& RedHat

.NET 8.0

Getting started with .NET on RHEL 9

Installing and running .NET 8.0 on RHEL 9

Last Updated: 2023-11-30






NET 8.0 Getting started with .NET on RHEL 9

Installing and running .NET 8.0 on RHEL 9



Legal Notice

Copyright © 2023 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution-Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at

http://creativecommons.org/licenses/by-sa/3.0/

. In'accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux @ is the registered trademark of Linus Torvalds in the United States and other countries.
Java @ is a registered trademark of Oracle and/or its affiliates.

XFS @ is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL @ is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to install and run .NET 8.0 on RHEL 9.



Table of Contents

Table of Contents
MAKING OPEN SOURCE MORE INCLUSIVE ...ttt e e e e e e et e e e e e e, 3
PROVIDING FEEDBACK ON RED HAT DOCUMENTATION .\ttt e e e e 4
CHAPTER 1. INTRODUCING .NET 8.0 1\ttt e e e e e e et e e e e e e 5
CHAPTER 2. INSTALLING .NET 8.0 .. u vttt et e e e e e et e e e e 6
CHAPTER 3. CREATING AN APPLICATION USING .NET 8.0 ... 'uvvtteeee e e e e e 7
CHAPTER 4. PUBLISHING APPLICATIONS WITH .NET 8.0 .+ .'uuvttte ettt e e e e e 8
4.1. PUBLISHING NET APPLICATIONS 8
CHAPTER 5. RUNNING .NET 8.0 APPLICATIONS IN CONTAINERS ... .uuurtee et e 9
CHAPTER 6. USING .NET 8.0 ON OPENSHIFT CONTAINER PLATFORM ... eeeee e 10
6.1. OVERVIEW 10
6.2. INSTALLING .NET IMAGE STREAMS 10
6.3. DEPLOYING APPLICATIONS FROM SOURCE USING OC 10
6.4. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USING OC n
6.5. ENVIRONMENT VARIABLES FOR .NET 8.0 12
6.6. CREATING THE MVC SAMPLE APPLICATION 14
6.7. CREATING THE CRUD SAMPLE APPLICATION 14



.NET 8.0 Getting started with .NET on RHEL 9




MAKING OPEN SOURCE MORE INCLUSIVE

MAKING OPEN SOURCE MORE INCLUSIVE

Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright's message.


https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

.NET 8.0 Getting started with .NET on RHEL 9

PROVIDING FEEDBACK ON RED HAT DOCUMENTATION

We appreciate your feedback on our documentation. Let us know how we can improve it.

Submitting feedback through Jira (account required)

1. Login to the Jira website.
2. Click Create in the top navigation bar
3. Enter a descriptive title in the Summary field.

4. Enter your suggestion for improvement in the Description field. Include links to the relevant
parts of the documentation.

5. Click Create at the bottom of the dialogue.


https://issues.redhat.com/projects/RHELDOCS/issues

CHAPTER 1. INTRODUCING .NET 8.0

CHAPTER 1. INTRODUCING .NET 8.0

.NET is a general-purpose development platform featuring automatic memory management and
modern programming languages. Using .NET, you can build high-quality applications efficiently. .NET is
available on Red Hat Enterprise Linux (RHEL) and OpenShift Container Platform through certified
containers.

NET offers the following features:

® The ability to follow a microservices-based approach, where some components are built with
.NET and others with Java, but all can run on a common, supported platform on RHEL and
OpenShift Container Platform.

® The capacity to more easily develop new .NET workloads on Microsoft Windows. You can deploy
and run your applications on either RHEL or Windows Server.

® A heterogeneous data center, where the underlying infrastructure is capable of running .NET
applications without having to rely solely on Windows Server.

.NET 8.0 is supported on RHEL 8.9 and later, RHEL 9.3 and later, and supported
OpenShift Container Platform versions.



.NET 8.0 Getting started with .NET on RHEL 9

CHAPTER 2. INSTALLING .NET 8.0

NET 8.0 is included in the AppStream repositories for RHEL 9. The AppStream repositories are enabled
by default on RHEL 9 systems.

You can install the .NET 8.0 runtime with the latest 8.0 Software Development Kit (SDK). When a newer
SDK becomes available for NET 8.0, you can install it by running sudo yum install.

Prerequisites

® |nstalled and registered RHEL 9.3 with attached subscriptions.
For more information, see Performing a standard RHEL 9 installation .

Procedure
e |nstall NET 8.0 and all of its dependencies:

I $ sudo yum install dotnet-sdk-8.0 -y

Verification steps

e Verify the installation:
I $ dotnet --info

The output returns the relevant information about the .NET installation and the environment.


https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html-single/performing_a_standard_rhel_9_installation/index

CHAPTER 3. CREATING AN APPLICATION USING .NET 8.0

CHAPTER 3. CREATING AN APPLICATION USING .NET 8.0

Learn how to create a C# hello-world application.
Procedure
1. Create a new Console application in a directory called my-app:
I $ dotnet new console --output my-app
The output returns:

The template "Console Application” was created successfully.

Processing post-creation actions...
Running 'dotnet restore' on my-app/my-app.csproj...
Determining projects to restore...
Restored /home/usernamel/ my-app/my-app.csproj (in 67 ms).
Restore succeeded.

A simple Hello World console application is created from a template. The application is stored in
the specified my-app directory.

Verification steps
® Run the project:
I $ dotnet run --project my-app

The output returns:

I Hello World!



.NET 8.0 Getting started with .NET on RHEL 9

CHAPTER 4. PUBLISHING APPLICATIONS WITH .NET 8.0

NET 8.0 applications can be published to use a shared system-wide version of .NET or to include .NET.
The following methods exist for publishing .NET 8.0 applications:

® Self-contained deployment (SCD) - The application includes .NET. This method uses a runtime
built by Microsoft.

® Framework-dependent deployment (FDD) - The application uses a shared system-wide version
of .NET.

NOTE
When publishing an application for RHEL, Red Hat recommends using FDD, because it

ensures that the application is using an up-to-date version of .NET, built by Red Hat, that
uses a set of native dependencies.

Prerequisites

® Existing .NET application.

For more information about how to create a .NET application, see Creating an application using
NET.

4.1. PUBLISHING .NET APPLICATIONS

The following procedure outlines how to publish a framework-dependent application.

Procedure

1. Publish the framework-dependent application:
I $ dotnet publish my-app -f net8.0

Replace my-app with the name of the application you want to publish.

2. Optional: If the application is for RHEL only, trim out the dependencies needed for other
platforms:

I $ dotnet publish my-app -f net8.0 -r rhel.9-architecture --self-contained false
® Replace architecture based on the platform you are using:

o ForlIntel: x64

o ForIBM Z and LinuxONE: s390x

o For 64-bit Arm: arm64

o ForIBM Power: ppc64le


https://access.redhat.com/documentation/en-us/net/8.0/html/getting_started_with_.net_on_rhel_9/creating-an-application-using-dotnet_getting-started-with-dotnet-on-rhel-9

CHAPTER 5. RUNNING .NET 8.0 APPLICATIONS IN CONTAINERS

CHAPTER 5. RUNNING .NET 8.0 APPLICATIONS IN
CONTAINERS

Use the ubi8/dotnet-80-runtime image to run a .NET application inside a Linux container.

The following example uses podman.

Procedure

1. Create a new MVC project in a directory called mvc_runtime_example:
I $ dotnet new mvc --output mve_runtime_example
2. Publish the project:
I $ dotnet publish mvc_runtime _example -f net8.0 /p:PublishProfile=DefaultContainer
/p:ContainerBaselmage=registry.access.redhat.com/ubi8/dotnet-80-runtime:latest
3. Run your image:
I $ podman run --rm -p8080:8080 mvc_runtime_example

Verification steps

® View the application running in the container:

I $ xdg-open http://127.0.0.1:8080



.NET 8.0 Getting started with .NET on RHEL 9

CHAPTER 6. USING .NET 8.0 ON
OPENSHIFT CONTAINER PLATFORM

6.1. OVERVIEW

NET images are added to OpenShift by importing imagestream definitions froms2i-dotnetcore.

The imagestream definitions include the dotnet imagestream which contains sdk images for different
supported versions of .NET. Life Cycle and Support Policies for the .NET Program provides an up-to-
date overview of supported versions.

Version Tag Alias

.NET 6.0 dotnet:6.0-ubi8 dotnet:6.0
.NET 7.0 dotnet:7.0-ubi8 dotnet:7.0
.NET 8.0 dotnet:8.0-ubi8 dotnet:8.0

The sdk images have corresponding runtime images which are defined under the dotnet-runtime
imagestream.

The container images work across different versions of Red Hat Enterprise Linux and OpenShift. The

UBI-8 based images (suffix -ubi8) are hosted on the registry.access.redhat.com and do not require
authentication.

6.2. INSTALLING .NET IMAGE STREAMS

To install .NET image streams, use image stream definitions from s2i-dotnetcore with the OpenShift
Client (oc) binary. Image streams can be installed from Linux, Mac, and Windows.

You can define .NET image streams in the global openshift namespace or locally in a project
namespace. Sufficient permissions are required to update the openshift namespace definitions.

Procedure

1. Install (or update) the image streams:

$ oc apply [-n namespace] -f
https://raw.githubusercontent.com/redhat-developer/s2i-
dotnetcore/main/dotnet_imagestreams.json

6.3. DEPLOYING APPLICATIONS FROM SOURCE USINGoc

The following example demonstrates how to deploy the example-app application using oc¢, which is in
the app folder on the dotnet-8.0 branch of the redhat-developer/s2i-dotnetcore-ex GitHub repository:

Procedure

10


https://github.com/redhat-developer/s2i-dotnetcore
https://access.redhat.com/support/policy/updates/net-core
https://github.com/redhat-developer/s2i-dotnetcore/

CHAPTER 6. USING .NET 8.0 ON OPENSHIFT CONTAINER PLATFORM

1. Create a new OpenShift project:
I $ oc new-project sample-project
2. Add the ASP.NET Core application:

$ oc new-app --name=example-app 'dotnet:8.0-ubi8~https://github.com/redhat-developer/s2i-
dotnetcore-ex#dotnet-8.0' --build-env DOTNET_STARTUP_PROJECT=app

3. Track the progress of the build:
I $ oc logs -f bc/example-app

4. View the deployed application once the build is finished:
I $ oc logs -f dc/example-app

The application is now accessible within the project.

5. Optional: Make the project accessible externally:
I $ oc expose svc/example-app
6. Obtain the shareable URL:

I $ oc get routes

6.4. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USINGoc

You can use .NET Source-to-Image (S2I) builder image to build applications using binary artifacts that
you provide.

Prerequisites

1. Published application.
For more information, see

Procedure

1. Create a new binary build:
I $ oc new-build --name=my-web-app dotnet:8.0-ubi8 --binary=true

2. Start the build and specify the path to the binary artifacts on your local machine:
I $ oc start-build my-web-app --from-dir=bin/Release/net8.0/publish

3. Create a new application:

I $ oc new-app my-web-app

1



.NET 8.0 Getting started with .NET on RHEL 9

6.5. ENVIRONMENT VARIABLES FOR .NET 8.0

The .NET images support several environment variables to control the build behavior of your NET
application. You can set these variables as part of the build configuration, or add them to the
.s2i/environment file in the application source code repository.

Variable Name Description Default

DOTNET_STARTUP_PROJECT Selects the project to run. This must
be a project file (for example,
csproj orfsproj) or a folder
containing a single project file.

DOTNET_ASSEMBLY_NAME Selects the assembly to run. This The name of the csproj file
must not include the .dll extension.
Set this to the output assembly
name specified in CSProj
(PropertyGroup/AssemblyName).

DOTNET_PUBLISH_READYTORUN When set to true, the application false
will be compiled ahead of time. This
reduces startup time by reducing
the amount of work the JIT needs
to perform when the application is
loading.

DOTNET_RESTORE_SOURCES Specifies the space-separated list
of NuGet package sources used
during the restore operation. This
overrides all of the sources
specified in the NuGet.config file.
This variable cannot be combined
with
DOTNET_RESTORE_CONFIGF
ILE.

DOTNET_RESTORE_CONFIGFILE Specifies a NuGet.Config file to
be used for restore operations. This

variable cannot be combined with
DOTNET_RESTORE_SOURCE
S.

DOTNET_TOOLS Specifies a list of .NET tools to
install before building the app. It is
possible to install a specific version
by post pending the package name
with @<versions.

DOTNET_NPM_TOOLS Specifies a list of NPM packages to
install before building the
application.

12



CHAPTER 6. USING .NET 8.0 ON OPENSHIFT CONTAINER PLATFORM

Variable Name Description Default

DOTNET_TEST_PROJECTS Specifies the list of test projects to
test. This must be project files or
folders containing a single project
file. dotnet test is invoked for each
item.

DOTNET_CONFIGURATION Runs the application in Debug or Release
Release mode. This value should be
either Release or Debug.

DOTNET_VERBOSITY Specifies the verbosity of the
dotnet build commands. When
set, the environment variables are
printed at the start of the build. This
variable can be set to one of the
msbuild verbosity values (q[uiet],
m[inimal], n[ormal], d[etailed],
and diag[nostic]).

HTTP_PROXY, HTTPS_PROXY Configures the HTTP or HTTPS
proxy used when building and
running the application,
respectively.

DOTNET_RM_SRC When set to true, the source code
will not be included in the image.

DOTNET_SSL_DIRS Deprecated: Use
SSL_CERT_DIR instead

SSL_CERT_DIR Specifies a list of folders or files
with additional SSL certificates to
trust. The certificates are trusted by
each process that runs during the
build and all processes that run in
the image after the build (including
the application that was built). The
items can be absolute paths
(starting with /) or paths in the
source repository (for example,
certificates).

NPM_MIRROR Uses a custom NPM registry mirror
to download packages during the
build process.

ASPNETCORE_URLS This variable is set to http://*:8080 http://*:8080
to configure ASP.NET Core to use
the port exposed by the image.
Changing this is not recommended.

13



.NET 8.0 Getting started with .NET on RHEL 9

Variable Name Description Default

DOTNET_RESTORE_DISABLE_PAR When set to true, disables restoring ~ false
ALLEL multiple projects in parallel. This

reduces restore timeout errors

when the build container is running

with low CPU limits.

DOTNET_INCREMENTAL When set to true, the NuGet false
packages will be kept so they can be
re-used for an incremental build.

DOTNET_PACK When set to true, creates atar.gz
file at /opt/app-root/app.tar.gz
that contains the published
application.

6.6. CREATING THE MVC SAMPLE APPLICATION
s2i-dotnetcore-ex is the default Model, View, Controller (MVC) template application for NET.

This application is used as the example application by the .NET S2Il image and can be created directly
from the OpenShift Ul using the Try Example link.

The application can also be created with the OpenShift client binary (o¢).

Procedure

To create the sample application using oc:

1. Add the .NET application:

$ oc new-app dotnet:8.0-ubi8~https://github.com/redhat-developer/s2i-dotnetcore-ex#dotnet-
8.0 --context-dir=app
2. Make the application accessible externally:
I $ oc expose service s2i-dotnetcore-ex

3. Obtain the sharable URL:

I $ oc get route s2i-dotnetcore-ex

Additional resources

® s2i-dotnetcore-ex application repository on GitHub

6.7. CREATING THE CRUD SAMPLE APPLICATION

s2i-dotnetcore-persistent-ex is a simple Create, Read, Update, Delete (CRUD) .NET web application
that stores data in a PostgreSQL database.

14


https://github.com/redhat-developer/s2i-dotnetcore-ex/tree/dotnet-8.0

CHAPTER 6. USING .NET 8.0 ON OPENSHIFT CONTAINER PLATFORM

Procedure

To create the sample application using oc:

1. Add the database:
I $ oc new-app postgresql-ephemeral
2. Add the .NET application:

$ oc new-app dotnet:8.0-ubi8~https://github.com/redhat-developer/s2i-dotnetcore-persistent-
ex#dotnet-8.0 --context-dir app

3. Add environment variables from the postgresql secret and database service name environment
variable:

$ oc set env dc/s2i-dotnetcore-persistent-ex --from=secret/postgresql -e database-
service=postgresq|

4. Make the application accessible externally:
I $ oc expose service s2i-dotnetcore-persistent-ex

5. Obtain the sharable URL:

I $ oc get route s2i-dotnetcore-persistent-ex

Additional resources

® s2i-dotnetcore-ex application repository on GitHub

15


https://github.com/redhat-developer/s2i-dotnetcore-persistent-ex

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	PROVIDING FEEDBACK ON RED HAT DOCUMENTATION
	CHAPTER 1. INTRODUCING .NET 8.0
	CHAPTER 2. INSTALLING .NET 8.0
	CHAPTER 3. CREATING AN APPLICATION USING .NET 8.0
	CHAPTER 4. PUBLISHING APPLICATIONS WITH .NET 8.0
	4.1. PUBLISHING .NET APPLICATIONS

	CHAPTER 5. RUNNING .NET 8.0 APPLICATIONS IN CONTAINERS
	CHAPTER 6. USING .NET 8.0 ON OPENSHIFT CONTAINER PLATFORM
	6.1. OVERVIEW
	6.2. INSTALLING .NET IMAGE STREAMS
	6.3. DEPLOYING APPLICATIONS FROM SOURCE USING OC
	6.4. DEPLOYING APPLICATIONS FROM BINARY ARTIFACTS USING OC
	6.5. ENVIRONMENT VARIABLES FOR .NET 8.0
	6.6. CREATING THE MVC SAMPLE APPLICATION
	6.7. CREATING THE CRUD SAMPLE APPLICATION


