
Red Hat OpenShift Documentation
Team

OpenShift Enterprise
2
Administration Guide

A Guide to OpenShift Enterprise Operation and Administration

OpenShift Enterprise 2 Administration Guide

A Guide to OpenShift Enterprise Operation and Administration

Red Hat OpenShift Documentation Team

Legal Notice

Copyright © 2017 Red Hat.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
The Administration Guide provides information on advanced configuration and administration of
OpenShift Enterprise deployments, and includes the following information: Platform administration
User administration Cartridge management Resource monitoring and management Monitoring with
the administration console Command reference for broker and node hosts This guide is intended for
experienced system administrators.

http://creativecommons.org/licenses/by-sa/3.0/

. .

. .

. .

. .

. .

. .

Table of Contents

Chapter 1. Introduction to OpenShift Enterprise
1.1. What's New in Current Release
1.2. Upgrading OpenShift Enterprise
1.3. Migrating from RHN Classic to RHSM

Chapter 2. Platform Administration
2.1. Changing the Front-end HTTP Configuration for Existing Deployments
2.2. Enabling User Login Normalization
2.3. Allowing Multiple HAProxies on a Node Host
2.4. Enabling Support for High-Availability Applications
2.5. Creating Environment Variables on Node Hosts
2.6. Controlling Direct SSL Connections to Gears
2.7. Setting Gear Supplementary Groups
2.8. Banning IP Addresses That Overload Applications
2.9. Enabling Maintenance Mode
2.10. Backup and Recovery

2.10.1. Backing Up Broker Host Files
2.10.2. Backing Up Node Host Files
2.10.3. Recovering Failed Node Hosts
2.10.4. Recreating /etc/passwd Entries

2.11. Component Timeout Value Locations
2.12. Enabling Network Isolation for Gears

Chapter 3. User Administration
3.1. Creating a User
3.2. Removing User Applications
3.3. Removing User Data
3.4. Removing a User
3.5. Enabling Users to Add a Kerberos Principal SSH Key
3.6. Setting Default Maximum Number of Domains per User
3.7. Managing Custom Domain Aliases
3.8. Determining Gear Ownership

Chapter 4. Team and Global Team Management
4.1. Setting the Maximum Number of Teams for Specific Users
4.2. Creating Global Teams and Synchronizing with LDAP Groups

4.2.1. Encrypting an LDAP Global Team Connection
4.2.2. Enabling Global Team Visibility

Chapter 5. Cartridge Management
5.1. Managing Cartridges on Broker Hosts

5.1.1. Importing, Activating, and Deactivating Cartridges
5.1.2. Migrating and Upgrading Existing Applications to Active Cartridges
5.1.3. Removing Unused Inactive Cartridges

5.2. Installing and Removing Custom and Community Cartridges
5.3. Upgrading Custom and Community Cartridges
5.4. Adding QuickStarts to the Management Console
5.5. Disabling Downloadable Cartridges
5.6. Disabling Obsolete Cartridges

Chapter 6. Resource Management
6.1. Adding or Modifying Gear Profiles
6.2. Capacity Planning and Districts

4
4
4
4

7
7
8
9
9

11
11
12
13
13
14
14
14
15
17
17
19

21
21
21
22
22
23
23
23
24

25
25
25
27
28

29
29
30
31
32
33
36
37
39
39

41
41
42

Table of Contents

1

. .

. .

6.2.1. Hierarchy of OpenShift Enterprise Entities
6.2.2. Purpose of Districts
6.2.3. Gear Capacity Planning

6.2.3.1. Gear Capacity Planning for Nodes
6.2.3.2. Gear Capacity Planning for Districts

6.3. Managing Districts
6.3.1. Enabling Districts
6.3.2. Creating and Populating Districts
6.3.3. Viewing District Information
6.3.4. Viewing Capacity Statistics
6.3.5. Moving Gears Between Nodes
6.3.6. Removing Nodes from Districts
6.3.7. Removing Districts

6.4. Managing Regions and Zones
6.4.1. Creating a Region with Zones
6.4.2. Tagging a Node with a Region and Zone
6.4.3. Setting the Default Region For New Applications
6.4.4. Disabling Region Selection
6.4.5. Additional Region and Zone Tasks

6.5. Gear Placement Algorithm
6.6. Setting Default Gear Quotas and Sizes
6.7. Setting Gear Quotas and Sizes for Specific Users
6.8. Restricting Gear Sizes for Cartridges
6.9. Viewing Resource Usage on a Node
6.10. Enforcing Low Tenancy on Nodes
6.11. Managing Capacity on Broker Hosts

Chapter 7. Administration Console
7.1. Understanding the System Overview
7.2. Viewing Gear Profiles
7.3. Viewing Suggestions
7.4. Searching for Entities
7.5. Viewing Statistics
7.6. Configuring Suggestions
7.7. Loading Capacity Data from a File
7.8. Exposed Data

Chapter 8. Monitoring
8.1. General System Checks
8.2. Response Times for Administrative Actions
8.3. Testing a Path Through the Whole System
8.4. Monitoring Broker Activity

8.4.1. Default Broker Log File Locations
8.4.2. Verifying Functionality with Administration Commands

8.5. Monitoring Node and Gear Activity
8.5.1. Default Node Log File Locations
8.5.2. Enabling Application and Gear Context in Node Component Logs
8.5.3. Viewing Application Details
8.5.4. The Watchman Tool

8.5.4.1. Enabling Watchman
8.5.4.2. Supported Watchman Plug-ins
8.5.4.3. Configuring Watchman

8.5.5. Testing Node Host Functionality
8.5.6. Validating Gears

42
43
43
43
44
45
45
46
47
48
49
49
50
50
51
51
52
52
53
53
55
56
57
58
58
58

60
60
60
62
62
63
63
63
64

65
65
65
66
66
66
66
67
67
68
68
70
70
70
72
72
73

Administration Guide

2

. .

. .

8.5.6. Validating Gears
8.5.7. Node Capacity

8.6. Monitoring Management Console Activity
8.6.1. Default Management Console Log File Locations

8.7. Usage Tracking
8.7.1. Setting Tracked and Untracked Storage
8.7.2. Viewing Accumulated Usage Data

8.8. Enabling Syslog
8.8.1. Enabling Syslog for Broker Components
8.8.2. Enabling Syslog for Node Components
8.8.3. Enabling Syslog for Cartridge Logs from Gears
8.8.4. Enabling Syslog for Management Console Components

Chapter 9. Command Reference
9.1. Broker Administration Commands

9.1.1. oo-accept-broker
9.1.2. oo-accept-systems
9.1.3. oo-admin-chk
9.1.4. oo-admin-clear-pending-ops
9.1.5. oo-admin-console-cache
9.1.6. oo-admin-broker-auth
9.1.7. oo-admin-broker-cache
9.1.8. oo-admin-ctl-app
9.1.9. oo-admin-ctl-authorization
9.1.10. oo-admin-ctl-district
9.1.11. oo-admin-ctl-domain
9.1.12. oo-admin-ctl-region
9.1.13. oo-admin-ctl-team
9.1.14. oo-admin-ctl-usage
9.1.15. oo-admin-ctl-user
9.1.16. oo-admin-move
9.1.17. oo-admin-repair
9.1.18. oo-admin-upgrade
9.1.19. oo-admin-usage
9.1.20. oo-admin-ctl-cartridge
9.1.21. oo-register-dns

9.2. Node Administration Commands
9.2.1. oo-accept-node
9.2.2. oo-admin-ctl-gears
9.2.3. oo-idler-stats
9.2.4. Idler Commands

9.2.4.1. oo-last-access
9.2.4.2. oo-auto-idler

Appendix A. Revision History

73
73
73
73
73
74
75
77
77
77
79
84

86
86
86
86
87
88
88
89
89
89
89
89
90
90
90
91
92
93
93
93
93
94
94
95
95
95
95
95
95
96

97

Table of Contents

3

Chapter 1. Introduction to OpenShift Enterprise

OpenShift Enterprise by Red Hat is a Platform as a Service (PaaS) that provides developers and IT
organizations with an auto-scaling, cloud application platform for deploying new applications on secure,
scalable resources with minimal configuration and management overhead. OpenShift Enterprise supports a
wide selection of programming languages and frameworks, such as Java, Ruby, and PHP. Integrated
developer tools, such as Eclipse integration, JBoss Developer Studio, and Jenkins, support the application life
cycle.

Built on Red Hat Enterprise Linux, OpenShift Enterprise provides a secure and scalable multi-tenant
operating system for today's enterprise-class applications while providing integrated application runtimes and
libraries.

OpenShift Enterprise brings the OpenShift PaaS platform to customer data centers, enabling organizations to
implement a private PaaS that meets security, privacy, compliance, and governance requirements.

1.1. What's New in Current Release

For a complete list of all the new features available in the current release of OpenShift Enterprise, see the
current edition of the OpenShift Enterprise Release Notes at https://access.redhat.com/site/documentation.
New features that are available in the current release are documented in the respective sections of this book.

1.2. Upgrading OpenShift Enterprise

OpenShift Enterprise relies on a complex set of dependencies; to avoid problems, caution is required when
applying software upgrades to broker and node hosts.

For bug fixes and other targeted changes, updated RPMs are released in existing channels. Read errata
advisories carefully for instructions on how to safely apply upgrades and details of required service restarts
and configuration changes. For example, when upgrading rubygem packages required by the broker
application, it is necessary to restart the openshift-broker service. This step regenerates the bundler
utility's Gemfile.lock file and allows the broker application and related administrative commands to use
the updated gems. See the latest OpenShift Enterprise Deployment Guide at
https://access.redhat.com/site/documentation for instructions on how to apply asynchronous errata updates.

For systemic upgrades from previous versions of OpenShift Enterprise requiring formal migration scripts and
lockstep package updates, see the latest OpenShift Enterprise Deployment Guide at
https://access.redhat.com/site/documentation for instructions on how to use the ose-upgrade tool.

1.3. Migrating from RHN Classic to RHSM

The Red Hat Network (RHN) Classic hosted subscription service on the Red Hat Customer Portal is being
deprecated. The product life cycles for OpenShift Enterprise major versions 1 and 2 end before the RHN
Classic end date. However, existing OpenShift Enterprise host systems that were registered using the RHN
Classic hosted subscription method can be migrated to Red Hat Subscription Management (RHSM). This
applies to systems running OpenShift Enterprise version 1 or 2 that host any OpenShift Enterprise
component: broker, node, message server, database server, or combinations of these.

Red Hat recommends performing this migration on any affected systems as soon as possible. Once the
transition to Red Hat Subscription Management for all Red Hat products is completed, then RHN Classic will
no longer provide services to registered systems. More information on this transition can be found at
https://access.redhat.com/rhn-to-rhsm.

The migration process unregisters the system from Red Hat Network (RHN) Classic, then registers it with

Administration Guide

4

https://access.redhat.com/site/documentation
https://access.redhat.com/site/documentation
https://access.redhat.com/site/documentation
https://access.redhat.com/support/policy/updates/openshift
https://access.redhat.com/rhn-to-rhsm

Red Hat Subscription Management and attaches subscriptions using the subscription-manager CLI. The
migration tools are contained in the subscription-manager-migration package. An additional package,
subscription-manager-migration-data, is required to map the RHN Classic channels to Red Hat Subscription
Management product certificates.

The Red Hat Subscription Management - Migrating from RHN Classic guide provides detailed instructions on
migrating Red Hat Enterprise Linux systems to Red Hat Subscription Management.

The following procedure provides a basic overview of this migration and is catered to Red Hat Enterprise
Linux systems hosting OpenShift Enterprise components.

Procedure 1.1. To Migrate from RHN Classic to RHSM:

1. Use the oo-admin-yum-validator validation tool to verify that the system's yum configuration for
the current subscription method is valid for the installed OpenShift Enterprise version and
components. Use the -o option for the version and the -r option for the components.

Example 1.1. Verifying a Host With the Validation Tool

The following example is for an OpenShift Enterprise 2.2 broker host:

oo-admin-yum-validator -o 2.2 -r broker

If run without options, the validation tool attempts to detect the installed version and components. If
any problems are reported, fix them manually or use the validation tool's --fix or --fix-all
options to attempt to fix them automatically.

Additional details on running the validation tool can be found in this knowledgebase article or in the
oo-admin-yum-validator man page.

2. Install the migration tool packages:

yum install subscription-manager-migration subscription-manager-
migration-data

3. Use the rhn-migrate-classic-to-rhsm tool to initiate the migration. This tool has many options
available, including registering to on-premise services and manually selecting subscriptions. If run
without options, this tool migrates the system profile, registers the system with Red Hat Subscription
Management, and automatically attaches the system to the best-matched subscriptions:

rhn-migrate-classic-to-rhsm

Consult the Red Hat Subscription Management - Migrating from RHN Classic guide or the rhn-
migrate-classic-to-rhsm man page for details on additional options that may be relevant to
your organization and environment.

Chapter 1. Introduction to OpenShift Enterprise

5

https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html-single/MigratingRHN/index.html#rhn-migration-classic
https://access.redhat.com/articles/386273#Running_the_Validation_Tool
https://access.redhat.com/documentation/en-US/Red_Hat_Subscription_Management/1/html-single/MigratingRHN/index.html#rhn-migrate-classic

Note

A known issue, which will be fixed in Red Hat Enterprise Linux 6.6, prevents the migration tool
from automatically enabling the required channels on OpenShift Enterprise 2.1 systems. You
can work around this issue by using the migration tool with the --force and --no-auto
options; this continues registering the system to Red Hat Subscription Management, but does
not automatically attach a subscription. Once the migration is complete, manually attach the
desired OpenShift Enterprise subscription using the subscription-manager tool:

subscription-manager attach --pool Pool_ID

4. After the migration completes, use the subscription-manager tool to list information about the
migration including the previous system ID:

Example 1.2. Listing Migration Information

subscription-manager facts --list | grep migr
migration.classic_system_id: 09876
migration.migrated_from: rhn_hosted_classic
migration.migration_date: 2012-09-14T14:55:29.280519

5. Use the oo-admin-yum-validator validation tool again to verify that the system's yum
configuration is still valid under the new subscription method, and correct any issues that are
reported.

Administration Guide

6

https://bugzilla.redhat.com/show_bug.cgi?id=1129434

Chapter 2. Platform Administration

This chapter covers tasks related to the various OpenShift Enterprise platform components on broker and
node hosts.

2.1. Changing the Front-end HTTP Configuration for Existing Deployments

Starting with OpenShift Enterprise 2.2, the Apache Virtual Hosts front-end HTTP proxy is the default for
new deployments. If your nodes are currently using the previous default, the Apache mod_rewrite plug-in,
you can use the following procedure to change the front-end configuration of your existing deployment.

Configuring the HTTP front-end for an already-deployed OpenShift Enterprise instance after it has been
configured is possible, but Red Hat recommends caution when doing so. You must first prevent any front-end
changes made by the broker, such as creating or deleting application gears, on the node host containing the
applications during this configuration change. Performing a verified backup of the node host before
commencing configuration is highly recommended.

See the OpenShift Enterprise Deployment Guide for more information about installing and configuring front-
end HTTP server plug-ins.

Procedure 2.1. To Change the Front-end HTTP Configuration on an Existing Deployment:

1. To prevent the broker from making any changes to the front-end during this procedure, stop the
ruby193-mcollective service on the node host:

service ruby193-mcollective stop

Then set the following environment variable to prevent each front-end change from restarting the
httpd service:

export APACHE_HTTPD_DO_NOT_RELOAD=1

2. Back up the existing front-end configuration. You will use this backup to restore the complete state of
the front end after the process is complete. Replace filename with your desired backup storage
location:

oo-frontend-plugin-modify --save > filename

3. Delete the existing front-end configuration:

oo-frontend-plugin-modify --delete

4. Remove and install the front-end plug-in packages as necessary:

yum remove rubygem-openshift-origin-frontend-apache-mod-rewrite
yum -y install rubygem-openshift-origin-frontend-apache-vhost

5. Replicate any Apache customizations reliant on the old plug-in onto the new plug-in, then restart the
httpd service:

service httpd restart

Chapter 2. Platform Administration

7

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/Deployment_Guide/chap-Continuing_Node_Host_Installation_for_Enterprise.html#sect-Front-End_Server_Proxies

6. Change the OPENSHIFT_FRONTEND_HTTP_PLUGINS value in the /etc/openshift/node.conf
file from openshift-origin-frontend-apache-mod-rewrite to openshift-origin-
frontend-apache-vhost:

OPENSHIFT_FRONTEND_HTTP_PLUGINS="openshift-origin-frontend-apache-
vhost"

7. Un-set the previous environment variable to restarting the httpd service as normal after any front-end
changes:

export APACHE_HTTPD_DO_NOT_RELOAD=""

8. Restart the MCollective service:

service ruby193-mcollective restart

9. Restore the HTTP front-end configuration from the backup you created in step one:

oo-frontend-plugin-modify --restore < filename

2.2. Enabling User Login Normalization

You can enforce normalization for user logins by enabling a selection of default or custom methods on the
broker. This is helpful when using authentication methods like LDAP or Kerberos that can be case-sensitive
or use a domain in the login. Without normalization, logins with different letter cases or domain suffixes are
stored by the broker as distinct user accounts.

For example, when normalization is enabled using the lowercase method, a user logging in as JDoe is
authenticated using the configured authentication method, then the login is normalized as jdoe by the broker
to access the jdoe user account on OpenShift Enterprise. When normalization is not enabled, a user logging
in as JDoe is authenticated using the configured authentication method and accesses the JDoe user account
on OpenShift Enterprise, while a user logging in as jdoe ultimately accesses a separate jdoe user account.

Warning

Existing logins are not automatically updated when normalization settings are changed. As a result, it
is possible for existing user accounts to no longer be accessible if the login was not previously
normalized.

The following default methods are available:

Table 2.1. Available Default User Login Normalization Methods

Method Function
strip Removes any additional spaces on either side of the

login.
lowercase Changes all characters to lowercase. For example:

JDoe --> jdoe

remove_domain Removes a domain suffix. For example:
jdoe@example.com --> jdoe

Administration Guide

8

To enable normalization, edit the /etc/openshift/broker.conf file on the broker host and provide one
or more methods in the NORMALIZE_USERNAME_METHOD parameter using a comma-separated list:

Example 2.1. Setting User Login Normalization Methods

NORMALIZE_USERNAME_METHOD="lowercase,remove_domain"

Restart the broker service for any changes to take effect:

service openshift-broker restart

2.3. Allowing Multiple HAProxies on a Node Host

The ALLOW_MULTIPLE_HAPROXY_ON_NODE setting, located in the /etc/openshift/broker.conf file, is
set to false by default. In production environments, Red Hat recommends to leave this setting as default. If
two or more HAProxies for a single application reside on the same node host, the front-end Apache will map
the DNS or alias to one HAProxy gear and not for the remaining HAProxy gears. If, for example, you have
only one node host and wish to enable scalability, changing the ALLOW_MULTIPLE_HAPROXY_ON_NODE
setting to true allows multiple HAProxy gears for the same application to reside on the same node host.

Procedure 2.2. To Allow Multiple HAProxies on a Single Node:

1. Open the /etc/openshift/broker.conf file on the broker host and set the
ALLOW_MULTIPLE_HAPROXY_ON_NODE value to true:

ALLOW_MULTIPLE_HAPROXY_ON_NODE="true"

2. Restart the openshift-broker service:

service openshift-broker restart

2.4. Enabling Support for High-Availability Applications

If you have configured an external routing layer, either the included sample or your own, to route application
traffic, you must enable support for high-availability applications and configure specific DNS management
options before developers can take advantage of these features.

Note

See the OpenShift Enterprise Deployment Guide for more information on using an external routing
layer for high-availability applications, including how to configure the sample routing plug-in and
routing daemon.

Procedure 2.3. To Enable Support for High-Availability Applications:

Chapter 2. Platform Administration

9

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#sect-Using_an_External_Routing_Layer_for_High-Availability_Applications

1. To allow scalable applications to become highly available using the configured external router, edit
the /etc/openshift/broker.conf file on the broker host and set the
ALLOW_HA_APPLICATIONS parameter to "true":

ALLOW_HA_APPLICATIONS="true"

Note that this parameter controls whether high-availability applications are allowed in general, but
does not adjust user account capabilities. User account capabilities are discussed in a later step.

2. A scaled application that is not highly available uses the following URL form:

http://${APP_NAME}-${DOMAIN_NAME}.${CLOUD_DOMAIN}

When high-availability is enabled, HAproxy instances are deployed in multiple gears of the
application, which are spread across multiple node hosts. In order to load balance user requests, a
high-availability application requires a new high-availability DNS name that points to the external
routing layer rather than directly to the application head gear. The routing layer then forwards
requests directly to the application's HAproxy instances, which are then distributed to the framework
gears. In order to create DNS entries for high-availability applications that point to the routing layer,
OpenShift Enterprise adds either a prefix or suffix, or both, to the regular application name:

http://${HA_DNS_PREFIX}${APP_NAME}-
${DOMAIN_NAME}${HA_DNS_SUFFIX}.${CLOUD_DOMAIN}

To change the prefix or suffix used in the high-availability URL, you can modify the HA_DNS_PREFIX
or HA_DNS_SUFFIX parameters:

HA_DNS_PREFIX="ha-"
HA_DNS_SUFFIX=""

If you modify the HA_DNS_PREFIX parameter and are using the sample routing daemon, ensure this
parameter and the HA_DNS_PREFIX parameter in the /etc/openshift/routing-daemon.conf
file are set to the same value.

3. DNS entries for high-availability applications can either be managed by OpenShift Enterprise or
externally. By default, this parameter is set to "false", which means the entries must be created
externally; failure to do so could prevent the application from receiving traffic through the external
routing layer. To allow OpenShift Enterprise to create and delete these entries when applications are
created and deleted, set the MANAGE_HA_DNS parameter to "true":

MANAGE_HA_DNS="true"

Then set the ROUTER_HOSTNAME parameter to the public hostname of the external routing layer,
which the DNS entries for high-availability applications point to. Note that the routing layer host must
be resolvable by the broker:

ROUTER_HOSTNAME="www.example.com"

4. For developers to enable high-availability support with their scalable applications, they must have the
HA allowed capability enabled on their account. By default, the DEFAULT_ALLOW_HA parameter is
set to "false", which means user accounts are created with the HA allowed capability initially
disabled. To have this capability enabled by default for new user accounts, set DEFAULT_ALLOW_HA
to "true":

Administration Guide

10

DEFAULT_ALLOW_HA="true"

You can also adjust the HA allowed capability per user account using the oo-admin-ctl-user
command with the --allowha option:

oo-admin-ctl-user -l user --allowha true

5. To make any changes made to the /etc/openshift/broker.conf file take effect, restart the
broker service:

service openshift-broker restart

Note that this procedure only enables the support for high-availability applications. See the OpenShift
Enterprise User Guide for a procedure on how a user can make an application highly-available.

2.5. Creating Environment Variables on Node Hosts

With the release of OpenShift Enterprise 2.1, you can provide environment variables for all applications on a
node host by specifying them in the /etc/openshift/env directory. By creating a file in the
/etc/openshift/env directory on a node host, an environment variable is created with the same name as
the file name, and the value being set to the contents of the file.

Environment variables set in the /etc/openshift/env directory are only set for gear users, and not for
system services or other users on the node host. For example, the MCollective service does not have access
to these settings during the gear and cartridge creation process.

Application owners can use the rhc env set command to override any environment variables set in the
/etc/openshift/env directory.

Procedure 2.4. Creating Environment Variables on a Node Host

1. Create a new file in the /etc/openshift/env directory on the node hosts that you want the
environment variable set. For example, to allow applications to use an external database, set an
external database environment variable EXT_DB_CONNECTION_URL with the value of
mysql://host.example.com:3306/

echo mysql://host.example.com:3306/ >
/etc/openshift/env/EXT_DB_CONNECTION_URL

2. To make the changes take effect for existing applications, ask affected application owners to restart
their applications by running the following commands:

$ rhc app stop -a appname
$ rhc app start -a appname

Alternatively, you can restart all gears on affected node hosts. The downtime caused by restarting all
gears is minimal and around a few seconds.

oo-admin-ctl-gears restartall

2.6. Controlling Direct SSL Connections to Gears

Chapter 2. Platform Administration

11

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/User_Guide/index.html#Making_Applications_Highly_Available

In some environments, regulations may require encrypted connections between the client and the server,
therefore the need for SSL connections. SSL connections to gears are either allowed, denied, or forced. By
default, direct SSL connections to gears are allowed if a cartridge supports the feature and is currently only
available for customized cartridges.

Enabling SSL connection allows request to the HTTP front-end to be routed as https to applications. Non-
HTTP front-end ports, for example database ports, can have SSL_TO_GEAR enabled to be exposed for direct
connections using the PROXY_PORTS parameter. However, this requires setting up an external router.

Note

As an alternative, you can use a custom cartridge that supports SNI proxy to allow SSL connections
over non-HTTP ports. SNI proxy uses a local proxy running on the node host and does not require an
external router. Specific ports must be configured to route SSL to gears. See the OpenShift Enterprise
Deployment Guide at https://access.redhat.com/site/documentation for more information. Websocket
does not handle SSL connections.

Configure the SSL_ENDPOINT setting in the /etc/openshift/broker.conf file to one of the following
options to control access to cartridges that specify direct connections to gears:

allow

If the cartridge being added to a new application specifies direct SSL connections to gears,
configure the appropriate SSL routing. This is the default option.

deny

If the cartridge being added to a new application specifies direct SSL connections to gears, do not
allow the application to be created.

force

If the cartridge being added to a new application specifies direct SSL connections to gears, set up
the appropriate SSL routing. If the cartridge being added to a new application does not specify
direct SSL connections to gears, do not allow the application to be created.

Whether cartridges that specify direct SSL connection to the gear
are allowed, denied or forced.
SSL_ENDPOINT="allow"
SSL_ENDPOINT="deny"
SSL_ENDPOINT="force"

2.7. Setting Gear Supplementary Groups

When the broker creates a gear, the gear is assigned a UNIX user UID and a matching group UID. Additional
groups to the gears on a node can be assigned so that you can make group-owned files available to all the
gears on the node.

Use the GEAR_SUPL_GRPS setting in /etc/openshift/node.conf file to designate additional groups for
the gears on that node. Note that you must create a group using standard system commands before you can
add it to GEAR_SUPL_GRPS. Separate multiple groups with commas.

GEAR_SUPL_GRPS="my_group,another_group"

Administration Guide

12

https://access.redhat.com/site/documentation

Note

As a security measure, root and wheel groups cannot be used as values for GEAR_SUPL_GRPS.

2.8. Banning IP Addresses That Overload Applications

If an application user accesses an application with excessive frequency, you can block that user by banning
their IP address.

Note

The ban instituted by the following procedure applies to all gears on the node host, including the over-
accessed gear.

Procedure 2.5. To Ban an IP Address:

1. Run the following command to view a CNAME to the node host where the application's gear is
located:

dig appname-domain.example.com

2. On the node host identified in the previous step, check the application's apache logs for unusual
activity. For example, a high frequency of accesses (3 to 5 per second) from the same IP address in
the access_log file may indicate abuse:

tail -f /var/lib/openshift/appUUID/appname/logs/*

3. Ban the offending IP addresses by placing them in iptables, running the following command for each
IP address:

iptables -A INPUT -s IP_address -j DROP

4. If you are using a configuration management system, configure it appropriately to ban the offending
IP addresses. For non-managed configurations, save your new iptables rules:

service iptables save

2.9. Enabling Maintenance Mode

The broker can be put into maintenance mode, in which it is running and responding, but developer requests
are refused with a predefined notification message. This is useful for keeping developers informed while you
perform maintenance on the OpenShift Enterprise deployment, rather than refusing the connections entirely.

Procedure 2.6. To Enable Maintenance Mode:

1. Enable maintenance mode using the ENABLE_MAINTENANCE_MODE setting in the
/etc/openshift/broker.conf file on the broker host:

Chapter 2. Platform Administration

13

ENABLE_MAINTENANCE_MODE="true"

2. Define the location of the notification message using the MAINTENANCE_NOTIFICATION_FILE
setting:

MAINTENANCE_NOTIFICATION_FILE="/etc/openshift/outage_notification.txt"

3. Create or edit the file defined in the MAINTENANCE_NOTIFICATION_FILE setting to contain the
desired notification message seen by developers while the broker is in maintenance mode.

4. Restart the broker service:

service openshift-broker restart

2.10. Backup and Recovery

Red Hat recommends backing up important broker and node host files to prevent data loss. This includes
platform configuration files and developer application data. The following sections detail which files to back
up, and how you can recover them in the event of a failure.

2.10.1. Backing Up Broker Host Files

The authentication service, DNS service, and the MongoDB datastore components of the broker host contain
persistent state. Consult your system administrator for advice on how to implement fault tolerance for the
authentication and DNS services you have selected for your OpenShift Enterprise installation.

See the OpenShift Enterprise Deployment Guide for instructions on how to configure redundancy with
MongoDB. See the following MongoDB documentation for more information on how to implement fault
tolerance with data storage and take regular backups:

Backup Strategies for MongoDB Systems - http://docs.mongodb.org/manual/administration/backups/

In the OpenShift Enterprise Deployment Guide example installation, the MongoDB data is stored in the
/var/lib/mongodb directory, which can be used as a potential mount point for fault tolerance or as
backup storage.

2.10.2. Backing Up Node Host Files

Backing up certain node host files can help prevent data loss. You can use standard Red Hat Enterprise
Linux software, such as tar or cpio, to perform this backup. Red Hat recommends backing up the following
node host files and directories:

/opt/rh/ruby193/root/etc/mcollective

/etc/passwd

/var/lib/openshift

/etc/openshift

Administration Guide

14

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#MongoDB1
http://docs.mongodb.org/manual/administration/backups/
https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html

Important

Backing up the /var/lib/openshift directory is paramount to recovering a node host, including
head gears of scaled applications, which contain data that cannot be recreated. If the file is
recoverable, then it is possible to recreate a node from the existing data. Red Hat recommends this
directory be backed up on a separate volume from the root file system, preferably on a Storage Area
Network.

If the data from these files is lost, see Section 2.10.3, “Recovering Failed Node Hosts” for instructions on how
to recover a failed node host.

Stateless and Stateful Applications

Even though applications on OpenShift Enterprise are stateless by default, developers can also use
persistent storage for stateful applications by placing files in their $OPENSHIFT_DATA_DIR directory. See
the OpenShift Enterprise User Guide for more information.

Stateless applications are more easily recovered; if an application is treated as stateless, then node hosts
can easily be added to and destroyed in your deployment and you can create cron scripts to clean up these
hosts. For stateful applications, Red Hat recommends keeping the state on a separate shared storage
volume. This ensures the quick recovery of a node host in the event of a failure.

Note

Developers can also take snapshots of their applications as another way to back up and restore their
application data. See the OpenShift Enterprise User Guide for more information.

See Also:

Section 2.10.3, “Recovering Failed Node Hosts”

2.10.3. Recovering Failed Node Hosts

Important

This section presumes you have backed up the /var/lib/openshift directory. See
Section 2.10.2, “Backing Up Node Host Files” for more information.

A failed node host can be recovered if the /var/lib/openshift gear directory had fault tolerance and can
be restored. SELinux contexts must be preserved with the gear directory in order for recovery to succeed.
Note this scenario rarely occurs, especially when node hosts are virtual machines in a fault-tolerant
infrastructure rather than physical machines. Note that scaled applications cannot be recovered onto a node
host with a different IP address than the original node host.

Procedure 2.7. To Recover a Failed Node Host:

1. Create a node host with the same host name and IP address as the one that failed.

Chapter 2. Platform Administration

15

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/User_Guide/index.html#Directory_Environment_Variables4
https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/User_Guide/chap-Application_Backup_and_Restoration_with_Snapshots.html

a. The host name DNS A record can be adjusted if the IP address must be different. However,
note that the application CNAME and database records all point to the host name and cannot
be easily changed.

b. Ensure the ruby193-mcollective service is not running on the new node host:

service ruby193-mcollective stop

c. Copy all the configuration files in the /etc/openshift directory from the failed node host
to the new node host and ensure that the gear profile is the same.

2. Attach and mount the backup to /var/lib/openshift, ensuring the usrquota mount option is
used:

echo "/dev/path/to/backup/partition /var/lib/openshift/ ext4
defaults,usrquota 0 0" >> /etc/fstab
mount -a

3. Reinstate quotas on the /var/lib/openshift directory:

quotacheck -cmug /var/lib/openshift
restorecon /var/lib/openshift/aquota.user
quotaon /var/lib/openshift

4. Run the oo-admin-regenerate-gear-metadata tool, available starting in OpenShift Enterprise
2.1.6, on the new node host to replace and recover the failed gear data. This browses each existing
gear on the gear data volume and ensures it has the correct entries in certain files, and if necessary,
performs any fixes:

oo-admin-regenerate-gear-metadata

This script attempts to regenerate gear entries for:
 * /etc/passwd
 * /etc/shadow
 * /etc/group
 * /etc/cgrules.conf
 * /etc/cgconfig.conf
 * /etc/security/limits.d

Proceed? [yes/NO]: yes

The oo-admin-regenerate-gear-metadata tool will not make any changes unless it notices
any missing entries. Note that this tool can be added to a node host deployment script.

Alternatively, if you are using OpenShift Enteprise 2.1.5 or earlier, replace the /etc/passwd file on
the new node host with the content from the original, failed node host. If this backup file was lost, see
Section 2.10.4, “Recreating /etc/passwd Entries” for instructions on recreating the /etc/passwd file.

5. When the oo-admin-regenerate-gear-metadata tool completes, it runs the oo-accept-
node command and reports the output:

Running oo-accept-node to check node consistency...
...
FAIL: user 54fe156faf1c09b9a900006f does not have quotas imposed. This
can be addressed by running: oo-devel-node set-quota --with-container-

Administration Guide

16

uuid 54fe156faf1c09b9a900006f --blocks 2097152 --inodes 80000

If there are any quota errors, run the suggested quota command, then run the oo-accept-node
command again to ensure the problem has been resolved:

oo-devel-node set-quota --with-container-uuid
54fe156faf1c09b9a900006f --blocks 2097152 --inodes 80000
oo-accept-node

6. Reboot the new node host to activate all changes, start the gears, and allow MCollective and other
services to run.

2.10.4. Recreating /etc/passwd Entries

For node host recovery, you can recreate the /etc/passwd entries for all gears if this backup file was lost.

Note

If you are using OpenShift Enterprise 2.1.6 or later, you can instead run the oo-admin-
regenerate-gear-metadata tool on a node host to replace and recover the failed gear data,
including /etc/passwd entries.

Procedure 2.8. To Recreate /etc/passwd Entries:

1. Get a list of UUIDs from the directories in /var/lib/openshift.

2. For each UUID, ensure the UNIX UID and GID values correspond to the group ID of the
/var/lib/openshift/UUID directory. See the fourth value in the output from the following
command:

ls -d -n /var/lib/openshift/UUID

3. Create the corresponding entries in /etc/passwd, using another node's /etc/passwd file for
reference.

2.11. Component Timeout Value Locations

Timeouts are useful for testing the interoperability of OpenShift components. A timeout occurs when a
component sends a signal to another component, but does not receive a response. The value assigned to the
timeout represents how long the component will wait for the returned signal before the process stops. All
timeout values are configurable.

The following are scenarios for increasing the default timeout values:

When a custom cartridge is taking a long time to be added to a gear.

When network latency is forcing requests to take longer than usual.

When a high load on the system is causing actions to take longer than usual.

Note that such cases can be resolved by other methods. For example, a high load on the system can be
solved by adding extra resources to the environment.

Chapter 2. Platform Administration

17

The following table outlines the locations of various component's timeout values, the configurable parameter,
and the default values expressed in seconds:

Table 2.2. Timeout Information for Various Components

Type Location File Directive
MCollective Broker /etc/openshift/plugins.d/openshift-

origin-msg-broker-mcollective.conf
MCOLLECTIVE_TIMEOUT
=240

MCollective Node /opt/rh/ruby193/root/usr/libexec/mco
llective/mcollective/agent/openshift
.ddl

:timeout => 360

MCollective
Client

Broker /opt/rh/ruby193/root/etc/mcollective
/client.cfg

plugin.activemq.heartbeat_i
nterval = 30

Node
Discovery

Broker /etc/openshift/plugins.d/openshift-
origin-msg-broker-mcollective.conf

MCOLLECTIVE_DISCTIM
EOUT=5

Facts Broker /etc/openshift/plugins.d/openshift-
origin-msg-broker-mcollective.conf

MCOLLECTIVE_FACT_TI
MEOUT=10

Facts Node /opt/rh/ruby193/root/usr/libexec/mco
llective/mcollective/agent/rpcutil.r
b

:timeout => 10

Apache Broker /etc/httpd/conf.d/000002_openshift_o
rigin_broker_proxy.conf

ProxyTimeout 300

Apache Node /etc/httpd/conf.d/000001_openshift_o
rigin_node.conf

ProxyTimeout 300

RHC Client ~/.openshift/express.conf timeout=300

Backgroun
d Thread

Broker /etc/openshift/console.conf BACKGROUND_REQUES
T_TIMEOUT=30

Warning

Any modifications to the
/opt/rh/ruby193/root/usr/libexec/mcollective/mcollective/agent/openshift.dd
l and
/opt/rh/ruby193/root/usr/libexec/mcollective/mcollective/agent/rpcutil.rb
files are unsupported and may be erased by a yum update.

MCollective

The MCollective timeout is configured on the broker, and is used for MCollective messages being
sent from the broker to the node. If the message is lost after it is sent, or the node takes longer
than expected to complete a request, this timeout will be hit.

MCollective Client

The MCollective client timeout is used to ensure that you have a valid and active connection to
your messaging broker. Lowering the defined amount causes a quicker switch to a redundant
system in the event of a failure.

Node Discovery

The node discovery timeout represents the allowed amount of time a node takes to acknowledge
itself in the environment, instead of broadcasting to all nodes. This method of discovery is
generally used in non-direct calls to the nodes. For example, when an application is created, when

Administration Guide

18

generally used in non-direct calls to the nodes. For example, when an application is created, when
some administration commands are used, and some ssh key operations are performed.

Facts

The Facts timeout is configured on both the broker and node, and is for determining the allowed
amount of time for a fact to be gathered from a node through MCollective. An example of a fact is
when an application is created, and in doing so, the node's profile determines which node will
perform the action. Facts are gathered often, so this timeout is short.

Apache

The Apache timeout is configured on the broker and node, and represents the timeout of proxy
requests. This affects most requests, as they go through a proxy on both the broker and on the
node. The ProxyTimeout on the broker affects requests to the broker API and rhc. If the timeout is
exceeded due to lengthy requests, the client will receive an uninformative HTTP 502 error, even
though the request may have succeeded. The ProxyTimeout on a node affects requests to hosted
applications.

RHC

The rhc timeout represents the allowed amount of time that the client tools will wait for a request to
be completed before ceasing the attempt. This only has to be configured on the client where rhc is
run. If an action is taking longer to complete than expected, this timeout will be hit.

Background Thread

The background thread timeout is found on the broker, and determines how long requests from the
console to the broker will take to be completed before ceasing the attempt. This communication is
impacted by the amount of applications, domains, and gears an application developer has access
to, as well as the locations of the datacenters that make up the OpenShift Enterprise deployment.

2.12. Enabling Network Isolation for Gears

Prior to OpenShift Enterprise 2.2, network isolation for gears was not applied by default. Without isolation,
gears could bind and connect to localhost as well as IP addresses belonging to other gears on the node,
allowing users access to unprotected network resources running in another user's gear. To prevent this,
starting with OpenShift Enterprise 2.2 the oo-gear-firewall command is invoked by default at installation
when using the oo-install installation utility or the installation scripts. It must be invoked explicitly on each
node host during manual installations.

Note

The oo-gear-firewall command is available in OpenShift Enterprise 2.1 starting with release
2.1.9.

The oo-gear-firewall command configures nodes with firewall rules using the iptables command and
SELinux policies using the semanage command to prevent gears from binding or connecting on IP
addresses that belong to other gears.

Gears are identified as a range of user IDs on the node host. The oo-gear-firewall command creates
static sets of rules and policies to isolate all possible gears in the range. The UID range must be the same
across all hosts in a gear profile. By default, the range used by the oo-gear-firewall command is taken
from existing district settings if known, or 1000 through 6999 if unknown. The tool can be re-run to apply rules
and policies for an updated UID range if the range is changed later.

Chapter 2. Platform Administration

19

To enable network isolation for gears using the default range, run the following command on each node host:

oo-gear-firewall -i enable -s enable

To specify the UID range:

oo-gear-firewall -i enable -s enable -b District_Beginning_UID -e
District_Ending_UID

Administration Guide

20

Chapter 3. User Administration

OpenShift Enterprise users are typically developers working on and hosting their applications in an OpenShift
Enterprise deployment. This chapter covers tasks related to the administration of those user accounts.

3.1. Creating a User

On broker hosts, the oo-admin-ctl-user command can be used with the -c or --create option to
create new user accounts for the OpenShift Enterprise environment. The command creates a user record in
MonogDB and when used with different options, allows different capabilities to be set for specific users
overriding the default settings in the /etc/openshift/broker.conf file.

Creating user accounts using the oo-admin-ctl-user command does not set up authentication
credentials. OpenShift Enterprise allows you to choose from a variety of authentication mechanisms and
separates the concept of the user record that it stores in MongoDB from the user credentials that are stored

by your chosen authentication mechanism. See the OpenShift Enterprise Deployment Guide for more
information on configuring user authentication on the broker.

To create one user at a time, use the following:

oo-admin-ctl-user -c -l Username

To create multiple users at once, first create a file containing one login per line, then use the following:

oo-admin-ctl-user -c -f File_Name

3.2. Removing User Applications

Use the oo-admin-ctl-app command to remove a user's application.

Warning

This procedure deletes all the data for the selected application and cannot be reversed.

Procedure 3.1. To Remove a User Application:

1. Stop the application by running the following command on the broker host:

oo-admin-ctl-app -l username -a appname -c stop

2. Delete the application:

oo-admin-ctl-app -l username -a appname -c destroy

3. If the standard stop and destroy commands fail, you can force-stop and force-remove the
application. The force- commands do not wait for the proper shutdown sequence, so should only
be used if the standard commands fail:

[1]

Chapter 3. User Administration

21

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#sect-Configuring_User_Authentication

oo-admin-ctl-app -l username -a appname -c force-stop
oo-admin-ctl-app -l username -a appname -c force-destroy

3.3. Removing User Data

Remove a former user's application and domain data if they are no longer required.

Warning

The following procedure removes all of a user's application data from the system and cannot be
reversed.

Procedure 3.2. To Remove User Data:

1. Prevent the user from creating more gears by running the following command on the broker host:

oo-admin-ctl-user -l username --setmaxgears 0

2. Retrieve the user's domain and application names:

oo-admin-ctl-domain -l username | egrep -i '^name:|^Namespace:'

3. Remove the user's applications by running the following commands for each application found in the
previous step:

oo-admin-ctl-app -l username -a app1 -c stop
oo-admin-ctl-app -l username -a app1 -c destroy

Use the force-destroy parameter to remove particularly troublesome applications:

oo-admin-ctl-app -l username -a app1 -c force-destroy

4. Delete the user's domain:

oo-admin-ctl-domain -l username -c delete -n testdomain

The user's application data is now removed and the user cannot create any new applications; the account is
effectively deactivated.

To reactivate a user's account, set the maximum amount of gears to a desired amount. Note that the --
setmaxgears option may be restricted based on the user's configuration settings:

oo-admin-ctl-user -l username --setmaxgears 5

3.4. Removing a User

Use the oo-admin-ctl-domain command to remove a user from an OpenShift Enterprise environment:

Administration Guide

22

oo-admin-ctl-domain -l username -c delete

Note

The oo-admin-ctl-domain command deletes the user from the OpenShift Enterprise datastore,
but does not delete user credentials stored on external databases such as LDAP or Kerberos.

3.5. Enabling Users to Add a Kerberos Principal SSH Key

You can enable developers to be able to add a Kerberos principal SHH key.

The VALID_SSH_KEY_TYPES option, in the /etc/openshift/broker.conf file, contains a list of
supported SSH key types. If VALID_SSH_KEY_TYPES is unspecified, all supported types are allowed.

If the k5login_directory option is used in the /etc/krb5.conf file, ensure SSHD can read the
specified directory. For SELinux, the default context might need to be modified, as in the following example:

$ semanage fcontext -a -t krb5_home_t "/Path/To/File(/.*)?"
$ restorecon -R -v /Path/To/File

3.6. Setting Default Maximum Number of Domains per User

Edit the DEFAULT_MAX_DOMAINS setting in the /etc/openshift/broker.conf file on the broker host to
configure the default maximum number of domains that can be created per user.

DEFAULT_MAX_DOMAINS="5"

The maximum number of domains a specific user can create is further restricted by the maximum number of
gears that user can create. For example, if a user can create three gears, then that user can create three
domains, even if the default maximum number of domains is higher. If a user attempts to create more
domains than their allowed limit, the attempt fails and an error message is displayed.

3.7. Managing Custom Domain Aliases

Developers can designate custom domain aliases for applications to use DNS entries other than the domains
generated by OpenShift Enterprise. By default, developers cannot create aliases that are in the cloud domain
where the applications are created. For example, a developer could not create the alias app.example.com
or my-app.example.com for an application that was created in the cloud domain example.com. This
restriction prevents confusion or possible name collisions.

Enabling the ALLOW_ALIAS_IN_DOMAIN setting in the /etc/openshift/broker.conf file on the broker
host allows developers to create aliases within the cloud domain, provided the alias does not take the form
<name>-<name>.<cloud-domain>. Aliases taking this standard form of application names are rejected to
prevent conflicts. For example, while a developer could now create the alias app.example.com for an
application that was created in the cloud domain example.com, they still could not create the alias my-
app.example.com because it takes the standard form.

Chapter 3. User Administration

23

Important

While the ALLOW_ALIAS_IN_DOMAIN setting is enabled, only standard name collisions are
prevented. Collisions with high-availability application names are not prevented, which, should they
occur on the same node host, could result in traffic being routed to the wrong gear on the node host.
OpenShift Enterprise still does not create a DNS entry for the alias; that is an external step.

Procedure 3.3. To Allow Custom Domain Aliases in the Cloud Domain:

1. Edit the /etc/openshift/broker.conf file on the broker host and set the
ALLOW_ALIAS_IN_DOMAIN setting to "true":

ALLOW_ALIAS_IN_DOMAIN="true"

2. Restart the broker service:

service openshift-broker restart

3.8. Determining Gear Ownership

On a node host, list the contents of the /var/lib/openshift/.httpd.d/ directory to view the
operational directories for gears. These directories have the format UUID_domain_appname. For example,
the following command shows a gear with an application named chess in the domain games:

Example 3.1. Listing the Contents of the /var/lib/openshift/.http.d/ Directory

ls /var/lib/openshift/.httpd.d/

c13aca229215491693202f6ffca1f84a_games_chess

[1] https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-
single/Deployment_Guide/index.html#sect-Configuring_User_Authentication

Administration Guide

24

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#sect-Configuring_User_Authentication

Chapter 4. Team and Global Team Management

Teams contain a group of developers that are part of a conjoined role within a domain, and are created and
owned by developers.

As an OpenShift Enterprise administrator, you can create global teams from a preexisting source, such as an
LDAP database, and synchronize team membership. Note that each global team must have a unique name.

Table 4.1. Teams and Global Teams

Team Types Owner Use Conditions
Team Developer To collaborate on an application Each team name must be unique

name within a domain.
Global team Administrator To reuse existing group

definitions for user management,
such as LDAP groups.

Each global team name must be
unique.

Note

By default, developers cannot view and search global teams. As an OpenShift Enterprise administer,
you must enable this capability so that global teams can be viewed and searched by developers.

4.1. Setting the Maximum Number of Teams for Specific Users

On the broker host, you can set a limit to the number of teams a developer can create with the following
command:

oo-admin-ctl-user -l username --setmaxteams No_of_Teams

The default number is set to 0. Edit the DEFAULT_MAX_TEAMS setting located in the
/etc/openshift/broker.conf file to change the default setting for any new users created after the
setting has been modified. Restart the broker service for the changes to take effect.

For more information on teams, see the OpenShift Enterprise User Guide at
https://access.redhat.com/site/documentation.

4.2. Creating Global Teams and Synchronizing with LDAP Groups

With the release of OpenShift Enterprise 2.1, you can create global teams and synchronize membership from
an already existing source, such as an LDAP database. This enables you to have full control over global team
membership. For example, if a global team is synchronized to an LDAP database, and a developer leaves
your company, the privileges granted through the global team membership will be removed and you will be
able to reassign or remove any of the individual's work across the platform.

Create global teams and synchronize membership with LDAP with the folowing procedure. However, a plain
sync file can be created from any source to perform the same process if LDAP is not in use.

Chapter 4. Team and Global Team Management

25

https://access.redhat.com/site/documentation

Note

This is a basic workflow. For more information, consult the oo-admin-ctl-team command man
pages for detailed descriptions of each command shown in the following instructions.

Procedure 4.1. To Synchronize a Global Team with LDAP Groups:

1. Create an LDAP configuration file in the /etc/openshift/ directory. This file specifies how your
instance will connect to the LDAP server and query for LDAP groups and group membership.

2. Create one or more global teams. If you are not using LDAP groups, then the --maps-to option can
be specified as anything:

oo-admin-ctl-team -c create --name Team_Name --maps-to
cn=all,ou=Groups,dc=example,dc=com

Alternatively, you can create a global team straight from LDAP groups using the --groups option.
In this case, you must indicate your LDAP config file and the LDAP groups to create the global team
from:

oo-admin-ctl-team --config-file /etc/openshift/File_Name.yml -c
create --groups Group_Name1,Group_Name2

Example 4.1. Sample LDAP configuration File

Host: server.example.com
Port: 389
Get-Group:
 Base: dc=example,dc=com
 Filter: (cn=<group_cn>)
Get-Group-Users:
 Base: <group_dn>
 Attributes: [member]
Get-User:
 Base: dc=example,dc=com
 Filter: (uid=<user_id>)
 Attributes: [emailAddress]
Openshift-Username: emailAddress

Example 4.2. Sample Active Directory based LDAP configuration File

Host: server.example.com
Port: 389
Username: CN=username.gen,OU=Generics,OU=Company
Users,DC=company,DC=com
Password: xxxxxxxxxxxxxx

#get group entry so we can map team to the group distinguished name
Get-Group:
 Base: dc=example,dc=com

Administration Guide

26

 Filter: (cn=<group_cn>)

#get all the users in the group
Get-Group-Users:
 Base: <group_dn>
 Filter: (memberOf=<group_dn>)
 Attributes: [emailaddress]

Openshift-Username: emailaddress

3. Next, synchronize global team membership with LDAP:

oo-admin-ctl-team --config-file /etc/openshift/File_Name.yml -c sync
--create-new-users --remove-old-users

This step can be performed in a cron job in order to regularly synchronize OpenShift Enterprise with
LDAP.

Alternatively, use a sync file to synchronize global team membership with LDAP with the following
command:

oo-admin-ctl-team --config-file /etc/openshift/File_Name.yml -c
sync-to-file --out-file teams.sync --create-new-users --remove-old-
users

This command creates a file you can modify to suit your requirements. The format is the entity to act
upon, an action, then the user names.

The following example sync file adds users to an OpenShift Enterprise instance, then adds them as
members to the team named "myteam".

Example 4.3. Synchronizing Global Team Membership with a Sync File

USER|ADD|user1
...
USER|ADD|user100
MEMBER|ADD|myteam|user1,...,user100

Alternatively, create this file from any source and sync team members from the specified file with the
following command:

oo-admin-ctl-team -c sync-from-file --in-file teams.sync

4.2.1. Encrypting an LDAP Global Team Connection

When synchronizing a global team with LDAP groups, you can choose to encrypt all communication with the
LDAP server by adding a parameter to the LDAP .yml file. This encrypts any communication between the
LDAP client and server and is only intended for instances where the LDAP server is a trusted source.
simple_tls encryption establishes an SSL/TLS encryption with the LDAP server before any LDAP protocol

Chapter 4. Team and Global Team Management

27

data is exchanged, meaning that no validation of the LDAP server's SSL certificate is performed. Therefore,
no errors are reported if the SSL certificate of the client is not trusted. If you have communication errors, see
your LDAP server administrator.

To encrypt an LDAP and global team connection edit the /etc/openshift/File_Name.yml file and
replace it with the following:

Host: server.example.com
Port: 636
Encryption: simple_tls
Get-Group:
 Base: dc=example,dc=com
 Filter: (cn=<group_cn>)
Get-Group-Users:
 Base: <group_dn>
 Attributes: [member]
Get-User:
 Base: dc=example,dc=com
 Filter: (uid=<user_id>)
 Attributes: [emailAddress]
Openshift-Username: emailAddress

Note that the port must be changed from the initial example in Section 4.2, “Creating Global Teams and
Synchronizing with LDAP Groups” to the above example for encryption to successfully occur. An LDAP
server cannot support both plaintext and simple_tls connections on the same port.

4.2.2. Enabling Global Team Visibility

Developers cannot search and view global teams because this capability is disabled by default. The following
instructions describe how to enable this capability for new or existing user accounts.

Enabling Global Team Visibility for New Accounts

Set the following variable in the /etc/openshift/broker.conf file to "true":

DEFAULT_VIEW_GLOBAL_TEAMS = "true"

Next, restart the broker service for the changes to take effect:

service openshift-broker restart

All new developer accounts that are created in the future will have the ability to search and view global teams.

Enabling Global Team Visibility for Existing Accounts

Enable the ability to view and search global teams for existing accounts with the following command:

$ oo-admin-ctl-user -l username --allowviewglobalteams true

Disable this capability by changing the --allowviewglobalteams option to false.

Administration Guide

28

Chapter 5. Cartridge Management

This chapter covers the management of cartridges provided by Red Hat, the installation and management of
custom and community cartridges, and other cartridge tasks.

Note

Some sections in this chapter assume that you have installed cartridges on node hosts. See the
following section of the OpenShift Enterprise Deployment Guide for instructions on installing
cartridges from RPM packages provided by Red Hat, if required:

https://access.redhat.com/site/documentation/en-US/OpenShift_Enterprise/2/html-
single/Deployment_Guide/index.html#sect-Installing_Cartridges

Important

If needed, administrators can choose to configure the JBoss EWS cartridge tomcat7 binary provided
by the EWS 3 product to work around known security issues with the JBoss EWS-2 tomcat7 binary.
See Known Issues to learn more.

5.1. Managing Cartridges on Broker Hosts

Important

Cartridge management on broker hosts, which includes any usage of the oo-admin-ctl-
cartridge command, is only applicable to OpenShift Enterprise 2.1 and later.

With the release of OpenShift Enterprise 2.1, cartridges are managed on the broker. While cartridges are still
initially installed on nodes, you must then import the cartridge manifests on the broker from the nodes, which
creates records in the MongoDB datastore using metadata from the manifests. Cartridges must then be
activated before they can be used by developers in new applications or as add-on cartridges to existing
applications.

With this cartridge management system, the broker application is able to track which cartridges are deployed
on which applications, including the corresponding capabilities for each cartridge. The broker application can
then control cartridge actions such as starting, stopping, scaling, and deleting. This system also allows
developers to know which cartridges you have activated and made available.

Software Versions Versus Cartridge Versions

To better understand cartridge management on broker hosts, including required tasks such as importing and
activating cartridges, it is important to note the distinction between software versions and cartridge versions
in cartridge manifests.

When you install cartridges on nodes, either from RPM packages or source directories, cartridge manifests
are installed, which describe the features a cartridge requires and the information to provide to developers
about a cartridge. A single manifest can support one or more software versions, which identify the specific
version or versions of a web framework or add-on technology that the cartridge is supporting. For example,

Chapter 5. Cartridge Management

29

https://access.redhat.com/site/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#sect-Installing_Cartridges
https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/2.2_Release_Notes/chap-Known_Issues.html

installing the openshift-origin-cartridge-ruby RPM package provides support for two software versions: Ruby
1.8 and Ruby 1.9.

Each software version is then associated with a cartridge name and presented to developers as a distinct
cartridge. For example, the Ruby 1.8 software version is presented with the cartridge name ruby-1.8, and
Ruby 1.9 with the cartridge name ruby-1.9.

However, each manifest also has a cartridge version, which is separate from any software version or
cartridge name. When a cartridge is updated by the cartridge author, the cartridge version is incremented to
identify the new release of that particular cartridge. Therefore, a single cartridge name can be associated
with multiple cartridge versions over time, based on the manifests that have been installed. For example, if
errata is released that updates openshift-origin-cartridge-ruby to a newer package version, this can result in
manifests installed on nodes for two cartridge versions: 0.0.17 and 0.0.18. The ruby-1.8 cartridge name
would therefore have two cartridge versions (0.0.17 and 0.0.18), and the ruby-1.9 cartridge would also
have two cartridge versions (0.0.17 and 0.0.18).

Active and Inactive Cartridges

After manifests have been imported on the broker, you can designate cartridges as either active or inactive.
The active cartridge represents the cartridge, based on an imported manifest, that is made available to
developers for creating new applications or adding to existing applications. Any inactive cartridges cannot be
deployed as new cartridges by developers. Cartridges can be activated automatically when importing the
latest manifests from nodes or activated and deactivated manually at any time.

5.1.1. Importing, Activating, and Deactivating Cartridges

With the release of OpenShift Enterprise 2.1, you must import cartridge manifests on the broker host and
activate or deactivate cartridges using the oo-admin-ctl-cartridge command. Running the oo-admin-
ctl-cartridge command with the -c import-profile option imports the latest manifests for all
cartridges installed on a randomly selected node for each gear profile. Importing the latest manifests includes
manifests for both newly installed cartridges as well as newly updated cartridges that may have older
manifests that were previously imported.

Run the following command on the broker host to import the latest manifests from nodes and mark all new or
updated cartridges as active:

oo-admin-ctl-cartridge -c import-profile --activate

You can also import manifests for downloadable cartridges to make them persistently available as cartridge
options for developers. The cartridge sources for downloadable cartridges remain hosted externally, and they
are downloaded when a developer deploys them as a new cartridge. Run the following command to import
the latest manifest for a downloadable cartridge and mark all new or updated cartridges as active:

oo-admin-ctl-cartridge -c import --url URL_to_Cartridge_Manifest --
activate

When importing and activating at the same time, any other previously imported cartridges with the same
cartridge name are automatically deactivated, though applications already using previous versions are
unaffected and continue to function. This only means that developers cannot deploy new cartridges using the
inactive cartridges.

Activating and Deactivating Using Cartridge Names

Administration Guide

30

After manifests have been imported, you can activate and deactivate cartridges manually using their cartridge
name. Running the oo-admin-ctl-cartridge command with the -c list option lists all currently
imported cartridges and the timestamp of each import. Active cartridges are identified with an asterisk.

Example 5.1. Listing Imported Cartridges

oo-admin-ctl-cartridge -c list

* cron-1.4 plugin Cron 1.4 2014/06/16 22:09:55
UTC
* jenkins-client-1 plugin Jenkins Client 2014/06/16 22:09:55 UTC
 mongodb-2.4 service MongoDB 2.4 2014/06/16 22:09:55
UTC
* mysql-5.1 service MySQL 5.1 2014/06/16 22:09:55
UTC
* mysql-5.5 service MySQL 5.5 2014/06/16 22:09:55
UTC
 ruby-1.8 web Ruby 1.8 2014/06/16 22:09:55
UTC
* ruby-1.9 web Ruby 1.9 2014/06/16 22:09:55
UTC
* haproxy-1.4 web_proxy Web Load Balancer 2014/06/16 22:09:55 UTC

The following command activates cartridges using one or more cartridge names:

oo-admin-ctl-cartridge -c activate --name Cart_Name1,Cart_Name2,Cart_Name3

The following command deactivates cartridges using one or more cartridge names:

oo-admin-ctl-cartridge -c deactivate --name
Cart_Name1,Cart_Name2,Cart_Name3

Advanced Managing Using Cartridge IDs

Whenever a new manifest is imported, a record is created in the MongoDB datastore noting the cartridge
name, the timestamp of the import, and a unique cartridge ID. Cartridge IDs are alphanumeric strings used to
identify a cartridge based on an imported manifest and timestamp of the import. Therefore, a single cartridge
name can be associated with multiple cartridge IDs.

For most cases, importing and activating the latest manifests at the same time is the workflow recommended
by Red Hat when updates are released for cartridges provided by Red Hat. However, if you need developers
to go back to using an inactive cartridge when deploying new cartridges, you can activate and deactivate
using specific cartridge IDs at any time. For more advanced cartridge management, including activating and
deactivating using cartridge IDs, see the man page for oo-admin-ctl-cartridge.

5.1.2. Migrating and Upgrading Existing Applications to Active Cartridges

To allow existing applications that are using inactive cartridges to switch to using the currently active
cartridges, the following two tasks must be performed for the switch to fully take effect for both new and
existing gears.

Migrating Existing Applications to Active Cartridges for New Gears

Chapter 5. Cartridge Management

31

Existing applications using inactive cartridges continue to use the inactive versions when adding new gears,
for example, during scaling operations. Run the following command on the broker host to allow these
applications to instead use the currently active cartridges, if active versions are available, when adding new
gears:

oo-admin-ctl-cartridge -c migrate

This command initiates a migration that updates the MongoDB datastore records all of applications that are
using inactive cartridges to refer instead to the currently active cartridges. Existing application gears on
nodes, however, are unaffected, and continue to use inactive cartridges.

Note

If the command returns an exit code 2, wait a few minutes for all applications to finish using the
cartridges, then run the command again until it completes successfully.

Upgrading Existing Application Gears to Active Cartridges

You can use the oo-admin-upgrade command on the broker host to upgrade existing application gears
that are currently using inactive cartridges to instead use active cartridges. The most common scenario that
requires this cartridge upgrade process is when applying certain asynchronous errata updates. See the
following section of the OpenShift Enterprise Deployment Guide for instructions on running the oo-admin-
upgrade command when applying these types of errata updates:

https://access.redhat.com/site/documentation/en-US/OpenShift_Enterprise/2/html-
single/Deployment_Guide/index.html#chap-Asynchronous_Errata_Updates

The oo-admin-upgrade command can also be used to upgrade existing application gears that are using
inactive versions of custom, community, and downloadable cartridges. See Section 5.3, “Upgrading Custom
and Community Cartridges” for more information.

5.1.3. Removing Unused Inactive Cartridges

When inactive cartridges are no longer being used by any existing applications, you can remove these
cartridges from the MongoDB datastore by running the oo-admin-ctl-cartridge command with the -c
clean option on the broker. This command returns a list of the unused inactive cartridges that were removed,
but also lists any inactive cartridges that were not removed because they were still in use by an application.
Inactive cartridges that were not removed are shown on lines starting with a # symbol; the number of
applications that are still using the cartridge is shown at the end of the same line.

Example 5.2. Listing Imported Cartridges And Removing Unused Inactive Cartridges

oo-admin-ctl-cartridge -c list

* cron-1.4 plugin Cron 1.4 2014/06/16 22:09:55
UTC
* jenkins-client-1 plugin Jenkins Client 2014/06/16 22:09:55 UTC
 mongodb-2.4 service MongoDB 2.4 2014/06/16 22:09:55
UTC
* mysql-5.1 service MySQL 5.1 2014/06/16 22:09:55
UTC
* mysql-5.5 service MySQL 5.5 2014/06/16 22:09:55

Administration Guide

32

https://access.redhat.com/site/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#chap-Asynchronous_Errata_Updates

UTC
 ruby-1.8 web Ruby 1.8 2014/06/16 22:09:55
UTC
* ruby-1.9 web Ruby 1.9 2014/06/16 22:09:55
UTC
* haproxy-1.4 web_proxy Web Load Balancer 2014/06/16 22:09:55 UTC

oo-admin-ctl-cartridge -c clean

Deleting all unused cartridges from the broker ...
539f6b336892dff17900000f # ruby-1.8
539f6b336892dff179000012 mongodb-2.4 1

In the above example, the mongodb-2.4 and ruby-1.8 cartridges were both inactive cartridges. The
ruby-1.8 cartridge was successfully removed, however the mongodb-2.4 cartridge was not because it
was still in use by one application. Listing the imported cartridges again confirms the removal of only the
ruby-1.8 cartridge:

Example 5.3. Listing Imported Cartridges After Removing Unused Inactive Cartridges

oo-admin-ctl-cartridge -c list

* cron-1.4 plugin Cron 1.4 2014/06/16 22:09:55
UTC
* jenkins-client-1 plugin Jenkins Client 2014/06/16 22:09:55 UTC
 mongodb-2.4 service MongoDB 2.4 2014/06/16 22:09:55
UTC
* mysql-5.1 service MySQL 5.1 2014/06/16 22:09:55
UTC
* mysql-5.5 service MySQL 5.5 2014/06/16 22:09:55
UTC
* ruby-1.9 web Ruby 1.9 2014/06/16 22:09:55
UTC
* haproxy-1.4 web_proxy Web Load Balancer 2014/06/16 22:09:55 UTC

5.2. Installing and Removing Custom and Community Cartridges

In addition to cartridges provided and supported by Red Hat, you can install custom and community
cartridges for developers to use in their applications. The following table describes the cartridge types
available and indicates their level of Red Hat support.

Table 5.1. Cartridge Types

Type Description Red Hat Supported?
Standard cartridges These cartridges are shipped with OpenShift

Enterprise.
Yes. Requires base
OpenShift Enterprise
entitlement.

Premium cartridges These cartridges are shipped with OpenShift
Enterprise.

Yes. Requires premium
add-on OpenShift
Enterprise entitlement.

Chapter 5. Cartridge Management

33

Custom cartridges These cartridges are developed by users and can
be based on other cartridges. See the OpenShift
Enterprise Cartridge Specification Guide for more
information on creating custom cartridges.

No.

Community cartridges These cartridges are contributed by the community.
See the OpenShift Origin Index at http://origin.ly to
browse and search for many community cartridges.

No.

Partner cartridges These cartridges are developed by third-party
partners.

No, but can possibly be
directly supported by the
third-party developer.

Type Description Red Hat Supported?

Note

Red Hat supports the base OpenShift Enterprise platform on which custom and community cartridges
run, but does not support or maintain the custom and community cartridges themselves. See
https://access.redhat.com/support/policy/updates/openshift/policies.html for more information about
Red Hat's support for OpenShift Enterprise.

Custom and Community Cartridges Versus Downloadable Cartridges

Custom and community cartridges are installed locally on your OpenShift Enterprise deployment and appear
as cartridge options for developers when using the Management Console or client tools. However, installing
custom or community cartridges locally as an administrator is not to be confused with developers using
downloadable cartridges, which are custom or community cartridges that are hosted externally. See the
OpenShift Enterprise User Guide for more information on developers using downloadable cartridges in
applications:

https://access.redhat.com/site/documentation/en-US/OpenShift_Enterprise/2/html-
single/User_Guide/index.html#Downloadable_Cartridges2

If you are using OpenShift Enterprise 2.1 or later, you can also see Section 5.1.1, “Importing, Activating, and
Deactivating Cartridges” for instructions on managing downloadable cartridges locally in the MongoDB
database. By importing the downloadable cartridge manifests on the broker, downloadable cartridges can be
made persistently available as cartridge options for all developers while the cartridge sources are still hosted
externally.

Installing Custom and Community Cartridges

To use custom or community cartridges in any release of OpenShift Enterprise 2, you must install the
cartridges from a source directory using the oo-admin-cartridge command on each node host. In
OpenShift Enterprise 2.1 and later, you must then import the newly installed cartridge manifests on the broker
using the oo-admin-ctl-cartridge command before the cartridges are usable in applications.

Procedure 5.1. To Install Custom or Community Cartridges:

1. Run the following command on each node host, specifying the source directory of the custom or
community cartridge to install:

oo-admin-cartridge --action install --source /path/to/cartridge/

2. Verify that the list of installed cartridges on each node host is updated with the newly added custom
or community cartridge:

Administration Guide

34

http://origin.ly
https://access.redhat.com/support/policy/updates/openshift/policies.html
https://access.redhat.com/site/documentation/en-US/OpenShift_Enterprise/2/html-single/User_Guide/index.html#Downloadable_Cartridges2

Example 5.4. Listing Installed Cartridges

oo-admin-cartridge --list

(redhat, jenkins-client, 1.4, 0.0.1)
(redhat, haproxy, 1.4, 0.0.1)
(redhat, jenkins, 1.4, 0.0.1)
(redhat, mock, 0.1, 0.0.1)
(redhat, tomcat, 8.0, 0.0.1)
(redhat, cron, 1.4, 0.0.1)
(redhat, php, 5.3, 0.0.1)
(myvendor, mycart, 1.1, 0.0.1)
(redhat, ruby, 1.9, 0.0.1)
(redhat, perl, 5.10, 0.0.1)
(redhat, diy, 0.1, 0.0.1)
(redhat, mysql, 5.1, 0.2.0)

This command displays the vendor name, cartridge name, software version, and cartridge version of
each installed cartridge.

3. Restart the MCollective service on each node host:

service ruby193-mcollective restart

4. Update the cartridge lists on the broker. For releases prior to OpenShift Enterprise 2.1, run the
following command on the broker host to clear the broker cache and, if installed, the Management
Console cache:

oo-admin-broker-cache --clear --console

For OpenShift Enterprise 2.1 and later, run the following commands on the broker host to import and
activate the latest cartridges from the nodes and, if installed, clear the Management Console cache:

oo-admin-ctl-cartridge -c import-profile --activate
oo-admin-console-cache --clear

Removing Custom and Community Cartridges

You can also use the oo-admin-cartridge command to remove cartridges from the cartridge repositories
on a node host. Cartridges should only be removed from cartridge repositories after they are no longer in use
by any existing applications. When removing a cartridge, ensure the same cartridge is removed from each
node host.

Procedure 5.2. To Remove Custom and Community Cartridges:

1. For OpenShift Enterprise 2.1 and later, deactivate the cartridge to be removed by running the
following command on the broker host:

oo-admin-ctl-cartridge -c deactivate --name Cart_Name

Chapter 5. Cartridge Management

35

Deactivating the cartridge ensures it can no longer be used by developers in new applications or as
add-on cartridges to existing applications. This step is not applicable for releases prior to OpenShift
Enterprise 2.1.

2. List the installed cartridges by running the following command on each node host:

oo-admin-cartridge --list

Identify in the output the cartridge name, software version, and cartridge version of the cartridge to
be removed.

3. Remove the cartridge from the cartridge repository by running the following command on each node
host with the cartridge information identified in the previous step:

oo-admin-cartridge --action erase --name Cart_Name --version
Software_Version_Number --cartridge_version Cart_Version_Number

4. Update the relevant cartridge lists. For releases prior to OpenShift Enterprise 2.1, clear the cache for
the broker and, if installed, the Management Console by running the following command on the
broker host:

oo-admin-broker-cache --clear --console

For OpenShift Enterprise 2.1 and later, clear the cache for only the Management Console, if installed,
by running the following command on the broker host:

oo-admin-console-cache --clear

5.3. Upgrading Custom and Community Cartridges

The OpenShift Enterprise runtime contains a system for upgrading custom cartridges on a gear to the latest
available version and for applying gear-level changes that affect cartridges.

The oo-admin-upgrade command on the broker host provides the command line interface for the upgrade
system and can upgrade all the gears in an OpenShift Enterprise environment, all the gears on a node, or a
single gear. This command queries the OpenShift Enterprise broker to determine the locations of the gears to
migrate and uses MCollective calls to trigger the upgrade for a gear.

Upgrade Process Overview

1. Load the gear upgrade extension, if configured.

2. Inspect the gear state.

3. Run the gear extension's pre-upgrade script, if it exists.

4. Compute the upgrade itinerary for the gear.

5. If the itinerary contains an incompatible upgrade, stop the gear.

6. Upgrade the cartridges in the gear according to the itinerary.

7. Run the gear extension's post-upgrade script, if it exists.

8. If the itinerary contains an incompatible upgrade, restart and validate the gear.

Administration Guide

36

9. Clean up after the upgrade by deleting pre-upgrade state and upgrade metadata.

See the OpenShift Enterprise Cartridge Specification Guide at https://access.redhat.com/site/documentation
for more information on the cartridge upgrade process.

The oo-admin-upgrade command can perform the following tasks, as described by the oo-admin-
upgrade help command:

oo-admin-upgrade archive

Archives existing upgrade data in order to begin a completely new upgrade attempt.

oo-admin-upgrade help <task>

List available tasks or describe the designated task and its options.

oo-admin-upgrade upgrade-gear --app-name=<app_name>

Upgrades only the specified gear.

oo-admin-upgrade upgrade-node --version=<version>

Upgrades all gears on one or all nodes.

Important

Do not use the oo-admin-upgrade upgrade-from-file task. The help output of the oo-
admin-upgrade command does list upgrade-from-file as a valid task. However, it is not meant
for direct use by an administrator and can invalidate an upgrade process.

5.4. Adding QuickStarts to the Management Console

Developers can create applications using QuickStarts, which are preconfigured applications installed from a
specific source. However, QuickStarts are not available to developers by default in OpenShift Enterprise. You
can browse the OpenShift Origin Index at http://origin.ly to search for QuickStarts created by the OpenShift
community or see the OpenShift QuickStart Developer's Guide to learn more about creating your own:

https://www.openshift.com/developers/get-involved/creating-quickstarts

While applications created from web framework cartridges can be automatically updated, applications created
from QuickStarts cannot. Applications created using web framework cartridges are created from a designated
runtime. If the runtime is updated, the cartridge automatically updates when the cartridge is restarted.
However, applications created using QuickStarts require an update using Git to update the application.

You can add QuickStarts to the Management Console so that developers using your OpenShift Enterprise
instance can use them to create applications. However, you must first create or obtain a configuration for the
QuickStart in JSON format. When searching the OpenShift Origin Index at http://origin.ly for community
QuickStarts, you can click the gift icon next to any result to get the JSON relevant to that QuickStart.

Chapter 5. Cartridge Management

37

https://access.redhat.com/site/documentation
http://origin.ly
https://www.openshift.com/developers/get-involved/creating-quickstarts
http://origin.ly

Warning

While QuickStarts can be added to the Management Console, QuickStarts themselves, including any
community cartridges used by a QuickStart, are not supported by Red Hat and can require more
configuration to work with your version of OpenShift Enterprise.

To add QuickStarts to the Management Console, edit the /etc/openshift/quickstarts.json file on
the broker host and add entries for one or more QuickStart configurations. The following shows the basic
format of a /etc/openshift/quickstarts.json file with two QuickStarts using some common
parameters:

[
 {"quickstart": {
 "id":"QuickStart1_ID",
 "name":"QuickStart1_Name",
 "website":"QuickStart1_Website",
 "initial_git_url":"QuickStart1_Location_URL",
 "cartridges":["Cart_Name"],
 "summary":"QuickStart1_Description",
 "tags":["Tags"],
 "admin_tags":["Tags"]
 }},
 {"quickstart": {
 "id":"QuickStart2_ID",
 "name":"QuickStart2_Name",
 "website":"QuickStart2_Website",
 "initial_git_url":"QuickStart2_Location_URL",
 "cartridges":["Cart_Name"],
 "summary":"QuickStart2_Description",
 "tags":["Tags"],
 "admin_tags":["Tags"]
 }}
]

You must ensure that any cartridges defined in the "cartridges" parameter of a QuickStart configuration
are available to developers in your OpenShift Enterprise instance. These can be cartridges local to your
instance or downloadable cartridges. If the web framework cartridge required by a QuickStart is unavailable,
developers are unable to create applications using the QuickStart, even if the QuickStart appears as an
option in the Management Console. See the OpenShift Enterprise Deployment Guide for information on
installing cartridges:

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/Deployment_Guide/sect-
Installing_Cartridges.html

For example, the following shows a Django QuickStart configuration that requires the python-2.7 cartridge:

Example 5.5. /etc/openshift/quickstarts.json File with a Django QuickStart Entry

[
 {"quickstart": {
 "id":"2",
 "name":"Django",
 "website":"https://www.djangoproject.com/",

Administration Guide

38

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html/Deployment_Guide/sect-Installing_Cartridges.html

 "initial_git_url":"git://github.com/openshift/django-example.git",
 "cartridges":["python-2.7"],
 "summary":"A high-level Python web framework that encourages rapid
development and clean, pragmatic design. Administrator user name and
password are written to $OPENSHIFT_DATA_DIR/CREDENTIALS.",
 "tags":["python","django","framework"],
 "admin_tags":[]
 }}
]

After adding entries for QuickStart configurations to the /etc/openshift/quickstarts.json file, clear
the Management Console cache to ensure the QuickStart appears immediately for developers. For releases
prior to OpenShift Enterprise 2.1, run the following command on the broker host:

oo-admin-broker-cache --clear --console

For OpenShift Enterprise 2.1 and later, run the following command on the broker host:

oo-admin-console-cache --clear

5.5. Disabling Downloadable Cartridges

The DOWNLOAD_CARTRIDGES_ENABLED setting, located in the /etc/openshift/broker.conf file, is set
to true by default. Set it to false to disable the ability to use downloadable cartridges.

Procedure 5.3. To Disable Downloadable Cartridges:

1. Open the /etc/openshift/broker.conf file on the broker host and set the
DOWNLOAD_CARTRIDGES_ENABLED value to false:

DOWNLOAD_CARTRIDGES_ENABLED="false"

2. Restart the openshift-broker service:

service openshift-broker restart

5.6. Disabling Obsolete Cartridges

Cartridges are updated over time, leaving older versions of a cartridge with fewer advantages. To
acknowledge this, cartridges can be marked obsolete in their cartridge manifests. Obsolete cartridges
represent technologies, or versions of technologies, for which you do not want developers to be able to
deploy new applications or add-on cartridges, but that are still required by the applications already using
them.

By default, obsolete cartridges are still available to developers when deploying new applications or add-on
cartridges. However, you can disable the use of all obsolete cartridges, preventing developers from using
them in these cases. Whether the use of obsolete cartridges is enabled or disabled, applications already
using obsolete cartridges continue to function normally and can add new gears using the obsolete cartridges
automatically, for example during scaling operations.

Procedure 5.4. To Disable Obsolete Cartridges:

Chapter 5. Cartridge Management

39

1. Ensure the ALLOW_OBSOLETE_CARTRIDGES parameter in the /etc/openshift/broker.conf
file on the broker host is set to false:

ALLOW_OBSOLETE_CARTRIDGES="false"

2. Add the Obsolete: true parameter to the
/usr/libexec/openshift/cartridges/Cart_Name/metadata/manifest.yml file on each
node host for any cartridge being marked obsolete:

Obsolete: true

3. Restart the MCollective service on each node host:

service ruby193-mcollective restart

4. Update the cartridge lists on the broker. For releases prior to OpenShift Enterprise 2.1, run the
following command on the broker host to clear the broker cache and, if installed, the Management
Console cache:

oo-admin-broker-cache --clear --console

For OpenShift Enterprise 2.1 and later, run the following commands on the broker host to import the
latest cartridge manifests from the nodes and, if installed, clear the Management Console cache:

oo-admin-ctl-cartridge -c import-profile
oo-admin-console-cache --clear

5. Restart the broker service:

service openshift-broker restart

Administration Guide

40

Chapter 6. Resource Management

This chapter covers tasks related to the management of resources on OpenShift Enterprise hosts and
capacity planning, mostly focusing on node hosts.

6.1. Adding or Modifying Gear Profiles

Adding or modifying gear profiles in your OpenShift Enterprise deployment requires three main tasks:

1. Define the new gear profile on the node host.

2. Update the list of valid gear sizes on the broker host.

3. Grant users access to the new gear size.

The following instructions detail how to perform these tasks.

Procedure 6.1. To Define a New Gear Profile:

The default node host installation configures a gear profile named small. Edit the
/etc/openshift/resource_limits.conf file on the node host to define a new gear profile.

Note

Starting with OpenShift Enterprise 2.1.6, additional example resource_limits.conf files based
on other gear profile and host type configurations are included in the /etc/openshift/ directory on
nodes. For example, files for medium and large example profiles are included, as well as an xpaas
profile for use on nodes hosting xPaaS cartridges. These files are available as a reference or can be
used to copy over the existing /etc/openshift/resource_limits.conf file.

1. Edit the /etc/openshift/resource_limits.conf file on the node host and modify its
parameters to your desired specifications. See the file's commented lines for information on available
parameters.

2. Modify the node_profile parameter to set a new name for the gear profile, if desired.

3. Restart the ruby193-mcollective service on the node host:

service ruby193-mcollective restart

4. If Traffic Control is enabled in the /etc/openshift/node.conf file, run the following command to
apply any bandwidth setting changes:

oo-admin-ctl-tc restart

5. If gears already exist on the node host, run the following commands to ensure the resource limits for
the new gear profile are applied to the existing gears:

oo-cgroup-enable --with-all-containers
oo-pam-enable --with-all-containers

Chapter 6. Resource Management

41

Procedure 6.2. To Update the List of Valid Gear Sizes:

If you defined a new gear profile or modified the name of an existing gear profile, you must update the broker
host configuration to enable administrators to create districts for the profile and to enable developers to
create gears of that size.

1. Edit the /etc/openshift/broker.conf file on the broker host and modify the comma-separated
list in the VALID_GEAR_SIZES parameter to include the new gear profile.

2. Consider adding the new gear profile to the comma-separated list in the
DEFAULT_GEAR_CAPABILITIES parameter as well, which determines the default available gear
sizes for new users.

3. Restart the broker service:

service openshift-broker restart

4. For existing users, you must grant their accounts access to the new gear size before they can create
gears of that size. Run the following command on the broker host for the relevant user name and
gear size:

oo-admin-ctl-user -l Username --addgearsize Gear_Size

5. See Section 6.3.2, “Creating and Populating Districts” for more information on how to create and
populate a district, which are required for gear deployment, using the new gear profile.

6.2. Capacity Planning and Districts

Red Hat recommends that you plan for your OpenShift Enterprise deployment's expected capacity to better
ensure resource availability for gears. This is best accomplished through the use of districts. Districts
facilitate gear movement between node hosts in order to manage resource usage. Districts also allow node
deactivation to ensure a node receives no additional gears.

Note

Red Hat requires using districts to provide several administrative benefits. Districts are difficult to
introduce after the initial OpenShift Enterprise deployment process, therefore it is required to create
districts before creating any applications.

See Also:

Section 6.3.1, “Enabling Districts”

6.2.1. Hierarchy of OpenShift Enterprise Entities

To better understand the role of districts, examine their relationship with other OpenShift Enterprise entities:

Table 6.1. OpenShift Enterprise Container Hierarchy

Entity Description
Gears Gears are at the bottom of the hierarchy, and contain instances of one or more

cartridges.

Administration Guide

42

Nodes Nodes contain gears. Each gear UUID has a local UNIX user UID on the node host
with storage and processes constrained by various mechanisms.

Districts When used, districts contain a set of nodes, including the gears that reside on them.
Node profiles Node profiles are at the top of the hierarchy, and are also referred to as gear profiles

or gear sizes. They are conceptually similar to a label attached to a set of nodes.
Node profiles are assigned to districts, and all nodes in a district must have that node
profile. Nodes or districts can only contain gears for one node profile.

Applications Applications contain one or more gears, which currently must all have the same node
profile. Application gears can span multiple nodes in multiple districts. However, no
mechanism exists for placing gears on specific nodes or districts.

Entity Description

6.2.2. Purpose of Districts

Districts define a set of node hosts that gears can reliably move between to manage node host resource
usage. Red Hat requires using districts for production deployments, and they are enabled by default for
deploying gears on new installations.

OpenShift Enterprise allocates resources to gears including an external port range and IP address range,
calculated according to their numeric Linux user ID (UID) on the node. A gear can only move to a node where
its UID is not already in use. Districts reserve a UID for the gear across all nodes in the district, meaning only
the node hosting the gear uses its UID. This allows the gear to maintain the same UID and related resources
when moved to any other node within the district.

A district's UID pool includes 6000 UIDs due to the limited range of external ports. Districts allocate these
UIDs to gears randomly rather than sequentially. This random allocation method makes the availability of a
gear's UID more likely, even when moving the gear to a new district. Without districts, nodes allocate gear
UIDs locally and sequentially, making it extremely likely that a gear's UID will be in use on other nodes.

In previous versions of OpenShift Enterprise, it was possible to change a gear's UID on a gear move.
However, this required reconfiguration of the related resources, impeded cartridge maintenance, and caused
trouble for application developers with hard-coded resource settings, which could not be updated
automatically. Disallowing UID changes during a gear move and using districts to reserve UIDs saves
developers and administrators time and trouble.

Districts also allow you to mark a node as deactivated to ensure it receives no additional gears from the
broker host. The existing gears continue to run until they are destroyed or moved to another node. This
enables the decommissioning of a node with minimal disruption to its gears.

6.2.3. Gear Capacity Planning

Districts and nodes have separate capacity limits for the number of gears allowed on each. Districts allocate
UIDs from a fixed pool and can only contain 6000 gears, regardless of their state. Nodes, however, only
constrain the number of active gears on that host.

6.2.3.1. Gear Capacity Planning for Nodes

Use the max_active_gears parameter in the /etc/openshift/resource_limits.conf file to specify
the maximum number of active gears allowed per node. By default, this value is set to 100, but most
administrators will need to modify this value over time. Stopped or idled gears do not count toward this limit; a
node can have any number of inactive gears, constrained only by storage. However, starting inactive gears
after the max_active_gears limit has been reached may exceed the limit, which cannot be prevented or
corrected. Reaching the limit exempts the node from future gear placement by the broker.

Chapter 6. Resource Management

43

The safest way to calculate the max_active_gears limit on nodes is to consider the resource most likely to
be exhausted first (typically RAM) and divide the amount of available resource by the resource limit per gear.
For example, consider a node with 7.5 GB of RAM available and gears constrained to 0.5 GB of RAM:

Example 6.1. Example max_active_gears Calculation

max_active_gears = 7.5 GB / 0.5 GB = 15 gears

Most gears do not consume their entire resource quota, so this conservative limit can leave some resources
unused. Most administrators should overcommit at least some of their nodes by allowing more gears than
would fit if all gears used all of their resources. Experimentation is recommended to discover optimal settings
for your OpenShift Enterprise deployment. Based on the types of cartridges and applications expected, as
well as the amount of scarce resources actually used (such as RAM, CPU, network bandwidth, processes,
inodes, etc.), determine an overcommit percent by which to increase your limits.

Changing the max_active_gears parameter after installation is harmless. Consider beginning with
conservative limits and adjust accordingly after empirical evidence of usage becomes available. It is easier to
add more active gears than to move them away.

6.2.3.2. Gear Capacity Planning for Districts

Due to current constraints, each district can only contain 6000 gears. Therefore, Red Hat recommends that
you avoid placing a large number of nodes in a district. When a district's UID pool is exhausted its nodes will
no longer receive additional gears even if they have the capacity, thereby wasting resources. You can
remove excess nodes from a district by deactivating them and moving all of their gears away, which is a
process known as compacting a district. However, avoid this process if possible to minimize disruption to the
gears, and because mass gear movement can be slow and is prone to failure.

Districts exist to facilitate gear movement; the only advantage to having more than two or three nodes in a
district is that fewer districts exist requiring maintenance. It is easy to add nodes to a district, and difficult to
remove them. Therefore, adding nodes to districts conservatively is wise, and it is simplest to plan for districts
with two or three nodes.

With perfect knowledge, calculating how many nodes to put in each district is a function of the following
values:

D = district capacity (6000)
G = total number of gears per node

However, the total number of gears per node is not limited. To project this number, one of the values to
consider is the node capacity for active gears:

C = node capacity (max_active_gears)

For deployments that use the idler on inactive gears, or that stop many applications, the percentage of active
gears over a long period of time may be very low. Remember that even though the broker continues to fill the
nodes to the active limit when gears are stopped or idled, the district capacity must also contain all of those
inactive gears.

Therefore, to roughly project how many gears a full node can ultimately contain (G), determine the following
value (estimating at first, then adjusting):

A = percentage of gears that are active

Administration Guide

44

Then the estimate of how many gears a full node can ultimately contain is:

G = C * 100 / A

Thus, the formula for determining the number of nodes per district is:

N = 6000 * A / (100 * C)

Using the above formula, consider the following example.

Example 6.2. Example Nodes per District Calculation

If only 10% of gears are active over time, and max_active_gears is 50, calculate the following:

6000 * 10 / (100 * 50) = 12 (round down if needed)

In this example, twelve nodes should be added per district.

However, in performing this calculation with imperfect knowledge, it is best to be conservative by guessing a
low value of active gears and a high value for the node capacity. Adding nodes later is much better than
compacting districts.

6.3. Managing Districts

Districts facilitate gear movement between node hosts in order to manage resource usage. See Section 6.2,
“Capacity Planning and Districts” for more information on the concepts behind districts.

6.3.1. Enabling Districts

MCollective is responsible for communication between the broker and node hosts. This communication can
fail unless the MCollective plug-in on the broker host is configured to enable districts.

The following parameters in the /etc/openshift/plugins.d/openshift-origin-msg-broker-
mcollective.conf file on the broker host enable and enforce district use, all of which are set to true by
default:

DISTRICTS_ENABLED=true
NODE_PROFILE_ENABLED=true
DISTRICTS_REQUIRE_FOR_APP_CREATE=true

Note

Though not supported for production deployments, you can disable districts by setting the above
parameters to false and restarting the openshift-broker service.

The default value of true for the DISTRICTS_REQUIRE_FOR_APP_CREATE parameter prevents gear
placement if no district exists with capacity for the chosen gear profile, therefore preventing the use of node
hosts that are outside of districts. Setting the value to false and restarting the openshift-broker service
enables immediate use of node hosts without having to understand or implement districts. While this

Chapter 6. Resource Management

45

immediate usage may be helpful in an evaluation setting, it is neither desirable nor recommended in a
production setting where districts are used to place gears on a node host before being placed in a district.
This is because nodes cannot be placed in a district after they are hosting gears.

6.3.2. Creating and Populating Districts

Use the oo-admin-ctl-district command on the broker host to administer districts.

Note

Districts work with gear profiles to manage nodes. A default gear profile is defined in the
/etc/openshift/broker.conf file on the broker host, and is created in the following procedure.
For information on how to change the default gear profile, see Section 6.1, “Adding or Modifying Gear
Profiles”.

Procedure 6.3. To Create and Populate Districts:

1. Create a district using the following command:

oo-admin-ctl-district -c create -n District_Name -p Gear_Profile

2. Add a node to the district using the following command:

oo-admin-ctl-district -c add-node -n District_Name -i Node_Hostname

Alternatively, create a district and add nodes to it simultaneously with the following command. Note that you
can add multiple node hosts with the -i option and any node hostnames, or use the --available option to
add all undistricted nodes of the specified size:

oo-admin-ctl-district -c add-node -n District_Name -p Gear_Profile -i
Node_Hostname1,Node_Hostname2

The following examples use the small gear profile to create a district named small_district, then add
the node host node1.example.com to the new district:

Example 6.3. Creating a District Named small_district:

oo-admin-ctl-district -c create -n small_district -p small

Successfully created district: 7521a7801686477f8409e74f67b693f4

{"_id"=>"53443b8b87704f23db000001",
 "active_servers_size"=>1,
 "available_capacity"=>6000,
 "available_uids"=>"<6000 uids hidden>",
 "created_at"=>2014-04-08 18:10:19 UTC,
 "gear_size"=>"small",
 "max_capacity"=>6000,
 "max_uid"=>6999,

Administration Guide

46

 "name"=>"default-small-0",
 "servers"=> [],
 "updated_at"=>2014-04-08 18:10:19 UTC,
 "uuid"=>"53443b8b87704f23db000001"}

Example 6.4. Adding node1.example.com to the District:

oo-admin-ctl-district -c add-node -n small_district -i node1.example.com

Success!

{"_id"=>"53443b8b87704f23db000001",
 "active_servers_size"=>1,
 "available_capacity"=>6000,
 "available_uids"=>"<6000 uids hidden>",
 "created_at"=>2014-04-08 18:10:19 UTC,
 "gear_size"=>"small",
 "max_capacity"=>6000,
 "max_uid"=>6999,
 "name"=>"default-small-0",
 "servers"=>
 [{"_id"=>"53443bbc87704f49bd000001",
 "active"=>true,
 "name"=>"node1.example.com",
 "unresponsive"=>false}],
 "updated_at"=>2014-04-08 18:10:19 UTC,
 "uuid"=>"53443b8b87704f23db000001"}

Important

The server identity, node1.example.com in the above example, is the node's host name as
configured on that server, which could be different from the PUBLIC_HOSTNAME configured in the
/etc/openshift/node.conf file on the node. CNAME records use the PUBLIC_HOSTNAME
parameter, which must resolve to the host through DNS; the host name could be something
completely different and may not resolve in DNS at all.

MongoDB records the host name both in the district and with any gears hosted on the node host, so
changing the node's host name disrupts the broker's ability to use the node. Red Hat recommends
using the host name as the DNS name and not changing either after deployment.

6.3.3. Viewing District Information

This section describes how to view information about a district on your system. Note that the resulting output
is in JSON format.

View all available districts with the oo-admin-ctl-district command, or use the -n option with the
district's name to view a single district.

Chapter 6. Resource Management

47

Example 6.5. Viewing All Districts

oo-admin-ctl-district

{ ...
"uuid"=>"7521a7801686477f8409e74f67b693f4",
...}

Example 6.6. Viewing a Single District

oo-admin-ctl-district -n small_district

District Representation on the Broker

During district creation, the broker creates a new document in its MongoDB database. Run the following
command to view these documents inside of the openshift_broker database, replacing the login
credentials from the /etc/openshift/broker.conf file, if needed:

mongo -u openshift -p password openshift_broker

From the mongo shell, you can perform commands against the broker database. Run the following command
to list all of the available collections in the openshift_broker database:

> db.getCollectionNames()

Observe the collections returned, noting the districts collection:

 ["applications", "auth_user", "cloud_users", "districts", "domains",
"locks", "system.indexes", "system.users", "usage", "usage_records"]

Query the districts collection to verify the creation of your districts. District information is output in JSON
format:

> db.districts.find()

Exit the mongo shell using the exit command:

> exit

6.3.4. Viewing Capacity Statistics

Run the following command on the broker host to view gear usage across nodes and districts:

oo-stats

Consult the command's man page or --help option for script arguments. By default, this tool summarizes
district and profile gear usage in a human-readable format, and produces several computer-readable formats
for use by automation or monitoring.

Administration Guide

48

6.3.5. Moving Gears Between Nodes

The oo-admin-move command moves a gear from one node to another. Note that moving gears requires a
rsync_id_rsa private key in the broker host's /etc/openshift/ directory and a matching public key in
each node host's /root/.ssh/authorized_keys file as explained in the OpenShift Enterprise
Deployment Guide at https://access.redhat.com/site/documentation.

A gear retains its UID when moved, therefore cross-district moves are only allowed when the destination
district has the same gear UID available.

Run the oo-admin-move command on the broker host to move a gear from one node to another:

Example 6.7. Moving a Gear from One Node to Another

oo-admin-move --gear_uuid 3baf79139b0b449d90303464dfa8dd6f -i
node2.example.com

URL: http://app3-username.example.com
Login: username
App UUID: 3baf79139b0b449d90303464dfa8dd6f
Gear UUID: 3baf79139b0b449d90303464dfa8dd6f
DEBUG: Source district uuid: NONE
DEBUG: Destination district uuid: NONE
[...]
DEBUG: Starting cartridge 'ruby-1.8' in 'app3' after move on
node2.example.com
DEBUG: Fixing DNS and mongo for gear 'app3' after move
DEBUG: Changing server identity of 'app3' from 'node1.example.com' to
'node2.example.com'
DEBUG: The gear's node profile changed from medium to small
DEBUG: Deconfiguring old app 'app3' on node1.example.com after move
Successfully moved 'app3' with gear uuid
'3baf79139b0b449d90303464dfa8dd6f' from 'node1.example.com' to
'node2.example.com'

6.3.6. Removing Nodes from Districts

If many gears on a node host become idle over time, you can compact the district by decommissioning or re-
purposing the node host. Use the oo-admin-ctl-district and oo-admin-move commands in
combination to remove the gears from the node host, and then remove the host from its district.

Procedure 6.4. To Remove Nodes from Districts:

The following steps demonstrate an example situation where district small_district has two node hosts,
node1.example.com and node2.example.com. The second node host, node2.example.com, has a
high number of idle gears.

1. Run the following commands and fix any problems that are found. This prevents future problems
caused by moving a broken gear. On the broker host, run:

oo-admin-chk

On the node hosts, run:

Chapter 6. Resource Management

49

https://access.redhat.com/site/documentation

oo-accept-node

2. Deactivate the node you want to remove to prevent applications from being created on or moved to
the node. Existing gears continue running. On the broker host, run:

oo-admin-ctl-district -c deactivate-node -n small_district -i
node2.example.com

3. Move all the gears from node2.example.com to node1.example.com by repeating the following
command on the broker host for each gear on node2.example.com:

oo-admin-move --gear_uuid UUID -i node1.example.com

4. Remove node2.example.com from the district:

oo-admin-ctl-district -c remove-node -n small_district -i
node2.example.com

6.3.7. Removing Districts

When deleting a district, first remove all the node hosts from the district, then delete the district.

Procedure 6.5. To Remove Districts:

1. On the broker host, set the district's capacity to 0:

oo-admin-ctl-district -c remove-capacity -n district_name -s 6000

2. Remove all the node hosts from the district you want to delete by running the following commands for
each node:

oo-admin-ctl-district -c deactivate-node -i node_hostname
oo-admin-ctl-district -c remove-node -n district_name -i
node_hostname

3. Delete the empty district:

oo-admin-ctl-district -c destroy -n district_name

6.4. Managing Regions and Zones

Prerequisites:

Section 6.3, “Managing Districts”

With the release of OpenShift Enterprise 2.1, you can group nodes into regions and zones. Regions and
zones provide a way for brokers to manage several distinct geographies by controlling application
deployments across a selected group of nodes. You can group nodes into zones, and group zones into
regions. These groups can represent physical geographies, such as different countries or data centers, or
can be used to provide network level separation between node environments.

Use regions when you require all application developers to use the same OpenShift Enterprise deployment,

Administration Guide

50

but they are separated by their geographical location. Developers can tag nodes into zones, then group the
zones into regions, and their workload is placed inside the corresponding hardware, zone, and region. If you
have deployed a high-availability deployment, you can use a new zone for each rack in a datacenter, and,
due to gear anti-affinity, any new gears will be spread across multiple zones, ensuring availability. Configuring
regions in your deployment can also help avoid latency issues. You can maximize your application
performance with less latency by deploying applications geographically closer to your expected users. For
example, if your application is hosted in the US, and European application users are experiencing latency,
you can use regions to extend your application to European-hosted datacenters to ease the application end-
users' experience.

The current implementation of regions requires the use of districts. Nodes in districts can be tagged with a
region and zone, while districts themselves can span several regions or a single region. Any single
application is restricted to one region at a time, while gears within an application gear group are distributed
across available zones in the current region. The broker attempts to distribute new gears evenly across the
available zones; if the default gear placement algorithm is not desired, a custom gear placement plug-in can
be implemented.

Note

When regions are in use, gear moves are allowed using the oo-admin-move tool if the move is
between districted nodes and all gears in the application remain in a single region.

See Also:

Section 6.5, “Gear Placement Algorithm”

Section 6.3.5, “Moving Gears Between Nodes”

6.4.1. Creating a Region with Zones

Use the oo-admin-ctl-region tool to create, list, or destroy regions and add or remove zones within a
given region.

Procedure 6.6. To Create a Region with Zones:

1. Create a new region. Region names can include alphanumeric characters, underscores, hyphens,
and dots:

oo-admin-ctl-region -c create -r region_name

2. Add zones to the region. Zone names can include alphanumeric characters, underscores, hyphens,
and dots:

oo-admin-ctl-region -c add-zone -r region_name -z zone_name

3. Verify the new region and zones:

oo-admin-ctl-region -c list -r region_name

6.4.2. Tagging a Node with a Region and Zone

Prerequisites:

Chapter 6. Resource Management

51

Section 6.3.2, “Creating and Populating Districts”

Use the oo-admin-ctl-district tool to tag nodes in districts with a region and zone.

Procedure 6.7. To Tag a Node with a Region and Zone:

1. Create a district if one does not already exist:

oo-admin-ctl-district -c create -n district_name -p gear_profile

2. While adding a node to a district, tag the node with a region and zone. Note that you can add multiple
nodes with the -i option:

oo-admin-ctl-district -c add-node -n district_name -i
Node_Hostname1,Node_Hostname2 -r region_name -z zone_name

Alternatively, tag a node previously added to a district with a region and zone:

oo-admin-ctl-district -c set-region -n district_name -i
Node_Hostname -r region_name -z zone_name

6.4.3. Setting the Default Region For New Applications

You can have multiple regions at one time. Unless specified differently with the --region option, new
applications are created in the default region set in the /etc/openshift/broker.conf file.

Procedure 6.8. To Set the Default Region for New Applications:

1. Change the following parameter to the desired default region for new applications:

DEFAULT_REGION_NAME="Region_Name"

2. Restart the broker service:

service openshift-broker restart

6.4.4. Disabling Region Selection

By default, an application developer can select the region in which to create an application by using the --
region option. Use the following procedure to disable a developer's ability to create an application in a
specific region. Paired with Section 6.4.3, “Setting the Default Region For New Applications”, this gives you
control over the region in which newly-created applications are located.

Procedure 6.9. To Disable Region Selection When Creating Applications:

1. Change the following setting in the /etc/openshift/broker.conf file to false:

ALLOW_REGION_SELECTION="false"

2. Restart the broker service for the changes to take effect:

service openshift-broker restart

Administration Guide

52

6.4.5. Additional Region and Zone Tasks

List all available regions with the following command:

oo-admin-ctl-region -c list

Remove region and zone tags from a node with the following command:

oo-admin-ctl-district -c unset-region -n district_name -i server_identity

Remove zones from a region with the following command:

oo-admin-ctl-region -c remove-zone -r region_name -z zone_name

Destroy empty regions with the following command:

oo-admin-ctl-region -c destroy -r region_name

Procedure 6.10. To Require New Applications Use Zones:

1. In the /etc/openshift/plugins.d/openshift-origin-msg-broker-mcollective.conf
file on the broker host, set the ZONES_REQUIRE_FOR_APP_CREATE parameter to true to require
that new applications only use nodes tagged with a zone. When true, gear placement will fail if
there are no zones available with the correct gear profile:

ZONES_REQUIRE_FOR_APP_CREATE=true

2. Restart the broker service:

service openshift-broker restart

Procedure 6.11. To Enforce the Minimum Number of Zones per Gear Group

1. In the /etc/openshift/plugins.d/openshift-origin-msg-broker-mcollective.conf
file on the broker host, set the ZONES_MIN_PER_GEAR_GROUP parameter to the desired minimum
number of zones between which gears in application gear groups are distributed:

ZONES_MIN_PER_GEAR_GROUP=number_of_zones

2. Restart the broker service:

service openshift-broker restart

6.5. Gear Placement Algorithm

Prerequisites:

Section 6.2, “Capacity Planning and Districts”

Section 6.4, “Managing Regions and Zones”

When new gears are added to an application, a gear placement algorithm is used to find an available node

Chapter 6. Resource Management

53

on which to place each gear. You can either use the default algorithm or implement the gear placement plug-
in to use a custom algorithm; see OpenShift Enterprise Deployment Guide for more information on using a
custom algorithm.

This section details the default gear placement algorithm and assumes the use of districts, which are required
for production deployments and enabled by default.

Gear Placement and Districts

MongoDB configures district capacity. Gear status does not affect district capacity, because districts reserve
resources; they do not account for actual usage. In the JSON record for a district, max_capacity indicates
the maximum number of gears that can be placed in the district, while available_capacity indicates the
number of gears still available in that district. See Section 6.3.3, “Viewing District Information” for details on
viewing the JSON record of a district.

Districts have a hard limit of 6000 gears, because each member node reserves resources for the entire
district to ensure availability when a gear moves between nodes. This limit means that in a district with only
one node, the district is full and cannot accept additional gears if that node reaches 6000 gears. Consider a
district with more than one node full when each node has a number of gears equal to 6000 divided by the
number of nodes. For example, the default gear placement algorithm keeps a district with two nodes at
approximately 3000 gears on each node.

Use caution when manually migrating, as well. For example, starting with three nodes in a district then
removing one manually can result in the remaining two nodes being unbalanced with 4000 and 2000 gears
each.

Least Preferred and Restricted Servers

When choosing nodes for new gears, the default gear placement algorithm also considers any least preferred
servers and restricted servers to help maintain high availability for applications. Least preferred servers are
nodes that already have gears on them for the given application gear group; it is preferable to find other
nodes instead so that high availability is ensured. Restricted servers are nodes that should not be chosen at
all. For example, restricted servers would be identified for high-availability applications when two HAProxy
gears are created to ensure they are placed on different nodes.

If no other nodes are available, a least preferred server can be chosen, however a restricted node cannot,
resulting in the failure of the gear creation process and a rollback of the operation.

Default Gear Placement Algorithm

The following steps describe the default algorithm for selecting a node on which to place a new gear for an
application:

1. Find all the districts.

2. Find the nodes that have the least active_capacity.

3. Filter nodes based on given criteria to ensure gears within scalable applications are spread across
multiple nodes.

4. Filter non-districted nodes when districts are required.

5. When regions and zones are present:

a. Filter nodes without zones when zones are required.

b. If the application already has gears on a node tagged with a region, exclude nodes that do
not belong to the current region.

Administration Guide

54

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#sect-Installing_and_Configuring_the_Gear_Placement_Plug-in

c. Verify whether the minimum required number of zones for application gear groups is met.

d. Filter zones to ensure that gears within the application gear group do not exist solely in a
single zone.

e. Choose zones that are least consumed to evenly distribute gears among zones.

f. When zone nodes available, exclude nodes without zones.

6. When districted nodes are available, exclude nodes without districts.

7. Among remaining nodes, choose the ones with plenty of available capacity that are in districts with
available UIDs.

8. Randomly choose one of the nodes with the lower levels of active_capacity.

6.6. Setting Default Gear Quotas and Sizes

This section describes how to set default gear quotas and sizes for all users.

In the /etc/openshift/broker.conf file, modify the VALID_GEAR_SIZES value to include a list of gear
sizes available to create districts and applications. The DEFAULT_GEAR_SIZE value and
DEFAULT_GEAR_CAPABILITIES value must be set to a size listed available. To modify gear quotas and
sizes for specific users, see Section 6.7, “Setting Gear Quotas and Sizes for Specific Users”.

Table 6.2. Default Gear Quotas and Sizes

Configuration Setting Description
VALID_GEAR_SIZES Specifies a list of gear sizes that are available in the

system.
DEFAULT_MAX_GEARS Specifies the default maximum number of a gears a

new user is entitled to.
DEFAULT_GEAR_SIZE Specifies the default gear size when a new gear is

created.
DEFAULT_GEAR_CAPABILITIES Specifies a list of gear sizes available to a new user.

Example 6.8. Setting Default Gear Quotas and Sizes

Edit the /etc/openshift/broker.conf file on the broker host and modify the following defaults as
desired to set the default gear quotas and sizes:

Comma-separated list of valid gear sizes available anywhere in the
installation
VALID_GEAR_SIZES="small,medium"

Default number of gears to assign to a new user
DEFAULT_MAX_GEARS="100"

Default gear size for a new gear if not otherwise specified
DEFAULT_GEAR_SIZE="small"

Default gear sizes (comma-separated) allowed to a new user
DEFAULT_GEAR_CAPABILITIES="small"

Chapter 6. Resource Management

55

6.7. Setting Gear Quotas and Sizes for Specific Users

Use the oo-admin-ctl-user command to set individual user gear parameters to limit the number of gears
a user is allowed, and change user access to gear sizes.

On the broker host, display gear information for a user with the following command. Replace username with
the relevant user name:

oo-admin-ctl-user -l username

Example 6.9.

oo-admin-ctl-user -l user

User user:
 consumed gears: 3
 max gears: 100
 gear sizes: small

On the broker host, limit the number of gears a user is allowed with the following command. Replace
username with the relevant user name and 101 with the desired number of gears:

oo-admin-ctl-user -l username --setmaxgears 101

Example 6.10. Limiting a User's Number of Gears

oo-admin-ctl-user -l user --setmaxgears 101
Setting max_gears to 101... Done.

User user:
 consumed gears: 3
 max gears: 101
 gear sizes: small

On the broker host, add a gear size for a user with the following command. Replace username with the
relevant user name and medium with the desired gear size:

oo-admin-ctl-user -l username --addgearsize medium

Example 6.11. Enabling a Gear Size For a User

oo-admin-ctl-user -l user --addgearsize medium
Adding gear size medium for user user... Done.

User user:

Administration Guide

56

 consumed gears: 3
 max gears: 101
 gear sizes: small, medium

On the broker host, remove a gear size from a user with the following command. Replace username with the
relevant user name and medium with the desired gear size:

oo-admin-ctl-user -l username --removegearsize medium

Example 6.12. Removing a Gear Size For a User

oo-admin-ctl-user -l user --removegearsize medium
Removing gear size medium for user user... Done.

User user:
 consumed gears: 3
 max gears: 101
 gear sizes: small

6.8. Restricting Gear Sizes for Cartridges

With the release of OpenShift Enterprise 2.2, you can associate cartridges with specific gear sizes to restrict
the size of deployed applications. This allows application developers to deploy certain applications on
appropriate infrastructures. For example, you can set a gear size to a corresponding cartridge for
applications that requires a faster CPU or more RAM to run at a higher proficiency.

To restrict gear sizes for a cartridge, add the following to the /etc/openshift/broker.conf file:

VALID_GEAR_SIZES_FOR_CARTRIDGE = "Cart_Name|Gear_Size"

Ensure the appropriate cartridge version number is included.

Example 6.13. Restricting Gears Sizes for Specific Cartridges

VALID_GEAR_SIZES_FOR_CARTRIDGE = "php-5.3|medium,large jbossews-2.0|large"

Restart the broker service to load the changes:

service openshift-broker restart

If a cartridge is configured to use specific gear sizes, then a developer must be able to create applications
using the gear size directly or indirectly through domain membership. Any client tools and API commands
that access the cartridge listing filter out any cartridges that cannot be used by specific developers.

If the application developer attempts to use a cartridge when they do not have the corresponding gear size
capability, the operation terminates and they are notified of the error. See Section 6.6, “Setting Default Gear
Quotas and Sizes” and Section 6.7, “Setting Gear Quotas and Sizes for Specific Users” for information on
specifying gear sizes for a developer.

Chapter 6. Resource Management

57

6.9. Viewing Resource Usage on a Node

On a node host, use standard tools such as free and vmstat to report memory usage. Note that tools such
as vmstat, top, and uptime report the number of processes waiting to execute. These tools might be
artificially inflated, because cgroups restrict each gear to a specific time slice rather than time-sharing
between processes. This restriction enables OpenShift Enterprise to provide consistent CPU availability for
each gear, but also means that active processes on gears may wait while the CPU is allocated to a less
active gear. As a result, reported load average may routinely be close to the number of active gears.

The oo-idler-stats command returns a status summary of all the gears on a node host.

Example 6.14. Returning a Status Summary of Gears on a Node Host

oo-idler-stats

1 running, 1 idled, 0 half-idled for a total 2 of 3 (66.67 %)

This example shows three gears on the node: one is running, one is idle, and one is stopped. The half-
idled state is deprecated and always returns 0.

6.10. Enforcing Low Tenancy on Nodes

Set the max_active_gears value in a node's gear profile to a low number to achieve low or single tenancy
on nodes. In environments with low numbers of gears per node and large gear sizes, it is important to avoid
overcommitting resources and exceeding the max_active_gears value.

Set the no_overcommit_active value in the node's gear profile to true to avoid overcommitting
resources and to enforce the desired tenancy. This setting verifies node capacity when a gear is being
created on a node. If sufficient capacity is not available on the selected node, the gear is not created and an
error message is displayed.

Example 6.15. Node Capacity Exceeded Error Message

Gear creation failed (chosen node capacity exceeded).

This message is also displayed if another application is already being created on the selected node.

Procedure 6.12. To Enforce Low Tenancy on Nodes:

1. Open the /etc/openshift/resource_limits.conf file on the node host and set the
no_overcommit_active value to true:

no_overcommit_active=true

2. Restart the ruby193-mcollective service:

service ruby193-mcollective restart

6.11. Managing Capacity on Broker Hosts

Administration Guide

58

6.11. Managing Capacity on Broker Hosts

It is highly unlikely that a need to add more broker hosts will arise in terms of capacity. A broker host is
typically used to create and delete applications. The majority of developer and end-user traffic, including
updates and actual usage of the applications, is handled by node hosts. However, because the process of
creating and deleting applications is sporadic, high availability is the main reason to have additional broker
hosts. For example, the service at https://openshift.redhat.com only uses four broker hosts in EC2, mainly for
high availability.

See the OpenShift Enterprise Deployment Guide at https://access.redhat.com/site/documentation for more
information on how to add a broker host.

Chapter 6. Resource Management

59

https://openshift.redhat.com
https://access.redhat.com/site/documentation

Chapter 7. Administration Console

An optional Administration Console is available for OpenShift Enterprise that allows administrators to search
and navigate entities to plan the capacity of an OpenShift Enterprise deployment. Note that the current
iteration of the Administration Console is read-only, so the settings or data cannot be modified.

The Administration Console's default URI is /admin-console, however external access is disabled by
default. See the OpenShift Enterprise Deployment Guide at https://access.redhat.com/site/documentation for
information on installing and configuring the Administration Console, including options for configuring external
access.

7.1. Understanding the System Overview

The front page of the Administration Console displays the System Overview. This page displays a
summary of each gear profile for a user and offers suggestions based on configured targets, such as adding
nodes or creating new districts. See Section 7.6, “Configuring Suggestions” for more on configuring
suggestions.

The gear profile summaries provide information about total gears, active gears, the current maximums for
both total and active gears, and progress bars relating these values. It also provides heat maps for district
usage that show how many total gears the district is using versus its maximum, and for node usage showing
how many active gears a node is using versus its maximum. More intense color in these heat maps indicates
more districts or nodes at that percentage usage. For nodes, the color transitions to orange when it reaches
the configured threshold, and transitions to red for nodes that exceed their active capacity. Click on the
DISTRICTS or NODES section to view details for that gear profile, including its nodes and districts.

Figure 7.1. System Overview

7.2. Viewing Gear Profiles

Click on a gear profile's Details... link from the System Overview page to view more information about
it. Each gear profile page provides the same summary for the respective gear profile as seen on the System
Overview page and allows you to toggle between viewing the relevant districts or nodes. The DISTRICTS
view shows all of the districts in that gear profile, and by default sorts by the fewest total gears remaining, or
the most full districts. Each district displays a progress bar of the total gears and a link to view the nodes for
that district.

Administration Guide

60

https://access.redhat.com/site/documentation

The DISTRICTS view also displays a threshold indicator. The threshold is a configurable value for the target
number of active gears available on a node. Each node for the district appears as either over (displayed in
red) or under (displayed in green) the threshold. Each bar is slightly opaque to allow for multiple bars of the
same type to show through. Therefore, if there is an intense red or green color, then several nodes are either
over or under the threshold.

Figure 7.2. Gear Profile Districts View

Each gear profile page's NODES view shows all nodes in that gear profile, and by default sorts by the fewest
active gears remaining. A progress bar indicates how many active gears the node is using; a full bar is 110%
or more of the active capacity. The bars transition to orange when it reaches the configured threshold, and
transitions to red for nodes that exceed their active capacity. The Show drop-down menu allows you to filter
the nodes displayed, with the options for either all nodes in the gear profile, only nodes in a particular district,
or nodes that are currently not in a district. Selecting a node takes you to the node's summary page.

Figure 7.3. Gear Profile Nodes View

Chapter 7. Administration Console

61

7.3. Viewing Suggestions

The suggestions on the System Overview page are only a short summary of the full suggestion. All of the
suggestions are also available on the Suggestions page, and are expandable to a more detailed
description with recommended commands where applicable. The triggers for many of these suggestions are
configurable values. See Section 7.6, “Configuring Suggestions” for more on configuring suggestions.

Figure 7.4. Suggestions for Adding Capacity

Figure 7.5. Suggestions for Missing Nodes

7.4. Searching for Entities

The upper right section of every page of the Administration Console contains a search box, providing a quick
way to find OpenShift Enterprise entities. Additionally, the dedicated Search page provides more information
on the expected search queries for the different entities, such as Applications, Users, Gears, and
Nodes.

Administration Guide

62

The search does not intend to provide a list of possible matches; it is a quick access method that attempts to
directly match the search query. Applications, User, Gear, and Node pages link to each other where
possible. For example, a User page links to all of the user's applications, and vice versa.

7.5. Viewing Statistics

The Stats page provides counts of applications, users, and domains. It also provides histograms for the
number of applications per domain, number of gears per user, and number of domains owned per user.

7.6. Configuring Suggestions

The System Overview front page of the Administration Console provides a visual and numeric summary of
the capacity and usage of the entire OpenShift Enterprise deployment. You can configure it to provide
suggestions for when the capacity may have to be adjusted. Because OpenShift Enterprise environments
vary, thresholds are not set by default, and thus capacity suggestions are initially absent. Settings for
capacity planning are configured in the Administration Console configuration file, located at
/etc/openshift/plugins.d/openshift-origin-admin-console.conf, to enable suggestions that
warn of current or impending capacity problems. For example, the Administration Console can suggest
where to add nodes to ensure a particular profile can continue to create gears, or where capacity is poorly
utilized.

Note

See Section 6.2, “Capacity Planning and Districts” for more information on capacity planning in
OpenShift Enterprise to better understand the information that is displayed by the Administration
Console and the importance of the suggestion settings.

Both the configuration file settings and the existing capacity data determine the suggestions for adding and
removing capacity, which are conservative in terms of placing nodes in districts. For example, when
calculating district size suggestions, the Administration Console uses the observed gear percentage if that
percentage is lower than expected; if all nodes do not have the same max_active_gears limit, it uses the
largest.

The STATS_CACHE_TIMEOUT parameter in the configuration file, set by default to one hour, determines how
long to keep capacity and suggestions statistics cached. If you do not immediately see changes that you
expect in the Administration Console, refresh the data by clicking the refresh icon near the upper right of any
page.

7.7. Loading Capacity Data from a File

The Administration Console uses the same Admin Stats library used by the oo-stats command to collect
capacity data. Record the YAML or JSON output from the oo-stats command and use the output directly
instead of the actual system data using the following procedure:

Procedure 7.1. To Load Capacity Data from a File:

1. Run the following command to gather capacity data on a broker host, which then records the output
to a file. Replace yaml with json, if needed:

oo-stats -f yaml > /tmp/stats.yaml

Chapter 7. Administration Console

63

2. Copy /tmp/stats.yaml to the host running the Administration Console, if needed.

3. Set /tmp/stats.yaml in the STATS_FROM_FILE parameter in the
/etc/openshift/plugins.d/openshift-origin-admin-console.conf file.

4. SELinux limits what the broker application can read (for example, it cannot ordinarily read /tmp
entries). To ensure that the broker can read the data file, adjust its context as follows:

chcon system_u:object_r:httpd_sys_content_t:s0 /tmp/stats.yaml

5. Restart the broker:

service openshift-broker restart

The Administration Console will now use the loaded file for capacity views and suggestions, although
navigation still only works for entities actually present.

7.8. Exposed Data

The Administration Console exposes OpenShift Enterprise system data for use by external tools. In the
current iteration of the Administration Console, you can retrieve the raw data from some of the application
controllers in JSON format. This is not a long-term API however, and is likely to change in future releases.
You can access the following URLs by appending them to the appropriate host name:

Exposed Data Points

/admin-console/capacity/profiles.json returns all profile summaries from the Admin Stats
library (the same library used by the oo-stats command). Add the ?reload=1 parameter to ensure the
data is current rather than cached.

/admin-console/stats/gears_per_user.json returns frequency data for gears owned by a user.

/admin-console/stats/apps_per_domain.json returns frequency data for applications belonging
to a domain.

/admin-console/stats/domains_per_user.json returns frequency data for domains owned by a
user.

The following example shows how to access /admin-console/capacity/profiles.json on the broker
host:

curl http://localhost:8080/admin-console/capacity/profiles.json

Administration Guide

64

Chapter 8. Monitoring

This chapter covers recommended practices for evaluating the overall health and performance of an
OpenShift Enterprise deployment, as well as configuration options for gathering logs and metrics.

With the release of OpenShift Enterprise 2.1, you can now choose to collocate log files to Syslog instead of
their default locations, which are found in several locations across an OpenShift Enterprise instance. Placing
them into a single location helps you to analyze broker, node, gear, and Management Console errors. See
the following sections for more information on how to enable Syslog for OpenShift Enterprise components.

8.1. General System Checks

1. Use standard system administration checks to monitor the basic health of your system. For example:

ensure adequate memory

minimize disk swapping

ensure adequate disk space

monitor file system health

2. Monitor the services used by OpenShift Enterprise. Ensure the following are running and configured
correctly:

MCollective

Mongo

Apache

ActiveMQ

SELinux and cgroups

3. Use custom scripts to run checks specific to your system. Confirm that the entire system is working
by checking:

nodes and gears are valid and consistent system-wide by running oo-admin-chk on a broker
host

gears are created and deleted correctly

available statistics and capacities

hosts respond to MCollective using oo-mco ping

8.2. Response Times for Administrative Actions

The following sections provide approximate response times for various administrative tasks.

Application Creation

The time it takes to create an application depends on the application type and how long DNS propagation
takes. Apart from the time spent propagating DNS, applications are generally created in approximately 35
seconds.

Chapter 8. Monitoring

65

Restarting a Node

The length of time required to restart a node host depends on the number of gears on the node host, and how
many of those gears are active. Node host restarts can take approximately five to thirty minutes.

8.3. Testing a Path Through the Whole System

Every major component of a system can be tested by creating a test user, and then creating and deleting an
application. This includes user authentication, the broker application, the MongoDB datastore, the DNS,
MCollective and other messaging services, and node host and gear functionality.

8.4. Monitoring Broker Activity

Monitoring broker activity provides insight into the usage of your OpenShift Enterprise deployment and can
help diagnose problems with it. Note that problems on the broker only affect actions that interact with the
broker, such as creating applications. Deployed applications continue to function normally on their nodes
even if the broker is unavailable, which means that developers can still access and update their applications
using SSH and Git, and applications are still available online.

8.4.1. Default Broker Log File Locations

By default, the actions of a broker host are written locally to certain log files. The following table provides the
location and a description of important broker host log files:

Table 8.1. Default Broker Log Files

File Description
/var/log/openshift/broker/production.l
og

This file contains any log requests processed by the
broker application.

/var/log/openshift/broker/user_action.
log

This file logs any user actions, including the creation
and deletion of gears. Similar to production.log,
but less verbose.

/var/log/openshift/broker/httpd/access
_log

This file logs any calls made to the REST API.

/var/log/openshift/broker/httpd/error_
log

This file logs any Rails errors that occur on start-up.

/var/log/openshift/broker/usage.log This file logs information on gear or filesystem
resource usage, but only if tracking is enabled in the
/etc/openshift/broker.conf file.

8.4.2. Verifying Functionality with Administration Commands

There are several commands that test the basic functionality of an OpenShift Enterprise instance.

Each command is outlined with examples in Chapter 9, Command Reference.

Note

In order to prevent the overloading of your instance, Red Hat recommends running the following
commands no less than twelve hours apart.

Administration Guide

66

Verifying Broker Host Functionality

The following table outlines administration commands for testing functionality on a broker host:

Table 8.2. Verification Commands for a Broker Host

Command Name Description
oo-accept-broker Use this command to test basic functionality before

performing more intensive tests.
oo-accept-systems Use this command to verify that the settings on node

hosts are valid and can be used by a broker host.
oo-admin-chk Use this command to verify consistency throughout

all node hosts and gears in an OpenShift Enterprise
deployment.

Verifying Node Host Functionality

The following table contains administration commands for testing functionality on a node host:

Table 8.3. Verification Commands for a Node Host

Command Name Description
oo-accept-node Use this command to test basic functionality before

performing more intensive tests.

8.5. Monitoring Node and Gear Activity

Problems with node hosts can affect a single gear, several gears, or all the gears on the host. A common
indication of a node host problem is an inability to create or remove gears on that host.

8.5.1. Default Node Log File Locations

By default, node components write log messages locally to their configured log file destination. The following
table provides the default locations of important log files for node components, summarizes the information
they contain, and identifies the configuration setting that changes their default location:

Table 8.4. Node Log Files

File Description Configuration Setting
/var/log/openshift/node/p
latform.log

Primary log for node platform
actions including MCollective
actions performed on the node
host.

PLATFORM_LOG_FILE setting in
/etc/openshift/node.conf.

/var/log/openshift/node/p
latform-trace.log

Logs node platform trace actions. PLATFORM_TRACE_LOG_FILE
setting in
/etc/openshift/node.conf.

/var/log/openshift/node/r
uby193-mcollective.log

Logs MCollective messages
communicated between broker
and node hosts. Read to confirm
proper gear creation.

logfile setting in
/opt/rh/ruby193/root/etc/
mcollective/server.cfg.

/var/log/httpd/openshift_
log

Logs gear access from the front-
end Apache.

APACHE_ACCESS_LOG setting in
/etc/openshift/node.conf.

Chapter 8. Monitoring

67

8.5.2. Enabling Application and Gear Context in Node Component Logs

Further context, such as application names and gear UUIDs, can be included in log messages from node
components, which adds visibility by associating entries with specific applications or gears. This can also
improve the ability to correlate log entries using reference IDs from the broker.

Procedure 8.1. To Enable Application and Gear Context in Apache Logs:

1. Configure Apache to include application names and gear UUIDs in its log messages by editing the
/etc/sysconfig/httpd file and adding the following line:

OPTIONS="-DOpenShiftAnnotateFrontendAccessLog"

Important

All options must be on the same line. For example, in Section 8.8.2, “Enabling Syslog for
Node Components” another option for Apache log files is explained. If both options are
desired, the line must use the following syntax:

OPTIONS="-Option1 -Option2"

2. Restart the httpd service for the Apache changes to take effect for new applications:

service httpd restart

Procedure 8.2. To Enable Application and Gear Context in Node Platform Logs:

1. Configure the node platform to include application and gear context in its log messages by editing the
/etc/openshift/node.conf file and adding the following line:

PLATFORM_LOG_CONTEXT_ENABLED=1

2. Add the following line to specify which attributes are included. Set any or all of the following options
in a comma-delimited list:

PLATFORM_LOG_CONTEXT_ATTRS=request_id,container_uuid,app_uuid

This produces key-value pairs for the specified attributes. If no context attribute configuration is
present, all context attributes are printed.

3. Restart the ruby193-mcollective service for the node platform changes to take effect:

service ruby193-mcollective restart

8.5.3. Viewing Application Details

Use the oo-app-info command to view the information about applications and gears.

On the broker host, view application details with the following command, replacing options with the desired
values:

Administration Guide

68

oo-app-info options

Option Description
-a, --app [NAME] Specify a comma-delimited list of application names, without domains.

Alternatively, specify a regular expression instead of application names.

-d, --domain
[NAME]

Specify a comma-delimited list of domain namespaces, without application names.

Alternatively, specify a regular expression instead of a domain namespace.

-f, --fqdn [NAME] Specify a comma-delimited list of application FQDNs.

Alternatively, specify a regular expression instead of an application FQDN.

-l, --login [NAME] Specify a comma-delimited list of OpenShift user logins.

Alternatively, specify a regular expression instead of a login.

-u, --gear_uuid
[uuid]

Specify a comma-delimited list of application or gear UUIDs.

Alternatively, specify a regular expression instead of a UUID.

--deleted Search for deleted applications.
--raw Display raw data structure without formatting.

Example 8.1. Viewing Application Details for a Specific Login:

oo-app-info --login login --app py33s

Loading broker environment... Done.

==
====== Login: demo
 Plan: ()

 App Name: py33s
 App UUID: 54471801f09833e74300001e
 Creation Time: 2014-10-22 02:35:45 AM
 URL: http://py33s-demo.example.com

 Group Instance[0]:
 Components:
 Cartridge Name: python-3.3
 Component Name: python-3.3
 Gear[0]
 Server Identity: node.hosts.example.com
 Gear UUID: 54471801f09833e74300001e
 Gear UID: 1224

 Current DNS

 py33s-demo.example.com is an alias for node.hosts.example.com.
 node.hosts.example.com has address 172.16.4.136

Chapter 8. Monitoring

69

8.5.4. The Watchman Tool

The Watchman tool is a daemon that is used to protect your OpenShift Enterprise instance against common
issues found by Red Hat . The Watchman tool solves these common issues autonomously, and includes the
following built-in features:

Watchman searches cgroup event flow through syslog to determine when a gear is destroyed. If the
pattern does not match a clean gear removal, the gear will be restarted.

Watchman monitors the application server logs for messages hinting at out of memory, then restarts the
gear if needed.

Watchman compares the user-defined status of a gear, then the actual status of the gear, and fixes any
dependencies.

Watchman searches processes to ensure they belong to the correct cgroup. It kills abandoned processes
associated with a stopped gear, or restarts a gear that has zero running processes.

Watchman monitors the usage rate of CPU cycles and restricts a gear's CPU consumption if the rate of
change is too aggressive.

Watchman capabilities can be expanded with plug-ins. See Section 8.5.4.2, “Supported Watchman Plug-ins”
for more information.

8.5.4.1. Enabling Watchman

Watchman is an optional tool that monitors the state of gears and cartridges on a node. It is primarily used to
automatically attempt to resolve problems and, if required, restore any gears that have ceased to function.

Enable the Watchman tool persistently using the following command on a node host:

chkconfig openshift-watchman on

8.5.4.2. Supported Watchman Plug-ins

Plug-ins are used to expand the events and conditions on which the Watchman tool takes action. These plug-
ins are located in the /etc/openshift/watchman/plugins.d directory, and are outlined in the following
table.

The Watchman tool automatically loads any plug-in whose file is added to the
/etc/openshift/watchman/plugins.d directory. To disable a plug-in, move the plug-in file from the
plugins.d directory and place it into an unused directory for backup. Ensure to restart the Watchman tool
any time a change to the plugins.d directory is made:

service openshift-watchman restart

Table 8.5. Supported Watchman Plug-ins

Watchma
n Plug-in
Name

Plug-in Filename Function

Syslog syslog_plugin.rb This searches the /var/log/messages file for any messages
logged by cgroups when a gear is destroyed and restarts the gear if
required.

Administration Guide

70

JBoss jboss_plugin.rb This searches JBoss cartridge server.log files for out-of-memory
exceptions and restarts gears if required.

Gear
State

gear_state_plugin
.rb

This compares the last state change commanded by the user
against the current status of the gear in order to find the best use for
resources. For example, this plug-in kills any processes running on
a stopped gear, and restarts a started gear if it has no running
processes.

Throttler throttler_plugin.
rb

This uses cgroups to monitor CPU usage and restricts usage if
required.

Metrics metrics_plugin.rb This gathers and publishes gear-level metrics such as cgroups data
for all gears on a node host at a configurable interval.

OOM oom_plugin.rb Available starting with OpenShift Enterprise 2.1.4, this monitors for
gears under out-of-memory (OOM) state, attempts to resolve
problems, and restarts gears if required.

Watchma
n Plug-in
Name

Plug-in Filename Function

Enabling the Watchman Metrics Plug-in

As well as adding it to the plugins.d directory, as outlined above, enabling the Metrics plug-in requires an
extra step. Edit the /etc/openshift/node.conf file and ensure the following line is uncommented to
enable the Metrics plug-in:

WATCHMAN_METRICS_ENABLED=true

Restart the Watchman service for the changes to take effect

The Metrics plug-in logs its data to /var/log/openshift/node/platform.log by default, which is the
node platform log file. However, if you have Syslog enabled, log data is sent to the syslog file with
type=metric in each Metrics logline.

Example 8.2. Logged Metrics Data

Jun 10 16:25:39 vm openshift-platform[29398]: type=metric appName=php6
gear=53961099e659c55b08000102 app=53961099e659c55b08000102 ns=demo
quota.blocks.used=988 quota.blocks.limit=1048576 quota.files.used=229
quota.files.limit=80000

Configuring the Throttler Plug-in

To configure the throttler plug-in, edit the following parameters in the
/etc/openshift/resource_limits.conf file on a node host:

Example 8.3. Throttler Plug-in Configuration Parameters

[cg_template_throttled]
cpu_shares=128
cpu_cfs_quota_us=100000
apply_period=120

Chapter 8. Monitoring

71

apply_percent=30
restore_percent=70

The throttler plug-in works with cgroups. It watches for gears that are using an excessive amount of CPU
time, and when the gear's CPU time is being used more than the amount defined by the apply_percent
parameter the gear is placed into a 'throttled' cgroup quota. The throttler plug-in continues to watch the gear
until it is using the amount of CPU time defined by the restore_percent parameter or less. When the
amount is stabilized, the gear is placed back into the default cgroup limit.

The cpu_shares and cpu_cfs_quota parameters define the throttle cgroup templates to apply to any
throttled gears. The apply_period parameter defines how long a gear is throttled before it is restored into
the default cgroup limit. For example, using the default parameters, a gear is throttled once it uses over 30
percent of a gear's CPU usage for 120 seconds, and a throttled gear is unthrottled once it is using less than
70 percent of the throttled CPU usage for 120 seconds.

8.5.4.3. Configuring Watchman

Set any of the following parameters in the /etc/sysconfig/watchman file to configure Watchman. This
file is available by default starting with OpenShift Enterprise 2.1.4.

Table 8.6. Watchman Configuration Parameters

Parameter Function
GEAR_RETRIES This sets the number of gear restarts attempted before a

RETRY_PERIOD.

RETRY_DELAY This sets the number of seconds to wait before attempting to restart
the gear.

RETRY_PERIOD This sets the number of seconds to wait before resetting the
GEAR_RETRIES entry.

STATE_CHANGE_DELAY This sets the number of seconds the gear remains broken before
Watchman attempts to fix the issue.

STATE_CHECK_PERIOD Available starting with OpenShift Enterprise 2.1.4, this sets the
number of seconds to wait since the last check before checking the
gear state. Increase this to reduce the impact of the Watchman
Gear State plug-in.

THROTTLER_CHECK_PERIOD Available starting with OpenShift Enterprise 2.1.4, this sets the
number of seconds to wait before checking the cgroup state of the
gear. Increase this to reduce the impact of the Watchman Throttler
plug-in.

OOM_CHECK_PERIOD Available starting with OpenShift Enterprise 2.1.4, this sets the
number of seconds to wait since the last check before looking for
gears under out-of-memory (OOM) state.

Restart the Watchman tool for any changes to take effect:

service openshift-watchman restart

8.5.5. Testing Node Host Functionality

Use the oo-accept-node command to test the basic functionality of the node host before performing more
intensive tests.

Administration Guide

72

8.5.6. Validating Gears

Validate the gears registered in the MongoDB datastore against those on all node hosts by running oo-
admin-chk on a broker host. This command lists gears that partially failed creation or deletion, as well as
nodes with incorrect gear counts.

8.5.7. Node Capacity

When a node host reaches capacity, extend the capabilities of a node by adding storage and RAM, or by
moving gears to different nodes with available resources. On a node with 100 applications, 100 active gears
out of 100 capacity indicates a full node. If an application on a full node is idle, and is restored, the node will
exceed capacity (101/100). The node will continue to function normally, but you can move gears to another
node to reduce the active applications.

To determine the active gear capacity of a node host, view the active_capacity entry in
/opt/rh/ruby193/root/etc/mcollective/facts.yaml.

To determine the maximum number of active applications on a node host, view the max_active_gears
entry in /etc/openshift/resource_limits.conf.

8.6. Monitoring Management Console Activity

Monitoring console log files can provide insight into any problems with the Management Console.

8.6.1. Default Management Console Log File Locations

Management Console log files are found in the /var/log/openshift/console directory.

Table 8.7. Default Management Console Log Files

File Description
/var/log/openshift/console/production.
log

This file contains any log requests processed by the
Management Console.

/var/log/openshift/console/httpd/acces
s_log

This file logs any calls made to the REST API.

/var/log/openshift/console/httpd/error
_log

This file logs any Rails errors that occur on start-up.

8.7. Usage Tracking

Monitoring of resource usage per user is enabled by default in OpenShift Enterprise. This includes gears that
are created, additional gear storage, and gear age.

User resource tracking consumes space in the MongoDB datastore. Therefore, Red Hat recommends that
you disable resource tracking if it is not required.

Procedure 8.3. To Disable Usage Tracking:

1. Open /etc/openshift/broker.conf on the broker host.

2. Set the value of ENABLE_USAGE_TRACKING_DATASTORE to "false".

Chapter 8. Monitoring

73

a. Alternatively, set ENABLE_USAGE_TRACKING_AUDIT_LOG to false to disable audit logging
for usage tracking.

3. Restart the broker service:

service openshift-broker restart

8.7.1. Setting Tracked and Untracked Storage

The oo-admin-ctl-user command allows you to manage a user's available tracked and untracked gear
storage. Both types of storage provide additional storage to a user's gears, but untracked storage is not
included in usage reports. The total storage available to a user's gear is the sum of the tracked and untracked
storage.

When a user adds storage to a gear, their untracked allowance is applied first. When the untracked storage is
depleted, further storage is drawn from their tracked allowance.

After you set the gear storage maximums, a user can add their allotted additional storage to their applications
using the Management Console or the client tools. See the OpenShift Enterprise User Guide at
https://access.redhat.com/site/documentation for more information on storage management.

Note

Red Hat recommends that you only set the maximum untracked storage amount if resource usage is
not being tracked for users.

On the broker host, set the maximum amount of tracked storage per gear with the following command.
Replace the example user name and amount of tracked gear storage to suit your requirements:

oo-admin-ctl-user -l username --setmaxtrackedstorage 10

Example 8.4. Setting the Maximum Amount of Tracked Storage

oo-admin-ctl-user -l user --setmaxtrackedstorage 10
Setting max_tracked_addtl_storage_per_gear to 10... Done.

User user:
 consumed gears: 2
 max gears: 100
 max tracked storage per gear: 10
 max untracked storage per gear: 0
 plan upgrade enabled:
 gear sizes: small
 sub accounts allowed: false

On the broker host, set the maximum amount of untracked storage per gear with the following command.
Replace the example user name and amount of untracked gear storage to suit your requirements:

oo-admin-ctl-user -l username --setmaxuntrackedstorage 10

Administration Guide

74

https://access.redhat.com/site/documentation

Example 8.5. Setting the Maximum Amount of Untracked Storage

oo-admin-ctl-user -l user --setmaxuntrackedstorage 10
Setting max_tracked_addtl_storage_per_gear to 10... Done.

User user:
 consumed gears: 2
 max gears: 100
 max tracked storage per gear: 10
 max untracked storage per gear: 10
 plan upgrade enabled:
 gear sizes: small
 sub accounts allowed: false

8.7.2. Viewing Accumulated Usage Data

Use the oo-admin-usage or oo-admin-ctl-usage command to view resource usage reports per user.
Usage reports include how long a user has been using a gear and any additional storage. Red Hat
recommends using the oo-admin-usage command for listing a single user's usage data, because it
contains more detailed information. Use the oo-admin-ctl-usage command to list all users' basic usage
data at one time.

On the broker host, view resource usage per user with the following command, replacing username with the
desired value:

oo-admin-usage -l username

Example 8.6. Viewing a User's Resource Usage

oo-admin-usage -l user
Usage for user
--
#1
 Usage Type: GEAR_USAGE (small)
 Gear ID: 519262ef6892df43f7000001 (racecar)
 Duration: 3 hours and 19 minutes (2013-05-14 12:14:45 - PRESENT)

#2
 Usage Type: ADDTL_FS_GB (3)
 Gear ID: 5192624e6892dfcb3f00000e (foo)
 Duration: 15 seconds (2013-05-14 12:16:33 - 2013-05-14 12:16:48)

#3
 Usage Type: ADDTL_FS_GB (2)
 Gear ID: 5192624e6892dfcb3f00000e (foo)
 Duration: 3 hours and 17 minutes (2013-05-14 12:16:48 - PRESENT)

The following table provides more information on the output of this command.

Field Description

Chapter 8. Monitoring

75

Usage Type GEAR_USAGE is related to how long a gear has been in use with the gear size in
parentheses.

ADDTL_FS_GB is related to how long additional storage has been in use on a gear
with the number of GBs in parentheses.

Gear ID Gear ID indicates the UUID of the relevant gear with the associated application name
in parentheses.

Duration Duration indicates the start and end time of the gear (or start time and PRESENT if
still in use).

Field Description

On the broker host, view resource usage for all users with:

oo-admin-ctl-usage --list

Example 8.7. Viewing Resource Usage for All Users

oo-admin-ctl-usage --list
Errors/Warnings will be logged to terminal
2013-05-14 15:48:54 -0400 INFO::
---------- STARTED ----------

User: username1
 Gear: 518bcaa26892dfcb74000001, UsageType: GEAR_USAGE, Usage:
23.32543548687111
 Gear: 518bcb876892dfcb74000017, UsageType: GEAR_USAGE, Usage:
23.32543548687111
 Gear: 519254d36892df8f9000000b, UsageType: ADDTL_FS_GB, Usage:
0.05429166666666666
 Gear: 519254d36892df8f9000000b, UsageType: GEAR_USAGE, Usage:
0.08019000000000001
 Gear: 519258d46892df156600001f, UsageType: GEAR_USAGE, Usage:
4.287655764648889
User: username2
 Gear: 5192624e6892dfcb3f00000e, UsageType: ADDTL_FS_GB, Usage: 0.0042325
 Gear: 5192624e6892dfcb3f00000e, UsageType: ADDTL_FS_GB, Usage:
3.5350574313155554
 Gear: 519262ef6892df43f7000001, UsageType: GEAR_USAGE, Usage:
3.5691388202044445
2013-05-14 15:48:54 -0400 INFO::
---------- ENDED, #Errors: 0, #Warnings: 0 ----------

The following table provides more information on the output of this command.

Field Description
User User names the user accumulating the resource usage.
Gear Gear indicates the UUID of the relevant gear.

Administration Guide

76

UsageType GEAR_USAGE is related to how long a gear has been in use.

ADDTL_FS_GB is related to how long additional storage has been in use on a gear.

Usage Usage lists the duration of the gear (in hours).

Field Description

8.8. Enabling Syslog

With the release of OpenShift Enterprise 2.1, you can now choose to send log files to Syslog instead of their
default locations, which are found in varied locations across an OpenShift Enterprise instance. Placing them
into a single location helps you to analyze broker, node, gear, and Management Console errors. See the
following sections for more information on how to enable Syslog for OpenShift Enterprise components.

Note

Instructions for configuring a Syslog implementation to route to alternative destinations, such as a
remote logging server, are outside of the scope of this guide. The implementation provided by Red Hat
Enterprise Linux 6 is Rsyslog, which writes to the /var/log/messages file by default. See the Red
Hat Enterprise Linux 6 Deployment Guide for information on viewing and managing log files if using
Rsyslog.

8.8.1. Enabling Syslog for Broker Components

Set the SYSLOG_ENABLED variable in the /etc/openshift/broker.conf file to true in order to group
production.log, user_action.log, and usage.log into the syslog file:

SYSLOG_ENABLED=true

The default location for the syslog file is /var/log/messages, but this is configurable. However, in the
syslog file, these share the same program name. In order to distinguish between the log files, the following
applies:

Messages usually sent to production.log will have src=app in each log line.

Messages usually sent to user_action.log will have src=useraction in each log line.

Messages usually sent to usage.log will have src=usage in each log line.

8.8.2. Enabling Syslog for Node Components

You can configure node hosts to send node platform and Apache logs to Syslog instead of writing to their
default log file locations. After enabling Syslog logging, messages from the various node components are
grouped and sent to the configured Syslog implementation. This method of aggregating log messages gives
you the option to further configure your Syslog implementation to send logs directly to a remote logging
server or monitoring solution without the messages being written locally to disk.

Chapter 8. Monitoring

77

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/s1-configuring_rsyslog_on_a_logging_server.html

Note

Instructions for configuring a Syslog implementation to route to alternate destinations, such as a
remote logging server, are outside of the scope of this guide. The implementation provided by Red Hat
Enterprise Linux 6 is Rsyslog, which writes to the /var/log/messages file by default. See the Red
Hat Enterprise Linux 6 Deployment Guide for information on viewing and managing log files if using
Rsyslog.

Procedure 8.4. To Enable Syslog for Apache:

1. Configure Apache to send log messages to Syslog by adding the following option in the
/etc/sysconfig/httpd file:

OPTIONS="-DOpenShiftFrontendSyslogEnabled"

Important

All options must be on the same line. For example, in Section 8.5.2, “Enabling Application and
Gear Context in Node Component Logs” another option for Apache log files is explained. If
both options are desired, the line must use the following syntax:

OPTIONS="-Option1 -Option2"

2. Restart the httpd service for the Apache changes to take effect:

service httpd restart

Procedure 8.5. To Enable Syslog for the Node Platform:

1. Configure the node platform to send log messages to Syslog by editing the
/etc/openshift/node.conf file. Add the following line and any or all of the described optional
settings that follow:

PLATFORM_LOG_CLASS=SyslogLogger

Optional Threshold Setting:

Add the following line to include messages with priorities up to and including the set threshold.
Replace priority in the following line with one of the levels listed at http://ruby-doc.org/stdlib-
1.9.3/libdoc/syslog/rdoc/Syslog.html#method-c-log:

PLATFORM_SYSLOG_THRESHOLD=priority

Optional Trace Log Setting:

Add the following line to include trace logs that were previously directed to the default
/var/log/openshift/node/platform-trace.log file:

Administration Guide

78

http://ruby-doc.org/stdlib-1.9.3/libdoc/syslog/rdoc/Syslog.html#method-c-log

PLATFORM_SYSLOG_TRACE_ENABLED=1

2. Restart the ruby193-mcollective service for the node platform changes to take effect:

service ruby193-mcollective restart

3. When Syslog support is enabled for the node platform, the local0 Syslog facility is used to log
messages. By default, the /etc/rsyslog.conf file does not log platform debug messages. If you
are using Rsyslog as your Syslog implementation, add the following line to the
/etc/rsyslog.conf file to enable platform debug message logging. If necessary, replace
/var/log/messages with your chosen logging destination:

local0.*;*.info;mail.none;authpriv.none;cron.none /var/log/messages

Then restart the rsyslog service:

service rsyslog restart

With this change, all log messages using the local0 facility are sent to the configured logging
destination.

8.8.3. Enabling Syslog for Cartridge Logs from Gears

By default, cartridge logs are written to the $OPENSHIFT_LOG_DIR directory of an application. You can
configure logshifter on node hosts to instead have gears send their cartridge logs to Syslog. Starting with
OpenShift Enterprise 2.1.7, you can also have them sent to both Syslog and the $OPENSHIFT_LOG_DIR
directory at the same time.

Procedure 8.6. To Enable Syslog for Cartridge Logs from Gears:

1. Edit the /etc/openshift/logshifter.conf file on the node host. The default value for the
outputType setting is file, which results in gears sending cartridge logs to the
$OPENSHIFT_LOG_DIR directory. Change this setting to syslog to have them sent to Syslog:

outputType=syslog

Alternatively, starting with OpenShift Enterprise 2.1.7, you can choose to change the outputType
setting instead to multi, which results in logs being written using both file and syslog at the
same time.

2. Ask affected owners of existing applications to restart their applications for the changes to take effect.
They can restart their applications with the following commands:

$ rhc app stop -a appname
$ rhc app start -a appname

Alternatively, you can restart all gears on affected node hosts. The downtime caused by restarting all
gears is minimal and normally lasts a few seconds:

oo-admin-ctl-gears restartall

Chapter 8. Monitoring

79

Important

If the outputTypeFromEnviron setting in the /etc/openshift/logshifter.conf file is set to
true, application owners are allowed to override the global outputType setting using a
LOGSHIFTER_OUTPUT_TYPE environment variable in their application. See the OpenShift Enterprise
User Guide for more information.

Cron Syslog Configuration

With the mmopenshift plug-in, all Cron cartridges will output all log information to the configured gear log
file (/var/log/openshift_gears in the example 8.1). It may be necessary for system-level Cron logs to
be separated from the gear logs for troubleshooting purposes. System-level Cron messages are tagged with
cron_sys_log and can be separated into another file by adding the below to the /etc/syslog.conf
Syslog configuration file:

:syslogtag, contains, "cron_sys_log:" /var/log/openshift_cron_cartridges.log
 &~

action(type="mmopenshift")

if $!OpenShift!OPENSHIFT_APP_UUID != '' then
 # annotate and log syslog output from gears specially
 . action(type="omfile" file="/var/log/openshift_gears"
template="OpenShift")
else
 # otherwise send syslog where it usually goes
 *.info;mail.none;authpriv.none;cron.none action(type="omfile"
file="/var/log/messages")

The :syslogtag entry must be placed before the *.* mmopenshift entry to prevent Cron system logs
from going to both the openshift_cron_cartridges log and the openshift_gears log. The &~ tells
Rsyslog to stop processing log entries if the filter condition on the previous line is met.

Enabling Application and Gear Context for Cartridge Logs

To provide context to cartridge logs aggregated to Syslog, a message modification plug-in for Rsyslog
called mmopenshift can be used to add gear metadata to the cartridge logs. The plug-in can be configured
to add metadata items to the JSON properties of each message that Rsyslog receives from a gear.

Due to configuration file format requirements, a newer version of Rsyslog, provided by the rsyslog7 package,
must be installed and configured to enable this feature. The mmopenshift plug-in also only works for
messages that have the $!uid JSON property, which can be added automatically when the imuxsock plug-
in is enabled with the following options:

SysSock.Annotate

SysSock.ParseTrusted

SysSock.UsePIDFromSystem

Procedure 8.7. To Enable Application and Gear Context for Cartridge Logs:

Administration Guide

80

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/User_Guide/index.html#Logging_Environment_Variables

1. Install the mmopenshift plug-in, which requires the rsyslog7 package, on the node host. Because
installing the rsyslog7 package where the rsyslog package is already installed can cause conflicts,
consult the following instructions relevant to your node host.

If the rsyslog package is already installed, use a yum shell to remove the rsyslog package and install
the rsyslog7 and rsyslog7-mmopenshift packages safely:

a. Stop the Rsyslog service:

service rsyslog stop

b. Open a yum shell:

yum shell

c. Run the following commands inside of the yum shell:

> erase rsyslog
> install rsyslog7 rsyslog7-mmopenshift
> transaction run
> quit

The rsyslog package is uninstalled and a newer version of Rsyslog takes its place. The
rsyslog7-mmopenshift package is also installed, which provides the mmopenshift module.

Alternatively, if the rsyslog package is not already installed, or if rsyslog7 is already the only version
of Rsyslog installed, install the mmopenshift module using the following command:

yum install rsyslog7 rsyslog7-mmopenshift

2. Review the existing /etc/rsyslog.conf file, if relevant, and note any important default or custom
settings. This includes changes that were made with the instructions described in Section 8.8.2,
“Enabling Syslog for Node Components”. Next, make any required changes to ensure that the new
/etc/rsyslog7.conf file contains those changes. Note that some settings may be different
between /etc/rsyslog.conf and /etc/rsyslog7.conf.rpmnew; see
http://www.rsyslog.com/doc/v7-stable/ for more information.Once complete, take a backup of
/etc/rsyslog.conf and move /etc/rsyslog.conf.rpmnew to /etc/rsyslog.conf

Important

A sample section of an /etc/rsyslog7.conf.rpmnew file is provided at Example 8.8,
“Sample Configuration Settings in /etc/rsyslog7.conf” which depicts how the
mmopenshift plug-in can be enabled for Rsyslog. However, it is not meant to represent a
comprehensive /etc/rsyslog7.conf file or be fully comparable to the standard
/etc/rsyslog.conf configuration.

3. Edit the /etc/rsyslog7.conf file and add the following lines under the MODULES section to
enable the imuxsock plug-in and the mmopenshift plug-in:

module(load="imuxsock" SysSock.Annotate="on" SysSock.ParseTrusted="on"
SysSock.UsePIDFromSystem="on")
module(load="mmopenshift")

Chapter 8. Monitoring

81

http://www.rsyslog.com/doc/v7-stable/

4. Edit the /etc/rsyslog7.conf file and comment out the following line under the MODULES section
to configure the imuxsock plug-in:

#$ModLoad imuxsock

5. Edit the /etc/rsyslog7.conf file and comment out the following lines to disable the imjournal
plug-in:

$ModLoad imjournal
$OmitLocalLogging on
$IMJournalStateFile imjournal.state

6. Edit the /etc/rsyslog7.conf file to have Syslog search the /etc/rsyslog7.d directory for
configuration files:

#$IncludeConfig /etc/rsyslog.d/*.conf
$IncludeConfig /etc/rsyslog7.d/*.conf

7. Examine the /etc/rsyslog.d directory and copy any configuration files that are needed in
/etc/rsyslog7.d directory for the Rsyslog7 logging configuration.

8. Create a gear log template file in the Rsyslog7 directory. This defines the format of the gear logs,
including sufficient parameters to distinguish gears from each other. This example template can be
modified to suit the requirements of your log analysis tools. For more information on template
configuration instructions, see http://www.rsyslog.com/doc/v7-stable/configuration/templates.html.:

vi /etc/rsyslog7.d/openshift-gear-template.conf
template(name="OpenShift" type="list") {
 property(name="timestamp" dateFormat="rfc3339")
 constant(value=" ")
 property(name="hostname")
 constant(value=" ")
 property(name="syslogtag")
 constant(value=" app=")
 property(name="$!OpenShift!OPENSHIFT_APP_NAME")
 constant(value=" ns=")
 property(name="$!OpenShift!OPENSHIFT_NAMESPACE")
 constant(value=" appUuid=")
 property(name="$!OpenShift!OPENSHIFT_APP_UUID")
 constant(value=" gearUuid=")
 property(name="$!OpenShift!OPENSHIFT_GEAR_UUID")
 property(name="msg" spifno1stsp="on")
 property(name="msg" droplastlf="on")
 constant(value="\n")
}

9. Add the following lines to the /etc/rsyslog7.conf file under the RULES section to configure the
mmopenshift plug-in to use the template from the previous step. The following example logs all
gear messages to the /var/log/openshift_gears file and all other messages to the
/var/log/messages file, but these destinations are configurable to a different destination:

module(load="mmopenshift")
action(type="mmopenshift")

Administration Guide

82

http://www.rsyslog.com/doc/v7-stable/configuration/templates.html

if $!OpenShift!OPENSHIFT_APP_UUID != '' then
 . action(type="omfile" file="/var/log/openshift_gears"
template="OpenShift")
else {
 *.info;mail.none;authpriv.none;cron.none action(type="omfile"
file="/var/log/messages")
}

Also, comment out the following line:

*.info;mail.none;authpriv.none;cron.none
/var/log/messages

10. Start or restart the rsyslog service and ensure it starts persistently across reboots:

service rsyslog restart
chkconfig rsyslog on

Example 8.8. Sample Configuration Settings in /etc/rsyslog7.conf

MODULES

The imjournal module bellow is now used as a message source instead of
imuxsock.
#$ModLoad imuxsock # provides support for local system logging (e.g. via
logger command)
#$ModLoad imjournal # provides access to the systemd journal
$ModLoad imklog # provides kernel logging support (previously done by
rklogd)
#$ModLoad immark # provides --MARK-- message capability
module(load="imuxsock" SysSock.Annotate="on" SysSock.ParseTrusted="on"
SysSock.UsePIDFromSystem="on")
module(load="mmopenshift")

Provides UDP syslog reception
#$ModLoad imudp
#$UDPServerRun 514

Provides TCP syslog reception
#$ModLoad imtcp
#$InputTCPServerRun 514

GLOBAL DIRECTIVES

Where to place auxiliary files
$WorkDirectory /var/lib/rsyslog

Use default timestamp format
$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

File syncing capability is disabled by default. This feature is usually
not required,
not useful and an extreme performance hit
#$ActionFileEnableSync on

Chapter 8. Monitoring

83

Include all config files in /etc/rsyslog7.d/
#$IncludeConfig /etc/rsyslog.d/*.conf
$IncludeConfig /etc/rsyslog7.d/*.conf

Turn off message reception via local log socket;
local messages are retrieved through imjournal now.
#$OmitLocalLogging on

File to store the position in the journal
#$IMJournalStateFile imjournal.state

RULES

Log all kernel messages to the console.
Logging much else clutters up the screen.
#kern.* /dev/console

Log anything (except mail) of level info or higher.
Don't log private authentication messages!
#*.info;mail.none;authpriv.none;cron.none
/var/log/messages
action(type="mmopenshift")
if $!OpenShift!OPENSHIFT_APP_UUID != '' then
 # annotate and log syslog output from gears specially
 . action(type="omfile" file="/var/log/openshift_gears"
template="OpenShift")
else
 # otherwise send syslog where it usually goes
 *.info;mail.none;authpriv.none;cron.none action(type="omfile"
file="/var/log/messages")

The authpriv file has restricted access.
authpriv.* /var/log/secure

Log all the mail messages in one place.
mail.* -
/var/log/maillog

Log cron stuff
cron.* /var/log/cron

Everybody gets emergency messages
.emerg :omusrmsg:

Save news errors of level crit and higher in a special file.
uucp,news.crit /var/log/spooler

Save boot messages also to boot.log
local7.*
/var/log/boot.log

8.8.4. Enabling Syslog for Management Console Components

Administration Guide

84

Set the SYSLOG_ENABLED variable in the /etc/openshift/console.conf file to true in order to send
production.log log messages to the syslog file:

SYSLOG_ENABLED=true

The default location for the syslog file is /var/log/messages, but this is configurable. However, in the
syslog file, different log files share the same program name. Management Console log messages will have
src=app inserted into each log line.

Chapter 8. Monitoring

85

Chapter 9. Command Reference

9.1. Broker Administration Commands

These tools are installed with the openshift-origin-broker and openshift-origin-broker-util
RPMs.

9.1.1. oo-accept-broker

This command checks that your broker setup is valid and functional. It is run without options on a broker host.

If there are no errors, it displays PASS and exits with return code 0. With the -v option added, it displays the
current checks that are being performed.

If there are errors, they are displayed, and the return code is the number of errors.

Example 9.1. Checking For Errors With oo-accept-broker

oo-accept-broker -v

INFO: SERVICES: DATA: mongo, Auth: mongo, Name bind
INFO: AUTH_MODULE: rubygem-openshift-origin-auth-mongo
INFO: NAME_MODULE: rubygem-openshift-origin-dns-bind
INFO: Broker package is: openshift-origin-broker
INFO: checking packages
INFO: checking package ruby
INFO: checking package rubygems
INFO: checking package rubygem-rails
INFO: checking package rubygem-passenger
INFO: checking package rubygem-openshift-origin-common
INFO: checking package rubygem-openshift-origin-controller
INFO: checking package openshift-origin-broker
INFO: checking ruby requirements
INFO: checking ruby requirements for openshift-origin-controller
INFO: checking ruby requirements for config/application
INFO: checking firewall settings
INFO: checking services
INFO: checking datastore
INFO: checking cloud user authentication
INFO: auth plugin =
/var/www/openshift/broker/config/initializers/broker.rb:2: uninitialized
constant ApplicationObserver (NameError) from -:6
INFO: checking dynamic dns plugin
INFO: checking messaging configuration
PASS

9.1.2. oo-accept-systems

This command checks that node host PUBLIC_HOSTNAME and PUBLIC_IP configuration settings are
globally valid and unique. It also checks the cartridges installed on the nodes and the status of the broker's
cache. It is run without options on the broker host.

Administration Guide

86

If there are no errors, the command displays PASS and exits with return code 0. With the -v option added, it
displays the current checks that are being performed.

If there are errors, they are displayed, and the return code is the number of errors.

Example 9.2. Checking For Errors With oo-accept-systems

oo-accept-systems -v

INFO: checking that each public_hostname resolves to external IP
INFO: PUBLIC_HOSTNAME node1.example.com for node2.example.com resolves to
10.4.59.136
INFO: PUBLIC_HOSTNAME node2.example.com for node1.example.com resolves to
10.4.59.133
INFO: checking that each public_hostname is unique
INFO: checking that public_ip has been set for all nodes
INFO: PUBLIC_IP 10.4.59.136 for node1.example.com
INFO: PUBLIC_IP 10.4.59.133 for node2.example.com
INFO: checking that public_ip is unique for all nodes
INFO: checking that all node hosts have cartridges installed
INFO: cartridges for node1.example.com: cron-1.4|ruby-1.9|perl-
5.10|jenkins-client-1.4|diy-0.1|jenkins-1.4|php-5.3|haproxy-
1.4|abstract|abstract-jboss|jbosseap-6.0|mysql-5.1|postgresql-8.4|ruby-
1.8|jbossews-1.0|python-2.6|abstract-httpd
INFO: cartridges for node2.example.com: diy-0.1|jenkins-client-1.4|cron-
1.4|jbossews-1.0|php-5.3|abstract-httpd|ruby-1.9|python-2.6|jbosseap-
6.0|perl-5.10|abstract|postgresql-8.4|abstract-jboss|ruby-1.8|jenkins-
1.4|haproxy-1.4|mysql-5.1
INFO: checking that same cartridges are installed on all node hosts
INFO: checking that broker's cache is not stale
INFO: API reports carts: diy-0.1|jbossews-1.0|php-5.3|ruby-1.9|python-
2.6|jbosseap-6.0|perl-5.10|ruby-1.8|jenkins-1.4|jenkins-client-1.4|cron-
1.4|postgresql-8.4|haproxy-1.4|mysql-5.1
PASS

9.1.3. oo-admin-chk

This command checks that application records in the MongoDB datastore are consistent with the gears that
are present on the node hosts. With the -v option added, it displays the current checks that are being
performed.

Example 9.3. Checking For MongoDB Consistency with oo-admin-chk

oo-admin-chk -v

Started at: 2013-05-03 03:36:28 +1000
Time to fetch mongo data: 0.005s
Total gears found in mongo: 3
Time to get all gears from nodes: 20.298s
Total gears found on the nodes: 3
Total nodes that responded : 1
Checking application gears and ssh keys on corresponding nodes:

Chapter 9. Command Reference

87

51816f026892dfec74000004 : String... OK
518174556892dfec74000040 : String... OK
518176826892dfec74000059 : String... OK
Checking node gears in application database:
51816f026892dfec74000004... OK
518174556892dfec74000040... OK
518176826892dfec74000059... OK
Success
Total time: 20.303s
Finished at: 2013-05-03 03:36:49 +1000

With the -l option added, additional levels of checks can be included:

oo-admin-chk -l 1 -v

9.1.4. oo-admin-clear-pending-ops

The oo-admin-clear-pending-ops removes stuck user operations from the application queue, so that
they no longer hold up the queue preventing other operations from proceeding on that application.

 oo-admin-clear-pending-ops [options]

The available options are:

Option Description
-t, --time n Deletes pending operations older than n hours. (Default: 1)

-u, --uuid uuid Prunes only applications with the given UUID.

Note

In most scenarios, you should not need to use the oo-admin-clear-pending-ops command
directly. It is most commonly run automatically by the ose-upgrade tool as part of the upgrade
process described in the OpenShift Enterprise Deployment Guide. This ensures the database is in a
consistent state before data migrations happen.

9.1.5. oo-admin-console-cache

The oo-admin-console-cache command manages the Management Console Rails application's cache.

 oo-admin-console-cache [-c | --clear] [-q | --quiet]

The available options are:

Option Description
-c, --clear Removes all entries from the Management Console Rails

application's cache.
-q, --quiet Shows as little output as possible.

See Also:

Administration Guide

88

https://access.redhat.com/documentation/en-US/OpenShift_Enterprise/2/html-single/Deployment_Guide/index.html#chap-Upgrading_from_Previous_Versions

Section 5.4, “Adding QuickStarts to the Management Console”

Section 5.6, “Disabling Obsolete Cartridges”

Section 5.2, “Installing and Removing Custom and Community Cartridges”

9.1.6. oo-admin-broker-auth

This command recreates broker authentication keys. If AUTH_SALT is changed in
/etc/openshift/broker.conf, restart the broker service and run the oo-admin-broker-auth
command to recreate authentication tokens for all applicable gears.

oo-admin-broker-auth

9.1.7. oo-admin-broker-cache

This command clears the broker Rails application cache.

oo-admin-broker-cache --clear

9.1.8. oo-admin-ctl-app

This command provides administration command options for applications.

oo-admin-ctl-app

Modifying the HAProxy Multiplier

The HAProxy multiplier sets the ratio of how many HAproxy cartridges are enabled for application scaling.
Setting the multiplier number to 2 means that for every two gears, one will have HAProxy enabled.
Alternatively, you can set the minimum and maximum number of HAProxy cartridges allowed in scaling.

Modify the number of HAProxy multplier using the oo-admin-ctl-app command with the --multiplier
option.

oo-admin-ctl-app -l username -a appname --cartridge haproxy-1.4 -c set-
multiplier --multiplier 2

9.1.9. oo-admin-ctl-authorization

Use this command to either delete only expired authorization tokens for a user, or to delete both valid and
expired authorization tokens for a user.

On the broker host, delete all expired authorization tokes for a user with:

oo-admin-ctl-authorization -c expire

On the broker host, delete all valid and expired authorization tokens for a user with:

oo-admin-ctl-authorization -c revoke_all

9.1.10. oo-admin-ctl-district

Chapter 9. Command Reference

89

9.1.10. oo-admin-ctl-district

This command performs district operations, such as creating or removing districts and adding or removing
nodes from districts. It can also be used to tag nodes in districts with a region and zone.

See Also:

Section 6.3, “Managing Districts”

Section 6.4, “Managing Regions and Zones”

9.1.11. oo-admin-ctl-domain

This command is used to query and control a user's domain. It produces detailed output in YAML format.

oo-admin-ctl-domain

See Also:

Section 3.3, “Removing User Data”

Section 3.4, “Removing a User”

9.1.12. oo-admin-ctl-region

The oo-admin-ctl-region command is used to create, list, or destroy regions and add or remove zones
within a given region.

See Also:

Section 6.4, “Managing Regions and Zones”

9.1.13. oo-admin-ctl-team

The oo-admin-ctl-team tool manages global teams and is invoked with a set of commands using the -c
or --command option:

 oo-admin-ctl-team -c command [options]

The available commands are:

Command Description
list Lists all teams.

Administration Guide

90

create Creates a new team. Requires either both the --name and --
maps-to options, or both the --groups and --config-
file options. For example:

oo-admin-ctl-team create --name team_name
--maps-to group_name

Alternatively:

oo-admin-ctl-team create --groups
group_name_1,group_name_2 --config-file
file_name

update Updates an existing team LDAP correspondance. Requires
both the --name and --maps-to options.

delete Deletes a team. Requires the --name option.

show Displays a team and its members. Requires either the --name
or --maps-to option.

sync Syncs global teams with the LDAP groups. Requires the --
config-file option.

sync-to-file Generates a sync file for review. No changes are made to the
teams and their members. Requires the --out-file and --
config-file options.

sync-from-file Syncs from a file. Requires the --in-file option.

Command Description

Other options are:

Option Description
--broker path Specifies the path to the broker.

--create-new-users Creates new users in OpenShift if they do not exist.

--remove-old-users Removes members from a team that are no longer in the
group.

See Also:

Section 4.2, “Creating Global Teams and Synchronizing with LDAP Groups”

9.1.14. oo-admin-ctl-usage

The oo-admin-ctl-usage displays usage data for all users. The output includes user names, gears,
usage type and duration.

 oo-admin-ctl-usage --list [--enable-logger]

The following options are available for OpenShift Enterprise:

Chapter 9. Command Reference

91

Option Description
--list List usage data.

--enable-logger Print error and warning messages to the log file instead of to
the terminal.

The following table provides more information on the output of the --list option.

Field Description
User User names the user accumulating the resource usage.
Gear Gear indicates the UUID of the relevant gear.
UsageType GEAR_USAGE is related to how long a gear has been in use.

ADDTL_FS_GB is related to how long additional storage has been in use on a gear.

Usage Usage lists the duration of the gear (in hours).

See Also:

Section 8.7.2, “Viewing Accumulated Usage Data”

9.1.15. oo-admin-ctl-user

This command administers users on the system. Some features are disabled for user accounts by default,
such as the ability to add additional storage to gears or add private SSL certificates to aliases, and require
this tool in order to enable them or set an explicit allowed value for the user.

Option Description
-l, --login Username Login name for an OpenShift Enterprise user account.

Required unless -f is used.

-f, --logins-file File_Name File containing one login name per line. Required unless -l is
used.

-c, --create Create user account(s) for the specified login name(s) if they do
not already exist.

--setmaxdomains Number Set the maximum number of domains a user is allowed to use.
--setmaxgears Number Set the maximum number of gears a user is allowed to use.
--setmaxteams Number Set the maximum number of teams a user is allowed to create.
--allowviewglobalteams true|false Add or remove the capability for a user to search and view any

global team.
--allowprivatesslcertificates true|false Add or remove the capability for a user to add private SSL

certificates.
--addgearsize Gear_Size Add a gear size to the capabilities for a user.
--removegearsize Gear_Size Remove a gear size from the capabilities for a user.
--allowha true|false Allow or disallow the high-availability applications capability for

a user.
-q, --quiet Suppress non-error output.
-h, --help Show usage information.

Many common administrative tasks make use of the oo-admin-ctl-user command:

See Section 2.4, “Enabling Support for High-Availability Applications” for more information on the high-
availability applications capability.

See Section 3.1, “Creating a User” for more information on creating users.

Administration Guide

92

See Section 4.1, “Setting the Maximum Number of Teams for Specific Users” and Section 4.2.2,
“Enabling Global Team Visibility” for more information on team options.

See Section 6.1, “Adding or Modifying Gear Profiles” for more information on modifying gear size
capabilities.

See Section 6.7, “Setting Gear Quotas and Sizes for Specific Users” for more information on setting gear
quotas.

See Section 8.7.1, “Setting Tracked and Untracked Storage” for more information on setting maximum
tracked and untracked storage per gear.

9.1.16. oo-admin-move

This command moves a gear from one node to another. Note that moving gears requires the rsync_id_rsa
private key in the broker host's /etc/openshift/ directory and the public key in each node host's
/root/.ssh/authorized_keys file as explained in the OpenShift Enterprise Deployment Guide at
https://access.redhat.com/site/documentation. A gear retains its UNIX UID when moved, therefore cross-
district moves are only allowed when the destination district has the same gear UID available.

To move a gear from one node to another, use the oo-admin-move command on the broker host, specifying
the desired gear's UUID and the node host you wish to move the gear to:

Example 9.4. Moving a Gear From One Node to Another

oo-admin-move --gear_uuid 3baf79139b0b449d90303464dfa8dd6f -i
node2.example.com

9.1.17. oo-admin-repair

This command checks for and fixes various inconsistencies in the MongoDB datastore on the broker. For
example, because a mismatch in SSH keys can be a potential security risk, the tool fixes any mismatches
found by taking information from the broker datastore and pushing it to the gear. See the --help output for
additional uses.

oo-admin-repair

9.1.18. oo-admin-upgrade

This command upgrades custom and community cartridges on a gear to the latest available version and
applies gear-level changes that affect cartridges. See Section 5.3, “Upgrading Custom and Community
Cartridges” for more information on the upgrade process and oo-admin-upgrade command usage.

Important

The oo-admin-upgrade tool is also often required when applying asynchronous errata updates
provided by Red Hat for OpenShift Enterprise. See the latest OpenShift Enterprise Deployment Guide
at https://access.redhat.com/site/documentation for usage instructions as it applies to these types of
updates.

Chapter 9. Command Reference

93

https://access.redhat.com/site/documentation
https://access.redhat.com/site/documentation

9.1.19. oo-admin-usage

The oo-admin-usage command displays a resource usage report for a particular user, or aggregated
usage data of all users. The output includes usage type, gear ID, and duration.

 oo-admin-usage [-l username] [options]

If -l username is omitted, the command displays aggregated data on all users.

Other options further restrict the output:

Option Description
-a, --app application_name Filters usage data by the given application name.

-g, --gear gear_id Filters usage data by the given gear ID.

-s, --start start_date Filters usage data by the given start date, expressed as ISO
dates (YYYY-MM-DD).

-e, --end end_date Filters usage data by the given end date, expressed as ISO
dates (YYYY-MM-DD).

The following table provides more information on the output of this command:

Field Description
Usage Type GEAR_USAGE is related to how long a gear has been in use with the gear size in

parentheses.

ADDTL_FS_GB is related to how long additional storage has been in use on a gear
with the number of GBs in parentheses.

Gear ID Gear ID indicates the UUID of the relevant gear with the associated application name
in parentheses.

Duration Duration indicates the start and end time of the gear (or start time and PRESENT if
still in use).

See Also:

Section 8.7.2, “Viewing Accumulated Usage Data”

9.1.20. oo-admin-ctl-cartridge

In OpenShift Enterprise 2.1, the oo-admin-ctl-cartridge command facilitates cartridge management on
the broker, including importing cartridge manifests from nodes and activating or deactivating cartridges. This
command must be used to ensure that newly installed or updated cartridges can be used in applications.

Note

This command is not used for cartridge management in OpenShift Enterprise 2.0.

See Also:

Section 5.1, “Managing Cartridges on Broker Hosts”

9.1.21. oo-register-dns

Administration Guide

94

9.1.21. oo-register-dns

This command updates DNS A records in BIND by wrapping an nsupdate command. Normally this
command is used for broker or node hosts, although it can be used for other infrastructure hosts. Do not use
this command to change DNS records for applications and gears, because these are CNAME records.

oo-register-dns

9.2. Node Administration Commands

These tools are installed on node hosts with the openshift-origin-node-util RPM.

Note

Node hosts do not have administrative access to other nodes or to brokers, so running the commands
described in this section only affect the node on which they are run.

9.2.1. oo-accept-node

This command checks that your node setup is valid and functional and that its gears are in good condition. It
is run without options on a node host.

If there are no errors, it displays PASS and exits with return code 0. With the -v option added, it displays the
current checks that are being performed.

If there are errors, they are displayed, and the return code is the number of errors.

oo-accept-node -v

9.2.2. oo-admin-ctl-gears

This command is used to control gears on a node host. It is used by the openshift-gears service at boot time
to activate existing gears, and can be used manually by an administrator.

oo-admin-ctl-gears

9.2.3. oo-idler-stats

This command displays basic statistics about gears on a node.

oo-idler-stats

9.2.4. Idler Commands

The idler is a tool for shutting down gears that have not been used recently in order to reclaim their resources
and overcommit the node host's resource usage.

9.2.4.1. oo-last-access

Chapter 9. Command Reference

95

This command checks for the last web or Git access an application has had, then records it in the gear
operations directory. Running this command regularly in a cron job allows automatic idling of stale gears.

Example 9.5. A Cron auto-idler Script

run the last-access compiler hourly
0 * * * * /usr/sbin/oo-last-access > /var/lib/openshift/last_access.log
2>&1
run the auto-idler twice daily and idle anything stale for 24 hours
30 7,19 * * * /usr/sbin/oo-auto-idler idle --interval 12

9.2.4.2. oo-auto-idler

This command retrieves a list of gears that are not receiving any web traffic, then idles them. Red Hat
recommends that this command be run regularly in a cron job.

Administration Guide

96

Appendix A. Revision History

Revision 2.2-6 Wed Nov 23 2016 Ashley Hardin
BZ 1394396: Updated Chapter 5, Cartridge Management to add an Important box about a tomcat7 known
issue.

Revision 2.2-5 Thu Sep 08 2016 Ashley Hardin
BZ 1366393, BZ 1366397: Bug Fixes

Revision 2.2-4 Wed Sep 09 2015 Brice Fallon-Freeman
BZ 1159287: Updated link in Section 8.8, “Enabling Syslog”.

Revision 2.2-3 Fri Jun 05 2015 Vikram Goyal
BZ 1121699: No documentation for a number of new OSE 2.1 commands. New topics added: Section 9.1.4,
“oo-admin-clear-pending-ops”, Section 9.1.5, “oo-admin-console-cache” , Section 9.1.13, “oo-admin-ctl-
team”, Section 9.1.14, “oo-admin-ctl-usage” and Section 9.1.19, “oo-admin-usage”.

Revision 2.2-2 Fri Apr 10 2015 Brice Fallon-Freeman
OpenShift Enterprise 2.2.5 release.
BZ 1124840: Reworked Section 2.10, “Backup and Recovery” and updated subsections with more details for
both host types.
BZ 1178039: Updated table in Section 2.11, “Component Timeout Value Locations” to include Background
Thread.
BZ 1146254: Added section Section 4.2.1, “Encrypting an LDAP Global Team Connection”.
BZ 1166654: Updated Section 8.4.2, “Verifying Functionality with Administration Commands” with more
context and verification commands.
BZ 1148083: Updated Section 8.5.4.2, “Supported Watchman Plug-ins” with Metrics logging information and
an example.

Revision 2.2-1 Wed Dec 10 2014 Timothy Poitras
OpenShift Enterprise 2.2.2 release.
BZ 1159182: Updated Section 2.4, “Enabling Support for High-Availability Applications” with information on
setting HA_DNS_PREFIX parameters consistently.
Added Section 2.12, “Enabling Network Isolation for Gears”.
Updated Section 3.1, “Creating a User” and Section 9.1.15, “oo-admin-ctl-user” to note -f option for the oo-
admin-ctl-user command.
BZ 1167810: Updated Section 8.8.3, “Enabling Syslog for Cartridge Logs from Gears” for changes in
Rsyslog packaging.
BZ 1146147: Updated Section 8.5.4.2, “Supported Watchman Plug-ins” with information on configuring the
Watchman throttler plug-in.
BZ 1158691: Updated Section 9.2.4.1, “oo-last-access” to fix file paths.

Revision 2.2-0 Tue Nov 4 2014 Brice Fallon-Freeman
OpenShift Enterprise 2.2 release.
Updated Section 6.5, “Gear Placement Algorithm” to link to the OpenShift Enterprise Deployment Guide for
information on the gear placement plug-in.
Added Section 6.8, “Restricting Gear Sizes for Cartridges”.
Added Section 6.4.4, “Disabling Region Selection”.
Added Section 8.5.3, “Viewing Application Details”.
BZ 1118766 and BZ 1146728: Updated Section 2.4, “Enabling Support for High-Availability Applications” to
fix wording and procedure order and to add detail.

Revision 2.1-8 Thu Oct 2 2014 Brice Fallon-Freeman

Appendix A. Revision History

97

OpenShift Enterprise 2.1.7 release.
Updated oo-admin-ctl-cartridge commands to use import-profile.
BZ 1140732: Updated Section 2.6, “Controlling Direct SSL Connections to Gears” to fix a typo.
BZ 1134034: Updated Section 8.8.3, “Enabling Syslog for Cartridge Logs from Gears” to include the multi
option for the outputType setting.

Revision 2.1-7 Thu Sep 11 2014 Alex Dellapenta
OpenShift Enterprise 2.1.6 release.
BZ 1133936: Updated Section 6.1, “Adding or Modifying Gear Profiles” to note new, additional example
resource_limits.conf files.

Revision 2.1-6 Tue Aug 26 2014 Alex Dellapenta
OpenShift Enterprise 2.1.5 release.
Added Section 1.3, “Migrating from RHN Classic to RHSM”.
BZ 1083380: Added Section 2.2, “Enabling User Login Normalization”.
BZ 1133493: Updated Section 6.4.3, “Setting the Default Region For New Applications” with correct file
location.
BZ 1123949: Updated example in Section 9.1.3, “oo-admin-chk” with missing a value for the -l option.

Revision 2.1-5 Fri Aug 8 2014 Alex Dellapenta
Fixed minor publication issue.

Revision 2.1-4 Tue Aug 5 2014 Brice Fallon-Freeman
OpenShift Enterprise 2.1.4 release.
Added Section 6.4.3, “Setting the Default Region For New Applications”.
Updated Section 8.5.4.1, “Enabling Watchman” and Section 8.5.4.2, “Supported Watchman Plug-ins” with
new options.

Revision 2.1-3 Wed Jul 9 2014 Julie Wu
BZ 1101768: Updated Chapter 5, Cartridge Management with more detailed information.
BZ 1112822: Updated the second procedure in Section 8.8.3, “Enabling Syslog for Cartridge Logs from
Gears”.
BZ 1116293: Updated Section 4.2, “Creating Global Teams and Synchronizing with LDAP Groups” with
example file configurations.
BZ 1084617: Updated Section 2.1, “Changing the Front-end HTTP Configuration for Existing Deployments”
with correct Apache plug-in information.

Revision 2.1-2 Thu Jun 26 2014 Julie Wu
Updated the guide to call out 2.1 features.
BZ 1097764: Added Section 5.4, “Adding QuickStarts to the Management Console”.
BZ 1100883: Updated Section 3.1, “Creating a User”.
BZ 1110547: Updated Section 5.2, “Installing and Removing Custom and Community Cartridges”.

Revision 2.1-1 Thu Jun 5 2014 Julie Wu
OpenShift Enterprise 2.1.1 release.
BZ 1104412: Updated Section 9.1.1, “oo-accept-broker”.
BZ 1100877: Updated Section 3.1, “Creating a User”.
BZ 1025747: Updated Section 6.6, “Setting Default Gear Quotas and Sizes”.
BZ 1090096: Updated Section 6.6, “Setting Default Gear Quotas and Sizes”.

Revision 2.1-0 Fri May 16 2014 Brice Fallon-Freeman

Administration Guide

98

OpenShift Enterprise 2.1 release.
BZ 1063859: Updated log file locations to /var/log/openshift/node/ruby193-mcollective.log
BZ 1027627: Added Section 2.11, “Component Timeout Value Locations”.
BZ 1045239: Updated oo-auto-idler commands.
Added Section 4.2.2, “Enabling Global Team Visibility” and Section 4.2, “Creating Global Teams and
Synchronizing with LDAP Groups”.
Updated Section 6.3.2, “Creating and Populating Districts” and Section 6.4.2, “Tagging a Node with a Region
and Zone” with information on how to simultaneously create a district and add any number of nodes to it.
Added Section 2.3, “Allowing Multiple HAProxies on a Node Host”.
Added Section 2.5, “Creating Environment Variables on Node Hosts”.
Added Section 2.9, “Enabling Maintenance Mode”.
Added Section 2.10.2, “Backing Up Node Host Files”.
BZ 1060815: Added Section 5.1, “Managing Cartridges on Broker Hosts”.
Added information on activating cartridges.
Added Section 6.4, “Managing Regions and Zones” and subsections.
Added "Customizing the Gear Placement Algorithm".
Added Section 8.8.2, “Enabling Syslog for Node Components”, Section 8.5.2, “Enabling Application and Gear
Context in Node Component Logs”, and Section 8.8.3, “Enabling Syslog for Cartridge Logs from Gears”.
Added Section 8.5.4.1, “Enabling Watchman” and subsections.
Added Section 8.6, “Monitoring Management Console Activity” and subsections.
Added Section 9.1.12, “oo-admin-ctl-region”.
Updated Section 1.2, “Upgrading OpenShift Enterprise”.
Updated Section 6.5, “Gear Placement Algorithm”.
Updated Section 8.4.1, “Default Broker Log File Locations” and Section 8.5.1, “Default Node Log File
Locations”.
Updated Section 9.1.18, “oo-admin-upgrade”.
Updated various sections to note that districts are now required by default.
BZ 1071443: Updated Section 2.10.3, “Recovering Failed Node Hosts” and added Section 2.10.4,
“Recreating /etc/passwd Entries”.
Added Section 4.1, “Setting the Maximum Number of Teams for Specific Users”.

Revision 2.0-2 Tue Jan 28 2014 Julie Wu
OpenShift Enterprise 2.0.2 release.
Updated Section 9.1.15, “oo-admin-ctl-user” with more options.

Revision 2.0-1 Tue Jan 14 2014 Brice Fallon-Freeman
OpenShift Enterprise 2.0.1 release.
BZ 1026990: Added Section 3.6, “Setting Default Maximum Number of Domains per User”.

Revision 2.0-0 Mon Dec 9 2013 Alex Dellapenta
OpenShift Enterprise 2.0 release.
Added "Disabling Obsolete Cartridges" section
Added "Adding a Kerberos Principal SSH Key" section.
Added "Disabling Downloadable Cartridges" section.
Added "Administration Console" sections.
Added "Capacity Planning and Districts" sections.
Added "Adding New Gear Profiles" section.
Update oo-admin-repair content.
Added "Enforcing Low Tenancy on Nodes" section.
BZ 988576: Added "Controlling Direct SSL Connections to Gears" section.
BZ 994783: Added more details to "Viewing Accumulated Usage Data" section.

Appendix A. Revision History

99

https://bugzilla.redhat.com/show_bug.cgi?id=1071443
https://bugzilla.redhat.com/show_bug.cgi?id=1026990
https://bugzilla.redhat.com/show_bug.cgi?id=988576
https://bugzilla.redhat.com/show_bug.cgi?id=994783

	Table of Contents
	Chapter 1. Introduction to OpenShift Enterprise
	1.1. What's New in Current Release
	1.2. Upgrading OpenShift Enterprise
	1.3. Migrating from RHN Classic to RHSM

	Chapter 2. Platform Administration
	2.1. Changing the Front-end HTTP Configuration for Existing Deployments
	2.2. Enabling User Login Normalization
	2.3. Allowing Multiple HAProxies on a Node Host
	2.4. Enabling Support for High-Availability Applications
	2.5. Creating Environment Variables on Node Hosts
	2.6. Controlling Direct SSL Connections to Gears
	2.7. Setting Gear Supplementary Groups
	2.8. Banning IP Addresses That Overload Applications
	2.9. Enabling Maintenance Mode
	2.10. Backup and Recovery
	2.10.1. Backing Up Broker Host Files
	2.10.2. Backing Up Node Host Files
	2.10.3. Recovering Failed Node Hosts
	2.10.4. Recreating /etc/passwd Entries

	2.11. Component Timeout Value Locations
	2.12. Enabling Network Isolation for Gears

	Chapter 3. User Administration
	3.1. Creating a User
	3.2. Removing User Applications
	3.3. Removing User Data
	3.4. Removing a User
	3.5. Enabling Users to Add a Kerberos Principal SSH Key
	3.6. Setting Default Maximum Number of Domains per User
	3.7. Managing Custom Domain Aliases
	3.8. Determining Gear Ownership

	Chapter 4. Team and Global Team Management
	4.1. Setting the Maximum Number of Teams for Specific Users
	4.2. Creating Global Teams and Synchronizing with LDAP Groups
	4.2.1. Encrypting an LDAP Global Team Connection
	4.2.2. Enabling Global Team Visibility

	Chapter 5. Cartridge Management
	5.1. Managing Cartridges on Broker Hosts
	5.1.1. Importing, Activating, and Deactivating Cartridges
	5.1.2. Migrating and Upgrading Existing Applications to Active Cartridges
	5.1.3. Removing Unused Inactive Cartridges

	5.2. Installing and Removing Custom and Community Cartridges
	5.3. Upgrading Custom and Community Cartridges
	5.4. Adding QuickStarts to the Management Console
	5.5. Disabling Downloadable Cartridges
	5.6. Disabling Obsolete Cartridges

	Chapter 6. Resource Management
	6.1. Adding or Modifying Gear Profiles
	6.2. Capacity Planning and Districts
	6.2.1. Hierarchy of OpenShift Enterprise Entities
	6.2.2. Purpose of Districts
	6.2.3. Gear Capacity Planning
	6.2.3.1. Gear Capacity Planning for Nodes
	6.2.3.2. Gear Capacity Planning for Districts

	6.3. Managing Districts
	6.3.1. Enabling Districts
	6.3.2. Creating and Populating Districts
	6.3.3. Viewing District Information
	6.3.4. Viewing Capacity Statistics
	6.3.5. Moving Gears Between Nodes
	6.3.6. Removing Nodes from Districts
	6.3.7. Removing Districts

	6.4. Managing Regions and Zones
	6.4.1. Creating a Region with Zones
	6.4.2. Tagging a Node with a Region and Zone
	6.4.3. Setting the Default Region For New Applications
	6.4.4. Disabling Region Selection
	6.4.5. Additional Region and Zone Tasks

	6.5. Gear Placement Algorithm
	6.6. Setting Default Gear Quotas and Sizes
	6.7. Setting Gear Quotas and Sizes for Specific Users
	6.8. Restricting Gear Sizes for Cartridges
	6.9. Viewing Resource Usage on a Node
	6.10. Enforcing Low Tenancy on Nodes
	6.11. Managing Capacity on Broker Hosts

	Chapter 7. Administration Console
	7.1. Understanding the System Overview
	7.2. Viewing Gear Profiles
	7.3. Viewing Suggestions
	7.4. Searching for Entities
	7.5. Viewing Statistics
	7.6. Configuring Suggestions
	7.7. Loading Capacity Data from a File
	7.8. Exposed Data

	Chapter 8. Monitoring
	8.1. General System Checks
	8.2. Response Times for Administrative Actions
	8.3. Testing a Path Through the Whole System
	8.4. Monitoring Broker Activity
	8.4.1. Default Broker Log File Locations
	8.4.2. Verifying Functionality with Administration Commands

	8.5. Monitoring Node and Gear Activity
	8.5.1. Default Node Log File Locations
	8.5.2. Enabling Application and Gear Context in Node Component Logs
	8.5.3. Viewing Application Details
	8.5.4. The Watchman Tool
	8.5.4.1. Enabling Watchman
	8.5.4.2. Supported Watchman Plug-ins
	8.5.4.3. Configuring Watchman

	8.5.5. Testing Node Host Functionality
	8.5.6. Validating Gears
	8.5.7. Node Capacity

	8.6. Monitoring Management Console Activity
	8.6.1. Default Management Console Log File Locations

	8.7. Usage Tracking
	8.7.1. Setting Tracked and Untracked Storage
	8.7.2. Viewing Accumulated Usage Data

	8.8. Enabling Syslog
	8.8.1. Enabling Syslog for Broker Components
	8.8.2. Enabling Syslog for Node Components
	8.8.3. Enabling Syslog for Cartridge Logs from Gears
	8.8.4. Enabling Syslog for Management Console Components

	Chapter 9. Command Reference
	9.1. Broker Administration Commands
	9.1.1. oo-accept-broker
	9.1.2. oo-accept-systems
	9.1.3. oo-admin-chk
	9.1.4. oo-admin-clear-pending-ops
	9.1.5. oo-admin-console-cache
	9.1.6. oo-admin-broker-auth
	9.1.7. oo-admin-broker-cache
	9.1.8. oo-admin-ctl-app
	9.1.9. oo-admin-ctl-authorization
	9.1.10. oo-admin-ctl-district
	9.1.11. oo-admin-ctl-domain
	9.1.12. oo-admin-ctl-region
	9.1.13. oo-admin-ctl-team
	9.1.14. oo-admin-ctl-usage
	9.1.15. oo-admin-ctl-user
	9.1.16. oo-admin-move
	9.1.17. oo-admin-repair
	9.1.18. oo-admin-upgrade
	9.1.19. oo-admin-usage
	9.1.20. oo-admin-ctl-cartridge
	9.1.21. oo-register-dns

	9.2. Node Administration Commands
	9.2.1. oo-accept-node
	9.2.2. oo-admin-ctl-gears
	9.2.3. oo-idler-stats
	9.2.4. Idler Commands
	9.2.4.1. oo-last-access
	9.2.4.2. oo-auto-idler

	Appendix A. Revision History

