CI/CD

OpenShift Container Platform 4.12

OpenShift Container Platform의 빌드, 파이프라인, GitOps에 대한 정보 제공

Red Hat OpenShift Documentation Team

초록

OpenShift Container Platform의 CI/CD

1장. OpenShift Container Platform CI/CD 개요

OpenShift Container Platform은 개발자를 위한 엔터프라이즈급 Kubernetes 플랫폼으로, CI(지속 통합) 및 연속 제공(CD)과 같은 DevOps 사례를 통해 애플리케이션 제공 프로세스를 자동화할 수 있습니다. 조직의 요구 사항을 충족하기 위해 OpenShift Container Platform에서는 다음과 같은 CI/CD 솔루션을 제공합니다.

  • OpenShift Builds
  • OpenShift Pipelines
  • OpenShift GitOps

1.1. OpenShift Builds

OpenShift 빌드를 사용하면 선언적 빌드 프로세스를 사용하여 클라우드 네이티브 애플리케이션을 생성할 수 있습니다. BuildConfig 오브젝트를 생성하는 데 사용하는 YAML 파일에 빌드 프로세스를 정의할 수 있습니다. 이 정의에는 빌드 트리거, 입력 매개변수 및 소스 코드와 같은 특성이 포함됩니다. 배포되면 BuildConfig 오브젝트는 일반적으로 실행 가능한 이미지를 빌드하여 컨테이너 이미지 레지스트리로 푸시합니다.

OpenShift 빌드에서는 빌드 전략에 대해 다음과 같은 확장 가능한 지원을 제공합니다.

  • Docker 빌드
  • S2I(Source-to-Image) 빌드
  • 사용자 정의 빌드

자세한 내용은 이미지 빌드 이해를참조하십시오.

1.2. OpenShift Pipelines

OpenShift Pipelines는 Kubernetes 네이티브 CI/CD 프레임워크를 제공하여 자체 컨테이너에서 CI/CD 파이프라인의 각 단계를 설계 및 실행할 수 있습니다. 필요에 따라 파이프라인을 예측 가능한 결과와 충족하도록 독립적으로 확장할 수 있습니다.

자세한 내용은 OpenShift Pipelines 이해 를 참조하십시오.

1.3. OpenShift GitOps

OpenShift GitOps는 Argo CD를 선언적 GitOps 엔진으로 사용하는 Operator입니다. 다중 클러스터 OpenShift 및 Kubernetes 인프라에서 GitOps 워크플로우를 활성화합니다. 관리자는 OpenShift GitOps를 사용하여 클러스터 및 개발 라이프사이클 전반에 Kubernetes 기반 인프라 및 애플리케이션을 일관되게 구성하고 배포할 수 있습니다.

자세한 내용은 Red Hat OpenShift GitOps 정보를 참조하십시오.

1.4. Jenkins

Jenkins는 애플리케이션 및 프로젝트 빌드, 테스트 및 배포 프로세스를 자동화합니다. OpenShift Developer Tools는 OpenShift Container Platform과 직접 통합된 Jenkins 이미지를 제공합니다. Jenkins는 Samples Operator 템플릿 또는 인증된 Helm 차트를 사용하여 OpenShift에 배포할 수 있습니다.

2장. 빌드

2.1. 이미지 빌드 이해

2.1.1. 빌드

빌드는 입력 매개변수를 결과 오브젝트로 변환하는 프로세스입니다. 대부분의 경우 프로세스는 입력 매개변수 또는 소스 코드를 실행 가능한 이미지로 변환하는 데 사용됩니다. BuildConfig 오브젝트는 전체 빌드 프로세스에 대한 정의입니다.

OpenShift Container Platform에서는 빌드 이미지에서 컨테이너를 생성하고 이를 컨테이너 이미지 레지스트리로 내보내는 방식으로 Kubernetes를 사용합니다.

빌드 오브젝트는 빌드에 대한 입력, 즉 빌드 프로세스를 완료하고 빌드 프로세스를 로깅한 후 성공한 빌드의 리소스를 게시하고 빌드의 최종 상태를 게시하는 데 필요한 요구 사항과 같은 공통 특징을 공유합니다. 빌드에서는 CPU 사용량, 메모리 사용량, 빌드 또는 Pod 실행 시간과 같은 리소스 제한 사항을 활용합니다.

OpenShift Container Platform 빌드 시스템은 빌드 API에서 지정한 선택 가능한 유형을 기반으로 하는 빌드 전략에 확장 가능한 지원을 제공합니다. 다음은 세 가지 주요 빌드 전략입니다.

  • Docker 빌드
  • S2I(Source-to-Image) 빌드
  • 사용자 정의 빌드

기본적으로 Docker 빌드 및 S2I 빌드가 지원됩니다.

빌드의 결과 오브젝트는 빌드를 생성하는 데 사용된 빌더에 따라 다릅니다. Docker 및 S2I 빌드의 경우 결과 오브젝트는 실행 가능한 이미지입니다. 사용자 정의 빌드의 경우 결과 오브젝트는 빌더 이미지 작성자가 지정한 모든 항목입니다.

또한 파이프라인 빌드 전략을 사용하여 정교한 워크플로를 구현할 수 있습니다.

  • 연속 통합
  • 연속 배포

2.1.1.1. Docker 빌드

OpenShift Container Platform은 Buildah를 사용하여 Dockerfile에서 컨테이너 이미지를 빌드합니다. Dockerfile을 사용하여 컨테이너 이미지를 빌드하는 방법에 대한 자세한 내용은 Dockerfile 참조 문서를 참조하십시오.

작은 정보

buildArgs 배열을 사용하여 Docker 빌드 인수를 설정하는 경우 Dockerfile 참조 문서에서 ARG 및 FROM이 상호 작용하는 방법 이해를 참조하십시오.

2.1.1.2. S2I(Source-to-Image) 빌드

S2I(Source-to-Image)는 재현 가능한 컨테이너 이미지를 빌드하는 툴입니다. 컨테이너 이미지에 애플리케이션 소스를 삽입하고 새 이미지를 어셈블하여 실행할 수 있는 이미지를 생성합니다. 새 이미지는 기본 이미지, 빌더, 빌드 소스를 통합하고 buildah run 명령과 함께 사용할 수 있습니다. S2I는 이전에 다운로드한 종속 항목, 이전에 빌드한 아티팩트 등을 다시 사용하는 증분 빌드를 지원합니다.

2.1.1.3. 사용자 정의 빌드

사용자 정의 빌드 전략을 사용하면 개발자가 전체 빌드 프로세스를 담당하는 특정 빌더 이미지를 정의할 수 있습니다. 자체 빌더 이미지를 사용하면 빌드 프로세스를 사용자 정의할 수 있습니다.

사용자 정의 빌더 이미지는 빌드 프로세스 논리가 포함된 일반 컨테이너 이미지입니다(예: RPM 또는 기본 이미지 빌드).

사용자 정의 빌드는 높은 권한으로 실행되며 기본적으로 사용자에게 제공되지 않습니다. 클러스터 관리 권한이 있는 신뢰할 수 있는 사용자에게만 사용자 정의 빌드를 실행할 수 있는 권한을 부여해야 합니다.

2.1.1.4. 파이프라인 빌드

중요

파이프라인 빌드 전략은 OpenShift Container Platform 4에서 더 이상 사용되지 않습니다. 동등하고 향상된 기능은 Tekton 기반 OpenShift Container Platform Pipelines에 있습니다.

OpenShift Container Platform의 Jenkins 이미지는 완전히 지원되며 사용자는 Jenkins 사용 설명서를 따라 작업에 jenkinsfile을 정의하거나 소스 제어 관리 시스템에 저장해야 합니다.

파이프라인 빌드 전략을 사용하면 개발자가 Jenkins 파이프라인 플러그인에서 사용할 Jenkins 파이프라인을 정의할 수 있습니다. 다른 빌드 유형과 동일한 방식으로 OpenShift Container Platform에서 빌드를 시작, 모니터링, 관리할 수 있습니다.

파이프라인 워크플로는 빌드 구성에 직접 포함하거나 Git 리포지토리에 제공하는 방식으로 jenkinsfile에 정의하고 빌드 구성에서 참조합니다.

2.2. 빌드 구성 이해

다음 섹션에서는 빌드의 개념과 빌드 구성을 정의하고 사용 가능한 주요 빌드 전략을 간략히 설명합니다.

2.2.1. BuildConfigs

빌드 구성은 단일 빌드 정의와 새 빌드가 생성될 때의 트리거 세트를 나타냅니다. 빌드 구성은 BuildConfig에 의해 정의되는데 BuildConfig는 새 인스턴스를 생성하기 위해 API 서버에 대한 POST에 사용할 수 있는 REST 오브젝트입니다.

빌드 구성 또는 BuildConfig는 빌드 전략 및 하나 이상의 소스가 특징입니다. 전략에 따라 프로세스가 결정되고 소스에서는 입력을 제공합니다.

OpenShift Container Platform을 사용하여 애플리케이션을 생성하기 위해 선택하는 방법에 따라 BuildConfig는 일반적으로 웹 콘솔 또는 CLI를 사용하는 경우 자동으로 생성되며 언제든지 편집할 수 있습니다. BuildConfig를 구성하는 부분과 해당 부분의 사용 가능한 옵션을 이해하면 나중에 구성을 수동으로 변경할 때 도움이 될 수 있습니다.

다음 예제 BuildConfig에서는 컨테이너 이미지 태그 또는 소스 코드가 변경될 때마다 새 빌드를 생성합니다.

BuildConfig 오브젝트 정의

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
  name: "ruby-sample-build" 1
spec:
  runPolicy: "Serial" 2
  triggers: 3
    -
      type: "GitHub"
      github:
        secret: "secret101"
    - type: "Generic"
      generic:
        secret: "secret101"
    -
      type: "ImageChange"
  source: 4
    git:
      uri: "https://github.com/openshift/ruby-hello-world"
  strategy: 5
    sourceStrategy:
      from:
        kind: "ImageStreamTag"
        name: "ruby-20-centos7:latest"
  output: 6
    to:
      kind: "ImageStreamTag"
      name: "origin-ruby-sample:latest"
  postCommit: 7
      script: "bundle exec rake test"

1
이 사양은 ruby-sample-build라는 새 BuildConfig를 생성합니다.
2
runPolicy 필드는 이 빌드 구성에서 생성한 빌드를 동시에 실행할 수 있는지 여부를 제어합니다. 기본값은 Serial입니다. 즉 새 빌드가 동시에 실행되지 않고 순차적으로 실행됩니다.
3
트리거 목록을 지정할 수 있으며 이 경우 새 빌드가 생성될 수 있습니다.
4
source 섹션은 빌드의 소스를 정의합니다. 소스 유형에 따라 기본 입력 소스가 결정되는데, 소스 유형은 코드 리포지토리 위치를 가리키는 Git, 인라인 Dockerfile에서 빌드하는 Dockerfile 또는 바이너리 페이로드를 허용하는 Binary일 수 있습니다. 한 번에 여러 개의 소스를 사용할 수 있습니다. 자세한 내용은 각 소스 유형에 대한 설명서를 참조하십시오.
5
strategy 섹션에서는 빌드를 실행하는 데 사용하는 빌드 전략에 대해 설명합니다. 여기에서 Source , Docker 또는 Custom 전략을 지정할 수 있습니다. 이 예에서는 S2I(Source-to-Image)에서 애플리케이션 빌드에 사용하는 ruby-20-centos7 컨테이너 이미지를 사용합니다.
6
컨테이너 이미지가 성공적으로 빌드되면 output 섹션에 설명된 리포지토리로 푸시됩니다.
7
postCommit 섹션에서는 선택적 빌드 후크를 정의합니다.

2.3. 빌드 입력 생성

다음 섹션에서는 빌드 입력에 대한 개요, 입력을 사용하여 빌드가 작동하도록 소스 콘텐츠를 제공하는 방법, 빌드 환경을 사용하고 보안을 생성하는 방법에 대한 지침을 확인할 수 있습니다.

2.3.1. 빌드 입력

빌드 입력에서는 빌드가 작동하도록 소스 콘텐츠를 제공합니다. 다음 빌드 입력을 사용하여 OpenShift Container Platform에 소스를 제공할 수 있습니다(우선순위 순으로 표시됨).

  • 인라인 Dockerfile 정의
  • 기존 이미지에서 추출한 컨텐츠
  • Git 리포지토리
  • 바이너리(로컬) 입력
  • 입력 보안
  • 외부 아티팩트

단일 빌드에서 여러 입력을 결합할 수 있습니다. 그러나 인라인 Dockerfile이 우선하므로 다른 입력에서 제공하는 Dockerfile이라는 기타 파일을 덮어쓸 수 있습니다. 바이너리(local) 입력과 Git 리포지토리는 서로 함께 사용할 수 없는 입력입니다.

빌드 중 사용한 특정 리소스 또는 자격 증명을 빌드에서 생성한 최종 애플리케이션 이미지에 사용하지 않으려는 경우 또는 보안 리소스에 정의된 값을 사용하려는 경우에는 입력 보안을 사용하면 됩니다. 외부 아티팩트를 사용하면 기타 빌드 입력 유형 중 하나로 사용할 수 없는 추가 파일을 가져올 수 있습니다.

빌드를 실행하면 다음이 수행됩니다.

  1. 작업 디렉터리가 구성되고 모든 입력 콘텐츠가 작업 디렉터리에 배치됩니다. 예를 들어 입력 Git 리포지토리가 작업 디렉터리에 복제되고 입력 이미지에서 지정된 파일이 타겟 경로를 사용하여 작업 디렉터리에 복사됩니다.
  2. 빌드 프로세스에서는 contextDir이 정의된 경우 디렉터리를 해당 디렉터리로 변경합니다.
  3. 인라인 Dockerfile(있는 경우)은 현재 디렉터리에 기록됩니다.
  4. 현재 디렉터리의 콘텐츠는 Dockerfile, 사용자 지정 빌더 논리 또는 assemble 스크립트에서 참조할 수 있도록 빌드 프로세스에 제공됩니다. 즉 contextDir 외부에 있는 모든 입력 콘텐츠는 빌드에서 무시합니다.

다음 소스 정의 예제에는 다양한 입력 유형 및 이러한 유형이 결합되는 방법에 대한 설명이 포함되어 있습니다. 각 입력 유형이 정의되는 방법에 대한 자세한 내용은 각 입력 유형별 섹션을 참조하십시오.

source:
  git:
    uri: https://github.com/openshift/ruby-hello-world.git 1
    ref: "master"
  images:
  - from:
      kind: ImageStreamTag
      name: myinputimage:latest
      namespace: mynamespace
    paths:
    - destinationDir: app/dir/injected/dir 2
      sourcePath: /usr/lib/somefile.jar
  contextDir: "app/dir" 3
  dockerfile: "FROM centos:7\nRUN yum install -y httpd" 4
1
빌드를 위한 작업 디렉터리에 복제할 리포지토리입니다.
2
myinputimage/usr/lib/somefile.jar<workingdir>/app/dir/injected/dir에 저장됩니다.
3
빌드용 작업 디렉터리는 <original_workingdir>/app/dir입니다.
4
이 콘텐츠가 포함된 Dockerfile은 <original_workingdir>/app/dir에 생성되어 해당 이름의 기존 파일을 덮어씁니다.

2.3.2. Dockerfile 소스

dockerfile 값을 제공하면 이 필드의 콘텐츠가 dockerfile이라는 파일로 디스크에 작성됩니다. 이 작업은 다른 입력 소스를 처리한 후 수행되므로 입력 소스 리포지토리의 루트 디렉터리에 Dockerfile이 포함된 경우 해당 콘텐츠가 이를 덮어씁니다.

소스 정의는 BuildConfig에 있는 spec 섹션의 일부입니다.

source:
  dockerfile: "FROM centos:7\nRUN yum install -y httpd" 1
1
dockerfile 필드에는 빌드된 인라인 Dockerfile이 포함됩니다.

추가 리소스

  • 이 필드는 일반적으로 Docker 전략 빌드에 Dockerfile을 제공하는 데 사용합니다.

2.3.3. 이미지 소스

이미지가 포함된 빌드 프로세스에 파일을 추가할 수 있습니다. 입력 이미지는 FromTo 이미지 타겟을 정의하는 방식과 동일한 방식으로 참조합니다. 즉 컨테이너 이미지와 이미지 스트림 태그를 모두 참조할 수 있습니다. 이미지와 함께 이미지를 복사할 파일 또는 디렉터리의 경로와 빌드 컨텍스트에서 해당 이미지를 배치할 대상을 나타내는 하나 이상의 경로 쌍을 제공해야 합니다.

소스 경로는 지정된 이미지 내의 모든 절대 경로일 수 있습니다. 대상은 상대 디렉터리 경로여야 합니다. 빌드 시 이미지가 로드되고 표시된 파일과 디렉터리가 빌드 프로세스의 컨텍스트 디렉터리로 복사됩니다. 이 디렉터리는 소스 리포지토리 콘텐츠가 복제되는 것과 동일한 디렉터리입니다. 소스 경로가 /.로 종료되면 디렉터리의 콘텐츠가 복사되지만 디렉터리 자체는 대상에 생성되지 않습니다.

이미지 입력은 BuildConfigsource 정의에 지정됩니다.

source:
  git:
    uri: https://github.com/openshift/ruby-hello-world.git
    ref: "master"
  images: 1
  - from: 2
      kind: ImageStreamTag
      name: myinputimage:latest
      namespace: mynamespace
    paths: 3
    - destinationDir: injected/dir 4
      sourcePath: /usr/lib/somefile.jar 5
  - from:
      kind: ImageStreamTag
      name: myotherinputimage:latest
      namespace: myothernamespace
    pullSecret: mysecret 6
    paths:
    - destinationDir: injected/dir
      sourcePath: /usr/lib/somefile.jar
1
하나 이상의 입력 이미지 및 파일로 이루어진 배열입니다.
2
복사할 파일이 포함된 이미지에 대한 참조입니다.
3
소스/대상 경로로 이루어진 배열입니다.
4
빌드 프로세스에서 파일에 액세스할 수 있는, 빌드 루트의 상대 디렉터리입니다.
5
참조한 이미지에서 복사할 파일의 위치입니다.
6
입력 이미지에 액세스하는 데 자격 증명이 필요한 경우 제공되는 선택적 보안입니다.
참고

클러스터에서 ImageContentSourcePolicy 오브젝트를 사용하여 저장소 미러링을 구성하는 경우 미러링된 레지스트리에 대한 글로벌 풀 시크릿만 사용할 수 있습니다. 프로젝트에 풀 시크릿을 추가할 수 없습니다.

pull secret이 필요한 이미지

가져오기 보안이 필요한 입력 이미지를 사용하는 경우 빌드에서 사용하는 서비스 계정에 가져오기 보안을 연결할 수 있습니다. 기본적으로 빌드에서는 builder 서비스 계정을 사용합니다. 보안에 입력 이미지를 호스팅하는 리포지토리와 일치하는 자격 증명이 포함된 경우 가져오기 보안이 빌드에 자동으로 추가됩니다. 빌드에서 사용하는 서비스 계정에 가져오기 보안을 연결하려면 다음을 실행합니다.

$ oc secrets link builder dockerhub
참고

이 기능은 사용자 정의 전략을 사용하는 빌드에는 지원되지 않습니다.

pull secret이 필요한 미러링된 레지스트리의 이미지

미러링된 레지스트리에서 입력 이미지를 사용하는 경우 빌드 오류가 발생하는 경우 이미지 메시지를 가져오지 못한 경우 다음 방법 중 하나를 사용하여 오류를 해결할 수 있습니다.

  • 빌더 이미지 리포지토리 및 알려진 모든 미러에 대한 인증 자격 증명이 포함된 입력 보안을 생성합니다. 이 경우 이미지 레지스트리 및 미러에 대한 인증 정보에 대한 풀 시크릿을 생성합니다.
  • 입력 보안을 BuildConfig 오브젝트의 풀 시크릿으로 사용합니다.

2.3.4. Git 소스

지정하는 경우 입력한 위치에서 소스 코드를 가져옵니다.

인라인 Dockerfile을 제공하는 경우 Git 리포지토리의 contextDir에 Dockerfile을 덮어씁니다.

소스 정의는 BuildConfig에 있는 spec 섹션의 일부입니다.

source:
  git: 1
    uri: "https://github.com/openshift/ruby-hello-world"
    ref: "master"
  contextDir: "app/dir" 2
  dockerfile: "FROM openshift/ruby-22-centos7\nUSER example" 3
1
git 필드에는 소스 코드의 원격 Git 리포지토리에 대한 URI(Uniform Resource Identifier)가 포함되어 있습니다. 특정 Git 참조를 확인하려면 ref 필드의 값을 지정해야 합니다. 유효한 ref는 SHA1 태그 또는 분기 이름이 될 수 있습니다. ref 필드의 기본값은 master 입니다.
2
contextDir 필드를 사용하면 빌드에서 애플리케이션 소스 코드를 찾는 소스 코드 리포지토리 내부의 기본 위치를 덮어쓸 수 있습니다. 애플리케이션이 하위 디렉터리에 있는 경우 이 필드를 사용하여 기본 위치(루트 폴더)를 덮어쓸 수 있습니다.
3
선택적 dockerfile 필드를 제공하는 경우 소스 리포지토리에 있을 수 있는 모든 Dockerfile을 덮어쓰는 Dockerfile이 문자열에 포함되어야 합니다.

ref 필드가 가져오기 요청을 나타내는 경우 시스템은 git fetch 작업을 사용한 후 FETCH_HEAD를 점검합니다.

ref 값을 제공하지 않으면 OpenShift Container Platform에서 부분 복제(--depth=1)를 수행합니다. 이 경우 기본 분기(일반적으로 master)의 최근 커밋과 관련된 파일만 다운로드됩니다. 그러면 리포지토리는 더 빠르게 다운로드되지만 전체 커밋 내역은 다운로드되지 않습니다. 지정된 리포지토리의 기본 분기의 전체 git clone 을 수행하려면 기본 분기 이름(예: main)으로 ref 를 설정합니다.

주의

MITM(Man in the middle) TLS 하이재킹을 수행하거나 프록시 연결을 재암호화하고 있는 프록시를 통과하는 Git 복제 작업이 작동하지 않습니다.

2.3.4.1. 프록시 사용

프록시를 사용하는 경우에만 Git 리포지토리에 액세스할 수 있는 경우 빌드 구성의 source 섹션에 사용할 프록시를 정의할 수 있습니다. 사용할 HTTP 및 HTTPS 프록시를 둘 다 구성할 수 있습니다. 두 필드 모두 선택 사항입니다. 프록시를 사용할 수 없는 도메인도 NoProxy 필드에 지정할 수 있습니다.

참고

이를 위해서는 소스 URI에서 HTTP 또는 HTTPS 프로토콜을 사용해야 합니다.

source:
  git:
    uri: "https://github.com/openshift/ruby-hello-world"
    ref: "master"
    httpProxy: http://proxy.example.com
    httpsProxy: https://proxy.example.com
    noProxy: somedomain.com, otherdomain.com
참고

Pipeline 전략 빌드의 경우 Jenkins용 Git 플러그인에 대한 현재 제한 사항을 고려할 때 Git 플러그인을 통한 모든 Git 작업은 BuildConfig 에 정의된 HTTP 또는 HTTPS 프록시를 사용하지 않습니다. Git 플러그인은 플러그인 관리자 패널에서 Jenkins UI에 구성된 프록시만 사용합니다. 그런 다음 이 프록시는 모든 작업에서 Jenkins 내의 모든 Git 상호 작용에 사용됩니다.

추가 리소스

  • JenkinsBehindProxy에서 Jenkins UI를 통해 프록시를 구성하는 방법에 대한 지침을 확인할 수 있습니다.

2.3.4.2. 소스 복제 보안

빌더 Pod는 빌드의 소스로 정의된 모든 Git 리포지토리에 액세스해야 합니다. 소스 복제 보안은 자체 서명되거나 신뢰할 수 없는 SSL 인증서가 있는 프라이빗 리포지토리 또는 리포지토리와 같이 일반적으로 액세스할 수 없는 리포지토리에 대한 액세스 권한을 제공하는 데 사용됩니다.

다음과 같은 소스 복제 보안 구성이 지원됩니다.

  • .gitconfig 파일
  • 기본 인증
  • SSH 키 인증
  • 신뢰할 수 있는 인증 기관
참고

이러한 구성의 조합을 사용하여 특정 요구 사항을 충족할 수도 있습니다.

2.3.4.2.1. 빌드 구성에 소스 복제 보안 자동 추가

BuildConfig가 생성되면 OpenShift Container Platform에서 소스 복제 보안 참조를 자동으로 채울 수 있습니다. 이 동작을 사용하면 생성된 빌드에서 참조된 보안에 저장된 자격 증명을 자동으로 사용하여 추가 구성없이 원격 Git 리포지토리에 인증할 수 있습니다.

이 기능을 사용하려면 Git 리포지토리 자격 증명이 포함된 보안이 나중에 BuildConfig가 생성되는 네임스페이스에 있어야 합니다. 이 보안에는 build.openshift.io/source-secret-match-uri- 접두사가 있는 주석이 하나 이상 포함되어야 합니다. 이러한 주석의 각 값은 다음과 같이 정의되는 URI(Uniform Resource Identifier) 패턴입니다. 소스 복제 보안 참조 없이 BuildConfig를 생성하고 해당 Git 소스 URI가 보안 주석의 URI 패턴과 일치하는 경우 OpenShift Container Platform은 BuildConfig에 해당 보안에 대한 참조를 자동으로 삽입합니다.

사전 요구 사항

URI 패턴은 다음으로 구성되어야 합니다.

  • 유효 스키마: *://, git://, http://, https:// 또는 ssh://
  • 호스트: *' 또는 유효한 호스트 이름이나 필요한 경우 앞에 *.가 있는 IP 주소
  • 경로: /* 또는 / 뒤에 * 문자를 선택적으로 포함하는 모든 문자

위의 모든 항목에서 * 문자는 와일드카드로 해석됩니다.

중요

URI 패턴은 RFC3986을 준수하는 Git 소스 URI와 일치해야 합니다. URI 패턴에 사용자 이름(또는 암호) 구성 요소를 포함하지 마십시오.

예를 들어 Git 리포지토리 URL에 ssh://git@bitbucket.atlassian.com:7999/ATLASSIAN jira.git을 사용하는 경우 소스 보안을 ssh://bitbucket.atlassian.com:7999/*(ssh://git@bitbucket.atlassian.com:7999/* 아님)로 지정해야 합니다.

$ oc annotate secret mysecret \
    'build.openshift.io/source-secret-match-uri-1=ssh://bitbucket.atlassian.com:7999/*'

프로세스

특정 BuildConfig의 Git URI와 일치하는 보안이 여러 개인 경우 OpenShift Container Platform은 가장 긴 일치 항목이 있는 보안을 선택합니다. 이렇게 하면 다음 예와 같이 기본 덮어쓰기가 가능합니다.

다음 조각은 두 개의 부분적인 소스 복제 보안을 보여줍니다. 첫 번째는 HTTPS를 통해 액세스하는 도메인 mycorp.com의 모든 서버와 일치하고, 두 번째는 서버 mydev1.mycorp.commydev2.mycorp.com에 대한 액세스 권한을 덮어씁니다.

kind: Secret
apiVersion: v1
metadata:
  name: matches-all-corporate-servers-https-only
  annotations:
    build.openshift.io/source-secret-match-uri-1: https://*.mycorp.com/*
data:
  ...
---
kind: Secret
apiVersion: v1
metadata:
  name: override-for-my-dev-servers-https-only
  annotations:
    build.openshift.io/source-secret-match-uri-1: https://mydev1.mycorp.com/*
    build.openshift.io/source-secret-match-uri-2: https://mydev2.mycorp.com/*
data:
  ...
  • 다음을 사용하여 기존 보안에 build.openshift.io/source-secret-match-uri- 주석을 추가합니다.

    $ oc annotate secret mysecret \
        'build.openshift.io/source-secret-match-uri-1=https://*.mycorp.com/*'
2.3.4.2.2. 수동으로 소스 복제 보안 추가

소스 복제 보안은 BuildConfig 내부의 source 필드에 sourceSecret 필드를 추가한 후 사용자가 생성한 보안의 이름으로 설정하는 방식으로 빌드 구성에 수동으로 추가할 수 있습니다. 다음 예에서는 basicsecret입니다.

apiVersion: "build.openshift.io/v1"
kind: "BuildConfig"
metadata:
  name: "sample-build"
spec:
  output:
    to:
      kind: "ImageStreamTag"
      name: "sample-image:latest"
  source:
    git:
      uri: "https://github.com/user/app.git"
    sourceSecret:
      name: "basicsecret"
  strategy:
    sourceStrategy:
      from:
        kind: "ImageStreamTag"
        name: "python-33-centos7:latest"

프로세스

oc set build-secret 명령을 사용하여 기존 빌드 구성에 소스 복제 보안을 설정할 수도 있습니다.

  • 기존 빌드 구성에 소스 복제 보안을 설정하려면 다음 명령을 입력합니다.

    $ oc set build-secret --source bc/sample-build basicsecret
2.3.4.2.3. .gitconfig 파일에서 보안 생성

애플리케이션 복제에서 .gitconfig 파일을 사용하는 경우 이 파일을 포함하는 보안을 생성할 수 있습니다. 빌더 서비스 계정에 추가한 다음 BuildConfig에 추가합니다.

프로세스

  • .gitconfig 파일에서 보안을 생성하려면 다음을 수행합니다.
$ oc create secret generic <secret_name> --from-file=<path/to/.gitconfig>
참고

.gitconfig 파일의 http 섹션에 sslVerify=false가 설정되어 있는 경우 SSL 확인을 해제할 수 있습니다.

[http]
        sslVerify=false
2.3.4.2.4. 보안 Git의 .gitconfig 파일에서 보안 생성

Git 서버가 양방향 SSL과 사용자 이름 및 암호로 보호되는 경우 소스 빌드에 인증서 파일을 추가하고 .gitconfig 파일의 인증서 파일에 참조를 추가해야 합니다.

사전 요구 사항

  • Git 자격 증명이 있어야 합니다.

프로세스

소스 빌드에 인증서 파일을 추가하고 .gitconfig 파일의 인증서 파일에 대한 참조를 추가합니다.

  1. 애플리케이션 소스 코드의 /var/run/secrets/openshift.io/source/ 폴더에 client.crt, cacert.crt, client.key 파일을 추가합니다.
  2. 서버의 .gitconfig 파일에서 다음 예에 표시된 [http] 섹션을 추가합니다.

    # cat .gitconfig

    출력 예

    [user]
            name = <name>
            email = <email>
    [http]
            sslVerify = false
            sslCert = /var/run/secrets/openshift.io/source/client.crt
            sslKey = /var/run/secrets/openshift.io/source/client.key
            sslCaInfo = /var/run/secrets/openshift.io/source/cacert.crt

  3. 보안을 생성합니다.

    $ oc create secret generic <secret_name> \
    --from-literal=username=<user_name> \ 1
    --from-literal=password=<password> \ 2
    --from-file=.gitconfig=.gitconfig \
    --from-file=client.crt=/var/run/secrets/openshift.io/source/client.crt \
    --from-file=cacert.crt=/var/run/secrets/openshift.io/source/cacert.crt \
    --from-file=client.key=/var/run/secrets/openshift.io/source/client.key
    1
    사용자의 Git 사용자 이름입니다.
    2
    이 사용자의 암호입니다.
중요

암호를 다시 입력하지 않으려면 빌드에서 S2I(Source-to-Image) 이미지를 지정해야 합니다. 그러나 리포지토리를 복제할 수 없는 경우 빌드를 승격하려면 사용자 이름과 암호를 계속 지정해야 합니다.

추가 리소스

  • 애플리케이션 소스 코드의 /var/run/secrets/openshift.io/source/ 폴더입니다.
2.3.4.2.5. 소스 코드 기본 인증에서 보안 생성

기본 인증에는 --username--password의 조합 또는 SCM(소프트웨어 구성 관리) 서버에 대해 인증하는 토큰이 필요합니다.

사전 요구 사항

  • 개인 리포지토리에 액세스할 수 있는 사용자 이름 및 암호입니다.

프로세스

  1. 먼저 보안을 생성한 후 --username--password를 사용하여 개인 리포지토리에 액세스합니다.

    $ oc create secret generic <secret_name> \
        --from-literal=username=<user_name> \
        --from-literal=password=<password> \
        --type=kubernetes.io/basic-auth
  2. 토큰을 사용하여 기본 인증 보안을 생성합니다.

    $ oc create secret generic <secret_name> \
        --from-literal=password=<token> \
        --type=kubernetes.io/basic-auth
2.3.4.2.6. 소스 코드 SSH 키 인증에서 보안 생성

SSH 키 기반 인증에는 개인 SSH 키가 필요합니다.

리포지토리 키는 일반적으로 $HOME/.ssh/ 디렉터리에 있으며 기본적으로 이름이 id_dsa.pub, id_ecdsa.pub, id_ed25519.pub 또는 id_rsa.pub입니다.

프로세스

  1. SSH 키 자격 증명을 생성합니다.

    $ ssh-keygen -t ed25519 -C "your_email@example.com"
    참고

    SSH 키의 암호를 생성하면 OpenShift Container Platform이 빌드되지 않습니다. 암호를 입력하라는 메시지가 표시되면 비워 두십시오.

    두 파일(공개 키 및 해당 개인 키(id_dsa, id_ecdsa, id_ed25519 또는 id_rsa))이 생성됩니다. 두 파일이 모두 있는 상태에서 공개 키를 업로드하는 방법에 대한 SCM(소스 제어 관리) 시스템의 설명서를 참조하십시오. 개인 키는 개인 리포지토리에 액세스하는 데 사용됩니다.

  2. SSH 키를 사용하여 개인 리포지토리에 액세스하기 전에 보안을 생성합니다.

    $ oc create secret generic <secret_name> \
        --from-file=ssh-privatekey=<path/to/ssh/private/key> \
        --from-file=<path/to/known_hosts> \ 1
        --type=kubernetes.io/ssh-auth
    1
    선택 사항: 이 필드를 추가하면 엄격한 서버 호스트 키 확인이 가능합니다.
    주의

    시크릿을 생성하는 동안 known_hosts 파일을 건너뛰면 잠재적인 MIT(man-in-the-middle) 공격에 빌드가 취약해집니다.

    참고

    known_hosts 파일에 소스 코드 호스트의 항목이 포함되어 있는지 확인합니다.

2.3.4.2.7. 신뢰할 수 있는 소스 코드 인증 기관에서 보안 생성

Git 복제 작업 중 신뢰할 수 있는 일련의 TLS(Transport Layer Security) CA(인증 기관)가 OpenShift Container Platform 인프라 이미지로 빌드됩니다. Git 서버에서 자체 서명된 인증서 또는 이미지에서 신뢰할 수 없는 인증 기관에서 서명한 인증서를 사용하는 경우 인증서가 포함된 보안을 생성하거나 TLS 확인을 비활성화할 수 있습니다.

CA 인증서에 대한 보안을 생성하는 경우 OpenShift Container Platform에서는 Git 복제 작업 중 Git 서버에 액세스합니다. 이 방법을 사용하면 제공되는 모든 TLS 인증서를 허용하는 Git SSL 확인을 비활성화하는 것보다 더 안전합니다.

프로세스

CA 인증서 파일을 사용하여 보안을 생성합니다.

  1. CA에서 중간 인증 기관을 사용하는 경우 ca.crt 파일의 모든 CA 인증서를 결합합니다. 다음 명령을 실행합니다.

    $ cat intermediateCA.crt intermediateCA.crt rootCA.crt > ca.crt
    1. 보안을 생성합니다.

      $ oc create secret generic mycert --from-file=ca.crt=</path/to/file> 1
      1
      키 이름으로 ca.crt를 사용해야 합니다.
2.3.4.2.8. 소스 보안 조합

특정 요구 사항에 맞는 소스 복제 보안을 생성하기 위해 다양한 방법을 결합할 수 있습니다.

2.3.4.2.8.1. .gitconfig 파일을 사용하여 SSH 기반 인증 보안 생성

다양한 방법을 결합하여 특정 요구 사항에 맞는 소스 복제 보안을 생성할 수 있습니다(예: .gitconfig 파일을 사용하는 SSH 기반 인증 보안).

사전 요구 사항

  • SSH 인증
  • .gitconfig 파일

프로세스

  • .gitconfig 파일을 사용하여 SSH 기반 인증 보안을 생성하려면 다음을 실행합니다.

    $ oc create secret generic <secret_name> \
        --from-file=ssh-privatekey=<path/to/ssh/private/key> \
        --from-file=<path/to/.gitconfig> \
        --type=kubernetes.io/ssh-auth
2.3.4.2.8.2. .gitconfig 파일 및 CA 인증서를 결합하는 보안 생성

다양한 방법을 결합하여 특정 요구 사항에 맞는 소스 복제 보안을 생성할 수 있습니다(예: .gitconfig 파일 및 CA(인증 기관) 인증서를 결합하는 보안).

사전 요구 사항

  • .gitconfig 파일
  • CA 인증서

프로세스

  • .gitconfig 파일 및 CA 인증서를 결합하는 보안을 생성하려면 다음을 실행합니다.

    $ oc create secret generic <secret_name> \
        --from-file=ca.crt=<path/to/certificate> \
        --from-file=<path/to/.gitconfig>
2.3.4.2.8.3. CA 인증서를 사용하여 기본 인증 보안 생성

다양한 방법을 결합하여 특정 요구 사항에 맞는 소스 복제 보안을 생성할 수 있습니다(예: 기본 인증 및 CA(인증 기관) 인증서를 결합하는 보안).

사전 요구 사항

  • 기본 인증 자격 증명
  • CA 인증서

프로세스

  • CA 인증서로 기본 인증 보안을 생성하려면 다음을 실행합니다.

    $ oc create secret generic <secret_name> \
        --from-literal=username=<user_name> \
        --from-literal=password=<password> \
        --from-file=ca-cert=</path/to/file> \
        --type=kubernetes.io/basic-auth
2.3.4.2.8.4. .gitconfig 파일을 사용하여 기본 인증 보안 생성

다양한 방법을 결합하여 특정 요구 사항에 맞는 소스 복제 보안을 생성할 수 있습니다(예: 기본 인증 및 .gitconfig 파일을 결합하는 보안 ).

사전 요구 사항

  • 기본 인증 자격 증명
  • .gitconfig 파일

프로세스

  • .gitconfig 파일을 사용하여 기본 인증 보안을 생성하려면 다음을 실행합니다.

    $ oc create secret generic <secret_name> \
        --from-literal=username=<user_name> \
        --from-literal=password=<password> \
        --from-file=</path/to/.gitconfig> \
        --type=kubernetes.io/basic-auth
2.3.4.2.8.5. .gitconfig 파일 및 CA 인증서를 사용하여 기본 인증 보안 생성

다양한 방법을 결합하여 특정 요구 사항에 맞는 소스 복제 보안을 생성할 수 있습니다(예: 기본 인증, .gitconfig 파일, CA(인증 기관) 인증서를 결합하는 보안).

사전 요구 사항

  • 기본 인증 자격 증명
  • .gitconfig 파일
  • CA 인증서

프로세스

  • .gitconfig 파일 및 CA 인증서를 사용하여 기본 인증 보안을 생성하려면 다음을 실행합니다.

    $ oc create secret generic <secret_name> \
        --from-literal=username=<user_name> \
        --from-literal=password=<password> \
        --from-file=</path/to/.gitconfig> \
        --from-file=ca-cert=</path/to/file> \
        --type=kubernetes.io/basic-auth

2.3.5. 바이너리(로컬) 소스

로컬 파일 시스템의 콘텐츠를 빌더로 스트리밍하는 것을 Binary 빌드라고 합니다. 이러한 빌드의 경우 BuildConfig.spec.source.type의 해당 값이 Binary입니다.

이 소스 유형은 oc start-build를 사용할 때만 활용하므로 고유합니다.

참고

바이너리 유형 빌드에서는 로컬 파일 시스템의 콘텐츠를 스트리밍해야 하므로 이미지 변경 트리거와 같이 바이너리 유형 빌드를 자동으로 트리거할 수 없습니다. 바이너리 파일을 제공할 수 없기 때문입니다. 마찬가지로 웹 콘솔에서 바이너리 유형 빌드를 시작할 수 없습니다.

바이너리 빌드를 사용하려면 다음 옵션 중 하나를 사용하여 oc start-build를 호출합니다.

  • --from-file: 지정한 파일의 콘텐츠가 빌더에 바이너리 스트림으로 전송됩니다. 파일에 URL을 지정할 수도 있습니다. 그러면 빌더에서 빌드 컨텍스트 상단에 있는 것과 동일한 이름으로 파일에 데이터를 저장합니다.
  • --from-dir--from-repo: 콘텐츠가 보관되고 빌더에 바이너리 스트림으로 전송됩니다. 그러면 빌더가 빌드 컨텍스트 디렉터리 내에서 아카이브 콘텐츠를 추출합니다. --from-dir을 사용하면 추출된 아카이브에 URL을 지정할 수도 있습니다.
  • --from-archive: 지정하는 아카이브가 빌더로 전송되며 빌드 컨텍스트 디렉터리 내에서 추출됩니다. 이 옵션은 --from-dir과 동일하게 작동합니다. 이러한 옵션에 대한 인수가 디렉터리인 경우 먼저 호스트에서 아카이브가 생성됩니다.

위에 나열된 각 사례에서 다음을 수행합니다.

  • BuildConfig에 이미 Binary 소스 유형이 정의되어 있는 경우 효과적으로 무시되고 클라이언트에서 전송하는 내용으로 교체됩니다.
  • BuildConfigGit 소스 유형이 정의되어 있는 경우 BinaryGit을 함께 사용할 수 없으므로 해당 BuildConfig가 동적으로 비활성화되고 빌더에 제공하는 바이너리 스트림의 데이터에 우선순위가 지정됩니다.

HTTP 또는 HTTPS 스키마를 사용하여 파일 이름 대신 URL을 --from-file--from-archive로 전달할 수 있습니다. URL과 함께 --from-file을 사용하는 경우 빌더 이미지의 파일 이름은 웹 서버에서 전송한 Content-Disposition 헤더 또는 헤더가 없는 경우 URL 경로의 마지막 구성 요소에 따라 결정됩니다. 지원되는 인증 형식이 없는 경우 사용자 정의 TLS 인증서를 사용하거나 인증서 검증 작업을 비활성화할 수 없습니다.

oc new-build --binary=true를 사용하면 명령에서 바이너리 빌드와 관련된 제한을 적용합니다. 생성된 BuildConfig의 소스 유형이 Binary이므로 이 BuildConfig로 빌드를 실행하는 유일한 방법은 --from 옵션 중 하나와 함께 oc start-build를 사용하여 필수 바이너리 데이터를 제공하는 것입니다.

Dockerfile 및 contextDir 소스 옵션에는 바이너리 빌드에서 특별한 의미가 있습니다.

Dockerfile은 바이너리 빌드 소스와 함께 사용할 수 있습니다. Dockerfile을 사용하고 바이너리 스트림이 아카이브인 경우 해당 콘텐츠는 아카이브의 모든 Dockerfile에 대한 대체 Dockerfile 역할을 합니다. Dockerfile을 --from-file 인수와 함께 사용하고 파일 인수의 이름이 Dockerfile인 경우 Dockerfile의 값이 바이너리 스트림의 값을 대체합니다.

추출된 아카이브 콘텐츠를 캡슐화하는 바이너리 스트림의 경우 contextDir 필드의 값이 아카이브 내 하위 디렉터리로 해석되고, 유효한 경우 빌드를 실행하기 전에 빌더가 해당 하위 디렉터리로 변경됩니다.

2.3.6. 입력 보안 및 구성 맵

중요

입력 보안 및 구성 맵의 콘텐츠가 빌드 출력 컨테이너 이미지에 표시되지 않도록 Docker 빌드source-to-image 빌드 전략의 빌드 볼륨을 사용합니다.

일부 시나리오에서는 빌드 작업을 수행하려면 종속 리소스에 액세스하기 위해 자격 증명 또는 기타 구성 데이터가 필요합니다. 그러나 이러한 정보가 소스 제어에 배치되는 것은 바람직하지 않습니다. 이러한 용도를 위해 입력 보안 및 입력 구성 맵을 정의할 수 있습니다.

예를 들어 Maven으로 Java 애플리케이션을 빌드할 때 개인 키로 액세스할 수 있는 Maven Central 또는 JCenter의 개인 미러를 설정할 수 있습니다. 해당 개인 미러에서 라이브러리를 다운로드하려면 다음을 제공해야 합니다.

  1. 미러의 URL 및 연결 설정으로 구성된 settings.xml 파일
  2. 설정 파일에서 참조하는 개인 키(예: ~/.ssh/id_rsa)

보안상의 이유로 애플리케이션 이미지에 자격 증명을 노출해서는 안 됩니다.

이 예제에서는 Java 애플리케이션을 설명하지만 /etc/ssl/certs 디렉터리, API 키 또는 토큰, 라이선스 파일 등에 SSL 인증서를 추가하는 데 동일한 접근 방식을 사용할 수 있습니다.

2.3.6.1. 비밀이란?

Secret 오브젝트 유형에서는 암호, OpenShift Container Platform 클라이언트 구성 파일, dockercfg 파일, 개인 소스 리포지토리 자격 증명 등과 같은 중요한 정보를 보유하는 메커니즘을 제공합니다. 보안은 Pod에서 중요한 콘텐츠를 분리합니다. 볼륨 플러그인을 사용하여 컨테이너에 보안을 마운트하거나 시스템에서 시크릿을 사용하여 Pod 대신 작업을 수행할 수 있습니다.

YAML 보안 오브젝트 정의

apiVersion: v1
kind: Secret
metadata:
  name: test-secret
  namespace: my-namespace
type: Opaque 1
data: 2
  username: <username> 3
  password: <password>
stringData: 4
  hostname: myapp.mydomain.com 5

1
보안의 키 이름과 값의 구조를 나타냅니다.
2
data 필드에서 허용되는 키 형식은 Kubernetes 구분자 용어집의 DNS_SUBDOMAIN 값에 있는 지침을 충족해야 합니다.
3
data 맵의 키와 관련된 값은 base64로 인코딩되어야 합니다.
4
stringData 맵의 항목이 base64로 변환된 후 해당 항목이 자동으로 data 맵으로 이동합니다. 이 필드는 쓰기 전용입니다. 해당 값은 data 필드에서만 반환합니다.
5
stringData 맵의 키와 관련된 값은 일반 텍스트 문자열로 구성됩니다.
2.3.6.1.1. 보안 속성

주요 속성은 다음과 같습니다.

  • 보안 데이터는 정의와는 별도로 참조할 수 있습니다.
  • 보안 데이터 볼륨은 임시 파일 저장 기능(tmpfs)에 의해 지원되며 노드에 저장되지 않습니다.
  • 보안 데이터는 네임스페이스 내에서 공유할 수 있습니다.
2.3.6.1.2. 보안 유형

type 필드의 값은 보안의 키 이름과 값의 구조를 나타냅니다. 유형을 사용하면 보안 오브젝트에 사용자 이름과 키를 적용할 수 있습니다. 검증을 수행하지 않으려면 기본값인 opaque 유형을 사용합니다.

보안 데이터에 특정 키 이름이 있는지 확인하기 위해 서버 측 최소 검증을 트리거하려면 다음 유형 중 하나를 지정합니다.

  • kubernetes.io/service-account-token. 서비스 계정 토큰을 사용합니다.
  • kubernetes.io/dockercfg. 필수 Docker 자격 증명으로 .dockercfg 파일을 사용합니다.
  • kubernetes.io/dockerconfigjson. 필수 Docker 자격 증명으로 .docker/config.json 파일을 사용합니다.
  • kubernetes.io/basic-auth. 기본 인증에 사용합니다.
  • kubernetes.io/ssh-auth. SSH 키 인증에 사용합니다.
  • kubernetes.io/tls. TLS 인증 기관에 사용합니다.

검증을 수행하지 않으려면 type= Opaque를 지정합니다. 즉 보안에서 키 이름 또는 값에 대한 규칙을 준수하도록 요청하지 않습니다. opaque 보안에는 임의의 값을 포함할 수 있는 비정형 key:value 쌍을 사용할 수 있습니다.

참고

example.com/my-secret-type과 같은 다른 임의의 유형을 지정할 수 있습니다. 이러한 유형은 서버 측에 적용되지 않지만 보안 생성자가 해당 유형의 키/값 요구 사항을 준수하도록 의도했음을 나타냅니다.

2.3.6.1.3. 보안 업데이트

보안 값을 수정해도 이미 실행 중인 Pod에서 사용하는 값은 동적으로 변경되지 않습니다. 보안을 변경하려면 동일한 PodSpec을 사용하는 일부 경우에서 원래 Pod를 삭제하고 새 Pod를 생성해야 합니다.

보안 업데이트 작업에서는 새 컨테이너 이미지를 배포하는 것과 동일한 워크플로를 따릅니다. kubectl rolling-update 명령을 사용할 수 있습니다.

보안의 resourceVersion 값은 참조 시 지정되지 않습니다. 따라서 Pod가 시작되는 동시에 보안이 업데이트되는 경우 Pod에 사용되는 보안의 버전이 정의되지 않습니다.

참고

현재는 Pod가 생성될 때 사용된 보안 오브젝트의 리소스 버전을 확인할 수 없습니다. 컨트롤러에서 이전 resourceVersion 을 사용하여 재시작할 수 있도록 Pod에서 이 정보를 보고하도록 계획되어 있습니다. 그동안 기존 보안 데이터를 업데이트하지 말고 고유한 이름으로 새 보안을 생성하십시오.

2.3.6.2. 보안 생성

먼저 보안을 생성한 후 해당 보안을 사용하는 Pod를 생성해야 합니다.

보안 생성 시 다음을 수행합니다.

  • 보안 데이터를 사용하여 보안 오브젝트를 생성합니다.
  • Pod 서비스 계정을 업데이트하여 보안에 대한 참조를 허용합니다.
  • 보안을 환경 변수로 사용하거나 secret 볼륨을 사용하여 파일로 사용하는 Pod를 생성합니다.

프로세스

  • create 명령을 사용하여 JSON 또는 YAML 파일에서 보안 오브젝트를 생성합니다.

    $ oc create -f <filename>

    예를 들어 로컬 .docker/config.json 파일에서 보안을 생성할 수 있습니다.

    $ oc create secret generic dockerhub \
        --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
        --type=kubernetes.io/dockerconfigjson

    이 명령은 dockerhub라는 보안의 JSON 사양을 생성한 후 오브젝트를 생성합니다.

    YAML Opaque Secret 오브젝트 정의

    apiVersion: v1
    kind: Secret
    metadata:
      name: mysecret
    type: Opaque 1
    data:
      username: <username>
      password: <password>

    1
    불투명 보안을 지정합니다.

    Docker 구성 JSON 파일 시크릿 오브젝트 정의

    apiVersion: v1
    kind: Secret
    metadata:
      name: aregistrykey
      namespace: myapps
    type: kubernetes.io/dockerconfigjson 1
    data:
      .dockerconfigjson:bm5ubm5ubm5ubm5ubm5ubm5ubm5ubmdnZ2dnZ2dnZ2dnZ2dnZ2dnZ2cgYXV0aCBrZXlzCg== 2

    1
    보안에서 Docker 구성 JSON 파일을 사용하도록 지정합니다.
    2
    base64로 인코딩된 Docker 구성 JSON 파일의 출력입니다.

2.3.6.3. 보안 사용

보안을 생성한 후에는 해당 보안을 참조하는 Pod를 생성하고 로그를 가져오고 해당 Pod를 삭제할 수 있습니다.

프로세스

  1. 보안을 참조할 Pod를 생성합니다.

    $ oc create -f <your_yaml_file>.yaml
  2. 로그를 가져옵니다.

    $ oc logs secret-example-pod
  3. Pod를 삭제합니다.

    $ oc delete pod secret-example-pod

추가 리소스

  • 보안 데이터가 있는 YAML 파일의 예:

    파일 4개를 생성할 YAML 보안

    apiVersion: v1
    kind: Secret
    metadata:
      name: test-secret
    data:
      username: <username> 1
      password: <password> 2
    stringData:
      hostname: myapp.mydomain.com 3
      secret.properties: |-     4
        property1=valueA
        property2=valueB

    1
    파일에 디코딩된 값이 포함되어 있습니다.
    2
    파일에 디코딩된 값이 포함되어 있습니다.
    3
    파일에 제공된 문자열이 포함되어 있습니다.
    4
    파일에 제공된 데이터가 포함되어 있습니다.

    보안 데이터로 볼륨의 파일을 채우는 Pod의 YAML

    apiVersion: v1
    kind: Pod
    metadata:
      name: secret-example-pod
    spec:
      containers:
        - name: secret-test-container
          image: busybox
          command: [ "/bin/sh", "-c", "cat /etc/secret-volume/*" ]
          volumeMounts:
              # name must match the volume name below
              - name: secret-volume
                mountPath: /etc/secret-volume
                readOnly: true
      volumes:
        - name: secret-volume
          secret:
            secretName: test-secret
      restartPolicy: Never

    보안 데이터로 환경 변수를 채우는 Pod의 YAML

    apiVersion: v1
    kind: Pod
    metadata:
      name: secret-example-pod
    spec:
      containers:
        - name: secret-test-container
          image: busybox
          command: [ "/bin/sh", "-c", "export" ]
          env:
            - name: TEST_SECRET_USERNAME_ENV_VAR
              valueFrom:
                secretKeyRef:
                  name: test-secret
                  key: username
      restartPolicy: Never

    보안 데이터로 환경 변수를 채우는 빌드 구성의 YAML

    apiVersion: build.openshift.io/v1
    kind: BuildConfig
    metadata:
      name: secret-example-bc
    spec:
      strategy:
        sourceStrategy:
          env:
          - name: TEST_SECRET_USERNAME_ENV_VAR
            valueFrom:
              secretKeyRef:
                name: test-secret
                key: username

2.3.6.4. 입력 보안 및 구성 맵 추가

소스 제어에 배치하지 않고 빌드에 자격 증명 및 기타 구성 데이터를 제공하기 위해 입력 보안 및 입력 구성 맵을 정의할 수 있습니다.

일부 시나리오에서는 빌드 작업을 수행하려면 종속 리소스에 액세스하기 위해 자격 증명 또는 기타 구성 데이터가 필요합니다. 소스 제어에 배치하지 않고 해당 정보를 사용할 수 있도록 하려면 입력 보안 및 입력 구성 맵을 정의할 수 있습니다.

절차

입력 보안이나 구성 맵 또는 둘 다를 기존 BuildConfig 오브젝트에 추가하려면 다음을 수행합니다.

  1. ConfigMap 오브젝트가 없는 경우 해당 오브젝트를 생성합니다.

    $ oc create configmap settings-mvn \
        --from-file=settings.xml=<path/to/settings.xml>

    그러면 settings-mvn이라는 새 구성 맵이 생성됩니다. 이 맵에는 settings.xml 파일의 일반 텍스트 내용이 포함됩니다.

    작은 정보

    다음 YAML을 적용하여 구성 맵을 만들 수 있습니다.

    apiVersion: core/v1
    kind: ConfigMap
    metadata:
      name: settings-mvn
    data:
      settings.xml: |
        <settings>
        … # Insert maven settings here
        </settings>
  2. Secret 오브젝트가 없는 경우 해당 오브젝트를 생성합니다.

    $ oc create secret generic secret-mvn \
        --from-file=ssh-privatekey=<path/to/.ssh/id_rsa>
        --type=kubernetes.io/ssh-auth

    그러면 secret-mvn이라는 새 보안이 생성됩니다. 이 보안에는 id_rsa 개인 키의 base64 인코딩 콘텐츠가 포함됩니다.

    작은 정보

    다음 YAML을 적용하여 입력 보안을 생성할 수도 있습니다.

    apiVersion: core/v1
    kind: Secret
    metadata:
      name: secret-mvn
    type: kubernetes.io/ssh-auth
    data:
      ssh-privatekey: |
        # Insert ssh private key, base64 encoded
  3. 다음과 같이 기존 BuildConfig 오브젝트의 source 섹션에 구성 맵과 보안을 추가합니다.

    source:
      git:
        uri: https://github.com/wildfly/quickstart.git
      contextDir: helloworld
      configMaps:
        - configMap:
            name: settings-mvn
      secrets:
        - secret:
            name: secret-mvn

BuildConfig 오브젝트에 구성 맵과 보안을 포함하려면 다음 명령을 실행합니다.

$ oc new-build \
    openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
    --context-dir helloworld --build-secret “secret-mvn” \
    --build-config-map "settings-mvn"

빌드 중 settings.xmlid_rsa 파일이 소스 코드가 있는 디렉터리로 복사됩니다. OpenShift Container Platform S2I 빌더 이미지의 경우 이 디렉터리는 DockerfileWORKDIR 명령을 사용하여 설정하는 이미지 작업 디렉터리입니다. 다른 디렉터리를 지정하려면 정의에 destinationDir을 추가합니다.

source:
  git:
    uri: https://github.com/wildfly/quickstart.git
  contextDir: helloworld
  configMaps:
    - configMap:
        name: settings-mvn
      destinationDir: ".m2"
  secrets:
    - secret:
        name: secret-mvn
      destinationDir: ".ssh"

BuildConfig 오브젝트를 생성할 때 대상 디렉터리를 지정할 수도 있습니다.

$ oc new-build \
    openshift/wildfly-101-centos7~https://github.com/wildfly/quickstart.git \
    --context-dir helloworld --build-secret “secret-mvn:.ssh” \
    --build-config-map "settings-mvn:.m2"

두 경우 모두 settings.xml 파일은 빌드 환경의 ./.m2 디렉터리에 추가되고 id_rsa 키는 ./.ssh 디렉터리에 추가됩니다.

2.3.6.5. S2I(Source-to-Image) 전략

Source 전략을 사용하면 정의된 모든 입력 보안이 해당 destinationDir에 복사됩니다. destinationDir을 비워 두면 보안이 빌더 이미지의 작업 디렉터리에 배치됩니다.

destinationDir이 상대 경로인 경우 동일한 규칙이 사용됩니다. 보안은 이미지 작업 디렉터리의 상대 경로에 배치됩니다. destinationDir 경로의 최종 디렉터리가 빌더 이미지에 없는 경우 해당 디렉터리가 생성됩니다. destinationDir의 선행 디렉터리가 모두 존재해야 합니다. 없는 경우 오류가 발생합니다.

참고

입력 보안은 전역 쓰기 가능으로 추가되고 0666 권한이 있으며 assemble 스크립트 실행 후 크기가 0으로 잘립니다. 즉 보안 파일은 결과 이미지에 존재하지만 보안상의 이유로 비어 있습니다.

assemble 스크립트가 완료되면 입력 구성 맵이 잘리지 않습니다.

2.3.6.6. Docker 전략

docker 전략을 사용하는 경우 Dockerfile의 ADDCOPY 명령을 사용하여 정의된 모든 입력 보안을 컨테이너 이미지에 추가할 수 있습니다.

보안의 destinationDir을 지정하지 않으면 Dockerfile이 있는 동일한 디렉터리로 파일이 복사됩니다. 상대 경로를 destinationDir로 지정하면 보안이 Dockerfile 위치와 상대되는 해당 디렉터리에 복사됩니다. 그러면 Docker 빌드 작업에서 빌드 중 사용하는 컨텍스트 디렉터리의 일부로 보안 파일을 사용할 수 있습니다.

보안 및 구성 맵 데이터를 참조하는 Dockerfile의 예

FROM centos/ruby-22-centos7

USER root
COPY ./secret-dir /secrets
COPY ./config /

# Create a shell script that will output secrets and ConfigMaps when the image is run
RUN echo '#!/bin/sh' > /input_report.sh
RUN echo '(test -f /secrets/secret1 && echo -n "secret1=" && cat /secrets/secret1)' >> /input_report.sh
RUN echo '(test -f /config && echo -n "relative-configMap=" && cat /config)' >> /input_report.sh
RUN chmod 755 /input_report.sh

CMD ["/bin/sh", "-c", "/input_report.sh"]

중요

일반적으로 사용자는 해당 이미지에서 실행되는 컨테이너에 보안이 표시되지 않도록 최종 애플리케이션 이미지에서 입력 보안을 제거합니다. 그러나 보안은 추가된 계층에 있는 이미지 자체에 계속 있습니다. 이 제거는 Dockerfile 자체에 포함됩니다.

입력 보안 및 구성 맵의 콘텐츠가 빌드 출력 컨테이너 이미지에 표시되지 않도록 하려면 Docker 빌드 전략의 빌드 볼륨을 대신 사용합니다.

2.3.6.7. 사용자 정의 전략

사용자 정의 전략을 사용하는 경우 정의된 입력 보안 및 구성 맵을 /var/run/secrets/openshift.io/build 디렉터리의 빌더 컨테이너에서 모두 사용할 수 있습니다. 사용자 정의 빌드 이미지에서는 이러한 보안 및 구성 맵을 적절하게 사용해야 합니다. 사용자 정의 전략을 사용하면 사용자 정의 전략 옵션에 설명된 대로 보안을 정의할 수 있습니다.

기존 전략 보안과 입력 보안은 기술적으로 차이가 없습니다. 하지만 빌더 이미지는 빌드 사용 사례에 따라 해당 항목을 구분하고 다르게 사용할 수 있습니다.

입력 보안은 항상 /var/run/secrets/openshift.io/build 디렉터리에 마운트되거나 빌더에서 전체 빌드 오브젝트를 포함하는 $BUILD 환경 변수를 구문 분석할 수 있습니다.

중요

레지스트리에 대한 가져오기 보안이 네임스페이스와 노드 모두에 있는 경우 빌드는 기본적으로 네임스페이스의 가져오기 보안을 사용합니다.

2.3.7. 외부 아티팩트

바이너리 파일을 소스 리포지토리에 저장하지 않는 것이 좋습니다. 따라서 빌드 프로세스 중 Java .jar 종속 항목과 같은 추가 파일을 가져오는 빌드를 정의해야 합니다. 이 작업을 수행하는 방법은 사용 중인 빌드 전략에 따라 다릅니다.

소스 빌드 전략의 경우 assemble 스크립트에 적절한 쉘 명령을 배치해야 합니다.

.s2i/bin/assemble 파일

#!/bin/sh
APP_VERSION=1.0
wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

.s2i/bin/run 파일

#!/bin/sh
exec java -jar app.jar

Docker 빌드 전략의 경우 Dockerfile을 수정하고 RUN 명령을 사용하여 쉘 명령을 호출해야 합니다.

Dockerfile 발췌 내용

FROM jboss/base-jdk:8

ENV APP_VERSION 1.0
RUN wget http://repository.example.com/app/app-$APP_VERSION.jar -O app.jar

EXPOSE 8080
CMD [ "java", "-jar", "app.jar" ]

실제로 Dockerfile 또는 assemble 스크립트를 업데이트하는 대신 BuildConfig에 정의된 환경 변수를 사용하여 다운로드할 특정 파일을 사용자 정의할 수 있도록 파일 위치에 대한 환경 변수를 사용할 수 있습니다.

다음과 같이 환경 변수를 정의하는 다양한 방법 중에서 선택할 수 있습니다.

  • .s2i/environment 파일 사용(소스 빌드 전략 전용)
  • BuildConfig에 설정
  • oc start-build --env를 사용하여 명시적으로 제공(수동으로 트리거하는 빌드 전용)

2.3.8. 개인 레지스트리에 Docker 자격 증명 사용

개인 컨테이너 레지스트리에 유효한 자격 증명이 있는 docker/config.json 파일을 사용하여 빌드를 제공할 수 있습니다. 이 경우 출력 이미지를 개인 컨테이너 이미지 레지스트리로 내보내거나 인증이 필요한 개인 컨테이너 이미지 레지스트리에서 빌더 이미지를 가져올 수 있습니다.

동일한 레지스트리 내에 여러 리포지토리의 인증 정보를 제공할 수 있으며, 각각 해당 레지스트리 경로에 고유한 인증 정보를 제공합니다.

참고

OpenShift Container Platform 컨테이너 이미지 레지스트리의 경우 OpenShift Container Platform에서 보안이 자동으로 생성되므로 필요하지 않습니다.

.docker/config.json 파일은 기본적으로 홈 디렉터리에 있으며 다음과 같은 형식을 취합니다.

auths:
  index.docker.io/v1/: 1
    auth: "YWRfbGzhcGU6R2labnRib21ifTE=" 2
    email: "user@example.com" 3
  docker.io/my-namespace/my-user/my-image: 4
    auth: "GzhYWRGU6R2fbclabnRgbkSp=""
    email: "user@example.com"
  docker.io/my-namespace: 5
    auth: "GzhYWRGU6R2deesfrRgbkSp=""
    email: "user@example.com"
1
레지스트리의 URL입니다.
2
암호화된 암호입니다.
3
로그인에 사용할 이메일 주소입니다.
4
네임스페이스의 특정 이미지에 대한 URL 및 인증 정보
5
레지스트리 네임스페이스의 URL 및 인증 정보.

여러 컨테이너 이미지 레지스트리를 정의하거나 동일한 레지스트리에 여러 리포지토리를 정의할 수 있습니다. 또는 docker login 명령을 실행하여 이 파일에 인증 항목을 추가할 수도 있습니다. 파일이 없는 경우 생성됩니다.

Kubernetes는 구성 및 암호를 저장하는 데 사용할 수 있는 Secret 오브젝트를 제공합니다.

사전 요구 사항

  • .docker/config.json 파일이 있어야 합니다.

프로세스

  1. 로컬 .docker/config.json 파일에서 보안을 생성합니다.

    $ oc create secret generic dockerhub \
        --from-file=.dockerconfigjson=<path/to/.docker/config.json> \
        --type=kubernetes.io/dockerconfigjson

    이 명령은 dockerhub라는 보안의 JSON 사양을 생성한 후 오브젝트를 생성합니다.

  2. BuildConfigoutput 섹션에 pushSecret 필드를 추가하고 생성한 secret 이름(위 예의 경우 dockerhub)으로 설정합니다.

    spec:
      output:
        to:
          kind: "DockerImage"
          name: "private.registry.com/org/private-image:latest"
        pushSecret:
          name: "dockerhub"

    oc set build-secret 명령을 사용하여 빌드 구성에 내보내기 보안을 설정할 수 있습니다.

    $ oc set build-secret --push bc/sample-build dockerhub

    pushSecret 필드를 지정하는 대신 빌드에서 사용하는 서비스 계정에 내보내기 보안을 연결할 수도 있습니다. 기본적으로 빌드에서는 builder 서비스 계정을 사용합니다. 보안에 빌드의 출력 이미지를 호스팅하는 리포지토리와 일치하는 자격 증명이 포함된 경우 내보내기 보안이 빌드에 자동으로 추가됩니다.

    $ oc secrets link builder dockerhub
  3. 빌드 전략 정의의 일부인 pullSecret 필드를 지정하여 개인 컨테이너 이미지 레지스트리에서 빌더 컨테이너 이미지를 가져옵니다.

    strategy:
      sourceStrategy:
        from:
          kind: "DockerImage"
          name: "docker.io/user/private_repository"
        pullSecret:
          name: "dockerhub"

    oc set build-secret 명령을 사용하여 빌드 구성에 가져오기 보안을 설정할 수 있습니다.

    $ oc set build-secret --pull bc/sample-build dockerhub
    참고

    이 예제에서는 소스 빌드에 pullSecret을 사용하지만 Docker 및 Custom 빌드에도 적용할 수 있습니다.

    pullSecret 필드를 지정하는 대신 빌드에서 사용하는 서비스 계정에 가져오기 보안을 연결할 수도 있습니다. 기본적으로 빌드에서는 builder 서비스 계정을 사용합니다. 보안에 빌드의 입력 이미지를 호스팅하는 리포지토리와 일치하는 자격 증명이 포함된 경우 가져오기 보안이 빌드에 자동으로 추가됩니다. pullSecret 필드를 지정하는 대신 빌드에서 사용하는 서비스 계정에 가져오기 보안을 연결하려면 다음을 실행합니다.

    $ oc secrets link builder dockerhub
    참고

    이 기능을 사용하려면 BuildConfig 사양에 from 이미지를 지정해야 합니다. oc new-build 또는 oc new-app으로 생성한 Docker 전략 빌드는 특정 상황에서 이러한 작업을 수행하지 못할 수 있습니다.

2.3.9. 빌드 환경

Pod 환경 변수와 마찬가지로 빌드 환경 변수는 다른 리소스 또는 변수에 대한 참조 측면에서 Downward API를 사용하여 정의할 수 있습니다. 여기에는 잘 알려진 몇 가지 예외가 있습니다.

oc set env 명령을 사용하면 BuildConfig에 정의된 환경 변수도 관리할 수 있습니다.

참고

빌드 환경 변수에서 valueFrom을 사용하여 컨테이너 리소스를 참조하는 기능은 컨테이너를 생성하기 전에 참조를 확인하기 때문에 지원되지 않습니다.

2.3.9.1. 빌드 필드를 환경 변수로 사용

값을 가져올 필드의 JsonPathfieldPath 환경 변수 소스를 설정하면 빌드 오브젝트에 대한 정보를 삽입할 수 있습니다.

참고

Jenkins Pipeline 전략에서는 환경 변수에 valueFrom 구문을 지원하지 않습니다.

프로세스

  • fieldPath 환경 변수 소스를 값을 가져올 필드의 JsonPath로 설정합니다.

    env:
      - name: FIELDREF_ENV
        valueFrom:
          fieldRef:
            fieldPath: metadata.name

2.3.9.2. 보안을 환경 변수로 사용

valueFrom 구문을 사용하여 보안의 키 값을 환경 변수로 사용하도록 설정할 수 있습니다.

중요

이 방법은 빌드 Pod 콘솔의 출력에 일반 텍스트로 시크릿을 표시합니다. 이를 방지하려면 입력 보안 및 구성 맵을 대신 사용합니다.

절차

  • 보안을 환경 변수로 사용하려면 valueFrom 구문을 설정합니다.

    apiVersion: build.openshift.io/v1
    kind: BuildConfig
    metadata:
      name: secret-example-bc
    spec:
      strategy:
        sourceStrategy:
          env:
          - name: MYVAL
            valueFrom:
              secretKeyRef:
                key: myval
                name: mysecret

2.3.10. 서비스 제공 인증서 보안

서비스 제공 인증서 보안은 즉시 사용 가능한 인증서가 필요한 복잡한 미들웨어 애플리케이션을 지원하기 위한 것입니다. 해당 설정은 관리자 툴에서 노드 및 마스터에 대해 생성하는 서버 인증서와 동일합니다.

프로세스

서비스와의 통신을 보호하려면 클러스터에서 서명된 제공 인증서/키 쌍을 네임스페이스의 보안에 생성하도록 합니다.

  • 보안에 사용할 이름으로 설정된 값을 사용하여 서비스에 service.beta.openshift.io/serving-cert-secret-name 주석을 설정합니다.

    그러면 PodSpec에서 해당 보안을 마운트할 수 있습니다. 사용 가능한 경우 Pod가 실행됩니다. 인증서는 내부 서비스 DNS 이름인 <service.name>.<service.namespace>.svc에 적합합니다.

    인증서 및 키는 PEM 형식이며 각각 tls.crttls.key에 저장됩니다. 인증서/키 쌍은 만료 시기가 다가오면 자동으로 교체됩니다. 보안의 service.beta.openshift.io/expiry 주석에서 RFC3339 형식으로 된 만료 날짜를 확인합니다.

참고

대부분의 경우 서비스 DNS 이름 <service.name>.<service.namespace>.svc는 외부에서 라우팅할 수 없습니다. <service.name>.<service.namespace>.svc는 주로 클러스터 내 또는 서비스 내 통신과 경로 재암호화에 사용됩니다.

기타 Pod는 해당 Pod에 자동으로 마운트되는 /var/run/secrets/kubernetes.io/serviceaccount/service-ca.crt 파일의 CA(인증 기관) 번들을 사용하여 내부 DNS 이름에만 서명되는 클러스터 생성 인증서를 신뢰할 수 있습니다.

이 기능의 서명 알고리즘은 x509.SHA256WithRSA입니다. 직접 교대하려면 생성된 보안을 삭제합니다. 새 인증서가 생성됩니다.

2.3.11. 보안 제한 사항

보안을 사용하려면 Pod에서 보안을 참조해야 합니다. 보안은 다음 세 가지 방법으로 Pod에서 사용할 수 있습니다.

  • 컨테이너에 환경 변수를 채우기 위해 사용.
  • 하나 이상의 컨테이너에 마운트된 볼륨에서 파일로 사용.
  • Pod에 대한 이미지를 가져올 때 kubelet으로 사용.

볼륨 유형 보안은 볼륨 메커니즘을 사용하여 데이터를 컨테이너에 파일로 작성합니다. imagePullSecrets는 서비스 계정을 사용하여 네임스페이스의 모든 Pod에 보안을 자동으로 주입합니다.

템플릿에 보안 정의가 포함된 경우 템플릿에 제공된 보안을 사용할 수 있는 유일한 방법은 보안 볼륨 소스를 검증하고 지정된 오브젝트 참조가 유형이 Secret인 오브젝트를 실제로 가리키는 것입니다. 따라서 보안을 생성한 후 해당 보안을 사용하는 Pod를 생성해야 합니다. 가장 효과적인 방법은 서비스 계정을 사용하여 자동으로 삽입되도록 하는 것입니다.

Secret API 오브젝트는 네임스페이스에 있습니다. 동일한 네임스페이스에 있는 Pod만 참조할 수 있습니다.

개별 보안은 1MB로 제한됩니다. 이는 대규모 보안이 생성되어 apiserver 및 kubelet 메모리가 소진되는 것을 막기 위한 것입니다. 그러나 작은 보안을 많이 생성해도 메모리가 소진될 수 있습니다.

2.4. 빌드 출력 관리

빌드 출력 관리에 대한 개요 및 지침은 다음 섹션에서 확인하십시오.

2.4.1. 빌드 출력

Docker 또는 S2I(source-to-image) 전략을 사용하는 빌드에서는 새 컨테이너 이미지를 생성합니다. 그런 다음 이미지를 Build 사양의 output 섹션에 지정된 컨테이너 이미지 레지스트리로 푸시됩니다.

출력 종류가 ImageStreamTag 인 경우 이미지를 통합 OpenShift 이미지 레지스트리로 푸시하고 지정된 이미지 스트림에 태그를 지정합니다. 출력 유형이 DockerImage인 경우에는 출력 참조 이름이 Docker 내보내기 사양으로 사용됩니다. 사양은 레지스트리를 포함할 수 있으며 레지스트리가 지정되지 않은 경우 기본적으로 DockerHub로 설정됩니다. 빌드 사양의 출력 섹션이 비어 있으면 빌드 종료 시 이미지를 푸시하지 않습니다.

ImageStreamTag로 출력

spec:
  output:
    to:
      kind: "ImageStreamTag"
      name: "sample-image:latest"

Docker 내보내기 사양으로 출력

spec:
  output:
    to:
      kind: "DockerImage"
      name: "my-registry.mycompany.com:5000/myimages/myimage:tag"

2.4.2. 이미지 환경 변수 출력

Docker 및 S2I(Source-to-Image) 전략 빌드에서는 출력 이미지에 다음 환경 변수를 설정합니다.

변수설명

OPENSHIFT_BUILD_NAME

빌드 이름

OPENSHIFT_BUILD_NAMESPACE

빌드의 네임스페이스

OPENSHIFT_BUILD_SOURCE

빌드의 소스 URL

OPENSHIFT_BUILD_REFERENCE

빌드에 사용된 Git 참조

OPENSHIFT_BUILD_COMMIT

빌드에 사용된 소스 커밋

또한 모든 사용자 정의 환경 변수(예: S2I 또는 Docker 전략 옵션으로 구성된 환경 변수)도 출력 이미지 환경 변수 목록의 일부입니다.

2.4.3. 출력 이미지 라벨

Docker 및 S2I(Source-to-Image)의 빌드에서는 출력 이미지에 다음 라벨을 설정합니다.

레이블설명

io.openshift.build.commit.author

빌드에 사용된 소스 커밋 작성자

io.openshift.build.commit.date

빌드에 사용된 소스 커밋의 날짜

io.openshift.build.commit.id

빌드에 사용된 소스 커밋의 해시

io.openshift.build.commit.message

빌드에 사용된 소스 커밋의 메시지

io.openshift.build.commit.ref

소스에 지정된 분기 또는 참조

io.openshift.build.source-location

빌드의 소스 URL

BuildConfig.spec.output.imageLabels 필드를 사용하여 빌드 구성에서 빌드하는 각 이미지에 적용할 사용자 정의 라벨 목록을 지정할 수도 있습니다.

빌드한 이미지에 적용할 사용자 정의 라벨

spec:
  output:
    to:
      kind: "ImageStreamTag"
      name: "my-image:latest"
    imageLabels:
    - name: "vendor"
      value: "MyCompany"
    - name: "authoritative-source-url"
      value: "registry.mycompany.com"

2.5. 빌드 전략 사용

다음 섹션에서는 지원되는 주요 빌드 전략과 이러한 전략을 사용하는 방법을 정의합니다.

2.5.1. Docker 빌드

OpenShift Container Platform은 Buildah를 사용하여 Dockerfile에서 컨테이너 이미지를 빌드합니다. Dockerfile을 사용하여 컨테이너 이미지를 빌드하는 방법에 대한 자세한 내용은 Dockerfile 참조 문서를 참조하십시오.

작은 정보

buildArgs 배열을 사용하여 Docker 빌드 인수를 설정하는 경우 Dockerfile 참조 문서에서 ARG 및 FROM이 상호 작용하는 방법 이해를 참조하십시오.

2.5.1.1. Dockerfile FROM 이미지 교체

Dockerfile의 FROM 명령을 BuildConfig 오브젝트의 from으로 교체할 수 있습니다. Dockerfile에서 다중 단계 빌드를 사용하는 경우 마지막 FROM 명령의 이미지가 교체됩니다.

프로세스

Dockerfile의 FROM 명령을 BuildConfig 오브젝트의 from으로 교체

strategy:
  dockerStrategy:
    from:
      kind: "ImageStreamTag"
      name: "debian:latest"

2.5.1.2. Dockerfile 경로 사용

기본적으로 Docker 빌드는 BuildConfig.spec.source.contextDir 필드에 지정된 컨텍스트의 루트에 있는 Dockerfile을 사용합니다.

dockerfilePath 필드를 사용하면 BuildConfig.spec.source.contextDir 필드와 상대되는 다른 경로를 사용하여 Dockerfile을 찾을 수 있습니다. 파일 이름은 기본 Dockerfile(예: MyDockerfile) 또는 하위 디렉터리의 Dockerfile 경로(예: dockerfiles/app1/Dockerfile)와 다를 수 있습니다.

프로세스

빌드에서 다른 경로를 사용하여 Dockerfile을 찾도록 dockerfilePath 필드를 사용하려면 다음과 같이 설정합니다.

strategy:
  dockerStrategy:
    dockerfilePath: dockerfiles/app1/Dockerfile

2.5.1.3. Docker 환경 변수 사용

Docker 빌드 프로세스 및 생성된 이미지에 환경 변수를 사용할 수 있도록 빌드 구성의 dockerStrategy 정의에 환경 변수를 추가할 수 있습니다.

정의된 환경 변수는 FROM 명령 직후 단일 ENV Dockerfile 명령으로 삽입되어 나중에 Dockerfile 내에서 참조할 수 있습니다.

프로세스

변수는 빌드 중 정의되고 출력 이미지에 유지되므로 해당 이미지를 실행하는 모든 컨테이너에도 존재합니다.

예를 들어 다음은 빌드 및 런타임 중 사용할 사용자 정의 HTTP 프록시를 정의합니다.

dockerStrategy:
...
  env:
    - name: "HTTP_PROXY"
      value: "http://myproxy.net:5187/"

oc set env 명령을 사용하면 빌드 구성에 정의된 환경 변수도 관리할 수 있습니다.

2.5.1.4. Docker 빌드 인수 추가

buildArgs 배열을 사용하여 Docker 빌드 인수 를 설정할 수 있습니다. 빌드 인수는 빌드가 시작될 때 Docker로 전달됩니다.

작은 정보

Dockerfile 참조 문서에서 ARG 및 FROM이 상호 작용하는 방법 이해를 참조하십시오.

절차

Docker 빌드 인수를 설정하려면 BuildConfig 오브젝트의 dockerStrategy 정의에 있는 buildArgs 배열에 항목을 추가합니다. 예를 들면 다음과 같습니다.

dockerStrategy:
...
  buildArgs:
    - name: "foo"
      value: "bar"
참고

namevalue 필드만 지원됩니다. valueFrom 필드의 설정은 모두 무시됩니다.

2.5.1.5. Docker 빌드가 포함된 계층 스쿼시링

Docker 빌드는 일반적으로 Dockerfile의 각 명령을 나타내는 계층을 생성합니다. imageOptimizationPolicySkipLayers로 설정하면 모든 명령을 기본 이미지 상단의 단일 계층으로 병합합니다.

프로세스

  • imageOptimizationPolicySkipLayers로 설정합니다.

    strategy:
      dockerStrategy:
        imageOptimizationPolicy: SkipLayers

2.5.1.6. 빌드 볼륨 사용

실행 중인 빌드 볼륨을 마운트하여 출력 컨테이너 이미지에 유지되지 않는 정보에 대한 액세스 권한을 부여할 수 있습니다.

빌드 볼륨은 빌드 환경 또는 구성에만 필요한 리포지토리 자격 증명과 같은 중요한 정보를 제공합니다. 빌드 볼륨은 출력 컨테이너 이미지에 데이터가 지속될 수 있는 빌드 입력 과 다릅니다.

실행 중인 빌드가 데이터를 읽는 빌드 볼륨의 마운트 지점은 Pod 볼륨 마운트 와 기능이 비슷합니다.

절차

  • BuildConfig 오브젝트의 dockerStrategy 정의에서 volumes 배열에 빌드 볼륨을 추가합니다. 예를 들면 다음과 같습니다.

    spec:
      dockerStrategy:
        volumes:
          - name: secret-mvn 1
            mounts:
            - destinationPath: /opt/app-root/src/.ssh 2
            source:
              type: Secret 3
              secret:
                secretName: my-secret 4
          - name: settings-mvn 5
            mounts:
            - destinationPath: /opt/app-root/src/.m2  6
            source:
              type: ConfigMap 7
              configMap:
                name: my-config 8
          - name: my-csi-volume 9
            mounts:
            - destinationPath: /opt/app-root/src/some_path  10
            source:
              type: CSI 11
              csi:
                driver: csi.sharedresource.openshift.io 12
                readOnly: true 13
                volumeAttributes: 14
                  attribute: value
    1 5 9
    필수 항목입니다. 고유한 이름입니다.
    2 6 10
    필수 항목입니다. 마운트 지점의 절대 경로입니다. 여기에는 .. 또는 : 이 포함되어서는 안되며 빌더에서 생성한 대상 경로와 충돌하지 않습니다. /opt/app-root/src 는 많은 Red Hat S2I 지원 이미지의 기본 홈 디렉터리입니다.
    3 7 11
    필수 항목입니다. 소스 유형, ConfigMap,Secret 또는 CSI.
    4 8
    필수 항목입니다. 소스의 이름입니다.
    12
    필수 항목입니다. 임시 CSI 볼륨을 제공하는 드라이버입니다.
    13
    필수 항목입니다. 이 값은 true 로 설정되어야 합니다. 읽기 전용 볼륨을 제공합니다.
    14
    선택 사항: 임시 CSI 볼륨의 볼륨 속성입니다. 지원되는 특성 키 및 값은 CSI 드라이버의 설명서를 참조하십시오.
참고

공유 리소스 CSI 드라이버는 기술 프리뷰 기능으로 지원됩니다.

2.5.2. S2I(Source-to-Image) 빌드

S2I(Source-to-Image)는 재현 가능한 컨테이너 이미지를 빌드하는 툴입니다. 컨테이너 이미지에 애플리케이션 소스를 삽입하고 새 이미지를 어셈블하여 실행할 수 있는 이미지를 생성합니다. 새 이미지는 기본 이미지, 빌더, 빌드 소스를 통합하고 buildah run 명령과 함께 사용할 수 있습니다. S2I는 이전에 다운로드한 종속 항목, 이전에 빌드한 아티팩트 등을 다시 사용하는 증분 빌드를 지원합니다.

2.5.2.1. S2I(Source-to-Image) 증분 빌드 수행

S2I(Source-to-Image)는 증분 빌드를 수행할 수 있으므로 이전에 빌드한 이미지의 아티팩트를 재사용할 수 있습니다.

프로세스

  • 증분 빌드를 생성하려면 전략 정의를 다음과 같이 수정합니다.

    strategy:
      sourceStrategy:
        from:
          kind: "ImageStreamTag"
          name: "incremental-image:latest" 1
        incremental: true 2
    1
    증분 빌드를 지원하는 이미지를 지정합니다. 빌더 이미지 설명서를 참조하여 이 동작을 지원하는지 확인합니다.
    2
    이 플래그는 증분 빌드 시도 여부를 제어합니다. 빌더 이미지에서 증분 빌드를 지원하지 않는 경우 빌드는 성공하지만 save-artifacts 스크립트 누락으로 인해 증분 빌드가 성공하지 못했다는 로그 메시지가 표시됩니다.

추가 리소스

  • 증분 빌드를 지원하는 빌더 이미지를 생성하는 방법에 대한 내용은 S2I 요구 사항을 참조하십시오.

2.5.2.2. S2I(Source-to-Image) 빌더 이미지 스크립트 덮어쓰기

빌더 이미지에서 제공하는 assemble, run, save-artifacts S2I(Source-to-Image) 스크립트를 덮어쓸 수 있습니다.

프로세스

빌더 이미지에서 제공하는 assemble, run, save-artifacts S2I 스크립트를 덮어쓰려면 다음 중 하나를 수행합니다.

  • 애플리케이션 소스 리포지토리의 .s2i/bin 디렉터리에 assemble, run, 또는 save-artifacts 스크립트를 제공합니다.
  • 스크립트가 포함된 디렉터리의 URL을 전략 정의의 일부로 제공합니다. 예를 들면 다음과 같습니다.

    strategy:
      sourceStrategy:
        from:
          kind: "ImageStreamTag"
          name: "builder-image:latest"
        scripts: "http://somehost.com/scripts_directory" 1
    1
    이 경로에는 run, assemble, save-artifacts가 추가됩니다. 일부 또는 모든 스크립트가 확인되면 해당 스크립트가 이미지에 제공된 동일한 이름의 스크립트 대신 사용됩니다.
참고

scripts URL에 있는 파일은 소스 리포지토리의 .s2i/bin에 있는 파일보다 우선합니다.

2.5.2.3. S2I(Source-to-Image) 환경 변수

소스 빌드 프로세스 및 결과 이미지에서 환경 변수를 사용할 수 있도록 하는 방법에는 환경 파일과 BuildConfig 환경 값을 사용하는 것입니다. 제공되는 변수는 빌드 프로세스 중 출력 이미지에 제공됩니다.

2.5.2.3.1. S2I(Source-to-Image) 환경 파일 사용

소스 빌드를 사용하면 소스 리포지토리의 .s2i/environment 파일에 지정하는 방식으로 애플리케이션 내에서 행당 하나씩 환경 값을 설정할 수 있습니다. 이 파일에 지정된 환경 변수는 빌드 프로세스 중 출력 이미지에 제공됩니다.

소스 리포지토리에 .s2i/environment 파일을 제공하는 경우 빌드 중 S2I(Source-to-Image)에서 이 파일을 읽습니다. 그러면 assemble 스크립트에서 이러한 변수를 사용할 수 있으므로 빌드 동작을 사용자 정의할 수 있습니다.

프로세스

예를 들어 빌드 중 Rails 애플리케이션의 자산 컴파일을 비활성화하려면 다음을 수행합니다.

  • .s2i/environment 파일에 DISABLE_ASSET_COMPILATION=true를 추가합니다.

빌드 외에 지정된 환경 변수도 실행 중인 애플리케이션 자체에서 사용할 수 있습니다. 예를 들어 Rails 애플리케이션이 production 대신 development 모드에서 시작되도록 하려면 다음을 수행합니다.

  • RAILS_ENV=development.s2i/environment 파일에 추가합니다.

지원되는 환경 변수의 전체 목록은 각 이미지의 이미지 사용 섹션에서 확인할 수 있습니다.

2.5.2.3.2. S2I(Source-to-Image) 빌드 구성 환경 사용

빌드 구성의 sourceStrategy 정의에 환경 변수를 추가할 수 있습니다. 여기에 정의된 환경 변수는 assemble 스크립트를 실행하는 동안 표시되고 출력 이미지에 정의되어 run 스크립트 및 애플리케이션 코드에서도 사용할 수 있습니다.

프로세스

  • 예를 들어 Rails 애플리케이션의 자산 컴파일을 비활성화하려면 다음을 수행합니다.

    sourceStrategy:
    ...
      env:
        - name: "DISABLE_ASSET_COMPILATION"
          value: "true"

추가 리소스

  • 빌드 환경 섹션에서는 고급 지침을 제공합니다.
  • oc set env 명령을 사용하면 빌드 구성에 정의된 환경 변수도 관리할 수 있습니다.

2.5.2.4. S2I(Source-to-Image) 소스 파일 무시

S2I(Source-to-Image)는 무시해야 하는 파일 패턴 목록이 포함된 .s2iignore 파일을 지원합니다. .s2iignore 파일에 있는 패턴과 일치하고 다양한 입력 소스에서 제공하는 빌드 작업 디렉터리의 파일은 assemble 스크립트에서 사용할 수 없습니다.

2.5.2.5. S2I(Source-to-Image)를 사용하여 소스 코드에서 이미지 생성

S2I(Source-to-Image)는 애플리케이션 소스 코드를 입력으로 사용하고 어셈블된 애플리케이션을 실행하는 새 이미지를 출력으로 생성하는 이미지를 쉽게 작성할 수 있는 프레임워크입니다.

재현 가능한 컨테이너 이미지를 빌드하는 데 S2I를 사용하는 주요 장점은 개발자가 쉽게 사용할 수 있다는 점입니다. 빌더 이미지 작성자는 이미지에서 최상의 S2I 성능, 빌드 프로세스, S2I 스크립트를 제공하도록 두 가지 기본 개념을 이해해야 합니다.

2.5.2.5.1. S2I(Source-to-Image) 빌드 프로세스 이해

빌드 프로세스는 최종 컨테이너 이미지로 통합되는 다음 세 가지 기본 요소로 구성됩니다.

  • 소스
  • S2I(Source-to-Image) 스크립트
  • 빌더 이미지

S2I는 첫 번째 FROM 명령으로 빌더 이미지가 포함된 Dockerfile을 생성합니다. 그런 다음 S2I에서 생성된 Dockerfile은 Buildah로 전달됩니다.

2.5.2.5.2. S2I(Source-to-Image) 스크립트를 작성하는 방법

스크립트를 빌더 이미지 내에서 실행할 수 있는 경우 모든 프로그래밍 언어로 S2I(Source-to-Image) 스크립트를 작성할 수 있습니다. S2I는 assemble/run/save-artifacts 스크립트를 제공하는 다양한 옵션을 지원합니다. 이러한 위치는 모두 다음 순서에 따라 각 빌드에서 확인합니다.

  1. 빌드 구성에 지정된 스크립트입니다.
  2. 애플리케이션 소스 .s2i/bin 디렉터리에 있는 스크립트입니다.
  3. 라벨이 io.openshift.s2i.scripts-url인 기본 이미지 URL에 있는 스크립트입니다.

이미지에 지정된 io.openshift.s2i.scripts-url 라벨과 빌드 구성에 지정된 스크립트 모두 다음 양식 중 하나를 취할 수 있습니다.

  • image:///path_to_scripts_dir: S2I 스크립트가 있는 디렉터리에 대한 이미지 내부의 절대 경로입니다.
  • file:///path_to_scripts_dir: S2I 스크립트가 있는 호스트의 디렉터리에 대한 상대 또는 절대 경로입니다.
  • http(s)://path_to_scripts_dir: S2I 스크립트가 있는 디렉터리에 대한 URL입니다.

표 2.1. S2I 스크립트

스크립트설명

assemble

assemble 스크립트는 소스에서 애플리케이션 아티팩트를 빌드하여 이미지 내부의 적절한 디렉터리에 배치합니다. 이 스크립트는 필수입니다. 이 스크립트의 워크플로는 다음과 같습니다.

  1. 선택 사항: 빌드 아티팩트를 복구합니다. 증분 빌드를 지원하려면 save-artifacts도 정의해야 합니다.
  2. 애플리케이션 소스를 원하는 위치에 배치합니다.
  3. 애플리케이션 아티팩트를 빌드합니다.
  4. 아티팩트를 실행할 수 있는 적절한 위치에 설치합니다.

run

run 스크립트는 애플리케이션을 실행합니다. 이 스크립트는 필수입니다.

save-artifacts

save-artifacts 스크립트는 이어지는 빌드 프로세스의 속도를 높일 수 있는 모든 종속 항목을 수집합니다. 이 스크립트는 선택 사항입니다. 예를 들면 다음과 같습니다.

  • Ruby의 경우 Bundler에서 설치한 gems입니다.
  • Java의 경우 .m2 콘텐츠입니다.

이러한 종속 항목은 tar 파일로 수집되어 표준 출력으로 스트리밍됩니다.

usage

usage 스크립트를 사용하면 사용자에게 이미지를 올바르게 사용하는 방법을 알릴 수 있습니다. 이 스크립트는 선택 사항입니다.

test/run

test/run 스크립트를 사용하면 이미지가 올바르게 작동하는지 확인하는 프로세스를 생성할 수 있습니다. 이 스크립트는 선택 사항입니다. 해당 프로세스의 제안된 흐름은 다음과 같습니다.

  1. 이미지를 빌드합니다.
  2. 이미지를 실행하여 usage 스크립트를 확인합니다.
  3. s2i build를 실행하여 assemble 스크립트를 확인합니다.
  4. 선택 사항: s2i build를 다시 실행하여 save-artifactsassemble 스크립트에서 아티팩트 기능을 저장 및 복원하는지 확인합니다.
  5. 이미지를 실행하여 테스트 애플리케이션이 작동하는지 확인합니다.
참고

test/run 스크립트로 빌드한 테스트 애플리케이션을 배치하도록 제안된 위치는 이미지 리포지토리의 test/test-app 디렉터리입니다.

S2I 스크립트의 예

다음 예제 S2I 스크립트는 Bash로 작성됩니다. 각 예에서는 tar 콘텐츠가 /tmp/s2i 디렉터리에 압축 해제되어 있다고 가정합니다.

assemble 스크립트:

#!/bin/bash

# restore build artifacts
if [ "$(ls /tmp/s2i/artifacts/ 2>/dev/null)" ]; then
    mv /tmp/s2i/artifacts/* $HOME/.
fi

# move the application source
mv /tmp/s2i/src $HOME/src

# build application artifacts
pushd ${HOME}
make all

# install the artifacts
make install
popd

run 스크립트:

#!/bin/bash

# run the application
/opt/application/run.sh

save-artifacts 스크립트:

#!/bin/bash

pushd ${HOME}
if [ -d deps ]; then
    # all deps contents to tar stream
    tar cf - deps
fi
popd

usage 스크립트:

#!/bin/bash

# inform the user how to use the image
cat <<EOF
This is a S2I sample builder image, to use it, install
https://github.com/openshift/source-to-image
EOF

2.5.2.6. 빌드 볼륨 사용

실행 중인 빌드 볼륨을 마운트하여 출력 컨테이너 이미지에 유지되지 않는 정보에 대한 액세스 권한을 부여할 수 있습니다.

빌드 볼륨은 빌드 환경 또는 구성에만 필요한 리포지토리 자격 증명과 같은 중요한 정보를 제공합니다. 빌드 볼륨은 출력 컨테이너 이미지에 데이터가 지속될 수 있는 빌드 입력 과 다릅니다.

실행 중인 빌드가 데이터를 읽는 빌드 볼륨의 마운트 지점은 Pod 볼륨 마운트 와 기능이 비슷합니다.

절차

  • BuildConfig 오브젝트의 sourceStrategy 정의에서 volumes 배열에 빌드 볼륨을 추가합니다. 예를 들면 다음과 같습니다.

    spec:
      sourceStrategy:
        volumes:
          - name: secret-mvn 1
            mounts:
            - destinationPath: /opt/app-root/src/.ssh 2
            source:
              type: Secret 3
              secret:
                secretName: my-secret 4
          - name: settings-mvn 5
            mounts:
            - destinationPath: /opt/app-root/src/.m2 6
            source:
              type: ConfigMap 7
              configMap:
                name: my-config 8
          - name: my-csi-volume 9
            mounts:
            - destinationPath: /opt/app-root/src/some_path  10
            source:
              type: CSI 11
              csi:
                driver: csi.sharedresource.openshift.io 12
                readOnly: true 13
                volumeAttributes: 14
                  attribute: value
1 5 9
필수 항목입니다. 고유한 이름입니다.
2 6 10
필수 항목입니다. 마운트 지점의 절대 경로입니다. 여기에는 .. 또는 : 이 포함되어서는 안되며 빌더에서 생성한 대상 경로와 충돌하지 않습니다. /opt/app-root/src 는 많은 Red Hat S2I 지원 이미지의 기본 홈 디렉터리입니다.
3 7 11
필수 항목입니다. 소스 유형, ConfigMap,Secret 또는 CSI.
4 8
필수 항목입니다. 소스의 이름입니다.
12
필수 항목입니다. 임시 CSI 볼륨을 제공하는 드라이버입니다.
13
필수 항목입니다. 이 값은 true 로 설정되어야 합니다. 읽기 전용 볼륨을 제공합니다.
14
선택 사항: 임시 CSI 볼륨의 볼륨 속성입니다. 지원되는 특성 키 및 값은 CSI 드라이버의 설명서를 참조하십시오.
참고

공유 리소스 CSI 드라이버는 기술 프리뷰 기능으로 지원됩니다.

2.5.3. 사용자 정의 빌드

사용자 정의 빌드 전략을 사용하면 개발자가 전체 빌드 프로세스를 담당하는 특정 빌더 이미지를 정의할 수 있습니다. 자체 빌더 이미지를 사용하면 빌드 프로세스를 사용자 정의할 수 있습니다.

사용자 정의 빌더 이미지는 빌드 프로세스 논리가 포함된 일반 컨테이너 이미지입니다(예: RPM 또는 기본 이미지 빌드).

사용자 정의 빌드는 높은 권한으로 실행되며 기본적으로 사용자에게 제공되지 않습니다. 클러스터 관리 권한이 있는 신뢰할 수 있는 사용자에게만 사용자 정의 빌드를 실행할 수 있는 권한을 부여해야 합니다.

2.5.3.1. 사용자 정의 빌드에 FROM 이미지 사용

customStrategy.from 섹션을 사용하여 사용자 정의 빌드에 사용할 이미지를 표시할 수 있습니다.

프로세스

  • customStrategy.from 섹션을 설정합니다.

    strategy:
      customStrategy:
        from:
          kind: "DockerImage"
          name: "openshift/sti-image-builder"

2.5.3.2. 사용자 정의 빌드에서 보안 사용

사용자 정의 전략에서는 모든 빌드 유형에 추가할 수 있는 소스 및 이미지 보안 외에 임의의 보안 목록을 빌더 Pod에 추가할 수 있습니다.

프로세스

  • 각 보안을 특정 위치에 마운트하려면 strategy YAML 파일의 secretSourcemountPath 필드를 편집합니다.

    strategy:
      customStrategy:
        secrets:
          - secretSource: 1
              name: "secret1"
            mountPath: "/tmp/secret1" 2
          - secretSource:
              name: "secret2"
            mountPath: "/tmp/secret2"
    1
    secretSource는 빌드와 동일한 네임스페이스에 있는 보안에 대한 참조입니다.
    2
    mountPath는 보안을 마운트해야 하는 사용자 정의 빌더 내부의 경로입니다.

2.5.3.3. 사용자 정의 빌드에 환경 변수 사용

사용자 정의 빌드 프로세스에서 환경 변수를 사용할 수 있도록 하려면 빌드 구성의 customStrategy 정의에 환경 변수를 추가하면 됩니다.

여기에서 정의한 환경 변수는 사용자 정의 빌드를 실행하는 Pod로 전달됩니다.

프로세스

  1. 빌드 중 사용할 사용자 정의 HTTP 프록시를 정의합니다.

    customStrategy:
    ...
      env:
        - name: "HTTP_PROXY"
          value: "http://myproxy.net:5187/"
  2. 빌드 구성에 정의된 환경 변수를 관리하려면 다음 명령을 입력합니다.

    $ oc set env <enter_variables>

2.5.3.4. 사용자 정의 빌더 이미지 사용

OpenShift Container Platform의 사용자 정의 빌드 전략을 사용하면 전체 빌드 프로세스를 담당하는 특정 빌더 이미지를 정의할 수 있습니다. 패키지, JAR, WAR, 설치 가능한 ZIP 또는 기본 이미지와 같은 개별 아티팩트를 생성하는 빌드가 필요한 경우 사용자 정의 빌드 전략을 사용하는 사용자 정의 빌더 이미지를 사용합니다.

사용자 정의 빌더 이미지는 RPM 또는 기본 컨테이너 이미지와 같은 아티팩트를 구축하는 데 사용되는 빌드 프로세스 논리에 내장된 일반 컨테이너 이미지입니다.

또한 사용자 정의 빌더를 사용하면 단위 테스트 또는 통합 테스트를 실행하는 CI/CD 흐름과 같이 확장된 빌드 프로세스를 구현할 수 있습니다.

2.5.3.4.1. 사용자 정의 빌더 이미지

사용자 정의 빌더 이미지는 호출 시 빌드를 진행하는 데 필요한 정보와 함께 다음 환경 변수를 수신합니다.

표 2.2. 사용자 정의 빌더 환경 변수

변수 이름설명

BUILD

Build 오브젝트 정의의 전체 직렬화 JSON입니다. 직렬화에 특정 API 버전을 사용해야 하는 경우 빌드 구성의 사용자 정의 전략 사양에 buildAPIVersion 매개변수를 설정하면 됩니다.

SOURCE_REPOSITORY

빌드할 소스가 있는 Git 리포지토리의 URL입니다.

SOURCE_URI

SOURCE_REPOSITORY와 동일한 값을 사용합니다. 둘 중 하나를 사용할 수 있습니다.

SOURCE_CONTEXT_DIR

빌드할 때 사용할 Git 리포지토리의 하위 디렉터리를 지정합니다. 정의한 경우에만 존재합니다.

SOURCE_REF

빌드할 Git 참조입니다.

ORIGIN_VERSION

이 빌드 오브젝트를 생성한 OpenShift Container Platform 마스터의 버전입니다.

OUTPUT_REGISTRY

이미지를 내보낼 컨테이너 이미지 레지스트리입니다.

OUTPUT_IMAGE

빌드 중인 이미지의 컨테이너 이미지 태그 이름입니다.

PUSH_DOCKERCFG_PATH

podman push 작업을 실행하는 데 필요한 컨테이너 레지스트리 자격 증명의 경로입니다.

2.5.3.4.2. 사용자 정의 빌더 워크플로

사용자 정의 빌더 이미지 작성자는 빌드 프로세스를 정의하는 데 유연성이 있지만 빌더 이미지는 OpenShift Container Platform 내에서 빌드를 실행하는 데 필요한 다음 단계를 준수해야 합니다.

  1. Build 오브젝트 정의에는 빌드의 입력 매개변수에 대한 모든 필수 정보가 포함되어 있습니다.
  2. 빌드 프로세스를 실행합니다.
  3. 빌드에서 이미지를 생성하면 빌드의 출력 위치가 정의된 경우 해당 위치로 내보냅니다. 다른 출력 위치는 환경 변수를 통해 전달할 수 있습니다.

2.5.4. 파이프라인 빌드

중요

파이프라인 빌드 전략은 OpenShift Container Platform 4에서 더 이상 사용되지 않습니다. 동등하고 향상된 기능은 Tekton 기반 OpenShift Container Platform Pipelines에 있습니다.

OpenShift Container Platform의 Jenkins 이미지는 완전히 지원되며 사용자는 Jenkins 사용 설명서를 따라 작업에 jenkinsfile을 정의하거나 소스 제어 관리 시스템에 저장해야 합니다.

파이프라인 빌드 전략을 사용하면 개발자가 Jenkins 파이프라인 플러그인에서 사용할 Jenkins 파이프라인을 정의할 수 있습니다. 다른 빌드 유형과 동일한 방식으로 OpenShift Container Platform에서 빌드를 시작, 모니터링, 관리할 수 있습니다.

파이프라인 워크플로는 빌드 구성에 직접 포함하거나 Git 리포지토리에 제공하는 방식으로 jenkinsfile에 정의하고 빌드 구성에서 참조합니다.

2.5.4.1. OpenShift Container Platform 파이프라인 이해

중요

파이프라인 빌드 전략은 OpenShift Container Platform 4에서 더 이상 사용되지 않습니다. 동등하고 향상된 기능은 Tekton 기반 OpenShift Container Platform Pipelines에 있습니다.

OpenShift Container Platform의 Jenkins 이미지는 완전히 지원되며 사용자는 Jenkins 사용 설명서를 따라 작업에 jenkinsfile을 정의하거나 소스 제어 관리 시스템에 저장해야 합니다.

파이프라인을 사용하면 OpenShift Container Platform에서 애플리케이션의 빌드, 배포, 승격을 제어할 수 있습니다. Jenkins Pipeline 빌드 전략, jenkinsfiles 및 OpenShift Container Platform Domain Specific Language (DSL)의 조합을 사용하여 Jenkins 클라이언트 플러그인에서 제공하는 DSL(OpenShift Container Platform Domain Specific Language)을 사용하면 모든 시나리오에 대해 고급 빌드, 테스트, 배포 및 승격을 수행할 수 있습니다.

OpenShift Container Platform Jenkins 동기화 플러그인

OpenShift Container Platform Jenkins 동기화 플러그인은 Jenkins 작업 및 빌드와 동기화된 빌드 구성 및 빌드 오브젝트를 유지하고 다음 기능을 제공합니다.

  • Jenkins에서 동적 작업 및 실행 생성
  • 이미지 스트림, 이미지 스트림 태그 또는 구성 맵에서 에이전트 Pod 템플릿 동적 생성
  • 환경 변수의 노출입니다.
  • OpenShift Container Platform 웹 콘솔의 파이프라인 시각화
  • Jenkins Git 플러그인과의 통합으로 OpenShift Container Platform 빌드의 커밋 정보를 Jenkins Git 플러그인에 전달합니다.
  • Jenkins 자격 증명 항목에 시크릿 동기화.

OpenShift Container Platform Jenkins 클라이언트 플러그인

OpenShift Container Platform Jenkins 클라이언트 플러그인은 Jenkins 플러그인 중 하나로, OpenShift Container Platform API 서버와의 다양한 상호 작용을 위해 읽기 쉽고 간결하고 포괄적이며 유창한 Jenkins Pipeline 구문을 제공하기 위한 것입니다. 플러그인은 OpenShift Container Platform 명령줄 툴인 oc를 사용하는데 스크립트를 실행하는 노드에서 이 툴을 사용할 수 있어야 합니다.

Jenkins 클라이언트 플러그인은 애플리케이션의 jenkinsfile 내에서 OpenShift Container Platform DSL을 사용할 수 있도록 Jenkins 마스터에 설치해야 합니다. 이 플러그인은 OpenShift Container Platform Jenkins 이미지를 사용할 때 기본적으로 설치 및 활성화됩니다.

프로젝트 내 OpenShift Container Platform Pipeline의 경우 Jenkins Pipeline 빌드 전략을 사용해야 합니다. 이 전략에서는 기본적으로 소스 리포지토리의 루트에서 jenkinsfile을 사용하지만 다음과 같은 구성 옵션을 제공합니다.

  • 빌드 구성 내의 인라인 jenkinsfile 필드
  • 소스 contextDir에 상대적으로 사용할 jenkinsfile의 위치를 참조하는, 빌드 구성 내의 jenkinsfilePath 필드
참고

선택적 jenkinsfilePath 필드는 소스 contextDir에 상대적으로 사용할 파일의 이름을 지정합니다. contextDir이 생략된 경우 기본값은 리포지토리의 루트입니다. jenkinsfilePath가 생략된 경우 기본값은 jenkinsfile입니다.

2.5.4.2. 파이프라인 빌드를 위한 Jenkins 파일 제공

중요

파이프라인 빌드 전략은 OpenShift Container Platform 4에서 더 이상 사용되지 않습니다. 동등하고 향상된 기능은 Tekton 기반 OpenShift Container Platform Pipelines에 있습니다.

OpenShift Container Platform의 Jenkins 이미지는 완전히 지원되며 사용자는 Jenkins 사용 설명서를 따라 작업에 jenkinsfile을 정의하거나 소스 제어 관리 시스템에 저장해야 합니다.

jenkinsfile에서는 표준 Groovy 언어 구문을 사용하여 애플리케이션의 구성, 빌드, 배포를 세부적으로 제어할 수 있습니다.

다음 방법 중 하나로 jenkinsfile을 제공할 수 있습니다.

  • 소스 코드 리포지토리에 있는 파일
  • jenkinsfile 필드를 사용하여 빌드 구성의 일부로 포함

첫 번째 옵션을 사용하는 경우 다음 위치 중 하나의 애플리케이션 소스 코드 리포지토리에 jenkinsfile을 포함해야 합니다.

  • 리포지토리 루트에 있는 jenkinsfile이라는 파일
  • 리포지토리의 소스 contextDir 루트에 있는 jenkinsfile이라는 파일
  • BuildConfig의 JenkinsPipelineStrategy 섹션에 있는 jenkinsfilePath 필드를 통해 지정되는 파일 이름(제공되는 경우 소스 contextDir에 상대적이고 제공되지 않는 경우 기본값은 리포지토리의 루트임)

jenkinsfile은 Jenkins 에이전트 Pod에서 실행됩니다. OpenShift Container Platform DSL을 사용하려면 해당 Pod에 사용 가능한 OpenShift Container Platform 클라이언트 바이너리가 있어야 합니다.

프로세스

다음 중 하나를 수행하여 Jenkins 파일을 제공할 수 있습니다.

  • 빌드 구성에 Jenkins 파일 포함
  • 빌드 구성에 Jenkins 파일이 포함된 Git 리포지토리에 대한 참조 포함

포함된 정의

kind: "BuildConfig"
apiVersion: "v1"
metadata:
  name: "sample-pipeline"
spec:
  strategy:
    jenkinsPipelineStrategy:
      jenkinsfile: |-
        node('agent') {
          stage 'build'
          openshiftBuild(buildConfig: 'ruby-sample-build', showBuildLogs: 'true')
          stage 'deploy'
          openshiftDeploy(deploymentConfig: 'frontend')
        }

Git 리포지토리에 대한 참조

kind: "BuildConfig"
apiVersion: "v1"
metadata:
  name: "sample-pipeline"
spec:
  source:
    git:
      uri: "https://github.com/openshift/ruby-hello-world"
  strategy:
    jenkinsPipelineStrategy:
      jenkinsfilePath: some/repo/dir/filename 1

1
선택적 jenkinsfilePath 필드는 소스 contextDir에 상대적으로 사용할 파일의 이름을 지정합니다. contextDir이 생략된 경우 기본값은 리포지토리의 루트입니다. jenkinsfilePath가 생략된 경우 기본값은 jenkinsfile입니다.

2.5.4.3. 파이프라인 빌드에 환경 변수 사용

중요

파이프라인 빌드 전략은 OpenShift Container Platform 4에서 더 이상 사용되지 않습니다. 동등하고 향상된 기능은 Tekton 기반 OpenShift Container Platform Pipelines에 있습니다.

OpenShift Container Platform의 Jenkins 이미지는 완전히 지원되며 사용자는 Jenkins 사용 설명서를 따라 작업에 jenkinsfile을 정의하거나 소스 제어 관리 시스템에 저장해야 합니다.

파이프라인 빌드 프로세스에서 환경 변수를 사용할 수 있도록 하려면 빌드 구성의 jenkinsPipelineStrategy 정의에 환경 변수를 추가하면 됩니다.

정의된 환경 변수는 빌드 구성과 관련된 모든 Jenkins 작업의 매개변수로 설정됩니다.

프로세스

  • 빌드 중 사용할 환경 변수를 정의하려면 YAML 파일을 다음과 같이 편집합니다.

    jenkinsPipelineStrategy:
    ...
      env:
        - name: "FOO"
          value: "BAR"

oc set env 명령을 사용하면 빌드 구성에 정의된 환경 변수도 관리할 수 있습니다.

2.5.4.3.1. BuildConfig 환경 변수 및 Jenkins 작업 매개변수 간 매핑

파이프라인 전략 빌드 구성의 변경 사항에 따라 Jenkins 작업이 생성되거나 업데이트되면 빌드 구성의 모든 환경 변수가 Jenkins 작업 매개 변수 정의에 매핑됩니다. 여기서 Jenkins 작업 매개변수 정의의 기본값은 연결된 환경 변수의 현재 값입니다.

Jenkins 작업의 초기 생성 후에도 Jenkins 콘솔에서 작업에 매개변수를 추가할 수 있습니다. 매개변수 이름은 빌드 구성의 환경 변수 이름과 다릅니다. 매개변수는 해당 Jenkins 작업에 대한 빌드가 시작될 때 적용됩니다.

Jenkins 작업의 빌드를 시작하는 방법에 따라 매개변수 설정 방법이 결정됩니다.

  • oc start-build로 시작하는 경우 빌드 구성의 환경 변수 값은 해당 작업 인스턴스에 설정된 매개변수입니다. Jenkins 콘솔에서 매개변수 기본값을 변경하면 해당 변경 사항이 무시됩니다. 빌드 구성 값이 우선합니다.
  • oc start-build -e로 시작하는 경우 -e 옵션에 지정된 환경 변수의 값이 우선합니다.

    • 빌드 구성에 나열되지 않은 환경 변수를 지정하면 Jenkins 작업 매개변수 정의로 추가됩니다.
    • Jenkins 콘솔에서 환경 변수에 해당하는 매개변수를 변경하면 해당 변경 사항이 무시됩니다. 빌드 구성 및 oc start-build -e로 지정하는 항목이 우선합니다.
  • Jenkins 콘솔에서 Jenkins 작업을 시작하면 작업의 빌드를 시작하는 과정의 일부로 Jenkins 콘솔을 사용하여 매개변수 설정을 제어할 수 있습니다.
참고

빌드 구성에서 작업 매개변수와 연결할 수 있는 모든 환경 변수를 지정하는 것이 좋습니다. 이렇게 하면 디스크 I/O가 줄어들고 Jenkins 처리 중 성능이 향상됩니다.

2.5.4.4. 파이프라인 빌드 튜토리얼

중요

파이프라인 빌드 전략은 OpenShift Container Platform 4에서 더 이상 사용되지 않습니다. 동등하고 향상된 기능은 Tekton 기반 OpenShift Container Platform Pipelines에 있습니다.

OpenShift Container Platform의 Jenkins 이미지는 완전히 지원되며 사용자는 Jenkins 사용 설명서를 따라 작업에 jenkinsfile을 정의하거나 소스 제어 관리 시스템에 저장해야 합니다.

이 예제에서는 nodejs-mongodb.json 템플릿을 사용하여 Node.js/MongoDB 애플리케이션을 빌드, 배포, 확인할 OpenShift Container Platform Pipeline을 생성하는 방법을 보여줍니다.

프로세스

  1. Jenkins 마스터를 생성합니다.

      $ oc project <project_name>

    사용할 프로젝트를 선택하거나 oc new-project <project_name>을 사용하여 새 프로젝트를 생성합니다.

      $ oc new-app jenkins-ephemeral 1

    영구 스토리지를 사용하려면 대신 jenkins-persistent를 사용합니다.

  2. 다음 콘텐츠를 사용하여 nodejs-sample-pipeline.yaml이라는 파일을 생성합니다.

    참고

    이 과정에서 Jenkins Pipeline 전략을 사용하여 Node.js/MongoDB 예제 애플리케이션을 빌드, 배포, 스케일링하는 BuildConfig 오브젝트가 생성됩니다.

    kind: "BuildConfig"
    apiVersion: "v1"
    metadata:
      name: "nodejs-sample-pipeline"
    spec:
      strategy:
        jenkinsPipelineStrategy:
          jenkinsfile: <pipeline content from below>
        type: JenkinsPipeline
  3. jenkinsPipelineStrategy를 사용하여 BuildConfig 오브젝트를 생성한 후에는 인라인 jenkinsfile을 사용하여 파이프라인에 수행할 작업을 지시합니다.

    참고

    이 예에서는 애플리케이션에 대한 Git 리포지토리를 설정하지 않습니다.

    다음 jenkinsfile 콘텐츠는 OpenShift Container Platform DSL을 사용하여 Groovy로 작성됩니다. 소스 리포지토리에 jenkinsfile을 포함하는 것이 기본 방법이지만 이 예제에서는 YAML 리터럴 스타일을 사용하여 BuildConfig 오브젝트에 인라인 콘텐츠를 포함합니다.

    def templatePath = 'https://raw.githubusercontent.com/openshift/nodejs-ex/master/openshift/templates/nodejs-mongodb.json' 1
    def templateName = 'nodejs-mongodb-example' 2
    pipeline {
      agent {
        node {
          label 'nodejs' 3
        }
      }
      options {
        timeout(time: 20, unit: 'MINUTES') 4
      }
      stages {
        stage('preamble') {
            steps {
                script {
                    openshift.withCluster() {
                        openshift.withProject() {
                            echo "Using project: ${openshift.project()}"
                        }
                    }
                }
            }
        }
        stage('cleanup') {
          steps {
            script {
                openshift.withCluster() {
                    openshift.withProject() {
                      openshift.selector("all", [ template : templateName ]).delete() 5
                      if (openshift.selector("secrets", templateName).exists()) { 6
                        openshift.selector("secrets", templateName).delete()
                      }
                    }
                }
            }
          }
        }
        stage('create') {
          steps {
            script {
                openshift.withCluster() {
                    openshift.withProject() {
                      openshift.newApp(templatePath) 7
                    }
                }
            }
          }
        }
        stage('build') {
          steps {
            script {
                openshift.withCluster() {
                    openshift.withProject() {
                      def builds = openshift.selector("bc", templateName).related('builds')
                      timeout(5) { 8
                        builds.untilEach(1) {
                          return (it.object().status.phase == "Complete")
                        }
                      }
                    }
                }
            }
          }
        }
        stage('deploy') {
          steps {
            script {
                openshift.withCluster() {
                    openshift.withProject() {
                      def rm = openshift.selector("dc", templateName).rollout()
                      timeout(5) { 9
                        openshift.selector("dc", templateName).related('pods').untilEach(1) {
                          return (it.object().status.phase == "Running")
                        }
                      }
                    }
                }
            }
          }
        }
        stage('tag') {
          steps {
            script {
                openshift.withCluster() {
                    openshift.withProject() {
                      openshift.tag("${templateName}:latest", "${templateName}-staging:latest") 10
                    }
                }
            }
          }
        }
      }
    }
    1
    사용할 템플릿의 경로입니다.
    1 2
    생성할 템플릿의 이름입니다.
    3
    이 빌드를 실행할 node.js 에이전트 Pod를 구동합니다.
    4
    이 파이프라인에 타임아웃을 20분으로 설정합니다.
    5
    이 템플릿 라벨이 있는 모든 항목을 삭제합니다.
    6
    이 템플릿 라벨을 사용하여 모든 보안을 삭제합니다.
    7
    templatePath에서 새 애플리케이션을 생성합니다.
    8
    빌드가 완료될 때까지 최대 5분 동안 기다립니다.
    9
    배포가 완료될 때까지 최대 5분 정도 기다립니다.
    10
    다른 모든 과정이 성공하면 $ {templateName}:latest 이미지에 $ {templateName}-staging:latest 태그를 지정합니다. 스테이징 환경에 대한 파이프라인 빌드 구성에서는 $ {templateName}-staging:latest 이미지가 변경될 때까지 기다린 다음 해당 이미지를 스테이징 환경에 배포할 수 있습니다.
    참고

    위 예제는 선언적 파이프라인 스타일로 작성되었지만 기존에 스크립팅된 파이프라인 스타일도 지원됩니다.

  4. OpenShift Container Platform 클러스터에서 파이프라인 BuildConfig를 생성합니다.

    $ oc create -f nodejs-sample-pipeline.yaml
    1. 자체 파일을 생성하지 않으려면 다음을 실행하여 원래 리포지토리의 샘플을 사용하면 됩니다.

      $ oc create -f https://raw.githubusercontent.com/openshift/origin/master/examples/jenkins/pipeline/nodejs-sample-pipeline.yaml
  5. 파이프라인을 시작합니다.

    $ oc start-build nodejs-sample-pipeline
    참고

    또는 빌드 → 파이프라인 섹션으로 이동하여 파이프라인 시작을 클릭하거나 Jenkins 콘솔을 방문하여 생성한 파이프라인으로 이동한 다음 지금 빌드를 클릭하여 OpenShift Container Platform 웹 콘솔에서 파이프라인을 시작할 수 있습니다.

    파이프라인이 시작되면 프로젝트 내에서 수행되는 다음 작업이 표시되어야 합니다.

    • Jenkins 서버에서 작업 인스턴스가 생성됩니다.
    • 파이프라인에 필요한 경우 에이전트 Pod가 시작됩니다.
    • 파이프라인은 에이전트 Pod에서 실행되지만 에이전트가 필요하지 않은 경우에는 마스터에서 실행됩니다.

      • template=nodejs-mongodb-example 라벨을 사용하여 이전에 생성한 리소스는 삭제됩니다.
      • 새 애플리케이션 및 이 애플리케이션의 모든 관련 리소스는 nodejs-mongodb-example 템플릿에서 생성됩니다.
      • nodejs-mongodb-example BuildConfig를 사용하여 빌드가 시작됩니다.

        • 파이프라인은 빌드가 완료될 때까지 기다린 후 다음 단계를 트리거합니다.
      • 배포는 nodejs-mongodb-example 배포 구성을 사용하여 시작됩니다.

        • 파이프라인은 배포가 완료될 때까지 기다린 후 다음 단계를 트리거합니다.
      • 빌드 및 배포가 성공하면 nodejs-mongodb-example:latest 이미지에 nodejs-mongodb-example:stage 태그가 지정됩니다.
    • 파이프라인에 필요한 경우 에이전트 pod가 삭제됩니다.

      참고

      파이프라인 실행을 시각화하는 가장 좋은 방법은 OpenShift Container Platform 웹 콘솔에서 확인하는 것입니다. 웹 콘솔에 로그인하고 빌드 → 파이프라인으로 이동하여 파이프라인을 확인할 수 있습니다.

2.5.5. 웹 콘솔을 사용하여 보안 추가

개인 리포지토리에 액세스할 수 있도록 빌드 구성에 보안을 추가할 수 있습니다.

프로세스

OpenShift Container Platform 웹 콘솔에서 개인 리포지토리에 액세스할 수 있도록 빌드 구성에 보안을 추가하려면 다음을 수행합니다.

  1. 새 OpenShift Container Platform 프로젝트를 생성합니다.
  2. 개인 소스 코드 리포지토리에 액세스하는 데 필요한 자격 증명이 포함된 보안을 생성합니다.
  3. 빌드 구성을 생성합니다.
  4. 빌드 구성 편집기 페이지 또는 웹 콘솔의 빌더 이미지에서 앱 생성 페이지에서 소스 보안을 설정합니다.
  5. 저장을 클릭합니다.

2.5.6. 가져오기 및 내보내기 활성화

빌드 구성에 가져오기 보안을 설정하여 프라이빗 레지스트리로 가져오고 내보내기 보안을 설정하여 내보낼 수 있습니다.

프로세스

프라이빗 레지스트리로 가져오기를 활성화하려면 다음을 수행합니다.

  • 빌드 구성에 가져오기 보안을 설정합니다.

내보내기를 활성화하려면 다음을 수행합니다.

  • 빌드 구성에 내보내기 보안을 설정합니다.

2.6. Buildah를 사용한 사용자 정의 이미지 빌드

OpenShift Container Platform 4.12에서는 호스트 노드에 Docker 소켓이 존재하지 않습니다. 즉 사용자 정의 빌드의 Docker 소켓 마운트 옵션에서 사용자 정의 빌드 이미지 내에서 사용하도록 액세스 가능한 Docker 소켓을 제공하지 않을 수 있습니다.

이미지를 빌드하고 내보내기 위해 이 기능이 필요한 경우 사용자 정의 빌드 이미지에 Buildah 툴을 추가한 후 이 툴을 사용하여 사용자 정의 빌드 논리 내에서 이미지를 빌드하고 내보내십시오. 다음은 Buildah를 사용하여 사용자 정의 빌드를 실행하는 방법의 예입니다.

참고

사용자 정의 빌드 전략을 사용하려면 사용자가 클러스터에서 실행되는 권한 있는 컨테이너 내에서 임의의 코드를 실행할 수 있으므로 기본적으로 일반 사용자에게는 없는 권한이 필요합니다. 이 수준의 액세스 권한은 사용 시 클러스터를 손상시킬 수 있으므로 클러스터에 대한 관리 권한이 있는 신뢰할 수 있는 사용자에게만 부여해야 합니다.

2.6.1. 사전 요구 사항

2.6.2. 사용자 정의 빌드 아티팩트 생성

사용자 정의 빌드 이미지로 사용할 이미지를 생성해야 합니다.

프로세스

  1. 빈 디렉터리에서부터 다음 콘텐츠를 사용하여 Dockerfile이라는 파일을 생성합니다.

    FROM registry.redhat.io/rhel8/buildah
    # In this example, `/tmp/build` contains the inputs that build when this
    # custom builder image is run. Normally the custom builder image fetches
    # this content from some location at build time, by using git clone as an example.
    ADD dockerfile.sample /tmp/input/Dockerfile
    ADD build.sh /usr/bin
    RUN chmod a+x /usr/bin/build.sh
    # /usr/bin/build.sh contains the actual custom build logic that will be run when
    # this custom builder image is run.
    ENTRYPOINT ["/usr/bin/build.sh"]
  2. 동일한 디렉터리에서 dockerfile.sample이라는 파일을 생성합니다. 이 파일은 사용자 정의 빌드 이미지에 포함되어 있으며 사용자 정의 빌드에서 생성하는 이미지를 정의합니다.

    FROM registry.access.redhat.com/ubi8/ubi
    RUN touch /tmp/build
  3. 동일한 디렉터리에 build.sh라는 파일을 생성합니다. 이 파일에는 사용자 정의 빌드가 실행될 때 실행되는 논리가 포함되어 있습니다.

    #!/bin/sh
    # Note that in this case the build inputs are part of the custom builder image, but normally this
    # is retrieved from an external source.
    cd /tmp/input
    # OUTPUT_REGISTRY and OUTPUT_IMAGE are env variables provided by the custom
    # build framework
    TAG="${OUTPUT_REGISTRY}/${OUTPUT_IMAGE}"
    
    
    # performs the build of the new image defined by dockerfile.sample
    buildah --storage-driver vfs bud --isolation chroot -t ${TAG} .
    
    
    # buildah requires a slight modification to the push secret provided by the service
    # account to use it for pushing the image
    cp /var/run/secrets/openshift.io/push/.dockercfg /tmp
    (echo "{ \"auths\": " ; cat /var/run/secrets/openshift.io/push/.dockercfg ; echo "}") > /tmp/.dockercfg
    
    
    # push the new image to the target for the build
    buildah --storage-driver vfs push --tls-verify=false --authfile /tmp/.dockercfg ${TAG}

2.6.3. 사용자 정의 빌더 이미지 빌드

OpenShift Container Platform을 사용하여 사용자 정의 전략에서 사용할 사용자 정의 빌더 이미지를 빌드하고 내보낼 수 있습니다.

사전 요구 사항

  • 새 사용자 정의 빌더 이미지를 생성하는 데 사용할 모든 입력을 정의합니다.

프로세스

  1. 사용자 정의 빌더 이미지를 빌드할 BuildConfig 오브젝트를 정의합니다.

    $ oc new-build --binary --strategy=docker --name custom-builder-image
  2. 사용자 정의 빌드 이미지를 생성한 디렉터리에서 빌드를 실행합니다.

    $ oc start-build custom-builder-image --from-dir . -F

    빌드가 완료되면 custom-builder-image:latest라는 이미지 스트림 태그의 프로젝트에서 새 사용자 정의 빌더 이미지를 사용할 수 있습니다.

2.6.4. 사용자 정의 빌더 이미지 사용

사용자 정의 빌더 이미지와 함께 사용자 정의 전략을 사용하여 사용자 정의 빌드 논리를 실행하는 BuildConfig 오브젝트를 정의할 수 있습니다.

사전 요구 사항

  • 새 사용자 정의 빌더 이미지에 필요한 모든 입력을 정의합니다.
  • 사용자 정의 빌더 이미지를 빌드합니다.

프로세스

  1. buildconfig.yaml이라는 파일을 생성합니다. 이 파일은 프로젝트에서 생성되어 실행되는 BuildConfig 오브젝트를 정의합니다.

    kind: BuildConfig
    apiVersion: build.openshift.io/v1
    metadata:
      name: sample-custom-build
      labels:
        name: sample-custom-build
      annotations:
        template.alpha.openshift.io/wait-for-ready: 'true'
    spec:
      strategy:
        type: Custom
        customStrategy:
          forcePull: true
          from:
            kind: ImageStreamTag
            name: custom-builder-image:latest
            namespace: <yourproject> 1
      output:
        to:
          kind: ImageStreamTag
          name: sample-custom:latest
    1
    프로젝트 이름을 지정합니다.
  2. BuildConfig를 생성합니다.

    $ oc create -f buildconfig.yaml
  3. imagestream.yaml이라는 파일을 생성합니다. 이 파일은 빌드에서 이미지를 내보낼 이미지 스트림을 정의합니다.

    kind: ImageStream
    apiVersion: image.openshift.io/v1
    metadata:
      name: sample-custom
    spec: {}
  4. 이미지 스트림을 생성합니다.

    $ oc create -f imagestream.yaml
  5. 사용자 정의 빌드를 실행합니다.

    $ oc start-build sample-custom-build -F

    빌드를 실행하면 빌드에서 이전에 빌드한 사용자 정의 빌더 이미지를 실행하는 Pod를 시작합니다. Pod는 사용자 정의 빌더 이미지의 진입점으로 정의된 build.sh 논리를 실행합니다. build.sh 논리는 Buildah를 호출하여 사용자 정의 빌더 이미지에 포함된 dockerfile.sample을 빌드한 다음 Buildah를 사용하여 새 이미지를 sample-custom image stream으로 내보냅니다.

2.7. 기본 빌드 수행 및 구성

다음 섹션에서는 빌드 시작 및 취소, BuildConfig 편집, BuildConfig 삭제, 빌드 세부 정보 보기, 빌드 로그 액세스 등 기본 빌드 작업에 대한 지침을 제공합니다.

2.7.1. 빌드 시작

현재 프로젝트의 기존 빌드 구성에서 새 빌드를 수동으로 시작할 수 있습니다.

프로세스

빌드를 수동으로 시작하려면 다음 명령을 입력합니다.

$ oc start-build <buildconfig_name>

2.7.1.1. 빌드 재실행

--from-build 플래그를 사용하여 빌드를 수동으로 다시 실행할 수 있습니다.

프로세스

  • 빌드를 수동으로 다시 실행하려면 다음 명령을 입력합니다.

    $ oc start-build --from-build=<build_name>

2.7.1.2. 빌드 로그 스트리밍

--follow 플래그를 지정하여 빌드의 로그를 stdout에서 스트리밍할 수 있습니다.

프로세스

  • stdout에서 빌드 로그를 수동으로 스트리밍하려면 다음 명령을 입력합니다.

    $ oc start-build <buildconfig_name> --follow

2.7.1.3. 빌드 시작 시 환경 변수 설정

--env 플래그를 지정하여 빌드에 원하는 환경 변수를 설정할 수 있습니다.

프로세스

  • 원하는 환경 변수를 지정하려면 다음 명령을 입력합니다.

    $ oc start-build <buildconfig_name> --env=<key>=<value>

2.7.1.4. 소스를 사용하여 빌드 시작

빌드에 Git 소스 가져오기 또는 Dockerfile을 사용하는 대신 소스를 직접 내보내 빌드를 시작할 수 있습니다. 소스는 Git 또는 SVN 작업 디렉터리, 배포하려는 사전 빌드된 바이너리 아티팩트 세트 또는 단일 파일의 콘텐츠일 수 있습니다. 이 작업은 start-build 명령에 다음 옵션 중 하나를 지정하여 수행할 수 있습니다.

옵션설명

--from-dir=<directory>

보관하여 빌드에 바이너리 입력으로 사용할 디렉터리를 지정합니다.

--from-file=<file>

빌드 소스에서 유일한 파일이 될 단일 파일을 지정합니다. 이 파일은 제공된 원래 파일과 파일 이름이 동일한 빈 디렉터리의 루트에 배치됩니다.

--from-repo=<local_source_repo>

빌드에 바이너리 입력으로 사용할 로컬 리포지토리의 경로를 지정합니다. 빌드에 사용되는 분기, 태그 또는 커밋을 제어하는 --commit 옵션을 추가합니다.

이러한 옵션을 빌드에 직접 전달하면 해당 콘텐츠가 빌드로 스트리밍되어 현재 빌드 소스 설정을 덮어씁니다.

참고

바이너리 입력에서 트리거된 빌드는 서버의 소스를 유지하지 않으므로 기본 이미지 변경에 의해 트리거된 리빌드는 빌드 구성에 지정된 소스를 사용합니다.

프로세스

  • 다음 명령을 통해 소스에서 빌드를 시작하여 태그 v2의 아카이브로 로컬 Git 리포지토리의 콘텐츠를 보냅니다.

    $ oc start-build hello-world --from-repo=../hello-world --commit=v2

2.7.2. 빌드 취소

웹 콘솔을 사용하거나 다음 CLI 명령을 사용하여 빌드를 취소할 수 있습니다.

프로세스

  • 빌드를 수동으로 취소하려면 다음 명령을 입력합니다.

    $ oc cancel-build <build_name>

2.7.2.1. 여러 빌드 취소

다음 CLI 명령으로 여러 빌드를 취소할 수 있습니다.

프로세스

  • 여러 빌드를 수동으로 취소하려면 다음 명령을 입력합니다.

    $ oc cancel-build <build1_name> <build2_name> <build3_name>

2.7.2.2. 모든 빌드 취소

다음 CLI 명령을 사용하여 빌드 구성에서 모든 빌드를 취소할 수 있습니다.

프로세스

  • 모든 빌드를 취소하려면 다음 명령을 입력합니다.

    $ oc cancel-build bc/<buildconfig_name>

2.7.2.3. 지정된 상태의 모든 빌드 취소

지정된 상태(new 또는 pending 등)의 빌드는 모두 취소하고 다른 상태의 빌드는 무시할 수 있습니다.

프로세스

  • 지정된 상태의 빌드를 모두 취소하려면 다음 명령을 입력합니다.

    $ oc cancel-build bc/<buildconfig_name>

2.7.3. BuildConfig 편집

빌드 구성을 편집하려면 개발자 화면의 빌드 보기에서 빌드 구성 편집 옵션을 사용합니다.

다음 뷰 중 하나를 사용하여 BuildConfig 를 편집할 수 있습니다.

  • 양식 보기를 사용하면 표준 양식 필드 및 확인란을 사용하여 BuildConfig 를 편집할 수 있습니다.
  • YAML 보기를 사용하면 작업을 완전히 제어하여 BuildConfig 를 편집할 수 있습니다.

데이터를 손실하지 않고 양식 보기YAML 보기를 전환할 수 있습니다. 양식 보기의 데이터는 YAML 보기로 전송되며 그 반대의 경우도 마찬가지입니다.

절차

  1. 개발자 화면의 빌드 보기에서 kebab 메뉴를 클릭하여 BuildConfig 편집 옵션을 확인합니다.
  2. BuildConfig 편집 을 클릭하여 양식 보기 옵션을 확인합니다.
  3. Git 섹션에서 애플리케이션을 생성하는 데 사용할 코드베이스의 Git 리포지토리 URL을 입력합니다. 그런 다음 URL을 검증합니다.

    • 선택 사항: 고급 Git 옵션 표시를 클릭하여 다음과 같은 세부 정보를 추가합니다.

      • Git 참조: 애플리케이션을 빌드하는 데 사용할 코드가 포함된 분기, 태그 또는 커밋을 지정합니다.
      • 컨텍스트 디렉터리: 애플리케이션을 빌드하는 데 사용할 코드가 포함된 하위 디렉터리를 지정합니다.
      • 소스 시크릿: 프라이빗 리포지토리에서 소스 코드를 가져올 수 있는 자격 증명이 포함된 시크릿 이름을 생성합니다.
  4. 빌드 from 섹션에서 빌드하려는 옵션을 선택합니다. 다음 옵션을 사용할 수 있습니다.

    • 이미지 스트림 태그 는 지정된 이미지 스트림 및 태그의 이미지를 참조합니다. 빌드하려는 위치의 프로젝트, 이미지 스트림, 태그를 입력하고.
    • 이미지 스트림 이미지는 지정된 이미지 스트림 및 이미지 이름의 이미지를 참조합니다. 빌드하려는 이미지 스트림 이미지를 입력합니다. 또한 프로젝트, 이미지 스트림, 내보낼 태그를 입력합니다.
    • Docker 이미지: Docker 이미지 리포지터리를 통해 Docker 이미지를 참조합니다. 또한 프로젝트, 이미지 스트림, 태그를 입력하여 푸시해야 합니다.
  5. 선택 사항: 환경 변수 섹션에서 NameValue 필드를 사용하여 프로젝트와 관련된 환경 변수를 추가합니다. 환경 변수를 더 추가하려면 Add Value 또는 Add from ConfigMapSecret 을 사용합니다.
  6. 선택 사항: 애플리케이션을 추가로 사용자 지정하려면 다음 고급 옵션을 사용합니다.

    Trigger
    빌더 이미지가 변경되면 새 이미지 빌드를 트리거합니다. 트리거 추가를 클릭하고 유형시크릿 을 선택하여 트리거 를 더 추가합니다.
    보안
    애플리케이션에 대한 보안을 추가합니다. 시크릿 추가를 클릭하고 SecretMount point 를 선택하여 보안을 추가합니다.
    정책
    정책 실행 을 클릭하여 빌드 실행 정책을 선택합니다. 선택한 정책은 빌드 구성에서 생성한 빌드를 실행해야 하는 순서를 결정합니다.
    후크
    이미지가 빌드된 후 빌드 실행 을 선택하여 빌드 종료 시 명령을 실행하고 이미지를 확인합니다. Hook type,Command, Arguments 를 추가하여 명령에 추가합니다.
  7. 저장을 클릭하여 BuildConfig 를 저장합니다.

2.7.4. BuildConfig 삭제

다음 명령을 사용하여 BuildConfig를 삭제할 수 있습니다.

프로세스

  • BuildConfig를 삭제하려면 다음 명령을 입력합니다.

    $ oc delete bc <BuildConfigName>

    이 명령은 이 BuildConfig에서 인스턴스화한 빌드도 모두 삭제합니다.

  • BuildConfig는 삭제하고 BuildConfig에서 인스턴스화한 빌드는 유지하려면 다음 명령을 입력할 때 --cascade=false 플래그를 지정하십시오.

    $ oc delete --cascade=false bc <BuildConfigName>

2.7.5. 빌드 세부 정보 보기

웹 콘솔을 사용하거나 oc describe CLI 명령을 사용하여 빌드 세부 정보를 볼 수 있습니다.

다음을 포함한 정보가 표시됩니다.

  • 빌드 소스입니다.
  • 빌드 전략입니다.
  • 출력 대상입니다.
  • 대상 레지스트리의 이미지 다이제스트입니다.
  • 빌드를 생성한 방법입니다.

빌드에서 Docker 또는 Source 전략을 사용하는 경우 oc describe 출력에 커밋 ID, 작성자, 커밋, 메시지 등 해당 빌드에 사용된 소스 리버전 정보도 포함됩니다.

프로세스

  • 빌드 세부 정보를 보려면 다음 명령을 입력합니다.

    $ oc describe build <build_name>

2.7.6. 빌드 로그에 액세스

웹 콘솔 또는 CLI를 사용하여 빌드 로그에 액세스할 수 있습니다.

프로세스

  • 빌드를 직접 사용하여 로그를 스트리밍하려면 다음 명령을 입력합니다.

    $ oc describe build <build_name>

2.7.6.1. BuildConfig 로그에 액세스

웹 콘솔 또는 CLI를 사용하여 BuildConfig 로그에 액세스할 수 있습니다.

프로세스

  • BuildConfig의 최신 빌드 로그를 스트리밍하려면 다음 명령을 입력합니다.

    $ oc logs -f bc/<buildconfig_name>

2.7.6.2. 특정 버전 빌드의 BuildConfig 로그에 액세스

웹 콘솔 또는 CLI를 사용하여 특정 버전 빌드의 BuildConfig 로그에 액세스할 수 있습니다.

프로세스

  • 특정 버전 빌드의 BuildConfig 로그를 스트리밍하려면 다음 명령을 입력합니다.

    $ oc logs --version=<number> bc/<buildconfig_name>

2.7.6.3. 로그 세부 정보 표시 활성화

BuildConfig에서 sourceStrategy 또는 dockerStrategy의 일부로 BUILD_LOGLEVEL 환경 변수를 전달하여 더 세부적인 출력을 제공할 수 있습니다.

참고

관리자는 env/BUILD_LOGLEVEL을 구성하여 전체 OpenShift Container Platform 인스턴스에 대한 기본 빌드 세부 정보 표시 수준을 설정할 수 있습니다. 이 기본값은 지정된 BuildConfigBUILD_LOGLEVEL을 지정하여 덮어쓸 수 있습니다. 명령줄에서 --build-logleveloc start-build로 전달하여 바이너리가 아닌 빌드에 더 높은 우선순위를 지정할 수 있습니다.

소스 빌드에 사용 가능한 로그 수준은 다음과 같습니다.

수준 0

assemble 스크립트를 실행하는 컨테이너의 출력과 발생한 모든 오류를 생성합니다. 이는 기본값입니다.

수준 1

실행된 프로세스에 대한 기본 정보를 생성합니다.

수준 2

실행된 프로세스에 대한 매우 자세한 정보를 생성합니다.

수준 3

실행된 프로세스에 대한 자세한 정보와 아카이브 콘텐츠 목록을 생성합니다.

수준 4

현재는 수준 3과 동일한 정보를 제공합니다.

수준 5

위 수준에서 언급한 모든 정보를 생성하고 Docker 내보내기 메시지도 제공합니다.

프로세스

  • 더 세부적인 출력을 제공하기 위해 BuildConfig에서 sourceStrategy 또는 dockerStrategy의 일부로 BUILD_LOGLEVEL 환경 변수를 전달합니다.

    sourceStrategy:
    ...
      env:
        - name: "BUILD_LOGLEVEL"
          value: "2" 1
    1
    이 값을 원하는 로그 수준으로 조정합니다.

2.8. 빌드 트리거 및 수정

다음 섹션에서는 빌드 후크를 사용하여 빌드를 트리거하고 수정하는 방법을 간략하게 설명합니다.

2.8.1. 빌드 트리거

BuildConfig를 정의할 때 BuildConfig를 실행해야 하는 상황을 제어하기 위해 트리거를 정의할 수 있습니다. 다음과 같은 빌드 트리거를 사용할 수 있습니다.

  • Webhook
  • 이미지 변경
  • 구성 변경

2.8.1.1. Webhook 트리거

Webhook 트리거를 사용하면 OpenShift Container Platform API 끝점에 요청을 전송하여 새 빌드를 트리거할 수 있습니다. 이러한 트리거는 GitHub, GitLab, Bitbucket 또는 Generic Webhook를 사용하여 정의할 수 있습니다.

현재는 OpenShift Container Platform Webhook에서 Git 기반 SCM(소스 코드 관리) 시스템 각각에 대해 유사한 버전의 내보내기 이벤트만 지원합니다. 기타 모든 이벤트 유형은 무시됩니다.

내보내기 이벤트가 처리되면 OpenShift Container Platform 컨트롤 플레인 호스트에서 이벤트 내부의 분기 참조가 해당 BuildConfig 의 분기 참조와 일치하는지 확인합니다. 일치하는 경우 OpenShift Container Platform 빌드의 Webhook 이벤트에 언급된 커밋 참조가 정확한지 확인합니다. 일치하지 않는 경우에는 빌드가 트리거되지 않습니다.

참고

oc new-appoc new-build는 GitHub 및 Generic Webhook 트리거를 자동으로 생성하지만 필요한 다른 Webhook 트리거는 수동으로 추가해야 합니다. 트리거 설정을 통해 트리거를 수동으로 추가할 수 있습니다.

모든 Webhook에 대해 WebHookSecretKey라는 키와 Webhook를 호출할 때 제공할 값이 되는 값을 사용하여 보안을 정의해야 합니다. 그런 다음 Webhook 정의에서 보안을 참조해야 합니다. 보안을 사용하면 URL의 고유성이 보장되어 다른 사용자가 빌드를 트리거할 수 없습니다. 키 값은 Webhook 호출 중 제공되는 보안과 비교됩니다.

예를 들면 아래 예제에는 mysecret이라는 보안에 대한 참조가 포함된 GitHub Webhook가 있습니다.

type: "GitHub"
github:
  secretReference:
    name: "mysecret"

그런 다음 보안이 다음과 같이 정의됩니다. 보안 값은 Secret 오브젝트의 data 필드에 필요하므로 base64로 인코딩됩니다.

- kind: Secret
  apiVersion: v1
  metadata:
    name: mysecret
    creationTimestamp:
  data:
    WebHookSecretKey: c2VjcmV0dmFsdWUx
2.8.1.1.1. GitHub Webhook 사용

GitHub Webhook는 리포지토리를 업데이트할 때 GitHub에서 생성하는 호출을 처리합니다. 트리거를 정의할 때는 보안을 지정해야 하는데, 보안은 Webhook를 구성할 때 GitHub에 제공하는 URL의 일부입니다.

GitHub Webhook 정의의 예:

type: "GitHub"
github:
  secretReference:
    name: "mysecret"
참고

Webhook 트리거 구성에 사용되는 보안은 GitHub UI에서 Webhook를 구성할 때 표시되는 secret 필드와 동일하지 않습니다. 전자는 Webhook URL을 고유하고 예측하기 어렵게 만들고, 후자는 X-Hub-Signature 헤더로 전송되는 본문의 HMAC 16진수 다이제스트를 생성하는 데 사용되는 선택적 문자열 필드입니다.

페이로드 URL은 oc describe 명령에 의해 GitHub Webhook URL로 반환되고(Webhook URL 표시 참조) 다음과 같이 구성됩니다.

출력 예

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/github

사전 요구 사항

  • GitHub 리포지토리에서 BuildConfig를 생성합니다.

프로세스

  1. GitHub Webhook를 구성하려면 다음을 수행합니다.

    1. GitHub 리포지토리에서 BuildConfig를 생성한 후 다음을 실행합니다.

      $ oc describe bc/<name-of-your-BuildConfig>

      그러면 다음과 같은 Webhook GitHub URL이 생성됩니다.

      출력 예

      <https://api.starter-us-east-1.openshift.com:443/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/github

    2. GitHub 웹 콘솔에서 이 URL을 잘라내어 GitHub에 붙여넣습니다.
    3. GitHub 리포지토리의 설정 → Webhook에서 Webhook 추가를 선택합니다.
    4. URL 출력을 페이로드 URL 필드에 붙여넣습니다.
    5. GitHub의 기본 application/x-www-form-urlencoded에서 콘텐츠 유형application/json으로 변경합니다.
    6. Webhook 추가를 클릭합니다.

      GitHub에서 Webhook가 성공적으로 구성되었음을 알리는 메시지가 표시됩니다.

      이제 GitHub 리포지토리에 변경 사항을 내보내면 새 빌드가 자동으로 시작되고 빌드가 성공하면 새 배포가 시작됩니다.

      참고

      Gogs는 GitHub와 동일한 Webhook 페이로드 형식을 지원합니다. 따라서 Gogs 서버를 사용하는 경우 BuildConfig에 GitHub Webhook 트리거를 정의하고 Gogs 서버에서도 트리거할 수 있습니다.

  2. payload.json과 같이 유효한 JSON 페이로드가 포함된 파일의 경우 curl을 사용하여 Webhook를 수동으로 트리거할 수 있습니다.

    $ curl -H "X-GitHub-Event: push" -H "Content-Type: application/json" -k -X POST --data-binary @payload.json https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/github

    -k 인수는 API 서버에 올바르게 서명된 인증서가 없는 경우에만 필요합니다.

참고

GitHub Webhook 이벤트의 ref 값이 BuildConfig 리소스의 source.git 필드에 지정된 참조 값과 일치하는 경우에만 빌드가 트리거됩니다.

추가 리소스

2.8.1.1.2. GitLab Webhook 사용

GitLab Webhook는 리포지토리를 업데이트할 때 GitLab에서 생성하는 호출을 처리합니다. GitHub 트리거와 마찬가지로 보안을 지정해야 합니다. 다음 예제는 BuildConfig 내의 트리거 정의 YAML입니다.

type: "GitLab"
gitlab:
  secretReference:
    name: "mysecret"

페이로드 URL은 oc describe 명령을 통해 GitLab Webhook URL로 반환되고 다음과 같이 구조화됩니다.

출력 예

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/gitlab

프로세스

  1. GitLab Webhook를 구성하려면 다음을 수행합니다.

    1. Webhook URL을 가져오도록 BuildConfig를 지정합니다.

      $ oc describe bc <name>
    2. Webhook URL을 복사하여 <secret>을 보안 값으로 교체합니다.
    3. GitLab 설정 지침에 따라 Webhook URL을 GitLab 리포지토리 설정에 붙여넣습니다.
  2. payload.json과 같이 유효한 JSON 페이로드가 포함된 파일의 경우 curl을 사용하여 Webhook를 수동으로 트리거할 수 있습니다.

    $ curl -H "X-GitLab-Event: Push Hook" -H "Content-Type: application/json" -k -X POST --data-binary @payload.json https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/gitlab

    -k 인수는 API 서버에 올바르게 서명된 인증서가 없는 경우에만 필요합니다.

2.8.1.1.3. Bitbucket Webhook 사용

Bitbucket Webhook는 리포지토리가 업데이트될 때 Bitbucket에서 만든 호출을 처리합니다. 이전 트리거와 유사하게 보안을 지정해야 합니다. 다음 예제는 BuildConfig 내의 트리거 정의 YAML입니다.

type: "Bitbucket"
bitbucket:
  secretReference:
    name: "mysecret"

페이로드 URL은 oc describe 명령을 통해 Bitbucket Webhook URL로 반환되고 다음과 같이 구조화됩니다.

출력 예

https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/bitbucket

프로세스

  1. Bitbucket Webhook를 구성하려면 다음을 수행합니다.

    1. Webhook URL을 가져오도록 'BuildConfig'를 지정합니다.

      $ oc describe bc <name>
    2. Webhook URL을 복사하여 <secret>을 보안 값으로 교체합니다.
    3. Bitbucket 설정 지침에 따라 Webhook URL을 Bitbucket 리포지토리 설정에 붙여넣습니다.
  2. payload.json과 같이 유효한 JSON 페이로드가 포함된 파일의 경우 curl을 사용하여 Webhook를 수동으로 트리거할 수 있습니다.

    $ curl -H "X-Event-Key: repo:push" -H "Content-Type: application/json" -k -X POST --data-binary @payload.json https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/bitbucket

    -k 인수는 API 서버에 올바르게 서명된 인증서가 없는 경우에만 필요합니다.

2.8.1.1.4. 일반 Webhook 사용

일반 Webhook는 웹 요청을 수행할 수 있는 모든 시스템에서 호출합니다. 다른 Webhook와 마찬가지로 보안을 지정해야 하는데 보안은 호출자가 빌드를 트리거하는 데 사용해야 하는 URL의 일부입니다. 보안을 사용하면 URL의 고유성이 보장되어 다른 사용자가 빌드를 트리거할 수 없습니다. 다음은 BuildConfig 내 트리거 정의 YAML의 예입니다.

type: "Generic"
generic:
  secretReference:
    name: "mysecret"
  allowEnv: true 1
1
일반 Webhook에서 환경 변수를 전달하도록 허용하려면 true로 설정합니다.

프로세스

  1. 호출자를 설정하기 위해 빌드에 대한 일반 Webhook 끝점의 URL을 호출 시스템에 제공합니다.

    출력 예

    https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/generic

    호출자는 Webhook를 POST 작업으로 호출해야 합니다.

  2. Webhook를 수동으로 호출하려면 curl을 사용하면 됩니다.

    $ curl -X POST -k https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/generic

    HTTP 동사를 POST로 설정해야 합니다. 비보안 -k 플래그는 인증서 검증을 무시하도록 지정됩니다. 클러스터에 올바르게 서명된 인증서가 있는 경우 이 두 번째 플래그는 필요하지 않습니다.

    끝점은 다음 형식을 사용하여 선택적 페이로드를 허용할 수 있습니다.

    git:
      uri: "<url to git repository>"
      ref: "<optional git reference>"
      commit: "<commit hash identifying a specific git commit>"
      author:
        name: "<author name>"
        email: "<author e-mail>"
      committer:
        name: "<committer name>"
        email: "<committer e-mail>"
      message: "<commit message>"
    env: 1
       - name: "<variable name>"
         value: "<variable value>"
    1
    BuildConfig 환경 변수와 유사하게 여기에 정의된 환경 변수도 빌드에 사용할 수 있습니다. 이러한 변수가 BuildConfig 환경 변수와 충돌하는 경우 해당 변수가 우선합니다. 기본적으로 Webhook에서 전달하는 환경 변수는 무시됩니다. 이 동작을 활성화하려면 Webhook 정의에서 allowEnv 필드를 true로 설정합니다.
  3. curl을 사용하여 이 페이로드를 전달하려면 payload_file.yaml이라는 파일에 페이로드를 정의하고 다음을 실행합니다.

    $ curl -H "Content-Type: application/yaml" --data-binary @payload_file.yaml -X POST -k https://<openshift_api_host:port>/apis/build.openshift.io/v1/namespaces/<namespace>/buildconfigs/<name>/webhooks/<secret>/generic

    인수는 위 예제와 동일하고 헤더와 페이로드가 추가되었습니다. -H 인수는 페이로드 형식에 따라 Content-Type 헤더를 application/yaml 또는 application/json으로 설정합니다. --data-binary 인수는 POST 요청을 사용하여 온전한 새 줄로 바이너리 페이로드를 보내는 데 사용됩니다.

참고

OpenShift Container Platform에서는 유효하지 않은 요청 페이로드(예: 유효하지 않은 콘텐츠 유형, 구문 분석할 수 없거나 유효하지 않은 콘텐츠 등)가 제공되는 경우에도 일반 Webhook에서 빌드를 트리거할 수 있습니다. 이 동작은 이전 버전과의 호환성을 위해 유지됩니다. 유효하지 않은 요청 페이로드가 제공되면 OpenShift Container Platform에서 HTTP 200 OK 응답의 일부로 JSON 형식의 알림을 반환합니다.

2.8.1.1.5. Webhook URL 표시

다음 명령을 사용하여 빌드 구성과 관련된 Webhook URL을 표시할 수 있습니다. 이 명령에서 Webhook URL을 표시하지 않으면 해당 빌드 구성에 Webhook 트리거가 정의되지 않습니다.

프로세스

  • BuildConfig와 관련된 Webhook URL을 표시하려면 다음을 실행합니다.
$ oc describe bc <name>

2.8.1.2. 이미지 변경 트리거 사용

개발자는 기본 이미지가 변경될 때마다 자동으로 실행되도록 빌드를 구성할 수 있습니다.

이미지 변경 트리거를 사용하여 업스트림 이미지의 새 버전을 사용할 수 있을 때 빌드를 자동으로 호출할 수 있습니다. 예를 들어 빌드가 RHEL 이미지를 기반으로 하는 경우 해당 빌드를 트리거하여 RHEL 이미지를 변경할 때마다 실행할 수 있습니다. 결과적으로 애플리케이션 이미지는 항상 최신 RHEL 기본 이미지에서 실행됩니다.

참고

v1 컨테이너 레지스트리의 컨테이너 이미지를 가리키는 이미지 스트림은 이미지 스트림 태그를 사용할 수 있을 때 빌드를 한 번만 트리거하고 후속 이미지 업데이트에서는 빌드를 트리거하지 않습니다. 이는 v1 컨테이너 레지스트리에서 고유하게 확인할 수 있는 이미지가 없기 때문입니다.

절차

  1. 트리거로 사용하려는 업스트림 이미지를 가리키는 ImageStream을 정의합니다.

    kind: "ImageStream"
    apiVersion: "v1"
    metadata:
      name: "ruby-20-centos7"

    이는 <system-registry>/<namespace>/ruby-20-centos7에 있는 컨테이너 이미지 리포지토리에 연결된 이미지 스트림을 정의합니다. <system-registry>는 OpenShift Container Platform에서 실행 중인 docker-registry라는 이름을 사용하여 서비스로 정의됩니다.

  2. 이미지 스트림이 빌드의 기본 이미지인 경우 빌드 전략의 from 필드를 ImageStream을 가리키도록 설정합니다.

    strategy:
      sourceStrategy:
        from:
          kind: "ImageStreamTag"
          name: "ruby-20-centos7:latest"

    이 경우 sourceStrategy 정의에서는 이 네임스페이스 내에 있는 ruby-20-centos7이라는 이미지 스트림의 latest 태그를 사용합니다.

  3. ImageStreams를 가리키는 하나 이상의 트리거를 사용하여 빌드를 정의합니다.

    type: "ImageChange" 1
    imageChange: {}
    type: "ImageChange" 2
    imageChange:
      from:
        kind: "ImageStreamTag"
        name: "custom-image:latest"
    1
    빌드 전략의 from 필드에 정의된 ImageStreamTag를 모니터링하는 이미지 변경 트리거입니다. 여기에서 imageChange 오브젝트는 비어 있어야 합니다.
    2
    임의의 이미지 스트림을 모니터링하는 이미지 변경 트리거입니다. 이 경우 imageChange 부분에 모니터링할 ImageStreamTag를 참조하는 from 필드를 포함해야 합니다.

전략 이미지 스트림에 이미지 변경 트리거를 사용하는 경우 생성된 빌드에 해당 태그와 일치하는 최신 이미지를 가리키는 변경 불가능한 Docker 태그가 제공됩니다. 이 새 이미지 참조는 빌드에 대해 실행할 때 전략에서 사용합니다.

전략 이미지 스트림을 참조하지 않는 다른 이미지 변경 트리거의 경우 새 빌드가 시작되지만 빌드 전략은 고유 이미지 참조로 업데이트되지 않습니다.

이 예제에는 전략에 대한 이미지 변경 트리거가 있으므로 결과 빌드는 다음과 같습니다.

strategy:
  sourceStrategy:
    from:
      kind: "DockerImage"
      name: "172.30.17.3:5001/mynamespace/ruby-20-centos7:<immutableid>"

그 결과 트리거된 빌드는 리포지토리로 방금 푸시된 새 이미지를 사용하고 동일한 입력을 사용하여 빌드를 다시 실행할 수 있습니다.

이미지 변경 트리거를 일시 정지하여 빌드를 시작하기 전에 참조 이미지 스트림에 대한 다양한 변경 사항을 허용할 수 있습니다. 처음에 ImageChangeTriggerBuildConfig에 추가할 때 빌드가 즉시 트리거되지 않도록 paused 특성을 true로 설정할 수도 있습니다.

type: "ImageChange"
imageChange:
  from:
    kind: "ImageStreamTag"
    name: "custom-image:latest"
  paused: true

모든 Strategy 유형의 이미지 필드를 설정하는 것 외에 사용자 지정 빌드의 경우 OPENSHIFT_CUSTOM_BUILD_BASE_IMAGE 환경 변수도 확인합니다. 존재하지 않는 경우 변경 불가능한 이미지 참조를 사용하여 생성됩니다. 존재하는 경우 변경 불가능한 이미지 참조를 사용하여 업데이트됩니다.

Webhook 트리거 또는 수동 요청으로 인해 빌드가 트리거되는 경우 생성된 빌드는 Strategy에서 참조한 ImageStream의 확인된 <immutableid>를 사용합니다. 그러면 쉽게 재현할 수 있도록 일관된 이미지 태그를 사용하여 빌드를 수행할 수 있습니다.

2.8.1.3. 빌드의 이미지 변경 트리거 식별

개발자는 이미지 변경 트리거가 있는 경우 마지막 빌드를 시작한 이미지 변경 사항을 확인할 수 있습니다. 이는 빌드를 디버깅하거나 문제 해결하는 데 유용할 수 있습니다.

BuildConfig

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
  name: bc-ict-example
  namespace: bc-ict-example-namespace
spec:

# ...

  triggers:
  - imageChange:
      from:
        kind: ImageStreamTag
        name: input:latest
        namespace: bc-ict-example-namespace
  - imageChange:
      from:
        kind: ImageStreamTag
        name: input2:latest
        namespace: bc-ict-example-namespace
    type: ImageChange
status:
  imageChangeTriggers:
  - from:
      name: input:latest
      namespace: bc-ict-example-namespace
    lastTriggerTime: "2021-06-30T13:47:53Z"
    lastTriggeredImageID: image-registry.openshift-image-registry.svc:5000/bc-ict-example-namespace/input@sha256:0f88ffbeb9d25525720bfa3524cb1bf0908b7f791057cf1acfae917b11266a69
  - from:
      name: input2:latest
      namespace: bc-ict-example-namespace
    lastTriggeredImageID:  image-registry.openshift-image-registry.svc:5000/bc-ict-example-namespace/input2@sha256:0f88ffbeb9d25525720bfa3524cb2ce0908b7f791057cf1acfae917b11266a69

  lastVersion: 1

참고

이 예제에서는 이미지 변경 트리거와 관련이 없는 요소를 생략합니다.

사전 요구 사항

  • 여러 이미지 변경 트리거를 구성했습니다. 이러한 트리거는 하나 이상의 빌드를 트리거했습니다.

절차

  1. buildConfig.status.imageChangeTriggers에서 최신 타임 스탬프가 있는 lastTriggerTime을 식별합니다.

    ImageChangeTriggerStatus

    Then you use the `name` and `namespace` from that build to find the corresponding image change trigger in `buildConfig.spec.triggers`.
  2. imageChangeTriggers에서 타임스탬프를 비교하여 최신 정보를 식별합니다.

이미지 변경 트리거

빌드 구성에서 buildConfig.spec.triggers는 빌드 트리거 정책인 BuildTriggerPolicy의 배열입니다.

BuildTriggerPolicy에는 type 필드와 포인터 필드 세트가 있습니다. 각 포인터 필드는 type 필드에 허용된 값 중 하나에 해당합니다. 따라서 BuildTriggerPolicy를 하나의 포인터 필드로만 설정할 수 있습니다.

이미지 변경 트리거의 경우 type 값은 ImageChange입니다. 그런 다음 imageChange 필드는 다음 필드가 있는 ImageChangeTrigger 오브젝트의 포인터입니다.

  • lastTriggeredImageID: 예제에 표시되지 않는 이 필드는 OpenShift Container Platform 4.8에서 더 이상 사용되지 않으며 향후 릴리스에서 무시됩니다. 이 BuildConfig에서 마지막 빌드가 트리거된 경우 ImageStreamTag에 대한 확인된 이미지 참조가 포함됩니다.
  • paused: 예제에 표시되지 않는 이 필드를 사용하여 이 특정 이미지 변경 트리거를 일시적으로 비활성화할 수 있습니다.
  • from: 이 필드를 사용하여 이 이미지 변경 트리거를 구동하는 ImageStreamTag를 참조합니다. 유형은 핵심 Kubernetes 유형인 OwnerReference입니다.

from 필드에는 다음과 같은 참고 필드가 있습니다. kind: 이미지 변경 트리거의 경우 지원되는 유일한 값은 ImageStreamTag입니다. namespace:이 필드를 사용하여 ImageStreamTag의 네임스페이스를 지정합니다. ** name:이 필드를 사용하여 ImageStreamTag를 지정합니다.

이미지 변경 트리거 상태

빌드 구성에서 buildConfig.status.imageChangeTriggersImageChangeTriggerStatus 요소의 배열입니다. 각 ImageChangeTriggerStatus 요소에는 앞의 예에서 표시된 from, lastTriggeredImageID 및 lastTriggerTime 요소가 포함됩니다.

가장 최근의 lastTriggerTime이 있는 ImageChangeTriggerStatus가 가장 최근 빌드를 트리거했습니다. 해당 namenamespace를 사용하여 빌드를 트리거한 buildConfig.spec.triggers에서 이미지 변경 트리거를 식별합니다.

가장 최근 타임스탬프를 사용하는 lastTriggerTime은 마지막 빌드의 ImageChangeTriggerStatus를 나타냅니다. 이 ImageChangeTriggerStatus에는 빌드를 트리거한 buildConfig.spec.triggers의 이미지 변경 트리거와 동일한 namenamespace가 있습니다.

2.8.1.4. 구성 변경 트리거

구성 변경 트리거를 사용하면 새 BuildConfig가 생성되는 즉시 빌드가 자동으로 호출됩니다.

다음은 BuildConfig 내 트리거 정의 YAML의 예입니다.

  type: "ConfigChange"
참고

구성 변경 트리거는 현재 새 BuildConfig를 생성할 때만 작동합니다. 향후 릴리스에서는 BuildConfig가 업데이트될 때마다 구성 변경 트리거도 빌드를 시작할 수 있습니다.

2.8.1.4.1. 트리거 수동 설정

oc set triggers를 사용하여 빌드 구성에서 트리거를 추가 및 제거할 수 있습니다.

프로세스

  • 빌드 구성에 GitHub Webhook 트리거를 설정하려면 다음을 사용합니다.

    $ oc set triggers bc <name> --from-github
  • 이미지 변경 트리거를 설정하려면 다음을 사용합니다.

    $ oc set triggers bc <name> --from-image='<image>'
  • 트리거를 제거하려면 --remove를 추가합니다.

    $ oc set triggers bc <name> --from-bitbucket --remove
참고

Webhook 트리거가 이미 있는 경우 해당 트리거를 다시 추가하면 Webhook 보안이 다시 생성됩니다.

자세한 내용은 다음을 실행하여 도움말 문서를 참조하십시오.

$ oc set triggers --help

2.8.2. 빌드 후크

빌드 후크를 사용하면 빌드 프로세스에 동작을 삽입할 수 있습니다.

BuildConfig 오브젝트의 postCommit 필드는 빌드 출력 이미지를 실행하는 임시 컨테이너 내에서 명령을 실행합니다. 후크는 이미지의 마지막 계층을 커밋한 직후 그리고 이미지를 레지스트리로 푸시되기 전에 실행됩니다.

현재 작업 디렉터리는 이미지의 WORKDIR로 설정되어 있으며 이는 컨테이너 이미지의 기본 작업 디렉터리입니다. 대부분의 이미지에서 이 디렉터리는 소스 코드가 있는 위치입니다.

스크립트 또는 명령에서 0이 아닌 종료 코드를 반환하거나 임시 컨테이너를 시작하지 못하는 경우 후크가 실패합니다. 후크가 실패하면 빌드가 실패로 표시되고 이미지를 레지스트리로 푸쉬하지 않습니다. 실패 이유는 빌드 로그를 확인하여 검사할 수 있습니다.

빌드 후크를 사용하면 빌드를 완료로 표시하고 레지스트리에 이미지를 제공하기 전에 단위 테스트를 실행하여 이미지를 확인할 수 있습니다. 모든 테스트를 통과하고 테스트 실행기에서 종료 코드 0을 반환하면 빌드가 성공으로 표시됩니다. 실패한 테스트가 있는 경우 빌드가 실패로 표시됩니다. 어떠한 경우든 빌드 로그에는 테스트 실행기의 출력이 포함되므로 실패한 테스트를 확인할 수 있습니다.

postCommit 후크는 테스트 실행뿐만 아니라 다른 명령에도 사용할 수 있습니다. 이 후크는 임시 컨테이너에서 실행되기 때문에 후크에 의한 변경 사항은 지속되지 않습니다. 즉 후크를 실행해도 최종 이미지에는 영향을 미치지 않습니다. 이러한 동작으로 인해 특히 자동으로 삭제되어 최종 이미지에 존재하지 않는 테스트 종속 항목을 설치하고 사용할 수 있습니다.

2.8.2.1. post-commit 빌드 후크 구성

빌드 후 후크를 구성하는 방법은 다양합니다. 다음 예제에서 모든 양식은 동일하고 bundle exec rake test --verbose를 실행합니다.

프로세스

  • 쉘 스크립트:

    postCommit:
      script: "bundle exec rake test --verbose"

    script 값은 /bin/sh -ic를 사용하여 실행할 쉘 스크립트입니다. 쉘 스크립트가 빌드 후크를 실행하는 데 적합한 경우 이 값을 사용합니다. 예를 들면 위와 같이 단위 테스트를 실행하는 경우입니다. 이미지 항목 지점을 제어하려는 경우 또는 이미지에 /bin/sh가 없는 경우 command 및/또는 args를 사용합니다.

    참고

    추가 -i 플래그는 CentOS 및 RHEL 이미지 작업 환경을 개선하기 위해 도입되었으며 향후 릴리스에서 제거될 수 있습니다.

  • 이미지 진입점으로서의 명령:

    postCommit:
      command: ["/bin/bash", "-c", "bundle exec rake test --verbose"]

    이 양식에서 command는 실행할 명령에 해당하며 Dockerfile 참조에 설명된 exec 형식의 이미지 진입점을 덮어씁니다. 이 명령은 이미지에 /bin/sh가 없거나 쉘을 사용하지 않는 경우 필요합니다. 다른 모든 경우에는 script를 사용하는 것이 더 편리할 수 있습니다.

  • 인수가 있는 명령:

    postCommit:
      command: ["bundle", "exec", "rake", "test"]
      args: ["--verbose"]

    이 형식은 command에 인수를 추가하는 것과 동일합니다.

참고

scriptcommand를 동시에 제공하면 유효하지 않은 빌드 후크가 생성됩니다.

2.8.2.2. CLI를 사용하여 post-commit 빌드 후크 설정

oc set build-hook 명령은 빌드 설정에 빌드 후크를 설정하는 데 사용할 수 있습니다.

프로세스

  1. 명령을 post-commit 빌드 후크로 설정하려면 다음을 실행합니다.

    $ oc set build-hook bc/mybc \
        --post-commit \
        --command \
        -- bundle exec rake test --verbose
  2. 스크립트를 post-commit 빌드 후크로 설정하려면 다음을 실행합니다.

    $ oc set build-hook bc/mybc --post-commit --script="bundle exec rake test --verbose"

2.9. 고급 빌드 수행

다음 섹션에서는 빌드 리소스 및 최대 기간 설정, 노드에 빌드 할당, 빌드 연결, 빌드 정리, 빌드 실행 정책 등 고급 빌드 작업에 대한 지침을 제공합니다.

2.9.1. 빌드 리소스 설정

기본적으로 빌드는 Pod에서 메모리 및 CPU와 같이 바인딩되지 않은 리소스를 사용하여 완료합니다. 이러한 리소스는 제한될 수 있습니다.

프로세스

다음 두 가지 방법으로 리소스 사용을 제한할 수 있습니다.

  • 프로젝트의 기본 컨테이너 제한에 리소스 제한을 지정하여 리소스 사용 제한을 제한합니다.
  • 리소스 제한을 빌드 구성의 일부로 지정하여 리소스 사용을 제한합니다. **다음 예제에서는 각 resources, cpu, memory 매개변수가 선택 사항입니다.

    apiVersion: "v1"
    kind: "BuildConfig"
    metadata:
      name: "sample-build"
    spec:
      resources:
        limits:
          cpu: "100m" 1
          memory: "256Mi" 2
    1
    cpu는 CPU 단위입니다. 100m은 0.1 CPU 단위(100 * 1e-3)를 나타냅니다.
    2
    memory는 바이트 단위입니다. 256Mi는 268435456바이트(256 * 2 ^ 20)를 나타냅니다.

    그러나 프로젝트에 할당량을 정의한 경우 다음 두 항목 중 하나가 필요합니다.

    • requests가 명시적으로 설정된 resources 섹션:

      resources:
        requests: 1
          cpu: "100m"
          memory: "256Mi"
      1
      requests 오브젝트에 할당량의 리소스 목록에 해당하는 리소스 목록이 포함되어 있습니다.
    • 프로젝트에 정의된 제한 범위: LimitRange 오브젝트의 기본값은 빌드 프로세스 중 생성된 Pod에 적용됩니다.

      그러지 않으면 할당량을 충족하지 못하여 빌드 Pod 생성이 실패합니다.

2.9.2. 최대 기간 설정

BuildConfig 오브젝트를 정의할 때는 completionDeadlineSeconds 필드를 설정하여 최대 기간을 정의할 수 있습니다. 이는 초 단위로 지정되며 기본적으로 설정되어 있지 않습니다. 설정하지 않으면 최대 기간이 적용되지 않습니다.

최대 기간은 시스템에서 빌드 Pod를 예약하는 시점부터 계산되며 빌더 이미지를 가져오는 데 필요한 시간을 포함하여 활성화할 수 있는 기간을 정의합니다. 지정된 타임아웃에 도달하면 OpenShift Container Platform에서 빌드를 종료합니다.

프로세스

  • 최대 기간을 설정하려면 BuildConfig에서 completionDeadlineSeconds를 지정합니다. 다음 예제에서는 completionDeadlineSeconds 필드를 30분으로 지정하는 BuildConfig의 일부를 보여줍니다.

    spec:
      completionDeadlineSeconds: 1800
참고

파이프라인 전략 옵션에서는 이 설정이 지원되지 않습니다.

2.9.3. 특정 노드에 빌드 할당

빌드 구성의 nodeSelector 필드에 라벨을 지정하면 빌드가 특정 노드에서 실행되도록 타겟을 지정할 수 있습니다. nodeSelector 값은 빌드 Pod를 예약할 때 Node 라벨과 일치하는 일련의 키-값 쌍입니다.

nodeSelector 값은 클러스터 전체 기본값 및 덮어쓰기 값으로도 제어할 수 있습니다. 기본값은 빌드 구성에서 nodeSelector에 키-값 쌍을 정의하지 않고 명시적으로 비어 있는 맵 값(nodeSelector:{})도 정의하지 않는 경우에만 적용됩니다. 덮어쓰기 값은 키에 따라 빌드 구성의 값을 대체합니다.

참고

지정된 NodeSelector가 해당 라벨이 있는 노드와 일치하지 않는 경우 빌드는 계속 Pending 상태로 무기한 유지됩니다.

프로세스

  • BuildConfignodeSelector 필드에 라벨을 할당하여 특정 노드에서 실행할 빌드를 할당합니다. 예를 들면 다음과 같습니다.

    apiVersion: "v1"
    kind: "BuildConfig"
    metadata:
      name: "sample-build"
    spec:
      nodeSelector:1
        key1: value1
        key2: value2
    1
    이 빌드 구성과 관련된 빌드는 key1=value2key2=value2 라벨이 있는 노드에서만 실행됩니다.

2.9.4. 연결된 빌드

Go, C, C++, Java와 같이 컴파일된 언어의 경우 애플리케이션 이미지에서 컴파일하는 데 필요한 종속 항목을 포함하면 이미지 크기가 늘어나거나 악용될 수 있는 취약점이 발생할 수 있습니다.

이러한 문제를 방지하기 위해 두 개의 빌드를 함께 연결할 수 있습니다. 하나는 컴파일된 아티팩트를 생성하는 빌드이고 다른 하나는 해당 아티팩트를 실행하는 별도의 이미지에 아티팩트를 배치하는 빌드입니다.

다음 예제에서는 S2I(source-to-image) 빌드가 Docker 빌드와 결합되어 아티팩트를 컴파일하고 해당 아티팩트는 별도의 런타임 이미지에 배치됩니다.

참고

이 예제에서는 S2I 빌드와 Docker 빌드를 연결하지만 첫 번째 빌드에서는 원하는 아티팩트를 포함하는 이미지를 생성하는 모든 전략을 사용할 수 있고, 두 번째 빌드에서는 이미지의 입력 콘텐츠를 소비하는 모든 전략을 사용할 수 있습니다.

첫 번째 빌드에서는 애플리케이션 소스를 가져와서 WAR 파일이 포함된 이미지를 생성합니다. 이미지는 artifact-image 이미지 스트림으로 푸쉬합니다. 출력 아티팩트의 경로는 사용된 S2I 빌더의 assemble 스크립트에 따라 달라집니다. 다음 예제의 경우 /wildfly/standalone/deployments/ROOT.war로 출력됩니다.

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
  name: artifact-build
spec:
  output:
    to:
      kind: ImageStreamTag
      name: artifact-image:latest
  source:
    git:
      uri: https://github.com/openshift/openshift-jee-sample.git
      ref: "master"
  strategy:
    sourceStrategy:
      from:
        kind: ImageStreamTag
        name: wildfly:10.1
        namespace: openshift

두 번째 빌드에서는 이미지 소스와 첫 번째 빌드의 출력 이미지 내부에 있는 WAR 파일에 대한 경로를 사용합니다. 인라인 dockerfile은 해당 WAR 파일을 런타임 이미지에 복사합니다.

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
  name: image-build
spec:
  output:
    to:
      kind: ImageStreamTag
      name: image-build:latest
  source:
    dockerfile: |-
      FROM jee-runtime:latest
      COPY ROOT.war /deployments/ROOT.war
    images:
    - from: 1
        kind: ImageStreamTag
        name: artifact-image:latest
      paths: 2
      - sourcePath: /wildfly/standalone/deployments/ROOT.war
        destinationDir: "."
  strategy:
    dockerStrategy:
      from: 3
        kind: ImageStreamTag
        name: jee-runtime:latest
  triggers:
  - imageChange: {}
    type: ImageChange
1
from은 Docker 빌드에 이전 빌드의 타겟이었던 artifact-image 이미지 스트림의 이미지 출력이 포함되어야 함을 나타냅니다.
2
paths는 현재 Docker 빌드에 포함할 대상 이미지의 경로를 지정합니다.
3
런타임 이미지는 Docker 빌드의 소스 이미지로 사용됩니다.

이 설정으로 인해 두 번째 빌드의 출력 이미지에 WAR 파일을 생성하는 데 필요한 빌드 툴을 포함하지 않아도 됩니다. 또한 두 번째 빌드에는 이미지 변경 트리거가 포함되어 있기 때문에 첫 번째 빌드가 실행되어 바이너리 아티팩트가 포함된 새 이미지를 생성할 때마다 두 번째 빌드가 자동으로 트리거되어 해당 아티팩트가 포함된 런타임 이미지를 생성합니다. 따라서 두 빌드 모두 두 단계가 있는 단일 빌드로 작동합니다.

2.9.5. 빌드 정리

기본적으로 라이프사이클이 완료된 빌드는 무기한 유지됩니다. 유지되는 이전 빌드의 수를 제한할 수 있습니다.

프로세스

  1. BuildConfigsuccessfulBuildsHistoryLimit 또는 failedBuildsHistoryLimit에 양의 정수 값을 제공하여 유지되는 이전 빌드의 수를 제한합니다. 예를 들면 다음과 같습니다.

    apiVersion: "v1"
    kind: "BuildConfig"
    metadata:
      name: "sample-build"
    spec:
      successfulBuildsHistoryLimit: 2 1
      failedBuildsHistoryLimit: 2 2
    1
    successfulBuildsHistoryLimitcompleted 상태의 빌드를 두 개까지 유지합니다.
    2
    failedBuildsHistoryLimitfailed, canceled 또는 error 상태의 빌드를 두 개까지 유지합니다.
  2. 다음 작업 중 하나로 빌드 정리를 트리거합니다.

    • 빌드 구성 업데이트
    • 빌드가 라이프사이클을 완료할 때까지 대기

빌드는 생성 타임스탬프에 따라 정렬되고 가장 오래된 빌드가 가장 먼저 정리됩니다.

참고

관리자는 'oc adm' 오브젝트 정리 명령을 사용하여 수동으로 빌드를 정리할 수 있습니다.

2.9.6. 빌드 정책 실행

빌드 실행 정책은 빌드 구성에서 생성한 빌드를 실행할 순서를 지정합니다. 이 작업은 Build 사양의 spec 섹션에서 runPolicy 필드 값을 변경하여 수행할 수 있습니다.

다음과 같이 기존 빌드 구성의 runPolicy 값을 변경할 수도 있습니다.

  • ParallelSerial 또는 SerialLatestOnly로 변경하고 이 구성에서 새 빌드를 트리거하면 직렬 빌드는 단독으로만 실행할 수 있으므로 모든 병렬 빌드가 완료될 때까지 새 빌드가 대기합니다.
  • SerialSerialLatestOnly로 변경하고 새 빌드를 트리거하면 현재 실행 중인 빌드와 최근 생성된 빌드를 제외하고 대기열에 있는 기존 빌드가 모두 취소됩니다. 최신 빌드는 다음에 실행됩니다.

2.10. 빌드에서 Red Hat 서브스크립션 사용

OpenShift Container Platform에서 권한이 있는 빌드를 실행하려면 다음 섹션을 사용합니다.

2.10.1. Red Hat Universal Base Image에 대한 이미지 스트림 태그 생성

빌드 내에서 Red Hat 서브스크립션을 사용하려면 UBI(Universal Base Image)를 참조하는 이미지 스트림 태그를 생성합니다.

클러스터의 모든 프로젝트에서 UBI를 사용할 수 있도록 하려면 openshift 네임스페이스에 이미지 스트림 태그를 추가합니다. 또는 UBI를 특정 프로젝트에서 사용할 수 있도록 하려면 해당 프로젝트에 이미지 스트림 태그를 추가합니다.

이미지 스트림 태그를 이러한 방식으로 사용할 때의 이점은 다른 사용자에게 가져오기 보안을 노출하지 않고 설치의 registry.redhat.io 자격 증명에 따라 UBI에 대한 액세스 권한을 부여할 수 있다는 점입니다. 이 방식은 각 개발자에게 각 프로젝트에서 registry.redhat.io 자격 증명을 사용하여 가져오기 보안을 설치하도록 요구하는 방식보다 편리합니다.

프로세스

  • openshift 네임스페이스에 ImageStreamTag를 생성하려면 모든 프로젝트의 개발자가 다음을 입력하면 됩니다.

    $ oc tag --source=docker registry.redhat.io/ubi8/ubi:latest ubi:latest -n openshift
    작은 정보

    또는 다음 YAML을 적용하여 openshift 네임스페이스에 ImageStreamTag 를 생성할 수 있습니다.

    apiVersion: image.openshift.io/v1
    kind: ImageStream
    metadata:
      name: ubi
      namespace: openshift
    spec:
      tags:
      - from:
          kind: DockerImage
          name: registry.redhat.io/ubi8/ubi:latest
        name: latest
        referencePolicy:
          type: Source
  • 단일 프로젝트에서 ImageStreamTag를 생성하려면 다음을 입력합니다.

    $ oc tag --source=docker registry.redhat.io/ubi8/ubi:latest ubi:latest
    작은 정보

    다음 YAML을 적용하여 단일 프로젝트에서 ImageStreamTag 를 생성할 수 있습니다.

    apiVersion: image.openshift.io/v1
    kind: ImageStream
    metadata:
      name: ubi
    spec:
      tags:
      - from:
          kind: DockerImage
          name: registry.redhat.io/ubi8/ubi:latest
        name: latest
        referencePolicy:
          type: Source

2.10.2. 서브스크립션 자격을 빌드 보안으로 추가

Red Hat 서브스크립션을 사용하여 콘텐츠를 설치하는 빌드에는 자격 키가 빌드 보안으로 포함되어야 합니다.

사전 요구 사항

서브스크립션을 통해 Red Hat 인타이틀먼트에 액세스할 수 있어야 합니다. 인타이틀먼트 보안은 Insights Operator에 의해 자동으로 생성됩니다.

작은 정보

RHEL(Red Hat Enterprise Linux) 7을 사용하여 인타이틀먼트 빌드를 수행하는 경우 yum 명령을 실행하기 전에 Dockerfile에 다음 지침이 있어야 합니다.

RUN rm /etc/rhsm-host

절차

  1. 빌드 구성의 Docker 전략에 빌드 볼륨으로 etc-pki-entitlement 보안을 추가합니다.

    strategy:
      dockerStrategy:
        from:
          kind: ImageStreamTag
          name: ubi:latest
        volumes:
        - name: etc-pki-entitlement
          mounts:
          - destinationPath: /etc/pki/entitlement
          source:
            type: Secret
            secret:
              secretName: etc-pki-entitlement

2.10.3. 서브스크립션 관리자를 사용한 빌드 실행

2.10.3.1. 서브스크립션 관리자를 사용하는 Docker 빌드

Docker 전략 빌드에서는 Subscription Manager를 사용하여 서브스크립션 콘텐츠를 설치할 수 있습니다.

사전 요구 사항

자격 키는 빌드 전략 볼륨으로 추가해야 합니다.

절차

다음을 예제 Dockerfile로 사용하여 서브스크립션 관리자를 통해 콘텐츠를 설치합니다.

FROM registry.redhat.io/ubi8/ubi:latest
RUN dnf search kernel-devel --showduplicates && \
        dnf install -y kernel-devel

2.10.4. Red Hat Satellite 서브스크립션을 사용하여 빌드 실행

2.10.4.1. 빌드에 Red Hat Satellite 구성 추가

Red Hat Satellite를 사용하여 콘텐츠를 설치하는 빌드에서는 Satellite 리포지토리에서 콘텐츠를 가져오기 위해 적절한 구성을 제공해야 합니다.

사전 요구 사항

  • Satellite 인스턴스에서 콘텐츠를 다운로드하는 yum 호환 리포지토리 구성 파일을 제공하거나 생성해야 합니다.

    리포지터리 구성 샘플

    [test-<name>]
    name=test-<number>
    baseurl = https://satellite.../content/dist/rhel/server/7/7Server/x86_64/os
    enabled=1
    gpgcheck=0
    sslverify=0
    sslclientkey = /etc/pki/entitlement/...-key.pem
    sslclientcert = /etc/pki/entitlement/....pem

절차

  1. Satellite 리포지토리 구성 파일이 포함된 ConfigMap을 생성합니다.

    $ oc create configmap yum-repos-d --from-file /path/to/satellite.repo
  2. Satellite 리포지토리 구성 및 인타이틀먼트 키를 빌드 볼륨으로 추가합니다.

    strategy:
      dockerStrategy:
        from:
          kind: ImageStreamTag
          name: ubi:latest
        volumes:
        - name: yum-repos-d
          mounts:
          - destinationPath: /etc/yum.repos.d
          source:
            type: ConfigMap
            configMap:
              name: yum-repos-d
        - name: etc-pki-entitlement
          mounts:
          - destinationPath: /etc/pki/entitlement
          source:
            type: Secret
            secret:
              secretName: etc-pki-entitlement

2.10.4.2. Red Hat Satellite 서브스크립션을 사용하는 Docker 빌드

Docker 전략 빌드에서는 Red Hat Satellite 리포지토리를 사용하여 서브스크립션 콘텐츠를 설치할 수 있습니다.

사전 요구 사항

  • 인타이틀먼트 키 및 Satellite 리포지토리 구성을 빌드 볼륨으로 추가했습니다.

절차

다음을 예제 Dockerfile로 사용하여 Satellite를 통해 콘텐츠를 설치합니다.

FROM registry.redhat.io/ubi8/ubi:latest
RUN dnf search kernel-devel --showduplicates && \
        dnf install -y kernel-devel

2.10.5. SharedSecret 오브젝트를 사용하여 권한이 있는 빌드 실행

다른 네임스페이스의 Secret 오브젝트에서 RHEL 인타이틀먼트를 안전하게 사용하는 하나의 네임스페이스에서 빌드를 구성하고 수행할 수 있습니다.

Build 오브젝트와 동일한 네임스페이스에서 서브스크립션 자격 증명으로 Secret 오브젝트를 생성하여 OpenShift 빌드의 RHEL 인타이틀먼트에 계속 액세스할 수 있습니다. 그러나 OpenShift Container Platform 4.10 이상에서는 OpenShift Container Platform 시스템 네임스페이스 중 하나에서 Secret 오브젝트에서 인증 정보 및 인증서에 액세스할 수 있습니다. Secret 오브젝트를 참조하는 SharedSecret CR(사용자 정의 리소스) 인스턴스의 CSI 볼륨 마운트를 사용하여 권한이 있는 빌드를 실행합니다.

이 절차에서는 OpenShift Container Platform 빌드에서 CSI 볼륨 마운트를 선언하는 데 사용할 수 있는 새로 도입된 Shared Resources CSI Driver 기능을 사용합니다. 또한 OpenShift Container Platform Insights Operator를 사용합니다.

중요

Shared Resources CSI Driver 및 Build CSI Volumes는 두 가지 기술 프리뷰 기능으로, Red Hat 제품 SLA(서비스 수준 계약)에서 지원되지 않으며 기능적으로 완전하지 않을 수 있습니다. 따라서 프로덕션 환경에서 사용하는 것은 권장하지 않습니다. 이러한 기능을 사용하면 향후 제품 기능을 조기에 이용할 수 있어 개발 과정에서 고객이 기능을 테스트하고 피드백을 제공할 수 있습니다.

Red Hat 기술 프리뷰 기능의 지원 범위에 대한 자세한 내용은 기술 프리뷰 기능 지원 범위를 참조하십시오.

Shared Resources CSI Driver 및 Build CSI Volumes 기능은 현재 기술 프리뷰 기능의 하위 집합인 TechPreviewNoUpgrade 기능 세트에도 속합니다. 테스트 클러스터에서 TechPreviewNoUpgrade 기능 세트를 활성화하면 프로덕션 클러스터에서 기능을 비활성화한 상태에서 완전히 테스트할 수 있습니다. 이 기능 세트를 활성화하면 실행 취소할 수 없으며 마이너 버전 업데이트를 방지할 수 있습니다. 이 기능 세트는 프로덕션 클러스터에서는 권장되지 않습니다. 다음 "추가 리소스" 섹션의 "기능 게이트를 사용하여 기술 프리뷰 기능 활성화"를 참조하십시오.

사전 요구 사항

  • 기능 게이트를 사용하여 설정된 TechPreviewNoUpgrade 기능을 활성화했습니다.
  • Insights Operator가 서브스크립션 인증 정보를 저장하는 Secret 오브젝트를 참조하는 SharedSecret CR(사용자 정의 리소스) 인스턴스가 있습니다.
  • 다음 작업을 수행할 수 있는 권한이 있어야 합니다.

    • 빌드 구성을 생성하고 빌드를 시작합니다.
    • oc get sharedsecrets 명령을 입력하고 비어 있지 않은 목록을 다시 가져와서 사용할 수 있는 SharedSecret CR 인스턴스를 검색합니다.
    • 네임스페이스에서 사용할 수 있는 빌더 서비스 계정이 지정된 SharedSecret CR 인스턴스를 사용할 수 있는지 확인합니다. 즉, 특정 SharedSecret>을 사용할 수 있는 oc adm policy를 실행하여 네임스페이스의 빌더 서비스 계정이 나열되는지 확인할 수 있습니다.
참고

이 목록에 있는 마지막 두 사전 요구 사항이 모두 충족, 설정 또는 설정하도록 사용자에게 필요한 역할 기반 액세스 제어(RBAC)를 요청하여 SharedSecret CR 인스턴스를 검색하고 서비스 계정이 SharedSecret CR 인스턴스를 사용할 수 있도록 합니다.

절차

  1. YAML 콘텐츠와 함께 oc apply 를 사용하여 SharedSecret CR 인스턴스를 사용하도록 빌더 서비스 계정 RBAC 권한을 부여합니다.

    참고

    현재 kubectloc 는 Pod 보안을 중심으로 하는 역할에 use 동사를 제한하는 특수 케이스 논리를 하드 코딩했습니다. 따라서 oc create role …​ 을 사용하여 SharedSecret CR 인스턴스를 사용하는 데 필요한 역할을 생성할 수 없습니다.

    YAML Role 오브젝트 정의를 사용하는 oc apply -f 명령의 예

    $ oc apply -f - <<EOF
    apiVersion: rbac.authorization.k8s.io/v1
    kind: Role
    metadata:
      name: shared-resource-my-share
      namespace: my-namespace
    rules:
      - apiGroups:
          - sharedresource.openshift.io
        resources:
          - sharedsecrets
        resourceNames:
          - my-share
        verbs:
          - use
    EOF

  2. oc 명령을 사용하여 역할과 연결된 RoleBinding 을 만듭니다.

    oc create rolebinding 명령 예

    $ oc create rolebinding shared-resource-my-share --role=shared-resource-my-share --serviceaccount=my-namespace:builder

  3. RHEL 인타이틀먼트에 액세스하는 BuildConfig 오브젝트를 생성합니다.

    YAML BuildConfig 오브젝트 정의 예

    apiVersion: build.openshift.io/v1
    kind: BuildConfig
    metadata:
      name: my-csi-bc
      namespace: my-csi-app-namespace
    spec:
      runPolicy: Serial
      source:
        dockerfile: |
          FROM registry.redhat.io/ubi8/ubi:latest
          RUN ls -la /etc/pki/entitlement
          RUN rm /etc/rhsm-host
          RUN yum repolist --disablerepo=*
          RUN subscription-manager repos --enable rhocp-4.9-for-rhel-8-x86_64-rpms
          RUN yum -y update
          RUN yum install -y openshift-clients.x86_64
      strategy:
        type: Docker
        dockerStrategy:
          volumes:
            - mounts:
                - destinationPath: "/etc/pki/entitlement"
              name: my-csi-shared-secret
              source:
                csi:
                  driver: csi.sharedresource.openshift.io
                  readOnly: true
                  volumeAttributes:
                    sharedSecret: my-share-bc
                type: CSI

  4. BuildConfig 오브젝트에서 빌드를 시작하고 oc 명령으로 로그를 따릅니다.

    oc start-build 명령 예

    $ oc start-build my-csi-bc -F

    예 2.1. oc start-build 명령의 출력 예

    참고

    다음 출력의 일부 섹션이 …​로 교체되었습니다.

    build.build.openshift.io/my-csi-bc-1 started
    Caching blobs under "/var/cache/blobs".
    
    Pulling image registry.redhat.io/ubi8/ubi:latest ...
    Trying to pull registry.redhat.io/ubi8/ubi:latest...
    Getting image source signatures
    Copying blob sha256:5dcbdc60ea6b60326f98e2b49d6ebcb7771df4b70c6297ddf2d7dede6692df6e
    Copying blob sha256:8671113e1c57d3106acaef2383f9bbfe1c45a26eacb03ec82786a494e15956c3
    Copying config sha256:b81e86a2cb9a001916dc4697d7ed4777a60f757f0b8dcc2c4d8df42f2f7edb3a
    Writing manifest to image destination
    Storing signatures
    Adding transient rw bind mount for /run/secrets/rhsm
    STEP 1/9: FROM registry.redhat.io/ubi8/ubi:latest
    STEP 2/9: RUN ls -la /etc/pki/entitlement
    total 360
    drwxrwxrwt. 2 root root 	80 Feb  3 20:28 .
    drwxr-xr-x. 10 root root	154 Jan 27 15:53 ..
    -rw-r--r--. 1 root root   3243 Feb  3 20:28 entitlement-key.pem
    -rw-r--r--. 1 root root 362540 Feb  3 20:28 entitlement.pem
    time="2022-02-03T20:28:32Z" level=warning msg="Adding metacopy option, configured globally"
    --> 1ef7c6d8c1a
    STEP 3/9: RUN rm /etc/rhsm-host
    time="2022-02-03T20:28:33Z" level=warning msg="Adding metacopy option, configured globally"
    --> b1c61f88b39
    STEP 4/9: RUN yum repolist --disablerepo=*
    Updating Subscription Management repositories.
    
    
    ...
    
    --> b067f1d63eb
    STEP 5/9: RUN subscription-manager repos --enable rhocp-4.9-for-rhel-8-x86_64-rpms
    Repository 'rhocp-4.9-for-rhel-8-x86_64-rpms' is enabled for this system.
    time="2022-02-03T20:28:40Z" level=warning msg="Adding metacopy option, configured globally"
    --> 03927607ebd
    STEP 6/9: RUN yum -y update
    Updating Subscription Management repositories.
    
    ...
    
    Upgraded:
      systemd-239-51.el8_5.3.x86_64      	systemd-libs-239-51.el8_5.3.x86_64
      systemd-pam-239-51.el8_5.3.x86_64
    Installed:
      diffutils-3.6-6.el8.x86_64           	libxkbcommon-0.9.1-1.el8.x86_64
      xkeyboard-config-2.28-1.el8.noarch
    
    Complete!
    time="2022-02-03T20:29:05Z" level=warning msg="Adding metacopy option, configured globally"
    --> db57e92ff63
    STEP 7/9: RUN yum install -y openshift-clients.x86_64
    Updating Subscription Management repositories.
    
    ...
    
    Installed:
      bash-completion-1:2.7-5.el8.noarch
      libpkgconf-1.4.2-1.el8.x86_64
      openshift-clients-4.9.0-202201211735.p0.g3f16530.assembly.stream.el8.x86_64
      pkgconf-1.4.2-1.el8.x86_64
      pkgconf-m4-1.4.2-1.el8.noarch
      pkgconf-pkg-config-1.4.2-1.el8.x86_64
    
    Complete!
    time="2022-02-03T20:29:19Z" level=warning msg="Adding metacopy option, configured globally"
    --> 609507b059e
    STEP 8/9: ENV "OPENSHIFT_BUILD_NAME"="my-csi-bc-1" "OPENSHIFT_BUILD_NAMESPACE"="my-csi-app-namespace"
    --> cab2da3efc4
    STEP 9/9: LABEL "io.openshift.build.name"="my-csi-bc-1" "io.openshift.build.namespace"="my-csi-app-namespace"
    COMMIT temp.builder.openshift.io/my-csi-app-namespace/my-csi-bc-1:edfe12ca
    --> 821b582320b
    Successfully tagged temp.builder.openshift.io/my-csi-app-namespace/my-csi-bc-1:edfe12ca
    821b582320b41f1d7bab4001395133f86fa9cc99cc0b2b64c5a53f2b6750db91
    Build complete, no image push requested

2.10.6. 추가 리소스

2.11. 전략에 따른 빌드 보안

OpenShift Container Platform의 빌드는 권한이 있는 컨테이너에서 실행됩니다. 권한이 있는 경우 사용한 빌드 전략에 따라 빌드를 실행하여 클러스터 및 호스트 노드에 대한 권한을 에스컬레이션할 수 있습니다. 그리고 일종의 보안 조치로 빌드 및 해당 빌드에 사용하는 전략을 실행할 수 있는 사람을 제한합니다. 사용자 정의 빌드는 권한 있는 컨테이너 내의 모든 코드를 실행할 수 있기 때문에 본질적으로 소스 빌드보다 안전하지 않으며, 기본적으로 비활성화되어 있습니다. Dockerfile 처리 논리의 취약성으로 인해 호스트 노드에 권한이 부여될 수 있으므로 Docker 빌드 권한을 주의하여 부여하십시오.

기본적으로 빌드를 생성할 수 있는 모든 사용자에게 Docker 및 S2I(Source-to-image) 빌드 전략을 사용할 수 있는 권한이 부여됩니다. 클러스터 관리자 권한이 있는 사용자는 ‘전역적으로 빌드 전략을 사용자로 제한’ 섹션에 언급된 대로 사용자 정의 빌드 전략을 활성화할 수 있습니다.

권한 부여 정책을 사용하여 빌드할 수 있는 사용자와 이들이 사용할 수 있는 빌드 전략을 제어할 수 있습니다. 각 빌드 전략에는 해당 빌드의 하위 소스가 있습니다. 사용자는 빌드를 생성할 수 있는 권한과 해당 전략을 사용하여 빌드를 생성하기 위해 빌드 전략 하위 리소스에서 생성할 수 있는 권한이 있어야 합니다. 빌드 전략 하위 리소스에 생성 권한을 부여하는 기본 역할이 제공됩니다.

표 2.3. 빌드 전략 하위 리소스 및 역할

전략하위 리소스역할

Docker

빌드/Docker

system:build-strategy-docker

S2I(Source-to-Image)

빌드/소스

system:build-strategy-source

사용자 정의

빌드/사용자 정의

system:build-strategy-custom

JenkinsPipeline

builds/jenkinspipeline

system:build-strategy-jenkinspipeline

2.11.1. 전역적으로 빌드 전략에 대한 액세스 비활성화

특정 빌드 전략에 대한 액세스를 전역적으로 방지하려면 클러스터 관리자 권한이 있는 사용자로 로그인하여 system:authenticated 그룹에서 해당 역할을 제거한 후 주석 rbac.authorization.kubernetes.io/autoupdate: "false"를 적용하여 API를 재시작할 때마다 변경되지 않도록 보호하십시오. 다음 예제에서는 Docker 빌드 전략을 비활성화하는 방법을 보여줍니다.

프로세스

  1. rbac.authorization.kubernetes.io/autoupdate 주석을 적용합니다.

    $ oc edit clusterrolebinding system:build-strategy-docker-binding

    출력 예

    apiVersion: rbac.authorization.k8s.io/v1
    kind: ClusterRoleBinding
    metadata:
      annotations:
        rbac.authorization.kubernetes.io/autoupdate: "false" 1
      creationTimestamp: 2018-08-10T01:24:14Z
      name: system:build-strategy-docker-binding
      resourceVersion: "225"
      selfLink: /apis/rbac.authorization.k8s.io/v1/clusterrolebindings/system%3Abuild-strategy-docker-binding
      uid: 17b1f3d4-9c3c-11e8-be62-0800277d20bf
    roleRef:
      apiGroup: rbac.authorization.k8s.io
      kind: ClusterRole
      name: system:build-strategy-docker
    subjects:
    - apiGroup: rbac.authorization.k8s.io
      kind: Group
      name: system:authenticated

    1
    rbac.authorization.kubernetes.io/autoupdate 주석 값을 "false"로 변경합니다.
  2. 역할을 제거합니다.

    $ oc adm policy remove-cluster-role-from-group system:build-strategy-docker system:authenticated
  3. 빌드 전략 하위 소스도 이러한 역할에서 제거되었는지 확인합니다.

    $ oc edit clusterrole admin
    $ oc edit clusterrole edit
  4. 각 역할에 대해 비활성화할 전략 리소스에 해당하는 하위 리소스를 지정합니다.

    1. admin에 대한 Docker 빌드 전략을 비활성화합니다.

      kind: ClusterRole
      metadata:
        name: admin
      ...
      - apiGroups:
        - ""
        - build.openshift.io
        resources:
        - buildconfigs
        - buildconfigs/webhooks
        - builds/custom 1
        - builds/source
        verbs:
        - create
        - delete
        - deletecollection
        - get
        - list
        - patch
        - update
        - watch
      ...
      1
      admin 역할의 사용자에 대해 Docker 빌드를 전역적으로 비활성화하는 builds/custombuilds/source 를 추가합니다.

2.11.2. 전역적으로 빌드 전략을 사용자로 제한

특정 사용자 집합이 특정 전략을 사용하여 빌드를 생성하도록 허용할 수 있습니다.

사전 요구 사항

  • 빌드 전략에 대한 글로벌 액세스 권한을 비활성화합니다.

프로세스

  • 빌드 전략에 해당하는 역할을 특정 사용자에게 할당합니다. 예를 들어 system:build-strategy-docker 클러스터 역할을 사용자 devuser에 추가하려면 다음을 수행합니다.

    $ oc adm policy add-cluster-role-to-user system:build-strategy-docker devuser
    주의

    클러스터 수준의 사용자 액세스 권한을 builds/docker 하위 리소스에 부여하면 사용자가 빌드를 생성할 수 있는 모든 프로젝트에서 Docker 전략을 사용하여 빌드를 생성할 수 있습니다.

2.11.3. 프로젝트 내 사용자로 빌드 전략 제한

전역적으로 사용자에게 빌드 전략 역할을 부여하는 것과 유사하게 프로젝트 내의 특정 사용자 집합이 특정 전략을 사용하여 빌드를 생성하도록 허용할 수 있습니다.

사전 요구 사항

  • 빌드 전략에 대한 글로벌 액세스 권한을 비활성화합니다.

프로세스

  • 빌드 전략에 해당하는 역할을 특정 프로젝트 내 사용자에게 할당합니다. 예를 들어 프로젝트 devproject 내에서 system:build-strategy-docker 역할을 사용자 devuser에 추가하려면 다음을 실행합니다.

    $ oc adm policy add-role-to-user system:build-strategy-docker devuser -n devproject

2.12. 빌드 구성 리소스

빌드 설정을 구성하려면 다음 절차를 사용합니다.

2.12.1. 빌드 컨트롤러 구성 매개변수

build.config.openshift.io/cluster 리소스에서는 다음과 같은 구성 매개변수를 제공합니다.

매개변수설명

Build

빌드 처리 방법에 대한 클러스터 전체 정보가 들어 있습니다. 유일하게 유효한 정식 이름은 cluster입니다.

spec: 빌드 컨트롤러 구성에 사용자가 설정할 수 있는 값이 포함되어 있습니다.

buildDefaults

빌드의 기본 정보를 제어합니다.

defaultProxy: 이미지 가져오기 또는 내보내기 및 소스 다운로드를 포함하여 모든 빌드 작업에 대한 기본 프록시 설정이 포함됩니다.

BuildConfig 전략에 HTTP_PROXY, HTTPS_PROXY, NO_PROXY 환경 변수를 설정하여 값을 덮어쓸 수 있습니다.

gitProxy: Git 작업에 대한 프록시 설정만 포함됩니다. 설정하는 경우 git clone과 같은 모든 Git 명령의 모든 프록시 설정을 덮어씁니다.

여기에 설정되지 않은 값은 DefaultProxy에서 상속됩니다.

env: 지정된 변수가 빌드에 존재하지 않는 경우 빌드에 적용되는 기본 환경 변수 집합입니다.

imageLabels: 결과 이미지에 적용되는 라벨 목록입니다. BuildConfig에 동일한 이름의 라벨을 제공하여 기본 라벨을 덮어쓸 수 있습니다.

resources: 빌드를 실행하는 데 필요한 리소스 요구 사항을 정의합니다.

ImageLabel

name: 라벨 이름을 정의합니다. 길이가 0이 아니어야 합니다.

buildOverrides

빌드에 대한 덮어쓰기 설정을 제어합니다.

imageLabels: 결과 이미지에 적용되는 라벨 목록입니다. 이 표에 있는 것과 같은 이름이 있는 BuildConfig에 라벨을 제공한 경우 해당 라벨을 덮어씁니다.

nodeSelector: 빌드 Pod가 노드에 맞으려면 이 선택기가 true여야 합니다.

tolerations: 빌드 Pod에 설정된 기존 허용 오차를 덮어쓰는 허용 오차 목록입니다.

BuildList

items: 표준 오브젝트의 메타데이터입니다.

2.12.2. 빌드 설정 구성

build.config.openshift.io/cluster 리소스를 편집하여 빌드 설정을 구성할 수 있습니다.

프로세스

  • build.config.openshift.io/cluster 리소스를 편집합니다.

    $ oc edit build.config.openshift.io/cluster

    다음은 build.config.openshift.io/cluster 리소스의 예입니다.

    apiVersion: config.openshift.io/v1
    kind: Build1
    metadata:
      annotations:
        release.openshift.io/create-only: "true"
      creationTimestamp: "2019-05-17T13:44:26Z"
      generation: 2
      name: cluster
      resourceVersion: "107233"
      selfLink: /apis/config.openshift.io/v1/builds/cluster
      uid: e2e9cc14-78a9-11e9-b92b-06d6c7da38dc
    spec:
      buildDefaults:2
        defaultProxy:3
          httpProxy: http://proxy.com
          httpsProxy: https://proxy.com
          noProxy: internal.com
        env:4
        - name: envkey
          value: envvalue
        gitProxy:5
          httpProxy: http://gitproxy.com
          httpsProxy: https://gitproxy.com
          noProxy: internalgit.com
        imageLabels:6
        - name: labelkey
          value: labelvalue
        resources:7
          limits:
            cpu: 100m
            memory: 50Mi
          requests:
            cpu: 10m
            memory: 10Mi
      buildOverrides:8
        imageLabels:9
        - name: labelkey
          value: labelvalue
        nodeSelector:10
          selectorkey: selectorvalue
        tolerations:11
        - effect: NoSchedule
          key: node-role.kubernetes.io/builds
    operator: Exists
    1
    Build: 빌드 처리 방법에 대한 클러스터 전체 정보가 들어 있습니다. 유일하게 유효한 정식 이름은 cluster입니다.
    2
    buildDefaults: 빌드의 기본 정보를 제어합니다.
    3
    defaultProxy: 이미지 가져오기 또는 내보내기 및 소스 다운로드를 포함하여 모든 빌드 작업에 대한 기본 프록시 설정이 포함됩니다.
    4
    env: 지정된 변수가 빌드에 존재하지 않는 경우 빌드에 적용되는 기본 환경 변수 집합입니다.
    5
    gitProxy: Git 작업에 대한 프록시 설정만 포함됩니다. 설정하는 경우 git clone과 같은 모든 Git 명령의 모든 프록시 설정을 덮어씁니다.
    6
    imageLabels: 결과 이미지에 적용되는 라벨 목록입니다. BuildConfig에 동일한 이름의 라벨을 제공하여 기본 라벨을 덮어쓸 수 있습니다.
    7
    resources: 빌드를 실행하는 데 필요한 리소스 요구 사항을 정의합니다.
    8
    buildOverrides: 빌드에 대한 덮어쓰기 설정을 제어합니다.
    9
    imageLabels: 결과 이미지에 적용되는 라벨 목록입니다. 이 표에 있는 것과 같은 이름이 있는 BuildConfig에 라벨을 제공한 경우 해당 라벨을 덮어씁니다.
    10
    nodeSelector: 빌드 Pod가 노드에 맞으려면 이 선택기가 true여야 합니다.
    11
    tolerations: 빌드 Pod에 설정된 기존 허용 오차를 덮어쓰는 허용 오차 목록입니다.

2.13. 빌드 문제 해결

다음을 사용하여 빌드 문제를 해결합니다.

2.13.1. 리소스에 대한 액세스 거부 문제 해결

리소스에 대한 액세스 요청이 거부되는 경우:

문제
다음과 같은 메시지가 표시되고 빌드가 실패합니다.
requested access to the resource is denied
해결
프로젝트에 설정된 이미지 할당량 중 하나를 초과했습니다. 현재 할당량을 확인하고 적용되는 제한과 사용 중인 스토리지를 확인합니다.
$ oc describe quota

2.13.2. 서비스 인증서 생성 실패

리소스에 대한 액세스 요청이 거부되는 경우:

문제
(서비스의 service.beta.openshift.io/serving-cert-generation-error 주석과 함께 서비스 인증서 생성이 실패하면 다음이 포함됩니다.

출력 예

secret/ssl-key references serviceUID 62ad25ca-d703-11e6-9d6f-0e9c0057b608, which does not match 77b6dd80-d716-11e6-9d6f-0e9c0057b60

해결
인증서를 생성한 서비스가 더 이상 존재하지 않거나 serviceUID가 다릅니다. 이전 보안을 제거하고 서비스에서 service.beta.openshift.io/serving-cert-generation-error 및 service.beta.openshift.io/serving-cert-generation-error -num 주석을 지워 인증서를 강제로 다시 생성해야 합니다.
$ oc delete secret <secret_name>
$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-
$ oc annotate service <service_name> service.beta.openshift.io/serving-cert-generation-error-num-
참고

주석을 제거하는 명령에는 제거할 주석 이름 뒤에 -가 있습니다.

2.14. 빌드에 대해 신뢰할 수 있는 추가 인증 기관 설정

이미지 레지스트리에서 이미지를 가져올 때 빌드에서 신뢰할 추가 CA(인증 기관)를 설정하려면 다음 섹션을 사용합니다.

이 절차를 수행하려면 클러스터 관리자가 ConfigMap을 생성하고 ConfigMap에 추가 CA를 키로 추가해야 합니다.

  • ConfigMapopenshift-config 네임스페이스에 생성해야 합니다.
  • domainConfigMap의 키이고 value는 PEM 형식으로 인코딩한 인증서입니다.

    • 각 CA는 도메인과 연결되어 있어야 합니다. 도메인 형식은 hostname[..port]입니다.
  • ConfigMap 이름은 image.config.openshift.io/cluster 클러스터 범위 구성 리소스의 spec.additionalTrustedCA 필드에 설정해야 합니다.

2.14.1. 클러스터에 인증 기관 추가

다음 절차에 따라 이미지를 내보내고 가져올 때 사용할 클러스터에 인증서 CA(인증 기관)를 추가할 수 있습니다.

사전 요구 사항

  • 레지스트리의 공용 인증서(일반적으로 /etc/docker/certs.d/ 디렉터리에 있는 hostname/ca.crt 파일)에 액세스할 수 있어야 합니다.

절차

  1. 자체 서명 인증서를 사용하는 레지스트리의 경우 신뢰할 수 있는 인증서가 있는 openshift-config 네임스페이스에 ConfigMap을 생성합니다. 각 CA 파일에 대해 ConfigMap의 키가 hostname[..port] 형식의 레지스트리 호스트 이름인지 확인하십시오.

    $ oc create configmap registry-cas -n openshift-config \
    --from-file=myregistry.corp.com..5000=/etc/docker/certs.d/myregistry.corp.com:5000/ca.crt \
    --from-file=otherregistry.com=/etc/docker/certs.d/otherregistry.com/ca.crt
  2. 클러스터 이미지 구성을 업데이트합니다.

    $ oc patch image.config.openshift.io/cluster --patch '{"spec":{"additionalTrustedCA":{"name":"registry-cas"}}}' --type=merge

2.14.2. 추가 리소스

3장. 파이프라인

3.1. Red Hat OpenShift Pipelines 정보

Red Hat OpenShift Pipelines는 Kubernetes 리소스 기반의 클라우드 네이티브 CI/CD(연속 통합 및 연속 제공) 솔루션입니다. Tekton 빌딩 블록을 사용하여 기본 구현 세부 사항을 요약함으로써 여러 플랫폼에서 배포를 자동화합니다. Tekton은 Kubernetes 배포 전반에서 이식 가능한 CI/CD Pipeline을 정의하는 데 사용되는 여러 가지 표준 CRD(Custom Resource Definitions)를 도입합니다.

참고

Red Hat OpenShift Pipelines는 OpenShift Container Platform과 다른 주기로 릴리스되므로 이제 제품의 각 마이너 버전에 대한 별도의 설명서 세트로 Red Hat OpenShift Pipelines 문서를 사용할 수 있습니다.

Red Hat OpenShift Pipelines 문서는 https://docs.openshift.com/pipelines/ 에서 확인할 수 있습니다.

특정 버전에 대한 문서는 버전 선택기 드롭다운 목록을 사용하거나 URL에 버전을 추가하여 직접 확인할 수 있습니다(예: https://docs.openshift.com/pipelines/1.11 ).

또한 Red Hat OpenShift Pipelines 설명서는 https://access.redhat.com/documentation/en-us/red_hat_openshift_pipelines/ 의 Red Hat 고객 포털에서도 확인할 수 있습니다.

Red Hat OpenShift Pipelines 라이프 사이클 및 지원되는 플랫폼에 대한 자세한 내용은 Platform 라이프 사이클 정책을 참조하십시오.

4장. GitOps

4.1. Red Hat OpenShift GitOps 정보

Red Hat OpenShift GitOps는 Argo CD를 선언적 GitOps 엔진으로 사용하는 Operator입니다. 다중 클러스터 OpenShift 및 Kubernetes 인프라에서 GitOps 워크플로우를 활성화합니다. 관리자는 Red Hat OpenShift GitOps를 사용하여 클러스터 및 개발 라이프사이클 전반에 걸쳐 Kubernetes 기반 인프라 및 애플리케이션을 일관되게 구성하고 배포할 수 있습니다. Red Hat OpenShift GitOps는 오픈 소스 프로젝트 Argo CD 를 기반으로 하며 업스트림에서 제공하는 기능, 추가 자동화, Red Hat {OCP} 통합, Red Hat의 엔터프라이즈 지원, 품질 보증 및 엔터프라이즈 보안에 중점을 두고 있는 기능과 유사한 세트를 제공합니다.

참고

Red Hat OpenShift GitOps는 {OCP}와 다른 주기로 릴리스되므로 이제 제품의 각 마이너 버전에 대한 별도의 설명서 세트로 Red Hat OpenShift GitOps 설명서를 사용할 수 있습니다.

Red Hat OpenShift GitOps 문서는 https://docs.openshift.com/gitops/ 에서 확인할 수 있습니다.

특정 버전에 대한 문서는 버전 선택기 드롭다운을 사용하거나 URL에 버전을 추가하여 직접 확인할 수 있습니다(예: https://docs.openshift.com/gitops/1.8 ).

또한 Red Hat OpenShift GitOps 설명서는 https://access.redhat.com/documentation/en-us/red_hat_openshift_gitops/ 의 Red Hat 포털에서도 사용할 수 있습니다.

Red Hat OpenShift GitOps 라이프 사이클 및 지원되는 플랫폼에 대한 자세한 내용은 플랫폼 라이프 사이클 정책을 참조하십시오.

Red Hat OpenShift GitOps를 사용하면 개발, 스테이징, 프로덕션과 같은 다양한 환경의 다양한 클러스터에 애플리케이션을 배포할 때 애플리케이션의 일관성을 유지할 수 있습니다. Red Hat OpenShift GitOps는 구성 리포지토리를 중심으로 배포 프로세스를 구성한 후 이 프로세스를 중심 요소로 만듭니다. 항상 두 개 이상의 리포지토리가 있습니다.

  1. 소스 코드가 있는 애플리케이션 리포지토리
  2. 원하는 애플리케이션 상태를 정의하는 환경 구성 리포지토리

이러한 리포지토리에는 지정된 환경에서 필요한 인프라에 대한 선언적 설명이 포함되어 있습니다. 또한 환경을 설명된 상태에 맞게 조정하는 자동화된 프로세스가 포함되어 있습니다.

Red Hat OpenShift GitOps는 Argo CD를 사용하여 클러스터 리소스를 유지합니다. Argo CD는 애플리케이션의 CI/CD(연속 통합 및 연속 배포)에 사용되는 오픈 소스 선언 도구입니다. Red Hat OpenShift GitOps는 Argo CD를 컨트롤러로 구현하여 Git 리포지토리에 정의된 애플리케이션 정의 및 구성을 지속적으로 모니터링합니다. 그러면 Argo CD에서 이러한 구성의 지정된 상태를 클러스터의 라이브 상태와 비교합니다.

Argo CD는 지정된 상태에서 벗어난 모든 구성을 보고합니다. 이러한 보고서를 통해 관리자는 자동 또는 수동으로 구성을 정의된 상태로 다시 동기화할 수 있습니다 따라서 Argo CD를 사용하면 {OCP} 클러스터를 구성하는 데 사용되는 리소스와 같이 글로벌 사용자 정의 리소스를 제공할 수 있습니다.

4.1.1. 주요 기능

Red Hat OpenShift GitOps는 다음 작업을 자동화하는 데 도움이 됩니다.

  • 클러스터의 구성, 모니터링, 스토리지 상태가 비슷한지 확인
  • 여러 {OCP} 클러스터에 구성 변경 사항 적용 또는 되돌리기
  • 템플릿 구성을 다른 환경과 연결
  • 스테이징에서 프로덕션까지 클러스터 전체에서 애플리케이션 승격

4.1.2. 추가 리소스

5장. Jenkins

5.1. Jenkins 이미지 구성

OpenShift Container Platform은 실행 중인 Jenkins에 대한 컨테이너 이미지를 제공합니다. 이 이미지는 Jenkins 서버 인스턴스를 제공하며, 지속적인 테스트, 통합 및 제공을 위한 기본 흐름을 설정하는 데 사용할 수 있습니다.

이미지는 Red Hat UBI(Universal Base Images)를 기반으로 합니다.

OpenShift Container Platform은 Jenkins의 LTS 릴리스를 따릅니다. OpenShift Container Platform은 Jenkins 2.x가 포함된 이미지를 제공합니다.

OpenShift Container Platform Jenkins 이미지는 Quay.io 또는 registry.redhat.io 에서 사용할 수 있습니다.

예를 들면 다음과 같습니다.

$ podman pull registry.redhat.io/ocp-tools-4/jenkins-rhel8:<image_tag>

이러한 이미지를 사용하려면 해당 레지스트리에서 직접 이미지에 액세스하거나 OpenShift Container Platform 컨테이너 이미지 레지스트리로 이미지를 푸시할 수 있습니다. 컨테이너 이미지 레지스트리 또는 외부 위치에서 이미지를 가리키는 이미지 스트림을 생성할 수도 있습니다. 그러면 OpenShift Container Platform 리소스에서 이미지 스트림을 참조할 수 있습니다.

하지만 편의를 위해 OpenShift Container Platform은 openshift 네임스페이스에서 핵심 Jenkins 이미지를 위한 이미지 스트림은 물론 Jenkins와 OpenShift Container Platform의 통합을 위한 에이전트 이미지 예제도 제공합니다.

5.1.1. 구성 및 사용자 정의

Jenkins 인증은 다음 두 가지 방법으로 관리할 수 있습니다.

  • OpenShift Container Platform 로그인 플러그인에서 제공하는 OpenShift Container Platform OAuth 인증
  • Jenkins에서 제공하는 표준 인증

5.1.1.1. OpenShift Container Platform OAuth 인증

OAuth 인증은 Jenkins UI의 글로벌 보안 구성 패널에서 옵션을 구성하거나 Jenkins 배포 구성에서 OPENSHIFT_ENABLE_OAUTH 환경 변수를 false 이외의 값으로 설정하면 활성화됩니다. 이렇게 하면 Pod 데이터에서 구성 정보를 검색하거나 OpenShift Container Platform API 서버와 상호 작용하는 OpenShift Container Platform 로그인 플러그인이 활성화됩니다.

유효한 인증 정보는 OpenShift Container Platform ID 공급자가 제어합니다.

Jenkins는 브라우저 액세스 및 브라우저 이외의 액세스를 둘 다 지원합니다.

유효한 사용자는 로그인 시 Jenkins 권한 부여 매트릭스에 자동으로 추가되며 OpenShift Container Platform 역할에 따라 사용자가 가지는 특정 Jenkins 권한이 지정됩니다. 기본적으로 사용되는 역할은 사전 정의된 admin, editview입니다. 로그인 플러그인은 Jenkins가 실행되는 네임스페이스 또는 프로젝트에서 해당 역할에 대해 자체AR 요청을 실행합니다.

admin 역할의 사용자에게는 기존 Jenkins 관리자 권한이 있습니다. edit 또는 view 역할의 사용자는 점차 더 적은 권한을 가지게 됩니다.

기본 OpenShift Container Platform admin, editview 역할과 Jenkins 인스턴스에서 해당 역할이 할당된 Jenkins 권한은 구성할 수 있습니다.

OpenShift Container Platform Pod에서 Jenkins를 실행하는 경우 로그인 플러그인은 Jenkins가 실행되는 네임스페이스에서 openshift-jenkins-login-plugin-config 라는 구성 맵을 찾습니다.

이 플러그인이 해당 구성 맵을 찾아서 읽을 수 있는 경우 Jenkins 권한 매핑에 대해 역할을 정의할 수 있습니다. 특히 다음 내용에 유의하십시오.

  • 로그인 플러그인은 구성 맵의 키 및 값 쌍을 OpenShift Container Platform 역할 매핑에 대한 Jenkins 권한으로 처리합니다.
  • 키는 Jenkins 권한 그룹 짧은 ID와 Jenkins 권한 짧은 ID이며 두 개가 하이픈 문자로 구분되어 있습니다.
  • OpenShift Container Platform 역할에 Overall Jenkins Administer 권한을 추가하려면 키가 Overall-Administer여야 합니다.
  • 사용 가능한 권한 그룹 및 권한 ID를 파악하려면 Jenkins 콘솔 및 ID의 매트릭스 권한 부여 페이지로 이동하여 제공된 테이블의 그룹 및 개인 권한을 확인합니다.
  • 키 및 값 쌍의 값은 권한이 적용되어야 하며 각 역할이 쉼표로 구분되어 있는 OpenShift Container Platform 역할의 목록입니다.
  • 기본 adminedit 역할과 생성한 새 jenkins 역할 모두에 Overall Jenkins Administer 권한을 추가하려면 키 Overall-Administer의 값이 admin,edit,jenkins가 됩니다.
참고

OpenShift Container Platform OAuth가 사용되는 경우 OpenShift Container Platform Jenkins 이미지에서 관리자 권한으로 미리 입력된 admin 사용자에게는 해당 권한이 부여되지 않습니다. 이러한 권한을 부여하려면 OpenShift Container Platform 클러스터 관리자가 OpenShift Container Platform ID 공급자에서 해당 사용자를 명시적으로 정의하고 이 사용자에게 admin 역할을 할당해야 합니다.

저장된 Jenkins 사용자 권한은 사용자가 처음 설정된 후 변경될 수 있습니다. OpenShift Container Platform 로그인 플러그인은 OpenShift Container Platform API 서버에서 권한을 폴링하고 Jenkins에 저장된 각 사용자의 권한을 OpenShift Container Platform에서 검색된 권한으로 업데이트합니다. Jenkins UI를 사용하여 Jenkins 사용자의 권한을 업데이트하는 경우 다음에 플러그인이 OpenShift Container Platform을 폴링할 때 권한 변경 사항을 덮어씁니다.

OPENSHIFT_PERMISSIONS_POLL_INTERVAL 환경 변수를 사용하여 폴링 발생 빈도를 제어할 수 있습니다. 기본 폴링 간격은 5분입니다.

OAuth 인증을 사용하여 새 Jenkins 서비스를 생성하는 가장 쉬운 방법은 템플릿을 사용하는 것입니다.

5.1.1.2. Jenkins 인증

템플릿을 사용하지 않고 이미지를 직접 실행하는 경우 기본적으로 Jenkins 인증이 사용됩니다.

Jenkins가 처음 시작되면 관리자 및 암호와 함께 구성이 생성됩니다. 기본 사용자 인증 정보는 adminpassword입니다. 표준 Jenkins 인증을 사용하는 경우에만 JENKINS_PASSWORD 환경 변수를 설정하여 기본 암호를 구성합니다.

프로세스

  • 표준 Jenkins 인증을 사용하는 Jenkins 애플리케이션을 생성합니다.

    $ oc new-app -e \
        JENKINS_PASSWORD=<password> \
        ocp-tools-4/jenkins-rhel8

5.1.2. Jenkins 환경 변수

Jenkins 서버는 다음 환경 변수로 구성할 수 있습니다.

변수정의값 및 설정 예

OPENSHIFT_ENABLE_OAUTH

Jenkins에 로그인할 때 OpenShift Container Platform 로그인 플러그인이 인증을 관리하는지 여부를 결정합니다. 활성화하려면 true로 설정합니다.

기본값: false

JENKINS_PASSWORD

표준 Jenkins 인증을 사용하는 경우 admin 사용자의 암호입니다. OPENSHIFT_ENABLE_OAUTHtrue로 설정된 경우 해당되지 않습니다.

기본값: password

JAVA_MAX_HEAP_PARAM, CONTAINER_HEAP_PERCENT, JENKINS_MAX_HEAP_UPPER_BOUND_MB

이 값은 Jenkins JVM의 최대 힙 크기를 제어합니다. JAVA_MAX_HEAP_PARAM이 설정된 경우 해당 값이 우선합니다. 설정되지 않은 경우 최대 힙 크기는 컨테이너 메모리 제한의 CONTAINER_HEAP_PERCENT로 동적으로 계산되며, 선택적으로 JENKINS_MAX_HEAP_UPPER_BOUND_MBMiB로 제한될 수 있습니다.

기본적으로 Jenkins JVM의 최대 힙 크기는 제한 없이 컨테이너 메모리 제한의 50%로 설정됩니다.

JAVA_MAX_HEAP_PARAM 설정 예: -Xmx512m

CONTAINER_HEAP_PERCENT 기본값: 0.5 또는 50%

JENKINS_MAX_HEAP_UPPER_BOUND_MB 설정 예: 512 MiB

JAVA_INITIAL_HEAP_PARAM, CONTAINER_INITIAL_PERCENT

이 값은 Jenkins JVM의 초기 힙 크기를 제어합니다. JAVA_INITIAL_HEAP_PARAM이 설정된 경우 해당 값이 우선합니다. 설정되지 않은 경우 초기 힙 크기는 동적으로 계산된 최대 힙 크기의 CONTAINER_INITIAL_PERCENT로 동적으로 계산됩니다.

기본적으로 JVM은 초기 힙 크기를 설정합니다.

JAVA_INITIAL_HEAP_PARAM 설정 예: -Xms32m

CONTAINER_INITIAL_PERCENT 설정 예: 0.1 또는 10%

CONTAINER_CORE_LIMIT

설정되는 경우 내부 JVM 스레드 수를 조정하는 데 사용되는 정수 코어 수를 지정합니다.

설정 예: 2

JAVA_TOOL_OPTIONS

이 컨테이너에서 실행되는 모든 JVM에 적용할 옵션을 지정합니다. 이 값은 재정의하지 않는 것이 좋습니다.

Default: -XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true

JAVA_GC_OPTS

Jenkins JVM 가비지 컬렉션 매개변수를 지정합니다. 이 값은 재정의하지 않는 것이 좋습니다.

Default: -XX:+UseParallelGC -XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4 -XX:AdaptiveSizePolicyWeight=90

JENKINS_JAVA_OVERRIDES

Jenkins JVM에 대한 추가 옵션을 지정합니다. 이러한 옵션은 위의 Java 옵션을 포함하여 다른 모든 옵션에 추가되며 필요한 경우 옵션을 재정의하는 데 사용될 수 있습니다. 각각의 추가 옵션을 공백으로 구분합니다. 옵션에 공백 문자가 포함되어 있으면 백슬래시로 이스케이프합니다.

설정 예: -Dfoo -Dbar; -Dfoo=first\ value -Dbar=second\ value

JENKINS_OPTS

Jenkins에 대한 인수를 지정합니다.

 

INSTALL_PLUGINS

컨테이너를 처음 실행할 때 또는 OVERRIDE_PV_PLUGINS_IMAGE_PLUGINStrue 로 설정된 경우 설치할 추가 Jenkins 플러그인을 지정합니다. 플러그인은 쉼표로 구분된 이름:버전 쌍 목록으로 지정됩니다.

설정 예: git:3.7.0,subversion:2.10.2

OPENSHIFT_PERMISSIONS_POLL_INTERVAL

OpenShift Container Platform 로그인 플러그인이 Jenkins에서 정의된 각 사용자와 연결된 권한에 대해 OpenShift Container Platform을 폴링하는 간격(밀리초)을 지정합니다.

기본값: 300000 - 5분

OVERRIDE_PV_CONFIG_WITH_IMAGE_CONFIG

Jenkins 구성 디렉토리에 대해 OpenShift Container Platform 영구 볼륨(PV)을 사용하여 이 이미지를 실행하는 경우 영구 볼륨 클레임(PVC) 이 생성되면 영구 볼륨이 할당되므로 이미지가 처음 시작될 때만 이미지에서 영구 볼륨으로 구성 전송을 수행합니다. 이 이미지를 확장하고 초기 시작 후 사용자 정의 이미지의 구성을 업데이트하는 사용자 정의 이미지를 생성하는 경우 이 환경 변수를 true 로 설정하지 않으면 구성이 복사되지 않습니다.

기본값: false

OVERRIDE_PV_PLUGINS_WITH_IMAGE_PLUGINS

Jenkins 구성 디렉토리에 대해 OpenShift Container Platform PV를 사용하여 이 이미지를 실행하는 경우 PVC가 생성될 때 PV가 할당되므로 이미지가 처음 시작될 때만 이미지에서 PV로 플러그인 전송을 수행합니다. 초기 시작 후 이 이미지를 확장하고 사용자 정의 이미지의 플러그인을 업데이트하는 사용자 정의 이미지를 생성하는 경우 이 환경 변수를 true 로 설정하지 않으면 플러그인이 복사되지 않습니다.

기본값: false

ENABLE_FATAL_ERROR_LOG_FILE

Jenkins 구성 디렉토리에 대해 OpenShift Container Platform 영구 볼륨 클레임(PVC)으로 이 이미지를 실행하는 경우 이 환경 변수를 사용하면 치명적 오류가 발생할 때 치명적 오류 로그 파일을 유지할 수 있습니다. 치명적 오류 파일은 /var/lib/jenkins/logs에 저장됩니다.

기본값: false

AGENT_BASE_IMAGE

이 값을 설정하면 이 이미지와 함께 제공되는 샘플 Kubernetes 플러그인 pod 템플릿에서 jnlp 컨테이너에 사용되는 이미지가 재정의됩니다. 그러지 않으면 openshift 네임스페이스의 jenkins-agent-base-rhel8:latest 이미지 스트림 태그의 이미지가 사용됩니다.

default: image-registry.openshift-image-registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest

JAVA_BUILDER_IMAGE

이 값을 설정하면 이 이미지와 함께 제공된 java-builder 샘플 Kubernetes 플러그인 pod 템플릿에서 java-builder 컨테이너에 사용되는 이미지가 재정의됩니다. 그러지 않으면 openshift 네임스페이스의 java:latest 이미지 스트림 태그의 이미지가 사용됩니다.

default: image-registry.openshift-image-registry.svc:5000/openshift/java:latest

JAVA_FIPS_OPTIONS

이 값을 설정하면 FIPS 노드에서 실행할 때 JVM이 작동하는 방식을 제어합니다. 자세한 내용은 FIPS 모드에서 OpenJDK 11 구성을 참조하십시오.

기본값: -Dcom.redhat.fips=false

5.1.3. Jenkins에 프로젝트 간 액세스 권한 제공

동일한 프로젝트가 아닌 다른 위치에서 Jenkins를 실행하려는 경우 Jenkins에 액세스 토큰을 제공해야 프로젝트에 액세스할 수 있습니다.

프로세스

  1. Jenkins가 액세스해야 하는 프로젝트에 액세스할 수 있는 적절한 권한을 가진 서비스 계정의 시크릿을 식별합니다.

    $ oc describe serviceaccount jenkins

    출력 예

    Name:       default
    Labels:     <none>
    Secrets:    {  jenkins-token-uyswp    }
                {  jenkins-dockercfg-xcr3d    }
    Tokens:     jenkins-token-izv1u
                jenkins-token-uyswp

    이 경우 시크릿 이름은 jenkins-token-uyswp로 지정됩니다.

  2. 시크릿에서 토큰을 검색합니다.

    $ oc describe secret <secret name from above>

    출력 예

    Name:       jenkins-token-uyswp
    Labels:     <none>
    Annotations:    kubernetes.io/service-account.name=jenkins,kubernetes.io/service-account.uid=32f5b661-2a8f-11e5-9528-3c970e3bf0b7
    Type:   kubernetes.io/service-account-token
    Data
    ====
    ca.crt: 1066 bytes
    token:  eyJhbGc..<content cut>....wRA

    토큰 매개변수에는 Jenkins가 프로젝트에 액세스하는 데 필요한 토큰 값이 포함되어 있습니다.

5.1.4. Jenkins 볼륨 간 마운트 지점

구성을 위한 영구 스토리지가 활성화되도록 마운트된 볼륨을 사용하여 Jenkins 이미지를 실행할 수 있습니다.

  • /var/lib/jenkins - Jenkins가 작업 정의를 비롯한 구성 파일을 저장하는 데이터 디렉토리입니다.

5.1.5. S2I(Source-to-Image)를 통해 Jenkins 이미지 사용자 정의

공식 OpenShift Container Platform Jenkins 이미지를 사용자 정의하려면 이미지를 S2I(Source-to-Image) 빌더로 사용할 수 있습니다.

S2I를 사용하여 사용자 정의 Jenkins 작업 정의를 복사하거나 플러그인을 추가하거나 제공된 config.xml 파일을 자체 사용자 정의 구성으로 교체할 수 있습니다.

Jenkins 이미지에 수정 사항을 포함하려면 다음 디렉토리 구조의 Git 리포지터리가 있어야 합니다.

plugins
이 디렉토리에는 Jenkins에 복사하려는 바이너리 Jenkins 플러그인이 있습니다.
plugins.txt
이 파일에는 다음 구문을 사용하여 설치할 플러그인이 나열되어 있습니다.
pluginId:pluginVersion
configuration/jobs
이 디렉토리에는 Jenkins 작업 정의가 있습니다.
configuration/config.xml
이 파일에는 사용자 정의 Jenkins 구성이 있습니다.

configuration/ 디렉토리의 콘텐츠는 /var/lib/jenkins/ 디렉토리에 복사되므로 credentials.xml 같은 추가 파일도 포함할 수 있습니다.

빌드 구성 예에서는 OpenShift Container Platform의 Jenkins 이미지를 사용자 정의합니다

apiVersion: build.openshift.io/v1
kind: BuildConfig
metadata:
  name: custom-jenkins-build
spec:
  source:                       1
    git:
      uri: https://github.com/custom/repository
    type: Git
  strategy:                     2
    sourceStrategy:
      from:
        kind: ImageStreamTag
        name: jenkins:2
        namespace: openshift
    type: Source
  output:                       3
    to:
      kind: ImageStreamTag
      name: custom-jenkins:latest

1
source 매개변수는 위에서 설명한 레이아웃으로 소스 Git 리포지터리를 정의합니다.
2
strategy 매개변수는 빌드의 소스 이미지로 사용할 원본 Jenkins 이미지를 정의합니다.
3
output 매개변수는 공식 Jenkins 이미지 대신 배포 구성에 사용할 수 있는 사용자 정의 Jenkins 이미지를 정의합니다.

5.1.6. Jenkins Kubernetes 플러그인 구성

OpenShift Jenkins 이미지에는 Jenkins용 사전 설치된 Kubernetes 플러그인이 포함되어 Kubernetes 및 OpenShift Container Platform을 사용하여 여러 컨테이너 호스트에서 Jenkins 에이전트를 동적으로 프로비저닝할 수 있습니다.

Kubernetes 플러그인을 사용하기 위해 OpenShift Container Platform에서는 Jenkins 에이전트로 사용하기에 적합한 OpenShift 에이전트 기본 이미지를 제공합니다.

중요

OpenShift Container Platform 4.11은 OpenShift Jenkins 및 OpenShift Agent Base 이미지를 registry.redhat.io 에서 ocp-tools-4 리포지토리로 이동하여 Red Hat이 OpenShift Container Platform 라이프사이클 외부에서 이미지를 생성하고 업데이트할 수 있습니다. 이전에는 이러한 이미지가 OpenShift Container Platform 설치 페이로드에 있고 registry.redhat.ioopenshift4 리포지토리에 있었습니다.

OpenShift Jenkins Maven 및 NodeJS 에이전트 이미지는 OpenShift Container Platform 4.11 페이로드에서 제거되었습니다. Red Hat은 더 이상 이러한 이미지를 생성하지 않으며 registry.redhat.ioocp-tools-4 리포지토리에서 사용할 수 없습니다. Red Hat은 OpenShift Container Platform 라이프 사이클 정책에 따라 중요한 버그 수정 또는 보안 CVE에 대해 이러한 이미지의 4.10 및 이전 버전을 유지 관리합니다.

자세한 내용은 다음 "추가 리소스" 섹션의 "OpenShift Jenkins 이미지에 중요한 변경 사항" 링크를 참조하십시오.

Maven 및 Node.js 에이전트 이미지는 Kubernetes 플러그인에 대한 OpenShift Container Platform Jenkins 이미지 구성에서 Kubernetes pod 템플릿 이미지로 자동 구성됩니다. 해당 구성에는 이 프로젝트를 실행할 수 있는 제한 아래의 모든 Jenkins 작업에 적용할 수 있는 각 이미지의 레이블이 포함됩니다. 레이블이 적용되면 해당 에이전트 이미지를 실행하는 OpenShift Container Platform pod에서 작업이 실행됩니다.

중요

OpenShift Container Platform 4.10 이상에서는 Kubernetes 플러그인을 사용하여 Jenkins 에이전트를 실행하는 데 권장되는 패턴은 jnlp사이드카 컨테이너 모두에서 Pod 템플릿을 사용하는 것입니다. jnlp 컨테이너는 OpenShift Container Platform Jenkins Base 에이전트 이미지를 사용하여 빌드에 별도의 Pod를 쉽게 시작할 수 있습니다. 사이드카 컨테이너 이미지에는 시작된 별도의 Pod 내에서 특정 언어로 빌드하는 데 필요한 도구가 있습니다. Red Hat Container Catalog의 많은 컨테이너 이미지는 openshift 네임스페이스의 샘플 이미지 스트림에서 참조됩니다. OpenShift Container Platform Jenkins 이미지에는 이 방법을 보여주는 사이드카 컨테이너가 있는 java-build 라는 Pod 템플릿이 있습니다. 이 pod 템플릿은 openshift 네임스페이스의 java 이미지 스트림에서 제공하는 최신 Java 버전을 사용합니다.

Jenkins 이미지는 Kubernetes 플러그인의 추가 에이전트 이미지 자동 검색 및 자동 구성 기능도 제공합니다.

Jenkins 시작 시 OpenShift Container Platform 동기화 플러그인을 사용하면 Jenkins 이미지가 실행 중인 프로젝트 또는 플러그인 구성에 나열된 프로젝트에서 다음 항목을 검색합니다.

  • role 라벨이 jenkins-agent 로 설정된 이미지 스트림
  • role 주석이 jenkins-agent 로 설정된 이미지 스트림 태그입니다.
  • role 레이블이 jenkins-agent 로 설정된 구성 맵입니다.

Jenkins 이미지에서 적절한 레이블이 있는 이미지 스트림 또는 적절한 주석이 있는 이미지 스트림 태그를 찾으면 해당 Kubernetes 플러그인 구성이 생성됩니다. 이렇게 하면 이미지 스트림에서 제공하는 컨테이너 이미지를 실행하는 포드에서 Jenkins 작업을 실행하도록 할당할 수 있습니다.

이미지 스트림 또는 이미지 스트림 태그의 이름 및 이미지 참조는 Kubernetes 플러그인 pod 템플릿의 이름 및 이미지 필드에 매핑됩니다. agent-label 키로 이미지 스트림 또는 이미지 스트림 태그 오브젝트에 주석을 설정하여 Kubernetes 플러그인 pod 템플릿의 레이블 필드를 제어할 수 있습니다. 그러지 않으면 이름이 레이블로 사용됩니다.

참고

Jenkins 콘솔에 로그인하지 말고 pod 템플릿 구성을 변경합니다. Pod 템플릿이 생성된 후 이를 수행하고 OpenShift Container Platform 동기화 플러그인에서 이미지 스트림 또는 이미지 스트림 태그와 연결된 이미지가 변경되었음을 탐지하면 pod 템플릿을 교체하고 구성 변경 사항을 덮어씁니다. 새 구성은 기존 구성과 병합할 수 없습니다.

보다 복잡한 구성이 필요한 경우 구성 맵 접근 방법을 고려하십시오.

적절한 레이블이 있는 구성 맵을 찾으면 Jenkins 이미지는 구성 맵의 키-값 데이터 페이로드에 있는 값에 Jenkins 및 Kubernetes 플러그인 pod 템플릿의 구성 형식과 일치하는 XML(Extensible Markup Language)이 포함되어 있다고 가정합니다. 이미지 스트림 및 이미지 스트림 태그에 대한 구성 맵의 한 가지 주요 장점은 모든 Kubernetes 플러그인 pod 템플릿 매개변수를 제어할 수 있다는 것입니다.

jenkins-agent의 예제 구성 맵은 다음과 같습니다.

kind: ConfigMap
apiVersion: v1
metadata:
  name: jenkins-agent
  labels:
    role: jenkins-agent
data:
  template1: |-
    <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
      <inheritFrom></inheritFrom>
      <name>template1</name>
      <instanceCap>2147483647</instanceCap>
      <idleMinutes>0</idleMinutes>
      <label>template1</label>
      <serviceAccount>jenkins</serviceAccount>
      <nodeSelector></nodeSelector>
      <volumes/>
      <containers>
        <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
          <name>jnlp</name>
          <image>openshift/jenkins-agent-maven-35-centos7:v3.10</image>
          <privileged>false</privileged>
          <alwaysPullImage>true</alwaysPullImage>
          <workingDir>/tmp</workingDir>
          <command></command>
          <args>${computer.jnlpmac} ${computer.name}</args>
          <ttyEnabled>false</ttyEnabled>
          <resourceRequestCpu></resourceRequestCpu>
          <resourceRequestMemory></resourceRequestMemory>
          <resourceLimitCpu></resourceLimitCpu>
          <resourceLimitMemory></resourceLimitMemory>
          <envVars/>
        </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
      </containers>
      <envVars/>
      <annotations/>
      <imagePullSecrets/>
      <nodeProperties/>
    </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>

다음 예제에서는 openshift 네임스페이스에서 이미지 스트림을 참조하는 두 개의 컨테이너를 보여줍니다. 하나의 컨테이너는 Pod를 Jenkins 에이전트로 시작하기 위한 JNLP 계약을 처리합니다. 다른 컨테이너는 특정 코딩 언어로 코드를 빌드하는 데 도구가 포함된 이미지를 사용합니다.

kind: ConfigMap
apiVersion: v1
metadata:
  name: jenkins-agent
  labels:
    role: jenkins-agent
data:
  template2: |-
        <org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
          <inheritFrom></inheritFrom>
          <name>template2</name>
          <instanceCap>2147483647</instanceCap>
          <idleMinutes>0</idleMinutes>
          <label>template2</label>
          <serviceAccount>jenkins</serviceAccount>
          <nodeSelector></nodeSelector>
          <volumes/>
          <containers>
            <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
              <name>jnlp</name>
              <image>image-registry.openshift-image-registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest</image>
              <privileged>false</privileged>
              <alwaysPullImage>true</alwaysPullImage>
              <workingDir>/home/jenkins/agent</workingDir>
              <command></command>
              <args>\$(JENKINS_SECRET) \$(JENKINS_NAME)</args>
              <ttyEnabled>false</ttyEnabled>
              <resourceRequestCpu></resourceRequestCpu>
              <resourceRequestMemory></resourceRequestMemory>
              <resourceLimitCpu></resourceLimitCpu>
              <resourceLimitMemory></resourceLimitMemory>
              <envVars/>
            </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
            <org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
              <name>java</name>
              <image>image-registry.openshift-image-registry.svc:5000/openshift/java:latest</image>
              <privileged>false</privileged>
              <alwaysPullImage>true</alwaysPullImage>
              <workingDir>/home/jenkins/agent</workingDir>
              <command>cat</command>
              <args></args>
              <ttyEnabled>true</ttyEnabled>
              <resourceRequestCpu></resourceRequestCpu>
              <resourceRequestMemory></resourceRequestMemory>
              <resourceLimitCpu></resourceLimitCpu>
              <resourceLimitMemory></resourceLimitMemory>
              <envVars/>
            </org.csanchez.jenkins.plugins.kubernetes.ContainerTemplate>
          </containers>
          <envVars/>
          <annotations/>
          <imagePullSecrets/>
          <nodeProperties/>
        </org.csanchez.jenkins.plugins.kubernetes.PodTemplate>
참고

Jenkins 콘솔에 로그인하지 말고 pod 템플릿 구성을 변경합니다. Pod 템플릿이 생성된 후 이를 수행하고 OpenShift Container Platform 동기화 플러그인에서 이미지 스트림 또는 이미지 스트림 태그와 연결된 이미지가 변경되었음을 탐지하면 pod 템플릿을 교체하고 구성 변경 사항을 덮어씁니다. 새 구성은 기존 구성과 병합할 수 없습니다.

보다 복잡한 구성이 필요한 경우 구성 맵 접근 방법을 고려하십시오.

OpenShift Container Platform 동기화 플러그인이 설치되면 OpenShift Container Platform의 API 서버를 모니터링하여 이미지 스트림, 이미지 스트림 태그 및 구성 맵에 대한 업데이트를 확인하고 Kubernetes 플러그인의 구성을 조정합니다.

적용되는 규칙은 다음과 같습니다.

  • 구성 맵, 이미지 스트림 또는 이미지 스트림 태그에서 레이블 또는 주석을 제거하면 Kubernetes 플러그인 구성에서 기존 PodTemplate 이 삭제됩니다.
  • 이러한 오브젝트가 제거되면 Kubernetes 플러그인에서 해당 구성이 제거됩니다.
  • 레이블 또는 주석이 적절히 지정된 ConfigMap,ImageStream 또는 ImageStreamTag 오브젝트를 생성하거나 초기 생성 후 라벨을 추가하면 Kubernetes-plugin 구성에 PodTemplate 이 생성됩니다.
  • 구성 맵 형식별 PodTemplate 의 경우 PodTemplate의 구성 맵 데이터에 대한 변경 사항이 Kubernetes 플러그인 구성의 PodTemplate 설정에 적용됩니다. 변경 사항은 구성 맵 변경 사이에 Jenkins UI를 통해 PodTemplate 의 변경 사항도 덮어씁니다.

컨테이너 이미지를 Jenkins 에이전트로 사용하려면 이미지가 에이전트를 진입점으로 실행해야 합니다. 자세한 내용은 공식 Jenkins 문서 를 참조하십시오.

5.1.7. Jenkins 권한

구성 맵에서 pod 템플릿 XML의 <serviceAccount> 요소가 결과 pod에 사용된 OpenShift Container Platform 서비스 계정인 경우 서비스 계정 인증 정보가 해당 pod에 마운트됩니다. 권한은 이 서비스 계정과 연결되며 pod에서 허용되는 OpenShift Container Platform 마스터 작업을 제어합니다.

Pod에 사용된 서비스 계정을 사용하는 다음 시나리오를 고려해 보십시오. 이 pod는 OpenShift Container Platform Jenkins 이미지에서 실행되는 Kubernetes 플러그인에 의해 시작됩니다.

OpenShift Container Platform에서 제공하는 Jenkins에 대한 템플릿 예를 사용하는 경우 Jenkins가 실행되는 프로젝트에 대해 jenkins 서비스 계정이 edit 역할로 정의되고 마스터 Jenkins Pod에 해당 서비스 계정이 마운트됩니다.

Jenkins 구성에 삽입된 두 개의 기본 Maven 및 NodeJS pod 템플릿도 Jenkins 마스터와 동일한 서비스 계정을 사용하도록 설정됩니다.

  • 이미지 스트림 또는 이미지 스트림 태그에 필요한 레이블 또는 주석이 있기 때문에 OpenShift Container Platform 동기화 플러그인에서 자동으로 검색되는 pod 템플릿은 서비스 계정으로 Jenkins 마스터 서비스 계정을 사용하도록 구성됩니다.
  • Jenkins 및 Kubernetes 플러그인에 pod 템플릿 정의를 제공할 수 있는 다른 방법의 경우 사용할 서비스 계정을 명시적으로 지정해야 합니다. 다른 방법으로는 Jenkins 콘솔, Kubernetes 플러그인에서 제공하는 podTemplate 파이프라인 DSL 또는 pod 템플릿의 XML 구성 데이터가 있는 구성 맵에 레이블을 지정하는 방법이 있습니다.
  • 서비스 계정의 값을 지정하지 않으면 default 서비스 계정이 사용됩니다.
  • 사용할 서비스 계정이 OpenShift Container Platform 내에 정의된 필요한 권한, 역할 등을 가지고 있어서 pod에서 선택한 모든 프로젝트를 조작할 수 있는지 확인하십시오.

5.1.8. 템플릿에서 Jenkins 서비스 생성

템플릿은 모든 환경 변수를 사전 정의된 기본값으로 정의하는 매개변수 필드를 제공합니다. OpenShift Container Platform은 새로운 Jenkins 서비스 생성을 용이하게 해주는 템플릿을 제공합니다. Jenkins 템플릿은 초기 클러스터를 설정하는 중에 클러스터 관리자에 의해 기본 openshift 프로젝트에서 등록되어야 합니다.

사용 가능한 두 템플릿은 둘 다 배포 구성 및 서비스를 정의합니다. 스토리지 전략에서는 pod를 다시 시작할 때 Jenkins 콘텐츠가 지속되는지 여부에 영향을 줍니다.

참고

pod가 다른 노드로 이동되거나 배포 구성 업데이트에 따라 재배포가 트리거되는 경우 pod가 재시작될 수 있습니다.

  • jenkins-ephemeral에서는 ephemeral 스토리지를 사용합니다. pod를 다시 시작하면 모든 데이터가 손실됩니다. 이 템플릿은 개발 또는 테스트에만 유용합니다.
  • jenkins-persistent에서는 영구 볼륨 (PV) 저장소를 사용합니다. pod를 다시 시작해도 데이터가 유지됩니다.

영구 볼륨 (PV) 저장소를 사용하려면 클러스터 관리자가 OpenShift Container Platform 배포에서 영구 볼륨 (PV) 풀을 정의해야 합니다.

원하는 템플릿을 선택한 후 Jenkins를 사용할 수 있도록 템플릿을 인스턴스화해야 합니다.

프로세스

  1. 다음 방법 중 하나를 사용하여 새 Jenkins 애플리케이션을 생성합니다.

    • A PV:

      $ oc new-app jenkins-persistent
    • pod를 다시 시작하면 구성이 유지되지 않는 emptyDir 유형 볼륨:

      $ oc new-app jenkins-ephemeral

두 템플릿을 모두 사용하면 oc describe 를 실행하여 덮어쓰기에 사용할 수 있는 모든 매개변수를 확인할 수 있습니다.

예를 들면 다음과 같습니다.

$ oc describe jenkins-ephemeral

5.1.9. Jenkins Kubernetes 플러그인 사용

다음 예에서는 openshift-jee-sample BuildConfig 오브젝트로 인해 Jenkins Maven 에이전트 pod가 동적으로 프로비저닝됩니다. pod는 일부 Java 소스 코드를 복제하고 WAR 파일을 빌드하며 두 번째 BuildConfigopenshift-jee-sample-docker가 실행되도록 합니다. 두 번째 BuildConfig는 컨테이너 이미지에 새 WAR 파일의 계층을 지정합니다.

중요

OpenShift Container Platform 4.11은 페이로드에서 OpenShift Jenkins Maven 및 NodeJS 에이전트 이미지를 제거했습니다. Red Hat은 더 이상 이러한 이미지를 생성하지 않으며 registry.redhat.ioocp-tools-4 리포지토리에서 사용할 수 없습니다. Red Hat은 OpenShift Container Platform 라이프 사이클 정책에 따라 중요한 버그 수정 또는 보안 CVE에 대해 이러한 이미지의 4.10 및 이전 버전을 유지 관리합니다.

자세한 내용은 다음 "추가 리소스" 섹션의 "OpenShift Jenkins 이미지에 중요한 변경 사항" 링크를 참조하십시오.

Jenkins Kubernetes 플러그인을 사용하는 BuildConfig

kind: List
apiVersion: v1
items:
- kind: ImageStream
  apiVersion: image.openshift.io/v1
  metadata:
    name: openshift-jee-sample
- kind: BuildConfig
  apiVersion: build.openshift.io/v1
  metadata:
    name: openshift-jee-sample-docker
  spec:
    strategy:
      type: Docker
    source:
      type: Docker
      dockerfile: |-
        FROM openshift/wildfly-101-centos7:latest
        COPY ROOT.war /wildfly/standalone/deployments/ROOT.war
        CMD $STI_SCRIPTS_PATH/run
      binary:
        asFile: ROOT.war
    output:
      to:
        kind: ImageStreamTag
        name: openshift-jee-sample:latest
- kind: BuildConfig
  apiVersion: build.openshift.io/v1
  metadata:
    name: openshift-jee-sample
  spec:
    strategy:
      type: JenkinsPipeline
      jenkinsPipelineStrategy:
        jenkinsfile: |-
          node("maven") {
            sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
            sh "mvn -B -Popenshift package"
            sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
          }
    triggers:
    - type: ConfigChange

동적으로 생성된 Jenkins 에이전트 pod의 사양을 재정의할 수도 있습니다. 다음에서는 이전 예를 수정하여 컨테이너 메모리를 재정의하고 환경 변수를 지정했습니다.

Jenkins Kubernetes 플러그인을 사용하여 메모리 제한 및 환경 변수를 지정하는 BuildConfig 샘플

kind: BuildConfig
apiVersion: build.openshift.io/v1
metadata:
  name: openshift-jee-sample
spec:
  strategy:
    type: JenkinsPipeline
    jenkinsPipelineStrategy:
      jenkinsfile: |-
        podTemplate(label: "mypod", 1
                    cloud: "openshift", 2
                    inheritFrom: "maven", 3
                    containers: [
            containerTemplate(name: "jnlp", 4
                              image: "openshift/jenkins-agent-maven-35-centos7:v3.10", 5
                              resourceRequestMemory: "512Mi", 6
                              resourceLimitMemory: "512Mi", 7
                              envVars: [
              envVar(key: "CONTAINER_HEAP_PERCENT", value: "0.25") 8
            ])
          ]) {
          node("mypod") { 9
            sh "git clone https://github.com/openshift/openshift-jee-sample.git ."
            sh "mvn -B -Popenshift package"
            sh "oc start-build -F openshift-jee-sample-docker --from-file=target/ROOT.war"
          }
        }
  triggers:
  - type: ConfigChange

1
mypod라는 새로운 pod 템플릿이 동적으로 정의됩니다. 새 pod 템플릿 이름이 노드 스탠자에서 참조됩니다.
2
cloud 값은 openshift로 설정되어야 합니다.
3
새 pod 템플릿은 기존 pod 템플릿의 구성을 상속할 수 있습니다. 이 경우, OpenShift Container Platform에 의해 미리 정의된 Maven pod 템플릿에서 상속됩니다.
4
이 예에서는 기존 컨테이너의 값을 재정의하며, 이름별로 지정해야 합니다. OpenShift Container Platform과 함께 제공되는 모든 Jenkins 에이전트 이미지는 컨테이너 이름으로 jnlp를 사용합니다.
5
컨테이너 이미지 이름을 다시 지정하십시오. 이것은 확인된 문제입니다.
6
512 Mi 메모리 요청이 지정되었습니다.
7
512 Mi 메모리 제한이 지정되었습니다.
8
값이 0.25인 환경 변수 CONTAINER_HEAP_PERCENT가 지정되었습니다.
9
노드 스탠자는 정의된 pod 템플릿의 이름을 참조합니다.

기본적으로 pod는 빌드가 완료되면 삭제됩니다. 이 동작은 플러그인 또는 파이프라인 Jenkinsfile 내에서 수정할 수 있습니다.

업스트림 Jenkins는 파이프라인과 함께 podTemplate 파이프라인 DSL을 정의하기 위해 최근에 YAML 선언적 형식을 도입했습니다. OpenShift Container Platform Jenkins 이미지에 정의된 샘플 java-builder 포드 템플릿을 사용하는 이 형식의 예는 다음과 같습니다.

def nodeLabel = 'java-buidler'

pipeline {
  agent {
    kubernetes {
      cloud 'openshift'
      label nodeLabel
      yaml """
apiVersion: v1
kind: Pod
metadata:
  labels:
    worker: ${nodeLabel}
spec:
  containers:
  - name: jnlp
    image: image-registry.openshift-image-registry.svc:5000/openshift/jenkins-agent-base-rhel8:latest
    args: ['\$(JENKINS_SECRET)', '\$(JENKINS_NAME)']
  - name: java
    image: image-registry.openshift-image-registry.svc:5000/openshift/java:latest
    command:
    - cat
    tty: true
"""
    }
  }

  options {
    timeout(time: 20, unit: 'MINUTES')
  }

  stages {
    stage('Build App') {
      steps {
        container("java") {
          sh "mvn --version"
        }
     }
    }
  }
}

5.1.10. Jenkins 메모리 요구 사항

제공된 Jenkins Ephemeral 또는 Jenkins Persistent 템플릿으로 배포하는 경우 기본 메모리 제한은 1Gi입니다.

기본적으로 Jenkins 컨테이너에서 실행되는 다른 모든 프로세스에서는 총 512 MiB 이상의 메모리를 사용할 수 없습니다. 더 많은 메모리가 필요한 경우 컨테이너가 중지됩니다. 따라서 가능한 경우 Pipeline은 에이전트 컨테이너에서 외부 명령을 실행하는 것이 좋습니다.

Project 할당량이 허용하는 경우 메모리 관점에서 Jenkins 마스터가 갖추어야 할 사항에 대한 Jenkins 문서의 권장 사항을 참조하십시오. 이러한 권장 사항에서는 Jenkins 마스터에 더 많은 메모리를 할당하지 않도록 합니다.

Jenkins Kubernetes 플러그인에 의해 생성된 에이전트 컨테이너에서 메모리 요청 및 제한 값을 지정하는 것이 좋습니다. 관리자는 Jenkins 구성을 통해 개별 에이전트 이미지를 기반으로 기본값을 설정할 수 있습니다. 메모리 요청 및 제한 매개변수는 개별 컨테이너를 기반으로 재정의할 수도 있습니다.

imagestreamtagJenkins Ephemeral 또는 Jenkins Persistent 템플릿을 인스턴스화하는 경우 MEMORY_LIMIT 매개변수를 재정의하여 Jenkins에서 사용할 수 있는 메모리 크기를 늘릴 수 있습니다.

5.1.11. 추가 리소스

5.2. Jenkins 에이전트

OpenShift Container Platform에서는 Jenkins 에이전트로 사용할 기본 이미지를 제공합니다.

Jenkins 에이전트의 기본 이미지는 다음을 수행합니다.

  • 필요한 툴, 헤드리스 Java, Jenkins JNLP 클라이언트 및 git,tar zip, nss 등 유용한 툴을 모두 가져옵니다.
  • JNLP 에이전트를 진입점으로 설정합니다.
  • Jenkins 작업 내에서 명령줄 작업을 호출하는 oc 클라이언트 도구가 포함되어 있습니다.
  • RHEL(Red Hat Enterprise Linux) 및 localdev 이미지 모두에 Dockerfile을 제공합니다.
중요

OpenShift Container Platform 릴리스 버전에 적합한 에이전트 이미지 버전을 사용합니다. OpenShift Container Platform 버전과 호환되지 않는 oc 클라이언트 버전을 포함하면 예기치 않은 동작이 발생할 수 있습니다.

OpenShift Container Platform Jenkins 이미지는 Jenkins Kubernetes 플러그인에서 에이전트 이미지를 사용하는 방법을 설명하기 위해 다음 샘플 java-builder pod 템플릿도 정의합니다.

java-builder pod 템플릿은 두 개의 컨테이너를 사용합니다. * OpenShift Container Platform Base 에이전트 이미지를 사용하고 Jenkins 에이전트를 시작 및 중지하기 위해 JNLP 계약을 처리하는 jnlp 컨테이너입니다. * 코드 빌드에 Maven 바이너리 mvn 을 포함한 다양한 Java 바이너리가 포함된 java OpenShift Container Platform Sample ImageStream을 사용하는 Java 컨테이너입니다.

5.2.1. Jenkins 에이전트 이미지

OpenShift Container Platform Jenkins 에이전트 이미지는 Quay.io 또는 registry.redhat.io 에서 사용할 수 있습니다.

Jenkins 이미지는 Red Hat Registry를 통해 사용할 수 있습니다.

$ docker pull registry.redhat.io/ocp-tools-4/jenkins-rhel8:<image_tag>
$ docker pull registry.redhat.io/ocp-tools-4/jenkins-agent-base-rhel8:<image_tag>

이러한 이미지를 사용하려면 Quay.io 또는 registry.redhat.io 에서 직접 이미지에 액세스하거나 OpenShift Container Platform 컨테이너 이미지 레지스트리로 이미지를 푸시할 수 있습니다.

5.2.2. Jenkins 에이전트 환경 변수

각 Jenkins 에이전트 컨테이너는 다음 환경 변수를 사용하여 구성할 수 있습니다.

변수정의값 및 설정 예

JAVA_MAX_HEAP_PARAM, CONTAINER_HEAP_PERCENT, JENKINS_MAX_HEAP_UPPER_BOUND_MB

이 값은 Jenkins JVM의 최대 힙 크기를 제어합니다. JAVA_MAX_HEAP_PARAM이 설정된 경우 해당 값이 우선합니다. 설정되지 않은 경우 최대 힙 크기는 컨테이너 메모리 제한의 CONTAINER_HEAP_PERCENT로 동적으로 계산되며, 선택적으로 JENKINS_MAX_HEAP_UPPER_BOUND_MBMiB로 제한될 수 있습니다.

기본적으로 Jenkins JVM의 최대 힙 크기는 제한 없이 컨테이너 메모리 제한의 50%로 설정됩니다.

JAVA_MAX_HEAP_PARAM 설정 예: -Xmx512m

CONTAINER_HEAP_PERCENT 기본값: 0.5 또는 50%

JENKINS_MAX_HEAP_UPPER_BOUND_MB 설정 예: 512 MiB

JAVA_INITIAL_HEAP_PARAM, CONTAINER_INITIAL_PERCENT

이 값은 Jenkins JVM의 초기 힙 크기를 제어합니다. JAVA_INITIAL_HEAP_PARAM이 설정된 경우 해당 값이 우선합니다. 설정되지 않은 경우 초기 힙 크기는 동적으로 계산된 최대 힙 크기의 CONTAINER_INITIAL_PERCENT로 동적으로 계산됩니다.

기본적으로 JVM은 초기 힙 크기를 설정합니다.

JAVA_INITIAL_HEAP_PARAM 설정 예: -Xms32m

CONTAINER_INITIAL_PERCENT 설정 예: 0.1 또는 10%

CONTAINER_CORE_LIMIT

설정되는 경우 내부 JVM 스레드 수를 조정하는 데 사용되는 정수 코어 수를 지정합니다.

설정 예: 2

JAVA_TOOL_OPTIONS

이 컨테이너에서 실행되는 모든 JVM에 적용할 옵션을 지정합니다. 이 값은 재정의하지 않는 것이 좋습니다.

Default: -XX:+UnlockExperimentalVMOptions -XX:+UseCGroupMemoryLimitForHeap -Dsun.zip.disableMemoryMapping=true

JAVA_GC_OPTS

Jenkins JVM 가비지 컬렉션 매개변수를 지정합니다. 이 값은 재정의하지 않는 것이 좋습니다.

Default: -XX:+UseParallelGC -XX:MinHeapFreeRatio=5 -XX:MaxHeapFreeRatio=10 -XX:GCTimeRatio=4 -XX:AdaptiveSizePolicyWeight=90

JENKINS_JAVA_OVERRIDES

Jenkins JVM에 대한 추가 옵션을 지정합니다. 이러한 옵션은 위의 Java 옵션을 포함하여 다른 모든 옵션에 추가되며 필요한 경우 옵션을 재정의하는 데 사용될 수 있습니다. 각각의 추가 옵션을 공백으로 구분하고 옵션에 공백 문자가 포함되어 있으면 백슬래시로 이스케이프합니다.

설정 예: -Dfoo -Dbar; -Dfoo=first\ value -Dbar=second\ value

USE_JAVA_VERSION

컨테이너에서 에이전트를 실행하는 데 사용할 Java 버전의 버전을 지정합니다. 컨테이너 기본 이미지에는 java-11java-1.8.0 의 두 가지 버전이 설치되어 있습니다. 컨테이너 기본 이미지를 확장하는 경우 관련 접미사를 사용하여 java의 대체 버전을 지정할 수 있습니다.

기본값은 java-11 입니다.

설정 예: java-1.8.0

5.2.3. Jenkins 에이전트 메모리 요구 사항

JVM은 모든 Jenkins 에이전트에서 Jenkins JNLP 에이전트를 호스트하고 javac, Maven 또는 Gradle 같은 Java 애플리케이션을 실행하는 데 사용됩니다.

기본적으로 Jenkins JNLP 에이전트 JVM은 힙에 대해 컨테이너 메모리 제한의 50%를 사용합니다. 이 값은 CONTAINER_HEAP_PERCENT 환경 변수를 통해 수정할 수 있습니다. 상한값으로 제한하거나 완전히 재정의할 수도 있습니다.

파이프라인에서 실행되는 쉘 스크립트나 oc 명령과 같이 Jenkins 에이전트 컨테이너에서 실행되는 다른 모든 프로세스는 기본적으로 OOM을 종료하지 않고는 나머지 50%의 메모리 제한을 초과하여 사용할 수 없습니다.

기본적으로 Jenkins 에이전트 컨테이너에서 실행되는 각각의 추가 JVM 프로세스는 힙에 대해 컨테이너 메모리 제한의 최대 25%를 사용합니다. 많은 빌드 워크로드에 대해 이 제한을 튜닝해야 할 수도 있습니다.

5.2.4. Jenkins 에이전트 Gradle 빌드

OpenShift Container Platform의 Jenkins 에이전트에서 Gradle 빌드를 호스트하면 Jenkins JNLP 에이전트 및 Gradle JVM 외에도 여러 빌드가 지정된 경우 테스트를 실행하는 세 번째 JVM을 Gradle이 생성하므로 복잡성이 더욱 가중됩니다.

다음은 OpenShift Container Platform의 메모리가 제한된 Jenkins 에이전트에서 Gradle 빌드를 실행하기 위한 시작점으로 제안된 설정입니다. 필요에 따라 이러한 설정을 수정할 수 있습니다.

  • org.gradle.daemon=falsegradle.properties 파일에 추가하여 오래된 Gradle 데몬이 비활성화되었는지 확인합니다.
  • org.gradle.parallel=truegradle.properties 파일에서 설정되지 않았고 --parallel이 명령줄 인수로 설정되지 않았음을 확인하여 병렬 빌드 실행을 비활성화합니다.
  • Java 컴파일이 프로세스 외부에서 실행되지 않도록 하려면 build.gradle 파일에서 java { options.fork = false }를 설정합니다.
  • build.gradle 파일에서 test { maxParallelForks = 1 }가 설정되었는지 확인하여 여러 추가 테스트 프로세스를 비활성화합니다.
  • GRADLE_OPTS, JAVA_OPTS 또는 JAVA_TOOL_OPTIONS 환경 변수를 통해 Gradle JVM 메모리 매개변수를 재정의합니다.
  • maxHeapSizejvmArgs 설정을 build.gradle에서 정의하거나 -Dorg.gradle.jvmargs 명령줄 인수를 통해 Gradle 테스트 JVM에 대한 최대 힙 크기 및 JVM 인수를 설정합니다.

5.2.5. Jenkins 에이전트 pod 보존

Jenkins 에이전트 pod는 빌드가 완료되거나 중지되면 기본적으로 삭제됩니다. 이 동작은 Kubernetes 플러그인 pod 보존 설정을 통해 변경할 수 있습니다. pod 보존은 각 pod 템플릿에 대한 재정의를 통해 모든 Jenkins 빌드에 대해 설정할 수 있습니다. 지원되는 동작은 다음과 같습니다.

  • Always는 빌드 결과에 관계없이 빌드 pod를 유지합니다.
  • Default 는 플러그인 값을 사용합니다. 이 값은 pod 템플릿만 사용합니다.
  • Never는 pod를 항상 삭제합니다.
  • On Failure는 빌드 중 실패하면 pod를 유지합니다.

pod 보존은 Pipeline Jenkinsfile에서 재정의할 수 있습니다.

podTemplate(label: "mypod",
  cloud: "openshift",
  inheritFrom: "maven",
  podRetention: onFailure(), 1
  containers: [
    ...
  ]) {
  node("mypod") {
    ...
  }
}
1
podRetention에 대해 허용되는 값은 never(), onFailure(), always()default()입니다.
주의

보존된 pod를 계속 실행하면서 리소스 할당량에 대한 계산에 반영할 수 있습니다.

5.3. Jenkins에서 OpenShift Pipelines 또는 Tekton으로 마이그레이션

Tekton 프로젝트를 기반으로 하는 클라우드 네이티브 CI/CD 환경인 Jenkins에서 Red Hat OpenShift Pipelines 로 CI/CD 워크플로를 마이그레이션할 수 있습니다.

5.3.1. Jenkins 및 OpenShift Pipelines 개념 비교

Jenkins 및 OpenShift Pipelines에서 사용되는 다음과 같은 동등한 용어를 검토하고 비교할 수 있습니다.

5.3.1.1. Jenkins 용어

Jenkins는 공유 라이브러리 및 플러그인을 사용하여 확장할 수 있는 선언적 및 스크립팅된 파이프라인을 제공합니다. Jenkins의 몇 가지 기본 용어는 다음과 같습니다.

  • pipeline: Groovy 구문을 사용하여 애플리케이션을 빌드, 테스트 및 배포하는 전체 프로세스를 자동화합니다.
  • Node: 스크립팅된 파이프라인을 오케스트레이션하거나 실행할 수 있는 시스템입니다.
  • Stage: 파이프라인에서 수행되는 작업의 개념적으로 구별되는 하위 집합입니다. 플러그인 또는 사용자 인터페이스는 종종 이 블록을 사용하여 작업의 상태 또는 진행 상황을 표시합니다.
  • Step: 명령 또는 스크립트를 사용하여 수행할 정확한 작업을 지정하는 단일 작업입니다.

5.3.1.2. OpenShift Pipelines 용어

OpenShift Pipelines는 선언적 파이프라인에 YAML 구문을 사용하고 작업으로 구성됩니다. OpenShift Pipelines의 몇 가지 기본 용어는 다음과 같습니다.

  • Pipeline: 일련의 직렬, 병렬 또는 둘 다에 있는 작업 세트입니다.
  • Task: 명령, 바이너리 또는 스크립트로 구성된 일련의 단계입니다.
  • PipelineRun: 하나 이상의 작업이 있는 파이프라인 실행입니다.
  • TaskRun: 하나 이상의 단계로 작업을 실행합니다.

    참고

    매개변수 및 작업 영역과 같은 입력 세트로 PipelineRun 또는 TaskRun을 시작하고 실행 결과 출력 및 아티팩트 세트가 생성됩니다.

  • Workspace: OpenShift Pipelines에서 작업 공간은 다음과 같은 목적을 제공하는 개념적 블록입니다.

    • 입력, 출력 및 빌드 아티팩트의 저장.
    • 작업 간에 데이터를 공유하는 공용 공간.
    • 시크릿에 보유된 인증 정보, 구성 맵에 저장된 구성 및 조직에서 공유하는 공통 툴의 마운트 지점.
    참고

    Jenkins에는 OpenShift Pipelines 작업 공간에 직접 해당하는 작업 공간이 없습니다. 복제된 코드 리포지토리를 저장하고 기록 및 아티팩트를 빌드하므로 컨트롤 노드를 작업 영역으로 간주할 수 있습니다. 작업이 다른 노드에 할당되면 복제된 코드와 생성된 아티팩트가 해당 노드에 저장되지만 제어 노드는 빌드 기록을 유지합니다.

5.3.1.3. 개념 매핑

Jenkins 및 OpenShift Pipelines의 구성 요소는 동일하지 않으며 특정 비교에서는 기술적으로 정확한 매핑을 제공하지 않습니다. Jenkins 및 OpenShift Pipelines의 다음 용어 및 개념은 일반적으로 상관 관계가 있습니다.

표 5.1. Jenkins 및 OpenShift Pipelines - 기본 비교

JenkinsOpenShift Pipelines

Pipeline

Pipeline 및 PipelineRun

Stage

Task

Step

작업의 단계

5.3.2. Jenkins에서 OpenShift Pipelines로 샘플 파이프라인 마이그레이션

다음 동등한 예제를 사용하여 Jenkins에서 OpenShift Pipelines로 파이프라인을 마이그레이션, 테스트 및 배포할 수 있습니다.

5.3.2.1. Jenkins 파이프라인

빌드, 테스트 및 배포를 위해 Groovy로 작성된 Jenkins 파이프라인을 고려하십시오.

pipeline {
   agent any
   stages {
       stage('Build') {
           steps {
               sh 'make'
           }
       }
       stage('Test'){
           steps {
               sh 'make check'
               junit 'reports/**/*.xml'
           }
       }
       stage('Deploy') {
           steps {
               sh 'make publish'
           }
       }
   }
}

5.3.2.2. OpenShift Pipelines 파이프라인

이전 Jenkins 파이프라인과 동일한 OpenShift Pipelines에서 파이프라인을 생성하려면 다음 세 가지 작업을 생성합니다.

빌드 작업 YAML 정의 파일 예

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
  name: myproject-build
spec:
  workspaces:
  - name: source
  steps:
  - image: my-ci-image
    command: ["make"]
    workingDir: $(workspaces.source.path)

테스트 작업 YAML 정의 파일 예

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
  name: myproject-test
spec:
  workspaces:
  - name: source
  steps:
  - image: my-ci-image
    command: ["make check"]
    workingDir: $(workspaces.source.path)
  - image: junit-report-image
    script: |
      #!/usr/bin/env bash
      junit-report reports/**/*.xml
    workingDir: $(workspaces.source.path)

배포 작업 YAML 정의 파일 예

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
  name: myprojectd-deploy
spec:
  workspaces:
  - name: source
  steps:
  - image: my-deploy-image
    command: ["make deploy"]
    workingDir: $(workspaces.source.path)

세 가지 작업을 순차적으로 결합하여 OpenShift Pipelines에서 파이프라인을 구성할 수 있습니다.

예: 빌드, 테스트 및 배포를 위한 OpenShift Pipelines 파이프라인

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
  name: myproject-pipeline
spec:
  workspaces:
  - name: shared-dir
  tasks:
  - name: build
    taskRef:
      name: myproject-build
    workspaces:
    - name: source
      workspace: shared-dir
  - name: test
    taskRef:
      name: myproject-test
    workspaces:
    - name: source
      workspace: shared-dir
  - name: deploy
    taskRef:
      name: myproject-deploy
    workspaces:
    - name: source
      workspace: shared-dir

5.3.3. Jenkins 플러그인에서 Tekton Hub 작업으로 마이그레이션

플러그인을 사용하여 Jenkins의 기능을 확장할 수 있습니다. OpenShift Pipelines에서 유사한 확장성을 얻으려면 Tekton Hub 에서 사용할 수 있는 작업을 사용합니다.

예를 들어 Jenkins의 git plugin 에 해당하는 Tekton Hub의 git-clone 작업을 고려하십시오.

예: Tekton Hub에서 git-clone 작업

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
 name: demo-pipeline
spec:
 params:
   - name: repo_url
   - name: revision
 workspaces:
   - name: source
 tasks:
   - name: fetch-from-git
     taskRef:
       name: git-clone
     params:
       - name: url
         value: $(params.repo_url)
       - name: revision
         value: $(params.revision)
     workspaces:
     - name: output
       workspace: source

5.3.4. 사용자 정의 작업 및 스크립트를 사용하여 OpenShift Pipelines 기능 확장

OpenShift Pipelines에서 Tekton Hub에서 올바른 작업을 찾지 못하거나 작업을 더 잘 제어해야 하는 경우 사용자 정의 작업 및 스크립트를 생성하여 OpenShift Pipelines의 기능을 확장할 수 있습니다.

예: maven test 명령을 실행하는 사용자 지정 작업

apiVersion: tekton.dev/v1beta1
kind: Task
metadata:
  name: maven-test
spec:
  workspaces:
  - name: source
  steps:
  - image: my-maven-image
    command: ["mvn test"]
    workingDir: $(workspaces.source.path)

예: 경로를 제공하여 사용자 정의 쉘 스크립트 실행

...
steps:
  image: ubuntu
  script: |
      #!/usr/bin/env bash
      /workspace/my-script.sh
...

예: YAML 파일에 작성하여 사용자 정의 Python 스크립트 실행

...
steps:
  image: python
  script: |
      #!/usr/bin/env python3
      print(“hello from python!”)
...

5.3.5. Jenkins 및 OpenShift Pipelines 실행 모델 비교

Jenkins 및 OpenShift Pipelines는 유사한 기능을 제공하지만 아키텍처 및 실행에서는 다릅니다.

표 5.2. Jenkins 및 OpenShift Pipelines의 실행 모델 비교

JenkinsOpenShift Pipelines

Jenkins에는 컨트롤러 노드가 있습니다. Jenkins는 파이프라인을 실행하고 중앙 집중적으로 단계를 실행하거나 다른 노드에서 실행되는 작업을 오케스트레이션합니다.

OpenShift Pipelines는 서버리스 및 분산되어 있으며 실행을 위한 중앙 종속성이 없습니다.

컨테이너는 파이프라인을 통해 Jenkins 컨트롤러 노드에서 시작됩니다.

OpenShift Pipelines는 모든 단계가 pod의 컨테이너로 실행되는 '컨테이너 우선' 접근 방식을 채택합니다(Jenkins의 노드와 동일합니다).

확장성은 플러그인을 사용하여 달성합니다.

확장성은 Tekton Hub의 작업을 사용하거나 사용자 지정 작업 및 스크립트를 생성하여 달성됩니다.

5.3.6. 일반적인 사용 사례 예

Jenkins 및 OpenShift Pipelines는 다음과 같은 일반적인 CI/CD 사용 사례를 위한 기능을 제공합니다.

  • Apache Maven을 사용하여 이미지 컴파일, 빌드 및 배포
  • 플러그인을 사용하여 코어 기능 확장
  • 공유 가능한 라이브러리 및 사용자 정의 스크립트 재사용

5.3.6.1. Jenkins 및 OpenShift Pipelines에서 Maven 파이프라인 실행

이미지를 컴파일, 빌드 및 배포하기 위해 Jenkins 및 OpenShift Pipelines 워크플로에서 Maven을 사용할 수 있습니다. 기존 Jenkins 워크플로를 OpenShift Pipelines에 매핑하려면 다음 예를 고려하십시오.

예: 이미지를 컴파일하고 빌드하고 Jenkins에서 Maven을 사용하여 OpenShift에 배포합니다.

#!/usr/bin/groovy
node('maven') {
    stage 'Checkout'
    checkout scm

    stage 'Build'
    sh 'cd helloworld && mvn clean'
    sh 'cd helloworld && mvn compile'

    stage 'Run Unit Tests'
    sh 'cd helloworld && mvn test'

    stage 'Package'
    sh 'cd helloworld && mvn package'

    stage 'Archive artifact'
    sh 'mkdir -p artifacts/deployments && cp helloworld/target/*.war artifacts/deployments'
    archive 'helloworld/target/*.war'

    stage 'Create Image'
    sh 'oc login https://kubernetes.default -u admin -p admin --insecure-skip-tls-verify=true'
    sh 'oc new-project helloworldproject'
    sh 'oc project helloworldproject'
    sh 'oc process -f helloworld/jboss-eap70-binary-build.json | oc create -f -'
    sh 'oc start-build eap-helloworld-app --from-dir=artifacts/'

    stage 'Deploy'
    sh 'oc new-app helloworld/jboss-eap70-deploy.json' }

예: 이미지를 컴파일하고 빌드한 후 OpenShift Pipelines에서 Maven을 사용하여 OpenShift에 배포합니다.

apiVersion: tekton.dev/v1beta1
kind: Pipeline
metadata:
  name: maven-pipeline
spec:
  workspaces:
    - name: shared-workspace
    - name: maven-settings
    - name: kubeconfig-dir
      optional: true
  params:
    - name: repo-url
    - name: revision
    - name: context-path
  tasks:
    - name: fetch-repo
      taskRef:
        name: git-clone
      workspaces:
        - name: output
          workspace: shared-workspace
      params:
        - name: url
          value: "$(params.repo-url)"
        - name: subdirectory
          value: ""
        - name: deleteExisting
          value: "true"
        - name: revision
          value: $(params.revision)
    - name: mvn-build
      taskRef:
        name: maven
      runAfter:
        - fetch-repo
      workspaces:
        - name: source
          workspace: shared-workspace
        - name: maven-settings
          workspace: maven-settings
      params:
        - name: CONTEXT_DIR
          value: "$(params.context-path)"
        - name: GOALS
          value: ["-DskipTests", "clean", "compile"]
    - name: mvn-tests
      taskRef:
        name: maven
      runAfter:
        - mvn-build
      workspaces:
        - name: source
          workspace: shared-workspace
        - name: maven-settings
          workspace: maven-settings
      params:
        - name: CONTEXT_DIR
          value: "$(params.context-path)"
        - name: GOALS
          value: ["test"]
    - name: mvn-package
      taskRef:
        name: maven
      runAfter:
        - mvn-tests
      workspaces:
        - name: source
          workspace: shared-workspace
        - name: maven-settings
          workspace: maven-settings
      params:
        - name: CONTEXT_DIR
          value: "$(params.context-path)"
        - name: GOALS
          value: ["package"]
    - name: create-image-and-deploy
      taskRef:
        name: openshift-client
      runAfter:
        - mvn-package
      workspaces:
        - name: manifest-dir
          workspace: shared-workspace
        - name: kubeconfig-dir
          workspace: kubeconfig-dir
      params:
        - name: SCRIPT
          value: |
            cd "$(params.context-path)"
            mkdir -p ./artifacts/deployments && cp ./target/*.war ./artifacts/deployments
            oc new-project helloworldproject
            oc project helloworldproject
            oc process -f jboss-eap70-binary-build.json | oc create -f -
            oc start-build eap-helloworld-app --from-dir=artifacts/
            oc new-app jboss-eap70-deploy.json

5.3.6.2. 플러그인을 사용하여 Jenkins 및 OpenShift Pipelines의 핵심 기능 확장

Jenkins는 광범위한 사용자 기반에 의해 수년 동안 개발 된 수많은 플러그인의 대규모 에코 시스템의 이점을 가지고 있습니다. Jenkins 플러그인 색인 에서 플러그인을 검색하고 검색할 수 있습니다.

OpenShift Pipelines에는 커뮤니티 및 엔터프라이즈 사용자가 개발하고 제공하는 많은 작업이 있습니다. 재사용 가능한 OpenShift Pipelines 작업 공개적으로 사용 가능한 카탈로그는 Tekton Hub 에서 사용할 수 있습니다.

또한 OpenShift Pipelines는 핵심 기능 내에 Jenkins 에코 시스템의 많은 플러그인을 통합합니다. 예를 들어 권한 부여는 Jenkins 및 OpenShift Pipelines 모두에서 중요한 기능입니다. Jenkins는 역할 기반 권한 부여 전략 플러그인을 사용하여 권한 부여를 수행하는 반면, OpenShift Pipelines는 OpenShift의 기본 제공 역할 기반 액세스 제어 시스템을 사용합니다.

5.3.6.3. Jenkins 및 OpenShift Pipelines에서 재사용 가능한 코드 공유

Jenkins 공유 라이브러리 는 Jenkins 파이프라인의 일부에 재사용 가능한 코드를 제공합니다. 라이브러리는 Jenkinsfile 간에 공유되어 코드 반복 없이 고도로 모듈식 파이프라인을 생성합니다.

OpenShift Pipelines에는 Jenkins 공유 라이브러리와 직접 동등하지 않지만 사용자 지정 작업 및 스크립트와 함께 Tekton Hub 의 작업을 사용하여 유사한 워크플로를 수행할 수 있습니다.

5.3.7. 추가 리소스

5.4. OpenShift Jenkins 이미지에 대한 중요한 변경 사항

OpenShift Container Platform 4.11은 OpenShift Jenkins 및 OpenShift 에이전트 기본 이미지를 registry.redhat.ioocp-tools-4 리포지토리로 이동합니다. 또한 페이로드에서 OpenShift Jenkins Maven 및 NodeJS 에이전트 이미지도 제거합니다.

  • OpenShift Container Platform 4.11은 OpenShift Jenkins 및 OpenShift Agent Base 이미지를 registry.redhat.io 에서 ocp-tools-4 리포지토리로 이동하여 Red Hat이 OpenShift Container Platform 라이프사이클 외부에서 이미지를 생성하고 업데이트할 수 있습니다. 이전에는 이러한 이미지가 OpenShift Container Platform 설치 페이로드에 있고 registry.redhat.ioopenshift4 리포지토리에 있었습니다.
  • OpenShift Container Platform 4.10은 OpenShift Jenkins Maven 및 NodeJS 에이전트 이미지를 더 이상 사용하지 않습니다. OpenShift Container Platform 4.11은 페이로드에서 이러한 이미지를 제거합니다. Red Hat은 더 이상 이러한 이미지를 생성하지 않으며 registry.redhat.ioocp-tools-4 리포지토리에서 사용할 수 없습니다. Red Hat은 OpenShift Container Platform 라이프 사이클 정책에 따라 중요한 버그 수정 또는 보안 CVE에 대해 이러한 이미지의 4.10 및 이전 버전을 유지 관리합니다.

이러한 변경 사항은 Jenkins Kubernetes 플러그인에서 여러 컨테이너 포드 템플릿을 사용하도록 OpenShift Container Platform 4.10 권장 사항을 지원합니다.

5.4.1. OpenShift Jenkins 이미지 재배치

OpenShift Container Platform 4.11은 특정 OpenShift Jenkins 이미지의 위치 및 가용성을 크게 변경합니다. 또한 이러한 이미지를 업데이트하는 시기와 방법을 구성할 수 있습니다.

OpenShift Jenkins 이미지와 동일하게 유지되는 것은 무엇입니까?

  • Cluster Samples Operator는 OpenShift Jenkins 이미지를 실행하기 위해 ImageStreamTemplate 오브젝트를 관리합니다.
  • 기본적으로 Jenkins pod 템플릿의 Jenkins DeploymentConfig 오브젝트는 Jenkins 이미지가 변경될 때 재배포를 트리거합니다. 기본적으로 이 이미지는 Samples Operator 페이로드의 ImageStream YAML 파일의 openshift 네임스페이스에 있는 Jenkins 이미지 스트림의 jenkins:2 이미지 스트림 태그에서 참조합니다.
  • OpenShift Container Platform 4.10 및 이전 버전에서 4.11로 업그레이드하는 경우 더 이상 사용되지 않는 mavennodejs Pod 템플릿은 여전히 기본 이미지 구성으로 되어 있습니다.
  • OpenShift Container Platform 4.10 및 이전 버전에서 4.11로 업그레이드하는 경우 jenkins-agent-mavenjenkins-agent-nodejs 이미지 스트림이 클러스터에 계속 있습니다. 이러한 이미지 스트림을 유지하려면 다음 섹션, " openshift 네임스페이스에서 jenkins-agent-mavenjenkins-agent-nodejs 이미지 스트림을 사용하여 발생하는 작업을 참조하십시오.

OpenShift Jenkins 이미지의 지원 매트릭스에서 변경 사항은 무엇입니까?

registry.redhat.io 레지스트리의 ocp-tools-4 리포지토리의 새 이미지는 각각 여러 버전의 OpenShift Container Platform을 지원합니다. Red Hat이 이러한 새 이미지 중 하나를 업데이트하면 모든 버전에서 동시에 사용할 수 있습니다. 이 가용성은 Red Hat이 보안 권고에 대응하여 이미지를 업데이트할 때 이상적입니다. 처음에는 이 변경 사항이 OpenShift Container Platform 4.11 이상에 적용됩니다. 이러한 변경 사항은 결국 OpenShift Container Platform 4.9 이상에 적용됩니다.

이전에는 각 Jenkins 이미지가 OpenShift Container Platform의 하나의 버전만 지원했으며 Red Hat은 시간이 지남에 따라 해당 이미지를 순차적으로 업데이트할 수 있었습니다.

OpenShift Jenkins 및 Jenkins Agent Base ImageStream 및 ImageStreamTag 오브젝트에 어떤 추가 사항이 있습니까?

인페이로드 이미지 스트림에서 비 payload 이미지를 참조하는 이미지 스트림으로 이동하면 OpenShift Container Platform에서 추가 이미지 스트림 태그를 정의할 수 있습니다. Red Hat은 OpenShift Container Platform 4.10 및 이전 버전에 있는 기존 "value": "jenkins:2" 및 " value": "image-registry.openshift-image-registry.svc:5000/jenkins-agent-base-rhel8:latest" 와 함께 일련의 새 이미지 스트림 태그를 생성했습니다. 이러한 새로운 이미지 스트림 태그는 Jenkins 관련 이미지 스트림을 유지 관리하는 방법을 개선하기 위해 일부 요청을 처리합니다.

새 이미지 스트림 태그 정보:

ocp-upgrade-redeploy
OpenShift Container Platform을 업그레이드할 때 Jenkins 이미지를 업데이트하려면 Jenkins 배포 구성에서 이 이미지 스트림 태그를 사용하십시오. 이 이미지 스트림 태그는 jenkins 이미지 스트림의 기존 2 이미지 스트림 태그와 jenkins -agent-base-rhel8 이미지 스트림의 latest 이미지 스트림 태그에 해당합니다. 하나의 SHA 또는 이미지 다이제스트에만 특정 이미지 태그를 사용합니다. Jenkins 보안 권고와 같이 ocp-tools-4 이미지가 변경되면 Red Hat Engineering에서 Cluster Samples Operator 페이로드를 업데이트합니다.
user-maintained-upgrade-redeploy
OpenShift Container Platform을 업그레이드한 후 Jenkins를 수동으로 재배포하려면 Jenkins 배포 구성에서 이 이미지 스트림 태그를 사용하십시오. 이 이미지 스트림 태그는 사용 가능한 최소 특정 이미지 버전 표시기를 사용합니다. Jenkins를 재배포하는 경우 $ oc import-image jenkins:user-maintained-upgrade-redeploy -n openshift 명령을 실행합니다. 이 명령을 실행하면 OpenShift Container Platform ImageStream 컨트롤러에서 registry.redhat.io 이미지 레지스트리에 액세스하고 해당 Jenkins ImageStreamTag 오브젝트의 OpenShift 이미지 레지스트리 슬롯에 업데이트된 이미지를 저장합니다. 그러지 않으면 이 명령을 실행하지 않으면 Jenkins 배포 구성에서 재배포를 트리거하지 않습니다.
scheduled-upgrade-redeploy
Jenkins 이미지가 릴리스될 때 최신 버전의 Jenkins 이미지를 자동으로 재배포하려면 Jenkins 배포 구성에서 이 이미지 스트림 태그를 사용합니다. 이 이미지 스트림 태그는 OpenShift Container Platform 이미지 스트림 컨트롤러의 이미지 스트림 태그 기능을 주기적으로 가져오는 기능을 사용하여 백업 이미지의 변경 사항을 확인합니다. 예를 들어 최신 Jenkins 보안 권고로 인해 이미지가 변경되면 OpenShift Container Platform에서 Jenkins 배포 구성의 재배포를 트리거합니다. 다음 "추가 리소스"에서 "이미지 스트림 태그의 정기적인 가져오기"를 참조하십시오.

openshift 네임스페이스에서 jenkins-agent-mavenjenkins-agent-nodejs 이미지 스트림에서 어떻게 됩니까?

OpenShift Container Platform의 OpenShift Jenkins Maven 및 NodeJS 에이전트 이미지는 4.10에서 더 이상 사용되지 않으며 4.11의 OpenShift Container Platform 설치 페이로드에서 제거되었습니다. ocp-tools-4 저장소에는 대체 방법이 없습니다. 그러나 다음 "추가 리소스" 섹션에 언급된 "Jenkins 에이전트" 항목에 설명된 사이드카 패턴을 사용하여 이 문제를 해결할 수 있습니다.

그러나 Cluster Samples Operator는 이전 릴리스에서 생성한 jenkins-agent-mavenjenkins-agent-nodejs 이미지 스트림을 삭제하지 않습니다. 이 이미지 스트림은 registry.redhat.io 의 각 OpenShift Container Platform 페이로드 이미지의 태그를 가리킵니다. 따라서 다음 명령을 실행하여 이러한 이미지에 대한 업데이트를 가져올 수 있습니다.

$ oc import-image jenkins-agent-nodejs -n openshift
$ oc import-image jenkins-agent-maven -n openshift

5.4.2. Jenkins 이미지 스트림 태그 사용자 정의

기본 업그레이드 동작을 재정의하고 Jenkins 이미지를 업그레이드하는 방법을 제어하려면 Jenkins 배포 구성에서 사용하는 이미지 스트림 태그 값을 설정합니다.

기본 업그레이드 동작은 Jenkins 이미지가 설치 페이로드의 일부인 경우 존재하는 동작입니다. jenkins-rhel.json 이미지 스트림 파일의 이미지 스트림 태그 이름 2ocp-upgrade-redeploy 는 SHA별 이미지 참조를 사용합니다. 따라서 해당 태그가 새 SHA로 업데이트되면 OpenShift Container Platform 이미지 변경 컨트롤러에서 jenkins-ephemeral.json 또는 jenkins-persistent.json 과 같은 연결된 템플릿에서 Jenkins 배포 구성을 자동으로 재배포합니다.

새 배포의 경우 해당 기본값을 재정의하려면 jenkins-ephemeral.json Jenkins 템플릿에서 JENKINS_IMAGE_STREAM_TAG 값을 변경합니다. 예를 들어 "value": "jenkins: 2 "의 2 를 다음 이미지 스트림 태그 중 하나로 바꿉니다.

  • OpenShift Container Platform을 업그레이드할 때 기본값인 OCP-upgrade-redeploy.
  • user-maintained-upgrade-redeploy 를 사용하려면 OpenShift Container Platform을 업그레이드한 후 $ oc import-image jenkins:user-maintained-upgrade-redeploy -n openshift 를 실행하여 Jenkins를 수동으로 재배포해야 합니다.
  • scheduled-upgrade-redeploy 는 지정된 < image>:<tag > 조합에서 변경 사항을 주기적으로 확인하고 변경 시 이미지를 업그레이드합니다. 이미지 변경 컨트롤러는 변경된 이미지를 가져와서 템플릿에서 프로비저닝한 Jenkins 배포 구성을 재배포합니다. 예약된 가져오기 정책에 대한 자세한 내용은 다음 "추가 리소스"의 "이미지 스트림에 태그 추가"를 참조하십시오.
참고

기존 배포의 현재 업그레이드 값을 재정의하려면 해당 템플릿 매개변수에 해당하는 환경 변수의 값을 변경합니다.

사전 요구 사항

  • OpenShift Container Platform 4.12에서 OpenShift Jenkins를 실행하고 있습니다.
  • OpenShift Jenkins가 배포된 네임스페이스를 알고 있습니다.

절차

  • 이미지 스트림 태그 값을 설정하고 < namespace >를 OpenShift Jenkins가 배포된 네임스페이스로 바꾸고 < image_stream_tag >를 이미지 스트림 태그로 바꿉니다.

    예제

    $ oc patch dc jenkins -p '{"spec":{"triggers":[{"type":"ImageChange","imageChangeParams":{"automatic":true,"containerNames":["jenkins"],"from":{"kind":"ImageStreamTag","namespace":"<namespace>","name":"jenkins:<image_stream_tag>"}}}]}}'

    작은 정보

    또는 Jenkins 배포 구성 YAML을 편집하려면 $ oc edit dc/jenkins -n <namespace >를 입력하고 값을 'jenkins:<image_stream_tag>' 행을 업데이트합니다.

5.4.3. 추가 리소스

법적 공지

Copyright © 2024 Red Hat, Inc.
The text of and illustrations in this document are licensed by Red Hat under a Creative Commons Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must provide the URL for the original version.
Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert, Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.
Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift, Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.
Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.
XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States and/or other countries.
MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other countries.
Node.js® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the official Joyent Node.js open source or commercial project.
The OpenStack® Word Mark and OpenStack logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
All other trademarks are the property of their respective owners.