& RedHat

Red Hat AMQ 2021.Q1

Using the AMQ Python Client

For Use with AMQ Clients 2.9

Last Updated: 2021-05-07

Red Hat AMQ 2021.Q1 Using the AMQ Python Client

For Use with AMQ Clients 2.9

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and configure the client, run hands-on examples, and use your
client with other AMQ components.

Table of Contents

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE ..ttt it e ettt et eaeeeneeeaneenaneennnes, 4
CHAPTER 1. OVERVIEW Lottt ettt e e ettt et et e e a e eei et eneennen 5
1.1. KEY FEATURES 5
1.2. SUPPORTED STANDARDS AND PROTOCOLS 5
1.3. SUPPORTED CONFIGURATIONS 5
1.4. TERMS AND CONCEPTS 6
1.5. DOCUMENT CONVENTIONS 7
The sudo command 7

File paths 7
Variable text 7
CHAPTER 2. INST ALLATION ittt ittt ettt e e e ettt e e e ettt a e aeaeaneeneennen 8
2.1. PREREQUISITES 8
2.2. INSTALLING ON RED HAT ENTERPRISE LINUX 8
2.3.INSTALLING ON MICROSOFT WINDOWS 8
CHAPTER 3. GETTING STARTED .. itttttittttittteitteeteeaneeaneeeaneeeneeeaneeeaneesaneesnneeaneennn 10
3.1. PREREQUISITES 10
3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX 10
3.3. RUNNING HELLO WORLD ON MICROSOFT WINDOWS 10
CHAPTER 4. EXAMPLES ...ttt ettt ettt ettt e et eneaeene, n
4.1. SENDING MESSAGES 11
Running the example 12

4.2. RECEIVING MESSAGES 12
Running the example 13
CHAPTER 5. USING THE APl ottt e e e et e e e et a e e eaennes 14
5.1. HANDLING MESSAGING EVENTS 14
5.2. ACCESSING EVENT-RELATED OBJECTS 14
5.3. CREATING A CONTAINER 14
5.4. SETTING THE CONTAINER IDENTITY 15
CHAPTER 6. NETWORK CONNECTIONS ...ttt ettt eeet ettt eeneenaneennneenneenns 16
6.1. CONNECTION URLS 16
6.2. CREATING OUTGOING CONNECTIONS 16
6.3. CONFIGURING RECONNECT 16
6.4. CONFIGURING FAILOVER 17
6.5. ACCEPTING INCOMING CONNECTIONS 17
CHAPTER 7. SECURITY ottt ittt ettt ettt et et et ettt et et ae et neeae e eanennes 19
7.1. SECURING CONNECTIONS WITH SSL/TLS 19
7.2. CONNECTING WITH A USER AND PASSWORD 19
7.3. CONFIGURING SASL AUTHENTICATION 19
7.4. AUTHENTICATING USING KERBEROS 20
CHAPTER 8. SENDERS AND RECEIVERS ...ttt e ittt et eeieenaneennnenaneenns 21
8.1. CREATING QUEUES AND TOPICS ON DEMAND 21
8.2. CREATING DURABLE SUBSCRIPTIONS 22
8.3. CREATING SHARED SUBSCRIPTIONS 22
CHAPTER 9. MESSAGE DELIVERY ..t tttttittttitte et teate ettt taneeeneeeaneeeaneennneeannesaneenn 24
9.1. SENDING MESSAGES 24

Red Hat AMQ 2021.Q1Using the AMQ Python Client

9.2. TRACKING SENT MESSAGES
9.3. RECEIVING MESSAGES
9.4. ACKNOWLEDGING RECEIVED MESSAGES

CHAPTER10. ERROR HANDLING .. i i e e et
10.1. CATCHING EXCEPTIONS
10.2. HANDLING CONNECTION AND PROTOCOL ERRORS

CHAPTER L. LOGGING . i i i i i e it i et i it ae e,
11.1. ENABLING PROTOCOL LOGGING

CHAPTER12. DISTRIBUTED TRACING .. . i i e i et cee e
12.1. ENABLING DISTRIBUTED TRACING

CHAPTER13. FILE-BASED CONFIGURATION ... i
13.1. FILE LOCATIONS
13.2. THE FILE FORMAT
13.3. CONFIGURATION OPTIONS

CHAPTER 14. INTEROPE RABILITY ittt ettt et ettt e e e eeereenneeeeaannnneeeannn,
14.1. INTEROPERATING WITH OTHER AMQP CLIENTS
14.2. INTEROPERATING WITH AMQ JMS
JMS message types
14.3. CONNECTING TO AMQ BROKER
14.4. CONNECTING TO AMQ INTERCONNECT

APPENDIX A.USING YOUR SUBSCRIPTION i it
Al ACCESSING YOUR ACCOUNT
A2. ACTIVATING A SUBSCRIPTION
A.3. DOWNLOADING RELEASE FILES
A.4.REGISTERING YOUR SYSTEM FOR PACKAGES

APPENDIX B. USING RED HAT ENTERPRISE LINUXPACKAGESo
B.1. OVERVIEW
B.2. SEARCHING FOR PACKAGES
B.3. INSTALLING PACKAGES
B.4. QUERYING PACKAGE INFORMATION

APPENDIX C. USING AMQ BROKERWITHTHE EXAMPLES o i
C.1. INSTALLING THE BROKER
C.2. STARTING THE BROKER
C.3. CREATING A QUEUE
C.4. STOPPING THE BROKER

24
24
25

26
26
26

28
28

29
29

30
30
30

31

32
32
36
36
36
37

38
38
38
38
38

40
40
40
40
40

42
42
42
42
42

Table of Contents

Red Hat AMQ 2021.Q1Using the AMQ Python Client

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. OVERVIEW

CHAPTER 1. OVERVIEW

AMQ Python is a library for developing messaging applications. It enables you to write Python
applications that send and receive AMQP messages.

AMQ Python is part of AMQ Clients, a suite of messaging libraries supporting multiple languages and
platforms. For an overview of the clients, see AMQ Clients Overview. For information about this release,
see AMQ Clients 2.9 Release Notes.

AMQ Python is based on the Proton API from Apache Qpid. For detailed APl documentation, see the
AMQ Python API reference.

1.1. KEY FEATURES

An event-driven API that simplifies integration with existing applications
SSL/TLS for secure communication

Flexible SASL authentication

Automatic reconnect and failover

Seamless conversion between AMQP and language-native data types
Access to all the features and capabilities of AMQP 1.0

Distributed tracing based on the OpenTracing standard (RHEL 7 and 8)

IMPORTANT

Distributed tracing in AMQ Clients is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service
level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process. For more information about the
support scope of Red Hat Technology Preview features, see
https://access.redhat.com/support/offerings/techpreview/.

1.2. SUPPORTED STANDARDS AND PROTOCOLS

AMQ Python supports the following industry-recognized standards and network protocols:

Version 1.0 of the Advanced Message Queueing Protocol (AMQP)
Versions 1.0, 1.1, 1.2, and 1.3 of the Transport Layer Security (TLS) protocol, the successor to SSL

Simple Authentication and Security Layer (SASL) mechanisms supported by Cyrus SASL,
including ANONYMOUS, PLAIN, SCRAM, EXTERNAL, and GSSAPI (Kerberos)

Modern TCP with IPv6

1.3. SUPPORTED CONFIGURATIONS

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/amq_clients_overview/
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/amq_clients_2.9_release_notes/
http://qpid.apache.org/
https://qpid.apache.org/releases/qpid-proton-0.33.0/proton/python/docs/index.html
https://access.redhat.com/support/offerings/techpreview/
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422
https://www.cyrusimap.org/sasl/
https://tools.ietf.org/html/rfc793
https://tools.ietf.org/html/rfc2460

Red Hat AMQ 2021.Q1Using the AMQ Python Client

AMQ Python supports the OS and language versions listed below. For more information, see Red Hat
AMQ 7 Supported Configurations.

® Red Hat Enterprise Linux 7 with Python 2.7
® Red Hat Enterprise Linux 8 with Python 3.6
® Microsoft Windows 10 Pro with Python 3.6 and Python 3.8
® Microsoft Windows Server 2012 R2 and 2016 with Python 3.6 and Python 3.8
AMQ Python is supported in combination with the following AMQ components and versions:
e All versions of AMQ Broker
® All versions of AMQ Interconnect

® A-MQ 6 versions 6.2.1 and newer

1.4. TERMS AND CONCEPTS

This section introduces the core API entities and describes how they operate together.

Table 1.1. APl terms

Entity Description

Container A top-level container of connections.

Connection A channel for communication between two peers on a network. It contains
sessions.

Session A context for sending and receiving messages. It contains senders and receivers.

Sender A channel for sending messages to a target. It has a target.

Receiver A channel for receiving messages from a source. It has a source.

Source A named point of origin for messages.

Target A named destination for messages.

Message An application-specific piece of information.

Delivery A message transfer.

AMQ Python sends and receives messages. Messages are transferred between connected peers over
senders and receivers. Senders and receivers are established over sessions. Sessions are established over
connections. Connections are established between two uniquely identified containers. Though a
connection can have multiple sessions, often this is not needed. The API allows you to ignore sessions
unless you require them.

https://access.redhat.com/articles/2791941

CHAPTER 1. OVERVIEW

A sending peer creates a sender to send messages. The sender has a target that identifies a queue or
topic at the remote peer. A receiving peer creates a receiver to receive messages. The receiver has a
source that identifies a queue or topic at the remote peer.

The sending of a message is called a delivery. The message is the content sent, including all metadata
such as headers and annotations. The delivery is the protocol exchange associated with the transfer of
that content.

To indicate that a delivery is complete, either the sender or the receiver settles it. When the other side
learns that it has been settled, it will no longer communicate about that delivery. The receiver can also
indicate whether it accepts or rejects the message.

1.5. DOCUMENT CONVENTIONS

The sudo command

In this document, sudo is used for any command that requires root privileges. Exercise caution when
using sudo because any changes can affect the entire system. For more information about sudo, see
Using the sudo command.

File paths

In this document, all file paths are valid for Linux, UNIX, and similar operating systems (for example,
/home/andrea). On Microsoft Windows, you must use the equivalent Windows paths (for example,
C:\Users\andrea).

Variable text

This document contains code blocks with variables that you must replace with values specific to your
environment. Variable text is enclosed in arrow braces and styled as italic monospace. For example, in
the following command, replace <project-dir> with the value for your environment:

I $ cd <project-dir>

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system_administrators_guide/chap-gaining_privileges#sect-Gaining_Privileges-The_sudo_Command

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER 2. INSTALLATION

This chapter guides you through the steps to install AMQ Python in your environment.

2.1. PREREQUISITES
® You must have a subscription to access AMQ release files and repositories.
® Toinstall packages on Red Hat Enterprise Linux, you must register your system.

® To use AMQ Python, you must install Python in your environment.

2.2. INSTALLING ON RED HAT ENTERPRISE LINUX

Procedure

1. Use the subscription-manager command to subscribe to the required package repositories. If
necessary, replace <variant> with the value for your variant of Red Hat Enterprise Linux (for
example, server or workstation).

Red Hat Enterprise Linux 7

I $ sudo subscription-manager repos --enable=amq-clients-2-for-rhel-7- <variant>-rpms
Red Hat Enterprise Linux 8

I $ sudo subscription-manager repos --enable=amq-clients-2-for-rhel-8-x86_64-rpms

2. Use the yum command to install the python-gpid-proton and python-gpid-proton-docs
packages.

I $ sudo yum install python-qpid-proton python-qpid-proton-docs

For more information about using packages, see Appendix B, Using Red Hat Enterprise Linux packages .

2.3.INSTALLING ON MICROSOFT WINDOWS

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQ Clientsentry in the INTEGRATION AND AUTOMATION category.
3. Click Red Hat AMQ Clients The Software Downloads page opens.

4. Download the AMQ Clients 2.9.0 Python.whl file for your Python version.

Python 3.6 python_gpid_proton-0.33.0-cp36-cp36m-win_amd64.whl

Python 3.8 python_gpid_proton-0.33.0-cp38-cp38-win_amd64.whl

https://access.redhat.com/downloads

CHAPTER 2. INSTALLATION

5. Open a command prompt window and use the pip install command to install the .whl file.

Python 3.6
I > pip install python_qgpid_proton-0.33.0-cp36-cp36m-win_amd64.whl
Python 3.8

I > pip install python_qgpid_proton-0.33.0-cp38-cp38-win_amd64.whl

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER 3. GETTING STARTED

This chapter guides you through the steps to set up your environment and run a simple messaging
program.

3.1. PREREQUISITES

® You must complete the installation procedure for your environment.

® You must have an AMQP 1.0 message broker listening for connections on interface localhost
and port 5672. It must have anonymous access enabled. For more information, see Starting the
broker.

® You must have a queue named examples. For more information, see Creating a queue.

3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX

The Hello World example creates a connection to the broker, sends a message containing a greeting to
the examples queue, and receives it back. On success, it prints the received message to the console.

Change to the examples directory and run the helloworld.py example.

$ cd /usr/share/proton/examples/python/
$ python helloworld.py
Hello World!

3.3. RUNNING HELLO WORLD ON MICROSOFT WINDOWS

The Hello World example creates a connection to the broker, sends a message containing a greeting to
the examples queue, and receives it back. On success, it prints the received message to the console.

Download and run the Hello World example.

> curl -0 helloworld.py https://raw.githubusercontent.com/apache/qpid-
proton/master/python/examples/helloworld.py

> python helloworld.py

Hello World!

10

CHAPTER 4. EXAMPLES

CHAPTER 4. EXAMPLES

This chapter demonstrates the use of AMQ Python through example programs.

For more examples, see the AMQ Python example suite and the Qpid Proton Python examples.

4.1. SENDING MESSAGES

This client program connects to a server using <connection-url>, creates a sender for target
<address>, sends a message containing <message-body>, closes the connection, and exits.

Example: Sending messages

from __future__ import print_function
import sys

from proton import Message
from proton.handlers import MessagingHandler
from proton.reactor import Container

class SendHandler(MessagingHandler):
def __init_ (self, conn_url, address, message_body):
super(SendHandler, self).__init_ ()

self.conn_url = conn_url
self.address = address
self.message_body = message_body

def on_start(self, event):
conn = event.container.connect(self.conn_url)

To connect with a user and password:
conn = event.container.connect(self.conn_url, user="<user>", password="<password>")

event.container.create_sender(conn, self.address)

def on_link_opened(self, event):
print("SEND: Opened sender for target address '{0}".format
(event.sender.target.address))

def on_sendable(self, event):
message = Message(self.message_body)
event.sender.send(message)

print("SEND: Sent message '{0}".format(message.body))

event.sender.close()
event.connection.close()

def main():
try:
conn_url, address, message_body = sys.argv[1:4]
except ValueError:
sys.exit("Usage: send.py <connection-url> <address> <message-body>")

1

https://github.com/amqphub/equipage/tree/master/qpid-proton-python
https://github.com/apache/qpid-proton/tree/0.33.0/python/examples

Red Hat AMQ 2021.Q1Using the AMQ Python Client

handler = SendHandler(conn_url, address, message_body)
container = Container(handler)
container.run()

if _name_ ==" main_ "
try:
main()
except KeyboardInterrupt:
pass

Running the example
To run the example program, copy it to a local file and invoke it using the python command. For more
information, see Chapter 3, Getting started.

I $ python send.py amgp://localhost queue1 hello

4.2. RECEIVING MESSAGES

This client program connects to a server using <connection-url>, creates a receiver for source
<address>, and receives messages until it is terminated or it reaches <count> messages.

Example: Receiving messages

from __future__ import print_function
import sys

from proton.handlers import MessagingHandler
from proton.reactor import Container

class ReceiveHandler(MessagingHandler):
def __init_ (self, conn_url, address, desired):
super(ReceiveHandler, self).__init_ ()

self.conn_url = conn_url
self.address = address
self.desired = desired
self.received = 0

def on_start(self, event):
conn = event.container.connect(self.conn_url)

To connect with a user and password:
conn = event.container.connect(self.conn_url, user="<user>", password="<password>")

event.container.create_receiver(conn, self.address)
def on_link_opened(self, event):
print("RECEIVE: Created receiver for source address '{0}".format

(self.address))

def on_message(self, event):
message = event.message

12

CHAPTER 4. EXAMPLES

print("RECEIVE: Received message '{0}".format(message.body))
self.received += 1

if self.received == self.desired:
event.receiver.close()
event.connection.close()

def main():
try:
conn_url, address = sys.argv[1:3]
except ValueError:
sys.exit("Usage: receive.py <connection-url> <address> [<message-count>]")

try:
desired = int(sys.argv[3])
except (IndexError, ValueError):
desired =0

handler = ReceiveHandler(conn_url, address, desired)
container = Container(handler)
container.run()

if _name_ ==" main_ "
try:
main()
except KeyboardInterrupt:
pass

Running the example
To run the example program, copy it to a local file and invoke it using the python command. For more
information, see Chapter 3, Getting started.

I $ python receive.py amqp://localhost queuet

13

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER 5. USING THE API

For more information, see the AMQ Python APl reference and AMQ Python example suite.

5.1. HANDLING MESSAGING EVENTS

AMQ Python is an asynchronous event-driven API. To define how an application handles events, the
user implements callback methods on the MessagingHandler class. These methods are then called as
network activity or timers trigger new events.

Example: Handling messaging events

class ExampleHandler(MessagingHandler):
def on_start(self, event):
print("The container event loop has started")

def on_sendable(self, event):
print("A message can be sent")

def on_message(self, event):
print("A message is received")

These are only a few common-case events. The full set is documented in the API reference.

5.2. ACCESSING EVENT-RELATED OBJECTS

The event argument has attributes for accessing the object the event is regarding. For example, the
on_connection_opened event sets the event connection attribute.

In addition to the primary object for the event, all objects that form the context for the event are set as
well. Attributes with no relevance to a particular event are null.

Example: Accessing event-related objects

event.container
event.connection
event.session
event.sender
event.receiver
event.delivery
event.message

5.3. CREATING A CONTAINER

The container is the top-level APl object. It is the entry point for creating connections, and it is
responsible for running the main event loop. It is often constructed with a global event handler.

Example: Creating a container

handler = ExampleHandler()
container = Container(handler)
container.run()

14

https://qpid.apache.org/releases/qpid-proton-0.33.0/proton/python/docs/index.html
https://github.com/amqphub/equipage/tree/master/qpid-proton-python
https://qpid.apache.org/releases/qpid-proton-0.33.0/proton/python/docs/#event-handlers

CHAPTER 5. USING THE API

5.4.SETTING THE CONTAINER IDENTITY

Each container instance has a unique identity called the container ID. When AMQ Python makes a
connection, it sends the container ID to the remote peer. To set the container ID, pass it to the
Container constructor.

Example: Setting the container identity

container = Container(handler)
container.container_id = "job-processor-3"

If the user does not set the ID, the library will generate a UUID when the container is constucted.

15

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER 6. NETWORK CONNECTIONS

6.1. CONNECTION URLS

Connection URLs encode the information used to establish new connections.

Connection URL syntax
I scheme://host[:port]

® Scheme - The connection transport, either amqp for unencrypted TCP or amqps for TCP with
SSL/TLS encryption.

® Host - The remote network host. The value can be a hostname or a numeric IP address. IPv6
addresses must be enclosed in square brackets.

® Port - The remote network port. This value is optional. The default value is 5672 for the amqp
scheme and 5671 for the amqps scheme.

Connection URL examples

amgqps://example.com
amqps://example.net:56720
amqp://127.0.0.1
amaqp://[::1]:2000

6.2. CREATING OUTGOING CONNECTIONS

To connect to a remote server, call the Container.connect() method with a connection URL. This is
typically done inside the MessagingHandler.on_start() method.

Example: Creating outgoing connections

class ExampleHandler(MessagingHandler):
def on_start(self, event):
event.container.connect("amqp://example.com”)

def on_connection_opened(self, event):
print("Connection”, event.connection, "is open")

For information about creating secure connections, see Chapter 7, Security.

6.3. CONFIGURING RECONNECT

Reconnect allows a client to recover from lost connections. It is used to ensure that the componentsin a
distributed system reestablish communication after temporary network or component failures.

AMQ Python enables reconnect by default. If a connection is lost or a connection attempt fails, the
client will try again after a brief delay. The delay increases exponentially for each new attempt, up to a

default maximum of 10 seconds.

To disable reconnect, set the reconnect connection option to False.

16

CHAPTER 6. NETWORK CONNECTIONS

Example: Disabling reconnect
I container.connect("amqp://example.com", reconnect=False)

To control the delays between connection attempts, define a class implementing the reset() and next()
methods and set the reconnect connection option to an instance of that class.

Example: Configuring reconnect

class ExampleReconnect(object):
def __init__(self):
self.delay = 0

def reset(self):
self.delay = 0

def next(self):
if self.delay == 0:
self.delay = 0.1
else:
self.delay = min(10, 2 * self.delay)
return self.delay

container.connect("amqp://example.com", reconnect=ExampleReconnect())

The next method returns the next delay in seconds. The reset method is called once before the
reconnect process begins.

6.4. CONFIGURING FAILOVER

AMQ Python allows you to configure multiple connection endpoints. If connecting to one fails, the client
attempts to connect to the next in the list. If the list is exhausted, the process starts over.

To specify multiple connection endpoints, set the urls connection option to a list of connection URLSs.

Example: Configuring failover

urls = ["amqp://alpha.example.com”, "amqp://beta.example.com"]
container.connect(urls=urls)

It is an error to use the url and urls options at the same time.

6.5. ACCEPTING INCOMING CONNECTIONS

AMQ Python can accept inbound network connections, enabling you to build custom messaging servers.

To start listening for connections, use the Container.listen() method with a URL containing the local
host address and port to listen on.

Example: Accepting incoming connections

I class ExampleHandler(MessagingHandler):

17

18

Red Hat AMQ 2021.Q1Using the AMQ Python Client

def on_start(self, event):
event.container.listen("0.0.0.0™)

def on_connection_opened(self, event):
print("New incoming connection", event.connection)

The special IP address 0.0.0.0 listens on all available IPv4 interfaces. To listen on all IPv6 interfaces, use

[::0].

For more information, see the server receive.py example.

https://github.com/amqphub/equipage/blob/master/qpid-proton-python/servers/receive.py

CHAPTER 7. SECURITY

CHAPTER 7. SECURITY

7.1. SECURING CONNECTIONS WITH SSL/TLS
AMQ Python uses SSL/TLS to encrypt communication between clients and servers.

To connect to a remote server with SSL/TLS, use a connection URL with the amqps scheme.

Example: Enabling SSL/TLS

I container.connect("amaqps://example.com")

7.2. CONNECTING WITH A USER AND PASSWORD

AMQ Python can authenticate connections with a user and password.

To specify the credentials used for authentication, set the user and password options on the connect()
method.

Example: Connecting with a user and password

I container.connect("amqps://example.com", user="alice", password="secret")

7.3. CONFIGURING SASL AUTHENTICATION

AMQ Python uses the SASL protocol to perform authentication. SASL can use a number of different
authentication mechanisms. When two network peers connect, they exchange their allowed mechanisms,
and the strongest mechanism allowed by both is selected.

NOTE

The client uses Cyrus SASL to perform authentication. Cyrus SASL uses plug-ins to
support specific SASL mechanisms. Before you can use a particular SASL mechanism, the
relevant plug-in must be installed. For example, you need the cyrus-sasl-plain plug-inin
order to use SASL PLAIN authentication.

To see a list of Cyrus SASL plug-ins in Red Hat Enterprise Linux, use the yum search
cyrus-sasl command. To install a Cyrus SASL plug-in, use the yum install PLUG-IN
command.

By default, AMQ Python allows all of the mechanisms supported by the local SASL library configuration.
To restrict the allowed mechanisms and thereby control what mechanisms can be negotiated, use the
allowed_mechs connection option. It takes a string containing a space-separated list of mechanism
names.

Example: Configuring SASL authentication

I container.connect("amqps://example.com”, allowed_mechs="ANONYMOUS")

19

Red Hat AMQ 2021.Q1Using the AMQ Python Client

This example forces the connection to authenticate using the ANONYMOUS mechanism even if the
server we connect to offers other options. Valid mechanisms include ANONYMOUS, PLAIN, SCRAM-
SHA-256, SCRAM-SHA-1, GSSAPI, and EXTERNAL.

AMQ Python enables SASL by default. To disable it, set the sasl_enabled connection option to false.

Example: Disabling SASL

I event.container.connect("amqps://example.com", sasl_enabled=False)

7.4. AUTHENTICATING USING KERBEROS

Kerberos is a network protocol for centrally managed authentication based on the exchange of
encrypted tickets. See Using Kerberos for more information.

1. Configure Kerberos in your operating system. See Configuring Kerberos to set up Kerberos on
Red Hat Enterprise Linux.

2. Enable the GSSAPI SASL mechanism in your client application.

I container.connect("amqps:/example.com”, allowed_mechs="GSSAPI")

3. Use the kinit command to authenticate your user credentials and store the resulting Kerberos
ticket.

I $ kinit <user>@<realm>

4. Run the client program.

20

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system-level_authentication_guide/#Using_Kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system-level_authentication_guide/#authconfig-kerberos

CHAPTER 8. SENDERS AND RECEIVERS

CHAPTER 8. SENDERS AND RECEIVERS

The client uses sender and receiver links to represent channels for delivering messages. Senders and
receivers are unidirectional, with a source end for the message origin, and a target end for the message
destination.

Sources and targets often point to queues or topics on a message broker. Sources are also used to
represent subscriptions.

8.1. CREATING QUEUES AND TOPICS ON DEMAND

Some message servers support on-demand creation of queues and topics. When a sender or receiver is
attached, the server uses the sender target address or the receiver source address to create a queue or
topic with a name matching the address.

The message server typically defaults to creating either a queue (for one-to-one message delivery) or a
topic (for one-to-many message delivery). The client can indicate which it prefers by setting the queue
or topic capability on the source or target.

To select queue or topic semantics, follow these steps:

1. Configure your message server for automatic creation of queues and topics. This is often the
default configuration.

2. Set either the queue or topic capability on your sender target or receiver source, as in the
examples below.

Example: Sending to a queue created on demand

class CapabilityOptions(SenderOption):
def apply(self, sender):
sender.target.capabilities.put_object(symbol("queue"))

class ExampleHandler(MessagingHandler):
def on_start(self, event):

conn = event.container.connect("amqp://example.com")
event.container.create_sender(conn, "jobs", options=CapabilityOptions())

Example: Receiving from a topic created on demand

class CapabilityOptions(ReceiverOption):
def apply(self, receiver):
receiver.source.capabilities.put_object(symbol("topic™))
class ExampleHandler(MessagingHandler):
def on_start(self, event):

conn = event.container.connect("amqp://example.com")
event.container.create_receiver(conn, "notifications”, options=CapabilityOptions())

For more information, see the following examples:
® queue-send.py

® queue-receive.py

21

https://github.com/amqphub/equipage/blob/master/qpid-proton-python/auto-create/queue-send.py
https://github.com/amqphub/equipage/blob/master/qpid-proton-python/auto-create/queue-receive.py

Red Hat AMQ 2021.Q1Using the AMQ Python Client

® topic-send.py

® topic-receive.py

8.2. CREATING DURABLE SUBSCRIPTIONS

A durable subscription is a piece of state on the remote server representing a message receiver.
Ordinarily, message receivers are discarded when a client closes. However, because durable
subscriptions are persistent, clients can detach from them and then re-attach later. Any messages
received while detached are available when the client re-attaches.

Durable subscriptions are uniquely identified by combining the client container ID and receiver name to
form a subscription ID. These must have stable values so that the subscription can be recovered.

To create a durable subscription, follow these steps:

1. Set the connection container ID to a stable value, such as client-1:

container = Container(handler)
container.container_id = "client-1"

2. Configure the receiver source for durability by setting the durability and expiry_policy
properties:

class SubscriptionOptions(ReceiverOption):
def apply(self, receiver):
receiver.source.durability = Terminus.DELIVERIES
receiver.source.expiry_policy = Terminus.EXPIRE_NEVER

3. Create areceiver with a stable name, such as sub-1, and apply the source properties:

event.container.create_receiver(conn, "notifications”,
name="sub-1",
options=SubscriptionOptions())

To detach from a subscription, use the Receiver.detach() method. To terminate the subscription, use
the Receiver.close() method.

For more information, see the durable-subscribe.py example.

8.3. CREATING SHARED SUBSCRIPTIONS

A shared subscription is a piece of state on the remote server representing one or more message
receivers. Because it is shared, multiple clients can consume from the same stream of messages.

The client configures a shared subscription by setting the shared capability on the receiver source.
Shared subscriptions are uniquely identified by combining the client container ID and receiver name to
form a subscription ID. These must have stable values so that multiple client processes can locate the
same subscription. If the global capability is set in addition to shared, the receiver name alone is used to

identify the subscription.

To create a durable subscription, follow these steps:

22

https://github.com/amqphub/equipage/blob/master/qpid-proton-python/auto-create/topic-send.py
https://github.com/amqphub/equipage/blob/master/qpid-proton-python/auto-create/topic-receive.py
https://github.com/amqphub/equipage/blob/master/qpid-proton-python/subscriptions/durable-subscribe.py

CHAPTER 8. SENDERS AND RECEIVERS

1. Set the connection container ID to a stable value, such as client-1:

container = Container(handler)
container.container_id = "client-1"

2. Configure the receiver source for sharing by setting the shared capability:
class SubscriptionOptions(ReceiverOption):

def apply(self, receiver):
receiver.source.capabilities.put_object(symbol('shared"))

3. Create areceiver with a stable name, such as sub-1, and apply the source properties:
event.container.create_receiver(conn, "notifications",

name="sub-1",
options=SubscriptionOptions())

To detach from a subscription, use the Receiver.detach() method. To terminate the subscription, use
the Receiver.close() method.

For more information, see the shared-subscribe.py example.

23

https://github.com/amqphub/equipage/blob/master/qpid-proton-python/subscriptions/shared-subscribe.py

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER 9. MESSAGE DELIVERY

9.1. SENDING MESSAGES

To send a message, override the on_sendable event handler and call the Sender.send() method. The
sendable event fires when the Sender has enough credit to send at least one message.

Example: Sending messages

class ExampleHandler(MessagingHandler):
def on_start(self, event):
conn = event.container.connect("amqp://example.com")
sender = event.container.create_sender(conn, "jobs")

def on_sendable(self, event):

message = Message("job-content")
event.sender.send(message)

For more information, see the send.py example.

9.2. TRACKING SENT MESSAGES

When a message is sent, the sender can keep a reference to the delivery object representing the
transfer. After the message is delivered, the receiver accepts or rejects it. The sender is notified of the
outcome for each delivery.

To monitor the outcome of a sent message, override the on_accepted and on_rejected event handlers
and map the delivery state update to the delivery returned from send().

Example: Tracking sent messages

def on_sendable(self, event):
message = Message(self.message_body)
delivery = event.sender.send(message)

def on_accepted(self, event):
print("Delivery", event.delivery, "is accepted")

def on_rejected(self, event):

print("Delivery", event.delivery, "is rejected")

9.3. RECEIVING MESSAGES

To receive a message, create a receiver and override the on_message event handler.

Example: Receiving messages

class ExampleHandler(MessagingHandler):
def on_start(self, event):
conn = event.container.connect("amqp://example.com")
receiver = event.container.create_receiver(conn, "jobs")

24

https://github.com/amqphub/equipage/blob/master/qpid-proton-python/send.py

CHAPTER 9. MESSAGE DELIVERY

def on_message(self, event):
print("Received message", event.message, "from", event.receiver)

For more information, see the receive.py example.

9.4. ACKNOWLEDGING RECEIVED MESSAGES

To explicitly accept or reject a delivery, use the Delivery.update() method with the ACCEPTED or
REJECTED state in the on_message event handler.

Example: Acknowledging received messages

def on_message(self, event):
try:
process_message(event.message)
event.delivery.update(ACCEPTED)
except:
event.delivery.update(REJECTED)

By default, if you do not explicity acknowledge a delivery, then the library accepts it after on_message
returns. To disable this behavior, set the auto_accept receiver option to false.

25

https://github.com/amqphub/equipage/blob/master/qpid-proton-python/receive.py

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER 10. ERROR HANDLING

Errors in AMQ Python can be handled in two different ways:
® Catching exceptions

® Qverriding event-handling functions to intercept AMQP protocol or connection errors

10.1. CATCHING EXCEPTIONS

All of the exceptions that AMQ Python throws inherit from the ProtonException class, which in turn
inherits from the Python Exception class.

The following example illustrates how to catch any exception thrown from AMQ Python:

Example: API-specific exception handling

try:

Something that might throw an exception
except ProtonException as e:

Handle Proton-specific problems here
except Exception as e:

Handle more general problems here

}

If you do not require API-specific exception handling, you only need to catch Exception, since
ProtonException inherits from it.

10.2. HANDLING CONNECTION AND PROTOCOL ERRORS
You can handle protocol-level errors by overriding the following messaging_handler methods:
e on_transport_error(event)
® on_connection_error(event)
® on_session_error(event)
e on_link_error(event)

These event-handling functions are called whenever there is an error condition with the specific object
that is in the event. After calling the error handler, the appropriate close handler is also called.

NOTE

Because the close handlers are called in the event of any error, only the error itself needs
to be handled within the error handler. Resource cleanup can be managed by close
handlers. If there is no error handling that is specific to a particular object, it is typical to
use the general on_error handler and not have a more specific handler.

26

CHAPTER 10. ERROR HANDLING

NOTE

When reconnect is enabled and the remote server closes a connection with the
amgqp:connection:forced condition, the client does not treat it as an error and thus does
not fire the on_connection_error handler. The client instead begins the reconnection
process.

27

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER 1. LOGGING

11.1. ENABLING PROTOCOL LOGGING

The client can log AMQP protocol frames to the console. This data is often critical when diagnosing
problems.

To enable protocol logging, set the PN_TRACE_FRM environment variable to 1:

Example: Enabling protocol logging

$ export PN_TRACE_FRM=1
$ <your-client-program>

To disable protocol logging, unset the PN_TRACE_FRM environment variable.

28

CHAPTER 12. DISTRIBUTED TRACING

CHAPTER 12. DISTRIBUTED TRACING

12.1. ENABLING DISTRIBUTED TRACING

The client offers distributed tracing based on the Jaeger implementation of the OpenTracing standard.
Use the following steps to enable tracing in your application:

1. Install the tracing dependencies.

Red Hat Enterprise Linux 7

$ sudo yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
$ sudo yum install python2-pip

$ pip install --user --upgrade setuptools

$ pip install --user opentracing jaeger-client

Red Hat Enterprise Linux 8

$ sudo dnf install python3-pip
$ pip3 install --user opentracing jaeger-client

2. Register the global tracer in your program.

Example: Global tracer configuration

from proton.tracing import init_tracer

tracer = init_tracer("<service-name>")

For more information about Jaeger configuration, see Jaeger Sampling.

When testing or debugging, you may want to force Jaeger to trace a particular operation. See the
Jaeger Python client documentation for more information.

To view the traces your application captures, use the Jaeger Getting Started to run the Jaeger
infrastructure and console.

29

https://www.jaegertracing.io/docs/latest/sampling/
https://github.com/jaegertracing/jaeger-client-python#debug-traces-forced-sampling
https://www.jaegertracing.io/docs/latest/getting-started/

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER13. FILE-BASED CONFIGURATION

AMQ Python can read the configuration options used to establish connections from a local file named
connect.json. This enables you to configure connections in your application at the time of deployment.

The library attempts to read the file when the application calls the container connect method without
supplying any connection options.

13.1. FILE LOCATIONS

If set, AMQ Python uses the value of the MESSAGING_CONNECT _FILE environment variable to
locate the configuration file.

If MESSAGING_CONNECT _FILE is not set, AMQ Python searches for a file named connect.json at
the following locations and in the order shown. It stops at the first match it encounters.

On Linux:
1. $PWD/connect.json, where $PWD is the current working directory of the client process
2. $HOME/.config/messaging/connect.json, where $HOME is the current user home directory

3. /etc/messaging/connect.json

On Windows:

1. %cd%/connect.json, where %cd% is the current working directory of the client process

If no connect.json file is found, the library uses default values for all options.

13.2. THE FILE FORMAT
The connect.json file contains JSON data, with additional support for JavaScript comments.

All of the configuration attributes are optional or have default values, so a simple example need only
provide a few details:

Example: A simple connect.json file

{

"host": "example.com",
"user": "alice",
"password": "secret"

}

SASL and SSL/TLS options are nested under "sasl" and "tls" namespaces:

Example: A connect.json file with SASL and SSL/TLS options

"host": "example.com",
"user": "ortega",
"password": "secret",
"sasl": {

30

CHAPTER13. FILE-BASED CONFIGURATION

"mechanisms": ["'SCRAM-SHA-1", "SCRAM-SHA-256"]

}

",IS": {

"cert": "/home/ortega/cert.pem",
"key": "/home/ortega/key.pem"”

}

13.3. CONFIGURATION OPTIONS

The option keys containing a dot (.) represent attributes nested inside a namespace.

Table 13.1. Configuration options inconnect.json

Value type

Default
value

Description

scheme

host

port

user

password

sasl.mechanism
s

sasl.allow_insec

ure

tls.cert

tis.key

tls.ca

tis.verify

string

string

string or
number

string

string

list or string

boolean

string

string

string

boolean

’lamqps"

"localhost"

'lamqps"

None

None

None
(system
defaults)

false

None

None

None

true

"amqp" for cleartext or"amqps" for SSL/TLS

The hostname or IP address of the remote host

A port number or port literal

The user name for authentication

The password for authentication

A JSON list of enabled SASL mechanisms. A bare
string represents one mechanism. If none are
specified, the client uses the default mechanisms
provided by the system.

Enable mechanisms that send cleartext passwords

The filename or database ID of the client
certificate

The filename or database ID of the private key for
the client certificate

The filename, directory, or database ID of the CA
certificate

Require a valid server certificate with a matching
hostname

31

Red Hat AMQ 2021.Q1Using the AMQ Python Client

CHAPTER 14. INTEROPERABILITY

This chapter discusses how to use AMQ Python in combination with other AMQ components. For an
overview of the compatibility of AMQ components, see the product introduction.

14.1. INTEROPERATING WITH OTHER AMQP CLIENTS

AMQP messages are composed using the AMQP type system. This common format is one of the
reasons AMQP clients in different languages are able to interoperate with each other.

When sending messages, AMQ Python automatically converts language-native types to AMQP-
encoded data. When receiving messages, the reverse conversion takes place.

NOTE

More information about AMQP types is available at the interactive type reference
maintained by the Apache Qpid project.

Table 14.1. AMQP types

AMQP type Description

null An empty value

boolean A true or false value

char A single Unicode character
string A sequence of Unicode characters
binary A sequence of bytes

byte A signed 8-bit integer

short A signed 16-bit integer

int A signed 32-bit integer

long A signed 64-bit integer
ubyte An unsigned 8-bit integer
ushort An unsigned 16-bit integer
uint An unsigned 32-bit integer
ulong An unsigned 64-bit integer
float A 32-bit floating point number

32

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/introducing_red_hat_amq_7/#component_compatibility
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#toc
http://qpid.apache.org/amqp/type-reference.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-null
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-boolean
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-char
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-string
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-binary
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-byte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-short
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-int
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-long
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ubyte
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ushort
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uint
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-ulong
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-float

CHAPTER 14. INTEROPERABILITY

AMQP type Description

double A 64-bit floating point number

array A sequence of values of a single type

list A sequence of values of variable type

map A mapping from distinct keys to values

uuid A universally unique identifier

symbol A 7-bit ASCII string from a constrained domain
timestamp An absolute point in time

Table 14.2. AMQ Python types before encoding and after decoding

AMQP type AMQ Python type before encoding AMQ Python type after decoding
null None None
boolean bool bool
char proton.char unicode
string unicode unicode
binary bytes bytes
byte proton.byte int
short proton.short int

int proton.int32 long
long long long
ubyte proton.ubyte long
ushort proton.ushort long
uint proton.uint long
ulong proton.ulong long

33

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-double
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-array
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-list
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-map
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-uuid
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-symbol
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-types-v1.0-os.html#type-timestamp

Red Hat AMQ 2021.Q1Using the AMQ Python Client

Table 14.3. AMQ Python and other AMQ client types (1 of 2)

34

AMQP type

float

double

array

list

map

symbol

timestamp

AMQ Python type before encoding

proton.float32

float

proton.Array

list

dict

proton.symbol

proton.timestamp

AMQ Python type before encoding AMQ C++ type
None nullptr

bool bool
proton.char wchar_t
unicode std::string
bytes proton::binary

proton.byte

proton.short

proton.int32

long

proton.ubyte

proton.ushort

proton.uint

proton.ulong

int8_t

int16_t

int32_t

int64_t

uint8_t

uint16_t

uint32_t

uint64_t

AMQ Python type after decoding

float

float

proton.Array

list

dict

str

long

AMQ JavaScript type

null

boolean

number

string

string

number

number

number

number

number

number

number

number

CHAPTER 14. INTEROPERABILITY

AMQ Python type before encoding AMQ C++ type AMQ JavaScript type
proton.float32 float number

float double number
proton.Array - Array

list std::vector Array

dict std::map object

uuid.UUID proton::uuid number
proton.symbol proton::symbol string

proton.timestamp proton::timestamp number

Table 14.4. AMQ Python and other AMQ client types (2 of 2)

AMQ Python type before encoding AMQ .NET type AMQ Ruby type
None null nil

bool System.Boolean true, false
proton.char System.Char String
unicode System.String String
bytes System.Byte[] String
proton.byte System.SByte Integer
proton.short System.Int16 Integer
proton.int32 System.Int32 Integer
long System.Int64 Integer
proton.ubyte System.Byte Integer
proton.ushort System.UInt16 Integer
proton.uint System.UInt32 Integer

35

Red Hat AMQ 2021.Q1Using the AMQ Python Client

AMQ Python type before encoding AMQ .NET type AMQ Ruby type
proton.ulong System.UInt64 Integer
proton.float32 System.Single Float

float System.Double Float
proton.Array - Array

list Amgqp.List Array

dict Amgp.Map Hash
uuid.UUID System.Guid -
proton.symbol Amqp.Symbol Symbol
proton.timestamp System.DateTime Time

14.2. INTEROPERATING WITH AMQ JMS

AMQP defines a standard mapping to the JMS messaging model. This section discusses the various
aspects of that mapping. For more information, see the AMQ JMS Interoperability chapter.

JMS message types

AMQ Python provides a single message type whose body type can vary. By contrast, the JMS API uses
different message types to represent different kinds of data. The table below indicates how particular
body types map to JMS message types.

For more explicit control of the resulting JMS message type, you can set the x-opt-jms-msg-type
message annotation. See the AMQ JMS Interoperability chapter for more information.

Table 14.5. AMQ Python and JMS message types

AMQ Python body type JMS message type

unicode TextMessage
None TextMessage
bytes BytesMessage
Any other type ObjectMessage

14.3. CONNECTING TO AMQ BROKER

36

https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_the_amq_jms_client/#interoperability
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_the_amq_jms_client/#interoperability
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/TextMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/BytesMessage.html
http://docs.oracle.com/javaee/7/api/javax/jms/ObjectMessage.html

CHAPTER 14. INTEROPERABILITY

AMQ Broker is designed to interoperate with AMQP 1.0 clients. Check the following to ensure the
broker is configured for AMQP messaging:

® Port 5672 in the network firewall is open.
® The AMQ Broker AMQP acceptor is enabled. See Default acceptor settings.
® The necessary addresses are configured on the broker. See Addresses, Queues, and Topics.

® The broker is configured to permit access from your client, and the client is configured to send
the required credentials. See Broker Security.

14.4. CONNECTING TO AMQ INTERCONNECT

AMQ Interconnect works with any AMQP 1.0 client. Check the following to ensure the components are
configured correctly:

® Port 5672 in the network firewall is open.

® The router is configured to permit access from your client, and the client is configured to send
the required credentials. See Securing network connections.

37

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/configuring_amq_broker/#default-acceptor-settings-configuring
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/configuring_amq_broker/#addresses
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/configuring_amq_broker/#security
https://access.redhat.com/documentation/en-us/red_hat_amq/2021.Q1/html-single/using_amq_interconnect/#securing-network-connections-router-rhel

Red Hat AMQ 2021.Q1Using the AMQ Python Client

APPENDIX A. USING YOUR SUBSCRIPTION

AMQ is provided through a software subscription. To manage your subscriptions, access your account
at the Red Hat Customer Portal.

A.1. ACCESSING YOUR ACCOUNT

Procedure

1. Go to access.redhat.com.
2. If you do not already have an account, create one.

3. Login to your account.

A.2. ACTIVATING A SUBSCRIPTION

Procedure

1. Go to access.redhat.com.
2. Navigate to My Subscriptions.

3. Navigate to Activate a subscriptionand enter your 16-digit activation number.

A.3. DOWNLOADING RELEASE FILES

To access .zip, .tar.gz, and other release files, use the customer portal to find the relevant files for
download. If you are using RPM packages or the Red Hat Maven repository, this step is not required.

Procedure

1. Open a browser and log in to the Red Hat Customer Portal Product Downloads page at
access.redhat.com/downloads.

2. Locate the Red Hat AMQentries in the INTEGRATION AND AUTOMATION category.
3. Select the desired AMQ product. The Software Downloads page opens.

4. Click the Download link for your component.

A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

To install RPM packages for this product on Red Hat Enterprise Linux, your system must be registered. If
you are using downloaded release files, this step is not required.

Procedure

1. Go to access.redhat.com.
2. Navigate to Registration Assistant.

3. Select your OS version and continue to the next page.

38

https://access.redhat.com
https://access.redhat.com
https://access.redhat.com/downloads
https://access.redhat.com

APPENDIX A. USING YOUR SUBSCRIPTION

4. Use the listed command in your system terminal to complete the registration.
For more information about registering your system, see one of the following resources:
® Red Hat Enterprise Linux 7 - Registering the system and managing subscriptions

® Red Hat Enterprise Linux 8 - Registering the system and managing subscriptions

39

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#chap-Subscription_and_Support-Registering_a_System_and_Managing_Subscriptions
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#registering-the-system-and-managing-subscriptions_getting-started-with-system-administration

Red Hat AMQ 2021.Q1Using the AMQ Python Client

APPENDIX B. USING RED HAT ENTERPRISE LINUX PACKAGES

This section describes how to use software delivered as RPM packages for Red Hat Enterprise Linux.

To ensure the RPM packages for this product are available, you must first register your system.

B.1. OVERVIEW

A component such as a library or server often has multiple packages associated with it. You do not have
to install them all. You can install only the ones you need.

The primary package typically has the simplest name, without additional qualifiers. This package
provides all the required interfaces for using the component at program run time.

Packages with names ending in -devel contain headers for C and C++ libraries. These are required at
compile time to build programs that depend on this package.

Packages with names ending in -docs contain documentation and example programs for the
component.

For more information about using RPM packages, see one of the following resources:
® Red Hat Enterprise Linux 7 - Installing and managing software

® Red Hat Enterprise Linux 8 - Managing software packages

B.2. SEARCHING FOR PACKAGES

To search for packages, use the yum search command. The search results include package names,
which you can use as the value for <package> in the other commands listed in this section.

I $ yum search <keyword>...

B.3. INSTALLING PACKAGES

To install packages, use the yum install command.

I $ sudo yum install <package>...

B.4. QUERYING PACKAGE INFORMATION

To list the packages installed in your system, use the rpm -qa command.
I $ rom -ga

To get information about a particular package, use the rpm -qi command.
I $ rpm -qi <package>

To list all the files associated with a package, use the rpm -gl command.

I $ rom -gl <package>

40

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/system_administrators_guide/index#part-Installing_and_Managing_Software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html-single/configuring_basic_system_settings/index#managing-software-packages_configuring-basic-system-settings

APPENDIX B. USING RED HAT ENTERPRISE LINUX PACKAGES

41

Red Hat AMQ 2021.Q1Using the AMQ Python Client

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES

The AMQ Python examples require a running message broker with a queue named examples. Use the
procedures below to install and start the broker and define the queue.

C.1. INSTALLING THE BROKER

Follow the instructions in Getting Started with AMQ Broker to install the broker and create a broker
instance. Enable anonymous access.

The following procedures refer to the location of the broker instance as <broker-instance-dir>.

C.2.STARTING THE BROKER

Procedure

1. Use the artemis run command to start the broker.

I $ <broker-instance-dir>/bin/artemis run

2. Check the console output for any critical errors logged during startup. The broker logs Server
is now live when it is ready.

$ example-broker/bin/artemis run

ANV A |
NN e
FANTIVITE T </ NV
N O <

7\) N\ A\ N]

Red Hat AMQ <version>

2020-06-03 12:12:11,807 INFO [org.apache.activemq.artemis.integration.bootstrap]
AMQ101000: Starting ActiveMQ Artemis Server

2020-06-03 12:12:12,336 INFO [org.apache.activemq.artemis.core.server] AMQ221007:
Server is now live

C.3. CREATING A QUEUE

In a new terminal, use the artemis queue command to create a queue named examples.

$ <broker-instance-dir>/bin/artemis queue create --name examples --address examples --auto-
create-address --anycast

You are prompted to answer a series of yes or no questions. Answer N for no to all of them.

Once the queue is created, the broker is ready for use with the example programs.

C.4.STOPPING THE BROKER

42

https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/getting_started_with_amq_broker/#installing-broker-getting-started
https://access.redhat.com/documentation/en-us/red_hat_amq/2020.Q4/html-single/getting_started_with_amq_broker/#creating-broker-instance-getting-started

APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES

When you are done running the examples, use the artemis stop command to stop the broker.

I $ <broker-instance-dir>/bin/artemis stop

Revised on 2021-05-0710:16:25 UTC

43

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. OVERVIEW
	1.1. KEY FEATURES
	1.2. SUPPORTED STANDARDS AND PROTOCOLS
	1.3. SUPPORTED CONFIGURATIONS
	1.4. TERMS AND CONCEPTS
	1.5. DOCUMENT CONVENTIONS
	The sudo command
	File paths
	Variable text

	CHAPTER 2. INSTALLATION
	2.1. PREREQUISITES
	2.2. INSTALLING ON RED HAT ENTERPRISE LINUX
	2.3. INSTALLING ON MICROSOFT WINDOWS

	CHAPTER 3. GETTING STARTED
	3.1. PREREQUISITES
	3.2. RUNNING HELLO WORLD ON RED HAT ENTERPRISE LINUX
	3.3. RUNNING HELLO WORLD ON MICROSOFT WINDOWS

	CHAPTER 4. EXAMPLES
	4.1. SENDING MESSAGES
	Running the example

	4.2. RECEIVING MESSAGES
	Running the example

	CHAPTER 5. USING THE API
	5.1. HANDLING MESSAGING EVENTS
	5.2. ACCESSING EVENT-RELATED OBJECTS
	5.3. CREATING A CONTAINER
	5.4. SETTING THE CONTAINER IDENTITY

	CHAPTER 6. NETWORK CONNECTIONS
	6.1. CONNECTION URLS
	6.2. CREATING OUTGOING CONNECTIONS
	6.3. CONFIGURING RECONNECT
	6.4. CONFIGURING FAILOVER
	6.5. ACCEPTING INCOMING CONNECTIONS

	CHAPTER 7. SECURITY
	7.1. SECURING CONNECTIONS WITH SSL/TLS
	7.2. CONNECTING WITH A USER AND PASSWORD
	7.3. CONFIGURING SASL AUTHENTICATION
	7.4. AUTHENTICATING USING KERBEROS

	CHAPTER 8. SENDERS AND RECEIVERS
	8.1. CREATING QUEUES AND TOPICS ON DEMAND
	8.2. CREATING DURABLE SUBSCRIPTIONS
	8.3. CREATING SHARED SUBSCRIPTIONS

	CHAPTER 9. MESSAGE DELIVERY
	9.1. SENDING MESSAGES
	9.2. TRACKING SENT MESSAGES
	9.3. RECEIVING MESSAGES
	9.4. ACKNOWLEDGING RECEIVED MESSAGES

	CHAPTER 10. ERROR HANDLING
	10.1. CATCHING EXCEPTIONS
	10.2. HANDLING CONNECTION AND PROTOCOL ERRORS

	CHAPTER 11. LOGGING
	11.1. ENABLING PROTOCOL LOGGING

	CHAPTER 12. DISTRIBUTED TRACING
	12.1. ENABLING DISTRIBUTED TRACING

	CHAPTER 13. FILE-BASED CONFIGURATION
	13.1. FILE LOCATIONS
	13.2. THE FILE FORMAT
	13.3. CONFIGURATION OPTIONS

	CHAPTER 14. INTEROPERABILITY
	14.1. INTEROPERATING WITH OTHER AMQP CLIENTS
	14.2. INTEROPERATING WITH AMQ JMS
	JMS message types

	14.3. CONNECTING TO AMQ BROKER
	14.4. CONNECTING TO AMQ INTERCONNECT

	APPENDIX A. USING YOUR SUBSCRIPTION
	A.1. ACCESSING YOUR ACCOUNT
	A.2. ACTIVATING A SUBSCRIPTION
	A.3. DOWNLOADING RELEASE FILES
	A.4. REGISTERING YOUR SYSTEM FOR PACKAGES

	APPENDIX B. USING RED HAT ENTERPRISE LINUX PACKAGES
	B.1. OVERVIEW
	B.2. SEARCHING FOR PACKAGES
	B.3. INSTALLING PACKAGES
	B.4. QUERYING PACKAGE INFORMATION

	APPENDIX C. USING AMQ BROKER WITH THE EXAMPLES
	C.1. INSTALLING THE BROKER
	C.2. STARTING THE BROKER
	C.3. CREATING A QUEUE
	C.4. STOPPING THE BROKER

