhat.com/codeready-workspaces/stacks-golang:latest

registry.access.redhat.com/codeready-workspaces/stacks-java-rhel8:latest

registry.access.redhat.com/codeready-workspaces/stacks-cpp:latest

CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT V3

9

NOTE

It is not necessary to download any of the referenced images manually.

All container images required for deployment are automatically downloaded by
the CodeReady Workspaces deployment script.

Stack images are automatically downloaded by CodeReady Workspaces when
new workspaces are created.

Other

In order to be able to download the CodeReady Workspaces deployment script, Red Hat asks that you
register for the free Red Hat Developer Program . This allows you to agree to license conditions of the
product. For instructions on how to obtain the deployment script, see Section 2.1, “Downloading the
CodeReady Workspaces deployment script”.

2.1. DOWNLOADING THE CODEREADY WORKSPACES DEPLOYMENT
SCRIPT

This procedure describes how to obtain and unpack the archive with the CodeReady Workspaces
deployment shell script.

The CodeReady Workspaces deployment script uses the OpenShift Operator to deploy Red Hat Single
Sign-On, the PostgreSQL database, and the CodeReady Workspaces server container images on an
instance of Red Hat OpenShift Container Platform. The images are available in the Red Hat Container
Catalog.

Procedure

1. Change to a temporary directory. Create it if necessary. For example:

$ mkdir ~/tmp
$ cd ~/tmp

2. Download the archive with the deployment script and the custom-resource.yaml file using the
browser with which you logged into the Red Hat Developer Portal : codeready-workspaces-
1.1.0.GA-operator-installer.tar.gz.

3. Unpack the downloaded archive and change to the created directory:

$ tar xvf codeready-workspaces-1.1.0.GA-operator-installer.tar.gz \
 && cd codeready-workspaces-operator-installer/

Next steps

Continue by configuring and running the deployment script. See Section 2.2, “Running the CodeReady
Workspaces deployment script”.

2.2. RUNNING THE CODEREADY WORKSPACES DEPLOYMENT
SCRIPT

The CodeReady Workspaces deployment script uses command-line arguments and the custom-

Red Hat CodeReady Workspaces 1.1 Administration Guide

10

https://developers.redhat.com/register/
https://developers.redhat.com/
https://developers.redhat.com/download-manager/file/codeready-workspaces-1.1.0.GA-operator-installer.tar.gz

The CodeReady Workspaces deployment script uses command-line arguments and the custom-
resource.yaml file to populate a set of configuration environment variables for the OpenShift Operator
used for the actual deployment.

Prerequisites

Downloaded and unpacked deployment script and the configuration file. See Section 2.1,
“Downloading the CodeReady Workspaces deployment script”.

A running instance of Red Hat OpenShift Container Platform 3.11 or OpenShift Dedicated 3.11.
To install OpenShift Container Platform, see the Getting Started with OpenShift Container
Platform guide.

The OpenShift command-line client tool, oc, is in the path.

The user is logged in to the OpenShift instance (using, for example, oc login).

CodeReady Workspaces is supported for use with Google Chrome 70.0.3538.110 (Official Build)
(64bit).

cluster-admin rights to successfully deploy CodeReady Workspaces using the deploy script.
The following table lists the objects and the required permissions:

Type of object Name of the object
that the installer
creates

Description Permission required

CRD - Custom Resource
Definition -
CheCluster

cluster-admin

CR codeready Custom Resource of
the CheCluster type
of object

cluster-admin.
Alternatively, you can
create a clusterrole.

ServiceAccount codeready-
operator

Operator uses this
service account to
reconcile CodeReady
Workspaces objects

The edit role in a
target namespace.

Role codeready-
operator

Scope of permissions
for the operator-
service account

cluster-admin

RoleBinding codeready-
operator

Assignment of a role
to the service account

The edit role in a
target namespace.

Deployment codeready-
operator

Deployment with
operator image in the
template specification

The edit role in a
target namespace.

ClusterRole codeready-
operator

ClusterRole allows
you to create, update,
delete oAuthClients

cluster-admin

CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT V3

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/getting_started/

ClusterRoleBinding ${NAMESPACE}-
codeready-
operator

ClusterRoleBindin
g allows you to create,
update, delete
oAuthClients

cluster-admin

Role secret-reader Role allows you to
read secrets in the
router namespace

cluster-admin

RoleBinding ${NAMESPACE}-
codeready-
operator

RoleBinding allows
you to read secrets in
router namespace

cluster-admin

Type of object Name of the object
that the installer
creates

Description Permission required

By default, the operator-service account gets privileges to list, get, watch, create, update, and delete
ingresses, routes, service accounts, roles, rolebindings, PVCs, deployments, configMaps, secrets. It also
has privileges to run execs into pods, watch events, and read pod logs in a target namespace.

With self-signed certificates support enabled, the operator-service account gets privileges to read
secrets in an OpenShift router namespace.

With OpenShift oAuth enabled, the operator-service account gets privileges to get, list, create, update,
and delete oAuthclients at a cluster scope.

IMPORTANT

When using OpenShift Dedicated, contact Red Hat support and request the deployment
of the application.

2.2.1. Deploying CodeReady Workspaces with default settings

1. Run the following command:

$./deploy.sh --deploy

NOTE

Run the ./deploy.sh --help command to get a list of all available arguments. For a
description of all the options, see Section 2.5, “CodeReady Workspaces
deployment script parameters”.

The following messages indicates that CodeReady Workspaces is getting installed:

[INFO]: Welcome to CodeReady Workspaces Installer
[INFO]: Found oc client in PATH
[INFO]: Checking if you are currently logged in...
[INFO]: Active session found. Your current context is: myproject/192-168-42-
114:8443/developer

Red Hat CodeReady Workspaces 1.1 Administration Guide

12

The CodeReady Workspaces successfully deployed and available at <URL> message
confirms that the deployment is successful.

2. Open the OpenShift web console.

3. In the My Projects pane, click workspaces.

4. Click Applications > Pods. The pods are shown running.

Figure 2.1. Pods for codeready shown running

2.2.2. Deploying CodeReady Workspaces with a self-signed certificate and
OpenShift oAuth

To deploy CodeReady Workspaces with a self-signed certificate, run the following command:

$./deploy.sh --deploy --oauth

NOTE

[WARNING]: Namespace 'workspaces' not found, or current user does not have access to it.
Installer will try to create namespace 'workspaces'
[INFO]: Creating namespace "workspaces"
[INFO]: Namespace "workspaces" successfully created
[INFO]: Creating operator service account
[INFO]: Create service account roles
[INFO]: Creating Role Binding
[INFO]: Self-signed certificate support enabled
[INFO]: Adding extra privileges for an operator service account
[INFO]: Creating secret-reader role and rolebinding in namespace default
[INFO]: Creating role binding to let operator get secrets in namespace default
[INFO]: Creating custom resource definition
[INFO]: Creating Operator Deployment
[INFO]: Waiting for the Operator deployment to be scaled to 1
[INFO]: Codeready Operator successfully deployed
[INFO]: Creating Custom resource. This will initiate CodeReady Workspaces deployment
[INFO]: CodeReady is going to be deployed with the following settings:
[INFO]: TLS support: false
[INFO]: OpenShift oAuth: false
[INFO]: Self-signed certs: true
[INFO]: Waiting for CodeReady to boot. Timeout: 1200 seconds
[INFO]: CodeReady Workspaces successfully deployed and is available at http://codeready-
workspaces.192.168.42.114.nip.io

CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT V3

13

1

2

3

4

NOTE

If you use the TLS mode with a self-signed certificate, ensure that your browser trusts
the certificate. If it does not trust the certificate, the Authorization token is missed error
is displayed on the login page and the running workspace may not work as intended.

2.2.3. Deploying CodeReady Workspaces with a public certificate

To deploy CodeReady Workspaces to a cluster configured with public certificates, run the following
command:

$./deploy.sh --deploy --public-certs

2.2.4. Deploying CodeReady Workspaces with external Red Hat Single Sign-On

To deploy with an external Red Hat Single Sign-On (Red Hat SSO) and enable a Red Hat SSO instance,
take the following steps:

1. Update the following values in the custom-resource.yaml file:

Instructs the operator on whether or not to deploy the Red Hat SSO instance. When set to
true, provisions the connection details.

Retrieved from the respective route or ingress unless explicitly specified in CR (when the
externalKeycloak variable is true).

Name of a Red Hat SSO realm. This realm is created when the externalKeycloak variable
is true. Otherwise, it is passed to the CodeReady Workspaces server.

The ID of a Red Hat SSO client. This client is created when the externalKeycloak variable
is false. Otherwise, it is passed to the CodeReady Workspaces server.

2. Run the deploy script:

$./deploy.sh --deploy

2.2.5. Deploying CodeReady Workspaces with external Red Hat SSO and
PostgreSQL

The deploy script supports the following combinations of external Red Hat SSO and PostgreSQL:

PostgreSQL and Red Hat SSO

Red Hat SSO only

The deploy script does not support the external database and bundled Red Hat SSO combination
currently. Provisioning of the database and the Red Hat SSO realm with the client happens only with

auth:
 externalKeycloak: 'true' 1
 keycloakURL: 'https://my-red-hat-sso.com' 2
 keycloakRealm: 'myrealm' 3
 keycloakClientId: 'myClient' 4

Red Hat CodeReady Workspaces 1.1 Administration Guide

14

1

2

3

4

5

6

1

2

3

4

bundled resources. If you are connecting your own database or Red Hat SSO, you should pre-create
resources.

To deploy with the external PostgreSQL database and Red Hat SSO, take the following steps:

1. Update the following PostgreSQL database-related values in the custom-resource.yaml file:

When set to true the operator skips deploying PostgreSQL and passes the connection
details of the existing database to the CodeReady Workspaces server. Otherwise, a
PostgreSQL deployment is created.

The PostgreSQL database hostname that the CodeReady Workspaces server uses to
connect to. Defaults to postgres.

The PostgreSQL database port that the CodeReady Workspaces server uses to connect
to. Defaults to 5432.

The PostgreSQL user that the CodeReady Workspaces server when making a database
connection. Defaults to pgche.

The password of a PostgreSQL user. Auto-generated when left blank.

The PostgreSQL database name that the CodeReady Workspaces server uses to connect
to. Defaults to dbche.

2. Update the following Red Hat SSO-related values in the custom-resource.yaml file:

Instructs the operator on whether or not to deploy Red Hat SSO instance. When set to
true, provisions the connection details.

Retrieved from the respective route or ingress unless explicitly specified in CodeReady
Workspaces (when externalKeycloak is true).

Name of a Red Hat SSO realm. This realm is created when externalKeycloak is true.
Otherwise, passed to the CodeReady Workspaces server.

ID of a Red Hat SSO client. This client is created when externalKeycloak is false.
Otherwise, passed to the CodeReady Workspaces server.

database:
 externalDb: 'true' 1
 chePostgresHostname: 'http://postgres' 2
 chePostgresPort: '5432' 3
 chePostgresUser: 'myuser' 4
 chePostgresPassword: 'mypass' 5
 chePostgresDb: 'mydb' 6

auth:
 externalKeycloak: 'true' 1
 keycloakURL: 'https://my-red-hat-sso.com' 2
 keycloakRealm: 'myrealm' 3
 keycloakClientId: 'myClient' 4

CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT V3

15

3. Run the deploy script:

$./deploy.sh --deploy

Additional resources

See Section 2.5, “CodeReady Workspaces deployment script parameters” for definitions of the
deployment script parameters.

2.3. VIEWING CODEREADY WORKSPACES INSTALLATION LOGS

You can view the installation logs in the terminal or from the OpenShift console.

2.3.1. Viewing CodeReady Workspaces installation logs in the terminal

To view the installation logs on the terminal, take the following steps:

1. To obtain the names of the pods you must switch to project where CodeReady Workspaces is
installed:

$ oc get pods -n=<OpenShift-project-name>

Following is an example output.

NAME READY STATUS RESTARTS AGE
codeready-operator-56bc9599cc-pkqkn 1/1 Running 0 25m
keycloak-666c5f9f4b-zz88z 1/1 Running 0 24m
postgres-96875bcbd-tfxr4 1/1 Running 0 25m
codeready-6b4876f56c-qdlll 1/1 Running 0 24m

2. To view the logs for the pod, run:

$ oc logs <log-name>

The following is an example output:

2.3.2. Viewing CodeReady Workspaces installation logs in the OpenShift console

To view installation logs in OpenShift console, take the following steps:

time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with status:
CodeReady Workspaces server: Available"
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with CodeReady
Workspaces server URL: http://codeready-workspaces.192.168.42.114.nip.io"
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:31Z" level=info msg="CodeReady Workspaces is now available at:
http://codeready-workspaces.192.168.42.114.nip.io"
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with version: 1.1-52"
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"

Red Hat CodeReady Workspaces 1.1 Administration Guide

16

1. Navigate to the OpenShift web console`.

2. In the My Projects pane, click workspaces.

3. Click Applications > Pods. Click the name of the pod for which you want to view the logs.

4. Click Logs and click Follow.

2.4. CONFIGURING CODEREADY WORKSPACES TO WORK BEHIND AN
HTTPS PROXY SERVER

This procedure describes how to configure CodeReady Workspaces for use in a deployment behind a
proxy server. To access external resources (for example, to download Maven artifacts to build Java
projects), change the workspace configuration.

Prerequisites

OpenShift with logged-in oc client

Operator installer that you can obtain from https://github.com/redhat-developer/codeready-
workspaces-deprecated/tree/6.19.x/operator-installer

Deployment parameters in the custom-resource.yaml reflecting the proxy setup

Procedure

1. Update the following values in the custom-resource.yaml file:

time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with Keycloak URL
status: http://keycloak-workspaces.192.168.42.114.nip.io "
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with status:
CodeReady Workspaces server: Available"
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with CodeReady
Workspaces server URL: http://codeready-workspaces.192.168.42.114.nip.io "
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:31Z" level=info msg="CodeReady Workspaces is now available at:
http://codeready-workspaces.192.168.42.114.nip.io "
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with version: 1.1-52"
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"

apiVersion: org.eclipse.che/v1
 kind: CheCluster
 metadata:
 name: codeready
 spec:
 server:
 cheFlavor: codeready
 cheImage: ${SERVER_IMAGE_NAME}
 cheImageTag: ${SERVER_IMAGE_TAG}
 tlsSupport: ${{TLS_SUPPORT}}
 selfSignedCert: ${{SELF_SIGNED_CERT}}
 proxyURL: 'http://172.19.20.128'

CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT V3

17

https://github.com/redhat-developer/codeready-workspaces-deprecated/tree/6.19.x/operator-installer

1

2

IMPORTANT

Ensure to use correct indentation as shown above.

Substitute http://172.19.20.128 for the protocol and hostname of your proxy
server.

You may have to add a custom nonProxyHosts value as required by your
network. In the preceding example this value is *.<routing-suffix> of an
OpenShift Container Platform installation.

Substitute 3128 for the port of your proxy server.

2. Run the following command:

$./deploy.sh --deploy

2.5. CODEREADY WORKSPACES DEPLOYMENT SCRIPT PARAMETERS

The custom-resource.yaml file contains default values for the installation parameters. Those
parameters that take environment variables as values can be overridden from a command line. Not all
installation parameters are available as flags.

Before running the deployment script in a fast mode, review the custom-resource.yaml file. Run the
./deploy.sh --help command to get a list of all available arguments.

The following is an annotated example of the custom-resource.yaml file with all available parameters:

Server settings:

Defaults to che. When set to codeready, CodeReady Workspaces is deployed. The difference is in
images, labels, and in exec commands.

The server image used in the Che deployment.

 proxyPort: '3128'
 nonProxyHosts: 'localhost|*.172.19.20.240.nip.io'
 proxyUser: ''
 proxyPassword: ''

server:
 cheFlavor: 'codeready' 1
 cheImage: '${SERVER_IMAGE_NAME}' 2
 cheImageTag: '${SERVER_IMAGE_TAG}' 3
 tlsSupport: '${{TLS_SUPPORT}}' 4
 selfSignedCert: '${{SELF_SIGNED_CERT}}' 5
 proxyURL: '' 6
 proxyPort: '' 7
 nonProxyHosts: '' 8
 proxyUser: '' 9
 proxyPassword: '' 10

Red Hat CodeReady Workspaces 1.1 Administration Guide

18

http://172.19.20.128

3

4

5

6

7

8

9

10

1

2

1

2

3

The tag of an image used in the Che deployment.

TLS mode for Che. Ensure that you either have public certificate or set the selfSignedCert
environment variable to true. If you use the TLS mode with a self-signed certificate, ensure that
your browser trusts the certificate. If it does not trust the certificate, the Authorization token is
missed error is displayed on the login page and the running workspace may not work as intended.

When set to true, the operator attempts to get a secret in the OpenShift router namespace to add
it to the ava trust store of the CodeReady Workspaces server. Requires cluster-administrator
privileges for the operator service account.

The protocol and hostname of a proxy server. Automatically added as JAVA_OPTS variable and
https(s)_proxy to the CodeReady Workspaces server and workspaces containers.

The port of a proxy server.

A list of non-proxy hosts. Use | as a delimiter. Example: localhost|my.host.com|123.42.12.32.

The username for a proxy server.

The password for a proxy user.

Storage settings:

The persistent volume claim strategy for the CodeReady Workspaces server. Can be common (all
workspaces PVCs in one volume), per-workspace (one PVC per workspace for all the declared
volumes), or unique (one PVC per declared volume). Defaults to common.

The size of a persistent volume claim for workspaces. Defaults to 1Gi.

Database settings:

When set to true, the operator skips deploying PostgreSQL and passes the connection details of
the existing database to the CodeReady Workspaces server. Otherwise, a PostgreSQL deployment
is created.

The PostgreSQL database hostname that the CodeReady Workspaces server uses to connect to.
Defaults to postgres.

The PostgreSQL database port that the CodeReady Workspaces server uses to connect to.
Defaults to 5432.

storage:
 pvcStrategy: 'common' 1
 pvcClaimSize: '1Gi' 2

database:
 externalDb: 'false' 1
 chePostgresHostName: '' 2
 chePostgresPort: '' 3
 chePostgresUser: '' 4
 chePostgresPassword: '' 5
 chePostgresDb: '' 6

CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT V3

19

4

5

6

1

2

3

4

5

6

7

The Postgres user that the CodeReady Workspaces server when making a databse connection.
Defaults to pgche.

The password of a PostgreSQL user. Auto-generated when left blank.

The PostgreSQL database name that the CodeReady Workspaces server uses to connect to.
Defaults to dbche.

auth settings:

Instructs an operator to enable the OpenShift v3 identity provider in Red Hat SSO and create the
respective oAuthClient and configure the Che configMap accordingly.

Instructs the operator on whether or not to deploy the RH SSO instance. When set to true, it
provisions the connection details.

The desired administrator username of the Red Hat SSO administrator (applicable only when the
externalKeycloak variable is false).

The desired password of the Red Hat SSO administrator (applicable only when the
externalKeycloak variable is false).

Retrieved from the respective route or ingress unless explicitly specified in CR (when the
externalKeycloak variable is true).

The name of a Red Hat SSO realm. This realm is created when the externalKeycloak variable is
true. Otherwise, it is passed to the CodeReady Workspaces server.

The ID of a Red Hat SSO client. This client is created when the externalKeycloak variable is false.
Otherwise, it is passed to the CodeReady Workspaces server.

auth:
 openShiftoAuth: '${{ENABLE_OPENSHIFT_OAUTH}}' 1
 externalKeycloak: 'false' 2
 keycloakAdminUserName: 'admin' 3
 keycloakAdminPassword: 'admin' 4
 keycloakURL: '' 5
 keycloakRealm: '' 6
 keycloakClientId: '' 7

Red Hat CodeReady Workspaces 1.1 Administration Guide

20

CHAPTER 3. INSTALLING CODEREADY WORKSPACES FROM
OPERATOR HUB

CodeReady Workspaces is now compatible with OpenShift 4.0 and has a dedicated operator
compatible with the Operator Lifecycle Manager (OLM), which allows for easy installation and
automated updates.

NOTE

OLM is a management framework for extending Kubernetes with Operators. The OLM
project is a component of the Operator Framework, which is an open-source toolkit to
manage Kubernetes-native applications, called Operators, in an effective, automated, and
scalable way.

IMPORTANT

The installation of CodeReady Workspaces from the Operator Hub is supported as
Developer Preview with OpenShift 4.0 only.

Procedure

To install CodeReady Workspaces 1.1.0 from Operator Hub:

1. Launch the OpenShift Web Console.

2. In the console, in the Operator Hub tab, click CodeReady Workspaces. The CodeReady
Workspaces 1.1.0 window displays.

Figure 3.1. CodeReady Workspaces 1.1.0 listed on Operator Hub

3. Click Install.

Figure 3.2. Install button on the CodeReady Workspaces 1.1.0 window

CHAPTER 3. INSTALLING CODEREADY WORKSPACES FROM OPERATOR HUB

21

https://github.com/operator-framework

Figure 3.2. Install button on the CodeReady Workspaces 1.1.0 window

4. In the Create Operator Subscription window:

a. In the A specific namespace in the cluster drop-down list, select the namespace to install
the Operator to.

b. In the Approval Strategy field, choose the appropriate approval strategy.

c. Click Subscribe.

Figure 3.3. Selections in the Create Operator Subscription window

Red Hat CodeReady Workspaces 1.1 Administration Guide

22

Figure 3.3. Selections in the Create Operator Subscription window

A subscription is created in the Operator Lifecycle Manager (OLM), and the Operator is
installed in the chosen namespace. Successful installation implies that the following
requirements in the Cluster Service Version (CSV) are created:

Service account (SA)

Role-based access control (RBAC)

Deployment
The deployment is successfully scaled to 1. After it is installed, the Operator is marked as
installed on the Operator Hub window.

5. Navigate to Catalog > Installed Operators. The CodeReady Workspaces Operator with an
InstallSucceded message displays.

Figure 3.4. Installed Operator on Operator Hub

6. To deploy CodeReady Workspaces 1.1.0 on the Operator, take the following steps:

a. To create a custom resource Che Cluster that the Operator will watch in the selected
namespace, click on the Operator > CodeReady Workspaces Cluster (or click Provided
APIs).

b. Click Create Che Cluster.

Figure 3.5. Clicking Create Che Cluster

CHAPTER 3. INSTALLING CODEREADY WORKSPACES FROM OPERATOR HUB

23

Figure 3.5. Clicking Create Che Cluster

There is a template to create a Che-cluster type custom resource. If you enable OpenShift
oAuth or self signed certificate, you must grant cluster administrator privileges to the
codeready-operator service account. For instructions, see the Operator description when
you initially install it.

7. Click Create.

Figure 3.6. Clicking Create to create the Che cluster

After the custom resource is created, the Operator starts executing the following controller
business logic:

Creates the Kubernetes and OpenShift resources

Provisions the database and Red Hat SSO resources

Updates the resource status while the installation is in progress

8. To track the progress in the OLM UI, navigate to the resource details window.

Figure 3.7. Display of route for CodeReady Workspaces

Red Hat CodeReady Workspaces 1.1 Administration Guide

24

Figure 3.7. Display of route for CodeReady Workspaces

9. Wait for the status to become Available. The CodeReady Workspaces route is displayed.

10. To track the installation progress, follow the operator logs.
Notice that the coderedy-operator pod is the same namespace. Follow the logs and wait until
the Operator updates the resource status to Available and sets the URLs.

Figure 3.8. CodeReady Operator pod shown running

CHAPTER 3. INSTALLING CODEREADY WORKSPACES FROM OPERATOR HUB

25

CHAPTER 4. INSTALLING CODEREADY WORKSPACES IN
RESTRICTED ENVIRONMENTS

To install CodeReady Workspaces in a restricted environment that has no direct connection to the
Internet available, all requisite container images need to be downloaded prior to the deployment of the
application and then used from a local container registry.

The installation of CodeReady Workspaces consists of the following three deployments:

PostgreSQL (database)

Red Hat Single Sign-On (Red Hat SSO)

CodeReady Workspaces

Each of these deployments uses a container image in the container specification. Normally, the images
are pulled from the Red Hat Container Catalog at Red Hat CodeReady Workspaces . When the
OpenShift Container Platform cluster used for the CodeReady Workspaces deployment does not have
access to the Internet, the installation fails. To allow the installation to proceed, override the default
image specification to point to your local registry.

Prerequisites

The CodeReady Workspaces deployment script. See Section 2.1, “Downloading the CodeReady
Workspaces deployment script” for detailed instructions on how to obtain the script.

A local (internal) container registry that can be accessed by the OpenShift instance where
CodeReady Workspaces is to be deployed.

Container images required for CodeReady Workspaces deployment imported to the local
registry.

The following images downloaded from the Red Hat Container Catalog at
registry.access.redhat.com:

See Section 4.1, “Preparing CodeReady Workspaces deployment from a local registry” for detailed
instructions.

4.1. PREPARING CODEREADY WORKSPACES DEPLOYMENT FROM A
LOCAL REGISTRY

To install CodeReady Workspaces in a restricted environment without access to the Internet, the
product deployment container images need to be imported from an external container registry into a
local (internal) registry.

CodeReady Workspaces deployment requires the following images from the Red Hat Container Catalog
at registry.access.redhat.com:

codeready-workspaces/server:1.1: CodeReady Workspaces server

codeready-workspaces/server-operator:1.1: operator that installs and manages CodeReady
Workspaces

rhscl/postgresql-96-rhel7:1-25: PostgreSQL database for persisting data

Red Hat CodeReady Workspaces 1.1 Administration Guide

26

https://access.redhat.com/containers/#/product/5bace840bed8bd6ee81a91c4

redhat-sso-7/sso72-openshift:1.2-8: Red Hat SSO for authentication

rhel7-minimal:7.6-154: utility image used in preparing the PVCs (Persistant Volume Claims)

Prerequisites

To import container images (create image streams) in your OpenShift Container Platform cluster, you
need:

cluster-admin rights

Procedure

1. Import the required images from an external registry to a local registry that your OpenShift
Container Platform cluster can reach. See Section 4.4, “Making CodeReady Workspaces images
available from a local registry” for example instructions on how to do this.

2. Edit the custom-resource.yaml configuration file to specify that the CodeReady Workspaces
deployment script should use images from your internal registry. Add the following specification
fields to the respective blocks. Use the address of your internal registry and the name of the
OpenShift project into which you imported the images. For example:

IMPORTANT

Make sure to use correct indentation as shown above.

Substitute 172.0.0.30:5000 for the actual address of your local registry.

Substitute openshift for the name of the OpenShift project into which you
imported the images.

Additional resources

See Section 4.4, “Making CodeReady Workspaces images available from a local registry” for
example instructions on how to transfer container images required for CodeReady Workspaces
deployment to a restricted environment.

See Section 2.5, “CodeReady Workspaces deployment script parameters” for an overview of all
available configuration options in the custom-resource.yaml configuration file.

4.2. RUNNING THE CODEREADY WORKSPACES DEPLOYMENT
SCRIPT IN A RESTRICTED ENVIRONMENT

To deploy CodeReady Workspaces in a restricted environment with access to the Internet, it is

 spec:

 storage:
 pvcJobsImage: '172.0.0.30:5000/openshift/rhel7-minimal:7.6-154'

 database:
 postgresImage: '172.0.0.30:5000/openshift/rhscl/postgresql-96-rhel7:1-25'

 auth:
 keycloakImage: '172.0.0.30:5000/openshift/redhat-sso-7/sso72-openshift:1.2-8'

CHAPTER 4. INSTALLING CODEREADY WORKSPACES IN RESTRICTED ENVIRONMENTS

27

To deploy CodeReady Workspaces in a restricted environment with access to the Internet, it is
necessary to use container images from a local (internal) registry. The deployment script (deploy.sh)
allows to specify a custom image to be used for installation.

Specification fields from the custom-resource.yaml configuration file and arguments supplied to the
deploy.sh script are passed to the operator. The operator then constructs the deployment of
CodeReady Workspaces with the images in the container specification.

Prerequisites

Imported container images required by CodeReady Workspaces to a local registry.

Local addresses of imported images specified in the custom-resource.yaml file.

See Section 4.1, “Preparing CodeReady Workspaces deployment from a local registry” for detailed
instructions.

Procedure

To deploy CodeReady Workspaces from an internal registry, run the ./deploy.sh --deploy command and
specify custom (locally available) server and operator images.

1. Use the --server-image and --version parameters to specify the server image and the --
operator-image parameter to specify the operator image. For example:

$./deploy.sh --deploy \
 --server-image=172.0.0.30:5000/openshift/server \
 --version=1.1 \
 --operator-image=172.0.0.30:5000/openshift/server-operator:1.1

IMPORTANT

Substitute 172.0.0.30:5000 for the actual address of your local registry.

Substitute openshift for the name of the OpenShift project into which you
imported the images.

Additional resources

See Section 2.2, “Running the CodeReady Workspaces deployment script” for instructions on
how to run the deploy.sh script in other situations.

4.3. STARTING WORKSPACES IN RESTRICTED ENVIRONMENTS

Starting a workspace in CodeReady Workspaces implies creating a new deployment. Different stacks
use different images. All of these stacks are from the Red Hat Container Catalog at Red Hat CodeReady
Workspaces. For more information on stacks, see the Stacks chapter in this guide.

It is not possible to override stack images during the installation of CodeReady Workspaces. You need to
manually edit preconfigured stacks. See Creating stacks.

Procedure

To start a workspace in a restricted environment:

1. Import at least one of the the following images to an internal registry:

Red Hat CodeReady Workspaces 1.1 Administration Guide

28

https://access.redhat.com/containers/#/product/5bace840bed8bd6ee81a91c4
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/1.1/html/administration_guide/administering_workspaces#stacks
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces/1.1/html/administration_guide/administering_workspaces#creating-stacks-in-codeready-workspaces

registry.access.redhat.com/codeready-workspaces/stacks-java:latest

registry.access.redhat.com/codeready-workspaces/stacks-node:latest

registry.access.redhat.com/codeready-workspaces/stacks-php:latest

registry.access.redhat.com/codeready-workspaces/stacks-python:latest

registry.access.redhat.com/codeready-workspaces/stacks-dotnet:latest

registry.access.redhat.com/codeready-workspaces/stacks-golang:latest

registry.access.redhat.com/codeready-workspaces/stacks-java-rhel8:latest

registry.access.redhat.com/codeready-workspaces/stacks-cpp:latest
See Section 4.4, “Making CodeReady Workspaces images available from a local registry” for
example instructions on how to transfer container images required for CodeReady
Workspaces deployment to a restricted environment.

2. Modify the preconfigured stacks:

a. Log in to CodeReady Workspaces as an administrator. (The default login credentials are
username: admin and password: admin.)

b. In the left pane, click Stacks.

c. From the list of stacks, select a stack to edit.

Figure 4.1. Selecting a stack to edit

d. Click and expand DEV-MACHINE.

e. In the Source field, replace the default Red Hat Container Catalog image with a local image
that you pushed to an internal registry.

Figure 4.2. Editing a stack

CHAPTER 4. INSTALLING CODEREADY WORKSPACES IN RESTRICTED ENVIRONMENTS

29

Figure 4.2. Editing a stack

f. Click Save.
Repeat step 2 for all the stacks that you want to use.

3. By default, the CodeReady Workspaces server is configured to overwrite default stacks on
application start. To ensure that the changes persist between restarts, edit the custom config
map:

a. In the OpenShist Web Console, navigate to the Resources > Config Maps tab, and select
the custom config map:

Figure 4.3. Navigate to the custom Config Map

b. From the Actions drop-down menu in the top-right corner, select Edit.

c. Scroll to the CHE_PREDEFINED_STACKS_RELOAD__ON__START key, and enter false:

Figure 4.4. Set the CHE_PREDEFINED_STACKS_RELOAD__ON__START key to false

Red Hat CodeReady Workspaces 1.1 Administration Guide

30

Figure 4.4. Set the CHE_PREDEFINED_STACKS_RELOAD__ON__START key to false

d. Save the config map.

4. Forcibly start a new CodeReady Workspaces deployment, either by scaling the current
deployment to 0 and then back to 1, or deleting the CodeReady Workspaces server pod:

a. In the OpenShist Web Console, navigate to the Applications > Deployments tab, and
select the codeready deployment:

Figure 4.5. Select the codeready deployment

b. Click the name of the running codeready pod.

c. Click the down arrow next to the number of pods, and confirm by clicking the Scale Down
button:

Figure 4.6. Scale down the codeready deployment

CHAPTER 4. INSTALLING CODEREADY WORKSPACES IN RESTRICTED ENVIRONMENTS

31

Figure 4.6. Scale down the codeready deployment

d. Scale the deployment back up by clicking the up arrow.

4.4. MAKING CODEREADY WORKSPACES IMAGES AVAILABLE FROM
A LOCAL REGISTRY

This procedure is one of the possible ways for making CodeReady Workspaces container images that
are required for deployment available from a local (internal) registry. First download the images using a
machine connected to the Internet, then use some other method than network connection to transfer
them to the restricted environment where you intend to deploy the application. Finally, upload (push)
the images to the local registry that will be accessible during the deployment phase.

Prerequisites

Machine with access to the Internet that can be used to pull and save container images from
the Red Hat Container Catalog at registry.access.redhat.com.

Means of transferring the downloaded images to the restricted environment where you intend
to deploy CodeReady Workspaces.

An account with the rights to push to a local registry within the restricted environment. The local
registry must be accessible for the deployment.

At minimum, the following images need to be made locally available:

registry.access.redhat.com/codeready-workspaces/server:1.1

registry.access.redhat.com/codeready-workspaces/server-operator:1.1

registry.access.redhat.com/rhscl/postgresql-96-rhel7:1-25

registry.access.redhat.com/redhat-sso-7/sso72-openshift:1.2-8

registry.access.redhat.com/rhel7-minimal:7.6-154

NOTE

Red Hat CodeReady Workspaces 1.1 Administration Guide

32

NOTE

You also need to follow the steps for image import for all stack images that you will want
to use within CodeReady Workspaces.

Procedure

Use a tool for container management, such as Podman, to both download the container images and
subsequently push them to a local registry within the restricted environment.

NOTE

The podman tool is available from the podman package in Red Hat Enterprise Linux
starting with version 7.6. On earlier versions of Red Hat Enterprise Linux, the docker tool
can be used with the same command syntax as suggested below for podman.

Steps to perform on a machine with connection to the Internet

1. Pull the required images from the Red Hat Container Catalog. For example, for the codeready-
workspaces/server image, run:

podman pull registry.access.redhat.com/codeready-workspaces/server:1.1

Repeat the command for all the images you need.

2. Save all the pulled images to a tar file in your current directory on the disk. For example, for the
codeready-workspaces/server image, run:

podman save --output codeready-server.tar \
 registry.access.redhat.com/codeready-workspaces/server:1.1

Repeat the command for all the images you need.

Transfer the saved tar image files to a machine connected to the restricted environment.

Steps to perform on a machine within the restricted environment

1. Load all the required images to the local container repository from which they can uploaded to
OpenShift. For example, for the codeready-workspaces/server image, run:

podman load --input codeready-server.tar

Repeat the command for all the images you need.

2. Optionally, check that the images have been successfully loaded to your local container
repository. For example, to check for the codeready images, run:

podman images */codeready/*
REPOSITORY TAG
registry.access.redhat.com/codeready-workspaces/server 1.1
registry.access.redhat.com/codeready-workspaces/server-operator 1.1

3. Log in to the instance of OpenShift Container Platform where you intend to deploy CodeReady
Workspaces as a user with the cluster-admin role. For example, to log in as the user admin, run:

CHAPTER 4. INSTALLING CODEREADY WORKSPACES IN RESTRICTED ENVIRONMENTS

33

$ oc login --username <admin> --password <password>

In the above command, substitute <admin> for the username of the account you intend to use
to deploy CodeReady Workspaces and <password> for the associated password.

4. Log in with podman to the local OpenShift registry that CodeReady Workspaces will be
deployed from:

podman login --username <admin> \
 --password $(oc whoami --show-token) 172.0.0.30:5000

In the above command:

Substitute <admin> for the username of the account you used to log in to OpenShift.

Substitute 172.0.0.30:5000 for the URL of the local OpenShift registry to which you are
logging in.

5. Tag the required images to prepare them to be pushed to the local OpenShift registry. For
example, for the codeready-workspaces/server image, run:

podman tag registry.access.redhat.com/codeready-workspaces/server:1.1 \
 172.0.0.30:5000/openshift/codeready-server:1.1

Repeat the command for all the images you need.

In the above command, substitute 172.0.0.30:5000 for the URL of the local OpenShift registry
to which you will be pushing the images.

6. Optionally, check that the images have been successfully tagged for pushing to the local
OpenShift registry. For example, to check for the codeready images, run:

podman images */openshift/codeready-*
REPOSITORY TAG
172.0.0.30:5000/openshift/codeready-operator 1.1
172.0.0.30:5000/openshift/codeready-server 1.1

7. Push the required images to the local OpenShift registry. For example, for the codeready-
workspaces/server image, run:

podman push 172.0.0.30:5000/openshift/codeready-server:1.1

Repeat the command for all the images you need.

In the above command, substitute 172.0.0.30:5000 for the URL of the local OpenShift registry
to which you will be pushing the images.

8. Switch to the openshift project:

$ oc project openshift

9. Optionally, check that the images have been successfully pushed to the local OpenShift
registry. For example, to check for the codeready images, run:

Red Hat CodeReady Workspaces 1.1 Administration Guide

34

$ oc get imagestream codeready-*
NAME DOCKER REPO TAGS
codeready-operator 172.0.0.30:5000/openshift/codeready-operator 1.1
codeready-server 172.0.0.30:5000/openshift/codeready-server 1.1

You can also verify that the images have been successfully pushed in the OpenShift Console.
Navigate to the Builds > Images tab, and look for image streams available in the openshift
project:

Figure 4.7. Confirming images have been pushed to the openshift project

The required CodeReady Workspaces container images are now available for use in your restricted
environment.

Additional resources

Continue by Section 4.2, “Running the CodeReady Workspaces deployment script in a restricted
environment”

See Importing Tag and Image Metadata in the OpenShift Container Platform Developer Guide
for detailed information about importing images.

CHAPTER 4. INSTALLING CODEREADY WORKSPACES IN RESTRICTED ENVIRONMENTS

35

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/developer_guide/dev-guide-managing-images#importing-tag-and-image-metadata

CHAPTER 5. INSTALLING CODEREADY WORKSPACES ON
OPENSHIFT DEDICATED

CodeReady Workspaces deployment requires cluster-admin OpenShift privileges. To install
CodeReady Workspaces on OpenShift Dedicated cluster, a special procedure needs to be followed.

IMPORTANT

It will not be possible to use OpenShift OAuth for CodeReady Workspaces authentication
when deployed on OpenShift Dedicated using the method described in this section.

Prerequisites

OpenShift Dedicated cluster with recommended resources. See Chapter 2, Installing
CodeReady Workspaces on OpenShift v3 for detailed information about cluster sizing.

Procedure

To install CodeReady Workspaces on OpenShift Dedicated, you need to use the deployment script
distributed with CodeReady Workspaces 1.0.1 and manually specify CodeReady Workspaces container
images from version 1.1.

1. Download and unpack the deployment script from CodeReady Workspaces 1.0.1 from
developers.redhat.com. See Section 2.1, “Downloading the CodeReady Workspaces deployment
script” for detailed instructions. Ensure that you are downloading the 1.0.1 version (direct link:
codeready-workspaces-1.0.1.GA-operator-installer.tar.gz).

2. Run the deployment script and specify:

1.1 server image

1.0 server-operator image

See Section 2.2, “Running the CodeReady Workspaces deployment script” for a description
of other available parameters that can be used with the deployment script to customize the
CodeReady Workspaces deployment.

Additional resources

Section 2.5, “CodeReady Workspaces deployment script parameters”

Chapter 4, Installing CodeReady Workspaces in restricted environments

$./deploy.sh --deploy \
 --operator-image=registry.access.redhat.com/codeready-workspaces/server-
operator:1.0 \
 --server-image=registry.access.redhat.com/codeready-workspaces/server:1.1

Red Hat CodeReady Workspaces 1.1 Administration Guide

36

https://developers.redhat.com/products/codeready-workspaces/download
https://developers.redhat.com/download-manager/file/codeready-workspaces-1.0.1.GA-operator-installer.tar.gz

CHAPTER 6. UPGRADING CODEREADY WORKSPACES
CodeReady Workspaces 1.1.0 introduces an operator that uses a controller to watch custom resources.
There is no direct upgrade path from CodeReady Workspaces 1.0.1 to CodeReady Workspaces 1.1.0. If
you do not have any important workspaces and projects in an existing 1.0.1 namespace, we recommend
deleting the 1.0.1 installation and deploying CodeReady Workspaces 1.1.0.

To keep data from an existing 1.0.1 installation, it is possible to upgrade by deploying the new operator to
an existing namespace. You can use the manual or the script-based method to upgrade.

6.1. UPGRADING CODEREADY WORKSPACES MANUALLY

Prerequisites

A running instance of Red Hat OpenShift Container Platform 3.11 or OpenShift Dedicated 3.11.

The user is logged in to the OpenShift instance (using, for example, oc login).

Procedure

1. Obtain the current PostgreSQL password (POSTGRESQL_PASSWORD) from the existing
PostgreSQL deployment environment, or run the following oc command:

$ oc get deployment postgres --output=jsonpath= \
{'.spec.template.spec.containers[0].env \
[?(@.name=="POSTGRESQL_PASSWORD")].value'} --namespace=<codeready>

IMPORTANT

Substitute <codeready> for the namespace that you are using.

2. Obtain the current Red Hat SSO administrator username and password
(SSO_ADMIN_USERNAME and SSO_ADMIN_PASSWORD) from the existing Red Hat SSO
deployment environment, or run the following oc commands:

$ oc get deployment keycloak --output=jsonpath= \
{'.spec.template.spec.containers[0].env \
[?(@.name=="SSO_ADMIN_USERNAME")].value'} --namespace=<codeready>

$ oc get deployment keycloak --output=jsonpath= \
{'.spec.template.spec.containers[0].env \
[?(@.name=="SSO_ADMIN_PASSWORD")].value'} --namespace=<codeready>

NOTE

If you have changed the Red Hat SSO administrator password, provide the
new password instead of fetching it from the environment variables.

Substitute <codeready> for the namespace that you are using.

3. Replace the following values in the custom-resource.yaml file with the values you have
obtained:

CHAPTER 6. UPGRADING CODEREADY WORKSPACES

37

4. If you have configured OpenShift oAuth, obtain the oAuth secret and set its value in the
custom-resource.yaml file:

a. To obtain the secret, run the following command as the cluster administrator:

$ oc get oauthclient openshift-identity-provider-h2fh \
-o=jsonpath= {'.secret'}

b. Add the following fields to the spec.auth section of the custom-resource.yaml file. Set
oAuthClientName to openshift-identity-provider-h2fh if not already set.

IMPORTANT

Substitute <secret> for an actual secret.

5. To deploy the operator to an existing namespace, run the deployment script with the arguments
that suit your installation. See Section 2.2, “Running the CodeReady Workspaces deployment
script” for detailed instructions.

$./deploy.sh --deploy

6.2. UPGRADING CODEREADY WORKSPACES USING A MIGRATION
SCRIPT

The upgrade process using the migrate.sh script is an automation of the manual steps listed in the
preceding manual section.

Prerequisites

A running instance of Red Hat OpenShift Container Platform 3.11 or OpenShift Dedicated 3.11.

The user is logged in to the OpenShift instance (using, for example, oc login).

Procedure

1. Run the migrate.sh script with the name of your existing deployed project:

$./migrate.sh --project=codeready

In the above command, substitute codeready for the name of the OpenShift project that you

 spec:
 database:
 chePostgresPassword: '<password>'
 auth:
 keycloakAdminUserName: '<username>'
 keycloakAdminPassword: '<password>'

 spec:
 auth:
 oAuthClientName: 'openshift-identity-provider-h2fh'
 oAuthSecret: '<secret>'

Red Hat CodeReady Workspaces 1.1 Administration Guide

38

In the above command, substitute codeready for the name of the OpenShift project that you
used for deploying the previous version of CodeReady Workspaces.

2. Check changes in the custom-resource.yaml file.

3. Run the deploy.sh script with parameters for your environment. See Section 2.2, “Running the
CodeReady Workspaces deployment script” for detailed instructions.

CHAPTER 6. UPGRADING CODEREADY WORKSPACES

39

CHAPTER 7. UNINSTALLING CODEREADY WORKSPACES
There is no dedicated function in the deploy.sh script to uninstall CodeReady Workspaces.

However, you can delete a custom resource, which deletes all the associated objects.

Procedure

To delete a custom resource, run the following command:

oc delete checluster/codeready -n $targetNamespace

Here, $targetNamespace is an OpenShift project with deployed CodeReady Workspaces (workspaces
is the OpenShift project by default).

Red Hat CodeReady Workspaces 1.1 Administration Guide

40

CHAPTER 8. VIEWING CODEREADY WORKSPACES
OPERATION LOGS

After the CodeReady Workspaces pods are created, you can view the operation logs of the application in
the terminal or through the OpenShift console.

8.1. VIEWING CODEREADY WORKSPACES OPERATION LOGS IN THE
TERMINAL

To view the operation logs on the terminal, run the following commands:

1. To obtain the names of the pods you must switch to project where CodeReady Workspaces is
installed:

$ oc get pods -n=<OpenShift-project-name>

This command shows the pods that have been created:

NAME READY STATUS RESTARTS AGE
codeready-6b4876f56c-qdlll 1/1 Running 0 24m
codeready-operator-56bc9599cc-pkqkn 1/1 Running 0 25m
keycloak-666c5f9f4b-zz88z 1/1 Running 0 24m
postgres-96875bcbd-tfxr4 1/1 Running 0 25m

2. To view the operation log for a specific pod, run:

$ oc logs <log-name>

The output of this command for the codeready-6b4876f56c-qdll pod (as an example) is as
follows:

3. For operation logs of the other pods, run:

For the codeready-operator-56bc9599cc-pkqkn pod: oc logs codeready-operator-
56bc9599cc-pkqkn

2019-03-29 12:22:17,710[ost-startStop-1] [INFO] [unknown.jul.logger 49] -
UndertowServer reused (pre-existing).

GMS: address=codeready-6b4876f56c-qdlll-42917, cluster=WorkspaceStateCache, physical
address=fe80:0:0:0:42:acff:fe11:c%eth0:7801

2019-03-29 12:22:21,784[ost-startStop-1] [INFO] [unknown.jul.logger 49] -
namespace [workspaces] set; clustering enabled
2019-03-29 12:22:21,785[ost-startStop-1] [INFO] [unknown.jul.logger 49] - Starting
UndertowServer on port 8888 for channel address: codeready-6b4876f56c-qdlll-34344
2019-03-29 12:22:21,786[ost-startStop-1] [INFO] [unknown.jul.logger 49] -
UndertowServer reused (pre-existing).

GMS: address=codeready-6b4876f56c-qdlll-34344, cluster=WorkspaceLocks, physical
address=fe80:0:0:0:42:acff:fe11:c%eth0:7802

2019-03-29 12:22:25,822[ost-startStop-1] [INFO] [o.e.c.a.w.s.WorkspaceRuntimes 166] -
Configured factories for environments: '[openshift, kubernetes, dockerimage,

CHAPTER 8. VIEWING CODEREADY WORKSPACES OPERATION LOGS

41

56bc9599cc-pkqkn

For the keycloak-666c5f9f4b-zz88z pod: oc logs keycloak-666c5f9f4b-zz88z

For the postgres-96875bcbd-tfxr4 pod: oc logs postgres-96875bcbd-tfxr4

8.2. VIEWING CODEREADY WORKSPACES OPERATION LOGS IN THE
OPENSHIFT CONSOLE

To view the operation logs in the OpenShift console, take the following steps:

1. Navigate to the OpenShift web console.

2. In the My Projects pane, click workspaces.

3. In the Overview tab, click the application that you want to view the logs for (example:
codeready-operator, #1).

4. In the Deployments > <application-name> window, click the name of the pod.

5. Scroll down to the Pods section and click the <pod-name>.

6. Click Logs

Figure 8.1. Clicking View Log

7. Click Follow to follow the log.

time="2019-03-29T12:22:00Z" level=info msg="Updating codeready CR with status: Che API:
Unavailable"
time="2019-03-29T12:22:00Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:00Z" level=info msg="Waiting for deployment codeready. Default
timeout: 420 seconds"
time="2019-03-29T12:22:31Z" level=info msg="Deployment 'codeready' successfully scaled
to 1"
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with Keycloak URL
status: http://keycloak-workspaces.192.168.42.114.nip.io "
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"

Red Hat CodeReady Workspaces 1.1 Administration Guide

42

time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with status:
CodeReady Workspaces server: Available"
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with CodeReady
Workspaces server URL: http://codeready-workspaces.192.168.42.114.nip.io "
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"
time="2019-03-29T12:22:31Z" level=info msg="CodeReady Workspaces is now available at:
http://codeready-workspaces.192.168.42.114.nip.io "
time="2019-03-29T12:22:31Z" level=info msg="Updating codeready CR with version: 1.1-52"
time="2019-03-29T12:22:31Z" level=info msg="Custom resource codeready updated"

CHAPTER 8. VIEWING CODEREADY WORKSPACES OPERATION LOGS

43

CHAPTER 9. USING THE CHE 7 IDE IN CODEREADY
WORKSPACES

IMPORTANT

CodeReady Workspaces 1.1.0 is based on upstream Che 6. The next version of Che, Che
7, is being worked on. To try this upcoming version of Che 7 in CodeReady Workspaces,
follow the instructions in this section.

Che 7-based stacks are not included by default in CodeReady Workspaces. However, you can use a Che
7-based workspace configuration in CodeReady Workspaces. To use the Che 7-based stacks in
CodeReady Workspaces, take the following steps:

1. In the Dashboard, click Workspaces and then click Add Workspace.

2. Select any stack from the list and click the dropdown icon next to CREATE & OPEN.

3. Click Create & Proceed Editing.

4. Click the Config tab and replace the default configuration content with the following content:

5. To add additional Che plugins (for example to add support for a particular language), add them
in the workspace configuration attributes#plugins list. For a list of available plugins, see
https://github.com/eclipse/che-plugin-registry/.

6. To add a runtime environment (for example Java runtime environment), add the following
content in the Config tab:

{
 "environments": {},
 "projects": [],
 "name": "che7",
 "attributes": {
 "editor": "org.eclipse.che.editor.theia:1.0.0",
 "plugins": "che-machine-exec-plugin:0.0.1"
 },
 "commands": [],
 "links": []
}

"environments": {
 "default": {
 "machines": {
 "ws/dev": {
 "attributes": {
 "memoryLimitBytes": "536870912"
 },
 "servers": {},
 "volumes": {
 "projects": {
 "path": "/projects"
 }
 },
 "installers": [],

Red Hat CodeReady Workspaces 1.1 Administration Guide

44

https://github.com/eclipse/che-plugin-registry/

7. To define it as the default environment, add the following content:

8. Click the Open button and run the Che 7-based workspace that you just created.

 "env": {}
 }
 },
 "recipe": {
 "type": "kubernetes",
 "content": "kind: List\nitems:\n - \n apiVersion: v1\n kind: Pod\n metadata:\n name:
ws\n spec:\n containers:\n - \n image: 'eclipse/che-dev:nightly'\n name: dev\n
resources:\n limits:\n memory: 512Mi\n",
 "contentType": "application/x-yaml"
 }
 }
 }

"defaultEnv": "default"
"environments": {
 "default": {...} }

CHAPTER 9. USING THE CHE 7 IDE IN CODEREADY WORKSPACES

45

CHAPTER 10. USING THE ANALYTICS PLUG-IN IN
CODEREADY WORKSPACES

The Analytics plug-in provides insights about application dependencies: security vulnerabilities, license
compatibility, and AI-based guidance for additional, alternative dependencies.

The Analytics plug-in is enabled by default in the Java and NodeJS stacks in CodeReady Workspaces.
When a user opens the pom.xml or the package.json files, the dependencies are analyzed. The editor
shows warnings for available CVEs or issues with any dependency.

Red Hat CodeReady Workspaces 1.1 Administration Guide

46

CHAPTER 11. USING VERSION CONTROL
CodeReady Workspaces natively supports the Git version control system (VCS), which is provided by
the JGit library. Versioning functionality is available in the IDE and in the terminal.

The following sections describe how to connect and authenticate users to a remote Git repository. Any
operations that involve authentication on the remote repository need to be done via the IDE interface
unless authentication is configured separately for the workspace machine (terminal, commands).

Private repositories require a secure SSH connection. In order to connect to Git repositories over SSH,
an SSH key pair needs to be generated. SSH keys are saved in user preferences, so the same key can be
used in all workspaces.

NOTE

HTTPS Git URLs can only be used to push changes when OAuth authentication is
enabled. See Enabling authentication with social accounts and brokering .

11.1. GENERATING AND UPLOADING SSH KEYS

SSH keys can be generated in the CodeReady Workspaces user interface.

1. Go to Profile > Preferences > SSH > VCS, and click the Generate Key button.

2. When prompted to provide the host name for your repository, use the bare host name (do not
include www or https) as in the example below.

3. Save the resulting key to your Git-hosting provider account.

IMPORTANT

The host name is an actual host name of a VCS provider. Examples: github.com,
bitbucket.org.

11.1.1. Using existing SSH keys

You can upload an existing public key instead of creating a new SSH key. When uploading a key, add the
host name (using no www or https - as in the example below). Note that the Public key > View button
is not be available when using this option because the public file should be generated already.

CHAPTER 11. USING VERSION CONTROL

47

https://www.eclipse.org/jgit/

The following examples are specific to GitHub and GitLab, but a similar procedure can be used with all
Git or SVN repository providers that use SSH authentication. See documentation provided by other
providers for additional assistance.

Example 11.1. GitHub example

When not using GitHub OAuth, you can manually upload a key. To add the associated public key to a
repository or account on github.com:

1. Click your user icon (top right).

2. Go to Settings > SSH and GPG keys and click the New SSH key button.

3. Enter a title and paste the public key copied from CodeReady Workspaces to the Key text
field.

Red Hat CodeReady Workspaces 1.1 Administration Guide

48

Example 11.2. GitLab example

To add the associated public key to a Git repository or account on gitlab.com:

1. Click your user icon (top right).

2. Go to Settings > SSH Keys.

3. Enter a title and paste the public key copied from CodeReady Workspaces to the Key text
field.

CHAPTER 11. USING VERSION CONTROL

49

11.2. CONFIGURING GITHUB OAUTH

OAuth for Github allows users to import projects using SSH addresses (git@), push to repositories, and
use the pull request panel. To enable automatic SSH key upload to GitHub for users:

1. On github.com, click your user icon (top right).

2. Go to Settings > Developer settings > OAuth Apps.

3. Click the Register a new application button.

4. In the Application name field, enter, for example, CodeReady Workspaces.

5. In the Homepage URL field, enter http://${CHE_HOST}:${CHE_PORT}.

6. In the Authorization callback URL field, enter
http://${CHE_HOST}:${CHE_PORT}/api/oauth/callback.

Red Hat CodeReady Workspaces 1.1 Administration Guide

50

7. On OpenShift, update the deployment configuration.

CHE_OAUTH_GITHUB_CLIENTID=<your-github-client-id>
CHE_OAUTH_GITHUB_CLIENTSECRET=<your-github-secret>
CHE_OAUTH_GITHUB_AUTHURI=https://github.com/login/oauth/authorize
CHE_OAUTH_GITHUB_TOKENURI=https://github.com/login/oauth/access_token
CHE_OAUTH_GITHUB_REDIRECTURIS=http://${CHE_HOST}:${CHE_PORT}/api/oauth/call
back

NOTE

Substitute all occurrences of ${CHE_HOST} and ${CHE_PORT} with the URL
and port of your CodeReady Workspaces installation.

Substitute <your-github-client-id> and <your-github-secret> with your GitHub
client ID and secret.

Once OAuth is configured, SSH keys are generated and uploaded automatically to GitHub by a user in
the IDE in Profile > Preferences > SSH > VCS by clicking the Octocat icon. You can connect to your
GitHub account and choose repositories to clone, rather than having to manually type (or paste) GitHub
project URLs.

CHAPTER 11. USING VERSION CONTROL

51

11.3. CONFIGURING GITLAB OAUTH

OAuth integration with GitLab is not supported. Although GitLab supports OAuth for clone operations,
pushes are not supported. A feature request to add support exists in the GitLab issue management
system: Allow runners to push via their CI token .

11.4. SUBMITTING PULL REQUESTS USING THE BUILT-IN PULL
REQUEST PANEL

CodeReady Workspaces provides a Pull Request panel to simplify the creation of pull requests for
GitHub, BitBucket, and Microsoft VSTS (with Git) repositories.

11.5. SAVING COMMITTER NAME AND EMAIL

Committer name and email are set in Profile > Preferences > Git > Committer. Once set, every commit
will include this information.

11.6. INTERACTING WITH GIT FROM A WORKSPACE

After importing a repository, you can perform the most common Git operations using interactive menus
or as terminal commands.

Red Hat CodeReady Workspaces 1.1 Administration Guide

52

https://gitlab.com/gitlab-org/gitlab-ce/issues/18106

NOTE

Terminal Git commands require their own authentication setup. This means that keys
generated in the IDE work only when Git is used through the IDE menus. Git installed in a
terminal is a different Git system. You can generate keys in ~/.ssh there as well.

Use keyboard shortcuts to access the most frequently used Git functionality faster:

Commit Alt+C

Push to remote Alt+Shift+C

Pull from remote Alt+P

Work with branches Ctrl+B

Compare current changes with the latest repository
version

Ctrl+Alt+D

11.7. GIT STATUS HIGHLIGHTING IN THE PROJECT TREE AND EDITOR

Files in project explorer and editor tabs can be colored according to their Git status:

CHAPTER 11. USING VERSION CONTROL

53

Green: new files that are staged in index

Blue: files that contain changes

Yellow: files that are not staged in index

The editor displays change markers according to file edits:

Yellow marker: modified line(s)

Green marker: new line(s)

White triangle: removed line(s)

11.8. PERFORMING GIT OPERATIONS

11.8.1. Commiting

Commit your changes by navigating to Git > Commit…​ in the main menu, or use the Alt+C shortcut.

Red Hat CodeReady Workspaces 1.1 Administration Guide

54

1. Select files that will be added to index and committed. All files in the selected package or folder
in the project explorer are checked by default.

2. Type your commit message. Optionally, you can select Amend previous commit to modify the
previous commit (for more details, see Git commit documentation).

3. To push your commit to a remote repository by checking the Push committed changes to
check-box and select a remote branch.

4. Click Commit to proceed (the Commit button is active when at least one file is selected and a
commit message is present, or Amend previous commit is checked).

Behavior for files in the list view is the same as in the Compare window (see Reviewing changed files
section). Double-clicking a file opens diff window with it.

11.8.2. Pushing and pulling

Push your commits by navigating to Git > Remotes…​ > Push in the main menu, or use the Alt+Shift+C
shortcut.

CHAPTER 11. USING VERSION CONTROL

55

1. Choose the remote repository.

2. Choose the local and remote branch.

3. Optionally, you can force select Force push.

Get changes from a remote repository by navigating to Git > Remotes…​ > Pull in the main menu, or use
the Alt+P shortcut.

You can use Rebase instead of merge to keep your local commits on top (for more information, see Git
pull documentation).

11.8.3. Managing branches

Manage your git branches by navigating to Git > Branches…​ in the main menu, or use the Ctrl+B
shortcut.

Red Hat CodeReady Workspaces 1.1 Administration Guide

56

https://git-scm.com/docs/git-pull#git-pull??r

You can filter the branches view by choosing to see only local or remote branches.

11.9. REVIEWING CHANGED FILES

The Git Compare window is used to show files that have changed.

To compare the current state of code to the latest local commit, navigate to Git > Compare > Select-
to-what in the main menu, or use the Ctrl+Alt+D shortcut. Another way is to select an object in the
project tree and choose Git > Select-to-what from the context menu of an item.

CHAPTER 11. USING VERSION CONTROL

57

Listing changed files

The Git Compare window shows changed files in the selected object in the project explorer. To see all
changes, select a project folder. If only one file has changed, a diff window is shown instead of the
compare window.

By default, affected files are listed as a tree.

The Expand all directories and Collapse all directories options help to get a better view. The View as
list button switches the view of changed files to a list, where each file is shown with its full path. To
return to the tree view, click Group by directories.

Red Hat CodeReady Workspaces 1.1 Administration Guide

58

Viewing diffs

To view a diff for a file, select the file and click Compare, or double-click the file name.

You can review changes between two states of code. To view the diff, go to Git > Compare > Select-to-
what in main menu. If more than one file has changed, a list of the changed files is opened first. To select
a file to compare, double-click it, or select a file, and then click Compare. Another way to open a diff is
to select a file in the Projects Explorer and choose Git > Select-to-what from its context menu or
directly from the context menu in the editor.

CHAPTER 11. USING VERSION CONTROL

59

Your changes are shown on the left, and the file being compared to is on the right. The left pane can be
used for editing and fixing your changes.

To review multiple files, you can navigate between them using the Previous (or Alt+.) and Next (or
Alt+,) buttons. The number of files for review is displayed in the title of the diff window.

The Refresh button updates the difference links between the two panes.

Red Hat CodeReady Workspaces 1.1 Administration Guide

60

CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION
GUIDE

12.1. RAM PREREQUISITES

You must have at least 5 GB of RAM to run CodeReady Workspaces. The Keycloak authorization server
and PostgreSQL database require the extra RAM. CodeReady Workspaces uses RAM in this distribution:

CodeReady Workspaces server: approximately 750 MB

Keycloak: approximately 1 GB

PostgreSQL: approximately 515 MB

Workspaces: 2 GB of RAM per workspace. The total workspace RAM depends on the size of the
workspace runtime(s) and the number of concurrent workspace pods.

12.1.1. Setting default workspace RAM limits

The default workspace RAM limit and the RAM allocation request can be configured by passing the
CHE_WORKSPACE_DEFAULT__MEMORY__LIMIT__MB and
CHE_WORKSPACE_DEFAULT__MEMORY__REQUEST__MB parameters to a CodeReady
Workspaces deployment.

For example, use the following configuration to limit the amount of RAM used by workspaces to 2048
MB and to request the allocation of 1024 MB of RAM:

$ oc set env dc/che CHE_WORKSPACE_DEFAULT__MEMORY__LIMIT__MB=2048 \
 CHE_WORKSPACE_DEFAULT__MEMORY__REQUEST__MB=1024

NOTE

The user can override the default values when creating a workspace.

A RAM request greater than the RAM limit is ignored.

12.2. REQUIREMENTS FOR RESOURCE ALLOCATION AND QUOTAS

Workspace pods are created in the account of the user who deploys CodeReady Workspaces. The user
needs enough quota for RAM, CPU, and storage to create the pods.

12.3. SETTING UP THE PROJECT WORKSPACE

Workspace objects are created differently depending on the configuration. CodeReady Workspaces
currently supports two different configurations:

Single OpenShift project

Multi OpenShift project

12.3.1. Setting up a single OpenShift project

CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION GUIDE

61

To setup a single OpenShift project:

1. Define the service account used to create workspace objects with the
CHE_OPENSHIFT_SERVICEACCOUNTNAME variable.

2. To ensure this service account is visible to the CodeReady Workspaces server, put the service
and the CodeReady Workspaces server in the same namespace.

3. Give the service account permissions to create and edit OpenShift resources.

4. If the developer needs to create an object outside of the service accounts bound namespace,
give the service account cluster-admin rights by running this command:

$ oc adm policy add-cluster-role-to-user self-provisioner system:serviceaccount:eclipse-
che:che

In the command above, eclipse-che is the CodeReady Workspaces namespace.

12.3.2. Setting up a multi OpenShift project

1. To create workspace objects in different namespaces for each user, set the
NULL_CHE_INFRA_OPENSHIFT_PROJECT variable to NULL.

2. To create resources on behalf of the currently logged-in user, use the user’s OpenShift tokens.

12.4. HOW THE CODEREADY WORKSPACES SERVER USES PVCS AND
PVS FOR STORAGE

CodeReady Workspaces server, Keycloak and PostgreSQL pods, and workspace pods use Persistent
Volume Claims (PVCs), which are bound to the physical Persistent Volumes (PVs) with ReadWriteOnce
access mode. When the deployment YAML files run, they define the CodeReady Workspaces PVCs. You
can configure workspace PVC access mode and claim size with CodeReady Workspaces deployment
environment variables.

12.4.1. Storage requirements for CodeReady Workspaces infrastructure

CodeReady Workspaces server: 1 GB to store logs and initial workspace stacks.

Keycloak: 2 PVCs, 1 GB each to store logs and Keycloak data.

PostgreSQL: 1 GB PVC to store database.

12.4.2. Storage strategies for workspaces

The workspace PVC strategy is configurable:

strategy details pros cons

unique (default) One PVC per workspace
volume

Storage isolation An undefined number of
PVs is required

Red Hat CodeReady Workspaces 1.1 Administration Guide

62

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#access-modes

common One PVC for all
workspaces in one
OpenShift Project

Sub-paths pre-created

Easy to manage and
control storage

Workspaces must be in
a separate OpenShift
Project if PV does not
support ReadWriteMany
(RWX) access mode

per-workspace One PVC for one
workspace

Sub-paths pre-created

Easy to manage and
control storage

Workspace containers
must all be in one pod if
PV does not support
ReadWriteMany (RWX)
access mode

strategy details pros cons

12.4.3. Unique PVC strategy

To define the unique strategy, set CHE_INFRA_KUBERNETES_PVC_STRATEGY to unique.

Every workspace gets its own PVC, which means a workspace PVC is created when a workspace starts
for the first time. A workspace PVC is deleted when a corresponding workspace is deleted.

12.4.4. Common PVC Strategy

12.4.4.1. How the common PVC strategy works

All workspaces (within one OpenShift Project) use the same PVC to store data declared in their volumes
(projects and workspace logs by default and whatever additional volumes that a user can define.)

A PV that is bound to PVC che-claim-workspace has the following structure:

pv0001
 workspaceid1
 workspaceid2
 workspaceidn
 che-logs projects <volume1> <volume2>

Volumes can be anything that a user defines as volumes for workspace machines. The volume name is
equal to the directory name in ${PV}/${ws-id}.

When a workspace is deleted, a corresponding subdirectory (${ws-id}) is deleted in the PV directory.

12.4.4.2. Enabling the common strategy

If you have already deployed CodeReady Workspaces with the unique strategy, set the
CHE_INFRA_KUBERNETES_PVC_STRATEGY variable to common in dc/che.

If applying the che-server-template.yaml configuration, pass -p
CHE_INFRA_KUBERNETES_PVC_STRATEGY=common to the oc new-app command.

12.4.4.3. Restrictions on using the common PVC strategy

When the common strategy is used and a workspace PVC access mode is ReadWriteOnce (RWO), only

CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION GUIDE

63

one OpenShift node can simultaneously use the PVC. If there are several nodes, you can use the
common strategy, but the workspace PVC access mode is ReadWriteMany (RWM). Multiple nodes can
use this PVC simultaneously.

To change the access mode for workspace PVCs, pass the
CHE_INFRA_KUBERNETES_PVC_ACCESS_MODE=ReadWriteMany environment variable to
CodeReady Workspaces deployment either when initially deploying CodeReady Workspaces or through
the CodeReady Workspaces deployment update.

Another restriction is that only pods in the same namespace can use the same PVC. The
CHE_INFRA_KUBERNETES_PROJECT environment variable should not be empty. It should be either
the CodeReady Workspaces server namespace where objects can be created with the CodeReady
Workspaces service account (SA) or a dedicated namespace where a token or a user name and
password need to be used.

12.4.5. Per workspace PVC strategy

To define the unique strategy, set CHE_INFRA_KUBERNETES_PVC_STRATEGY to per-workspace.

12.4.5.1. How the per-workspace PVC strategy works

The per-workspace strategy works similarly to the common PVC strategy. The only difference is that
all workspace volumes (but not all workspaces) use the same PVC to store data (projects and
workspace logs by default and any additional volumes that a user can define).

12.5. UPDATING YOUR CODEREADY WORKSPACES DEPLOYMENT

To update a CodeReady Workspaces deployment:

1. Change the image tag:
You can change the image tag in one of the following ways:

On the command line, edit the image tag by running:

$ oc edit dc/che

In the OpenShift web console, edit the image:tag line in the YAML file in Deployments

Using the Docker service:

$ oc set image dc/che che=eclipse/che-server:${VERSION} --source=docker

2. Update Keycloak and PostgreSQL deployments (optional):

Run the eclipse/che-keycloak command.

Run the eclipse/che-postgres command.
You can get the list of available versions at CodeReady Workspaces GitHub page .

3. Change the pull policy (optional):
To change the pull policy, do one of the following:

Add --set cheImagePullPolicy=IfNotPresent to the CodeReady Workspaces deployment.

Manually edit dc/che after deployment.

Red Hat CodeReady Workspaces 1.1 Administration Guide

64

https://github.com/eclipse/che/tags

The default pull policy is Always. The default tag is nightly. This tag sets the image pull policy to
Always and triggers a new deployment with a newer image, if available.

12.6. SCALABILITY

To run more workspaces, add more nodes to your OpenShift cluster . An error message is returned when
the system is out of resources.

12.7. GDPR

To delete data or request the administrator to delete data, run this command with the user or
administrator token:

$ curl -X DELETE http://che-server/api/user/{id}

12.8. DEBUG MODE

To run CodeReady Workspaces Server in debug mode, set the following environment variable in the
CodeReady Workspaces deployment to true (default is false):

CHE_DEBUG_SERVER=true

12.9. PRIVATE DOCKER REGISTRIES

See OpenShift documentation.

12.10. CODEREADY WORKSPACES SERVER LOGS

Logs are persisted in a PV .The PVC che-data-volume is created and bound to a PV after CodeReady
Workspaces deploys to OpenShift.

To retrieve logs, do one of the following:

Run the oc get log dc/che command.

Run the oc describe pvc che-data-claim command to find the PV. Next, run the oc describe
pv $pvName command with the PV to get a local path with the logs directory. Be careful with
permissions for that directory, since once changed, CodeReady Workspaces server will not be
able to write to a file.

In the OpenShift web console, select Pods > che-pod > Logs.

It is also possible to configure CodeReady Workspaces master not to store logs, but produce JSON
encoded logs to output instead. It may be used to collect logs by systems such as Logstash. To
configure JSON logging instead of plain text environment variable CHE_LOGS_APPENDERS_IMPL
should have value json.

12.11. WORKSPACE LOGS

Workspace logs are stored in an PV bound to che-claim-workspace PVC. Workspace logs include logs
from workspace agent, bootstrapper and other agents if applicable.

CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION GUIDE

65

https://docs.okd.io/latest/admin_guide/manage_nodes.html
https://docs.okd.io/latest/architecture/infrastructure_components/image_registry.html
https://github.com/eclipse/che/blob/master/deploy/openshift/templates/pvc/che-server-pvc.yaml#L14

12.12. CODEREADY WORKSPACES MASTER STATES

The CodeReady Workspaces master has three possible states:

RUNNING

PREPARING_TO_SHUTDOWN

READY_TO_SHUTDOWN

The PREPARING_TO_SHUTDOWN state means that no new workspace startups are allowed. This
situation can cause two different results:

If your infrastructure does not support workspace recovery, all running workspaces are forcibly
stopped.

If your infrastructure does support workspace recovery, any workspaces that are currently
starting or stopping is allowed to finish that process. Running workspaces do not stop.

For those that did not stop, automatic fallback to the shutdown with full workspaces stopping will be
performed.

If you want a full shutdown with workspaces stopped, you can request this by using the shutdown=true
parameter. When preparation process is finished, the READY_TO_SHUTDOWN state is set which
allows to stop current CodeReady Workspaces master instance.

12.13. WORKSPACE TERMINATION GRACE PERIOD

The default grace termination period of OpenShift workspace pods is 0. This setting terminates pods
almost instantly and significantly decreases the time required for stopping a workspace.

To increase the grace termination period, use the following environment variable:
CHE_INFRA_KUBERNETES_POD_TERMINATION__GRACE__PERIOD__SEC.

IMPORTANT

If the terminationGracePeriodSeconds variable is explicitly set in the OpenShift recipe,
the CHE_INFRA_KUBERNETES_POD_TERMINATION__GRACE__PERIOD__SEC
environment variable does not override the recipe.

12.14. AUTO-STOPPING A WORKSPACE WHEN ITS PODS ARE
REMOVED

CodeReady Workspaces Server includes a job that automatically stops workspace runtimes if their pods
have been terminated. Pods are terminated when, for example, users remove them from the OpenShift
console, administrators terminate them to prevent misuse, or an infrastructure node crashes.

The job is disabled by default to avoid problems in configurations where CodeReady Workspaces Server
cannot interact with the Kubernetes API without user intervention.

The job cannot function with the following CodeReady Workspaces Server configuration:

CodeReady Workspaces Server communicates with the Kubernetes API using a token from the
OAuth provider.

Red Hat CodeReady Workspaces 1.1 Administration Guide

66

The job can function with the following CodeReady Workspaces Server configurations:

Workspaces objects are created in the same namespace where CodeReady Workspaces Server
is located.

The cluster-admin service account token is mounted to the CodeReady Workspaces Server
pod.

To enable the job, set the
CHE_INFRA_KUBERNETES_RUNTIMES__CONSISTENCY__CHECK__PERIOD__MIN environment
variable to contain a value greater than 0. The value is the time period in minutes between checks for
runtimes without pods.

12.15. UPDATING CODEREADY WORKSPACES WITHOUT STOPPING
ACTIVE WORKSPACES

The differences between a Recreate update and a Rolling update:

Recreate update Rolling update

CodeReady Workspaces downtime No CodeReady Workspaces downtime

- New deployment starts in parallel and traffic is hot-
switched

12.15.1. Performing a recreate update

To perform a recreate update:

Ensure that the new master version is fully API compatible with the old workspace agent
version.

Set the deployment update strategy to Recreate

Make POST request to the /api/system/stop api to start WS master suspend. This means that
all new attempts to start workspaces will be refused, and all current starts and stops will be
finished. Note that this method requires system admin credentials.

Make periodical GET requests to the /api/system/state API, until it returns the
READY_TO_SHUTDOWN state. Also, you can check for "System is ready to shutdown" in the
server logs.

Perform new deploy.

12.15.2. Performing a rolling update

To perform a rolling update:

Ensure that the new master is fully API compatible with the old ws agent versions, as well as
database compatibility. It is impossible to use database migrations on this update mode.

Set the deployment update strategy set to Rolling.

Ensure terminationGracePeriodSeconds deployment parameter has enough value (see details

CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION GUIDE

67

Ensure terminationGracePeriodSeconds deployment parameter has enough value (see details
below).

Press Deploy button or execute oc rollout latest che from cli client.

12.15.2.1. Known issues

Workspaces may fallback to the stopped state when they are started five to thirty seconds
before the network traffic are switched to the new pod. This happens when the bootstrappers
use the CodeReady Workspaces server route URL for notifying the CodeReady Workspaces
Server that bootstrapping is done. Since traffic is already switched to the new CodeReady
Workspaces server, the old CodeReady Workspaces server cannot get the bootstrapper’s report
and fails to start after the waiting timeout is reached. If the old CodeReady Workspaces server is
killed before this timeout, the workspaces can be stuck in the STARTING state. The
terminationGracePeriodSeconds parameter must define enough time to cover the workspace
start timeout, which is eight minutes plus some additional time. Typically, setting
terminationGracePeriodSeconds to 540 sec is enough to cover all timeouts.

Users may experience problems with websocket reconnections or missed events published by
WebSocket connection when a workspace is STARTED but dashboard displays that it is
STARTING. In this case, you need to reload the page to restore connections and the actual
workspace states.

12.15.3. Updating with database migrations or API incompatibility

If new version of CodeReady Workspaces server contains some DB migrations, but there is still API
compatibility between old and new version, recreate update type may be used, without stopping running
workspaces.

API incompatible versions should be updated with full workspaces stop. It means that
/api/system/stop?shutdown=true must be called prior to update.

12.16. DELETING DEPLOYMENTS

The fastest way to completely delete CodeReady Workspaces and its infrastructure components is to
delete the project and namespace.

To delete CodeReady Workspaces and components:

$ oc delete namespace che

You can use selectors to delete particular deployments and associated objects.

To remove all CodeReady Workspaces server related objects:

$ oc delete all -l=app=che

To remove all Keycloak related objects:

$ oc delete all -l=app=keycloak

To remove all PostgreSQL-related objects:

$ oc delete all -l=app=postgres

Red Hat CodeReady Workspaces 1.1 Administration Guide

68

PVCs, service accounts and role bindings should be deleted separately because oc delete all does not
delete them.

To delete CodeReady Workspaces server PVC, ServiceAccount and RoleBinding:

$ oc delete sa -l=app=che
$ oc delete rolebinding -l=app=che

To delete Keycloak and PostgreSQL PVCs:

$ oc delete pvc -l=app=keycloak
$ oc delete pvc -l=app=postgres

12.17. MONITORING CODEREADY WORKSPACES MASTER SERVER

Master server emits metrics in Prometheus format by default on port 8087 of the CodeReady
Workspaces server host (this can be customized by the che.metrics.portconfiguration property).

You can configure your own Prometheus deployment to scrape the metrics (as per convention, the
metrics are published on the <CHE_HOST>:8087/metrics endpoint).

The CodeReady Workspaces’s Helm chart can optionally install Prometheus and Grafana servers
preconfigured to collect the metrics of the CodeReady Workspaces server. When you set the
global.metricsEnabled value to true when installing CodeReady Workspaces’s Helm chart, Prometheus
and Grafana servers are automatically deployed. The servers are accessible on prometheus-
<CHE_NAMESPACE>.domain or grafana-<CHE_NAMESPACE>.domain domains respectively. The
Grafana server is preconfigured with a sample dashboard showing the memory usage of the CodeReady
Workspaces server. You can log in to the Grafana server using the predefined username admin with the
default password admin.

12.18. CREATING WORKSPACE OBJECTS IN PERSONAL NAMESPACES

You can register the OpenShift server as an identity provider when CodeReady Workspaces is installed
in multi-user mode. This allows you to create workspace objects in the OpenShift namespace of the
user that is logged in CodeReady Workspaces through Keycloak.

To create a workspace object in the namespace of the user that is logged into CodeReady Workspaces:

Register, inside Keycloak, an OpenShift identity provider that points to the OpenShift console
of the cluster.

Configure CodeReady Workspaces to use the Keycloak identity provider to retrieve the
OpenShift tokens of the CodeReady Workspaces users.

Every workspace action such as start or stop creates an OpenShift resource in the OpenShift user
account. A notification message displays which allows you to link the Keycloak account to your
OpenShift user account.

But for non-interactive workspace actions, such as workspace stop on idling or CodeReady Workspaces
server shutdown, the dedicated OpenShift account configured for the Kubernetes infrastructure is
used. See Setting up the project workspace for more information.

To install CodeReady Workspaces on OpenShift with this feature enabled, see Section 2.2.2, “Deploying
CodeReady Workspaces with a self-signed certificate and OpenShift oAuth”.

CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION GUIDE

69

12.19. OPENSHIFT IDENTITY PROVIDER REGISTRATION

NOTE

Cluster-wide administrator rights are required to add an OAuth client.

To add the OpenShift identity provider:

1. Use the following settings in the Keycloak administration console:

The Base URL is the URL of the OpenShift console.

2. Add a default read-token role.

Red Hat CodeReady Workspaces 1.1 Administration Guide

70

3. Declare the identity provider as an OAuth client inside OpenShift with the following commands:

$ oc create -f <(echo '
apiVersion: v1
kind: OAuthClient
metadata:
 name: kc-client
secret: "<value set for the 'Client Secret' field in step 1>"
redirectURIs:
 - "<value provided in the 'Redirect URI' field in step 1>"
grantMethod: prompt
')

See Keycloak documentation for more information on the Keycloak OpenShift identity provider.

12.20. CONFIGURING CODEREADY WORKSPACES

To configure CodeReady Workspaces deployment:

Set the CHE_INFRA_OPENSHIFT_PROJECT variable to NULL to ensure a new distinct
OpenShift namespace is created for every workspace that is started.

Set the CHE_INFRA_OPENSHIFT_OAUTH__IDENTITY__PROVIDER variable to the alias of
the OpenShift identity provider specified in step 1 of its registration in Keycloak . The default
value is openshift-v3.

12.21. PROVIDING THE OPENSHIFT CERTIFICATE TO KEYCLOAK

If the certificate used by the OpenShift console is self-signed or is not trusted, then by default the
Keycloak will not be able to contact the OpenShift console to retrieve linked tokens.

Keycloak cannot contact the OpenShift console to retrieve linked tokens when the certificate used by
the OpenShift console is self-signed or is not trusted.

When the certificate is self-signed or is not trusted, use the
OPENSHIFT_IDENTITY_PROVIDER_CERTIFICATE variable to pass the OpenShift console certificate
to the Keycloak deployment. This will enable the Keycloak server to add the certificate to the list of

CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION GUIDE

71

https://www.keycloak.org/docs/3.3/server_admin/topics/identity-broker/social/openshift.html

trusted certificates. The environment variable refers to a secret that contains the certificate.

Red Hat CodeReady Workspaces 1.1 Administration Guide

72

CHAPTER 13. MANAGING USERS

13.1. AUTHORIZATION AND USER MANAGEMENT

CodeReady Workspaces uses Keycloak to create, import, manage, delete, and authenticate users.
Keycloak uses built-in authentication mechanisms and user storage. It can use third-party identity
management systems to create and authenticate users. CodeReady Workspaces requires a Keycloak
token when you request access to CodeReady Workspaces resources.

Local users and imported federation users must have an email address in their profile.

The default Keycloak credentials are admin:admin. You can use the admin:admin credentials when
logging into CodeReady Workspaces for the first time. It has system privileges.

To find your Keycloak URL:

If CodeReady Workspaces is deployed on OpenShift:

Go to the OpenShift web console and navigate to the Keycloak namespace.

13.2. CONFIGURING CODEREADY WORKSPACES TO WORK WITH
KEYCLOAK

The deployment script ensures that Keycloak is properly configured when CodeReady Workspaces is
deployed on OpenShift or installed on Docker. When the che-public client is created, the following
fields are populated:

Valid Redirect URIs: Use this URL to access CodeReady Workspaces.

Web Origins

The following are common errors when configuring CodeReady Workspaces to work with Keycloak:

Invalid redirectURI error: occurs when you access CodeReady Workspaces at myhost, which is an alias,
and your original CHE_HOST is 1.1.1.1. If this error occurs, go to the Keycloak administration console
and ensure that the valid redirect URIs are configured.

CORS error: occurs when you have an invalid web origin

13.3. CONFIGURING KEYCLOAK TOKENS

A user token expires after 30 minutes by default.

You can change the following Keycloak token settings:

CHAPTER 13. MANAGING USERS

73

http://www.keycloak.org

13.4. SETTING UP USER FEDERATION

Keycloak federates external user databases and supports LDAP and Active Directory. You can test the
connection and authenticate users before choosing a storage provider.

See the User storage federation page in Keycloak documentation to learn how to add a provider.

See the LDAP and Active Directory page in Keycloak documentation to specify multiple LDAP servers.

13.5. ENABLING AUTHENTICATION WITH SOCIAL ACCOUNTS AND
BROKERING

Keycloak provides built-in support for GitHub, OpenShift, and most common social networks such as
Facebook and Twitter. See Instructions to enable Login with GitHub.

You can also enable the SSH key and upload it to the CodeReady Workspaces users’ GitHub accounts.

To enable this feature when you register a GitHub identity provider:

1. Set scope to repo,user,write:public_key.

2. Set store tokens and stored tokens readable to ON.

Red Hat CodeReady Workspaces 1.1 Administration Guide

74

http://www.keycloak.org/docs/3.2/server_admin/topics/user-federation.html
http://www.keycloak.org/docs/3.2/server_admin/topics/user-federation/ldap.html
http://www.keycloak.org/docs/3.2/server_admin/topics/identity-broker/social/github.html

1. Add a default read-token role.

This is the default delegated OAuth service mode for CodeReady Workspaces. You can configure the
OAuth service mode with the property che.oauth.service_mode.

CHAPTER 13. MANAGING USERS

75

To use CodeReady Workspaces’s OAuth Authenticator, set che.oauth.service_mode to embedded
and use Instructions for single-user mode.

See SSH key management for more information.

13.6. USING PROTOCOL-BASED PROVIDERS

Keycloak supports SAML v2.0 and OpenID Connect v1.0 protocols. You can connect your identity
provider systems if they support these protocols.

13.7. MANAGING USERS

You can add, delete, and edit users in the user interface. See: Keycloak User Management for more
information.

13.8. CONFIGURING SMTP AND EMAIL NOTIFICATIONS

CodeReady Workspaces does not provide any pre-configured MTP servers.

To enable SMTP servers in Keycloak:

1. Go to che realm settings > Email.

2. Specify the host, port, username, and password.

CodeReady Workspaces uses the default theme for email templates for registration, email confirmation,
password recovery, and failed login.

13.9. CODEREADY WORKSPACES AUTHENTICATION

13.9.1. Authentication on CodeReady Workspaces Master

13.9.1.1. OpenId

OpenId authentication on CodeReady Workspaces master, implies presence of an external OpenId
provider and has 2 main steps:

1. Authenticate the user through the JWT token he brought or redirect him to login;
(Authentication tokens should be send in a Authorization header. Also, in limited cases when it’s
not possible to use Authorization header, token can be send in token query parameter. An
example of such exceptional case can be: OAuth authentification initialization, IDE shows
javadoc in iframe where authentication must be initialized.)

2. Compose internal "subject" object which represents the current user inside of the CodeReady
Workspaces master code.

At the time of writing the only supported/tested OpenId provider is Keycloak, so all examples/links will
refer to this implementation.

The flow starts from the settings service where clients can find all the necessary URLs and properties of
the OpenId provider such as jwks.endpoint, token.endpoint, logout.endpoint, realm.name, client_id
etc returned. in JSON format.

Service class is org.eclipse.che.multiuser.keycloak.server.KeycloakSettings, and it is bound only in

Red Hat CodeReady Workspaces 1.1 Administration Guide

76

http://www.keycloak.org/docs/3.2/server_admin/topics/identity-broker/saml.html
http://www.keycloak.org/docs/3.2/server_admin/topics/identity-broker/oidc.html
http://www.keycloak.org/docs/3.2/server_admin/topics/users.html

Service class is org.eclipse.che.multiuser.keycloak.server.KeycloakSettings, and it is bound only in
multi-user version of CodeReady Workspaces, so by its presence it is possible to detect if authentication
enabled in current deployment or not.

Example output:

Also, this service allows to download JS client library to interact with provider. Service URL is
<che.host>:<che.port>/api/keycloak/settings for retrieving settings JSON and <che.host>:
<che.port>/api/keycloak/OIDCKeycloak.js for JS adapter library.

Next step is redirection of user to the appropriate provider’s login page with all the necessary params
like client_id, return redirection path etc. This can be basically done with any client library (JS or Java
etc).

After user logged in on provider’s side and client side code obtained and passed the JWT token,
validation of it and creation of subject begins.

Verification of tokens signature occurs in the two main filters chain:

org.eclipse.che.multiuser.keycloak.server.KeycloakAuthenticationFilter class. Token is
extracted from Authorization header or token query param and tried to being parsed using
public key retrieved from provider. In case of expired/invalid/malformed token, 403 error is sent
to user. As noted above, usage of query parameter should be minimised as much as possible,
since support of it may be limited/dropped at some point.

If validation was successful, token is passed to the

org.eclipse.che.multiuser.keycloak.server.KeycloakEnvironmentInitalizationFilter filter in
the parsed form. This filter simply extracts data from JWT token claims, creates user in the local
DB if it is not yet present, and constructs subject object and sets it into per-request
EnvironmentContext object which is statically accessible everywhere.

If the request was made using machine token only (e.g. from ws agent) then it is only one auth filter in
the chain:

org.eclipse.che.multiuser.machine.authentication.server.MachineLoginFilter - finds userId
given token belongs to, than retrieves user instance and sets principal to the session.

Master-to-master requests are performed using
org.eclipse.che.multiuser.keycloak.server.KeycloakHttpJsonRequestFactory which signs every
request with the current subject token obtained from EnvironmentContext.

13.9.1.1.1. User Profile

Since keycloak may store user specific information (first/last name, phone number, job title etc), there is

{
 "che.keycloak.token.endpoint": "http://172.19.20.9:5050/auth/realms/che/protocol/openid-
connect/token",
 "che.keycloak.profile.endpoint": "http://172.19.20.9:5050/auth/realms/che/account",
 "che.keycloak.client_id": "che-public",
 "che.keycloak.auth_server_url": "http://172.19.20.9:5050/auth",
 "che.keycloak.password.endpoint": "http://172.19.20.9:5050/auth/realms/che/account/password",
 "che.keycloak.logout.endpoint": "http://172.19.20.9:5050/auth/realms/che/protocol/openid-
connect/logout",
 "che.keycloak.realm": "che"
}

CHAPTER 13. MANAGING USERS

77

Since keycloak may store user specific information (first/last name, phone number, job title etc), there is
special implementation of the ProfileDao which can provide this data to consumers inside CodeReady
Workspaces. Implementation is read-only, so no create/update operations are possible. Class is
org.eclipse.che.multiuser.keycloak.server.dao.KeycloakProfileDao.

13.9.1.1.2. Obtaining Token From Keycloak

For the clients which cannot run JS or other type clients (like CLI or selenium tests), auth token may be
requested directly from Keycloak. The simplest way to obtain Keycloak auth token, is to perform request
to the token endpoint with username and password credentials. This request can be schematically
described as following cURL request:

curl
 --data "grant_type=password&client_id=<client_name>&username=<username>&password=
<password>"
 http://<keyckloak_host>:5050/auth/realms/<realm_name>/protocol/openid-connect/token

Since the two main CodeReady Workspaces clients (IDE and Dashboard) utilizes native Keycloak js
library, they’re using a customized Keycloak login page and somewhat more complicated authentication
mechanism using grant_type=authorization_code. It’s a two step authentication: first step is login and
obtaining authorization code, and second step is obtaining token using this code.

Example of correct token response:

13.9.1.2. Other authentication implementations

If you want to adapt authentication implementation other than Keycloak, the following steps must be
done:

Write own or refactor existing info service which will provide list of configured provider
endpoints to the clients;

Write single or chain of filters to validate tokens, create user in CodeReady Workspaces DB and
compose the Subject object;

If the new auth provider supports OpenId protocol, OIDC JS client available at settings
endpoint can be used as well since it is maximally decoupled of specific implementations.

If the selected provider stores some additional data about user (first/last name, job title etc), it
is a good idea to write an provider-specific ProfileDao implementation which will provide such
kind of information.

13.9.1.3. OAuth

OAuth authentication part has 2 main flows - internal and external based on Keycloak brokering

{
 "access_token":"eyJhb...<rest of JWT token here>",
 "expires_in":300,
 "refresh_expires_in":1800,
 "refresh_token":"Nj0C...<rest of refresh token here>",
 "token_type":"bearer",
 "not-before-policy":0,
 "session_state":"14de1b98-8065-43e1-9536-43e7472250c9"
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

78

mechanism. So, there are 2 main OAuth API implementations -
org.eclipse.che.security.oauth.EmbeddedOAuthAPI and
org.eclipse.che.multiuser.keycloak.server.oauth2.DelegatedOAuthAPI.

They can be switched using che.oauth.service_mode=<embedded|delegated> configuration property.

Also, there is support of OAuth1 protocol can be found at org.eclipse.che.security.oauth1 package.

The main REST endpoint in tha OAuth API is
org.eclipse.che.security.oauth.OAuthAuthenticationService, which contains authenticate method to
start OAuth authentication flow, callback method to process callbacks from provider, token to retrieve
current user’s oauth token, etc.

Those methods refer to the currently activated embedded/delegated OAuthAPI which is doing all the
undercover stuff (finds appropriate authenticator, initializes the login process, user forwarding etc).

13.9.2. Authentication on CodeReady Workspaces Agents

Machines may contain services that must be protected with authentication, e.g. agents like workspace
agent and terminal. For this purpose, machine authentication mechanism should be used. Machine
tokens were introduced to avoid passing the Keycloak tokens to the machine side (which can be
potentially insecure). Another reason is that Keycloak tokens may have relatively small lifetime and
require periodical renewal/refresh which is hard to manage and keep in sync with same user session
tokens on clients etc.

As agents cannot be queried using Keycloak token, there is only Machine Token option. Machine token
can be also passed in header or query parameter.

13.9.2.1. Machine JWT Token

Machine token is JWT that contains the following information in its claim:

uid - id of user who owns this token

uname - name of user who owns this token

wsid - id of a workspace which can be queried with this token

Each user is provided with unique personal token for each workspace.

The structure of token and the signature are different to Keycloak and have the following view:

Header
{
 "alg": "RS512",
 "kind": "machine_token"
}
Payload
{
 "wsid": "workspacekrh99xjenek3h571",
 "uid": "b07e3a58-ed50-4a6e-be17-fcf49ff8b242",
 "uname": "john",
 "jti": "06c73349-2242-45f8-a94c-722e081bb6fd"
}
Signature

CHAPTER 13. MANAGING USERS

79

https://jwt.io/

The algorithm that is used for signing machine tokens is SHA-512 and it’s not configurable for now. Also,
there is no public service that distributes the public part of the key pair with which the token was signed.
But in each machine, there must be environment variables that contains key value. So, agents can verify
machine JWT token using the following environment variables:

CHE_MACHINE_AUTH_SIGNATURE__ALGORITHM - contains information about the
algorithm which the token was signed

CHE_MACHINE_AUTH_SIGNATURE__PUBLIC__KEY - contains public key value encoded in
Base64

It’s all that is needed for verifying machine token inside of machine. To make sure that specified token is
related to current workspace, it is needed to fetch wsid from JWT token claims and compare it with
CHE_WORKSPACE_ID environment variable.

Also, if agents need to query CodeReady Workspaces Master they can use machine token provided in
CHE_MACHINE_TOKEN environment, actually it is token of user who starts a workspace.

13.9.2.2. Authentication schema

The way how CodeReady Workspaces master interacts with agents with enabled authentication
mechanism is the following:

Machine token verification on agents is done by the following components:

org.eclipse.che.multiuser.machine.authentication.agent.MachineLoginFilter - doing

{
 "value": "RSASHA512(base64UrlEncode(header) + . + base64UrlEncode(payload))"
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

80

org.eclipse.che.multiuser.machine.authentication.agent.MachineLoginFilter - doing
basically the same as the appropriate filter on a master, the only thing that is different it’s a way
how agent obtains the public signature part. The public key for the signature check is placed in a
machine environment, with algorithm description.

auth.auth.go - the entry point for all request that is proceeding on go agents side, the logic of
token verification is similar with MachineLoginFilter.

13.9.2.3. Obtaining Machine Token

A machine token is provided for users in runtime object. It can be fetched by using get workspace by key
(id or namespace/name) method which path equals to /api/workspace/<workspace_key>. The
machine token will be placed in runtime.machineToken field.

13.9.3. Using Swagger or REST Clients

User’s Keycloak token is used to execute queries to secured API on his behalf through REST clients. A
valid token must be attached as request header or query parameter - ?token=$token. CodeReady
Workspaces Swagger can be accessed from http://che_host:8080/swagger. A user must be signed-in
through Keycloak so that access token is included in request headers.

By default, swagger loads swagger.json from CodeReady Workspaces master.

To work with WS Agent, a URL to its swagger.json should be provided. It can be retrieved from
Workspace Runtime, by getting URL to WS Agent server endpoint and adding api/docs/swagger.json
to it. Also, to authenticate on WS Agent API, user must include Machine Token, which can be found in
Workspace Runtime as well.

To use Swagger for a workspace agent, user must do following steps:

get workspace object with runtimes fetched (using /api/workspace/<workspace_key>
service)

get WS agent API endpoint URL, and add a path to its swagger.json (e.g. http://<che_host>:
<machine_port>/api/docs/swagger.json for Docker or http://<ws-agent-
route>/api/docs/swagger.json for OpenShift). Put it in the upper bar URL field:

get machine token from runtime.machineToken field, and put it in the upper bar token field

"machineToken":
"eyJhbGciOiJSUzUxMiIsImtpbmQiOiJtYWNoaW5lX3Rva2VuIn0.eyJ3c2lkIjoid29ya3NwYWNlMzEiLCJ1a
WQiOiJ1c2VyMTMiLCJ1bmFtZSI6InRlc3RVc2VyIiwianRpIjoiOTAwYTUwNWYtYWY4ZS00MWQxLWF
hYzktMTFkOGI5OTA5Y2QxIn0.UwU7NDzqnHxTr4vu8UqjZ7-
cjIfQBY4gP70Nqxkwfx8EsPfZMpoHGPt8bfqLWVWkpp3OacQVaswAOMOG9Uc9FtLnQWnup_6vvyMo
6gchZ1lTZFJMVHIw9RnSJAGFl98adWe3NqE_DdM02PyHb23MoHqE_xd8z3eFhngyaMImhc4",

click Explore to load Swagger for WS Agent

"wsagent/http": {
 "url": "http://172.19.20.180:32777/api",
 "attributes": {},
 "status": "RUNNING"
}

CHAPTER 13. MANAGING USERS

81

http://che_host:8080/swagger
http:/api/docs/swagger.json

13.10. PERMISSIONS

13.10.1. Overview

Permissions are used to control the actions of users and establish a security model. You can control
resources managed by CodeReady Workspaces and allow certain actions by assigning permissions to
users.

Permissions can be applied to the following:

Workspace

Organization

Stack

System

13.10.2. Workspace permissions

The user who creates a workspace is the workspace owner. The workspace owner has the following
permissions by default: read, use, run, configure, setPermissions, and delete. Workspace owners
invite users into the workspace and control workspace permissions for each user.

The following permissions are associated with workspaces:

Permission Description

read Allows reading the workspace configuration.

use Allows using a workspace and interacting with it.

run Allows starting and stopping a workspace.

configure Allows defining and changing the workspace
configuration.

setPermissions Allows updating the workspace permissions for other
users.

delete Allows deleting the workspace.

Red Hat CodeReady Workspaces 1.1 Administration Guide

82

13.10.3. Organization permissions

An organization is a named set of users.

The following permissions are applicable to organizations:

Permission Description

update Allows editing of the organization settings and information.

delete Allows deleting an organization.

manageSuborganizations Allows creating and managing sub-organizations.

manageResources Allows redistribution of an organization’s resources and defining the
resource limits.

manageWorkspaces Allows creating and managing all the organization’s workspaces.

setPermissions Allows adding and removing users and updating their permissions.

13.10.4. System permissions

System permissions control aspects of the whole CodeReady Workspaces installation.

The following permissions are applicable to the organization:

Permission Description

manageSystem Allows control of the system, workspaces, and
organizations.

setPermissions Allows updating the permissions for users on the
system.

manageUsers Allows creating and managing users.

monitorSystem Allows for accessing endpoints used for monitoring
the state of the server.

All system permissions will be granted to the administration user configured with the
`CHE_SYSTEM_ADMIN__NAME` property (the default is admin). This happens at CodeReady
Workspaces Server start. If the user is not present in the CodeReady Workspaces user database, it
happens after the user’s login.

13.10.5. manageSystem permission

Users with the manageSystem permission have access to the following services:

CHAPTER 13. MANAGING USERS

83

Path HTTP Method Description

/resource/free/ GET Get free resource limits

/resource/free/{accountId} GET Get free resource limits for given
account

/resource/free/{accountId} POST Edit free resource limit for given
account

/resource/free/{accountId} DELETE Remove free resource limit for
given account

/installer/ POST Add installer to the registry

/installer/{key} PUT Update installer in the registry

/installer/{key} DELETE Remove installer from the registry

/logger/ GET Get logging configurations in
CodeReady Workspaces Server

/logger/{name} GET Get configurations of logger by
its name in CodeReady
Workspaces Server

/logger/{name} PUT Create logging in CodeReady
Workspaces Server

/logger/{name} POST Edit logging in CodeReady
Workspaces Server

/resource/{accountId}/details GET Get detailed information about
resources for given account

/system/stop POST Shutdown all system services,
prepare CodeReady Workspaces
to stop

/stacks All methods All Stack service methods

13.10.6. monitorSystem permission

Users with the monitorSystem permission have access to the following services:

Path HTTP Method Description

Red Hat CodeReady Workspaces 1.1 Administration Guide

84

/activity GET Get workspaces in certain state
for a certain amount of time

Path HTTP Method Description

13.10.7. Super-privileged mode

The manageSystem permission can be extended to provide a super-privileged mode. This allows the
user to perform advanced actions on any resources managed by the system. You can read and stop any
workspaces with the manageSystem permission and assign permissions to users as needed.

The super-privileged mode is disabled by default. You can change to super-privileged mode by
configuring the `CHE_SYSTEM_SUPER__PRIVILEGED__MODE` variable to true in the che.env file.

List of services that are enabled for users with manageSystems permissions and with super-privileged
mode on:

Path HTTP Method Description

/workspace/namespace/{nam
espace:.*}

GET Get all workspaces for given
namespace.

/workspace/{id} DELETE Stop workspace

/workspace/{key:.*} GET Get workspace by key

/organization/resource/{subo
rganizationId}/cap

GET Get resource cap for given
organization

/organization/resource/{subo
rganizationId}/cap

POST Set resource cap for given
organization

/organization/{parent}/organi
zations

GET Get child organizations

/organization GET Get user’s organizations

13.10.8. Stack permissions

A stack is a runtime configuration for a workspace. See stack definition for more information on stacks.

The following permissions are applicable to stacks:

Permission Description

search Allows searching of the stacks.

read Allows reading of the stack configuration.

CHAPTER 13. MANAGING USERS

85

update Allows updating of the stack configuration.

delete Allows deleting of the stack.

setPermissions Allows managing permissions for the stack.

Permission Description

13.10.9. Permissions API

All permissions can be managed using the provided REST API. The APIs are documented using Swagger
at [{host}/swagger/#!/permissions].

13.10.10. Listing permissions

To list the permissions that apply to a specific resources, run this command:

$ GET /permissions

The domain values are:

Domain

system

organization

workspace

stack

NOTE

domain is optional. In this case, the API returns all possible permissions for all domains.

13.10.11. Listing permissions for a user

To list the permissions that apply to a user, run this command:

$ GET /permissions/{domain}

The domain values are:

Domain

system

Red Hat CodeReady Workspaces 1.1 Administration Guide

86

organization

workspace

stack

Domain

13.10.12. Listing permissions for all users

NOTE

You must have sufficient permissions to see this information.

To list the permissions that apply to all users, run this command:

GET /permissions/{domain}/all

The domain values are:

Domain

system

organization

workspace

stack

13.10.13. Assigning permissions

To assign permissions to a resource, run this command:

POST /permissions

The domain values are:

Domain

system

organization

workspace

CHAPTER 13. MANAGING USERS

87

stack

Domain

The following is a message body that requests permissions for a user with a userID to a workspace with
a workspaceID:

The instanceId parameter corresponds to the ID of the resource that retrieves the permission for all
users. The userId parameter corresponds to the ID of the user that has been granted certain
permissions.

13.10.14. Sharing permissions

A user with setPermissions privileges can share a workspace and grant read, use, run, configure, or
setPermissions privileges to other users.

To share workspace permissions:

Select a workspace in the user dashboard, navigate to the Share tab and enter emails of users.
Use commas or space as separators if there are multiple emails.

13.11. ORGANIZATIONS

13.11.1. Organizations in CodeReady Workspaces

Organizations allow administrators to group CodeReady Workspaces users and allocate resources. The
system administrator controls and allocates resources and permissions within the administrator
dashboard.

13.11.1.1. Roles in an organization

A user can have the following roles in an organization:

Members

Create workspaces, manage their own workspaces, and use any workspaces they have permissions
for.

Administrators

{
 "actions": [
 "read",
 "use",
 "run",
 "configure",
 "setPermissions"
],
 "userId": "userID",
 "domainId": "workspace",
 "instanceId": "workspaceID"
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

88

Manage the organization, members, resources, and sub-organization, and can edit settings.

System Administrators

Create root organizations, manages resources, members and sub-organizations. System
administrators have more permissions than the administrators and members.

13.11.1.2. Root organizations and sub-organizations

The top-level organizations are called root organizations. Multiple root organizations can be created.
Any organization can have zero to a set number of sub-organizations. Only the system administrator can
create root organizations and manage the resources of the root organization.

13.11.1.3. Creating an organization

Only the system administrator can create root organizations. An administrator can create sub-
organizations.

To create an organization:

1. Click the menu in the left sidebar. A new page displays all the organizations in your system.

2. Click on the upper-left button to create a new organization.

13.11.1.4. Displaying the list of organizations

The Organization page displays a list of all the organizations. The list contains the following information
for each organization: number of members, total RAM, available RAM, and number of sub-organizations.

13.11.1.5. Adding members to organizations

To add members to an organization:

1. Click the Add button to add a member. A new pop-up window displays. You can change the role
of a member or remove them from the organization at any time.

2. Enter the new member name.

NOTE

Users with the green checkmark beside their name already have an CodeReady
Workspaces account and can be added to the organization. Users without a checkmark
do not have an account and cannot be added into the organization.

13.11.1.6. Workspaces in organizations

A workspace is created inside of an organization and uses the resources of the organization. The
workspace creator chooses the organization on the Workspace Creation page.

13.11.1.7. Setting email notifications

To send notifications from the CodeReady Workspaces server when a user joins or leaves an
organization, you can do either of the following:

Configure the SMTP server in the che.env file.

CHAPTER 13. MANAGING USERS

89

For OpenShift, add environment variables to the deployment.

CodeReady Workspaces does not have a built-in SMTP server by default. You may use any mail server.

For example, to send a notification email to your Gmail account, set the following environment variables:

CHE_MAIL_PORT=465
CHE_MAIL_HOST=smtp.gmail.com
CHE_MAIL_SMTP_STARTTLS_ENABLE=true
CHE_MAIL_SMTP_AUTH=true
CHE_MAIL_SMTP_AUTH_USERNAME=no-reply@gmail.com
CHE_MAIL_SMTP_AUTH_PASSWORD=password

13.11.1.8. Creating sub-organizations

To create a sub-organization:

On the Organization Details page, select the Sub-Organizations tab.

Click the Add Sub-Organization button.

The steps to create a sub-organization are the same as that for creating an organization. Use them to
create the organization.

13.11.1.9. Adding members to sub-organizations

You can only add members of the parent organization as members of the sub-organization.

13.11.1.10. Organization and sub-organization administration

The settings of the organization are visible to all members of the organization. Only the CodeReady
Workspaces system administrator can modify the settings.

13.11.1.11. Renaming an organization or sub-organization

NOTE

Only an CodeReady Workspaces system administrator and administrator of the
organization can rename an organization or sub-organization.

To rename an organization:

1. Click the Name field to edit the name of the organization. The save mode appears.

2. Click the Save button to update the name.

The name of the organization or sub-organization must follow these rules:

Only alphanumeric characters and a single dash (-) can be used.

Spaces cannot be used.

Each organization name must be unique within the CodeReady Workspaces installation.

Red Hat CodeReady Workspaces 1.1 Administration Guide

90

Each sub-organization name must be unique within an organization.

13.11.1.12. Leaving an organization or sub-organization

To leave an organization, members need to contact the administrator of the organization or the system
administrator of CodeReady Workspaces.

13.11.1.13. Deleting an organization or sub-organization

IMPORTANT

Only system administrators or administrators of the organization can delete an
organization or sub-organization.

This action cannot be reverted, and all workspaces created under the
organization will be deleted.

All members of the organization will receive an email notification to inform them
about the deletion of the organization.

To delete an organization or a sub-organization:

Click the Delete button.

13.11.1.14. Allocating resources for organizations

Workspaces use the resources of the organization that are allocated by the system administrator. The
resources for sub-organizations are taken from the parent organization. Administrators control the
portion of resources, of the parent organization, that are available to the sub-organization.

13.11.1.15. Managing limits

NOTE

Managing limits is restricted to the CodeReady Workspaces system administrator and
administrator of the organization.

The system configuration defines the default limits. The administrator of the organization manages only
the limits of its sub-organizations. No resource limits apply to the organization by default. The following
are the limits defined by the system administrator:

Workspace Cap: The maximum number of workspaces that can exist in the organization.

Running Workspace Cap: The maximum number of workspaces that can run simultaneously in
the organization.

Workspace RAM Cap: The maximum amount of RAM that a workspace can use in GB.

13.11.1.16. Updating organization and sub-organization member roles

NOTE

CHAPTER 13. MANAGING USERS

91

NOTE

Updating the members of an organization or sub-organization is restricted to the
CodeReady Workspaces system administrator and administrator of the organization.

To edit the role of an organization member:

1. Click the Edit button in the Actions column. Update the role of the selected member in the
pop-up window.

2. Click Save to confirm the update.

13.11.1.17. Removing members from an organization and sub-organization

NOTE

Removing the members of an organization or sub-organization is restricted to the
CodeReady Workspaces system administrator and administrator of the organization.

To remove a member:

1. Click the Delete button in the Actions column. In the confirmation pop-up window, confirm the
deletion.

To remove multiple members:

1. Select the check boxes to select multiple members from the organization.

2. Click the Delete button that appears in the header of the table. The members that are removed
from the organization will receive an email notification.

13.12. RESOURCE MANAGEMENT

13.12.1. Overview

The Resource API manages the resources that are utilized by CodeReady Workspaces users. The
CodeReady Workspaces administrators set the limits on the amount of resources available for each
resource type and each user.

There are two kinds of accounts used in CodeReady Workspaces:

personal - This account belongs to a user. Only one user can utilize resources provided to the
account.

organizational - This account belongs to an organization. This type of account allows each
member of the organization to use resources. Resources are distributed between an
organization and sub-organizations.

Resource usage mostly refers to resources used by workspaces and runtimes in the development flow.

CodeReady Workspaces supports the following types of resources:

RAM - Amount of RAM which can be used by running workspaces at the same time.

Red Hat CodeReady Workspaces 1.1 Administration Guide

92

Timeout - Period of time that is used to control idling of user workspaces.

Runtime - Number of workspaces that users can run at the same time.

Workspace - Number of workspaces that users can have at the same time.

13.12.2. Resource API

Total resources

GET resource/${accountId}: Gets the list of total resources an account can use;

Used resources

GET resource/{accountId}/used: Gets the resources used by an account;

Available resources

GET resource/${accountId}/available: Gets the resources that are available and not used by an
account. If no resources are used, the available resources equal total resources. If resources are used,
the available resources equals total resources minus used resources.

Resource details

GET resource/{accountId}/details: Gets detailed information about the resources available for an
account. The detailed information includes: resource providers, resource-usage start time, and
resource-usage end time.

For more information about the response objects and required parameters, see the Swagger page at
${che-host}/swagger/#/resource.

13.12.3. Distributing resources

The following are ways to distribute resources to an account:

CodeReady Workspaces administrator specifies default free resources limit for account by
configuration.

CodeReady Workspaces administrator overrides the default free resources limit for account by
resource-free API.

13.12.4. Configuring workspaces and resources

The CodeReady Workspaces administrator can limit how workspaces are created and the resources that
these workspaces consume. Detailed information about each property can be found in the che.env file.

Property name Defa
ult
Valu
e

Un
it

Description

CHE_LIMITS_USER_WORKS
PACES_COUNT

-1 ite
m

maximum number of workspaces that the CodeReady
Workspaces user can create

CHAPTER 13. MANAGING USERS

93

https://github.com/eclipse/che/blob/master/dockerfiles/init/manifests/che.env#L538

CHE_LIMITS_USER_WORKS
PACES_RUN_COUNT

-1 ite
m

maximum number of simultaneously running workspaces
for a CodeReady Workspaces user

CHE_LIMITS_USER_WORKS
PACES_RAM

-1 m
e
m
or
y

maximum amount of RAM that workspaces use

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_COUNT

-1 ite
m

maximum number of workspaces that members of an
organization can create

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_RUN_CO
UNT

-1 ite
m

maximum number of workspaces that members of an
organization can simultaneously run

CHE_LIMITS_ORGANIZATIO
N_WORKSPACES_RAM

-1 m
e
m
or
y

maximum amount of RAM that workspaces from all
organizations can simultaneously use

CHE_LIMITS_WORKSPACE_
IDLE_TIMEOUT

-1 mil
lis
ec
on
d

maxium number of workspaces that can stay inactive
before they are idled

CHE_LIMITS_WORKSPACE_
ENV_RAM

16gb m
e
m
or
y

maximum amount of RAM that workspace environment
can use simultaneously

Property name Defa
ult
Valu
e

Un
it

Description

13.12.5. Unit formats

The unit has the following formats:

-1: An unlimited value. Any operation, aggregation, and deduction of resources will return -1.

memory: A plain or fixed-point integer measured in bytes.
Memory uses one of the following suffixes:

Red Hat CodeReady Workspaces 1.1 Administration Guide

94

Suffix name Description

k / kb / kib kilo bytes 1k = 1024b

m / mb / mib mega bytes 1m = 1024k

g / gb / gib giga bytes 1g = 1024m

t / tb / tib terra bytes 1t = 1024g

p / pb / pib peta bytes 1p = 1024t

item - An integer describing the number of objects.

millisecond - An integer describing the time frame in milliseconds.

13.12.6. Resource-free API

The Resource-free API manages the free resources that are provided by the system configuration. You
can override resources for an account.

Free Resources

GET resource/free: Gets the resources that are available.

GET resource/free/{accountId}: Gets the resources that are available for this account.

Set Free Resources

POST resource/free: Sets the maximum amount of resources available for the user organization
account. This number overrides the Сhe configuration. It will be used in all further operations with
resources.

Remove Free Resources

DELETE resource/free/{accountId}: Deletes the number of resources available for the user and
organization account. The system configuration defines the amount of resources available.

For more information on response objects and required parameters, see the Swagger page at {che-
host}/swagger/#/resource-free.

13.12.7. Organization Resource API

Distributed Organization Resources

GET organization/resource/{organizationId}: Gets the resources that the parent organization
provides to the sub-organization.

Sub-Organization Resources Cap

GET organization/resource/{suborganizationId}/cap: Gets the maximum amount of resources that
are available for a sub-organization; By default, sub-organizations can use all the resources of the
parent organization.

CHAPTER 13. MANAGING USERS

95

Set Sub-Organization Resources Cap

POST organization/resource/{suborganizationId}/cap: Sets the maximum amount of resources for a
sub-organization. This limits the usage of shared resources by the sub-organization.

See the Swagger page at {che-host}/swagger/#/organization-resource for more detailed specification
of response objects and required parameters.

Red Hat CodeReady Workspaces 1.1 Administration Guide

96

CHAPTER 14. ADMINISTERING WORKSPACES

14.1. WORKSPACE

A workspace is usually termed as a local directory with projects and meta-information that the
integrated development environment (IDE) uses to configure projects. In CodeReady Workspaces, a
workspace is the developer environment. The developer environment contains Docker containers,
Kubernetes pods, and a virtual machine or localhost. Environment variables and storage volumes are
part of the workspace. The developer environment also contains projects, project commands, and
resource allocation attributes.

14.2. ENVIRONMENT

The workspace runtime environment is a set of machines where each machine is defined by a recipe.
The environment is healthy when all the machines successfully start and the installers execute jobs. The
environment is defined by a recipe that can have different types. The environment and infrastructure
validate a recipe.

14.3. MACHINE

The runtime environment has a minimum of one machine that can be a Docker-formatted container or a
Kubernetes pod. You can create multi-machine environments with as many machines as your project
infrastructure requires. Each machine has a configuration and start policy. Machine crashes and start
failures are signs of an unhealthy environment. Machines communicate by using the internal network,
service:port.

14.4. RECIPE

A workspace environment is defined by a recipe. The recipe can be one of the following:

single container image

Dockerfile

Docker Compose file

Kubernetes list of objects with multiple pods and services

14.5. BOOTSTRAPPER

The bootstrapper starts the installer script after the first process is executed in the machine following
the CMD or ENTRYPOINT. The role of the bootstrapper is to start the installer scripts with a set of
parameters and a configuration file. The bootstrapper is a small binary compiled from Go code.

14.6. INSTALLER

The purpose of the installer is to install software and services, start servers, and activate agents. The
workspace agent, executive agent, and terminal servers are important to the IDE and workspace. The
language servers, SSH installer, and other servers bring new functionality to a workspace. The
bootstrapper executes installer scripts that prepare the environment and checks for dependencies. See
an example of an installer script that prepares the environment and installs the C# language server.

CHAPTER 14. ADMINISTERING WORKSPACES

97

https://github.com/eclipse/che/blob/che6/agents/ls-csharp/src/main/resources/installers/1.0.1/org.eclipse.che.ls.csharp.script.sh

14.7. VOLUME

A volume is a fixed amount of storage that is used to persist workspace data. Workspace projects are
automatically mounted into a host file system by default. A user can define extra volumes for each
machine in the environment. Docker volumes, Kubernetes persistent volumes (PVs), and persistent
volumes claims (PVCs) are examples of volumes.

14.8. ENVIRONMENT VARIABLES

The environment variables are propagated into each individual machine. Depending on the
infrastructure, environment variables are propagated to Docker containers or Kubernetes pods.

14.9. WHAT IS NEXT?

Create and start your first workspace .

Learn how to define volumes and environment variables.

14.10. MANAGING WORKSPACES

14.10.1. Creating workspaces

Use the stacks in the Dashboard to create a workspace. Images and configuration in these stacks are
certified both for Docker and OpenShift. These stacks are used in daily functional testing.

14.10.1.1. Creating a workspace from stacks in the dashboard

To create a workspace from stacks in the Dashboard, take the following steps:

1. In the Dashboard, in the left panel, click Stacks.

2. Click the Duplicate stack icon for the stack that you want to create a clone of. A page titled
after the selected stack opens.

3. Edit the fields that you want to edit.

4. Click Save.

Red Hat CodeReady Workspaces 1.1 Administration Guide

98

14.10.1.2. Duplicating an existing stack

Create a stack and then use the resulting stack to create a workspace.

To create a copy of an existing stack, take the following steps:

1. In the Dashboard, in the left panel, click Stacks.

2. Click the Duplicate stack icon for the stack that you want to clone.

3. Edit the Name field.

4. In the Machines field, edit the Source field.

5. Click Save. The Stack is successfully updated message confirms that the stack is updated.

6. In the Dashboard, click Workspaces > Add Workspace.

7. In the SELECT STACK section, scroll through the list to locate the stack that you created in the
preceding steps.

8. Click Create to create the workspace based on this stack.

CHAPTER 14. ADMINISTERING WORKSPACES

99

14.10.1.3. Creating a custom stack from a custom recipe

Author a custom recipe and then create a stack. Use the resulting stack to create a workspace.

To create a custom stack from a custom recipe, take the following steps:

1. In the Dashboard, click Workspaces > Add Workspace.

2. From the SELECT STACK field, select the required stack.

3. Click Add Stack.

4. In the Create Stack dialog box, click Yes to confirm that you want to create the stack from a
recipe.

5. In the Build stack from recipe window, type the recipe name from which you want to build this
stack (example: FROM: eclipse/new-stack).

6. Click OK.

7. In the Name field, type a name for the stack.

8. In the Runtimes > Machines > Recipe section, click Show to ensure that the stack is being
created using the recipe that you set in the preceding steps (eclipse/new-stack, in this case).

9. Click Save.

Red Hat CodeReady Workspaces 1.1 Administration Guide

100

14.10.2. Starting workspaces

You can start a workspace in one of the following ways:

The workspace starts automatically after it is created in the user’s Dashboard.

In the user’s Dashboard, use the Run or Open buttons in the Workspace Details view.

Click a workspace name from the recent workspaces displayed in the left panel.

Use the REST API.

The workspace may take time to start depending on factors like network conditions, container image
availability, and configured installers attempting to install additional tools and software in the runtime.
Track the progress of the workspace start operation in the Workspace Start tab. The tabs for each
machine in the workspace environment stream logs from the installers (terminal, exec agent, ws agent,
and language servers if any).

14.10.3. Managing a workspace

After a workspace is created or started, you can modify it by adding projects, installers, environment
variables, and volumes.

IMPORTANT

To edit a raw workspace configuration, back up the working configuration to avoid
breaking your workspace.

Change the configuration of a running workspace and saving it restarts the workspace. To learn more
about workspace configuration, see:

Creating projects in workspaces

Installers

Environment variables

CHAPTER 14. ADMINISTERING WORKSPACES

101

Volumes

14.11. COMMANDS AND IDE MACROS

Commands are script-like instructions that are injected into the workspace machine for execution.
Commands are saved in the configuration storage of your workspace and are part of any workspace
export.

14.11.1. Command Overview

A command is defined by:

A set of instructions to be injected into the workspace machine for execution

A goal to organize commands for your workflow

A context to scope the command to particular project(s)

A previewURL which to expose URL of a running server

14.11.2. Command Goals

A command is executed by the developer to achieve a particular step from his flow. We provide the
ability to organize commands per goal:

Build: Commands that build a workspace’s projects.

Test: Commands related to test execution.

Run: Commands that run a workspace’s projects.

Debug: Commands used to start a debugging session.

Deploy: Commands that are used to deploy a workspace’s projects onto specific servers or
services.

Red Hat CodeReady Workspaces 1.1 Administration Guide

102

Common: General purpose commands.

14.11.3. Command Context

All commands are not applicable to every project. So we wanted to add the notion of context to a
command. The context of a command defines the project(s) that the command can be used with. For
example: a maven build command will be relevant only if the project is using maven.

14.11.4. Managing Commands

Workspace commands are available thought the Commands Explorer accessible from the left pane
where they are organized by goal.

You can create new commands by using the + button display next to each goals. Alternatively, you can
select a command from the tree to edit, duplicate or delete it.

CHAPTER 14. ADMINISTERING WORKSPACES

103

The command editor is handled as another tab in the existing editor pane. You get more space to
configure the command and benefit from the full screen edit mode (by double clicking on the tab) and
the ability to split vertically or horizontally to display multiple editors at the same time.

Name: Command name as to be unique in your workspace. The name is not restricted to
camelCase.

Intructions: Learn more about instructions and macros.

Goal: Use the dropdown to change the goal of the command.

Context: By default, the command is available with all project(s) of the workspace. You can
scope the command to be available only for selected project(s).

Preview: Learn more about previews.

CodeReady Workspaces provides macros that can be used within a command or preview URL to
reference workspace objects. Learn more here.

14.11.5. Macros list

When editing a command, you can get an access to all the macros that can be used in the command’s
instructions or in the preview URL. To display the complete list of macros, click on the Macros link.

Red Hat CodeReady Workspaces 1.1 Administration Guide

104

14.11.6. Macros Auto-Completion

You can get auto-complete for all macros used in the editor. To activate this feature hit <Ctrl+Space>
this will bring up a menu listing all the possible macros based on what’s been typed.

14.11.7. Use Commands

You can use commands from multiple widgets:

Command palette

CHAPTER 14. ADMINISTERING WORKSPACES

105

Command toolbar

Contextual menu in project explorer

14.11.8. Command Palette

Since commands are often run in the heat of coding, you can use a hotkey to open the command
palette.

The command palette allows to quickly select a command to be executed. To call the command palette
from the keyboard hit <shift+F10> and then use the cursor keys to navigate and enter to execute the
command.

14.11.9. Command Toolbar

Red Hat CodeReady Workspaces 1.1 Administration Guide

106

The command toolbar provides a way to execute the most common Run and Debug goals. It also
provides access to all the executed commands and previews from a single place.

Run and Debug Buttons

If you have commands defined for those goals, you can trigger them directly from those buttons.

If you have multiple commands defined for the Run goal and if it’s the first time you are using the Run
button, you’ll be asked to choose the default command associated with the button. The next click on the
button will trigger the previously selected command.

By doing a long click on the button you can select the command from the Run goal to execute. This
command will become the default command associated with the Run button.

The same mechanisms apply to the Debug button.

Command Controller

The command controller allow you to see the state of the workspace and the last command executed.
You can see since how long the command started and also decide if it should be stopped or relaunched.

When multiple commands have been executed it’s possible to see the list of all previously executed
commands by clicking on the widget.

To clean the list, remove the command’s process from the list of processes.

CHAPTER 14. ADMINISTERING WORKSPACES

107

Preview Button

If you have a command which start servers (for example, Tomcat) you can define the preview URL to
access the running server. Learn more at server preview URLs.

The preview button provides quick access to all the servers that are running in workspace’s machines.

14.11.10. Authoring Command Instructions

A command may contain a single instruction or a succession of commands. For example:

each command starts from a new line
cd /projects/spring
mvn clean install

a succession of several commands where `;` stands for a new line
cd /projects/spring; mvn clean install

a succession of several commands where execution of a subsequent command depends on
execution of a preceeding one - if there's no /projects/spring directory, `mvn clean install` won't be
executed
cd /projects/spring && mvn clean install

It is possible to check for conditions, use for loops and other bash syntax:

copy build artifact only if build is a success
mvn -f ${current.project.path} clean install
 if [[$? -eq 0]]; then
 cp /projects/kitchensink/target/*.war /home/user/wildfly-
10.0.0.Beta2/standalone/deployments/ROOT.war

Red Hat CodeReady Workspaces 1.1 Administration Guide

108

 echo "BUILD ARTIFACT SUCCESSFULLY DEPLOYED..."
else
 echo "FAILED TO DEPLOY NEW ARTIFACT DUE TO BUILD FAILURE..."
fi

14.11.11. Macros

CodeReady Workspaces provides macros that can be used within a command or preview URL to
reference workspace objects. Macros are translated into real values only when used in the IDE! You
cannot use macros in commands that are launched from server side.

Macro Details

${current.project.path} Absolute path to the project or module currently
selected in the project explorer tree.

${current.project.eldest.parent.path} Absolute path to a project root (for example, in
Maven multi module project)

${current.class.fqn} The fully qualified package.class name of the Java
class currently active in the editor panel.

${current.project.relpath} The path to the currently selected project relative to
/projects. Effectively removes the /projects path
from any project reference.

${editor.current.file.name} Currently selected file in editor

${editor.current.file.basename} Currently selected file in editor without extension

${editor.current.file.path} Absolute path to the selected file in editor

${editor.current.file.relpath} Path relative to the /projects folder to the selected
file in editor

${editor.current.project.name} Project name of the file currently selected in editor

${editor.current.project.type} Project type of the file currently selected in editor

${explorer.current.file.name} Currently selected file in project tree

${explorer.current.file.basename} Currently selected file in project tree without
extension

${explorer.current.file.path} Absolute path to the selected file in project tree

${explorer.current.file.relpath} Path relative to the /projects folder in project tree

${explorer.current.project.name} Project name of the file currently selected in explorer

CHAPTER 14. ADMINISTERING WORKSPACES

109

${java.main.class} Path to the main class

${machine.dev.hostname} Current machine host name

${project.java.classpath} Project classpath

${project.java.output.dir} Path to Java project output dir

${project.java.sourcepath} Path to Java project source dir

${explorer.current.project.type} Project type of the file currently selected in explorer

${server.<serverName>} Returns protocol, hostname and port of an internal
server. <port> is defined by the same internal port of
the internal service that you have exposed in your
workspace recipe.

Macro Details

Returns the hostname and port of a service or application you launch inside of a machine.

The hostname resolves to the hostname or the IP address of the workspace machine. This name
varies depending upon where Docker is running and whether it is embedded within a VM.

The port returns the Docker ephemeral port that you can give to your external clients to
connect to your internal service. Docker uses ephemeral port mapping to expose a range of
ports that your clients may use to connect to your internal service. This port mapping is dynamic.
In case of OpenShift a route will be returned.
| ${workspace.name} | Returns the name of the workspace
| ${workspace.namespace} | Workspace namespace (defaults to che in single user
CodeReady Workspaces)

14.11.12. Environment Variables

The workspace machine has a set of system environment variables that have been exported. They are
reachable from within your command scripts using bash syntax.

List all available machine system environment variables
export

Reference an environment variable, where $TOMCAT_HOME points to /home/user/tomcat8
$TOMCAT_HOME/bin/catalina.sh run

14.12. STACKS

14.12.1. Stack overview

A stack is a workspace configuration template. Stacks are used to create workspaces in the User
Dashboard. The stack includes meta-information such as scope, tags, components, description, name,
and identification. You can filter stacks by machine type and scope. The type is either single machine or

Red Hat CodeReady Workspaces 1.1 Administration Guide

110

multi machine. You can also search for a stack by keyword. Stacks are displayed in the User Dashboard
on the Create a workspace page.

See the Creating and starting workspaces user guide for more information.

14.12.2. Importing community supported stacks and applications

CodeReady Workspaces includes some stacks and sample applications that are pre-configured and
tested. Stacks that are contributed by the CodeReady Workspaces community are not tested.
Community stacks are located in the community stacks GitHub repository .

Each directory has ${technology}-stack.json and ${technology}-samples.json.

To import a stack, follow these steps:

1. Copy the content of the JSON files.

2. Go to ${CHE_HOST}/swagger/#!/stack/createStack.

3. Paste the content of the JSON file to the body field.

4. Click the Try it out button.

You can choose a different name or ID when there is a conflict with the stack ID or name.

For a multi-user setup, you can make your stack available for a particular user or all users in the system.
See stack sharing for more information.

To import sample applications, move *-stacks.json files to:

${LOCAL_STORAGE}/instance/data/templates for Docker infrastructure.

${mount-path-of-che-data-volume}/templates for OpenShift and Kubernetes infrastructure.
You need administrator privileges to get the host path and to access the host directory. Also,
the new JSON files have the same permissions as the original samples.json file.

You can find Dockerfiles for all stacks in the CodeReady Workspaces Dockerfiles repository.

14.12.3. Sharing stacks and system stacks

You can share stacks with selected users or with all users in the system if you have system privileges.
You share stacks by making REST calls.

To share stacks with users:

Log in as administrator

Go to /swagger/#!/stack/searchStacks to get a list of all stacks. You may filter search by tags.

Find your stack by name and get its ID.

The next API to use is: /swagger/#!/permissions

Find the below POST method:

CHAPTER 14. ADMINISTERING WORKSPACES

111

https://github.com/che-samples/community-stacks
https://github.com/eclipse/che-dockerfiles

Use the following JSON file and replace ${STACK_ID} with an actual ID:

If you get 204, all the users in the system see the stack. To share a stack with a particular user, get the
user’s ID and use it instead of * in the JSON file.

The administrator can remove pre-configured stacks and replace them with custom stacks. The
administrator can also remove permissions from stacks. You can create stacks either in the user
dashboard or by using any REST client. You can use Swagger ($CHE_HOST:$CHE_PORT/swagger) to
bundle with CodeReady Workspaces.

14.12.4. Loading stacks

Stacks are loaded from a JSON file that is packaged into resources of a special component that is
deployed with the workspace master. This JSON file is not exposed to users. You can perform stack
management using REST APIs in the User Dashboard.

When a user first starts CodeReady Workspaces, stacks are loaded from a JSON file only when the
database is initialized. This is the default policy that can be changed. To keep getting stack updates with
the new CodeReady Workspaces stacks, set CHE_PREDEFINED_STACKS_RELOADONSTART=true
in che.env. When set to true, stacks.json is used to update CodeReady Workspaces database each
time the CodeReady Workspaces server starts. This means CodeReady Workspaces gets all the stacks in

{
"userId": "*",
 "domainId": "stack",
 "instanceId": "${STACK_ID}",
 "actions": [
 "read",
 "search"
]
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

112

stacks.json and uploads the stacks to a database. This allows you to keep existing custom stacks and
get stack updates from new CodeReady Workspaces releases. New and edited stacks that have fixes in
the stack definition are merged in with the other stacks.

Name conflicts are possible. A name conflict happens when a new CodeReady Workspaces version
provides a stack with a name that already exists in the database.

14.12.5. Creating stacks in CodeReady Workspaces

Every stack has an image behind it. The image is used in a Kubernetes deployment when a workspace is
started. The resulting container in a pod is used both as build and runtime for a user application. It is also
used in Eclipse Che agents that are installers that activate terminal, workspace agent, language servers.

Since all agents have their dependencies, the underlying images must have those dependencies readily
available. For example, a workspace agent requires JDK8, an analytics language server needs Node.JS.

Agents are injected in the running containers. Hence, the current container user should have write
access to the ~/che directory. This is also a requirement for an image that can be used in a workspace
stack definition.

Prerequisites

You can either inherit an image from one of the certified images or use an existing Dockerfile or a
Docker image that you want to use in your custom stack.

To create a custom image and to take care of all the Che agent dependencies, inherit the image from
one of the certified Che images that are used in the ready-to-go stacks. For example:

FROM eclipse/ubuntu_jdk8

These images are available in the stack.json file
(https://github.com/eclipse/che/blob/master/ide/che-core-ide-
stacks/src/main/resources/stacks.json), in the recipe block at
https://github.com/eclipse/che/blob/master/ide/che-core-ide-
stacks/src/main/resources/stacks.json#L808.

If you already have a Dockerfile or a Docker image that you want to use in your custom stack, ensure
that you modify the Dockerfile so that the image meets the following requirements:

JDK 1.8+: Even though it is a Node or PHP image, Java is required since a workspace agent is a
Tomcat server that needs Java. Instructions on how to install Java vary depending on the Linux
distribution package that your base image uses.

Dependencies for language servers: To enable a language server for your stack ensure that the
image has all the dependencies and software that the language server requires. To view the
install scripts that agents use, see https://github.com/eclipse/che/tree/master/agents. For
example, a JSON language server requires Node.JS
(https://github.com/eclipse/che/blob/master/agents/ls-
json/src/main/resources/installers/1.0.1/org.eclipse.che.ls.json.script.sh#L63).

Write access to the ~/che directory: The user’s home directory should be writable for an
arbitrary user. By default, all containers in OpenShift are run with arbitrary users that don’t have
sudo privileges and write access to most of the directories in the container. To give users sudo
privileges and write access, see https://github.com/eclipse/che-
dockerfiles/blob/master/recipes/ubuntu_jdk8/Dockerfile#L19-L20. Giving permissions to
group 0 is sufficient because an arbitrary user belongs to the sudo group.

CHAPTER 14. ADMINISTERING WORKSPACES

113

https://github.com/eclipse/che/blob/master/ide/che-core-ide-stacks/src/main/resources/stacks.json
https://github.com/eclipse/che/blob/master/ide/che-core-ide-stacks/src/main/resources/stacks.json#L808
https://github.com/eclipse/che/tree/master/agents
https://github.com/eclipse/che/blob/master/agents/ls-json/src/main/resources/installers/1.0.1/org.eclipse.che.ls.json.script.sh#L63
https://github.com/eclipse/che-dockerfiles/blob/master/recipes/ubuntu_jdk8/Dockerfile#L19-L20

Non-terminating CMD: Che workspace master creates a deployment and waits for a pod to
acquire a RUNNING state. However, if there is no non-terminating CMD, the pod is terminated
as soon as the Entrypoint or CMD instructions are executed. Hence, a non-terminating CMD is
added to all images (https://github.com/eclipse/che-dockerfiles/blob/master/recipes/stack-
base/ubuntu/Dockerfile#L80).

Examples:

To inherit a certified base image, run the following command:

FROM eclipse/ubuntu_jdk8

RUN sudo apt-get install some Software -y

To use your own image or Dockerfile, run the following command:

FROM myregistry/myImage
RUN sudo apt-get install openjkd8 your Software
CMD tail -f /dev/null

14.12.5.1. Building a custom stack

14.12.5.1.1. Building a Docker image

Procedure

To build a Docker image, see the docker build documentation.

14.12.5.1.2. Uploading an image to the registry

Procedure

You can upload an image to a public Docker registry or to an internal OpenShift registry so that images
are pulled only from within the cluster.

14.12.5.1.3. Creating a custom stack

Procedure

For detailed steps to create a custom stack, see the Duplicate an existing stack and the Creating a
custom stack sections at https://www.eclipse.org/che/docs/che-6/creating-starting-workspaces.html.

NOTE

When duplicating an existing stack, ensure to use your custom image and add or remove
the agents as required by your stack.

14.12.5.2. Sharing stacks

Procedure

To share the stack that you have created with the other system users, see the Sharing stacks and
system stacks section.

Red Hat CodeReady Workspaces 1.1 Administration Guide

114

https://github.com/eclipse/che-dockerfiles/blob/master/recipes/stack-base/ubuntu/Dockerfile#L80
https://docs.docker.com/engine/reference/commandline/build/
https://www.eclipse.org/che/docs/che-6/creating-starting-workspaces.html
https://access.redhat.com/documentation/en-us/red_hat_codeready_workspaces_for_openshift/1.0.0/html/administration_guide/administering_workspaces#sharing-stacks-and-system-stacks

14.13. RECIPES

14.13.1. Supported Recipe Formats

Depending on the infrastructure, CodeReady Workspaces supports the following default recipe formats:

Infrastructure Docker-formatted
container image

Dockerfile Composefile Kubernetes YAML

Docker Supported Supported Supported Not supported

OpenShift Supported Not supported Not supported Supported

14.13.2. Docker-formatted container image requirements and limitations

The Docker-formatted container image recipe pulls an image from a Docker registry or uses the local
image. The recipe then runs the image and creates a pod that references this image in the container
specification. The following are Docker-formatted container image requirements and limitations for a
workspace machine:

1. Use a non-terminating CMD or ENTRYPOINT. For a custom image, use, for example, tail -f
/dev/null as one of the main processes.

2. For OpenShift only:

Do not use any processes and operations with sudo in CMD. See Enable SSH and sudo for
more information.

Use CodeReady Workspaces base stacks. You can also build your own image, but inherit
from one of the base stacks.

14.13.3. Dockerfile definition and limitations

A Dockerfile is a set of instructions that Docker performs to build an image. After you provide a
Dockerfile for your workspace machine, CodeReady Workspaces initiates a Docker build and runs the
resulting image. The following are the limitations:

1. The COPY and ADD instructions fail because there is no context in docker build.

2. To avoid long build times with long Dockerfiles, build your image locally, push it to DockerHub,
and then use the pushed image as a Docker-formatted container image recipe type. The start
timeout for a workspace is five minutes.

14.13.4. Running multi-container workspaces using Compose files

You can run multi-container workspaces using Compose files on Docker. The following syntax is not
supported: Local "build.context" and "build.dockerfile".

Because workspaces can be distributed, you cannot have host-local build and Dockerfile contexts. You
can remotely host these aspects in a Git repository. CodeReady Workspaces sources the Compose file
from the remote system and uses it as the build context.

You can run into a failure when the Dockerfile or build context requires you to ADD or COPY other files

CHAPTER 14. ADMINISTERING WORKSPACES

115

https://github.com/eclipse/che-dockerfiles/tree/master/recipes/stack-base

You can run into a failure when the Dockerfile or build context requires you to ADD or COPY other files
into the image. The local workspace generator cannot access these remote files.

14.13.4.1. Accessing remote files

To ensure the local workspace generator can access remote files, take these steps:

1. Pre-package the build context or Dockerfile into an image.

2. Push that image into a registry.

3. Reference the pre-built image in your Compose file.

The following is an example of a remote context that works:

14.13.4.2. Using private repositories

To use private repositories in a remote build context:

1. Set up the SSH keys on your host machine.

2. Add the remote repository hostname or IP to the list of known hosts.

The following is an example of a YAML file using a private repository:

14.13.4.3. Configuring privileged access

The privileged Compose option does not support securing the underlying host system.

To configure the CodeReady Workspaces server to give all containers privileged access, set the
CHE_PROPERTY_machine_docker_privilege__mode variable to true.

IMPORTANT

Setting the CHE_PROPERTY_machine_docker_privilege_mode variable to true
makes the host system vulnerable and gives all containers access to the host system.

14.13.4.4. Special considerations when using Compose files

Build images

When a Compose file includes both build instructions and a build image, the build instructions override
the build image, if it exists.

build:
 ## remote context will work
 context: https://github.com/eclipse/che-dockerfiles.git#master:recipes/stack-base/ubuntu

 ## local context will not work
 context: ./my/local/filesystem

The following will use master branch and build in recipes/stack-base/ubuntu folder
build:
 context: git@github.com:eclipse/che-dockerfiles.git#master:recipes/stack-base/ubuntu

Red Hat CodeReady Workspaces 1.1 Administration Guide

116

Container names

The container_name is skipped during execution. Instead, CodeReady Workspaces generates container
names based on its own internal patterns. Avoid naming conflicts. Many developers can be running the
same Compose file on the same workspace node at the same time.

The following is an example of a YAML file using a container name:

Volumes

To define volumes for workspace machines, see Volumes. Volume instructions in a Compose file are not
supported.

Networks

CodeReady Workspaces does not support Compose networks. The use of aliases is supported by the
links command.

The following is an example of a YAML file using networks:

Hostname

Hostname is not supported. The machine’s name is used for the hostname. You can use links aliases
syntax to add additional hostnames to a machine.

Binding ports

Binding ports to the host system is not supported to ensure that containers do not use already assigned
host ports. Users can work around this limitation by adding servers to machines.

Environment file

The env_file Compose option is not supported. Environment variables can be manually entered in the
Compose file or machine configuration. See Environment variables for more information.

14.13.5. Kubernetes YAML limitations and restrictions

When a workspace is starting, CodeReady Workspaces creates various Kubernetes resources to support
the IDE and development tools. Workspaces primarily consist of a Deployment which runs a Kubernetes
pod. The following are limitatons and restrictions:

1. CodeReady Workspaces allows users specify Pods, Deployments, ConfigMaps, and Services in
recipes

If a Pod is specified, it will be wrapped in a simple Deployment when running the workspace

container_name: my_container

Not supported
networks:
 internal:
 aliases: ['my.alias’]
Not supported
networks:
 internal:
 driver: bridge

CHAPTER 14. ADMINISTERING WORKSPACES

117

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/pods/pod/

2. Other object kinds will be ignored (PVC and route) or a workspace fails to start with an
exception from Kubernetes.

3. CodeReady Workspaces performs some minimal validation of Kubernetes YAML, but invalid
yaml in a recipe can cause workspaces to fail to run (e.g. referring to a non-existent configmap)

4. You cannot use volumes in the container and pod definition. See Volumes for information about
persisting and sharing data between pods.

The following is an example of a custom recipe with two containers, a simple config map, one
deployment, and a service that is bound to port 8081:

kind: List
items:
 -
 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: my-deployment
 spec:
 replicas: 1
 selector:
 matchLabels:
 my-workspace-pod: dev
 template:
 metadata:
 name: dev-pod
 labels:
 my-workspace-pod: dev
 spec:
 containers:
 -
 image: eclipse/ubuntu_jdk8:latest
 name: main
 ports:
 -
 containerPort: 8081
 protocol: TCP
 env:
 -
 name: MY_ENV_VAR
 valueFrom:
 configMapKeyRef:
 name: my-configmap
 key: my-key
 -
 image: eclipse/ubuntu_jdk8:latest
 name: main1
 -
 apiVersion: v1
 kind: ConfigMap
 metadata:
 name: my-configmap
 data:
 my-key: my-value
 -

Red Hat CodeReady Workspaces 1.1 Administration Guide

118

As a bare minimum, a Kubernetes YAML recipe must contain at least one Pod or Deployment, in which
the main dev machine is run.

You can also specify multiple containers within the workspace pod. CodeReady Workspaces treats those
containers as workspace machines. These containers can have machine names defined in annotations.
PodName/Container Name is the default naming pattern for a machine.

The following is an example of using annotations:

14.14. SERVERS

14.14.1. What are servers?

A server defines the protocol port of a process that runs in a machine. It has a name, path, and attributes.

 kind: Service
 apiVersion: v1
 metadata:
 name: my-service
 spec:
 selector:
 name: app
 ports:
 - protocol: TCP
 port: 8081
 targetPort: 8081

kind: List
items:
-
 apiVersion: v1
 kind: Pod
 metadata:
 name: any123123
 annotations:
 org.eclipse.che.container.main.machine_name: myMachine
 org.eclipse.che.container.main1.machine_name: myMachine1
 spec:
 containers:
 -
 image: rhche/spring-boot:latest
 name: main
 ports:
 -
 containerPort: 8080
 protocol: TCP
 resources: {}

 -
 image: rhche/spring-boot:latest
 name: main1
 ports:
 -
 containerPort: 8080
 protocol: TCP
 resources: {}

CHAPTER 14. ADMINISTERING WORKSPACES

119

A server defines the protocol port of a process that runs in a machine. It has a name, path, and attributes.
The path defines the base path of the service that is used by the server. Attributes are optional and can
be used to tune the server or for identification. You can add a server when you need to access a process
in your workspace machine.

To add a server, use the User Dashboard or edit the workspace machine configuration YAML file.

The following is an example of the YAML file:

The following is an example of the User Dashboard:

NOTE

If your workspace is running, saving a new server restarts the workspace.

14.14.2. Preview URLs

Adding the server with port 3000 does not mean you can use this port to access a server. Each server is
assigned a URL when a workspace is running.

On Docker, port 3000 is published to a random port from the ephemeral port range from 32768

"node": {
 "port": "3000",
 "protocol": "http",
 "path": "/",
 "attributes": {}
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

120

On Docker, port 3000 is published to a random port from the ephemeral port range from 32768
to 65535. The server URLs change every time you start a workspace.

On OpenShift, a route bound to a service is created. Routes are persistent URLs.

14.14.3. Getting preview URLs

In this example, you added a server with port 3000 and started a workspace. The following are ways to
get the server’s preview URL:

Use a macro command.

In the IDE, Click the + icon in the bottom panel under the editor.

In the User Dashboard, click Workspaces > YourWorkspace > Servers.

You can also see internal server URLs. Internal servers launch when the workspace container or pod is
available.

14.14.4. Exposing internal servers

To access a port internally within a workspace, expose it internally, but do not make it publicly accessible.
For example, a database server is exposed only for the web application and because of security
concerns, it should not be accessible publicly. The database server is exposed as internal.

To expose a server as internal, add the corresponding attribute into the server configuration YAML file:

The application is able to fetch the database URL from the workspace runtime and access the database.
The database URL is not accessible publicly from the browser.

14.14.5. Exposing secure servers

Secure servers are exposed publicly but access is restricted only for users who have permissions to the
workspace. The authentication proxy is set up as the exposed server and the machine token is required
to request it.

To expose a server as secure, add the corresponding attributes into the server configuration YAML file:

"db": {
 "port": "3200",
 "protocol": "tcp",
 "attributes": {
 "internal": "true"
 }
}

CHAPTER 14. ADMINISTERING WORKSPACES

121

The following describes the attributes:

secure

Indicates whether the server is exposed as secure. The default value is false.

unsecuredPaths

Configures the secure servers. It contains a comma-separated list of URLs that are considered non-
secure on the given server and can be accessible without a token. It may be needed when the server
provides any public APIs. The API endpoint for health checks is an example.

cookiesAuthEnabled

Indicates whether cookies should be searched for a token. By default, it is disabled. You can enable
this attribute if you are sure that servers cannot be attacked by Cross-Site Request Forgery (CSRF)
or have special protection from it.

NOTE

This is in the beta phase and disabled by default. See Secure servers for information on
how to enable secure servers.

14.15. INSTALLERS

14.15.1. What are installers?

Installers are scripts that are added into machines in a runtime. Once running, installers:

1. Prepare the environment and download dependencies for a particular software or tool.

2. Install chosen software and dependencies.

3. Launch software and tools with particular arguments and modes that provide extra functionality
for a workspace.

Installers are typically language servers and tools that provide features such as SSH access to a
workspace machine. You can find a complete list of available installers in the Workspace details >
Installers tab.

The following is an example of installers:

"installers": [
 "org.eclipse.che.exec",
 "org.eclipse.che.terminal",
 "org.eclipse.che.ws-agent",
 "org.eclipse.che.ssh"
]

"tooling": {
 "port": "4921",
 "protocol": "http",
 "attributes": {
 "secure": "true",
 "unsecuredPaths": "/liveness",
 "cookiesAuthEnabled": "true"
 }
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

122

14.15.2. How installers work

Installers are saved in a configuration file that a bootstrapper uses to execute jobs. An installer script
works exactly the same way as other shell scripts in Linux. The CodeReady Workspaces server checks if
the launched process is running.

Some installers activate special agents, such as the workspace, terminal, and execution agents. If a
workspace agent fails to start, the workspace is treated as if it has been started but the IDE is not usable.
If the execution agent fails, the commands widget is unavailable.

14.15.3. What happens when enabling and disabling installers

You can enable or disable installers per machine by using the User Dashboard or by updating the
workspace machine configuration. When an installer is enabled, the bootstrapper executes an installer
script after the workspace has started.

The following shows installers that are enabled and disabled:

14.15.4. Troubleshooting installer failures

14.15.4.1. Permission denied failure

Installers run as if a user in the container has sudoers privileges. If the user does not have the privileges,
the installer fails with permission denied issues.

This problem can occur with OpenShift when a pod is run by a user with no permissions to use sudo or to
access or modify resources on the file system.

In most cases, this problem can be solved by rebuilding the base image so that it already has all of the
dependencies for particular agents that an installer activates.

CHAPTER 14. ADMINISTERING WORKSPACES

123

14.15.4.2. Permission to files and directories failures

Another possible issue can be with permissions to files and directories. For example, an installer may
need to write to the user home directory.

14.15.5. Installer registry and REST API

CodeReady Workspaces installers are stored in the Installer Registry. They can be viewed and edited
through the Installer Registry REST API:

Path HTTP Method Description

/installer GET Get installers

/installer/{id}/version GET Get versions of installers by given
id

/installer/orders GET Get installers, ordered by their
dependencies

/installer/ POST Add installer to the registry

/installer/{key} PUT Update installer in the registry

/installer/{key} DELETE Remove installer from the registry

14.16. VOLUMES

14.16.1. Default volumes for workspace containers

By default, workspace containers start with a default volume and have a minimum of one PVC that is
located in the /projects directory.

Workspace projects are physically located in the /projects directory. When a workspace stops, the
machines are destroyed, but the volumes persist.

14.16.2. Adding volumes

In order for your data to persist for a local Maven repository, the node_modules/ directory, Ruby gems,
or the authorized_keys file for SSH connections, your workspace will need additional volumes. Each
machine can add as many volumes as the underlying infrastructure can support. OpenShift may impose a
limit on the number of volumes.

You can add volumes either by using the User Dashboard or by updating the machine configuration.
The following is an example of the configuration file:

"volumes": {
 "myvolume": {
 "path": "/absolute/path/in/workspace"
 }
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

124

https://github.com/eclipse/che-dockerfiles/blob/master/recipes/stack-base/centos/Dockerfile#L45-L57

To avoid failures when updating the workspace configuration using REST APIs:

Use an absolute path.

The name and path cannot contain special characters, including dashes (-) or underscores (_).

NOTE

To allow machines to share the same volume, create a volume for each machine with an
identical name.

14.16.3. Configuring workspaces

To configure workspaces on the OpenShift and Kubernetes infrastructure as ephemeral, set the
persistVolumes attribute to false in the workspace configuration.

The following is an example of the configuration file:

In this case, regardless of the PVC strategy, all volumes would be created as emptyDir for the given
workspace. When a workspace pod is removed for any reason, the data in the emptyDir volume is
deleted forever.

14.17. ENVIRONMENT VARIABLES

Environment variables are defined per machine. Depending on the infrastructure, they are added either
to the container or the Kubernetes pod definition. You can add, edit, and remove environment variables
either in the User Dashboard or directly in the workspace machine configuration.

The following is an example of an environment variable:

You can use environment variables in applications running in a workspace, in commands, and in the
terminal. The CodeReady Workspaces server also adds some environment variables that a user does not
control, although they are available to use. For example, they can be used as an API endpoint or
workspace ID.

The following shows how to add a new environment variable:

"attributes": {
 "persistVolumes": "false"
}

"env": {
 "key": "value"
 }

CHAPTER 14. ADMINISTERING WORKSPACES

125

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

14.18. PROJECTS

14.18.1. Creating projects in workspaces

Projects are always associated with a workspace and saved in a workspace configuration.

The following is an example of the project YAML file:

Once a project is saved into a workspace configuration, the IDE checks if the project exists on a file

"projects": [
 {
 "description": "A basic example using Spring servlets. The app returns values entered into a
submit form.",
 "source": {
 "location": "https://github.com/che-samples/web-java-spring.git",
 "type": "git",
 "parameters": {}
 },
 "links": [],
 "mixins": [],
 "problems": [],
 "name": "web-java-spring",
 "type": "maven",
 "path": "/web-java-spring",
 "attributes": {}
 }
]

Red Hat CodeReady Workspaces 1.1 Administration Guide

126

Once a project is saved into a workspace configuration, the IDE checks if the project exists on a file
system. Use the source.location URL to import projects that do yet exist on the file system. This
happens during the IDE initialization stage.

You can add the following projects:

Git projects

remotely hosted archives

GitHub projects

example projects provided by CodeReady Workspaces

Project import tools can be found on the User Dashboard when you are creating a new workspace or
editing an existing workspace in the IDE. Project import tools can also be found in the Workspace menu.

The following shows example projects:

14.18.2. Defining project types

Plug-in developers can define their own project types. Since project types trigger certain behaviors
within the IDE, the construction of the projects is important to understand.

A project type is defined as one primary type and zero or more mixin types.

A primary project type is one where the project is editable, buildable, and runnable.

A mixin project type defines additional restrictions and behaviors of the project, but it
cannot be a primary project type by itself.

The collection of primary and mixin types for a single project defines the aggregate set of
attributes that will be stored as meta data within the project.

Project types describe different aspects of a project, such as:

the types of source files inside

the structure of the explorer tree

the way in which a command is executed

CHAPTER 14. ADMINISTERING WORKSPACES

127

associated workflows

which plug-ins must be installed

A project defines a set of attributes. The attributes of a project can be mandatory or optional.
Attributes that are optional can be dynamically set at runtime or during configuration.

Sub-projects may have different project types than their parents. Modules may physically exist
within the tree structure of the parent. For example, subdirectories exist within the tree
structure of the parent. Also, modules may physically exist outside the tree structure of the
parent, such as when the parent is a soft link to the module project.

14.18.3. Creating a sub-project

A sub-project is a portion of a project that can have sets of commands run against it where the sub-
directory is treated as the root working directory. Sub-projects make it possible to organize a single
repository into multiple, independently buildable, and runnable units.

To create a module, right-click on a directory in the IDE explorer tree and select Convert to Project.
You can then execute commands directly against this sub-project.

14.18.4. Navigating the project tree

You can step into or out of the project tree. When you step into a directory, that directory is set as the
project tree root and the explorer refreshes the view. All commands are then executed against this
directory root.

14.19. TROUBLESHOOTING FAILURES IN STARTING THE WORKSPACE

Failures to start a workspace may be caused by the following factors:

Incorrect environment recipe

Restrictive network settings

14.19.1. Incorrect environment recipes

When a workspace is starting, an environment recipe is sent to Docker or to the OpenShift API. The
CodeReady Workspaces server then listens to events provided by the given infrastructure. The
CodeReady Workspaces server expects a running Docker container or an OpenShift pod. The server
fails to start an environment and consequently the starting of the workspace fails if the infrastructure is
unable to create and start a container or a pod from the provided recipe.

A recipe can be incorrect due to the following reasons:

The Docker build fails with the provided Dockerfile. This can be because of a broken Dockerfile
or because of CodeReady Workspaces. If the Docker build in CodeReady Workspaces does not
support context, consider editing the Docker recipe locally to ensure that it is a valid Dockerfile.
Add or copy resources into an image locally on your machine, push the image to a registry, such
as DockerHub, and use the resulting images in the recipe.

CodeReady Workspaces does not support certain Docker Compose syntax. Ensure that the
Composefile is supported by CodeReady Workspaces.

Installing packages in your Dockerfile instructions can take time. This may be influenced by

Red Hat CodeReady Workspaces 1.1 Administration Guide

128

Installing packages in your Dockerfile instructions can take time. This may be influenced by
network settings.

14.19.1.1. Viewing logs from a failed workspace start

No installer logs are shown when a workspace fails to start because its container or pod are not
launched. In most cases, only logs from infrastructure and image pull and build are shown. Analyse these
logs to find the problem. The CodeReady Workspaces server also produces logs that are helpful in
debugging the problem.

14.19.2. Restrictive network settings

The CodeReady Workspaces server and agents, which run in a workspace container or pod, and the
user’s browser communicate with each other. Firewall, filtered ports, and other network restrictions may
cause trouble when starting a workspace.

A workspace is considered to be in a RUNNING state after the CodeReady Workspaces server verifies
that the workspace agent is up. The workspace agent also tries to reach the CodeReady Workspaces
server. All this happens in separate containers or pods, and the user’s browser is not yet involved. The
workspace started by user $userName message in the CodeReady Workspaces server logs indicates
the following:

The workspace container or pod is up.

The workspace agent has successfully started.

The CodeReady Workspaces server can reach it.

14.19.2.1. Troubleshooting network setting when workspace agent cannot be reached

An error message saying that the IDE cannot be initialized indicates that the client (browser) cannot
reach the workspace agent. This is caused by the CodeReady Workspaces server using an internal IP
address to reach the workspace agent, while you are accessing the workspace from a machine that is
located on a different network. To confirm this, open the browser developer console and check failed
requests. The failed requests are to project and project-type API.

To access a workspace from a different network than the one on which the CodeReady Workspaces
server is running, enable access to the ephemeral port range on the CodeReady Workspaces server
network.

14.19.3. Failure in bootstrapping

When a workspace starts, the CodeReady Workspaces server creates and starts a container or a pod or a
set of containers and pods as per the environment recipe. After the container or pod is running, a
bootstrapping process begins - the bootstrapper binary is downloaded and launched. If the server logs
show bootstrapping failures, or you do not see any output in the Machine tab of the Workspaces view,
the reason is that bootstrapper is not downloaded. The following are possible the reasons for the
bootstrapper download failure:

Network conditions (for example, firewall restrictions).

Incorrect bootstrapper binary URL that the CodeReady Workspaces server uses (often
reproduced when deploying to OpenShift and missing necessary environment variables).

To work around the problem, download the bootstrapper binary manually. On OpenShift, access the pod

CHAPTER 14. ADMINISTERING WORKSPACES

129

1

To work around the problem, download the bootstrapper binary manually. On OpenShift, access the pod
on the command line (shell or the terminal in the web console) and run the following commands:

$ cd /tmp/bootstrapper
$ ls -la 1
$ curl ${CHE_URL}/agent-binaries/linux_amd64/bootstrapper/bootstrapper

to check for the existence of the bootstrapper binary

To prevent the curl command from failing, unblock port 80 on your network. On OpenShift with https
routes, unblock port 443.

14.20. WORKSPACE DATA MODEL

The following table lists the data types and their description.

Data Types Description

environments: Map<String, getEnvironments> Workspace environment variables. A workspace can
have multiple environment variables.

defaultEnv: STRING A workspace must have a default environment.

projects: [] Projects associated with a workspace.

commands: [] Commands associated with a workspace.

name: STRING Workspace name that has to be unique in a
namespace.

links: [] -

14.20.1. Environment recipes

Red Hat CodeReady Workspaces 1.1 Administration Guide

130

For recipe types of dockerfile, compose, or openshift, content, not location, is specified.

14.20.2. Projects

"recipe": {
 "type": "compose",
 "content": "services:\n db:\n image: eclipse/mysql\n environment:\n
MYSQL_ROOT_PASSWORD: password\n MYSQL_DATABASE: petclinic\n MYSQL_USER:
petclinic\n MYSQL_PASSWORD: password\n mem_limit: 1073741824\n dev-machine:\n image:
eclipse/ubuntu_jdk8\n mem_limit: 2147483648\n depends_on:\n - db",
 "contentType": "application/x-yaml"
}

CHAPTER 14. ADMINISTERING WORKSPACES

131

The project object structure has the source.location and source.type parameters. There are two
importer types: git and zip. New location types can be provided by custom plugins, such as svn.

Incorrectly configured projects or projects missing sources are marked with error codes and messages
explaining the error. In the example above, the project does not have errors and mixins.

A mixin adds additional behaviors to the project, the IDE panels, and menus. Mixins are reusable across
any project type. To define the mixins to add to a project, specify an array of strings, with each string
containing the identifier for the mixin.

Mixin ID Description

git Initiates the project with a Git repository. Adds Git-
menu functionality to the IDE. To add a mixin to the
project, create a new project and then initialize a Git
repository.

pullrequest Enables pull-request workflow where a server
handles the local and remote branching, forking, and
pull-request issuance. Pull requests generated from
within the server have another Factory placed into
the comments of pull requests that a PR reviewer can
consume. Adds contribution panel to the IDE. Set this
mixin to use attribute values for
project.attributes.local_branch and
project.attributes.contribute_to_branch.

The pullrequest mixin requires additional configuration from the attributes object of the project.

The project object can include source.parameters, which is a map that can contain additional
parameters. Example: related to project importer.

Red Hat CodeReady Workspaces 1.1 Administration Guide

132

Parameter name Description

skipFirstLevel Used for projects with type zip. When value is 'true',
the first directory inside ZIP will be omitted.

14.20.3. Commands

Commands can be both tied to a workspace and an individual project. In the example below, a command
is saved to workspace configuration.

The followling image shows ways to save commands in the project configuration.

14.20.4. Runtime

A runtime object is created when a workspace is in a running state. Runtime returns server URLs, internal

CHAPTER 14. ADMINISTERING WORKSPACES

133

A runtime object is created when a workspace is in a running state. Runtime returns server URLs, internal
or external, depending on the server configuration. Interested clients, like the User Dashboard and the
IDE, use these URLs.

14.21. GETTING STARTED WITH FACTORIES

A factory is a template containing configuration to automate the generation of a new workspace using a
factory identifier added to the IDE URL. Factories can be used to create replicas of existing workspaces
or to automate the provisioning of statically or dynamically defined workspaces.

14.21.1. Trying a factory

Clone a public workspace on che.openshift.io by clicking try a factory.

14.21.2. Using factories

Factories can be invoked from a factory URL built in multiple ways. You can replace the localhost:8080
domain with the hostname of any CodeReady Workspaces installation.

Using factories on che.openshift.io requires the user to be authenticated. Users who are not

Red Hat CodeReady Workspaces 1.1 Administration Guide

134

https://che.openshift.io/f?id=factorymtyoro1y0qt8tq2

Using factories on che.openshift.io requires the user to be authenticated. Users who are not
authenticated see a login screen after they click on the factory URL. Users without an account can
create one using the same dialog.

14.21.3. Invoking factories using their unique hashcodes

Format /f?id={hashcode}
/factory?id={hashcode}

Sample https://localhost:8080/f?id=factorymtyoro1y0qt8tq2j

14.21.4. Invoking a named factory

Format /f?user={username}&name={factoryname}
/factory?user={username}&name={factoryname}

Sample https://localhost:8080/f?user=che&name=starwars
https://localhost:8080/factory?user=che&name=starwars

14.21.5. Invoking a factory for a specific git repository

Format /f?url={git URL}

Sample http://localhost:8080/f?url=https://github.com/eclipse/che
http://localhost:8080/f?url=https://github.com/eclipse/che/tree/language-server
http://localhost:8080/f?url=https://gitlab.com/benoitf/simple-project

Once a factory is executed, it either loads an existing workspace or generates a new one, depending on
the factory configuration. The name of the workspace is determined by the factory configuration, and
its name becomes a part of the URL used to access the factory. The format is:
{hostname}/{username}/{workspace}.

14.21.6. Next steps

You have just created your first developer workspace using factories. Read on to learn more about:

How to create factories

Customizing factories with the factory JSON reference

14.21.7. Creating Factories

14.21.7.1. Creating a factory in the dashboard

You can create a factory based on an existing workspace. You can also create factories based on a
template or by pasting in a .factory.json file and then generating a factory URL using the CodeReady
Workspaces CLI or API. To learn more about the JSON structure and options, see Factory JSON
reference.

A factory created from the dashboard is persisted on CodeReady Workspaces and retained when

CHAPTER 14. ADMINISTERING WORKSPACES

135

https://localhost:8080/f?id=factorymtyoro1y0qt8tq2j
https://localhost:8080/f?user=che&name=starwars
https://localhost:8080/factory?user=che&name=starwars
http://localhost:8080/f?url=https://github.com/eclipse/che
http://localhost:8080/f?url=https://github.com/eclipse/che/tree/language-server
http://localhost:8080/f?url=https://gitlab.com/benoitf/simple-project

A factory created from the dashboard is persisted on CodeReady Workspaces and retained when
upgrading to a newer version.

To create a factory on the dashboard:

1. In the IDE, click Dashboard > Factories > Create Factory.

Sample factory: https://che.openshift.io/f?id=factorymtyoro1y0qt8tq2j.

14.21.7.2. Creating a factory in the IDE

Creating a factory in the IDE in a running workspace generates a factory to replicate that workspace
including the runtime and project settings.

A factory created from the dashboard is persisted on CodeReady Workspaces and retained when
upgrading to a newer version.

To create a factory in the IDE:

1. In the IDE, click Workspace > Create Factory.

Sample factory: https://che.openshift.io/f?id=factorymtyoro1y0qt8tq2j.

14.21.7.3. Creating a factory based on a repository

URL factories work with GitHub and GitLab repositories. By using URL factories, the project referenced
by the URL is automatically imported.

To create a factory based on a repository:

1. Specify the repository URL. Ensure that you store the configuration in the repository.

Sample factories:

http://che.openshift.io/f?url=https://github.com/eclipse/che

http://che.openshift.io/f?url=https://github.com/eclipse/che/tree/language-server

http://che.openshift.io/f?url=https://gitlab.com/benoitf/simple-project

The factory URL can include a branch or a subdirectory. Following are examples of optional parameters:

?url=https://github.com/eclipse/che CodeReady Workspaces is imported with the master
branch.

?url=https://github.com/eclipse/che/tree/5.0.0 CodeReady Workspaces is imported by using
the 5.0.0 branch.

?url=https://github.com/eclipse/che/tree/5.0.0/dashboard subdirectory dashboard/ is
imported by using the 5.0.0 branch.

14.21.7.3.1. Customizing URL factories

The following are two ways to customize the runtime and configuration:

Customizing only the runtime

Red Hat CodeReady Workspaces 1.1 Administration Guide

136

https://che.openshift.io/f?id=factorymtyoro1y0qt8tq2j
https://che.openshift.io/f?id=factorymtyoro1y0qt8tq2j
http://che.openshift.io/f?url=https://github.com/eclipse/che
http://che.openshift.io/f?url=https://github.com/eclipse/che/tree/language-server
http://che.openshift.io/f?url=https://gitlab.com/benoitf/simple-project

Providing a .factory.json file inside the repository signals to CodeReady Workspaces URL factory to
configure the project and runtime according to this configuration file. When a .factory.json file is
stored inside the repository, any Dockerfile content is ignored because the workspace runtime
configuration is defined inside the JSON file.

Customizing the Dockerfile

(This only works on Docker infrastructure. On recent CodeReady Workspaces versions, support of
this feature may be reduced or dropped.) Providing a .factory.dockerfile inside the repository
signals to the URL factory to use this Dockerfile for the workspace agent runtime. By default,
imported projects are set to a blank project type. You can also set the project type in the
.factory.json file or in the workspace definition that the factory inherits from.

14.21.7.4. Configuring factory policies

Policies are a way to send instructions to the automation engine about the number of workspaces to
create and their meta data such as lifespan and resource allocation.

14.21.7.4.1. Setting factory limitations

Referer

CodeReady Workspacescks the hostname of the acceptor and only allows the factory to execute if
there is a match.

Since and Until

Defines the time window in which the factory can be activated. For example, instructors who want to
create an exercise that can only be accessed for two hours should set these properties.

14.21.7.4.2. Setting factory multiplicity

Multiplicity defines the number of workspaces that can be created from the factory.

Multiple workspaces (perClick)

Every click of the factory URL generates a different workspace, each with its own identifier, name,
and resources.

Single workspace (perUser)

Exactly one workspace is generated for each unique user that clicks on the factory URL. Existing
workspaces are reopened.

To learn how to configure factory policies, see the JSON reference.

14.21.7.5. Customizing the IDE

You can instruct the factory to invoke a series of IDE actions based on events in the lifecycle of the
workspace.

14.21.7.6. Lifecycle Events

The lifecycle of the workspace is defined by the following events:

onAppLoaded: Triggered when the IDE is loaded.

onProjectsLoaded: Triggered when the workspace and all projects have been activated.

onAppClosed: Triggered when the IDE is closed.

CHAPTER 14. ADMINISTERING WORKSPACES

137

Each event type has a set of actions that can be triggered. There is no ordering of actions executed
when you provide a list; CodeReady Workspaces asynchronously invokes multiple actions if appropriate.

14.21.7.7. Factory actions

The following is a list of all possible actions that can be configured with your factory.

Run Command

Specify the name of the command to invoke after the IDE is loaded.
Associated Event: onProjectsLoaded

Open File

Open project files in the editor. Optionally, define the line to be highlighted.
Associated Event: onProjectsLoaded

Open a Welcome Page

Customize content of a welcome panel displayed when the workspace is loaded.
Associated Event: onAppLoaded

Warn on Uncommitted Changes

Opens a warning pop-up window when the user closes the browser tab with a project that has
uncommitted changes.
Associated Event: onAppClosed

To learn how to configure factory actions, see the Factory JSON reference.

14.21.7.8. Finding and replacing variables

Factories make it possible to replace variables or placeholders in the source code — used to avoid
exposing sensitive information (passwords, URLs, account names, API keys) — with real values. To find
and replace a value, you can use the run command during an onProjectsLoaded event. You can use
sed, awk, or other tools available in your workspace environment.

For a sample of how to configure finding and replacing a value, see the Factory JSON reference
section. Alternatively, you can add IDE actions in the Factory tab, on the user Dashboard.

Use regular expressions in sed, both in find-replace and file-file type patterns.

14.21.7.9. Pull request workflow

Factories can be configured with a dedicated pull request workflow. The PR workflow handles local and
remote branching, forking, and issuing the pull request. Pull requests generated from within CodeReady
Workspaces have another factory placed into the comments of the pull requests that a PR reviewer can
use to quickly start the workspace.

When enabled, the pull request workflow adds a contribution panel to the IDE.

Red Hat CodeReady Workspaces 1.1 Administration Guide

138

https://www.gnu.org/software/sed/manual/html_node/Regular-Expressions.html

14.21.7.10. Repository badging

If you have projects in GitHub or GitLab, you can help your contributors to get started by providing them
ready-to-code developer workspaces. Create a factory and add the following badge on your
repositories readme.md:

14.21.7.11. Next steps

Read about customizing factories with the Factory JSON reference.

14.21.8. Factories JSON Reference

A factory configuration is a JSON snippet either stored within CodeReady Workspaces or as a
.factory.json file. You can create factories within the IDE using the CodeReady Workspaces URL syntax,
within the dashboard, or on the command line with the API and CLI.

[![Developer Workspace](https://che.openshift.io/factory/resources/factory-contribute.svg)](your-
factory-url)

factory : {
 "v" : 4.0, 1

CHAPTER 14. ADMINISTERING WORKSPACES

139

1

2

3

4

5

Version of the configuration format.

Identical to workspace:{} object for CodeReady Workspaces.

(Optional) Restrictions that limit behaviors.

(Optional) Trigger IDE UI actions tied to workspace events.

(Optional) Identifying information of author.

The factory.workspace is identical to the workspace:{} object for CodeReady Workspaces and
contains the structure of the workspace. To learn more about the workspace JSON object, see
Workspace Data Model.

You can export workspaces and then reuse the workspace definition within a factory. workspaces are
composed of the following:

0..n projects

0..n environments that contain machines to run the code

0..n commands to execute against the code and machines

a type

The factory.policies, factory.ide, and factory.creator objects are unique to factories. They provide
meta information to the automation engine that alter the presentation of the factory URL or the
behavior of the provisioning.

14.21.8.1. Mixins

A mixin adds additional behaviors to a project as a set of new project type attributes. Mixins are reusable
across any project type. To define the mixins to add to a project, specify an array of strings, with each
string containing the identifier for the mixin. For example, "mixins" : ["pullrequest"].

Mixin ID Description

pullrequest Enables pull request workflow where CodeReady
Workspaces handles local and remote branching,
forking, and pull request issuance. Pull requests
generated from within CodeReady Workspaces have
another factory placed into the comments of pull
requests that a PR reviewer can consume. Adds
contribution panel to the IDE. If this mixin is set, it
uses attribute values for
project.attributes.local_branch and
project.attributes.contribute_to_branch

The pullrequest mixin requires additional configuration from the attributes object of the

 "workspace" : {}, 2
 "policies" : {}, 3
 "ide" : {}, 4
 "creator" : {}, 5
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

140

The pullrequest mixin requires additional configuration from the attributes object of the
project. If present, {{ site.product_mini_name }} will use the project attributes as defined in the
factory. If not provided, {{ site.product_mini_name }} will set defaults for the attributes.

Learn more about other link:TODO: link to project API docs[mixins]

14.21.8.2. Pull Request mixin attributes

Project attributes alter the behavior of the IDE or workspace.

Different CodeReady Workspaces plug-ins can add their own attributes to affect the behavior of the
IDE or workspace. Attribute configuration is always optional and if not provided within a factory
definition, the IDE or workspace sets it.

Attribute Description

local_branch Used in conjunction with the pullrequest mixin. If
provided, the local branch for the project is set with
this value. If not provided, the local branch is set with
the value of project.source.parameters.branch
(the name of the branch from the remote). If both
local_branch and
project.source.parameters.branch are not
provided, the local branch is set to the name of the
checked out branch.

contribute_to_branch Name of the branch that a pull request will be
contributed to. The value of
project.source.parameters.branch is default. It
is the name of the branch that this project was cloned
from.

Following is a snippet that demonstrates full configuration of the contribution mixin.

14.21.8.3. Policies

factory.workspace.project : {
 "mixins" : ["pullrequest"],

 "attributes" : {
 "local_branch" : ["timing"],
 "contribute_to_branch" : ["master"]
 },

 "source" : {
 "type" : "git",
 "location" : "https://github.com/codenvy/che.git",
 "parameters" : {
 "keepVcs" : "true"
 }
 }
}

CHAPTER 14. ADMINISTERING WORKSPACES

141

1

2

3

4

1

2

3

4

Following is an example of a factory policy.

Works only for clients from a referrer.

Factory works only after this date.

Factory works only before this date.

Create one workpace per click, user, or account.

14.21.8.4. Limitations

You can use since : EPOCHTIME, until : EPOCHTIME, and referer as a way to prevent the factory from
executing under certain conditions. since and until represent a valid time window that allows the factory
to activate. The referrer checks the hostname of the acceptor and only allows the factory to execute if
there is a match.

14.21.8.5. Multiplicity

Using create : perClick causes every click of the factory URL to generate a new workspace, each with
its own identifier, name, and resources. Using create : perUser causes only one workspace to be
generated for each unique user that clicks on the factory URL. If the workspace has previously been
generated, the existing workspace is reopened.

14.21.8.6. Customizing the IDE

event = onAppLoaded, onProjectsLoaded, onAppClosed.

List of IDE actions to be executed when the event is triggered.

Action for the IDE to perform when the event is triggered.

Properties to customize action behavior.

You can instruct the factory to invoke a series of IDE actions based on events in the lifecycle of the
workspace.

factory.policies : {
 "referer" : STRING, 1
 "since" : EPOCHTIME, 2
 "until" : EPOCHTIME, 3
 "create" : [perClick | perUser] 4
}

factory.ide.{event} : { 1
 "actions" : [{}] 2
}

factory.ide.{event}.actions : [{
 "id" : String, 3
 properties : {} 4
}]

Red Hat CodeReady Workspaces 1.1 Administration Guide

142

1

2

3

4

5

6

onAppLoaded

Triggered when the IDE is loaded.

onProjectsLoaded

Triggered when the workspace and all projects have been activated or imported.

onAppClosed

Triggered when the IDE is closed.

Following is an example that associates a variety of actions with all of the events.

Actions triggered when a project is opened.

Opens a file in the editor. Can add multiple.

The file to be opened (include project name).

Launch command after the IDE opens.

Command name.

Title of a Welcome tab.

"ide" : {
 "onProjectsLoaded" : { 1
 "actions" : [{
 "id" : "openFile", 2
 "properties" : { 3
 "file" : "/my-project/pom.xml"
 }
 },
 {
 "id" : "runCommand", 4
 "properties" : {
 "name" : "MCI" 5
 }
 }
]},
 "onAppLoaded": {
 "actions": [
 {
 "properties:{
 "greetingTitle": "Getting Started", 6
 "greetingContentUrl": "http://example.com/README.html" 7
 },
 "id": "openWelcomePage"
 }
]
 },
 "onAppClosed" : { 8
 "actions" : [{
 "id" : "warnOnClose" 9
 }]
 }
}

CHAPTER 14. ADMINISTERING WORKSPACES

143

7

8

9

HTML file to be loaded into a tab.

Actions to be triggered when the IDE is closed.

Show warning when closing a browser tab.

Each event type has a set of actions that can be triggered. There is no ordering of actions executed
when you provide a list; {{ site.product_mini_name }} will asynchronously invoke multiple actions if
appropriate. Some actions can be configured in how they perform and will have an associated
properties : {} object.

onProjectsLoaded Event

Action Properties? Description

runCommand Yes Specify the name of the
command to invoke after the IDE
is loaded. Specify the commands
in the
factory.workspace.comman
ds : [] array.

openFile Yes Open project files as a tab in the
editor.

onAppLoaded Event

Action Properties? Description

openWelcomePage Yes Customize the content of the
welcome panel when the
workspace is loaded. Note that
browsers block http resources
that are loaded into https pages.

onAppClosed Event

Action Properties? Description

warnOnClose No Opens a warning pop-up window
when the user closes the browser
tab with a project that has
uncommitted changes. Requires
project.parameters.keepVcs
to be true.

14.21.8.7. Action: Open File

This action opens a file as a tab in the editor. You can provide this action multiple times to have multiple

Red Hat CodeReady Workspaces 1.1 Administration Guide

144

files open. The file property is a relative reference to a file in the project source tree. The file parameter
is the relative path within the workspace to the file that should be opened by the editor. The line
parameter is optional and can be used to move the editor cursor to a specific line when the file is
opened. Projects are located in the /projects/ directory of a workspace.

14.21.8.8. Action: Find and Replace

In projects created from a factory, CodeReady Workspaces can find and replace values in the source
code after it is imported into the project tree. This lets you parameterize your source code. Find and
replace can be run as a Run Command during onProjectsLoaded event. You can use sed, awk, or any
other tools that are available in your workspace environment.

To define a command for your workspace in factory.workspace.workspaceConfig.commands:

{
 "commandLine": "sed -i 's/***/userId984hfy6/g' /projects/console-java-simple/README.md",
 "name": "replace",
 "attributes": {
 "goal": "Common",
 "previewUrl": ""
 },
 "type": "custom"
}

In the preceding example, a named command replace is created. The command replaces each
occurrence of * with the string userId984hfy6 in the README.md file of the project.

Then register this command to the execution list linked to the onProjectsLoaded event. In this example,
the replace command is executed after the project is imported into a workspace.

"ide": {
 "onProjectsLoaded": {
 "actions": [
 {
 "properties": {
 "name": "replace"
 },
 "id": "runCommand"
 }
]
 }
 }

Use regular expressions in sed, both in find-replace and file-file type patterns.

14.21.8.9. Creator

{
 "id" : "openFile",
 "properties" : {
 "file" : "/my-project/pom.xml",
 "line" : "50"
 }
}

CHAPTER 14. ADMINISTERING WORKSPACES

145

https://www.gnu.org/software/sed/manual/html_node/Regular-Expressions.html

1

2

3

4

This object has meta information that you can embed within the factory. These attributes do not affect
the automation behavior or the behavior of the generated workspace.

The name of the author of this configuration file.

The author’s email address.

This value is set by the system.

This value is set by the system.

factory.creator : {
 "name" : STRING, 1
 "email" : STRING, 2
 "created" : EPOCHTIME, 3
 "userId" : STRING 4
}

Red Hat CodeReady Workspaces 1.1 Administration Guide

146

	Table of Contents
	CHAPTER 1. UNDERSTANDING RED HAT CODEREADY WORKSPACES
	CHAPTER 2. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT V3
	2.1. DOWNLOADING THE CODEREADY WORKSPACES DEPLOYMENT SCRIPT
	2.2. RUNNING THE CODEREADY WORKSPACES DEPLOYMENT SCRIPT
	2.2.1. Deploying CodeReady Workspaces with default settings
	2.2.2. Deploying CodeReady Workspaces with a self-signed certificate and OpenShift oAuth
	2.2.3. Deploying CodeReady Workspaces with a public certificate
	2.2.4. Deploying CodeReady Workspaces with external Red Hat Single Sign-On
	2.2.5. Deploying CodeReady Workspaces with external Red Hat SSO and PostgreSQL

	2.3. VIEWING CODEREADY WORKSPACES INSTALLATION LOGS
	2.3.1. Viewing CodeReady Workspaces installation logs in the terminal
	2.3.2. Viewing CodeReady Workspaces installation logs in the OpenShift console

	2.4. CONFIGURING CODEREADY WORKSPACES TO WORK BEHIND AN HTTPS PROXY SERVER
	2.5. CODEREADY WORKSPACES DEPLOYMENT SCRIPT PARAMETERS

	CHAPTER 3. INSTALLING CODEREADY WORKSPACES FROM OPERATOR HUB
	CHAPTER 4. INSTALLING CODEREADY WORKSPACES IN RESTRICTED ENVIRONMENTS
	4.1. PREPARING CODEREADY WORKSPACES DEPLOYMENT FROM A LOCAL REGISTRY
	4.2. RUNNING THE CODEREADY WORKSPACES DEPLOYMENT SCRIPT IN A RESTRICTED ENVIRONMENT
	4.3. STARTING WORKSPACES IN RESTRICTED ENVIRONMENTS
	4.4. MAKING CODEREADY WORKSPACES IMAGES AVAILABLE FROM A LOCAL REGISTRY

	CHAPTER 5. INSTALLING CODEREADY WORKSPACES ON OPENSHIFT DEDICATED
	CHAPTER 6. UPGRADING CODEREADY WORKSPACES
	6.1. UPGRADING CODEREADY WORKSPACES MANUALLY
	6.2. UPGRADING CODEREADY WORKSPACES USING A MIGRATION SCRIPT

	CHAPTER 7. UNINSTALLING CODEREADY WORKSPACES
	CHAPTER 8. VIEWING CODEREADY WORKSPACES OPERATION LOGS
	8.1. VIEWING CODEREADY WORKSPACES OPERATION LOGS IN THE TERMINAL
	8.2. VIEWING CODEREADY WORKSPACES OPERATION LOGS IN THE OPENSHIFT CONSOLE

	CHAPTER 9. USING THE CHE 7 IDE IN CODEREADY WORKSPACES
	CHAPTER 10. USING THE ANALYTICS PLUG-IN IN CODEREADY WORKSPACES
	CHAPTER 11. USING VERSION CONTROL
	11.1. GENERATING AND UPLOADING SSH KEYS
	11.1.1. Using existing SSH keys

	11.2. CONFIGURING GITHUB OAUTH
	11.3. CONFIGURING GITLAB OAUTH
	11.4. SUBMITTING PULL REQUESTS USING THE BUILT-IN PULL REQUEST PANEL
	11.5. SAVING COMMITTER NAME AND EMAIL
	11.6. INTERACTING WITH GIT FROM A WORKSPACE
	11.7. GIT STATUS HIGHLIGHTING IN THE PROJECT TREE AND EDITOR
	11.8. PERFORMING GIT OPERATIONS
	11.8.1. Commiting
	11.8.2. Pushing and pulling
	11.8.3. Managing branches

	11.9. REVIEWING CHANGED FILES

	CHAPTER 12. CODEREADY WORKSPACES ADMINISTRATION GUIDE
	12.1. RAM PREREQUISITES
	12.1.1. Setting default workspace RAM limits

	12.2. REQUIREMENTS FOR RESOURCE ALLOCATION AND QUOTAS
	12.3. SETTING UP THE PROJECT WORKSPACE
	12.3.1. Setting up a single OpenShift project
	12.3.2. Setting up a multi OpenShift project

	12.4. HOW THE CODEREADY WORKSPACES SERVER USES PVCS AND PVS FOR STORAGE
	12.4.1. Storage requirements for CodeReady Workspaces infrastructure
	12.4.2. Storage strategies for workspaces
	12.4.3. Unique PVC strategy
	12.4.4. Common PVC Strategy
	12.4.4.1. How the common PVC strategy works
	12.4.4.2. Enabling the common strategy
	12.4.4.3. Restrictions on using the common PVC strategy

	12.4.5. Per workspace PVC strategy
	12.4.5.1. How the per-workspace PVC strategy works

	12.5. UPDATING YOUR CODEREADY WORKSPACES DEPLOYMENT
	12.6. SCALABILITY
	12.7. GDPR
	12.8. DEBUG MODE
	12.9. PRIVATE DOCKER REGISTRIES
	12.10. CODEREADY WORKSPACES SERVER LOGS
	12.11. WORKSPACE LOGS
	12.12. CODEREADY WORKSPACES MASTER STATES
	12.13. WORKSPACE TERMINATION GRACE PERIOD
	12.14. AUTO-STOPPING A WORKSPACE WHEN ITS PODS ARE REMOVED
	12.15. UPDATING CODEREADY WORKSPACES WITHOUT STOPPING ACTIVE WORKSPACES
	12.15.1. Performing a recreate update
	12.15.2. Performing a rolling update
	12.15.2.1. Known issues

	12.15.3. Updating with database migrations or API incompatibility

	12.16. DELETING DEPLOYMENTS
	12.17. MONITORING CODEREADY WORKSPACES MASTER SERVER
	12.18. CREATING WORKSPACE OBJECTS IN PERSONAL NAMESPACES
	12.19. OPENSHIFT IDENTITY PROVIDER REGISTRATION
	12.20. CONFIGURING CODEREADY WORKSPACES
	12.21. PROVIDING THE OPENSHIFT CERTIFICATE TO KEYCLOAK

	CHAPTER 13. MANAGING USERS
	13.1. AUTHORIZATION AND USER MANAGEMENT
	13.2. CONFIGURING CODEREADY WORKSPACES TO WORK WITH KEYCLOAK
	13.3. CONFIGURING KEYCLOAK TOKENS
	13.4. SETTING UP USER FEDERATION
	13.5. ENABLING AUTHENTICATION WITH SOCIAL ACCOUNTS AND BROKERING
	13.6. USING PROTOCOL-BASED PROVIDERS
	13.7. MANAGING USERS
	13.8. CONFIGURING SMTP AND EMAIL NOTIFICATIONS
	13.9. CODEREADY WORKSPACES AUTHENTICATION
	13.9.1. Authentication on CodeReady Workspaces Master
	13.9.1.1. OpenId
	13.9.1.2. Other authentication implementations
	13.9.1.3. OAuth

	13.9.2. Authentication on CodeReady Workspaces Agents
	13.9.2.1. Machine JWT Token
	13.9.2.2. Authentication schema
	13.9.2.3. Obtaining Machine Token

	13.9.3. Using Swagger or REST Clients

	13.10. PERMISSIONS
	13.10.1. Overview
	13.10.2. Workspace permissions
	13.10.3. Organization permissions
	13.10.4. System permissions
	13.10.5. manageSystem permission
	13.10.6. monitorSystem permission
	13.10.7. Super-privileged mode
	13.10.8. Stack permissions
	13.10.9. Permissions API
	13.10.10. Listing permissions
	13.10.11. Listing permissions for a user
	13.10.12. Listing permissions for all users
	13.10.13. Assigning permissions
	13.10.14. Sharing permissions

	13.11. ORGANIZATIONS
	13.11.1. Organizations in CodeReady Workspaces
	13.11.1.1. Roles in an organization
	13.11.1.2. Root organizations and sub-organizations
	13.11.1.3. Creating an organization
	13.11.1.4. Displaying the list of organizations
	13.11.1.5. Adding members to organizations
	13.11.1.6. Workspaces in organizations
	13.11.1.7. Setting email notifications
	13.11.1.8. Creating sub-organizations
	13.11.1.9. Adding members to sub-organizations
	13.11.1.10. Organization and sub-organization administration
	13.11.1.11. Renaming an organization or sub-organization
	13.11.1.12. Leaving an organization or sub-organization
	13.11.1.13. Deleting an organization or sub-organization
	13.11.1.14. Allocating resources for organizations
	13.11.1.15. Managing limits
	13.11.1.16. Updating organization and sub-organization member roles
	13.11.1.17. Removing members from an organization and sub-organization

	13.12. RESOURCE MANAGEMENT
	13.12.1. Overview
	13.12.2. Resource API
	13.12.3. Distributing resources
	13.12.4. Configuring workspaces and resources
	13.12.5. Unit formats
	13.12.6. Resource-free API
	13.12.7. Organization Resource API

	CHAPTER 14. ADMINISTERING WORKSPACES
	14.1. WORKSPACE
	14.2. ENVIRONMENT
	14.3. MACHINE
	14.4. RECIPE
	14.5. BOOTSTRAPPER
	14.6. INSTALLER
	14.7. VOLUME
	14.8. ENVIRONMENT VARIABLES
	14.9. WHAT IS NEXT?
	14.10. MANAGING WORKSPACES
	14.10.1. Creating workspaces
	14.10.1.1. Creating a workspace from stacks in the dashboard
	14.10.1.2. Duplicating an existing stack
	14.10.1.3. Creating a custom stack from a custom recipe

	14.10.2. Starting workspaces
	14.10.3. Managing a workspace

	14.11. COMMANDS AND IDE MACROS
	14.11.1. Command Overview
	14.11.2. Command Goals
	14.11.3. Command Context
	14.11.4. Managing Commands
	14.11.5. Macros list
	14.11.6. Macros Auto-Completion
	14.11.7. Use Commands
	14.11.8. Command Palette
	14.11.9. Command Toolbar
	14.11.10. Authoring Command Instructions
	14.11.11. Macros
	14.11.12. Environment Variables

	14.12. STACKS
	14.12.1. Stack overview
	14.12.2. Importing community supported stacks and applications
	14.12.3. Sharing stacks and system stacks
	14.12.4. Loading stacks
	14.12.5. Creating stacks in CodeReady Workspaces
	14.12.5.1. Building a custom stack
	14.12.5.2. Sharing stacks

	14.13. RECIPES
	14.13.1. Supported Recipe Formats
	14.13.2. Docker-formatted container image requirements and limitations
	14.13.3. Dockerfile definition and limitations
	14.13.4. Running multi-container workspaces using Compose files
	14.13.4.1. Accessing remote files
	14.13.4.2. Using private repositories
	14.13.4.3. Configuring privileged access
	14.13.4.4. Special considerations when using Compose files

	14.13.5. Kubernetes YAML limitations and restrictions

	14.14. SERVERS
	14.14.1. What are servers?
	14.14.2. Preview URLs
	14.14.3. Getting preview URLs
	14.14.4. Exposing internal servers
	14.14.5. Exposing secure servers

	14.15. INSTALLERS
	14.15.1. What are installers?
	14.15.2. How installers work
	14.15.3. What happens when enabling and disabling installers
	14.15.4. Troubleshooting installer failures
	14.15.4.1. Permission denied failure
	14.15.4.2. Permission to files and directories failures

	14.15.5. Installer registry and REST API

	14.16. VOLUMES
	14.16.1. Default volumes for workspace containers
	14.16.2. Adding volumes
	14.16.3. Configuring workspaces

	14.17. ENVIRONMENT VARIABLES
	14.18. PROJECTS
	14.18.1. Creating projects in workspaces
	14.18.2. Defining project types
	14.18.3. Creating a sub-project
	14.18.4. Navigating the project tree

	14.19. TROUBLESHOOTING FAILURES IN STARTING THE WORKSPACE
	14.19.1. Incorrect environment recipes
	14.19.1.1. Viewing logs from a failed workspace start

	14.19.2. Restrictive network settings
	14.19.2.1. Troubleshooting network setting when workspace agent cannot be reached

	14.19.3. Failure in bootstrapping

	14.20. WORKSPACE DATA MODEL
	14.20.1. Environment recipes
	14.20.2. Projects
	14.20.3. Commands
	14.20.4. Runtime

	14.21. GETTING STARTED WITH FACTORIES
	14.21.1. Trying a factory
	14.21.2. Using factories
	14.21.3. Invoking factories using their unique hashcodes
	14.21.4. Invoking a named factory
	14.21.5. Invoking a factory for a specific git repository
	14.21.6. Next steps
	14.21.7. Creating Factories
	14.21.7.1. Creating a factory in the dashboard
	14.21.7.2. Creating a factory in the IDE
	14.21.7.3. Creating a factory based on a repository
	14.21.7.4. Configuring factory policies
	14.21.7.5. Customizing the IDE
	14.21.7.6. Lifecycle Events
	14.21.7.7. Factory actions
	14.21.7.8. Finding and replacing variables
	14.21.7.9. Pull request workflow
	14.21.7.10. Repository badging
	14.21.7.11. Next steps

	14.21.8. Factories JSON Reference
	14.21.8.1. Mixins
	14.21.8.2. Pull Request mixin attributes
	14.21.8.3. Policies
	14.21.8.4. Limitations
	14.21.8.5. Multiplicity
	14.21.8.6. Customizing the IDE
	14.21.8.7. Action: Open File
	14.21.8.8. Action: Find and Replace
	14.21.8.9. Creator

