
Red Hat AMQ 7.5

Introducing Red Hat AMQ 7

Overview of Features and Components

Last Updated: 2019-10-09

Red Hat AMQ 7.5 Introducing Red Hat AMQ 7

Overview of Features and Components

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document highlights features and components of Red Hat AMQ 7. It also demonstrates
common use cases and design patterns supported in this release.

. .

. .

. .

Table of Contents

CHAPTER 1. ABOUT RED HAT AMQ 7
1.1. KEY FEATURES

Messaging at Internet Scale
Top-Tier Security and Performance
Broad Platform and Language Support
Focused on Standards
Centralized Management

CHAPTER 2. COMPONENT OVERVIEW
2.1. AMQ BROKER
2.2. AMQ INTERCONNECT
2.3. AMQ CLIENTS
2.4. COMPONENT COMPATIBILITY

CHAPTER 3. COMMON DEPLOYMENT PATTERNS
3.1. CENTRAL BROKER
3.2. ROUTED MESSAGING
3.3. HIGHLY AVAILABLE BROKERS
3.4. ROUTER PAIR BEHIND A LOAD BALANCER
3.5. ROUTER PAIR IN A DMZ
3.6. ROUTER PAIRS IN DIFFERENT DATA CENTERS

3
3
3
3
3
3
3

4
4
4
4
4

6
6
6
7
8
9
9

Table of Contents

1

Red Hat AMQ 7.5 Introducing Red Hat AMQ 7

2

CHAPTER 1. ABOUT RED HAT AMQ 7
Red Hat AMQ provides fast, lightweight, and secure messaging for Internet-scale applications. AMQ
Broker supports multiple protocols and fast message persistence. AMQ Interconnect leverages the
AMQP protocol to distribute and scale your messaging resources across the network. AMQ Clients
provides a suite of messaging APIs for multiple languages and platforms.

Think of the AMQ components as tools inside a toolbox. They can be used together or separately to
build and maintain your messaging application, and AMQP is the glue in the toolbox that binds them
together. AMQ components share a common management console, so you can manage them from a
single interface.

1.1. KEY FEATURES

AMQ enables developers to build messaging applications that are fast, reliable, and easy to administer.

Messaging at Internet Scale
AMQ contains the tools to build advanced, multi-datacenter messaging networks. It can connect clients,
brokers, and stand-alone services in a seamless messaging fabric.

Top-Tier Security and Performance
AMQ offers modern SSL/TLS encryption and extensible SASL authentication. AMQ delivers fast, high-
volume messaging and class-leading JMS performance.

Broad Platform and Language Support
AMQ works with multiple languages and operating systems, so your diverse application components can
communicate. AMQ supports C++, Java, JavaScript, Python, Ruby, and .NET applications, as well as
Linux, Windows, and JVM-based environments.

Focused on Standards
AMQ implements the Java JMS 1.1 and 2.0 API specifications. Its components support the ISO-standard
AMQP 1.0 and MQTT messaging protocols, as well as STOMP and WebSocket.

Centralized Management
With AMQ, you can administer all AMQ components from a single management interface. You can use
JMX or the REST interface to manage servers programatically.

CHAPTER 1. ABOUT RED HAT AMQ 7

3

CHAPTER 2. COMPONENT OVERVIEW
Red Hat AMQ consists of AMQ Broker, AMQ Clients, and a new kind of messaging server called AMQ
Interconnect. They work together to enable remote communication among distributed client
applications.

AMQ Broker

AMQ Clients

AMQ Interconnect

2.1. AMQ BROKER

AMQ Broker is a full-featured, message-oriented middleware broker. It offers advanced addressing and
queueing, fast message persistence, and high availability. AMQ Broker supports multiple protocols and
operating environments, enabling you to use your existing assets. AMQ Broker supports integration with
Red Hat JBoss Enterprise Application Platform.

See Getting Started with AMQ Broker for more information.

2.2. AMQ INTERCONNECT

AMQ Interconnect provides flexible routing of messages between AMQP-enabled endpoints, including
clients, brokers, and standalone services. With a single connection into a network of AMQ Interconnect
routers, a client can exchange messages with any other endpoint connected to the network.

AMQ Interconnect does not use master-slave clusters for high availability. It is typically deployed in
topologies of multiple routers with redundant network paths, which it uses to provide reliable
connectivity. AMQ Interconnect can distribute messaging workloads across the network and achieve
new levels of scale with very low latency.

See Using AMQ Interconnect for more information.

2.3. AMQ CLIENTS

AMQ Clients is a collection of AMQP 1.0 messaging APIs for multiple languages and platforms. It
includes JMS 2.0 support and new, event-driven APIs to enable integration into existing applications.

Using the AMQ JMS Client

Using the AMQ C++ Client

Using the AMQ JavaScript Client

Using the AMQ .NET Client

Using the AMQ Python Client

Using the AMQ Ruby Client

2.4. COMPONENT COMPATIBILITY

The following table lists the supported languages, platforms, and protocols of AMQ components. Note

Red Hat AMQ 7.5 Introducing Red Hat AMQ 7

4

https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/getting_started_with_amq_broker/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_amq_interconnect/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_the_amq_jms_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_the_amq_cpp_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_the_amq_javascript_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_the_amq_.net_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_the_amq_python_client/
https://access.redhat.com/documentation/en-us/red_hat_amq/7.5/html-single/using_the_amq_ruby_client/

The following table lists the supported languages, platforms, and protocols of AMQ components. Note
that any components supporting the same protocol can interoperate, even if their languages and
platforms differ. For instance, AMQ Python can communicate with AMQ JMS.

Table 2.1. AMQ Component Compatibility

Component Languages Platforms Protocols

AMQ Broker - JVM AMQP 1.0, MQTT,
OpenWire, STOMP,
Core Protocol

AMQ Interconnect - Linux AMQP 1.0

AMQ C++ C++ Linux, Windows AMQP 1.0

AMQ JavaScript JavaScript Node.js, browsers AMQP 1.0

AMQ JMS Java JVM AMQP 1.0

AMQ .NET C# .NET AMQP 1.0

AMQ Python Python Linux AMQP 1.0

AMQ Ruby Ruby Linux AMQP 1.0

AMQ Core Protocol
JMS

Java JVM Core Protocol

AMQ OpenWire JMS Java JVM OpenWire

See Red Hat AMQ Supported Configurations for more information.

CHAPTER 2. COMPONENT OVERVIEW

5

https://access.redhat.com/articles/2791941

CHAPTER 3. COMMON DEPLOYMENT PATTERNS
Red Hat AMQ 7 can be set up in a large variety of topologies. The following are some of the common
deployment patterns you can implement using AMQ components.

3.1. CENTRAL BROKER

The central broker pattern is relatively easy to set up and maintain. It is also relatively robust. Routes are
typically local, because the broker and its clients are always within one network hop of each other, no
matter how many nodes are added. This pattern is also known as hub and spoke , with the central broker
as the hub and the clients the spokes.

Figure 3.1. Central Broker Pattern

The only critical element is the central broker node. The focus of your maintenance efforts is on keeping
this broker available to its clients.

3.2. ROUTED MESSAGING

When routing messages to remote destinations, the broker stores them in a local queue before
forwarding them to their destination. However, sometimes an application requires sending request and
response messages in real time, and having the broker store and forward messages is too costly. With
AMQ you can use a router in place of a broker to avoid such costs. Unlike a broker, a router does not
store messages before forwarding them to a destination. Instead, it works as a lightweight conduit and
directly connects two endpoints.

Figure 3.2. Brokerless Routed Messaging Pattern

Red Hat AMQ 7.5 Introducing Red Hat AMQ 7

6

Figure 3.2. Brokerless Routed Messaging Pattern

3.3. HIGHLY AVAILABLE BROKERS

To ensure brokers are available for their clients, deploy a highly available (HA) master-slave pair to
create a backup group. You might, for example, deploy two master-slave groups on two nodes. Such a
deployment would provide a backup for each active broker, as seen in the following diagram.

Figure 3.3. Master-Slave Pair

Under normal operating conditions one master broker is active on each node, which can be either a
physical server or a virtual machine. If one node fails, the slave on the other node takes over. The result
is two active brokers residing on the same healthy node.

By deploying master-slave pairs, you can scale out an entire network of such backup groups. Larger
deployments of this type are useful for distributing the message processing load across many brokers.
The broker network in the following diagram consists of eight master-slave groups distributed over
eight nodes.

Figure 3.4. Master-Slave Network

CHAPTER 3. COMMON DEPLOYMENT PATTERNS

7

Figure 3.4. Master-Slave Network

3.4. ROUTER PAIR BEHIND A LOAD BALANCER

Deploying two routers behind a load balancer provides high availability, resiliency, and increased
scalability for a single-datacenter deployment. Endpoints make their connections to a known URL,
supported by the load balancer. Next, the load balancer spreads the incoming connections among the
routers so that the connection and messaging load is distributed. If one of the routers fails, the
endpoints connected to it will reconnect to the remaining active router.

Figure 3.5. Router Pair behind a Load Balancer

Red Hat AMQ 7.5 Introducing Red Hat AMQ 7

8

For even greater scalability, you can use a larger number of routers, three or four for example. Each
router connects directly to all of the others.

3.5. ROUTER PAIR IN A DMZ

In this deployment architecture, the router network is providing a layer of protection and isolation
between the clients in the outside world and the brokers backing an enterprise application.

Figure 3.6. Router Pair in a DMZ

Important notes about the DMZ topology:

Security for the connections within the deployment is separate from the security used for
external clients. For example, your deployment might use a private Certificate Authority (CA)
for internal security, issuing x.509 certificates to each router and broker for authentication,
although external users might use a different, public CA.

Inter-router connections between the enterprise and the DMZ are always established from the
enterprise to the DMZ for security. Therefore, no connections are permitted from the outside
into the enterprise. The AMQP protocol enables bi-directional communication after a
connection is established, however.

3.6. ROUTER PAIRS IN DIFFERENT DATA CENTERS

You can use a more complex topology in a deployment of AMQ components that spans multiple
locations. You can, for example, deploy a pair of load-balanced routers in each of four locations. You
might include two backbone routers in the center to provide redundant connectivity between all
locations. The following diagram is an example deployment spanning multiple locations.

Figure 3.7. Multiple Interconnected Routers

CHAPTER 3. COMMON DEPLOYMENT PATTERNS

9

Figure 3.7. Multiple Interconnected Routers

Revised on 2019-10-09 14:23:22 UTC

Red Hat AMQ 7.5 Introducing Red Hat AMQ 7

10

	Table of Contents
	CHAPTER 1. ABOUT RED HAT AMQ 7
	1.1. KEY FEATURES
	Messaging at Internet Scale
	Top-Tier Security and Performance
	Broad Platform and Language Support
	Focused on Standards
	Centralized Management

	CHAPTER 2. COMPONENT OVERVIEW
	2.1. AMQ BROKER
	2.2. AMQ INTERCONNECT
	2.3. AMQ CLIENTS
	2.4. COMPONENT COMPATIBILITY

	CHAPTER 3. COMMON DEPLOYMENT PATTERNS
	3.1. CENTRAL BROKER
	3.2. ROUTED MESSAGING
	3.3. HIGHLY AVAILABLE BROKERS
	3.4. ROUTER PAIR BEHIND A LOAD BALANCER
	3.5. ROUTER PAIR IN A DMZ
	3.6. ROUTER PAIRS IN DIFFERENT DATA CENTERS

