
OpenShift Container Platform 4.3

Serverless applications

OpenShift Serverless installation, usage, and release notes

Last Updated: 2020-10-22

OpenShift Container Platform 4.3 Serverless applications

OpenShift Serverless installation, usage, and release notes

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides information on how to use OpenShift Serverless in OpenShift Container
Platform

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. OPENSHIFT SERVERLESS RELEASE NOTES
1.1. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.2

1.1.1. Fixed issues
1.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.1

1.2.1. New features
1.2.2. Fixed issues

1.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.0
1.3.1. New features
1.3.2. Fixed issues
1.3.3. Known issues

1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.6.0
1.4.1. New features
1.4.2. Fixed issues
1.4.3. Known issues

1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.5.0
1.5.1. New features
1.5.2. Fixed issues
1.5.3. Known issues

1.6. ADDITIONAL RESOURCES

CHAPTER 2. OPENSHIFT SERVERLESS SUPPORT
2.1. GETTING SUPPORT
2.2. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT

2.2.1. About the must-gather tool
2.2.2. About collecting OpenShift Serverless data

CHAPTER 3. ARCHITECTURE
3.1. KNATIVE SERVING ARCHITECTURE

3.1.1. Knative Serving CRDs
3.2. KNATIVE EVENTING ARCHITECTURE

3.2.1. Event sinks

CHAPTER 4. GETTING STARTED WITH OPENSHIFT SERVERLESS
4.1. HOW OPENSHIFT SERVERLESS WORKS
4.2. SUPPORTED CONFIGURATIONS
4.3. NEXT STEPS

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS
5.1. INSTALLING OPENSHIFT SERVERLESS

5.1.1. Cluster sizing requirements
5.1.1.1. Additional requirements for advanced use-cases

5.1.2. Installing the OpenShift Serverless Operator
5.1.3. Next steps

5.2. INSTALLING KNATIVE SERVING
5.2.1. Creating the knative-serving namespace

5.2.1.1. Creating the knative-serving namespace using the web console
5.2.1.2. Creating the knative-serving namespace using the CLI

5.2.2. Prerequisites
5.2.3. Installing Knative Serving using the web console
5.2.4. Installing Knative Serving using YAML
5.2.5. Next steps

5.3. INSTALLING KNATIVE EVENTING

6
6
6
6
6
6
6
6
7
8
8
8
9
9

10
10
10
10
10

11
11
11
11
11

13
13
13
13
14

15
15
15
15

16
16
16
16
17
19
19

20
20
21
21
21

24
26
26

Table of Contents

1

. .

. .

. .

. .

5.3.1. Creating the knative-eventing namespace
5.3.1.1. Creating the knative-eventing namespace using the web console
5.3.1.2. Creating the knative-eventing namespace using the CLI

5.3.2. Prerequisites
5.3.3. Installing Knative Eventing using the web console
5.3.4. Installing Knative Eventing using YAML
5.3.5. Next steps

5.4. ADVANCED INSTALLATION CONFIGURATION OPTIONS
5.4.1. Knative Serving supported installation configuration options

5.4.1.1. Controller Custom Certs
5.4.1.2. High availability

5.4.2. Additional resources
5.5. UPGRADING OPENSHIFT SERVERLESS

5.5.1. Updating Knative services URL formats
5.5.2. Upgrading the Subscription Channel

5.6. REMOVING OPENSHIFT SERVERLESS
5.6.1. Uninstalling Knative Serving
5.6.2. Uninstalling Knative Eventing
5.6.3. Removing the OpenShift Serverless Operator
5.6.4. Deleting OpenShift Serverless CRDs
5.6.5. Prerequisites

5.7. INSTALLING THE KNATIVE CLI (KN)
5.7.1. Installing the kn CLI using the OpenShift Container Platform web console
5.7.2. Installing the kn CLI for Linux using an RPM
5.7.3. Installing the kn CLI for Linux
5.7.4. Installing the kn CLI for macOS
5.7.5. Installing the kn CLI for Windows

CHAPTER 6. CREATING AND MANAGING SERVERLESS APPLICATIONS
6.1. SERVERLESS APPLICATIONS USING KNATIVE SERVICES
6.2. CREATING SERVERLESS APPLICATIONS USING THE OPENSHIFT CONTAINER PLATFORM WEB
CONSOLE

6.2.1. Creating serverless applications using the Administrator perspective
6.2.2. Creating serverless applications using the Developer perspective

6.3. CREATING SERVERLESS APPLICATIONS USING THE KN CLI
6.4. CREATING SERVERLESS APPLICATIONS USING YAML
6.5. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT
6.6. INTERACTING WITH A SERVERLESS APPLICATION USING HTTP2 / GRPC

CHAPTER 7. HIGH AVAILABILITY ON OPENSHIFT SERVERLESS
7.1. CONFIGURING HIGH AVAILABILITY REPLICAS ON OPENSHIFT SERVERLESS

CHAPTER 8. TRACING REQUESTS USING JAEGER
8.1. CONFIGURING JAEGER FOR USE WITH OPENSHIFT SERVERLESS

CHAPTER 9. KNATIVE SERVING
9.1. USING KN TO COMPLETE SERVING TASKS

9.1.1. Basic workflow using kn
9.1.2. Autoscaling workflow using kn
9.1.3. Traffic splitting using kn

9.1.3.1. Assigning tag revisions
9.1.3.2. Unassigning tag revisions
9.1.3.3. Traffic flag operation precedence
9.1.3.4. Traffic splitting flags

26
26
27
27
28
31
32
32
32
32
33
33
34
34
34
35
35
36
36
36
36
36
37
37
38
38
39

40
40

40
40
41
41

42
43
44

46
46

49
49

51
51
51

53
53
54
55
55
56

OpenShift Container Platform 4.3 Serverless applications

2

. .

. .

9.2. CONFIGURING KNATIVE SERVING AUTOSCALING
9.2.1. Configuring concurrent requests for Knative Serving autoscaling

9.2.1.1. Configuring concurrent requests using the target annotation
9.2.1.2. Configuring concurrent requests using the containerConcurrency field

9.2.2. Configuring scale bounds Knative Serving autoscaling
9.3. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS

9.3.1. Cluster logging
9.3.2. About deploying and configuring cluster logging

9.3.2.1. Configuring and Tuning Cluster Logging
9.3.2.2. Sample modified Cluster Logging Custom Resource

9.3.3. Using cluster logging to find logs for Knative Serving components
9.3.4. Using cluster logging to find logs for services deployed with Knative Serving

9.4. SPLITTING TRAFFIC BETWEEN REVISIONS
9.4.1. Splitting traffic between revisions using the Developer perspective

CHAPTER 10. KNATIVE EVENTING
10.1. USING BROKERS WITH KNATIVE EVENTING

10.1.1. Creating a broker manually
10.1.2. Creating a broker automatically using namespace annotation
10.1.3. Deleting a broker that was created using namespace annotation

10.2. USING CHANNELS
10.2.1. Supported channel types
10.2.2. Using the default InMemoryChannel configuration

10.3. USING SUBSCRIPTIONS TO SEND EVENTS FROM A CHANNEL TO A SINK
10.3.1. Creating a subscription

10.4. USING TRIGGERS
10.4.1. Prerequisites
10.4.2. Creating a trigger using kn
10.4.3. Listing triggers using kn
10.4.4. Listing triggers using kn in JSON format
10.4.5. Describing a trigger using kn
10.4.6. Deleting a trigger using kn
10.4.7. Updating a trigger using kn
10.4.8. Filtering events using triggers

10.5. USING SINKBINDING
10.5.1. Using SinkBinding with the Knative CLI (kn)
10.5.2. Using SinkBinding with the YAML method

CHAPTER 11. EVENT SOURCES
11.1. GETTING STARTED WITH EVENT SOURCES

11.1.1. Prerequisites
11.1.2. Creating event sources
11.1.3. Additional resources

11.2. USING THE KN CLI TO LIST EVENT SOURCES AND EVENT SOURCE TYPES
11.2.1. Listing available event source types using kn
11.2.2. Listing available event sources using kn

11.2.2.1. Listing event sources of a specific type only
11.2.3. Next steps

11.3. USING APISERVERSOURCE
11.3.1. Using the ApiServerSource with the Knative CLI (kn)
11.3.2. Deleting the ApiServerSource using the Knative CLI (kn)
11.3.3. Using the ApiServerSource with the YAML method
11.3.4. Deleting the ApiServerSource

56
56
57
58
58
59
59
59
59
61

62
63
63
63

66
66
66
67
67
67
67
67
69
69
70
70
70
71
71
72
72
72
73
73
73
76

79
79
79
79
79
79
79
80
80
80
81
81

84
84
88

Table of Contents

3

. .

11.4. USING A PINGSOURCE
11.4.1. Using a PingSource with the kn CLI

11.4.1.1. Remove the PingSource
11.4.2. Using a PingSource with YAML

11.4.2.1. Remove the PingSource

CHAPTER 12. USING METERING WITH OPENSHIFT SERVERLESS
12.1. INSTALLING METERING
12.2. DATASOURCES FOR KNATIVE SERVING METERING

12.2.1. Datasource for CPU usage in Knative Serving
12.2.2. Datasource for memory usage in Knative Serving
12.2.3. Applying Datasources for Knative Serving metering

12.3. QUERIES FOR KNATIVE SERVING METERING
12.3.1. Query for CPU usage in Knative Serving
12.3.2. Query for memory usage in Knative Serving
12.3.3. Applying Queries for Knative Serving metering

12.4. METERING REPORTS FOR KNATIVE SERVING
12.4.1. Running a metering report

89
89
91
91

93

94
94
94
94
94
95
95
95
96
97
97
98

OpenShift Container Platform 4.3 Serverless applications

4

Table of Contents

5

CHAPTER 1. OPENSHIFT SERVERLESS RELEASE NOTES
For an overview of OpenShift Serverless functionality, see Getting started with OpenShift Serverless.

IMPORTANT

Knative Eventing is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

1.1. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.2

This release of OpenShift Serverless addresses Common Vulnerabilities and Exposures (CVEs) and bug
fixes.

1.1.1. Fixed issues

In previous versions of OpenShift Serverless, KnativeServing custom resources show a status of
Ready, even if Kourier does not deploy. This bug is fixed in OpenShift Serverless 1.7.2.

1.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.1

1.2.1. New features

OpenShift Serverless now uses Knative Serving 0.13.3.

OpenShift Serverless now uses Knative Serving Operator 0.13.3.

OpenShift Serverless now uses Knative kn CLI 0.13.2.

OpenShift Serverless uses Knative Eventing 0.13.0.

OpenShift Serverless now uses Knative Eventing Operator 0.13.3.

1.2.2. Fixed issues

In OpenShift Serverless 1.7.0, routes were reconciled continuously when this was not required.
This bug is fixed in OpenShift Serverless 1.7.1.

1.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.0

1.3.1. New features

OpenShift Serverless 1.7.0 is now Generally Available (GA) on OpenShift Container Platform 4.3
and newer versions. In previous versions, OpenShift Serverless was a Technology Preview.

OpenShift Serverless now uses Knative Serving 0.13.2.

OpenShift Container Platform 4.3 Serverless applications

6

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-getting-started
https://access.redhat.com/support/offerings/techpreview/

OpenShift Serverless now uses Knative Serving Operator 0.13.2.

OpenShift Serverless now uses Knative kn CLI 0.13.2.

Knative kn CLI downloads now support disconnected, or restricted network installations.

Knative kn CLI libraries are now signed by Red Hat.

Knative Eventing is now available as a Technology Preview with OpenShift Serverless.
OpenShift Serverless uses Knative Eventing 0.13.2.

IMPORTANT

Before upgrading to the latest Serverless release, you must remove the community
Knative Eventing Operator if you have previously installed it. Having the Knative Eventing
Operator installed will prevent you from being able to install the latest Technology
Preview version of Knative Eventing that is included with OpenShift Serverless 1.7.0.

High availability (HA) is now enabled by default for the autoscaler-hpa, controller, activator ,
kourier-control, and kourier-gateway components.
If you have installed a previous version of OpenShift Serverless, after the KnativeServing
custom resource (CR) is updated, the deployment will default to a HA configuration with
KnativeServing.spec.high-availability.replicas = 2.

You can disable HA for these components by completing the procedure in the Configuring high
availability components documentation.

OpenShift Serverless now supports the trustedCA setting in OpenShift Container Platform’s
cluster-wide proxy, and is now fully compatible with OpenShift Container Platform’s proxy
settings.

OpenShift Serverless now supports HTTPS using the wildcard certificate that is registered for
OpenShift Container Platform routes. For more information on http and https on Knative
Serving, see the documentation on Verifying your serverless application deployment .

1.3.2. Fixed issues

In previous versions, requesting KnativeServing custom resources (CRs) without specifying an
API group, for example, oc get knativeserving -n knative-serving, occasionally caused errors.
This issue is fixed in OpenShift Serverless 1.7.0.

In previous versions, the Knative Serving controller was not notified when a new service CA
certificate was generated due to service CA certificate rotation. New revisions created after a
service CA certificate rotation were failing with the error:

The OpenShift Serverless Operator now restarts the Knative Serving controller whenever a new
service CA certificate is generated, which ensures that the controller is always configured to use
the current service CA certificate. For more information, see the OpenShift Container Platform
documentation on Securing service traffic using service serving certificate secrets under
Authentication.

Revision "foo-1" failed with message: Unable to fetch image "image-registry.openshift-image-
registry.svc:5000/eap/eap-app": failed to resolve image to digest: failed to fetch image
information: Get https://image-registry.openshift-image-registry.svc:5000/v2/: x509: certificate
signed by unknown authority.

CHAPTER 1. OPENSHIFT SERVERLESS RELEASE NOTES

7

1.3.3. Known issues

When upgrading from OpenShift Serverless 1.6.0 to 1.7.0, support for HTTPS requires a change
to the format of routes. Knative services created on OpenShift Serverless 1.6.0 are no longer
reachable at the old format URLs. You must retrieve the new URL for each service after
upgrading OpenShift Serverless. For more information, see the documentation on Upgrading
OpenShift Serverless.

If you are using Knative Eventing on an Azure cluster, it is possible that the imc-dispatcher pod
may not start. This is due to the pod’s default resources settings. As a work-around, you can
remove the resources settings.

If you have 1000 Knative services on a cluster, and then perform a reinstall or upgrade of
Knative Serving, there will be a delay when you create the first new service after KnativeServing
becomes Ready.
3scale-kourier-control reconciles all previous Knative services before processing the creation
of a new service, which causes the new service to spend approximately 800 seconds in an
IngressNotConfigured or Unknown state before the state will update to Ready.

1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS
TECHNOLOGY PREVIEW 1.6.0

1.4.1. New features

OpenShift Serverless 1.6.0 is available on OpenShift Container Platform 4.3 and newer versions.

OpenShift Serverless now uses Knative Serving 0.13.1.

OpenShift Serverless now uses Knative kn CLI 0.13.1.

OpenShift Serverless now uses Knative Serving Operator 0.13.1.

The serving.knative.dev API group has now been fully deprecated and is replaced by the
operator.knative.dev API group.
You must complete the steps that are described in the OpenShift Serverless 1.4.0 release notes,
that replace the serving.knative.dev API group with the operator.knative.dev API group,
before you can upgrade to the latest version of OpenShift Serverless.

IMPORTANT

This change causes commands without a fully qualified APIGroup and kind, such
as oc get knativeserving, to become unreliable and not always work correctly.

After upgrading to OpenShift Serverless 1.6.0, you must remove the old CRD to
fix this issue. You can remove the old CRD by entering the following command:

The Subscription Update Channel for new OpenShift Serverless releases was updated from
techpreview to preview-4.3.

IMPORTANT

$ oc delete crd knativeservings.serving.knative.dev

OpenShift Container Platform 4.3 Serverless applications

8

IMPORTANT

You must update your channel by following the upgrade documentation to use
the latest OpenShift Serverless version.

OpenShift Serverless now supports the use of HTTP_PROXY.

OpenShift Serverless now supports HTTPS_PROXY cluster-proxy settings.

NOTE

This HTTP_PROXY support does not include using custom certificates.

The KnativeServing CRD is now hidden from the Developer Catalog by default so that only
users with cluster administrator permissions can view it.

Parts of the KnativeServing control plane and data plane are now deployed as highly available
(HA) by default.

Kourier is now actively watched and reconciles changes automatically.

OpenShift Serverless now supports use on OpenShift Container Platform nightly builds.

1.4.2. Fixed issues

In previous versions, the oc explain command did not work correctly. The structural schema of
the KnativeServing CRD was updated in OpenShift Serverless 1.6.0 so that the oc explain
command now works correctly.

In previous versions, it was possible to create more than one KnativeServing CR. Multiple
KnativeServing CRs are now prevented synchronously in OpenShift Serverless 1.6.0.
Attempting to create more than one KnativeServing CR now results in an error.

In previous versions, OpenShift Serverless was not compatible with OpenShift Container
Platform deployments on GCP. This issue was fixed in OpenShift Serverless 1.6.0.

In previous releases, the Knative Serving webhook crashed with an out of memory error if the
cluster had more than 170 namespaces. This issue was fixed in OpenShift Serverless 1.6.0.

In previous releases, OpenShift Serverless did not automatically fix an OpenShift Container
Platform route that it created if the route was changed by another component. This issue was
fixed in OpenShift Serverless 1.6.0.

In previous versions, deleting a KnativeServing CR occasionally caused the system to hang.
This issue was fixed in OpenShift Serverless 1.6.0.

Due to the ingress migration from Service Mesh to Kourier that occured in OpenShift Serverless
1.5.0, orphaned VirtualServices sometimes remained on the system. In OpenShift Serverless
1.6.0, orphaned VirtualServices are automatically removed.

1.4.3. Known issues

In OpenShift Serverless 1.6.0, if a cluster administrator uninstalls OpenShift Serverless by
following the uninstall procedure provided in the documentation, the Serverless dropdown is
still be visible in the Administrator perspective of the OpenShift Container Platform web

CHAPTER 1. OPENSHIFT SERVERLESS RELEASE NOTES

9

console, and the Knative Service resource is still be visible in the Developer perspective of the
OpenShift Container Platform web console. Although you can create Knative services by using
this option, these Knative services do not work.
To prevent OpenShift Serverless from being visible in the OpenShift Container Platform web
console, the cluster administrator must delete additional CRDs from the deployment after
removing the Knative Serving CR.

Cluster administrators can remove these CRDs by entering the following command:

1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS
TECHNOLOGY PREVIEW 1.5.0

1.5.1. New features

OpenShift Serverless 1.5.0 is available on OpenShift Container Platform 4.3 and newer versions.

OpenShift Serverless now uses Knative Serving 0.12.1.

OpenShift Serverless now uses Knative kn CLI 0.12.0.

OpenShift Serverless now uses Knative Serving Operator 0.12.1.

OpenShift Serverless ingress implementation was updated to use Kourier in place of Service
Mesh. No user intervention is necessary, as this change is automatic when the OpenShift
Serverless Operator is upgraded to 1.5.0.

1.5.2. Fixed issues

In previous releases, OpenShift Container Platform scale from zero latency caused a delay of
approximately 10 seconds when creating pods. This issue was fixed in the OpenShift Container
Platform 4.3.5 bug fix update.

1.5.3. Known issues

Deleting KnativeServing.operator.knative.dev from the knative-serving namespace may
cause the deletion process to hang. This is due to a race condition between deletion of the CRD
and knative-openshift-ingress removing finalizers.

1.6. ADDITIONAL RESOURCES

OpenShift Serverless is based on the open source Knative project.

For details about the latest Knative Serving release, see the Knative Serving releases page .

For details about the latest Knative Serving Operator release, see the Knative Serving Operator
releases page.

For details about the latest Knative CLI release, see the Knative CLI releases page.

For details about the latest Knative Eventing release, see the Knative Eventing releases page .

$ oc get crd -oname | grep -E '(serving|internal).knative.dev' | xargs oc delete

OpenShift Container Platform 4.3 Serverless applications

10

https://github.com/knative/serving/releases
https://github.com/knative/serving-operator/releases
https://github.com/knative/client/releases
https://github.com/knative/eventing/releases

CHAPTER 2. OPENSHIFT SERVERLESS SUPPORT

2.1. GETTING SUPPORT

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http://access.redhat.com. Through the customer portal, you can:

Search or browse through the Red Hat Knowledgebase of technical support articles about Red
Hat products

Submit a support case to Red Hat Global Support Services (GSS)

Access other product documentation

If you have a suggestion for improving this guide or have found an error, please submit a Bugzilla report
at http://bugzilla.redhat.com against Product for the Documentation component. Please provide
specific details, such as the section number, guide name, and OpenShift Serverless version so we can
easily locate the content.

2.2. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT

When opening a support case, it is helpful to provide debugging information about your cluster to Red
Hat Support.

The must-gather tool enables you to collect diagnostic information about your OpenShift Container
Platform cluster, including data related to OpenShift Serverless.

For prompt support, supply diagnostic information for both OpenShift Container Platform and
OpenShift Serverless.

2.2.1. About the must-gather tool

The oc adm must-gather CLI command collects the information from your cluster that is most likely
needed for debugging issues, such as:

Resource definitions

Audit logs

Service logs

You can specify one or more images when you run the command by including the --image argument.
When you specify an image, the tool collects data related to that feature or product.

When you run oc adm must-gather, a new Pod is created on the cluster. The data is collected on that
Pod and saved in a new directory that starts with must-gather.local. This directory is created in the
current working directory.

2.2.2. About collecting OpenShift Serverless data

You can use the oc adm must-gather CLI command to collect information about your cluster, including
features and objects associated with OpenShift Serverless.

To collect OpenShift Serverless data with must-gather, you must specify the OpenShift Serverless
image.

CHAPTER 2. OPENSHIFT SERVERLESS SUPPORT

11

http://access.redhat.com
http://bugzilla.redhat.com

Procedure

Enter the command:

$ oc adm must-gather --image=registry.redhat.io/openshift-serverless-1/svls-must-gather-
rhel8

OpenShift Container Platform 4.3 Serverless applications

12

CHAPTER 3. ARCHITECTURE

3.1. KNATIVE SERVING ARCHITECTURE

Knative Serving on OpenShift Container Platform enables developers to write cloud-native applications
using serverless architecture. Serverless is a cloud computing model where application developers don’t
need to provision servers or manage scaling for their applications. These routine tasks are abstracted
away by the platform, allowing developers to push code to production much faster than in traditional
models.

Knative Serving supports deploying and managing cloud-native applications by providing a set of
objects as Kubernetes Custom Resource Definitions (CRDs) that define and control the behavior of
serverless workloads on an OpenShift Container Platform cluster. For more information about CRDs,
see Extending the Kubernetes API with Custom Resource Definitions .

Developers use these CRDs to create custom resource (CR) instances that can be used as building
blocks to address complex use cases. For example:

Rapidly deploying serverless containers.

Automatically scaling pods.

For more information about CRs, see Managing resources from Custom Resource Definitions .

3.1.1. Knative Serving CRDs

Service

The service.serving.knative.dev CRD automatically manages the life cycle of your workload to
ensure that the application is deployed and reachable through the network. It creates a Route, a
Configuration, and a new Revision for each change to a user created Service, or custom resource.
Most developer interactions in Knative are carried out by modifying Services.

Revision

The revision.serving.knative.dev CRD is a point-in-time snapshot of the code and configuration
for each modification made to the workload. Revisions are immutable objects and can be retained for
as long as necessary.

Route

The route.serving.knative.dev CRD maps a network endpoint to one or more Revisions. You can
manage the traffic in several ways, including fractional traffic and named routes.

Configuration

The configuration.serving.knative.dev CRD maintains the desired state for your deployment. It
provides a clean separation between code and configuration. Modifying a configuration creates a
new Revision.

3.2. KNATIVE EVENTING ARCHITECTURE

Knative Eventing on OpenShift Container Platform enables developers to use an event-driven
architecture with serverless applications. An event-driven architecture is based on the concept of
decoupled relationships between event producers that create events, and event sinks, or consumers,
that receive them.

Knative Eventing uses standard HTTP POST requests to send and receive events between event

CHAPTER 3. ARCHITECTURE

13

https://www.redhat.com/en/topics/cloud-native-apps
https://www.redhat.com/en/topics/cloud-native-apps/what-is-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#crd-extending-api-with-crds
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#crd-managing-resources-from-crds
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture

Knative Eventing uses standard HTTP POST requests to send and receive events between event
producers and consumers. These events conform to the CloudEvents specifications, which enables
creating, parsing, sending, and receiving events in any programming language.

You can propagate an event from an event source to multiple event sinks by using:

Channels and Subscriptions, or

Brokers and Triggers.

The Channel and Broker implementations manage delivery of events to event sinks, by using
Subscriptions and Triggers. Events are buffered if the destination sink is unavailable. Knative Eventing
supports the following scenarios:

Publish an event without creating a consumer

You can send events to a Broker as an HTTP POST, and use a SinkBinding to decouple the
destination configuration from your application that is producing events.

Consume an event without creating a publisher

You can use a Trigger to consume events from a Broker based on event attributes. Your application
will receive events as an HTTP POST.

3.2.1. Event sinks

To enable delivery to multiple types of sinks, Knative Eventing defines the following generic interfaces
that can be implemented by multiple Kubernetes resources:

Addressable objects

Able to receive and acknowledge an Event delivered over HTTP to an address defined in the Event’s
status.address.url field. The Kubernetes Service object also satisfies the addressable interface.

Callable objects

Able to receive an Event delivered over HTTP and transform it, returning 0 or 1 new Events in the
HTTP response payload. These returned Events may be further processed in the same way that
Events from an external event source are processed.

OpenShift Container Platform 4.3 Serverless applications

14

https://cloudevents.io
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/event_sources/#knative-event-sources
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/knative_eventing/#serverless-channels
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/knative_eventing/#serverless-using-brokers
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/knative_eventing/#serverless-kn-trigger

CHAPTER 4. GETTING STARTED WITH OPENSHIFT
SERVERLESS

OpenShift Serverless simplifies the process of delivering code from development into production by
reducing the need for infrastructure set up or back-end development by developers.

4.1. HOW OPENSHIFT SERVERLESS WORKS

Developers on OpenShift Serverless can use the provided Kubernetes native APIs, as well as familiar
languages and frameworks, to deploy applications and container workloads.

OpenShift Serverless on OpenShift Container Platform enables stateless serverless workloads to all run
on a single multi-cloud container platform with automated operations. Developers can use a single
platform for hosting their microservices, legacy, and serverless applications.

OpenShift Serverless is based on the open source Knative project, which provides portability and
consistency across hybrid and multi-cloud environments by enabling an enterprise-grade serverless
platform.

4.2. SUPPORTED CONFIGURATIONS

The set of supported features, configurations, and integrations for OpenShift Serverless, current and
past versions, are available at the Supported Configurations page .

IMPORTANT

Knative Eventing is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

4.3. NEXT STEPS

Install the OpenShift Serverless Operator on your OpenShift Container Platform cluster to get
started.

View the OpenShift Serverless release notes .

Create an application by following the documentation on Creating and managing serverless
applications.

CHAPTER 4. GETTING STARTED WITH OPENSHIFT SERVERLESS

15

https://access.redhat.com/articles/4912821
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#installing-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-release-notes
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serving-creating-managing-apps

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

5.1. INSTALLING OPENSHIFT SERVERLESS

This guide walks cluster administrators through installing the OpenShift Serverless Operator to an
OpenShift Container Platform cluster.

NOTE

OpenShift Serverless is supported for installation in a restricted network environment.
For more information, see Using Operator Lifecycle Manager on restricted networks .

5.1.1. Cluster sizing requirements

To run OpenShift Serverless, the OpenShift Container Platform cluster must be sized correctly. The
minimum requirement to use OpenShift Serverless is a cluster with 10 CPUs and 40GB memory.

The total size requirements to run OpenShift Serverless are dependent on the applications deployed. By
default, each pod requests ~400m of CPU, so the minimum requirements are based on this value.

In the size requirement provided, an application can scale up to 10 replicas. Lowering the actual CPU
request of applications can increase the number of possible replicas.

You can use the MachineSet API to manually scale your cluster up to the desired size. The minimum
requirements usually mean that you must scale up one of the default MachineSets by two additional
machines.

For more information on using the MachineSet API, see the documentation on Creating MachineSets.

For more information on scaling a MachineSet manually, see the documentation on manually scaling
MachineSets.

NOTE

The requirements provided relate only to the pool of worker machines of the OpenShift
Container Platform cluster. Master nodes are not used for general scheduling and are
omitted from the requirements.

NOTE

The following limitations apply to all OpenShift Serverless deployments:

Maximum number of Knative services: 1000

Maximum number of Knative revisions: 1000

5.1.1.1. Additional requirements for advanced use-cases

For more advanced use-cases such as logging or metering on OpenShift Container Platform, you must
deploy more resources. Recommended requirements for such use-cases are 24 CPUs and 96GB of
memory.

If you have high availability (HA) enabled on your cluster, this requires between 0.5 - 1.5 cores and
between 200MB - 2GB of memory for each replica of the Knative Serving control plane. HA is enabled

OpenShift Container Platform 4.3 Serverless applications

16

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#olm-restricted-networks
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/machine_management/#creating-machineset-aws
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/machine_management/#manually-scaling-machineset

for some Knative Serving components by default. You can disable HA by following the documentation on
Configuring high availability replicas on OpenShift Serverless .

IMPORTANT

Before upgrading to the latest Serverless release, you must remove the community
Knative Eventing operator if you have previously installed it. Having the Knative Eventing
operator installed will prevent you from being able to install the latest Technology
Preview version of Knative Eventing using the OpenShift Serverless Operator.

5.1.2. Installing the OpenShift Serverless Operator

This procedure describes how to install and subscribe to the OpenShift Serverless Operator from the
OperatorHub using the OpenShift Container Platform web console.

Procedure

1. In the OpenShift Container Platform web console, navigate to the Operators → OperatorHub
page.

2. Scroll, or type they keyword Serverless into the Filter by keyword box to find the OpenShift
Serverless Operator.

3. Review the information about the Operator and click Install.

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-HA

4. On the Create Operator Subscription page:

a. The Installation Mode is All namespaces on the cluster (default). This mode installs the
Operator in the default openshift-operators namespace to watch and be made available to
all namespaces in the cluster.

b. The Installed Namespace will be openshift-operators.

c. Select 4.3 as the Update Channel.

d. Select Automatic or Manual approval strategy.

5. Click Subscribe to make the Operator available to the selected namespaces on this OpenShift
Container Platform cluster.

6. From the Catalog → Operator Management page, you can monitor the OpenShift Serverless
Operator subscription’s installation and upgrade progress.

a. If you selected a Manual approval strategy, the subscription’s upgrade status will remain
Upgrading until you review and approve its install plan. After approving on the Install Plan
page, the subscription upgrade status moves to Up to date.

OpenShift Container Platform 4.3 Serverless applications

18

b. If you selected an Automatic approval strategy, the upgrade status should resolve to Up to
date without intervention.

Verification steps

After the Subscription’s upgrade status is Up to date, select Catalog → Installed Operators to verify
that the OpenShift Serverless Operator eventually shows up and its Status ultimately resolves to
InstallSucceeded in the relevant namespace.

If it does not:

1. Switch to the Catalog → Operator Management page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

2. Check the logs in any pods in the openshift-operators project on the Workloads → Pods page
that are reporting issues to troubleshoot further.

Additional resources

For more information on installing Operators, see the OpenShift Container Platform
documentation on Adding Operators to a cluster .

5.1.3. Next steps

After the OpenShift Serverless Operator is installed, you can install the Knative Serving
component. See the documentation on Installing Knative Serving .

After the OpenShift Serverless Operator is installed, you can install the Knative Eventing
component. See the documentation on Installing Knative Eventing .

5.2. INSTALLING KNATIVE SERVING

After you install the OpenShift Serverless Operator, you can install Knative Serving by following the
procedures described in this guide.

This guide provides information about installing Knative Serving using the default settings. However, you
can configure more advanced settings in the KnativeServing custom resource definition.

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

19

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#installing-knative-serving
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#installing-knative-eventing

For more information about configuration options for the KnativeServing custom resource definition,
see Advanced installation configuration options .

5.2.1. Creating the knative-serving namespace

When you create the knative-serving namespace, a knative-serving project will also be created.

IMPORTANT

You must complete this procedure before installing Knative Serving.

If the KnativeServing object created during Knative Serving’s installation is not created in the knative-
serving namespace, it will be ignored.

Prerequisites

An OpenShift Container Platform account with cluster administrator access

Installed OpenShift Serverless Operator

5.2.1.1. Creating the knative-serving namespace using the web console

Procedure

1. In the OpenShift Container Platform web console, navigate to Administration → Namespaces.

2. Enter knative-serving as the Name for the project. The other fields are optional.

OpenShift Container Platform 4.3 Serverless applications

20

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_serverless/#serverless-install-config-options

3. Click Create.

5.2.1.2. Creating the knative-serving namespace using the CLI

Procedure

1. Create the knative-serving namespace:

5.2.2. Prerequisites

An OpenShift Container Platform account with cluster administrator access.

Installed OpenShift Serverless Operator.

Created the knative-serving namespace.

5.2.3. Installing Knative Serving using the web console

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Check that the Project dropdown at the top of the page is set to Project: knative-serving.

3. Click Knative Serving in the list of Provided APIs for the OpenShift Serverless Operator to go
to the Knative Serving tab.

$ oc create namespace knative-serving

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

21

4. Click the Create Knative Serving button.

5. In the Create Knative Serving page, you can install Knative Serving using the default settings
by clicking Create.
You can also modify settings for the Knative Serving installation by editing the KnativeServing
object using either the form provided, or by editing the YAML.

Using the form is recommended for simpler configurations that do not require full control of
KnativeServing object creation.

Editing the YAML is recommended for more complex configurations that require full control
of KnativeServing object creation. You can access the YAML by clicking the edit YAML
link in the top right of the Create Knative Serving page.
After you complete the form, or have finished modifying the YAML, click Create.

NOTE

For more information about configuration options for the KnativeServing
custom resource definition, see the documentation on Advanced installation
configuration options.

OpenShift Container Platform 4.3 Serverless applications

22

6. After you have installed Knative Serving, the KnativeServing object is created, and you will be
automically directed to the Knative Serving tab.

You will see knative-serving in the list of resources.

Verification steps

1. Click on knative-serving in the Knative Serving tab.

2. You will be automatically directed to the Knative Serving Overview page.

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

23

3. Scroll down to look at the list of Conditions.

4. You should see a list of conditions with a status of True, as shown in the example image.

NOTE

It may take a few seconds for the Knative Serving resources to be created. You
can check their status in the Resources tab.

5. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

5.2.4. Installing Knative Serving using YAML

Procedure

OpenShift Container Platform 4.3 Serverless applications

24

1. Create a file named serving.yaml.

2. Copy the following sample YAML into serving.yaml:

3. Apply the serving.yaml file:

Verification steps

1. Verify that the installation is complete:

Example output

NOTE

It may take a few seconds for the Knative Serving resources to be created.

2. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

3. Check that the Knative Serving resources have been created by entering:

Example output

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving

$ oc apply -f serving.yaml

$ oc get knativeserving.operator.knative.dev/knative-serving -n knative-serving --
template='{{range .status.conditions}}{{printf "%s=%s\n" .type .status}}{{end}}'

DependenciesInstalled=True
DeploymentsAvailable=True
InstallSucceeded=True
Ready=True

$ oc get pods -n knative-serving

NAME READY STATUS RESTARTS AGE
activator-5c596cf8d6-5l86c 1/1 Running 0 9m37s
activator-5c596cf8d6-gkn5k 1/1 Running 0 9m22s
autoscaler-5854f586f6-gj597 1/1 Running 0 9m36s
autoscaler-hpa-78665569b8-qmlmn 1/1 Running 0 9m26s
autoscaler-hpa-78665569b8-tqwvw 1/1 Running 0 9m26s
controller-7fd5655f49-9gxz5 1/1 Running 0 9m32s
controller-7fd5655f49-pncv5 1/1 Running 0 9m14s
kn-cli-downloads-8c65d4cbf-mt4t7 1/1 Running 0 9m42s
webhook-5c7d878c7c-n267j 1/1 Running 0 9m35s

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

25

5.2.5. Next steps

For cloud events functionality on OpenShift Serverless, you can install the Knative Eventing
component. See the documentation on Installing Knative Eventing .

Install the Knative CLI to use kn commands with Knative Serving. For example, kn service
commands. See the documentation on Installing the Knative CLI (kn).

5.3. INSTALLING KNATIVE EVENTING

After you install the OpenShift Serverless Operator, you can install Knative Eventing by following the
procedures described in this guide.

IMPORTANT

Knative Eventing is a Technology Preview feature only. Technology Preview features are
not supported with Red Hat production service level agreements (SLAs) and might not
be functionally complete. Red Hat does not recommend using them in production. These
features provide early access to upcoming product features, enabling customers to test
functionality and provide feedback during the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

This guide provides information about installing Knative Eventing using the default settings.

5.3.1. Creating the knative-eventing namespace

When you create the knative-eventing namespace, a knative-eventing project will also be created.

IMPORTANT

You must complete this procedure before installing Knative Eventing.

If the KnativeEventing object created during Knative Eventing’s installation is not created in the
knative-eventing namespace, it will be ignored.

Prerequisites

An OpenShift Container Platform account with cluster administrator access

Installed OpenShift Serverless Operator

5.3.1.1. Creating the knative-eventing namespace using the web console

Procedure

1. In the OpenShift Container Platform web console, navigate to Administration → Namespaces.

2. Click Create Namespace.

OpenShift Container Platform 4.3 Serverless applications

26

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_serverless/#installing-knative-eventing
https://access.redhat.com/support/offerings/techpreview/

3. Enter knative-eventing as the Name for the project. The other fields are optional.

4. Click Create.

5.3.1.2. Creating the knative-eventing namespace using the CLI

Procedure

1. Create the knative-eventing namespace:

5.3.2. Prerequisites

An OpenShift Container Platform account with cluster administrator access

Installed OpenShift Serverless Operator

Created the knative-eventing namespace

$ oc create namespace knative-eventing

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

27

5.3.3. Installing Knative Eventing using the web console

Procedure

1. In the Administrator perspective of the OpenShift Container Platform web console, navigate
to Operators → Installed Operators.

2. Check that the Project dropdown at the top of the page is set to Project: knative-eventing.

3. Click Knative Eventing in the list of Provided APIs for the OpenShift Serverless Operator to
go to the Knative Eventing tab.

4. Click the Create Knative Eventing button.

5. In the Create Knative Eventing page, you can choose to configure the KnativeEventing
object by using either the default form provided, or by editing the YAML.

Using the form is recommended for simpler configurations that do not require full control of
KnativeEventing object creation.
Optional. If you are configuring the KnativeEventing object using the form, make any
changes that you want to implement for your Knative Eventing deployment.

6. Click Create.

Editing the YAML is recommended for more complex configurations that require full control
of KnativeEventing object creation. You can access the YAML by clicking the edit YAML
link in the top right of the Create Knative Eventing page.

OpenShift Container Platform 4.3 Serverless applications

28

Optional. If you are configuring the KnativeEventing object by editing the YAML, make any
changes to the YAML that you want to implement for your Knative Eventing deployment.

7. Click Create.

8. After you have installed Knative Eventing, the KnativeEventing object is created, and you will
be automically directed to the Knative Eventing tab.

You will see knative-eventing in the list of resources.

Verification steps

1. Click on knative-eventing in the Knative Eventing tab.

2. You will be automatically directed to the Knative Eventing Overview page.

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

29

3. Scroll down to look at the list of Conditions.

4. You should see a list of conditions with a status of True, as shown in the example image.

NOTE

It may take a few seconds for the Knative Eventing resources to be created. You
can check their status in the Resources tab.

5. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

OpenShift Container Platform 4.3 Serverless applications

30

5.3.4. Installing Knative Eventing using YAML

Procedure

1. Create a file named eventing.yaml.

2. Copy the following sample YAML into eventing.yaml:

3. Optional. Make any changes to the YAML that you want to implement for your Knative Eventing
deployment.

4. Apply the eventing.yaml file by entering:

Verification steps

1. Verify that the installation is complete:

Example output

InstallSucceeded=True
Ready=True

NOTE

It may take a few seconds for the Knative Eventing resources to be created.

2. If the conditions have a status of Unknown or False, wait a few moments and then check again
after you have confirmed that the resources have been created.

3. Check that the Knative Eventing resources have been created:

Example output

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeEventing
metadata:
 name: knative-eventing
 namespace: knative-eventing

$ oc apply -f eventing.yaml

$ oc get knativeeventing.operator.knative.dev/knative-eventing \
 -n knative-eventing \
 --template='{{range .status.conditions}}{{printf "%s=%s\n" .type .status}}{{end}}'

$ oc get pods -n knative-eventing

NAME READY STATUS RESTARTS AGE
broker-controller-58765d9d49-g9zp6 1/1 Running 0 7m21s
eventing-controller-65fdd66b54-jw7bh 1/1 Running 0 7m31s

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

31

5.3.5. Next steps

For services and serving functionality on OpenShift Serverless, you can install the Knative
Serving component. See the documentation on Installing Knative Serving .

Install the Knative CLI to use kn commands with Knative Eventing. For example, kn source
commands. See the documentation on Installing the Knative CLI (kn).

5.4. ADVANCED INSTALLATION CONFIGURATION OPTIONS

This guide provides information for cluster administrators about advanced installation configuration
options for OpenShift Serverless components.

5.4.1. Knative Serving supported installation configuration options

This guide provides information for cluster administrators about advanced installation configuration
options for Knative Serving.

IMPORTANT

Do not modify any YAML contained inside the config field. Some of the configuration
values in this field are injected by the OpenShift Serverless Operator, and modifying them
will cause your deployment to become unsupported.

5.4.1.1. Controller Custom Certs

If your registry uses a self-signed certificate, you must enable tag-to-digest resolution by creating a
ConfigMap or Secret. The OpenShift Serverless Operator then automatically configures Knative
Serving controller access to the registry.

To enable tag-to-digest resolution, the Knative Serving controller requires access to the container
registry.

IMPORTANT

eventing-webhook-57fd74b5bd-kvhlz 1/1 Running 0 7m31s
imc-controller-5b75d458fc-ptvm2 1/1 Running 0 7m19s
imc-dispatcher-64f6d5fccb-kkc4c 1/1 Running 0 7m18s

OpenShift Container Platform 4.3 Serverless applications

32

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing_serverless/#installing-knative-serving

IMPORTANT

The ConfigMap or Secret must reside in the same namespace as the Knative Serving
CustomResourceDefinition (CRD).

The following example triggers the OpenShift Serverless Operator to:

1. Create and mount a volume containing the certificate in the controller.

2. Set the required environment variable properly.

Example YAML

The following example uses a certificate in a ConfigMap named certs in the knative-serving
namespace.

The supported types are ConfigMap and Secret.

If no controller custom cert is specified, this defaults to the config-service-ca ConfigMap.

Example default YAML

5.4.1.2. High availability

High availability (HA) defaults to 2 replicas per controller if no number of replicas is specified.

You can set this to 1 to disable HA, or add more replicas by setting a higher integer.

Example YAML

5.4.2. Additional resources

For more information about configuring high availability, see High availability on OpenShift
Serverless.

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 controller-custom-certs:
 name: certs
 type: ConfigMap

spec:
 controller-custom-certs:
 name: config-service-ca
 type: ConfigMap

spec:
 high-availability:
 replicas: 2

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-HA

5.5. UPGRADING OPENSHIFT SERVERLESS

If you have previously installed a Technology Preview version of OpenShift Serverless, follow the
instructions in this guide to upgrade to the latest version.

IMPORTANT

Before upgrading to the latest Serverless release, you must remove the community
Knative Eventing operator if you have previously installed it. Having the Knative Eventing
operator installed will prevent you from being able to install the latest Technology
Preview version of Knative Eventing.

5.5.1. Updating Knative services URL formats

When upgrading from older versions of OpenShift Serverless to 1.7.0, support for HTTPS requires a
change to the format of routes. Knative services created on OpenShift Serverless 1.6.0 or older versions
are no longer reachable at the old format URLs. You must retrieve the new URL for each service after
upgrading OpenShift Serverless.

For more information on retrieving Knative services URLs, see Verifying your serverless application
deployment.

5.5.2. Upgrading the Subscription Channel

To upgrade to the latest version of OpenShift Serverless on OpenShift Container Platform 4.3, you
must update the channel to 4.3.

If you are upgrading from OpenShift Serverless version 1.5.0, or earlier, to version 1.7.0, you must
complete the following steps:

Upgrade to OpenShift Serverless version 1.5.0, by selecting the techpreview channel.

After you have upgraded to 1.5.0, upgrade to 1.6.0 by selecting the preview-4.3 channel.

Finally, after you have upgraded to 1.6.0, upgrade to the latest version by selecting the 4.3
channel.

IMPORTANT

After each channel change, wait for the pods in the knative-serving namespace to get
upgraded before changing the channel again.

Prerequisites

You have installed a previous version of OpenShift Serverless Operator, and have selected
Automatic updates during the installation process.

NOTE

If you have selected Manual updates, you will need to complete additional steps
after updating the channel as described in this guide. The Subscription’s upgrade
status will remain Upgrading until you review and approve its Install Plan.
Information about the Install Plan can be found in the OpenShift Container
Platform Operators documentation.

OpenShift Container Platform 4.3 Serverless applications

34

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serving-creating-managing-apps

You have logged in to the OpenShift Container Platform web console.

Procedure

1. Select the openshift-operators namespace in the OpenShift Container Platform web console.

2. Navigate to the Operators → Installed Operators page.

3. Select the OpenShift Serverless Operator Operator.

4. Click Subscription → Channel.

5. In the Change Subscription Update Channel window, select 4.3, and then click Save.

6. Wait until all pods have been upgraded in the knative-serving namespace and the
KnativeServing custom resource reports the latest Knative Serving version.

Verification steps

To verify that the upgrade has been successful, you can check the status of pods in the knative-serving
namespace, and the version of the KnativeServing CR.

1. Check the status of the pods:

The previous command should return a status of True.

2. Check the version of the KnativeServing CR:

This command should return the latest version of Knative Serving. You can check the latest
version in the OpenShift Serverless Operator release notes.

5.6. REMOVING OPENSHIFT SERVERLESS

This guide provides details of how to remove the OpenShift Serverless Operator and other OpenShift
Serverless components.

NOTE

Before you can remove the OpenShift Serverless Operator, you must remove Knative
Serving and Knative Eventing.

5.6.1. Uninstalling Knative Serving

To uninstall Knative Serving, you must remove its custom resource and delete the knative-serving
namespace.

Procedure

1. Delete the knative-serving custom resource:

$ oc get knativeserving.operator.knative.dev knative-serving -n knative-serving -
o=jsonpath='{.status.conditions[?(@.type=="Ready")].status}'

$ oc get knativeserving.operator.knative.dev knative-serving -n knative-serving -
o=jsonpath='{.status.version}'

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

35

2. After the command has completed and all pods have been removed from the knative-serving
namespace, delete the namespace:

5.6.2. Uninstalling Knative Eventing

To uninstall Knative Eventing, you must remove its custom resource and delete the knative-eventing
namespace.

Procedure

1. Delete the knative-eventing custom resource:

2. After the command has completed and all pods have been removed from the knative-eventing
namespace, delete the namespace:

5.6.3. Removing the OpenShift Serverless Operator

You can remove the OpenShift Serverless Operator from the host cluster by following the
documentation on deleting Operators from a cluster .

5.6.4. Deleting OpenShift Serverless CRDs

After uninstalling the OpenShift Serverless, the Operator and API CRDs remain on the cluster. You can
use the following procedure to remove the remaining CRDs.

IMPORTANT

Removing the Operator and API CRDs also removes all resources that were defined using
them, including Knative services.

5.6.5. Prerequisites

You uninstalled Knative Serving and removed the OpenShift Serverless Operator.

Procedure

1. To delete the remaining OpenShift Serverless CRDs, enter the following command:

5.7. INSTALLING THE KNATIVE CLI (KN)

NOTE

$ oc delete knativeservings.operator.knative.dev knative-serving -n knative-serving

$ oc delete namespace knative-serving

$ oc delete knativeeventings.operator.knative.dev knative-eventing -n knative-eventing

$ oc delete namespace knative-eventing

$ oc get crd -oname | grep 'knative.dev' | xargs oc delete

OpenShift Container Platform 4.3 Serverless applications

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/operators/#olm-deleting-operators-from-a-cluster

NOTE

kn does not have its own login mechanism. To log in to the cluster, you must install the oc
CLI and use oc login.

Installation options for the oc CLI will vary depending on your operating system.

For more information on installing the oc CLI for your operating system and logging in
with oc, see the CLI getting started documentation.

5.7.1. Installing the kn CLI using the OpenShift Container Platform web console

Once the OpenShift Serverless Operator is installed, you will see a link to download the kn CLI for Linux,
macOS and Windows from the Command Line Tools page in the OpenShift Container Platform web
console.

You can access the Command Line Tools page by clicking the icon in the top right corner of the
web console and selecting Command Line Tools in the drop down menu.

Procedure

1. Download the kn CLI from the Command Line Tools page.

2. Unpack the archive:

3. Move the kn binary to a directory on your PATH.

4. Check your path:

NOTE

If you do not use RHEL or Fedora, ensure that libc is installed in a directory on
your library path. If libc is not available, you might see the following error when
you run CLI commands:

5.7.2. Installing the kn CLI for Linux using an RPM

For Red Hat Enterprise Linux (RHEL), you can install kn as an RPM if you have an active OpenShift
Container Platform subscription on your Red Hat account.

Procedure

1. Enter the command:

2. Enter the command:

$ tar -xf <file>

$ echo $PATH

$ kn: No such file or directory

subscription-manager register

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/cli_tools/#cli-getting-started

1

3. Enter the command:

Pool ID for an active OpenShift Container Platform subscription

4. Enter the command:

5. Enter the command:

5.7.3. Installing the kn CLI for Linux

For Linux distributions, you can download the CLI directly as a tar.gz archive.

Procedure

1. Download the CLI.

2. Unpack the archive:

3. Move the kn binary to a directory on your PATH.

4. Check your path:

NOTE

If you do not use RHEL or Fedora, ensure that libc is installed in a directory on
your library path. If libc is not available, you might see the following error when
you run CLI commands:

5.7.4. Installing the kn CLI for macOS

kn for macOS is provided as a tar.gz archive.

Procedure

1. Download the CLI.

subscription-manager refresh

subscription-manager attach --pool=<pool_id> 1

subscription-manager repos --enable="openshift-serverless-1-for-rhel-8-x86_64-rpms"

yum install openshift-serverless-clients

$ tar -xf <file>

$ echo $PATH

$ kn: No such file or directory

OpenShift Container Platform 4.3 Serverless applications

38

https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest
https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest

2. Unpack and unzip the archive.

3. Move the kn binary to a directory on your PATH.

4. Check your path:

5.7.5. Installing the kn CLI for Windows

The CLI for Windows is provided as a zip archive.

Procedure

1. Download the CLI.

2. Unzip the archive with a ZIP program.

3. Move the kn binary to a directory on your PATH.

4. To check your PATH, open the Command Prompt and enter:

$ echo $PATH

C:\> path

CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS

39

https://mirror.openshift.com/pub/openshift-v4/clients/serverless/latest

1

2

3

4

CHAPTER 6. CREATING AND MANAGING SERVERLESS
APPLICATIONS

6.1. SERVERLESS APPLICATIONS USING KNATIVE SERVICES

To deploy a serverless application using OpenShift Serverless, you must create a Knative service. Knative
services are Kubernetes services, defined by a route and a configuration, and contained in a YAML file.

Example Knative service YAML

The name of the application.

The namespace the application will use.

The image of the application.

The environment variable printed out by the sample application.

You can create a serverless application by using one of the following methods:

Create a Knative service from the OpenShift Container Platform web console.

Create a Knative service using the kn CLI.

Create and apply a YAML file.

6.2. CREATING SERVERLESS APPLICATIONS USING THE OPENSHIFT
CONTAINER PLATFORM WEB CONSOLE

You can create a serverless application using either the Developer or Administrator perspective in the
OpenShift Container Platform web console.

6.2.1. Creating serverless applications using the Administrator perspective

Prerequisites

To create serverless applications using the Administrator perspective, ensure that you have completed
the following steps.

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: hello 1
 namespace: default 2
spec:
 template:
 spec:
 containers:
 - image: docker.io/openshift/hello-openshift 3
 env:
 - name: RESPONSE 4
 value: "Hello Serverless!"

OpenShift Container Platform 4.3 Serverless applications

40

The OpenShift Serverless Operator and Knative Serving are installed.

You have logged in to the web console and are in the Administrator perspective.

Procedure

1. Navigate to the Serverless → Services page.

2. Click Create Service.

3. Manually enter YAML or JSON definitions, or by dragging and dropping a file into the editor.

4. Click Create.

6.2.2. Creating serverless applications using the Developer perspective

For more information about creating applications using the Developer perspective in OpenShift
Container Platform, see the documentation on Creating applications using the Developer perspective .

6.3. CREATING SERVERLESS APPLICATIONS USING THE KN CLI

The following procedure describes how you can create a basic serverless application using the kn CLI.

Prerequisites

OpenShift Serverless Operator and Knative Serving are installed on your cluster.

CHAPTER 6. CREATING AND MANAGING SERVERLESS APPLICATIONS

41

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/applications/#odc-creating-applications-using-developer-perspective

You have installed kn CLI.

Procedure

Create a Knative service:

Example command

Example output

6.4. CREATING SERVERLESS APPLICATIONS USING YAML

To create a serverless application, you can create a YAML file and apply it using oc apply.

You can create a YAML file by copying the following example:

Example Knative service YAML

In this example, the YAML file is named hello-service.yaml.

Procedure

1. Navigate to the directory where the hello-service.yaml file is contained, and deploy the

$ kn service create <service_name> --image <image> --env <key=value>

$ kn service create hello --image quay.io/openshift-knative/knative-eventing-sources-event-
display:latest --env RESPONSE="Hello Serverless!"

Creating service 'hello' in namespace 'default':

 0.271s The Route is still working to reflect the latest desired specification.
 0.580s Configuration "hello" is waiting for a Revision to become ready.
 3.857s ...
 3.861s Ingress has not yet been reconciled.
 4.270s Ready to serve.

Service 'hello' created with latest revision 'hello-bxshg-1' and URL:
http://hello-default.apps-crc.testing

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: hello
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: docker.io/openshift/hello-openshift
 env:
 - name: RESPONSE
 value: "Hello Serverless!"

OpenShift Container Platform 4.3 Serverless applications

42

1. Navigate to the directory where the hello-service.yaml file is contained, and deploy the
application by applying the YAML file:

$ oc apply --filename hello-service.yaml

After the service has been created and the application has been deployed, Knative will create a new
immutable revision for this version of the application.

Knative will also perform network programming to create a route, ingress, service, and load balancer for
your application, and will automatically scale your pods up and down based on traffic, including inactive
Pods.

6.5. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT

To verify that your serverless application has been deployed successfully, you must get the application
URL created by Knative, and then send a request to that URL and observe the output.

NOTE

OpenShift Serverless supports the use of both HTTP and HTTPS URLs, however the
output from oc get ksvc will always print URLs using the http:// format.

Procedure

1. Find the application URL:

Example output

2. Make a request to your cluster and observe the output:

Example HTTP request

$ curl http://hello-default.example.com

Example output

Hello Serverless!

Example HTTPS request

$ curl https://hello-default.example.com

Example output

Hello Serverless!

$ oc get ksvc <service_name>

NAME URL LATESTCREATED LATESTREADY
READY REASON
hello http://hello-default.example.com hello-4wsd2 hello-4wsd2 True

CHAPTER 6. CREATING AND MANAGING SERVERLESS APPLICATIONS

43

3. Optional. If you receive an error relating to a self-signed certificate in the certificate chain, you
can add the --insecure flag to the curl command to ignore the error:

IMPORTANT

Self-signed certificates must not be used in a production deployment. This
method is only for testing purposes.

4. Optional. If your OpenShift Container Platform cluster is configured with a certificate that is
signed by a certificate authority (CA) but not yet globally configured for your system, you can
specify this with the curl command.
The path to the certificate can be passed to the curl command by using the --cacert flag:

6.6. INTERACTING WITH A SERVERLESS APPLICATION USING HTTP2
/ GRPC

OpenShift Container Platform routes do not support HTTP2, and therefore do not support gRPC as this
is transported by HTTP2. If you use these protocols in your application, you must call the application
using the ingress gateway directly. To do this you must find the ingress gateway’s public address and the
application’s specific host.

Procedure

1. Find the application host. See the instructions in Verifying your serverless application
deployment.

2. The ingress gateway’s public address can be determined using this command:

Example output

The public address is surfaced in the EXTERNAL-IP field, and in this case is
a83e86291bcdd11e993af02b7a65e514-33544245.us-east-1.elb.amazonaws.com.

3. Manually set the host header of your HTTP request to the application’s host, but direct the
request itself against the public address of the ingress gateway.
Here is an example, using the information obtained from the steps in Verifying your serverless
application deployment:

$ curl https://hello-default.example.com --insecure

$ curl https://hello-default.example.com --cacert <file>

$ oc -n knative-serving-ingress get svc kourier

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S)
AGE
kourier LoadBalancer 172.30.51.103 a83e86291bcdd11e993af02b7a65e514-
33544245.us-east-1.elb.amazonaws.com 80:31380/TCP,443:31390/TCP 67m

$ curl -H "Host: hello-default.example.com" a83e86291bcdd11e993af02b7a65e514-
33544245.us-east-1.elb.amazonaws.com

OpenShift Container Platform 4.3 Serverless applications

44

Example output

You can also make a gRPC request by setting the authority to the application’s host, while
directing the request against the ingress gateway directly.

Here is an example of what that looks like in the Golang gRPC client:

NOTE

Ensure that you append the respective port (80 by default) to both hosts as
shown in the example.

Hello Serverless!

grpc.Dial(
 "a83e86291bcdd11e993af02b7a65e514-33544245.us-east-1.elb.amazonaws.com:80",
 grpc.WithAuthority("hello-default.example.com:80"),
 grpc.WithInsecure(),
)

CHAPTER 6. CREATING AND MANAGING SERVERLESS APPLICATIONS

45

CHAPTER 7. HIGH AVAILABILITY ON OPENSHIFT
SERVERLESS

High availability (HA) is a standard feature of Kubernetes APIs that helps to ensure that APIs stay
operational if a disruption occurs. In an HA deployment, if an active controller crashes or is deleted,
another controller is available to take over processing of the APIs that were being serviced by the
controller that is now unavailable.

HA in OpenShift Serverless is available through leader election, which is enabled by default after the
Knative Serving control plane is installed.

When using a leader election HA pattern, instances of controllers are already scheduled and running
inside the cluster before they are required. These controller instances compete to use a shared
resource, known as the leader election lock. The instance of the controller that has access to the leader
election lock resource at any given time is referred to as the leader.

7.1. CONFIGURING HIGH AVAILABILITY REPLICAS ON OPENSHIFT
SERVERLESS

High availability (HA) functionality is available by default on OpenShift Serverless for the autoscaler-
hpa, controller, activator , kourier-control, and kourier-gateway components. These components are
configured with two replicas by default.

You modify the number of replicas that are created per controller by changing the configuration of
KnativeServing.spec.highAvailability in the KnativeServing custom resource definition.

Prerequisites

An OpenShift Container Platform account with cluster administrator access.

Installed the OpenShift Serverless Operator and Knative Serving.

Procedure

1. In the OpenShift Container Platform web console Administrator perspective, navigate to
OperatorHub → Installed Operators.

2. Select the knative-serving namespace.

3. Click Knative Serving in the list of Provided APIs for the OpenShift Serverless Operator to go
to the Knative Serving tab.

OpenShift Container Platform 4.3 Serverless applications

46

4. Click knative-serving, then go to the YAML tab in the knative-serving page.

5. Edit the custom resource definition YAML:

Example YAML

IMPORTANT

Do not modify any YAML contained inside the config field. Some of the
configuration values in this field are injected by the OpenShift Serverless
Operator, and modifying them will cause your deployment to become
unsupported.

The default replicas value is 2.

spec:
 high-availability:
 replicas: 3

CHAPTER 7. HIGH AVAILABILITY ON OPENSHIFT SERVERLESS

47

Changing the value to 1 will disable HA, or you can increase the number of replicas as
required. The example configuration shown specifies a replica count of 3 for all HA
controllers.

OpenShift Container Platform 4.3 Serverless applications

48

CHAPTER 8. TRACING REQUESTS USING JAEGER
Using Jaeger with OpenShift Serverless allows you to enable distributed tracing for your serverless
applications on OpenShift Container Platform.

Distributed tracing records the path of a request through the various services that make up an
application.

It is used to tie information about different units of work together, to understand a whole chain of events
in a distributed transaction. The units of work might be executed in different processes or hosts.

Developers can visualize call flows in large architectures with distributed tracing. which is useful for
understanding serialization, parallelism, and sources of latency.

For more information about Jaeger, see Jaeger architecture and Installing Jaeger.

8.1. CONFIGURING JAEGER FOR USE WITH OPENSHIFT SERVERLESS

Prerequisites

To configure Jaeger for use with OpenShift Serverless, you will need:

Cluster administrator permissions on an OpenShift Container Platform cluster.

A current installation of OpenShift Serverless Operator and Knative Serving.

A current installation of the Jaeger Operator.

Procedure

1. Create and apply a Jaeger custom resource YAML file that contains the following sample
YAML:

Jaeger custom resource YAML

2. Enable tracing for Knative Serving, by editing the KnativeServing resource and adding a YAML
configuration for tracing.

Tracing YAML example

apiVersion: jaegertracing.io/v1
kind: Jaeger
metadata:
 name: jaeger
 namespace: default

apiVersion: operator.knative.dev/v1alpha1
kind: KnativeServing
metadata:
 name: knative-serving
 namespace: knative-serving
spec:
 config:
 tracing:
 sample-rate: "0.1" 1

CHAPTER 8. TRACING REQUESTS USING JAEGER

49

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/jaeger/#rhbjaeger-architecture
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/jaeger/#rhbjaeger-installation

1

2

3

4

The sample-rate defines sampling probability. Using sample-rate: "0.1" means that 1 in 10
traces will be sampled.

backend must be set to zipkin.

The zipkin-endpoint must point to your jaeger-collector service endpoint. To get this
endpoint, substitute the namespace where the Jaeger custom resource is applied.

Debugging should be set to false. Enabling debug mode by setting debug: "true" allows
all spans to be sent to the server, bypassing sampling.

Verification steps

Access the Jaeger web console to see tracing data. You can access the Jaeger web console by using
the jaeger route.

1. Get the jaeger route’s hostname by entering the following command:

Example output

2. Open the endpoint address in your browser to view the console.

 backend: zipkin 2
 zipkin-endpoint: http://jaeger-collector.default.svc.cluster.local:9411/api/v2/spans 3
 debug: "false" 4

$ oc get route jaeger

NAME HOST/PORT PATH SERVICES PORT TERMINATION
WILDCARD
jaeger jaeger-default.apps.example.com jaeger-query <all> reencrypt None

OpenShift Container Platform 4.3 Serverless applications

50

CHAPTER 9. KNATIVE SERVING

9.1. USING KN TO COMPLETE SERVING TASKS

The Knative CLI (kn) extends the functionality of the oc or kubectl tools to enable interaction with
Knative components on OpenShift Container Platform. kn allows developers to deploy and manage
applications without editing YAML files directly.

9.1.1. Basic workflow using kn

The following basic workflow deploys a simple hello service that reads the environment variable
RESPONSE and prints its output.

You can use this guide as a reference to perform create, read, update, and delete (CRUD) operations on
a service.

Procedure

1. Create a service in the default namespace from an image:

Example output

2. List the service:

Example output

3. Check if the service is working by using the curl service endpoint command:

Example output

$ kn service create hello --image docker.io/openshift/hello-openshift --env
RESPONSE="Hello Serverless!"

Creating service 'hello' in namespace 'default':

 0.085s The Route is still working to reflect the latest desired specification.
 0.101s Configuration "hello" is waiting for a Revision to become ready.
 11.590s ...
 11.650s Ingress has not yet been reconciled.
 11.726s Ready to serve.

Service 'hello' created with latest revision 'hello-gsdks-1' and URL:
http://hello-default.apps-crc.testing

$ kn service list

NAME URL LATEST AGE CONDITIONS READY
REASON
hello http://hello-default.apps-crc.testing hello-gsdks-1 8m35s 3 OK / 3 True

$ curl http://hello-default.apps-crc.testing

CHAPTER 9. KNATIVE SERVING

51

4. Update the service:

Example output

The service’s environment variable RESPONSE is now set to "Hello OpenShift!".

5. Describe the service.

Example output

6. Delete the service:

Example output

7. Verify that the hello service is deleted by attempting to list it:

Hello Serverless!

$ kn service update hello --env RESPONSE="Hello OpenShift!"

Updating Service 'hello' in namespace 'default':

 10.136s Traffic is not yet migrated to the latest revision.
 10.175s Ingress has not yet been reconciled.
 10.348s Ready to serve.

Service 'hello' updated with latest revision 'hello-dghll-2' and URL:
http://hello-default.apps-crc.testing

$ kn service describe hello

Name: hello
Namespace: default
Age: 13m
URL: http://hello-default.apps-crc.testing

Revisions:
 100% @latest (hello-dghll-2) [2] (1m)
 Image: docker.io/openshift/hello-openshift (pinned to 5ea96b)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 1m
 ++ ConfigurationsReady 1m
 ++ RoutesReady 1m

$ kn service delete hello

Service 'hello' successfully deleted in namespace 'default'.

$ kn service list hello

OpenShift Container Platform 4.3 Serverless applications

52

Example output

9.1.2. Autoscaling workflow using kn

You can access autoscaling capabilities by using kn to modify Knative services without editing YAML
files directly.

Use the service create and service update commands with the appropriate flags to configure the
autoscaling behavior.

Flag Description

--concurrency-limit
int

Hard limit of concurrent requests to be processed by a single replica.

--concurrency-target
int

Recommendation for when to scale up based on the concurrent number of
incoming requests. Defaults to --concurrency-limit.

--max-scale int Maximum number of replicas.

--min-scale int Minimum number of replicas.

9.1.3. Traffic splitting using kn

kn helps you control which revisions get routed traffic on your Knative service.

Knative service allows for traffic mapping, which is the mapping of revisions of the service to an
allocated portion of traffic. It offers the option to create unique URLs for particular revisions and has the
ability to assign traffic to the latest revision.

With every update to the configuration of the service, a new revision is created with the service route
pointing all the traffic to the latest ready revision by default.

You can change this behavior by defining which revision gets a portion of the traffic.

Procedure

Use the kn service update command with the --traffic flag to update the traffic.

NOTE

No services found.

CHAPTER 9. KNATIVE SERVING

53

NOTE

--traffic RevisionName=Percent uses the following syntax:

The --traffic flag requires two values separated by separated by an equals sign
(=).

The RevisionName string refers to the name of the revision.

Percent integer denotes the traffic portion assigned to the revision.

Use identifier @latest for the RevisionName to refer to the latest ready revision
of the service. You can use this identifier only once with the --traffic flag.

If the service update command updates the configuration values for the service
along with traffic flags, the @latest reference will point to the created revision to
which the updates are applied.

--traffic flag can be specified multiple times and is valid only if the sum of the
Percent values in all flags totals 100.

NOTE

For example, to route 10% of traffic to your new revision before putting all traffic on, use
the following command:

9.1.3.1. Assigning tag revisions

A tag in a traffic block of service creates a custom URL, which points to a referenced revision. A user can
define a unique tag for an available revision of a service which creates a custom URL by using the format
http(s)://TAG-SERVICE.DOMAIN.

A given tag must be unique to its traffic block of the service. kn supports assigning and unassigning
custom tags for revisions of services as part of the kn service update command.

NOTE

If you have assigned a tag to a particular revision, a user can reference the revision by its
tag in the --traffic flag as --traffic Tag=Percent.

Procedure

Enter the command:

NOTE

$ kn service update svc --traffic @latest=10 --traffic svc-vwxyz=90

$ kn service update svc --tag @latest=candidate --tag svc-vwxyz=current

OpenShift Container Platform 4.3 Serverless applications

54

NOTE

--tag RevisionName=Tag uses the following syntax:

--tag flag requires two values separated by a =.

RevisionName string refers to name of the Revision.

Tag string denotes the custom tag to be given for this Revision.

Use the identifier @latest for the RevisionName to refer to the latest ready
revision of the service. You can use this identifier only once with the --tag flag.

If the service update command is updating the configuration values for the
Service (along with tag flags), @latest reference will be pointed to the created
Revision after applying the update.

--tag flag can be specified multiple times.

--tag flag may assign different tags to the same revision.

9.1.3.2. Unassigning tag revisions

Tags assigned to revisions in a traffic block can be unassigned. Unassigning tags removes the custom
URLs.

NOTE

If a revision is untagged and it is assigned 0% of the traffic, it is removed from the traffic
block entirely.

Procedure

Unassign a tag:

NOTE

--untag Tag uses the following syntax:

The --untag flag requires one value.

The tag string denotes the unique tag in the traffic block of the service which
needs to be unassigned. This also removes the respective custom URL.

The --untag flag can be specified multiple times.

9.1.3.3. Traffic flag operation precedence

All traffic-related flags can be specified using a single kn service update command. kn defines the
precedence of these flags. The order of the flags specified when using the command is not taken into
account.

The precedence of the flags as they are evaluated by kn are:

$ kn service update svc --untag candidate

CHAPTER 9. KNATIVE SERVING

55

1. --untag: All the referenced revisions with this flag are removed from the traffic block.

2. --tag: Revisions are tagged as specified in the traffic block.

3. --traffic: The referenced revisions are assigned a portion of the traffic split.

9.1.3.4. Traffic splitting flags

kn supports traffic operations on the traffic block of a service as part of the kn service update
command.

The following table displays a summary of traffic splitting flags, value formats, and the operation the flag
performs. The "Repetition" column denotes whether repeating the particular value of flag is allowed in a
kn service update command.

Flag Value(s) Operation Repetition

--traffic RevisionName=
Percent

Gives Percent traffic to
RevisionName

Yes

--traffic Tag=Percent Gives Percent traffic to the Revision
having Tag

Yes

--traffic @latest=Percen
t

Gives Percent traffic to the latest ready
Revision

No

--tag RevisionName=
Tag

Gives Tag to RevisionName Yes

--tag @latest=Tag Gives Tag to the latest ready Revision No

--untag Tag Removes Tag from Revision Yes

9.2. CONFIGURING KNATIVE SERVING AUTOSCALING

OpenShift Serverless provides capabilities for automatic Pod scaling, including scaling inactive Pods to
zero, by enabling the Knative Serving autoscaling system in an OpenShift Container Platform cluster.

To enable autoscaling for Knative Serving, you must configure concurrency and scale bounds in the
revision template.

NOTE

Any limits or targets set in the revision template are measured against a single instance of
your application. For example, setting the target annotation to 50 will configure the
autoscaler to scale the application so that each instance of it will handle 50 requests at a
time.

9.2.1. Configuring concurrent requests for Knative Serving autoscaling

You can specify the number of concurrent requests that should be handled by each instance of a

OpenShift Container Platform 4.3 Serverless applications

56

You can specify the number of concurrent requests that should be handled by each instance of a
revision container, or application, by adding the target annotation or the containerConcurrency field in
the revision template.

Example revision template YAML using target annotation

Example revision template YAML using containerConcurrency annotation

Adding a value for both target and containerConcurrency will target the target number of concurrent
requests, but impose a hard limit of the containerConcurrency number of requests.

For example, if the target value is 50 and the containerConcurrency value is 100, the targeted number
of requests will be 50, but the hard limit will be 100.

If the containerConcurrency value is less than the target value, the target value will be tuned down,
since there is no need to target more requests than the number that can actually be handled.

NOTE

containerConcurrency should only be used if there is a clear need to limit how many
requests reach the application at a given time. Using containerConcurrency is only
advised if the application needs to have an enforced constraint of concurrency.

9.2.1.1. Configuring concurrent requests using the target annotation

The default target for the number of concurrent requests is 100, but you can override this value by
adding or modifying the autoscaling.knative.dev/target annotation value in the revision template.

Here is an example of how this annotation is used in the revision template to set the target to 50:

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: myapp
spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/target: 50
 spec:
 containers:
 - image: myimage

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: myapp
spec:
 template:
 metadata:
 annotations:
 spec:
 containerConcurrency: 100
 containers:
 - image: myimage

CHAPTER 9. KNATIVE SERVING

57

9.2.1.2. Configuring concurrent requests using the containerConcurrency field

containerConcurrency sets a hard limit on the number of concurrent requests handled.

0

allows unlimited concurrent requests.

1

guarantees that only one request is handled at a time by a given instance of the revision container.

2 or more

will limit request concurrency to that value.

NOTE

If there is no target annotation, autoscaling is configured as if target is equal to the value
of containerConcurrency.

9.2.2. Configuring scale bounds Knative Serving autoscaling

The minScale and maxScale annotations can be used to configure the minimum and maximum number
of Pods that can serve applications. These annotations can be used to prevent cold starts or to help
control computing costs.

minScale

If the minScale annotation is not set, Pods will scale to zero (or to 1 if enable-scale-to-zero is false
per the ConfigMap).

maxScale

If the maxScale annotation is not set, there will be no upper limit for the number of Pods created.

minScale and maxScale can be configured as follows in the revision template:

Using these annotations in the revision template will propagate this confguration to PodAutoscaler
objects.

NOTE

These annotations apply for the full lifetime of a revision. Even when a revision is not
referenced by any route, the minimal Pod count specified by minScale will still be
provided. Keep in mind that non-routeable revisions may be garbage collected, which
enables Knative to reclaim the resources.

autoscaling.knative.dev/target: 50

containerConcurrency: 0 | 1 | 2-N

spec:
 template:
 metadata:
 annotations:
 autoscaling.knative.dev/minScale: "2"
 autoscaling.knative.dev/maxScale: "10"

OpenShift Container Platform 4.3 Serverless applications

58

9.3. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS

9.3.1. Cluster logging

OpenShift Container Platform cluster administrators can deploy cluster logging using a few CLI
commands and the OpenShift Container Platform web console to install the Elasticsearch Operator and
Cluster Logging Operator. When the operators are installed, create a Cluster Logging Custom Resource
(CR) to schedule cluster logging pods and other resources necessary to support cluster logging. The
operators are responsible for deploying, upgrading, and maintaining cluster logging.

You can configure cluster logging by modifying the Cluster Logging Custom Resource (CR), named
instance. The CR defines a complete cluster logging deployment that includes all the components of
the logging stack to collect, store and visualize logs. The Cluster Logging Operator watches the
ClusterLogging Custom Resource and adjusts the logging deployment accordingly.

Administrators and application developers can view the logs of the projects for which they have view
access.

9.3.2. About deploying and configuring cluster logging

OpenShift Container Platform cluster logging is designed to be used with the default configuration,
which is tuned for small to medium sized OpenShift Container Platform clusters.

The installation instructions that follow include a sample Cluster Logging Custom Resource (CR), which
you can use to create a cluster logging instance and configure your cluster logging deployment.

If you want to use the default cluster logging install, you can use the sample CR directly.

If you want to customize your deployment, make changes to the sample CR as needed. The following
describes the configurations you can make when installing your cluster logging instance or modify after
installation. See the Configuring sections for more information on working with each component,
including modifications you can make outside of the Cluster Logging Custom Resource.

9.3.2.1. Configuring and Tuning Cluster Logging

You can configure your cluster logging environment by modifying the Cluster Logging Custom Resource
deployed in the openshift-logging project.

You can modify any of the following components upon install or after install:

Memory and CPU

You can adjust both the CPU and memory limits for each component by modifying the resources
block with valid memory and CPU values:

spec:
 logStore:
 elasticsearch:
 resources:
 limits:
 cpu:
 memory: 16Gi
 requests:
 cpu: 500m
 memory: 16Gi
 type: "elasticsearch"

CHAPTER 9. KNATIVE SERVING

59

 collection:
 logs:
 fluentd:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: "fluentd"
 visualization:
 kibana:
 resources:
 limits:
 cpu:
 memory:
 requests:
 cpu:
 memory:
 type: kibana
 curation:
 curator:
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 200m
 memory: 200Mi
 type: "curator"

Elasticsearch storage

You can configure a persistent storage class and size for the Elasticsearch cluster using the
storageClass name and size parameters. The Cluster Logging Operator creates a
PersistentVolumeClaim for each data node in the Elasticsearch cluster based on these parameters.

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage:
 storageClassName: "gp2"
 size: "200G"

This example specifies each data node in the cluster will be bound to a PersistentVolumeClaim that
requests "200G" of "gp2" storage. Each primary shard will be backed by a single replica.

NOTE

OpenShift Container Platform 4.3 Serverless applications

60

NOTE

Omitting the storage block results in a deployment that includes ephemeral storage only.

 spec:
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3
 storage: {}

Elasticsearch replication policy

You can set the policy that defines how Elasticsearch shards are replicated across data nodes in the
cluster:

FullRedundancy. The shards for each index are fully replicated to every data node.

MultipleRedundancy. The shards for each index are spread over half of the data nodes.

SingleRedundancy. A single copy of each shard. Logs are always available and recoverable
as long as at least two data nodes exist.

ZeroRedundancy. No copies of any shards. Logs may be unavailable (or lost) in the event a
node is down or fails.

Curator schedule

You specify the schedule for Curator in the cron format.

 spec:
 curation:
 type: "curator"
 resources:
 curator:
 schedule: "30 3 * * *"

9.3.2.2. Sample modified Cluster Logging Custom Resource

The following is an example of a Cluster Logging Custom Resource modified using the options
previously described.

Sample modified Cluster Logging Custom Resource

apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogging"
metadata:
 name: "instance"
 namespace: "openshift-logging"
spec:
 managementState: "Managed"
 logStore:
 type: "elasticsearch"
 elasticsearch:
 nodeCount: 3

CHAPTER 9. KNATIVE SERVING

61

https://en.wikipedia.org/wiki/Cron

 resources:
 limits:
 memory: 32Gi
 requests:
 cpu: 3
 memory: 32Gi
 storage: {}
 redundancyPolicy: "SingleRedundancy"
 visualization:
 type: "kibana"
 kibana:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 500m
 memory: 1Gi
 replicas: 1
 curation:
 type: "curator"
 curator:
 resources:
 limits:
 memory: 200Mi
 requests:
 cpu: 200m
 memory: 200Mi
 schedule: "*/5 * * * *"
 collection:
 logs:
 type: "fluentd"
 fluentd:
 resources:
 limits:
 memory: 1Gi
 requests:
 cpu: 200m
 memory: 1Gi

9.3.3. Using cluster logging to find logs for Knative Serving components

Procedure

1. Get the Kibana route:

2. Use the route’s URL to navigate to the Kibana dashboard and log in.

3. Ensure the index is set to .all. If the index is not set to .all, only the OpenShift system logs will be
listed.

4. You can filter the logs by using the knative-serving namespace. Enter
kubernetes.namespace_name:knative-serving in the search box to filter results.

NOTE

$ oc -n openshift-logging get route kibana

OpenShift Container Platform 4.3 Serverless applications

62

NOTE

Knative Serving uses structured logging by default. You can enable the parsing of
these logs by customizing the cluster logging Fluentd settings. This makes the
logs more searchable and enables filtering on the log level to quickly identify
issues.

9.3.4. Using cluster logging to find logs for services deployed with Knative Serving

With OpenShift Cluster Logging, the logs that your applications write to the console are collected in
Elasticsearch. The following procedure outlines how to apply these capabilities to applications deployed
by using Knative Serving.

Procedure

1. Get the Kibana URL:

2. Enter the URL in your browser to open the Kibana UI.

3. Ensure the index is set to .all. If the index is not set to .all, only the OpenShift system logs will be
listed.

4. Filter the logs by using the Kubernetes namespace your service is deployed in. Add a filter to
identify the service itself: kubernetes.namespace_name:default AND
kubernetes.labels.serving_knative_dev\/service:{SERVICE_NAME}.

NOTE

You can also filter by using /configuration or /revision.

5. You can narrow your search by using kubernetes.container_name:<user-container> to only
display the logs generated by your application. Otherwise, you will see logs from the queue-
proxy.

NOTE

Use JSON-based structured logging in your application to allow for the quick
filtering of these logs in production environments.

9.4. SPLITTING TRAFFIC BETWEEN REVISIONS

9.4.1. Splitting traffic between revisions using the Developer perspective

After you create a serverless application, the serverless application is displayed in the Topology view of
the Developer perspective. The application revision is represented by the node and the serverless
resource service is indicated by a quadrilateral around the node.

Any new change in the code or the service configuration triggers a revision, a snapshot of the code at a
given time. For a service, you can manage the traffic between the revisions of the service by splitting
and routing it to the different revisions as required.

$ oc -n cluster-logging get route kibana`

CHAPTER 9. KNATIVE SERVING

63

Procedure

To split traffic between multiple revisions of an application in the Topology view:

1. Click the serverless resource service, indicated by the quadrilateral, to see its overview in the
side panel.

2. Click the Resources tab, to see a list of Revisions and Routes for the service.

3. Click the service, indicated by the S icon at the top of the side panel, to see an overview of the
service details.

4. Click the YAML tab and modify the service configuration in the YAML editor, and click Save.
For example, change the timeoutseconds from 300 to 301 . This change in the configuration
triggers a new revision. In the Topology view, the latest revision is displayed and the Resources
tab for the service now displays the two revisions.

5. In the Resources tab, click the Set Traffic Distribution button to see the traffic distribution
dialog box:

a. Add the split traffic percentage portion for the two revisions in the Splits field.

b. Add tags to create custom URLs for the two revisions.

c. Click Save to see two nodes representing the two revisions in the Topology view.

OpenShift Container Platform 4.3 Serverless applications

64

CHAPTER 9. KNATIVE SERVING

65

1

CHAPTER 10. KNATIVE EVENTING

10.1. USING BROKERS WITH KNATIVE EVENTING

Knative Eventing uses the default broker unless otherwise specified.

If you have cluster administrator permissions, you can create the default broker automatically using
namespace annotation.

All other users must create a broker using the manual process as described in this guide.

10.1.1. Creating a broker manually

To create a broker, you must create a service account for each namespace, and give that service
account the required RBAC permissions.

Prerequisites

Knative Eventing installed, which includes the ClusterRole.

Procedure

1. Create the ServiceAccount objects.

a. Create the eventing-broker-ingress object by entering the following command:

b. Create the eventing-broker-filter object by entering the following command:

2. Give the objects that you have created RBAC permissions:

3. Create a broker by creating and applying a YAML file containing the following:

This example uses the name default, but you can replace this with any other valid name.

$ oc -n <namespace> create serviceaccount eventing-broker-ingress

$ oc -n <namespace> create serviceaccount eventing-broker-filter

$ oc -n default create rolebinding eventing-broker-ingress \
 --clusterrole=eventing-broker-ingress \
 --serviceaccount=default:eventing-broker-ingress

$ oc -n default create rolebinding eventing-broker-filter \
 --clusterrole=eventing-broker-filter \
 --serviceaccount=default:eventing-broker-filter

apiVersion: eventing.knative.dev/v1beta1
kind: Broker
metadata:
 namespace: default
 name: default 1

OpenShift Container Platform 4.3 Serverless applications

66

1

10.1.2. Creating a broker automatically using namespace annotation

If you have cluster administrator permissions, you can create a broker automatically by annotating a
namespace.

Prerequisites

Knative Eventing installed.

Cluster administrator permissions for OpenShift Container Platform.

Procedure

1. Annotate your namespace by entering the following commands:

$ oc label namespace default knative-eventing-injection=enabled 1
$ oc -n default get broker default

Replace default with the desired namespace.

The line shown in this example will automatically create a broker named default in the default
namespace.

NOTE

Brokers created due to annotation will not be removed if you remove the annotation. You
must manually delete them.

10.1.3. Deleting a broker that was created using namespace annotation

1. Delete the injected broker from the selected namespace (in this example, the default
namespace):

$ oc -n default delete broker default

10.2. USING CHANNELS

It is possible to sink events from an event source to a Knative Eventing channel. Channels are custom
resources (CRs) that define a single event-forwarding and persistence layer. After events have been
sent to a channel, these events can be sent to multiple Knative services by using a subscription.

The default configuration for channel instances is defined in the default-ch-webhook ConfigMap.
However, developers can still create their own channels directly by instantiating a supported channel
object.

10.2.1. Supported channel types

Currently, OpenShift Serverless only supports the use of InMemoryChannel type channels as part of the
Knative Eventing Technology Preview.

10.2.2. Using the default InMemoryChannel configuration

CHAPTER 10. KNATIVE EVENTING

67

InMemoryChannels are for development use only, and should not be used in a production environment.

The following are limitations of InMemoryChannel type channels:

No event persistence is available. If a Pod goes down, events on that Pod are lost.

InMemoryChannel type channels do not implement event ordering, so two events that are
received in the channel at the same time can be delivered to a subscriber in any order.

If a subscriber rejects an event, there are no re-delivery attempts. Instead, the rejected event is
sent to a deadLetterSink if this sink exists, or is otherwise dropped. For more information about
configuring event delivery and deadLetterSink settings for a channel, see Using subscriptions
to send events from a channel to a sink.

When you install Knative Eventing, the following custom resource definition (CRD) is created
automatically:

Creating a channel using the cluster default configuration

Create a generic Channel custom object.

When the Channel object is created, a mutating admission webhook adds a set of
spec.channelTemplate properties for the Channel object based on the default channel
implementation.

The channel controller then creates the backing channel instance based on that
spec.channelTemplate configuration. The spec.channelTemplate properties cannot be changed after
creation, because they are set by the default channel mechanism rather than by the user.

apiVersion: v1
kind: ConfigMap
metadata:
 namespace: knative-eventing
 name: config-br-default-channel
data:
 channelTemplateSpec: |
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
 name: example-channel
 namespace: default

apiVersion: messaging.knative.dev/v1
kind: Channel
metadata:
 name: example-channel
 namespace: default
spec:
 channelTemplate:
 apiVersion: messaging.knative.dev/v1
 kind: InMemoryChannel

OpenShift Container Platform 4.3 Serverless applications

68

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-subscriptions

When this mechanism is used, two objects are created: a generic channel, and an InMemoryChannel type
channel.

The generic channel acts as a proxy that copies its subscriptions to the InMemoryChannel, and sets its
status to reflect the status of the backing InMemoryChannel type channel.

Because the channel in this example is created in the default namespace, the channel uses the cluster
default, which is InMemoryChannel.

10.3. USING SUBSCRIPTIONS TO SEND EVENTS FROM A CHANNEL TO
A SINK

Subscriptions deliver events to event sinks from a Channel.

10.3.1. Creating a subscription

You can create a subscription to connect a service or other event sink to a channel.

IMPORTANT

Knative Eventing is a Technology Preview feature. The InMemoryChannel type is
provided for development use only, and should not be used in a production environment.

Prerequisites

You must have a current installation of OpenShift Serverless, including Knative Serving and
Eventing, in your OpenShift Container Platform cluster. This can be installed by a cluster
administrator.

If you do not have an existing sink that you wish to use, create a Service to use as a sink by
following the documentation on Creating and managing serverless applications .

You must have a channel to connect your subscription to. See Using channels with Knative
Eventing.

Procedure

1. Create a Subscription object to connect a channel to a service, by creating a YAML file
containing the following:

apiVersion: messaging.knative.dev/v1beta1
kind: Subscription
metadata:
 name: my-subscription 1
 namespace: default
spec:
 channel: 2
 apiVersion: messaging.knative.dev/v1beta1
 kind: Channel
 name: example-channel
 delivery: 3
 deadLetterSink:
 ref:
 apiVersion: serving.knative.dev/v1

CHAPTER 10. KNATIVE EVENTING

69

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-install-web-console_installing-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serving-creating-managing-apps
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-channels

1

2

3

4

Name of the subscription.

Configuration settings for the channel that the subscription connects to.

Configuration settings for event delivery. This tells the subscription what happens to
events that cannot be delivered to the subscriber. When this is configured, events that
failed to be consumed are sent to the deadLetterSink. The event is dropped, no re-
delivery of the event is attempted, and an error is logged in the system. The
deadLetterSink value must be a Destination.

Configuration settings for the subscriber. This is the event sink that events are delivered to
from the channel.

2. Apply the YAML file by entering:

10.4. USING TRIGGERS

All events which are sent to a channel or broker will be sent to all subscribers of that channel or broker
by default.

Using triggers allows you to filter events from a channel or broker, so that subscribers will only receive a
subset of events based on your defined criteria.

The Knative CLI provides a set of kn trigger commands that can be used to create and manage triggers.

10.4.1. Prerequisites

Before you can use triggers, you will need:

Knative Eventing and kn installed.

An available broker, either the default broker or one that you have created.
You can create the default broker either by following the instructions on Using brokers with
Knative Eventing, or by using the --inject-broker flag while creating a trigger. Use of this flag is
described in the procedure below.

An available event consumer, for example, a Knative service.

10.4.2. Creating a trigger using kn

Procedure

Create a trigger:

 kind: Service
 name: error-handler
 subscriber: 4
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f <filename>

OpenShift Container Platform 4.3 Serverless applications

70

https://pkg.go.dev/knative.dev/pkg/apis/duck/v1?tab=doc#Destination

1

2

3

To create a trigger and also create the default broker using broker injection, enter the following
command:

Example trigger YAML:

The name of the trigger.

The name of the broker where events will be filtered from. If the broker is not specified, the trigger
will revert to using the default broker.

The name of the service that will consumer filtered events.

10.4.3. Listing triggers using kn

The kn trigger list command prints a list of available triggers.

Procedure

1. Print a list of available triggers:

Example output

10.4.4. Listing triggers using kn in JSON format

Procedure

1. Print a list of triggers in JSON format:

$ kn trigger create <trigger_name> --broker <broker_name> --filter <key=value> --sink
<sink_name>

$ kn trigger create <TRIGGER-NAME> --inject-broker --filter <KEY=VALUE> --sink <SINK>

apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
 name: trigger-example 1
spec:
 broker: default 2
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: my-service 3

$ kn trigger list

NAME BROKER SINK AGE CONDITIONS READY REASON
email default svc:edisplay 4s 5 OK / 5 True
ping default svc:edisplay 32s 5 OK / 5 True

CHAPTER 10. KNATIVE EVENTING

71

10.4.5. Describing a trigger using kn

The kn trigger describe command prints information about a trigger.

Procedure

Enter the command:

Example output

10.4.6. Deleting a trigger using kn

Procedure

Delete a trigger:

10.4.7. Updating a trigger using kn

You can use the kn trigger update command with certain flags to update attributes for a trigger.

Example

1. Update a trigger to filter exact event attributes that match incoming events, such as

$ kn trigger list -o json

$ kn trigger describe <trigger_name>

Name: ping
Namespace: default
Labels: eventing.knative.dev/broker=default
Annotations: eventing.knative.dev/creator=kube:admin,
eventing.knative.dev/lastModifier=kube:admin
Age: 2m
Broker: default
Filter:
 type: dev.knative.event

Sink:
 Name: edisplay
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2m
 ++ BrokerReady 2m
 ++ DependencyReady 2m
 ++ Subscribed 2m
 ++ SubscriberResolved 2m

$ kn trigger delete <trigger_name>

OpenShift Container Platform 4.3 Serverless applications

72

1. Update a trigger to filter exact event attributes that match incoming events, such as
type=knative.dev.event:

2. Remove the filter attribute with key type:

3. Update the sink of a trigger to use a service named event-display:

10.4.8. Filtering events using triggers

In the following trigger example, only events with the attribute type: dev.knative.samples.helloworld
will reach the event sink.

You can also filter events using multiple attributes. The following example shows how to filter events
using the type, source, and extension attributes.

10.5. USING SINKBINDING

SinkBinding is used to connect event producers, or event sources, to an event consumer, or event sink,
for example, a Knative service or application.

NOTE

Both of the following procedures require you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

10.5.1. Using SinkBinding with the Knative CLI (kn)

This guide describes the steps required to create, manage, and delete a SinkBinding instance using kn
commands.

Prerequisites

You have Knative Serving and Eventing installed.

You have the kn CLI installed.

Procedure

$ kn trigger update <trigger_name> --filter type=knative.dev.event

$ kn trigger update mytrigger --filter type-

$ kn trigger update <trigger_name> --sink svc:event-display

$ kn trigger create <trigger_name> --broker <broker_name> --filter
type=dev.knative.samples.helloworld --sink svc:<service_name>

$ kn trigger create <trigger_name> --broker <broker_name> --sink svc:<service_name> \
--filter type=dev.knative.samples.helloworld \
--filter source=dev.knative.samples/helloworldsource \
--filter myextension=my-extension-value

CHAPTER 10. KNATIVE EVENTING

73

Procedure

1. To check that SinkBinding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log:

2. Create a SinkBinding that directs events to the service:

3. Create a CronJob.

a. Create a file named heartbeats-cronjob.yaml and copy the following sample code into it:

b. After you have created the heartbeats-cronjob.yaml file, apply it by entering:

4. Check that the controller is mapped correctly by entering the following command and

$ kn service create event-display --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn source binding create bind-heartbeat --subject Job:batch/v1:app=heartbeat-cron --sink
svc:event-display

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/knative-eventing-sources-heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

$ oc apply -f heartbeats-cronjob.yaml

OpenShift Container Platform 4.3 Serverless applications

74

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

Verification steps

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

View the message dumper function logs by entering the following commands:

Example output

$ kn source binding describe bind-heartbeat

Name: bind-heartbeat
Namespace: demo-2
Annotations: sources.knative.dev/creator=minikube-user,
sources.knative.dev/lastModifier=minikub ...
Age: 2m
Subject:
 Resource: job (batch/v1)
 Selector:
 app: heartbeat-cron
Sink:
 Name: event-display
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 2m

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {

CHAPTER 10. KNATIVE EVENTING

75

10.5.2. Using SinkBinding with the YAML method

This guide describes the steps required to create, manage, and delete a SinkBinding instance using
YAML files.

Prerequisites

You have Knative Serving and Eventing installed.

Procedure

1. To check that SinkBinding is set up correctly, create a Knative event display service, or event
sink, that dumps incoming messages to its log.

a. Copy the following sample YAML into a file named service.yaml:

b. After you have created the service.yaml file, apply it by entering:

2. Create a SinkBinding that directs events to the service.

a. Create a file named sinkbinding.yaml and copy the following sample code into it:

 "id": 1,
 "label": ""
 }

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

$ oc apply -f service.yaml

apiVersion: sources.knative.dev/v1alpha1
kind: SinkBinding
metadata:
 name: bind-heartbeat
spec:
 subject:
 apiVersion: batch/v1
 kind: Job 1
 selector:
 matchLabels:
 app: heartbeat-cron

 sink:
 ref:

OpenShift Container Platform 4.3 Serverless applications

76

1 In this example, any Job with the label app: heartbeat-cron will be bound to the event
sink.

b. After you have created the sinkbinding.yaml file, apply it by entering:

3. Create a CronJob.

a. Create a file named heartbeats-cronjob.yaml and copy the following sample code into it:

b. After you have created the heartbeats-cronjob.yaml file, apply it by entering:

4. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply -f sinkbinding.yaml

apiVersion: batch/v1beta1
kind: CronJob
metadata:
 name: heartbeat-cron
spec:
spec:
 # Run every minute
 schedule: "* * * * *"
 jobTemplate:
 metadata:
 labels:
 app: heartbeat-cron
 spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: single-heartbeat
 image: quay.io/openshift-knative/knative-eventing-sources-heartbeats:latest
 args:
 - --period=1
 env:
 - name: ONE_SHOT
 value: "true"
 - name: POD_NAME
 valueFrom:
 fieldRef:
 fieldPath: metadata.name
 - name: POD_NAMESPACE
 valueFrom:
 fieldRef:
 fieldPath: metadata.namespace

$ oc apply -f heartbeats-cronjob.yaml

CHAPTER 10. KNATIVE EVENTING

77

Example output

Verification steps

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the
message dumper function logs.

1. Enter the command:

2. Enter the command:

Example output

$ oc get sinkbindings.sources.knative.dev bind-heartbeat -oyaml

spec:
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display
 namespace: default
 subject:
 apiVersion: batch/v1
 kind: Job
 namespace: default
 selector:
 matchLabels:
 app: heartbeat-cron

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.eventing.samples.heartbeat
 source: https://knative.dev/eventing-contrib/cmd/heartbeats/#event-test/mypod
 id: 2b72d7bf-c38f-4a98-a433-608fbcdd2596
 time: 2019-10-18T15:23:20.809775386Z
 contenttype: application/json
Extensions,
 beats: true
 heart: yes
 the: 42
Data,
 {
 "id": 1,
 "label": ""
 }

OpenShift Container Platform 4.3 Serverless applications

78

CHAPTER 11. EVENT SOURCES

11.1. GETTING STARTED WITH EVENT SOURCES

An event source is an object that links an event producer with an event sink, or consumer. A sink can be a
Knative Service, Channel, or Broker that receives events from an event source.

Currently, OpenShift Serverless supports the following event source types:

ApiServerSource

Connects a sink to the Kubernetes API server.

PingSource

Periodically sends ping Events with a constant payload. It can be used as a timer.

SinkBinding is also supported, which allows you to connect core Kubernetes resources such as
Deployment, Job, or StatefulSet with a sink.

You can create and manage Knative event sources using the Developer perspective in the OpenShift
Container Platform web console, the kn CLI, or by applying YAML files.

11.1.1. Prerequisites

You must have a current installation of OpenShift Serverless, including Knative Serving and
Eventing, in your OpenShift Container Platform cluster. This can be installed by a cluster
administrator.

11.1.2. Creating event sources

Create an ApiServerSource.

Create an PingSource.

11.1.3. Additional resources

For more information about eventing workflows using OpenShift Serverless, see Knative
Eventing architecture.

11.2. USING THE KN CLI TO LIST EVENT SOURCES AND EVENT SOURCE
TYPES

You can use the kn CLI to list and manage available event sources or event source types for use with
Knative Eventing.

Currently, kn supports management of the following event source types:

ApiServerSource

Connects a sink to the Kubernetes API server.

PingSource

Periodically sends ping events with a constant payload. It can be used as a timer.

11.2.1. Listing available event source types using kn

CHAPTER 11. EVENT SOURCES

79

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-sinkbinding
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-install-web-console_installing-openshift-serverless
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-apiserversource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-pingsource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-event-architecture

Procedure

List the available event source types in the terminal:

Example output

You can also list available event source types in YAML format:

11.2.2. Listing available event sources using kn

List available event sources by entering the following command:

Example output

11.2.2.1. Listing event sources of a specific type only

You can list event sources of a specific type only, by using the --type flag.

List available event sources of type PingSource by entering the following command:

Example output

11.2.3. Next steps

See the documentation on Using ApiServerSource.

See the documentation on Using PingSource.

$ kn source list-types

TYPE NAME DESCRIPTION
ApiServerSource apiserversources.sources.knative.dev Watch and send Kubernetes
API events to a sink
PingSource pingsources.sources.knative.dev Periodically send ping events to
a sink
SinkBinding sinkbindings.sources.knative.dev Binding for connecting a
PodSpecable to a sink

$ kn source list-types -o yaml

$ kn source list

NAME TYPE RESOURCE SINK READY
a1 ApiServerSource apiserversources.sources.knative.dev svc:eshow2 True
b1 SinkBinding sinkbindings.sources.knative.dev svc:eshow3 False
p1 PingSource pingsources.sources.knative.dev svc:eshow1 True

$ kn source list --type PingSource

NAME TYPE RESOURCE SINK READY
p1 PingSource pingsources.sources.knative.dev svc:eshow1 True

OpenShift Container Platform 4.3 Serverless applications

80

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-apiserversource
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/serverless_applications/#serverless-pingsource

11.3. USING APISERVERSOURCE

ApiServerSource is an event source that can be used to connect an event sink, such as a Knative service,
to the Kubernetes API server. ApiServerSource watches for Kubernetes events and forwards them to
the Knative Eventing broker.

NOTE

Both of the following procedures require you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

11.3.1. Using the ApiServerSource with the Knative CLI (kn)

This section describes the steps required to create an ApiServerSource using kn commands.

Prerequisites

You must have OpenShift Serverless, the Knative Serving and Eventing components, and the
kn CLI installed.

Procedure

1. Create a service account, role, and role binding for the ApiServerSource.
You can do this by creating a file named authentication.yaml and copying the following sample
code into it:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:

CHAPTER 11. EVENT SOURCES

81

1 2 3 4 Change this namespace to the namespace that you have selected for installing
ApiServerSource.

NOTE

If you want to re-use an existing service account with the appropriate
permissions, you must modify the authentication.yaml for that service account.

Create the service account, role binding and cluster binding:

2. Create an ApiServerSource that uses a broker as an event sink:

3. To check that the ApiServerSource is set up correctly, create a Knative service that dumps
incoming messages to its log:

4. Create a trigger to filter events from the default broker to the service:

5. Create events by launching a Pod in the default namespace:

6. Check that the controller is mapped correctly by inspecting the output generated by the
following command:

Example output

 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f authentication.yaml

$ kn source apiserver create <event_source_name> --sink broker:<broker_name> --
resource "event:v1" --service-account <service_account_name> --mode Resource

$ kn service create <service_name> --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn trigger create <trigger_name> --sink svc:<service_name>

$ oc create deployment hello-node --image quay.io/openshift-knative/knative-eventing-
sources-event-display:latest

$ kn source apiserver describe <source_name>

Name: mysource

OpenShift Container Platform 4.3 Serverless applications

82

Verification steps

You can verify that the Kubernetes events were sent to Knative by looking at the message dumper
function logs.

1. Get the Pods:

2. View the message dumper function logs for the Pods:

Example output

Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 3m
ServiceAccountName: events-sa
Mode: Resource
Sink:
 Name: default
 Namespace: default
 Kind: Broker (eventing.knative.dev/v1alpha1)
Resources:
 Kind: event (v1)
 Controller: false
Conditions:
 OK TYPE AGE REASON
 ++ Ready 3m
 ++ Deployed 3m
 ++ SinkProvided 3m
 ++ SufficientPermissions 3m
 ++ EventTypesProvided 3m

$ oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...
Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{hello-node}",
 "kind": "Pod",
 "name": "hello-node",
 "namespace": "default",

 },
 "kind": "Event",

CHAPTER 11. EVENT SOURCES

83

11.3.2. Deleting the ApiServerSource using the Knative CLI (kn)

This section describes the steps used to delete the ApiServerSource, trigger, service, service account,
cluster role, and cluster binding using kn and oc commands.

Prerequisites

You must have the kn CLI installed.

Procedure

1. Delete the trigger:

2. Delete the service:

3. Delete the event source:

4. Delete the service account, cluster role, and cluster binding:

11.3.3. Using the ApiServerSource with the YAML method

This guide describes the steps required to create an ApiServerSource using YAML files.

Prerequisites

You will need to have a Knative Serving and Eventing installation.

You will need to have created the default broker in the same namespace as the one defined in
the ApiServerSource YAML file.

Procedure

1. To create a service account, role, and role binding for the ApiServerSource, create a file named
authentication.yaml and copy the following sample code into it:

 "message": "Started container",
 "metadata": {
 "name": "hello-node.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

$ kn trigger delete <trigger_name>

$ kn service delete <service_name>

$ kn source apiserver delete <source_name>

$ oc delete -f authentication.yaml

OpenShift Container Platform 4.3 Serverless applications

84

1 2 3 4 Change this namespace to the namespace that you have selected for installing
ApiServerSource.

NOTE

If you want to re-use an existing service account with the appropriate
permissions, you must modify the authentication.yaml for that service account.

After you have created the authentication.yaml file, apply it:

2. To create an ApiServerSource event source, create a file named k8s-events.yaml and copy the
following sample code into it:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: events-sa
 namespace: default 1

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: event-watcher
 namespace: default 2
rules:
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - get
 - list
 - watch

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: k8s-ra-event-watcher
 namespace: default 3
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: event-watcher
subjects:
 - kind: ServiceAccount
 name: events-sa
 namespace: default 4

$ oc apply -f authentication.yaml

apiVersion: sources.knative.dev/v1alpha1

CHAPTER 11. EVENT SOURCES

85

After you have created the k8s-events.yaml file, apply it:

3. To check that the ApiServerSource is set up correctly, create a Knative service that dumps
incoming messages to its log.
Copy the following sample YAML into a file named service.yaml:

After you have created the service.yaml file, apply it:

4. To create a trigger from the default broker that filters events to the service created in the
previous step, create a file named trigger.yaml and copy the following sample code into it:

After you have created the trigger.yaml file, apply it:

kind: ApiServerSource
metadata:
 name: testevents
spec:
 serviceAccountName: events-sa
 mode: Resource
 resources:
 - apiVersion: v1
 kind: Event
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1beta1
 kind: Broker
 name: default

$ oc apply -f k8s-events.yaml

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
 namespace: default
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:v0.13.2

$ oc apply -f service.yaml

apiVersion: eventing.knative.dev/v1alpha1
kind: Trigger
metadata:
 name: event-display-trigger
 namespace: default
spec:
 subscriber:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

OpenShift Container Platform 4.3 Serverless applications

86

5. To create events, launch a Pod in the default namespace:

6. To check that the controller is mapped correctly, enter the following command and inspect the
output:

Example output

Verification steps

To verify that the Kubernetes events were sent to Knative, you can look at the message dumper
function logs.

1. Get the Pods:

$ oc apply -f trigger.yaml

$ oc create deployment hello-node --image=quay.io/openshift-knative/knative-eventing-
sources-event-display

$ oc get apiserversource.sources.knative.dev testevents -o yaml

apiVersion: sources.knative.dev/v1alpha1
kind: ApiServerSource
metadata:
 annotations:
 creationTimestamp: "2020-04-07T17:24:54Z"
 generation: 1
 name: testevents
 namespace: default
 resourceVersion: "62868"
 selfLink:
/apis/sources.knative.dev/v1alpha1/namespaces/default/apiserversources/testevents2
 uid: 1603d863-bb06-4d1c-b371-f580b4db99fa
spec:
 mode: Resource
 resources:
 - apiVersion: v1
 controller: false
 controllerSelector:
 apiVersion: ""
 kind: ""
 name: ""
 uid: ""
 kind: Event
 labelSelector: {}
 serviceAccountName: events-sa
 sink:
 ref:
 apiVersion: eventing.knative.dev/v1beta1
 kind: Broker
 name: default

$ oc get pods

CHAPTER 11. EVENT SOURCES

87

2. View the message dumper function logs for the Pods:

Example output

11.3.4. Deleting the ApiServerSource

This section describes how to delete the ApiServerSource, trigger, service, service account, cluster role,
and cluster binding by deleting their YAML files.

Procedure

1. Delete the trigger:

2. Delete the service:

3. Delete the event source:

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.apiserver.resource.update
 datacontenttype: application/json
 ...
Data,
 {
 "apiVersion": "v1",
 "involvedObject": {
 "apiVersion": "v1",
 "fieldPath": "spec.containers{hello-node}",
 "kind": "Pod",
 "name": "hello-node",
 "namespace": "default",

 },
 "kind": "Event",
 "message": "Started container",
 "metadata": {
 "name": "hello-node.159d7608e3a3572c",
 "namespace": "default",

 },
 "reason": "Started",
 ...
 }

$ oc delete -f trigger.yaml

$ oc delete -f service.yaml

$ oc delete -f k8s-events.yaml

OpenShift Container Platform 4.3 Serverless applications

88

1

2

3

4. Delete the service account, cluster role, and cluster binding:

11.4. USING A PINGSOURCE

A PingSource is used to periodically send ping events with a constant payload to an event consumer,
and can be used to schedule sending events, similar to a timer.

Example PingSource YAML

The schedule of the event specified using CRON expression.

The event message body expressed as a JSON encoded data string.

These are the details of the event consumer. In this example, we are using a Knative service named
event-display.

11.4.1. Using a PingSource with the kn CLI

The following sections describe how to create, verify and remove a basic PingSource using the kn CLI.

Prerequisites

You have Knative Serving and Eventing installed.

You have the kn CLI installed.

Procedure

1. To verify that the PingSource is working, create a simple Knative service that dumps incoming
messages to the service’s logs:

2. For each set of ping events that you want to request, create a PingSource in the same
namespace as the event consumer:

$ oc delete -f authentication.yaml

apiVersion: sources.knative.dev/v1alpha2
kind: PingSource
metadata:
 name: test-ping-source
spec:
 schedule: "*/2 * * * *" 1
 jsonData: '{"message": "Hello world!"}' 2
 sink: 3
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ kn service create event-display \
 --image quay.io/openshift-knative/knative-eventing-sources-event-display:latest

CHAPTER 11. EVENT SOURCES

89

https://kubernetes.io/docs/tasks/job/automated-tasks-with-cron-jobs/#schedule

3. Check that the controller is mapped correctly by entering the following command and
inspecting the output:

Example output

Verfication steps

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the sink
pod’s logs.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a PingSource that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

Example output

$ kn source ping create test-ping-source \
 --schedule "*/2 * * * *" \
 --data '{"message": "Hello world!"}' \
 --sink svc:event-display

$ kn source ping describe test-ping-source

Name: test-ping-source
Namespace: default
Annotations: sources.knative.dev/creator=developer,
sources.knative.dev/lastModifier=developer
Age: 15s
Schedule: */2 * * * *
Data: {"message": "Hello world!"}

Sink:
 Name: event-display
 Namespace: default
 Resource: Service (serving.knative.dev/v1)

Conditions:
 OK TYPE AGE REASON
 ++ Ready 8s
 ++ Deployed 8s
 ++ SinkProvided 15s
 ++ ValidSchedule 15s
 ++ EventTypeProvided 15s
 ++ ResourcesCorrect 15s

$ watch oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event

OpenShift Container Platform 4.3 Serverless applications

90

11.4.1.1. Remove the PingSource

1. Delete the PingSource:

2. Delete the event-display service:

11.4.2. Using a PingSource with YAML

The following sections describe how to create, verify and remove a basic PingSource using YAML files.

Prerequisites

You have Knative Serving and Eventing installed.

NOTE

The following procedure requires you to create YAML files.

If you change the names of the YAML files from those used in the examples, you must
ensure that you also update the corresponding CLI commands.

Procedure

1. To verify that the PingSource is working, create a simple Knative service that dumps incoming
messages to the service’s logs.

a. Copy the example YAML into a file named service.yaml:

Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 99e4f4f6-08ff-4bff-acf1-47f61ded68c9
 time: 2020-04-07T16:16:00.000601161Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

$ kn delete pingsources.sources.knative.dev test-ping-source

$ kn delete service.serving.knative.dev event-display

apiVersion: serving.knative.dev/v1
kind: Service
metadata:
 name: event-display
spec:
 template:
 spec:
 containers:
 - image: quay.io/openshift-knative/knative-eventing-sources-event-display:latest

CHAPTER 11. EVENT SOURCES

91

b. Create the service:

2. For each set of ping events that you want to request, create a PingSource in the same
namespace as the event consumer.

a. Copy the example YAML into a file named ping-source.yaml:

b. Create the PingSource:

3. Check that the controller is mapped correctly by entering the following command:

Example output

$ oc apply --filename service.yaml

apiVersion: sources.knative.dev/v1alpha2
kind: PingSource
metadata:
 name: test-ping-source
spec:
 schedule: "*/2 * * * *"
 jsonData: '{"message": "Hello world!"}'
 sink:
 ref:
 apiVersion: serving.knative.dev/v1
 kind: Service
 name: event-display

$ oc apply --filename ping-source.yaml

$ oc get pingsource.sources.knative.dev test-ping-source -oyaml

apiVersion: sources.knative.dev/v1alpha2
kind: PingSource
metadata:
 annotations:
 sources.knative.dev/creator: developer
 sources.knative.dev/lastModifier: developer
 creationTimestamp: "2020-04-07T16:11:14Z"
 generation: 1
 name: test-ping-source
 namespace: default
 resourceVersion: "55257"
 selfLink: /apis/sources.knative.dev/v1alpha2/namespaces/default/pingsources/test-ping-
source
 uid: 3d80d50b-f8c7-4c1b-99f7-3ec00e0a8164
spec:
 jsonData: '{ value: "hello" }'
 schedule: '*/2 * * * *'
 sink:
 ref:
 apiVersion: serving.knative.dev/v1

OpenShift Container Platform 4.3 Serverless applications

92

Verfication steps

You can verify that the Kubernetes events were sent to the Knative event sink by looking at the sink
pod’s logs.

By default, Knative services terminate their pods if no traffic is received within a 60 second period. The
example shown in this guide creates a PingSource that sends a message every 2 minutes, so each
message should be observed in a newly created pod.

1. Watch for new pods created:

2. Cancel watching the pods using Ctrl+C, then look at the logs of the created pod:

Example output

11.4.2.1. Remove the PingSource

1. Delete the service by entering the following command:

2. Delete the PingSource by entering the following command:

 kind: Service
 name: event-display
 namespace: default

$ watch oc get pods

$ oc logs $(oc get pod -o name | grep event-display) -c user-container

☁� cloudevents.Event
Validation: valid
Context Attributes,
 specversion: 1.0
 type: dev.knative.sources.ping
 source: /apis/v1/namespaces/default/pingsources/test-ping-source
 id: 042ff529-240e-45ee-b40c-3a908129853e
 time: 2020-04-07T16:22:00.000791674Z
 datacontenttype: application/json
Data,
 {
 "message": "Hello world!"
 }

$ oc delete --filename service.yaml

$ oc delete --filename ping-source.yaml

CHAPTER 11. EVENT SOURCES

93

CHAPTER 12. USING METERING WITH OPENSHIFT
SERVERLESS

As a cluster administrator, you can use metering to analyze what is happening in your OpenShift
Serverless cluster.

For more information about metering on OpenShift Container Platform, see About metering.

12.1. INSTALLING METERING

For information about installing metering on OpenShift Container Platform, see Installing Metering .

12.2. DATASOURCES FOR KNATIVE SERVING METERING

The following ReportDataSources are examples of how Knative Serving can be used with OpenShift
Container Platform metering.

12.2.1. Datasource for CPU usage in Knative Serving

This datasource provides the accumulated CPU seconds used per Knative service over the report time
period.

Example YAML file

12.2.2. Datasource for memory usage in Knative Serving

This datasource provides the average memory consumption per Knative service over the report time
period.

Example YAML file

apiVersion: metering.openshift.io/v1
kind: ReportDataSource
metadata:
 name: knative-service-cpu-usage
spec:
 prometheusMetricsImporter:
 query: >
 sum
 by(namespace,
 label_serving_knative_dev_service,
 label_serving_knative_dev_revision)
 (

label_replace(rate(container_cpu_usage_seconds_total{container!="POD",container!="",pod!=""}
[1m]), "pod", "$1", "pod", "(.*)")
 *
 on(pod, namespace)
 group_left(label_serving_knative_dev_service, label_serving_knative_dev_revision)
 kube_pod_labels{label_serving_knative_dev_service!=""}
)

OpenShift Container Platform 4.3 Serverless applications

94

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/metering/#about-metering
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/metering/#installing-metering

12.2.3. Applying Datasources for Knative Serving metering

1. Apply the ReportDataSources:

12.3. QUERIES FOR KNATIVE SERVING METERING

The following ReportQuery resources reference the example DataSources provided.

12.3.1. Query for CPU usage in Knative Serving

YAML file

apiVersion: metering.openshift.io/v1
kind: ReportDataSource
metadata:
 name: knative-service-memory-usage
spec:
 prometheusMetricsImporter:
 query: >
 sum
 by(namespace,
 label_serving_knative_dev_service,
 label_serving_knative_dev_revision)
 (
 label_replace(container_memory_usage_bytes{container!="POD", container!="",pod!=""},
"pod", "$1", "pod", "(.*)")
 *
 on(pod, namespace)
 group_left(label_serving_knative_dev_service, label_serving_knative_dev_revision)
 kube_pod_labels{label_serving_knative_dev_service!=""}
)

$ oc apply -f <datasource_name>

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: knative-service-cpu-usage
spec:
 inputs:
 - name: ReportingStart
 type: time
 - name: ReportingEnd
 type: time
 - default: knative-service-cpu-usage
 name: KnativeServiceCpuUsageDataSource
 type: ReportDataSource
 columns:
 - name: period_start
 type: timestamp
 unit: date
 - name: period_end
 type: timestamp

CHAPTER 12. USING METERING WITH OPENSHIFT SERVERLESS

95

12.3.2. Query for memory usage in Knative Serving

YAML file

 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: service
 type: varchar
 - name: data_start
 type: timestamp
 unit: date
 - name: data_end
 type: timestamp
 unit: date
 - name: service_cpu_seconds
 type: double
 unit: cpu_core_seconds
 query: |
 SELECT
 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}'
AS period_start,
 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS
period_end,
 labels['namespace'] as project,
 labels['label_serving_knative_dev_service'] as service,
 min("timestamp") as data_start,
 max("timestamp") as data_end,
 sum(amount * "timeprecision") AS service_cpu_seconds
 FROM {| dataSourceTableName .Report.Inputs.KnativeServiceCpuUsageDataSource |}
 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart
| prestoTimestamp |}'
 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd |
prestoTimestamp |}'
 GROUP BY labels['namespace'],labels['label_serving_knative_dev_service']

apiVersion: metering.openshift.io/v1
kind: ReportQuery
metadata:
 name: knative-service-memory-usage
spec:
 inputs:
 - name: ReportingStart
 type: time
 - name: ReportingEnd
 type: time
 - default: knative-service-memory-usage
 name: KnativeServiceMemoryUsageDataSource
 type: ReportDataSource
 columns:
 - name: period_start
 type: timestamp
 unit: date
 - name: period_end

OpenShift Container Platform 4.3 Serverless applications

96

12.3.3. Applying Queries for Knative Serving metering

1. Apply the ReportQuery by entering the following command:

Example command

12.4. METERING REPORTS FOR KNATIVE SERVING

You can run metering reports against Knative Serving by creating Report resources. Before you run a
report, you must modify the input parameter within the Report resource to specify the start and end
dates of the reporting period.

YAML file

 type: timestamp
 unit: date
 - name: namespace
 type: varchar
 unit: kubernetes_namespace
 - name: service
 type: varchar
 - name: data_start
 type: timestamp
 unit: date
 - name: data_end
 type: timestamp
 unit: date
 - name: service_usage_memory_byte_seconds
 type: double
 unit: byte_seconds
 query: |
 SELECT
 timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart| prestoTimestamp |}'
AS period_start,
 timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd | prestoTimestamp |}' AS
period_end,
 labels['namespace'] as project,
 labels['label_serving_knative_dev_service'] as service,
 min("timestamp") as data_start,
 max("timestamp") as data_end,
 sum(amount * "timeprecision") AS service_usage_memory_byte_seconds
 FROM {| dataSourceTableName .Report.Inputs.KnativeServiceMemoryUsageDataSource |}
 WHERE "timestamp" >= timestamp '{| default .Report.ReportingStart .Report.Inputs.ReportingStart
| prestoTimestamp |}'
 AND "timestamp" < timestamp '{| default .Report.ReportingEnd .Report.Inputs.ReportingEnd |
prestoTimestamp |}'
 GROUP BY labels['namespace'],labels['label_serving_knative_dev_service']

$ oc apply -f <query-name>.yaml

$ oc apply -f knative-service-memory-usage.yaml

apiVersion: metering.openshift.io/v1

CHAPTER 12. USING METERING WITH OPENSHIFT SERVERLESS

97

1

2

3

Start date of the report, in ISO 8601 format.

End date of the report, in ISO 8601 format.

Either knative-service-cpu-usage for CPU usage report or knative-service-memory-usage for a
memory usage report.

12.4.1. Running a metering report

1. Run the report by entering the following command:

2. You can then check the report by entering the following command:

Example output

kind: Report
metadata:
 name: knative-service-cpu-usage
spec:
 reportingStart: '2019-06-01T00:00:00Z' 1
 reportingEnd: '2019-06-30T23:59:59Z' 2
 query: knative-service-cpu-usage 3
runImmediately: true

$ oc apply -f <report-name>.yml

$ oc get report

NAME QUERY SCHEDULE RUNNING FAILED LAST
REPORT TIME AGE
knative-service-cpu-usage knative-service-cpu-usage Finished 2019-06-
30T23:59:59Z 10h

OpenShift Container Platform 4.3 Serverless applications

98

	Table of Contents
	CHAPTER 1. OPENSHIFT SERVERLESS RELEASE NOTES
	1.1. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.2
	1.1.1. Fixed issues

	1.2. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.1
	1.2.1. New features
	1.2.2. Fixed issues

	1.3. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS 1.7.0
	1.3.1. New features
	1.3.2. Fixed issues
	1.3.3. Known issues

	1.4. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.6.0
	1.4.1. New features
	1.4.2. Fixed issues
	1.4.3. Known issues

	1.5. RELEASE NOTES FOR RED HAT OPENSHIFT SERVERLESS TECHNOLOGY PREVIEW 1.5.0
	1.5.1. New features
	1.5.2. Fixed issues
	1.5.3. Known issues

	1.6. ADDITIONAL RESOURCES

	CHAPTER 2. OPENSHIFT SERVERLESS SUPPORT
	2.1. GETTING SUPPORT
	2.2. GATHERING DIAGNOSTIC INFORMATION FOR SUPPORT
	2.2.1. About the must-gather tool
	2.2.2. About collecting OpenShift Serverless data

	CHAPTER 3. ARCHITECTURE
	3.1. KNATIVE SERVING ARCHITECTURE
	3.1.1. Knative Serving CRDs

	3.2. KNATIVE EVENTING ARCHITECTURE
	3.2.1. Event sinks

	CHAPTER 4. GETTING STARTED WITH OPENSHIFT SERVERLESS
	4.1. HOW OPENSHIFT SERVERLESS WORKS
	4.2. SUPPORTED CONFIGURATIONS
	4.3. NEXT STEPS

	CHAPTER 5. INSTALLING OPENSHIFT SERVERLESS
	5.1. INSTALLING OPENSHIFT SERVERLESS
	5.1.1. Cluster sizing requirements
	5.1.1.1. Additional requirements for advanced use-cases

	5.1.2. Installing the OpenShift Serverless Operator
	5.1.3. Next steps

	5.2. INSTALLING KNATIVE SERVING
	5.2.1. Creating the knative-serving namespace
	5.2.1.1. Creating the knative-serving namespace using the web console
	5.2.1.2. Creating the knative-serving namespace using the CLI

	5.2.2. Prerequisites
	5.2.3. Installing Knative Serving using the web console
	5.2.4. Installing Knative Serving using YAML
	5.2.5. Next steps

	5.3. INSTALLING KNATIVE EVENTING
	5.3.1. Creating the knative-eventing namespace
	5.3.1.1. Creating the knative-eventing namespace using the web console
	5.3.1.2. Creating the knative-eventing namespace using the CLI

	5.3.2. Prerequisites
	5.3.3. Installing Knative Eventing using the web console
	5.3.4. Installing Knative Eventing using YAML
	5.3.5. Next steps

	5.4. ADVANCED INSTALLATION CONFIGURATION OPTIONS
	5.4.1. Knative Serving supported installation configuration options
	5.4.1.1. Controller Custom Certs
	5.4.1.2. High availability

	5.4.2. Additional resources

	5.5. UPGRADING OPENSHIFT SERVERLESS
	5.5.1. Updating Knative services URL formats
	5.5.2. Upgrading the Subscription Channel

	5.6. REMOVING OPENSHIFT SERVERLESS
	5.6.1. Uninstalling Knative Serving
	5.6.2. Uninstalling Knative Eventing
	5.6.3. Removing the OpenShift Serverless Operator
	5.6.4. Deleting OpenShift Serverless CRDs
	5.6.5. Prerequisites

	5.7. INSTALLING THE KNATIVE CLI (KN)
	5.7.1. Installing the kn CLI using the OpenShift Container Platform web console
	5.7.2. Installing the kn CLI for Linux using an RPM
	5.7.3. Installing the kn CLI for Linux
	5.7.4. Installing the kn CLI for macOS
	5.7.5. Installing the kn CLI for Windows

	CHAPTER 6. CREATING AND MANAGING SERVERLESS APPLICATIONS
	6.1. SERVERLESS APPLICATIONS USING KNATIVE SERVICES
	6.2. CREATING SERVERLESS APPLICATIONS USING THE OPENSHIFT CONTAINER PLATFORM WEB CONSOLE
	6.2.1. Creating serverless applications using the Administrator perspective
	6.2.2. Creating serverless applications using the Developer perspective

	6.3. CREATING SERVERLESS APPLICATIONS USING THE KN CLI
	6.4. CREATING SERVERLESS APPLICATIONS USING YAML
	6.5. VERIFYING YOUR SERVERLESS APPLICATION DEPLOYMENT
	6.6. INTERACTING WITH A SERVERLESS APPLICATION USING HTTP2 / GRPC

	CHAPTER 7. HIGH AVAILABILITY ON OPENSHIFT SERVERLESS
	7.1. CONFIGURING HIGH AVAILABILITY REPLICAS ON OPENSHIFT SERVERLESS

	CHAPTER 8. TRACING REQUESTS USING JAEGER
	8.1. CONFIGURING JAEGER FOR USE WITH OPENSHIFT SERVERLESS

	CHAPTER 9. KNATIVE SERVING
	9.1. USING KN TO COMPLETE SERVING TASKS
	9.1.1. Basic workflow using kn
	9.1.2. Autoscaling workflow using kn
	9.1.3. Traffic splitting using kn
	9.1.3.1. Assigning tag revisions
	9.1.3.2. Unassigning tag revisions
	9.1.3.3. Traffic flag operation precedence
	9.1.3.4. Traffic splitting flags

	9.2. CONFIGURING KNATIVE SERVING AUTOSCALING
	9.2.1. Configuring concurrent requests for Knative Serving autoscaling
	9.2.1.1. Configuring concurrent requests using the target annotation
	9.2.1.2. Configuring concurrent requests using the containerConcurrency field

	9.2.2. Configuring scale bounds Knative Serving autoscaling

	9.3. CLUSTER LOGGING WITH OPENSHIFT SERVERLESS
	9.3.1. Cluster logging
	9.3.2. About deploying and configuring cluster logging
	9.3.2.1. Configuring and Tuning Cluster Logging
	9.3.2.2. Sample modified Cluster Logging Custom Resource

	9.3.3. Using cluster logging to find logs for Knative Serving components
	9.3.4. Using cluster logging to find logs for services deployed with Knative Serving

	9.4. SPLITTING TRAFFIC BETWEEN REVISIONS
	9.4.1. Splitting traffic between revisions using the Developer perspective

	CHAPTER 10. KNATIVE EVENTING
	10.1. USING BROKERS WITH KNATIVE EVENTING
	10.1.1. Creating a broker manually
	10.1.2. Creating a broker automatically using namespace annotation
	10.1.3. Deleting a broker that was created using namespace annotation

	10.2. USING CHANNELS
	10.2.1. Supported channel types
	10.2.2. Using the default InMemoryChannel configuration

	10.3. USING SUBSCRIPTIONS TO SEND EVENTS FROM A CHANNEL TO A SINK
	10.3.1. Creating a subscription

	10.4. USING TRIGGERS
	10.4.1. Prerequisites
	10.4.2. Creating a trigger using kn
	10.4.3. Listing triggers using kn
	10.4.4. Listing triggers using kn in JSON format
	10.4.5. Describing a trigger using kn
	10.4.6. Deleting a trigger using kn
	10.4.7. Updating a trigger using kn
	10.4.8. Filtering events using triggers

	10.5. USING SINKBINDING
	10.5.1. Using SinkBinding with the Knative CLI (kn)
	10.5.2. Using SinkBinding with the YAML method

	CHAPTER 11. EVENT SOURCES
	11.1. GETTING STARTED WITH EVENT SOURCES
	11.1.1. Prerequisites
	11.1.2. Creating event sources
	11.1.3. Additional resources

	11.2. USING THE KN CLI TO LIST EVENT SOURCES AND EVENT SOURCE TYPES
	11.2.1. Listing available event source types using kn
	11.2.2. Listing available event sources using kn
	11.2.2.1. Listing event sources of a specific type only

	11.2.3. Next steps

	11.3. USING APISERVERSOURCE
	11.3.1. Using the ApiServerSource with the Knative CLI (kn)
	11.3.2. Deleting the ApiServerSource using the Knative CLI (kn)
	11.3.3. Using the ApiServerSource with the YAML method
	11.3.4. Deleting the ApiServerSource

	11.4. USING A PINGSOURCE
	11.4.1. Using a PingSource with the kn CLI
	11.4.1.1. Remove the PingSource

	11.4.2. Using a PingSource with YAML
	11.4.2.1. Remove the PingSource

	CHAPTER 12. USING METERING WITH OPENSHIFT SERVERLESS
	12.1. INSTALLING METERING
	12.2. DATASOURCES FOR KNATIVE SERVING METERING
	12.2.1. Datasource for CPU usage in Knative Serving
	12.2.2. Datasource for memory usage in Knative Serving
	12.2.3. Applying Datasources for Knative Serving metering

	12.3. QUERIES FOR KNATIVE SERVING METERING
	12.3.1. Query for CPU usage in Knative Serving
	12.3.2. Query for memory usage in Knative Serving
	12.3.3. Applying Queries for Knative Serving metering

	12.4. METERING REPORTS FOR KNATIVE SERVING
	12.4.1. Running a metering report

