16.5. 제한된 네트워크에서 RHV에 클러스터 설치

OpenShift Container Platform 버전 4.9에서는 설치 릴리스 콘텐츠의 내부 미러를 생성하여 제한된 네트워크의 RHV(Red Hat Virtualization)에 사용자 지정 OpenShift Container Platform 클러스터를 설치할 수 있습니다.

16.5.1. 사전 요구 사항

RHV 환경에 OpenShift Container Platform 클러스터를 설치하려면 다음 요구사항을 충족해야 합니다.

16.5.2. 네트워크가 제한된 환경에서의 설치 정보

OpenShift Container Platform 4.9에서는 소프트웨어 구성 요소를 받기 위한 인터넷 접속이 필요하지 않은 설치를 수행할 수 있습니다. 제한된 네트워크 설치는 클러스터를 설치하는 클라우드 플랫폼에 따라 설치 관리자 프로비저닝 인프라 또는 사용자 프로비저닝 인프라를 사용하여 완료할 수 있습니다.

클라우드 플랫폼에 제한된 네트워크 설치를 수행하는 방법을 선택해도 클라우드 API에 액세스는 가능해야 합니다. Amazon Web Service의 Route 53 DNS 및 IAM 서비스와 같은 일부 클라우드 기능에는 인터넷 액세스가 필요합니다. 사용 중인 네트워크에 따라 베어메탈 하드웨어 또는 VMware vSphere에 설치하기 위해 필요한 인터넷 액세스가 줄어들 수 있습니다.

제한된 네트워크 설치를 완료하려면 OpenShift Container Platform 레지스트리의 내용을 미러링하고 설치 미디어를 포함할 레지스트리를 생성해야 합니다. 인터넷과 폐쇄 네트워크에 모두 액세스하거나 제한 사항을 따르는 다른 방법을 통해 미러 호스트에 레지스트리를 생성할 수 있습니다.

16.5.2.1. 추가 제한

제한된 네트워크의 클러스터에는 다음과 같은 추가 제한이 있습니다.

  • ClusterVersion 상태에 사용 가능한 업데이트를 검색할 수 없음 오류가 포함되어 있습니다.
  • 기본적으로 필요한 이미지 스트림 태그에 액세스할 수 없기 때문에 개발자 카탈로그의 내용을 사용할 수 없습니다.

16.5.3. OpenShift Container Platform 용 인터넷 액세스

OpenShift Container Platform 4.9에서 클러스터를 설치하기 위해 필요한 이미지를 받으려면 인터넷 액세스가 필요합니다.

다음의 경우 인터넷 액세스가 필요합니다.

  • OpenShift Cluster Manager 에 액세스하여 설치 프로그램을 다운로드하고 서브스크립션 관리를 수행합니다. 클러스터가 인터넷에 액세스할 수 있고 Telemetry 서비스를 비활성화하지 않은 경우, 클러스터에 자동으로 권한이 부여됩니다.
  • Quay.io에 액세스. 클러스터를 설치하는 데 필요한 패키지를 받을 수 있습니다.
  • 클러스터 업데이트를 수행하는 데 필요한 패키지를 받을 수 있습니다.
중요

클러스터가 직접 인터넷에 액세스할 수 없는 경우, 프로비저닝하는 일부 유형의 인프라에서 제한된 네트워크 설치를 수행할 수 있습니다. 이 프로세스 동안 필요한 콘텐츠를 다운로드하고 이를 사용하여 설치 패키지로 미러 레지스트리를 채웁니다. 설치 유형에 따라서는 클러스터를 설치하는 환경에 인터넷 액세스가 필요하지 않을 수도 있습니다. 클러스터를 업데이트하기 전에 미러 레지스트리의 내용을 업데이트합니다.

16.5.4. RHV 환경 요구사항

OpenShift Container Platform 버전 4.9 클러스터를 설치하고 실행하려면 RHV 환경이 다음 요구 사항을 충족해야 합니다.

이러한 요구 사항을 충족하지 않으면 설치 또는 프로세스가 실패할 수 있습니다. 또한 이러한 요구 사항을 충족하지 않으면 OpenShift Container Platform 클러스터가 설치 후 며칠 또는 몇 주에 실패할 수 있습니다.

CPU, 메모리, 스토리지에 대한 다음 요구사항은 설치 프로그램이 생성하는 기본 가상 시스템 수를 곱한 기본 값을 기반으로 합니다. 이러한 리소스는 RHV 환경에서 비 OpenShift Container Platform 작업에 사용하는 리소스와함께 사용할 수 있어야 합니다.

설치 프로그램은 기본적으로 설치 프로세스 중에 일곱 개의 가상 시스템을 생성합니다. 먼저 나머지 OpenShift Container Platform 클러스터를 생성하는 동안 임시 서비스와 컨트롤 플레인 영역을 제공하는 부트스트랩 가상 머신을 생성합니다. 설치 프로그램이 클러스터 생성을 완료하면 부트스트랩 시스템을 삭제하여 리소스를 확보합니다.

RHV 환경에서 가상 머신 수를 늘리면 그에 따라 리소스를 늘려야합니다.

요구사항

  • RHV 버전은 4.4입니다.
  • RHV 환경에는 상태가 Up인 데이터 센터가 하나 있습니다.
  • RHV 데이터 센터에는 RHV 클러스터가 포함되어 있습니다.
  • RHV 클러스터에는 다음과 같은 OpenShift Container Platform 클러스터 전용 리소스가 있습니다.

    • 최소 28개의 vCPU(설치 중 생성된 일곱 개의 가상 시스템마다 각각 4개)
    • 다음을 포함한 112GiB RAM 이상

      • 임시 컨트롤 플레인을 제공하는 부트스트랩 시스템의 경우 16GiB 이상
      • 컨트롤 플레인을 제공하는 컨트롤 플레인 시스템 세 개 각각에 대해 16GiB 이상
      • 애플리케이션 워크로드를 실행하는 컴퓨팅 시스템 세 개 각각에 대해 16GiB 이상
  • RHV 스토리지 도메인은 이러한 etcd 백엔드 성능 요구사항을 충족해야 합니다.
  • 프로덕션 환경에서 각 가상 머신은 120GiB 이상이어야 합니다. 따라서 스토리지 도메인은 기본 OpenShift Container Platform 클러스터에 대해 840GiB 이상을 제공해야 합니다. 리소스가 제한적인 환경이나 프로덕션 이외의 환경에서는 각 가상 시스템에 32GiB 이상이 있어야 하므로 스토리지 도메인에는 기본 OpenShift Container Platform 클러스터에 필요한 230GiB 이상이 있어야 합니다.
  • 설치 및 업데이트 중에 Red Hat Ecosystem Catalog에서 이미지를 다운로드하려면 RHV 클러스터가 인터넷 연결에 액세스할 수 있어야 합니다. Telemetry 서비스에는 서브스크립션 및 권한 부여 프로세스를 단순화하기 위해 인터넷 연결이 필요합니다.
  • RHV 클러스터에는 RHV Manager의 REST API에 액세스할 수 있는 가상 네트워크가 있어야 합니다. 설치 관리자가 생성한 VM에서 DHCP를 사용하여 IP 주소를 얻을 수 있으므로 이 네트워크에서 DHCP가 활성화되어 있는지 확인합니다.
  • 대상 RHV 클러스터에서 OpenShift Container Platform 클러스터를 설치 및 관리하기 위한 다음과 같은 최소 권한이있는 사용자 계정 및 그룹:

    • DiskOperator
    • DiskCreator
    • UserTemplateBasedVm
    • TemplateOwner
    • TemplateCreator
    • 대상 클러스터의 ClusterAdmin
주의

최소 권한 원칙을 적용합니다. 설치 과정에서 RHV에 대한 SuperUser 권한이 있는 관리자 계정을 사용하지 않도록 합니다. 설치 프로그램은 사용자가 제공한 인증 정보를 손상된 임시 ovirt-config.yaml 파일에 저장합니다.

16.5.5. RHV 환경에 대한 요구사항 확인

RHV 환경이 OpenShift Container Platform 클러스터 설치 및 실행 요구사항을 충족하는지 확인합니다. 이러한 요구사항을 충족하지 않으면 실패할 수 있습니다.

중요

이러한 요구사항은 설치 프로그램이 컨트롤 플레인과 컴퓨팅 시스템을 생성하는 데 사용하는 기본 리소스를 기반으로 합니다. 이러한 리소스에는 vCPU, 메모리 및 스토리지가 포함됩니다. 이러한 리소스를 변경하거나 OpenShift Container Platform 시스템 수를 늘리는 경우에는 그에 따라 이 요구사항을 조정합니다.

프로세스

  1. RHV 버전이 OpenShift Container Platform 버전 4.9의 설치를 지원하는지 확인합니다.

    1. RHV 관리 포털에서 오른쪽 상단에 있는 ? 도움말 아이콘을 클릭하고 정보를 선택합니다.
    2. 창이 열리면 RHV 소프트웨어 버전을 기록합니다.
    3. RHV 버전이 4.4인지 확인합니다. 지원되는 버전 조합에 대한 자세한 내용은 RHV의 OpenShift Container Platform에 대한 지원 매트릭스를 참조하십시오.
  2. 데이터 센터, 클러스터 및 스토리지를 검사합니다.

    1. RHV 관리 포털에서 ComputeData Centers를 클릭합니다.
    2. OpenShift Container Platform을 설치하려는 데이터 센터에 액세스할 수 있는지 확인합니다.
    3. 해당 데이터 센터의 이름을 클릭합니다.
    4. 데이터 센터 세부 사항의 스토리지 탭에서 OpenShift Container Platform을 설치하려는 스토리지 도메인이 활성인지 확인합니다.
    5. 나중에 사용할 수 있도록 도메인 이름을 기록합니다.
    6. 여유 공간이 230GiB 이상인지 확인합니다.
    7. 스토리지 도메인이 fio 성능 벤치마킹 툴을 사용하여 측정할 수 있는 이러한 etcd 백엔드 성능 요구사항을 충족하는지 확인합니다.
    8. 데이터 센터 세부 사항에서 클러스터 탭을 클릭합니다.
    9. OpenShift Container Platform을 설치할 RHV 클러스터를 찾습니다. 나중에 사용할 수 있도록 클러스터 이름을 기록합니다.
  3. RHV 호스트 리소스를 검사합니다.

    1. RHV 관리 포털에서 컴퓨팅 > 클러스터를 클릭합니다.
    2. OpenShift Container Platform을 설치할 클러스터를 클릭합니다.
    3. 클러스터 세부 사항에서 호스트 탭을 클릭합니다.
    4. 호스트를 검사하고 OpenShift Container Platform 클러스터 전용으로 사용할 수 있는 총 28개 이상의 논리 CPU 코어가 있는지 확인합니다.
    5. 나중에 사용할 수 있도록 사용 가능한 논리 CPU 코어 수를 기록합니다.
    6. 설치 중에 생성된 7개의 가상 시스템 각각에 4개의 코어가 있을 수 있도록 이러한 CPU 코어가 분산되어 있는지 확인합니다.
    7. 다음 OpenShift Container Platform 시스템 각각에 대한 요구사항을 충족하기 위해 배포된 새 가상 시스템 예약에 필요한 112GiB의 최대 여유 메모리가 모두 호스트에 있는지 확인합니다.

      • 부트스트랩 시스템에 필요한 16GiB
      • 세 개의 컨트롤 플레인 시스템 각각에 필요한 16GiB
      • 세 개의 컴퓨팅 시스템 각각에 대해 16GiB
    8. 나중에 사용할 수 있도록 새 가상 시스템 예약에 필요한 최대 여유 메모리의 양을 기록합니다.
  4. OpenShift Container Platform을 설치할 가상 네트워크가 RHV Manager의 REST API에 액세스할 수 있는지 확인합니다. 이 네트워크의 가상 시스템에서 RHV 관리자의 REST API에 도달하기 위해 curl을 사용합니다.

    $ curl -k -u <username>@<profile>:<password> \ 1
    https://<engine-fqdn>/ovirt-engine/api 2
    1
    <username> 의 경우 RHV에서 OpenShift Container Platform 클러스터를 만들고 관리할 수 있는 권한이 있는 RHV 계정의 사용자 이름을 지정합니다. <profile>은 로그인 프로파일을 지정합니다(RHV 관리 포털 로그인 페이지로 이동하여 프로파일 드롭다운 목록 검토). <password>의 경우 해당 사용자 이름에 대한 암호를 지정합니다.
    2
    <engine-fqdn>은 RHV 환경의 정규화된 도메인 이름을 지정합니다.

    예를 들면 다음과 같습니다.

    $ curl -k -u ocpadmin@internal:pw123 \
    https://rhv-env.virtlab.example.com/ovirt-engine/api

16.5.6. 사용자 프로비저닝 인프라에 대한 네트워킹 요구사항

모든 RHCOS(Red Hat Enterprise Linux CoreOS) 시스템이 부팅 중에 Ignition 구성 파일을 가져오려면 initramfs에 네트워킹을 구성해야 합니다.

초기 부팅 과정에서 시스템에 필요한 부팅 옵션을 제공하여 DHCP 서버를 통해 설정하거나 정적으로 설정하는 IP 주소 구성이 필요합니다. 네트워크 연결이 설정된 후 시스템은 HTTP 또는 HTTPS 서버에서 Ignition 구성 파일을 다운로드합니다. 그런 다음 Ignition 구성 파일을 사용하여 각 머신의 정확한 상태를 설정합니다. Machine Config Operator는 설치 후 새 인증서 또는 키 적용과 같은 머신에 대한 추가 변경을 완료합니다.

클러스터 시스템의 장기적인 관리를 위해 DHCP 서버를 사용하는 것이 좋습니다. DHCP 서버가 클러스터 시스템에 영구 IP 주소, DNS 서버 정보 및 호스트 이름을 제공하도록 구성되었는지 확인합니다.

참고

사용자 프로비저닝 인프라에 DHCP 서비스를 사용할 수 없는 경우 RHCOS 설치 시 노드에 IP 네트워킹 구성과 DNS 서버의 주소를 대신 제공할 수 있습니다. ISO 이미지에서 설치하는 경우 부팅 인수로 전달할 수 있습니다. 고정 IP 프로비저닝 및 고급 네트워킹 옵션에 대한 자세한 내용은 RHCOS 설치 및 OpenShift Container Platform 부트스트랩 프로세스 시작 섹션을 참조하십시오.

Kubernetes API 서버가 클러스터 시스템의 노드 이름을 확인할 수 있어야 합니다. API 서버와 작업자 노드가 서로 다른 영역에 있는 경우, API 서버가 노드 이름을 확인할 수 있도록 기본 DNS 검색 영역을 설정할 수 있습니다. 노드 개체와 모든 DNS 요청에서 항상 정규화된 도메인 이름으로 호스트를 가리키는 것도 지원되는 방법입니다

방화벽

클러스터가 필수 사이트에 액세스할 수 있도록 방화벽을 구성하십시오.

또한 다음을 참조하십시오.

DNS

기본 구성 요소 및 서비스를 올바르게 확인할 수 있도록 인프라 제공 DNS를 구성합니다. 로드 밸런서를 하나만 사용하는 경우 이러한 DNS 레코드는 동일한 IP 주소를 가리킬 수 있습니다.

  • 컨트롤 플레인 시스템의 로드 밸런서를 가리키는 api.<cluster_name>.<base_domain> (internal and external resolution) 및 api-int.<cluster_name>.<base_domain> (internal resolution)에 대한 DNS 레코드를 생성합니다.
  • Ingress 라우터의 로드 밸런서를 가리키는 *.apps.<cluster_name>.<base_domain>의 DNS 레코드를 생성합니다. 예를 들어 컴퓨팅 머신의 포트 44380입니다.

16.5.6.1. DHCP를 통해 클러스터 노드의 호스트 이름 설정

RHCOS(Red Hat Enterprise Linux CoreOS) 시스템에서 호스트 이름은 NetworkManager를 통해 설정됩니다. 기본적으로 시스템은 DHCP를 통해 호스트 이름을 가져옵니다. DHCP에서 호스트 이름을 제공하지 않거나, 커널 인수를 통해 정적으로 설정하거나 다른 방법을 통해 설정하면 역방향 DNS 조회를 통해 얻을 수 있습니다. 역방향 DNS 조회는 노드에서 네트워크를 초기화한 후 수행되며 확인하는 데 시간이 걸릴 수 있습니다. 다른 시스템 서비스는 이 보다 먼저 시작하여 호스트 이름을 localhost 등으로 감지할 수 있습니다. DHCP를 사용하여 각 클러스터 노드의 호스트 이름을 제공하여 이 문제를 방지할 수 있습니다.

또한 DHCP를 통해 호스트 이름을 설정하면 DNS 분할 수평 구현 환경에서 수동으로 DNS 레코드 이름 구성 오류를 무시할 수 있습니다.

16.5.6.2. 네트워크 연결 요구사항

OpenShift Container Platform 클러스터 구성 요소가 통신할 수 있도록 시스템 간 네트워크 연결을 구성해야 합니다. 각 시스템에서 클러스터에 있는 다른 모든 시스템의 호스트 이름을 확인할 수 있어야 합니다.

이 섹션에서는 필요한 포트에 대해 자세히 설명합니다.

중요

연결된 OpenShift Container Platform 환경에서 모든 노드는 플랫폼 컨테이너의 이미지를 가져오고 Red Hat에 원격 측정 데이터를 제공하기 위해 인터넷에 액세스할 수 있어야 합니다.

표 16.9. 모든 시스템 간 통신에 사용되는 포트

프로토콜포트설명

ICMP

해당 없음

네트워크 연결성 테스트

TCP

1936

메트릭

9000-9999

9100-9101 포트의 노드 내보내기 및 9099 포트의 Cluster Version Operator를 포함한 호스트 수준 서비스.

10250-10259

Kubernetes에서 예약하는 기본 포트

10256

openshift-sdn

UDP

4789

VXLAN 및 Geneve

6081

VXLAN 및 Geneve

9000-9999

9100-9101 포트의 노드 내보내기를 포함한 호스트 수준 서비스.

500

IPsec IKE 패킷

4500

IPsec NAT-T 패킷

TCP/UDP

30000-32767

Kubernetes 노드 포트

ESP

해당 없음

IPsec Encapsulating Security Payload (ESP)

표 16.10. 모든 시스템과 컨트롤 플레인 간 통신에 사용되는 포트

프로토콜포트설명

TCP

6443

Kubernetes API

표 16.11. 컨트롤 플레인 머신 간 통신에 사용되는 포트

프로토콜포트설명

TCP

2379-2380

etcd 서버 및 피어 포트

사용자 프로비저닝 인프라에 대한 NTP 구성

OpenShift Container Platform 클러스터는 기본적으로 공용 NTP(Network Time Protocol) 서버를 사용하도록 구성되어 있습니다. 로컬 엔터프라이즈 NTP 서버를 사용하거나 클러스터가 연결이 끊긴 네트워크에 배포되는 경우 특정 시간 서버를 사용하도록 클러스터를 구성할 수 있습니다. 자세한 내용은 chrony 타임 서비스 설정 문서를 참조하십시오.

DHCP 서버가 NTP 서버 정보를 제공하는 경우 RHCOS(Red Hat Enterprise Linux CoreOS) 시스템의 chrony 타임 서비스에서 정보를 읽고 NTP 서버와 클럭을 동기화할 수 있습니다.

16.5.7. 사용자 프로비저닝 DNS 요구사항

OpenShift Container Platform 배포의 경우 다음 구성 요소에 DNS 이름을 확인해야 합니다.

  • Kubernetes API
  • OpenShift Container Platform 애플리케이션 와일드카드
  • 부트스트랩, 컨트롤 플레인 및 컴퓨팅 시스템

Kubernetes API, 부트스트랩 시스템, 컨트롤 플레인 시스템 및 컴퓨팅 시스템에 대한 역방향 DNS 확인이 필요합니다.

DNS A/AAAA 또는 CNAME 레코드는 이름 확인에 사용되며 PTR 레코드는 역방향 이름 확인에 사용됩니다. RHCOS (Red Hat Enterprise Linux CoreOS)는 DHCP에서 호스트 이름을 제공하지 않는 한 모든 노드의 호스트 이름을 설정할 때 역방향 레코드를 사용하기 때문에 역방향 레코드가 중요합니다. 또한 역방향 레코드는 OpenShift Container Platform이 작동하는 데 필요한 인증서 서명 요청 (CSR)을 생성하는 데 사용됩니다.

참고

DHCP 서버를 사용하여 각 클러스터 노드에 호스트 이름을 제공하는 것이 좋습니다. 자세한 내용은 사용자 프로비저닝 인프라 섹션에 대한 DHCP 권장 사항 섹션을 참조하십시오.

사용자가 프로비저닝한 OpenShift Container Platform 클러스터에 대해 다음 DNS 레코드가 필요하며 설치 전에 있어야 합니다. 각 레코드에서 <cluster_name>은 클러스터 이름이고 <base_domain>install-config.yaml 파일에서 지정하는 기반 도메인입니다. 전체 DNS 레코드는 <component>.<cluster_name>.<base_domain> 형식입니다.

표 16.12. 필수 DNS 레코드

구성 요소레코드설명

Kubernetes API

api.<cluster_name>.<base_domain>.

API 로드 밸런서를 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 외부의 클라이언트와 클러스터 내의 모든 노드에서 확인할 수 있어야 합니다.

api-int.<cluster_name>.<base_domain>.

내부적으로 API 로드 밸런서를 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 내의 모든 노드에서 확인할 수 있어야 합니다.

중요

API 서버는 Kubernetes에 기록된 호스트 이름으로 작업자 노드를 확인할 수 있어야 합니다. API 서버가 노드 이름을 확인할 수 없는 경우 프록시된 API 호출이 실패할 수 있으며 pod에서 로그를 검색할 수 없습니다.

라우트

*.apps.<cluster_name>.<base_domain>.

애플리케이션 인그레스 로드 밸런서를 참조하는 와일드카드 DNS A/AAA 또는 CNAME 레코드입니다. 애플리케이션 인그레스 로드 밸런서는 Ingress 컨트롤러 Pod를 실행하는 머신을 대상으로 합니다. Ingress 컨트롤러 Pod는 기본적으로 컴퓨팅 머신에서 실행됩니다. 이 레코드는 클러스터 외부의 클라이언트와 클러스터 내의 모든 노드에서 확인할 수 있어야 합니다.

예를 들어 console-openshift-console.apps.<cluster_name>.<base_domain>은 OpenShift Container Platform 콘솔의 와일드카드 경로로 사용됩니다.

부트스트랩 시스템

bootstrap.<cluster_name>.<base_domain>.

부트스트랩 머신을 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 내의 노드에서 확인할 수 있어야 합니다.

컨트롤 플레인 머신

<master><n>.<cluster_name>.<base_domain>.

컨트롤 플레인 노드의 각 머신을 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 내의 노드에서 확인할 수 있어야 합니다.

컴퓨팅 머신

<worker><n>.<cluster_name>.<base_domain>.

작업자 노드의 각 머신을 식별하는 DNS A/AAAA 또는 CNAME 레코드와 DNS PTR 레코드입니다. 이 레코드는 클러스터 내의 노드에서 확인할 수 있어야 합니다.

참고

OpenShift Container Platform 4.4 이상에서는 DNS 구성에서 etcd 호스트 및 SRV 레코드를 지정할 필요가 없습니다.

작은 정보

dig 명령을 사용하여 이름과 역방향 이름을 확인할 수 있습니다. 자세한 검증 단계는 사용자 프로비저닝 인프라의 DNS 확인 섹션을 참조하십시오.

16.5.7.1. 사용자 프로비저닝 클러스터의 DNS 구성 예

이 섹션에서는 사용자 프로비저닝 인프라에 OpenShift Container Platform을 배포하기 위한 DNS 요구 사항을 충족하는 A 및 PTR 레코드 구성 샘플을 제공합니다. 샘플은 하나의 DNS 솔루션을 선택하기 위한 조언을 제공하기 위한 것이 아닙니다.

이 예제에서 클러스터 이름은 ocp4이고 기본 도메인은 example.com입니다.

사용자 프로비저닝 클러스터의 DNS A 레코드 구성 예

다음 BIND 영역 파일의 예제에서는 사용자가 프로비저닝한 클러스터의 이름 확인을 위한 샘플 A 레코드를 보여줍니다.

예 16.1. 샘플 DNS 영역 데이터베이스

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
	IN	MX 10	smtp.example.com.
;
;
ns1.example.com.		IN	A	192.168.1.5
smtp.example.com.		IN	A	192.168.1.5
;
helper.example.com.		IN	A	192.168.1.5
helper.ocp4.example.com.	IN	A	192.168.1.5
;
api.ocp4.example.com.		IN	A	192.168.1.5 1
api-int.ocp4.example.com.	IN	A	192.168.1.5 2
;
*.apps.ocp4.example.com.	IN	A	192.168.1.5 3
;
bootstrap.ocp4.example.com.	IN	A	192.168.1.96 4
;
master0.ocp4.example.com.	IN	A	192.168.1.97 5
master1.ocp4.example.com.	IN	A	192.168.1.98 6
master2.ocp4.example.com.	IN	A	192.168.1.99 7
;
worker0.ocp4.example.com.	IN	A	192.168.1.11 8
worker1.ocp4.example.com.	IN	A	192.168.1.7 9
;
;EOF
1
Kubernetes API의 이름 확인을 제공합니다. 레코드는 API 로드 밸런서의 IP 주소를 나타냅니다.
2
Kubernetes API의 이름 확인을 제공합니다. 레코드는 API 로드 밸런서의 IP 주소를 참조하며 내부 클러스터 통신에 사용됩니다.
3
와일드카드 경로의 이름 확인을 제공합니다. 레코드는 애플리케이션 인그레스 로드 밸런서의 IP 주소를 나타냅니다. 애플리케이션 인그레스 로드 밸런서는 Ingress 컨트롤러 Pod를 실행하는 머신을 대상으로 합니다. Ingress 컨트롤러 Pod는 기본적으로 컴퓨팅 머신에서 실행됩니다.
참고

이 예제에서는 Kubernetes API 및 애플리케이션 인그레스 트래픽에 동일한 로드 밸런서를 사용합니다. 프로덕션 시나리오에서는 각각에 대해 개별적으로 로드 밸런서 인프라를 확장할 수 있도록 API 및 애플리케이션 인그레스 로드 밸런서를 별도로 배포할 수 있습니다.

4
부트스트랩 시스템의 이름 확인을 제공합니다.
5 6 7
컨트롤 플레인 시스템의 이름 확인을 제공합니다.
8 9
컴퓨팅 시스템의 이름 확인을 제공합니다.

사용자 프로비저닝 클러스터의 DNS PTR 레코드 구성 예

다음 예제 BIND 영역 파일은 사용자 프로비저닝 클러스터의 역방향 이름 확인을 위한 샘플 PTR 레코드를 보여줍니다.

예 16.2. 역방향 레코드의 샘플 DNS 영역 데이터베이스

$TTL 1W
@	IN	SOA	ns1.example.com.	root (
			2019070700	; serial
			3H		; refresh (3 hours)
			30M		; retry (30 minutes)
			2W		; expiry (2 weeks)
			1W )		; minimum (1 week)
	IN	NS	ns1.example.com.
;
5.1.168.192.in-addr.arpa.	IN	PTR	api.ocp4.example.com. 1
5.1.168.192.in-addr.arpa.	IN	PTR	api-int.ocp4.example.com. 2
;
96.1.168.192.in-addr.arpa.	IN	PTR	bootstrap.ocp4.example.com. 3
;
97.1.168.192.in-addr.arpa.	IN	PTR	master0.ocp4.example.com. 4
98.1.168.192.in-addr.arpa.	IN	PTR	master1.ocp4.example.com. 5
99.1.168.192.in-addr.arpa.	IN	PTR	master2.ocp4.example.com. 6
;
11.1.168.192.in-addr.arpa.	IN	PTR	worker0.ocp4.example.com. 7
7.1.168.192.in-addr.arpa.	IN	PTR	worker1.ocp4.example.com. 8
;
;EOF
1
Kubernetes API의 역방향 DNS 확인을 제공합니다. PTR 레코드는 API 로드 밸런서의 레코드 이름을 참조합니다.
2
Kubernetes API의 역방향 DNS 확인을 제공합니다. PTR 레코드는 API 로드 밸런서의 레코드 이름을 참조하며 내부 클러스터 통신에 사용됩니다.
3
부트스트랩 시스템의 역방향 DNS 확인을 제공합니다.
4 5 6
컨트롤 플레인 시스템의 역방향 DNS 확인을 제공합니다.
7 8
컴퓨팅 시스템의 역방향 DNS 확인을 제공합니다.
참고

OpenShift Container Platform 애플리케이션 와일드카드에는 PTR 레코드가 필요하지 않습니다.

16.5.7.2. 사용자 프로비저닝 인프라에 대한 로드 밸런싱 요구사항

OpenShift Container Platform을 설치하기 전에 API 및 애플리케이션 인그레스 로드 밸런싱 인프라를 프로비저닝해야 합니다. 프로덕션 시나리오에서는 각각에 대해 개별적으로 로드 밸런서 인프라를 확장할 수 있도록 API 및 애플리케이션 인그레스 로드 밸런서를 별도로 배포할 수 있습니다.

참고

RHEL(Red Hat Enterprise Linux) 인스턴스를 사용하여 API 및 애플리케이션 인그레스 로드 밸런서를 배포하려면 RHEL 서브스크립션을 별도로 구매해야 합니다.

로드 밸런서 인프라는 다음 요구 사항을 충족해야 합니다.

  1. API 로드 밸런서: 플랫폼과 상호 작용하고 플랫폼을 구성할 수 있도록 사용자(인간과 시스템 모두)에게 공통 끝점을 제공합니다. 다음 조건을 설정합니다.

    • Layer 4 로드 밸런싱 전용입니다. 이를 Raw TCP, SSL Passthrough 또는 SSL Bridge 모드라고 합니다. SSL Bridge 모드를 사용하는 경우, API 경로에 대해 SNI(Server Name Indication, 서버 이름 표시)를 활성화해야 합니다.
    • 스테이트리스 로드 밸런싱 알고리즘입니다. 옵션은 로드 밸런서 구현에 따라 달라집니다.
    참고

    API 로드 밸런서가 제대로 작동하기 위해 세션 지속성이 필요하지 않습니다.

    로드 밸런서의 전면과 후면 모두에서 다음 포트를 구성하십시오.

    표 16.13. API 로드 밸런서

    포트백엔드 시스템(풀 멤버)내부외부설명

    6443

    부트스트랩 및 컨트롤 플레인. 부트스트랩 시스템이 클러스터 컨트롤 플레인을 초기화한 후 로드 밸런서에서 부트스트랩 시스템을 제거합니다. API 서버 상태 검사 프로브에 대한 /readyz 끝점을 구성해야 합니다.

    X

    X

    Kubernetes API 서버

    22623

    부트스트랩 및 컨트롤 플레인. 부트스트랩 시스템이 클러스터 컨트롤 플레인을 초기화한 후 로드 밸런서에서 부트스트랩 시스템을 제거합니다.

    X

     

    시스템 구성 서버

    참고

    API 서버가 /readyz 엔드포인트를 해제하는 시점부터 풀에서 API 서버 인스턴스가 제거되는 시점까지 시간이 30초를 넘지 않도록 로드 밸런서를 구성해야 합니다. /readyz가 오류를 반환하거나 정상 상태가 된 후 정해진 시간 안에 끝점이 제거 또는 추가되어야 합니다. 5초 또는 10초의 프로빙 주기(두 번의 성공적인 요청은 정상 상태, 세 번의 요청은 비정상 상태)는 충분한 테스트를 거친 값입니다.

  2. 애플리케이션 인그레스 로드 밸런서: 클러스터 외부에서 유입되는 애플리케이션 트래픽에 대한 인그래스 포인트를 제공합니다. 다음 조건을 설정합니다.

    • Layer 4 로드 밸런싱 전용입니다. 이를 Raw TCP, SSL Passthrough 또는 SSL Bridge 모드라고 합니다. SSL Bridge 모드를 사용하는 경우 인그레스 경로에 대해 SNI(Server Name Indication, 서버 이름 표시)를 활성화해야 합니다.
    • 사용 가능한 옵션과 플랫폼에서 호스팅되는 애플리케이션 유형에 따라 연결 기반 또는 세션 기반 지속성이 권장됩니다.
    작은 정보

    애플리케이션 인그레스 로드 밸런서에서 클라이언트의 실제 IP 주소를 확인할 수 있는 경우 소스 IP 기반 세션 지속성을 활성화하면 엔드 투 엔드 TLS 암호화를 사용하는 애플리케이션의 성능을 향상시킬 수 있습니다.

    로드 밸런서의 전면과 후면 모두에서 다음 포트를 구성하십시오.

    표 16.14. 애플리케이션 인그레스 로드 밸런서

    포트백엔드 시스템(풀 멤버)내부외부설명

    443

    기본적으로 인그레스 컨트롤러 pod, 컴퓨팅 또는 작업자를 실행하는 시스템입니다.

    X

    X

    HTTPS 트래픽

    80

    기본적으로 인그레스 컨트롤러 pod, 컴퓨팅 또는 작업자를 실행하는 시스템입니다.

    X

    X

    HTTP 트래픽

    1936

    기본적으로 Ingress 컨트롤러 Pod를 실행하는 작업자 노드입니다. 수신 상태 점검 프로브에 대해 /healthz/ready 끝점을 구성해야 합니다.

    X

    X

    HTTP 트래픽

참고

컴퓨팅 노드가 0인 3-노드 클러스터를 배포하는 경우 Ingress 컨트롤러 Pod는 컨트롤 플레인 노드에서 실행됩니다. 3-노드 클러스터 배포에서 HTTP 및 HTTPS 트래픽을 컨트롤 플레인 노드로 라우팅하도록 애플리케이션 인그레스 로드 밸런서를 구성해야 합니다.

참고

인그레스 라우터에 대한 작업 구성이 OpenShift Container Platform 클러스터에 필요합니다. 컨트롤 플레인 초기화 후 인그레스 라우터를 설정해야 합니다.

16.5.7.2.1. 사용자 프로비저닝 클러스터의 로드 밸런서 구성 예

이 섹션에서는 사용자 프로비저닝 클러스터의 로드 밸런싱 요구 사항을 충족하는 API 및 애플리케이션 수신 로드 밸런서 구성 예를 제공합니다. 샘플은 HAProxy 로드 밸런서에 대한 /etc/haproxy/haproxy.cfg 구성입니다. 이 예제에서는 하나의 로드 밸런싱 솔루션을 선택하기 위한 조언을 제공하는 것을 목적으로 하지 않습니다.

참고

이 예제에서는 Kubernetes API 및 애플리케이션 인그레스 트래픽에 동일한 로드 밸런서를 사용합니다. 프로덕션 시나리오에서는 각각에 대해 개별적으로 로드 밸런서 인프라를 확장할 수 있도록 API 및 애플리케이션 인그레스 로드 밸런서를 별도로 배포할 수 있습니다.

예 16.3. API 및 애플리케이션 인그레스 로드 밸런서 구성 샘플

global
  log         127.0.0.1 local2
  pidfile     /var/run/haproxy.pid
  maxconn     4000
  daemon
defaults
  mode                    http
  log                     global
  option                  dontlognull
  option http-server-close
  option                  redispatch
  retries                 3
  timeout http-request    10s
  timeout queue           1m
  timeout connect         10s
  timeout client          1m
  timeout server          1m
  timeout http-keep-alive 10s
  timeout check           10s
  maxconn                 3000
frontend stats
  bind *:1936
  mode            http
  log             global
  maxconn 10
  stats enable
  stats hide-version
  stats refresh 30s
  stats show-node
  stats show-desc Stats for ocp4 cluster 1
  stats auth admin:ocp4
  stats uri /stats
listen api-server-6443 2
  bind *:6443
  mode tcp
  server bootstrap bootstrap.ocp4.example.com:6443 check inter 1s backup 3
  server master0 master0.ocp4.example.com:6443 check inter 1s
  server master1 master1.ocp4.example.com:6443 check inter 1s
  server master2 master2.ocp4.example.com:6443 check inter 1s
listen machine-config-server-22623 4
  bind *:22623
  mode tcp
  server bootstrap bootstrap.ocp4.example.com:22623 check inter 1s backup 5
  server master0 master0.ocp4.example.com:22623 check inter 1s
  server master1 master1.ocp4.example.com:22623 check inter 1s
  server master2 master2.ocp4.example.com:22623 check inter 1s
listen ingress-router-443 6
  bind *:443
  mode tcp
  balance source
  server worker0 worker0.ocp4.example.com:443 check inter 1s
  server worker1 worker1.ocp4.example.com:443 check inter 1s
listen ingress-router-80 7
  bind *:80
  mode tcp
  balance source
  server worker0 worker0.ocp4.example.com:80 check inter 1s
  server worker1 worker1.ocp4.example.com:80 check inter 1s
1
이 예에서 클러스터 이름은 ocp4 입니다.
2
포트 6443은 Kubernetes API 트래픽을 처리하고 컨트롤 플레인 시스템을 가리킵니다.
3 5
부트스트랩 항목은 OpenShift Container Platform 클러스터 설치 전에 있어야 하며 부트스트랩 프로세스가 완료된 후 제거해야 합니다.
4
포트 22623은 머신 구성 서버 트래픽을 처리하고 컨트롤 플레인 시스템을 가리킵니다.
6
포트 443은 HTTPS 트래픽을 처리하고 Ingress 컨트롤러 Pod를 실행하는 시스템을 가리킵니다. Ingress 컨트롤러 Pod는 기본적으로 컴퓨팅 머신에서 실행됩니다.
7
포트 80은 HTTP 트래픽을 처리하고 Ingress 컨트롤러 Pod를 실행하는 머신을 가리킵니다. Ingress 컨트롤러 Pod는 기본적으로 컴퓨팅 머신에서 실행됩니다.
참고

컴퓨팅 노드가 0인 3-노드 클러스터를 배포하는 경우 Ingress 컨트롤러 Pod는 컨트롤 플레인 노드에서 실행됩니다. 3-노드 클러스터 배포에서 HTTP 및 HTTPS 트래픽을 컨트롤 플레인 노드로 라우팅하도록 애플리케이션 인그레스 로드 밸런서를 구성해야 합니다.

작은 정보

HAProxy를 로드 밸런서로 사용하는 경우 HAProxy 노드에서 netstat -nltupe를 실행하여 haproxy 프로세스가 포트 6443, 22623, 44380에서 수신 대기 중인지 확인할 수 있습니다.

참고

HAProxy를 로드 밸런서로 사용하고 SELinux가 enforcing으로 설정된 경우 HAProxy 서비스가 setsebool -P haproxy_connect_any=1을 실행하여 구성된 TCP 포트에 바인딩할 수 있는지 확인해야 합니다.

16.5.8. 설치 시스템 설정

바이너리 openshift-install 설치 프로그램 및 Ansible 스크립트를 실행하려면 RHV Manager 또는 RHV 환경에 대한 네트워크 액세스 권한이 있는 RHEL(Red Hat Enterprise Linux) 컴퓨터와 Manager에서 REST API를 설정합니다.

절차

  1. Python3 및 Ansible을 업데이트하거나 설치합니다. 예를 들면 다음과 같습니다.

    # dnf update python3 ansible
  2. python3-ovirt-engine-sdk4 패키지를 설치하여 Python 소프트웨어 개발 키트를 가져옵니다.
  3. ovirt.image-template Ansible 역할을 설치합니다. RHV Manager 및 기타 RHEL(Red Hat Enterprise Linux) 시스템에서 이 역할은 ovirt-ansible-image-template 패키지로 배포됩니다. 예를 들면 다음과 같습니다.

    # dnf install ovirt-ansible-image-template
  4. ovirt.vm-infra Ansible 역할을 설치합니다. RHV Manager 및 기타 RHEL 시스템에서 이 역할은 ovirt-ansible-vm-infra 패키지로 배포됩니다.

    # dnf install ovirt-ansible-vm-infra
  5. 환경 변수를 만들고 절대 또는 상대 경로를 할당합니다. 예를 들면 다음과 같습니다.

    $ export ASSETS_DIR=./wrk
    참고

    설치 프로그램은 이 변수를 사용하여 중요한 설치 관련 파일을 저장하는 디렉터리를 만듭니다. 나중에 설치 프로세스는 이 변수를 사용하여 해당 자산 파일을 찾습니다. 이 assets 디렉터리를 삭제하지 마십시오. 이는 클러스터를 제거하는 데 필요합니다.

16.5.9. RHV의 CA 인증서 설정

RHV(Red Hat Virtualization) Manager에서 CA 인증서를 다운로드하여 설치 시스템에서 설정합니다.

RHV Manager의 웹 페이지에서 또는 curl 명령을 사용하여 인증서를 다운로드할 수 있습니다.

나중에 설치 프로그램에 이 인증서를 제공합니다.

절차

  1. 다음 두 가지 방법 중 하나를 사용하여 CA 인증서를 다운로드합니다.

    • Manager 웹 페이지(https://<engine-fqdn>/ovirt-engine/)로 이동합니다. 그런 다음 다운로드 아래에서 CA 인증서 링크를 클릭합니다.
    • 다음 명령을 실행합니다.

      $ curl -k 'https://<engine-fqdn>/ovirt-engine/services/pki-resource?resource=ca-certificate&format=X509-PEM-CA' -o /tmp/ca.pem  1
      1
      <engine-fqdn>rhv-env.virtlab.example.com과 같이 RHV Manager의 정규화된 도메인 이름을 지정합니다.
  2. Manager에 대한 루트리스(rootless) 사용자 액세스 권한을 부여하도록 CA 파일을 구성합니다. 8진수 값 0644(기호 값: -rw-r— r--)를 갖도록 CA 파일 권한을 설정합니다.

    $ sudo chmod 0644 /tmp/ca.pem
  3. Linux의 경우 서버 인증서를 CA 인증서 디렉터리에 복사합니다. 권한을 유지하려면 -p를 사용합니다.

    $ sudo cp -p /tmp/ca.pem /etc/pki/ca-trust/source/anchors/ca.pem
  4. 운영 체제의 인증서 관리자에 인증서를 추가합니다.

    • macOS의 경우 인증서 파일을 두 번 클릭하고 키체인 액세스 유틸리티를 사용하여 파일을 시스템 키 체인에 추가합니다.
    • Linux의 경우 다음과 같이 CA 트러스트를 업데이트합니다.

      $ sudo update-ca-trust
      참고

      자체 인증 기관을 사용하는 경우 시스템이 해당 인증 기관을 신뢰하는지 확인합니다.

추가 리소스

16.5.10. 클러스터 노드 SSH 액세스를 위한 키 쌍 생성

OpenShift Container Platform을 설치하는 동안 SSH 공개 키를 설치 프로그램에 지정할 수 있습니다. 키는 Ignition 구성 파일을 통해 RHCOS(Red Hat Enterprise Linux CoreOS) 노드에 전달되며 노드에 대한 SSH 액세스를 인증하는 데 사용됩니다. 키는 각 노드에서 core 사용자의 ~/.ssh/authorized_keys 목록에 추가되어 암호 없는 인증을 활성화합니다.

키가 노드에 전달되면 키 쌍을 사용하여 사용자 core로 RHCOS 노드에 SSH로 SSH 연결을 수행할 수 있습니다 . SSH를 통해 노드에 액세스하려면 로컬 사용자의 SSH에서 개인 키 ID를 관리해야 합니다.

설치 디버깅 또는 재해 복구를 수행하기 위해 클러스터 노드에 SSH를 실행하려면 설치 프로세스 중에 SSH 공용 키를 지정해야 합니다. ./openshift-install gather 명령에도 SSH 공개 키가 클러스터 노드에 있어야 합니다.

중요

재해 복구 및 디버깅이 필요한 프로덕션 환경에서는이 단계를 생략하지 마십시오.

참고

AWS 키 쌍과 같이 플랫폼 고유의 방식으로 구성된 키가 아닌 로컬 키를 사용해야 합니다.

절차

  1. 로컬 시스템에 클러스터 노드의 인증에 사용할 기존 SSH 키 쌍이 없는 경우 새로 생성합니다. 예를 들어 Linux 운영 체제를 사용하는 컴퓨터에서 다음 명령을 실행합니다.

    $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> 1
    1
    새 SSH 키의 경로 및 파일 이름(예: ~/.ssh/id_ed25519 )을 지정합니다. 기존 키 쌍이 있는 경우 공개 키가 '~/.ssh 디렉터리에 있는지 확인하십시오.
    참고

    x86_64 아키텍처에 FIPS 검증 / 진행중인 모듈 (Modules in Process) 암호화 라이브러리를 사용하는 OpenShift Container Platform 클러스터를 설치하려면 ed25519 알고리즘을 사용하는 키를 생성하지 마십시오. 대신 rsa 또는 ecdsa 알고리즘을 사용하는 키를 생성합니다.

  2. 공개 SSH 키를 확인합니다.

    $ cat <path>/<file_name>.pub

    예를 들어 다음을 실행하여 ~/.ssh/id_ed25519.pub 공개 키를 확인합니다.

    $ cat ~/.ssh/id_ed25519.pub
  3. 아직 추가되지 않은 경우 로컬 사용자의 SSH 에이전트에 SSH 개인 키 ID를 추가합니다. 키의 SSH 에이전트 관리는 클러스터 노드에 암호 없는 SSH 인증을 수행하거나 ./openshift-install gather 명령을 사용하려는 경우 필요합니다.

    참고

    일부 배포에서는 ~/.ssh/id_rsa~/.ssh/id_dsa와 같은 기본 SSH 개인 키 ID가 자동으로 관리됩니다.

    1. ssh-agent 프로세스가 로컬 사용자에 대해 실행되지 않은 경우 백그라운드 작업으로 시작합니다.

      $ eval "$(ssh-agent -s)"

      출력 예

      Agent pid 31874

      참고

      클러스터가 FIPS 모드인 경우 FIPS 호환 알고리즘만 사용하여 SSH 키를 생성합니다. 키는 RSA 또는 ECDSA여야 합니다.

  4. ssh-agent에 SSH 개인 키를 추가합니다.

    $ ssh-add <path>/<file_name> 1
    1
    SSH 개인 키의 경로 및 파일 이름을 지정합니다(예: ~/.ssh/id_ed25519).

    출력 예

    Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

다음 단계

  • OpenShift Container Platform을 설치할 때 SSH 공개 키를 설치 프로그램에 지정합니다.

16.5.11. Ansible Playbook 다운로드

RHV에 OpenShift Container Platform 4.9 버전을 설치하기 위한 Ansible 플레이북을 다운로드합니다.

절차

  • 설치 시스템에서 다음 명령을 실행하십시오.

    $ mkdir playbooks
    $ cd playbooks
    $ curl -s -L -X GET https://api.github.com/repos/openshift/installer/contents/upi/ovirt?ref=release-4.9 |
    grep 'download_url.*\.yml' |
    awk '{ print $2 }' | sed -r 's/("|",)//g' |
    xargs -n 1 curl -O

다음 단계

  • 이러한 Ansible Playbook을 다운로드한 후 설치 프로그램을 실행하여 설치 구성 파일을 생성하기 전에 assets 디렉터리에 대한 환경 변수를 생성하고 inventory.yml 파일을 사용자 정의해야 합니다.

16.5.12. inventory.yml 파일

inventory.yml 파일을 사용하여 설치하려는 OpenShift Container Platform 클러스터의 요소를 정의하고 생성합니다. 여기에는 RHCOS (Red Hat Enterprise Linux CoreOS) 이미지, 가상 머신 템플릿, 부트스트랩 머신, 컨트롤 플레인 노드 및 작업자 노드와 같은 요소가 포함됩니다. 또한 inventory.yml을 사용하여 클러스터를 제거합니다.

다음 inventory.yml예에서는 매개 변수와 매개 변수 기본값을 보여줍니다. 이러한 기본값의 수량과 숫자는 RHV 환경에서 프로덕션 OpenShift Container Platform 클러스터를 실행하기 위한 요구 사항을 충족합니다.

inventory.yml 파일 예

---
all:
  vars:

    ovirt_cluster: "Default"
    ocp:
      assets_dir: "{{ lookup('env', 'ASSETS_DIR') }}"
      ovirt_config_path: "{{ lookup('env', 'HOME') }}/.ovirt/ovirt-config.yaml"

    # ---
    # {op-system} section
    # ---
    rhcos:
      image_url: "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.9/latest/rhcos-openstack.x86_64.qcow2.gz"
      local_cmp_image_path: "/tmp/rhcos.qcow2.gz"
      local_image_path: "/tmp/rhcos.qcow2"

    # ---
    # Profiles section
    # ---
    control_plane:
      cluster: "{{ ovirt_cluster }}"
      memory: 16GiB
      sockets: 4
      cores: 1
      template: rhcos_tpl
      operating_system: "rhcos_x64"
      type: high_performance
      graphical_console:
        headless_mode: false
        protocol:
        - spice
        - vnc
      disks:
      - size: 120GiB
        name: os
        interface: virtio_scsi
        storage_domain: depot_nvme
      nics:
      - name: nic1
        network: lab
        profile: lab

    compute:
      cluster: "{{ ovirt_cluster }}"
      memory: 16GiB
      sockets: 4
      cores: 1
      template: worker_rhcos_tpl
      operating_system: "rhcos_x64"
      type: high_performance
      graphical_console:
        headless_mode: false
        protocol:
        - spice
        - vnc
      disks:
      - size: 120GiB
        name: os
        interface: virtio_scsi
        storage_domain: depot_nvme
      nics:
      - name: nic1
        network: lab
        profile: lab

    # ---
    # Virtual machines section
    # ---
    vms:
    - name: "{{ metadata.infraID }}-bootstrap"
      ocp_type: bootstrap
      profile: "{{ control_plane }}"
      type: server
    - name: "{{ metadata.infraID }}-master0"
      ocp_type: master
      profile: "{{ control_plane }}"
    - name: "{{ metadata.infraID }}-master1"
      ocp_type: master
      profile: "{{ control_plane }}"
    - name: "{{ metadata.infraID }}-master2"
      ocp_type: master
      profile: "{{ control_plane }}"
    - name: "{{ metadata.infraID }}-worker0"
      ocp_type: worker
      profile: "{{ compute }}"
    - name: "{{ metadata.infraID }}-worker1"
      ocp_type: worker
      profile: "{{ compute }}"
    - name: "{{ metadata.infraID }}-worker2"
      ocp_type: worker
      profile: "{{ compute }}"

중요

매개 변수 설명이 "Enter"로 시작하는 매개 변수의 값을 입력합니다. 그렇지 않으면 기본값을 사용하거나 새 값으로 변경할 수 있습니다.

일반 섹션

  • ovirt_cluster: OpenShift Container Platform 클러스터를 설치할 기존 RHV 클러스터의 이름을 입력합니다.
  • ocp.assets_dir: openshift-install 설치 프로그램이 생성하는 파일을 저장하기 위해 생성하는 디렉터리의 경로입니다.
  • ocp.ovirt_config_path: 설치 프로그램이 생성하는 ovirt-config.yaml 파일의 경로 (예: ./wrk/install-config.yaml)입니다. 이 파일에는 Manager의 REST API와 상호 작용하는 데 필요한 인증 정보가 포함되어 있습니다.

RHCOS(Red Hat Enterprise Linux CoreOS) 섹션

  • image_url: 다운로드를 위해 지정한 RHCOS 이미지의 URL을 입력합니다.
  • local_cmp_image_path: 압축된 RHCOS 이미지에 대한 로컬 다운로드 디렉터리의 경로입니다.
  • local_image_path: 추출된 RHCOS 이미지에 대한 로컬 디렉터리의 경로입니다.

프로필 섹션

이 섹션은 두 가지 프로필로 구성됩니다.

  • control_plane: 부트스트랩 및 컨트롤 플레인 노드의 프로필입니다.
  • compute: 컴퓨팅 플레인에 있는 작업자 노드의 프로필입니다.

이러한 프로필에는 다음과 같은 매개 변수가 있습니다. 매개 변수의 기본값은 프로덕션 클러스터 실행을 위한 최소 요구 사항을 충족합니다. 이러한 값을 증가시키거나 사용자 지정하여 워크로드 요구 사항을 충족할 수 있습니다.

  • cluster: 이 값은 일반 섹션의 ovirt_cluster에서 클러스터 이름을 가져옵니다.
  • memory: 가상 시스템의 메모리 양(GB)입니다.
  • sockets: 가상 시스템의 소켓 수입니다.
  • cores: 가상 시스템의 코어 수입니다.
  • template: 가상 시스템 템플릿의 이름입니다. 여러 클러스터를 설치할 계획이고 이러한 클러스터가 서로 다른 사양을 포함하는 템플릿을 사용하는 경우 템플릿 이름 앞에 클러스터 ID를 추가합니다.
  • operating_system: 가상 시스템의 게스트 운영 체제 유형입니다. oVirt/RHV 버전 4.4에서 이 값은 rhcos_x64이어야 하므로 Ignition script의 값이 가상 시스템에 전달될 수 있습니다.
  • type: 가상 머신의 유형으로 server를 입력합니다.

    중요

    type 매개 변수의 값을 high_performance에서 server로 변경해야 합니다.

  • disks: 디스크 사양. control_planecompute 노드는 서로 다른 스토리지 도메인을 가질 수 있습니다.
  • size: 최소 디스크 크기.
  • name: RHV에서 대상 클러스터에 연결된 디스크의 이름을 입력합니다.
  • interface: 지정한 디스크의 인터페이스 유형을 입력합니다.
  • storage_domain: 지정한 디스크의 스토리지 도메인을 입력합니다.
  • nics: 가상 머신이 사용하는 namenetwork를 입력합니다. 가상 네트워크 인터페이스 프로필을 지정할 수도 있습니다. 기본적으로 NIC는 oVirt/RHV MAC 풀에서 MAC 주소를 가져옵니다.

가상 머신 섹션

이 마지막 섹션인 vms는 클러스터에서 생성하고 배포할 가상 시스템을 정의합니다. 기본적으로 프로덕션 환경에 대해 최소한의 컨트롤 플레인 및 작업자 노드를 제공합니다.

vms에는 세 가지 필수 요소가 있습니다.

  • name: 가상 머신의 이름입니다. 이 경우 metadata.infraID는 가상 머신 이름 앞에 metadata.yml 파일의 인프라 ID를 추가합니다.
  • ocp_type: OpenShift Container Platform 클러스터에서 가상 머신의 역할입니다. 가능한 값은 bootstrap, master, worker입니다.
  • profile: 각 가상 머신이 사양을 상속하는 프로필의 이름입니다. 이 예제에서 가능한 값은 control_plane 또는 compute입니다.

    가상 머신이 해당 프로필에서 상속하는 값을 재정의할 수 있습니다. 이렇게 하려면 inventory.yml의 가상 머신에 프로필 속성의 이름을 추가하고 재정의 값을 할당합니다. 이 예제를 보려면 이전 inventory.yml 예제에서 name: "{{ metadata.infraID }}-bootstrap" 가상 머신을 검사합니다. 여기에는 server 값이 있는 type 속성이 이 가상 머신이 control_plane 프로필에서 상속하는 type 속성 값을 재정의합니다.

메타 데이터 변수

가상 머신의 경우 metadata.infraID는 Ignition 파일을 빌드할 때 생성한 metadata.json 파일의 인프라 ID를 가상 머신의 이름 앞에 추가합니다.

Playbook은 ocp.assets_dir에 있는 특정 파일에서 infraID 읽고 다음 코드를 사용합니다.

---
- name: include metadata.json vars
  include_vars:
    file: "{{ ocp.assets_dir }}/metadata.json"
    name: metadata

  ...

16.5.13. RHCOS 이미지 설정 지정

inventory.yml 파일의 RHCOS (Red Hat Enterprise Linux CoreOS) 이미지 설정을 업데이트합니다. 나중에 Playbook 중 파일 하나를 실행하면 image_url URL에서 local_cmp_image_path 디렉터리로 압축된 Red Hat Enterprise 리눅스 CoreOS(RHCOS) 이미지가 다운로드됩니다. 그런 다음 Playbook은 이미지를 local_image_path 디렉터리에 압축 해제하고 이를 사용하여 oVirt/RHV 템플릿을 만듭니다.

절차

  1. 설치 중인 OpenShift Container Platform 버전에 대한 RHCOS 이미지 다운로드 페이지(예: Index of /pub/openshift-v4/dependencies/rhcos/latest/latest)를 찾습니다.
  2. 해당 다운로드 페이지에서 https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.9/latest/rhcos-openstack.x86_64.qcow2.gz와 같은 OpenStack qcow2 이미지의 URL을 복사합니다.
  3. 이전에 다운로드 한 inventory.yml Playbook을 편집합니다. 여기에 URL을 image_url 값으로 붙여 넣습니다. 예를 들면 다음과 같습니다.

    rhcos:
      "https://mirror.openshift.com/pub/openshift-v4/dependencies/rhcos/4.9/latest/rhcos-openstack.x86_64.qcow2.gz"

16.5.14. 설치 구성 파일 만들기

설치 프로그램 openshift-install을 실행하고 이전에 지정했거나 수집한 정보로 해당 프롬프트에 응답하여 설치 구성 파일을 만듭니다.

프롬프트에 대한 응답을 마치면 설치 프로그램이 이전에 지정한 assets 디렉터리 (예 : ./wrk/install-config.yaml)에 install-config.yaml 파일의 초기 버전을 생성합니다.

설치 프로그램은 $HOME/.ovirt/ovirt-config.yaml 파일을 생성합니다. 이 파일에는 Manager에 연결하여 REST API를 사용하는 데 필요한 모든 연결 매개 변수가 포함되어 있습니다.

참고: 설치 프로세스는 Internal API virtual IPIngress virtual IP와 같은 일부 매개 변수에 제공하는 값을 사용하지 않습니다. 이미 인프라 DNS에서 구성했기 때문입니다.

또한 oVirt cluster, oVirt storageoVirt network에 대한 값과 같이 inventory.yml의 매개 변수에 제공하는 값을 사용합니다. 그리고 스크립트를 사용하여 install-config.yaml에서 이러한 동일한 값을 이전에 언급한 virtual IP로 제거하거나 변경합니다.

절차

  1. 설치 프로그램을 실행합니다.

    $ openshift-install create install-config --dir $ASSETS_DIR
  2. 시스템에 대한 정보를 사용하여 설치 프로그램의 프롬프트 메시지에 응답합니다.

    출력 예

    ? SSH Public Key /home/user/.ssh/id_dsa.pub
    ? Platform <ovirt>
    ? Engine FQDN[:PORT] [? for help] <engine.fqdn>
    ? Enter ovirt-engine username <ocpadmin@internal>
    ? Enter password <******>
    ? oVirt cluster <cluster>
    ? oVirt storage <storage>
    ? oVirt network <net>
    ? Internal API virtual IP <172.16.0.252>
    ? Ingress virtual IP <172.16.0.251>
    ? Base Domain <example.org>
    ? Cluster Name <ocp4>
    ? Pull Secret [? for help] <********>

? SSH Public Key /home/user/.ssh/id_dsa.pub
? Platform <ovirt>
? Engine FQDN[:PORT] [? for help] <engine.fqdn>
? Enter ovirt-engine username <ocpadmin@internal>
? Enter password <******>
? oVirt cluster <cluster>
? oVirt storage <storage>
? oVirt network <net>
? Internal API virtual IP <172.16.0.252>
? Ingress virtual IP <172.16.0.251>
? Base Domain <example.org>
? Cluster Name <ocp4>
? Pull Secret [? for help] <********>

Internal API virtual IPIngress virtual IP의 경우 DNS 서비스를 구성할 때 지정한 IP 주소를 제공합니다.

oVirt clusterBase Domain 프롬프트에서 입력한 값은 REST API 및 생성하는 모든 애플리케이션의 URL의 일부를 구성합니다. (예: https://api.ocp4.example.org:6443/https://console-openshift-console.apps.ocp4.example.org)

Red Hat OpenShift Cluster Manager에서 풀 시크릿을 가져올 수 있습니다.

16.5.15. RHV의 샘플 install-config.yaml 파일

install-config.yaml 파일을 사용자 지정하여 OpenShift Container Platform 클러스터 플랫폼에 대한 자세한 정보를 지정하거나 필수 매개변수 값을 수정할 수 있습니다.

apiVersion: v1
baseDomain: example.com 1
compute: 2
- hyperthreading: Enabled 3
  name: worker
  replicas: 0 4
controlPlane: 5
  hyperthreading: Enabled 6
  name: master
  replicas: 3 7
metadata:
  name: test 8
networking:
  clusterNetwork:
  - cidr: 10.128.0.0/14 9
    hostPrefix: 23 10
  networkType: OpenShiftSDN
  serviceNetwork: 11
  - 172.30.0.0/16
platform:
  none: {} 12
fips: false 13
pullSecret: '{"auths": ...}' 14
sshKey: 'ssh-ed25519 AAAA...' 15
1
클러스터의 기본 도메인입니다. 모든 DNS 레코드는 이 기본 도메인의 하위 도메인이어야 하며 클러스터 이름을 포함해야 합니다.
2 5
controlPlane 섹션은 단일 매핑이지만 compute 섹션은 일련의 매핑입니다. 서로 다른 데이터 구조의 요구사항을 충족하도록 compute 섹션의 첫 번째 줄은 하이픈(-)으로 시작해야 하며 controlPlane 섹션의 첫 번째 줄은 하이픈으로 시작할 수 없습니다. 하나의 컨트롤 플레인 풀만 사용됩니다.
3 6
동시 멀티스레딩(SMT) 또는 hyperthreading 활성화/비활성화 여부를 지정합니다. 시스템 코어의 성능을 높이기 위해 기본적으로 SMT가 활성화됩니다. 매개변수 값을 Disabled로 설정하여 비활성화할 수 있습니다. SMT를 비활성화하는 경우 모든 클러스터 머신에서 이를 비활성화해야 합니다. 여기에는 컨트롤 플레인과 컴퓨팅 머신이 모두 포함됩니다.
참고

SMT(동시 멀티 스레딩)는 기본적으로 활성화되어 있습니다. BIOS 설정에서 SMT를 활성화하지 않으면 hyperthreading 매개변수가 적용되지 않습니다.

중요

BIOS에서든 install-config.yaml 파일에서든 hyperthreading을 비활성화한 경우 용량 계획에서 시스템 성능이 크게 저하될 수 있는 문제를 고려해야 합니다.

4
사용자 프로비저닝 인프라에 OpenShift Container Platform을 설치할 때 이 값을 0으로 설정해야 합니다. 설치 프로그램에서 제공하는 설치에서 매개 변수는 클러스터가 생성 및 관리하는 컴퓨팅 머신 수를 제어합니다. 사용자 프로비저닝 설치에서는 클러스터 설치를 완료하기 전에 컴퓨팅 시스템을 수동으로 배포해야 합니다.
참고

3-노드 클러스터를 설치하는 경우 RHCOS(Red Hat Enterprise Linux CoreOS) 시스템을 설치할 때 컴퓨팅 머신을 배포하지 마십시오.

7
클러스터에 추가하는 컨트롤 플레인 시스템의 수입니다. 클러스터에서 이 값을 클러스터의 etcd 끝점 수로 사용하므로 이 값은 배포하는 컨트롤 플레인 시스템의 수와 일치해야 합니다.
8
DNS 레코드에 지정한 클러스터 이름입니다.
9
Pod IP 주소가 할당되는 IP 주소 블록입니다. 이 블록은 기존 물리적 네트워크와 중복되지 않아야합니다. 이러한 IP 주소는 Pod 네트워크에 사용됩니다. 외부 네트워크에서 Pod에 액세스해야 하는 경우, 트래픽을 관리하도록 로드 밸런서와 라우터를 설정해야 합니다.
참고

클래스 E CIDR 범위는 향후 사용을 위해 예약되어 있습니다. 클래스 E CIDR 범위를 사용하려면 네트워킹 환경에서 클래스 E CIDR 범위 내에서 IP 주소를 수락하는지 확인해야 합니다.

10
개별 노드 각각에 할당할 서브넷 접두사 길이입니다. 예를 들어 hostPrefix23으로 설정하면 지정된 cidr 이외 /23 서브넷이 각 노드에 할당되어 510(2^(32 - 23) - 2) Pod IP 주소가 허용됩니다. 외부 네트워크에서 노드에 액세스해야 하는 경우 트래픽을 관리하도록 로드 밸런서와 라우터를 구성합니다.
11
서비스 IP 주소에 사용할 IP 주소 풀입니다. IP 주소 풀은 하나만 입력할 수 있습니다. 이 블록은 기존 물리적 네트워크와 중복되지 않아야합니다. 외부 네트워크에서 서비스에 액세스해야 하는 경우, 트래픽을 관리하도록 로드 밸런서와 라우터를 구성합니다.
12
플랫폼을 none으로 설정해야 합니다. RHV 인프라에 대한 추가 플랫폼 구성 변수는 지정할 수 없습니다.
중요

플랫폼 유형으로 설치된 클러스터는 Machine API로 컴퓨팅 머신 관리와 같은 일부 기능을 사용할 수 없습니다. 이 제한은 클러스터에 연결된 컴퓨팅 시스템이 일반적으로 기능을 지원하는 플랫폼에 설치된 경우에도 적용됩니다. 이 매개변수는 설치 후 변경할 수 없습니다.

13
FIPS 모드 활성화 또는 비활성화 여부입니다. 기본적으로 FIPS 모드는 비활성화됩니다. FIPS 모드가 활성화되면 OpenShift Container Platform이 실행되는 RHCOS(Red Hat Enterprise Linux CoreOS) 시스템에서 기본 Kubernetes 암호화 제품군은 우회하고 RHCOS와 함께 제공되는 암호화 모듈을 대신 사용합니다.
중요

FIPS 검증 / 진행중인 모듈 암호화 라이브러리 사용은 x86_64 아키텍처의 OpenShift Container Platform 배포에서만 지원됩니다.

14
Red Hat OpenShift Cluster Manager의 풀 시크릿. 이 풀 시크릿을 사용하면 OpenShift Container Platform 구성 요소에 대한 컨테이너 이미지를 제공하는 Quay.io를 포함하여 인증 기관에서 제공하는 서비스로 인증할 수 있습니다.
15
RHCOS(Red Hat Enterprise Linux CoreOS)의 core 사용자에 대한 SSH 공용 키입니다.
참고

설치 디버깅 또는 재해 복구를 수행하려는 프로덕션 OpenShift Container Platform 클러스터의 경우 ssh-agent 프로세스가 사용하는 SSH 키를 지정합니다.

16.5.15.1. 설치 중 클러스터 단위 프록시 구성

프로덕션 환경에서는 인터넷에 대한 직접 액세스를 거부하고 대신 HTTP 또는 HTTPS 프록시를 사용할 수 있습니다. install-config.yaml 파일에서 프록시 설정을 구성하여 프록시가 사용되도록 새 OpenShift Container Platform 클러스터를 구성할 수 있습니다.

사전 요구 사항

  • 기존 install-config.yaml 파일이 있습니다.
  • 클러스터에서 액세스해야 하는 사이트를 검토하고 프록시를 바이패스해야 하는지 확인했습니다. 기본적으로 호스팅 클라우드 공급자 API에 대한 호출을 포함하여 모든 클러스터 발신(Egress) 트래픽이 프록시됩니다. 필요한 경우 프록시를 바이패스하기 위해 Proxy 오브젝트의 spec.noProxy 필드에 사이트를 추가했습니다.

    참고

    Proxy 오브젝트의 status.noProxy 필드는 설치 구성에 있는 networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, networking.serviceNetwork[] 필드의 값으로 채워집니다.

    Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure 및 Red Hat OpenStack Platform (RHOSP)에 설치하는 경우 Proxy 오브젝트 status.noProxy 필드도 인스턴스 메타데이터 끝점(169.254.169.254)로 채워집니다.

프로세스

  1. install-config.yaml 파일을 편집하고 프록시 설정을 추가합니다. 예를 들면 다음과 같습니다.

    apiVersion: v1
    baseDomain: my.domain.com
    proxy:
      httpProxy: http://<username>:<pswd>@<ip>:<port> 1
      httpsProxy: https://<username>:<pswd>@<ip>:<port> 2
      noProxy: example.com 3
    additionalTrustBundle: | 4
        -----BEGIN CERTIFICATE-----
        <MY_TRUSTED_CA_CERT>
        -----END CERTIFICATE-----
    ...
    1
    클러스터 외부에서 HTTP 연결을 구축하는 데 사용할 프록시 URL입니다. URL 스키마는 http여야 합니다.
    2
    클러스터 외부에서 HTTPS 연결을 구축하는 데 사용할 프록시 URL입니다.
    3
    대상 도메인 이름, IP 주소 또는 프록시에서 제외할 기타 네트워크 CIDR로 이루어진 쉼표로 구분된 목록입니다. 하위 도메인과 일치하려면 도메인 앞에 .을 입력합니다. 예를 들어, .y.comx.y.com과 일치하지만 y.com은 일치하지 않습니다. *를 사용하여 모든 대상에 대해 프록시를 바이패스합니다.
    4
    이 값을 제공하면 설치 프로그램에서 추가 CA 인증서를 보유할 openshift -config 네임스페이스에 user-ca- bundle 이라는 구성 맵을 생성합니다. additionalTrustBundle 및 하나 이상의 프록시 설정을 제공하는 경우 프록시 오브젝트는 trustedCA 필드의 user-ca-bundle 구성 맵을 참조하도록 구성됩니다. 그러면 Cluster Network Operator에서 trustedCA 매개변수에 대해 지정된 콘텐츠를 RHCOS 신뢰 번들과 병합하는 trusted-ca-bundle 구성 맵을 생성합니다. 프록시의 ID 인증서를 RHCOS 트러스트 번들에 있는 기관에서 서명하지 않은 경우 additionalTrustBundle 필드가 있어야 합니다.
    참고

    설치 프로그램에서 프록시 adinessEndpoints 필드를 지원하지 않습니다.

  2. 파일을 저장해 놓고 OpenShift Container Platform을 설치할 때 참조하십시오.

제공되는 install-config.yaml 파일의 프록시 설정을 사용하는 cluster라는 이름의 클러스터 전체 프록시가 설치 프로그램에 의해 생성됩니다. 프록시 설정을 제공하지 않아도 cluster Proxy 오브젝트는 계속 생성되지만 spec은 nil이 됩니다.

참고

cluster라는 Proxy 오브젝트만 지원되며 추가 프록시는 생성할 수 없습니다.

16.5.16. install-config.yaml 사용자 정의

여기에서는 3 개의 Python 스크립트를 사용하여 설치 프로그램의 일부 기본 동작을 재정의합니다.

  • 기본적으로 설치 프로그램은 머신 API를 사용하여 노드를 만듭니다. 이 기본 동작을 재정의하려면 컴퓨팅 노드 수를 복제본 0으로 설정합니다. 나중에 Anable Playbook을 사용하여 컴퓨팅 노드를 생성합니다.
  • 기본적으로 설치 프로그램은 노드의 시스템 네트워크의 IP 범위를 설정합니다. 이 기본 동작을 재정의하려면 인프라와 일치하도록 IP 범위를 설정합니다.
  • 기본적으로 설치 프로그램은 플랫폼을 ovirt로 설정합니다. 그러나 사용자 프로비저닝 인프라에 클러스터를 설치하는 것은 베어 메탈에 클러스터를 설치하는 것과 비슷합니다. 따라서 install-config.yaml에서 ovirt 플랫폼 섹션을 삭제하고 플랫폼을 none으로 변경합니다. 대신 inventory.yml을 사용하여 모든 필수 설정을 지정합니다.
참고

이 스니펫은 Python 3 및 Python 2에서 작동합니다.

프로세스

  1. 컴퓨팅 노드 수를 복제본 0으로 설정합니다.

    $ python3 -c 'import os, yaml
    path = "%s/install-config.yaml" % os.environ["ASSETS_DIR"]
    conf = yaml.safe_load(open(path))
    conf["compute"][0]["replicas"] = 0
    open(path, "w").write(yaml.dump(conf, default_flow_style=False))'
  2. 머신 네트워크의 IP 범위를 설정합니다. 예를 들어 범위를 172.16.0.0/16으로 설정하려면 다음을 입력합니다.

    $ python3 -c 'import os, yaml
    path = "%s/install-config.yaml" % os.environ["ASSETS_DIR"]
    conf = yaml.safe_load(open(path))
    conf["networking"]["machineNetwork"][0]["cidr"] = "172.16.0.0/16"
    open(path, "w").write(yaml.dump(conf, default_flow_style=False))'
  3. ovirt 섹션을 제거하고 플랫폼을 none으로 변경합니다.

    $ python3 -c 'import os, yaml
    path = "%s/install-config.yaml" % os.environ["ASSETS_DIR"]
    conf = yaml.safe_load(open(path))
    platform = conf["platform"]
    del platform["ovirt"]
    platform["none"] = {}
    open(path, "w").write(yaml.dump(conf, default_flow_style=False))'
    주의

    Red Hat Virtualization은 현재 oVirt 플랫폼에서 사용자 프로비저닝 인프라를 사용하여 설치를 지원하지 않습니다. 따라서 플랫폼을 none 으로 설정해야 OpenShift Container Platform에서 각 노드를 베어 메탈 노드로 식별하고 클러스터를 베어 메탈 클러스터로 식별할 수 있습니다. 이는 모든 플랫폼에 클러스터를 설치하는 것과 동일하며 다음과 같은 제한 사항이 있습니다.

    1. 클러스터 공급자가 없으므로 각 머신을 수동으로 추가해야 하며 노드 확장 기능이 없습니다.
    2. oVirt CSI 드라이버가 설치되지 않으며 CSI 기능이 없습니다.

16.5.17. 매니페스트 파일 생성

설치 프로그램을 사용하여 assets 디렉터리에 매니페스트 파일 세트를 생성하십시오.

매니페스트 파일을 생성하는 명령은 install-config.yaml 파일을 사용하기 전에 경고 메시지를 표시합니다.

install-config.yaml 파일을 재사용하려는 경우 매니페스트 파일을 생성하기 전에 해당 파일의 백업 사본을 생성합니다.

절차

  1. 선택 사항: install-config.yaml 파일의 작업 사본을 만듭니다.

    $ cp install-config.yaml install-config.yaml.backup
  2. assets 디렉터리에 매니페스트 세트를 생성합니다.

    $ openshift-install create manifests --dir $ASSETS_DIR

    이 명령은 다음 메시지를 표시합니다.

    출력 예

    INFO Consuming Install Config from target directory
    WARNING Making control-plane schedulable by setting MastersSchedulable to true for Scheduler cluster settings

    이 명령은 다음 매니페스트 파일을 생성합니다.

    출력 예

    $ tree
    .
    └── wrk
        ├── manifests
        │   ├── 04-openshift-machine-config-operator.yaml
        │   ├── cluster-config.yaml
        │   ├── cluster-dns-02-config.yml
        │   ├── cluster-infrastructure-02-config.yml
        │   ├── cluster-ingress-02-config.yml
        │   ├── cluster-network-01-crd.yml
        │   ├── cluster-network-02-config.yml
        │   ├── cluster-proxy-01-config.yaml
        │   ├── cluster-scheduler-02-config.yml
        │   ├── cvo-overrides.yaml
        │   ├── etcd-ca-bundle-configmap.yaml
        │   ├── etcd-client-secret.yaml
        │   ├── etcd-host-service-endpoints.yaml
        │   ├── etcd-host-service.yaml
        │   ├── etcd-metric-client-secret.yaml
        │   ├── etcd-metric-serving-ca-configmap.yaml
        │   ├── etcd-metric-signer-secret.yaml
        │   ├── etcd-namespace.yaml
        │   ├── etcd-service.yaml
        │   ├── etcd-serving-ca-configmap.yaml
        │   ├── etcd-signer-secret.yaml
        │   ├── kube-cloud-config.yaml
        │   ├── kube-system-configmap-root-ca.yaml
        │   ├── machine-config-server-tls-secret.yaml
        │   └── openshift-config-secret-pull-secret.yaml
        └── openshift
            ├── 99_kubeadmin-password-secret.yaml
            ├── 99_openshift-cluster-api_master-user-data-secret.yaml
            ├── 99_openshift-cluster-api_worker-user-data-secret.yaml
            ├── 99_openshift-machineconfig_99-master-ssh.yaml
            ├── 99_openshift-machineconfig_99-worker-ssh.yaml
            └── openshift-install-manifests.yaml

다음 단계

  • 컨트롤 플레인 노드를 예약 불가능하게 설정합니다.

16.5.18. 컨트롤 플레인 노드를 예약 불가능하게 설정하기

컨트롤 플레인 시스템을 수동으로 생성 및 배포하고 있으므로 컨트롤 플레인 노드를 예약할 수 없도록 매니페스트 파일을 구성해야 합니다.

절차

  1. 컨트롤 플레인 노드를 스케줄 불가능하게하려면 다음을 입력합니다.

    $ python3 -c 'import os, yaml
    path = "%s/manifests/cluster-scheduler-02-config.yml" % os.environ["ASSETS_DIR"]
    data = yaml.safe_load(open(path))
    data["spec"]["mastersSchedulable"] = False
    open(path, "w").write(yaml.dump(data, default_flow_style=False))'

16.5.19. Ignition 파일 빌드하기

방금 생성 및 수정한 매니페스트 파일에서 Ignition 파일을 빌드하려면 설치 프로그램을 실행합니다. 이 작업은 RHCOS (Red Hat Enterprise Linux CoreOS) 시스템 initramfs 를 생성하여 Ignition 파일을 가져오고 노드를 만드는 데 필요한 구성을 수행합니다.

설치 프로그램은 Ignition 파일 외에도 다음을 생성합니다.

  • ockubectl 유틸리티를 사용하여 클러스터에 연결하기위한 관리자 인증 정보가 포함된 auth 디렉터리입니다.
  • 현재 설치에 대한 OpenShift Container Platform 클러스터 이름, 클러스터 ID 및 인프라 ID와 같은 정보가 포함된 metadata.json 파일입니다.

설치 프로세스를 위한 Ansible Playbook은 생성한 가상 머신의 접두사로 infraID 값을 사용합니다. 이는 동일한 oVirt/RHV 클러스터에 여러 설치가 있을 때 이름 지정 충돌을 방지합니다.

참고

Ignition 구성 파일의 인증서는 24 시간 후에 만료됩니다. 첫 번째 인증서 교체가 완료될 수 있도록 클러스터 설치를 완료하고 성능이 저하되지 않은 상태에서 24시간 동안 클러스터를 계속 실행해야 합니다.

절차

  1. Ignition 파일을 빌드하려면 다음을 입력합니다.

    $ openshift-install create ignition-configs --dir $ASSETS_DIR

    출력 예

    $ tree
    .
    └── wrk
        ├── auth
        │   ├── kubeadmin-password
        │   └── kubeconfig
        ├── bootstrap.ign
        ├── master.ign
        ├── metadata.json
        └── worker.ign

16.5.20. 템플릿 및 가상 머신 생성

inventory.yml에서 변수를 확인한 후 첫 번째 Ansible 프로비저닝 Playbook인 create-templates-and-vms.yml을 실행합니다.

이 Playbook은 $HOME/.ovirt/ovirt-config.yaml의 RHV Manager에 대한 연결 매개 변수를 사용하고 assets 디렉터리에서 metadata.json을 읽습니다.

로컬 Red Hat Enterprise Linux CoreOS (RHCOS) 이미지가 존재하지 않는 경우 Playbook은 inventory.ymlimage_url에서 지정한 URL에서 해당 이미지를 다운로드합니다. 이미지를 추출하여 RHV에 업로드하여 템플릿을 생성합니다.

Playbook은 inventory.yml 파일의 control_planecompute 프로필을 기반으로 템플릿을 생성합니다. 이러한 프로필의 이름이 다른 경우 두 개의 템플릿을 만듭니다.

Playbook이 완료되면 생성된 가상 머신이 중지됩니다. 다른 인프라 요소를 구성하는 데 도움이되는 정보를 얻을 수 있습니다. 예를 들어 가상 머신의 MAC 주소를 가져 와서 가상 머신에 영구 IP 주소를 할당하도록 DHCP를 구성할 수 있습니다.

절차

  1. inventory.ymlcontrol_planecompute 변수에서 type: high_performance의 두 인스턴스를 type: server로 변경합니다.
  2. 선택 사항: 동일한 클러스터에 여러번 설치를 수행하려는 경우 각 OpenShift Container Platform 설치에 대해 서로 다른 템플릿을 생성합니다. inventory.yml 파일에서 template 값 앞에 infraID를 추가합니다. 예를 들면 다음과 같습니다.

      control_plane:
        cluster: "{{ ovirt_cluster }}"
        memory: 16GiB
        sockets: 4
        cores: 1
        template: "{{ metadata.infraID }}-rhcos_tpl"
        operating_system: "rhcos_x64"
        ...
  3. 템플릿 및 가상 머신을 만듭니다.

    $ ansible-playbook -i inventory.yml create-templates-and-vms.yml

16.5.21. 부트스트랩 시스템 생성

bootstrap.yml Playbook을 실행하여 부트스트랩 머신을 생성합니다. 이 Playbook은 부트스트랩 가상 머신을 시작하고 assets 디렉터리에서 bootstrap.ign Ignition 파일을 전달합니다. 부트스트랩 노드는 컨트롤 플레인 노드에 Ignition 파일을 제공할 수 있도록 자체적으로 구성됩니다.

부트스트랩 프로세스를 모니터링하려면 RHV 관리 포털의 콘솔을 사용하거나 SSH를 사용하여 가상 머신에 연결합니다.

프로세스

  1. 부트스트랩 시스템을 생성합니다.

    $ ansible-playbook -i inventory.yml bootstrap.yml
  2. 관리 포털 또는 SSH에서 콘솔을 사용하여 부트스트랩 머신에 연결합니다. <bootstrap_ip>를 부트스트랩 노드 IP 주소로 바꿉니다. SSH를 사용하려면 다음을 입력합니다.

    $ ssh core@<boostrap.ip>
  3. 부트스트랩 노드에서 릴리스 이미지 서비스에 대한bootkube.service journald 장치 로그를 수집합니다.

    [core@ocp4-lk6b4-bootstrap ~]$ journalctl -b -f -u release-image.service -u bootkube.service
    참고

    부트스트랩 노드의 bootkube.service 로그는 etcd connection rejectd 오류를 출력하고 부트스트랩 서버가 컨트롤 플레인 노드의 etcd에 연결할 수 없음을 나타냅니다. 각 컨트롤 플레인 노드에서 etcd를 시작하고 노드가 클러스터에 가입되면 오류가 중지됩니다.

16.5.22. 컨트롤 플레인 노드 생성

masters.yml Playbook을 실행하여 컨트롤 플레인 노드를 생성합니다. 이 Playbook은 각 가상 머신에 master.ign Ignition 파일을 전달합니다. Ignition 파일에는 https://api-int.ocp4.example.org:22623/config/master와 같은 URL에서 Ignition을 가져 오는 컨트롤 플레인 노드에 대한 지시문이 포함되어 있습니다. 이 URL의 포트 번호는 로드 밸런서에 의해 관리되며 클러스터 내에서만 액세스할 수 있습니다.

프로세스

  1. 컨트롤 플레인 노드를 생성합니다.

    $ ansible-playbook -i inventory.yml masters.yml
  2. Playbook이 컨트롤 플레인을 생성하는 동안 부트스트랩 프로세스를 모니터링합니다.

    $ openshift-install wait-for bootstrap-complete --dir $ASSETS_DIR

    출력 예

    INFO API v1.22.1 up
    INFO Waiting up to 40m0s for bootstrapping to complete...

  3. 컨트롤 플레인 노드 및 etcd의 모든 pod가 실행 중이면 설치 프로그램에 다음과 같은 출력이 표시됩니다.

    출력 예

    INFO It is now safe to remove the bootstrap resources

16.5.23. 클러스터 상태 확인

설치 중 또는 설치 후 OpenShift Container Platform 클러스터의 상태를 확인할 수 있습니다.

프로세스

  1. 클러스터 환경에서 관리자의 kubeconfig 파일을 내보냅니다.

    $ export KUBECONFIG=$ASSETS_DIR/auth/kubeconfig

    kubeconfig 파일에는 CLI에서 올바른 클러스터 및 API 서버에 클라이언트를 연결하는 데 사용하는 클러스터에 대한 정보가 포함되어 있습니다.

  2. 배포 후 생성된 컨트롤 플레인 및 컴퓨팅 시스템을 확인합니다.

    $ oc get nodes
  3. 클러스터 버전을 확인합니다.

    $ oc get clusterversion
  4. Operator 상태를 확인합니다.

    $ oc get clusteroperator
  5. 클러스터에서 실행 중인 모든 Pod를 확인합니다.

    $ oc get pods -A

16.5.24. 부트스트랩 시스템 제거

wait-for 명령이 부트스트랩 프로세스가 완료되었음을 표시한 후 부트스트랩 가상 머신을 제거하여 컴퓨팅, 메모리 및 스토리지 리소스를 확보해야 합니다. 또한 로드 밸런서 지시문에서 부트스트랩 시스템 설정을 제거해야 합니다.

프로세스

  1. 클러스터에서 부트스트랩 시스템을 제거하려면 다음을 입력하십시오.

    $ ansible-playbook -i inventory.yml retire-bootstrap.yml
  2. 로드 밸런서 지시문에서 부트스트랩 머신의 설정을 제거합니다.

16.5.25. 작업자 노드 작성 및 설치 완료

작업자 노드 생성은 컨트롤 플레인 노드를 생성하는 것과 유사합니다. 그러나 작업자 노드는 클러스터에 자동으로 참여하지 않습니다. 클러스터에 추가하려면 작업자의 보류중인 CSR (인증서 서명 요청)을 검토하고 승인합니다.

첫 번째 요청을 승인한 후 모든 작업자 노드가 승인될 때까지 CSR을 계속 승인합니다. 이 프로세스를 완료하면 작업자 노드가 Ready 상태가 되고 해당 노드에서 실행되도록 Pod를 예약할 수 있습니다.

마지막으로 명령줄을 모니터링하여 설치 프로세스가 완료되는지 확인합니다.

프로세스

  1. 작업자 노드를 생성합니다.

    $ ansible-playbook -i inventory.yml workers.yml
  2. 모든 CSR을 나열하려면 다음을 입력하십시오.

    $ oc get csr -A

    결국이 명령은 노드 당 하나의 CSR을 표시합니다. 예를 들면 다음과 같습니다.

    출력 예

    NAME        AGE    SIGNERNAME                                    REQUESTOR                                                                   CONDITION
    csr-2lnxd   63m    kubernetes.io/kubelet-serving                 system:node:ocp4-lk6b4-master0.ocp4.example.org                             Approved,Issued
    csr-hff4q   64m    kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Approved,Issued
    csr-hsn96   60m    kubernetes.io/kubelet-serving                 system:node:ocp4-lk6b4-master2.ocp4.example.org                             Approved,Issued
    csr-m724n   6m2s   kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-p4dz2   60m    kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Approved,Issued
    csr-t9vfj   60m    kubernetes.io/kubelet-serving                 system:node:ocp4-lk6b4-master1.ocp4.example.org                             Approved,Issued
    csr-tggtr   61m    kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Approved,Issued
    csr-wcbrf   7m6s   kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending

  3. 목록을 필터링하고 보류중인 CSR 만 보려면 다음을 입력하십시오.

    $ watch "oc get csr -A | grep pending -i"

    이 명령은 2 초마다 출력을 새로 고침하고 보류중인 CSR 만 표시합니다. 예를 들면 다음과 같습니다.

    출력 예

    Every 2.0s: oc get csr -A | grep pending -i
    
    csr-m724n   10m   kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending
    csr-wcbrf   11m   kubernetes.io/kube-apiserver-client-kubelet   system:serviceaccount:openshift-machine-config-operator:node-bootstrapper   Pending

  4. 보류 중인 각 요청을 검사합니다. 예를 들면 다음과 같습니다.

    출력 예

    $ oc describe csr csr-m724n

    출력 예

    Name:               csr-m724n
    Labels:             <none>
    Annotations:        <none>
    CreationTimestamp:  Sun, 19 Jul 2020 15:59:37 +0200
    Requesting User:    system:serviceaccount:openshift-machine-config-operator:node-bootstrapper
    Signer:             kubernetes.io/kube-apiserver-client-kubelet
    Status:             Pending
    Subject:
             Common Name:    system:node:ocp4-lk6b4-worker1.ocp4.example.org
             Serial Number:
             Organization:   system:nodes
    Events:  <none>

  5. CSR 정보가 정확하면 다음 요청을 승인합니다.

    $ oc adm certificate approve csr-m724n
  6. 설치 프로세스가 완료될 때까지 기다립니다.

    $ openshift-install wait-for install-complete --dir $ASSETS_DIR --log-level debug

    설치가 완료되면 명령행에 OpenShift Container Platform 웹 콘솔의 URL과 관리자 이름 및 암호가 표시됩니다.

16.5.26. OpenShift Container Platform의 Telemetry 액세스

OpenShift Container Platform 4.9에서는 클러스터 상태 및 업데이트 진행에 대한 메트릭을 제공하기 위해 기본적으로 실행되는 Telemetry 서비스에 인터넷 액세스가 필요합니다. 클러스터가 인터넷에 연결되어 있으면 Telemetry가 자동으로 실행되고 OpenShift Cluster Manager 에 클러스터가 자동으로 등록됩니다.

OpenShift Cluster Manager 인벤토리가 올바르거나 OpenShift Cluster Manager를 사용하여 자동으로 또는 OpenShift Cluster Manager를 사용하여 수동으로 유지 관리되는지 확인한 후 subscription watch를 사용하여 계정 또는 다중 클러스터 수준에서 OpenShift Container Platform 서브스크립션을 추적합니다.

추가 리소스

16.5.27. 기본 OperatorHub 소스 비활성화

Red Hat 및 커뮤니티 프로젝트에서 제공하는 콘텐츠를 소싱하는 Operator 카탈로그는 OpenShift Container Platform을 설치하는 동안 기본적으로 OperatorHub용으로 구성됩니다. 제한된 네트워크 환경에서는 클러스터 관리자로서 기본 카탈로그를 비활성화해야 합니다.

프로세스

  • OperatorHub 오브젝트에 disableAllDefaultSources: true를 추가하여 기본 카탈로그의 소스를 비활성화합니다.

    $ oc patch OperatorHub cluster --type json \
        -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'
작은 정보

또는 웹 콘솔을 사용하여 카탈로그 소스를 관리할 수 있습니다. 관리클러스터 설정구성OperatorHub 페이지에서 개별 소스를 생성, 삭제, 비활성화 및 활성화할 수 있는 소스 탭을 클릭합니다.