
Red Hat build of OpenJDK 11

Using JDK Flight Recorder with Red Hat build
of OpenJDK

Last Updated: 2024-05-09

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat
build of OpenJDK

Legal Notice

Copyright © 2024 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

Red Hat build of OpenJDK 11 is a Red Hat offering on Red Hat Enterprise Linux and Microsoft
Windows. The Using JDK Flight Recorder with Red Hat build of OpenJDK guide provides an
overview of JDK Flight Recorder (JFR) and JDK Mission Control (JMC), and explains how to start
the JFR.

. .

. .

. .

. .

. .

. .

Table of Contents

PROVIDING FEEDBACK ON RED HAT BUILD OF OPENJDK DOCUMENTATION

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION TO JDK FLIGHT RECORDER
1.1. JDK FLIGHT RECORDER (JFR) COMPONENTS
1.2. BENEFITS OF USING JDK FLIGHT RECORDER

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)
2.1. DOWNLOADING AND INSTALLING JMC

2.1.1. Downloading and installing JMC on RHEL 9
2.1.2. Downloading and installing JMC on RHEL 7 or RHEL 8

2.2. JDK MISSION CONTROL (JMC) AGENT
2.3. STARTING THE JDK MISSION CONTROL (JMC) AGENT
2.4. CREATING PRESETS WITH THE JMC AGENT
2.5. JMC AGENT PLUGIN ATTRIBUTES

CHAPTER 3. STARTING JDK FLIGHT RECORDER
3.1. STARTING JDK FLIGHT RECORDER WHEN JVM STARTS
3.2. STARTING JDK FLIGHT RECORDER ON A RUNNING JVM
3.3. STARTING THE JDK FLIGHT RECORDER ON JVM BY USING THE JDK MISSION CONTROL
APPLICATION
3.4. DEFINING AND USING THE CUSTOM EVENT API

CHAPTER 4. CONFIGURATION OPTIONS FOR JDK FLIGHT RECORDER
4.1. CONFIGURE JDK FLIGHT RECORDER USING THE COMMAND LINE

4.1.1. Start JFR
4.1.2. Control behavior of JFR

4.2. CONFIGURING JDK FLIGHT RECORDER USING DIAGNOSTIC COMMAND (JCMD)
4.2.1. Start JFR
4.2.2. Stop JFR
4.2.3. Check JFR
4.2.4. Dump JFR
4.2.5. Configure JFR

3

4

5
5
5

7
7
7
9

10
10
13
17

20
20
20

21
22

25
25
25
26
27
28
28
29
29
30

Table of Contents

1

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

2

PROVIDING FEEDBACK ON RED HAT BUILD OF OPENJDK
DOCUMENTATION

To report an error or to improve our documentation, log in to your Red Hat Jira account and submit an
issue. If you do not have a Red Hat Jira account, then you will be prompted to create an account.

Procedure

1. Click the following link to create a ticket.

2. Enter a brief description of the issue in the Summary.

3. Provide a detailed description of the issue or enhancement in the Description. Include a URL to
where the issue occurs in the documentation.

4. Clicking Submit creates and routes the issue to the appropriate documentation team.

PROVIDING FEEDBACK ON RED HAT BUILD OF OPENJDK DOCUMENTATION

3

https://issues.redhat.com/secure/CreateIssueDetails!init.jspa?pid=12322020&summary=(issue+created via+link)&issuetype=1&priority=3&labels=customer-feedback&components=12332873

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

4

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION TO JDK FLIGHT RECORDER
JDK Flight Recorder (JFR) is a low overhead framework for monitoring and profiling Java applications.
For more information, see JEP 328: Flight Recorder .

You can collect data from events originating within the JVM and the application code. Data is then
written in memory. At first, to thread-local buffer and then promoted to fixed-size global ring buffer
before being flushed to JFR files (*.jfr) on the disk. Other applications can consume these files for
analysis. For example, the JDK Mission Control (JMC) tool.

1.1. JDK FLIGHT RECORDER (JFR) COMPONENTS

You can use JFR functionality to observe events that run inside a JVM, and then create recordings from
data collected from these observed events.

The following list details key JFR functionality:

Recordings

You can manage system recordings. Each recording has a unique configuration. You can start or stop
the recording, or save it to disk on demand.

Events

You can use events or custom events to trace your Java application’s data and metadata, and then
save the data and metadata from either event type in a JFR file. You can use various tools, such as
Java Mission Control (JMC),jcmd, and so on, to view and analyze information stored in a JFR file.
The Java Virtual Machine (JVM) has many pre-existing events that are continuously added. An API is
available for users to inject custom events into their applications.

You can enable or disable any event when recording to minimize overhead by supplying event
configurations. These configurations take the form of xml documents and are called JFR profiles
(*.jfc). The Red Hat build of OpenJDK comes with the following two profiles for the most common
set of use cases:

default: The default profile is a low-overhead configuration that is safe for continuous use in
production environments. Typically, overhead is less than 1%.

profile: The profile profile is a low-overhead configuration that is ideal for profiling. Typically,
overhead is less than 2%.

1.2. BENEFITS OF USING JDK FLIGHT RECORDER

Some of the key benefits of using JDK Flight Recorder (JFR) are:

JFR allows recording on a running JVM. It is ideal to use JFR in production environments where
it is difficult to restart or rebuild the application.

JFR allows for the definition of custom events and metrics to monitor.

JFR is built into the JVM to achieve the minimum performance overhead (around 1%).

JFR uses coherent data modeling to provide better cross-referencing of events and filtering of
data.

JFR allows for monitoring of third-party applications using APIs.

CHAPTER 1. INTRODUCTION TO JDK FLIGHT RECORDER

5

https://openjdk.java.net/jeps/328

JFR helps in reducing the cost of ownership by:

Spending less time diagnosing.

Aiding in troubleshooting problems.

JFR reduces operating costs and business interruptions by:

Providing faster resolution time.

Identifying the performance issues which helps in improving system efficiency.

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

6

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL
(JMC)

JDK Mission Control (JMC) is a collection of tools to read and analyze Java Flight Recorder (JFR) files.
JMC includes detailed views and graphs that plot JFR events. With JFR analysis, JMC also consists of
the following components:

JMX Console MBean

Historical analysis through flight recordings and hprof files (as of JMC 7.1.0)

HPROF-dump analyzer

JMC is based on the Eclipse platform. You can extend JMC by using the Eclipse RCP API and other
specific APIs to add plug-ins.

You can use JMC and its plug-ins on either Red Hat Enterprise Linux RHEL or Microsoft Windows.

For Red Hat Enterprise Linux, the CodeReady Linux Builder (CRB) repository with RHEL 9 provides the
JMC package.

NOTE

The CRB repository is also known as the Builder repository.

You must enable the CRB repository on RHEL 9, so that you can install JMC on RHEL. CRB packages
are built with the Source Red Hat Package Manager (SRPM) as productized RHEL packages, so CRB
packages receive regular updates.

The CRB is a developer repository that is disabled on RHEL by default. The CRB contains parts of the
buildroot root file system that are shipped to your RHEL user account. The buildroot root file system
contains developer-level build dependencies for building applications.

For more information about the CRB repository, see The CodeReady Linux Builder repository (Package
manifest).

2.1. DOWNLOADING AND INSTALLING JMC

Red Hat build of OpenJDK distributions for Red Hat Enterprise Linux and Microsoft Windows include a
version of JMC.

For Red Hat Enterprise Linux, you can use the Red Hat Subscription Manager tool to download and
install JMC on your local operating system.

On Microsoft Windows, the JMC package is included with the archive file that you can download from
the Red Hat Customer Portal. After you download and install Red Hat build of OpenJDK 11 on Microsoft
Windows, you can navigate to the directory that contains the jmc.exe file, and then issue the jmc
command.

2.1.1. Downloading and installing JMC on RHEL 9

You can download and install JDK Mission Control (JMC) on your local Red Hat Enterprise Linux
(RHEL) 9 operating system by using the Red Hat Subscription Management (RHSM) tool.

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)

7

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/package_manifest/codereadylinuxbuilder-repository

Prerequisites

Downloaded and installed Red Hat build of OpenJDK 11.0.23 on RHEL.

Logged in as the root user on your operating system.

Registered an account on the Red Hat Customer Portal .

Registered an RHSM account that has an active subscription for providing you access to the
Red Hat build of OpenJDK 11 repository. For more information about registering your system to
your RHSM account, see Registering a system using Red Hat Subscription Management ({Using
Red Hat Subscription Management}).

Procedure

1. Enable the CodeReady Linux Builder (CRB) repository on RHEL, so that you can install the
downloaded JMC package on RHEL. You can enable the CRB repository by completing the
following actions:

a. To enable the CRB repository on RHEL, issue the following RHSM command:

subscription-manager repos --enable codeready-builder-for-rhel-9-x86_64-rpms

b. To check the list of modules in the CRB repository, issue the following command:

yum module list --disablerepo=* --enablerepo=codeready-builder-for-rhel-9-x86_64-
rpms

The following example output shows a javapackages-tools module that is defined in the
common profile of the repository:

yum module list --disablerepo=* --enablerepo=codeready-builder-for-rhel-9-x86_64-
rpms

Updating Subscription Management repositories.
Last metadata expiration check: 0:40:08 ago on Tue 02 May 2023 08:49:29 AM EDT.
Red Hat CodeReady Linux Builder for RHEL 9 x86_64 (RPMs)
Name Stream Profiles Summary
javapackages-tools 201801 common Tools and macros for Java packaging
support
virt-devel rhel Virtualization module

Hint: [d]efault, [e]nabled, [x]disabled, [i]nstalled

The previous example also shows a virt-devel module that is not assigned to any profile.

c. Install your target package. For example, to install a package called xz-java, issue the
following command and ensure that you follow any CLI command prompts:

yum install xz-java

2. To start the JMC console on your operating system, choose one of the following options:

Navigate to the directory that contains the JMC executable file and then issue the
following command:

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

8

https://access.redhat.com/
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/using_red_hat_subscription_management/index#registration_con

$ jmc -vm /usr/lib/jvm/java-11/bin/java

Use your system’s file explorer application to navigate to the JDK Mission Control
directory, such as /usr/bin/jmc, and then double-click the JMC executable file.

Additional resources

Installing and using Red Hat build of OpenJDK 11 on RHEL

Installing and using Red Hat build of OpenJDK 11 for Microsoft Windows

2.1.2. Downloading and installing JMC on RHEL 7 or RHEL 8

You can download and install JDK Mission Control (JMC) on your local Red Hat Enterprise Linux
(RHEL) 7 or RHEL 8 operating system by using the Red Hat Subscription Manager (RHSM) tool.

Prerequisites

Downloaded and installed Red Hat build of OpenJDK 11.0.23 on your version of RHEL (either
RHEL 7 or RHEL 8).

Logged in as the root user on your operating system.

Registered an account on the Red Hat Customer Portal .

Registered an RHSM account that has an active subscription for providing you access to the
Red Hat build of OpenJDK 11 repository. For more information about registering your system to
your RHSM account, see Registering a system using Red Hat Subscription Management (Using
Red Hat Subscription Management).

Procedure

1. To download the JMC package on your version of RHEL, issue the following command:

On RHEL 8:

sudo yum module install jmc:rhel8/common

On RHEL 7:

sudo yum module install jmc:rhel7/common

The previous command uses the Red Hat Subscription Management tool to download the
JMC package to your RHEL operating system. The JMC package is available in the jmc
module stream of the Red Hat Subscription Management service.

2. To start the JMC console on your operating system, complete either of the following options:

Navigate to the directory that contains the JMC executable file and then issue the
following command:

$ jmc -vm /usr/lib/jvm/java-11/bin/java

Use your system’s file explorer application to navigate to the JDK Mission Control

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)

9

https://access.redhat.com/documentation/en-us/openjdk/11/html/installing_and_using_openjdk_11_on_rhel/index
https://access.redhat.com/documentation/en-us/openjdk/11/html/installing_and_using_openjdk_11_for_windows/index
https://access.redhat.com/
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html-single/using_red_hat_subscription_management/index#registration_con

Use your system’s file explorer application to navigate to the JDK Mission Control
directory, such as /usr/bin/jmc, and then double-click the JMC executable file.

Additional resources

Installing and using Red Hat build of OpenJDK 11 on RHEL

Installing and using Red Hat build of OpenJDK 11 for Microsoft Windows

2.2. JDK MISSION CONTROL (JMC) AGENT

You can use the JMC Agent to add JDK Flight Recorder (JFR) functionality to a running application.
You can also use the JMC Agent to add a custom flight recorder event into a running Java Virtual
Machine (JVM).

The JMC Agent includes the following capabilities:

Better control of enabling or disabling generated events when using JFR templates.

Efficient timestamp capturing when using the Timestamp class.

Low memory consumption when generating flight recordings.

The Red Hat build of OpenJDK 11.0.23 installation files for Red Hat Enterprise Linux and Microsoft
Windows do not include the JMC Agent with the JMC package. You must download and install a third-
party version of the JMC Agent, and then check its compatibility with the JMC package for the Red Hat
build of OpenJDK on your chosen platform.

IMPORTANT

Third-party applications, such as the JMC Agent, are not supported by Red Hat. Before
you decide to use any third-party applications with Red Hat products, ensure you test the
security and trustworthiness of the downloaded software.

NOTE

The graphical user interface (GUI) for the JMC Agent displays similarly on both Red Hat
Enterprise Linux and Microsoft Windows, except for graphical changes introduced by the
Standard Widget Toolkit (SWT) for Java that is specific to either platform.

When you have built the JMC Agent, and you have a JMC Agent JAR file, you can access the JMC
Agent Plugin in the JVM Browser panel of your JMC console. With this plug-in you can use the JMC
Agent functionality on the JMC console, such as configuring the JMC Agent or managing how the JMC
Agent interacts with JFR data.

Additional resources

For more information about the JMC package that is available on the Red Hat build of
OpenJDK, see Downloading and installing JDK Mission Control (JMC) .

2.3. STARTING THE JDK MISSION CONTROL (JMC) AGENT

You can start the JMC Agent by using the JMC Agent Plugin. Red Hat Enterprise Linux and Microsoft
Windows support the use of this plug-in.

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

10

https://access.redhat.com/documentation/en-us/openjdk/11/html/installing_and_using_openjdk_11_on_rhel/index
https://access.redhat.com/documentation/en-us/openjdk/11/html/installing_and_using_openjdk_11_for_windows/index
https://access.redhat.com/documentation/en-us/openjdk/11/html-single/using_jdk_flight_recorder_with_openjdk/index#downloading-installing-jmc_openjdk

After you start your JMC Agent, you can configure the agent or manage how the agent interacts with
your JFR data.

Prerequisites

Downloaded and installed the jmc package on either Red Hat Enterprise Linux or Microsoft
Windows

Downloaded the Adoptium Agent JAR file. See adoptium/jmc-build (GitHub).

Started your Java application with the --add-opens=java.base/jdk.internal.misc=ALL-
UNNAMED flag. For example, ./<your_application> --add-
opens=java.base/jdk.internal.misc=ALL-UNNAMED.

NOTE

Adoptium is a community-supported project. Using the agent.jar file from Adoptium is
not supported with Red Hat production service level agreements (SLAs).

Procedure

1. Depending on your operating system, choose one of the following methods to start your JMC
console:

a. On Red Hat Enterprise Linux, navigate to the directory that contains the executable file,
and then issue the ./jmc command.

b. On Microsoft Windows, navigate to the directory that contains the jmc.exe file, and then
issue the jmc command.

NOTE

You can also start your JMC application on either operating system by using
your system’s file explorer application to navigate to the JDK Mission
Control directory, and then double-click the JMC executable file.

2. Navigate to the JVM Browser navigation panel. On this panel, you can view any available JVM
connections.

3. Expand your target JVM instance, such as [11.0.13] The JVM Running Mission Control, in the
JVM Browser panel. A list of items displays under your target JVM instance.

4. Double-click the JMC Agent item in the navigation panel. A Start JMC Agent window opens in
your JMC console:

Figure 2.1. Start JMC Agent window

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)

11

https://github.com/adoptium/jmc-build/releases

Figure 2.1. Start JMC Agent window

5. Use the Browse button to add your JMC Agent’s JAR file to the Agent JAR field. The Agent
XML field is optional.

NOTE

You do not need to enter a value in the Target JVM field, because JMC
automatically adds a value based on your selected target JVM instance.

6. Click the Start button.
JMC adds the Agent Plugin item under your target JVM instance in the JVM Browser
navigation panel. The JMC console automatically opens the Agent Live Config pane.

Figure 2.2. Agent Live Config pane

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

12

Figure 2.2. Agent Live Config pane

You can now configure your JMC Agent or manage interactions between the JMC Agent and
your JFR data. After you generate an XML configuration and then upload it to the JMC console,
the Agent Live Config pane displays metadata associated with that XML file.

Figure 2.3. Example of an XML configuration file that has been added to the JMC console

2.4. CREATING PRESETS WITH THE JMC AGENT

You can configure your JMC Agent instance in the JMC console.

The JMC console provides the following JMC Agent configuration options, to name but a few:

Create customized presets with the Agent Preset Manager option.

Import XML configurations into your JMC Agent preset.

Use the defineEventProbes function to add an XML description of custom JFR events.

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)

13

Store active custom JFR events as a preset, so you can retrieve them at a later stage.

Prerequisites

Started a JMC Agent instance on your JMC console.

Procedure

1. You can create a new preset by clicking Window from the menu bar, and then clicking the JMC
Agent Preset Manager menu item. A JMC Agent Configuration Preset Manager wizard
opens in your JMC console.

2. Click the Add button to access the Edit Preset Global Configurations window.

Figure 2.4. Edit Preset Global Configurations window

From this window, you can enter a name for your preset. Optionally, you can enter a class prefix
for any events that you want to inject into your target JVM. You can also select the
AllowtoString check box and the Allow Converter check box.

3. Click the Next button. An Add or Remove Preset Events window opens. From this window, you
can add new events, edit events, or remove events for your preset.

Figure 2.5. Add or Remove Preset Events

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

14

Figure 2.5. Add or Remove Preset Events

4. Follow the wizard’s instructions, where you can complete the following steps:

a. Edit Event Configurations

b. Edit a Parameter or Return Value step

c. Edit a Parameter or Return Value Capturing

TIP

You can select any of the available buttons on each wizard step to complete your desired
configuration, such as Add, Remove, and so on. You can click the Back button at any stage
to edit a previous wizard step.

5. Click the Finish button to return to the Add or Remove Preset Events window.

6. Click Next. A Preview Preset Output window opens.

7. Review the generated XML data before clicking the Finish button:

Figure 2.6. Preview Preset Output

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)

15

Figure 2.6. Preview Preset Output

8. Click the Load preset button on the top-right side of the JMC console window, and then
upload your preset to the JMC application.

9. On the JMC Agent Configuration Preset Manager window, click the OK button to load your
preset into your target JVM. The Agent Live Present panel on your JMC console shows your
active agent configuration and any of its injected events. For example:

Figure 2.7. Example output on the Agent Live Present pane

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

16

Figure 2.7. Example output on the Agent Live Present pane

Additional resources

For information about JMC XML attributes, see JMC Agent Plugin attributes .

2.5. JMC AGENT PLUGIN ATTRIBUTES

The JMC console supports many attributes in the form of buttons, drop-down lists, text fields, and so
on. You can use specific JMC Agent attributes to configure your agent.

The following tables outline categories of attributes that you can use to configure your JMC Agent, so
that you can use the agent to monitor JFR data specific to your needs.

Table 2.1. List of configuration attributes for use with your JMC Agent.

Attribute Description

<allowconverter> Determines if the JMC Agent can use converters.
With converters enabled, you can convert custom
data types or objects to JFR content types. JFR can
then record these types alongside the custom events.

<allowtostring> Determines if the JMC Agent can record arrays and
object parameters as strings.

Note: Check that the toString method supports
JMC Agent array elements and objects. Otherwise,
the toString method’s behavior might cause issues
for your JMC Agent.

<classPrefix> Determines the prefix for injected events. For
example: __JFR_EVENT

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)

17

https://access.redhat.com/documentation/en-us/openjdk/11/html-single/using_jdk_flight_recorder_with_openjdk/index#jmc-agent-plugin-attributes_openjdk

<config> Contains the configuration options for the JMC
Agent.

<jfragent> Begins the event definition. The <jfragent>
attribute is the parent attribute of all other
configuration attributes.

Attribute Description

Table 2.2. List of event type attributes for use with your JMC Agent.

Attribute Description

<class> Defines the class that receives event types from the
method.

<description> Describes the event type.

<events> Lists the set of events that the agent injects into a
defined method.The event tag requires an ID. The
JFR uses the event tag for the custom event.

<label> Defines the name of the event type.

<location> Determines the location in the method that receives
injected events. For example: ENTRY, EXIT, WRAP,
and so on.

<path> Path that points to the location that stores custom
events. This path relates to any events listed under
the JVM Browser navigation panel on the JMC
console.

<method> Defines the method that receives injected events.
The method attribute requires that you define the
following two values:

name: name of the method

descriptor: formal method descriptor.
Takes the form of
(ParameterDescriptors)ReturnDescri
ptor

<stacktrace> Determines whether the event type records a stack
trace.

Table 2.3. List of custom caption attributes for use with your JMC Agent.

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

18

Attribute Description

<converter> Qualified name of the converter class that converts
an attribute to a JFR data type.

<contenttype> Defines the JFR content type that the converter
attribute receives.

<description> The description of the custom caption attribute.

<parameters> Optional attribute. Lists method parameters based
on the index value assigned to a parameter tag.

<name> The name of the custom caption attribute.

Table 2.4. List of field capturing attributes for use with your JMC Agent.

Attribute Description

<description> The description of the field that you want to capture.

<expression> Defines an expression that the agent analyzes to
locate a defined field.

<fields> Determines class field values that the JMC Agent
captures and emits with any defined event types.

<name> The name of the class field capturing attribute .

CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)

19

CHAPTER 3. STARTING JDK FLIGHT RECORDER

3.1. STARTING JDK FLIGHT RECORDER WHEN JVM STARTS

You can start the JDK Flight Recorder (JFR) when a Java process starts. You can modify the behavior
of the JFR by adding optional parameters.

Procedure

Run the java command using the --XX option.
$ java -XX:StartFlightRecording Demo

where Demo is the name of the Java application.

The JFR starts with the Java application.

Example

The following command starts a Java process (Demo) and with it initiates an hour-long flight recording
which is saved to a file called demorecording.jfr:

$ java -XX:StartFlightRecording=duration=1h,filename=demorecording.jfr Demo

Additional resources

For a detailed list of JFR options, see Java tools reference.

3.2. STARTING JDK FLIGHT RECORDER ON A RUNNING JVM

You can use the jcmd utility to send diagnostic command requests to a running JVM. jcmd includes
commands for interacting with JFR, with the most basic commands being start, dump, and stop.

To interact with a JVM, jcmd requires the process id (pid) of the JVM. You can retrieve the by using the
jcmd -l command which displays a list of the running JVM process ids, as well as other information such
as the main class and command-line arguments that were used to launch the processes.

The jcmd utility is located under $JAVA_HOME/bin.

Procedure

Start a flight recording using the following command:
$ jcmd <pid> JFR.start <options>

For example, the following command starts a recording named demorecording, which keeps
data from the last four hours, and has size limit of 400 MB:

$ jcmd <pid> JFR.start name=demorecording maxage=4h maxsize=400MB

Additional resources

For a detailed list of jcmd options, see jcmd Tools Reference.

3.3. STARTING THE JDK FLIGHT RECORDER ON JVM BY USING THE

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

20

https://docs.oracle.com/en/java/javase/11/tools/java.html#GUID-3B1CE181-CD30-4178-9602-230B800D4FAE
https://docs.oracle.com/en/java/javase/11/tools/jcmd.html#GUID-59153599-875E-447D-8D98-0078A5778F05

3.3. STARTING THE JDK FLIGHT RECORDER ON JVM BY USING THE
JDK MISSION CONTROL APPLICATION

The JDK Mission Control (JMC) application has a Flight Recording Wizard that allows for a streamlined
experience of starting and configuring flight recordings.

Procedure

1. Open the JVM Browser.
$ JAVA_HOME/bin/jmc

2. Right-click a JVM in JVM Browser view and select Start Flight Recording.
The Flight Recording Wizard opens.

Figure 3.1. JMC JFR Wizard

The JDK Flight Recording Wizard has three pages:

The first page of the wizard contains general settings for the flight recording including:

Name of the recording

Path and filename to which the recording is saved

Whether the recording is a fixed-time or continuous recording, which event template
will be used

Description of the recording

The second page contains event options for the flight recording. You can configure the
level of detail that Garbage Collections, Memory Profiling, and Method Sampling and other
events record.

The third page contains settings for the event details. You can turn events on or off, enable
the recording of stack traces, and alter the time threshold required to record an event.

CHAPTER 3. STARTING JDK FLIGHT RECORDER

21

3. Edit the settings for the recording.

4. Click Finish.
The wizard exits and the flight recording starts.

3.4. DEFINING AND USING THE CUSTOM EVENT API

The JDK Flight Recorder (JFR) is an event recorder that includes the custom event API. The custom
event API, stored in the jdk.jfr module, is the software interface that enables your application to
communicate with the JFR.

The JFR API includes classes that you can use to manage recordings and create custom events for your
Java application, JVM, or operating system.

Before you use the custom event API to monitor an event, you must define a name and metadata for
your custom event type.

You can define a JFR base event, such as a Duration, Instant, Requestable, or Time event, by
extending the Event class. Specifically, you can add fields, such as duration values, to the class that
matches data types defined by the application payload attributes. After you define an Event class, you
can create event objects.

This procedure demonstrates how to use a custom event type with JFR and JDK Mission Control (JMC)
to analyze the runtime performance of a simple example program.

Procedure

1. In your custom event type, in the Event class, use the @name annotation to name the custom
event. This name displays in the JMC graphical user interface (GUI).

Example of defining a custom event type name in the Event class

2. Define the metadata for your Event class and its attributes, such as name, category, and labels.
Labels display event types for a client, such as JMC.

NOTE

Large recording files might cause performance issues, and this might affect how
you would like to interact with the files. Make sure you correctly define the
number of event recording annotations you need. Defining unnecessary
annotations might increase the size of your recording files.

Example of defining annotations for a sample Event class

@Name(“SampleCustomEvent”)
public class SampleCustomEvent extends Event {...}

@Name(“SampleCustomEvent”) 1
@Label("Sample Custom Event")
@Category("Sample events")
@Description("Custom Event to demonstrate the Custom Events API")
@StackTrace(false) 2
public class SampleCustomEvent extends Event {

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

22

1

2

3

4

Details annotations, such as @Name, that define metadata for how the custom event
displays on the JMC GUI.

The @StackTrace annotation increases the size of a flight recording. By default, the JFR
does not include the stackTrace of the location that was created for the event.

The @Label annotations define parameters for each method, such as resource methods
for HTTP requests.

The @DataAmount annotation includes an attribute that defines the data amount in bits
of bytes. JMC automatically renders the data amount in other units, such as megabytes
(MB).

3. Define contextual information in your Event class. This information sets the request handling
behavior of your custom event type, so that you configure an event type to collect specific JFR
data.

Example of defining a simple main class and an event loop

public class Main {

 private static int requestsSent;

 public static void main(String[] args) {
 // Register the custom event
 FlightRecorder.register(SampleCustomEvent.class);
 // Do some work to generate the events
 while (requestsSent <= 1000) {
 try {
 eventLoopBody();
 Thread.sleep(100);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 private static void eventLoopBody() {
 // Create and begin the event
 SampleCustomEvent event = new SampleCustomEvent();

 @Label("Method") 3
 public String method;

 @Label("Generated Number")
 public int number;

 @Label("Size")
 @DataAmount 4
 public int size;
}

CHAPTER 3. STARTING JDK FLIGHT RECORDER

23

 event.begin();
 // Generate some data for the event
 Random r = new Random();
 int someData = r.nextInt(1000000);
 // Set the event fields
 event.method = "eventLoopBody";
 event.number = someData;
 event.size = 4;
 // End the event
 event.end();
 event.commit();
 requestsSent++;
 }

In the preceding example, the simple main class registers events, and the event loop populates
the event fields and then emits the custom events.

4. Examine an event type in the application of your choice, such as the JMC or the JFR tool.

Figure 3.2. Example of examining an event type in JMC

A JFR recording can include different event types. You can examine each event type in your
application.

Additional resources

For more information about JMC, see Introduction to JDK Mission Control .

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

24

https://access.redhat.com/documentation/en-us/openjdk/11/html-single/using_jdk_flight_recorder_with_openjdk/index#overview-jmc

CHAPTER 4. CONFIGURATION OPTIONS FOR JDK FLIGHT
RECORDER

You can configure JDK Flight Recorder (JFR) to capture various sets of events using the command line
or diagnostic commands.

4.1. CONFIGURE JDK FLIGHT RECORDER USING THE COMMAND LINE

You can configure JDK Flight Recorder (JFR) from the command line using the following options:

4.1.1. Start JFR

Use -XX:StartFlightRecording option to start a JFR recording for the Java application. For example:

java -
XX:StartFlightRecording=delay=5s,disk=false,dumponexit=true,duration=60s,filename=myrecording.jfr
<<YOUR_JAVA_APPLICATION>>

You can set the following parameter=value entries when starting a JFR recording:

delay=time

Use this parameter to specify the delay between the Java application launch time and the start of
the recording. Append s to specify the time in seconds, m for minutes, h for hours, or d for days. For
example, specifying 10m means 10 minutes. By default, there is no delay, and this parameter is set to
0.

disk={true|false}

Use this parameter to specify whether to write data to disk while recording. By default, this
parameter is true.

dumponexit={true|false}

Use this parameter to specify if the running recording is dumped when the JVM shuts down. If the
parameter is enabled and a file name is not set, the recording is written to a file in the directory where
the recording progress has started. The file name is a system-generated name that contains the
process ID, recording ID, and current timestamp. For example, hotspot-pid-47496-id-1-
2018_01_25_19_10_41.jfr. By default, this parameter is false.

duration=time

Use this parameter to specify the duration of the recording. Append s to specify the time in seconds,
m for minutes, h for hours, or d for days. For example, if you specify duration as 5h, it indicates 5
hours. By default, this parameter is set to 0, which means there is no limit set on the recording
duration.

filename=path

Use this parameter to specify the path and name of the recording file. The recording is written to this
file when stopped. For example:
· recording.jfr

· /home/user/recordings/recording.jfr

name=identifier

Use this parameter to specify both the name and the identifier of a recording.

maxage=time

CHAPTER 4. CONFIGURATION OPTIONS FOR JDK FLIGHT RECORDER

25

Use this parameter to specify the maximum number of days the recording should be available on the
disk. This parameter is valid only when the disk parameter is set to true. Append s to specify the time
in seconds, m for minutes, h for hours, or d for days. For example, when you specify 30s, it indicates
30 seconds. By default, this parameter is set to 0, which means there is no limit set.

maxsize=size

Use this parameter to specify the maximum size of disk data to keep for the recording. This
parameter is valid only when the disk parameter is set to true. The value must not be less than the
value for the maxchunksize parameter set with -XX:FlightRecorderOptions. Append m or M to
specify the size in megabytes, or g or G to specify the size in gigabytes. By default, the maximum size
of disk data isn’t limited, and this parameter is set to 0.

path-to-gc-roots={true|false}

Use this parameter to specify whether to collect the path to garbage collection (GC) roots at the
end of a recording. By default, this parameter is set to false.
The path to GC roots is useful for finding memory leaks. For Red Hat build of OpenJDK 11, you can
enable the OldObjectSample event which is a more efficient alternative than using heap dumps. You
can also use the OldObjectSample event in production. Collecting memory leak information is time-
consuming and incurs extra overhead. You should enable this parameter only when you start
recording an application that you suspect has memory leaks. If the JFR profile parameter is set to
profile, you can trace the stack from where the object is leaking. It is included in the information
collected.

settings=path

Use this parameter to specify the path and name of the event settings file (of type JFC). By default,
the default.jfc file is used, which is located in JAVA_HOME/lib/jfr. This default settings file collects a
predefined set of information with low overhead, so it has minimal impact on performance and can be
used with recordings that run continuously. The second settings file is also provided, profile.jfc, which
provides more data than the default configuration, but can have more overhead and impact
performance. Use this configuration for short periods of time when more information is needed.

NOTE

You can specify values for multiple parameters by separating them with a comma. For
example, -XX:StartFlightRecording=disk=false,name=example-recording.

4.1.2. Control behavior of JFR

Use -XX:FlightRecorderOptions option to sets the parameters that control the behavior of JFR. For
example:

java -XX:FlightRecorderOptions=duration=60s,filename=myrecording.jfr -
XX:FlightRecorderOptions=stackdepth=128,maxchunksize=2M <<YOUR_JAVA_APPLICATION>>

You can set the following parameter=value entries to control the behavior of JFR:

globalbuffersize=size

Use this parameter to specify the total amount of primary memory used for data retention. The
default value is based on the value specified for memorysize. You can change the memorysize
parameter to alter the size of global buffers.

maxchunksize=size

Use this parameter to specify the maximum size of the data chunks in a recording. Append m or M to
specify the size in megabytes (MB), or g or G to specify the size in gigabytes (GB). By default, the
maximum size of data chunks is set to 12 MB. The minimum size allowed is 1 MB.

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

26

memorysize=size

Use this parameter to determine how much buffer memory should be used. The parameter sets the
globalbuffersize and numglobalbuffers parameters based on the size specified. Append m or M to
specify the size in megabytes (MB), or g or G to specify the size in gigabytes (GB). By default, the
memory size is set to 10 MB.

numglobalbuffers=number

Use this parameter to specify the number of global buffers used. The default value is based on the
size specified in the memorysize parameter. You can change the memorysize parameter to alter
the number of global buffers.

old-object-queue-size=number-of-objects

Use this parameter to track the maximum number of old objects. By default, the number of objects is
set to 256.

repository=path

Use this parameter to specify the repository for temporary disk storage. By default, it uses system
temporary directory.

retransform={true|false}

Use this parameter to specify if event classes should be retransformed using JVMTI. If set to false,
instrumentation is added to loaded event classes. By default, this parameter is set to true for
enabling class retransformation.

samplethreads={true|false}

Use this parameter to specify whether thread sampling is enabled. Thread sampling only occurs when
the sampling event is enabled and this parameter is set to true. By default, this parameter is set to
true.

stackdepth=depth

Use this parameter to set the stack depth for stack traces. By default, the stack depth is set to 64
method calls. You can set the maximum stack depth to 2048. Values greater than 64 could create
significant overhead and reduce performance.

threadbuffersize=size

Use this parameter to specify the local buffer size for a thread. By default, the local buffer size is set
to 8 kilobytes, with a minimum value of 4 kilobytes. Overriding this parameter could reduce
performance and is not recommended.

NOTE

You can specify values for multiple parameters by separating them with a comma.

4.2. CONFIGURING JDK FLIGHT RECORDER USING DIAGNOSTIC
COMMAND (JCMD)

You can configure JDK Flight Recorder (JFR) using Java diagnostic command. The simplest way to
execute a diagnostic command is to use the jcmd tool which is located in the Java installation directory.
To use a command, you have to pass the process identifier of the JVM or the name of the main class,
and the actual command as arguments to jcmd. You can retrieve the JVM or the name of the main class
by running jcmd without arguments or by using jps. The jps(Java Process Status) tool lists JVMs on a
target system to which it has access permissions.

To see a list of all running Java processes, use the jcmd command without any arguments. To see a
complete list of commands available for a running Java application, specify help as the diagnostic
command after the process identifier or the name of the main class.

CHAPTER 4. CONFIGURATION OPTIONS FOR JDK FLIGHT RECORDER

27

Use the following diagnostic commands for JFR:

4.2.1. Start JFR

Use JFR.start diagnostic command to start a flight recording. For example:

jcmd <PID> JFR.start delay=10s duration=10m filename=recording.jfr

Table 4.1. The following table lists the parameters you can use with this command:

Parameter Description Data type Default value

name Name of the recording String -

settings Server-side template String -

duration Duration of recording Time 0s

filename Resulting recording file
name

String -

maxage Maximum age of buffer
data

Time 0s

maxsize Maximum size of buffers
in bytes

Long 0

dumponexit Dump running recording
when JVM shuts down

Boolean -

path-to-gc-roots Collect path to garbage
collector roots

Boolean False

4.2.2. Stop JFR

Use JFR.stop diagnostic command to stop running flight recordings. For example:

jcmd <PID> JFR.stop name=output_file

Table 4.2. The following table lists the parameters you can use with this command.

Parameter Description Data type Default value

name Name of the recording String -

filename Copy recording data to
the file

String -

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

28

4.2.3. Check JFR

Use JFR.check command to show information about the recordings which are in progress. For example:

jcmd <PID> JFR.check

Table 4.3. The following table lists the parameters you can use with this command.

Parameter Description Data type Default value

name Name of the recording String -

filename Copy recording data to
the file

String -

maxage Maximum duration to
dump file

Time 0s

maxsize Maximum amount of
bytes to dump

Long 0

begin Starting time to dump
data

String -

end Ending time to dump
data

String -

path-to-gc-roots Collect path to garbage
collector roots

Boolean false

4.2.4. Dump JFR

Use JFR.dump diagnostic command to copy the content of a flight recording to a file. For example:

jcmd <PID> JFR.dump name=output_file filename=output.jfr

Table 4.4. The following table lists the parameters you can use with this command.

Parameter Description Data type Default value

name Name of the recording String -

filename Copy recording data to
the file

String -

maxage Maximum duration to
dump file

Time 0s

CHAPTER 4. CONFIGURATION OPTIONS FOR JDK FLIGHT RECORDER

29

maxsize Maximum amount of
bytes to dump

Long 0

begin Starting time to dump
data

String -

end Ending time to dump
data

String -

path-to-gc-roots Collect path to garbage
collector roots

Boolean false

Parameter Description Data type Default value

4.2.5. Configure JFR

Use JFR.configure diagnostic command to configure the flight recordings. For example:

jcmd <PID> JFR.configure repositorypath=/home/jfr/recordings

Table 4.5. The following table lists the parameters you can use with this command.

Parameter Description Data type Default value

repositorypath Path to repository String -

dumppath Path to dump String -

stackdepth Stack depth Jlong 64

globalbuffercount Number of global
buffers

Jlong 32

globalbuffersize Size of a global buffer Jlong 524288

thread_buffer_size Size of a thread buffer Jlong 8192

memorysize Overall memory size Jlong 16777216

maxchunksize Size of an individual disk
chunk

Jlong 12582912

Samplethreads Activate thread
sampling

Boolean true

Revised on 2024-05-09 17:12:45 UTC

Red Hat build of OpenJDK 11 Using JDK Flight Recorder with Red Hat build of OpenJDK

30

CHAPTER 4. CONFIGURATION OPTIONS FOR JDK FLIGHT RECORDER

31

	Table of Contents
	PROVIDING FEEDBACK ON RED HAT BUILD OF OPENJDK DOCUMENTATION
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION TO JDK FLIGHT RECORDER
	1.1. JDK FLIGHT RECORDER (JFR) COMPONENTS
	1.2. BENEFITS OF USING JDK FLIGHT RECORDER

	CHAPTER 2. INTRODUCTION TO JDK MISSION CONTROL (JMC)
	2.1. DOWNLOADING AND INSTALLING JMC
	2.1.1. Downloading and installing JMC on RHEL 9
	2.1.2. Downloading and installing JMC on RHEL 7 or RHEL 8

	2.2. JDK MISSION CONTROL (JMC) AGENT
	2.3. STARTING THE JDK MISSION CONTROL (JMC) AGENT
	2.4. CREATING PRESETS WITH THE JMC AGENT
	2.5. JMC AGENT PLUGIN ATTRIBUTES

	CHAPTER 3. STARTING JDK FLIGHT RECORDER
	3.1. STARTING JDK FLIGHT RECORDER WHEN JVM STARTS
	3.2. STARTING JDK FLIGHT RECORDER ON A RUNNING JVM
	3.3. STARTING THE JDK FLIGHT RECORDER ON JVM BY USING THE JDK MISSION CONTROL APPLICATION
	3.4. DEFINING AND USING THE CUSTOM EVENT API

	CHAPTER 4. CONFIGURATION OPTIONS FOR JDK FLIGHT RECORDER
	4.1. CONFIGURE JDK FLIGHT RECORDER USING THE COMMAND LINE
	4.1.1. Start JFR
	4.1.2. Control behavior of JFR

	4.2. CONFIGURING JDK FLIGHT RECORDER USING DIAGNOSTIC COMMAND (JCMD)
	4.2.1. Start JFR
	4.2.2. Stop JFR
	4.2.3. Check JFR
	4.2.4. Dump JFR
	4.2.5. Configure JFR

