
Migration Toolkit for Applications 5.1

Rules Development Guide

Create custom rules to enhance migration coverage.

Last Updated: 2021-08-02

Migration Toolkit for Applications 5.1 Rules Development Guide

Create custom rules to enhance migration coverage.

Legal Notice

Copyright © 2021 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes how to create custom XML rules for the Migration Toolkit for Applications.

. .

. .

. .

. .

Table of Contents

MAKING OPEN SOURCE MORE INCLUSIVE

CHAPTER 1. INTRODUCTION
1.1. ABOUT THE RULES DEVELOPMENT GUIDE

1.1.1. Use of <MTA_HOME> in this guide
1.2. ABOUT MTA RULES

CHAPTER 2. GETTING STARTED WITH RULES
2.1. CREATING YOUR FIRST XML RULE

Creating the directory structure for the rule
Creating data to test the rule
Creating the rule
Installing the rule
Testing the rule
Reviewing the reports

2.2. REVIEWING THE MIGRATION TOOLKIT FOR APPLICATIONS QUICKSTARTS
Downloading the latest quickstart
Forking and cloning the quickstart GitHub project

CHAPTER 3. CREATING XML RULES
3.1. XML RULE STRUCTURE

3.1.1. Rulesets
3.1.2. Predefined rules

3.2. CREATING A BASIC XML RULE
3.2.1. Creating a basic XML rule template
3.2.2. Creating the ruleset metadata
3.2.3. Creating a rule

3.2.3.1. Creating a <when> condition
3.2.3.2. Creating a <perform> action

3.3. XML RULE SYNTAX
3.3.1. <when> syntax

3.3.1.1. <javaclass> syntax
3.3.1.1.1. Summary
3.3.1.1.2. Construct a <javaclass> element

3.3.1.1.2.1. <javaclass> element attributes
3.3.1.1.2.2. <javaclass> child elements

3.3.1.2. <xmlfile> syntax
3.3.1.2.1. Summary
3.3.1.2.2. Construct an <xmlfile> element

3.3.1.2.2.1. <xmlfile> element attributes
3.3.1.2.2.2. <xmlfile> matches custom functions
3.3.1.2.2.3. <xmlfile> child elements

3.3.1.3. <project> syntax
3.3.1.3.1. Summary
3.3.1.3.2. Construct a <project> element

3.3.1.3.2.1. <project> element attributes
3.3.1.3.2.2. <project> child elements
3.3.1.3.2.3. <artifact> element attributes

3.3.1.4. <filecontent> syntax
3.3.1.4.1. Summary
3.3.1.4.2. Construct a <filecontent> element

3.3.1.4.2.1. <filecontent> element attributes

5

6
6
6
6

7
7
7
7
7

10
10
10
12
12
12

14
14
14
14
15
15
16
17
17
18
18
18
19
19
19
19

20
21
21
22
22
23
23
23
23
24
24
24
24
24
24
25
25

Table of Contents

1

. .

3.3.1.5. <file> syntax
3.3.1.5.1. Summary
3.3.1.5.2. Construct a <file> element

3.3.1.5.2.1. <file> element attributes
3.3.1.6. <has-hint> syntax

3.3.1.6.1. Summary
3.3.1.6.2. Construct a <has-hint>

3.3.1.6.2.1. <has-hint> element attributes
3.3.1.7. <has-classification> syntax

3.3.1.7.1. Summary
3.3.1.7.2. Construct a <has-classification>

3.3.1.7.2.1. <has-classification> element attributes
3.3.1.8. <graph-query> syntax

3.3.1.8.1. Summary
3.3.1.8.2. Construct a <graph-query>

3.3.1.8.2.1. <graph-query> element attributes
3.3.1.8.2.2. <graph-query> properties

3.3.1.9. <dependency> syntax
3.3.1.9.1. Summary

3.3.2. <perform> syntax
3.3.2.1. <classification> syntax

3.3.2.1.1. Summary
3.3.2.1.2. <classification> element attributes
3.3.2.1.3. <classification> child elements

3.3.2.2. <link> syntax
3.3.2.2.1. Summary
3.3.2.2.2. <link> element attributes

3.3.2.3. <hint> syntax
3.3.2.3.1. Summary
3.3.2.3.2. <hint> element attributes
3.3.2.3.3. <hint> child elements

3.3.2.4. <xslt> syntax
3.3.2.4.1. Summary
3.3.2.4.2. <xslt> element attributes
3.3.2.4.3. <xslt> child elements

3.3.2.5. <lineitem> syntax
3.3.2.5.1. Summary
3.3.2.5.2. <lineitem> element attributes

3.3.2.6. <iteration> syntax
3.3.2.6.1. Summary
3.3.2.6.2. <iteration> element attributes
3.3.2.6.3. <iteration> child elements

3.3.3. <where> syntax
3.4. ADDING A RULE TO THE MIGRATION TOOLKIT FOR APPLICATIONS

CHAPTER 4. TESTING XML RULES
4.1. CREATING A TEST RULE

4.1.1. Test XML rule structure
4.1.2. Test XML rule syntax

4.1.2.1. <not> syntax
Summary

4.1.2.2. <iterable-filter> syntax
Summary

25
25
25
25
26
26
27
27
27
27
27
27
27
27
28
28
28
29
29
29
29
29
30
30
31
31
32
32
32
32
33
33
34
34
34
35
35
35
35
35
36
36
36
37

38
38
38
38
39
39
39
39

Migration Toolkit for Applications 5.1 Rules Development Guide

2

. .

. .

. .

<iterable-filter> element attributes
4.1.2.3. <classification-exists> syntax

<classification-exists> element attributes
4.1.2.4. <hint-exists> syntax

<hint-exists> element attributes
4.1.2.5. <fail> syntax

<fail> element attributes
4.2. MANUALLY TESTING AN XML RULE
4.3. TESTING THE RULES USING JUNIT
4.4. ABOUT VALIDATION REPORTS

4.4.1. Creating a validation report
4.4.2. Validation report error messages

CHAPTER 5. OVERRIDING RULES
5.1. OVERRIDING A RULE
5.2. DISABLING A RULE

CHAPTER 6. USING CUSTOM RULE CATEGORIES
Adding a custom category
Assigning a rule to a custom category

APPENDIX A. REFERENCE MATERIAL
A.1. ABOUT RULE STORY POINTS

A.1.1. What are story points?
A.1.2. How story points are estimated in rules
A.1.3. Task category

A.2. ADDITIONAL RESOURCES
A.2.1. Reviewing existing MTA XML rules

A.2.1.1. Forking and cloning the Migration Toolkit for Applications XML rules
A.2.2. Resources

40
40
41
41

42
43
43
43
43
45
45
46

48
48
49

50
50
50

52
52
52
52
52
53
53
53
54

Table of Contents

3

Migration Toolkit for Applications 5.1 Rules Development Guide

4

MAKING OPEN SOURCE MORE INCLUSIVE
Red Hat is committed to replacing problematic language in our code, documentation, and web
properties. We are beginning with these four terms: master, slave, blacklist, and whitelist. Because of the
enormity of this endeavor, these changes will be implemented gradually over several upcoming releases.
For more details, see our CTO Chris Wright’s message .

MAKING OPEN SOURCE MORE INCLUSIVE

5

https://www.redhat.com/en/blog/making-open-source-more-inclusive-eradicating-problematic-language

CHAPTER 1. INTRODUCTION

1.1. ABOUT THE RULES DEVELOPMENT GUIDE

This guide is for engineers, consultants, and others who want to create custom XML-based rules for
Migration Toolkit for Applications (MTA) tools.

For more information, see the Introduction to the Migration Toolkit for Applications for an overview and
the CLI Guide for details.

To contribute to the MTA source code base or provide Java-based rule add-ons, see the Core
Development Guide.

1.1.1. Use of <MTA_HOME> in this guide

This guide uses the <MTA_HOME> replaceable variable to denote the path to your MTA installation.
The installation directory is the mta-cli-5.2.0.Final directory where you extracted the MTA .zip file.

NOTE

For Windows operating systems, you must extract the MTA .zip file to a folder named
mta to avoid a Path too long error.

When you encounter <MTA_HOME> in this guide, replace it with the actual path to your MTA
installation.

1.2. ABOUT MTA RULES

The Migration Toolkit for Applications (MTA) contains rule-based migration tools that analyze the APIs,
technologies, and architectures used by the applications you plan to migrate. In fact, the MTA analysis
process is implemented using MTA rules. MTA uses rules internally to extract files from archives,
decompile files, scan and classify file types, analyze XML and other file content, analyze the application
code, and build the reports.

MTA builds a data model based on the rule execution results and stores component data and
relationships in a graph database, which can then be queried and updated as needed by the migration
rules and for reporting purposes.

MTA rules use the following rule pattern:

when(condition)
 perform(action)
otherwise(action)

MTA provides a comprehensive set of standard migration rules out-of-the-box. Because applications
may contain custom libraries or components, MTA allows you to write your own rules to identify use of
components or software that may not be covered by the existing ruleset.

Migration Toolkit for Applications 5.1 Rules Development Guide

6

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.1/html-single/introduction_to_the_migration_toolkit_for_applications
https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.1/html-single/cli_guide
https://github.com/windup/windup/wiki/Core-Development-Guide

CHAPTER 2. GETTING STARTED WITH RULES
You can get started creating custom MTA rules by creating a rule or by reviewing the quickstarts.

2.1. CREATING YOUR FIRST XML RULE

This section guides you through the process of creating and testing your first MTA XML-based rule. This
assumes that you have already installed MTA. See the CLI Guide for installation instructions.

In this example, you will write a rule to discover instances where an application defines a jboss-web.xml
file containing a <class-loading> element and provide a link to the documentation that describes how
to migrate the code.

Creating the directory structure for the rule
Create a directory structure to contain your first rule and the data file to use for testing.

$ mkdir -p /home/<USER_NAME>/migration-rules/rules
$ mkdir -p /home/<USER_NAME>/migration-rules/data

This directory structure will also be used to hold the generated MTA reports.

Creating data to test the rule

1. Create a jboss-web.xml file in the /home/<USER_NAME>/migration-rules/data/ subdirectory.

2. Copy in the following content.

Creating the rule
MTA XML-based rules use the following rule pattern:

when(condition)
 perform(action)
otherwise(action)

Procedure

1. In the /home/<USER_NAME>/migration-rules/rules/ directory, create a file named JBoss5-
web-class-loading.windup.xml that contains the following content:

<!DOCTYPE jboss-web PUBLIC "-//JBoss//DTD Web Application 4.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_4_2.dtd">
<jboss-web>
 <class-loading java2ClassLoadingCompliance="false">
 <loader-repository>
 seam.jboss.org:loader=@projectName@
 <loader-repository-config>java2ParentDelegation=false</loader-repository-config>
 </loader-repository>
 </class-loading>
</jboss-web>

<?xml version="1.0"?>
<ruleset id="<UNIQUE_RULESET_ID>"
 xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

CHAPTER 2. GETTING STARTED WITH RULES

7

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.1/html-single/cli_guide

NOTE

The XML file name must include the .windup.xml or .mta.xml extension.
Otherwise, MTA does not evaluate the new rule.

2. Add a unique identifier for the ruleset and rule:

Replace <UNIQUE_RULESET_ID> with an appropriate ruleset ID, for example, JBoss5-
web-class-loading.

Replace <UNIQUE_RULE_ID> with an appropriate rule ID, for example, JBoss5-web-
class-loading_001.

3. Add the following ruleset add-on dependencies:

4. Add the source and target technologies:

Replace <SOURCE_ID> with eap.

Replace <TARGET_ID> with eap.

5. Set the source and target technology versions.

Replace <SOURCE_VERSION_RANGE> with (4,5).

 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <metadata>
 <description>
 <!-- Ruleset Description -->
 </description>
 <dependencies>
 <!-- Ruleset Dependencies -->
 </dependencies>
 <sourceTechnology id="<SOURCE_ID>" versionRange="
<SOURCE_VERSION_RANGE>"/>
 <targetTechnology id="<TARGET_ID>" versionRange="
<TARGET_VERSION_RANGE>"/>
 <tag>Reviewed-2015-05-01</tag>
 </metadata>
 <rules>
 <rule id="<UNIQUE_RULE_ID>">
 <when>
 <!-- Test for a condition here -->
 </when>
 <perform>
 <!-- Perform an action -->
 </perform>
 </rule>
 </rules>
</ruleset>

<dependencies>
 <addon id="org.jboss.windup.rules,windup-rules-javaee,3.0.0.Final"/>
 <addon id="org.jboss.windup.rules,windup-rules-java,3.0.0.Final"/>
</dependencies>

Migration Toolkit for Applications 5.1 Rules Development Guide

8

Replace <TARGET_VERSION_RANGE> with (6,).

See the Apache Maven version range specification for more information.

6. Complete the when condition. Because this rule tests for a match in an XML file, xmlfile is used
to evaluate the files.
To match on the class-loading element that is a child of jboss-web, use the xpath expression
jboss-web/class-loading.

7. Complete the perform action for this rule.

Add a classification with a descriptive title and a level of effort of 1.

Provide a hint with an informative message and a link to documentation that describes the
migration details.

The rule is now complete and should look like the following example.

<when>
 <xmlfile matches="jboss-web/class-loading" />
</when>

<perform>
 <iteration>
 <classification title="JBoss Web Application Descriptor" effort="1"/>
 <hint title="JBoss Web XML class-loading element is no longer valid">
 <message>
 The class-loading element is no longer valid in the jboss-web.xml file.
 </message>
 <link href="https://access.redhat.com/documentation/en-
US/JBoss_Enterprise_Application_Platform/6.4/html-
single/Migration_Guide/index.html#Create_or_Modify_Files_That_Control_Class_Loading_i
n_JBoss_Enterprise_Application_Platform_6" title="Create or Modify Files That Control
Class Loading in JBoss EAP 6"/>
 </hint>
 </iteration>
</perform>

<?xml version="1.0"?>
<ruleset id="JBoss5-web-class-loading"
 xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <metadata>
 <description>
 This ruleset looks for the class-loading element in a jboss-web.xml file, which is no longer
valid in JBoss EAP 6
 </description>
 <dependencies>
 <addon id="org.jboss.windup.rules,windup-rules-javaee,3.0.0.Final"/>
 <addon id="org.jboss.windup.rules,windup-rules-java,3.0.0.Final"/>
 </dependencies>
 <sourceTechnology id="eap" versionRange="(4,5)"/>
 <targetTechnology id="eap" versionRange="[6,)"/>

CHAPTER 2. GETTING STARTED WITH RULES

9

http://maven.apache.org/enforcer/enforcer-rules/versionRanges.html

Installing the rule
An MTA rule is installed by placing the rule into the appropriate directory.

Copy the JBoss5-web-class-loading.windup.xml file to the <MTA_HOME>/rules/ directory.

$ cp /home/<USER_NAME>/migration-rules/rules/JBoss5-web-class-loading.windup.xml
<MTA_HOME>/rules/

Testing the rule
Open a terminal and execute the following command, passing the test file as an input argument and a
directory for the output report.

$ <MTA_HOME>/bin/mta-cli --sourceMode --input /home/<USER_NAME>/migration-rules/data --
output /home/<USER_NAME>/migration-rules/reports --target eap:6

You should see the following result.

Report created: /home/<USER_NAME>/migration-rules/reports/index.html
 Access it at this URL: file:///home/<USER_NAME>/migration-rules/reports/index.html

Reviewing the reports
Review the report to be sure that it provides the expected results. For a more detailed walkthrough of
MTA reports, see the Review the reports section of the MTA CLI Guide.

1. Open /home/<USER_NAME>/migration-rules/reports/index.html in a web browser.

2. Verify that the rule executed.

a. From the main landing page, click the Rule providers execution overview link to open the
Rule Providers Execution Overview.

 </metadata>
 <rules>
 <rule id="JBoss5-web-class-loading_001">
 <when>
 <xmlfile matches="jboss-web/class-loading" />
 </when>
 <perform>
 <iteration>
 <classification title="JBoss Web Application Descriptor" effort="1"/>
 <hint title="JBoss Web XML class-loading element is no longer valid">
 <message>
 The class-loading element is no longer valid in the jboss-web.xml file.
 </message>
 <link href="https://access.redhat.com/documentation/en-
US/JBoss_Enterprise_Application_Platform/6.4/html-
single/Migration_Guide/index.html#Create_or_Modify_Files_That_Control_Class_Loading_in_JBoss_En
terprise_Application_Platform_6" title="Create or modify files that control class loading in JBoss EAP
6"/>
 </hint>
 </iteration>
 </perform>
 </rule>
 </rules>
</ruleset>

Migration Toolkit for Applications 5.1 Rules Development Guide

10

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.1/html-single/cli_guide#review_reports

b. Find the JBoss5-web-class-loading_001 rule and verify that its Status? is Condition met
and its Result? is success.

Figure 2.1. Test rule execution

3. Verify that the rule matches the test data:

a. From the main landing page, click the name of the application or input folder, which is data
in this example.

b. Click the Application Details report link.

c. Click the jboss-web.xml link to view the Source Report.
You can see that the <class-loading> line is highlighted, and the hint from the custom rule
is shown inline.

Figure 2.2. Rule match

The top of the file lists the classifications for matching rules. You can use the link icon to
view the details for that rule. Notice that in this example, the jboss-web.xml file matched
on another rule (JBoss web application descriptor (jboss-web.xml)) that produced 1
story point. This, combined with the 1 story point from our custom rule, brings the total story
points for this file to 2.

CHAPTER 2. GETTING STARTED WITH RULES

11

2.2. REVIEWING THE MIGRATION TOOLKIT FOR APPLICATIONS
QUICKSTARTS

The Migration Toolkit for Applications quickstarts provide working examples of how to create custom
Java-based rule add-ons and XML rules. You can use them as a starting point for creating your own
custom rules.

Each quickstart has a README.adoc file that contains instructions for that quickstart.

You can download a .zip file of the latest version of the quickstarts. If you prefer to work with the source
code, you can fork and clone the windup-quickstarts project repository.

Downloading the latest quickstart
You can download the latest release of a quickstart.

Procedure

1. Launch a browser and navigate to https://github.com/windup/windup-quickstarts/releases.

2. Click the latest release to download the .zip file to your local file system.

3. Extract the archive files to a local directory.
You can review the quickstart README.adoc file.

Forking and cloning the quickstart GitHub project
You can fork and clone the Quickstart Github project on your local machine.

Prerequisites

You must have git client installed.

Procedure

1. Click Fork on the Migration Toolkit for Applications quickstart GitHub page to create the
project in your own Git. The forked GitHub repository URL should look like this:
https://github.com/<YOUR_USER_NAME>/windup-quickstarts.git.

2. Clone the Migration Toolkit for Applications quickstart repository to your local file system:

$ git clone https://github.com/<YOUR_USER_NAME>/windup-quickstarts.git

This creates a windup-quickstarts directory on your local file system.

3. Navigate to the newly created directory:

$ cd windup-quickstarts/

4. To retrieve the latest code updates, add the remote upstream repository so that you can fetch
changes to the original forked repository:

$ git remote add upstream https://github.com/windup/windup-quickstarts.git

5. Download the latest files from the upstream repository:

Migration Toolkit for Applications 5.1 Rules Development Guide

12

https://github.com/windup/windup-quickstarts/releases
http://git-scm.com/
https://github.com/windup/windup-quickstarts/

$ git fetch upstream

CHAPTER 2. GETTING STARTED WITH RULES

13

CHAPTER 3. CREATING XML RULES

3.1. XML RULE STRUCTURE

This section describes the basic structure of XML rules. All XML rules are defined as elements within
rulesets. For more details, see the MTA XML rule schema.

3.1.1. Rulesets

A ruleset is a group of one or more rules that targets a specific area of migration. This is the basic
structure of the <ruleset> element.

<ruleset id="<UNIQUE_RULESET_ID>">: Defines this as an MTA ruleset and gives it a unique
ruleset ID.

<metadata>: The metadata about the ruleset.

<description>: The description of the ruleset.

<dependencies/>: The rule add-ons required by this ruleset.

<sourceTechnology/>: The source technology.

<targetTechnology/>: The target technology.

<overrideRules/>: Setting to true indicates that rules in this ruleset override rules with
the same ID from the core ruleset distributed with MTA. Both the ruleset id and the rule
id must match a rule within the core ruleset or the rule will be ignored. This is false by
default.

<rules>: A set of individual rules.

<rule id="<UNIQUE_RULE_ID>">: Defines the rule and gives it a unique ID. It is
recommended to include the ruleset ID as part of the rule ID, for example,
<UNIQUE_RULESET_ID_UNIQUE_RULE_ID>. One or more rules can be defined for a
ruleset.

<when>: The conditions to match on.

<perform>: The action to be performed when the rule condition is matched.

<otherwise>: The action to be performed when the rule condition is not matched.
This element takes the same child elements as the <perform> element.

<where>: A string pattern defined as a parameter, which can be used elsewhere in
the rule definition.

<file-mapping/>: Maps an extension to a graph type.

<package-mapping/>: Maps from a package pattern (regular expression) to a
organization name.

3.1.2. Predefined rules

MTA provides predefined rules for common migration requirements. These core MTA rules are located
in the MTA installation at <MTA_HOME>/rules/migration-core/.

Migration Toolkit for Applications 5.1 Rules Development Guide

14

http://windup.jboss.org/schema/windup-jboss-ruleset.xsd

The following is an example of a core MTA rule that matches on a proprietary utility class.

3.2. CREATING A BASIC XML RULE

This section describes how to create an MTA XML rule. This assumes that you already have MTA
installed. See the MTA CLI Guide for installation instructions.

3.2.1. Creating a basic XML rule template

MTA XML rules consist of conditions and actions and use the following rule pattern:

when(condition)
 perform(action)
otherwise(action)

<?xml version="1.0"?>
<ruleset xmlns="http://windup.jboss.org/schema/jboss-ruleset" id="weblogic"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">

 <metadata>
 <description>
 This ruleset provides analysis of WebLogic proprietary classes and constructs that may
require individual attention when migrating to JBoss EAP 6+.
 </description>
 <dependencies>
 <addon id="org.jboss.windup.rules,windup-rules-javaee,2.0.1.Final" />
 <addon id="org.jboss.windup.rules,windup-rules-java,2.0.0.Final" />
 </dependencies>
 <sourceTechnology id="weblogic" />
 <targetTechnology id="eap" versionRange="[6,)" />
 <tag>reviewed-2015-06-02</tag>
 <tag>weblogic</tag>
 </metadata>
 <rules>
 ...
 <rule id="weblogic-02000">
 <when>
 <javaclass references="weblogic.utils.StringUtils.{*}" />
 </when>
 <perform>
 <hint title="WebLogic StringUtils usage" effort="1" category-id="mandatory">
 <message>Replace with the `StringUtils` class from Apache Commons.</message>
 <link href="https://commons.apache.org/proper/commons-lang/" title="Apache Commons
Lang" />
 <tag>weblogic</tag>
 </hint>
 </perform>
 </rule>
 ...
 </rules>
</ruleset>

CHAPTER 3. CREATING XML RULES

15

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.1/html-single/cli_guide

Create a file with the following contents, which is the basic syntax for XML rules.

IMPORTANT

The XML file name must include the .windup.xml or .mta.xml extension. Otherwise,
MTA does not evaluate the new rule.

3.2.2. Creating the ruleset metadata

The XML ruleset metadata element provides additional information about the ruleset such as a
description, the source and target technologies, and add-on dependencies. The metadata also allows
for specification of tags, which allow you to provide additional information about a ruleset.

<metadata> example

<?xml version="1.0"?>
<ruleset id="unique-ruleset-id"
 xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <metadata>
 <!-- Metadata about the rule including a description,
 source technology, target technology, and any
 add-on dependencies -->
 </metadata>
<rules>
 <rule id="unique-ruleset-id-01000">
 <when>
 <!-- Test a condition... -->
 </when>
 <perform>
 <!-- Perform this action when condition is satisfied -->
 </perform>
 <otherwise>
 <!-- Perform this action when condition is not satisfied -->
 </otherwise>
 </rule>
 <rules>
</ruleset>

<ruleset id="unique-ruleset-id"
 xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <metadata>
 <description>
 This is the description.
 </description>
 <dependencies>
 <addon id="org.jboss.windup.rules,windup-rules-javaee,2.0.1.Final"/>
 <addon id="org.jboss.windup.rules,windup-rules-java,2.0.0.Final"/>
 </dependencies>

Migration Toolkit for Applications 5.1 Rules Development Guide

16

3.2.3. Creating a rule

Individual rules are contained within the <rules> element. They comprise one or more when conditions
and perform actions.

See the XML rule schema for valid rule syntax.

3.2.3.1. Creating a <when> condition

The XML rule <when> element tests for a condition. The following is a list of valid <when> conditions.

Element Description

<and> The standard logical and operator.

<filecontent> Find strings or text within files, for example, properties files.

<file-mapping> Define file names to internal stored File model.

<javaclass> Test for a match in a Java class.

<javaclass-ignore> Exclude javaclass which you would like to ignore in processing discovery.

<not> The standard logical not operator.

<or> The standard logical or operator.

<package-
mapping>

Define package names to organization or libraries.

<project> Test for project characteristics, such as dependencies.

<true> Always match.

<xmlfile> Test for a match in an XML file.

 <sourceTechnology id="weblogic" versionRange="(10,12]"/>
 <sourceTechnology id="ejb" versionRange="(2,3]"/>
 <targetTechnology id="eap" versionRange="(5,6]"/>
 <targetTechnology id="ejb" versionRange="(2,3]"/>
 <tag>require-stateless</tag>
 <tag>require-nofilesystem-io</tag>
 <executeAfter>AfterRulesetId</executeAfter>
 <executeBefore>BeforeRulesetId</executeBefore>
 </metadata>
 <rules>
 ...
 </rules>
</ruleset>

CHAPTER 3. CREATING XML RULES

17

http://windup.jboss.org/schema/windup-jboss-ruleset.xsd

The specific syntax is dependent on whether you are creating a rule to evaluate Java class, an XML file, a
project, or file content.

3.2.3.2. Creating a <perform> action

The XML rule <perform> element performs the action when the condition is met. Operations allowed in
this section of the rule include the classification of application resources, in-line hints for migration
steps, links to migration information, and project line item reporting. The following is a list of valid
<perform> actions.

Element Description

<classification> This operation adds metadata that you want to apply to the entire file. For example, if
the Java Class is a JMS Message Listener, you can add a Classification with the title
"JMS Message Listener" that includes information that applies to the entire file. You
can also set an effort level for the entire file.

<hint> This operation adds metadata to a line within the file. This provides a hint or inline
information about how to migrate a section of code.

<iteration> This specifies to iterate over an implicit or explicit variable defined within the rule.

<lineitem> This provides a high-level message that is displayed in the application overview page.

<link> This provides an HTML link to additional information or documentation about the
migration task.

<xslt> This specifies how to transform an XML file.

3.3. XML RULE SYNTAX

3.3.1. <when> syntax

Conditions allowed in the when portion of a rule must extend GraphOperation and currently include
evaluation of Java classes, XML files, projects, and file content. Because XML rules are modeled after
the Java-based rule add-ons, links to JavaDocs for the related Java classes are provided for a better
understanding of how they behave.

The complete XML rule schema is located here: http://windup.jboss.org/schema/windup-jboss-
ruleset.xsd.

The following sections describe the more common XML when rule conditions.

<javaclass> condition syntax

<xmlfile> condition syntax

<project> condition syntax

<filecontent> condition syntax

Migration Toolkit for Applications 5.1 Rules Development Guide

18

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/config/operation/GraphOperation.html
http://windup.jboss.org/schema/windup-jboss-ruleset.xsd

<file> condition syntax

<has-hint> condition syntax

<has-classification> condition syntax

<graph-query> condition syntax

<dependency> condition syntax

By default, if more than one when rule condition is provided, then all conditions must be met for the rule
to match.

3.3.1.1. <javaclass> syntax

3.3.1.1.1. Summary

Use the <javaclass> element to find imports, methods, variable declarations, annotations, class
implementations, and other items related to Java classes. For a better understanding of the
<javaclass> condition, see the JavaDoc for the JavaClass class.

The following is an example of a rule that tests for WebLogic-specific Apache XML packages:

3.3.1.1.2. Construct a <javaclass> element

3.3.1.1.2.1. <javaclass> element attributes

Attribute name Type Description

<rule id="weblogic-03000">
 <when>
 <javaclass references="weblogic.apache.xml.{*}" />
 </when>
 <perform>
 <hint title="WebLogic Specific Apache XML Package" effort="1" category-id="mandatory">
 <message>
 Code using this package should be replaced with code using the org.apache.xml package
from [Apache
 Xerces](http://xerces.apache.org/).
 </message>
 </hint>
 </perform>
</rule>

CHAPTER 3. CREATING XML RULES

19

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/rules/apps/java/condition/JavaClass.html

references CLASS_NAME The package or class name to match on. Wildcard characters can
be used. This attribute is required.

NOTE

For performance reasons, you should not start
the reference with wildcard characters. For
example, use weblogic.apache.xml.{*}
instead of {web}.apache.xml.{*}.

references="weblogic.apache.xml.{*}"

matchesSource STRING An exact regex to match. This is useful to distinguish hard-
coded strings. This attribute is required.

matchesSource="log4j.logger"

as VARIABLE_NAME A variable name assigned to the rule so that it can be used as a
reference in later processing. See the from attribute below.

as="MyEjbRule"

from VARIABLE_NAME Begin the search query with the filtered result from a previous
search identified by its as VARIABLE_NAME.

from="MyEjbRule"

in PATH_FILTER Filter input files matching this regex (regular expression) naming
pattern. Wildcard characters can be used.

in="{*}File1"

Attribute name Type Description

3.3.1.1.2.2. <javaclass> child elements

Child Element Description

<location> The location where the reference was found in a Java class. Location can refer to
annotations, field and variable declarations, imports, and methods. For the complete list
of valid values, see the JavaDoc for TypeReferenceLocation.

<location>IMPORT</location>

Migration Toolkit for Applications 5.1 Rules Development Guide

20

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/ast/java/data/TypeReferenceLocation.html

<annotation-
literal>

Match on literal values inside of annotations.

The following example matches on @MyAnnotation(myvalue="test").

Note that in this case, the <javaclass> refers to an annotation (@MyAnnotation),
so the top-level annotation filter, <annotation-literal> must specify the name
attribute. If the <javaclass> referred to a class that is annotated, then the top-level
annotation filter used would be <annotation-type>.

<annotation-type> Match on a particular annotation type. You can supply subconditions to be matched
against the annotation elements.

The below example would match on a Calendar field declaration annotated with
@MyAnnotation(myvalue="test").

<annotation-list> Match on an item in an array within an annotation. If an array index is not specified, the
condition will be matched if it applies to any item in the array. You can supply
subconditions to be matched against this element.

The below example would match on @MyAnnotation(mylist={"one","two"}).

Note that in this case, the <javaclass> refers to an annotation (@MyAnnotation),
so the top-level annotation filter, <annotation-list> must specify the name attribute.
If the <javaclass> referred to a class that is annotated, then the top-level annotation
filter used would be <annotation-type>.

Child Element Description

3.3.1.2. <xmlfile> syntax

3.3.1.2.1. Summary

Use the <xmlfile> element to find information in XML files. For a better understanding of the <xmlfile>

<javaclass references="org.package.MyAnnotation">
 <location>ANNOTATION</location>
 <annotation-literal name="myvalue" pattern="test"/>
</javaclass>

<javaclass references="java.util.Calendar">
 <location>FIELD_DECLARATION</location>
 <annotation-type pattern="org.package.MyAnnotation">
 <annotation-literal name="myvalue" pattern="test"/>
 </annotation-type>
</javaclass>

<javaclass references="org.package.MyAnnotation" >
 <location>ANNOTATION</location>
 <annotation-list name="mylist">
 <annotation-literal pattern="two"/>
 </annotation-list>
</javaclass>

CHAPTER 3. CREATING XML RULES

21

Use the <xmlfile> element to find information in XML files. For a better understanding of the <xmlfile>
condition, see the JavaDoc for the XmlFile class.

The following is an example of a rule that tests for an XML file:

<rule id="<UNIQUE_RULE_ID>">
 <when>
 <xmlfile matches="/w:web-app/w:resource-ref/w:res-auth[text() = 'Container']">
 <namespace prefix="w" uri="http://java.sun.com/xml/ns/javaee"/>
 </xmlfile>
 </when>
 <perform>
 <hint title="Title for Hint from XML">
 <message>Container Auth</message>
 </hint>
 <xslt description="Example XSLT Conversion" extension="-converted-example.xml"
 template="/exampleconversion.xsl"/>
 </perform>
</rule>

3.3.1.2.2. Construct an <xmlfile> element

3.3.1.2.2.1. <xmlfile> element attributes

Attribute name Type Description

matches XPATH Match on an XML file condition.

matches="/w:web-app/w:resource-ref/w:res-auth[text()
= 'Container']"

xpathResultMatch XPATH_RESULT_
STRING

Return results that match the given regex.

<xmlfile matches="//foo/text()"
 xpathResultMatch="Text from foo."/>

as VARIABLE_NAME A variable name assigned to the rule so that it can be used as a
reference in later processing. See the from attribute below.

as="MyEjbRule"

in PATH_FILTER Used to filter input files matching this regex (regular expression)
naming pattern. Wildcard characters can be used.

in="{*}File1"

Migration Toolkit for Applications 5.1 Rules Development Guide

22

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/rules/apps/xml/condition/XmlFile.html

from VARIABLE_NAME Begin the search query with the filtered result from a previous
search identified by its as VARIABLE_NAME.

from="MyEjbRule"

public-id PUBLIC_ID The DTD public-id regex.

public-id="public"

Attribute name Type Description

3.3.1.2.2.2. <xmlfile> matches custom functions

The matches attribute may use several built-in custom XPath functions, which may have useful side
effects, like setting the matched value on the rule variables stack.

Function Description

windup:matches() Match a XPath expression against a string, possibly
containing MTA parameterization placeholders.

matches="windup:matches(//foo/@class,
'{javaclassname}'"

This will match all <foo/> elements with a class
attribute and store their value into javaclassname
parameter for each iteration.

3.3.1.2.2.3. <xmlfile> child elements

Child element Description

<namespace> The namespace referenced in XML files. This element contains two optional attributes:
The prefix and the uri.

3.3.1.3. <project> syntax

3.3.1.3.1. Summary

Use the <project> element to query the Maven POM file for the project characteristics. For a better
understanding of the <project> condition, see the JavaDoc for the Project class.

The following is an example of a rule that checks for a JUnit dependency version between 2.0.0.Final
and 2.2.0.Final.

<namespace prefix="abc" uri="http://maven.apache.org/POM/4.0.0"/>

CHAPTER 3. CREATING XML RULES

23

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/project/condition/Project.html

3.3.1.3.2. Construct a <project> element

3.3.1.3.2.1. <project> element attributes

The <project> element is used to match against the project’s Maven POM file. You can use this
condition to query for dependencies of the project. It does not have any attributes itself.

3.3.1.3.2.2. <project> child elements

Child element Description

<artifact> Subcondition used within <project> to query against project dependencies. The
<artifact> element attributes are described below.

3.3.1.3.2.3. <artifact> element attributes

Attribute name Type Description

groupId PROJECT_GROU
P_ID

Match on the project <groupId> of the dependency.

artifactId PROJECT_ARTIF
ACT_ID

Match on the project <artifactId> of the dependency.

fromVersion FROM_VERSION Specify the lower version bound of the artifact. For example
2.0.0.Final.

toVersion TO_VERSION Specify the upper version bound of the artifact. For example
2.2.0.Final.

3.3.1.4. <filecontent> syntax

3.3.1.4.1. Summary

Use the <filecontent> element to find strings or text within files, for example, a line in a Properties file.
For a better understanding of the <filecontent> condition, see the JavaDoc for the FileContent class.

<rule id="UNIQUE_RULE_ID">
 <when>
 <project>
 <artifact groupId="junit" artifactId="junit" fromVersion="2.0.0.Final" toVersion="2.2.0.Final"/>
 </project>
 </when>
 <perform>
 <lineitem message="The project uses junit with the version between 2.0.0.Final and
2.2.0.Final"/>
 </perform>
</rule>

Migration Toolkit for Applications 5.1 Rules Development Guide

24

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/rules/files/condition/FileContent.html

3.3.1.4.2. Construct a <filecontent> element

3.3.1.4.2.1. <filecontent> element attributes

Attribute name Type Description

pattern String Match the file contents against the provided parameterized
string. This attribute is required.

filename String Match the file names against the provided parameterized string.

as VARIABLE_NAME A variable name assigned to the rule so that it can be used as a
reference in later processing. See the from attribute below.

as="MyEjbRule"

from VARIABLE_NAME Begin the search query with the filtered result from a previous
search identified by its as VARIABLE_NAME.

from="MyEjbRule"

3.3.1.5. <file> syntax

3.3.1.5.1. Summary

Use the <file> element to find the existence of files with a specific name, for example, an ibm-
webservices-ext.xmi file. For a better understanding of the <file> condition, see the JavaDoc for the
File class.

3.3.1.5.2. Construct a <file> element

3.3.1.5.2.1. <file> element attributes

Attribute name Type Description

filename String Match the file names against the provided parameterized string.
This attribute is required.

as VARIABLE_NAME A variable name assigned to the rule so that it can be used as a
reference in later processing. See the from attribute below.

as="MyEjbRule"

CHAPTER 3. CREATING XML RULES

25

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/rules/files/condition/File.html

from VARIABLE_NAME Begin the search query with the filtered result from a previous
search identified by its as VARIABLE_NAME.

Example:

from="MyEjbRule"

Attribute name Type Description

3.3.1.6. <has-hint> syntax

3.3.1.6.1. Summary

Use the <has-hint> element to test whether a file or line has a hint already associated with it. It is
primarily used to prevent firing if a hint already exists, or to implement rules for default execution when
no other conditions apply. For a better understanding of the <has-hint> condition, see the JavaDoc for
the HasHint class.

The following is an example of a rule that checks to see if a hint exists for an IBM JMS destination
message, and if not includes it.

<rule id="websphere-jms-eap7-03000">
 <when>
 <javaclass references="{package}.{prefix}{type}Message" />
 </when>
 <perform>
 <iteration>
 <when>
 <not>
 <has-hint />
 </not>
 </when>
 <perform>
 <hint title="IBM JMS destination message" effort="1" category-id="mandatory">
 <message>
 JMS `{package}.{prefix}{type}Message` messages represent the actual data passed through
JMS destinations. This reference should be
 replaced with the Java EE standard API `javax.jms.{type}Message`.
 </message>
 <link href="https://docs.oracle.com/javaee/7/tutorial/jms-concepts003.htm#sthref2271"
title="Java EE 7 JMS Tutorial - Message API" />
 <tag>jms</tag>
 <tag>websphere</tag>
 </hint>
 </perform>
 </iteration>
 </perform>
 <where param="type">
 <matches pattern="(Text|Stream|Object|Map|Bytes)?" />
 </where>
 <where param="prefix">
 <matches pattern="(JMS|MQe|MQ)" />
 </where>

Migration Toolkit for Applications 5.1 Rules Development Guide

26

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/HasHint.html

3.3.1.6.2. Construct a <has-hint>

The <has-hint> element is used to determine if a hint exists for a file or line. It does not have any child
elements.

3.3.1.6.2.1. <has-hint> element attributes

Attribute name Type Description

message String An optional argument allowing you to match the hint against the
provided message string.

3.3.1.7. <has-classification> syntax

3.3.1.7.1. Summary

Use the <has-classification> element to test whether a file or line has a classification. It is primarily
used to prevent firing if a classification already exists, or to implement rules for default execution when
no other conditions apply. For a better understanding of the <has-classification> condition, see the
JavaDoc for the HasClassification class.

3.3.1.7.2. Construct a <has-classification>

The has-classification element is used to determine if a specified classification exists. It does not have
any child elements.

3.3.1.7.2.1. <has-classification> element attributes

Attribute name Type Description

title String An optional title to match the classification against.

3.3.1.8. <graph-query> syntax

3.3.1.8.1. Summary

Use the <graph-query> element to search the generated graph for any elements. This element is
primarily used to search for specific archives. For a better understanding of the <graph-query>
condition, see the JavaDoc for the QueryHandler class.

The following is an example of a rule that tests to determine if any ehcache packages are found.

 <where param="package">
 <matches pattern="com.ibm(\..*)?\.jms" />
 </where>
</rule>

<rule id="embedded-cache-libraries-01000">
 <when>
 <graph-query discriminator="JarArchiveModel">

CHAPTER 3. CREATING XML RULES

27

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/HasClassification.html
http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/config/parser/xml/when/QueryHandler.html

3.3.1.8.2. Construct a <graph-query>

3.3.1.8.2.1. <graph-query> element attributes

Attribute Name Type Description

discriminator MODEL_TYPE The type of model to use for searching. This can be any valid
model; however, it is recommended to use the
JarArchiveModel for examining archives. This attribute is
required.

as VARIABLE_NAME A variable name assigned to the rule so that it can be used as a
reference in later processing. See the from attribute below.

as="MyEjbRule"

from VARIABLE_NAME Begin the search query with the filtered result from a previous
search identified by its as VARIABLE_NAME.

from="MyEjbRule"

3.3.1.8.2.2. <graph-query> properties

Property Name Type Description

name String The name of the attribute to match against within the chosen
model. When using any file-based models it is recommended to
match on fileName. This attribute is required.

type property-type Defines the expected type of property, either STRING or
BOOLEAN.

 <property name="fileName" searchType="regex">.*ehcache.*\.jar$</property>
 </graph-query>
 </when>
 <perform>
 <classification title="Caching - Ehcache embedded library" category-id="cloud-mandatory"
effort="5">
 <description>
 The application embeds an Ehcache library.

 Cloud readiness issue as potential state information that is not persisted to a backing
service.
 </description>
 </classification>
 <technology-tag level="INFORMATIONAL">Ehcache (embedded)</technology-tag>
 </perform>
</rule>

Migration Toolkit for Applications 5.1 Rules Development Guide

28

searchType property-search-
type

Defines how the condition is matched. If set to equals, then an
exact match must be made. If using regex, then regular
expressions can be used.

Property Name Type Description

3.3.1.9. <dependency> syntax

3.3.1.9.1. Summary

Use the <dependency> element to search dependencies defined within the application’s POM file to
determine whether they are supported by the target runtime.

The following is an example of a rule that checks for all artifacts belonging to the
org.springframework.boot group that have a version up to, and including, 1.6.0.

3.3.2. <perform> syntax

Operations available in the perform section of the rule include the classification of application
resources, in-line hints for migration steps, links to migration information, and project lineitem reporting.
Because XML rules are modeled after the Java-based rule add-ons, links to JavaDocs for the related
Java classes are provided for a better understanding of how they behave.

You can view the complete XML rule schema.

The following sections describe the more common XML rule perform actions.

3.3.2.1. <classification> syntax

3.3.2.1.1. Summary

The <classification> element is used to identify or classify application resources that match the rule. It

<rule id="springboot-00001">
 <!-- rule condition, when it could be fired -->
 <when>
 <dependency groupId="org.springframework.boot" artifactId="{*}" toVersion="1.6.0" />
 </when>
 <!-- rule operation, what to do if it is fired -->
 <perform>
 <hint title="Unsupported version of Spring Boot" effort="3" category-id="mandatory">
 <message>Spring Boot has to be updated to Spring Boot 2.0 before being able to be
migrated to a version supported by Red Hat Runtimes</message>
 <link href="https://access.redhat.com/articles/3349341" title="RHOAR Spring Boot Supported
Configurations" />
 <link href="https://access.redhat.com/articles/3348731" title="RHOAR Component Details
Overview" />
 <link href="https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-
Guide" title="Spring Boot 2.0 Migration Guide" />
 </hint>
 </perform>
</rule>

CHAPTER 3. CREATING XML RULES

29

http://windup.jboss.org/schema/windup-jboss-ruleset.xsd

The <classification> element is used to identify or classify application resources that match the rule. It
provides a title that is displayed in the report, a level of effort, and it can also provide links to additional
information about how to migrate this resource classification. For a better understanding of the
<classification> action, see the JavaDoc for the Classification class.

The following is an example of a rule that classifies a resource as a WebLogic EAR application
deployment descriptor file.

3.3.2.1.2. <classification> element attributes

Attribute name Type Description

title STRING The title given to this resource. This attribute is required.

title="JBoss Seam Components"

effort BYTE The level of effort assigned to this resource.

effort="2"

category-id STRING A reference to a category as defined in
MTA_HOME/rules/migration-
core/core.windup.categories.xml. The default categories
are mandatory, optional, potential, and information.

category-id="mandatory"

of VARIABLE_NAME Create a new classification for the given reference.

of="MySeamRule"

3.3.2.1.3. <classification> child elements

Child element Description

<rule id="XmlWebLogicRules_10vvyf">
 <when>
 <xmlfile as="default" matches="/*[local-name()='weblogic-application']"></xmlfile>
 </when>
 <perform>
 <iteration>
 <classification title="Weblogic EAR Application Descriptor" effort="3"/>
 </iteration>
 </perform>
</rule>

Migration Toolkit for Applications 5.1 Rules Development Guide

30

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/classification/Classification.html

<link> Provides a link URI and text title for additional information.

<tag> Provides additional custom information for the classification.

<description> Description of this resource

Child element Description

3.3.2.2. <link> syntax

3.3.2.2.1. Summary

The <link> element is used in classifications or hints to provide links to informational content. For a
better understanding of the <link> action, see the JavaDoc for the Link class.

The following is an example of a rule that creates links to additional information.

<classification title="Websphere Startup Service" effort="4">
 <link href="http://docs.oracle.com/javaee/6/api/javax/ejb/Singleton.html"
title="EJB3.1 Singleton Bean"/>
 <link href="http://docs.oracle.com/javaee/6/api/javax/ejb/Startup.html"
title="EJB3.1 Startup Bean"/>
</classification>

<tag>Seam3</tag>

<description>JBoss Seam components must be replaced</description>

<rule id="SeamToCDIRules_2fmb">
 <when>
 <javaclass references="org.jboss.seam.{*}" as="default"/>
 </when>
 <perform>
 <iteration>
 <classification title="SEAM Component" effort="1">
 <link href="http://www.seamframework.org/Seam3/Seam2ToSeam3MigrationNotes"
title="Seam 2 to Seam 3 Migration Notes"/>
 <link href="http://docs.jboss.org/weld/reference/latest/en-US/html/example.html" title="JSF
Web Application Example"/>
 <link href="http://docs.jboss.org/weld/reference/latest/en-US/html/contexts.html"
title="JBoss Context Documentation"/>
 <link href="http://www.andygibson.net/blog/tutorial/cdi-conversations-part-2/" title="CDI
Conversations Blog Post"/>
 </classification>
 </iteration>
 </perform>
</rule>

CHAPTER 3. CREATING XML RULES

31

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/Link.html

3.3.2.2.2. <link> element attributes

Attribute Name Type Description

href URI The URI for the referenced link.

href="https://access.redhat.com/articles/1249423"

title STRING A title for the link.

title="Migrate WebLogic Proprietary Servlet
Annotations"

3.3.2.3. <hint> syntax

3.3.2.3.1. Summary

The <hint> element is used to provide a hint or inline information about how to migrate a section of
code. For a better understanding of the <hint> action, see the JavaDoc for the Hint class.

The following is an example of a rule that creates a hint.

3.3.2.3.2. <hint> element attributes

Attribute name Type Description

title STRING Title this hint using the specified string. This attribute is required.

title="JBoss Seam Component Hint"

<rule id="WebLogicWebServiceRules_8jyqn">
 <when>
 <javaclass
references="weblogic.wsee.connection.transport.http.HttpTransportInfo.setUsername({*})"
as="default">
 <location>METHOD</location>
 </javaclass>
 </when>
 <perform>
 <iteration>
 <hint title="Proprietary web-service" category-id="mandatory" effort="3">
 <message>Replace proprietary web-service authentication with JAX-WS
standards.</message>
 <link href="http://java-x.blogspot.com/2009/03/invoking-web-services-through-proxy.html"
title="JAX-WS Proxy Password Example"/>
 </hint>
 </iteration>
 </perform>
</rule>

Migration Toolkit for Applications 5.1 Rules Development Guide

32

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/Hint.html

category-id STRING A reference to a category as defined in
MTA_HOME/rules/migration-
core/core.windup.categories.xml. The default categories
are mandatory, optional, potential, and information.

category-id="mandatory"

in VARIABLE_NAME Create a new Hint in the FileLocationModel resolved by the
given variable.

in="Foo"

effort BYTE The level of effort assigned to this resource.

effort="2"

Attribute name Type Description

3.3.2.3.3. <hint> child elements

Child element Description

<message> A message describing the migration hint.

<link> Identify or classify links to informational content.

<tag> Define a custom tag for this hint.

<quickfix> Contains information to be used by the MTA plugin to perform quick fixes when the rule
condition is met.

3.3.2.4. <xslt> syntax

<message>EJB 2.0 is deprecated</message>

<link href="http://docs.oracle.com/javaee/6/api/" title="Java Platform,
Enterprise Edition 6
API Specification" />

<tag>Needs review</tag>

<quickfix name="slink-qf" type="REPLACE">
 <replacement>h:link</replacement>
 <search>s:link</search>
</quickfix>

CHAPTER 3. CREATING XML RULES

33

3.3.2.4.1. Summary

The <xslt> element specifies how to transform an XML file. For a better understanding of the <xslt>
action, see the JavaDoc for the XSLTTransformation class.

The following is an example of rule that defines an XSLT action.

3.3.2.4.2. <xslt> element attributes

Attribute Name Type Description

title STRING Sets the title for this XSLTTransformation in the report. This
attribute is required.

title="XSLT Transformed Output"

of STRING Create a new transformation for the given reference.

of="testVariable_instance"

extension STRING Sets the extension for this XSLTTransformation. This attribute is
required.

extension="-result.html"

template STRING Sets the XSL template. This attribute is required.

template="simpleXSLT.xsl"

effort BYTE The level of effort required for the transformation.

3.3.2.4.3. <xslt> child elements

<rule id="XmlWebLogicRules_6bcvk">
 <when>
 <xmlfile as="default" matches="/weblogic-ejb-jar"/>
 </when>
 <perform>
 <iteration>
 <classification title="Weblogic EJB XML" effort="3"/>
 <xslt title="JBoss EJB Descriptor (Windup-Generated)"
template="transformations/xslt/weblogic-ejb-to-jboss.xsl" extension="-jboss.xml"/>
 </iteration>
 </perform>
</rule>

Migration Toolkit for Applications 5.1 Rules Development Guide

34

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/rules/apps/xml/operation/xslt/XSLTTransformation.html

Child element Description

<xslt-parameter> Specify XSLTTransformation parameters as property value pairs

3.3.2.5. <lineitem> syntax

3.3.2.5.1. Summary

The <lineitem> element is used to provide general migration requirements for the application, such as
the need to replace deprecated libraries or the need to resolve potential class loading issues. This
information is displayed on the project or application overview page. For a better understanding of the
<lineitem> action, see the JavaDoc for the LineItem class.

The following is an example of a rule that creates a lineitem message.

3.3.2.5.2. <lineitem> element attributes

Attribute Name Type Description

message STRING A lineitem message.

message="Proprietary code found."

3.3.2.6. <iteration> syntax

3.3.2.6.1. Summary

The <iteration> element specifies to iterate over an implicit or explicit variable defined within the rule.
For a better understanding of the <iteration> action, see the JavaDoc for the Iteration class.

The following is an example of a rule that performs an iteration.

<xslt-parameter property="title" value="EJB Transformation"/>

<rule id="weblogic_servlet_annotation_1000">
 <when>
 <javaclass references="weblogic.servlet.annotation.WLServlet" as="default">
 <location>ANNOTATION</location>
 </javaclass>
 </when>
 <perform>
 <hint effort="1">
 <message>Replace the proprietary WebLogic @WLServlet annotation with the Java EE 6
standard @WebServlet annotation.</message>
 <link href="https://access.redhat.com/articles/1249423" title="Migrate WebLogic Proprietary
Servlet Annotations" />
 <lineitem message="Proprietary WebLogic @WLServlet annotation found in file."/>
 </hint>
 </perform>
</rule>

CHAPTER 3. CREATING XML RULES

35

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/project/operation/LineItem.html
http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/config/operation/Iteration.html

3.3.2.6.2. <iteration> element attributes

Attribute name Type Description

over VARIABLE_NAME Iterate over the condition identified by this VARIABLE_NAME.

over="jboss-app"

3.3.2.6.3. <iteration> child elements

Child Element Description

<iteration> Child elements include a when condition, along with the actions iteration,
classification, hint, xslt, lineitem, and otherwise.

3.3.3. <where> syntax

You can define parameters that specify a matching pattern to be used in other elements of an XML rule.
This can help simplify the patterns for complex matching expressions.

Use the <where> element to define a parameter. Specify the parameter name using the param
attribute and supply the pattern using the <matches> element. This parameter can then be referenced
elsewhere in the rule definition using the syntax {<PARAM_NAME>}.

You can view the complete XML rule schema.

The following example rule defines a parameter named subpackage that specifies a pattern of
(activeio|activemq).

<rule id="jboss-eap5-xml-19000">
 <when>
 <xmlfile as="jboss-app" matches="/jboss-app"/>
 <xmlfile as="jboss-app-no-DTD" matches="/jboss-app" public-id=""/>
 </when>
 <perform>
 <iteration over="jboss-app">
 <classification title="JBoss application Descriptor" effort="5"/>
 </iteration>
 <iteration over="jboss-app-no-DTD">
 <classification title="JBoss application descriptor with missing DTD" effort="5"/>
 </iteration>
 <iteration over="jboss-app-no-DTD">
 <xslt title="JBoss application descriptor - JBoss 5 (Windup-generated)"
template="transformations/xslt/jboss-app-to-jboss5.xsl" extension="-jboss5.xml"/>
 </iteration>
 </perform>
</rule>

<rule id="generic-catchall-00600">
 <when>

Migration Toolkit for Applications 5.1 Rules Development Guide

36

http://windup.jboss.org/schema/windup-jboss-ruleset.xsd

The pattern defined by subpackage will then be substituted in the <javaclass> references attribute.
This causes the rule to match on org.apache.activeio.* and org.apache.activemq.* packages.

3.4. ADDING A RULE TO THE MIGRATION TOOLKIT FOR
APPLICATIONS

A Migration Toolkit for Applications rule is installed by copying the rule to the appropriate MTA folder.
MTA scans for rules, which are files with the .windup.xml or .mta.xml extension in the following
locations:

Directory specified by the --userRulesDirectory argument on the MTA command line.

<MTA_HOME>/rules/ directory. <MTA_HOME> is the directory where you install and run the
Migration Toolkit for Applications executable.

${user.home}/.mta/rules/ directory. This directory is created by MTA the first time it is run. it
contains rules, add-ons, and the MTA log.

NOTE

In a Windows operating system, the rules are located in \Documents and
Settings\<USER_NAME>\.mta\rules\ or \Users\<USER_NAME>\.mta\rules\.

 <javaclass references="org.apache.{subpackage}.{*}">
 </javaclass>
 </when>
 <perform>
 ...
 </perform>
 <where param="subpackage">
 <matches pattern="(activeio|activemq)" />
 </where>
</rule>

CHAPTER 3. CREATING XML RULES

37

CHAPTER 4. TESTING XML RULES
After you have created an XML rule, you should create a test rule to ensure that it works.

4.1. CREATING A TEST RULE

Test rules are created using a process similar to the process for creating a test rule, with the following
differences:

Test rules should be placed in a tests/ directory beneath the rule to be tested.

Any data, such as test classes, should be placed in a data/ directory beneath the tests/ directory.

Test rules should use the .mta.test.xml extension.

These rules use the structure defined in the Test XML Rule Structure.

In addition, it is recommended to create a test rule that follows the name of the rule it tests. For
instance, if a rule were created with a filename of proprietary-rule.mta.xml, the test rule should be
called proprietary-rule.mta.test.xml.

4.1.1. Test XML rule structure

All test XML rules are defined as elements within ruletests which contain one or more rulesets. For
more details, see the MTA XML rule schema.

A ruletest is a group of one or more tests that targets a specific area of migration. This is the basic
structure of the <ruletest> element.

<ruletest id="<RULE_TOPIC>-test">: Defines this as a unique MTA ruletest and gives it a
unique ruletest id.

<testDataPath>: Defines the path to any data, such as classes or files, used for testing.

<sourceMode>: Indicates if the passed in data only contains source files. If an archive, such
as an EAR, WAR, or JAR, is in use, then this should be set to false. Defaults to true.

<rulePath>: The path to the rule to be tested. This should end in the name of the rule to
test.

<ruleset>: Rulesets containing the logic of the test cases. These are identical to the ones
defined in Rulesets.

4.1.2. Test XML rule syntax

In addition to the tags in the standard XML rule syntax, the following when conditions are commonly
used for creating test rules:

<not>

<iterable-filter>

<classification-exists>

<hint-exists>

In addition to the tags in the standard perform action syntax, the following perform conditions are

Migration Toolkit for Applications 5.1 Rules Development Guide

38

http://windup.jboss.org/schema/windup-jboss-ruleset.xsd

In addition to the tags in the standard perform action syntax, the following perform conditions are
commonly used as actions in test rules:

<fail>

4.1.2.1. <not> syntax

Summary
The <not> element is the standard logical not operator, and is commonly used to perform a <fail> if the
condition is not met.

The following is an example of a test rule that fails if only a specific message exists at the end of the
analysis.

The <not> element has no unique attributes or child elements.

4.1.2.2. <iterable-filter> syntax

Summary

The <iterable-filter> element counts the number of times a condition is verified. For additional

<ruletest xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 id="proprietary-servlet-test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <testDataPath>data/</testDataPath>
 <rulePath>../proprietary-servlet.mta.xml</rulePath>
 <ruleset>
 <rules>
 <rule id="proprietary-servlet-01000-test">
 <when>
 <!--
 The <not> will perform a logical not operator on the elements within.
 -->
 <not>
 <!--
 The defined <iterable-filter> has a size of 1. This rule will only match on a single instance of the
defined hint.
 -->
 <iterable-filter size="1">
 <hint-exists message="Replace the proprietary @ProprietaryServlet annotation with the Java
EE 7 standard @WebServlet annotation*" />
 </iterable-filter>
 </not>
 </when>
 <!--
 This <perform> element is only executed if the previous <when> condition is false.
 This ensures that it only executes if there is not a single instance of the defined hint.
 -->
 <perform>
 <fail message="Hint for @ProprietaryServlet was not found!" />
 </perform>
 </rule>
 </rules>
 </ruleset>
</ruletest>

CHAPTER 4. TESTING XML RULES

39

The <iterable-filter> element counts the number of times a condition is verified. For additional
information, see the IterableFilter class.

The following is an example that looks for four instances of the specified message.

The <iterable-filter> element has no unique child elements.

<iterable-filter> element attributes

Attribute Name Type Description

size integer The number of times to be verified.

4.1.2.3. <classification-exists> syntax

The <classification-exists> element determines if a specific classification title has been included in the
analysis. For additional information, see the ClassificationExists class.

IMPORTANT

<ruletest xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 id="proprietary-servlet-test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <testDataPath>data/</testDataPath>
 <rulePath>../proprietary-servlet.mta.xml</rulePath>
 <ruleset>
 <rules>
 <rule id="proprietary-servlet-03000-test">
 <when>
 <!--
 The <not> will perform a logical not operator on the elements within.
 -->
 <not>
 <!--
 The defined <iterable-filter> has a size of 4. This rule will only match on four instances of the
defined hint.
 -->
 <iterable-filter size="4">
 <hint-exists message="Replace the proprietary @ProprietaryInitParam annotation with the
Java EE 7 standard @WebInitParam annotation*" />
 </iterable-filter>
 </not>
 </when>
 <!--
 This <perform> element is only executed if the previous <when> condition is false.
 In this configuration, it only executes if there are not four instances of the defined hint.
 -->
 <perform>
 <fail message="Hint for @ProprietaryInitParam was not found!" />
 </perform>
 </rule>
 </rules>
 </ruleset>
</ruletest>

Migration Toolkit for Applications 5.1 Rules Development Guide

40

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/rules/general/IterableFilter.html
http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/ClassificationExists.html

IMPORTANT

When testing for a message that contains special characters, such as [or ', you must
escape each special character with a backslash (\) to correctly match.

The following is an example that searches for a specific classification title.

The <classification-exists> has no unique child elements.

<classification-exists> element attributes

Attribute Name Type Description

classification String The <classification> title to search for.

in String An optional argument that restricts matching to files that
contain the defined filename.

4.1.2.4. <hint-exists> syntax

<ruletest xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 id="proprietary-servlet-test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <testDataPath>data/</testDataPath>
 <rulePath>../weblogic.mta.xml</rulePath>
 <ruleset>
 <rules>
 <rule id="weblogic-01000-test">
 <when>
 <!--
 The <not> will perform a logical not operator on the elements within.
 -->
 <not>
 <!--
 The defined <classification-exists> is attempting to match on the defined title.
 This classification would have been generated by a matching <classification title="WebLogic
scheduled job" .../> rule.
 -->
 <classification-exists classification="WebLogic scheduled job" />
 </not>
 </when>
 <!--
 This <perform> element is only executed if the previous <when> condition is false.
 In this configuration, it only executes if there is not a matching classification.
 -->
 <perform>
 <fail message="Triggerable not found" />
 </perform>
 </rule>
 </rules>
 </ruleset>
</ruletest>

CHAPTER 4. TESTING XML RULES

41

The <hint-exists> element determines if a specific hint has been included in the analysis. It searches for
any instances of the defined message, and is typically used to search for the beginning or a specific class
inside of a <message> element. For additional information, see the HintExists class.

IMPORTANT

When testing for a message that contains special characters, such as [or ', you must
escape each special character with a backslash (\) to correctly match.

The following is an example that searches for a specific hint.

The <hint-exists> element has no unique child elements.

<hint-exists> element attributes

Attribute Name Type Description

message String The <hint> message to search for.

<ruletest xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 id="proprietary-servlet-test" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <testDataPath>data/</testDataPath>
 <rulePath>../weblogic.windup.xml</rulePath>
 <ruleset>
 <rules>
 <rule id="weblogic-eap7-05000-test">
 <when>
 <!--
 The <not> will perform a logical not operator on the elements within.
 -->
 <not>
 <!--
 The defined <hint-exists> is attempting to match on the defined message.
 This message would have been generated by a matching <message> element on the <hint>
condition.
 -->
 <hint-exists message="Replace with the Java EE standard method
.javax\.transaction\.TransactionManager\.resume\(Transaction tx\)." />
 </not>
 </when>
 <!--
 This <perform> element is only executed if the previous <when> condition is false.
 In this configuration, it only executes if there is not a matching hint.
 -->
 <perform>
 <fail message="Note to replace with standard TransactionManager.resume is missing!" />
 </perform>
 </rule>
 </rules>
 </ruleset>
</ruletest>

Migration Toolkit for Applications 5.1 Rules Development Guide

42

http://windup.github.io/windup/docs/latest/javadoc/org/jboss/windup/reporting/config/HintExists.html

in String An optional argument that restricts matching to
InLineHintModels that reference the given filename.

Attribute Name Type Description

4.1.2.5. <fail> syntax

The <fail> element reports the execution as a failure and displays the associated message. It is
commonly used in conjunction with the <not> condition to display a message only if the conditions are
not met.

The <fail> element has no unique child elements.

<fail> element attributes

Attribute Name Type Description

message String The message to be displayed.

4.2. MANUALLY TESTING AN XML RULE

You can run an XML rule against your application file to test it:

$ <MTA_HOME>/bin/mta-cli [--sourceMode] --input <INPUT_ARCHIVE_OR_FOLDER> --output
<OUTPUT_REPORT_DIRECTORY> --target <TARGET_TECHNOLOGY> --packages
<PACKAGE_1> <PACKAGE_2> <PACKAGE_N>

You should see the following result:

Report created: <OUTPUT_REPORT_DIRECTORY>/index.html
 Access it at this URL: file:///<OUTPUT_REPORT_DIRECTORY>/index.html

More examples of how to run MTA are located in the Migration Toolkit for Applications CLI Guide.

4.3. TESTING THE RULES USING JUNIT

Once a test rule has been created, it can be analyzed as part of a JUnit test to confirm that the rule
meets all criteria for execution. The WindupRulesMultipleTests class in the MTA rules repository is
designed to test multiple rules simultaneously, and provides feedback on any missing requirements.

Prerequisites

Fork and clone the MTA XML rules. The location of this repository will be referred to as
<RULESETS_REPO>.

Create a test XML rule.

Creating the JUnit test configuration

The following instructions detail creating a JUnit test using the Red Hat CodeReady Studio. When using

CHAPTER 4. TESTING XML RULES

43

https://access.redhat.com/documentation/en-us/migration_toolkit_for_applications/5.1/html-single/cli_guide

The following instructions detail creating a JUnit test using the Red Hat CodeReady Studio. When using
a different IDE it is recommended to consult your IDE’s documentation for instructions on creating a
JUnit test.

1. Import the MTA rulesets repository into your IDE.

2. Copy the custom rules, along with the corresponding tests and data, into
</path/to/RULESETS_REPO>/rules-reviewed/<RULE_NAME>/. This should create the
following directory structure.

Directory structure

├── rules-reviewed/ (Root directory of the rules found within the project)
│ ├── <RULE_NAME>/ (Directory to contain the newly developed rule and tests)
│ │ ├── <RULE_NAME>.mta.xml (Custom rule)
│ │ ├── tests/ (Directory that contains any test rules and data)
│ │ │ ├── <RULE_NAME>.mta.test.xml (Test rule)
│ │ │ └── data/ (Optional directory to contain test rule data)

3. Select Run from the top menu bar.

4. Select Run Configurations… from the drop down that appears.

5. Right-click JUnit from the options on the left side and select New.

6. Enter the following:

Name: A name for your JUnit test, such as WindupRulesMultipleTests.

Project: Ensure this is set to windup-rulesets.

Test class: Set this to org.jboss.windup.rules.tests.WindupRulesMultipleTests.

7. Select the Arguments tab, and add the -DrunTestsMatching=<RULE_NAME> VM argument.
For instance, if your rule name was community-rules, then you would add -
DrunTestsMatching=community-rules as seen in the following image.

Migration Toolkit for Applications 5.1 Rules Development Guide

44

8. Click Run in the bottom right corner to begin the test.

Once the execution completes the results will be available for analysis. If all tests passed, then the test
rule is correctly formatted; otherwise, it is recommended to address each of the issues raised in the test
failures.

4.4. ABOUT VALIDATION REPORTS

Validation reports provide details about test rules and failures and contain the following sections:

Summary
This section contains the total number of tests executed and reports the number of errors and
failures. It displays the total success rate and the time taken, in seconds, for the report to be
generated.

Package List
This section contains the number of tests executed for each package and reports the number of
errors and failures. It displays the success rate and the time taken, in seconds, for each package
to be analyzed.

A single package named org.jboss.windup.rules.tests is displayed unless additional test cases
have been defined.

Test Cases
This section describes the test cases. Each failure includes a Details section that can be
expanded to show the stack trace for the assertion, including a human-readable line indicating
the source of the error.

4.4.1. Creating a validation report

You can create a validation report for your custom rules.

CHAPTER 4. TESTING XML RULES

45

1

2

Prerequisites

You must fork and clone the MTA XML rules.

You must have one or more test XML rules to validate.

Procedure

1. Navigate to the local windup-rulesets repository.

2. Create a directory for your custom rules and tests: windup-rulesets/rules-reviewed/myTests.

3. Copy your custom rules and tests to the windup-rulesets/rules-reviewed/<myTests>
directory.

4. Run the following command from the root directory of the windup-rulesets repository:

$ mvn -Dtest=WindupRulesMultipleTests -DrunTestsMatching=<myTests> clean
<myReport>:report 1 2

Specify the directory containing your custom rules and tests. If you omit the -
DrunTestsMatching argument, the validation report will include all the tests and take
much longer to generate.

Specify your report name.

The validation report is created in the windup-rulesets/target/site/ repository.

4.4.2. Validation report error messages

Validation reports contain errors encountered while running the rules and tests.

The following table contains error messages and how to resolve the errors.

Table 4.1. Validation report error messages

Error message Description Resolution

No test file matching
rule

This error occurs when a rule file
exists without a corresponding test
file.

Create a test file for the existing rule.

Test rule Ids
<RULE_NAME> not
found!

This error is thrown when a rule
exists without a corresponding
ruletest.

Create a test for the existing rule.

XML parse fail on file
<FILE_NAME>

The syntax in the XML file is invalid,
and unable to be parsed
successfully by the rule validator.

Correct the invalid syntax.

Migration Toolkit for Applications 5.1 Rules Development Guide

46

Test file path from
<testDataPath> tag
has not been found.
Expected path to test
file is:
<RULE_DATA_PATH>

No files are found in the path
defined in the <testDataPath> tag
within the test rule.

Create the path defined in the
<testDataPath> tag, and ensure all
necessary data files are located within
this directory.

The rule with id="
<RULE_ID>" has not
been executed.

The rule with the provided id has
not been executed during this
validation.

Ensure that a test data file exists that
matches the conditions defined in the
specified rule.

Error message Description Resolution

CHAPTER 4. TESTING XML RULES

47

CHAPTER 5. OVERRIDING RULES
You can override core rules distributed with MTA or even custom rules. For example, you can change the
matching conditions, effort, or hint text for a rule. This is done by making a copy of the original rule,
marking it as a rule override, and making the necessary adjustments.

You can disable a rule by creating a rule override with an empty <rule> element.

5.1. OVERRIDING A RULE

You can override a core or custom rule.

Procedure

1. Copy the XML file that contains the rule you want to override to the custom rules directory.
Custom rules can be placed in <MTA_HOME>/rules, ${user.home}/.mta/rules/, or a directory
specified by the --userRulesDirectory command-line argument.

2. Edit the XML file so that it contains only the <rule> elements for the rules that you want to
override.

NOTE

Rules from the original ruleset that are not overridden by the new ruleset are
executed as normal.

3. Ensure that you keep the same rule and ruleset IDs. When you copy the original rule XML, this
ensures that the IDs match.

4. Add the <overrideRules>true</overrideRules> element to the ruleset metadata.

5. Update the rule definition.
You can change anything in the rule definition. The new rule overrides the original rule in its
entirety.

The following rule override example changes the effort of the weblogic-02000 rule in the weblogic
ruleset from 1 to 3:

Rule override definition example

<?xml version="1.0"?>
<ruleset id="weblogic"
 xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd"> 1
 <metadata>
 ...
 <overrideRules>true</overrideRules> 2
 </metadata>
 <rules>
 <rule id="weblogic-02000" xmlns="http://windup.jboss.org/schema/jboss-ruleset"> 3
 <when>
 <javaclass references="weblogic.utils.StringUtils.{*}"/>

Migration Toolkit for Applications 5.1 Rules Development Guide

48

1

2

3

4

1

Ensure that the ruleset id matches the original ruleset id.

Add <overrideRules>true</overrideRules> to the <metadata> section.

Ensure that the rule id matches the original rule id.

Updated effort.

When you run MTA, this rule overrides the original rule with the same rule ID. You can verify that the new
rule was used by viewing the contents of the Rule Provider Executions Overview.

5.2. DISABLING A RULE

To disable a rule, create a rule override definition with an empty <rule> element according to the
following example:

Rule override definition example to disable a rule

The <rule> element is empty so that the weblogic-02000 rule in the weblogic ruleset is disabled.

 </when>
 <perform>
 <hint effort="3" category-id="mandatory" title="WebLogic StringUtils Usage"> 4
 <message>Replace with the StringUtils class from Apache Commons.</message>
 <link href="https://commons.apache.org/proper/commons-lang/" title="Apache Commons
Lang"/>
 <tag>weblogic</tag>
 </hint>
 </perform>
 </rule>
 </rules>
</ruleset>

<?xml version="1.0"?>
<ruleset id="weblogic"
 xmlns="http://windup.jboss.org/schema/jboss-ruleset"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://windup.jboss.org/schema/jboss-ruleset
http://windup.jboss.org/schema/jboss-ruleset/windup-jboss-ruleset.xsd">
 <metadata>
 ...
 <overrideRules>true</overrideRules>
 </metadata>
 <rules>
 <rule id="weblogic-02000" xmlns="http://windup.jboss.org/schema/jboss-ruleset">
 1
 </rule>
 </rules>
</ruleset>

CHAPTER 5. OVERRIDING RULES

49

CHAPTER 6. USING CUSTOM RULE CATEGORIES
You can create custom rule categories and assign MTA rules to them.

NOTE

Although MTA processes rules with the legacy severity field, you must update your
custom rules to use the new category-id field.

Adding a custom category
You can add a custom category to the rule category file.

Procedure

1. Edit the rule category file, which is located at <MTA_HOME>/rules/migration-
core/core.windup.categories.xml.

2. Add a new <category> element and fill in the following parameters:

id: The ID that MTA rules use to reference the category.

priority: The sorting priority relative to other categories. The category with the lowest value
is displayed first.

name: The display name of the category.

description: The description of the category.

Custom rule category example

This category is ready to be referenced by MTA rules.

Assigning a rule to a custom category
You can assign a rule to your new custom category.

Procedure

In your MTA rule, update the category-id field as in the following example.

<?xml version="1.0"?>
<categories>
 ...
 <category id="custom-category" priority="20000">
 <name>Custom Category</name>
 <description>This is a custom category.</description>
 </category>
</categories>

<rule id="rule-id">
 <when>
 ...
 </when>
 <perform>
 <hint title="Rule Title" effort="1" category-id="custom-category">
 <message>Hint message.</message>

Migration Toolkit for Applications 5.1 Rules Development Guide

50

If this rule condition is met, incidents identified by this rule use your custom category. The custom
category is displayed on the dashboard and in the Issues report.

Figure 6.1. Custom category on the dashboard

 </hint>
 </perform>
 </rule>

CHAPTER 6. USING CUSTOM RULE CATEGORIES

51

APPENDIX A. REFERENCE MATERIAL

A.1. ABOUT RULE STORY POINTS

A.1.1. What are story points?

Story points are an abstract metric commonly used in Agile software development to estimate the level
of effort needed to implement a feature or change.

The Migration Toolkit for Applications uses story points to express the level of effort needed to migrate
particular application constructs, and the application as a whole. It does not necessarily translate to man-
hours, but the value should be consistent across tasks.

A.1.2. How story points are estimated in rules

Estimating the level of effort for the story points for a rule can be tricky. The following are the general
guidelines MTA uses when estimating the level of effort required for a rule.

Level of Effort Story Points Description

Information 0 An informational warning with very low or no priority for
migration.

Trivial 1 The migration is a trivial change or a simple library swap with no
or minimal API changes.

Complex 3 The changes required for the migration task are complex, but
have a documented solution.

Redesign 5 The migration task requires a redesign or a complete library
change, with significant API changes.

Rearchitecture 7 The migration requires a complete rearchitecture of the
component or subsystem.

Unknown 13 The migration solution is not known and may need a complete
rewrite.

A.1.3. Task category

In addition to the level of effort, you can categorize migration tasks to indicate the severity of the task.
The following categories are used to group issues to help prioritize the migration effort.

Mandatory

The task must be completed for a successful migration. If the changes are not made, the resulting
application will not build or run successfully. Examples include replacement of proprietary APIs that
are not supported in the target platform.

Optional

If the migration task is not completed, the application should work, but the results may not be

Migration Toolkit for Applications 5.1 Rules Development Guide

52

optimal. If the change is not made at the time of migration, it is recommended to put it on the
schedule soon after your migration is completed. An example of this would be the upgrade of EJB 2.x
code to EJB 3.

Potential

The task should be examined during the migration process, but there is not enough detailed
information to determine if the task is mandatory for the migration to succeed. An example of this
would be migrating a third-party proprietary type where there is no directly compatible type.

Information

The task is included to inform you of the existence of certain files. These may need to be examined
or modified as part of the modernization effort, but changes are typically not required. An example of
this would be the presence of a logging dependency or a Maven pom.xml.

For more information on categorizing tasks, see Using custom rule categories.

A.2. ADDITIONAL RESOURCES

A.2.1. Reviewing existing MTA XML rules

MTA XML-based rules are located on GitHub at the following location:
https://github.com/windup/windup-rulesets/tree/master/rules-reviewed.

You can fork and clone the MTA XML rules on your local machine.

Rules are grouped by target platform and function. When you create a new rule, it is helpful to find a rule
that is similar to the one you need and use it as a starting template.

New rules are continually added, so it is a good idea to check back frequently to review the updates.

A.2.1.1. Forking and cloning the Migration Toolkit for Applications XML rules

The Migration Toolkit for Applications windup-rulesets repository provides provide working examples
of how to create custom Java-based rule add-ons and XML rules. You can use them as a starting point
for creating your own custom rules.

You must have the git client installed on your machine.

1. Click the Fork link on the Migration Toolkit for Applications Rulesets GitHub page to create the
project in your own Git. The forked GitHub repository URL created by the fork should look like
this: https://github.com/<YOUR_USER_NAME>/windup-rulesets.git.

2. Clone your Migration Toolkit for Applications rulesets repository to your local file system:

$ git clone https://github.com/<YOUR_USER_NAME>/windup-rulesets.git

3. This creates and populates a windup-rulesets directory on your local file system. Navigate to
the newly created directory, for example

$ cd windup-rulesets/

4. If you want to be able to retrieve the latest code updates, add the remote upstream repository
so you can fetch any changes to the original forked repository.

$ git remote add upstream https://github.com/windup/windup-rulesets.git

APPENDIX A. REFERENCE MATERIAL

53

https://github.com/windup/windup-rulesets/tree/master/rules-reviewed
http://git-scm.com/
https://github.com/windup/windup-rulesets/

5. Get the latest files from the upstream repository.

$ git fetch upstream

A.2.2. Resources

MTA Javadoc: http://windup.github.io/windup/docs/latest/javadoc

MTA forums: https://developer.jboss.org/en/windup

MTA Jira issue trackers

Core MTA: https://issues.redhat.com/projects/WINDUP

MTA Rules: https://issues.redhat.com/projects/WINDUPRULE

MTA mailing list: jboss-migration-feedback@redhat.com

MTA IRC channel: Server FreeNode (irc.freenode.net), channel #windup (transcripts)

Revised on 2021-08-02 12:17:01 UTC

Migration Toolkit for Applications 5.1 Rules Development Guide

54

http://windup.github.io/windup/docs/latest/javadoc
https://developer.jboss.org/en/windup
https://issues.redhat.com/projects/WINDUP
https://issues.redhat.com/projects/WINDUPRULE
mailto:jboss-migration-feedback@redhat.com
http://transcripts.jboss.org/channel/irc.freenode.org/%23windup/index.html

	Table of Contents
	MAKING OPEN SOURCE MORE INCLUSIVE
	CHAPTER 1. INTRODUCTION
	1.1. ABOUT THE RULES DEVELOPMENT GUIDE
	1.1.1. Use of <MTA_HOME> in this guide

	1.2. ABOUT MTA RULES

	CHAPTER 2. GETTING STARTED WITH RULES
	2.1. CREATING YOUR FIRST XML RULE
	Creating the directory structure for the rule
	Creating data to test the rule
	Creating the rule
	Installing the rule
	Testing the rule
	Reviewing the reports

	2.2. REVIEWING THE MIGRATION TOOLKIT FOR APPLICATIONS QUICKSTARTS
	Downloading the latest quickstart
	Forking and cloning the quickstart GitHub project

	CHAPTER 3. CREATING XML RULES
	3.1. XML RULE STRUCTURE
	3.1.1. Rulesets
	3.1.2. Predefined rules

	3.2. CREATING A BASIC XML RULE
	3.2.1. Creating a basic XML rule template
	3.2.2. Creating the ruleset metadata
	3.2.3. Creating a rule
	3.2.3.1. Creating a <when> condition
	3.2.3.2. Creating a <perform> action

	3.3. XML RULE SYNTAX
	3.3.1. <when> syntax
	3.3.1.1. <javaclass> syntax
	3.3.1.2. <xmlfile> syntax
	3.3.1.3. <project> syntax
	3.3.1.4. <filecontent> syntax
	3.3.1.5. <file> syntax
	3.3.1.6. <has-hint> syntax
	3.3.1.7. <has-classification> syntax
	3.3.1.8. <graph-query> syntax
	3.3.1.9. <dependency> syntax

	3.3.2. <perform> syntax
	3.3.2.1. <classification> syntax
	3.3.2.2. <link> syntax
	3.3.2.3. <hint> syntax
	3.3.2.4. <xslt> syntax
	3.3.2.5. <lineitem> syntax
	3.3.2.6. <iteration> syntax

	3.3.3. <where> syntax

	3.4. ADDING A RULE TO THE MIGRATION TOOLKIT FOR APPLICATIONS

	CHAPTER 4. TESTING XML RULES
	4.1. CREATING A TEST RULE
	4.1.1. Test XML rule structure
	4.1.2. Test XML rule syntax
	4.1.2.1. <not> syntax
	4.1.2.2. <iterable-filter> syntax
	4.1.2.3. <classification-exists> syntax
	4.1.2.4. <hint-exists> syntax
	4.1.2.5. <fail> syntax

	4.2. MANUALLY TESTING AN XML RULE
	4.3. TESTING THE RULES USING JUNIT
	4.4. ABOUT VALIDATION REPORTS
	4.4.1. Creating a validation report
	4.4.2. Validation report error messages

	CHAPTER 5. OVERRIDING RULES
	5.1. OVERRIDING A RULE
	5.2. DISABLING A RULE

	CHAPTER 6. USING CUSTOM RULE CATEGORIES
	Adding a custom category
	Assigning a rule to a custom category

	APPENDIX A. REFERENCE MATERIAL
	A.1. ABOUT RULE STORY POINTS
	A.1.1. What are story points?
	A.1.2. How story points are estimated in rules
	A.1.3. Task category

	A.2. ADDITIONAL RESOURCES
	A.2.1. Reviewing existing MTA XML rules
	A.2.1.1. Forking and cloning the Migration Toolkit for Applications XML rules

	A.2.2. Resources

