
OpenShift Container Platform 4.3

Networking

Configuring and managing cluster networking

Last Updated: 2020-10-22

OpenShift Container Platform 4.3 Networking

Configuring and managing cluster networking

Legal Notice

Copyright © 2020 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This document provides instructions for configuring and managing your OpenShift Container
Platform cluster network, including DNS, ingress, and the Pod network.

. .

. .

. .

. .

. .

. .

Table of Contents

CHAPTER 1. UNDERSTANDING NETWORKING
1.1. OPENSHIFT CONTAINER PLATFORM DNS

CHAPTER 2. ACCESSING HOSTS
2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE
CLUSTER

CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
3.1. CLUSTER NETWORK OPERATOR
3.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
3.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
3.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
3.5. CLUSTER NETWORK OPERATOR CONFIGURATION

3.5.1. Configuration parameters for the OpenShift SDN default CNI network provider
3.5.2. Configuration parameters for the OVN-Kubernetes default CNI network provider
3.5.3. Cluster Network Operator example configuration

CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
4.1. DNS OPERATOR
4.2. VIEW THE DEFAULT DNS
4.3. USING DNS FORWARDING
4.4. DNS OPERATOR STATUS
4.5. DNS OPERATOR LOGS

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
5.1. THE INGRESS CONFIGURATION ASSET
5.2. INGRESS CONTROLLER CONFIGURATION PARAMETERS

5.2.1. Ingress controller TLS profiles
5.2.2. Ingress controller endpoint publishing strategy

5.3. VIEW THE DEFAULT INGRESS CONTROLLER
5.4. VIEW INGRESS OPERATOR STATUS
5.5. VIEW INGRESS CONTROLLER LOGS
5.6. VIEW INGRESS CONTROLLER STATUS
5.7. SETTING A CUSTOM DEFAULT CERTIFICATE
5.8. SCALING AN INGRESS CONTROLLER
5.9. CONFIGURING INGRESS CONTROLLER SHARDING BY USING ROUTE LABELS
5.10. CONFIGURING INGRESS CONTROLLER SHARDING BY USING NAMESPACE LABELS
5.11. CONFIGURING AN INGRESS CONTROLLER TO USE AN INTERNAL LOAD BALANCER
5.12. CONFIGURING THE DEFAULT INGRESS CONTROLLER FOR YOUR CLUSTER TO BE INTERNAL
5.13. ADDITIONAL RESOURCES

CHAPTER 6. NETWORK POLICY
6.1. ABOUT NETWORK POLICY

6.1.1. About network policy
6.1.2. Next steps
6.1.3. Additional resources

6.2. CREATING A NETWORK POLICY
6.2.1. Creating a NetworkPolicy object
6.2.2. Example NetworkPolicy object

6.3. VIEWING A NETWORK POLICY
6.3.1. Viewing NetworkPolicy objects
6.3.2. Example NetworkPolicy object

6.4. EDITING A NETWORK POLICY

8
8

9

9

10
10
10
11
11

12
13
13
14

15
15
15
16
18
18

19
19
19
22
23
23
24
24
24
24
26
26
27
28
29
30

31
31
31

33
33
33
33
34
35
35
35
36

Table of Contents

1

. .

6.4.1. Editing a NetworkPolicy object
6.4.2. Example NetworkPolicy object
6.4.3. Additional resources

6.5. DELETING A NETWORK POLICY
6.5.1. Deleting a NetworkPolicy object

6.6. CREATING DEFAULT NETWORK POLICIES FOR A NEW PROJECT
6.6.1. Modifying the template for new projects
6.6.2. Adding network policy objects to the new project template

6.7. CONFIGURING MULTITENANT MODE WITH NETWORK POLICY
6.7.1. Configuring multitenant isolation using NetworkPolicy
6.7.2. Next steps

CHAPTER 7. MULTIPLE NETWORKS
7.1. UNDERSTANDING MULTIPLE NETWORKS

7.1.1. Usage scenarios for an additional network
7.1.2. Additional networks in OpenShift Container Platform

7.2. ATTACHING A POD TO AN ADDITIONAL NETWORK
7.2.1. Adding a Pod to an additional network

7.2.1.1. Specifying Pod-specific addressing and routing options
7.3. REMOVING A POD FROM AN ADDITIONAL NETWORK

7.3.1. Removing a Pod from an additional network
7.4. CONFIGURING A BRIDGE NETWORK

7.4.1. Creating an additional network attachment with the bridge CNI plug-in
7.4.1.1. Configuration for bridge

7.4.1.1.1. bridge configuration example
7.4.1.2. Configuration for ipam CNI plug-in

7.4.1.2.1. Static IP address assignment configuration
7.4.1.2.2. Dynamic IP address assignment configuration
7.4.1.2.3. Static IP address assignment configuration example
7.4.1.2.4. Dynamic IP address assignment configuration example using DHCP

7.4.2. Next steps
7.5. CONFIGURING A MACVLAN NETWORK

7.5.1. Creating an additional network attachment with the macvlan CNI plug-in
7.5.1.1. Configuration for macvlan CNI plug-in

7.5.1.1.1. macvlan configuration example
7.5.1.2. Configuration for ipam CNI plug-in

7.5.1.2.1. Static ipam configuration YAML
7.5.1.2.2. Dynamic ipam configuration YAML
7.5.1.2.3. Static IP address assignment configuration example
7.5.1.2.4. Dynamic IP address assignment configuration example

7.5.2. Next steps
7.6. CONFIGURING AN IPVLAN NETWORK

7.6.1. Creating an additional network attachment with the ipvlan CNI plug-in
7.6.1.1. Configuration for ipvlan

7.6.1.1.1. ipvlan configuration example
7.6.1.2. Configuration for ipam CNI plug-in

7.6.1.2.1. Static IP address assignment configuration
7.6.1.2.2. Dynamic IP address assignment configuration
7.6.1.2.3. Static IP address assignment configuration example
7.6.1.2.4. Dynamic IP address assignment configuration example using DHCP

7.6.2. Next steps
7.7. CONFIGURING A HOST-DEVICE NETWORK

7.7.1. Creating an additional network attachment with the host-device CNI plug-in

36
37
37
37
38
38
38
39
40
40
42

43
43
43
43
44
44
46
49
49
50
51
52
53
54
54
55
56
56
56
56
56
58
58
58
59
60
60
60
60
61
61

62
63
63
64
65
65
66
66
66
66

OpenShift Container Platform 4.3 Networking

2

. .

7.7.1.1. Configuration for host-device
7.7.1.1.1. host-device configuration example

7.7.1.2. Configuration for ipam CNI plug-in
7.7.1.2.1. Static IP address assignment configuration
7.7.1.2.2. Dynamic IP address assignment configuration
7.7.1.2.3. Static IP address assignment configuration example
7.7.1.2.4. Dynamic IP address assignment configuration example using DHCP

7.7.2. Next steps
7.8. EDITING AN ADDITIONAL NETWORK

7.8.1. Modifying an additional network attachment definition
7.9. REMOVING AN ADDITIONAL NETWORK

7.9.1. Removing an additional network attachment definition
7.10. CONFIGURING PTP

7.10.1. About PTP hardware on OpenShift Container Platform
7.10.2. Installing the PTP Operator

7.10.2.1. Installing the Operator using the CLI
7.10.2.2. Installing the Operator using the web console

7.10.3. Automated discovery of PTP network devices
7.10.4. Configuring Linuxptp services

CHAPTER 8. HARDWARE NETWORKS
8.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS

8.1.1. Components that manage SR-IOV network devices
8.1.1.1. Supported devices
8.1.1.2. Example use of a virtual function in a Pod

8.1.2. Next steps
8.2. INSTALLING THE SR-IOV NETWORK OPERATOR

8.2.1. Installing SR-IOV Network Operator
8.2.1.1. CLI: Installing the SR-IOV Network Operator
8.2.1.2. Web console: Installing the SR-IOV Network Operator

8.2.2. Next steps
8.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

8.3.1. Configuring the SR-IOV Network Operator
8.3.1.1. About the Network Resources Injector
8.3.1.2. About the SR-IOV Operator admission controller webhook
8.3.1.3. About custom node selectors
8.3.1.4. Disabling or enabling the Network Resources Injector
8.3.1.5. Disabling or enabling the SR-IOV Operator admission controller webhook
8.3.1.6. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

8.3.2. Next steps
8.4. CONFIGURING AN SR-IOV NETWORK DEVICE

8.4.1. Automated discovery of SR-IOV network devices
8.4.1.1. Example SriovNetworkNodeState CR

8.4.2. Configuring SR-IOV network devices
8.4.3. Next steps

8.5. CONFIGURING AN SR-IOV NETWORK ATTACHMENT
8.5.1. Configuring SR-IOV additional network

8.5.1.1. Configuration for ipam CNI plug-in
8.5.1.1.1. Static IP address assignment configuration
8.5.1.1.2. Dynamic IP address assignment configuration
8.5.1.1.3. Static IP address assignment configuration example
8.5.1.1.4. Dynamic IP address assignment configuration example using DHCP

8.5.1.2. Configuring static MAC and IP addresses on additional SR-IOV networks

67
68
69
69
70
71
71
71
71
71
72
72
73
73
73
74
75
76
77

80
80
80
81
81

82
82
83
83
84
85
85
85
86
86
87
87
87
88
88
88
89
89
90
92
92
92
94
95
95
96
97
97

Table of Contents

3

. .

. .

8.5.2. Next steps
8.6. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK

8.6.1. Adding a Pod to an additional network
8.6.2. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod

8.7. USING HIGH PERFORMANCE MULTICAST
8.7.1. Configuring high performance multicast
8.7.2. Using an SR-IOV interface for multicast

8.8. USING VIRTUAL FUNCTIONS (VFS) WITH DPDK AND RDMA MODES
8.8.1. Examples of using virtual functions in DPDK and RDMA modes
8.8.2. Prerequisites
8.8.3. Example use of virtual function (VF) in DPDK mode with Intel NICs
8.8.4. Example use of a virtual function in DPDK mode with Mellanox NICs
8.8.5. Example of a virtual function in RDMA mode with Mellanox NICs

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
9.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
9.2. CONFIGURING EGRESS IPS FOR A PROJECT

9.2.1. Egress IP address assignment for project egress traffic
9.2.1.1. Considerations when using automatically assigned egress IP addresses
9.2.1.2. Considerations when using manually assigned egress IP addresses

9.2.2. Configuring automatically assigned egress IP addresses for a namespace
9.2.3. Configuring manually assigned egress IP addresses for a namespace

9.3. CONFIGURING AN EGRESS FIREWALL TO CONTROL ACCESS TO EXTERNAL IP ADDRESSES
9.3.1. How an egress firewall works in a project

9.3.1.1. Limitations of an egress firewall
9.3.1.2. Matching order for egress network policy rules
9.3.1.3. How Domain Name Server (DNS) resolution works

9.3.2. EgressNetworkPolicy custom resource (CR) object
9.3.2.1. EgressNetworkPolicy rules
9.3.2.2. Example EgressNetworkPolicy CR object

9.3.3. Creating an egress firewall policy object
9.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

9.4.1. Editing an EgressNetworkPolicy object
9.4.2. EgressNetworkPolicy custom resource (CR) object

9.4.2.1. EgressNetworkPolicy rules
9.4.2.2. Example EgressNetworkPolicy CR object

9.5. REMOVING AN EGRESS FIREWALL FROM A PROJECT
9.5.1. Removing an EgressNetworkPolicy object

9.6. USING MULTICAST
9.6.1. About multicast
9.6.2. Enabling multicast between Pods
9.6.3. Disabling multicast between Pods

9.7. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
9.7.1. Prerequisites
9.7.2. Joining projects
9.7.3. Isolating a project
9.7.4. Disabling network isolation for a project

9.8. CONFIGURING KUBE-PROXY
9.8.1. About iptables rules synchronization
9.8.2. kube-proxy configuration parameters
9.8.3. Modifying the kube-proxy configuration

CHAPTER 10. CONFIGURING ROUTES

99
99
99
101
102
102
103
104
104
105
105
108
110

114
114
114
114
115
115
115
117
118
118
119
119
119

120
120
120
121
122
122
122
123
123
124
124
124
124
125
125
126
126
126
126
127
127
127
127
128

130

OpenShift Container Platform 4.3 Networking

4

. .

. .

. .

. .

. .

10.1. ROUTE CONFIGURATION
10.1.1. Configuring route timeouts
10.1.2. Enabling HTTP strict transport security
10.1.3. Troubleshooting throughput issues
10.1.4. Using cookies to keep route statefulness

10.1.4.1. Annotating a route with a cookie
10.1.5. Route-specific annotations

10.2. SECURED ROUTES
10.2.1. Creating a re-encrypt route with a custom certificate
10.2.2. Creating an edge route with a custom certificate

CHAPTER 11. CONFIGURING INGRESS CLUSTER TRAFFIC
11.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
11.2. CONFIGURING EXTERNALIPS FOR SERVICES

11.2.1. Prerequisites

CHAPTER 12. ABOUT EXTERNALIP
12.1. CONFIGURATION FOR EXTERNALIP
12.2. RESTRICTIONS ON THE ASSIGNMENT OF AN EXTERNAL IP ADDRESS
12.3. EXAMPLE POLICY OBJECTS

CHAPTER 13. EXTERNALIP ADDRESS BLOCK CONFIGURATION
Example external IP configurations

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER
14.1. NEXT STEPS
14.2. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER

14.2.1. Using Ingress Controllers and routes
14.2.2. Prerequisites
14.2.3. Creating a project and service
14.2.4. Exposing the service by creating a route
14.2.5. Configuring Ingress Controller sharding by using route labels
14.2.6. Configuring Ingress Controller sharding by using namespace labels
14.2.7. Additional resources

14.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
14.3.1. Using a load balancer to get traffic into the cluster
14.3.2. Prerequisites
14.3.3. Creating a project and service
14.3.4. Exposing the service by creating a route
14.3.5. Creating a load balancer service

14.4. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
14.4.1. Prerequisites
14.4.2. Attaching an ExternalIP to a Service
14.4.3. Additional resources

14.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
14.5.1. Using a NodePort to get traffic into the cluster
14.5.2. Prerequisites
14.5.3. Creating a project and service
14.5.4. Exposing the service by creating a route

CHAPTER 15. CONFIGURING THE CLUSTER-WIDE PROXY
15.1. PREREQUISITES
15.2. ENABLING THE CLUSTER-WIDE PROXY
15.3. REMOVING THE CLUSTER-WIDE PROXY

130
130
130
131
131
132
132
134
134
136

138
138
138
138

139
139
141
141

143
143

145
145
145
146
146
146
147
148
149
150
150
150
150
151
151
152
154
154
154
155
155
156
156
156
157

159
159
159
161

Table of Contents

5

. .CHAPTER 16. CONFIGURING A CUSTOM PKI
16.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
16.2. ENABLING THE CLUSTER-WIDE PROXY
16.3. CERTIFICATE INJECTION USING OPERATORS

163
163
165
167

OpenShift Container Platform 4.3 Networking

6

Table of Contents

7

CHAPTER 1. UNDERSTANDING NETWORKING
Kubernetes ensures that Pods are able to network with each other, and allocates each Pod an IP
address from an internal network. This ensures all containers within the Pod behave as if they were on
the same host. Giving each Pod its own IP address means that Pods can be treated like physical hosts or
virtual machines in terms of port allocation, networking, naming, service discovery, load balancing,
application configuration, and migration.

NOTE

Some cloud platforms offer metadata APIs that listen on the 169.254.169.254 IP address,
a link-local IP address in the IPv4 169.254.0.0/16 CIDR block.

This CIDR block is not reachable from the pod network. Pods that need access to these
IP addresses must be given host network access by setting the spec.hostNetwork field
in the Pod spec to true.

If you allow a Pod host network access, you grant the Pod privileged access to the
underlying network infrastructure.

1.1. OPENSHIFT CONTAINER PLATFORM DNS

If you are running multiple services, such as front-end and back-end services for use with multiple Pods,
environment variables are created for user names, service IPs, and more so the front-end Pods can
communicate with the back-end services. If the service is deleted and recreated, a new IP address can
be assigned to the service, and requires the front-end Pods to be recreated to pick up the updated
values for the service IP environment variable. Additionally, the back-end service must be created
before any of the front-end Pods to ensure that the service IP is generated properly, and that it can be
provided to the front-end Pods as an environment variable.

For this reason, OpenShift Container Platform has a built-in DNS so that the services can be reached by
the service DNS as well as the service IP/port.

OpenShift Container Platform 4.3 Networking

8

CHAPTER 2. ACCESSING HOSTS
Learn how to create a bastion host to access OpenShift Container Platform instances and access the
master nodes with secure shell (SSH) access.

2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN
INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

The OpenShift Container Platform installer does not create any public IP addresses for any of the
Amazon Elastic Compute Cloud (Amazon EC2) instances that it provisions for your OpenShift
Container Platform cluster. In order to be able to SSH to your OpenShift Container Platform hosts, you
must follow this procedure.

Procedure

1. Create a security group that allows SSH access into the virtual private cloud (VPC) created by
the openshift-install command.

2. Create an Amazon EC2 instance on one of the public subnets the installer created.

3. Associate a public IP address with the Amazon EC2 instance that you created.
Unlike with the OpenShift Container Platform installation, you should associate the Amazon EC2
instance you created with an SSH keypair. It does not matter what operating system you choose
for this instance, as it will simply serve as an SSH bastion to bridge the internet into your
OpenShift Container Platform cluster’s VPC. The Amazon Machine Image (AMI) you use does
matter. With Red Hat Enterprise Linux CoreOS, for example, you can provide keys via Ignition,
like the installer does.

4. Once you provisioned your Amazon EC2 instance and can SSH into it, you must add the SSH
key that you associated with your OpenShift Container Platform installation. This key can be
different from the key for the bastion instance, but does not have to be.

NOTE

Direct SSH access is only recommended for disaster recovery. When the
Kubernetes API is responsive, run privileged pods instead.

5. Run oc get nodes, inspect the output, and choose one of the nodes that is a master. The host
name looks similar to ip-10-0-1-163.ec2.internal.

6. From the bastion SSH host you manually deployed into Amazon EC2, SSH into that master host.
Ensure that you use the same SSH key you specified during the installation:

$ ssh -i <ssh-key-path> core@<master-hostname>

CHAPTER 2. ACCESSING HOSTS

9

CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT
CONTAINER PLATFORM

The Cluster Network Operator (CNO) deploys and manages the cluster network components on an
OpenShift Container Platform cluster, including the default Container Network Interface (CNI) network
provider plug-in selected for the cluster during installation.

3.1. CLUSTER NETWORK OPERATOR

The Cluster Network Operator implements the network API from the operator.openshift.io API group.
The Operator deploys the OpenShift SDN default Container Network Interface (CNI) network provider
plug-in, or the default network provider plug-in that you selected during cluster installation, by using a
DaemonSet.

Procedure

The Cluster Network Operator is deployed during installation as a Kubernetes Deployment.

1. Run the following command to view the Deployment status:

Example output

2. Run the following command to view the state of the Cluster Network Operator:

Example output

The following fields provide information about the status of the operator: AVAILABLE,
PROGRESSING, and DEGRADED. The AVAILABLE field is True when the Cluster Network
Operator reports an available status condition.

3.2. VIEWING THE CLUSTER NETWORK CONFIGURATION

Every new OpenShift Container Platform installation has a network.config object named cluster.

Procedure

Use the oc describe command to view the cluster network configuration:

Example output

$ oc get -n openshift-network-operator deployment/network-operator

NAME READY UP-TO-DATE AVAILABLE AGE
network-operator 1/1 1 1 56m

$ oc get clusteroperator/network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.3.0 True False False 50m

$ oc describe network.config/cluster

OpenShift Container Platform 4.3 Networking

10

1

2

The Spec field displays the configured state of the cluster network.

The Status field displays the current state of the cluster network configuration.

3.3. VIEWING CLUSTER NETWORK OPERATOR STATUS

You can inspect the status and view the details of the Cluster Network Operator using the oc describe
command.

Procedure

Run the following command to view the status of the Cluster Network Operator:

3.4. VIEWING CLUSTER NETWORK OPERATOR LOGS

You can view Cluster Network Operator logs by using the oc logs command.

Procedure

Run the following command to view the logs of the Cluster Network Operator:

IMPORTANT

Name: cluster
Namespace:
Labels: <none>
Annotations: <none>
API Version: config.openshift.io/v1
Kind: Network
Metadata:
 Self Link: /apis/config.openshift.io/v1/networks/cluster
Spec: 1
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Status: 2
 Cluster Network:
 Cidr: 10.128.0.0/14
 Host Prefix: 23
 Cluster Network MTU: 8951
 Network Type: OpenShiftSDN
 Service Network:
 172.30.0.0/16
Events: <none>

$ oc describe clusteroperators/network

$ oc logs --namespace=openshift-network-operator deployment/network-operator

CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

11

1

2

3

4

IMPORTANT

The Open Virtual Networking (OVN) Kubernetes network plug-in is a Technology Preview
feature only. Technology Preview features are not supported with Red Hat production
service level agreements (SLAs) and might not be functionally complete. Red Hat does
not recommend using them in production. These features provide early access to
upcoming product features, enabling customers to test functionality and provide
feedback during the development process.

For more information about the support scope of the OVN Technology Preview, see
https://access.redhat.com/articles/4380121.

3.5. CLUSTER NETWORK OPERATOR CONFIGURATION

The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO)
configuration and stored in a CR object that is named cluster. The CR specifies the parameters for the
Network API in the operator.openshift.io API group.

You can specify the cluster network configuration for your OpenShift Container Platform cluster by
setting the parameter values for the defaultNetwork parameter in the CNO CR. The following CR
displays the default configuration for the CNO and explains both the parameters you can configure and
the valid parameter values:

Cluster Network Operator CR

A list specifying the blocks of IP addresses from which Pod IPs are allocated and the subnet prefix
length assigned to each individual node.

A block of IP addresses for services. The OpenShift SDN Container Network Interface (CNI)
network provider supports only a single IP address block for the service network.

Configures the default CNI network provider for the cluster network.

The parameters for this object specify the Kubernetes network proxy (kube-proxy) configuration.
If you are using the OVN-Kubernetes default CNI network provider, the kube-proxy configuration
has no effect.

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork: 1
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork: 2
 - 172.30.0.0/16
 defaultNetwork: 3
 ...
 kubeProxyConfig: 4
 iptablesSyncPeriod: 30s 5
 proxyArguments:
 iptables-min-sync-period: 6
 - 0s

OpenShift Container Platform 4.3 Networking

12

https://access.redhat.com/articles/4380121

5

6

1

2

3

4

5

The refresh period for iptables rules. The default value is 30s. Valid suffixes include s, m, and h
and are described in the Go time package documentation.

NOTE

Because of performance improvements introduced in OpenShift Container Platform
4.3 and greater, adjusting the iptablesSyncPeriod parameter is no longer
necessary.

The minimum duration before refreshing iptables rules. This parameter ensures that the refresh
does not happen too frequently. Valid suffixes include s, m, and h and are described in the Go time
package.

3.5.1. Configuration parameters for the OpenShift SDN default CNI network
provider

The following YAML object describes the configuration parameters for the OpenShift SDN default
Container Network Interface (CNI) network provider.

NOTE

You can only change the configuration for your default CNI network provider during
cluster installation.

The default CNI network provider plug-in that is used.

OpenShift SDN specific configuration parameters.

The network isolation mode for OpenShift SDN.

The maximum transmission unit (MTU) for the VXLAN overlay network. This value is normally
configured automatically.

The port to use for all VXLAN packets. The default value is 4789.

3.5.2. Configuration parameters for the OVN-Kubernetes default CNI network
provider

The following YAML object describes the configuration parameters for the OVN-Kubernetes default
CNI network provider.

NOTE

defaultNetwork:
 type: OpenShiftSDN 1
 openshiftSDNConfig: 2
 mode: NetworkPolicy 3
 mtu: 1450 4
 vxlanPort: 4789 5

CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM

13

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

1

2

3

4

NOTE

You can only change the configuration for your default CNI network provider during
cluster installation.

The default CNI network provider plug-in that is used.

OVN-Kubernetes specific configuration parameters.

The MTU for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This
value is normally configured automatically.

The UDP port for the Geneve overlay network.

3.5.3. Cluster Network Operator example configuration

A complete CR object for the CNO is displayed in the following example:

Cluster Network Operator example CR

defaultNetwork:
 type: OVNKubernetes 1
 ovnKubernetesConfig: 2
 mtu: 1400 3
 genevePort: 6081 4

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 serviceNetwork:
 - 172.30.0.0/16
 defaultNetwork:
 type: OpenShiftSDN
 openshiftSDNConfig:
 mode: NetworkPolicy
 mtu: 1450
 vxlanPort: 4789
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 0s

OpenShift Container Platform 4.3 Networking

14

CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The DNS Operator deploys and manages CoreDNS to provide a name resolution service to pods,
enabling DNS-based Kubernetes Service discovery in OpenShift.

4.1. DNS OPERATOR

The DNS Operator implements the dns API from the operator.openshift.io API group. The operator
deploys CoreDNS using a DaemonSet, creates a Service for the DaemonSet, and configures the kubelet
to instruct pods to use the CoreDNS Service IP for name resolution.

Procedure

The DNS Operator is deployed during installation as a Kubernetes Deployment.

1. Use the oc get command to view the Deployment status:

Example output

ClusterOperator is the Custom Resource object which holds the current state of an operator.
This object is used by operators to convey their state to the rest of the cluster.

2. Use the oc get command to view the state of the DNS Operator:

Example output

AVAILABLE, PROGRESSING and DEGRADED provide information about the status of the
operator. AVAILABLE is True when at least 1 pod from the CoreDNS DaemonSet is reporting
an Available status condition.

4.2. VIEW THE DEFAULT DNS

Every new OpenShift Container Platform installation has a dns.operator named default.

Procedure

1. Use the oc describe command to view the default dns:

Example output

$ oc get -n openshift-dns-operator deployment/dns-operator

NAME READY UP-TO-DATE AVAILABLE AGE
dns-operator 1/1 1 1 23h

$ oc get clusteroperator/dns

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
dns 4.1.0-0.11 True False False 92m

$ oc describe dns.operator/default

CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

15

1

2

The Cluster Domain field is the base DNS domain used to construct fully qualified Pod and
Service domain names.

The Cluster IP is the address pods query for name resolution. The IP is defined as the 10th
address in the Service CIDR range.

2. To find the Service CIDR of your cluster, use the oc get command:

Example output

4.3. USING DNS FORWARDING

You can use DNS forwarding to override the forwarding configuration identified in etc/resolv.conf on a
per-zone basis by specifying which name server should be used for a given zone.

Procedure

1. Modify the DNS Operator object named default:

This allows the Operator to create and update the ConfigMap named dns-default with
additional server configuration blocks based on Server. If none of the servers has a zone that
matches the query, then name resolution falls back to the name servers that are specified in
/etc/resolv.conf.

Sample DNS

Name: default
Namespace:
Labels: <none>
Annotations: <none>
API Version: operator.openshift.io/v1
Kind: DNS
...
Status:
 Cluster Domain: cluster.local 1
 Cluster IP: 172.30.0.10 2
...

$ oc get networks.config/cluster -o jsonpath='{$.status.serviceNetwork}'

[172.30.0.0/16]

$ oc edit dns.operator/default

apiVersion: operator.openshift.io/v1
kind: DNS
metadata:
 name: default
spec:
 servers:
 - name: foo-server 1
 zones: 2

OpenShift Container Platform 4.3 Networking

16

1

2

3

name must comply with the rfc6335 service name syntax.

zones must conform to the definition of a subdomain in rfc1123. The cluster domain,
cluster.local, is an invalid subdomain for zones.

A maximum of 15 upstreams is allowed per forwardPlugin.

NOTE

If servers is undefined or invalid, the ConfigMap only contains the default server.

2. View the ConfigMap:

Sample DNS ConfigMap based on previous sample DNS

 - foo.com
 forwardPlugin:
 upstreams: 3
 - 1.1.1.1
 - 2.2.2.2:5353
 - name: bar-server
 zones:
 - bar.com
 - example.com
 forwardPlugin:
 upstreams:
 - 3.3.3.3
 - 4.4.4.4:5454

$ oc get configmap/dns-default -n openshift-dns -o yaml

apiVersion: v1
data:
 Corefile: |
 foo.com:5353 {
 forward . 1.1.1.1 2.2.2.2:5353
 }
 bar.com:5353 example.com:5353 {
 forward . 3.3.3.3 4.4.4.4:5454 1
 }
 .:5353 {
 errors
 health
 kubernetes cluster.local in-addr.arpa ip6.arpa {
 pods insecure
 upstream
 fallthrough in-addr.arpa ip6.arpa
 }
 prometheus :9153
 forward . /etc/resolv.conf {
 policy sequential
 }
 cache 30

CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

17

1 Changes to the forwardPlugin triggers a rolling update of the CoreDNS DaemonSet.

Additional resources

For more information on DNS forwarding, see the CoreDNS forward documentation.

4.4. DNS OPERATOR STATUS

You can inspect the status and view the details of the DNS Operator using the oc describe command.

Procedure

View the status of the DNS Operator:

4.5. DNS OPERATOR LOGS

You can view DNS Operator logs by using the oc logs command.

Procedure

View the logs of the DNS Operator:

 reload
 }
kind: ConfigMap
metadata:
 labels:
 dns.operator.openshift.io/owning-dns: default
 name: dns-default
 namespace: openshift-dns

$ oc describe clusteroperators/dns

$ oc logs -n openshift-dns-operator deployment/dns-operator -c dns-operator

OpenShift Container Platform 4.3 Networking

18

https://coredns.io/plugins/forward/

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER
PLATFORM

The Ingress Operator implements the ingresscontroller API and is the component responsible for
enabling external access to OpenShift Container Platform cluster services. The Operator makes this
possible by deploying and managing one or more HAProxy-based Ingress Controllers to handle routing.
You can use the Ingress Operator to route traffic by specifying OpenShift Container Platform Route
and Kubernetes Ingress resources.

5.1. THE INGRESS CONFIGURATION ASSET

The installation program generates an asset with an Ingress resource in the config.openshift.io API
group, cluster-ingress-02-config.yml.

YAML Definition of the Ingress resource

The installation program stores this asset in the cluster-ingress-02-config.yml file in the manifests/
directory. This Ingress resource defines the cluster-wide configuration for Ingress. This Ingress
configuration is used as follows:

The Ingress Operator uses the domain from the cluster Ingress configuration as the domain for
the default Ingress Controller.

The OpenShift API server operator uses the domain from the cluster Ingress configuration as
the domain used when generating a default host for a Route resource that does not specify an
explicit host.

5.2. INGRESS CONTROLLER CONFIGURATION PARAMETERS

The ingresscontrollers.operator.openshift.io resource offers the following configuration parameters.

Parameter Description

apiVersion: config.openshift.io/v1
kind: Ingress
metadata:
 name: cluster
spec:
 domain: apps.openshiftdemos.com

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

19

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

domain domain is a DNS name serviced by the Ingress controller and is used to
configure multiple features:

For the LoadBalancerService endpoint publishing strategy,
domain is used to configure DNS records. See
endpointPublishingStrategy.

When using a generated default certificate, the certificate is valid for
domain and its subdomains. See defaultCertificate.

The value is published to individual Route statuses so that users know
where to target external DNS records.

The domain value must be unique among all Ingress controllers and cannot be
updated.

If empty, the default value is ingress.config.openshift.io/cluster
.spec.domain.

replicas replicas is the desired number of Ingress controller replicas. If not set, the
default value is 2.

endpointPublishingStr
ategy

endpointPublishingStrategy is used to publish the Ingress controller
endpoints to other networks, enable load balancer integrations, and provide
access to other systems.

If not set, the default value is based on
infrastructure.config.openshift.io/cluster .status.platform:

AWS: LoadBalancerService (with external scope)

Azure: LoadBalancerService (with external scope)

GCP: LoadBalancerService (with external scope)

Other: HostNetwork.

The endpointPublishingStrategy value cannot be updated.

defaultCertificate The defaultCertificate value is a reference to a secret that contains the
default certificate that is served by the Ingress controller. When Routes do not
specify their own certificate, defaultCertificate is used.

The secret must contain the following keys and data: * tls.crt: certificate file
contents * tls.key: key file contents

If not set, a wildcard certificate is automatically generated and used. The
certificate is valid for the Ingress controller domain and subdomains, and
the generated certificate’s CA is automatically integrated with the cluster’s
trust store.

The in-use certificate, whether generated or user-specified, is automatically
integrated with OpenShift Container Platform built-in OAuth server.

Parameter Description

OpenShift Container Platform 4.3 Networking

20

namespaceSelector namespaceSelector is used to filter the set of namespaces serviced by the
Ingress controller. This is useful for implementing shards.

routeSelector routeSelector is used to filter the set of Routes serviced by the Ingress
controller. This is useful for implementing shards.

nodePlacement nodePlacement enables explicit control over the scheduling of the Ingress
controller.

If not set, the defaults values are used.

NOTE

The nodePlacement parameter includes two parts,
nodeSelector and tolerations. For example:

nodePlacement:
 nodeSelector:
 matchLabels:
 beta.kubernetes.io/os: linux
 tolerations:
 - effect: NoSchedule
 operator: Exists

Parameter Description

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

21

tlsSecurityProfile tlsSecurityProfile specifies settings for TLS connections for Ingress
controllers.

If not set, the default value is based on the
apiservers.config.openshift.io/cluster resource.

When using the Old, Intermediate, and Modern profile types, the effective
profile configuration is subject to change between releases. For example, given
a specification to use the Intermediate profile deployed on release X.Y.Z, an
upgrade to release X.Y.Z+1 may cause a new profile configuration to be
applied to the Ingress controller, resulting in a rollout.

The minimum TLS version for Ingress controllers is 1.1, and the maximum TLS
version is 1.2.

IMPORTANT

The HAProxy Ingress controller image does not support TLS
1.3 and because the Modern profile requires TLS 1.3, it is not
supported. The Ingress Operator converts the Modern profile
to Intermediate.

The Ingress Operator also converts the TLS 1.0 of an Old or
Custom profile to 1.1, and TLS 1.3 of a Custom profile to
1.2.

NOTE

Ciphers and the minimum TLS version of the configured
security profile are reflected in the TLSProfile status.

Parameter Description

NOTE

All parameters are optional.

5.2.1. Ingress controller TLS profiles

The tlsSecurityProfile parameter defines the schema for a TLS security profile. This object is used by
operators to apply TLS security settings to operands.

There are four TLS security profile types:

Old

Intermediate

Modern

Custom

The Old, Intermediate, and Modern profiles are based on recommended configurations . The Custom
profile provides the ability to specify individual TLS security profile parameters.

OpenShift Container Platform 4.3 Networking

22

https://wiki.mozilla.org/Security/Server_Side_TLS#Recommended_configurations

Sample Old profile configuration

Sample Intermediate profile configuration

Sample Modern profile configuration

The Custom profile is a user-defined TLS security profile.

WARNING

You must be careful using a Custom profile, because invalid configurations can
cause problems.

Sample Custom profile

5.2.2. Ingress controller endpoint publishing strategy

An Ingress controller with the HostNetwork endpoint publishing strategy can have only one Pod replica
per node. If you want n replicas, you must use at least n nodes where those replicas can be scheduled.
Because each Pod replica requests ports 80 and 443 on the node host where it is scheduled, a replica
cannot be scheduled to a node if another Pod on the same node is using those ports.

5.3. VIEW THE DEFAULT INGRESS CONTROLLER

The Ingress Operator is a core feature of OpenShift Container Platform and is enabled out of the box.

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be

spec:
 tlsSecurityProfile:
 type: Old

spec:
 tlsSecurityProfile:
 type: Intermediate

spec:
 tlsSecurityProfile:
 type: Modern

spec:
 tlsSecurityProfile:
 type: Custom
 custom:
 ciphers:
 - ECDHE-ECDSA-AES128-GCM-SHA256
 - ECDHE-RSA-AES128-GCM-SHA256
 minTLSVersion: VersionTLS11

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

23

Every new OpenShift Container Platform installation has an ingresscontroller named default. It can be
supplemented with additional Ingress Controllers. If the default ingresscontroller is deleted, the
Ingress Operator will automatically recreate it within a minute.

Procedure

View the default Ingress Controller:

5.4. VIEW INGRESS OPERATOR STATUS

You can view and inspect the status of your Ingress Operator.

Procedure

View your Ingress Operator status:

5.5. VIEW INGRESS CONTROLLER LOGS

You can view your Ingress Controller logs.

Procedure

View your Ingress Controller logs:

5.6. VIEW INGRESS CONTROLLER STATUS

Your can view the status of a particular Ingress Controller.

Procedure

View the status of an Ingress Controller:

5.7. SETTING A CUSTOM DEFAULT CERTIFICATE

As an administrator, you can configure an Ingress Controller to use a custom certificate by creating a
Secret resource and editing the IngressController custom resource (CR).

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is signed by a
trusted certificate authority or by a private trusted certificate authority that you configured in a
custom PKI.

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/default

$ oc describe clusteroperators/ingress

$ oc logs --namespace=openshift-ingress-operator deployments/ingress-operator

$ oc describe --namespace=openshift-ingress-operator ingresscontroller/<name>

OpenShift Container Platform 4.3 Networking

24

Your certificate is valid for the Ingress domain.

You must have an IngressController CR. You may use the default one:

Example output

NOTE

If you have intermediate certificates, they must be included in the tls.crt file of the secret
containing a custom default certificate. Order matters when specifying a certificate; list
your intermediate certificate(s) after any server certificate(s).

Procedure

The following assumes that the custom certificate and key pair are in the tls.crt and tls.key files in the
current working directory. Substitute the actual path names for tls.crt and tls.key. You also may
substitute another name for custom-certs-default when creating the Secret resource and referencing
it in the IngressController CR.

NOTE

This action will cause the Ingress Controller to be redeployed, using a rolling deployment
strategy.

1. Create a Secret resource containing the custom certificate in the openshift-ingress
namespace using the tls.crt and tls.key files.

2. Update the IngressController CR to reference the new certificate secret:

3. Verify the update was effective:

Example output

The certificate secret name should match the value used to update the CR.

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s

$ oc --namespace openshift-ingress-operator get ingresscontrollers

NAME AGE
default 10m

$ oc --namespace openshift-ingress create secret tls custom-certs-default --cert=tls.crt --
key=tls.key

$ oc patch --type=merge --namespace openshift-ingress-operator ingresscontrollers/default \
 --patch '{"spec":{"defaultCertificate":{"name":"custom-certs-default"}}}'

$ oc get --namespace openshift-ingress-operator ingresscontrollers/default \
 --output jsonpath='{.spec.defaultCertificate}'

map[name:custom-certs-default]

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

25

Once the IngressController CR has been modified, the Ingress Operator updates the Ingress Controller’s
deployment to use the custom certificate.

5.8. SCALING AN INGRESS CONTROLLER

Manually scale an Ingress Controller to meeting routing performance or availability requirements such as
the requirement to increase throughput. oc commands are used to scale the IngressController
resource. The following procedure provides an example for scaling up the default IngressController.

Procedure

1. View the current number of available replicas for the default IngressController:

Example output

2. Scale the default IngressController to the desired number of replicas using the oc patch
command. The following example scales the default IngressController to 3 replicas:

Example output

3. Verify that the default IngressController scaled to the number of replicas that you specified:

Example output

NOTE

Scaling is not an immediate action, as it takes time to create the desired number of
replicas.

5.9. CONFIGURING INGRESS CONTROLLER SHARDING BY USING
ROUTE LABELS

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

2

$ oc patch -n openshift-ingress-operator ingresscontroller/default --patch '{"spec":{"replicas":
3}}' --type=merge

ingresscontroller.operator.openshift.io/default patched

$ oc get -n openshift-ingress-operator ingresscontrollers/default -o
jsonpath='{$.status.availableReplicas}'

3

OpenShift Container Platform 4.3 Networking

26

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

5.10. CONFIGURING INGRESS CONTROLLER SHARDING BY USING
NAMESPACE LABELS

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

Example output

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

cat router-internal.yaml

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

27

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

5.11. CONFIGURING AN INGRESS CONTROLLER TO USE AN INTERNAL
LOAD BALANCER

When creating an Ingress Controller on cloud platforms, the Ingress Controller is published by a public
cloud load balancer by default. As an administrator, you can create an Ingress Controller that uses an
internal cloud load balancer.

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController object, you must delete and
then recreate that IngressController object. You cannot change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the Custom
Resource (CR) is created.

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

OpenShift Container Platform 4.3 Networking

28

1

2

3

1

See the Kubernetes Services documentation for implementation details.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create an IngressController Custom Resource (CR) in a file named <name>-ingress-
controller.yaml, such as in the following example:

Replace <name> with a name for the IngressController object.

Specify the domain for the application published by the controller.

Specify a value of Internal to use an internal load balancer.

2. Create the Ingress Controller defined in the previous step by running the following command:

Replace <name> with the name of the IngressController object.

3. Optional: Confirm that the Ingress Controller was created by running the following command:

5.12. CONFIGURING THE DEFAULT INGRESS CONTROLLER FOR
YOUR CLUSTER TO BE INTERNAL

You can configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: <name> 1
spec:
 domain: <domain> 2
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal 3

$ oc create -f <name>-ingress-controller.yaml 1

$ oc --all-namespaces=true get ingresscontrollers

CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM

29

https://kubernetes.io/docs/concepts/services-networking/service/#internal-load-balancer

WARNING

If your cloud provider is Microsoft Azure, you must have at least one public load
balancer that points to your nodes. If you do not, all of your nodes will lose egress
connectivity to the internet.

IMPORTANT

If you want to change the scope for an IngressController object, you must delete and
then recreate that IngressController object. You cannot change the
.spec.endpointPublishingStrategy.loadBalancer.scope parameter after the Custom
Resource (CR) is created.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Configure the default Ingress Controller for your cluster to be internal by deleting and
recreating it.

5.13. ADDITIONAL RESOURCES

Configuring a custom PKI

$ oc replace --force --wait --filename - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
 namespace: openshift-ingress-operator
 name: default
spec:
 endpointPublishingStrategy:
 type: LoadBalancerService
 loadBalancer:
 scope: Internal
EOF

OpenShift Container Platform 4.3 Networking

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-a-custom-pki

CHAPTER 6. NETWORK POLICY

6.1. ABOUT NETWORK POLICY

As a cluster administrator, you can define network policies that restrict traffic to Pods in your cluster.

6.1.1. About network policy

In a cluster using a Kubernetes Container Network Interface (CNI) plug-in that supports Kubernetes
network policy, network isolation is controlled entirely by NetworkPolicy Custom Resource (CR) objects.
In OpenShift Container Platform 4.3, OpenShift SDN supports using NetworkPolicy in its default
network isolation mode.

NOTE

The Kubernetes v1 NetworkPolicy features are available in OpenShift Container Platform
except for egress policy types and IPBlock.

WARNING

Network policy does not apply to the host network namespace. Pods with host
networking enabled are unaffected by NetworkPolicy object rules.

By default, all Pods in a project are accessible from other Pods and network endpoints. To isolate one or
more Pods in a project, you can create NetworkPolicy objects in that project to indicate the allowed
incoming connections. Project administrators can create and delete NetworkPolicy objects within their
own project.

If a Pod is matched by selectors in one or more NetworkPolicy objects, then the Pod will accept only
connections that are allowed by at least one of those NetworkPolicy objects. A Pod that is not selected
by any NetworkPolicy objects is fully accessible.

The following example NetworkPolicy objects demonstrate supporting different scenarios:

Deny all traffic:
To make a project deny by default, add a NetworkPolicy object that matches all Pods but
accepts no traffic:

Only allow connections from the OpenShift Container Platform Ingress Controller:

To make a project allow only connections from the OpenShift Container Platform Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: deny-by-default
spec:
 podSelector:
 ingress: []

CHAPTER 6. NETWORK POLICY

31

To make a project allow only connections from the OpenShift Container Platform Ingress
Controller, add the following NetworkPolicy object:

If the Ingress Controller is configured with endpointPublishingStrategy: HostNetwork, then
the Ingress Controller Pod runs on the host network. When running on the host network, the
traffic from the Ingress Controller is assigned the netid:0 Virtual Network ID (VNID). The netid
for the namespace that is associated with the Ingress Operator is different, so the matchLabel
in the allow-from-openshift-ingress network policy does not match traffic from the default
Ingress Controller. Because the default namespace is assigned the netid:0 VNID, you can allow
traffic from the default Ingress Controller by labeling your default namespace with
network.openshift.io/policy-group: ingress.

Only accept connections from Pods within a project:
To make Pods accept connections from other Pods in the same project, but reject all other
connections from Pods in other projects, add the following NetworkPolicy object:

Only allow HTTP and HTTPS traffic based on Pod labels:
To enable only HTTP and HTTPS access to the Pods with a specific label (role=frontend in
following example), add a NetworkPolicy object similar to the following:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-http-and-https
spec:
 podSelector:
 matchLabels:
 role: frontend
 ingress:
 - ports:
 - protocol: TCP

OpenShift Container Platform 4.3 Networking

32

Accept connections by using both namespace and Pod selectors:
To match network traffic by combining namespace and Pod selectors, you can use a
NetworkPolicy object similar to the following:

NetworkPolicy objects are additive, which means you can combine multiple NetworkPolicy objects
together to satisfy complex network requirements.

For example, for the NetworkPolicy objects defined in previous samples, you can define both allow-
same-namespace and allow-http-and-https policies within the same project. Thus allowing the Pods
with the label role=frontend, to accept any connection allowed by each policy. That is, connections on
any port from Pods in the same namespace, and connections on ports 80 and 443 from Pods in any
namespace.

6.1.2. Next steps

Creating a network policy

Optional: Defining a default network policy

6.1.3. Additional resources

Configuring multitenant network policy

6.2. CREATING A NETWORK POLICY

As a cluster administrator, you can create a network policy for a namespace.

6.2.1. Creating a NetworkPolicy object

To define granular rules describing Ingress network traffic allowed for projects in your cluster, you can
create NetworkPolicy objects.

 port: 80
 - protocol: TCP
 port: 443

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-pod-and-namespace-both
spec:
 podSelector:
 matchLabels:
 name: test-pods
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 project: project_name
 podSelector:
 matchLabels:
 name: test-pods

CHAPTER 6. NETWORK POLICY

33

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#creating-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#default-network-policy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#multitenant-network-policy

1

Prerequisites

Your cluster is using a default CNI network provider that supports NetworkPolicy objects, such
as the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the
default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Create a policy rule:

a. Create a <policy-name>.yaml file where <policy-name> describes the policy rule.

b. In the file you just created define a policy object, such as in the following example:

Specify a name for the policy object.

2. Run the following command to create the policy object:

In the following example, a new NetworkPolicy object is created in a project named project1:

Example output

6.2.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: <policy-name> 1
spec:
 podSelector:
 ingress: []

$ oc create -f <policy-name>.yaml -n <project>

$ oc create -f default-deny.yaml -n project1

networkpolicy "default-deny" created

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:

OpenShift Container Platform 4.3 Networking

34

1

2

3

4

The name of the NetworkPolicy object.

A selector describing the Pods the policy applies to. The policy object can only select Pods in the
project that the NetworkPolicy object is defined.

A selector matching the Pods that the policy object allows ingress traffic from. The selector will
match Pods in any project.

A list of one or more destination ports to accept traffic on.

6.3. VIEWING A NETWORK POLICY

As a cluster administrator, you can view a network policy for a namespace.

6.3.1. Viewing NetworkPolicy objects

You can list the NetworkPolicy objects in your cluster.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

To view NetworkPolicy objects defined in your cluster, run the following command:

6.3.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

$ oc get networkpolicy

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:

CHAPTER 6. NETWORK POLICY

35

1

2

3

4

The name of the NetworkPolicy object.

A selector describing the Pods the policy applies to. The policy object can only select Pods in the
project that the NetworkPolicy object is defined.

A selector matching the Pods that the policy object allows ingress traffic from. The selector will
match Pods in any project.

A list of one or more destination ports to accept traffic on.

6.4. EDITING A NETWORK POLICY

As a cluster administrator, you can edit an existing network policy for a namespace.

6.4.1. Editing a NetworkPolicy object

You can edit a NetworkPolicy object in a namespace.

Prerequisites

Your cluster is using a default CNI network provider that supports NetworkPolicy objects, such
as the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the
default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Optional: List the current NetworkPolicy objects.

a. If you want to list the policy objects in a specific namespace, enter the following command.
Replace <namespace> with the namespace for a project.

b. If you want to list the policy objects for the entire cluster, enter the following command:

2. Edit the NetworkPolicy object.

a. If you saved the NetworkPolicy in a file, edit the file and make any necessary changes, and
then enter the following command. Replace <policy-file> with the name of the file
containing the object definition.

 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

$ oc get networkpolicy -n <namespace>

$ oc get networkpolicy --all-namespaces

OpenShift Container Platform 4.3 Networking

36

1

2

3

4

b. If you need to update the NetworkPolicy object directly, you can enter the following
command. Replace <policy-name> with the name of the NetworkPolicy object and
<namespace> with the name of the project where the object exists.

3. Confirm that the NetworkPolicy object is updated. Replace <namespace> with the name of the
project where the object exists.

6.4.2. Example NetworkPolicy object

The following annotates an example NetworkPolicy object:

The name of the NetworkPolicy object.

A selector describing the Pods the policy applies to. The policy object can only select Pods in the
project that the NetworkPolicy object is defined.

A selector matching the Pods that the policy object allows ingress traffic from. The selector will
match Pods in any project.

A list of one or more destination ports to accept traffic on.

6.4.3. Additional resources

Creating a network policy

6.5. DELETING A NETWORK POLICY

As a cluster administrator, you can delete a network policy from a namespace.

$ oc apply -f <policy-file>.yaml

$ oc edit <policy-name> -n <namespace>

$ oc get networkpolicy -n <namespace> -o yaml

kind: NetworkPolicy
apiVersion: extensions/v1beta1
metadata:
 name: allow-27107 1
spec:
 podSelector: 2
 matchLabels:
 app: mongodb
 ingress:
 - from:
 - podSelector: 3
 matchLabels:
 app: app
 ports: 4
 - protocol: TCP
 port: 27017

CHAPTER 6. NETWORK POLICY

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#creating-network-policy

6.5.1. Deleting a NetworkPolicy object

You can delete a NetworkPolicy object.

Prerequisites

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

To delete a NetworkPolicy object, enter the following command. Replace <policy-name> with
the name of the object.

6.6. CREATING DEFAULT NETWORK POLICIES FOR A NEW PROJECT

As a cluster administrator, you can modify the new project template to automatically include
NetworkPolicy objects when you create a new project. If you do not yet have a customized template for
new projects, you must first create one.

6.6.1. Modifying the template for new projects

As a cluster administrator, you can modify the default project template so that new projects are created
using your custom requirements.

To create your own custom project template:

Procedure

1. Log in as a user with cluster-admin privileges.

2. Generate the default project template:

3. Use a text editor to modify the generated template.yaml file by adding objects or modifying
existing objects.

4. The project template must be created in the openshift-config namespace. Load your modified
template:

5. Edit the project configuration resource using the web console or CLI.

Using the web console:

i. Navigate to the Administration → Cluster Settings page.

ii. Click Global Configuration to view all configuration resources.

$ oc delete networkpolicy <policy-name>

$ oc adm create-bootstrap-project-template -o yaml > template.yaml

$ oc create -f template.yaml -n openshift-config

OpenShift Container Platform 4.3 Networking

38

iii. Find the entry for Project and click Edit YAML.

Using the CLI:

i. Edit the project.config.openshift.io/cluster resource:

6. Update the spec section to include the projectRequestTemplate and name parameters, and
set the name of your uploaded project template. The default name is project-request.

Project configuration resource with custom project template

7. After you save your changes, create a new project to verify that your changes were successfully
applied.

6.6.2. Adding network policy objects to the new project template

As a cluster administrator, you can add network policy objects to the default template for new projects.
OpenShift Container Platform will automatically create all the NetworkPolicy CRs specified in the
template in the project.

Prerequisites

Your cluster is using a default CNI network provider that supports NetworkPolicy objects, such
as the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the
default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You must log in to the cluster with a user with cluster-admin privileges.

You must have created a custom default project template for new projects.

Procedure

1. Edit the default template for a new project by running the following command:

Replace <project_template> with the name of the default template that you configured for
your cluster. The default template name is project-request.

2. In the template, add each NetworkPolicy object as an element to the objects parameter. The
objects parameter accepts a collection of one or more objects.
In the following example, the objects parameter collection includes several NetworkPolicy
objects:

$ oc edit project.config.openshift.io/cluster

apiVersion: config.openshift.io/v1
kind: Project
metadata:
 ...
spec:
 projectRequestTemplate:
 name: <template_name>

$ oc edit template <project_template> -n openshift-config

CHAPTER 6. NETWORK POLICY

39

1

3. Optional: Create a new project to confirm that your network policy objects are created
successfully by running the following commands:

a. Create a new project:

Replace <project> with the name for the project you are creating.

b. Confirm that the network policy objects in the new project template exist in the new project:

6.7. CONFIGURING MULTITENANT MODE WITH NETWORK POLICY

As a cluster administrator, you can configure your network policies to provide multitenant network
isolation.

6.7.1. Configuring multitenant isolation using NetworkPolicy

You can configure your project to isolate it from Pods and Services in other project namespaces.

Prerequisites

Your cluster is using a default CNI network provider that supports NetworkPolicy objects, such

objects:
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-same-namespace
 spec:
 podSelector:
 ingress:
 - from:
 - podSelector: {}
- apiVersion: networking.k8s.io/v1
 kind: NetworkPolicy
 metadata:
 name: allow-from-openshift-ingress
 spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress
...

$ oc new-project <project> 1

$ oc get networkpolicy
NAME POD-SELECTOR AGE
allow-from-openshift-ingress <none> 7s
allow-from-same-namespace <none> 7s

OpenShift Container Platform 4.3 Networking

40

Your cluster is using a default CNI network provider that supports NetworkPolicy objects, such
as the OpenShift SDN network provider with mode: NetworkPolicy set. This mode is the
default for OpenShift SDN.

You installed the OpenShift CLI (oc).

You are logged in to the cluster with a user with cluster-admin privileges.

Procedure

1. Create the following NetworkPolicy objects:

a. A policy named allow-from-openshift-ingress:

b. A policy named allow-from-openshift-monitoring:

c. A policy named allow-same-namespace:

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-monitoring
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: monitoring
 podSelector: {}
 policyTypes:
 - Ingress
EOF

$ cat << EOF| oc create -f -
kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: allow-same-namespace
spec:

CHAPTER 6. NETWORK POLICY

41

2. If the default Ingress Controller configuration has the spec.endpointPublishingStrategy:
HostNetwork value set, you must apply a label to the default OpenShift Container Platform
namespace to allow network traffic between the Ingress Controller and the project:

a. Determine if your default Ingress Controller uses the HostNetwork endpoint publishing
strategy:

b. If the previous command reports the endpoint publishing strategy as HostNetwork, set a
label on the default namespace:

3. Confirm that the NetworkPolicy object exists in your current project by running the following
command:

In the following example, the allow-from-openshift-ingress NetworkPolicy object is displayed:

Example output

6.7.2. Next steps

Defining a default network policy

 podSelector:
 ingress:
 - from:
 - podSelector: {}
EOF

$ oc get --namespace openshift-ingress-operator ingresscontrollers/default \
 --output jsonpath='{.status.endpointPublishingStrategy.type}'

$ oc label namespace default 'network.openshift.io/policy-group=ingress'

$ oc get networkpolicy <policy-name> -o yaml

$ oc get -n project1 networkpolicy allow-from-openshift-ingress -o yaml

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-from-openshift-ingress
 namespace: project1
spec:
 ingress:
 - from:
 - namespaceSelector:
 matchLabels:
 network.openshift.io/policy-group: ingress
 podSelector: {}
 policyTypes:
 - Ingress

OpenShift Container Platform 4.3 Networking

42

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#default-network-policy

CHAPTER 7. MULTIPLE NETWORKS

7.1. UNDERSTANDING MULTIPLE NETWORKS

In Kubernetes, container networking is delegated to networking plug-ins that implement the Container
Network Interface (CNI).

OpenShift Container Platform uses the Multus CNI plug-in to allow chaining of CNI plug-ins. During
cluster installation, you configure your default Pod network. The default network handles all ordinary
network traffic for the cluster. You can define an additional network based on the available CNI plug-ins
and attach one or more of these networks to your Pods. You can define more than one additional
network for your cluster, depending on your needs. This gives you flexibility when you configure Pods
that deliver network functionality, such as switching or routing.

7.1.1. Usage scenarios for an additional network

You can use an additional network in situations where network isolation is needed, including data plane
and control plane separation. Isolating network traffic is useful for the following performance and
security reasons:

Performance

You can send traffic on two different planes in order to manage how much traffic is along each
plane.

Security

You can send sensitive traffic onto a network plane that is managed specifically for security
considerations, and you can separate private data that must not be shared between tenants or
customers.

All of the Pods in the cluster still use the cluster-wide default network to maintain connectivity across
the cluster. Every Pod has an eth0 interface that is attached to the cluster-wide Pod network. You can
view the interfaces for a Pod by using the oc exec -it <pod_name> -- ip a command. If you add
additional network interfaces that use Multus CNI, they are named net1, net2, …, netN.

To attach additional network interfaces to a Pod, you must create configurations that define how the
interfaces are attached. You specify each interface by using a Custom Resource (CR) that has a
NetworkAttachmentDefinition type. A CNI configuration inside each of these CRs defines how that
interface is created.

7.1.2. Additional networks in OpenShift Container Platform

OpenShift Container Platform provides the following CNI plug-ins for creating additional networks in
your cluster:

bridge: Creating a bridge-based additional network allows Pods on the same host to
communicate with each other and the host.

host-device: Creating a host-device additional network allows Pods access to a physical
Ethernet network device on the host system.

macvlan: Creating a macvlan-based additional network allows Pods on a host to communicate
with other hosts and Pods on those hosts by using a physical network interface. Each Pod that is
attached to a macvlan-based additional network is provided a unique MAC address.

ipvlan: Creating an ipvlan-based additional network allows Pods on a host to communicate with

CHAPTER 7. MULTIPLE NETWORKS

43

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-bridge
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-host-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-macvlan
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-ipvlan

1

other hosts and Pods on those hosts, similar to a macvlan-based additional network. Unlike a
macvlan-based additional network, each Pod shares the same MAC address as the parent
physical network interface.

SR-IOV: Creating an SR-IOV based additional network allows Pods to attach to a virtual
function (VF) interface on SR-IOV capable hardware on the host system.

7.2. ATTACHING A POD TO AN ADDITIONAL NETWORK

As a cluster user you can attach a Pod to an additional network.

7.2.1. Adding a Pod to an additional network

You can add a Pod to an additional network. The Pod continues to send normal cluster-related network
traffic over the default network.

When a Pod is created additional networks are attached to it. However, if a Pod already exists, you
cannot attach additional networks to it.

Prerequisites

The Pod must be in the same namespace as the additional network.

Install the OpenShift CLI (oc).

You must log in to the cluster.

Procedure

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the Pod:

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that Pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2

OpenShift Container Platform 4.3 Networking

44

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#about-sriov

1

2

3

Specify the name of the additional network defined by a NetworkAttachmentDefinition
CR.

Specify the namespace where the NetworkAttachmentDefinition CR is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the Pod, enter the following command. Replace <name> with the name of the Pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the Pod.

In the following example, the example-pod Pod is attached to the net1 additional network:

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each

 "default-route": ["<default-route>"] 3
 }
]

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge
 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

CHAPTER 7. MULTIPLE NETWORKS

45

1

1

The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the Pod. The annotation
value is stored as a plain text value.

7.2.1.1. Specifying Pod-specific addressing and routing options

When attaching a Pod to an additional network, you may want to specify further properties about that
network in a particular Pod. This allows you to change some aspects of routing, as well as specify static
IP addresses and MAC addresses. In order to accomplish this, you can use the JSON formatted
annotations.

Prerequisites

The Pod must be in the same namespace as the additional network.

Install the OpenShift Command-line Interface (oc).

You must log in to the cluster.

Procedure

To add a Pod to an additional network while specifying addressing and/or routing options, complete the
following steps:

1. Edit the Pod resource definition. If you are editing an existing Pod, run the following command
to edit its definition in the default editor. Replace <name> with the name of the Pod to edit.

2. In the Pod resource definition, add the k8s.v1.cni.cncf.io/networks parameter to the Pod
metadata mapping. The k8s.v1.cni.cncf.io/networks accepts a JSON string of a list of objects
that reference the name of NetworkAttachmentDefinition Custom Resource (CR) names in
addition to specifying additional properties.

Replace <network> with a JSON object as shown in the following examples. The single
quotes are required.

3. In the following example the annotation specifies which network attachment will have the
default route, using the default-route parameter.

$ oc edit pod <name>

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: '[<network>[,<network>,...]]' 1

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '
 {
 "name": "net1"
 },
 {

OpenShift Container Platform 4.3 Networking

46

1

2

The name key is the name of the additional network to associate with the Pod.

The default-route key specifies a value of a gateway for traffic to be routed over if no
other routing entry is present in the routing table. If more than one default-route key is
specified, this will cause the Pod to fail to become active.

The default route will cause any traffic that is not specified in other routes to be routed to the gateway.

IMPORTANT

Setting the default route to an interface other than the default network interface for
OpenShift Container Platform may cause traffic that is anticipated for Pod-to-Pod
traffic to be routed over another interface.

To verify the routing properties of a Pod, the oc command may be used to execute the ip command
within a Pod.

NOTE

You may also reference the Pod’s k8s.v1.cni.cncf.io/networks-status to see which
additional network has been assigned the default route, by the presence of the default-
route key in the JSON-formatted list of objects.

To set a static IP address or MAC address for a Pod you can use the JSON formatted annotations. This
requires you create networks that specifically allow for this functionality. This can be specified in a
rawCNIConfig for the CNO.

1. Edit the CNO CR by running the following command:

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

 "name": "net2", 1
 "default-route": ["192.0.2.1"] 2
 }'
spec:
 containers:
 - name: example-pod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools

$ oc exec -it <pod_name> -- ip route

$ oc edit networks.operator.openshift.io cluster

name: <name> 1
namespace: <namespace> 2
rawCNIConfig: '{ 3
 ...
}'
type: Raw

CHAPTER 7. MULTIPLE NETWORKS

47

1

2

3

1

2

3

4

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If you do not specify a value, then the
default namespace is used.

Specify the CNI plug-in configuration in JSON format, which is based on the following template.

The following object describes the configuration parameters for utilizing static MAC address and IP
address using the macvlan CNI plug-in:

macvlan CNI plug-in JSON configuration object using static IP and MAC address

The plugins field specifies a configuration list of CNI configurations.

The capabilities key denotes that a request is being made to enable the static IP functionality of a
CNI plug-ins runtime configuration capabilities.

The master field is specific to the macvlan plug-in.

Here the capabilities key denotes that a request is made to enable the static MAC address
functionality of a CNI plug-in.

The above network attachment may then be referenced in a JSON formatted annotation, along with
keys to specify which static IP and MAC address will be assigned to a given Pod.

Edit the desired Pod with:

macvlan CNI plug-in JSON configuration object using static IP and MAC address

{
 "cniVersion": "0.3.1",
 "plugins": [{ 1
 "type": "macvlan",
 "capabilities": { "ips": true }, 2
 "master": "eth0", 3
 "mode": "bridge",
 "ipam": {
 "type": "static"
 }
 }, {
 "capabilities": { "mac": true }, 4
 "type": "tuning"
 }]
}

$ oc edit pod <name>

apiVersion: v1
kind: Pod
metadata:
 name: example-pod

OpenShift Container Platform 4.3 Networking

48

1

2

3

Use the <name> as provided when creating the rawCNIConfig above.

Provide the desired IP address.

Provide the desired MAC address.

NOTE

Static IP addresses and MAC addresses do not have to be used at the same time, you
may use them individually, or together.

To verify the IP address and MAC properties of a Pod with additional networks, use the oc command to
execute the ip command within a Pod.

7.3. REMOVING A POD FROM AN ADDITIONAL NETWORK

As a cluster user you can remove a Pod from an additional network.

7.3.1. Removing a Pod from an additional network

You can remove a Pod from an additional network.

Prerequisites

You have configured an additional network for your cluster.

You have an additional network attached to the Pod.

Install the OpenShift CLI (oc).

You must log in to the cluster.

Procedure

To remove a Pod from an additional network, complete the following steps:

1. Edit the Pod resource definition by running the following command. Replace <name> with the
name of the Pod to edit.

2. Update the annotations mapping to remove the additional network from the Pod by

 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "<name>", 1
 "ips": ["192.0.2.205/24"], 2
 "mac": "CA:FE:C0:FF:EE:00" 3
 }
]'

$ oc exec -it <pod_name> -- ip a

$ oc edit pod <name>

CHAPTER 7. MULTIPLE NETWORKS

49

1

2. Update the annotations mapping to remove the additional network from the Pod by
performing one of the following actions:

To remove all additional networks from a Pod, remove the k8s.v1.cni.cncf.io/networks
parameter from the Pod resource definition as in the following example:

To remove a specific additional network from a Pod, update the
k8s.v1.cni.cncf.io/networks parameter by removing the name of the
NetworkAttachmentDefinition for the additional network.

3. Optional: Confirm that the Pod is no longer attached to the additional network by running the
following command. Replace <name> with the name of the Pod.

In the following example, the example-pod Pod is attached only to the default cluster network.

Example output

Only the default cluster network is attached to the Pod.

7.4. CONFIGURING A BRIDGE NETWORK

As a cluster administrator, you can configure an additional network for your cluster using the bridge

apiVersion: v1
kind: Pod
metadata:
 name: example-pod
 annotations: {}
spec:
 containers:
 - name: example-pod
 command: ["/bin/bash", "-c", "sleep 2000000000000"]
 image: centos/tools

$ oc describe pod <name>

$ oc describe pod example-pod

Name: example-pod
...
Annotations: k8s.v1.cni.cncf.io/networks-status:
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.131.0.13"
],
 "default": true, 1
 "dns": {}
 }]
Status: Running
...

OpenShift Container Platform 4.3 Networking

50

As a cluster administrator, you can configure an additional network for your cluster using the bridge
Container Network Interface (CNI) plug-in. When configured, all Pods on a node are connected to a
virtual switch. Each Pod is assigned an IP address on the additional network.

7.4.1. Creating an additional network attachment with the bridge CNI plug-in

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition Custom Resource
(CR) automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator
manages. Doing so might disrupt network traffic on your additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To create an additional network for your cluster, complete the following steps:

1. Edit the CNO CR by running the following command:

2. Modify the CR that you are creating by adding the configuration for the additional network you
are creating, as in the following example CR.
The following YAML configures the bridge CNI plug-in:

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: 1
 - name: test-network-1
 namespace: test-1
 type: Raw
 rawCNIConfig: '{
 "cniVersion": "0.3.1",
 "name": "test-network-1",
 "type": "bridge",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7"
 }
]
 }
 }'

CHAPTER 7. MULTIPLE NETWORKS

51

1

1

2

3

Specify the configuration for the additional network attachment definition.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO created the NetworkAttachmentDefinition CR by running the
following command. There might be a delay before the CNO creates the CR.

Example output

7.4.1.1. Configuration for bridge

The configuration for an additional network attachment that uses the bridge Container Network
Interface (CNI) plug-in is provided in two parts:

Cluster Network Operator (CNO) configuration

CNI plug-in configuration

The CNO configuration specifies the name for the additional network attachment and the namespace
to create the attachment in. The plug-in is configured by a JSON object specified by the rawCNIConfig
parameter in the CNO configuration.

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If you do not specify a value, then the
default namespace is used.

Specify the CNI plug-in configuration in JSON format, which is based on the following template.

The following object describes the configuration parameters for the bridge CNI plug-in:

bridge CNI plug-in JSON configuration object

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
test-network-1 14m

name: <name> 1
namespace: <namespace> 2
rawCNIConfig: '{ 3
 ...
}'
type: Raw

{
 "cniVersion": "0.3.1",

OpenShift Container Platform 4.3 Networking

52

1

2

3

4

5

6

7

8

9

10

11

Specify the value for the name parameter you provided previously for the CNO configuration.

Specify the name of the virtual bridge to use. If the bridge interface does not exist on the host, it is
created. The default value is cni0.

Specify a configuration object for the ipam CNI plug-in. The plug-in manages IP address
assignment for the network attachment definition.

Set to true to enable IP masquerading for traffic that leaves the virtual network. The source IP
address for all traffic is rewritten to the bridge’s IP address. If the bridge does not have an IP
address, this setting has no effect. The default value is false.

Set to true to assign an IP address to the bridge. The default value is false.

Set to true to configure the bridge as the default gateway for the virtual network. The default
value is false. If isDefaultGateway is set to true, then isGateway is also set to true automatically.

Set to true to allow assignment of a previously assigned IP address to the virtual bridge. When set
to false, if an IPv4 address or an IPv6 address from overlapping subsets is assigned to the virtual
bridge, an error occurs. The default value is false.

Set to true to allow the virtual bridge to send an ethernet frame back through the virtual port it was
received on. This mode is also known as reflective relay. The default value is false.

Set to true to enable promiscuous mode on the bridge. The default value is false.

Specify a virtual LAN (VLAN) tag as an integer value. By default, no VLAN tag is assigned.

Set the maximum transmission unit (MTU) to the specified value. The default value is automatically
set by the kernel.

7.4.1.1.1. bridge configuration example

The following example configures an additional network named bridge-net:

 "name": "<name>", 1
 "type": "bridge",
 "bridge": "<bridge>", 2
 "ipam": { 3
 ...
 },
 "ipMasq": false, 4
 "isGateway": false, 5
 "isDefaultGateway": false, 6
 "forceAddress": false, 7
 "hairpinMode": false, 8
 "promiscMode": false, 9
 "vlan": <vlan>, 10
 "mtu": <mtu> 11
}

name: bridge-net
namespace: work-network
type: Raw

CHAPTER 7. MULTIPLE NETWORKS

53

1

1

The CNI configuration object is specified as a YAML string.

7.4.1.2. Configuration for ipam CNI plug-in

The ipam Container Network Interface (CNI) plug-in provides IP address management (IPAM) for other
CNI plug-ins. You can configure ipam for either static IP address assignment or dynamic IP address
assignment by using DHCP. The DHCP server you specify must be reachable from the additional
network.

The following JSON configuration object describes the parameters that you can set.

7.4.1.2.1. Static IP address assignment configuration

The following JSON describes the configuration for static IP address assignment:

Static assignment configuration

An array describing IP addresses to assign to the virtual interface. Both IPv4 and IPv6 IP addresses
are supported.

rawCNIConfig: '{ 1
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "bridge",
 "isGateway": true,
 "vlan": 2,
 "ipam": {
 "type": "dhcp"
 }
}'

{
 "ipam": {
 "type": "static",
 "addresses": [1
 {
 "address": "<address>", 2
 "gateway": "<gateway>" 3
 }
],
 "routes": [4
 {
 "dst": "<dst>" 5
 "gw": "<gw>" 6
 }
],
 "dns": { 7
 "nameservers": ["<nameserver>"], 8
 "domain": "<domain>", 9
 "search": ["<search_domain>"] 10
 }
 }
}

OpenShift Container Platform 4.3 Networking

54

2

3

4

5

6

7

8

9

10

An IP address that you specify.

The default gateway to route egress network traffic to.

An array describing routes to configure inside the Pod.

The IP address range in CIDR format.

The gateway where network traffic is routed.

Optional: DNS configuration.

An of array of one or more IP addresses for to send DNS queries to.

The default domain to append to a host name. For example, if the domain is set to example.com, a
DNS lookup query for example-host is rewritten as example-host.example.com.

An array of domain names to append to an unqualified host name, such as example-host, during a
DNS lookup query.

7.4.1.2.2. Dynamic IP address assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A Pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "master": "ens5",
 "ipam": {
 "type": "dhcp"
 }
 }

CHAPTER 7. MULTIPLE NETWORKS

55

DHCP assignment configuration

7.4.1.2.3. Static IP address assignment configuration example

You can configure ipam for static IP address assignment:

7.4.1.2.4. Dynamic IP address assignment configuration example using DHCP

You can configure ipam for DHCP:

7.4.2. Next steps

Attach a Pod to an additional network .

7.5. CONFIGURING A MACVLAN NETWORK

As a cluster administrator, you can configure an additional network for your cluster using the macvlan
CNI plug-in. When a Pod is attached to the network, the plug-in creates a sub-interface from the parent
interface on the host. A unique hardware mac address is generated for each sub-device.

IMPORTANT

The unique MAC addresses this plug-in generates for sub-interfaces might not be
compatible with the security polices of your cloud provider.

7.5.1. Creating an additional network attachment with the macvlan CNI plug-in

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7"
 }
]
 }
}

{
 "ipam": {
 "type": "dhcp"
 }
}

OpenShift Container Platform 4.3 Networking

56

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#attaching-pod

1

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition Custom Resource
(CR) automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator
manages. Doing so might disrupt network traffic on your additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To create an additional network for your cluster, complete the following steps:

1. Edit the CNO CR by running the following command:

2. Modify the CR that you are creating by adding the configuration for the additional network you
are creating, as in the following example CR.
The following YAML configures the macvlan CNI plug-in:

Specify the configuration for the additional network attachment definition.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO created the NetworkAttachmentDefinition CR by running the
following command. There might be a delay before the CNO creates the CR.

Example output

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: 1
 - name: test-network-1
 namespace: test-1
 type: SimpleMacvlan
 simpleMacvlanConfig:
 ipamConfig:
 type: static
 staticIPAMConfig:
 addresses:
 - address: 10.1.1.7

$ oc get network-attachment-definitions -n <namespace>

CHAPTER 7. MULTIPLE NETWORKS

57

1

2

3

4

5

6

7.5.1.1. Configuration for macvlan CNI plug-in

The following YAML describes the configuration parameters for the macvlan Container Network
Interface (CNI) plug-in:

macvlan YAML configuration

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If a value is not specified, the default
namespace is used.

The ethernet interface to associate with the virtual interface. If a value for master is not specified,
then the host system’s primary ethernet interface is used.

Configures traffic visibility on the virtual network. Must be either bridge, passthru, private, or
vepa. If a value for mode is not provided, the default value is bridge.

Set the maximum transmission unit (MTU) to the specified value. The default value is automatically
set by the kernel.

Specify a configuration object for the ipam CNI plug-in. The plug-in manages IP address
assignment for the attachment definition.

7.5.1.1.1. macvlan configuration example

The following example configures an additional network named macvlan-net:

7.5.1.2. Configuration for ipam CNI plug-in

The ipam Container Network Interface (CNI) plug-in provides IP address management (IPAM) for other

NAME AGE
test-network-1 14m

name: <name> 1
namespace: <namespace> 2
type: SimpleMacvlan
simpleMacvlanConfig:
 master: <master> 3
 mode: <mode> 4
 mtu: <mtu> 5
 ipamConfig: 6
 ...

name: macvlan-net
namespace: work-network
type: SimpleMacvlan
simpleMacvlanConfig:
 ipamConfig:
 type: DHCP

OpenShift Container Platform 4.3 Networking

58

1

2

1

2

3

4

5

6

CNI plug-ins. You can configure ipam for either static IP address assignment or dynamic IP address
assignment by using DHCP. The DHCP server you specify must be reachable from the additional
network.

The following YAML configuration describes the parameters that you can set.

ipam CNI plug-in YAML configuration object

Specify static to configure the plug-in to manage IP address assignment. Specify DHCP to allow a
DHCP server to manage IP address assignment. You cannot specify any additional parameters if
you specify a value of DHCP.

If you set the type parameter to static, then provide the staticIPAMConfig parameter.

7.5.1.2.1. Static ipam configuration YAML

The following YAML describes a configuration for static IP address assignment:

Static ipam configuration YAML

A collection of mappings that define IP addresses to assign to the virtual interface. Both IPv4 and
IPv6 IP addresses are supported.

An IP address that you specify.

The default gateway to route egress network traffic to.

A collection of mappings describing routes to configure inside the Pod.

The IP address range in CIDR format.

The gateway where network traffic is routed.

ipamConfig:
 type: <type> 1
 ... 2

ipamConfig:
 type: static
 staticIPAMConfig:
 addresses: 1
 - address: <address> 2
 gateway: <gateway> 3
 routes: 4
 - destination: <destination> 5
 gateway: <gateway> 6
 dns: 7
 nameservers: 8
 - <nameserver>
 domain: <domain> 9
 search: 10
 - <search_domain>

CHAPTER 7. MULTIPLE NETWORKS

59

7

8

9

10

Optional: The DNS configuration.

A collection of one or more IP addresses for to send DNS queries to.

The default domain to append to a host name. For example, if the domain is set to example.com, a
DNS lookup query for example-host is rewritten as example-host.example.com.

An array of domain names to append to an unqualified host name, such as example-host, during a
DNS lookup query.

7.5.1.2.2. Dynamic ipam configuration YAML

The following YAML describes a configuration for static IP address assignment:

Dynamic ipam configuration YAML

7.5.1.2.3. Static IP address assignment configuration example

The following example shows an ipam configuration for static IP addresses:

7.5.1.2.4. Dynamic IP address assignment configuration example

The following example shows an ipam configuration for DHCP:

7.5.2. Next steps

Attach a Pod to an additional network .

ipamConfig:
 type: DHCP

ipamConfig:
 type: static
 staticIPAMConfig:
 addresses:
 - address: 10.51.100.11
 gateway: 10.51.100.10
 routes:
 - destination: 0.0.0.0/0
 gateway: 10.51.100.1
 dns:
 nameservers:
 - 10.51.100.1
 - 10.51.100.2
 domain: testDNS.example
 search:
 - testdomain1.example
 - testdomain2.example

ipamConfig:
 type: DHCP

OpenShift Container Platform 4.3 Networking

60

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#attaching-pod

7.6. CONFIGURING AN IPVLAN NETWORK

As a cluster administrator, you can configure an additional network for your cluster by using the ipvlan
Container Network Interface (CNI) plug-in. The virtual network created by this plug-in is associated with
a physical interface that you specify.

7.6.1. Creating an additional network attachment with the ipvlan CNI plug-in

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition Custom Resource
(CR) automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator
manages. Doing so might disrupt network traffic on your additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To create an additional network for your cluster, complete the following steps:

1. Edit the CNO CR by running the following command:

2. Modify the CR that you are creating by adding the configuration for the additional network you
are creating, as in the following example CR.
The following YAML configures the ipvlan CNI plug-in:

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: 1
 - name: test-network-1
 namespace: test-1
 type: Raw
 rawCNIConfig: '{
 "cniVersion": "0.3.1",
 "name": "test-network-1",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l2",
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7"

CHAPTER 7. MULTIPLE NETWORKS

61

1

1

2

3

Specify the configuration for the additional network attachment definition.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO created the NetworkAttachmentDefinition CR by running the
following command. There might be a delay before the CNO creates the CR.

Example output

7.6.1.1. Configuration for ipvlan

The configuration for an additional network attachment that uses the ipvlan Container Network
Interface (CNI) plug-in is provided in two parts:

Cluster Network Operator (CNO) configuration

CNI plug-in configuration

The CNO configuration specifies the name for the additional network attachment and the namespace
to create the attachment in. The plug-in is configured by a JSON object specified by the rawCNIConfig
parameter in the CNO configuration.

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If you do not specify a value, then the
default namespace is used.

Specify the CNI plug-in configuration in JSON format, which is based on the following template.

The following object describes the configuration parameters for the ipvlan CNI plug-in:

 }
]
 }
 }'

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
test-network-1 14m

name: <name> 1
namespace: <namespace> 2
rawCNIConfig: '{ 3
 ...
}'
type: Raw

OpenShift Container Platform 4.3 Networking

62

1

2

3

4

5

1

ipvlan CNI plug-in JSON configuration object

Specify the value for the name parameter you provided previously for the CNO configuration.

Specify the operating mode for the virtual network. The value must be l2, l3, or l3s. The default
value is l2.

Specify the ethernet interface to associate with the network attachment. If a master is not
specified, the interface for the default network route is used.

Set the maximum transmission unit (MTU) to the specified value. The default value is automatically
set by the kernel.

Specify a configuration object for the ipam CNI plug-in. The plug-in manages IP address
assignment for the attachment definition.

7.6.1.1.1. ipvlan configuration example

The following example configures an additional network named ipvlan-net:

The CNI configuration object is specified as a YAML string.

7.6.1.2. Configuration for ipam CNI plug-in

The ipam Container Network Interface (CNI) plug-in provides IP address management (IPAM) for other
CNI plug-ins. You can configure ipam for either static IP address assignment or dynamic IP address

{
 "cniVersion": "0.3.1",
 "name": "<name>", 1
 "type": "ipvlan",
 "mode": "<mode>", 2
 "master": "<master>", 3
 "mtu": <mtu>, 4
 "ipam": { 5
 ...
 }
}

name: ipvlan-net
namespace: work-network
type: Raw
rawCNIConfig: '{ 1
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "ipvlan",
 "master": "eth1",
 "mode": "l3",
 "ipam": {
 "type": "dhcp"
 }
}'

CHAPTER 7. MULTIPLE NETWORKS

63

1

2

3

4

5

6

7

8

9

assignment by using DHCP. The DHCP server you specify must be reachable from the additional
network.

The following JSON configuration object describes the parameters that you can set.

7.6.1.2.1. Static IP address assignment configuration

The following JSON describes the configuration for static IP address assignment:

Static assignment configuration

An array describing IP addresses to assign to the virtual interface. Both IPv4 and IPv6 IP addresses
are supported.

An IP address that you specify.

The default gateway to route egress network traffic to.

An array describing routes to configure inside the Pod.

The IP address range in CIDR format.

The gateway where network traffic is routed.

Optional: DNS configuration.

An of array of one or more IP addresses for to send DNS queries to.

The default domain to append to a host name. For example, if the domain is set to example.com, a
DNS lookup query for example-host is rewritten as example-host.example.com.

{
 "ipam": {
 "type": "static",
 "addresses": [1
 {
 "address": "<address>", 2
 "gateway": "<gateway>" 3
 }
],
 "routes": [4
 {
 "dst": "<dst>" 5
 "gw": "<gw>" 6
 }
],
 "dns": { 7
 "nameservers": ["<nameserver>"], 8
 "domain": "<domain>", 9
 "search": ["<search_domain>"] 10
 }
 }
}

OpenShift Container Platform 4.3 Networking

64

10 An array of domain names to append to an unqualified host name, such as example-host, during a
DNS lookup query.

7.6.1.2.2. Dynamic IP address assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A Pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

DHCP assignment configuration

7.6.1.2.3. Static IP address assignment configuration example

You can configure ipam for static IP address assignment:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "master": "ens5",
 "ipam": {
 "type": "dhcp"
 }
 }

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {

CHAPTER 7. MULTIPLE NETWORKS

65

7.6.1.2.4. Dynamic IP address assignment configuration example using DHCP

You can configure ipam for DHCP:

7.6.2. Next steps

Attach a Pod to an additional network .

7.7. CONFIGURING A HOST-DEVICE NETWORK

As a cluster administrator, you can configure an additional network for your cluster by using the host-
device Container Network Interface (CNI) plug-in. The plug-in allows you to move the specified network
device from the host’s network namespace into the Pod’s network namespace.

7.7.1. Creating an additional network attachment with the host-device CNI plug-in

The Cluster Network Operator (CNO) manages additional network definitions. When you specify an
additional network to create, the CNO creates the NetworkAttachmentDefinition Custom Resource
(CR) automatically.

IMPORTANT

Do not edit the NetworkAttachmentDefinition CRs that the Cluster Network Operator
manages. Doing so might disrupt network traffic on your additional network.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To create an additional network for your cluster, complete the following steps:

1. Edit the CNO CR by running the following command:

 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7"
 }
]
 }
}

{
 "ipam": {
 "type": "dhcp"
 }
}

$ oc edit networks.operator.openshift.io cluster

OpenShift Container Platform 4.3 Networking

66

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#attaching-pod

1

2. Modify the CR that you are creating by adding the configuration for the additional network you
are creating, as in the following example CR.
The following YAML configures the host-device CNI plug-in:

Specify the configuration for the additional network attachment definition.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO created the NetworkAttachmentDefinition CR by running the
following command. There might be a delay before the CNO creates the CR.

Example output

7.7.1.1. Configuration for host-device

The configuration for an additional network attachment that uses the host-device Container Network
Interface (CNI) plug-in is provided in two parts:

Cluster Network Operator (CNO) configuration

CNI plug-in configuration

The CNO configuration specifies the name for the additional network attachment and the namespace
to create the attachment in. The plug-in is configured by a JSON object specified by the rawCNIConfig
parameter in the CNO configuration.

The following YAML describes the configuration parameters for the CNO:

Cluster Network Operator YAML configuration

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: 1
 - name: test-network-1
 namespace: test-1
 type: Raw
 rawCNIConfig: '{
 "cniVersion": "0.3.1",
 "name": "test-network-1",
 "type": "host-device",
 "device": "eth1"
 }'

$ oc get network-attachment-definitions -n <namespace>

NAME AGE
test-network-1 14m

name: <name> 1
namespace: <namespace> 2

CHAPTER 7. MULTIPLE NETWORKS

67

1

2

3

1

2

3

4

5

6

Specify a name for the additional network attachment that you are creating. The name must be
unique within the specified namespace.

Specify the namespace to create the network attachment in. If you do not specify a value, then the
default namespace is used.

Specify the CNI plug-in configuration in JSON format, which is based on the following template.

IMPORTANT

Specify your network device by setting only one of the following parameters: device,
hwaddr, kernelpath, or pciBusID.

The following object describes the configuration parameters for the host-device CNI plug-in:

host-device CNI plug-in JSON configuration object

Specify the value for the name parameter you provided previously for the CNO configuration.

Specify the name of the device, such as eth0.

Specify the device hardware MAC address.

Specify the Linux kernel device path, such as /sys/devices/pci0000:00/0000:00:1f.6.

Specify the PCI address of the network device, such as 0000:00:1f.6.

Specify a configuration object for the ipam CNI plug-in. The plug-in manages IP address
assignment for the attachment definition.

7.7.1.1.1. host-device configuration example

The following example configures an additional network named hostdev-net:

rawCNIConfig: '{ 3
 ...
}'
type: Raw

{
 "cniVersion": "0.3.1",
 "name": "<name>", 1
 "type": "host-device",
 "device": "<device>", 2
 "hwaddr": "<hwaddr>", 3
 "kernelpath": "<kernelpath>", 4
 "pciBusID": "<pciBusID>", 5
 "ipam": { 6
 ...
 }
}

OpenShift Container Platform 4.3 Networking

68

1

1

The CNI configuration object is specified as a YAML string.

7.7.1.2. Configuration for ipam CNI plug-in

The ipam Container Network Interface (CNI) plug-in provides IP address management (IPAM) for other
CNI plug-ins. You can configure ipam for either static IP address assignment or dynamic IP address
assignment by using DHCP. The DHCP server you specify must be reachable from the additional
network.

The following JSON configuration object describes the parameters that you can set.

7.7.1.2.1. Static IP address assignment configuration

The following JSON describes the configuration for static IP address assignment:

Static assignment configuration

An array describing IP addresses to assign to the virtual interface. Both IPv4 and IPv6 IP addresses
are supported.

name: hostdev-net
namespace: work-network
type: Raw
rawCNIConfig: '{ 1
 "cniVersion": "0.3.1",
 "name": "work-network",
 "type": "host-device",
 "device": "eth1"
}'

{
 "ipam": {
 "type": "static",
 "addresses": [1
 {
 "address": "<address>", 2
 "gateway": "<gateway>" 3
 }
],
 "routes": [4
 {
 "dst": "<dst>" 5
 "gw": "<gw>" 6
 }
],
 "dns": { 7
 "nameservers": ["<nameserver>"], 8
 "domain": "<domain>", 9
 "search": ["<search_domain>"] 10
 }
 }
}

CHAPTER 7. MULTIPLE NETWORKS

69

2

3

4

5

6

7

8

9

10

An IP address that you specify.

The default gateway to route egress network traffic to.

An array describing routes to configure inside the Pod.

The IP address range in CIDR format.

The gateway where network traffic is routed.

Optional: DNS configuration.

An of array of one or more IP addresses for to send DNS queries to.

The default domain to append to a host name. For example, if the domain is set to example.com, a
DNS lookup query for example-host is rewritten as example-host.example.com.

An array of domain names to append to an unqualified host name, such as example-host, during a
DNS lookup query.

7.7.1.2.2. Dynamic IP address assignment configuration

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A Pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "master": "ens5",
 "ipam": {
 "type": "dhcp"
 }
 }

OpenShift Container Platform 4.3 Networking

70

DHCP assignment configuration

7.7.1.2.3. Static IP address assignment configuration example

You can configure ipam for static IP address assignment:

7.7.1.2.4. Dynamic IP address assignment configuration example using DHCP

You can configure ipam for DHCP:

7.7.2. Next steps

Attach a Pod to an additional network .

7.8. EDITING AN ADDITIONAL NETWORK

As a cluster administrator you can modify the configuration for an existing additional network.

7.8.1. Modifying an additional network attachment definition

As a cluster administrator, you can make changes to an existing additional network. Any existing Pods
attached to the additional network will not be updated.

Prerequisites

You have configured an additional network for your cluster.

Install the OpenShift CLI (oc).

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7"
 }
]
 }
}

{
 "ipam": {
 "type": "dhcp"
 }
}

CHAPTER 7. MULTIPLE NETWORKS

71

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#attaching-pod

Log in as a user with cluster-admin privileges.

Procedure

To edit an additional network for your cluster, complete the following steps:

1. Run the following command to edit the Cluster Network Operator (CNO) CR in your default text
editor:

2. In the additionalNetworks collection, update the additional network with your changes.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the CNO updated the NetworkAttachmentDefinition CR by running the
following command. Replace <network-name> with the name of the additional network to
display. There might be a delay before the CNO updates the NetworkAttachmentDefinition CR
to reflect your changes.

For example, the following console output displays a NetworkAttachmentDefinition that is
named net1:

7.9. REMOVING AN ADDITIONAL NETWORK

As a cluster administrator you can remove an additional network attachment.

7.9.1. Removing an additional network attachment definition

As a cluster administrator, you can remove an additional network from your OpenShift Container
Platform cluster. The additional network is not removed from any Pods it is attached to.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

To remove an additional network from your cluster, complete the following steps:

1. Edit the Cluster Network Operator (CNO) in your default text editor by running the following
command:

$ oc edit networks.operator.openshift.io cluster

$ oc get network-attachment-definitions <network-name> -o yaml

$ oc get network-attachment-definitions net1 -o go-template='{{printf "%s\n" .spec.config}}'
{ "cniVersion": "0.3.1", "type": "macvlan",
"master": "ens5",
"mode": "bridge",
"ipam": {"type":"static","routes":[{"dst":"0.0.0.0/0","gw":"10.128.2.1"}],"addresses":
[{"address":"10.128.2.100/23","gateway":"10.128.2.1"}],"dns":{"nameservers":
["172.30.0.10"],"domain":"us-west-2.compute.internal","search":["us-west-
2.compute.internal"]}} }

OpenShift Container Platform 4.3 Networking

72

1

2. Modify the CR by removing the configuration from the additionalNetworks collection for the
network attachment definition you are removing.

If you are removing the configuration mapping for the only additional network attachment
definition in the additionalNetworks collection, you must specify an empty collection.

3. Save your changes and quit the text editor to commit your changes.

4. Optional: Confirm that the additional network CR was deleted by running the following
command:

7.10. CONFIGURING PTP

IMPORTANT

Precision Time Protocol (PTP) hardware is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

7.10.1. About PTP hardware on OpenShift Container Platform

OpenShift Container Platform includes the capability to use PTP hardware on your nodes. You can
configure linuxptp services on nodes with PTP capable hardware.

You can use the OpenShift Container Platform console to install PTP by deploying the PTP Operator.
The PTP Operator creates and manages the linuxptp services. The Operator provides following
features:

Discover the PTP capable device in cluster.

Manage configuration of linuxptp services.

7.10.2. Installing the PTP Operator

As a cluster administrator, you can install the PTP Operator using the OpenShift Container Platform CLI

$ oc edit networks.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 additionalNetworks: [] 1

$ oc get network-attachment-definition --all-namespaces

CHAPTER 7. MULTIPLE NETWORKS

73

https://access.redhat.com/support/offerings/techpreview/

As a cluster administrator, you can install the PTP Operator using the OpenShift Container Platform CLI
or the web console.

7.10.2.1. Installing the Operator using the CLI

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports PTP.

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create a namespace for the PTP Operator by completing the following actions:

a. Create the following Namespace Custom Resource (CR) that defines the openshift-ptp
namespace, and then save the YAML in the ptp-namespace.yaml file:

apiVersion: v1
kind: Namespace
metadata:
 name: openshift-ptp
 labels:
 openshift.io/run-level: "1"

b. Create the namespace by running the following command:

2. Install the PTP Operator in the namespace you created in the previous step by creating the
following objects:

a. Create the following OperatorGroup CR and save the YAML in the ptp-
operatorgroup.yaml file:

b. Create the OperatorGroup CR by running the following command:

c. Run the following command to get the channel value required for the next step.

$ oc create -f ptp-namespace.yaml

apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: ptp-operators
 namespace: openshift-ptp
spec:
 targetNamespaces:
 - openshift-ptp

$ oc create -f ptp-operatorgroup.yaml

OpenShift Container Platform 4.3 Networking

74

1

2

d. Create the following Subscription CR and save the YAML in the ptp-sub.yaml file:

Example Subscription

Specify the value from you obtained in the previous step for the
.status.defaultChannel parameter.

You must specify the redhat-operators value.

e. Create the Subscription object by running the following command:

f. Change to the openshift-ptp project:

Example output

7.10.2.2. Installing the Operator using the web console

As a cluster administrator, you can install the Operator using the web console.

NOTE

You have to create the Namespace CR and OperatorGroup CR as mentioned in the
previous section.

Procedure

1. Install the PTP Operator using the OpenShift Container Platform web console:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

$ oc get packagemanifest ptp-operator -n openshift-marketplace -o
jsonpath='{.status.defaultChannel}'

4.3

apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: ptp-operator-subscription
 namespace: openshift-ptp
spec:
 channel: <channel> 1
 name: ptp-operator
 source: redhat-operators 2
 sourceNamespace: openshift-marketplace

$ oc create -f ptp-sub.yaml

$ oc project openshift-ptp

Now using project "openshift-ptp"

CHAPTER 7. MULTIPLE NETWORKS

75

b. Choose PTP Operator from the list of available Operators, and then click Install.

c. On the Create Operator Subscription page, under A specific namespace on the cluster
select openshift-ptp. Then, click Subscribe.

2. Optional: Verify that the PTP Operator installed successfully:

a. Switch to the Operators → Installed Operators page.

b. Ensure that PTP Operator is listed in the openshift-ptp project with a Status of
InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the operator does not appear as installed, to troubleshoot further:

Go to the Operators → Installed Operators page and inspect the Operator
Subscriptions and Install Plans tabs for any failure or errors under Status.

Go to the Workloads → Pods page and check the logs for Pods in the openshift-ptp
project.

7.10.3. Automated discovery of PTP network devices

The PTP Operator adds the NodePtpDevice.ptp.openshift.io Custom Resource Definition (CRD) to
OpenShift Container Platform. The PTP Operator will search your cluster for PTP capable network
devices on each node. The Operator creates and updates a NodePtpDevice Custom Resource (CR) for
each node that provides a compatible PTP device.

One CR is created for each node, and shares the same name as the node. The .status.devices list
provides information about the PTP devices on a node.

The following is an example of a NodePtpDevice CR created by the PTP Operator:

apiVersion: ptp.openshift.io/v1
kind: NodePtpDevice
metadata:
 creationTimestamp: "2019-11-15T08:57:11Z"
 generation: 1
 name: dev-worker-0 1
 namespace: openshift-ptp 2
 resourceVersion: "487462"
 selfLink: /apis/ptp.openshift.io/v1/namespaces/openshift-ptp/nodeptpdevices/dev-worker-0
 uid: 08d133f7-aae2-403f-84ad-1fe624e5ab3f
spec: {}
status:
 devices: 3
 - name: eno1
 - name: eno2
 - name: ens787f0
 - name: ens787f1

OpenShift Container Platform 4.3 Networking

76

1

2

3

1

The value for the name parameter is the same as the name of the node.

The CR is created in openshift-ptp namespace by PTP Operator.

The devices collection includes a list of all of the PTP capable devices discovered by the Operator
on the node.

7.10.4. Configuring Linuxptp services

The PTP Operator adds the PtpConfig.ptp.openshift.io Custom Resource Definition (CRD) to
OpenShift Container Platform. You can configure the Linuxptp services (ptp4l, phc2sys) by creating a
PtpConfig Custom Resource (CR).

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the PTP Operator.

Procedure

1. Create the following PtpConfig CR, and then save the YAML in the <name>-ptp-config.yaml
file. Replace <name> with the name for this configuration.

Specify a name for the PtpConfig CR.

 - name: ens801f0
 - name: ens801f1
 - name: ens802f0
 - name: ens802f1
 - name: ens803

apiVersion: ptp.openshift.io/v1
kind: PtpConfig
metadata:
 name: <name> 1
 namespace: openshift-ptp 2
spec:
 profile: 3
 - name: "profile1" 4
 interface: "ens787f1" 5
 ptp4lOpts: "-s -2" 6
 phc2sysOpts: "-a -r" 7
 recommend: 8
 - profile: "profile1" 9
 priority: 10 10
 match: 11
 - nodeLabel: "node-role.kubernetes.io/worker" 12
 nodeName: "dev-worker-0" 13

CHAPTER 7. MULTIPLE NETWORKS

77

2

3

4

5

6

7

8

9

10

11

12

13

1

Specify the namespace where the PTP Operator is installed.

Specify an array of one or more profile objects.

Specify the name of a profile object which is used to uniquely identify a profile object.

Specify the network interface name to use by the ptp4l service, for example ens787f1.

Specify system config options for the ptp4l service, for example -s -2. This should not
include the interface name -i <interface> and service config file -f /etc/ptp4l.conf
because these will be automatically appended.

Specify system config options for the phc2sys service, for example -a -r.

Specify an array of one or more recommend objects which define rules on how the profile
should be applied to nodes.

Specify the profile object name defined in the profile section.

Specify the priority with an integer value between 0 and 99. A larger number gets lower
priority, so a priority of 99 is lower than a priority of 10. If a node can be matched with
multiple profiles according to rules defined in the match field, the profile with the higher
priority will be applied to that node.

Specify match rules with nodeLabel or nodeName.

Specify nodeLabel with the key of node.Labels from the node object.

Specify nodeName with node.Name from the node object.

2. Create the CR by running the following command:

Replace <filename> with the name of the file you created in the previous step.

3. Optional: Check that the PtpConfig profile is applied to nodes that match with nodeLabel or
nodeName.

Example output

$ oc create -f <filename> 1

$ oc get pods -n openshift-ptp -o wide

NAME READY STATUS RESTARTS AGE IP NODE
NOMINATED NODE READINESS GATES
linuxptp-daemon-4xkbb 1/1 Running 0 43m 192.168.111.15 dev-worker-0
<none> <none>
linuxptp-daemon-tdspf 1/1 Running 0 43m 192.168.111.11 dev-master-0
<none> <none>
ptp-operator-657bbb64c8-2f8sj 1/1 Running 0 43m 10.128.0.116 dev-master-0
<none> <none>

$ oc logs linuxptp-daemon-4xkbb -n openshift-ptp
I1115 09:41:17.117596 4143292 daemon.go:107] in applyNodePTPProfile

OpenShift Container Platform 4.3 Networking

78

1

2

3

4

Profile Name is the name that is applied to node dev-worker-0.

Interface is the PTP device specified in the profile1 interface field. The ptp4l service runs
on this interface.

Ptp4lOpts are the ptp4l sysconfig options specified in profile1 Ptp4lOpts field.

Phc2sysOpts are the phc2sys sysconfig options specified in profile1 Phc2sysOpts field.

I1115 09:41:17.117604 4143292 daemon.go:109] updating NodePTPProfile to:
I1115 09:41:17.117607 4143292 daemon.go:110] ------------------------------------
I1115 09:41:17.117612 4143292 daemon.go:102] Profile Name: profile1 1
I1115 09:41:17.117616 4143292 daemon.go:102] Interface: ens787f1 2
I1115 09:41:17.117620 4143292 daemon.go:102] Ptp4lOpts: -s -2 3
I1115 09:41:17.117623 4143292 daemon.go:102] Phc2sysOpts: -a -r 4
I1115 09:41:17.117626 4143292 daemon.go:116] ------------------------------------
I1115 09:41:18.117934 4143292 daemon.go:186] Starting phc2sys...
I1115 09:41:18.117985 4143292 daemon.go:187] phc2sys cmd: &{Path:/usr/sbin/phc2sys
Args:[/usr/sbin/phc2sys -a -r] Env:[] Dir: Stdin:<nil> Stdout:<nil> Stderr:<nil> ExtraFiles:[]
SysProcAttr:<nil> Process:<nil> ProcessState:<nil> ctx:<nil> lookPathErr:<nil> finished:false
childFiles:[] closeAfterStart:[] closeAfterWait:[] goroutine:[] errch:<nil> waitDone:<nil>}
I1115 09:41:19.118175 4143292 daemon.go:186] Starting ptp4l...
I1115 09:41:19.118209 4143292 daemon.go:187] ptp4l cmd: &{Path:/usr/sbin/ptp4l Args:
[/usr/sbin/ptp4l -m -f /etc/ptp4l.conf -i ens787f1 -s -2] Env:[] Dir: Stdin:<nil> Stdout:<nil>
Stderr:<nil> ExtraFiles:[] SysProcAttr:<nil> Process:<nil> ProcessState:<nil> ctx:<nil>
lookPathErr:<nil> finished:false childFiles:[] closeAfterStart:[] closeAfterWait:[] goroutine:[]
errch:<nil> waitDone:<nil>}
ptp4l[102189.864]: selected /dev/ptp5 as PTP clock
ptp4l[102189.886]: port 1: INITIALIZING to LISTENING on INIT_COMPLETE
ptp4l[102189.886]: port 0: INITIALIZING to LISTENING on INIT_COMPLETE

CHAPTER 7. MULTIPLE NETWORKS

79

CHAPTER 8. HARDWARE NETWORKS

8.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE
NETWORKS

The Single Root I/O Virtualization (SR-IOV) specification is a standard for a type of PCI device
assignment that can share a single device with multiple pods.

SR-IOV enables you to segment a compliant network device, recognized on the host node as a physical
function (PF), into multiple virtual functions (VFs). The VF is used like any other network device. The
SR-IOV device driver for the device determines how the VF is exposed in the container:

netdevice driver: A regular kernel network device in the netns of the container

vfio-pci driver: A character device mounted in the container

You can use SR-IOV network devices with additional networks on your OpenShift Container Platform
cluster for application that require high bandwidth or low latency.

8.1.1. Components that manage SR-IOV network devices

The SR-IOV Network Operator creates and manages the components of the SR-IOV stack. It performs
the following functions:

Orchestrates discovery and management of SR-IOV network devices

Generates NetworkAttachmentDefinition custom resources for the SR-IOV Container Network
Interface (CNI)

Creates and updates the configuration of the SR-IOV network device plug-in

Creates node specific SriovNetworkNodeState custom resources

Updates the spec.interfaces field in each SriovNetworkNodeState custom resource

The Operator provisions the following components:

SR-IOV network configuration daemon

A DaemonSet that is deployed on worker nodes when the SR-IOV Operator starts. The daemon is
responsible for discovering and initializing SR-IOV network devices in the cluster.

SR-IOV Operator webhook

A dynamic admission controller webhook that validates the Operator custom resource and sets
appropriate default values for unset fields.

SR-IOV Network resources injector

A dynamic admission controller webhook that provides functionality for patching Kubernetes Pod
specifications with requests and limits for custom network resources such as SR-IOV VFs.

SR-IOV network device plug-in

A device plug-in that discovers, advertises, and allocates SR-IOV network virtual function (VF)
resources. Device plug-ins are used in Kubernetes to enable the use of limited resources, typically in
physical devices. Device plug-ins give the Kubernetes scheduler awareness of resource availability, so
that the scheduler can schedule Pods on nodes with sufficient resources.

SR-IOV CNI plug-in

A CNI plug-in that attaches VF interfaces allocated from the SR-IOV device plug-in directly into a

OpenShift Container Platform 4.3 Networking

80

A CNI plug-in that attaches VF interfaces allocated from the SR-IOV device plug-in directly into a
Pod.

NOTE

The SR-IOV Network resources injector and SR-IOV Network Operator webhook are
enabled by default and can be disabled by editing the default SriovOperatorConfig CR.

8.1.1.1. Supported devices

OpenShift Container Platform supports the following Network Interface Card (NIC) models:

Intel XXV710-DA2 25G card with vendor ID 0x8086 and device ID 0x158b

Mellanox MT27710 Family [ConnectX-4 Lx] 25G card with vendor ID 0x15b3 and device ID
0x1015

Mellanox MT27800 Family [ConnectX-5] 100G card with vendor ID 0x15b3 and device ID
0x1017

8.1.1.2. Example use of a virtual function in a Pod

You can run a remote direct memory access (RDMA) or a Data Plane Development Kit (DPDK)
application in a Pod with SR-IOV VF attached.

This example shows a Pod using a virtual function (VF) in RDMA mode:

Pod spec that uses RDMA mode

The following example shows a Pod with a VF in DPDK mode:

Pod spec that uses DPDK mode

apiVersion: v1
kind: Pod
metadata:
 name: rdma-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-rdma-mlnx
spec:
 containers:
 - name: testpmd
 image: <RDMA_image>
 imagePullPolicy: IfNotPresent
 securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 command: ["sleep", "infinity"]

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 annotations:
 k8s.v1.cni.cncf.io/networks: sriov-dpdk-net

CHAPTER 8. HARDWARE NETWORKS

81

An optional library is available to aid the application running in a container in gathering network
information associated with a pod. This library is called 'app-netutil'. See the library’s source code in the
app-netutil GitHub repo .

This library is intended to ease the integration of the SR-IOV VFs in DPDK mode into the container. The
library provides both a GO API and a C API, as well as examples of using both languages.

There is also a sample Docker image, 'dpdk-app-centos', which can run one of the following DPDK
sample applications based on an environmental variable in the pod-spec: l2fwd, l3wd or testpmd. This
Docker image provides an example of integrating the 'app-netutil' into the container image itself. The
library can also integrate into an init-container which collects the desired data and passes the data to an
existing DPDK workload.

8.1.2. Next steps

Installing the SR-IOV Network Operator

Optional: Configuring the SR-IOV Network Operator

Configuring an SR-IOV network device

Configuring an SR-IOV network attachment

Adding a Pod to an SR-IOV additional network

8.2. INSTALLING THE SR-IOV NETWORK OPERATOR

You can install the Single Root I/O Virtualization (SR-IOV) Network Operator on your cluster to manage
SR-IOV network devices and network attachments.

spec:
 containers:
 - name: testpmd
 image: <DPDK_image>
 securityContext:
 capabilities:
 add: ["IPC_LOCK"]
 volumeMounts:
 - mountPath: /dev/hugepages
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 requests:
 memory: "1Gi"
 cpu: "2"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.3 Networking

82

https://github.com/openshift/app-netutil
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#installing-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-sriov-operator
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-sriov-device
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-sriov-net-attach
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#add-pod

8.2.1. Installing SR-IOV Network Operator

As a cluster administrator, you can install the SR-IOV Network Operator by using the OpenShift
Container Platform CLI or the web console.

8.2.1.1. CLI: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. To create the openshift-sriov-network-operator namespace, enter the following command:

2. To create an OperatorGroup CR, enter the following command:

3. Subscribe to the SR-IOV Network Operator.

a. Run the following command to get the OpenShift Container Platform major and minor
version. It is required for the channel value in the next step.

b. To create a Subscription CR for the SR-IOV Network Operator, enter the following
command:

$ cat << EOF| oc create -f -
apiVersion: v1
kind: Namespace
metadata:
 name: openshift-sriov-network-operator
 labels:
 openshift.io/run-level: "1"
EOF

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1
kind: OperatorGroup
metadata:
 name: sriov-network-operators
 namespace: openshift-sriov-network-operator
spec:
 targetNamespaces:
 - openshift-sriov-network-operator
EOF

$ OC_VERSION=$(oc version -o yaml | grep openshiftVersion | \
 grep -o '[0-9]*[.][0-9]*' | head -1)

CHAPTER 8. HARDWARE NETWORKS

83

4. To verify that the Operator is installed, enter the following command:

Example output

8.2.1.2. Web console: Installing the SR-IOV Network Operator

As a cluster administrator, you can install the Operator using the web console.

NOTE

You must create the OperatorGroup CR by using the CLI.

Prerequisites

A cluster installed on bare-metal hardware with nodes that have hardware that supports SR-
IOV.

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

Procedure

1. Create a namespace for the SR-IOV Network Operator:

a. In the OpenShift Container Platform web console, click Administration → Namespaces.

b. Click Create Namespace.

c. In the Name field, enter openshift-sriov-network-operator, and then click Create.

d. In the Filter by name field, enter openshift-sriov-network-operator.

e. From the list of results, click openshift-sriov-network-operator, and then click YAML.

$ cat << EOF| oc create -f -
apiVersion: operators.coreos.com/v1alpha1
kind: Subscription
metadata:
 name: sriov-network-operator-subscription
 namespace: openshift-sriov-network-operator
spec:
 channel: "${OC_VERSION}"
 name: sriov-network-operator
 source: redhat-operators
 sourceNamespace: openshift-marketplace
EOF

$ oc get csv -n openshift-sriov-network-operator \
 -o custom-columns=Name:.metadata.name,Phase:.status.phase

Name Phase
sriov-network-operator.4.4.0-202006160135 Succeeded

OpenShift Container Platform 4.3 Networking

84

f. Update the namespace by adding the following stanza to the namespace definition:

g. Click Save.

2. Install the SR-IOV Network Operator:

a. In the OpenShift Container Platform web console, click Operators → OperatorHub.

b. Select SR-IOV Network Operator from the list of available Operators, and then click
Install.

c. On the Create Operator Subscription page, under A specific namespace on the cluster,
select openshift-sriov-network-operator.

d. Click Subscribe.

3. Verify that the SR-IOV Network Operator is installed successfully:

a. Navigate to the Operators → Installed Operators page.

b. Ensure that SR-IOV Network Operator is listed in the openshift-sriov-network-operator
project with a Status of InstallSucceeded.

NOTE

During installation an Operator might display a Failed status. If the
installation later succeeds with an InstallSucceeded message, you can ignore
the Failed message.

If the operator does not appear as installed, to troubleshoot further:

Inspect the Operator Subscriptions and Install Plans tabs for any failure or errors
under Status.

Navigate to the Workloads → Pods page and check the logs for Pods in the openshift-
sriov-network-operator project.

8.2.2. Next steps

Optional: Configuring the SR-IOV Network Operator

8.3. CONFIGURING THE SR-IOV NETWORK OPERATOR

The Single Root I/O Virtualization (SR-IOV) Network Operator manages the SR-IOV network devices
and network attachments in your cluster.

8.3.1. Configuring the SR-IOV Network Operator

IMPORTANT

 labels:
 openshift.io/run-level: "1"

CHAPTER 8. HARDWARE NETWORKS

85

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-sriov-operator

IMPORTANT

Modifying the SR-IOV Network Operator configuration is not normally necessary. The
default configuration is recommended for most use cases. Complete the steps to modify
the relevant configuration only if the default behavior of the Operator is not compatible
with your use case.

The SR-IOV Network Operator adds the SriovOperatorConfig.sriovnetwork.openshift.io
CustomResourceDefinition resource. The operator automatically creates a SriovOperatorConfig custom
resource (CR) named default in the openshift-sriov-network-operator namespace.

NOTE

The default CR contains the SR-IOV Network Operator configuration for your cluster. To
change the operator configuration, you must modify this CR.

The SriovOperatorConfig CR provides several fields for configuring the operator:

enableInjector allows project administrators to enable or disable the Network Resources
Injector DaemonSet.

enableOperatorWebhook allows project administrators to enable or disable the Operator
Admission Controller webook DaemonSet.

configDaemonNodeSelector allows project administrators to schedule the SR-IOV Network
Config Daemon on selected nodes.

8.3.1.1. About the Network Resources Injector

The Network Resources Injector is a Kubernetes Dynamic Admission Controller application. It provides
the following capabilities:

Mutation of resource requests and limits in Pod specification to add an SR-IOV resource name
according to an SR-IOV network attachment definition annotation.

Mutation of Pod specifications with downward API volume to expose pod annotations and
labels to the running container as files under the /etc/podnetinfo path.

By default the Network Resources Injector is enabled by the SR-IOV operator and runs as a DaemonSet
on all master nodes. The following is an example of Network Resources Injector Pods running in a cluster
with three master nodes:

Example output

8.3.1.2. About the SR-IOV Operator admission controller webhook

The SR-IOV Operator Admission Controller webook is a Kubernetes Dynamic Admission Controller

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
network-resources-injector-5cz5p 1/1 Running 0 10m
network-resources-injector-dwqpx 1/1 Running 0 10m
network-resources-injector-lktz5 1/1 Running 0 10m

OpenShift Container Platform 4.3 Networking

86

The SR-IOV Operator Admission Controller webook is a Kubernetes Dynamic Admission Controller
application. It provides the following capabilities:

Validation of the SriovNetworkNodePolicy CR when it is created or updated.

Mutation of the SriovNetworkNodePolicy CR by setting the default value for the priority and
deviceType fields when the CR is created or updated.

By default the SR-IOV Operator Admission Controller webook is enabled by the operator and runs as a
DaemonSet on all master nodes. The following is an example of the Operator Admission Controller
webook Pods running in a cluster with three master nodes:

Example output

8.3.1.3. About custom node selectors

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

8.3.1.4. Disabling or enabling the Network Resources Injector

To disable or enable the Network Resources Injector, which is enabled by default, complete the following
procedure.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Operator.

Procedure

Set the enableInjector field. Replace <value> with false to disable the feature or true to
enable the feature.

8.3.1.5. Disabling or enabling the SR-IOV Operator admission controller webhook

To disable or enable the admission controller webhook, which is enabled by default, complete the
following procedure.

$ oc get pods -n openshift-sriov-network-operator

NAME READY STATUS RESTARTS AGE
operator-webhook-9jkw6 1/1 Running 0 16m
operator-webhook-kbr5p 1/1 Running 0 16m
operator-webhook-rpfrl 1/1 Running 0 16m

$ oc patch sriovoperatorconfig default \
 --type=merge -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableInjector": <value> } }'

CHAPTER 8. HARDWARE NETWORKS

87

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Operator.

Procedure

Set the enableOperatorWebhook field. Replace <value> with false to disable the feature or
true to enable it:

8.3.1.6. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

The SR-IOV Network Config daemon discovers and configures the SR-IOV network devices on cluster
nodes. By default, it is deployed to all the worker nodes in the cluster. You can use node labels to
specify on which nodes the SR-IOV Network Config daemon runs.

To specify the nodes where the SR-IOV Network Config daemon is deployed, complete the following
procedure.

IMPORTANT

When you update the configDaemonNodeSelector field, the SR-IOV Network Config
daemon is recreated on each selected node. While the daemon is recreated, cluster users
are unable to apply any new SR-IOV Network node policy or create new SR-IOV pods.

Procedure

To update the node selector for the operator, enter the following command:

Replace <node-label> with a label to apply as in the following example: "node-
role.kubernetes.io/worker": "".

8.3.2. Next steps

Configuring an SR-IOV network device

8.4. CONFIGURING AN SR-IOV NETWORK DEVICE

You can configure a Single Root I/O Virtualization (SR-IOV) device in your cluster.

$ oc patch sriovoperatorconfig default --type=merge \
 -n openshift-sriov-network-operator \
 --patch '{ "spec": { "enableOperatorWebhook": <value> } }'

$ oc patch sriovoperatorconfig default --type=json \
 -n openshift-sriov-network-operator \
 --patch '[{
 "op": "replace",
 "path": "/spec/configDaemonNodeSelector",
 "value": {<node-label>}
 }]'

OpenShift Container Platform 4.3 Networking

88

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-sriov-device

8.4.1. Automated discovery of SR-IOV network devices

The SR-IOV Network Operator searches your cluster for SR-IOV capable network devices on worker
nodes. The Operator creates and updates a SriovNetworkNodeState custom resource (CR) for each
worker node that provides a compatible SR-IOV network device.

The CR is assigned the same name as the worker node. The status.interfaces list provides information
about the network devices on a node.

IMPORTANT

Do not modify a SriovNetworkNodeState CR. The Operator creates and manages these
resources automatically.

8.4.1.1. Example SriovNetworkNodeState CR

The following YAML is an example of a SriovNetworkNodeState CR created by the SR-IOV Network
Operator:

An SriovNetworkNodeState object

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodeState
metadata:
 name: node-25 1
 namespace: openshift-sriov-network-operator
 ownerReferences:
 - apiVersion: sriovnetwork.openshift.io/v1
 blockOwnerDeletion: true
 controller: true
 kind: SriovNetworkNodePolicy
 name: default
spec:
 dpConfigVersion: "39824"
status:
 interfaces: 2
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f0
 pciAddress: "0000:18:00.0"
 totalvfs: 8
 vendor: 15b3
 - deviceID: "1017"
 driver: mlx5_core
 mtu: 1500
 name: ens785f1
 pciAddress: "0000:18:00.1"
 totalvfs: 8
 vendor: 15b3
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f0
 pciAddress: 0000:81:00.0

CHAPTER 8. HARDWARE NETWORKS

89

1

2

The value of the name field is the same as the name of the worker node.

The interfaces stanza includes a list of all of the SR-IOV devices discovered by the Operator on
the worker node.

8.4.2. Configuring SR-IOV network devices

The SR-IOV Network Operator adds the SriovNetworkNodePolicy.sriovnetwork.openshift.io
CustomResourceDefinition to OpenShift Container Platform. You can configure an SR-IOV network
device by creating a SriovNetworkNodePolicy custom resource (CR).

NOTE

When applying the configuration specified in a SriovNetworkNodePolicy CR, the SR-IOV
Operator may drain the nodes, and in some cases, reboot nodes. It might take several
minutes for a configuration change to apply. Ensure that there are enough available
nodes in your cluster to handle the evicted workload beforehand.

Prerequisites

Install the OpenShift CLI (oc).

An account with cluster-admin privileges.

You must have installed the SR-IOV Operator.

Procedure

1. Create the following SriovNetworkNodePolicy CR, and then save the YAML in the <name>-
sriov-node-network.yaml file. Replace <name> with the name for this configuration.

 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens817f1
 pciAddress: 0000:81:00.1
 totalvfs: 64
 vendor: "8086"
 - deviceID: 158b
 driver: i40e
 mtu: 1500
 name: ens803f0
 pciAddress: 0000:86:00.0
 totalvfs: 64
 vendor: "8086"
 syncStatus: Succeeded

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2

OpenShift Container Platform 4.3 Networking

90

1

2

3

4

5

6

7

8

9

10

11

12

Specify a name for the CR object.

Specify the namespace where the SR-IOV Operator is installed.

Specify the resource name of the SR-IOV device plug-in. You can create multiple
SriovNetworkNodePolicy CRs for a resource name.

Specify the node selector to select which nodes are configured. Only SR-IOV network devices on
selected nodes are configured. The SR-IOV Container Network Interface (CNI) plug-in and device
plug-in are deployed only on selected nodes.

Optional: Specify an integer value between 0 and 99. A smaller number gets higher priority, so a
priority of 10 is higher than a priority of 99. The default value is 99.

Optional: Specify a value for the maximum transmission unit (MTU) of the virtual function. The
maximum MTU value can vary for different NIC models.

Specify the number of the virtual functions (VF) to create for the SR-IOV physical network device.
For an Intel Network Interface Card (NIC), the number of VFs cannot be larger than the total VFs
supported by the device. For a Mellanox NIC, the number of VFs cannot be larger than 128.

The nicSelector mapping selects the Ethernet device for the Operator to configure. You do not
need to specify values for all the parameters. It is recommended to identify the Ethernet adapter
with enough precision to minimize the possibility of selecting an Ethernet device unintentionally. If
you specify rootDevices, you must also specify a value for vendor, deviceID, or pfNames. If you
specify both pfNames and rootDevices at the same time, ensure that they point to an identical
device.

Optional: Specify the vendor hex code of the SR-IOV network device. The only allowed values are
either 8086 or 15b3.

Optional: Specify the device hex code of SR-IOV network device. The only allowed values are
158b, 1015, 1017.

Optional: The parameter accepts an array of one or more physical function (PF) names for the
Ethernet device.

The parameter accepts an array of one or more PCI bus addresses for the physical function of the
Ethernet device. Provide the address in the following format: 0000:02:00.1.

spec:
 resourceName: <sriov_resource_name> 3
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true" 4
 priority: <priority> 5
 mtu: <mtu> 6
 numVfs: <num> 7
 nicSelector: 8
 vendor: "<vendor_code>" 9
 deviceID: "<device_id>" 10
 pfNames: ["<pf_name>", ...] 11
 rootDevices: ["<pci_bus_id>", "..."] 12
 deviceType: <device_type> 13
 isRdma: false 14

CHAPTER 8. HARDWARE NETWORKS

91

13

14

Optional: Specify the driver type for the virtual functions. You can specify one of the following
values: netdevice or vfio-pci. The default value is netdevice.

NOTE

For a Mellanox card to work in Data Plane Development Kit (DPDK) mode on bare
metal nodes, use the netdevice driver type and set isRdma to true. For a Mellanox
card to work in DPDK mode with Container-Native Virtualization (CNV), use the
vfio-pci driver type and set isRdma to false.

Optional. Specify whether to enable remote direct memory access (RDMA) mode. The default
value is false. Only RDMA over Converged Ethernet (RoCE) mode is supported on Mellanox
Ethernet adapters.

NOTE

If isRDMA flag is set to true, you can continue to use the RDMA enabled VF as a
normal network device. A device can be used in either mode.

2. Create the SriovNetworkNodePolicy CR. Replace <name> with the name for this configuration.

After applying the configuration update, all the Pods in sriov-network-operator namespace
transition to the Running status.

3. To verify that the SR-IOV network device is configured, enter the following command. Replace
<node_name> with the name of a node with the SR-IOV network device that you just
configured.

8.4.3. Next steps

Configuring an SR-IOV network attachment

8.5. CONFIGURING AN SR-IOV NETWORK ATTACHMENT

You can configure a network attachment for an Single Root I/O Virtualization (SR-IOV) device in the
cluster.

8.5.1. Configuring SR-IOV additional network

You can configure an additional network that uses SR-IOV hardware by creating a SriovNetwork custom
resource (CR). When you create a SriovNetwork CR, the SR-IOV Operator automatically creates a
NetworkAttachmentDefinition CR.

NOTE

$ oc create -f <name>-sriov-node-network.yaml

$ oc get sriovnetworknodestates -n openshift-sriov-network-operator <node_name> -o
jsonpath='{.status.syncStatus}'

OpenShift Container Platform 4.3 Networking

92

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-sriov-net-attach

1

2

3

4

5

6

7

NOTE

Do not modify or delete a SriovNetwork CR if it is attached to any Pods in the running
state.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

Procedure

1. Create the following SriovNetwork CR, and then save the YAML in the <name>-sriov-
network.yaml file. Replace <name> with a name for this additional network.

Replace <name> with a name for the CR. The SR-IOV Network Operator creates a
NetworkAttachmentDefinition CR with same name.

Specify the namespace where the SR-IOV Operator is installed.

Optional: Replace <target_namespace> with the namespace where the
NetworkAttachmentDefinition CR is created. The default value is openshift-sriov-network-
operator.

Optional: Replace <ipam> a configuration object for the ipam CNI plug-in as a YAML block scalar.
The plug-in manages IP address assignment for the attachment definition.

Optional: Replace <vlan> with a Virtual LAN (VLAN) ID for the additional network. The integer
value must be from 0 to 4095. The default value is 0.

Replace <sriov_resource_name> with the value for the .spec.resourceName parameter from the
SriovNetworkNodePolicy CR that defines the SR-IOV hardware for this additional network.

Optional: Replace <link_state> with the link state of virtual function (VF). Allowed value are
enable, disable and auto.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 networkNamespace: <target_namespace> 3
 ipam: <ipam> 4
 vlan: <vlan> 5
 resourceName: <sriov_resource_name> 6
 linkState: <link_state> 7
 maxTxRate: <max_tx_rate> 8
 minTxRate: <min_rx_rate> 9
 vlanQoS: <vlan_qos> 10
 spoofChk: "<spoof_check>" 11
 trust: "<trust_vf>" 12
 capabilities: <capabilities> 13

CHAPTER 8. HARDWARE NETWORKS

93

8

9

10

11

12

13

Optional: Replace <max_tx_rate> with a maximum transmission rate, in Mbps, for the VF.

Optional: Replace <min_tx_rate> with a minimum transmission rate, in Mbps, for the VF. This value
should always be less than or equal to Maximum transmission rate.

NOTE

Intel NICs do not support the minTxRate parameter. For more information, see
BZ#1772847.

Optional: Replace <vlan_qos> with an IEEE 802.1p priority level for the VF. The default value is 0.

Optional: Replace <spoof_check> with the spoof check mode of the VF. The allowed values are
the strings "on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

Optional: Replace <trust_vf> with the trust mode of the VF. The allowed values are the strings
"on" and "off".

IMPORTANT

You must enclose the value you specify in quotes or the CR is rejected by the SR-
IOV Network Operator.

Optional: Replace <capabilities> with the capabilities to configure for this network. You can
specify "{ "ips": true }" to enable IP address support or "{ "mac": true }" to enable MAC address
support.

2. To create the CR object, enter the following command. Replace <name> with a name for this
additional network.

3. Optional: To confirm that the NetworkAttachmentDefinition CR associated with the
SriovNetwork CR that you created in the previous step exists, enter the following command.
Replace <namespace> with the namespace you specified in the SriovNetwork CR.

8.5.1.1. Configuration for ipam CNI plug-in

The ipam Container Network Interface (CNI) plug-in provides IP address management (IPAM) for other
CNI plug-ins. You can configure ipam for either static IP address assignment or dynamic IP address
assignment by using DHCP. The DHCP server you specify must be reachable from the additional
network.

The following JSON configuration object describes the parameters that you can set.

$ oc create -f <name>-sriov-network.yaml

$ oc get net-attach-def -n <namespace>

OpenShift Container Platform 4.3 Networking

94

https://bugzilla.redhat.com/show_bug.cgi?id=1772847

1

2

3

4

5

6

7

8

9

10

8.5.1.1.1. Static IP address assignment configuration

The following JSON describes the configuration for static IP address assignment:

Static assignment configuration

An array describing IP addresses to assign to the virtual interface. Both IPv4 and IPv6 IP addresses
are supported.

An IP address that you specify.

The default gateway to route egress network traffic to.

An array describing routes to configure inside the Pod.

The IP address range in CIDR format.

The gateway where network traffic is routed.

Optional: DNS configuration.

An of array of one or more IP addresses for to send DNS queries to.

The default domain to append to a host name. For example, if the domain is set to example.com, a
DNS lookup query for example-host is rewritten as example-host.example.com.

An array of domain names to append to an unqualified host name, such as example-host, during a
DNS lookup query.

8.5.1.1.2. Dynamic IP address assignment configuration

{
 "ipam": {
 "type": "static",
 "addresses": [1
 {
 "address": "<address>", 2
 "gateway": "<gateway>" 3
 }
],
 "routes": [4
 {
 "dst": "<dst>" 5
 "gw": "<gw>" 6
 }
],
 "dns": { 7
 "nameservers": ["<nameserver>"], 8
 "domain": "<domain>", 9
 "search": ["<search_domain>"] 10
 }
 }
}

CHAPTER 8. HARDWARE NETWORKS

95

The following JSON describes the configuration for dynamic IP address address assignment with DHCP.

RENEWAL OF DHCP LEASES

A Pod obtains its original DHCP lease when it is created. The lease must be periodically
renewed by a minimal DHCP server deployment running on the cluster.

The SR-IOV Network Operator does not create a DHCP server deployment; The Cluster
Network Operator is responsible for creating the minimal DHCP server deployment.

To trigger the deployment of the DHCP server, you must create a shim network
attachment by editing the Cluster Network Operator configuration, as in the following
example:

Example shim network attachment definition

DHCP assignment configuration

8.5.1.1.3. Static IP address assignment configuration example

You can configure ipam for static IP address assignment:

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 additionalNetworks:
 - name: dhcp-shim
 namespace: default
 rawCNIConfig: |-
 {
 "name": "dhcp-shim",
 "cniVersion": "0.3.1",
 "type": "bridge",
 "master": "ens5",
 "ipam": {
 "type": "dhcp"
 }
 }

{
 "ipam": {
 "type": "dhcp"
 }
}

{
 "ipam": {
 "type": "static",
 "addresses": [
 {
 "address": "191.168.1.7"

OpenShift Container Platform 4.3 Networking

96

1

2

3

4

5

8.5.1.1.4. Dynamic IP address assignment configuration example using DHCP

You can configure ipam for DHCP:

8.5.1.2. Configuring static MAC and IP addresses on additional SR-IOV networks

You can configure static MAC and IP addresses on an SR-IOV network by specifying Container Network
Interface (CNI) runtimeConfig data in a Pod annotation.

Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges when creating the SriovNetwork CR.

Procedure

1. Create the following SriovNetwork CR, and then save the YAML in the <name>-sriov-
network.yaml file. Replace <name> with a name for this additional network.

Replace <name> with a name for the CR. The SR-IOV Network Operator creates a
NetworkAttachmentDefinition CR with same name.

Specify the namespace where the SR-IOV Network Operator is installed.

Replace <target_namespace> with the namespace where the
NetworkAttachmentDefinition CR is created.

Specify static type for the ipam CNI plug-in as a YAML block scalar.

Specify mac and ips capabilities to true.

Replace <sriov_resource_name> with the value for the spec.resourceName parameter

 }
]
 }
}

{
 "ipam": {
 "type": "dhcp"
 }
}

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: <name> 1
 namespace: openshift-sriov-network-operator 2
spec:
 networkNamespace: <target_namespace> 3
 ipam: '{ "type": "static" }' 4
 capabilities: '{ "mac": true, "ips": true }' 5
 resourceName: <sriov_resource_name> 6

CHAPTER 8. HARDWARE NETWORKS

97

6

1

1

2

3

Replace <sriov_resource_name> with the value for the spec.resourceName parameter
from the SriovNetworkNodePolicy CR that defines the SR-IOV hardware for this
additional network.

2. Create the CR by running the following command:

Replace <filename> with the name of the file you created in the previous step.

3. Optional: Confirm that the NetworkAttachmentDefinition CR associated with the SriovNetwork
CR that you created in the previous step exists by running the following command. Replace
<namespace> with the namespace you specified in the SriovNetwork CR.

NOTE

Do not modify or delete a SriovNetwork Custom Resource (CR) if it is attached to any
Pods in the running state.

1. Create the following SR-IOV pod spec, and then save the YAML in the <name>-sriov-
pod.yaml file. Replace <name> with a name for this pod.

Specify the name of the SR-IOV network attachment definition CR.

Specify the MAC address for the SR-IOV device that is allocated from the resource type
defined in the SR-IOV network attachment definition CR.

Specify addresses for the SR-IOV device which is allocated from the resource type
defined in the SR-IOV network attachment definition CR. Both IPv4 and IPv6 addresses
are supported.

$ oc create -f <filename> 1

$ oc get net-attach-def -n <namespace>

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: '[
 {
 "name": "<name>", 1
 "mac": "20:04:0f:f1:88:01", 2
 "ips": ["192.168.10.1/24", "2001::1/64"] 3
 }
]'
spec:
 containers:
 - name: sample-container
 image: <image>
 imagePullPolicy: IfNotPresent
 command: ["sleep", "infinity"]

OpenShift Container Platform 4.3 Networking

98

1

2. Create the sample SR-IOV pod by running the following command:

Replace <filename> with the name of the file you created in the previous step.

3. Optional: Confirm that mac and ips addresses are applied to the SR-IOV device by running the
following command. Replace <namespace> with the namespace you specified in the
SriovNetwork CR.

8.5.2. Next steps

Adding a Pod to an SR-IOV additional network

8.6. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK

You can add a Pod to an existing Single Root I/O Virtualization (SR-IOV) network.

8.6.1. Adding a Pod to an additional network

You can add a Pod to an additional network. The Pod continues to send normal cluster-related network
traffic over the default network.

When a Pod is created additional networks are attached to it. However, if a Pod already exists, you
cannot attach additional networks to it.

NOTE

If a NetworkAttachmentDefinition is managed by the SR-IOV Network Operator, the SR-
IOV Network Resource Injector adds the resource field to the Pod object automatically.

IMPORTANT

When specifying an SR-IOV hardware network for a Deployment resource or a
ReplicationController resource, you must specify the namespace of the
NetworkAttachmentDefinition CR. For more information, see the following bugs:
BZ#1846333 and BZ#1840962.

Prerequisites

The Pod must be in the same namespace as the additional network.

Install the OpenShift CLI (oc).

You must log in to the cluster.

You must have the SR-IOV Operator installed and a SriovNetwork CR defined.

Procedure

$ oc create -f <filename> 1

$ oc exec sample-pod -n <namespace> -- ip addr show

CHAPTER 8. HARDWARE NETWORKS

99

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#add-pod
https://bugzilla.redhat.com/show_bug.cgi?id=1846333
https://bugzilla.redhat.com/show_bug.cgi?id=1840962

1

1

2

3

1. Add an annotation to the Pod object. Only one of the following annotation formats can be used:

a. To attach an additional network without any customization, add an annotation with the
following format. Replace <network> with the name of the additional network to associate
with the Pod:

To specify more than one additional network, separate each network with a comma. Do
not include whitespace between the comma. If you specify the same additional
network multiple times, that Pod will have multiple network interfaces attached to that
network.

b. To attach an additional network with customizations, add an annotation with the following
format:

Specify the name of the additional network defined by a NetworkAttachmentDefinition
CR.

Specify the namespace where the NetworkAttachmentDefinition CR is defined.

Optional: Specify an override for the default route, such as 192.168.17.1.

2. To create the Pod, enter the following command. Replace <name> with the name of the Pod.

3. Optional: To Confirm that the annotation exists in the Pod CR, enter the following command,
replacing <name> with the name of the Pod.

In the following example, the example-pod Pod is attached to the net1 additional network:

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: <network>[,<network>,...] 1

metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: |-
 [
 {
 "name": "<network>", 1
 "namespace": "<namespace>", 2
 "default-route": ["<default-route>"] 3
 }
]

$ oc create -f <name>.yaml

$ oc get pod <name> -o yaml

$ oc get pod example-pod -o yaml
apiVersion: v1
kind: Pod
metadata:
 annotations:
 k8s.v1.cni.cncf.io/networks: macvlan-bridge

OpenShift Container Platform 4.3 Networking

100

1 The k8s.v1.cni.cncf.io/networks-status parameter is a JSON array of objects. Each
object describes the status of an additional network attached to the Pod. The annotation
value is stored as a plain text value.

8.6.2. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod

You can create a NUMA aligned SR-IOV pod by restricting SR-IOV and the CPU resources allocated
from the same NUMA node with restricted or single-numa-node Topology Manager polices.

Prerequisites

Install the OpenShift CLI (oc).

Enable a LatencySensitive profile and configure the CPU Manager policy to static.

Procedure

1. Create the following SR-IOV pod spec, and then save the YAML in the <name>-sriov-
pod.yaml file. Replace <name> with a name for this pod.
The following example shows an SR-IOV pod spec:

 k8s.v1.cni.cncf.io/networks-status: |- 1
 [{
 "name": "openshift-sdn",
 "interface": "eth0",
 "ips": [
 "10.128.2.14"
],
 "default": true,
 "dns": {}
 },{
 "name": "macvlan-bridge",
 "interface": "net1",
 "ips": [
 "20.2.2.100"
],
 "mac": "22:2f:60:a5:f8:00",
 "dns": {}
 }]
 name: example-pod
 namespace: default
spec:
 ...
status:
 ...

apiVersion: v1
kind: Pod
metadata:
 name: sample-pod
 annotations:
 k8s.v1.cni.cncf.io/networks: <name> 1
spec:
 containers:

CHAPTER 8. HARDWARE NETWORKS

101

1

2

3

4

1

Replace <name> with the name of the SR-IOV network attachment definition CR.

Replace <image> with the name of the sample-pod image.

To create the SR-IOV pod with guaranteed QoS, set memory limits equal to memory
requests.

To create the SR-IOV pod with guaranteed QoS, set cpu limits equals to cpu requests.

2. Create the sample SR-IOV pod by running the following command:

Replace <filename> with the name of the file you created in the previous step.

3. Confirm that the sample-pod is configured with guaranteed QoS.

4. Confirm that the sample-pod is allocated with exclusive CPUs.

5. Confirm that the SR-IOV device and CPUs that are allocated for the sample-pod are on the
same NUMA node.

8.7. USING HIGH PERFORMANCE MULTICAST

You can use multicast on your Single Root I/O Virtualization (SR-IOV) hardware network.

8.7.1. Configuring high performance multicast

The OpenShift SDN default Container Network Interface (CNI) network provider supports multicast
between Pods on the default network. This is best used for low-bandwidth coordination or service
discovery, and not high-bandwidth applications. For applications such as streaming media, like Internet
Protocol television (IPTV) and multipoint videoconferencing, you can utilize Single Root I/O
Virtualization (SR-IOV) hardware to provide near-native performance.

 - name: sample-container
 image: <image> 2
 command: ["sleep", "infinity"]
 resources:
 limits:
 memory: "1Gi" 3
 cpu: "2" 4
 requests:
 memory: "1Gi"
 cpu: "2"

$ oc create -f <filename> 1

$ oc describe pod sample-pod

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

$ oc exec sample-pod -- cat /sys/fs/cgroup/cpuset/cpuset.cpus

OpenShift Container Platform 4.3 Networking

102

When using additional SR-IOV interfaces for multicast:

Multicast packages must be sent or received by a Pod through the additional SR-IOV interface.

The physical network which connects the SR-IOV interfaces decides the multicast routing and
topology, which is not controlled by OpenShift Container Platform.

8.7.2. Using an SR-IOV interface for multicast

The follow procedure creates an example SR-IOV interface for multicast.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Create a SriovNetworkNodePolicy custom resource (CR):

2. Create a SriovNetwork CR:

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: policy-example
 namespace: openshift-sriov-network-operator
spec:
 resourceName: example
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 numVfs: 4
 nicSelector:
 vendor: "8086"
 pfNames: ['ens803f0']
 rootDevices: ['0000:86:00.0']

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: net-example
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: default
 ipam: | 1
 {
 "type": "host-local", 2
 "subnet": "10.56.217.0/24",
 "rangeStart": "10.56.217.171",
 "rangeEnd": "10.56.217.181",
 "routes": [
 {"dst": "224.0.0.0/5"},
 {"dst": "232.0.0.0/5"}
],

CHAPTER 8. HARDWARE NETWORKS

103

1 2

1

If you choose to configure DHCP as IPAM, ensure that you provision the following default
routes through your DHCP server: 224.0.0.0/5 and 232.0.0.0/5. This is to override the
static multicast route set by the default network provider.

3. Create a Pod with multicast application:

The NET_ADMIN capability is required only if your application needs to assign the
multicast IP address to the SR-IOV interface. Otherwise, it can be omitted.

8.8. USING VIRTUAL FUNCTIONS (VFS) WITH DPDK AND RDMA
MODES

You can use Single Root I/O Virtualization (SR-IOV) network hardware with the Data Plane
Development Kit (DPDK) and with remote direct memory access (RDMA).

8.8.1. Examples of using virtual functions in DPDK and RDMA modes

IMPORTANT

The Data Plane Development Kit (DPDK) is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

IMPORTANT

 "gateway": "10.56.217.1"
 }
 resourceName: example

apiVersion: v1
kind: Pod
metadata:
 name: testpmd
 namespace: default
 annotations:
 k8s.v1.cni.cncf.io/networks: nic1
spec:
 containers:
 - name: example
 image: rhel7:latest
 securityContext:
 capabilities:
 add: ["NET_ADMIN"] 1
 command: ["sleep", "infinity"]

OpenShift Container Platform 4.3 Networking

104

https://access.redhat.com/support/offerings/techpreview/

1

IMPORTANT

Remote Direct Memory Access (RDMA) is a Technology Preview feature only.
Technology Preview features are not supported with Red Hat production service level
agreements (SLAs) and might not be functionally complete. Red Hat does not
recommend using them in production. These features provide early access to upcoming
product features, enabling customers to test functionality and provide feedback during
the development process.

For more information about the support scope of Red Hat Technology Preview features,
see https://access.redhat.com/support/offerings/techpreview/.

8.8.2. Prerequisites

Install the OpenShift CLI (oc).

Log in as a user with cluster-admin privileges.

You must have installed the SR-IOV Network Operator.

8.8.3. Example use of virtual function (VF) in DPDK mode with Intel NICs

Procedure

1. Create the following SriovNetworkNodePolicy CR, and then save the YAML in the intel-dpdk-
node-policy.yaml file.

Specify the driver type for the virtual functions to vfio-pci.

NOTE

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: intel-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: intelnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "8086"
 deviceID: "158b"
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: vfio-pci 1

CHAPTER 8. HARDWARE NETWORKS

105

https://access.redhat.com/support/offerings/techpreview/

1

NOTE

Please refer to the Configuring SR-IOV network devices section for a detailed
explanation on each option in SriovNetworkNodePolicy.

+ When applying the configuration specified in a SriovNetworkNodePolicy CR,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

+ After the configuration update is applied, all the Pods in openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy CR by running the following command:

3. Create the following SriovNetwork CR, and then save the YAML in the intel-dpdk-
network.yaml file.

Specify an empty object "{}" for the ipam CNI plug-in. DPDK works in userspace mode and
does not require an IP address.

NOTE

Please refer to the Configuring SR-IOV additional network section for a
detailed explanation on each option in SriovNetwork.

4. Create the SriovNetworkNodePolicy CR by running the following command:

5. Create the following Pod spec, and then save the YAML in the intel-dpdk-pod.yaml file.

$ oc create -f intel-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: intel-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: "{}" 1
 vlan: <vlan>
 resourceName: intelnics

$ oc create -f intel-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: intel-dpdk-network

OpenShift Container Platform 4.3 Networking

106

1

2

3

4

5

6

7

Specify the same target_namespace where the SriovNetwork CR intel-dpdk-network is
created. If you would like to create the Pod in a different namespace, change
target_namespace in both the Pod spec and the SriovNetowrk CR.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify the IPC_LOCK capability which is required by the application to allocate hugepage
memory inside container.

Mount a hugepage volume to the DPDK Pod under /dev/hugepages. The hugepage
volume is backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to DPDK Pod. This resource
request and limit, if not explicitly specified, will be automatically added by the SR-IOV
network resource injector. The SR-IOV network resource injector is an admission controller
component managed by the SR-IOV Operator. It is enabled by default and can be disabled
by setting enableInjector option to false in the default SriovOperatorConfig CR.

Specify the number of CPUs. The DPDK Pod usually requires exclusive CPUs to be
allocated from the kubelet. This is achieved by setting CPU Manager policy to static and
creating a Pod with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the DPDK Pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes. For example,
adding kernel arguments default_hugepagesz=1GB, hugepagesz=1G and
hugepages=16 will result in 16*1Gi hugepages be allocated during system boot.

spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 capabilities:
 add: ["IPC_LOCK"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 openshift.io/intelnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/intelnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

CHAPTER 8. HARDWARE NETWORKS

107

1

2

3

6. Create the DPDK Pod by running the following command:

8.8.4. Example use of a virtual function in DPDK mode with Mellanox NICs

Procedure

1. Create the following SriovNetworkNodePolicy CR, and then save the YAML in the mlx-dpdk-
node-policy.yaml file.

Specify the device hex code of the SR-IOV network device. The only allowed values for
Mellanox cards are 1015, 1017.

Specify the driver type for the virtual functions to netdevice. Mellanox SR-IOV VF can
work in DPDK mode without using the vfio-pci device type. VF device appears as a kernel
network interface inside a container.

Enable RDMA mode. This is required by Mellanox cards to work in DPDK mode.

NOTE

Please refer to Configuring SR-IOV network devices section for detailed
explanation on each option in SriovNetworkNodePolicy.

+ When applying the configuration specified in a SriovNetworkNodePolicy CR,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

+ After the configuration update is applied, all the Pods in the openshift-sriov-
network-operator namespace will change to a Running status.

$ oc create -f intel-dpdk-pod.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-dpdk-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

OpenShift Container Platform 4.3 Networking

108

1

2. Create the SriovNetworkNodePolicy CR by running the following command:

3. Create the following SriovNetwork CR, and then save the YAML in the mlx-dpdk-network.yaml
file.

Specify a configuration object for the ipam CNI plug-in as a YAML block scalar. The plug-in
manages IP address assignment for the attachment definition.

NOTE

Please refer to Configuring SR-IOV additional network section for detailed
explanation on each option in SriovNetwork.

4. Create the SriovNetworkNodePolicy CR by running the following command:

5. Create the following Pod spec, and then save the YAML in the mlx-dpdk-pod.yaml file.

$ oc create -f mlx-dpdk-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-dpdk-network
 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
 ...
 vlan: <vlan>
 resourceName: mlxnics

$ oc create -f mlx-dpdk-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: dpdk-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: mlx-dpdk-network
spec:
 containers:
 - name: testpmd
 image: <DPDK_image> 2
 securityContext:
 capabilities:
 add: ["IPC_LOCK"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:

CHAPTER 8. HARDWARE NETWORKS

109

1

2

3

4

5

6

7

Specify the same target_namespace where SriovNetwork CR mlx-dpdk-network is
created. If you would like to create the Pod in a different namespace, change
target_namespace in both Pod spec and SriovNetowrk CR.

Specify the DPDK image which includes your application and the DPDK library used by
application.

Specify the IPC_LOCK capability which is required by the application to allocate hugepage
memory inside the container.

Mount the hugepage volume to the DPDK Pod under /dev/hugepages. The hugepage
volume is backed by the emptyDir volume type with the medium being Hugepages.

Optional: Specify the number of DPDK devices allocated to the DPDK Pod. This resource
request and limit, if not explicitly specified, will be automatically added by SR-IOV network
resource injector. The SR-IOV network resource injector is an admission controller
component managed by SR-IOV Operator. It is enabled by default and can be disabled by
setting the enableInjector option to false in the default SriovOperatorConfig CR.

Specify the number of CPUs. The DPDK Pod usually requires exclusive CPUs be allocated
from kubelet. This is achieved by setting CPU Manager policy to static and creating a Pod
with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to DPDK Pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

6. Create the DPDK Pod by running the following command:

8.8.5. Example of a virtual function in RDMA mode with Mellanox NICs

RDMA over Converged Ethernet (RoCE) is the only supported mode when using RDMA on OpenShift
Container Platform.

Procedure

1. Create the following SriovNetworkNodePolicy CR, and then save the YAML in the mlx-rdma-

 openshift.io/mlxnics: "1" 5
 memory: "1Gi"
 cpu: "4" 6
 hugepages-1Gi: "4Gi" 7
 requests:
 openshift.io/mlxnics: "1"
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

$ oc create -f mlx-dpdk-pod.yaml

OpenShift Container Platform 4.3 Networking

110

1

2

3

1. Create the following SriovNetworkNodePolicy CR, and then save the YAML in the mlx-rdma-
node-policy.yaml file.

Specify the device hex code of SR-IOV network device. The only allowed values for
Mellanox cards are 1015, 1017.

Specify the driver type for the virtual functions to netdevice.

Enable RDMA mode.

NOTE

Please refer to the Configuring SR-IOV network devices section for a detailed
explanation on each option in SriovNetworkNodePolicy.

+ When applying the configuration specified in a SriovNetworkNodePolicy CR,
the SR-IOV Operator may drain the nodes, and in some cases, reboot nodes. It
may take several minutes for a configuration change to apply. Ensure that there
are enough available nodes in your cluster to handle the evicted workload
beforehand.

+ After the configuration update is applied, all the Pods in the openshift-sriov-
network-operator namespace will change to a Running status.

2. Create the SriovNetworkNodePolicy CR by running the following command:

3. Create the following SriovNetwork CR, and then save the YAML in the mlx-rdma-network.yaml
file.

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetworkNodePolicy
metadata:
 name: mlx-rdma-node-policy
 namespace: openshift-sriov-network-operator
spec:
 resourceName: mlxnics
 nodeSelector:
 feature.node.kubernetes.io/network-sriov.capable: "true"
 priority: <priority>
 numVfs: <num>
 nicSelector:
 vendor: "15b3"
 deviceID: "1015" 1
 pfNames: ["<pf_name>", ...]
 rootDevices: ["<pci_bus_id>", "..."]
 deviceType: netdevice 2
 isRdma: true 3

$ oc create -f mlx-rdma-node-policy.yaml

apiVersion: sriovnetwork.openshift.io/v1
kind: SriovNetwork
metadata:
 name: mlx-rdma-network

CHAPTER 8. HARDWARE NETWORKS

111

1 Specify a configuration object for the ipam CNI plug-in as a YAML block scalar. The plug-in
manages IP address assignment for the attachment definition.

NOTE

Please refer to Configuring SR-IOV additional network section for detailed
explanation on each option in SriovNetwork.

4. Create the SriovNetworkNodePolicy CR by running the following command:

5. Create the following Pod spec, and then save the YAML in the mlx-rdma-pod.yaml file.

 namespace: openshift-sriov-network-operator
spec:
 networkNamespace: <target_namespace>
 ipam: |- 1
 ...
 vlan: <vlan>
 resourceName: mlxnics

$ oc create -f mlx-rdma-network.yaml

apiVersion: v1
kind: Pod
metadata:
 name: rdma-app
 namespace: <target_namespace> 1
 annotations:
 k8s.v1.cni.cncf.io/networks: mlx-rdma-network
spec:
 containers:
 - name: testpmd
 image: <RDMA_image> 2
 securityContext:
 capabilities:
 add: ["IPC_LOCK"] 3
 volumeMounts:
 - mountPath: /dev/hugepages 4
 name: hugepage
 resources:
 limits:
 memory: "1Gi"
 cpu: "4" 5
 hugepages-1Gi: "4Gi" 6
 requests:
 memory: "1Gi"
 cpu: "4"
 hugepages-1Gi: "4Gi"
 command: ["sleep", "infinity"]
 volumes:
 - name: hugepage
 emptyDir:
 medium: HugePages

OpenShift Container Platform 4.3 Networking

112

1

2

3

4

5

6

Specify the same target_namespace where SriovNetwork CR mlx-rdma-network is
created. If you would like to create the Pod in a different namespace, change
target_namespace in both Pod spec and SriovNetowrk CR.

Specify the RDMA image which includes your application and RDMA library used by
application.

Specify the IPC_LOCK capability which is required by the application to allocate hugepage
memory inside the container.

Mount the hugepage volume to RDMA Pod under /dev/hugepages. The hugepage volume
is backed by the emptyDir volume type with the medium being Hugepages.

Specify number of CPUs. The RDMA Pod usually requires exclusive CPUs be allocated
from the kubelet. This is achieved by setting CPU Manager policy to static and create Pod
with Guaranteed QoS.

Specify hugepage size hugepages-1Gi or hugepages-2Mi and the quantity of hugepages
that will be allocated to the RDMA Pod. Configure 2Mi and 1Gi hugepages separately.
Configuring 1Gi hugepage requires adding kernel arguments to Nodes.

6. Create the RDMA Pod by running the following command:

$ oc create -f mlx-rdma-pod.yaml

CHAPTER 8. HARDWARE NETWORKS

113

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK
PROVIDER

9.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

OpenShift Container Platform uses a software-defined networking (SDN) approach to provide a unified
cluster network that enables communication between Pods across the OpenShift Container Platform
cluster. This Pod network is established and maintained by the OpenShift SDN, which configures an
overlay network using Open vSwitch (OVS).

OpenShift SDN provides three SDN modes for configuring the Pod network:

The network policy mode allows project administrators to configure their own isolation policies
using NetworkPolicy objects. NetworkPolicy is the default mode in OpenShift Container
Platform 4.3.

The multitenant mode provides project-level isolation for Pods and Services. Pods from
different projects cannot send packets to or receive packets from Pods and Services of a
different project. You can disable isolation for a project, allowing it to send network traffic to all
Pods and Services in the entire cluster and receive network traffic from those Pods and
Services.

The subnet mode provides a flat Pod network where every Pod can communicate with every
other Pod and Service. The network policy mode provides the same functionality as the subnet
mode.

9.2. CONFIGURING EGRESS IPS FOR A PROJECT

As a cluster administrator, you can configure the OpenShift SDN default Container Network Interface
(CNI) network provider to assign one or more egress IP addresses to a project.

9.2.1. Egress IP address assignment for project egress traffic

By configuring an egress IP address for a project, all outgoing external connections from the specified
project will share the same, fixed source IP address. External resources can recognize traffic from a
particular project based on the egress IP address. An egress IP address assigned to a project is different
from the egress router, which is used to send traffic to specific destinations.

Egress IP addresses are implemented as additional IP addresses on the primary network interface of the
node and must be in the same subnet as the node’s primary IP address.

IMPORTANT

Egress IP addresses must not be configured in any Linux network configuration files, such
as ifcfg-eth0.

Allowing additional IP addresses on the primary network interface might require extra
configuration when using some cloud or VM solutions.

You can assign egress IP addresses to namespaces by setting the egressIPs parameter of the
NetNamespace resource. After an egress IP is associated with a project, OpenShift SDN allows you to
assign egress IPs to hosts in two ways:

OpenShift Container Platform 4.3 Networking

114

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#about-network-policy

In the automatically assigned approach, an egress IP address range is assigned to a node.

In the manually assigned approach, a list of one or more egress IP address is assigned to a node.

Namespaces that request an egress IP address are matched with nodes that can host those egress IP
addresses, and then the egress IP addresses are assigned to those nodes. If the egressIPs parameter is
set on a NetNamespace resource, but no node hosts that egress IP address, then egress traffic from
the namespace will be dropped.

High availability of nodes is automatic. If a node that hosts an egress IP address is unreachable and
there are nodes that are able to host that egress IP address, then the egress IP address will move to a
new node. When the unreachable node comes back online, the egress IP address automatically moves
to balance egress IP addresses across nodes.

IMPORTANT

You cannot use manually assigned and automatically assigned egress IP addresses on
the same nodes. If you manually assign egress IP addresses from an IP address range, you
must not make that range available for automatic IP assignment.

9.2.1.1. Considerations when using automatically assigned egress IP addresses

When using the automatic assignment approach for egress IP addresses the following considerations
apply:

You set the egressCIDRs parameter of each node’s HostSubnet resource to indicate the
range of egress IP addresses that can be hosted by a node. OpenShift Container Platform sets
the egressIPs parameter of the HostSubnet resource based on the IP address range you
specify.

Only a single egress IP address per namespace is supported when using the automatic
assignment mode.

If the node hosting the namespace’s egress IP address is unreachable, OpenShift Container Platform
will reassign the egress IP address to another node with a compatible egress IP address range. The
automatic assignment approach works best for clusters installed in environments with flexibility in
associating additional IP addresses with nodes.

9.2.1.2. Considerations when using manually assigned egress IP addresses

When using the manual assignment approach for egress IP addresses the following considerations apply:

You set the egressIPs parameter of each node’s HostSubnet resource to indicate the IP
addresses that can be hosted by a node.

Multiple egress IP addresses per namespace are supported.

When a namespace has multiple egress IP addresses, if the node hosting the first egress IP address is
unreachable, OpenShift Container Platform will automatically switch to using the next available egress
IP address until the first egress IP address is reachable again.

This approach is recommended for clusters installed in public cloud environments, where there can be
limitations on associating additional IP addresses with nodes.

9.2.2. Configuring automatically assigned egress IP addresses for a namespace

In OpenShift Container Platform you can enable automatic assignment of an egress IP address for a

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

115

1

2

1

2

In OpenShift Container Platform you can enable automatic assignment of an egress IP address for a
specific namespace across one or more nodes.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Update the NetNamespace resource with the egress IP address using the following JSON:

Specify the name of the project.

Specify a single egress IP address. Using multiple IP addresses is not supported.

For example, to assign project1 to an IP address of 192.168.1.100 and project2 to an IP address
of 192.168.1.101:

2. Indicate which nodes can host egress IP addresses by setting the egressCIDRs parameter for
each host using the following JSON:

Specify a node name.

Specify one or more IP address ranges in CIDR format.

For example, to set node1 and node2 to host egress IP addresses in the range 192.168.1.0 to
192.168.1.255:

 $ oc patch netnamespace <project_name> --type=merge -p \ 1
 '{
 "egressIPs": [
 "<ip_address>" 2
]
 }'

$ oc patch netnamespace project1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100"]}'
$ oc patch netnamespace project2 --type=merge -p \
 '{"egressIPs": ["192.168.1.101"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \ 1
 '{
 "egressCIDRs": [
 "<ip_address_range_1>", "<ip_address_range_2>" 2
]
 }'

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'
$ oc patch hostsubnet node2 --type=merge -p \
 '{"egressCIDRs": ["192.168.1.0/24"]}'

OpenShift Container Platform 4.3 Networking

116

1

2

OpenShift Container Platform automatically assigns specific egress IP addresses to available
nodes in a balanced way. In this case, it assigns the egress IP address 192.168.1.100 to node1 and
the egress IP address 192.168.1.101 to node2 or vice versa.

9.2.3. Configuring manually assigned egress IP addresses for a namespace

In OpenShift Container Platform you can associate one or more egress IP addresses with a namespace.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Update the NetNamespace resource by specifying the following JSON object with the desired
IP addresses:

Specify the name of the project.

Specify one or more egress IP addresses. The egressIPs parameter is an array.

For example, to assign the project1 project to an IP address of 192.168.1.100:

You can set egressIPs to two or more IP addresses on different nodes to provide high
availability. If multiple egress IP addresses are set, pods use the first IP in the list for egress, but
if the node hosting that IP address fails, pods switch to using the next IP in the list after a short
delay.

2. Manually assign the egress IP to the node hosts. Set the egressIPs parameter on the
HostSubnet object on the node host. Using the following JSON, include as many IPs as you
want to assign to that node host:

$ oc patch netnamespace <project> --type=merge -p \ 1
 '{
 "egressIPs": [2
 "<ip_address>"
]
 }'

$ oc patch netnamespace project1 --type=merge \
 -p '{"egressIPs": ["192.168.1.100"]}'

$ oc patch hostsubnet <node_name> --type=merge -p \ 1
 '{
 "egressIPs": [2
 "<ip_address_1>",
 "<ip_address_N>"
]
 }'

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

117

1

2

Specify the name of the node.

Specify one or more egress IP addresses. The egressIPs field is an array.

For example, to specify that node1 should have the egress IPs 192.168.1.100, 192.168.1.101,
and 192.168.1.102:

In the previous example, all egress traffic for project1 will be routed to the node hosting the
specified egress IP, and then connected (using NAT) to that IP address.

9.3. CONFIGURING AN EGRESS FIREWALL TO CONTROL ACCESS TO
EXTERNAL IP ADDRESSES

As a cluster administrator, you can create an egress firewall for a project that will restrict egress traffic
leaving your OpenShift Container Platform cluster.

9.3.1. How an egress firewall works in a project

As a cluster administrator, you can use an egress firewall to limit the external hosts that some or all Pods
can access from within the cluster. An egress firewall supports the following scenarios:

A Pod can only connect to internal hosts and cannot initiate connections to the public Internet.

A Pod can only connect to the public Internet and cannot initiate connections to internal hosts
that are outside the OpenShift Container Platform cluster.

A Pod cannot reach specified internal subnets or hosts outside the OpenShift Container
Platform cluster.

A Pod can connect to only specific external hosts.

You configure an egress firewall policy by creating an EgressNetworkPolicy Custom Resource (CR)
object and specifying an IP address range in CIDR format or by specifying a DNS name. For example,
you can allow one project access to a specified IP range but deny the same access to a different project.
Or you can restrict application developers from updating from Python pip mirrors, and force updates to
come only from approved sources.

IMPORTANT

You must have OpenShift SDN configured to use either the network policy or multitenant
modes to configure egress firewall policy.

If you use network policy mode, egress policy is compatible with only one policy per
namespace and will not work with projects that share a network, such as global projects.

$ oc patch hostsubnet node1 --type=merge -p \
 '{"egressIPs": ["192.168.1.100", "192.168.1.101", "192.168.1.102"]}'

OpenShift Container Platform 4.3 Networking

118

WARNING

Egress firewall rules do not apply to traffic that goes through routers. Any user with
permission to create a Route CR object can bypass egress network policy rules by
creating a route that points to a forbidden destination.

9.3.1.1. Limitations of an egress firewall

An egress firewall has the following limitations:

No project can have more than one EgressNetworkPolicy object.

A maximum of 1 EgressNetworkPolicy object with a maximum of 50 rules can be defined per
project.

The default project cannot use egress network policy.

When using the OpenShift SDN default Container Network Interface (CNI) network provider in
multitenant mode, the following limitations apply:

Global projects cannot use an egress firewall. You can make a project global by using the oc
adm pod-network make-projects-global command.

Projects merged by using the oc adm pod-network join-projects command cannot use an
egress firewall in any of the joined projects.

Violating any of these restrictions results in broken egress network policy for the project, and may cause
all external network traffic to be dropped.

9.3.1.2. Matching order for egress network policy rules

The egress network policy rules are evaluated in the order that they are defined, from first to last. The
first rule that matches an egress connection from a Pod applies. Any subsequent rules are ignored for
that connection.

9.3.1.3. How Domain Name Server (DNS) resolution works

If you use DNS names in any of your egress firewall policy rules, proper resolution of the domain names
is subject to the following restrictions:

Domain name updates are polled based on the TTL (time to live) value of the domain returned
by the local non-authoritative servers.

The Pod must resolve the domain from the same local name servers when necessary. Otherwise
the IP addresses for the domain known by the egress firewall controller and the Pod can be
different. If the IP addresses for a host name differ, the egress firewall might not be enforced
consistently.

Because the egress firewall controller and Pods asynchronously poll the same local name server,
the Pod might obtain the updated IP address before the egress controller does, which causes a
race condition. Due to this current limitation, domain name usage in EgressNetworkPolicy
objects is only recommended for domains with infrequent IP address changes.

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

119

1

2

1

2

3

4

NOTE

The egress firewall always allows Pods access to the external interface of the node that
the Pod is on for DNS resolution.

If you use domain names in your egress firewall policy and your DNS resolution is not
handled by a DNS server on the local node, then you must add egress firewall rules that
allow access to your DNS server’s IP addresses. if you are using domain names in your
Pods.

9.3.2. EgressNetworkPolicy custom resource (CR) object

The following YAML describes an EgressNetworkPolicy CR object:

Specify a name for your egress firewall policy.

Specify a collection of one or more egress network policy rules as described in the following
section.

9.3.2.1. EgressNetworkPolicy rules

The following YAML describes an egress firewall rule object. The egress key expects an array of one or
more objects.

Specify the type of rule. The value must be either Allow or Deny.

Specify a value for either the cidrSelector key or the dnsName key for the rule. You cannot use
both keys in a rule.

Specify an IP address range in CIDR format.

Specify a domain name.

9.3.2.2. Example EgressNetworkPolicy CR object

The following example defines several egress firewall policy rules:

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns-name> 4

apiVersion: network.openshift.io/v1

OpenShift Container Platform 4.3 Networking

120

1

2

The name for the policy object.

A collection of egress firewall policy rule objects.

9.3.3. Creating an egress firewall policy object

As a cluster administrator, you can create an egress firewall policy object for a project.

IMPORTANT

If the project already has an EgressNetworkPolicy object defined, you must edit the
existing policy to make changes to the egress firewall rules.

Prerequisites

A cluster that uses the OpenShift SDN default Container Network Interface (CNI) network
provider plug-in.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

1. Create a policy rule:

a. Create a <policy-name>.yaml file where <policy-name> describes the egress policy rules.

b. In the file you created, define an egress policy object.

2. Enter the following command to create the policy object:

In the following example, a new EgressNetworkPolicy object is created in a project named
project1:

Example output

kind: EgressNetworkPolicy
metadata:
 name: default-rules 1
spec:
 egress: 2
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Allow
 to:
 dnsName: www.example.com
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

$ oc create -f <policy-name>.yaml -n <project>

$ oc create -f default-rules.yaml -n project1

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

121

1

2

3

Example output

3. Optional: Save the <policy-name>.yaml so that you can make changes later.

9.4. EDITING AN EGRESS FIREWALL FOR A PROJECT

As a cluster administrator, you can modify network traffic rules for an existing egress firewall.

9.4.1. Editing an EgressNetworkPolicy object

As a cluster administrator, you can update the egress firewall for a project.

Prerequisites

A cluster using the OpenShift SDN network plug-in.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

To edit an existing egress network policy object for a project, complete the following steps:

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Optional: If you did not save a copy of the EgressNetworkPolicy object when you created the
egress network firewall, enter the following command to create a copy.

Replace <project> with the name of the project

Replace <name> with the name of the object.

Replace <filename> with the name of the file to save the YAML.

3. Enter the following command to replace the EgressNetworkPolicy object. Replace <filename>
with the name of the file containing the updated EgressNetworkPolicy object.

9.4.2. EgressNetworkPolicy custom resource (CR) object

The following YAML describes an EgressNetworkPolicy CR object:

egressnetworkpolicy.network.openshift.io/default-rules created

$ oc get -n <project> egressnetworkpolicy

$ oc get -n <project> \ 1
 egressnetworkpolicy <name> \ 2
 -o yaml > <filename>.yaml 3

$ oc replace -f <filename>.yaml

OpenShift Container Platform 4.3 Networking

122

1

2

1

2

3

4

Specify a name for your egress firewall policy.

Specify a collection of one or more egress network policy rules as described in the following
section.

9.4.2.1. EgressNetworkPolicy rules

The following YAML describes an egress firewall rule object. The egress key expects an array of one or
more objects.

Specify the type of rule. The value must be either Allow or Deny.

Specify a value for either the cidrSelector key or the dnsName key for the rule. You cannot use
both keys in a rule.

Specify an IP address range in CIDR format.

Specify a domain name.

9.4.2.2. Example EgressNetworkPolicy CR object

The following example defines several egress firewall policy rules:

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: <name> 1
spec:
 egress: 2
 ...

egress:
- type: <type> 1
 to: 2
 cidrSelector: <cidr> 3
 dnsName: <dns-name> 4

apiVersion: network.openshift.io/v1
kind: EgressNetworkPolicy
metadata:
 name: default-rules 1
spec:
 egress: 2
 - type: Allow
 to:
 cidrSelector: 1.2.3.0/24
 - type: Allow
 to:
 dnsName: www.example.com
 - type: Deny
 to:
 cidrSelector: 0.0.0.0/0

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

123

1

2

The name for the policy object.

A collection of egress firewall policy rule objects.

9.5. REMOVING AN EGRESS FIREWALL FROM A PROJECT

As a cluster administrator, you can remove an egress firewall from a project to remove all restrictions on
network traffic from the project that leaves the OpenShift Container Platform cluster.

9.5.1. Removing an EgressNetworkPolicy object

As a cluster administrator, you can remove an egress firewall from a project.

Prerequisites

A cluster using the OpenShift SDN network plug-in.

Install the OpenShift CLI (oc).

You must log in to the cluster as a cluster administrator.

Procedure

To remove an egress network policy object for a project, complete the following steps:

1. Find the name of the EgressNetworkPolicy object for the project. Replace <project> with the
name of the project.

2. Enter the following command to delete the EgressNetworkPolicy object. Replace <project>
with the name of the project and <name> with the name of the object.

9.6. USING MULTICAST

9.6.1. About multicast

With IP multicast, data is broadcast to many IP addresses simultaneously.

IMPORTANT

At this time, multicast is best used for low-bandwidth coordination or service discovery
and not a high-bandwidth solution.

Multicast traffic between OpenShift Container Platform Pods is disabled by default. If you are using the
OpenShift SDN default Container Network Interface (CNI) network provider plug-in, you can enable
multicast on a per-project basis.

When using the OpenShift SDN network plug-in in networkpolicy isolation mode:

$ oc get -n <project> egressnetworkpolicy

$ oc delete -n <project> egressnetworkpolicy <name>

OpenShift Container Platform 4.3 Networking

124

1

1

Multicast packets sent by a Pod will be delivered to all other Pods in the project, regardless of
NetworkPolicy objects. Pods might be able to communicate over multicast even when they
cannot communicate over unicast.

Multicast packets sent by a Pod in one project will never be delivered to Pods in any other
project, even if there are NetworkPolicy objects that allow communication between the projects.

When using the OpenShift SDN network plug-in in multitenant isolation mode:

Multicast packets sent by a Pod will be delivered to all other Pods in the project.

Multicast packets sent by a Pod in one project will be delivered to Pods in other projects only if
each project is joined together and multicast is enabled in each joined project.

9.6.2. Enabling multicast between Pods

You can enable multicast between Pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command to enable multicast for a project:

The namespace for the project you want to enable multicast for.

9.6.3. Disabling multicast between Pods

You can disable multicast between Pods for your project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Disable multicast by running the following command:

The namespace for the project you want to disable multicast for.

$ oc annotate netnamespace <namespace> \ 1
 netnamespace.network.openshift.io/multicast-enabled=true

$ oc annotate netnamespace <namespace> \ 1
 netnamespace.network.openshift.io/multicast-enabled-

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

125

9.7. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN

When your cluster is configured to use the multitenant isolation mode for the OpenShift SDN CNI plug-
in, each project is isolated by default. Network traffic is not allowed between Pods or services in
different projects in multitenant isolation mode.

You can change the behavior of multitenant isolation for a project in two ways:

You can join one or more projects, allowing network traffic between Pods and services in
different projects.

You can disable network isolation for a project. It will be globally accessible, accepting network
traffic from Pods and services in all other projects. A globally accessible project can access
Pods and services in all other projects.

9.7.1. Prerequisites

You must have a cluster configured to use the OpenShift SDN Container Network Interface
(CNI) plug-in in multitenant isolation mode.

9.7.2. Joining projects

You can join two or more projects to allow network traffic between Pods and services in different
projects.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

1. Use the following command to join projects to an existing project network:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

2. Optional: Run the following command to view the pod networks that you have joined together:

Projects in the same pod-network have the same network ID in the NETID column.

9.7.3. Isolating a project

You can isolate a project so that Pods and services in other projects cannot access its Pods and
services.

Prerequisites

Install the OpenShift CLI (oc).

$ oc adm pod-network join-projects --to=<project1> <project2> <project3>

$ oc get netnamespaces

OpenShift Container Platform 4.3 Networking

126

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

To isolate the projects in the cluster, run the following command:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

9.7.4. Disabling network isolation for a project

You can disable network isolation for a project.

Prerequisites

Install the OpenShift CLI (oc).

You must log in to the cluster with a user that has the cluster-admin role.

Procedure

Run the following command for the project:

Alternatively, instead of specifying specific project names, you can use the --selector=
<project_selector> option to specify projects based upon an associated label.

9.8. CONFIGURING KUBE-PROXY

The Kubernetes network proxy (kube-proxy) runs on each node and is managed by the Cluster Network
Operator (CNO). kube-proxy maintains network rules for forwarding connections for endpoints
associated with services.

9.8.1. About iptables rules synchronization

The synchronization period determines how frequently the Kubernetes network proxy (kube-proxy)
syncs the iptables rules on a node.

A sync begins when either of the following events occurs:

An event occurs, such as service or endpoint is added to or removed from the cluster.

The time since the last sync exceeds the sync period defined for kube-proxy.

9.8.2. kube-proxy configuration parameters

You can modify the following kubeProxyConfig parameters.

IMPORTANT

$ oc adm pod-network isolate-projects <project1> <project2>

$ oc adm pod-network make-projects-global <project1> <project2>

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

127

IMPORTANT

Because of performance improvements introduced in OpenShift Container Platform 4.3
and greater, adjusting the iptablesSyncPeriod parameter is no longer necessary.

Table 9.1. Parameters

Parameter Description Values Defaul
t

iptablesSyncPeriod The refresh period for
iptables rules.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package
documentation.

30s

proxyArguments.iptables-
min-sync-period

The minimum duration before
refreshing iptables rules. This
parameter ensures that the
refresh does not happen too
frequently. By default, a
refresh starts as soon as a
change that affects iptables
rules occurs.

A time interval, such as 30s or
2m. Valid suffixes include s,
m, and h and are described in
the Go time package

0s

9.8.3. Modifying the kube-proxy configuration

You can modify the Kubernetes network proxy configuration for your cluster.

Prerequisites

Install the OpenShift CLI (oc).

Log in to a running cluster with the cluster-admin role.

Procedure

1. Edit the Network.operator.openshift.io Custom Resource (CR) by running the following
command:

2. Modify the kubeProxyConfig parameter in the CR with your changes to the kube-proxy
configuration, such as in the following example CR:

$ oc edit network.operator.openshift.io cluster

apiVersion: operator.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 kubeProxyConfig:

OpenShift Container Platform 4.3 Networking

128

https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

3. Save the file and exit the text editor.
The syntax is validated by the oc command when you save the file and exit the editor. If your
modifications contain a syntax error, the editor opens the file and displays an error message.

4. Enter the following command to confirm the configuration update:

Example output

5. Optional: Enter the following command to confirm that the Cluster Network Operator accepted
the configuration change:

Example output

The AVAILABLE field is True when the configuration update is applied successfully.

 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period: ["30s"]

$ oc get networks.operator.openshift.io -o yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: Network
 metadata:
 name: cluster
 spec:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 defaultNetwork:
 type: OpenShiftSDN
 kubeProxyConfig:
 iptablesSyncPeriod: 30s
 proxyArguments:
 iptables-min-sync-period:
 - 30s
 serviceNetwork:
 - 172.30.0.0/16
 status: {}
kind: List

$ oc get clusteroperator network

NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
network 4.1.0-0.9 True False False 1m

CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER

129

1

CHAPTER 10. CONFIGURING ROUTES

10.1. ROUTE CONFIGURATION

10.1.1. Configuring route timeouts

You can configure the default timeouts for an existing route when you have services in need of a low
timeout, which is required for Service Level Availability (SLA) purposes, or a high timeout, for cases with
a slow back end.

Prerequisites

You need a deployed Ingress Controller on a running cluster.

Procedure

1. Using the oc annotate command, add the timeout to the route:

Supported time units are microseconds (us), milliseconds (ms), seconds (s), minutes (m),
hours (h), or days (d).

The following example sets a timeout of two seconds on a route named myroute:

10.1.2. Enabling HTTP strict transport security

HTTP Strict Transport Security (HSTS) policy is a security enhancement, which ensures that only
HTTPS traffic is allowed on the host. Any HTTP requests are dropped by default. This is useful for
ensuring secure interactions with websites, or to offer a secure application for the user’s benefit.

When HSTS is enabled, HSTS adds a Strict Transport Security header to HTTPS responses from the
site. You can use the insecureEdgeTerminationPolicy value in a route to redirect to send HTTP to
HTTPS. However, when HSTS is enabled, the client changes all requests from the HTTP URL to HTTPS
before the request is sent, eliminating the need for a redirect. This is not required to be supported by the
client, and can be disabled by setting max-age=0.

IMPORTANT

HSTS works only with secure routes (either edge terminated or re-encrypt). The
configuration is ineffective on HTTP or passthrough routes.

Procedure

To enable HSTS on a route, add the haproxy.router.openshift.io/hsts_header value to the
edge terminated or re-encrypt route:

$ oc annotate route <route_name> \
 --overwrite haproxy.router.openshift.io/timeout=<timeout><time_unit> 1

$ oc annotate route myroute --overwrite haproxy.router.openshift.io/timeout=2s

apiVersion: v1

OpenShift Container Platform 4.3 Networking

130

1

2

3

1

max-age is the only required parameter. It measures the length of time, in seconds, that
the HSTS policy is in effect. The client updates max-age whenever a response with a HSTS
header is received from the host. When max-age times out, the client discards the policy.

includeSubDomains is optional. When included, it tells the client that all subdomains of
the host are to be treated the same as the host.

preload is optional. When max-age is greater than 0, then including preload in
haproxy.router.openshift.io/hsts_header allows external services to include this site in
their HSTS preload lists. For example, sites such as Google can construct a list of sites that
have preload set. Browsers can then use these lists to determine which sites they can
communicate with over HTTPS, before they have interacted with the site. Without preload
set, browsers must have interacted with the site over HTTPS to get the header.

10.1.3. Troubleshooting throughput issues

Sometimes applications deployed through OpenShift Container Platform can cause network throughput
issues such as unusually high latency between specific services.

Use the following methods to analyze performance issues if Pod logs do not reveal any cause of the
problem:

Use a packet analyzer, such as ping or tcpdump to analyze traffic between a Pod and its node.
For example, run the tcpdump tool on each Pod while reproducing the behavior that led to the
issue. Review the captures on both sides to compare send and receive timestamps to analyze
the latency of traffic to and from a Pod. Latency can occur in OpenShift Container Platform if a
node interface is overloaded with traffic from other Pods, storage devices, or the data plane.

podip is the IP address for the Pod. Run the oc get pod <pod_name> -o wide command
to get the IP address of a Pod.

tcpdump generates a file at /tmp/dump.pcap containing all traffic between these two Pods.
Ideally, run the analyzer shortly before the issue is reproduced and stop the analyzer shortly
after the issue is finished reproducing to minimize the size of the file. You can also run a packet
analyzer between the nodes (eliminating the SDN from the equation) with:

Use a bandwidth measuring tool, such as iperf, to measure streaming throughput and UDP
throughput. Run the tool from the Pods first, then from the nodes, to locate any bottlenecks.

For information on installing and using iperf, see this Red Hat Solution .

10.1.4. Using cookies to keep route statefulness

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by

kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/hsts_header: max-age=31536000;includeSubDomains;preload
1 2 3

$ tcpdump -s 0 -i any -w /tmp/dump.pcap host <podip 1> && host <podip 2> 1

$ tcpdump -s 0 -i any -w /tmp/dump.pcap port 4789

CHAPTER 10. CONFIGURING ROUTES

131

http://www.tcpdump.org/
https://access.redhat.com/solutions/33103

OpenShift Container Platform provides sticky sessions, which enables stateful application traffic by
ensuring all traffic hits the same endpoint. However, if the endpoint Pod terminates, whether through
restart, scaling, or a change in configuration, this statefulness can disappear.

OpenShift Container Platform can use cookies to configure session persistence. The Ingress controller
selects an endpoint to handle any user requests, and creates a cookie for the session. The cookie is
passed back in the response to the request and the user sends the cookie back with the next request in
the session. The cookie tells the Ingress Controller which endpoint is handling the session, ensuring that
client requests use the cookie so that they are routed to the same Pod.

10.1.4.1. Annotating a route with a cookie

You can set a cookie name to overwrite the default, auto-generated one for the route. This allows the
application receiving route traffic to know the cookie name. By deleting the cookie it can force the next
request to re-choose an endpoint. So, if a server was overloaded it tries to remove the requests from
the client and redistribute them.

Procedure

1. Annotate the route with the desired cookie name:

For example, to annotate the cookie name of my_cookie to the my_route with the annotation
of my_cookie_annotation:

2. Save the cookie, and access the route:

10.1.5. Route-specific annotations

The Ingress Controller can set the default options for all the routes it exposes. An individual route can
override some of these defaults by providing specific configurations in its annotations.

Table 10.1. Route annotations

Variable Description Environment variable used as
default

haproxy.router.openshift.io/b
alance

Sets the load-balancing
algorithm. Available options are
source, roundrobin, and
leastconn.

ROUTER_TCP_BALANCE_S
CHEME for passthrough routes.
Otherwise, use
ROUTER_LOAD_BALANCE_
ALGORITHM.

$ oc annotate route <route_name> router.openshift.io/<cookie_name>="-
<cookie_annotation>"

$ oc annotate route my_route router.openshift.io/my_cookie="-my_cookie_annotation"

$ curl $my_route -k -c /tmp/my_cookie

OpenShift Container Platform 4.3 Networking

132

haproxy.router.openshift.io/d
isable_cookies

Disables the use of cookies to
track related connections. If set to
true or TRUE, the balance
algorithm is used to choose which
back-end serves connections for
each incoming HTTP request.

router.openshift.io/cookie_n
ame

Specifies an optional cookie to
use for this route. The name must
consist of any combination of
upper and lower case letters,
digits, "_", and "-". The default is
the hashed internal key name for
the route.

haproxy.router.openshift.io/p
od-concurrent-connections

Sets the maximum number of
connections that are allowed to a
backing pod from a router. Note:
if there are multiple pods, each
can have this many connections.
But if you have multiple routers,
there is no coordination among
them, each may connect this
many times. If not set, or set to 0,
there is no limit.

haproxy.router.openshift.io/r
ate-limit-connections

Setting true or TRUE to enables
rate limiting functionality.

haproxy.router.openshift.io/r
ate-limit-
connections.concurrent-tcp

Limits the number of concurrent
TCP connections shared by an IP
address.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
http

Limits the rate at which an IP
address can make HTTP requests.

haproxy.router.openshift.io/r
ate-limit-connections.rate-
tcp

Limits the rate at which an IP
address can make TCP
connections.

haproxy.router.openshift.io/ti
meout

Sets a server-side timeout for the
route. (TimeUnits)

ROUTER_DEFAULT_SERVE
R_TIMEOUT

router.openshift.io/haproxy.h
ealth.check.interval

Sets the interval for the back-end
health checks. (TimeUnits)

ROUTER_BACKEND_CHEC
K_INTERVAL

Variable Description Environment variable used as
default

CHAPTER 10. CONFIGURING ROUTES

133

1

haproxy.router.openshift.io/i
p_whitelist

Sets a whitelist for the route.

haproxy.router.openshift.io/h
sts_header

Sets a Strict-Transport-Security
header for the edge terminated or
re-encrypt route.

Variable Description Environment variable used as
default

NOTE

Environment variables can not be edited.

A route setting custom timeout

Specifies the new timeout with HAProxy supported units (us, ms, s, m, h, d). If the unit is not
provided, ms is the default.

NOTE

Setting a server-side timeout value for passthrough routes too low can cause WebSocket
connections to timeout frequently on that route.

10.2. SECURED ROUTES

The following sections describe how to create re-encrypt and edge routes with custom certificates.

IMPORTANT

If you create routes in Microsoft Azure through public endpoints, the resource names are
subject to restriction. You cannot create resources that use certain terms. For a list of
terms that Azure restricts, see Resolve reserved resource name errors in the Azure
documentation.

10.2.1. Creating a re-encrypt route with a custom certificate

You can configure a secure route using reencrypt TLS termination with a custom certificate by using the
oc create route command.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the

apiVersion: v1
kind: Route
metadata:
 annotations:
 haproxy.router.openshift.io/timeout: 5500ms 1
...

OpenShift Container Platform 4.3 Networking

134

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-reserved-resource-name

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a separate destination CA certificate in a PEM-encoded file.

You must have a Service resource that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and reencrypt TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You must also specify a destination CA certificate to enable the Ingress Controller to trust the
service’s certificate. You may also specify a CA certificate if needed to complete the certificate chain.
Substitute the actual path names for tls.crt, tls.key, cacert.crt, and (optionally) ca.crt. Substitute the
name of the Service resource that you want to expose for frontend. Substitute the appropriate host
name for www.example.com.

Create a secure Route resource using reencrypt TLS termination and a custom certificate:

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route reencrypt --service=frontend --cert=tls.crt --key=tls.key --dest-ca-
cert=destca.crt --ca-cert=ca.crt --hostname=www.example.com

apiVersion: v1
kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: reencrypt
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

CHAPTER 10. CONFIGURING ROUTES

135

See oc create route reencrypt --help for more options.

10.2.2. Creating an edge route with a custom certificate

You can configure a secure route using edge TLS termination with a custom certificate by using the oc
create route command. With an edge route, the Ingress Controller terminates TLS encryption before
forwarding traffic to the destination Pod. The route specifies the TLS certificate and key that the
Ingress Controller uses for the route.

Prerequisites

You must have a certificate/key pair in PEM-encoded files, where the certificate is valid for the
route host.

You may have a separate CA certificate in a PEM-encoded file that completes the certificate
chain.

You must have a Service resource that you want to expose.

NOTE

Password protected key files are not supported. To remove a passphrase from a key file,
use the following command:

Procedure

This procedure creates a Route resource with a custom certificate and edge TLS termination. The
following assumes that the certificate/key pair are in the tls.crt and tls.key files in the current working
directory. You may also specify a CA certificate if needed to complete the certificate chain. Substitute
the actual path names for tls.crt, tls.key, and (optionally) ca.crt. Substitute the name of the Service
resource that you want to expose for frontend. Substitute the appropriate host name for
www.example.com.

Create a secure Route resource using edge TLS termination and a custom certificate.

If you examine the resulting Route resource, it should look similar to the following:

YAML Definition of the Secure Route

 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 destinationCACertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

$ openssl rsa -in password_protected_tls.key -out tls.key

$ oc create route edge --service=frontend --cert=tls.crt --key=tls.key --ca-cert=ca.crt --
hostname=www.example.com

apiVersion: v1

OpenShift Container Platform 4.3 Networking

136

See oc create route edge --help for more options.

kind: Route
metadata:
 name: frontend
spec:
 host: www.example.com
 to:
 kind: Service
 name: frontend
 tls:
 termination: edge
 key: |-
 -----BEGIN PRIVATE KEY-----
 [...]
 -----END PRIVATE KEY-----
 certificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----
 caCertificate: |-
 -----BEGIN CERTIFICATE-----
 [...]
 -----END CERTIFICATE-----

CHAPTER 10. CONFIGURING ROUTES

137

CHAPTER 11. CONFIGURING INGRESS CLUSTER TRAFFIC

11.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW

OpenShift Container Platform provides the following methods for communicating from outside the
cluster with services running in the cluster.

The methods are recommended, in order or preference:

If you have HTTP/HTTPS, use an Ingress Controller.

If you have a TLS-encrypted protocol other than HTTPS. For example, for TLS with the SNI
header, use an Ingress Controller.

Otherwise, use a Load Balancer, an External IP, or a NodePort.

Method Purpose

Use an Ingress Controller Allows access to HTTP/HTTPS traffic and TLS-
encrypted protocols other than HTTPS (for example,
TLS with the SNI header).

Automatically assign an external IP using a load
balancer service

Allows traffic to non-standard ports through an IP
address assigned from a pool.

Manually assign an external IP to a service Allows traffic to non-standard ports through a
specific IP address.

Configure a NodePort Expose a service on all nodes in the cluster.

11.2. CONFIGURING EXTERNALIPS FOR SERVICES

As a cluster administrator, you can designate an IP address block that is external to the cluster that can
send traffic to services in the cluster.

This functionality is generally most useful for clusters installed on bare-metal hardware.

11.2.1. Prerequisites

Your network infrastructure must route traffic for the external IP addresses to your cluster.

OpenShift Container Platform 4.3 Networking

138

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-ingress-cluster-traffic-ingress-controller
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-ingress-cluster-traffic-load-balancer
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-ingress-cluster-traffic-nodeport

CHAPTER 12. ABOUT EXTERNALIP
For non-cloud environments, OpenShift Container Platform supports the assignment of external IP
addresses to a Service spec.externalIPs field through the ExternalIP facility. This exposes an
additional virtual IP address, assigned to the Service, that can be outside the service network defined for
the cluster. A Service configured with an external IP functions similarly to a Service with type=NodePort,
allowing you to direct traffic to a local node for load balancing.

You must configure your networking infrastructure to ensure that the external IP address blocks that
you define are routed to the cluster.

OpenShift Container Platform extends the ExternalIP functionality in Kubernetes by adding the
following capabilities:

Restrictions on the use of external IP addresses through a configurable policy

Allocation of an external IP address automatically to a Service upon request

By default, only a user with cluster-admin privileges can create a Service with spec.externalIPs[] set to
IP addresses defined within an external IP address block.

WARNING

Disabled by default, use of ExternalIP functionality can be a security risk, because
in-cluster traffic to an external IP address is directed to that Service. This could
allow cluster users to intercept sensitive traffic destined for external resources.

IMPORTANT

This feature is supported only in non-cloud deployments. For cloud deployments, use the
load balancer services for automatic deployment of a cloud load balancer to target the
endpoints of a service.

You can assign an external IP address in the following ways:

Automatic assignment of an external IP

OpenShift Container Platform automatically assigns an IP address from the autoAssignCIDRs CIDR
block to the spec.externalIPs[] array when you create a Service with spec.type=LoadBalancer set.
In this case, OpenShift Container Platform implements a non-cloud version of the load balancer
Service type and assigns IP addresses to the services. Automatic assignment is disabled by default
and must be configured by a cluster administrator as described in the following section.

Manual assignment of an external IP

OpenShift Container Platform uses the IP addresses assigned to the spec.externalIPs[] array when
you create a Service. You cannot specify an IP address that is already in use by another Service.

12.1. CONFIGURATION FOR EXTERNALIP

Use of an external IP address in OpenShift Container Platform is governed by the following fields in the
Network.config.openshift.io CR named cluster:

CHAPTER 12. ABOUT EXTERNALIP

139

spec.externalIP.autoAssignCIDRs defines an IP address block used by the load balancer when
choosing an external IP address for the service. OpenShift Container Platform supports only a
single IP address block for automatic assignment. This can be simpler than having to manage
the port space of a limited number of shared IP addresses when manually assigning ExternalIPs
to services. If automatic assignment is enabled, a Service with spec.type=LoadBalancer is
allocated an external IP address.

spec.externalIP.policy defines the permissible IP address blocks when manually specifying an
IP address. OpenShift Container Platform does not apply policy rules to IP address blocks
defined by spec.externalIP.autoAssignCIDRs.

If routed correctly, external traffic from the configured external IP address block can reach service
endpoints through any TCP or UDP port that the service exposes.

IMPORTANT

You must ensure that the IP address block you assign terminates at one or more nodes in
your cluster.

OpenShift Container Platform supports both the automatic and manual assignment of IP addresses,
and each address is guaranteed to be assigned to a maximum of one service. This ensures that each
service can expose its chosen ports regardless of the ports exposed by other services.

NOTE

To use IP address blocks defined by autoAssignCIDRs in OpenShift Container Platform,
you must configure the necessary IP address assignment and routing for your host
network.

The following YAML describes a Service with an external IP configured:

Example Service object with spec.externalIPs[] set

apiVersion: v1
kind: Service
metadata:
 name: http-service
spec:
 clusterIP: 172.30.163.110
 externalIPs:
 - 192.168.132.253
 externalTrafficPolicy: Cluster
 ports:
 - name: highport
 nodePort: 31903
 port: 30102
 protocol: TCP
 targetPort: 30102
 selector:
 app: web
 sessionAffinity: None
 type: LoadBalancer
status:

OpenShift Container Platform 4.3 Networking

140

12.2. RESTRICTIONS ON THE ASSIGNMENT OF AN EXTERNAL IP
ADDRESS

As a cluster administrator, you can specify IP address blocks to allow and to reject.

You configure IP address policy with a policy object defined by specifying the spec.ExternalIP.policy
field. The policy object has the following shape:

When configuring policy restrictions, the following rules apply:

If policy={} is set, then creating a Service with spec.ExternalIPs[] set will fail. This is the default
for OpenShift Container Platform.

If policy=null is set, then creating a Service with spec.ExternalIPs[] set to any IP address is
allowed.

If policy is set and either policy.allowedCIDRs[] or policy.rejectedCIDRs[] is set, the following
rules apply:

If allowedCIDRs[] and rejectedCIDRs[] are both set, then rejectedCIDRs[] has
precedence over allowedCIDRs[].

If allowedCIDRs[] is set, creating a Service with spec.ExternalIPs[] will succeed only if the
specified IP addresses are allowed.

If rejectedCIDRs[] is set, creating a Service with spec.ExternalIPs[] will succeed only if the
specified IP addresses are not rejected.

12.3. EXAMPLE POLICY OBJECTS

The examples that follow demonstrate several different policy configurations.

In the following example, the policy prevents OpenShift Container Platform from creating any
Service with an external IP address specified:

Example policy to reject any value specified for Service spec.externalIPs[]

 loadBalancer:
 ingress:
 - ip: 192.168.132.253

{
 "policy": {
 "allowedCIDRs": [],
 "rejectedCIDRs": []
 }
}

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:

CHAPTER 12. ABOUT EXTERNALIP

141

In the following example, both the allowedCIDRs and rejectedCIDRs fields are set.

Example policy that includes both allowed and rejected CIDR blocks

In the following example, policy is set to null. If set to null, when inspecting the configuration
object by entering oc get networks.config.openshift.io -o yaml, the policy field will not
appear in the output.

Example policy to allow any value specified for Service spec.externalIPs[]

 externalIP:
 policy: {}
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy:
 allowedCIDRs:
 - 172.16.66.10/23
 rejectedCIDRs:
 - 172.16.66.10/24
 ...

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 policy: null
 ...

OpenShift Container Platform 4.3 Networking

142

1

2

1

2

CHAPTER 13. EXTERNALIP ADDRESS BLOCK
CONFIGURATION

The configuration for ExternalIP address blocks is defined by a Network custom resource (CR) named
cluster. The Network CR is part of the config.openshift.io API group.

IMPORTANT

During cluster installation, the Cluster Version Operator (CVO) automatically creates a
Network CR named cluster. Creating any other CR objects of this type is not supported.

The following YAML describes the ExternalIP configuration:

Network.config.openshift.io CR named cluster

Defines the IP address block in CIDR format that is available for automatic assignment of external
IP addresses to a Service. Only a single IP address range is allowed.

Defines restrictions on manual assignment of an IP address to a Service. If no restrictions are
defined, specifying the spec.externalIP field in a Service is not allowed. By default, no restrictions
are defined.

The following YAML describes the fields for the policy stanza:

Network.config.openshift.io policy stanza

A list of allowed IP address ranges in CIDR format.

A list of rejected IP address ranges in CIDR format.

Example external IP configurations
Several possible configurations for external IP address pools are displayed in the following examples:

The following YAML describes a configuration that enables automatically assigned external IP
addresses:

Example configuration with spec.externalIP.autoAssignCIDRs set

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 externalIP:
 autoAssignCIDRs: [] 1
 policy: 2
 ...

policy:
 allowedCIDRs: [] 1
 rejectedCIDRs: [] 2

CHAPTER 13. EXTERNALIP ADDRESS BLOCK CONFIGURATION

143

The following YAML configures policy rules for the allowed and rejected CIDR ranges:

Example configuration with spec.externalIP.policy set

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 autoAssignCIDRs:
 - 192.168.132.254/29

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP:
 policy:
 allowedCIDRs:
 - 192.168.132.0/29
 - 192.168.132.8/29
 rejectedCIDRs:
 - 192.168.132.7/32

OpenShift Container Platform 4.3 Networking

144

1

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS
FOR YOUR CLUSTER

As a cluster administrator, you can configure the following ExternalIP settings:

An ExternalIP address block used by OpenShift Container Platform to automatically populate
the spec.clusterIP field for a Service.

A policy object to restrict what IP addresses may be manually assigned to the spec.clusterIP
array of a Service.

Prerequisites

Install the OpenShift CLI (oc).

Access to the cluster as a user with the cluster-admin role.

Procedure

1. Optional: To display the current external IP configuration, enter the following command:

2. To edit the configuration, enter the following command:

3. Modify the ExternalIP configuration, as in the following example:

Specify the configuration for the externalIP stanza.

4. To confirm the updated ExternalIP configuration, enter the following command:

14.1. NEXT STEPS

Configuring ingress cluster traffic for a service external IP

14.2. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS
CONTROLLER

$ oc describe networks.config cluster

$ oc edit networks.config cluster

apiVersion: config.openshift.io/v1
kind: Network
metadata:
 name: cluster
spec:
 ...
 externalIP: 1
 ...

$ oc get networks.config cluster -o go-template='{{.spec.externalIP}}{{"\n"}}'

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER

145

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-ingress-cluster-traffic-service-external-ip

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses an Ingress Controller.

14.2.1. Using Ingress Controllers and routes

The Ingress Operator manages Ingress Controllers and wildcard DNS.

Using an Ingress Controller is the most common way to allow external access to an OpenShift Container
Platform cluster.

An Ingress Controller is configured to accept external requests and proxy them based on the configured
routes. This is limited to HTTP, HTTPS using SNI, and TLS using SNI, which is sufficient for web
applications and services that work over TLS with SNI.

Work with your administrator to configure an Ingress Controller to accept external requests and proxy
them based on the configured routes.

The administrator can create a wildcard DNS entry and then set up an Ingress Controller. Then, you can
work with the edge Ingress Controller without having to contact the administrators.

When a set of routes is created in various projects, the overall set of routes is available to the set of
Ingress Controllers. Each Ingress Controller admits routes from the set of routes. By default, all Ingress
Controllers admit all routes.

The Ingress Controller:

Has two replicas by default, which means it should be running on two worker nodes.

Can be scaled up to have more replicas on more nodes.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

14.2.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

14.2.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

OpenShift Container Platform 4.3 Networking

146

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service:

For example:

2. Use the oc new-app command to create a service. For example:

3. Run the following command to see that the new service is created:

Example output

By default, the new service does not have an external IP address.

14.2.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the following command to expose the route:

$ oc new-project <project_name>

$ oc new-project myproject

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.redhat.io/rhscl/mysql-80-rhel7

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-80-rhel7 ClusterIP 172.30.63.31 <none> 3306/TCP 4m55s

$ oc project project1

$ oc expose service <service_name>

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER

147

For example:

Example output

4. Use a tool, such as cURL, to make sure you can reach the service using the cluster IP address for
the service:

For example:

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connected to the
service.

If you have a MySQL client, log in with the standard CLI command:

Example output

14.2.5. Configuring Ingress Controller sharding by using route labels

Ingress Controller sharding by using route labels means that the Ingress Controller serves any route in
any namespace that is selected by the route selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

$ oc expose service mysql-80-rhel7

route "mysql-80-rhel7" exposed

$ curl <pod_ip>:<port>

$ curl 172.30.131.89:3306

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

cat router-internal.yaml
apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded

OpenShift Container Platform 4.3 Networking

148

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that have the label type: sharded.

14.2.6. Configuring Ingress Controller sharding by using namespace labels

Ingress Controller sharding by using namespace labels means that the Ingress Controller serves any
route in any namespace that is selected by the namespace selector.

Ingress Controller sharding is useful when balancing incoming traffic load among a set of Ingress
Controllers and when isolating traffic to a specific Ingress Controller. For example, company A goes to
one Ingress Controller and company B to another.

Procedure

1. Edit the router-internal.yaml file:

Example output

 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 routeSelector:
 matchLabels:
 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

cat router-internal.yaml

apiVersion: v1
items:
- apiVersion: operator.openshift.io/v1
 kind: IngressController
 metadata:
 name: sharded
 namespace: openshift-ingress-operator
 spec:
 domain: <apps-sharded.basedomain.example.net>
 nodePlacement:
 nodeSelector:
 matchLabels:
 node-role.kubernetes.io/worker: ""
 namespaceSelector:
 matchLabels:

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER

149

2. Apply the Ingress Controller router-internal.yaml file:

The Ingress Controller selects routes in any namespace that is selected by the namespace
selector that have the label type: sharded.

14.2.7. Additional resources

The Ingress Operator manages wildcard DNS. For more information, see Ingress Operator in
OpenShift Container Platform, Installing a cluster on bare metal , and Installing a cluster on
vSphere.

14.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD
BALANCER

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a load balancer.

14.3.1. Using a load balancer to get traffic into the cluster

If you do not need a specific external IP address, you can configure a load balancer service to allow
external access to an OpenShift Container Platform cluster.

A load balancer service allocates a unique IP. The load balancer has a single edge router IP, which can be
a virtual IP (VIP), but is still a single machine for initial load balancing.

NOTE

If a pool is configured, it is done at the infrastructure level, not by a cluster administrator.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

14.3.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

 type: sharded
 status: {}
kind: List
metadata:
 resourceVersion: ""
 selfLink: ""

oc apply -f router-internal.yaml

OpenShift Container Platform 4.3 Networking

150

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-ingress
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-bare-metal
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#installing-vsphere

oc adm policy add-cluster-role-to-user cluster-admin username

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

14.3.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

1. Create a new project for your service:

For example:

2. Use the oc new-app command to create a service. For example:

3. Run the following command to see that the new service is created:

Example output

By default, the new service does not have an external IP address.

14.3.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

$ oc new-project <project_name>

$ oc new-project myproject

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.redhat.io/rhscl/mysql-80-rhel7

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-80-rhel7 ClusterIP 172.30.63.31 <none> 3306/TCP 4m55s

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER

151

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. Run the following command to expose the route:

For example:

Example output

4. Use a tool, such as cURL, to make sure you can reach the service using the cluster IP address for
the service:

For example:

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connected to the
service.

If you have a MySQL client, log in with the standard CLI command:

Example output

14.3.5. Creating a load balancer service

Use the following procedure to create a load balancer service.

Prerequisites

Make sure that the project and service you want to expose exist.

Procedure

$ oc project project1

$ oc expose service <service_name>

$ oc expose service mysql-80-rhel7

route "mysql-80-rhel7" exposed

$ curl <pod_ip>:<port>

$ curl 172.30.131.89:3306

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

OpenShift Container Platform 4.3 Networking

152

1

2

3

4

To create a load balancer service:

1. Log in to OpenShift Container Platform.

2. Load the project where the service you want to expose is located.

3. Open a text file on the master node and paste the following text, editing the file as needed:

Sample load balancer configuration file

apiVersion: v1
kind: Service
metadata:
 name: egress-2 1
spec:
 ports:
 - name: db
 port: 3306 2
 loadBalancerIP:
 type: LoadBalancer 3
 selector:
 name: mysql 4

Enter a descriptive name for the load balancer service.

Enter the same port that the service you want to expose is listening on.

Enter loadbalancer as the type.

Enter the name of the service.

4. Save and exit the file.

5. Run the following command to create the service:

For example:

6. Execute the following command to view the new service:

Example output

$ oc project project1

$ oc create -f <file-name>

$ oc create -f mysql-lb.yaml

$ oc get svc

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
egress-2 LoadBalancer 172.30.22.226 ad42f5d8b303045-487804948.example.com

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER

153

The service has an external IP address automatically assigned if there is a cloud provider
enabled.

7. On the master, use a tool, such as cURL, to make sure you can reach the service using the public
IP address:

For example:

The examples in this section use a MySQL service, which requires a client application. If you get a
string of characters with the Got packets out of order message, you are connecting with the
service:

If you have a MySQL client, log in with the standard CLI command:

Example output

14.4. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE
EXTERNAL IP

You can attach an external IP address to a Service so that it is available to traffic outside the cluster.
This is generally useful only for a cluster installed on bare metal hardware. The external network
infrastructure must be configured correctly to route traffic to the Service.

14.4.1. Prerequisites

Your cluster is configured with ExternalIPs enabled. For more information, read Configuring
ExternalIPs for services.

14.4.2. Attaching an ExternalIP to a Service

You can attach an ExternalIP to a service. If your cluster is configured to allocate an ExternalIP
automatically, you might not need to manually attach an ExternalIP to the Service.

Procedure

1. Optional: To confirm what IP address ranges are configured for use with ExternalIP, enter the
following command:

3306:30357/TCP 15m

$ curl <public-ip>:<port>

$ curl 172.29.121.74:3306

$ mysql -h 172.30.131.89 -u admin -p

Enter password:
Welcome to the MariaDB monitor. Commands end with ; or \g.

MySQL [(none)]>

$ oc get networks.config cluster -o jsonpath='{.spec.externalIP}{"\n"}'

OpenShift Container Platform 4.3 Networking

154

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-externalip

If autoAssignCIDRs is set, OpenShift Container Platform automatically assigns an ExternalIP
to a new Service if the spec.externalIPs field is not specified.

2. Attach an ExternalIP to the Service resource.

a. If you are creating a new Service, specify the spec.externalIPs field and provide an array of
one or more valid IP addresses. For example:

b. If you are attaching an ExternalIP to an existing Service, enter the following command.
Replace <name> with the Service name. Replace <ip_address> with a valid ExternalIP
address. You can provide multiple IP addresses separated by commas.

For example:

Example output

3. To confirm that an ExternalIP address is attached to the Service, enter the following command.
If you specified an ExternalIP for a new Service, you must create the Service first.

Example output

14.4.3. Additional resources

Configuring ExternalIPs for services

14.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT

OpenShift Container Platform provides methods for communicating from outside the cluster with

apiVersion: v1
kind: Service
metadata:
 name: svc-with-externalip
spec:
 ...
 externalIPs:
 - 192.174.120.10

$ oc patch svc <name> -p \
 '{
 "spec": {
 "externalIPs": ["<ip_address>"]
 }
 }'

$ oc patch svc mysql-55-rhel7 -p '{"spec":{"externalIPs":["192.174.120.10"]}}'

"mysql-55-rhel7" patched

$ oc get svc

NAME CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-55-rhel7 172.30.131.89 192.174.120.10 3306/TCP 13m

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER

155

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#configuring-externalip

OpenShift Container Platform provides methods for communicating from outside the cluster with
services running in the cluster. This method uses a NodePort.

14.5.1. Using a NodePort to get traffic into the cluster

Use a NodePort-type Service resource to expose a service on a specific port on all nodes in the cluster.
The port is specified in the Service resource’s .spec.ports[*].nodePort field.

IMPORTANT

Using NodePorts requires additional port resources.

A NodePort exposes the service on a static port on the node’s IP address. NodePorts are in the 30000
to 32767 range by default, which means a NodePort is unlikely to match a service’s intended port. For
example, port 8080 may be exposed as port 31020 on the node.

The administrator must ensure the external IP addresses are routed to the nodes.

NodePorts and external IPs are independent and both can be used concurrently.

NOTE

The procedures in this section require prerequisites performed by the cluster
administrator.

14.5.2. Prerequisites

Before starting the following procedures, the administrator must:

Set up the external port to the cluster networking environment so that requests can reach the
cluster.

Make sure there is at least one user with cluster admin role. To add this role to a user, run the
following command:

$ oc adm policy add-cluster-role-to-user cluster-admin <user_name>

Have an OpenShift Container Platform cluster with at least one master and at least one node
and a system outside the cluster that has network access to the cluster. This procedure assumes
that the external system is on the same subnet as the cluster. The additional networking
required for external systems on a different subnet is out-of-scope for this topic.

14.5.3. Creating a project and service

If the project and service that you want to expose do not exist, first create the project, then the service.

If the project and service already exist, skip to the procedure on exposing the service to create a route.

Prerequisites

Install the oc CLI and log in as a cluster administrator.

Procedure

OpenShift Container Platform 4.3 Networking

156

1. Create a new project for your service:

For example:

2. Use the oc new-app command to create a service. For example:

3. Run the following command to see that the new service is created:

Example output

By default, the new service does not have an external IP address.

14.5.4. Exposing the service by creating a route

You can expose the service as a route by using the oc expose command.

Procedure

To expose the service:

1. Log in to OpenShift Container Platform.

2. Log in to the project where the service you want to expose is located:

3. To expose a node port for the application, enter the following command. OpenShift Container
Platform automatically selects an available port in the 30000-32767 range.

4. Optional: To confirm the service is available with a node port exposed, enter the following
command:

Example output

$ oc new-project <project_name>

$ oc new-project myproject

$ oc new-app \
 -e MYSQL_USER=admin \
 -e MYSQL_PASSWORD=redhat \
 -e MYSQL_DATABASE=mysqldb \
 registry.redhat.io/rhscl/mysql-80-rhel7

$ oc get svc -n myproject

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-80-rhel7 ClusterIP 172.30.63.31 <none> 3306/TCP 4m55s

$ oc project project1

$ oc expose dc mysql-80-rhel7 --type=NodePort --name=mysql-ingress

$ oc get svc -n myproject

CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER

157

5. Optional: To remove the service created automatically by the oc new-app command, enter the
following command:

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
mysql-80-rhel7 ClusterIP 172.30.217.127 <none> 3306/TCP 9m44s
mysql-ingress NodePort 172.30.107.72 <none> 3306:31345/TCP 39s

$ oc delete svc mysql-80-rhel7

OpenShift Container Platform 4.3 Networking

158

CHAPTER 15. CONFIGURING THE CLUSTER-WIDE PROXY
Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS
proxy available. You can configure OpenShift Container Platform to use a proxy by modifying the Proxy
object for existing clusters or by configuring the proxy settings in the install-config.yaml file for new
clusters.

IMPORTANT

The cluster-wide proxy is only supported if you used a user-provisioned infrastructure
installation or provide your own networking, such as a virtual private cloud or virual
network, for a supported provider.

15.1. PREREQUISITES

Review the sites that your cluster requires access to

and determine whether any of them must bypass the proxy. By default, all cluster egress
traffic is proxied, including calls to the cloud provider API for the cloud that hosts your cluster.
Add sites to the Proxy object's `spec.noProxy` field to bypass the proxy if necessary.

NOTE

The Proxy object’s status.noProxy field is populated by default with the
instance metadata endpoint (169.254.169.254) and with the values of the
networking.machineCIDR, networking.clusterNetwork.cidr, and
networking.serviceNetwork[] fields from your installation configuration.

15.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

CHAPTER 15. CONFIGURING THE CLUSTER-WIDE PROXY

159

https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/networking/#nw-proxy-configure-object_config-cluster-wide-proxy
https://access.redhat.com/documentation/en-us/openshift_container_platform/4.3/html-single/installing/#configuring-firewall

1

2

3

4

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a ConfigMap that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The ConfigMap name that will be referenced from the Proxy object.

The ConfigMap must be in the openshift-config namespace.

b. Create the ConfigMap from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

apiVersion: v1
data:
 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: http://<username>:<pswd>@<ip>:<port> 2

OpenShift Container Platform 4.3 Networking

160

1

2

3

4

5

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster. If this is not
specified, then httpProxy is used for both HTTP and HTTPS connections.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying. Preface a domain with . to include all subdomains of
that domain. Use * to bypass proxy for all destinations. Note that if you scale up workers
not included in networking.machineCIDR from the installation configuration, you must
add them to this list to prevent connection issues.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the ConfigMap in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the ConfigMap must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

15.3. REMOVING THE CLUSTER-WIDE PROXY

The cluster Proxy object cannot be deleted. To remove the proxy from a cluster, remove all spec fields
from the Proxy object.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Use the oc edit command to modify the proxy:

2. Remove all spec fields from the Proxy object. For example:

 noProxy: example.com 3
 readinessEndpoints:
 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec: {}
status: {}

CHAPTER 15. CONFIGURING THE CLUSTER-WIDE PROXY

161

3. Save the file to apply the changes.

OpenShift Container Platform 4.3 Networking

162

CHAPTER 16. CONFIGURING A CUSTOM PKI
Some platform components, such as the web console, use Routes for communication and must trust
other components' certificates to interact with them. If you are using a custom public key infrastructure
(PKI), you must configure it so its privately signed CA certificates are recognized across the cluster.

You can leverage the Proxy API to add cluster-wide trusted CA certificates. You must do this either
during installation or at runtime.

During installation, configure the cluster-wide proxy. You must define your privately signed CA
certificates in the install-config.yaml file’s additionalTrustBundle setting.
The installation program generates a ConfigMap that is named user-ca-bundle that contains
the additional CA certificates you defined. The Cluster Network Operator then creates a
trusted-ca-bundle ConfigMap that merges these CA certificates with the Red Hat Enterprise
Linux CoreOS (RHCOS) trust bundle; this ConfigMap is referenced in the Proxy object’s
trustedCA field.

At runtime, modify the default Proxy object to include your privately signed CA certificates
(part of cluster’s proxy enablement workflow). This involves creating a ConfigMap that contains
the privately signed CA certificates that should be trusted by the cluster, and then modifying
the proxy resource with the trustedCA referencing the privately signed certificates' ConfigMap.

NOTE

The installer configuration’s additionalTrustBundle field and the proxy resource’s
trustedCA field are used to manage the cluster-wide trust bundle;
additionalTrustBundle is used at install time and the proxy’s trustedCA is used at
runtime.

The trustedCA field is a reference to a ConfigMap containing the custom certificate and
key pair used by the cluster component.

16.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING
INSTALLATION

Production environments can deny direct access to the Internet and instead have an HTTP or HTTPS
proxy available. You can configure a new OpenShift Container Platform cluster to use a proxy by
configuring the proxy settings in the install-config.yaml file.

Prerequisites

An existing install-config.yaml file.

Review the sites that your cluster requires access to and determine whether any need to bypass
the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider
APIs. Add sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

NOTE

The Proxy object’s status.noProxy field is populated by default with the
instance metadata endpoint (169.254.169.254) and with the values of the
networking.machineCIDR, networking.clusterNetwork.cidr, and
networking.serviceNetwork[] fields from your installation configuration.

CHAPTER 16. CONFIGURING A CUSTOM PKI

163

1

2

3

4

Procedure

1. Edit your install-config.yaml file and add the proxy settings. For example:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http. If you use an MITM transparent proxy network that does not require
additional proxy configuration but requires additional CAs, you must not specify an
httpProxy value.

A proxy URL to use for creating HTTPS connections outside the cluster. If this field is not
specified, then httpProxy is used for both HTTP and HTTPS connections. If you use an
MITM transparent proxy network that does not require additional proxy configuration but
requires additional CAs, you must not specify an httpsProxy value.

A comma-separated list of destination domain names, domains, IP addresses, or other
network CIDRs to exclude proxying. Preface a domain with . to include all subdomains of
that domain. Use * to bypass proxy for all destinations.

If provided, the installation program generates a ConfigMap that is named user-ca-bundle
in the openshift-config namespace that contains one or more additional CA certificates
that are required for proxying HTTPS connections. The Cluster Network Operator then
creates a trusted-ca-bundle ConfigMap that merges these contents with the Red Hat
Enterprise Linux CoreOS (RHCOS) trust bundle, and this ConfigMap is referenced in the
Proxy object’s trustedCA field. The additionalTrustBundle field is required unless the
proxy’s identity certificate is signed by an authority from the RHCOS trust bundle. If you
use an MITM transparent proxy network that does not require additional proxy
configuration but requires additional CAs, you must provide the MITM CA certificate.

NOTE

The installation program does not support the proxy readinessEndpoints field.

2. Save the file and reference it when installing OpenShift Container Platform.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings
in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still
created, but it will have a nil spec.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

apiVersion: v1
baseDomain: my.domain.com
proxy:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: http://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
additionalTrustBundle: | 4
 -----BEGIN CERTIFICATE-----
 <MY_TRUSTED_CA_CERT>
 -----END CERTIFICATE-----
...

OpenShift Container Platform 4.3 Networking

164

1

16.2. ENABLING THE CLUSTER-WIDE PROXY

The Proxy object is used to manage the cluster-wide egress proxy. When a cluster is installed or
upgraded without the proxy configured, a Proxy object is still generated but it will have a nil spec. For
example:

A cluster administrator can configure the proxy for OpenShift Container Platform by modifying this
cluster Proxy object.

NOTE

Only the Proxy object named cluster is supported, and no additional proxies can be
created.

Prerequisites

Cluster administrator permissions

OpenShift Container Platform oc CLI tool installed

Procedure

1. Create a ConfigMap that contains any additional CA certificates required for proxying HTTPS
connections.

NOTE

You can skip this step if the proxy’s identity certificate is signed by an authority
from the RHCOS trust bundle.

a. Create a file called user-ca-bundle.yaml with the following contents, and provide the
values of your PEM-encoded certificates:

This data key must be named ca-bundle.crt.

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 trustedCA:
 name: ""
status:

apiVersion: v1
data:
 ca-bundle.crt: | 1
 <MY_PEM_ENCODED_CERTS> 2
kind: ConfigMap
metadata:
 name: user-ca-bundle 3
 namespace: openshift-config 4

CHAPTER 16. CONFIGURING A CUSTOM PKI

165

2

3

4

1

2

3

4

5

One or more PEM-encoded X.509 certificates used to sign the proxy’s identity
certificate.

The ConfigMap name that will be referenced from the Proxy object.

The ConfigMap must be in the openshift-config namespace.

b. Create the ConfigMap from this file:

2. Use the oc edit command to modify the Proxy object:

3. Configure the necessary fields for the proxy:

A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme
must be http.

A proxy URL to use for creating HTTPS connections outside the cluster. If this is not
specified, then httpProxy is used for both HTTP and HTTPS connections.

A comma-separated list of destination domain names, domains, IP addresses or other
network CIDRs to exclude proxying. Preface a domain with . to include all subdomains of
that domain. Use * to bypass proxy for all destinations. Note that if you scale up workers
not included in networking.machineCIDR from the installation configuration, you must
add them to this list to prevent connection issues.

One or more URLs external to the cluster to use to perform a readiness check before
writing the httpProxy and httpsProxy values to status.

A reference to the ConfigMap in the openshift-config namespace that contains additional
CA certificates required for proxying HTTPS connections. Note that the ConfigMap must
already exist before referencing it here. This field is required unless the proxy’s identity
certificate is signed by an authority from the RHCOS trust bundle.

4. Save the file to apply the changes.

$ oc create -f user-ca-bundle.yaml

$ oc edit proxy/cluster

apiVersion: config.openshift.io/v1
kind: Proxy
metadata:
 name: cluster
spec:
 httpProxy: http://<username>:<pswd>@<ip>:<port> 1
 httpsProxy: http://<username>:<pswd>@<ip>:<port> 2
 noProxy: example.com 3
 readinessEndpoints:
 - http://www.google.com 4
 - https://www.google.com
 trustedCA:
 name: user-ca-bundle 5

OpenShift Container Platform 4.3 Networking

166

1

2

16.3. CERTIFICATE INJECTION USING OPERATORS

Once your custom CA certificate is added to the cluster via ConfigMap, the Cluster Network Operator
merges the user-provided and system CA certificates into a single bundle and injects the merged
bundle into the Operator requesting the trust bundle injection.

Operators request this injection by creating an empty ConfigMap with the following label:

The Operator mounts this ConfigMap into the container’s local trust store.

NOTE

Adding a trusted CA certificate is only needed if the certificate is not included in the Red
Hat Enterprise Linux CoreOS (RHCOS) trust bundle.

Certificate injection is not limited to Operators. The Cluster Network Operator injects certificates across
any namespace when an empty ConfigMap is created with the config.openshift.io/inject-trusted-
cabundle=true label.

The ConfigMap can reside in any namespace, but the ConfigMap must be mounted as a volume to each
container within a Pod that requires a custom CA. For example:

ca-bundle.crt is required as the ConfigMap key.

tls-ca-bundle.pem is required as the ConfigMap path.

config.openshift.io/inject-trusted-cabundle="true"

apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-example-custom-ca-deployment
 namespace: my-example-custom-ca-ns
spec:
 ...
 spec:
 ...
 containers:
 - name: my-container-that-needs-custom-ca
 volumeMounts:
 - name: trusted-ca
 mountPath: /etc/pki/ca-trust/extracted/pem
 readOnly: true
 volumes:
 - name: trusted-ca
 configMap:
 name: trusted-ca
 items:
 - key: ca-bundle.crt 1
 path: tls-ca-bundle.pem 2

CHAPTER 16. CONFIGURING A CUSTOM PKI

167

OpenShift Container Platform 4.3 Networking

168

	Table of Contents
	CHAPTER 1. UNDERSTANDING NETWORKING
	1.1. OPENSHIFT CONTAINER PLATFORM DNS

	CHAPTER 2. ACCESSING HOSTS
	2.1. ACCESSING HOSTS ON AMAZON WEB SERVICES IN AN INSTALLER-PROVISIONED INFRASTRUCTURE CLUSTER

	CHAPTER 3. CLUSTER NETWORK OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	3.1. CLUSTER NETWORK OPERATOR
	3.2. VIEWING THE CLUSTER NETWORK CONFIGURATION
	3.3. VIEWING CLUSTER NETWORK OPERATOR STATUS
	3.4. VIEWING CLUSTER NETWORK OPERATOR LOGS
	3.5. CLUSTER NETWORK OPERATOR CONFIGURATION
	3.5.1. Configuration parameters for the OpenShift SDN default CNI network provider
	3.5.2. Configuration parameters for the OVN-Kubernetes default CNI network provider
	3.5.3. Cluster Network Operator example configuration

	CHAPTER 4. DNS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	4.1. DNS OPERATOR
	4.2. VIEW THE DEFAULT DNS
	4.3. USING DNS FORWARDING
	4.4. DNS OPERATOR STATUS
	4.5. DNS OPERATOR LOGS

	CHAPTER 5. INGRESS OPERATOR IN OPENSHIFT CONTAINER PLATFORM
	5.1. THE INGRESS CONFIGURATION ASSET
	5.2. INGRESS CONTROLLER CONFIGURATION PARAMETERS
	5.2.1. Ingress controller TLS profiles
	5.2.2. Ingress controller endpoint publishing strategy

	5.3. VIEW THE DEFAULT INGRESS CONTROLLER
	5.4. VIEW INGRESS OPERATOR STATUS
	5.5. VIEW INGRESS CONTROLLER LOGS
	5.6. VIEW INGRESS CONTROLLER STATUS
	5.7. SETTING A CUSTOM DEFAULT CERTIFICATE
	5.8. SCALING AN INGRESS CONTROLLER
	5.9. CONFIGURING INGRESS CONTROLLER SHARDING BY USING ROUTE LABELS
	5.10. CONFIGURING INGRESS CONTROLLER SHARDING BY USING NAMESPACE LABELS
	5.11. CONFIGURING AN INGRESS CONTROLLER TO USE AN INTERNAL LOAD BALANCER
	5.12. CONFIGURING THE DEFAULT INGRESS CONTROLLER FOR YOUR CLUSTER TO BE INTERNAL
	5.13. ADDITIONAL RESOURCES

	CHAPTER 6. NETWORK POLICY
	6.1. ABOUT NETWORK POLICY
	6.1.1. About network policy
	6.1.2. Next steps
	6.1.3. Additional resources

	6.2. CREATING A NETWORK POLICY
	6.2.1. Creating a NetworkPolicy object
	6.2.2. Example NetworkPolicy object

	6.3. VIEWING A NETWORK POLICY
	6.3.1. Viewing NetworkPolicy objects
	6.3.2. Example NetworkPolicy object

	6.4. EDITING A NETWORK POLICY
	6.4.1. Editing a NetworkPolicy object
	6.4.2. Example NetworkPolicy object
	6.4.3. Additional resources

	6.5. DELETING A NETWORK POLICY
	6.5.1. Deleting a NetworkPolicy object

	6.6. CREATING DEFAULT NETWORK POLICIES FOR A NEW PROJECT
	6.6.1. Modifying the template for new projects
	6.6.2. Adding network policy objects to the new project template

	6.7. CONFIGURING MULTITENANT MODE WITH NETWORK POLICY
	6.7.1. Configuring multitenant isolation using NetworkPolicy
	6.7.2. Next steps

	CHAPTER 7. MULTIPLE NETWORKS
	7.1. UNDERSTANDING MULTIPLE NETWORKS
	7.1.1. Usage scenarios for an additional network
	7.1.2. Additional networks in OpenShift Container Platform

	7.2. ATTACHING A POD TO AN ADDITIONAL NETWORK
	7.2.1. Adding a Pod to an additional network
	7.2.1.1. Specifying Pod-specific addressing and routing options

	7.3. REMOVING A POD FROM AN ADDITIONAL NETWORK
	7.3.1. Removing a Pod from an additional network

	7.4. CONFIGURING A BRIDGE NETWORK
	7.4.1. Creating an additional network attachment with the bridge CNI plug-in
	7.4.1.1. Configuration for bridge
	7.4.1.2. Configuration for ipam CNI plug-in

	7.4.2. Next steps

	7.5. CONFIGURING A MACVLAN NETWORK
	7.5.1. Creating an additional network attachment with the macvlan CNI plug-in
	7.5.1.1. Configuration for macvlan CNI plug-in
	7.5.1.2. Configuration for ipam CNI plug-in

	7.5.2. Next steps

	7.6. CONFIGURING AN IPVLAN NETWORK
	7.6.1. Creating an additional network attachment with the ipvlan CNI plug-in
	7.6.1.1. Configuration for ipvlan
	7.6.1.2. Configuration for ipam CNI plug-in

	7.6.2. Next steps

	7.7. CONFIGURING A HOST-DEVICE NETWORK
	7.7.1. Creating an additional network attachment with the host-device CNI plug-in
	7.7.1.1. Configuration for host-device
	7.7.1.2. Configuration for ipam CNI plug-in

	7.7.2. Next steps

	7.8. EDITING AN ADDITIONAL NETWORK
	7.8.1. Modifying an additional network attachment definition

	7.9. REMOVING AN ADDITIONAL NETWORK
	7.9.1. Removing an additional network attachment definition

	7.10. CONFIGURING PTP
	7.10.1. About PTP hardware on OpenShift Container Platform
	7.10.2. Installing the PTP Operator
	7.10.2.1. Installing the Operator using the CLI
	7.10.2.2. Installing the Operator using the web console

	7.10.3. Automated discovery of PTP network devices
	7.10.4. Configuring Linuxptp services

	CHAPTER 8. HARDWARE NETWORKS
	8.1. ABOUT SINGLE ROOT I/O VIRTUALIZATION (SR-IOV) HARDWARE NETWORKS
	8.1.1. Components that manage SR-IOV network devices
	8.1.1.1. Supported devices
	8.1.1.2. Example use of a virtual function in a Pod

	8.1.2. Next steps

	8.2. INSTALLING THE SR-IOV NETWORK OPERATOR
	8.2.1. Installing SR-IOV Network Operator
	8.2.1.1. CLI: Installing the SR-IOV Network Operator
	8.2.1.2. Web console: Installing the SR-IOV Network Operator

	8.2.2. Next steps

	8.3. CONFIGURING THE SR-IOV NETWORK OPERATOR
	8.3.1. Configuring the SR-IOV Network Operator
	8.3.1.1. About the Network Resources Injector
	8.3.1.2. About the SR-IOV Operator admission controller webhook
	8.3.1.3. About custom node selectors
	8.3.1.4. Disabling or enabling the Network Resources Injector
	8.3.1.5. Disabling or enabling the SR-IOV Operator admission controller webhook
	8.3.1.6. Configuring a custom NodeSelector for the SR-IOV Network Config daemon

	8.3.2. Next steps

	8.4. CONFIGURING AN SR-IOV NETWORK DEVICE
	8.4.1. Automated discovery of SR-IOV network devices
	8.4.1.1. Example SriovNetworkNodeState CR

	8.4.2. Configuring SR-IOV network devices
	8.4.3. Next steps

	8.5. CONFIGURING AN SR-IOV NETWORK ATTACHMENT
	8.5.1. Configuring SR-IOV additional network
	8.5.1.1. Configuration for ipam CNI plug-in
	8.5.1.2. Configuring static MAC and IP addresses on additional SR-IOV networks

	8.5.2. Next steps

	8.6. ADDING A POD TO AN SR-IOV ADDITIONAL NETWORK
	8.6.1. Adding a Pod to an additional network
	8.6.2. Creating a non-uniform memory access (NUMA) aligned SR-IOV pod

	8.7. USING HIGH PERFORMANCE MULTICAST
	8.7.1. Configuring high performance multicast
	8.7.2. Using an SR-IOV interface for multicast

	8.8. USING VIRTUAL FUNCTIONS (VFS) WITH DPDK AND RDMA MODES
	8.8.1. Examples of using virtual functions in DPDK and RDMA modes
	8.8.2. Prerequisites
	8.8.3. Example use of virtual function (VF) in DPDK mode with Intel NICs
	8.8.4. Example use of a virtual function in DPDK mode with Mellanox NICs
	8.8.5. Example of a virtual function in RDMA mode with Mellanox NICs

	CHAPTER 9. OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	9.1. ABOUT THE OPENSHIFT SDN DEFAULT CNI NETWORK PROVIDER
	9.2. CONFIGURING EGRESS IPS FOR A PROJECT
	9.2.1. Egress IP address assignment for project egress traffic
	9.2.1.1. Considerations when using automatically assigned egress IP addresses
	9.2.1.2. Considerations when using manually assigned egress IP addresses

	9.2.2. Configuring automatically assigned egress IP addresses for a namespace
	9.2.3. Configuring manually assigned egress IP addresses for a namespace

	9.3. CONFIGURING AN EGRESS FIREWALL TO CONTROL ACCESS TO EXTERNAL IP ADDRESSES
	9.3.1. How an egress firewall works in a project
	9.3.1.1. Limitations of an egress firewall
	9.3.1.2. Matching order for egress network policy rules
	9.3.1.3. How Domain Name Server (DNS) resolution works

	9.3.2. EgressNetworkPolicy custom resource (CR) object
	9.3.2.1. EgressNetworkPolicy rules
	9.3.2.2. Example EgressNetworkPolicy CR object

	9.3.3. Creating an egress firewall policy object

	9.4. EDITING AN EGRESS FIREWALL FOR A PROJECT
	9.4.1. Editing an EgressNetworkPolicy object
	9.4.2. EgressNetworkPolicy custom resource (CR) object
	9.4.2.1. EgressNetworkPolicy rules
	9.4.2.2. Example EgressNetworkPolicy CR object

	9.5. REMOVING AN EGRESS FIREWALL FROM A PROJECT
	9.5.1. Removing an EgressNetworkPolicy object

	9.6. USING MULTICAST
	9.6.1. About multicast
	9.6.2. Enabling multicast between Pods
	9.6.3. Disabling multicast between Pods

	9.7. CONFIGURING NETWORK ISOLATION USING OPENSHIFT SDN
	9.7.1. Prerequisites
	9.7.2. Joining projects
	9.7.3. Isolating a project
	9.7.4. Disabling network isolation for a project

	9.8. CONFIGURING KUBE-PROXY
	9.8.1. About iptables rules synchronization
	9.8.2. kube-proxy configuration parameters
	9.8.3. Modifying the kube-proxy configuration

	CHAPTER 10. CONFIGURING ROUTES
	10.1. ROUTE CONFIGURATION
	10.1.1. Configuring route timeouts
	10.1.2. Enabling HTTP strict transport security
	10.1.3. Troubleshooting throughput issues
	10.1.4. Using cookies to keep route statefulness
	10.1.4.1. Annotating a route with a cookie

	10.1.5. Route-specific annotations

	10.2. SECURED ROUTES
	10.2.1. Creating a re-encrypt route with a custom certificate
	10.2.2. Creating an edge route with a custom certificate

	CHAPTER 11. CONFIGURING INGRESS CLUSTER TRAFFIC
	11.1. CONFIGURING INGRESS CLUSTER TRAFFIC OVERVIEW
	11.2. CONFIGURING EXTERNALIPS FOR SERVICES
	11.2.1. Prerequisites

	CHAPTER 12. ABOUT EXTERNALIP
	12.1. CONFIGURATION FOR EXTERNALIP
	12.2. RESTRICTIONS ON THE ASSIGNMENT OF AN EXTERNAL IP ADDRESS
	12.3. EXAMPLE POLICY OBJECTS

	CHAPTER 13. EXTERNALIP ADDRESS BLOCK CONFIGURATION
	Example external IP configurations

	CHAPTER 14. CONFIGURE EXTERNAL IP ADDRESS BLOCKS FOR YOUR CLUSTER
	14.1. NEXT STEPS
	14.2. CONFIGURING INGRESS CLUSTER TRAFFIC USING AN INGRESS CONTROLLER
	14.2.1. Using Ingress Controllers and routes
	14.2.2. Prerequisites
	14.2.3. Creating a project and service
	14.2.4. Exposing the service by creating a route
	14.2.5. Configuring Ingress Controller sharding by using route labels
	14.2.6. Configuring Ingress Controller sharding by using namespace labels
	14.2.7. Additional resources

	14.3. CONFIGURING INGRESS CLUSTER TRAFFIC USING A LOAD BALANCER
	14.3.1. Using a load balancer to get traffic into the cluster
	14.3.2. Prerequisites
	14.3.3. Creating a project and service
	14.3.4. Exposing the service by creating a route
	14.3.5. Creating a load balancer service

	14.4. CONFIGURING INGRESS CLUSTER TRAFFIC FOR A SERVICE EXTERNAL IP
	14.4.1. Prerequisites
	14.4.2. Attaching an ExternalIP to a Service
	14.4.3. Additional resources

	14.5. CONFIGURING INGRESS CLUSTER TRAFFIC USING A NODEPORT
	14.5.1. Using a NodePort to get traffic into the cluster
	14.5.2. Prerequisites
	14.5.3. Creating a project and service
	14.5.4. Exposing the service by creating a route

	CHAPTER 15. CONFIGURING THE CLUSTER-WIDE PROXY
	15.1. PREREQUISITES
	15.2. ENABLING THE CLUSTER-WIDE PROXY
	15.3. REMOVING THE CLUSTER-WIDE PROXY

	CHAPTER 16. CONFIGURING A CUSTOM PKI
	16.1. CONFIGURING THE CLUSTER-WIDE PROXY DURING INSTALLATION
	16.2. ENABLING THE CLUSTER-WIDE PROXY
	16.3. CERTIFICATE INJECTION USING OPERATORS

